Science.gov

Sample records for peony glycosides reverses

  1. Reverse transcriptase domain sequences from tree peony (Paeonia suffruticosa) long terminal repeat retrotransposons: sequence characterization and phylogenetic analysis

    PubMed Central

    Guo, Da-Long; Hou, Xiao-Gai; Jia, Tian

    2014-01-01

    Tree peony is an important horticultural plant worldwide of great ornamental and medicinal value. Long terminal repeat retrotransposons (LTR-retrotransposons) are the major components of most plant genomes and can substantially impact the genome in many ways. It is therefore crucial to understand their sequence characteristics, genetic distribution and transcriptional activity; however, no information about them is available in tree peony. Ty1-copia-like reverse transcriptase sequences were amplified from tree peony genomic DNA by polymerase chain reaction (PCR) with degenerate oligonucleotide primers corresponding to highly conserved domains of the Ty1-copia-like retrotransposons in this study. PCR fragments of roughly 270 bp were isolated and cloned, and 33 sequences were obtained. According to alignment and phylogenetic analysis, all sequences were divided into six families. The observed difference in the degree of nucleotide sequence similarity is an indication for high level of sequence heterogeneity among these clones. Most of these sequences have a frame shift, a stop codon, or both. Dot-blot analysis revealed distribution of these sequences in all the studied tree peony species. However, different hybridization signals were detected among them, which is in agreement with previous systematics studies. Reverse transcriptase PCR (RT-PCR) indicated that Ty1-copia retrotransposons in tree peony were transcriptionally inactive. The results provide basic genetic and evolutionary information of tree peony genome, and will provide valuable information for the further utilization of retrotransposons in tree peony. PMID:26019529

  2. What secrets lurk in peony DNA?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The scientists at USDA ARS National Clonal Germplasm Repository and the USDA ARS Arctic and Subarctic Plant Gene Bank have begun to collect and research peonies (Paeonia L). These scientists were able to isolate DNA from dormant buds as well as leaves of peonies. They are working with other scientis...

  3. Independent domestications of cultivated tree peonies from different wild peony species.

    PubMed

    Yuan, Jun-Hui; Cornille, Amandine; Giraud, Tatiana; Cheng, Fang-Yun; Hu, Yong-Hong

    2014-01-01

    An understanding of plant domestication history provides insights into general mechanisms of plant adaptation and diversification and can guide breeding programmes that aim to improve cultivated species. Cultivated tree peonies (genus Paeonia L.) are among the most popular ornamental plants in the world; yet, the history of their domestication is still unresolved. Here, we explored whether the domestication in China of historically cultivated peonies, that is, the common and flare cultivated tree peonies, was a single event or whether independent domestications occurred. We used 14 nuclear microsatellite markers and a comprehensive set of 553 tree peonies collected across China, including common tree peonies, flare tree peonies and the wild species or subspecies that are potential contributors to the cultivated tree peonies, that is, Paeonia rockii ssp. rockii, P. rockii ssp. atava, P. jishanensis and P. decomposita. Assignment methods, a principal component analysis and approximate Bayesian computations provided clear evidence for independent domestications of these common tree and flare tree peonies from two distinct and allopatric wild species, P. jishanensis and P. rockii ssp. atava, respectively. This study provides the first example of independent domestications of cultivated trees from distinct species and locations. This work also yields crucial insight into the history of domestication of one of the most popular woody ornamental plants. The cultivated peonies represent an interesting case of parallel and convergent evolution. The information obtained in this study will be valuable both for improving current tree peony breeding strategies and for understanding the mechanisms of domestication, diversification and adaptation in plants. PMID:24138195

  4. Diversity of arthropod pests from high latitude peony production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peony (Paeonia spp.) is a fairly new crop to Alaska. Alaska has a late season with peony harvests into July-August when peony flowers are not readily available on the world markets. The University of Alaska Fairbanks has developed a production package to include variety performance, panting time, ha...

  5. Cloning and expression of the sucrose transporter gene PsSUT1 from tree peony leaf.

    PubMed

    Li, Y H; Guo, T; Cui, Y; Li, Y; He, D

    2015-01-01

    This study reports the cloning of a sucrose transporter gene, PsSUT1, from the leaf of tree peony (Paeonia suffruticosa Lind. cv 'Huhong'). Expression patterns were examined in different organs and at different developmental stages. The full-length cDNA of PsSUT1 consisted of a 2001-bp sequence containing a 1557-bp open reading frame, encoding 519 amino acids with a conserved domain typical of the glycoside-pentoside-hexuronide superfamily. The amino acid sequence of PsSUT1 in tree peony shared high homology with that of other plants. At different developmental stages, PsSUT1 was expressed in roots, stems, leaves, and petals. Its expression level in stems was 10.9-fold higher than in petals at the flowering stage. Expression of PsSUT1 at the flowering stage was highest during flower development. The significant differences in PsSUT1 expression observed among developmental stages and organs were closely related to changes in sucrose content during flower opening. These results form the basis for further research on the molecular mechanisms of carbohydrate metabolism and transport during flower development in tree peony. PMID:26505390

  6. 'Peony Nebula' Star Settles for Silver Medal

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Poster Version Movie

    If our galaxy, the Milky Way, were to host its own version of the Olympics, the title for the brightest known star would go to a massive star called Eta Carina. However, a new runner-up now the second-brightest star in our galaxy has been discovered in the galaxy's dusty and frenzied interior. This image from NASA's Spitzer Space Telescope shows the new silver medalist, circled in the inset above, in the central region of our Milky Way.

    Dubbed the 'Peony nebula' star, this blazing ball of gas shines with the equivalent light of 3.2 million suns. The reigning champ, Eta Carina, produces the equivalent of 4.7 million suns worth of light though astronomers say these estimates are uncertain, and it's possible that the Peony nebula star could be even brighter than Eta Carina.

    If the Peony star is so bright, why doesn't it stand out more in this view? The answer is dust. This star is located in a very dusty region jam packed with stars. In fact, there could be other super bright stars still hidden deep in the stellar crowd. Spitzer's infrared eyes allowed it to pierce the dust and assess the Peony nebula star's true brightness. Likewise, infrared data from the European Southern Observatory's New Technology Telescope in Chile were integral in calculating the Peony nebula star's luminosity.

    The Peony nebula, which surrounds the Peony nebular star, is the reddish cloud of dust in and around the white circle.

    The movie begins by showing a stretch of the dusty and frenzied central region of our Milky Way galaxy. It then zooms in to reveal the 'Peony nebula' star the new second-brightest star in the Milky Way, discovered in part by NASA's Spitzer Space Telescope.

    This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both

  7. Development and validation of a reversed-phase high-performance liquid chromatography method for routine identification and purity assessment of high-purity steviol glycoside sweeteners.

    PubMed

    Bililign, Tsion; Moore, Jeffrey C; Tan, Shane; Leeks, Allan T

    2014-02-12

    The widespread application of stevia-based sweeteners in food products has resulted in the need for reliable analytical methods for measuring the purity and identity of high-purity steviol glycoside ingredients. The objective of this research was to develop and validate a new reversed-phase separation method capable of separating and quantifying nine steviol glycosides present in typical high-purity stevia extract ingredients. Results of the study established the linearity of the method at a correlation factor of 1.000 for the two major components and other minor components of this food ingredient. Method accuracy values were in the range of 99.1-100.9%. The percent relative standard deviation for six independent assay determinations was 1.0%. The method was determined to be robust for minor changes in column temperature, initial acetonitrile content, flow rate, and wavelength. The validated high-performance liquid chromatography method was found to be suitable to be included by USP as a Food Chemicals Codex compendial standard for steviol glycosides. PMID:24443893

  8. Asclepiasterol, a novel C21 steroidal glycoside derived from Asclepias curassavica, reverses tumor multidrug resistance by down-regulating P-glycoprotein expression.

    PubMed

    Yuan, Wei-Qi; Zhang, Rong-Rong; Wang, Jun; Ma, Yan; Li, Wen-Xue; Jiang, Ren-Wang; Cai, Shao-Hui

    2016-05-24

    Multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) is a major cause of cancer therapy failure. In this study, we identified a novel C21 steroidal glycoside, asclepiasterol, capable of reversing P-gp-mediated MDR. Asclepiasterol (2.5 and 5.0μM) enhanced the cytotoxity of P-gp substrate anticancer drugs in MCF-7/ADR and HepG-2/ADM cells. MDR cells were more responsive to paclitaxel in the presence of asclepiasterol, and colony formation of MDR cells was only reduced upon treatment with a combination of asclepiasterol and doxorubicin. Consistent with these findings, asclepiasterol treatment increased the intracellular accumulation of doxorubicin and rhodamine 123 (Rh123) in MDR cells. Asclepiasterol decreased expression of P-gp protein without stimulating or suppressing MDR1 mRNA levels. Asclepiasterol-mediated P-gp suppression caused inhibition of ERK1/2 phosphorylation in two MDR cell types, and EGF, an activator of the MAPK/ERK pathway, reversed the P-gp down-regulation, implicating the MAPK/ERK pathway in asclepiasterol-mediated P-gp down-regulation. These results suggest that asclepiasterol could be developed as a modulator for reversing P-gp-mediated MDR in P-gp-overexpressing cancer variants. PMID:27129170

  9. Selection of Reference Genes for Quantitative Real-Time PCR during Flower Development in Tree Peony (Paeonia suffruticosa Andr.).

    PubMed

    Li, Jian; Han, Jigang; Hu, Yonghong; Yang, Ji

    2016-01-01

    Tree peony (Paeonia suffruticosa) is a perennial plant indigenous to China known for its elegant and vibrantly colorful flowers. A few genes involved in petal pigmentation have been cloned in tree peony. However, to date, there have been few studies on the comparison and selection of stable reference genes for gene expression analysis by quantitative reverse-transcription PCR (qRT-PCR) in this species. In this study, 10 candidate reference genes were evaluated for the normalization of qRT-PCR in three tree peony cultivars. GAPDH and UBC were identified as the top two most stable reference genes in 'Feng Dan' and 'Xi Shi,' and EF-1α/UBC was recommended to be the best combination for 'Que Hao.' The expression stability of various reference genes differed across cultivars, suggesting that selection and validation of reliable reference genes for quantitative gene expression analysis was necessary not only for different species but also for different cultivars. The results provided a list of reference genes for further study on gene expression in P. suffruticosa. However, in any case, a preliminary check on the accuracy of the best performing reference genes is requested for each qRT-PCR experiment. PMID:27148337

  10. Selection of Reference Genes for Quantitative Real-Time PCR during Flower Development in Tree Peony (Paeonia suffruticosa Andr.)

    PubMed Central

    Li, Jian; Han, Jigang; Hu, Yonghong; Yang, Ji

    2016-01-01

    Tree peony (Paeonia suffruticosa) is a perennial plant indigenous to China known for its elegant and vibrantly colorful flowers. A few genes involved in petal pigmentation have been cloned in tree peony. However, to date, there have been few studies on the comparison and selection of stable reference genes for gene expression analysis by quantitative reverse-transcription PCR (qRT-PCR) in this species. In this study, 10 candidate reference genes were evaluated for the normalization of qRT-PCR in three tree peony cultivars. GAPDH and UBC were identified as the top two most stable reference genes in ‘Feng Dan’ and ‘Xi Shi,’ and EF-1α/UBC was recommended to be the best combination for ‘Que Hao.’ The expression stability of various reference genes differed across cultivars, suggesting that selection and validation of reliable reference genes for quantitative gene expression analysis was necessary not only for different species but also for different cultivars. The results provided a list of reference genes for further study on gene expression in P. suffruticosa. However, in any case, a preliminary check on the accuracy of the best performing reference genes is requested for each qRT-PCR experiment. PMID:27148337

  11. First Report of Tobacco Rattle Virus in Peony in Alaska

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2007, scattered peony (Paeonia lactiflora ‘Sarah Bernhardt’) plants cultivated on plots at the University of Alaska Experimental Station in Fairbanks, Alaska, contained distinct leaf ringspot patterns. Leaf samples from symptomatic plants were collected in early July (6 plants) and late September...

  12. [Discrimination of varieties of peony in Huangqin decoction].

    PubMed

    Bai, Yu-ming; Hao, Jin-da

    2015-11-01

    By studying the varieties of peony and analyzing the prescription of Huangqin decoction, the authors explored the differences between Paeoniae Radix Alba and Radix Paeoniae Rubra in varieties, origin, processing method and clinical efficacy and compare their efficacies to define Paeoniae Radix Alba or Paeoniae Radix Rubra in Huangqin decoction recorded in Treatise on Febrile Diseases. In the study, the authors clarified the development and change of the variety in various historical periods according to the earliest ancient herbal book recording the variety and the development sequence of main herbs, and made clear the relations between Paeoniae Radix Alba and Paeoniae Radix Rubra. The modern application of Paeoniae Radix Alba started in the Song Dynasty. Although it was processed in different ways from Paeoniae radix Rubra, they shared the same original plant varieties. On the basis of the historical origin, botanical origin, producing place and processing method, the authors made clear the evolvement of peony varieties, discussed and analyzed the developments and changes for the combined to the separate administration of Paeoniae Radix Alba and Paeoniae Radix Rubra and defined the peony variety in Huangqin decoction. Through the textual research on ancient herbal books, the authors confirmed that more than 2 000 years ago, Paeoniae Radix Alba didn't appear when Treatise on Febrile Diseases was written. According to the records in Miscellaneous Records of Famous Physicians that "its roots were collected and dried in February and August", it was inferred that the use of Paeoniae Radix Rubra conformed to the historical facts. PMID:27097432

  13. The impact of sewage sludge compost on tree peony growth and soil microbiological, and biochemical properties.

    PubMed

    Xue, Dong; Huang, Xiangdong

    2013-10-01

    In order to assess the suitability of sludge compost application for tree peony (Paeonia suffruticosa)-soil ecosystems, we determined soil microbial biomass C (Cmic), basal respiration (Rmic), enzyme activities, and tree peony growth parameters at 0-75% sludge compost amendment dosage. Soil Cmic, Rmic, Cmic as a percent of soil organic C, enzyme (invertase, urease, proteinase, phosphatase, polyphenoloxidase) activities, and plant height, flower diameter, and flower numbers per plant of tree peony significantly increased after sludge compost amendment; however, with the increasing sludge compost amendment dosage, a decreasing trend above 45% sludge compost amendment became apparent although soil organic C, total Kjeldahl N, and total P always increased with the sludge compost amendment. Soil metabolic quotient first showed a decreasing trend with the increasing sludge compost application in the range of 15-45%, and then an increasing trend from compost application of 45-75%, with the minimum found at compost application of 45%. As for the diseased plants, 50% of tree peony under the treatment without sludge compost amendment suffered from yellow leaf disease of tree peony, while no any disease was observed under the treatments with sludge compost application of 30-75%, which showed sludge compost application had significant suppressive effect on the yellow leaf disease of tree peony. This result convincingly demonstrated that ≤45% sludge compost application dosage can take advantage of beneficial effect on tree peony growth and tree peony-soil ecosystems. PMID:23800593

  14. Changes in soil microbial community structure with planting years and cultivars of tree peony (Paeonia suffruticosa).

    PubMed

    Xue, Dong; Huang, Xiangdong

    2014-02-01

    To understand the effects of planting tree peony (Paeonia suffruticosa) on soil microbial community structure, soil samples were collected from the tree peony gardens with three peony cultivars and three planting years, and adjacent wasteland at Luoyang, Henan Province of China. Soil microbial communities were analyzed by the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) of partial 16S rDNA and sequencing methods. With the succeeding development of tree peony garden ecosystems, soil pH, organic C, total P, and available P increased. Soil total N, the cell numbers of bacteria, fungi, and actinomycetes, the Shannon's diversity index (H), richness (S), and Evenness (E(H)) first showed an increasing trend after wasteland was reclaimed and then a decreasing trend became apparent after 5 years of planting. Principal component analysis based on DGGE banding patterns showed that the microbial community structures were influenced by tree peony cultivars and planting years, and the influences of planting years were greater than those of tree peony cultivars. Sequence analysis of the DGGE bands revealed that the dominant bacteria in tree peony garden soils belonged to Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, Planctomycetes, Euryarchaeota, and Unclassified-bacteria. Moreover, some bacteria closely related to Bradyrhizobium, Sphingopyxis, Novosphingobium, and Sphingomonas, which have been associated with nitrogen fixation and recalcitrant compounds degradation, disappeared with the increasing planting years of tree peony. The bacteria had similarity of 100% compared with Pseudomonas mandelii which was a denitrifying bacteria, and increased gradually with increasing planting years of tree peony. PMID:23933807

  15. Rapid microsatellite development for tree peony and its implications

    PubMed Central

    2013-01-01

    Background Microsatellites are ubiquitous in genomes of various organisms. With the realization that they play roles in developmental and physiological processes, rather than exist as ‘junk’ DNA, microsatellites are receiving increasing attention. Next-generation sequencing allows acquisition of large-scale microsatellite information, and is especially useful for plants without reference genome sequences. Results In this study, enriched DNA libraries of tree peony, a well-known ornamental woody shrub, were used for high-throughput microsatellite development by 454 GS-FLX Titanium pyrosequencing. We obtained 675,221 reads with an average length of 356 bp. The total size of examined sequences was 240,672,018 bp, from which 237,134 SSRs were identified. Of these sequences, 164,043 contained SSRs, with 27% featuring more than one SSR. Interestingly, a high proportion of SSRs (43%) were present in compound formation. SSRs with repeat motifs of 1–4 bp (mono-, di-, tri-, and tetra-nucleotide repeats) accounted for 99.8% of SSRs. Di-nucleotide repeats were the most abundant. As in most plants, the predominant motif in tree peony was (A/T)n, with (G/C)n less common. The lengths of SSRs were classified into 11 groups. The shortest SSRs (10 bp) represented 1% of the total number, whereas SSRs 21–30 and 101–110 bp long accounted for 26% and 29%, respectively, of all SSRs. Many sequences (42,111) were mapped to CDS (coding domain sequence) regions using Arabidopsis as a reference. GO annotation analysis predicted that CDSs with SSRs performed various functions associated with cellular components, molecular functions, and biological processes. Of 100 validated primer pairs, 24 were selected for polymorphism analysis among 23 genotypes; cluster analysis of the resulting data grouped genotypes according to known relationships, confirming the usefulness of the developed SSR markers. Conclusions The results of our large-scale SSR marker development using tree peony

  16. Transcriptome Comparison Reveals Key Candidate Genes Responsible for the Unusual Reblooming Trait in Tree Peonies

    PubMed Central

    Zhou, Hua; Cheng, Fang-Yun; Wang, Rong; Zhong, Yuan; He, Chaoying

    2013-01-01

    Tree peonies are important ornamental plants worldwide, but growing them can be frustrating due to their short and concentrated flowering period. Certain cultivars exhibit a reblooming trait that provides a valuable alternative for extending the flowering period. However, the genetic control of reblooming in tree peonies is not well understood. In this study, we compared the molecular properties and morphology of reblooming and non-reblooming tree peonies during the floral initiation and developmental processes. Using transcriptome sequencing technology, we generated 59,275 and 63,962 unigenes with a mean size of 698 bp and 699 bp from the two types of tree peonies, respectively, and identified eight differentially expressed genes that are involved in the floral pathways of Arabidopsis thaliana. These differentially regulated genes were verified through a detailed analysis of their expression pattern during the floral process by real time RT-PCR. From this combined analysis, we identified four genes, PsFT, PsVIN3, PsCO and PsGA20OX, which likely play important roles in the regulation of the reblooming process in tree peonies. These data constitute a valuable resource for the discovery of genes involved in flowering time and insights into the molecular mechanism of flowering to further accelerate the breeding of tree peonies and other perennial woody plants. PMID:24244590

  17. Determination of eight artificial sweeteners and common Stevia rebaudiana glycosides in non-alcoholic and alcoholic beverages by reversed-phase liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Kubica, Paweł; Namieśnik, Jacek; Wasik, Andrzej

    2015-02-01

    The method for the determination of acesulfame-K, saccharine, cyclamate, aspartame, sucralose, alitame, neohesperidin dihydrochalcone, neotame and five common steviol glycosides (rebaudioside A, rebaudioside C, steviol, steviolbioside and stevioside) in soft and alcoholic beverages was developed using high-performance liquid chromatography and tandem mass spectrometry with electrospray ionisation (HPLC-ESI-MS/MS). To the best of our knowledge, this is the first work that presents an HPLC-ESI-MS/MS method which allows for the simultaneous determination of all EU-authorised high-potency sweeteners (thaumatin being the only exception) in one analytical run. The minimalistic sample preparation procedure consisted of only two operations; dilution and centrifugation. Linearity, limits of detection and quantitation, repeatability, and trueness of the method were evaluated. The obtained recoveries at three tested concentration levels varied from 97.0 to 105.7%, with relative standard deviations lower than 4.1%. The proposed method was successfully applied for the determination of sweeteners in 24 samples of different soft and alcoholic drinks. PMID:25471292

  18. 75 FR 65648 - Notice of Proposed Withdrawal Extension and Opportunity for Public Meeting for the Peony, Pole...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... Secretary of the Interior for Land and Minerals Management extend PLO No. 6952 (57 FR 53587 (1992)), which... the Peony, Pole Pick, and Frank Burge Seed Orchards; Washington AGENCY: Bureau of Land Management... and functionality of the seed orchards, along with the investment of Federal funds at the Peony,...

  19. Iridoid glycosides and cucurbitacin glycoside from Neopicrorhiza scrophulariiflora.

    PubMed

    Kim, Ik Hwi; Uchiyama, Nahoko; Kawahara, Nobuo; Goda, Yukihiro

    2006-12-01

    Three iridoid glycosides, picrorosides A (1), B (2) and C (3), and a cucurbitacin glycoside, scrophoside A (4), were isolated from the rhizomes of Neopicrorhiza scrophulariiflora (Scrophulariaceae), along with two known iridoid glycosides, picrosides I (5) and II (6), and three known cucurbitacin glycosides (7-9). Their structures were elucidated on the basis of both chemical and spectroscopic data. PMID:17070880

  20. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes

    PubMed Central

    Zhang, Yanzhao; Cheng, Yanwei; Ya, Huiyuan; Xu, Shuzhen; Han, Jianming

    2015-01-01

    The pigmented cells in defined region of a petal constitute the petal spots. Petal spots attract pollinators and are found in many angiosperm families. Several cultivars of tree peony contain a single red or purple spot at the base of petal that makes the flower more attractive for the ornamental market. So far, the understanding of the molecular mechanism of spot formation is inadequate. In this study, we sequenced the transcriptome of the purple spot and the white non-spot of tree peony flower. We assembled and annotated 67,892 unigenes. Comparative analyses of the two transcriptomes showed 1,573 differentially expressed genes, among which 933 were up-regulated, and 640 were down-regulated in the purple spot. Subsequently, we examined four anthocyanin structural genes, including PsCHS, PsF3′H, PsDFR, and PsANS, which expressed at a significantly higher level in the purple spot than in the white non-spot. We further validated the digital expression data using quantitative real-time PCR. Our result uncovered transcriptome variance between the spot and non-spot of tree peony flower, and revealed that the co-expression of four anthocyanin structural genes was responsible for spot pigment in tree peony. The data will further help to unravel the genetic mechanism of peony flower spot formation. PMID:26583029

  1. Naturally occurring cardiac glycosides.

    PubMed

    Radford, D J; Gillies, A D; Hinds, J A; Duffy, P

    1986-05-12

    Cardiac glycoside poisoning from the ingestion of plants, particularly of oleanders, occurs with reasonable frequency in tropical and subtropical areas. We have assessed a variety of plant specimens for their cardiac glycoside content by means of radioimmunoassays with antibodies that differ in their specificity for cardiac glycosides. Significant amounts of immunoreactive cardiac glycoside were found to be present in the ornamental shrubs: yellow oleander (Thevetia peruviana); oleander (Nerium oleander); wintersweet (Carissa spectabilis); bushman's poison (Carissa acokanthera); sea-mango (Cerbera manghas); and frangipani (Plumeria rubra); and in the milkweeds: redheaded cotton-bush (Asclepias curassavica); balloon cotton (Asclepias fruiticosa); king's crown (Calotropis procera); and rubber vine (Cryptostegia grandifolia). The venom gland of the cane toad (Bufo marinus) also contained large quantities of cardiac glycosides. The competitive immunoassay method permits the rapid screening of specimens that are suspected to contain cardiac glycosides. Awareness of the existence of these plant and animal toxins and their dangers allows them to be avoided and poisoning prevented. The method is also useful for the confirmation of the presence of cardiac glycosides in serum in cases of poisoning. PMID:3086679

  2. Cardiac glycoside overdose

    MedlinePlus

    ... found in the leaves of the digitalis (foxglove) plant. This plant is the original source of this medicine. People ... Digitoxin (Crystodigin) Digoxin (Lanoxicaps, Lanoxin) Besides the foxglove plant, cardiac glycosides also occur naturally in plants such ...

  3. Determination of chemical variability of phenolic and monoterpene glycosides in the seeds of Paeonia species using HPLC and profiling analysis.

    PubMed

    He, Chunnian; Peng, Yong; Xiao, Wei; Liu, Haibo; Xiao, Pei-Gen

    2013-06-15

    A rapid, sensitive, and accurate HPLC-DAD method was developed and validated for simultaneous determination of one phenolic glycoside and seven monoterpene glycosides, including 1-O-β-d-(4-hydroxybenzoyl)glucose (1), pyridylpaeoniflorin (2), (8R)-piperitone-4-en-9-O-β-d-glucopyranoside (3), oxypaeoniflorin (4), 6'-O-β-glucopyranosylalbiflorin (5), albiflorin (6), β-gentiobiosylpaeoniflorin (7), and paeoniflorin (8), in 44 batches of peony seeds from nine Paeonia species collected from different areas. Using the optimised method, separations were conducted with a YMC-pack ODS-A column with water/formic acid and methanol as the mobile phase. All eight analytes demonstrated good linearity (r(2)>0.9993). The recoveries, measured at three concentration levels, varied from 98.20% to 103.81%. Six compounds including 1 and 4-8 occur ubiquitously in all the seeds of nine Paeonia species, and compounds 2 and 3 showed undetectable levels or very low content in several samples. The seed samples were classified into several groups, which coincide with the taxonomy of Paeonia at the section level. Peony seed might be a useful resource in developing new herbal or food products. PMID:23497864

  4. Multiple species of wild tree peonies gave rise to the 'king of flowers', Paeonia suffruticosa Andrews.

    PubMed

    Zhou, Shi-Liang; Zou, Xin-Hui; Zhou, Zhi-Qin; Liu, Jing; Xu, Chao; Yu, Jing; Wang, Qiang; Zhang, Da-Ming; Wang, Xiao-Quan; Ge, Song; Sang, Tao; Pan, Kai-Yu; Hong, De-Yuan

    2014-12-22

    The origin of cultivated tree peonies, known as the 'king of flowers' in China for more than 1000 years, has attracted considerable interest, but remained unsolved. Here, we conducted phylogenetic analyses of explicitly sampled traditional cultivars of tree peonies and all wild species from the shrubby section Moutan of the genus Paeonia based on sequences of 14 fast-evolved chloroplast regions and 25 presumably single-copy nuclear markers identified from RNA-seq data. The phylogeny of the wild species inferred from the nuclear markers was fully resolved and largely congruent with morphology and classification. The incongruence between the nuclear and chloroplast trees suggested that there had been gene flow between the wild species. The comparison of nuclear and chloroplast phylogenies including cultivars showed that the cultivated tree peonies originated from homoploid hybridization among five wild species. Since the origin, thousands of cultivated varieties have spread worldwide, whereas four parental species are currently endangered or on the verge of extinction. The documentation of extensive homoploid hybridization involved in tree peony domestication provides new insights into the mechanisms underlying the origins of garden ornamentals and the way of preserving natural genetic resources through domestication. PMID:25377453

  5. Genetic diversity analysis of tree peony germplasm using iPBS markers.

    PubMed

    Duan, Y B; Guo, D L; Guo, L L; Wei, D F; Hou, X G

    2015-01-01

    We examined the genetic diversity of 10 wild species (populations) and 55 varieties of tree peony using inter-primer binding site (iPBS) markers. From a total of 36 iPBS primers, 16 were selected based on polymorphic amplification. The number of bands amplified by each primer ranged from 9 to 19, with an average of 12.88 bands per primer. The length of bands ranged from 100 to 2000 bp, concentrated at 200 to 1800 bp. Sixteen primers amplified 206 bands in total, of which 173 bands were polymorphic with a polymorphism ratio of 83.98%. Each primer amplified 10.81 polymorphic bands on average. The data were then used to construct a phylogenetic tree using unweighted pair group method with arithmetic mean methods. Clustering analysis showed that the genetic relationships among the varieties were not only related to the genetic background or geographic origin, but also to the flowering phase, flower color, and flower type. Our data also indicated that iPBS markers were useful tools for classifying tree peony germplasms and for tree peony breeding, and the specific bands were helpful for molecular identification of tree peony varieties. PMID:26214434

  6. Differential expression proteins associated with bud dormancy release during chilling treatment of tree peony (Paeonia suffruticosa).

    PubMed

    Zhang, Y X; Yu, D; Tian, X L; Liu, C Y; Gai, S P; Zheng, G S

    2015-01-01

    Endo-dormant flower buds of tree peony must have sufficient chilling duration to reinitiate growth, which is a major obstacle to the forcing culture of tree peony in winter. We used a combination of two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionisation time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS) to identify the differentially expressed proteins of tree peony after three different chilling treatments: endo-dormancy, endo-dormancy release and eco-dormancy stages. More than 200 highly reproducible protein spots were detected, and 31 differentially expressed spots (P < 0.05) were selected for further analysis. Finally, 20 protein spots were confidently identified from databases, which were annotated and classified into seven functional categories: response to abiotic or biotic stimulus (four), metabolic processes (four), other binding (three), transcription or transcription regulation (two), biological processes (one), cell biogenesis (one) and unclassified (five). The results of qPCR of five genes were mainly consistent with that of the protein accumulation analysis as determined by 2-DE. This indicated that most of these genes were mainly regulated at transcriptional level. The activity of nitrate reductase and pyruvate dehydrogenase E1 was consistent with the 2-DE results. The proteomic profiles indicated activation of citrate cycle, amino acid metabolism, lipid metabolism, energy production, calcium signalling and cell growth processes by chilling fulfilment to facilitate dormancy release in tree peony. Analysis of functions of identified proteins will increase our knowledge of endo-dormancy release in tree peony. PMID:25091021

  7. Anticancer Activity of Sea Cucumber Triterpene Glycosides

    PubMed Central

    Aminin, Dmitry L.; Menchinskaya, Ekaterina S.; Pisliagin, Evgeny A.; Silchenko, Alexandra S.; Avilov, Sergey A.; Kalinin, Vladimir I.

    2015-01-01

    Triterpene glycosides are characteristic secondary metabolites of sea cucumbers (Holothurioidea, Echinodermata). They have hemolytic, cytotoxic, antifungal, and other biological activities caused by membranotropic action. These natural products suppress the proliferation of various human tumor cell lines in vitro and, more importantly, intraperitoneal administration in rodents of solutions of some sea cucumber triterpene glycosides significantly reduces both tumor burden and metastasis. The anticancer molecular mechanisms include the induction of tumor cell apoptosis through the activation of intracellular caspase cell death pathways, arrest of the cell cycle at S or G2/M phases, influence on nuclear factors, NF-κB, and up-down regulation of certain cellular receptors and enzymes participating in cancerogenesis, such as EGFR (epidermal growth factor receptor), Akt (protein kinase B), ERK (extracellular signal-regulated kinases), FAK (focal adhesion kinase), MMP-9 (matrix metalloproteinase-9) and others. Administration of some glycosides leads to a reduction of cancer cell adhesion, suppression of cell migration and tube formation in those cells, suppression of angiogenesis, inhibition of cell proliferation, colony formation and tumor invasion. As a result, marked growth inhibition of tumors occurs in vitro and in vivo. Some holothurian triterpene glycosides have the potential to be used as P-gp mediated MDR reversal agents in combined therapy with standard cytostatics. PMID:25756523

  8. Studies on the regulatory effect of Peony-Glycyrrhiza Decoction on prolactin hyperactivity and underlying mechanism in hyperprolactinemia rat model.

    PubMed

    Wang, Di; Wang, Wei; Zhou, Yulin; Wang, Juan; Jia, Dongxu; Wong, Hei Kiu; Zhang, Zhang-Jin

    2015-10-01

    Clinical trials have demonstrated the beneficial effects of Peony-Glycyrrhiza Decoction (PGD) in alleviating antipsychotic-induced hyperprolactinemia (hyperPRL) in schizophrenic patients. In previous experiment, PGD suppressed prolactin (PRL) level in MMQ cells, involving modulating the expression of D2 receptor (DRD2) and dopamine transporter (DAT). In the present study, hyperPRL female rat model induced by dopamine blocker metoclopramide (MCP) was applied to further confirm the anti-hyperpPRL activity of PGD and underlying mechanism. In MCP-induced hyperPRL rats, the elevated serum PRL level was significantly suppressed by either PGD (2.5-10 g/kg) or bromocriptine (BMT) (0.6 mg/kg) administration for 14 days. However, in MCP-induced rats, only PGD restored the under-expressed serum progesterone (P) to control level. Both PGD and BMT administration restore the under-expression of DRD2, DAT and TH resulted from MCP in pituitary gland and hypothalamus. Compared to untreated group, hyperPRL animals had a marked reduction on DRD2 and DAT expression in the arcuate nucleus. PGD (10 g/kg) and BMT (0.6 mg/kg) treatment significant reversed the expression of DRD2 and DAT. Collectively, the anti-hyperPRL activity of PGD associates with the modulation of dopaminergic neuronal system and the restoration of serum progesterone level. Our finding supports PGD as an effective agent against hyperPRL. PMID:26297122

  9. Variants of glycoside hydrolases

    SciTech Connect

    Teter, Sarah; Ward, Connie; Cherry, Joel; Jones, Aubrey; Harris, Paul; Yi, Jung

    2013-02-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  10. Variants of glycoside hydrolases

    DOEpatents

    Teter, Sarah; Ward, Connie; Cherry, Joel; Jones, Aubrey; Harris, Paul; Yi, Jung

    2011-04-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  11. Two EST-derived marker systems for cultivar identification in tree peony.

    PubMed

    Zhang, J J; Shu, Q Y; Liu, Z A; Ren, H X; Wang, L S; De Keyser, E

    2012-02-01

    Tree peony (Paeonia suffruticosa Andrews), a woody deciduous shrub, belongs to the section Moutan DC. in the genus of Paeonia of the Paeoniaceae family. To increase the efficiency of breeding, two EST-derived marker systems were developed based on a tree peony expressed sequence tag (EST) database. Using target region amplification polymorphism (TRAP), 19 of 39 primer pairs showed good amplification for 56 accessions with amplicons ranging from 120 to 3,000 bp long, among which 99.3% were polymorphic. In contrast, 7 of 21 primer pairs demonstrated adequate amplification with clear bands for simple sequence repeats (SSRs) developed from ESTs, and a total of 33 alleles were found in 56 accessions. The similarity matrices generated by TRAP and EST-SSR markers were compared, and the Mantel test (r = 0.57778, P = 0.0020) showed a moderate correlation between the two types of molecular markers. TRAP markers were suitable for DNA fingerprinting and EST-SSR markers were more appropriate for discriminating synonyms (the same cultivars with different names due to limited information exchanged among different geographic areas). The two sets of EST-derived markers will be used further for genetic linkage map construction and quantitative trait locus detection in tree peony. PMID:21987120

  12. Glycoside vs. Aglycon: The Role of Glycosidic Residue in Biological Activity

    NASA Astrophysics Data System (ADS)

    Křen, Vladimír

    A large number of biologically active compounds are glycosides. Sometimes the glycosidic residue is crucial for their activity, in other cases glycosylation only improves pharmacokinetic parameters. Recent developments in molecular glycobiology brought better understanding of aglycon vs. glycoside activities, and made possible the development of new, more active or more effective glycodrugs based on these findings - a very illustrative recent example is vancomycin. The new enzymatic methodology "glycorandomization" enabled preparation of glycoside libraries and opened up paths to the preparation of optimized or entirely novel glycoside antibiotics. This chapter deals with an array of glycosidic compounds currently used in medicine but also covers the biological activity of some glycosidic metabolites of known drugs. The chapter discusses glycosides of vitamins, polyphenolic glycosides (flavonoids), alkaloid glycosides, glycosides of antibiotics, glycopeptides, cardiac glycosides, steroid and terpenoid glycosides etc. The physiological role of the glycosyl moiety and structure-activity relations (SAR) in the glycosidic moiety (-ies) are also discussed.

  13. Synthesis and Photochromic Properties of Configurationally Varied Azobenzene Glycosides

    PubMed Central

    Chandrasekaran, Vijayanand; Johannes, Eugen; Kobarg, Hauke; Sönnichsen, Frank D; Lindhorst, Thisbe K

    2014-01-01

    Spatial orientation of carbohydrates is a meaningful parameter in carbohydrate recognition processes. To vary orientation of sugars with temporal and spatial resolution, photosensitive glycoconjugates with favorable photochromic properties appear to be opportune. Here, a series of azobenzene glycosides were synthesized, employing glycoside synthesis and Mills reaction, to allow “switching” of carbohydrate orientation by reversible E/Z isomerization of the azobenzene N=N double bond. Their photochromic properties were tested and effects of azobenzene substitution as well as the effect of anomeric configuration and the orientation of the sugars 2-hydroxy group were evaluated. PMID:25050228

  14. Fractionation of glycoside precursors of aroma in grapes and wine.

    PubMed

    Mateo, J J; Gentilini, N; Huerta, T; Jiménez, M; Di Stefano, R

    1997-08-22

    The glycosides in mono-, di- and trihydroxylated terpene and norisoprenoid alcohols and also those in the related shikimate pathway have been isolated on C18 reversed-phase cartridges and then fractionated into classes of different polarity at increasing percentages of methanol. The benzyl alcohol glycosides are the most polar, while those of terpene monohydroxylated alcohols and geranic acid are the least polar. The terpene diols, linalool furanoid and pyranoid oxides and also norisoprenoid precursors show intermediate polarity and separate into well defined fractions according to their polarity. PMID:9299735

  15. Not only dopamine D2 receptors involved in Peony-Glycyrrhiza Decoction, an herbal preparation against antipsychotic-associated hyperprolactinemia.

    PubMed

    Wang, Di; Wong, Hei Kiu; Zhang, Li; McAlonan, Grainne M; Wang, Xiao-Min; Sze, Stephen Cho Wing; Feng, Yi-Bin; Zhang, Zhang-Jin

    2012-12-01

    Clinical studies have demonstrated the effectiveness of an herbal preparation called Peony-Glycyrrhiza Decoction (PGD) in alleviating antipsychotic-induced hyperprolactinemia (hyperPRL). In the present study, we further examined the pharmacological action of PGD on prolactin (PRL) secretion using in vitro and in vivo models, with specific attention to the role of dopaminergic mediators and other sex hormones. Treatment with PGD at 1-5mg/ml significantly suppressed PRL secretion and synthesis in MMQ cells, a model of hyperPRL derived from pituitary adenoma cells. The suppressive effects were completely abolished by pretreatment with 10μM haloperidol, a dopamine D(2) receptor antagonist. Consistent with a D(2)-action, PGD did not affect PRL in rat pituitary lactotropic tumor-derived GH3 cells that lack the D(2) receptor expression but significantly increased the expression of D(2) receptors and dopamine transporters (DAT) in PC12 cells. In a rat model of hyperPRL, produced by repeated injection of the dopamine blocker metoclopramide (MCP), chronic PGD (2.5-10g/kg daily) significantly reduced elevated serum PRL. The reduction in magnitude was similar to that elicited by bromocriptine (BMT), a dopamine D(2) receptor agonist currently used for treatment of hyperPRL. Neither PGD nor BMT altered serum estradiol, but PGD reversed decreased serum progesterone to control level, whereas BMT did not. These results indicate that the anti-hyperPRL effects of PGD are associated not only with D(2) receptor and DAT modulation, but also with a normalization of other sex hormone dysfunction. This experimental evidence supports clinical use of PGD as an effective treatment of antipsychotic-induced hyperPRL. PMID:22796279

  16. Monoterpene glycosides from Paeonia delavayi.

    PubMed

    Wu, Shao-Hua; Chen, You-Wei; Yang, Li-Yuan; Li, Shao-Lan; Li, Zhi-Ying

    2007-01-01

    A new monoterpene glycoside, 4-O-methyl-4''-hydroxy-3''-methoxy-paeoniflorin (1), was isolated from the root cortex of Paeonia delavayi along with the known paeoniflorin, oxypaeoniflorin, benzoylpaeoniflorin, benzoyloxypaeoniflorin, albiflorin and a paeonilactone-A. PMID:17067761

  17. Multiple species of wild tree peonies gave rise to the ‘king of flowers’, Paeonia suffruticosa Andrews

    PubMed Central

    Zhou, Shi-Liang; Zou, Xin-Hui; Zhou, Zhi-Qin; Liu, Jing; Xu, Chao; Yu, Jing; Wang, Qiang; Zhang, Da-Ming; Wang, Xiao-Quan; Ge, Song; Sang, Tao; Pan, Kai-Yu; Hong, De-Yuan

    2014-01-01

    The origin of cultivated tree peonies, known as the ‘king of flowers' in China for more than 1000 years, has attracted considerable interest, but remained unsolved. Here, we conducted phylogenetic analyses of explicitly sampled traditional cultivars of tree peonies and all wild species from the shrubby section Moutan of the genus Paeonia based on sequences of 14 fast-evolved chloroplast regions and 25 presumably single-copy nuclear markers identified from RNA-seq data. The phylogeny of the wild species inferred from the nuclear markers was fully resolved and largely congruent with morphology and classification. The incongruence between the nuclear and chloroplast trees suggested that there had been gene flow between the wild species. The comparison of nuclear and chloroplast phylogenies including cultivars showed that the cultivated tree peonies originated from homoploid hybridization among five wild species. Since the origin, thousands of cultivated varieties have spread worldwide, whereas four parental species are currently endangered or on the verge of extinction. The documentation of extensive homoploid hybridization involved in tree peony domestication provides new insights into the mechanisms underlying the origins of garden ornamentals and the way of preserving natural genetic resources through domestication. PMID:25377453

  18. Evaluation of absorbed dose in irradiated sugar-containing plant material (peony roots) by an ESR method

    NASA Astrophysics Data System (ADS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2015-12-01

    The relationship between electron spin resonance (ESR) signal intensity of irradiated plant materials and sugar content was investigated by spectral analysis using peony roots. A weak background signal near g=2.005 was observed in the roots. After a 10 kGy irradiation, the ESR line broadened and the intensity increased, and the spectral characteristics were similar to a typical spectrum of irradiated food containing crystalline sugars. The free radical concentration was nearly stable 30 days after irradiation. The spectrum of peony root 30 days after irradiation was simulated using the summation of the intensities of six assumed components: radical signals derived from (a) sucrose, (b) glucose, (c) fructose, (d) cellulose, (e) the background signal near g=2.005 and (f) unidentified component. The simulated spectra using the six components were in agreement with the observed sample spectra. The intensity of sucrose radical signal in irradiated samples increased proportionally up to 20 kGy. In addition, the intensity of sucrose radical signals was strongly correlated with the sucrose contents of the samples. The results showed that the radiation sensitivity of sucrose in peony roots was influenced little by other plant constituents. There was also a good correlation between the total area of the spectra and the sucrose content, because the sucrose content was higher than that of other sugars in the samples. In peony roots, estimation of the absorbed dose from the ESR signal intensity may be possible by a calibration method based on the sucrose content.

  19. Transcriptome analysis of tree peony during chilling requirement fulfillment: assembling, annotation and markers discovering.

    PubMed

    Gai, Shupeng; Zhang, Yuxi; Mu, Ping; Liu, Chunying; Liu, Shao; Dong, Lei; Zheng, Guosheng

    2012-04-15

    Tree peony (Paeonia suffruticosa Andrews) is a well-known horticultural and medicinal plant. The flower buds must go through a period of endo-dormancy before bud sprouting in winter, but very little information concerned with dormancy release is available. We obtained 625,342 sequencing reads with massive parallel pyrosequencing on the Roche 454 GS FLX platform (mean length: 358.1bp). De novo assemblies yielded 23,652 contigs and singletons. 15,284 contigs longer than 300bp were further annotated, among them 12,345 ESTs showed significant similarity with sequences present in public databases (with an E-value <1e-10). 484 putative transcription factors were obtained. In addition, 2253 potential Simple Sequence Repeats (SSR) loci were identified in the 454-ESTs. Total 149 pairs of primers were designed, and 121 pairs were amplified successfully in initial screening. In addition, 73 pairs of primers displayed polymorphism. This sequence collection provides a significant resource for gene discovery during endo-dormancy of tree peony. PMID:22197659

  20. Anti-diabetic activity of peony seed oil, a new resource food in STZ-induced diabetic mice.

    PubMed

    Su, Jianhui; Wang, Hongxin; Ma, Caoyang; Lou, Zaixiang; Liu, Chengxiang; Tanver Rahman, MdRamim; Gao, Chuanzhong; Nie, Rongjing

    2015-09-01

    This study was conducted to investigate the components of a new resource food in China, peony seed oil (PSO) by GC-MS (gas chromatography-mass spectrometry), its inhibitory effects on carbohydrate hydrolyzing enzymes in vitro and its anti-diabetic effects on mice induced by streptozotocin (STZ). The results showed that peony seed oil showed weak anti-α-amylase activity; however, strong anti-α-glucosidase activity was noted. The GC-MS analysis of the oil showed 9 constituents of which α-linolenic acid was found to be the major component (38.66%), followed by linoleic acid (26.34%) and oleic acid (23.65%). The anti-diabetic potential of peony seed oil was tested in STZ induced diabetic mice. Administration of peony seed oil and glibenclamide reduced the blood glucose level and the area under curve (AUC) in STZ induced diabetic mice. There were significant increases in body weight, liver glycogen content, serum insulin level, high-density lipoprotein cholesterol (HDL-C) and decreases in glycosylated hemoglobin (HbA1C), total serum cholesterol (TC), and triglyceride (TG) in test groups as compared to the untreated diabetic groups. In vivo antioxidant studies on STZ induced diabetic mice revealed the reduction of malondialdehyde (MDA) and increase of glutathione peroxides (GSH-px), superoxide dismutase (SOD), and glutathione (GSH). The results provided a sound rationale for future clinical trials of oral administration of peony seed oil to alleviate postprandial hyperglycemia in streptozotocin-induced diabetic mice. PMID:26245697

  1. Monoterpene glycosides, phenylpropanoids, and acacetin glycosides from Dracocephalum foetidum.

    PubMed

    Selenge, Erdenechimeg; Murata, Toshihiro; Tanaka, Shiho; Sasaki, Kenroh; Batkhuu, Javzan; Yoshizaki, Fumihiko

    2014-05-01

    Chemical investigation of the acetone extract from the aerial parts of the Mongolian medicinal plant Dracocephalum foetidum resulted in the isolation of three limonene glycosides, a caffeic acid trimer, four rosmarinic acid glucosides, and five acacetin acyl glycosides, together with 13 known natural products. The chemical structures of all of the compounds were determined by spectroscopic analyses. Among these compounds three showed hyaluronidase inhibitory activity. In addition, one other compound showed stronger 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity than the positive control Trolox, whereas three other compounds demonstrated a similar activity to that of Trolox. PMID:24582463

  2. Chemical taxonomy of tree peony species from China based on root cortex metabolic fingerprinting.

    PubMed

    He, Chunnian; Peng, Bing; Dan, Yang; Peng, Yong; Xiao, Peigen

    2014-11-01

    The section Moutan of the genus Paeonia consists of eight species that are confined to a small area in China. A wide range of metabolites, including monoterpenoid glucosides, flavonoids, tannins, stilbenes, triterpenoids, steroids, paeonols, and phenols, have been found in the species belonging to section Moutan. However, although previous studies have analyzed the metabolites found in these species, the metabolic similarities that can be used for the chemotaxonomic distinction of section Moutan species are not yet clear. In this study, HPLC-DAD-based metabolic fingerprinting was applied to the classification of eight species: Paeoniasuffruticosa, Paeoniaqiui, Paeoniaostii, Paeoniarockii, Paeoniajishanensis, Paeoniadecomposita, Paeoniadelavayi, and Paeonialudlowii. In total, of the 47 peaks that exhibited an occurrence frequency of 75% in all 23 tree peony samples, 43 of these metabolites were identified according to their retention times and UV absorption spectra, together with combined HPLC-QTOF-MS. These data were compared with reference standard compounds. The 43 isolated compounds included 17 monoterpenoid glucosides, 11 galloyl glucoses, 5 flavonoids, 6 paeonols and 4 phenols. Principal component analysis (PCA), and hierarchical cluster analysis (HCA), showed a clear separation between the species based on metabolomics similarities and four groups were identified. The results exhibited good agreement with the classical classification based on the morphological characteristics and geographical distributions of the subsections Vaginatae F.C. Stern and Delavayanae F.C. Stern with the exception of P. decomposita, which was found to be a transition species between these two subsections. According to their metabolic fingerprinting characteristics, P. ostii and P. suffruticosa can be considered one species, and this result is consistent with the viewpoint of medicinal plant scientists but different from that of classical morphological processing. Significantly large

  3. Monoterpene derivatives with anti-allergic activity from red peony root, the root of Paeonia lactiflora.

    PubMed

    Shi, Yan-Hong; Zhu, Shu; Ge, Yue-Wei; He, Yu-Min; Kazuma, Kohei; Wang, Zhengtao; Yoshimatsu, Kayo; Komatsu, Katsuko

    2016-01-01

    The methanolic extract and its subfractions from red peony root, the dried roots of Paeonia lactiflora Pallas showed potent antiallergic effects, as inhibition of immunoglobulin E (IgE)-mediated degranulation in rat basophil leukemia (RBL)-2H3 cells. Bioassay-guided fractionation led to the isolation of 16 monoterpene derivatives, including 3 new compounds, paeoniflorol (1), 4'-hydroxypaeoniflorigenone (2) and 4-epi-albiflorin (3), together with 13 known ones (4-16). The chemical structures of the new compounds were elucidated on the basis of spectroscopic and chemical evidences. Among the isolated monoterpene derivatives, nine compounds showed potent anti-allergic effects and compound 1 was the most effective. A primary structure-activity relationship of monoterpene derivatives was discussed. PMID:26598138

  4. Physicochemical properties and antioxidant activities of polysaccharides sequentially extracted from peony seed dreg.

    PubMed

    Shi, Jun-Jun; Zhang, Jian-Guo; Sun, Yu-Han; Qu, Jie; Li, Ling; Prasad, Chandan; Wei, Zhao-Jun

    2016-10-01

    The sequential extraction of peony seed dreg polysaccharides (PSDP) with hot buffer (HBSS), chelating agent (CHSS), dilute alkaline (DASS) and concentrated alkaline (CASS) yielded four different polysaccharide fractions. Based on their absorptions at 3600-3200cm(-1) and 1200-800cm(-1), these fractions were confirmed to be polysaccharides. The properties of four PSDPs displayed some slight differences. The CASS showed the highest peak temperature and endothermic enthalpy. The emulsifying activity and emulsifying stability of four PSDPs exhibited a dose-dependent pattern; HBSS showed the highest emulsifying activity, and CHSS displayed the longest emulsifying stability. The four PSDPs also exhibited wide variations in their antioxidant activities. For example, i) CASS showed the highest DPPH radical scavenging activity, reducing power and ABTS radical scavenging activity; ii) HBSS exhibited the highest hydroxyl radical scavenging activity, and iii) CHSS displayed the higher ferrous ions chelating ability than others. PMID:27234494

  5. The rheological properties of polysaccharides sequentially extracted from peony seed dreg.

    PubMed

    Shi, Jun-Jun; Zhang, Jian-Guo; Sun, Yu-Han; Xu, Qi-Xin; Li, Ling; Prasad, Chandan; Wei, Zhao-Jun

    2016-10-01

    The peony seed dreg polysaccharides (PSDPs) were sequentially extracted using hot buffer (HBSS), chelating agent (CHSS), dilute alkaline (DASS) and concentrated alkaline (CASS). The rheological properties of PSDPs were investigated by steady-shear and oscillatory rheological measurements. The four PSDPs fractions in solution exhibited typical non-Newtonian and shear-thinning behavior. The viscosity of HBSS was higher than the rest. While the viscosity value of all PSDPs solution decreased at acid pH (4.0) and alkaline pH (10.0), in the presence of Ca(2+) and high temperature (90°C), it increased in the presence of Na(+) and following freezing. The modulus G' and G" of all PSDPs solution were increased with increasing oscillation frequency ranging between 0.01 and 100Hz at each concentration. In all four cases, the crossover of G' and G" values decreased gradually with increasing concentration of samples. PMID:27311505

  6. Effects of shade on plant growth and flower quality in the herbaceous peony (Paeonia lactiflora Pall.).

    PubMed

    Zhao, Daqiu; Hao, Zhaojun; Tao, Jun

    2012-12-01

    Herbaceous peony (Paeonia lactiflora Pall.) is an important ornamental plant used in urban green spaces, but little is known about whether it can grow in a shaded environment or understory. In this study, effects of shade on plant growth and flower quality in the herbaceous peony were investigated. The results showed that P. lactiflora morphology parameters, including plant height, leaf number, stem diameter, branch number, node number and plant crown width, were higher in plants grown with sun exposure compared to those grown in shade; however, opposite trends were observed for the top and middle leaf areas of the plant. Compared with sun exposure, shade decreased P. lactiflora photosynthetic capacity, light saturation point (LSP) and light compensation point (LCP) and increased the apparent quantum yield (AQY), mainly due to declined stomatal conduction (Gs). These decreases caused the soluble sugar, soluble protein and malondialdehyde (MDA) contents to decline, which led to delayed initial flowering date, prolonged flowering time, reduced flower fresh weight, increased flower diameter and faded flower color. Through cloning and expression analysis of anthocyanin biosynthetic genes, we determined that the fading of flower color was the result of reduced anthocyanin content, which was caused by the combined activity of anthocyanin biosynthesis genes and, in particular, of the upstream phenylalanine ammonialyase gene (PlPAL) and chalcone synthase gene (PlCHS). These results could provide us with a theoretical basis for further application of P. lactiflora in the greening of urban spaces and an understanding of the mechanisms behind the changes induced by shade. PMID:23141672

  7. Hierarchical classification of glycoside hydrolases.

    PubMed

    Naumoff, D G

    2011-06-01

    This review deals with structural and functional features of glycoside hydrolases, a widespread group of enzymes present in almost all living organisms. Their catalytic domains are grouped into 120 amino acid sequence-based families in the international classification of the carbohydrate-active enzymes (CAZy database). At a higher hierarchical level some of these families are combined in 14 clans. Enzymes of the same clan have common evolutionary origin of their genes and share the most important functional characteristics such as composition of the active center, anomeric configuration of cleaved glycosidic bonds, and molecular mechanism of the catalyzed reaction (either inverting, or retaining). There are now extensive data in the literature concerning the relationship between glycoside hydrolase families belonging to different clans and/or included in none of them, as well as information on phylogenetic protein relationship within particular families. Summarizing these data allows us to propose a multilevel hierarchical classification of glycoside hydrolases and their homologs. It is shown that almost the whole variety of the enzyme catalytic domains can be brought into six main folds, large groups of proteins having the same three-dimensional structure and the supposed common evolutionary origin. PMID:21639842

  8. Flavonol Glycosides from Gaura Biennis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytochemical investigation of the native American plant Gaura biennis led to the isolation of three new flavonol glycosides (1-3), along with eight known ones. Their structures were established primarily by spectroscopic data as quercetin 3-O-(2"-O-a-L-rhamnopyranosyl-6"-O-E-p-coumaroyl)-ß-D- gluco...

  9. Quality evaluation of peony seed oil spray-dried in different combinations of wall materials during encapsulation and storage.

    PubMed

    Shi, Yan; Wang, Shu-Jie; Tu, Zong-Cai; Wang, Hui; Li, Ru-Yi; Zhang, Lu; Huang, Tao; Su, Ting; Li, Cui

    2016-06-01

    This study aimed at evaluating the performance of peony seed oil microencapsulated by spray drying during encapsulation and storage. Four different combinations of gum arabic (GA), corn syrup (CS), whey protein concentrate (WPC) and sodium caseinate (CAS) were used to encapsulate peony seed oil. The best encapsulation efficiency was obtained for CAS/CS followed by the CAS/GA/CS combination with the encapsulation ratio of 93.71 and 92.80 %, respectively, while the lowest encapsulation efficiency was obtained for WPC/GA/CS (85.96 %). Scanning electron microscopy and confocal laser scanning microscopy revealed that the particles were spherical in shape and did not exhibit apparent cracks or fissures, and gum arabic was uniformly distributed across the wall of the microcapsules. Oxidative stability study indicated that the CAS/GA/CS combination presented the best protection against lipid oxidation and the smallest loss of polyunsaturated fatty acid content among all of the formulas as measured by gas chromatography. Therefore, CAS/GA/CS could be promising materials encapsulate peony seed oil with high encapsulation efficiency and minimal lipid oxidation. PMID:27478215

  10. Microwave-Assisted Simultaneous Extraction of Luteolin and Apigenin from Tree Peony Pod and Evaluation of Its Antioxidant Activity

    PubMed Central

    Wang, Hongzheng; Yang, Lei; Zu, Yuangang; Zhao, Xiuhua

    2014-01-01

    An efficient microwave-assisted extraction (MAE) technique was employed in simultaneous extraction of luteolin and apigenin from tree peony pod. The MAE procedure was optimized using response surface methodology (RSM) and compared with other conventional extraction techniques of macerate extraction (ME) and heat reflux extraction (HRE). The optimal conditions of MAE were as follows: employing 70% ethanol volume fraction as solvent, soaking time of 4 h, liquid-solid ratio of 10 (mL/g), microwave irradiation power of 265 W, microwave irradiation time of 9.6 min, and 3 extraction cycles. Under the optimal conditions, 151 μg/g luteolin and 104 μg/g apigenin were extracted from the tree peony pod. Compared with ME and HRE, MAE gave the highest extraction efficiency. The antioxidant activities of the extracts obtained by MAE, ME, and HRE were evaluated using a 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) free radical-scavenging assay, a ferric reducing antioxidant power assay (FRAP), and a reducing power assay. Meanwhile, the structural changes of the unprocessed and processed tree peony pod samples were analyzed by scanning electron microscopy. PMID:25405227

  11. Cyanogenetic glycosides and simple glycosides from the linseed meal.

    PubMed

    Yang, Qing-Yun; Song, Li; Zhang, Ji-Fa; Shen, Zhu-Fang; Liu, Quan; Liu, Shuai-Nan; Zheng, Wen-Sheng; Yao, Chun-Suo

    2015-10-01

    Three new cyanogenetic triglycosides linustatins A-C (1-3), and two new simple glycosides linustatins D and E (4 and 5) were isolated from the 70% ethanol extract of flaxseed meal (Linum usitatissimum L.). Their structures were elucidated on the basis of spectroscopic analysis and chemical evidence. All of the isolates showed moderate activities against aldose reductase and weak activities against α-glucosidase, DPP-IV, and FBPase at the same concentrations as the positive control drugs. PMID:26307006

  12. Diterpene glycosides from Stevia rebaudiana.

    PubMed

    Chaturvedula, Venkata Sai Prakash; Upreti, Mani; Prakash, Indra

    2011-01-01

    Three novel diterpene glycosides were isolated for the first time from the commercial extract of the leaves of Stevia rebaudiana, along with several known steviol glycosides, namely stevioside, rebaudiosides A-F, rubusoside and dulcoside A. The new compounds were identified as 13-[(2-O-β-D-glucopyranosyl-3-O-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy] ent-kaur-15-en-19-oic acid, 13-[(2-O-β-D-glucopyranosyl-3-O-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy]-16β-hydroxy-ent-kauran-19-oic acid and 13-methyl-16-oxo-17-nor-ent-kauran-19-oic acid-β-D-glucopyranosyl ester on the basis of extensive 2D NMR and MS spectroscopic data as well as chemical studies. PMID:21527882

  13. Iridoid glycosides from Barleria lupulina.

    PubMed

    Kim, Ki Hyun; Park, Yong Joo; Chung, Kyu Hyuck; Yip, M L Richard; Clardy, Jon; Senger, Donald; Cao, Shugeng

    2015-02-27

    Phytochemical investigation of an extract of the aerial part of Barleria lupulina resulted in the identification of four new iridoid glycosides (1-4), together with 14 known analogues (5-18). The structures of 1-4 were determined through 1D and 2D NMR spectroscopic data analysis, HRMS, and acid hydrolysis. This is the first report of iridoid glycosides with a formate group. The free-radical scavenging activity of compounds 9, 12, and 15-17 was assessed using the DPPH assay. Compounds 16 and 17 scavenged DPPH radicals weakly with IC50 values of 97.5 and 78.6 μg/mL, respectively. PMID:25611215

  14. Steroidal glycosides from Ruscus ponticus.

    PubMed

    Napolitano, Assunta; Muzashvili, Tamar; Perrone, Angela; Pizza, Cosimo; Kemertelidze, Ether; Piacente, Sonia

    2011-05-01

    A comparative metabolite profiling of the underground parts and leaves of Ruscus ponticus was obtained by an HPLC-ESIMS(n) method, based on high-performance liquid chromatography coupled to electrospray positive ionization multistage ion trap mass spectrometry. The careful study of HPLC-ESIMS(n) fragmentation pattern of each chromatographic peak, in particular the identification of diagnostic product ions, allowed us to get a rapid screening of saponins belonging to different classes, such as dehydrated/or not furostanol, spirostanol and pregnane glycosides, and to promptly highlight similarities and differences between the two plant parts. This approach, followed by isolation and structure elucidation by 1D- and 2D-NMR experiments, led to the identification of eleven saponins from the underground parts, of which two dehydrated furostanol glycosides and one new vespertilin derivative, and nine saponins from R. ponticus leaves, never reported previously. The achieved results highlighted a clean prevalence of furostanol glycoside derivatives in R. ponticus leaves rather in the underground parts of the plant, which showed a wider structure variety. In particular, the occurrence of dehydrated furostanol derivatives, for the first time isolated from a Ruscus species, is an unusual finding which makes unique the saponins profile of R. ponticus. PMID:21354581

  15. Facile synthesis of aminooxy glycosides by gold(III)-catalyzed glycosidation.

    PubMed

    Thadke, Shivaji A; Neralkar, Mahesh; Hotha, Srinivas

    2016-07-22

    The O-glycosidation of hydroxysuccinimides and hydroxyphthalimides with a variety of aldose derived propargyl 1,2-orthoesters under the gold(III)-catalyzed glycosidation conditions is reported. A wide range of hydroxysuccinimidyl and hydroxyphthalimidyl glycosides were synthesized from corresponding glycosyl orthoesters including glucosyl, mannosyl, galactosyl, ribofuranosyl, arabinofuranosyl, lyxofuranosyl and xylofuranosyl using gold catalysis repertoire. The protocol is identified to be compatible for the synthesis of aminooxy glycosides of higher oligosaccharides as well. PMID:27162194

  16. Bioconversion of steroid glycosides by Nocardia restricta.

    PubMed

    Belic, I; Kastelic-Suhadolc, T; Kralj, B

    1985-09-01

    The bioconversion of steroid alkaloid tomatine by Nocardia restricta yields the conjugate with lactic acid. We studied the bioconversion of some steroid glycosides without a nitrogen atom in the molecule to determine the effect of the nitrogen atom. The glycosides were of three different types: sterol glycosides, bufadienolide rhamnoside and steroid saponine. The results of bioconversions showed that Nocardia restricta converts steroid glycosides differently according to the sugar bound to the steroid aglycone. It can be concluded that in the absence of a nitrogen atom in the steroid molecule no conjugation with lactic acid by Nocardia restricta occurs. PMID:4046605

  17. Analysis of Codon Usage Patterns in Herbaceous Peony (Paeonia lactiflora Pall.) Based on Transcriptome Data.

    PubMed

    Wu, Yanqing; Zhao, Daqiu; Tao, Jun

    2015-01-01

    Codon usage bias, which exists in many genomes, is mainly determined by mutation and selection. To elucidate the genetic features and evolutionary history of herbaceous peony (Paeonia lactiflora), a well-known symbol of prosperity in China, we examined synonymous codon usage in 24,216 reconstructed genes from the P. lactiflora transcriptome. The mean GC content was 44.4%, indicating that the nucleotide content of P. lactiflora genes is slightly AT rich and GC poor. The P. lactiflora genome has a wide range of GC3 (GC content at the third synonymous codon position) distribution, with a significant correlation between GC12 and GC3. ENC (effective number of codons) analysis suggested that mutational bias played a major role in shaping codon usage. Parity Rule 2 (PR2) analysis revealed that GC and AU were not used proportionally. We identified 22 "optimal codons", most ending with an A or U. Our results suggested that nucleotide composition mutation bias and translational selection were the main driving factors of codon usage bias in P. lactiflora. These results lay the foundation for exploring the evolutionary mechanisms and heterologous expression of functionally-important proteins in P. lactiflora. PMID:26506393

  18. Quantitative Proteomics Analysis of Herbaceous Peony in Response to Paclobutrazol Inhibition of Lateral Branching

    PubMed Central

    Zhao, Daqiu; Gong, Saijie; Hao, Zhaojun; Meng, Jiasong; Tao, Jun

    2015-01-01

    Herbaceous peony (Paeonia lactiflora Pall.) is an emerging high-grade cut flower worldwide, which is usually used in wedding bouquets and known as the “wedding flower”. However, abundant lateral branches appear frequently in some excellent cultivars, and a lack of a method to remove Paeonia lactiflora lateral branches other than inefficient artificial methods is an obstacle for improving the quality of its cut flowers. In this study, paclobutrazol (PBZ) application was found to inhibit the growth of lateral branches in Paeonia lactiflora for the first time, including 96.82% decreased lateral bud number per branch, 77.79% and 42.31% decreased length and diameter of lateral branches, respectively, declined cell wall materials and changed microstructures. Subsequently, isobaric tag for relative and absolute quantitation (iTRAQ) technology was used for quantitative proteomics analysis of lateral branches under PBZ application and control. The results indicated that 178 differentially expressed proteins (DEPs) successfully obtained, 98 DEPs were up-regulated and 80 DEPs were down-regulated. Thereafter, 34 candidate DEPs associated with the inhibited growth of lateral branches were screened according to their function and classification. These PBZ-stress responsive candidate DEPs were involved in eight biological processes, which played a very important role in the growth and development of lateral branches together with the response to PBZ stress. These results provide a better understanding of the molecular theoretical basis for removing Paeonia lactiflora lateral branches using PBZ application. PMID:26473855

  19. Analysis of Codon Usage Patterns in Herbaceous Peony (Paeonia lactiflora Pall.) Based on Transcriptome Data

    PubMed Central

    Wu, Yanqing; Zhao, Daqiu; Tao, Jun

    2015-01-01

    Codon usage bias, which exists in many genomes, is mainly determined by mutation and selection. To elucidate the genetic features and evolutionary history of herbaceous peony (Paeonia lactiflora), a well-known symbol of prosperity in China, we examined synonymous codon usage in 24,216 reconstructed genes from the P. lactiflora transcriptome. The mean GC content was 44.4%, indicating that the nucleotide content of P. lactiflora genes is slightly AT rich and GC poor. The P. lactiflora genome has a wide range of GC3 (GC content at the third synonymous codon position) distribution, with a significant correlation between GC12 and GC3. ENC (effective number of codons) analysis suggested that mutational bias played a major role in shaping codon usage. Parity Rule 2 (PR2) analysis revealed that GC and AU were not used proportionally. We identified 22 “optimal codons”, most ending with an A or U. Our results suggested that nucleotide composition mutation bias and translational selection were the main driving factors of codon usage bias in P. lactiflora. These results lay the foundation for exploring the evolutionary mechanisms and heterologous expression of functionally-important proteins in P. lactiflora. PMID:26506393

  20. Neuroprotective bibenzyl glycosides of Stemona tuberosa roots.

    PubMed

    Lee, Ki Yong; Sung, Sang Hyun; Kim, Young Choong

    2006-04-01

    Three new bibenzyl glycosides characterized as stilbostemin B 3'-beta-D-glucopyranoside (1), stilbostemin H 3'-beta-D-glucopyranoside (2), and stilbostemin I 2"-beta-D-glucopyranoside (3) were isolated from the roots of Stemona tuberosa. All three bibenzyl glycosides significantly protected human neuroblastoma SH-SY5Y cells from 6-hydroxydopamine-induced neurotoxicity. PMID:16643052

  1. Two New Triterpene Glycosides from Centella asiatica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytochemical investigation of the leaves of Centella asiatica resulted in the isolation and characterization of one new ursane type triterpene glycoside; asiaticoside G along with nine known compounds, that were characterized as ursane type triterpenes and /or their glycoside; asiatic acid (2), mad...

  2. Phenylpropanoid glycosides from Orobanche caerulescens.

    PubMed

    Lin, Lie-Chwen; Chiou, Wen-Fei; Chou, Cheng-Jen

    2004-01-01

    Two new phenylpropanoid glycosides, caerulescenoside ( 1), and 3'-methyl crenatoside ( 2), as well as five known phenylpropanoid glycosides [acteoside ( 3), isoacteoside ( 4), campneoside II ( 5), crenatoside ( 6), and desrhamnosyl acteoside ( 7)] were isolated from the whole plant of Orobanche caerulescens. The antioxidative effects of compounds 1 - 7 on human low-density lipoprotein were evaluated. All these compounds suppress concentration-dependently conjugated diene formation with IC (50) values of 1.25 +/- 0.06, 2.97 +/- 0.31, 0.31 +/- 0.01, 1.01 +/- 0.05, 1.15 +/- 0.04, 1.69 +/- 0.15, and 0.64 +/- 0.03 microM, respectively. Comparison of their antioxidative activities with that of resveratrol (IC (50) : 6.75 +/- 1.05 microM), a natural phenolic antioxidant isolated from grape, demonstrated that the prolonged effect on lag-time and the damping effect on oxidative rate by compounds 1 - 7 were all more potent. PMID:14765293

  3. Phenolic glycosides from Kaempferia parviflora.

    PubMed

    Azuma, Toshiaki; Tanaka, Yasuo; Kikuzaki, Hiroe

    2008-11-01

    Three phenolic glycosides were isolated together with two known flavonol glycosides from the H2O-soluble fraction of rhizomes of Kaempferia parviflora. Their structures were determined to be rel-(5aS,10bS)-5a,10b-dihydro-1,3,5a,9-tetrahydroxy-8-methoxy-6H-benz[b]indeno[1,2-d]furan-6-one 5a-O-[alpha-L-rhamnopyranosyl-(1-->6)-beta-d-glucopyranoside] (1), its rel-5aS,10bR isomer (2), and (2R,3S,4S)-3-O-[alpha-L-rhamnopyranosyl-(1-->6)-beta-d-glucopyranosyl]-3'-O-methyl-ent-epicatechin-(2alpha-->O-->3,4alpha-->4)-(5aS,10bS)-5a,10b-dihydro-1,3,5a,9-tetrahydroxy-8-methoxy-6H-benz[b]indeno[1,2-d]furan-6-one 5a-O-[alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranoside] (3). The structures were elucidated on the basis of analyses of chemical and spectroscopic evidence. PMID:18922550

  4. Anatomical and biochemical analysis reveal the role of anthocyanins in flower coloration of herbaceous peony.

    PubMed

    Zhao, Da-Qiu; Wei, Meng-Ran; Liu, Ding; Tao, Jun

    2016-05-01

    Herbaceous peony (Paeonia lactiflora Pall.) is particularly appreciated because of its elegant and gorgeous flower color, but little is known about the underlying mechanisms of flower coloration. In this study, three P. lactiflora cultivars 'Xuefeng', 'Fenyulou' and 'Dahonglou' with white, pink and red flower were selected as the materials. Their anatomical structures, cell sap pH and metal elements were investigated, and the colored pigment mainly distributed in palisade mesophyll was only found in 'Fenyulou' and 'Dahonglou', and their shape of epidermal cells, cell sap pH and metal elements were not the key factors deciding phenotype color. Moreover, the qualitative and quantitative analysis of flavonoids were performed, their total anthocyanin, anthoxanthin and flavonoid contents were decreased during flower development, and only anthocyanin content in 'Dahonglou' was always higher than that in 'Xuefeng' and 'Fenyulou'. Subsequently, three anthocyanin compositions were found, and peonidin 3,5-di-O-glucoside (Pn3G5G) was identified as the main anthocyanin composition. In addition, the full-length of flavonol synthase gene (FLS) was isolated with the GenBank accession number KM259902, and the expression patterns of eight flavonoid biosynthetic genes showed that only PlDFR and PlANS basically had the highest levels in 'Dahonglou' and the lowest levels in 'Xuefeng', and they basically displayed a descended trend during flower development especially PlDFR, suggesting that these two genes might play a key role in the anthocyanin biosynthesis which resulted in the shift from white to pink and red in flowers. These results would contribute to understand the underlying molecular mechanisms of flower coloration in P. lactiflora. PMID:26922162

  5. Cloning and expression of floral organ development-related genes in herbaceous peony (Paeonia lactiflora Pall.).

    PubMed

    Ge, Jintao; Zhao, Daqiu; Han, Chenxia; Wang, Jing; Hao, Zhaojun; Tao, Jun

    2014-10-01

    Herbaceous peony (Paeonia lactiflora Pall.) is an important ornamental plant that has different flower types. However, the molecular mechanism underlying its floral organ development has not been fully investigated. This study isolated six floral organ development-related genes in P. lactiflora, namely, APETALA1 (PlAP1), APETALA2 (PlAP2), APETALA3-1 (PlAP3-1), APETALA3-2 (PlAP3-2), PISTILLATA (PlPI) and SEPALLATA3 (PlSEP3). The expression patterns of these genes were also investigated in the three cultivars 'Hangshao', 'Xiangyangqihua' and 'Dafugui'. Furthermore, gene expression during floral development was also analyzed in different organs. The results showed that PlAP1 was mainly expressed in the sepals, and PlAP2 was mainly expressed in the carpels and sepals. PlAP3-2 and PlPI had the highest expression levels in the stamens, followed by the petals. The expression levels of PlAP3-1 (from highest to lowest) were in the following order: petals, stamens, carpels and sepals. PlSEP3 was mainly expressed in sepals and carpels. With the depth of stamen petaloidy, the expression levels of PlAP1, PlAP2 and PlSEP3 increased, whereas those of PlAP3-1, PlAP3-2 and PlPI decreased, which showed that PlAP1 mainly determined sepals and petals of P. lactiflora. The PlAP2 not only determined the sepals and petals, and it participated in carpel formation. PlAP3-1, PlAP3-2 and PlPI mainly determined stamens and petals. PlSEP3 determined the identities of sepals and petals. This study would help determine the molecular mechanism underlying floral organ development in P. lactiflora. PMID:24972572

  6. Changes in soil microbial functional diversity and biochemical characteristics of tree peony with amendment of sewage sludge compost.

    PubMed

    Huang, Xiangdong; Xue, Dong; Xue, Lian

    2015-08-01

    A greenhouse experiment was conducted to investigate the impact of sewage sludge compost application on functional diversity of soil microbial communities, based on carbon source utilization, and biochemical characteristics of tree peony (Paeonia suffruticosa). Functional diversity was estimated with incubations in Biolog EcoPlates and well color development was used as the functional trait for carbon source utilization. The average well color development and Shannon index based on the carbon source utilization pattern in Biolog EcoPlates significantly increased with the increasing sludge compost application in the range of 0-45%, with a decreasing trend above 45%. Principal component analysis of carbon source utilization pattern showed that sludge compost application stimulated the utilization rate of D-cellobiose and α-D-lactose, while the utilization rate of β-methyl-D-glucoside, L-asparagine, L-serine, α-cyclodextrin, γ-hydroxybutyric acid, and itaconic acid gradually increased up to a sludge compost amendment dosage of 45% and then decreased above 45%. The chlorophyll content, antioxidase (superoxide dismutase, catalase, and peroxidase) activities, plant height, flower diameter, and flower numbers per plant of tree peony increased significantly with sludge compost dosage, reaching a peak value at 45 %, and then decreased with the exception that activity of superoxide dismutase and catalase did not vary significantly. PMID:25847444

  7. Two new glycosides from Conyza bonariensis.

    PubMed

    Zahoor, Aqib; Siddiqui, Imran Nafees; Khan, Afsar; Ahmad, Viqar Uddin; Ahmed, Amir; Hassan, Zahid; Khan, Saleha Suleman; Iqbal, Shazia

    2010-07-01

    Studies on Conyza bonariensis (L.) Cronq. led to the isolation of two new glycosides trivially named as erigeside E and F (1-2), along with two new source compounds; benzyl-beta-D-glucopyranoside (3) and 2-phenylethyl-beta-D-glucopyranoside (4). Compounds 1, 3, and 4 are aromatic glycosides, while compound 2 is an alkyl glycoside. Their structures were elucidated through mass spectrometric, and 1D- and 2D-NMR spectroscopic techniques, including 1H NMR, 13C NMR, HMQC, HSQC and HMBC. PMID:20734949

  8. Pregnane glycoside multidrug-resistance modulators from Cynanchum wilfordii.

    PubMed

    Hwang, B Y; Kim, S E; Kim, Y H; Kim, H S; Hong, Y S; Ro, J S; Lee, K S; Lee, J J

    1999-04-01

    The methanol-soluble extracts of the roots of Cynanchum wilfordii showed a significant multidrug-resistance-reversing activity, and four known pregnane glycosides were isolated by bioassay-directed fractionation and separation. Their structures were identified as gagaminin 3-O-beta-D-cymaropyranosyl-(1-->4)-beta-D-oleandropyranosyl- (1-->4)-b eta-D-cymaropyranosyl-(1-->4)-beta-D-cymaropyranoside (1), wilfoside K1N (2), wilfoside C1N (3), and cynauricuoside A (4). In particular, compound 1, at a concentration level of 1 microM, was found to completely reverse the multidrug-resistance of KB-V1 and MCF7/ADR cells to adriamycin, vinblastine, and colchicine. PMID:10217732

  9. Cardiac glycosides induce resistance to tubulin-dependent anticancer drugs in androgen-independent human prostate cancer.

    PubMed

    Huang, Dong-Ming; Guh, Jih-Hwa; Huang, Yao-Ting; Chueh, Shih-Chieh; Wang, Hui-Po; Teng, Che-Ming

    2002-01-01

    Due to high prevalence and mortality and the lack of effective therapies, prostate cancer is one of the most crucial health problems in men. Drug resistance aggravates the situation, not only in human prostate cancer but also in other cancers. In this study, we report for the first time that cardiac glycosides (e.g. ouabain and digitoxin) induced resistance of human prostate cancer cells (PC-3) in vitro to tubulin-binding anticancer drugs, such as paclitaxel, colchicine, vincristine and vinblastine. Cardiac glycosides exhibited amazing ability to reverse the G2/M arrest of the cell cycle and cell apoptosis induced by tubulin-binding agents. However, neither ionomycin (a Ca(2+) ionophore) nor veratridine (a Na(+) ionophore) mimicked the preventive action of cardiac glycosides, indicating that elevation of the intracellular Ca(2+) concentration and Na(+) accumulation were not involved in the cardiac glycoside action. Furthermore, cardiac glycosides showed little influence on the effects induced by actinomycin D, anisomycin and doxorubicin, suggesting selectivity for microtubule-targeted anticancer drugs. Using in situ immunofluorescent detection of mitotic spindles, our data showed that cardiac glycosides diminished paclitaxel-induced accumulation of microtubule spindles; however, in a non-cell assay system, cardiac glycosides had little influence on colchicine- and paclitaxel-induced microtubule dynamics. Using an isotope-labeled assay method, we found that ouabain modestly but significantly inhibited the transport of [(14)C]paclitaxel from the cytosol into the nucleus. It is suggested that cardiac glycosides inhibit the G2/M arrest induced by tubulin-binding anticancer drugs via an indirect blockade on microtubule function. The decline in transport of these drugs into the nucleus may partly explain the action of cardiac glycosides. PMID:12218360

  10. Identification of flavonoids and expression of flavonoid biosynthetic genes in two coloured tree peony flowers.

    PubMed

    Zhao, Daqiu; Tang, Wenhui; Hao, Zhaojun; Tao, Jun

    2015-04-10

    Tree peony (Paeonia suffruticosa Andr.) has been named the "king of flowers" because of its elegant and gorgeous flower colour. Among these colours, the molecular mechanisms of white formation and how white turned to red in P. suffruticosa is little known. In this study, flower colour variables, flavonoid accumulation and expression of flavonoid biosynthetic genes of white ('Xueta') and red ('Caihui') P. suffruticosa were investigated. The results showed that the flower colours of both cultivars were gradually deepened with the development of flowers. Moreover, two anthoxanthin compositions apigenin 7-O-glucoside together with apigenin deoxyheso-hexoside were identified in 'Xueta' and 'Caihui', but one main anthocyanin composition peonidin 3,5-di-O-glucoside (Pn3G5G) was only found in 'Caihui'. Total contents of anthocyanins in 'Caihui' was increased during flower development, and the same trend was presented in anthoxanthins and flavonoids of these two cultivars, but the contents of these two category flavonoid in 'Caihui' were always higher than those in 'Xueta'. Furthermore, nine structural genes in flavonoid biosynthetic pathway were isolated including the full-length cDNAs of phenylalanine ammonialyase gene (PAL), chalcone synthase gene (CHS) and chalcone isomerase gene (CHI), together with the partial-length cDNAs of flavanone 3-hydroxylase gene (F3H), flavonoid 3'-hydroxylase gene (F3'H), dihydroflavonol 4-reductase gene (DFR), anthocyanidin synthase gene (ANS), UDP-glucose: flavonoid 3-O-glucosyltransferase gene (UF3GT) and UDP-glucose: flavonoid 5-O-glucosyltransferase gene (UF5GT), and PAL, UF3GT and UF5GT were reported in P. suffruticosa for the first time. Their expression patterns showed that transcription levels of downstream genes in 'Caihui' were basically higher than those in 'Xueta', especially PsDFR and PsANS, suggesting that these two genes may play a key role in the anthocyanin biosynthesis which resulted in the shift from white to red in

  11. Triterpene glycosides from the Far Eastern sea cucumber Cucumaria conicospermium.

    PubMed

    Avilov, Sergey A; Antonov, Alexandr S; Silchenko, Alexandra S; Kalinin, Vladimir I; Kalinovsky, Anatoly I; Dmitrenok, Pavel S; Stonik, Valentin A; Riguera, Ricardo; Jimenez, Carlos

    2003-07-01

    Four new triterpene glycosides, cucumariosides A(2)-5 (1), A(3)-2 (2), A(3)-3 (3), and isokoreoside A (4), along with the previously isolated koreoside A (5), have been found in the sea cucumber Cucumariaconicospermium. Glycoside 1 was isolated as a native substance, while glycosides 2-5 were identified through their desulfated derivatives. Their structures have been deduced by extensive spectral analysis (NMR and MS) and chemical evidence. All the glycosides contain the same branched pentasaccharide carbohydrate chain but differ in the number and positions of the sulfate groups. Glycoside 1 has one, glycosides 2 and 3 have two, and glycosides 4 and 5 have three sulfate groups. Glycosides 2-5 are non-holostane derivatives; their aglycons lack the 18(20)-lactone and are characterized by shortened side chains, which is a very rare feature among the sea cucumber glycosides. PMID:12880305

  12. Diterpene glycosides from Stevia phlebophylla A. Gray.

    PubMed

    Ceunen, Stijn; Wim, De Borggraeve; Compernolle, Frans; Mai, Anh Hung; Geuns, Jan M C

    2013-09-20

    The rare Mexican species Stevia phlebophylla A. Gray was long considered to be the only known Stevia species, beside the well-known S. rebaudiana, containing the highly sweet diterpenoid steviol glycosides. We report a re-evaluation of this claim after phytochemically screening leaves obtained from two herbarium specimens of S. phlebophylla for the presence of steviol glycosides. Despite extensive MS analyses, no steviol glycosides could be unambiguously verified. Instead, the main chromatographic peak eluting at retention times similar to those of steviol glycosides was identified as a new compound, namely 16β-hydroxy-17-acetoxy-ent-kauran-19-oic acid-(6-O-β-D-xylopyranosyl-β-D-glucopyranosyl) ester (1) on the basis of extensive NMR and MS data as well as the characterization of its acid hydrolysate. Seven more compounds were detected by ESIMS which are possibly structurally related to 1. It can therefore be concluded that S. phlebophylla is unlikely to contain significant amounts of steviol glycosides, if any. PMID:23831634

  13. New kaurene diterpenoid glycosides from fenugreek seeds.

    PubMed

    Pang, Xu; Kang, Li-Ping; Yu, He-Shui; Zhao, Yang; Xiong, Cheng-Qi; Zhang, Jie; Ma, Bai-Ping

    2013-01-01

    Two new kaurene diterpenoid glycosides, named Graecumoside A (1) and B (2), were isolated from fenugreek seeds, along with three known flavonoid-C-glycosides, isoorientin (3), isovitexin (4) and vitexin (5). By combined analyses of 1D- and 2D-NMR, and MS spectroscopy, the structures of two new compounds were elucidated as 3-O-β- D-glucopyranosyl kaur-5, 16-dien-3β, 6, 13β-trihydroxy-7-oxo-18-oic acid methyl ester and 3-O-β-neohesperidosyl kaur-5, 16-dien-3β, 6, 13β-trihydroxy-7-oxo-18-oic acid methyl ester, respectively. The kaurene diterpenoid glycosides were first isolated and identified from fenugreek seeds. PMID:22950814

  14. Steviol glycosides: chemical diversity, metabolism, and function.

    PubMed

    Ceunen, Stijn; Geuns, Jan M C

    2013-06-28

    Steviol glycosides are a group of highly sweet diterpene glycosides discovered in only a few plant species, most notably the Paraguayan shrub Stevia rebaudiana. During the past few decades, the nutritional and pharmacological benefits of these secondary metabolites have become increasingly apparent. While these properties are now widely recognized, many aspects related to their in vivo biochemistry and metabolism and their relationship to the overall plant physiology of S. rebaudiana are not yet understood. Furthermore, the large size of the steviol glycoside pool commonly found within S. rebaudiana leaves implies a significant metabolic investment and poses questions regarding the benefits S. rebaudiana might gain from their accumulation. The current review intends to thoroughly discuss the available knowledge on these issues. PMID:23713723

  15. Digital Gene Expression Analysis to Screen Disease Resistance-Relevant Genes from Leaves of Herbaceous Peony (Paeonia lactiflora Pall.) Infected by Botrytis cinerea

    PubMed Central

    Gong, Saijie; Hao, Zhaojun; Meng, Jiasong; Liu, Ding; Wei, Mengran; Tao, Jun

    2015-01-01

    Herbaceous peony (Paeonia lactiflora Pall.) is a well-known traditional flower in China and is widely used for landscaping and garden greening due to its high ornamental value. However, disease spots usually appear after the flowering of the plant and may result in the withering of the plant in severe cases. This study examined the disease incidence in an herbaceous peony field in the Yangzhou region, Jiangsu Province. Based on morphological characteristics and molecular data, the disease in this area was identified as a gray mold caused by Botrytis cinerea. Based on previously obtained transcriptome data, eight libraries generated from two herbaceous peony cultivars ‘Zifengyu’ and ‘Dafugui’ with different susceptibilities to the disease were then analyzed using digital gene expression profiling (DGE). Thousands of differentially expressed genes (DEGs) were screened by comparing the eight samples, and these genes were annotated using the Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) database. The pathways related to plant-pathogen interaction, secondary metabolism synthesis and antioxidant system were concentrated, and 51, 76, and 13 disease resistance-relevant candidate genes were identified, respectively. The expression patterns of these candidate genes differed between the two cultivars: their expression of the disease-resistant cultivar ‘Zifengyu’ sharply increased during the early stages of infection, while it was relatively subdued in the disease-sensitive cultivar ‘Dafugui’. A selection of ten candidate genes was evaluated by quantitative real-time PCR (qRT-PCR) to validate the DGE data. These results revealed the transcriptional changes that took place during the interaction of herbaceous peony with B. cinerea, providing insight into the molecular mechanisms of host resistance to gray mold. PMID:26208357

  16. Digital Gene Expression Analysis to Screen Disease Resistance-Relevant Genes from Leaves of Herbaceous Peony (Paeonia lactiflora Pall.) Infected by Botrytis cinerea.

    PubMed

    Gong, Saijie; Hao, Zhaojun; Meng, Jiasong; Liu, Ding; Wei, Mengran; Tao, Jun

    2015-01-01

    Herbaceous peony (Paeonia lactiflora Pall.) is a well-known traditional flower in China and is widely used for landscaping and garden greening due to its high ornamental value. However, disease spots usually appear after the flowering of the plant and may result in the withering of the plant in severe cases. This study examined the disease incidence in an herbaceous peony field in the Yangzhou region, Jiangsu Province. Based on morphological characteristics and molecular data, the disease in this area was identified as a gray mold caused by Botrytis cinerea. Based on previously obtained transcriptome data, eight libraries generated from two herbaceous peony cultivars 'Zifengyu' and 'Dafugui' with different susceptibilities to the disease were then analyzed using digital gene expression profiling (DGE). Thousands of differentially expressed genes (DEGs) were screened by comparing the eight samples, and these genes were annotated using the Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) database. The pathways related to plant-pathogen interaction, secondary metabolism synthesis and antioxidant system were concentrated, and 51, 76, and 13 disease resistance-relevant candidate genes were identified, respectively. The expression patterns of these candidate genes differed between the two cultivars: their expression of the disease-resistant cultivar 'Zifengyu' sharply increased during the early stages of infection, while it was relatively subdued in the disease-sensitive cultivar 'Dafugui'. A selection of ten candidate genes was evaluated by quantitative real-time PCR (qRT-PCR) to validate the DGE data. These results revealed the transcriptional changes that took place during the interaction of herbaceous peony with B. cinerea, providing insight into the molecular mechanisms of host resistance to gray mold. PMID:26208357

  17. [Effects of high- and low temperature stress on the leaf PSII functions and physiological characteristics of tree peony (Paeonia suffruticosa cv. 'Roufurong')].

    PubMed

    Liu, Chun-Ying; Chen, Da-Yin; Gai, Shu-Peng; Zhang, Yu-Xi; Zheng, Guo-Sheng

    2012-01-01

    Taking the detached leaves of tree peony (Paeonia suffruticosa cv. 'Roufurong') as test materials, this paper studied the effects of high temperature (40 degrees C) and low temperature (15 degrees C) stresses on the PS II functions and physiological characteristics of peony leaves under strong light intensity (1400 micromol x m(-2) x s(-1)), with 25 degrees C as the control. With the increasing time of high- and low temperature stress, the maximal photochemical efficiency (Fv/Fm), actual quantum yield of photosystem II (Phi(PS II)) , and efficiency of excitation capture of open PS II center (Fv'/Fm') all decreased continuously. After recovered in the dark for 4 hours, the Fv/Fm in treatments 15 degrees C and 25 degrees C quickly recovered, but that in treatment 40 degrees C only recovered to 75.5% of non-treatment, even if the leaves were treated in the dark for 15 hours. At 40 degrees C, the balance of excited energy between PS I and PS II under strong light intensity was perturbed seriously. Treatment 40 degrees C inhibited the superoxide dismutase (SOD) activity, enhanced the production of O2-, H2O2, and MDA, and reduced the contents of chlorophyll and soluble protein. This study revealed that strong light combined with high temperature impaired the photosynthetic apparatus of the tree peony irreversibly, whereas strong light plus low temperature had weaker impact. PMID:22489490

  18. Five new phenolic glycosides from Hedyotis scandens.

    PubMed

    Wang, Guo-Cai; Li, Tao; Deng, Fang-Ye; Li, Yao-Lan; Ye, Wen-Cai

    2013-03-01

    Five new phenolic glycosides, hedyotosides A-E (1-5), including a new cyanogenic glycoside (1), along with 10 known compounds (6-15) were isolated from the whole plants of Hedyotis scandens. The structures of compounds 1-5 were established by extensive spectroscopic analyses and acid hydrolysis. All the isolated compounds were evaluated for their in vitro antiviral activity against respiratory syncytial virus (RSV) with cytopathic effect (CPE) reduction assay. Compounds 6 and 15 showed anti-RSV effects with IC(50) values of 20 and 25 μg/mL, respectively. PMID:23333151

  19. A new diterpene glycoside from Stevia rebaudiana.

    PubMed

    Chaturvedula, Venkata Sai Prakash; Prakash, Indra

    2011-01-01

    From the commercial extract of the leaves of Stevia rebaudiana, a new diterpene glycoside was isolated besides the known steviol glycosides including stevioside, rebaudiosides A-F, rubusoside and dulcoside A. The new compound was identified as 13-[(2-O-β-D-glucopyranosyl-3-O-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-(2-O-α-L-rhamnopyranosyl-β-D-glucopyranosyl) ester (1) on the basis of extensive spectroscopic (NMR and MS) and chemical studies. PMID:21464800

  20. A New Flavonoid Glycoside from Lysionotus pauciflorus.

    PubMed

    Luo, Wei; Wen, Yaya; Tu, Yanbei; Du, Hongjian; Li, Qin; Zhu, Chao; Li, Yanfang

    2016-05-01

    Ten flavonoids (1-10), including a new glycoside (nevadensin-7-sambubioside, 7), together with a phenylpropanoid glycoside (11) were isolated from Lysionotus pauciflorus. Their structures were elucidated by a combination of spectroscopic methods and comparing with literature data. Five compounds (1, 3, 4, 8, and 9) were obtained from the family Gesneriaceae for the first time. The new compound was evaluated in vitro for anticholinesterase activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), but was found to be inactive. PMID:27319133

  1. Elemanolide sesquiterpenes and eudesmane sesquiterpene glycosides from Centaurea hierapolitana.

    PubMed

    Karamenderes, Canan; Bedir, Erdal; Pawar, Rahul; Baykan, Sura; Khan, Ikhlas A

    2007-03-01

    Two elemanolide sesquiterpenes and two eudesmane-type sesquiterpene glycosides named hierapolitanins A-D, were isolated, together with five known compounds, two flavones; hispidulin and jaceosidin, a flavon-C-glycoside, shaftoside, a flavonol glycoside, kaempferol-3-O-rutinoside and a neolignan, dehydrodiconiferyl alcohol from the aerial parts of Centaurea hierapolitana Boiss. (Asteraceae). Structure elucidations were based on spectroscopic evidence. PMID:17126864

  2. Two new secoiridoid glycosides from Verbena officinalis.

    PubMed

    Xu, Wei; Xin, Fei; Sha, Yi; Fang, Jin; Li, Yu-Shan

    2010-08-01

    Two new secoiridoid glycosides, verbenoside A (1) and verbenoside B (2), have been isolated from the ethanol extract of the aerial parts of Verbena officinalis L. Their structures were elucidated on the basis of spectroscopic evidences, especially 1D, 2D NMR, and MS experiments. PMID:20706899

  3. Twisting of glycosidic bonds by hydrolases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Patterns of scissile bond twisting have been found in crystal structures of glycoside hydrolases (GHs) that are complexed with substrates and inhibitors. To estimate the increased potential energy in the substrates that results from this twisting, we have plotted torsion angles for the scissile bond...

  4. New triterpene glycosides from Ziziphi Spinosae Semen.

    PubMed

    Wang, Yu; Ding, Bo; Luo, Dan; Chen, Liu-Yuan; Hou, Yun-Long; Dai, Yi; Yao, Xin-Sheng

    2013-10-01

    Four new dammarane-type triterpene glycosides, named jujubosides I-IV (1-4), were isolated from Ziziphi Spinosae Semen, along with seven known saponins (5-11). The structures of new compounds were established on the basis of extensive spectroscopic analysis. All compounds were evaluated for the effects on neonatal rat cardiomyocyte injury induced by hydrogen peroxide in vitro. PMID:23912064

  5. A new isoflavone glycoside from Pueraria alopecuroides.

    PubMed

    Yang, Junlin; Fan, Qingfei; Zhang, Huanli; Song, Qishi

    2016-01-01

    A new isoflavone glycoside, (-)-tuberosin-3-O-β-D-glucopyranoside (1), along with 10 known compounds 1a-10, was isolated from Pueraria alopecuroides. Their structures were determined on the basis of spectral data including 1D and 2D NMR and HREIMS. These compounds were isolated from this plant for the first time. PMID:26525177

  6. New xanthone glycosides from Securidaca inappendiculata.

    PubMed

    Yang, Xue-Dong; An, Ning; Xu, Li-Zhen; Yang, Shi-Lin

    2002-06-01

    Three new xanthone glycosides, securixanside A (1), securixanside B (2), and securixanside C (3) were isolated from the stems of Securidaca inappendiculata. These compounds were characterized by spectrometric and chemical methods, including FABMS and one- and two-dimensional NMR experiments. PMID:12067160

  7. A new sterol glycoside from Securidaca inappendiculata.

    PubMed

    Zhang, Li-Jie; Yang, Xue-Dong; Xu, Li-Zhen; Zou, Zhong-Mei; Yang, Shi-Lin

    2005-08-01

    From the roots of Securidaca inappendiculata, one new sterol glycoside securisteroside (1) has been isolated, along with two known sterols, spinasterol (2) and 3-O-beta-D-glucopyranosyl-spinasterol (3). The new sterol was characterized by chemical and spectrometric methods, including EIMS, FABMS and one- and two-dimensional NMR experiments. PMID:16087640

  8. [Determination of phenylethanoid glycosides in Orobanche coerulescens].

    PubMed

    Han, Guo-qing; Li, Cai-feng; Wang, Xiao-qin; Li, Min-hui; Li, Jing

    2015-11-01

    Orobanche caerulescens is an important medicinal resource in Orobanchaceae. The present study aims to establish methods for determination of acteoside, crenatoside, and total phenylethanoid glycosides in O. caerulescens, and determine the content in 15 samples to evaluate the resource utilization of this medicinal plant. The content of acteoside and crenatoside were quantitatively determined by HPLC, while total phenylpropanoid glycosides was estimated by UV-VIS spectrophotometry. According to the results, the content of acteoside was the highest in O. caerulescens, followed by crenatoside. The contents of acteoside, crenatoside, and total phenylethanoid glycosides were between 1.15% - 15.60%, 0.83% - 4.47%, and 6.78% - 27.43%, respectively, which had significant differences. The acquisition time has great influence on the content of main components of O. caerulescens. The content of phenylethanoid glycosides is higher in the samples which were collected at the flowering stage. The two determination methods were proved to be simple, accurate and reliable, and can be used to evaluate the quality and resource utilization of O. caerulescens. PMID:27071260

  9. A new withanolide glycoside from physalis peruviana

    PubMed

    Ahmad; Malik; Afza; Yasmin

    1999-03-01

    A new withanolide glycoside, 17beta-hydroxy-14, 20-epoxy-1-oxo-[22R]-3beta-[O-beta-D-glucopyranosyl]-witha-5, 24-dienolide (1), has been isolated from the whole plant of Physalis peruviana. Its identity was determined using a combination of spectroscopic data including 2D NMR techniques and chemical transformations. PMID:10096867

  10. Enzymatic Processing of Bioactive Glycosides from Natural Sources

    NASA Astrophysics Data System (ADS)

    Weignerová, Lenka; Křen, Vladimír

    A number of biologically active natural products are glycosides. Often, the glycosidic residue is crucial for their activity. In other cases, glycosylation only improves their pharmacokinetic parameters. Enzymatic modification of these glycosides - both extension of the glycoside moiety and its selective trimming - is advantageous due to their selectivity and mildness of the reaction conditions in the presence of reactive and sensitive complex aglycones. Enzymatic reactions enable the resulting products to be used as "natural products", e.g., in nutraceuticals. This chapter concentrates on naturally occurring glycosides used in medicine but also in the food and flavor industry (e.g., sweeteners). Both "classical" and modern methods will be discussed.

  11. Advance on the Flavonoid C-glycosides and Health Benefits.

    PubMed

    Xiao, Jianbo; Capanoglu, Esra; Jassbi, Amir Reza; Miron, Anca

    2016-07-29

    The dietary flavonoids, especially their glycosides, are the most vital phytochemicals in diets and are of great general interest due to their diverse bioactivity. Almost all natural flavonoids exist as their O-glycoside or C-glycoside forms in plants. The dietary flavonoid C-glycosides have received less attention than their corresponding O-glycosides. This review summarizes current knowledge regarding flavonoid C-glycosides and their influence on human health. Among the flavonoid C-glycosides, flavone C-glycosides, especially vitexin, isoorientin, orientin, isovitexin and their multiglycosides are more frequently mentioned than others. Flavonoid C-monoglycosides are poorly absorbed in human beings with very few metabolites in urine and blood and are deglycosylated and degraded by human intestinal bacteria in colon. However, flavonoid C-multiglycosides are absorbed unchanged in the intestine and distributed to other tissues. Flavonoid C-glycosides showed significant antioxidant activity, anticancer and antitumor activity, hepatoprotective activity, anti-inflammatory activity, anti-diabetes activity, antiviral activity, antibacterial and antifungal activity, and other biological effects. It looks like that the C-glycosylflavonoids in most cases showed higher antioxidant and anti-diabetes potential than their corresponding O-glycosylflavonoids and aglycones. However, there is a lack of in vivo data on the biological benefits of flavonoid C-glycosides. It is necessary to investigate more on how flavonoid C-glycosides prevent and handle the diseases. PMID:26462718

  12. A novel steroidal saponin glycoside from Fagonia indica induces cell-selective apoptosis or necrosis in cancer cells.

    PubMed

    Waheed, Abdul; Barker, James; Barton, Stephen J; Owen, Caroline P; Ahmed, Sabbir; Carew, Mark A

    2012-09-29

    Fagonia indica is a small spiny shrub of great ethnopharmacological importance in folk medicine. The aqueous decoction of aerial parts is a popular remedy against various skin lesions, including cancer. We used a biological activity-guided fractionation approach to isolate the most potent fraction of the crude extract on three cancer cell lines: MCF-7 oestrogen-dependent breast cancer, MDA-MB-468 oestrogen-independent breast cancer, and Caco-2 colon cancer cells. A series of chromatographic and spectroscopic procedures were utilised on the EtOAc fraction, which resulted in the isolation of a new steroidal saponin glycoside. The cytotoxic activity of the saponin glycoside was determined in cancer cells using the MTT and neutral red uptake assays. After 24h treatment, the observed IC(50) values of the saponin glycoside were 12.5 μM on MDA-MB-468 and Caco-2 cells, but 100 μM on MCF-7 cells. Several lines of evidence: PARP cleavage, caspase-3 cleavage, DNA ladder assays, and reversal of growth inhibition with the pan-caspase inhibitor Z-VAD-fmk, suggested stimulation of apoptosis in MDA-MB-468 and Caco-2 cells, but not in MCF-7 cells, which do not express caspase-3. The haemolytic activity of the saponin glycoside was confirmed in sheep red blood cells, with cell lysis observed at >100 μM, suggesting that, at this concentration, the saponin glycoside caused necrosis through cell lysis in MCF-7 cells. Using the DNA ladder assay, the saponin glycoside (12.5 μM) was not toxic to HUVEC (human umbilical vein endothelial cells) or U937 cells, indicating some selectivity between malignant and normal cells. We conclude that the steroidal saponin glycoside isolated from F. indica is able to induce apoptosis or necrosis in cancer cells depending on the cell type. PMID:22800968

  13. Characterization and quantification of monoterpenoids in different types of peony root and the related Paeonia species by liquid chromatography coupled with ion trap and time-of-flight mass spectrometry.

    PubMed

    Shi, Yan-Hong; Zhu, Shu; Ge, Yue-Wei; Toume, Kazufumi; Wang, Zhengtao; Batkhuu, Javzan; Komatsu, Katsuko

    2016-09-10

    Monoterpenoids with "cage-like" pinane skeleton are the unique and main bioactive constituents in peony root, the root of Paeonia lactiflora. A liquid chromatography coupled with ion trap and time-of-flight mass spectrometry (LC-IT-TOF-MS) method was developed for characterization and quantification of monoterpenoids in different types of peony root and the roots of related Paeonia species. MS/MS fragmentation patterns of monoterpenoids with paeoniflorin-, albiflorin- and sulfonated paeoniflorin-type of skeletons were elucidated, which provided basic clues enabling subsequent identification of 35 monoterpenoids in LC-MS profiles of Paeonia species. The profiling analysis and further quantification of 15 main monoterpenoids in 56 samples belonged to red peony root (RPR), white peony root (WPR), peony root in Japanese market (PR) and the roots of related Paeonia species revealed that paeoniflorin, benzoylpaeoniflorin, galloylpaeoniflorin, oxypaoniflorin and albiflorin were predominant constituents in all the samples; mudanpioside C was the characteristic component of P. lactiflora, and 4-O-methyl-paeoniflorin was only detected in P. veitchii and P. anomala. Total contents of the 15 monoterpenoids were obviously higher in the roots of P. lactiflora and P. veitchii than in those of P. anomala and P. japonica. Principal component analysis based on the quantitative results showed that the samples derived from P. lactiflora were clearly classified into RPR, WPR/PR, and sulfur-fumigated WPR groups, besides the respective group of P. veitchii and P. anomala. This study clarified the chemical characteristics of the respective type of peony root and the related Paeonia species, as well as the marker constituents for their discrimination. PMID:27521818

  14. Efficiency of transcellular transport and efflux of flavonoids with different glycosidic units from flavonoids of Litsea coreana L. in a MDCK epithelial cell monolayer model.

    PubMed

    Chen, Zhaolin; Ma, Taotao; Huang, Cheng; Zhang, Lei; Zhong, Jian; Han, Jingwen; Hu, Tingting; Li, Jun

    2014-03-12

    Although there is strong evidence to suggest that beneficial effects of the flavonoids in human health, the extent to which flavonoids are absorbed and the mechanisms involved are controversial. The objective of this study was to determine the bi-directional permeability and efflux characters of the four main flavonoids with different glycosidic units isolated from flavonoids of Litsea coreana L. and to discuss the transport mechanisms using the epithelial cell model MDCK. The transport of the four main flavonoid glycosides at concentration of 40, 80, 160 μM was concentration-dependent in both apical to basolateral and the reverse direction. Contemporary, the influx and efflux of the flavonoid glycosides were temperature-dependent and pH-dependent at concentration of 80 μM, and transport of flavonoid glycosides was obviously decreased when experiments performed in the presence of 1mM sodium azide (an ATP inhibitor). Uptake of quercetin-3-O-β-D-glucoside or kaempferol-3-O-β-D-glucoside was inhibited by 50 μM phloridzin, a specific and competitive inhibitor of SGLT. Moreover, the flavonoids exhibited significantly larger basolateral to apical Papp than that of the reverse direction, suggesting the existence of efflux mechanisms. The 50 μM verapamil, a chemical inhibitor of P-glycoprotein (P-gp), had no effect on the transport of four flavonoid glycosides. However, 50 μM MK-571 or 1 mM probenecid, MRP2 inhibitors, led to an apparently decrease in the efflux of flavonoid glycosides. Therefore, MRP2 but P-gp may be involved in the transport of the four flavonoid glycosides. Taken together, the experimental observations in our study provide useful information for pharmacological applications of flavonoids with different glycosidic units from flavonoids of L. coreana L. PMID:24365259

  15. New pregnane glycosides from Gymnema sylvestre.

    PubMed

    Xu, Rui; Yang, Yu; Zhang, Yang; Ren, Fengxia; Xu, Jinlong; Yu, Nengjiang; Zhao, Yimin

    2015-01-01

    Four new pregnane glycosides 1-4 were isolated from the ethanol extract of the stem of Gymnema sylvestre and named gymsylvestrosides A-D. Hydrolysis of compound 1 under the catalysis of Aspergilus niger β-glucosidase afforded compound 5 (gymsylvestroside E). Their structures were determined by spectroscopic methods such as HRESIMS, 1D and 2D NMR, as well as HMQC-TOCSY experiment. Compounds 1-4 were screened for Saccharomyces cerevisiae α-glucosidase inhibitory activity. PMID:25685911

  16. A New Cucurbitane Glycoside from Siraitia grosvenorii.

    PubMed

    Chaturvedula, Venkata Sai Prakash; Meneni, Srinivasa Rao

    2015-09-01

    A systematic phytochemical study of the commercial extract of Luo Han Guo (Siraitia grosvenorii) resulted in the isolation of an additional minor new cucurbitane glycoside, mogroside V Al (1). The structure of the new compound was characterized on the basis of 1D (1H and 13C NMR) and 2D (COSY, HMQC, HMBC and NOESY) NMR and high resolution mass spectral (HRMS) data, as well as hydrolysis studies. PMID:26594748

  17. Oleandrin: A cardiac glycosides with potent cytotoxicity

    PubMed Central

    Kumar, Arvind; De, Tanmoy; Mishra, Amrita; Mishra, Arun K.

    2013-01-01

    Cardiac glycosides are used in the treatment of congestive heart failure and arrhythmia. Current trend shows use of some cardiac glycosides in the treatment of proliferative diseases, which includes cancer. Nerium oleander L. is an important Chinese folk medicine having well proven cardio protective and cytotoxic effect. Oleandrin (a toxic cardiac glycoside of N. oleander L.) inhibits the activity of nuclear factor kappa-light-chain-enhancer of activated B chain (NF-κB) in various cultured cell lines (U937, CaOV3, human epithelial cells and T cells) as well as it induces programmed cell death in PC3 cell line culture. The mechanism of action includes improved cellular export of fibroblast growth factor-2, induction of apoptosis through Fas gene expression in tumor cells, formation of superoxide radicals that cause tumor cell injury through mitochondrial disruption, inhibition of interleukin-8 that mediates tumorigenesis and induction of tumor cell autophagy. The present review focuses the applicability of oleandrin in cancer treatment and concerned future perspective in the area. PMID:24347921

  18. Alkyl and phenolic glycosides from Saussurea stella.

    PubMed

    Wang, Tian-Min; Wang, Ru-Feng; Chen, Hu-Biao; Shang, Ming-Ying; Cai, Shao-Qing

    2013-07-01

    One alkyl glycoside, saussurostelloside A (1), two phenolic glycosides, saussurostellosides B1 (2) and B2 (3), and 27 known compounds, including eleven flavonoids, seven phenolics, six lignans, one neolignan, one phenethyl glucoside and one fatty acid, were isolated from an ethanol extract of Saussurea stella (Asteraceae). Their structures were elucidated by NMR, MS, UV, and IR spectroscopic analysis. Of the known compounds, (+)-medioresinol-di-O-β-D-glucoside (7), picraquassioside C (10), and diosmetin-3'-O-β-D-glucoside (27) were isolated from the Asteraceae family for the first time, while (+)-pinoresinol-di-O-β-D-glucoside (6), di-O-methylcrenatin (11), protocatechuic acid (14), 1,5-di-O-caffeoylquinic acid (17), formononetin (28), and phenethyl glucoside (29) were isolated from the Saussurea genus for the first time. The anti-inflammatory activities of three new compounds (1-3), five lignans ((-)-arctiin (4), (+)-pinoresinol-4-O-β-D-glucoside (5), (+)-pinoresinol-di-O-β-D-glucoside (6), (+)-medioresinol-di-O-β-D-glucoside (7) and (+)-syringaresinol-4-O-β-D-glucoside (8)), one neolignan (picraquassioside C (10)), and one phenolic glycoside (di-O-methylcrenatin (11)) were evaluated by testing their inhibition of the release of β-glucuronidase from PAF-stimulated neutrophils. Only compound 5 showed moderate inhibition of the release of β-glucuronidase, with an inhibition ratio of 39.1%. PMID:23567860

  19. The First High-Density Genetic Map Construction in Tree Peony (Paeonia Sect. Moutan) using Genotyping by Specific-Locus Amplified Fragment Sequencing.

    PubMed

    Cai, Changfu; Cheng, Fang-Yun; Wu, Jing; Zhong, Yuan; Liu, Gaixiu

    2015-01-01

    Genetic linkage maps, permitting the elucidation of genome structure, are one of most powerful genomic tools to accelerate marker-assisted breeding. However, due to a lack of sufficient user-friendly molecular markers, no genetic linkage map has been developed for tree peonies (Paeonia Sect. Moutan), a group of important horticultural plants worldwide. Specific-locus amplified fragment sequencing (SLAF-seq) is a recent molecular marker development technology that enable the large-scale discovery and genotyping of sequence-based marker in genome-wide. In this study, we performed SLAF sequencing of an F1 population, derived from the cross P. ostti 'FenDanBai' × P. × suffruticosa 'HongQiao', to identify sufficient high-quality markers for the construction of high-density genetic linkage map in tree peonies. After SLAF sequencing, a total of 78 Gb sequencing data and 285,403,225 pair-end reads were generated. We detected 309,198 high-quality SLAFs from these data, of which 85,124 (27.5%) were polymorphic. Subsequently, 3518 of the polymorphic markers, which were successfully encoded in to Mendelian segregation types, and were in conformity with the criteria of high-quality markers, were defined as effective markers and used for genetic linkage mapping. Finally, we constructed an integrated genetic map, which comprised 1189 markers on the five linkage groups, and spanned 920.699 centiMorgans (cM) with an average inter-marker distance of 0.774 cM. There were 1115 'SNP-only' markers, 18 'InDel-only' markers, and 56 'SNP&InDel' markers on the map. Among these markers, 450 (37.85%) showed significant segregation distortion (P < 0.05). In conclusion, this investigation reported the first large-scale marker development and high-density linkage map construction for tree peony. The results of this study will serve as a solid foundation not only for marker-assisted breeding, but also for genome sequence assembly for tree peony. PMID:26010095

  20. The First High-Density Genetic Map Construction in Tree Peony (Paeonia Sect. Moutan) using Genotyping by Specific-Locus Amplified Fragment Sequencing

    PubMed Central

    Cai, Changfu; Cheng, Fang-Yun; Wu, Jing; Zhong, Yuan; Liu, Gaixiu

    2015-01-01

    Genetic linkage maps, permitting the elucidation of genome structure, are one of most powerful genomic tools to accelerate marker-assisted breeding. However, due to a lack of sufficient user-friendly molecular markers, no genetic linkage map has been developed for tree peonies (Paeonia Sect. Moutan), a group of important horticultural plants worldwide. Specific-locus amplified fragment sequencing (SLAF-seq) is a recent molecular marker development technology that enable the large-scale discovery and genotyping of sequence-based marker in genome-wide. In this study, we performed SLAF sequencing of an F1 population, derived from the cross P. ostti ‘FenDanBai’ × P. × suffruticosa ‘HongQiao’, to identify sufficient high-quality markers for the construction of high-density genetic linkage map in tree peonies. After SLAF sequencing, a total of 78 Gb sequencing data and 285,403,225 pair-end reads were generated. We detected 309,198 high-quality SLAFs from these data, of which 85,124 (27.5%) were polymorphic. Subsequently, 3518 of the polymorphic markers, which were successfully encoded in to Mendelian segregation types, and were in conformity with the criteria of high-quality markers, were defined as effective markers and used for genetic linkage mapping. Finally, we constructed an integrated genetic map, which comprised 1189 markers on the five linkage groups, and spanned 920.699 centiMorgans (cM) with an average inter-marker distance of 0.774 cM. There were 1115 ‘SNP-only’ markers, 18 ‘InDel-only’ markers, and 56 ‘SNP&InDel’ markers on the map. Among these markers, 450 (37.85%) showed significant segregation distortion (P < 0.05). In conclusion, this investigation reported the first large-scale marker development and high-density linkage map construction for tree peony. The results of this study will serve as a solid foundation not only for marker-assisted breeding, but also for genome sequence assembly for tree peony. PMID:26010095

  1. The Identification of Perillyl Alcohol Glycosides with Improved Antiproliferative Activity

    PubMed Central

    2015-01-01

    A facile route to perillyl alcohol (POH) differential glycosylation and the corresponding synthesis of a set of 34 POH glycosides is reported. Subsequent in vitro studies revealed a sugar dependent antiproliferative activity and the inhibition of S6 ribosomal protein phosphorylation as a putative mechanism of representative POH glycosides. The most active glycoside from this cumulative study (4′-azido-d-glucoside, PG9) represents one of the most cytotoxic POH analogues reported to date. PMID:25121720

  2. Assembly of naturally occurring glycosides, evolved tactics, and glycosylation methods.

    PubMed

    Yu, Biao; Sun, Jiansong; Yang, Xiaoyu

    2012-08-21

    Glycosylation of proteins and lipids is critical to many life processes. Secondary metabolites (or natural products), such as flavonoids, steroids, triterpenes, and antibiotics, are also frequently modified with saccharides. The resulting glycosides include diverse structures and functions, and some of them have pharmacological significance. The saccharide portions of the glycosides often have specific structural characteristics that depend on the aglycones. These molecules also form heterogeneous "glycoform" mixtures where molecules have similar glycosidic linkages but the saccharides vary in the length and type of monosaccharide unit. Thus, it is difficult to purify homogeneous glycosides in appreciable amounts from natural sources. Chemical synthesis provides a feasible access to the homogeneous glycosides and their congeners. Synthesis of a glycoside involves the synthesis of the aglycone, the saccharide, the connection of these two parts, and the overall manipulation of protecting groups. However, most synthetic efforts to date have focused on the aglycones, treating the attachment of saccharides onto the aglycones as a dispensable topic. The synthesis of the aglycone and the synthesis of the saccharide belong to two independent categories of chemistry, and different types of the aglycones and saccharides pose as specific synthetic subjects in their own disciplines. The only reaction that integrates the broad chemistry of glycoside synthesis is the glycosidic bond formation between the saccharide and the aglycone. Focusing on this glycosylation reaction in this Account, we string together our experience with the synthesis of the naturally occurring glycosides. We briefly describe the synthesis of 18 glycosides, including glycolipids, phenolic glycosides, steroid glycosides, and triterpene glycosides. Each molecule represents a prototypical structure of a family of the natural glycosides with interesting biological activities, and we emphasize the general

  3. Phenylethanoid glycosides and phenolic glycosides from stem bark of Magnolia officinalis.

    PubMed

    Xue, Zhenzhen; Yan, Renyi; Yang, Bin

    2016-07-01

    An investigation of the hydrophilic constituents of the stem bark of Magnolia officinalis was performed and which led to isolation and identification of twenty-one previously unreported glycosides. These included eleven phenylethanoid glycosides, magnolosides F-P, and ten phenolic glycosides, magnolosides Q-Z, along with eight known compounds. Their structures were elucidated on the basis of extensive spectroscopic analyses and chemical hydrolysis methods, as well as by comparison with literature data. Most of the phenylethanoid glycosides contained an allopyranose moiety, which is rare in the plant kingdom. Magnolosides I and K as well as 2-(3,4-dihydroxyphenyl) ethanol 1-O-[4-O-caffeoyl-2-O-α-l-rhamnopyranosyl-3-O-α-l-rhamnopyranosyl-6-O-β-d-glucopyranosyl]-β-d-glucopyranoside showed more potent α-glucosidase inhibitory effects (IC50 values of 0.13, 0.27, and 0.29mM, respectively) than the positive control, acarbose (IC50 value of 1.09mM) in vitro. Magnolosides H, E and D also showed moderate cytotoxicity against MGC-803 and HepG2 cells with IC50 values of 13.59-17.16μM and 29.53-32.46μM, respectively. PMID:27086163

  4. Mass Spectrometric Characterization of Benzoxazinoid Glycosides from Rhizopus-Elicited Wheat (Triticum aestivum) Seedlings.

    PubMed

    de Bruijn, Wouter J C; Vincken, Jean-Paul; Duran, Katharina; Gruppen, Harry

    2016-08-17

    Benzoxazinoids function as defense compounds and have been suggested to possess health-promoting effects. In this work, the mass spectrometric behavior of benzoxazinoids from the classes benzoxazin-3-ones (with subclasses lactams, hydroxamic acids, and methyl derivatives) and benzoxazolinones was studied. Wheat seeds were germinated with simultaneous elicitation by Rhizopus. The seedling extract was screened for the presence of benzoxazinoid (glycosides) using reversed-phase ultra-high-performance liquid chromatography with photodiode array detection coupled in line to multiple-stage mass spectrometry (RP-UHPLC-PDA-MS(n)). Benzoxazin-3-ones from the different subclasses showed distinctly different ionization and fragmentation behaviors. These features were incorporated into a newly proposed decision guideline to aid the classification of benzoxazinoids. Glycosides of the methyl derivative 2-hydroxy-4-methoxy-1,4-benzoxazin-3-one were tentatively identified for the first time in wheat. We conclude that wheat seedlings germinated with simultaneous fungal elicitation contain a diverse array of benzoxazinoids, mainly constituted by benzoxazin-3-one glycosides. PMID:27431363

  5. Effects of Inflorescence Stem Structure and Cell Wall Components on the Mechanical Strength of Inflorescence Stem in Herbaceous Peony

    PubMed Central

    Zhao, Daqiu; Han, Chenxia; Tao, Jun; Wang, Jing; Hao, Zhaojun; Geng, Qingping; Du, Bei

    2012-01-01

    Herbaceous peony (Paeonia lactiflora Pall.) is a traditional famous flower, but its poor inflorescence stem quality seriously constrains the development of the cut flower. Mechanical strength is an important characteristic of stems, which not only affects plant lodging, but also plays an important role in stem bend or break. In this paper, the mechanical strength, morphological indices and microstructure of P. lactiflora development inflorescence stems were measured and observed. The results showed that the mechanical strength of inflorescence stems gradually increased, and that the diameter of inflorescence stem was a direct indicator in estimating mechanical strength. Simultaneously, with the development of inflorescence stem, the number of vascular bundles increased, the vascular bundle was arranged more densely, the sclerenchyma cell wall thickened, and the proportion of vascular bundle and pith also increased. On this basis, cellulose and lignin contents were determined, PlCesA3, PlCesA6 and PlCCoAOMT were isolated and their expression patterns were examined including PlPAL. The results showed that cellulose was not strictly correlated with the mechanical strength of inflorescence stem, and lignin had a significant impact on it. In addition, PlCesA3 and PlCesA6 were not key members in cellulose synthesis of P. lactiflora and their functions were also different, but PlPAL and PlCCoAOMT regulated the lignin synthesis of P. lactiflora. These data indicated that PlPAL and PlCCoAOMT could be applied to improve the mechanical strength of P. lactiflora inflorescence stem in genetic engineering. PMID:22606025

  6. Identification of miRNAs Responsive to Botrytis cinerea in Herbaceous Peony (Paeonia lactiflora Pall.) by High-Throughput Sequencing

    PubMed Central

    Zhao, Daqiu; Gong, Saijie; Hao, Zhaojun; Tao, Jun

    2015-01-01

    Herbaceous peony (Paeonia lactiflora Pall.), one of the world’s most important ornamental plants, is highly susceptible to Botrytis cinerea, and improving resistance to this pathogenic fungus is a problem yet to be solved. MicroRNAs (miRNAs) play an essential role in resistance to B. cinerea, but until now, no studies have been reported concerning miRNAs induction in P. lactiflora. Here, we constructed and sequenced two small RNA (sRNA) libraries from two B. cinerea-infected P. lactiflora cultivars (“Zifengyu” and “Dafugui”) with significantly different levels of resistance to B. cinerea, using the Illumina HiSeq 2000 platform. From the raw reads generated, 4,592,881 and 5,809,796 sRNAs were obtained, and 280 and 306 miRNAs were identified from “Zifengyu” and “Dafugui”, respectively. A total of 237 conserved and 7 novel sequences of miRNAs were differentially expressed between the two cultivars, and we predicted and annotated their potential target genes. Subsequently, 7 differentially expressed candidate miRNAs were screened according to their target genes annotated in KEGG pathways, and the expression patterns of miRNAs and corresponding target genes were elucidated. We found that miR5254, miR165a-3p, miR3897-3p and miR6450a might be involved in the P. lactiflora response to B. cinerea infection. These results provide insight into the molecular mechanisms responsible for resistance to B. cinerea in P. lactiflora. PMID:26393656

  7. Glycosidic constituents from in vitro Anoectochilus formosanus.

    PubMed

    Du, X M; Sun, N Y; Irino, N; Shoyama, Y

    2000-11-01

    The glycosidic constituents of whole plants of Anoectochilus formosanus propagated by tissue culture were investigated. A new compound, 2-(beta-D-glucopyranosyloxymethyl)-5-hydroxymethylfuran, along with the known compounds, 3-(R)-3-beta-D-glucopyranosyloxybutanolide (kinsenoside), 3-(R)-3-beta-D-glucopyranosyloxy-4-hydroxybutanoic acid, 1-O-isopropyl-beta-D-glucopyranoside, (R)-(+)-3,4-dihydroxy-butanoic acid y-lactone, 4-(beta-D-glucopyranosyloxy)benzyl alcohol, (6R,9S)-9-hydroxy-megastigma-4,7-dien-3-one-9-O-beta-glucopy ranoside, and corchoionoside C were isolated. PMID:11086921

  8. Syntheses of dopa glycosides using glucosidases.

    PubMed

    Sivakumar, Ramaiah; Ponrasu, Thangavel; Divakar, Soundar

    2009-02-01

    Syntheses of L: -dopa 1a glucoside 10a,b and DL: -dopa 1b glycosides 10-18 with D: -glucose 2, D: -galactose 3, D: -mannose 4, D: -fructose 5, D: -arabinose 6, lactose 7, D: -sorbitol 8 and D: -mannitol 9 were carried out using amyloglucosidase from Rhizopus mold, beta-glucosidase isolated from sweet almond and immobilized beta-glucosidase. Invariably, L: -dopa and DL: -dopa gave low to good yields of glycosides 10-18 at 12-49% range and only mono glycosylated products were detected through glycosylation/arylation at the third or fourth OH positions of L: -dopa 1a and DL: -dopa 1b. Amyloglucosidase showed selectivity with D: -mannose 4 to give 4-O-C1beta and D: -sorbitol 8 to give 4-O-C6-O-arylated product. beta-Glucosidase exhibited selectivity with D: -mannose 4 to give 4-O-C1beta and lactose 7 to give 4-O-C1beta product. Immobilized beta-glucosidase did not show any selectivity. Antioxidant and angiotensin converting enzyme inhibition (ACE) activities of the glycosides were evaluated glycosides, out of which L: -3-hydroxy-4-O-(beta-D: -galactopyranosyl-(1'-->4)beta-D: -glucopyranosyl) phenylalanine 16 at 0.9 +/- 0.05 mM and DL: -3-hydroxy-4-O-(beta-D: -glucopyranosyl) phenylalanine 11b,c at 0.98 +/- 0.05 mM showed the best IC(50) values for antioxidant activity and DL: -3-hydroxy-4-O-(6-D: -sorbitol)phenylalanine 17 at 0.56 +/- 0.03 mM, L: -dopa-D: -glucoside 10a,b at 1.1 +/- 0.06 mM and DL: -3-hydroxy-4-O-(D: -glucopyranosyl)phenylalanine 11a-d at 1.2 +/- 0.06 mM exhibited the best IC(50) values for ACE inhibition. PMID:18712474

  9. Additional minor diterpene glycosides from Stevia rebaudiana.

    PubMed

    Chaturvedula, Venkata Sai Prakash; Prakash, Indra

    2011-08-01

    From the commercial extract of the leaves of Stevia rebaudiana, two additional new diterpenoid glycosides were isolated and their structures were characterized as 13-[(2-O-beta-glucopyranosyl-3-O-beta-D-xylopyranosyl-beta-D-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid beta-D-glucopyranosyl ester (1) and 13-[(2-O-beta-D-xylopyranosyl-beta-D-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid beta-D-glucopyranosyl ester (2) on the basis of extensive spectral data (NMR and MS) and chemical studies. PMID:21922898

  10. Phenolic glycosides of forage legume Onobrychis viciifolia.

    PubMed

    Lu, Y; Sun, Y; Foo, L Y; McNabb, W C; Molan, A L

    2000-09-01

    A chemical examination of the extractives of the leaves of sainfoin was undertaken as part of a programme directed at understanding the factors which may contribute to its nutritive value as animal feed. Among the low molecular weight phenolic compounds characterized were seven cinnamic acid derivatives and nine flavonoid glycosides all of which were identified by NMR spectroscopy. Included among these compounds were two new natural hydroxycinnamic esters namely methyl 6-O-p-trans-coumaroyl-beta-D-glucopyranoside and methyl 6-O-p-cis-coumaroyl-beta-D-glucopyranoside and a novel flavonoid chrysoeriol-4'-O-(6''-O-acetyl)-beta-D-glucopyranoside. PMID:11021646

  11. Two new sesquiterpenoid glycosides from Nicotiana tabacum.

    PubMed

    Yang, Cai-Yan; Geng, Chang-An; Ma, Yun-Bao; Huang, Xiao-Yan; Zhang, Xue-Mei; Zhou, Jun; Chen, Ji-Jun

    2014-01-01

    Two new sesquiterpenoid glycosides, nicotabalactonecoside (1) and nicotabadiolcoside (2), along with four known terpenoids (3-6) were isolated from the leaves of Nicotiana tabacum. The structures of compounds 1 and 2 were determined as dihydrodeacetylphytuberin-2-one 11-O-β-D-glucopyranoside and 1,2-dehydro-4-epieremophil-9-ene-11,12-diol 12-O-β-D-glucopyranoside by extensive spectroscopic analyses (HR-ESI-MS, UV, IR, 1D, and 2D NMR) and chemical method. Compound 1 is an unusual phytuberin-type sesquiterpenoid with a 6/5/5 tricyclic system. PMID:24911395

  12. Analysis of Stevia glycosides by capillary electrophoresis.

    PubMed

    Mauri, P; Catalano, G; Gardana, C; Pietta, P

    1996-02-01

    The determination of diterpene glycosides from Stevia rebaudiana leaves using capillary electrophoresis is described. Analyses were performed on fused silica capillaries with 20 mM sodium tetraborate buffer, pH 8.3, and 30 mM sodium dodecyl sulfate. The effect of the organic solvent injected with the sample solution on the electrophoretic solution has been confirmed, and an absolute amount of 1.6 nL per injected sample was optimal. Rebaudioside A and steviolbioside were isolated by semipreparative high performance liquid chromatography (HPLC), and their structure was assessed by mass spectrometry. PMID:8900944

  13. Sesquiterpenoid tropolone glycosides from Liriosma ovata.

    PubMed

    Ma, Jun; Pawar, Rahul S; Grundel, Erich; Mazzola, Eugene P; Ridge, Clark D; Masaoka, Takashi; Le Grice, Stuart F J; Wilson, Jennifer; Beutler, John A; Krynitsky, Alexander J

    2015-02-27

    Two new sesquiterpenoid tropolone glycosides, liriosmasides A (1) and B (2), along with two known compounds, secoxyloganin and oplopanpheside C, were isolated from a methanol extract of the roots of Liriosma ovata. The structures of 1 and 2 were elucidated by spectroscopic methods including 1D and 2D NMR and by high-resolution mass spectrometry involving an ultra-high-performance liquid chromatography-quadrupole-orbital ion trap mass spectrometric (UHPLC-Q-Orbitrap MS) method. Compound 1 showed weak inhibitory activity against HIV RNase H. PMID:25587934

  14. A new phenylethanoid glycoside from Incarvillea compacta.

    PubMed

    Wu, Hai-Feng; Zhu, Yin-Di; Zhang, Li-Jing; Zou, Qiong-Yu; Chen, Li; Shen, Ting; Wang, Xin-Feng; Ma, Guo-Xu; Hu, Bo-Ran; Hu, Wei-Cheng; Xu, Xu-Dong

    2016-06-01

    A new phenylethanoid glycoside, 3'''-O-methylcampneoside I (1), was isolated from the 90% ethanolic extract of the roots of Incarvillea compacta, together with three known compounds, campneoside I (2), ilicifolioside A (3), and campneoside II (4). Their structures were determined spectroscopically and compared with previously reported spectral data. Compound 1 existed as epimers and displayed better 1,1-diphenyl-2-picrylhydrazyl (DPPH)-free radical scavenging activity using di-tert-butyl-4-methylphenol (BHT) as the positive control. In addition, pretreatment of human HepG2 cells with compound 1 significantly increased the viability on CCl4-induced cell death. PMID:26630368

  15. Monoterpenoids and their glycosides from the leaf of thyme.

    PubMed

    Kitajima, Junichi; Ishikawa, Toru; Urabe, Atushi; Satoh, Mitsuru

    2004-12-01

    From the polar portion of the methanol extract of thyme (leaf of Thymus vulgaris; Labiatae), which has been used as an important stomachic, carminative, a component of prepared cough tea, and a spice, seven monoterpenoid glycosides were isolated together with two known monoterpenoids and three known monoterpenoid glucosides. Structures of the seven monoterpenoid glycosides were determined by spectral analysis. PMID:15561194

  16. Phytosteryl glycosides reduce cholesterol absorption: mechanisms in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytosteryl glycosides occur in natural foods but little is known about their metabolism and bioactivity. Purified acylated steryl glycosides (ASG) were compared with phytosteryl esters (PSE) in mice. Animals on a phytosterol-free diet received ASG or PSE by gavage in purified soybean oil along with...

  17. New cucurbitacin glycosides from Picrorhiza kurrooa.

    PubMed

    Stuppner, H; Wagner, H

    1989-12-01

    From the roots of Picrorhiza kurrooa Royle and Benth., seven cucurbitacin glycosides have been isolated and structurally elucidated mainly by NMR and mass spectroscopy. Four of them (4, 5, 6, 7) are new and two, the 2-O-glycoside of cucurbitacin B (25-acetoxy-2-beta-glucosyloxy-16,20-dihydroxy-9-methyl-19-norl anosta-5, 23-diene-3,11,22-trione) and the 2-O-glucoside of 23,24 didydrocucurbitacin B (25-acetoxy-2-beta-glucosyloxy-16,20-dihydroxy-9-methyl-19-norl anost-5-ene-3, 11-22-trione) were so far not reported as constituents of this plant. The four new cucurbitacins could be identified as 2-beta-glucosyloxy-3,16,20,25-tetrahydroxy-9-methyl-19-norlanos ta-5, 23-diene-22-one, 2-beta-glucosyloxy-3,16,20,25-tetrahydroxy-9-methyl-19-norlanos t-5-ene-22-one, the 2-O-glucoside of cucurbitacin Q (25-acetoxy-2-beta-glucosyloxy-3,16,20-trihydroxy-9-methyl-19-n orlanosta-5, 23-diene-11,22-dione), and the 2-O-glucoside of deacetoxycucurbitacin B (2-beta-glucosyloxy-16,20-dihydroxy-9-methyl-19-norlanosta-5 , 24-diene-3,11,22-trione). PMID:2616673

  18. Effects of tripterygium glycosides on restenosis following endovascular treatment

    PubMed Central

    HAN, BING; GE, CHANG-QING; ZHANG, HONG-GUANG; ZHOU, CHEN-GUANG; JI, GUO-HUI; YANG, ZHENG; ZHANG, LIANG

    2016-01-01

    The mechanism and associated factors of restenosis following intravascular stent implantation remain to be elucidated. The present two-part experimental and clinical study aimed to investigate the effects of tripterygium glycosides on in-stent restenosis subsequent to intra-arterial therapy. Following endovascular stent implantation in rabbit iliac arteries, post-stent outcomes were evaluated in cyclosporine groups, low-dose and high-dose tripterygium glycosides groups and controls. Post-operative angiography indicated that vessel diameters were similar between groups; however, at 28 days after receiving the therapeutic agents, vessels of the cyclosporine and tripterygium glycosides groups were significantly larger than those of the controls. Furthermore, three groups of patients had comparable baseline levels of interleukin (IL)-10, IL-18 and C-reactive protein, and intima-media thickness. However, 1 month after stent implantation, levels of IL-10 and IL-18 were markedly reduced in the high- and low-dose tripterygium glycosides groups compared with controls. At 6 months after surgery, the stent patency rate in patients with bare stents was significantly lower than in patients receiving tripterygium glycosides (P≤0.009). In addition, the ankle-brachial index was also higher than in those without tripterygium glycosides (P<0.001). Results of the experimental and clinical studies suggest that tripterygium glycosides may inhibit and possibly aid in the prevention of in-stent restenosis formation following endovascular treatment of lower-extremity artery disease. PMID:27108914

  19. Effects of tripterygium glycosides on restenosis following endovascular treatment.

    PubMed

    Han, Bing; Ge, Chang-Qing; Zhang, Hong-Guang; Zhou, Chen-Guang; Ji, Guo-Hui; Yang, Zheng; Zhang, Liang

    2016-06-01

    The mechanism and associated factors of restenosis following intravascular stent implantation remain to be elucidated. The present two‑part experimental and clinical study aimed to investigate the effects of tripterygium glycosides on in‑stent restenosis subsequent to intra‑arterial therapy. Following endovascular stent implantation in rabbit iliac arteries, post‑stent outcomes were evaluated in cyclosporine groups, low‑dose and high‑dose tripterygium glycosides groups and controls. Post‑operative angiography indicated that vessel diameters were similar between groups; however, at 28 days after receiving the therapeutic agents, vessels of the cyclosporine and tripterygium glycosides groups were significantly larger than those of the controls. Furthermore, three groups of patients had comparable baseline levels of interleukin (IL)‑10, IL‑18 and C‑reactive protein, and intima‑media thickness. However, 1 month after stent implantation, levels of IL‑10 and IL‑18 were markedly reduced in the high‑ and low‑dose tripterygium glycosides groups compared with controls. At 6 months after surgery, the stent patency rate in patients with bare stents was significantly lower than in patients receiving tripterygium glycosides (P≤0.009). In addition, the ankle‑brachial index was also higher than in those without tripterygium glycosides (P<0.001). Results of the experimental and clinical studies suggest that tripterygium glycosides may inhibit and possibly aid in the prevention of in‑stent restenosis formation following endovascular treatment of lower‑extremity artery disease. PMID:27108914

  20. [Membranotropic effect of some triterpene glycosides possessing immunostimulating properties].

    PubMed

    Lee, I A; Popov, A M; Kostetskiĭ, E Ia; Sanina, N M; Mazeĭka, A N; Boguslavskiĭ, V M

    2008-01-01

    The peculiarities of the interaction between cell membrane lipids and triterpene glycosides from holothurians Apostichopus japonicus S. and Cucumaria japonica (holotoxin A1 and cucumarioside A2-2, respectively) were studied in comparison with plant saponins from Quillaja saponaria, known as hemolytic, adjuvant, and structure-forming components of immunostimulating complexes. Similar to Quillaja saponins, the sea glycosides, holotoxin A1 and cucumarioside A2-2 were shown to possess a high hemolytic activity (2.6 and 3 microg/ml, respectively) and sterol-depending membranotropic effect mediated by the formation of nonbilayer sterol-lipid-glycoside complexes. At the same time, cucumarioside A2-2 bound exogenic cholesterol only in the presence of membrane lipids, such as phosphatidylcholine or monogalactosyldiacylglycerol, in contrast to Quillaja saponins and holotoxin A1, which bound cholesterol in the molar ratios 1:2 and 1:8, respectively. Moreover, in all cases, tree-component complexes containing cholesterol, lipid, and glycoside exhibited a lower hemolytic activity compared with two-component sterol-glycoside complexes. It was concluded that the hydrophobic medium of cell membranes performs a potentiative role in the effective interaction between triterpene glycosides and "sterol receptors". A method for decreasing the toxicity of membranotropic holothurian glycosides possessing the immunomodulating properties was suggested. PMID:18634319

  1. Steviol glycoside safety: are highly purified steviol glycoside sweeteners food allergens?

    PubMed

    Urban, Jonathan D; Carakostas, Michael C; Taylor, Steve L

    2015-01-01

    Steviol glycoside sweeteners are extracted from the plant Stevia rebaudiana (Bertoni), a member of the Asteraceae (Compositae) family. Many plants from this family can induce hypersensitivity reactions via multiple routes of exposure (e.g., ragweed, goldenrod, chrysanthemum, echinacea, chamomile, lettuce, sunflower and chicory). Based on this common taxonomy, some popular media reports and resources have issued food warnings alleging the potential for stevia allergy. To determine if such allergy warnings are warranted on stevia-based sweeteners, a comprehensive literature search was conducted to identify all available data related to allergic responses following the consumption of stevia extracts or highly purified steviol glycosides. Hypersensitivity reactions to stevia in any form are rare. The few cases documented in the peer-reviewed literature were reported prior to the introduction of high-purity products to the market in 2008 when many global regulatory authorities began to affirm the safety of steviol glycosides. Neither stevia manufacturers nor food allergy networks have reported significant numbers of any adverse events related to ingestion of stevia-based sweeteners, and there have been no reports of stevia-related allergy in the literature since 2008. Therefore, there is little substantiated scientific evidence to support warning statements to consumers about allergy to highly purified stevia extracts. PMID:25449199

  2. Determination of phenylethanoid glycosides and iridoid glycosides from therapeutically used Plantago species by CE-MEKC.

    PubMed

    Gonda, Sándor; Nguyen, Nhat Minh; Batta, Gyula; Gyémánt, Gyöngyi; Máthé, Csaba; Vasas, Gábor

    2013-09-01

    CE methods are valuable tools for medicinal plant quality management, screening, and analysis. Therefore, the aim of the current study was to optimize and validate a CE-MEKC method for simultaneous quantification of four chief bioactive metabolites from Plantago species. The two most important secondary metabolite groups were aimed to be separated. Different electrolyte and surfactant types were tested. Surfactant concentration, BGE pH, electrolyte concentration, and buffering capacity were optimized. The final BGE consisted of 15 mM sodium tetraborate, 20 mM TAPS, and 250 mM DOC at pH 8.50. Acceptable precision, good stability, and accuracy were achieved, with high resolution for phenylethanoid glycosides. Analytes were separated within 20 min. The method was shown to be suitable for the quantification of the iridoid glycosides aucubin and catalpol, and the phenylethanoid glycosides acteoside (verbascoside) and plantamajoside from water extracts of different samples. The method was shown to be applicable to leaf extracts of Plantago lanceolata, Plantago major, and Plantago asiatica, the main species with therapeutic applications, and a biotechnological product, plant tissue cultures (calli) of P. lanceolata. Baseline separation of the main constituents from minor peaks was achieved, regardless of the matrix type. PMID:23784714

  3. New steroidal glycosides from Tribulus terrestris L.

    PubMed

    Chen, Gang; Liu, Tao; Lu, Xuan; Wang, Hai-Feng; Hua, Hui-Ming; Pei, Yue-Hu

    2012-01-01

    Two new steroidal glycosides were isolated from Tribulus terrestris L. Their structures were elucidated as 26-O-β-D-glucopyranosyl-5α-furostan-12-one-20(22)-ene-3β,23,26-triol-3-O-β-D-xylopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl-(1 → 4)-[α-L-rhamnopyranosyl-(1 → 2)]-β-D-galactopyranoside (1) and 26-O-β-D-glucopyranosyl-5α-furostan-20(22)-ene-3β,23,26-triol-3-O-β-D-xylopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl-(1 → 4)-[α-L-rhamnopyranosyl-(1 → 2)]-β-D-galactopyranoside (2) by spectroscopic methods including 1D and 2D NMR experiments. PMID:22694659

  4. Transcriptomic Analysis of the Underground Renewal Buds during Dormancy Transition and Release in ‘Hangbaishao’ Peony (Paeonia lactiflora)

    PubMed Central

    Zhang, Jiaping; Wang, Guanqun; Li, Xin; Xia, Yiping

    2015-01-01

    Paeonia lactiflora is one of the most famous species of herbaceous peonies with gorgeous flowers. Bud dormancy is a crucial developmental process that allows P. lactiflora to survive unfavorable environmental conditions. However, little information is available on the molecular mechanism of the bud dormancy in P. lactiflora. We performed de novo transcriptome sequencing using the Illumina RNA sequencing platform for the underground renewal buds of P. lactiflora ‘Hangbaishao’ to study the molecular mechanism underlying its bud dormancy transition (the period from endodormancy to ecodormancy) and release (the period from ecodormancy to bud elongation and sprouting). Approximately 300 million high-quality clean reads were generated and assembled into 207,827 (mean length = 828 bp) and 51,481 (mean length = 1250 bp) unigenes using two assembly methods named “Trinity” and “Trinity+PRICE”, respectively. Based on the data obtained by the latter method, 32,316 unigenes were annotated by BLAST against various databases. Approximately 1,251 putative transcription factors were obtained, of which the largest number of unique transcripts belonged to the basic helix-loop-helix protein (bHLH) transcription factor family, and five of the top ten highly expressed transcripts were annotated as dehydrin (DHN). A total of 17,705 simple sequence repeat (SSR) motifs distributed in 13,797 sequences were obtained. The budbreak morphology, levels of indole-3-acetic acid (IAA) and abscisic acid (ABA), and activities of guaiacol peroxidase (POD) and catalase (CAT) were observed. The expression of 20 interested unigenes, which annotated as DHN, heat shock protein (HSP), histone, late elongated hypocotyl (LHY), and phytochrome (PHY), and so on, were also analyzed. These studies were based on morphological, physiological, biochemical, and molecular levels and provide comprehensive insight into the mechanism of dormancy transition and release in P. lactiflora. Transcriptome dataset

  5. Synthesis and sensory evaluation of ent-kaurane diterpene glycosides.

    PubMed

    Prakash, Indra; Campbell, Mary; San Miguel, Rafael Ignacio; Chaturvedula, Venkata Sai Prakash

    2012-01-01

    Catalytic hydrogenation of the three ent-kaurane diterpene glycosides isolated from Stevia rebaudiana, namely rubusoside, stevioside, and rebaudioside-A has been carried out using Pd(OH)₂ and their corresponding dihydro derivatives have been isolated as the products. Synthesis of reduced steviol glycosides was performed using straightforward chemistry and their structures were characterized on the basis of 1D and 2D NMR spectral data and chemical studies. Also, we report herewith the sensory evaluation of all the reduced compounds against their corresponding original steviol glycosides and sucrose for the sweetness property of these molecules. PMID:22836210

  6. Astonishing diversity of natural surfactants: 6. Biologically active marine and terrestrial alkaloid glycosides.

    PubMed

    Dembitsky, Valery M

    2005-11-01

    This review article presents 209 alkaloid glycosides isolated and identified from plants, microorganisms, and marine invertebrates that demonstrate different biological activities. They are of great interest, especially for the medicinal and/or pharmaceutical industries. These biologically active glycosides have good potential for future chemical preparation of compounds useful as antioxidants, anticancer, antimicrobial, and antibacterial agents. These glycosidic compounds have been subdivided into several groups, including: acridone; aporphine; benzoxazinoid; ergot; indole; enediyne alkaloidal antibiotics; glycosidic lupine alkaloids; piperidine, pyridine, pyrrolidine, and pyrrolizidine alkaloid glycosides; glycosidic quinoline and isoquinoline alkaloids; steroidal glycoalkaloids; and miscellaneous alkaloid glycosides. PMID:16459921

  7. HPLC-PDA method for quinovic acid glycosides assay in Cat's claw (Uncaria tomentosa) associated with UPLC/Q-TOF-MS analysis.

    PubMed

    Pavei, Cabral; Kaiser, Samuel; Verza, Simone Gasparin; Borre, Gustavo Luis; Ortega, George Gonzalez

    2012-03-25

    Uncaria tomentosa (Willd.) is a medicinal plant largely used in folk medicine due to its wide range of biological activities, many of which are usually ascribed to the two main classes of secondary metabolites, namely, alkaloids and quinovic acid glycosides. In this work, a reversed phase HPLC-PDA method was developed and validated for the assay of quinovic acid glycosides in crude and dried extracts of Uncaria tomentosa (Cat's claw) bark. The validation comprised tests of specificity, accuracy, linearity, intermediate precision, repeatability and limits of detection and of quantification. Alpha-hederin was used as the external standard. High coefficients of determination with lower R.S.D. were achieved for both external standard and crude extract. The structural characterization of the main quinovic acid glycosides presented in the crude extract was carried out through UPLC/Q-TOF-MS. The identities of the compounds were obtained through the comparison of their fragmentation patterns with those reported in the literature. The analytical method was successfully applied for quantifying quinovic acid glycosides in two different dried extracts from U. tomentosa and in one quinovic acid glycosides purified fraction. PMID:22296654

  8. Micro/Nano hierarchical peony-like Al doped ZnO superhydrophobic film: The guiding effect of (100) preferred seed layer

    PubMed Central

    Li, Yang; Wang, Jingfeng; Kong, Yi; Zhou, Jia; Wu, Jinzhu; Wang, Gang; Bi, Hai; Wu, Xiaohong; Qin, Wei; Li, Qingkun

    2016-01-01

    In this communication, we present a versatile and controllable strategy for formation of superhydrophobic micro/nano hierarchical Al doped ZnO (AZO) films with a water contact angle (CA) of 170 ± 4°. This strategy involves a two-step layer-by-layer process employing an atomic layer deposition (ALD) technique followed by a hydrothermal method, and the resulting novel AZO surface layer consists of (100) dominant nano-rice-like AZO seed layer (the water CA of 110 ± 4°) covered with micro-peony-like AZO top. The growth mechanisms and superhydrophobic properties of the hierarchical AZO layer are discussed. It is believed that the present route holds promise for future success in the design and development of practical superhydrophobic materials. PMID:26753877

  9. Alleviating coking in ethanol steam reforming by co-loading binary oxides Ni-M (M=Ag, Cu, Mn) on peony-like ceria

    NASA Astrophysics Data System (ADS)

    Xian, C. N.; Li, J. G.; Li, H.; Chen, L. Q.; Sun, J.; Lee, J. S.

    2011-06-01

    Previously, hydrothermally prepared mesoporous peony-like ceria (PCO) material was shown to exhibit superior catalytic properties for CO oxidation and ethanol reforming. Ni supported PCO had been shown to have high activity for ethanol steam reforming at low temperature. In this work, Ag, Cu and Mn is co-loaded with Ni on PCO catalysts by impregnation method. The catalysts were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and a combined thermogravimetry, differential scanning calorimetry, and mass spectrometry (TG-DSC-MS). It was found that all the catalysts gave 100% ethanol conversion above ca. 300°C and exhibited similar H2 yield. It is found that the severe coking problem for the Ni-loaded PCO catalyst was alleviated significantly if Ag, Cu or Mn is co-loaded. Among them, the addition of Mn is the most effective in reducing carbon formation.

  10. Micro/Nano hierarchical peony-like Al doped ZnO superhydrophobic film: The guiding effect of (100) preferred seed layer

    NASA Astrophysics Data System (ADS)

    Li, Yang; Wang, Jingfeng; Kong, Yi; Zhou, Jia; Wu, Jinzhu; Wang, Gang; Bi, Hai; Wu, Xiaohong; Qin, Wei; Li, Qingkun

    2016-01-01

    In this communication, we present a versatile and controllable strategy for formation of superhydrophobic micro/nano hierarchical Al doped ZnO (AZO) films with a water contact angle (CA) of 170 ± 4°. This strategy involves a two-step layer-by-layer process employing an atomic layer deposition (ALD) technique followed by a hydrothermal method, and the resulting novel AZO surface layer consists of (100) dominant nano-rice-like AZO seed layer (the water CA of 110 ± 4°) covered with micro-peony-like AZO top. The growth mechanisms and superhydrophobic properties of the hierarchical AZO layer are discussed. It is believed that the present route holds promise for future success in the design and development of practical superhydrophobic materials.

  11. Use of cardiac glycosides and risk of glioma.

    PubMed

    Seliger, Corinna; Meier, Christoph R; Jick, Susan S; Uhl, Martin; Bogdahn, Ulrich; Hau, Peter; Leitzmann, M F

    2016-04-01

    Cardiac glycosides induce apoptotic effects on glioma cells, but whether cardiac glycosides protect against risk for glioma is unknown. We therefore explored the relation between glycoside use and glioma risk using a large and validated database. We performed a case-control analysis using the Clinical Practice Research Datalink involving 2005 glioma cases diagnosed between 1995 and 2012 that were individually matched to 20,050 controls on age, gender, general practice, and number of years of active history in the database. Conditional logistic regression analysis was used to evaluate the association between cardiac glycosides and the risk of glioma adjusting for body mass index and smoking. We also examined use of common heart failure and arrhythmia medications to differentiate between a specific glycoside effect and a generic effect of treatment for congestive heart failure or arrhythmia. Cardiac glycoside use was inversely related to glioma incidence. After adjustment for congestive heart failure, arrhythmia, diabetes, and common medications used to treat those conditions, the OR of glioma was 0.47 (95 % CI 0.27-0.81, Bonferroni-corrected p value = 0.024) for use versus non-use of cardiac glycosides, based on 17 exposed cases. In contrast, no associations were noted for other medications used to treat congestive heart failure or arrhythmias. The OR of glioma in people with congestive heart failure was 0.65 (95 % CI 0.40-1.04), and for arrhythmia it was 1.01 (95 % CI 0.78-1.31). These data indicate that cardiac glycoside use is independently associated with reduced glioma risk. PMID:26721242

  12. Three new sulphur glycosides from the seeds of Descurainia sophia.

    PubMed

    Feng, Wei-Sheng; Li, Chun-Ge; Zheng, Xiao-Ke; Li, Ling-Ling; Chen, Wen-Jing; Zhang, Yan-Li; Cao, Yan-Gang; Gong, Jian-Hong; Kuang, Hai-Xue

    2016-08-01

    Three new sulphur glycosides, raphanuside B-D (1-3), together with a known sulphur glycoside, raphanuside (4) were isolated from the decoction of the seeds of Descurainia sophia (L.) Webb ex Prantl, and the compound 4 was reported for the first time from this plant. Their structures were identified by means of UV, IR, 1D, 2D NMR (HSQC, HMBC and NOESY) and HR-ESI-MS spectroscopic data. PMID:26795632

  13. Steroidal glycosides from the roots of Asclepias curassavica.

    PubMed

    Warashina, Tsutomu; Noro, Tadataka

    2008-03-01

    Twenty-six new acylated-oxypregnane glycosides were obtained along with three known cardenolide glycosides from the roots of Asclepias curassavica (Asclepiadaceae). The new compounds were confirmed to contain 12-O-benzoylsarcostin, 12-O-benzoyldeacylmetaplexigenin, kidjolanin, and 12-O-benzoyltayloron, and one new acylated-oxypregnane, 12-O-(E)-cinnamoyltayloron, as their aglycones, using both spectroscopic and chemical methods. PMID:18310942

  14. Phenolic glycosides from sugar maple (Acer saccharum) bark.

    PubMed

    Yuan, Tao; Wan, Chunpeng; González-Sarrías, Antonio; Kandhi, Vamsikrishna; Cech, Nadja B; Seeram, Navindra P

    2011-11-28

    Four new phenolic glycosides, saccharumosides A-D (1-4), along with eight known phenolic glycosides, were isolated from the bark of sugar maple (Acer saccharum). The structures of 1-4 were elucidated on the basis of spectroscopic data analysis. All compounds isolated were evaluated for cytotoxicity effects against human colon tumorigenic (HCT-116 and Caco-2) and nontumorigenic (CCD-18Co) cell lines. PMID:22032697

  15. Stability of steviol glycosides in several food matrices.

    PubMed

    Jooken, Etienne; Amery, Ruis; Struyf, Tom; Duquenne, Barbara; Geuns, Jan; Meesschaert, Boudewijn

    2012-10-24

    As steviol glycosides are now allowed as a food additive in the European market, it is important to assess the stability of these steviol glycosides after they have been added to different food matrices. We analyzed and tested the stability of steviol glycosides in semiskimmed milk, soy drink, fermented milk drink, ice cream, full-fat and skimmed set yogurt, dry biscuits, and jam. The fat was removed by centrifugation from the dairy and soy drink samples. Proteins were precipitated by the addition of acetonitrile and also removed by centrifugation. Samples of jam were extracted with water. Dry biscuits were extracted with ethanol. The resulting samples were concentrated with solid-phase extraction and analyzed by high-performance liquid chromatography on a C18 stationary phase and a gradient of acetonitrile/aqueous 25 mM phosphoric acid. The accuracy was checked using a standard addition on some samples. For assessing the stability of the steviol glycosides, samples were stored in conditions relevant to each food matrix and analyzed periodically. The results indicate that steviol glycosides can be analyzed with good precision and accuracy in these food categories. The recovery was between 96 and 103%. The method was also validated by standard addition, which showed excellent agreement with the external calibration curve. No sign of decomposition of steviol glycosides was found in any of the samples. PMID:23020306

  16. Simulating spatiotemporal variation in full-flowering dates for tree peonies (1955-2011) in the middle and lower reaches of the Yellow River, China: using a panel data model

    NASA Astrophysics Data System (ADS)

    Liu, H.

    2015-12-01

    In China, the tree peony (Paeonia suffruticosa) is well known as the "king of flowers" since ancient times. The springtime flowering of it attracts a great number of tourists every year. Under the current background of rapid climate change, the flowering time of the tree peony has changed accordingly, which affected the travel arrangements of tourists. This paper is concerned with developing a panel data model to describe the relationship between full-flowering date (FFD) of the tree peony (Zhongyuan cultivar group) and relevant temperature change in the middle and lower reaches of the Yellow River. Then FFD time series at 24 sites in the period 1955-2011 were reconstructed using the above-mentioned model. At last, spatial and temporal variations in FFD were analysed. The results showed that the panel data model could simulate the FFDs of the tree peony accurately, with explained variance (R2)>0.65 and the root-mean-square error (RMSE)<4.0 in the steps of double cross-validation. The simulated 57-year mean FFDs in the distribution area generally followed the latitudinal gradient. The FFDs in this area have advanced by 6 to 9 days over the past 57 years, at the rate of 0.8 to 1.8 days/decade. Compared with the other sub-areas in this area, the eastern forelands of Taihang Mountains and Luliang Mountains showed clearer advances of FFD. These conclusions reflected the comprehensive impact of climate change and the foehn on phenophases and are helpful for historical climate studies and festival events management

  17. Antioxidant flavonol glycosides from Schinus molle.

    PubMed

    Marzouk, Mohamed S; Moharram, Fatma A; Haggag, Eman G; Ibrahim, Magda T; Badary, Osama A

    2006-03-01

    Chromatographic separation of aqueous MeOH extract of the leaves of Schinus molle L. has yielded two new acylated quercetin glycosides, named isoquercitrin 6''-O-p-hydroxybenzoate (12) and 2''-O-alpha-L-rhamnopyranosyl-hyperin 6''-O-gallate (13), together with 12 known polyphenolic metabolites for the first time from this species, namely gallic acid (1), methyl gallate (2), chlorogenic acid (3), 2''-alpha-L-rhamnopyranosyl-hyperin (4), quercetin 3-O-beta-D-neohesperidoside (5), miquelianin (6), quercetin 3-O-beta-D-galacturonopyranoside (7), isoquercitrin (8), hyperin (9), isoquercitrin 6''-gallate (10), hyperin 6''-O-gallate (11) and (+)-catechin (14). Their structures were established on the basis of chromatographic properties, chemical, spectroscopic (UV, 1H, 13C NMR) and ESI-MS (positive and negative modes) analyses. Compounds 4-9 and 11 exhibited moderate to strong radical scavenging properties on lipid peroxidation, hydroxyl radical and superoxide anion generations with the highest activities shown by 6 and 7 in comparison with that of quercetin as a positive control in vitro. PMID:16521111

  18. Resin Glycosides from the Morning Glory Family

    NASA Astrophysics Data System (ADS)

    Pereda-Miranda, Rogelio; Rosas-Ramírez, Daniel; Castañeda-Gómez, Jhon

    Resin glycosides are part of a very extensive family of secondary metabolites known as glycolipids or lipo-oligosaccharides and are constituents of complex resins (glycoresins) (1) unique to the morning glory family, Convolvulaceae (2). These active principles are responsible for the drastic purgative action of all the important Convolvulaceous species used in traditional medicine throughout the world since ancient times. Several commercial purgative crude drugs can be prepared from the roots of different species of Mexican morning glories. Their incorporation as therapeutic agents in Europe is an outstanding example of the assimilation of botanical drugs from the Americas as substitutes for traditional Old World remedies (3). Even though phytochemical investigations on the constituents of these drugs were initiated during the second half of the nineteenth century, the structure of their active ingredients still remains poorly known for some examples of these purgative roots. During the last two decades, the higher resolution capabilities of modern analytical isolation techniques used in conjunction with powerful spectroscopic methods have facilitated the elucidation of the active principles of these relevant herbal products.

  19. Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity.

    PubMed

    Gleadow, Roslyn M; Møller, Birger Lindberg

    2014-01-01

    Cyanogenic glycosides (CNglcs) are bioactive plant products derived from amino acids. Structurally, these specialized plant compounds are characterized as α-hydroxynitriles (cyanohydrins) that are stabilized by glucosylation. In recent years, improved tools within analytical chemistry have greatly increased the number of known CNglcs by enabling the discovery of less abundant CNglcs formed by additional hydroxylation, glycosylation, and acylation reactions. Cyanogenesis--the release of toxic hydrogen cyanide from endogenous CNglcs--is an effective defense against generalist herbivores but less effective against fungal pathogens. In the course of evolution, CNglcs have acquired additional roles to improve plant plasticity, i.e., establishment, robustness, and viability in response to environmental challenges. CNglc concentration is usually higher in young plants, when nitrogen is in ready supply, or when growth is constrained by nonoptimal growth conditions. Efforts are under way to engineer CNglcs into some crops as a pest control measure, whereas in other crops efforts are directed toward their removal to improve food safety. Given that many food crops are cyanogenic, it is important to understand the molecular mechanisms regulating cyanogenesis so that the impact of future environmental challenges can be anticipated. PMID:24579992

  20. Pharmacological treatment of cardiac glycoside poisoning.

    PubMed

    Roberts, Darren M; Gallapatthy, Gamini; Dunuwille, Asunga; Chan, Betty S

    2016-03-01

    Cardiac glycosides are an important cause of poisoning, reflecting their widespread clinical usage and presence in natural sources. Poisoning can manifest as varying degrees of toxicity. Predominant clinical features include gastrointestinal signs, bradycardia and heart block. Death occurs from ventricular fibrillation or tachycardia. A wide range of treatments have been used, the more common including activated charcoal, atropine, β-adrenoceptor agonists, temporary pacing, anti-digoxin Fab and magnesium, and more novel agents include fructose-1,6-diphosphate (clinical trial in progress) and anticalin. However, even in the case of those treatments that have been in use for decades, there is debate regarding their efficacy, the indications and dosage that optimizes outcomes. This contributes to variability in use across the world. Another factor influencing usage is access. Barriers to access include the requirement for transfer to a specialized centre (for example, to receive temporary pacing) or financial resources (for example, anti-digoxin Fab in resource poor countries). Recent data suggest that existing methods for calculating the dose of anti-digoxin Fab in digoxin poisoning overstate the dose required, and that its efficacy may be minimal in patients with chronic digoxin poisoning. Cheaper and effective medicines are required, in particular for the treatment of yellow oleander poisoning which is problematic in resource poor countries. PMID:26505271

  1. DNA-N-glycosylases process novel O-glycosidic sites in DNA.

    PubMed

    Admiraal, Suzanne J; O'Brien, Patrick J

    2013-06-11

    After the hydrolysis of the N-glycosyl bond between a damaged base and C1' of a deoxyribosyl moiety of DNA, human alkyladenine DNA glycosylase (AAG) and Escherichia coli 3-methyladenine DNA glycosylase II (AlkA) bind tightly to their abasic DNA products, potentially protecting these reactive species. Here we show that both AAG and AlkA catalyze reactions between bound abasic DNA and small, primary alcohols to form novel DNA-O-glycosides. The synthesis reactions are reversible, as the DNA-O-glycosides are converted back into abasic DNA upon being incubated with AAG or AlkA in the absence of alcohol. AAG and AlkA are therefore able to hydrolyze O-glycosidic bonds in addition to N-glycosyl bonds. The newly discovered DNA-O-glycosidase activities of both enzymes compare favorably with their known DNA-N-glycosylase activities: AAG removes both methanol and 1,N(6)-ethenoadenine (εA) from DNA with single-turnover rate constants that are 2.9 × 10(5)-fold greater than the corresponding uncatalyzed rates, whereas the rate enhancement of 3.7 × 10(7) for removal of methanol from DNA by AlkA is 300-fold greater than its rate enhancement for removal of εA from DNA. Although the biological significance of the DNA-O-glycosidase reactions is not known, the evolution of new DNA repair pathways may be aided by enzymes that practice catalytic promiscuity, such as these two unrelated DNA glycosylases. PMID:23688261

  2. Structures of some novel α-glucosyl diterpene glycosides from the glycosylation of steviol glycosides.

    PubMed

    Prakash, Indra; Chaturvedula, Venkata Sai Prakash

    2014-01-01

    Four new minor diterpene glycosides with a rare α-glucosyl linkage were isolated from a cyclodextrin glycosyltransferase glucosylated stevia extract containing more than 98% steviol glycosides. The new compounds were identified as 13-[(2-O-β-D-glucopyranosyl-3-O-(4-O-α-D-glucopyranosyl)-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-[(4-O-α-D-glucopyranosyl-β-D-glucopyranosyl) ester] (1), 13-[(2-O-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-[(4-O-(4-O-(4-O-α-D-glucopyranosyl)-α-D-glucopyranosyl)-α-D-glucopyranosyl)-β-D-glucopyranosyl ester] (2), 13-[(2-O-β-D-glucopyranosyl-3-O-(4-O-(4-O-(4-O-α-D-glucopyranosyl)-α-D-glucopyranosyl)-α-D-glucopyranosyl)-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-D-glucopyranosyl ester (3), and 13-[(2-O-β-D-glucopyranosyl-3-O-(4-O-(4-O-(4-O-α-D-glucopyranosyl)-α-D-glucopyranosyl)-α-D-glucopyranosyl)-β-D-glucopyranosyl- β-D-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-[(4-O-α-D-glucopyranosyl-β-D-glucopyranosyl) ester] (4) on the basis of extensive NMR and mass spectral (MS) data as well as hydrolysis studies. PMID:25486243

  3. Pregnane steroidal glycosides and their cytostatic activities.

    PubMed

    García, Víctor P; Bermejo, Jaime; Rubio, Sara; Quintana, José; Estévez, Francisco

    2011-05-01

    Four new steroidal glycosides such as 3-O-6-deoxy-3-O-methyl-β-D-allopyranosyl-(1 → 4)-β-D-oleandropyranosyl-(1 → 4)-β-D-cymaropyranosyl-(1 → 4)-β-D-cymaropyranoside-12-β-tigloyl-14-β-hydroxy-17-β-pregnane (1), 3-O-6-deoxy-3-O-methyl-β-D-allopyranosyl-(1 → 4)-β-D-oleandropyranosyl-(1 → 4)-β-D-cymaropyranosyl-(1 → 4)-β-D-cymaropyranoside-12-β-(2'-amino)-benzoyl-14-β-hydroxy-17-β-pregnane (2), 3-O-6-deoxy-3-O-methyl-β-D-allopyranosyl-(1 → 4)-β-D-oleandropyranosyl-(1 → 4)-β-D-cymaropyranosyl-(1 → 4)-β-D-cymaropyranoside-12-β-14-β-dihydroxy-17-α-pregnane (3) and 3-O-6-deoxy-3-O-methyl-β-D-allopyranosyl-(1 → 4)-β-D-oleandropyranosyl-(1 → 4)-β-D-cymaropyranosyl-(1 → 4)-β-D-cymaropyranoside-12-β-14-β-dihydroxy-17-β-pregnane (4) were isolated from the aerial parts of Ceropegia fusca Bolle (Asclepiadaceae), a crassulacean acid metabolism plant, an endemic species to the Canary Islands that has been used in traditional medicine as a cicatrizant, vulnerary and disinfectant. The dichloromethane extract exhibited significant cytostatic activity against HL-60, A-431 and SK-MEL-1 cells, human leukemic, epidermoid carcinoma and melanoma cells, respectively. As shown in Table I, compounds 1 and 2 showed very similar IC(50) values. The acetylation of 1 to give the diacetate 5 increases 5-fold the cytotoxicity against HL-60 cells. Compounds 3 and 4 did not show cytotoxicity at the assayed concentrations. With respect to the compounds containing only the steroid ring (6-8), the presence of a charged O-amino-benzoyl but not a tigloyl group improved the cytotoxicity. PMID:21147757

  4. Probing the Influence of Protecting Groups on the Anomeric Equilibrium in Sialic Acid Glycosides with the Persistent Radical Effect

    PubMed Central

    2015-01-01

    A method for the investigation of the influence of protecting groups on the anomeric equilibrium in the sialic acid glycosides has been developed on the basis of the equilibration of O-sialyl hydroxylamines by reversible homolytic scission of the glycosidic bond following the dictates of the Fischer–Ingold persistent radical effect. It is found that a trans-fused 4O,5N-oxazolidinone group stabilizes the equatorial glycoside, i.e., reduces the anomeric effect, when compared to the 4O,5N-diacetyl protected systems. This effect is discussed in terms of the powerful electron-withdrawing nature of the oxazolidinone system, which in turn is a function of its strong dipole moment in the mean plane of the pyranose ring system. The new equilibration method displays a small solvent effect and is most pronounced in less polar media consistent with the anomeric effect in general. The unusual (for anomeric radicals) poor kinetic selectivity of anomeric sialyl radicals is discussed in terms of the planar π-type structure of these radicals and of competing 1,3-diaxial interactions in the diastereomeric transition states for trapping on the α- and β-faces of the radical. PMID:24606062

  5. Sesquiterpene glycosides from the roots of Codonopsis pilosula

    PubMed Central

    Jiang, Yueping; Liu, Yufeng; Guo, Qinglan; Xu, Chengbo; Zhu, Chenggen; Shi, Jiangong

    2015-01-01

    Three new sesquiterpene glycosides, named codonopsesquilosides A−C (1−3), were isolated from an aqueous extract of the dried roots of Codonopsis pilosula. Their structures including absolute configurations were determined by spectroscopic and chemical methods. These glycosides are categorized as C15 carotenoid (1), gymnomitrane (2), and eudesmane (3) types of sesquiterpenoids, respectively. Compound 1 is the first diglycoside of C15 carotenoids to be reported. Compound 2 represents the second reported example of gymnomitrane-type sesquiterpenoids from higher plants. The absolute configurations were supported by comparison of the experimental circular dichroism (CD) spectra with the calculated electronic CD (ECD) spectra of 1−3, their aglycones, and model compounds based on quantum-mechanical time-dependent density functional theory. The influences of the glycosyls on the calculated ECD spectra of the glycosidic sesquiterpenoids, as well as some nomenclature and descriptive problems with gymnomitrane-type sesquiterpenoids are discussed. PMID:26904398

  6. Automated assembly of oligosaccharides containing multiple cis-glycosidic linkages.

    PubMed

    Hahm, Heung Sik; Hurevich, Mattan; Seeberger, Peter H

    2016-01-01

    Automated glycan assembly (AGA) has advanced from a concept to a commercial technology that rapidly provides access to diverse oligosaccharide chains as long as 30-mers. To date, AGA was mainly employed to incorporate trans-glycosidic linkages, where C2 participating protecting groups ensure stereoselective couplings. Stereocontrol during the installation of cis-glycosidic linkages cannot rely on C2-participation and anomeric mixtures are typically formed. Here, we demonstrate that oligosaccharides containing multiple cis-glycosidic linkages can be prepared efficiently by AGA using monosaccharide building blocks equipped with remote participating protecting groups. The concept is illustrated by the automated syntheses of biologically relevant oligosaccharides bearing various cis-galactosidic and cis-glucosidic linkages. This work provides further proof that AGA facilitates the synthesis of complex oligosaccharides with multiple cis-linkages and other biologically important oligosaccharides. PMID:27580973

  7. [Hypoglycemic and hypolipidemic effects of quercetin and its glycosides].

    PubMed

    Yan, Shu-xia; Li, Xian; Sun, Chong-de; Chen, Kun-song

    2015-12-01

    Quercetin and its glycosides are important flavonols in traditional herbal drugs and plant-derived food, and they have diverse hiological activities such as antioxidant, anticarcinogenic, anti-inflammatory, hypoglycemic and hypolipidemic activities. Numerous studies have demonstrated that quercetin and its glycosides were effective in the prevention and treatment of non-infectious chronic disease such as diabetes, obesity, and hyperlipidemia. They can regulate glucose and lipid metaholism through different mechanisms. They can decrease blood glucose via protecting pancreatic/p cells or/and improving insulin sensitivity. Also, they have lipid-lowering effects, which may be the result of regulation of lipid catabolism or/and anabolism. Their distributions, as well as the hypoglycemic and hypolipidemic effects are reviewed in this paper. In addition, further bioactivities as well as their dose-activity relationship, structure-activity relationship, bioavailability, and future clinical application of quercetin and its glycosides are discussed and proposed. PMID:27141664

  8. Nickel-catalyzed proton-deuterium exchange (HDX) procedures for glycosidic linkage analysis of complex carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The structural analysis of complex carbohydrates typically requires the assignment of three parameters: monosaccharide composition, the position of glycosidic linkages between monosaccharides, and the position and nature of non-carbohydrate substituents. The glycosidic linkage positions are often de...

  9. One new cycloartane triterpene glycoside from Beesia calthaefolia.

    PubMed

    Zhao, Jin-Yuan; Mu, Li-Hua; Dong, Xian-zhe; Hu, Yuan; Liu, Ping

    2016-01-01

    One new cycloartane triterpene glycoside (1) was isolated from the whole plant of Beesia calthaefolia. Its structure was elucidated on the basis of extensive spectroscopic data analysis. Its inhibitory effect was measured by the classical pathway of the complement system, and compared with those of known related cycloartane glycosides 2 and 3, previously isolated by us from the same plant. Compounds 1 and 2 exhibited inhibitory activity of complement system with IC50 of 395.3 and 214 μM, respectively. The results suggested that OH at C-12, C-18 and C-15 along with the polarity could affect the inhibitory activity. PMID:26305784

  10. Cytotoxic cardenolide glycosides from the seeds of Antiaris toxicaria.

    PubMed

    Dong, Wen-Hua; Mei, Wen-Li; Zhao, You-Xing; Zeng, Yan-Bo; Zuo, Wen-Jian; Wang, Hui; Li, Xiao-Na; Dai, Hao-Fu

    2011-10-01

    Bioassay-guided fractionation of the ethanolic extract from the seeds of Antiaris toxicaria led to the isolation of three new cardiac glycosides named toxicarioside J, toxicarioside K, and toxicarioside L, together with a known glucostrophalloside. The structures of the new compounds were elucidated by spectroscopic methods including HRESIMS, UV, IR, and 1D, 2D NMR techniques. The cytotoxic activities of these cardiac glycosides against human gastric (SGC-7901) and human hepatoma (SMMC-7721) cell lines were evaluated, and all of them exhibited significant cytotoxicity. PMID:21509716

  11. Structural investigation of resin glycosides from Ipomoea lonchophylla.

    PubMed

    MacLeod, J K; Ward, A; Oelrichs, P B

    1997-05-01

    A fraction from Ipomoea lonchophylla, which was toxic to mice, contained an inseparable mixture of resin glycosides with differing numbers of C5 ester groups on the hexasaccharide chain. After alkaline hydrolysis of the esters, the structure of the major component (1) was elucidated using high-field NMR spectroscopy, mass spectrometry, chemical studies, and comparison with known resin glycosides. Compound 1 was identified as 3,11-dihydroxytetradecanoic acid 11-O-beta-quinovopyranosyl-(1-->2)-beta-glucopyranosyl-(1-->3)- [alpha-rhamnopyranosyl- (1-->4)]-quinovopyranosyl-(1-->2)-beta-glucopyranosyl-(1-->2)-beta -fucopyranoside. PMID:9170289

  12. Flavonol Glycosides from the Leaves of Allium macrostemon.

    PubMed

    Nakane, Risa; Iwashina, Tsukasa

    2015-08-01

    Twelve flavonoids were isolated from Allium macrostemon leaves. Five compounds were identified as kaempferol 3,7-di-O-glucoside (1), kaempferol 3,4'-di-O-glucoside (2), quercetin 3-O-glucoside (3), kaempferol 3-0-glucoside (4) and isorhamnetin 3-O-glucoside (5) by UV spectra, LC-MS, acid hydrolysis and HPLC comparisons with authentic standards. Other flavonoids were characterized as kaempferol glycosides (6-8, 10 and 11) and quercetin glycosides (9 and 12). Other compounds, such as steroidal saponins, have been already found from the bulbs of A. macrostemon. However, flavonoids were reported for the first time from the leaves. PMID:26434122

  13. Analytical methods for monoterpene glycosides in grape and wine. II. Qualitative and quantitative determination of monoterpene glycosides in grape.

    PubMed

    Voirin, S G; Baumes, R L; Sapis, J C; Bayonove, C L

    1992-03-20

    Free and glycosidically bound terpenes of five Vitis vinifera grape cultivars (muscat of Alexandria, muscat of Frontignan, muscat of Hamburg, muscat Ottonel and Gewürztraminer) were investigated. The free and bound fractions were separated by selective retention on Amberlite XAD-2 resin. The glycosidic fractions were analysed by gas chromatography and gas chromatography-mass spectrometry using either enzymic hydrolysis and subsequent analysis of the released aglycones or trimethylsilyl (TMS) and trifluoroacetyl derivatives. The known monoterpenyl, benzyl and 2-phenylethyl beta-D-glucopyranosides, beta-rutinosides, 6-O-alpha-L-arabinofuranosyl-beta-D-glucopyranosides and 6-O-beta-D-apiofuranosyl-beta-D-glucopyranosides were determined. A number of other glycosides were detected and the structures of some of them, mainly apiosylglucosides and glucosides with aglycones in higher oxidation state than linalol, were tentatively identified using the mass spectra of their TMS and TFA derivatives and the results obtained from the analysis of their aglycones. PMID:1577909

  14. Steviol glycosides in purified stevia leaf extract sharing the same metabolic fate.

    PubMed

    Purkayastha, Sidd; Markosyan, Avetik; Prakash, Indra; Bhusari, Sachin; Pugh, George; Lynch, Barry; Roberts, Ashley

    2016-06-01

    The safety of steviol glycosides is based on data available on several individual steviol glycosides and on the terminal absorbed metabolite, steviol. Many more steviol glycosides have been identified, but are not yet included in regulatory assessments. Demonstration that these glycosides share the same metabolic fate would indicate applicability of the same regulatory paradigm. In vitro incubation assays with pooled human fecal homogenates, using rebaudiosides A, B, C, D, E, F and M, as well as steviolbioside and dulcoside A, at two concentrations over 24-48 h, were conducted to assess the metabolic fate of various steviol glycoside classes and to demonstrate that likely all steviol glycosides are metabolized to steviol. The data show that glycosidic side chains containing glucose, rhamnose, xylose, fructose and deoxy-glucose, including combinations of α(1-2), β-1, β(1-2), β(1-3), and β(1-6) linkages, were degraded to steviol mostly within 24 h. Given a common metabolite structure and a shared metabolic fate, safety data available for individual steviol glycosides can be used to support safety of purified steviol glycosides in general. Therefore, steviol glycosides specifications adopted by the regulatory authorities should include all steviol glycosides belonging to the five groups of steviol glycosides and a group acceptable daily intake established. PMID:26924787

  15. Hypolipidemic Activity of Peony Seed Oil Rich in α-Linolenic, is Mediated Through Inhibition of Lipogenesis and Upregulation of Fatty Acid β-Oxidation.

    PubMed

    Su, Jianhui; Ma, Chaoyang; Liu, Chengxiang; Gao, Chuanzhong; Nie, Rongjing; Wang, Hongxin

    2016-04-01

    Peony seed oil (PSO) is a new resource food rich in α-Linolenic Acid(ALA) (38.66%). The objective of this study was to assess the modulatory effect of PSO on lipid metabolism. Lard oil, safflower oil (SFO), and PSO were fed to wistar rats with 1% cholesterol in the diet for 60 d. Serum and liver lipids showed significant decrease in total cholesterol (TC), triglyceride (TG), and low density lipoprotein-cholesterol (LDL-C) levels in PSO fed rats compared to lard oil and SFO fed rats. ALA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), contents were significantly increased, whereas linoleic acid (LA), arachidonic acid (AA) levels decreased in serum and liver of PSO fed rats. Feeding PSO increased ALA level and decreased n-6 to n-3 polyunsaturated fatty acid (PUFA) ratio. The hypolipidemic result of PSO indicated that PSO participated in the regulation of plasma lipid concentration and cholesterol metabolism in liver. The decreased expression of sterol regulatory element-binding proteins 1C (SREBP-1c), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS)-reduced lipid synthesis; Activation of peroxisome proliferator-activator receptor (PPARα) accompanied by increase of uncoupling protein2 (UP2) and acyl-CoA oxidase (AOX) stimulated lipid metabolism and exerted an antiobesity effect via increasing energy expenditure for prevention of obesity. PMID:26930155

  16. Assessment of the Therapeutic Effect of Total Glucosides of Peony for Juvenile Idiopathic Arthritis: A Systematic Review and Meta-Analysis.

    PubMed

    Cai, Yongsong; Yuan, Qiling; Xu, Ke; Zhu, Jialin; Li, Yuanbo; Wu, Xiaoqing; Yang, Le; Qiu, Yusheng; Xu, Peng

    2016-01-01

    Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease in children; some clinical trials have reported the effects of total glucosides of peony (TGP) in the treatment of JIA. However, no systematic review has yet been conducted. In this study, we assessed the efficacy and safety in patients with JIA enrolled in randomized controlled trials (RCTs) of TGP. We extracted data for studies searched from 8 electronic databases that were searched and also evaluated the methodological quality of the included studies. We assessed the following outcome measures: overall response rate, pain, tender joint count (TJC), swollen joint count (SJC), duration of morning stiffness (DMS), grip strength (GS), rheumatoid factor (RF), erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and adverse effects (AEs) in short term (4-8 weeks), intermediate term (9-26 weeks), and long term (>26 weeks). The final analysis showed that TGP acted as a unique nonbiologic disease-modifying antirheumatic drug (nonbiologic DMARD), and its therapeutic effects were safe and efficacious for the treatment of JIA with few AEs. However, more high-quality RCTs are needed to confirm these therapeutic effects. PMID:27525026

  17. Assessment of the Therapeutic Effect of Total Glucosides of Peony for Juvenile Idiopathic Arthritis: A Systematic Review and Meta-Analysis

    PubMed Central

    Cai, Yongsong; Yuan, Qiling; Xu, Ke; Zhu, Jialin; Li, Yuanbo; Wu, Xiaoqing; Yang, Le

    2016-01-01

    Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease in children; some clinical trials have reported the effects of total glucosides of peony (TGP) in the treatment of JIA. However, no systematic review has yet been conducted. In this study, we assessed the efficacy and safety in patients with JIA enrolled in randomized controlled trials (RCTs) of TGP. We extracted data for studies searched from 8 electronic databases that were searched and also evaluated the methodological quality of the included studies. We assessed the following outcome measures: overall response rate, pain, tender joint count (TJC), swollen joint count (SJC), duration of morning stiffness (DMS), grip strength (GS), rheumatoid factor (RF), erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and adverse effects (AEs) in short term (4–8 weeks), intermediate term (9–26 weeks), and long term (>26 weeks). The final analysis showed that TGP acted as a unique nonbiologic disease-modifying antirheumatic drug (nonbiologic DMARD), and its therapeutic effects were safe and efficacious for the treatment of JIA with few AEs. However, more high-quality RCTs are needed to confirm these therapeutic effects. PMID:27525026

  18. The Efficacy and Safety of the Combination of Total Glucosides of Peony and Leflunomide for the Treatment of Rheumatoid Arthritis: A Systemic Review and Meta-Analysis

    PubMed Central

    Feng, Zhitao; Xu, Juan; He, Guochao; Cao, Meiqun; Duan, Lihong; Chen, Liguo; Wu, Zhengzhi

    2016-01-01

    Objective. To evaluate the efficacy and safety of the total glucosides of peony (TGP) and leflunomide (LEF) for the treatment of rheumatoid arthritis (RA). Methods. Randomized controlled trials (RCTs) on the efficacy and safety of the combination of TGP and LEF versus LEF alone for the treatment of RA were retrieved by searching PubMed, EMBASE, Cochrane Library, the China National Knowledge Infrastructure database, and Wanfang database. Results. Eight RCTs including 643 RA patients were included in the present meta-analysis. The quality of included studies was poor. The levels of ESR (P < 0.0001), CRP (P < 0.0001), and RF (P < 0.0001) in RA patients who received the combination of TGP and LEF were significantly lower than RA patients who received LEF therapy alone. The pooled results suggest that the combination of TGP and LEF caused less abnormal liver function than LEF alone (P = 0.02). No significant difference in the gastrointestinal discomfort was identified between the combination of TGP and LEF and LEF alone groups (P = 0.18). Conclusion. The combination of TGP and LEF in treatment of RA presented the characteristics of notably decreasing the levels of laboratory indexes and higher safety in terms of liver function. However, this conclusion should be further investigated based on a larger sample size. PMID:27143990

  19. Flavonol glycosides from distilled petals of Rosa damascena Mill.

    PubMed

    Schiber, Andreas; Mihalev, Kiril; Berardini, Nicolai; Mollov, Plamen; Carle, Reinhold

    2005-01-01

    Flavonol glycosides were extracted from petals of Rosa damascena Mill. after industrial distillation for essential oil recovery and characterized by high-performance liquid chromatography-electrospray ionization mass spectrometry. Among the 22 major compounds analyzed, only kaempferol and quercetin glycosides were detected. To the best of our knowledge, the presence of quercetin 3-O-galactoside and quercetin 3-O-xyloside has so far not been reported within the genus Rosa. In addition, based on their fragmentation patterns, several acylated quercetin and kaempferol glycosides, some of them being disaccharides, were identified for the first time. The kaempferol glycosides, along with the kaempferol aglycone, accounted for 80% of the total compounds that were quantified, with kaempferol 3-O-glucoside being the predominant component. The high flavonol content of approximately 16 g/kg on a dry weight basis revealed that distilled rose petals represent a promising source of phenolic compounds which might be used as functional food ingredients, as natural antioxidants or as color enhancers. PMID:16042335

  20. Curation of characterized glycoside hydrolases of fungal origin.

    PubMed

    Murphy, Caitlin; Powlowski, Justin; Wu, Min; Butler, Greg; Tsang, Adrian

    2011-01-01

    Fungi produce a wide range of extracellular enzymes to break down plant cell walls, which are composed mainly of cellulose, lignin and hemicellulose. Among them are the glycoside hydrolases (GH), the largest and most diverse family of enzymes active on these substrates. To facilitate research and development of enzymes for the conversion of cell-wall polysaccharides into fermentable sugars, we have manually curated a comprehensive set of characterized fungal glycoside hydrolases. Characterized glycoside hydrolases were retrieved from protein and enzyme databases, as well as literature repositories. A total of 453 characterized glycoside hydrolases have been cataloged. They come from 131 different fungal species, most of which belong to the phylum Ascomycota. These enzymes represent 46 different GH activities and cover 44 of the 115 CAZy GH families. In addition to enzyme source and enzyme family, available biochemical properties such as temperature and pH optima, specific activity, kinetic parameters and substrate specificities were recorded. To simplify comparative studies, enzyme and species abbreviations have been standardized, Gene Ontology terms assigned and reference to supporting evidence provided. The annotated genes have been organized in a searchable, online database called mycoCLAP (Characterized Lignocellulose-Active Proteins of fungal origin). It is anticipated that this manually curated collection of biochemically characterized fungal proteins will be used to enhance functional annotation of novel GH genes. Database URL: http://mycoCLAP.fungalgenomics.ca/. PMID:21622642

  1. Radioimmunoassay of aescine, a mixture of triterpene glycosides.

    PubMed

    Lehtola, T; Huhtikangas, A

    1990-01-01

    A radioimmunoassay (RIA) has been developed for the determination of picogram amounts of aescine, an anti-inflammatory and anti-oedematous glycoside mixture from unpurified extracts of Aesculus hippocastanum. Practically no interference is observed for various potentially crossreacting compounds. This RIA covers the range 100 pg-50 ng, within which acceptable accuracy and precision are obtained. PMID:2332511

  2. Triterpenoid glycosides from the leaves of Meliosma henryi.

    PubMed

    Alabdul Magid, Abdulmagid; Morjani, Hamid; Harakat, Dominique; Madoulet, Claudie; Dumontet, Vincent; Lavaud, Catherine

    2015-01-01

    Seven triterpenoid glycosides, named meliosmosides A-G, were isolated from the leaves of Meliosma henryi Diels (Sabiaceae). Their structures were elucidated by different spectroscopic methods including 1D and 2D NMR experiments as well as HRESIMS analysis. Isolated compounds were evaluated for their cytotoxic activity against KB cell line. PMID:25468712

  3. [Pharmacological properties od steroid glycosides from Ruscus ponticus].

    PubMed

    Abuladze, G V; Mulkidzhanian, K G; Novikova, Zh N

    2002-01-01

    Some pharmacological properties of the sum of steroidal glycosides (ruscoponin preparation) extracted from underground parts of Ruscus ponticus were studied. The drug exhibits a pronounced antiexudative effect (related to the alpha 1-adrenergic activity) on the models of formalin edema and pouch granuloma in rats and a thermal rectum inflammation in mice. The drug exhibited no hepato-, nephro-, and gastrotoxicity. PMID:12227103

  4. Marruboside, a new phenylethanoid glycoside from Marrubium vulgare L.

    PubMed

    Sahpaz, Sevser; Hennebelle, Thierry; Bailleul, François

    2002-06-01

    A new phenylethanoid glycoside, marruboside, has been isolated from the aerial parts of Marrubium vulgare L. Its structure was established as 3,4-dihydroxy-beta-phenylethoxy-O-[beta-D-apiofuranosyl-(1-->2)-alpha-L-rhamnopyranosyl-(1-->3)]-[beta-D-apiofuranosyl-(1-->6)]-4-O-caffeoyl-beta-D-glucopyranoside, on the basis of spectroscopic evidence. PMID:12049220

  5. Curation of characterized glycoside hydrolases of Fungal origin

    PubMed Central

    Murphy, Caitlin; Powlowski, Justin; Wu, Min; Butler, Greg; Tsang, Adrian

    2011-01-01

    Fungi produce a wide range of extracellular enzymes to break down plant cell walls, which are composed mainly of cellulose, lignin and hemicellulose. Among them are the glycoside hydrolases (GH), the largest and most diverse family of enzymes active on these substrates. To facilitate research and development of enzymes for the conversion of cell-wall polysaccharides into fermentable sugars, we have manually curated a comprehensive set of characterized fungal glycoside hydrolases. Characterized glycoside hydrolases were retrieved from protein and enzyme databases, as well as literature repositories. A total of 453 characterized glycoside hydrolases have been cataloged. They come from 131 different fungal species, most of which belong to the phylum Ascomycota. These enzymes represent 46 different GH activities and cover 44 of the 115 CAZy GH families. In addition to enzyme source and enzyme family, available biochemical properties such as temperature and pH optima, specific activity, kinetic parameters and substrate specificities were recorded. To simplify comparative studies, enzyme and species abbreviations have been standardized, Gene Ontology terms assigned and reference to supporting evidence provided. The annotated genes have been organized in a searchable, online database called mycoCLAP (Characterized Lignocellulose-Active Proteins of fungal origin). It is anticipated that this manually curated collection of biochemically characterized fungal proteins will be used to enhance functional annotation of novel GH genes. Database URL: http://mycoCLAP.fungalgenomics.ca/ PMID:21622642

  6. Glycosidation of Methanol with Ribose: An Interdisciplinary Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Simon, Erin; Cook, Katie; Pritchard, Meredith R.; Stripe, Wayne; Bruch, Martha; Bendinskas, Kestutis

    2010-01-01

    This exercise provides students hands-on experience with the topics of glycosidation, hemiacetal and acetal formation, proton nuclear magnetic resonance ([superscript 1]H NMR) spectroscopy, and kinetic and thermodynamic product formation. In this laboratory experiment, the methyl acetal of ribose is synthesized, and the kinetic and thermodynamic…

  7. Isoflavonoid glycosides from the roots of Baphia bancoensis.

    PubMed

    Yao-Kouassi, Philomène A; Magid, Abdulmagid Alabdul; Richard, Bernard; Martinez, Agathe; Jacquier, Marie-José; Caron, Catherine; Debar, Elisabeth Le Magrex; Gangloff, Sophie C; Coffy, Antoine A; Zèches-Hanrot, Monique

    2008-12-01

    Chemical investigation of the methanol extract of the roots of Baphia bancoensis led to the isolation and characterization of three new isoflavonoid glycosides (1-3). Their structures were determined on the basis of spectroscopic studies andchemical evidence. Antibacterial activity of isolated compounds was evaluated against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa. PMID:19007285

  8. Reversible Sterilization

    ERIC Educational Resources Information Center

    Largey, Gale

    1977-01-01

    Notes that difficult questions arise concerning the use of sterilization for alleged eugenic and euthenic purposes. Thus, how reversible sterilization will be used with relation to the poor, mentally ill, mentally retarded, criminals, and minors, is questioned. (Author/AM)

  9. Reversible Cardiomyopathies

    PubMed Central

    Patel, Harsh; Madanieh, Raef; Kosmas, Constantine E; Vatti, Satya K; Vittorio, Timothy J

    2015-01-01

    Cardiomyopathies (CMs) have many etiological factors that can result in severe structural and functional dysregulation. Fortunately, there are several potentially reversible CMs that are known to improve when the root etiological factor is addressed. In this article, we discuss several of these reversible CMs, including tachycardia-induced, peripartum, inflammatory, hyperthyroidism, Takotsubo, and chronic illness–induced CMs. Our discussion also includes a review on their respective pathophysiology, as well as possible management solutions. PMID:26052233

  10. Role of Glycoside Phosphorylases in Mannose Foraging by Human Gut Bacteria*

    PubMed Central

    Ladevèze, Simon; Tarquis, Laurence; Cecchini, Davide A.; Bercovici, Juliette; André, Isabelle; Topham, Christopher M.; Morel, Sandrine; Laville, Elisabeth; Monsan, Pierre; Lombard, Vincent; Henrissat, Bernard; Potocki-Véronèse, Gabrielle

    2013-01-01

    To metabolize both dietary fiber constituent carbohydrates and host glycans lining the intestinal epithelium, gut bacteria produce a wide range of carbohydrate-active enzymes, of which glycoside hydrolases are the main components. In this study, we describe the ability of phosphorylases to participate in the breakdown of human N-glycans, from an analysis of the substrate specificity of UhgbMP, a mannoside phosphorylase of the GH130 protein family discovered by functional metagenomics. UhgbMP is found to phosphorolyze β-d-Manp-1,4-β-d-GlcpNAc-1,4-d-GlcpNAc and is also a highly efficient enzyme to catalyze the synthesis of this precious N-glycan core oligosaccharide by reverse phosphorolysis. Analysis of sequence conservation within family GH130, mapped on a three-dimensional model of UhgbMP and supported by site-directed mutagenesis results, revealed two GH130 subfamilies and allowed the identification of key residues responsible for catalysis and substrate specificity. The analysis of the genomic context of 65 known GH130 sequences belonging to human gut bacteria indicates that the enzymes of the GH130_1 subfamily would be involved in mannan catabolism, whereas the enzymes belonging to the GH130_2 subfamily would rather work in synergy with glycoside hydrolases of the GH92 and GH18 families in the breakdown of N-glycans. The use of GH130 inhibitors as therapeutic agents or functional foods could thus be considered as an innovative strategy to inhibit N-glycan degradation, with the ultimate goal of protecting, or restoring, the epithelial barrier. PMID:24043624

  11. Jalapinoside, a macrocyclic bisdesmoside from the resin glycosides of Ipomea purga, as a modulator of multidrug resistance in human cancer cells.

    PubMed

    Bautista, Elihú; Fragoso-Serrano, Mabel; Pereda-Miranda, Rogelio

    2015-01-23

    The first macrocyclic bisdesmoside resin glycoside, jalapinoside (4), was purified by preparative-scale recycling HPLC from the MeOH-soluble extracts of Ipomoea purga roots, the officinal jalap. Purgic acid C (3), a new glycosidic acid of ipurolic acid, was identified as 3-O-β-d-quinovopyranoside, 11-O-β-d-quinovopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→3)-O-[β-d-fucopyranosyl-(1→4)]-O-α-l-rhamnopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→2)-O-β-d-quinovopyranoside (3S,11S)-dihydroxytetradecanoic acid. The acylating residues of this core were acetic, (+)-(2S)-methylbutanoic, and dodecanoic acids. The site of lactonization was defined as C-3 of the second saccharide moiety. Reversal of multidrug resistance by this noncytotoxic compound was evaluated in vinblastine-resistant human breast carcinoma cells. PMID:25536852

  12. New flav-3-en-3-ol glycosides, kaempferiaosides C and D, and acetophenone glycosides, kaempferiaosides E and F, from the rhizomes of Kaempferia parviflora.

    PubMed

    Chaipech, Saowanee; Morikawa, Toshio; Ninomiya, Kiyofumi; Yoshikawa, Masayuki; Pongpiriyadacha, Yutana; Hayakawa, Takao; Muraoka, Osamu

    2012-07-01

    Two new flav-3-en-3-ol glycosides, kaempferiaosides C (3) and D(4), and two new acetophenone glycosides, kaempferiaosides E (5) and F (6), were isolated from the Thai natural medicine Krachai Dum, the rhizomes of Kaempferia parviflora Wall. ex Baker. Their structures were established mainly on the basis of 1D and 2D NMR spectral data. PMID:22101441

  13. Glycosides and xanthine oxidase inhibitors from Conyza bonariensis.

    PubMed

    Kong, L D; Abliz, Z; Zhou, C X; Li, L J; Cheng, C H; Tan, R X

    2001-10-01

    Fractionation of the xanthine oxidase inhibitory methanol extract of Conyza bonariensis afforded three glycosides, in addition to nine known compounds including amyrin, beta-sitostero1 daucosterol, syringic acid 3-hydroxy-5-methoxybenzoic acid, eugenol 4-O-glucopyranoside, and luteolin, apigenin and takakin 8-O-glucuronide. The structures of the glycosides were established by a combination of spectroscopic methods (IR, MS, 1H and 13C NMR, DEPT, COSY, HMQC and HMBC) as 4-hydroxypyridin-3-carboxylic acid 4-O-glucopyranoside, 8-hydroxy-6,7-dihydrolinalool 8-O-glucopyranoside and bonaroside [viz. 1,3,4,12-tetrahydroxy-2-(9-hexadecenoylamino)octadecane 1-O-glucopyranoside]. The in vitro enzyme assay showed that syringic acid and takakin 8-O-glucuronide displayed weak inhibitory activity against xanthine oxidase with IC50 values of 500+/-41 microM and 170+/-12 microM, respectively. PMID:11576616

  14. [GH10 Family of Glycoside Hydrolases: Structure and Evolutionary Connections].

    PubMed

    Naumoff, D G

    2016-01-01

    Evolutionary connections were analyzed for endo-β-xylanases, which possess the GH10 family catalytic domains. A homology search yielded thrice as many proteins as are available from the Carbohydrate-Active Enzymes (CAZy) database. Lateral gene transfer was shown to play an important role in evolution of bacterial proteins of the family, especially in the phyla Acidobacteria, Cyanobacteria, Planctomycetes, Spirochaetes, and Verrucomicrobia. In the case of Verrucomicrobia, 23 lateral transfers from organisms of other phyla were detected. Evolutionary relationships were observed between the GH10 family domains and domains with the TIM-barrel tertiary structure from several other glycosidase families. The GH39 family of glycoside hydrolases showed the closest relationship. Unclassified homologs were grouped into 12 novel families of putative glycoside hydrolases (GHL51-GHL62). PMID:27028821

  15. Malonylated flavonol glycosides from the petals of Clitoria ternatea.

    PubMed

    Kazuma, Kohei; Noda, Naonobu; Suzuki, Masahiko

    2003-01-01

    Three flavonol glycosides, kaempferol 3-O-(2"-O-alpha-rhamnosyl-6"-O-malonyl)-beta-glucoside, quercetin 3-O-(2"-O-alpha-rhamnosyl-6"-O-malonyl)-beta-glucoside, and myricetin 3-O-(2",6"-di-O-alpha-rhamnosyl)-beta-glucoside were isolated from the petals of Clitoria ternatea cv. Double Blue, together with eleven known flavonol glycosides. Their structures were identified using UV, MS, and NMR spectroscopy. They were characterized as kaempferol and quercetin 3-(2(G)- rhamnosylrutinoside)s, kaempferol, quercetin, and myricetin 3-neohesperidosides, 3-rutinosides, and 3-glucosides in the same tissue. In addition, the presence of myricetin 3-O-(2"-O-alpha-rhamnosyl-6"-O-malonyl)-beta-glucoside was inferred from LC/MS/MS data for crude petal extracts. The flavonol compounds identified in the petals of C. ternatea differed from those reported in previous studies. PMID:12482461

  16. Two minor diterpene glycosides from the leaves of Stevia rebaudiana.

    PubMed

    Chaturvedula, Venkata Sai Prakash; Rhea, Joshua; Milanowski, Dennis; Mocek, Ulla; Prakash, Indra

    2011-02-01

    Two new new diterpene glycosides, 13-[(2-O-(6-O-beta-D-glucopyranosyl)-beta-D-glucopyranosyl-beta-D-glucopyranosyl)oxy] kaur-16-en-18-oic acid beta-D-glucopyranosyl ester (1) and 13-[(2-O-beta-D-glucopyranosyl-3-O-beta-D-fructofuranosyl-beta-D-glucopyranosyl)oxy] kaur-16-en-18-oic acid beta-D-glucopyranosyl ester (2) were isolated from the leaves of Stevia rebaudiana, along with the known steviol glycosides stevioside, rebaudiosides A-F and dulcoside A. The structures of the two new compounds were established on the basis of extensive 2D NMR (COSY, HSQC, and HMBC), MS and chemical studies. PMID:21425668

  17. Structures of the novel diterpene glycosides from Stevia rebaudiana.

    PubMed

    Chaturvedula, Venkata Sai Prakash; Prakash, Indra

    2011-06-01

    From the commercial extract of the leaves of Stevia rebaudiana, two new diterpenoid glycosides were isolated besides the known steviol glycosides including stevioside, rebaudiosides A-F, rubusoside, and dulcoside A. The structures of the two new compounds were identified as 13-[(2-O-6-deoxy-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester (1), and 13-[(2-O-6-deoxy-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester (2), on the basis of extensive NMR and MS spectral data as well as chemical studies. PMID:21489412

  18. New terpenoid glycosides obtained from Rosmarinus officinalis L. aerial parts.

    PubMed

    Zhang, Yi; Adelakun, Tiwalade Adegoke; Qu, Lu; Li, Xiaoxia; Li, Jian; Han, Lifeng; Wang, Tao

    2014-12-01

    Five new terpenoid glycosides, named as officinoterpenosides A₁ (1), A₂ (2), B (3), C (4), and D (5), together with 11 known ones, (1S,4S,5S)-5-exo-hydrocamphor 5-O-β-D-glucopyranoside (6), isorosmanol (7), rosmanol (8), 7-methoxyrosmanol (9), epirosmanol (10), ursolic acid (11), micromeric acid (12), oleanolic acid (13), niga-ichigoside F₁ (14), glucosyl tormentate (15), and asteryunnanoside B (16), were obtained from the aerial parts of Rosmarinus officinalis L. Their structures were elucidated by chemical and spectroscopic methods (UV, IR, HRESI-TOF-MS, 1D and 2D NMR). Among the new ones, 1 and 2, 3 and 4 are diterpenoid and triterpenoid glycosides, respectively; and 5 is a normonoterpenoid. For the known ones, 6 was isolated from the Rosmarinus genus first, and 15, 16 were obtained from this species for the first time. PMID:25200369

  19. A new phenolic glycoside and cytotoxic constituents from Celosia argentea.

    PubMed

    Shen, Shuo; Ding, Xiao; Ouyang, Ming-An; Wu, Zu-Jian; Xie, Lian-Hui

    2010-09-01

    A new phenolic glycoside, 4-O-β-D-apifuranosyl-(1→2)-β-D-glucopyranosyl-2-hydroxy-6-methoxyacetophenone (2) and 11 known compounds were isolated from the MeOH extract of the plant Celosia argentea. The structures of the compounds were elucidated on the basis of spectroscopic analysis and chemical methods. Among the isolated compounds, stigmasterol (10) showed moderate inhibitory activities against SGC-7901 and BEL-7404 cells. PMID:20839132

  20. Vina-Carb: Improving Glycosidic Angles during Carbohydrate Docking.

    PubMed

    Nivedha, Anita K; Thieker, David F; Makeneni, Spandana; Hu, Huimin; Woods, Robert J

    2016-02-01

    Molecular docking programs are primarily designed to align rigid, drug-like fragments into the binding sites of macromolecules and frequently display poor performance when applied to flexible carbohydrate molecules. A critical source of flexibility within an oligosaccharide is the glycosidic linkages. Recently, Carbohydrate Intrinsic (CHI) energy functions were reported that attempt to quantify the glycosidic torsion angle preferences. In the present work, the CHI-energy functions have been incorporated into the AutoDock Vina (ADV) scoring function, subsequently termed Vina-Carb (VC). Two user-adjustable parameters have been introduced, namely, a CHI- energy weight term (chi_coeff) that affects the magnitude of the CHI-energy penalty and a CHI-cutoff term (chi_cutoff) that negates CHI-energy penalties below a specified value. A data set consisting of 101 protein-carbohydrate complexes and 29 apoprotein structures was used in the development and testing of VC, including antibodies, lectins, and carbohydrate binding modules. Accounting for the intramolecular energies of the glycosidic linkages in the oligosaccharides during docking led VC to produce acceptable structures within the top five ranked poses in 74% of the systems tested, compared to a success rate of 55% for ADV. An enzyme system was employed in order to illustrate the potential application of VC to proteins that may distort glycosidic linkages of carbohydrate ligands upon binding. VC represents a significant step toward accurately predicting the structures of protein-carbohydrate complexes. Furthermore, the described approach is conceptually applicable to any class of ligands that populate well-defined conformational states. PMID:26744922

  1. β-cyclodextrin assistant flavonoid glycosides enzymatic hydrolysis

    PubMed Central

    Jin, Xin; Zhang, Zhen-hai; Sun, E.; Jia, Xiao-Bin

    2013-01-01

    Background: The content of icaritin and genistein in herba is very low, preparation with relatively large quantities is an important issue for extensive pharmacological studies. Objective: This study focuses on preparing and enzymic hydrolysis of flavonoid glycosides /β-cyclodextrin inclusion complex to increase the hydrolysis rate. Materials and Methods: The physical property of newly prepared inclusion complex was tested by differential scanning calorimetry (DSC). The conditions of enzymatic hydrolysis were optimized for the bioconversion of flavonoid glycosides /β-cyclodextrin inclusion complex by mono-factor experimental design. The experiments are using the icariin and genistein as the model drugs. Results: The solubility of icariin and genistein were increased almost 17 times from 29.2 μg/ml to 513.5 μg/ml at 60°C and 28 times from 7.78 μg/ml to 221.46 μg/ml at 50°C, respectively, demonstrating that the inclusion complex could significantly increase the solubility of flavonoid glycosides. Under the optimal conditions, the reaction time of icariin and genistin decreased by 68% and 145%, when compared with that without β-CD inclusion. By using this enzymatic condition, 473 mg icaritin (with the purity of 99.34%) and 567 mg genistein(with the purity of 99.46%), which was finally determined by melt point, ESI-MS, UV, IR, 1H NMR and 13C NMR, was obtained eventually by transforming the inclusion complex(contains 1.0 g substrates). Conclusion: This study can clearly indicate a new attempt to improve the speed of enzyme-hydrolysis of poorly water-soluble flavonoid glycosides and find a more superior condition which is used to prepare icaritin and genistein. PMID:24143039

  2. Two aurone glycosides from heartwood of Pterocarpus santalinus.

    PubMed

    Kesari, Achyut Narayan; Gupta, Rajesh Kumar; Watal, Geeta

    2004-12-01

    Two new aurone glycosides, 6 hydroxy 5 methyl 3',4',5' trimethoxy aurone 4-O-alpha-L-rhamnopyranoside and 6,4' dihydroxy aurone 4-O-rutinoside have been isolated from the ethanolic extract of the wood of Pterocarpus santalinus. Their structures were determined on the basis of chemical and spectroscopic analysis (UV, IR, EIMS, (1)H and (13)C NMR). PMID:15541741

  3. A new lignan glycoside from the rhizomes of Imperata cylindrica.

    PubMed

    Lee, Dae-Young; Han, Kyung-Min; Song, Myoung-Chong; Lee, Do-Gyeong; Rho, Yeong-Deok; Baek, Nam-In

    2008-01-01

    A new lignan glycoside, 6-acetyl-1-[1,3-(4,4'-dihydroxy-3,3'-dimethoxy-beta-truxinyl)-beta-d-fructofuranosyl]-alpha-d-glucopyranoside (1), named impecyloside, was isolated from the rhizomes of Imperata cylindrica. The structure of the compound was determined by spectroscopic data including FABMS, UV, IR, 1H NMR and 13C NMR (DEPT) and 2D NMR (COSY, HSQC, HMBC). PMID:18348057

  4. Genetic Structure of the Tree Peony (Paeonia rockii) and the Qinling Mountains as a Geographic Barrier Driving the Fragmentation of a Large Population

    PubMed Central

    Yuan, Jun–hui; Cheng, Fang–Yun; Zhou, Shi–Liang

    2012-01-01

    Background Tree peonies are great ornamental plants associated with a rich ethnobotanical history in Chinese culture and have recently been used as an evolutionary model. The Qinling Mountains represent a significant geographic barrier in Asia, dividing mainland China into northern (temperate) and southern (semi–tropical) regions; however, their flora has not been well analyzed. In this study, the genetic differentiation and genetic structure of Paeonia rockii and the role of the Qinling Mountains as a barrier that has driven intraspecific fragmentation were evaluated using 14 microsatellite markers. Methodology/Principal Findings Twenty wild populations were sampled from the distributional range of P. rockii. Significant population differentiation was suggested (FST value of 0.302). Moderate genetic diversity at the population level (HS of 0.516) and high population diversity at the species level (HT of 0.749) were detected. Significant excess homozygosity (FIS of 0.076) and recent population bottlenecks were detected in three populations. Bayesian clusters, population genetic trees and principal coordinate analysis all classified the P. rockii populations into three genetic groups and one admixed Wenxian population. An isolation-by-distance model for P. rockii was suggested by Mantel tests (r = 0.6074, P<0.001) and supported by AMOVA (P<0.001), revealing a significant molecular variance among the groups (11.32%) and their populations (21.22%). These data support the five geographic boundaries surrounding the Qinling Mountains and adjacent areas that were detected with Monmonier's maximum-difference algorithm. Conclusions/Significance Our data suggest that the current genetic structure of P. rockii has resulted from the fragmentation of a formerly continuously distributed large population following the restriction of gene flow between populations of this species by the Qinling Mountains. This study provides a fundamental genetic profile for the conservation

  5. Enzymatic Biosynthesis of Novel Resveratrol Glucoside and Glycoside Derivatives.

    PubMed

    Pandey, Ramesh Prasad; Parajuli, Prakash; Shin, Ju Yong; Lee, Jisun; Lee, Seul; Hong, Young-Soo; Park, Yong Il; Kim, Joong Su; Sohng, Jae Kyung

    2014-12-01

    A UDP glucosyltransferase from Bacillus licheniformis was overexpressed, purified, and incubated with nucleotide diphosphate (NDP) d- and l-sugars to produce glucose, galactose, 2-deoxyglucose, viosamine, rhamnose, and fucose sugar-conjugated resveratrol glycosides. Significantly higher (90%) bioconversion of resveratrol was achieved with α-d-glucose as the sugar donor to produce four different glucosides of resveratrol: resveratrol 3-O-β-d-glucoside, resveratrol 4'-O-β-d-glucoside, resveratrol 3,5-O-β-d-diglucoside, and resveratrol 3,5,4'-O-β-d-triglucoside. The conversion rates and numbers of products formed were found to vary with the other NDP sugar donors. Resveratrol 3-O-β-d-2-deoxyglucoside and resveratrol 3,5-O-β-d-di-2-deoxyglucoside were found to be produced using TDP-2-deoxyglucose as a donor; however, the monoglycosides resveratrol 4'-O-β-d-galactoside, resveratrol 4'-O-β-d-viosaminoside, resveratrol 3-O-β-l-rhamnoside, and resveratrol 3-O-β-l-fucoside were produced from the respective sugar donors. Altogether, 10 diverse glycoside derivatives of the medically important resveratrol were generated, demonstrating the capacity of YjiC to produce structurally diverse resveratrol glycosides. PMID:25239890

  6. Sweet Poisons: Honeys Contaminated with Glycosides of the Neurotoxin Tutin.

    PubMed

    Larsen, Lesley; Joyce, Nigel I; Sansom, Catherine E; Cooney, Janine M; Jensen, Dwayne J; Perry, Nigel B

    2015-06-26

    Poisonings due to consumption of honeys containing plant toxins have been reported widely. One cause is the neurotoxin tutin, an oxygenated sesquiterpene picrotoxane, traced back to honeybees (Apis mellifera) collecting honeydew produced by passionvine hoppers (Scolypopa australis) feeding on sap of the poisonous shrub tutu (Coriaria spp.). However, a pharmacokinetic study suggested that unidentified conjugates of tutin were also present in such honeys. We now report the discovery, using ion trap LC-MS, of two tutin glycosides and their purification and structure determination as 2-(β-d-glucopyranosyl)tutin (4) and 2-[6'-(α-d-glucopyranosyl)-β-d-glucopyranosyl]tutin (5). These compounds were used to develop a quantitative triple quadrupole LC-MS method for honey analysis, which showed the presence of tutin (3.6 ± 0.1 μg/g honey), hyenanchin (19.3 ± 0.5), tutin glycoside (4) (4.9 ± 0.4), and tutin diglycoside (5) (4.9 ± 0.1) in one toxic honey. The ratios of 4 and 5 to tutin varied widely in other tutin-containing honeys. The glycosidation of tutin may represent detoxification by one or both of the insects involved in the food chain from plant to honey. PMID:25993882

  7. Minor diterpene glycosides from the leaves of Stevia rebaudiana.

    PubMed

    Ibrahim, Mohamed A; Rodenburg, Douglas L; Alves, Kamilla; Fronczek, Frank R; McChesney, James D; Wu, Chongming; Nettles, Brian J; Venkataraman, Sylesh K; Jaksch, Frank

    2014-05-23

    Two new diterpene glycosides in addition to five known glycosides have been isolated from a commercial extract of the leaves of Stevia rebaudiana. Compound 1 (rebaudioside KA) was shown to be 13-[(O-β-d-glucopyranosyl)oxy]ent-kaur-16-en-19-oic acid 2-O-β-d-glucopyranosyl-β-d-glucopyranosyl ester and compound 2, 12-α-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy]ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester. Five additional known compounds were identified, rebaudioside E, rebaudioside M, rebaudioside N, rebaudioside O, and stevioside, respectively. Enzymatic hydrolysis of stevioside afforded the known ent-kaurane aglycone 13-hydroxy-ent-kaur-16-en-19-oic acid (steviol) (3). The isolated metabolite 1 possesses the ent-kaurane aglycone steviol (3), while compound 2 represents the first example of the isomeric diterpene 12-α-hydroxy-ent-kaur-16-en-19-oic acid existing as a glycoside in S. rebaudiana. The structures of the isolated metabolites 1 and 2 were determined based on comprehensive 1D- and 2D-NMR (COSY, HSQC, and HMBC) studies. A high-quality crystal of compound 3 has formed, which allowed the acquisition of X-ray diffraction data that confirmed its structure. The structural similarities between the new metabolites and the commercially available stevioside sweeteners suggest the newly isolated metabolites should be examined for their organoleptic properties. Accordingly rebaudiosides E, M, N, O, and KA have been isolated in greater than gram quantities. PMID:24758242

  8. Acylated flavonol glycosides from the forage legume, Onobrychis viciifolia (sainfoin).

    PubMed

    Veitch, Nigel C; Regos, Ionela; Kite, Geoffrey C; Treutter, Dieter

    2011-04-01

    Ten acylated flavonol glycosides were isolated from aqueous acetone extracts of the aerial parts of the forage legume, Onobrychis viciifolia, and their structures determined using spectroscopic methods. Among these were eight previously unreported examples which comprised either feruloylated or sinapoylated derivatives of 3-O-di- and 3-O-triglycosides of kaempferol (3,5,7,4'-tetrahydroxyflavone) or quercetin (3,5,7,3',4'-pentahydroxyflavone). The diglycosides were acylated at the primary Glc residue of O-α-Rhap(1→6)-β-Glcp (rutinose), whereas the triglycosides were acylated at the terminal Rha residues of the branched trisaccharides, O-α-Rhap(1→2)[α-Rhap(1→6)]-β-Galp or O-α-Rhap(1→2)[α-Rhap(1→6)]-β-Glcp. Identification of the primary 3-O-linked hexose residues as either Gal or Glc was carried out by negative ion electrospray and serial MS, and cryoprobe NMR spectroscopy. Analysis of UV and MS spectra of the acylated flavonol glycosides provided additional diagnostic features relevant to direct characterisation of these compounds in hyphenated analyses. Quantitative analysis of the acylated flavonol glycosides present in different aerial parts of sainfoin revealed that the highest concentrations were in mature leaflets. PMID:21292287

  9. Two new phenolic glycosides from the stems of Clematis parviloba.

    PubMed

    Yan, Li-hua; Xu, Li-zhen; Wang, Zhi-min; Zhang, Qi-wei; Yang, Shi-lin

    2010-12-01

    To study the chemical constituents of the stems of Clematis parviloba, six compounds were isolated from a 95% ethanol extract by using a combination of various chromatographic techniques including column chromatography over silica gel, ODS, Sephadex LH-20, and semi-preparative HPLC. Two new phenolic glycosides, 2-((E)-3-carboxybut-2-en-yl)-4-hydroxy-3-methyl-phenyl-O-beta-D-glucopyranoside (1) and 4'-hydroxy-phenol-beta-D-[6-O-(4"-hydroxy-3", 5"-dimethoxy-benzoate)] glucopyranoside (2) were isolated, together with a known phenolic glycoside, 4'-hydroxy-3'-methoxy-phenol-beta-D-[6-O-(4"-hydroxy-3", 5"-dimethoxy-benzoate)] glucopyranoside (3) as well as three known megastigmane glycosides, linarionoside A (4), linarionoside C (5), and staphylionoside K (6). Their structures were determined on the basis of spectroscopic analysis and chemical evidence. Among them, compounds 1 and 2 were named as clemaparvilosides A (1) and B (2), respectively, and compounds 3-6 were obtained from Clematis genus for the first time. PMID:21348422

  10. Glycosidically bound flavor compounds of cape gooseberry (Physalis peruviana L.).

    PubMed

    Mayorga, H; Knapp, H; Winterhalter, P; Duque, C

    2001-04-01

    The bound volatile fraction of cape gooseberry (Physalis peruviana L.) fruit harvested in Colombia has been examined by HRGC and HRGC-MS after enzymatic hydrolysis using a nonselective pectinase (Rohapect D5L). Forty bound volatiles could be identified, with 21 of them being reported for the first time in cape gooseberry. After preparative isolation of the glycosidic precursors on XAD-2 resin, purification by multilayer coil countercurrent chromatography and HPLC of the peracetylated glycosides were carried out. Structure elucidation by NMR, ESI-MS/MS, and optical rotation enabled the identification of (1S,2S)-1-phenylpropane-1,2-diol 2-O-beta-D-glucopyranoside (1) and p-menth-4(8)-ene-1,2-diol 1-O-alpha-L-arabinopyranosyl-(1-6)-beta-D-glucopyranoside (2). Both glycosides have been identified for the first time in nature. They could be considered as immediate precursors of 1-phenylpropane-1,2-diol and p-menth-4(8)-ene-1,2-diol, typical volatiles found in the fruit of cape gooseberry. PMID:11308344

  11. 4-Trifluoromethylumbelliferyl glycosides as new substrates for revealing diseases connected with hereditary deficiency of lysosome glycosidases.

    PubMed

    Karpova, E A; Voznyi YaV; Dudukina, T V; Tsvetkova, I V

    1991-08-01

    The following glycosides of 4-trifluoromethylumbelliferone: alpha-D-mannopyranoside, alpha-L-fucopyranoside, alpha-D-glucopyranoside, beta-D-glucopyranoside, alpha-D-galactopyranoside, beta-D-galactopyranoside, alpha-L-iduronide and beta-D-glucuronide were studied. 4-Trifluoromethylumbelliferyl glycosides were shown to be substrates for glycosidases. Some of them were cleaved even better than the corresponding methylumbelliferyl glycosides. 4-Trifluoromethylumbelliferyl glycosides were applied for revealing the corresponding enzyme deficiencies upon diagnosis of Gaucher and Hurler diseases as well as GM1 gangliosidosis and alpha-mannosidosis. 4-Trifluoromethylumbelliferone released after enzymatic hydrolysis of 4-trifluoromethylumbelliferyl glycosides exhibits more contrast yellow fluorescence in UV-light than the blue one of methylumbelliferone upon exposure of enzyme activity on solid supports. Therefore 4-trifluoromethylumbelliferyl glycosides are convenient substrates for revealing glycosidase activity directly in tissue samples, e.g. in placenta, and thus for fast prenatal diagnosis of lysosomal diseases. PMID:1781792

  12. MATE2 Mediates Vacuolar Sequestration of Flavonoid Glycosides and Glycoside Malonates in Medicago truncatula[C][W][OA

    PubMed Central

    Zhao, Jian; Huhman, David; Shadle, Gail; He, Xian-Zhi; Sumner, Lloyd W.; Tang, Yuhong; Dixon, Richard A.

    2011-01-01

    The majority of flavonoids, such as anthocyanins, proanthocyanidins, and isoflavones, are stored in the central vacuole, but the molecular basis of flavonoid transport is still poorly understood. Here, we report the functional characterization of a multidrug and toxin extrusion transporter (MATE2), from Medicago truncatula. MATE 2 is expressed primarily in leaves and flowers. Despite its high similarity to the epicatechin 3′-O-glucoside transporter MATE1, MATE2 cannot efficiently transport proanthocyanidin precursors. In contrast, MATE2 shows higher transport capacity for anthocyanins and lower efficiency for other flavonoid glycosides. Three malonyltransferases that are coexpressed with MATE2 were identified. The malonylated flavonoid glucosides generated by these malonyltransferases are more efficiently taken up into MATE2-containing membrane vesicles than are the parent glycosides. Malonylation increases both the affinity and transport efficiency of flavonoid glucosides for uptake by MATE2. Genetic loss of MATE2 function leads to the disappearance of leaf anthocyanin pigmentation and pale flower color as a result of drastic decreases in the levels of various flavonoids. However, some flavonoid glycoside malonates accumulate to higher levels in MATE2 knockouts than in wild-type controls. Deletion of MATE2 increases seed proanthocyanidin biosynthesis, presumably via redirection of metabolic flux from anthocyanin storage. PMID:21467581

  13. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon

    SciTech Connect

    Tyler, Ludmila; Bragg, Jennifer; Wu, Jiajie; Yang, Xiaohan; Tuskan, Gerald A; Vogel, John

    2010-01-01

    Background Glycoside hydrolases cleave the bond between a carbohydrate and another carbohydrate, a protein, lipid or other moiety. Genes encoding glycoside hydrolases are found in a wide range of organisms, from archea to animals, and are relatively abundant in plant genomes. In plants, these enzymes are involved in diverse processes, including starch metabolism, defense, and cell-wall remodeling. Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice), the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar). To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we annotated the glycoside hydrolase genes in the grasses Brachypodium distachyon (an emerging monocotyledonous model) and Sorghum bicolor (sorghum). We then compared the glycoside hydrolases across species, both at the whole-genome level and at the level of individual glycoside hydrolase families. Results We identified 356 glycoside hydrolase genes in Brachypodium and 404 in sorghum. The corresponding proteins fell into the same 34 families that are represented in rice, Arabidopsis, and poplar, helping to define a glycoside hydrolase family profile which may be common to flowering plants. Examination of individual glycoside hydrolase familes (GH5, GH13, GH18, GH19, GH28, and GH51) revealed both similarities and distinctions between monocots and dicots, as well as between species. Shared evolutionary histories appear to be modified by lineage-specific expansions or deletions. Within families, the Brachypodium and sorghum proteins generally cluster with those from other monocots. Conclusions This work provides the foundation for further comparative and functional analyses of plant glycoside hydrolases. Defining the Brachypodium glycoside hydrolases sets the stage for Brachypodium to be a monocot model for investigations of these enzymes and their diverse roles in planta. Insights

  14. Glycosides from marine sponges (Porifera, Demospongiae): structures, taxonomical distribution, biological activities and biological roles.

    PubMed

    Kalinin, Vladimir I; Ivanchina, Natalia V; Krasokhin, Vladimir B; Makarieva, Tatyana N; Stonik, Valentin A

    2012-08-01

    Literature data about glycosides from sponges (Porifera, Demospongiae) are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed. PMID:23015769

  15. Glycosides from Marine Sponges (Porifera, Demospongiae): Structures, Taxonomical Distribution, Biological Activities and Biological Roles

    PubMed Central

    Kalinin, Vladimir I.; Ivanchina, Natalia V.; Krasokhin, Vladimir B.; Makarieva, Tatyana N.; Stonik, Valentin A.

    2012-01-01

    Literature data about glycosides from sponges (Porifera, Demospongiae) are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed. PMID:23015769

  16. Cytotoxic and antifungal triterpene glycosides from the Patagonian sea cucumber Hemoiedema spectabilis.

    PubMed

    Chludil, Hugo D; Muniain, Claudia C; Seldes, Alicia M; Maier, Marta S

    2002-06-01

    Two new sulfated triterpene glycosides, hemoiedemosides A (1) and B (2), have been isolated from the Patagonian sea cucumber Hemoiedema spectabilis. Their structures have been established by a combination of spectroscopic analysis (NMR and FABMS) and chemical transformations. Both glycosides present the same aglycon and differ in the degree of sulfation of the tetrasaccharide chain. Hemoiedemoside B (2) is a new example of a small number of trisulfated triterpene glycosides from sea cucumbers belonging to the family Cucumariidae. Glycosides 1 and 2 exhibit considerable antifungal activity against the phytopathogenic fungus Cladosporium cucumerinum, while the semisynthetic desulfated derivative 1a is less active. PMID:12088428

  17. Tandem mass spectrometric fragmentation patterns of known and new steviol glycosides with structure proposals.

    PubMed

    Zimmermann, Benno F

    2011-06-15

    Stevia rebaudiana contains several steviol glycosides that have a sweet flavor. They are up to 450 times sweeter than sucrose, but some have an undesirable aftertaste. Up to 2010, ten different steviol glycosides have been described from the leaves or purified extracts of S. rebaudiana. In this paper, the tandem mass spectrometric fragmentation patterns of these ten compounds are compiled, along with a scheme for structural elucidation. This scheme is then applied to 12 steviol glycosides that have not yet been described. The proposed structures of five steviol glycosides have been confirmed by other authors. PMID:21594932

  18. Three new alkaloids and three new phenolic glycosides from Liparis odorata.

    PubMed

    Jiang, Piao; Liu, Hongdong; Xu, Xianghong; Liu, Bo; Zhang, Dongming; Lai, Xuewen; Zhu, Genghua; Xu, Peng; Li, Bin

    2015-12-01

    Three new alkaloids, liparis alkaloid A (1), B (2), C (3), and three new phenolic glycosides, liparis glycoside H (4), I (5), J (6), together with three known phenolic glycosides (7-9) were isolated from the whole plant of Liparis odorata. Their structures were characterized on the basis of extensive 1D-, 2D-NMR and HR-ESI-MS experiments. In addition, compounds 1-3 revealed hypolipidemic effects in the in vitro bioassays, and the ability to inhibit LPS-induced NO production of these isolated phenolic glycosides (4-9) was also evaluated. PMID:26481137

  19. Flavonoid glycoside: a new inhibitor of eukaryotic DNA polymerase alpha and a new carrier for inhibitor-affinity chromatography.

    PubMed

    Mizushina, Yoshiyuki; Ishidoh, Tomomi; Kamisuki, Shinji; Nakazawa, Satoshi; Takemura, Masaharu; Sugawara, Fumio; Yoshida, Hiromi; Sakaguchi, Kengo

    2003-02-01

    Two flavonoid glycosides, kaempferol 3-O-(6"-acetyl)-beta-glucopyranoside (KAG) and quercetin 3-O-(6"-acetyl)-beta-glucopyranoside (QAG), were found to be inhibitors of eukaryotic DNA polymerases from a Japanese vegetable, Petasites japonicus. These compounds inhibited the activities of mammalian replicative DNA polymerases (i.e., pol alpha, delta, and epsilon), but not other pol beta, eta, kappa, and lambda activities. KAG was a stronger inhibitor and more selective to pol alpha than QAG. The IC(50) values of KAG for pol alpha, delta, and epsilon were 41, 164, and 127 microM, respectively. The pol alpha inhibition by KAG was non-competitive with respect to both the DNA template-primer and the dNTP substrate. KAG and QAG did not influence the activities of prokaryotic DNA polymerases or other mammalian DNA metabolic enzymes such as human immunodeficiency virus type 1 reverse transcriptase, human telomerase, human DNA topoisomerase I and II, T7 RNA polymerase, and bovine deoxyribonuclease I. Therefore, we concluded that these flavonoid glycosides are moderate replicative DNA polymerase inhibitors leaning more relatively to pol alpha, and could be used as chromatographic carriers to purify the DNA polymerases rather than cytotoxic agents. We then made a KAG-conjugated column such as the epoxy-activated Sepharose 6B. In the column, pol alpha was selectively adsorbed and eluted. PMID:12565887

  20. Vasectomy reversal.

    PubMed

    Belker, A M

    1987-02-01

    A vasovasostomy may be performed on an outpatient basis with local anesthesia, but also may be performed on an outpatient basis with epidural or general anesthesia. Local anesthesia is preferred by most of my patients, the majority of whom choose this technique. With proper preoperative and intraoperative sedation, patients sleep lightly through most of the procedure. Because of the length of time often required for bilateral microsurgical vasoepididymostomy, epidural or general anesthesia and overnight hospitalization are usually necessary. Factors influencing the preoperative choice for vasovasostomy or vasoepididymostomy in patients undergoing vasectomy reversal are considered. The preoperative planned choice of vasovasostomy or vasoepididymostomy for patients having vasectomy reversal described herein does not have the support of all urologists who regularly perform these procedures. My present approach has evolved as the data reported in Tables 1 and 2 have become available, but it may change as new information is evaluated. However, it offers a logical method for planning choices of anesthesia and inpatient or outpatient status for patients undergoing vasectomy reversal procedures. PMID:3811050

  1. Active Site and Laminarin Binding in Glycoside Hydrolase Family 55*

    PubMed Central

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; Udell, Hannah S.; Yik, Eric J.; Bergeman, Lai F.; Fox, Brian G.

    2015-01-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100–10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  2. Active site and laminarin binding in glycoside hydrolase family 55.

    PubMed

    Bianchetti, Christopher M; Takasuka, Taichi E; Deutsch, Sam; Udell, Hannah S; Yik, Eric J; Bergeman, Lai F; Fox, Brian G

    2015-05-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100-10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  3. A new iridoid glycoside from the roots of Dipsacus asper.

    PubMed

    Ji, De; Zhang, Chunfeng; Li, Jingzhi; Yang, Haowei; Shen, Jingyang; Yang, Zhonglin

    2012-01-01

    A new iridoid glycoside, named loganic acid ethyl ester (1), together with five known compounds: chlorogenic acid (2), caffeic acid (3), loganin (4), cantleyoside (5) and syringaresinol-4',4''-O-bis-β-D-glucoside (6) were isolated from the roots of Dipsacus asper. The structure of compound 1 was elucidated on the basis of detailed spectroscopic analyses. Lignan is isolated from Dipsacaceae species for the first time. Compounds 1, 4 and 5 had moderate neuroprotective effects against the Aβ₂₅₋₃₅ induced cell death in PC12 cells. PMID:22306831

  4. New Lignans and Iridoid Glycosides from Dipsacus asper Wall.

    PubMed

    Sun, Xinguang; Ma, Guoxu; Zhang, Dawei; Huang, Wenhua; Ding, Gang; Hu, Huagang; Tu, Guangzhong; Guo, Baolin

    2015-01-01

    Six new compounds, including four new lignans, dipsalignan A (1), B-D (3-5), and two new bis-iridoid glycoside dimmers, dipsanosides M (7) and N (8), together with two known compounds (2) and (6), have been isolated from the roots of Dipsacus asper Wall. Their structures were established on the basis of spectroscopic data (MS, 1D, 2D NMR, and CD) and chemical methods. All the isolated compounds were tested against human immunodeficiency virus-1 (HIV-1) integrase inhibition activities, and only compounds 1, 2, 7, and 8 displayed weak activities. PMID:25635380

  5. A new cucurbitacin glycoside from Kageneckia oblonga (Rosaceae).

    PubMed

    Muñoz, O; Delporte, C; Backhouse, N; Erazo, S; Negrete, R; Maldonado, S; López-Pérez, J L; San Feliciano, A

    2000-01-01

    A novel cucurbitacin glycoside has been isolated from aerial parts of Kageneckia oblonga R. et P. and shown to be 3beta-(beta-D-glucosyloxy)-16alpha,23alpha-epoxycuc urbita-5,24-dien-11-one. The structure was established by usual spectroscopic and two-dimensional (2D) NMR techniques. This compound has found to be nontoxic when tested in-vivo cell culture assays. In previous investigations we reported 23,24-dihydrocucurbitacin F and prunasine. This was the first report on cucurbitacins from the genus Kageneckia (Rosaceae). PMID:10817201

  6. Synthesis and evaluation of bibenzyl glycosides as potent tyrosinase inhibitors.

    PubMed

    Tajima, Reiko; Oozeki, Hiromi; Muraoka, Seiichi; Tanaka, Saori; Motegi, Yukari; Nihei, Hiroyuki; Yamada, Yoichi; Masuoka, Noriyoshi; Nihei, Ken-ichi

    2011-04-01

    Bibenzyl glycosides 1-6 were synthesized from 2,4-dihydoxybenzaldehyde and xylose, glucose, cellobiose or maltose. The key steps in the synthesis were the Wittig reaction and trichloroacetimidate glycosylation. Tests for tyrosinase inhibitory activity showed that all were significantly active, indicating that they are unique hydrophilic tyrosinase inhibitors. Bibenzyl xyloside 2 is a particularly potent inhibitor (IC(50) = 0.43 μM, 17 times higher than that of kojic acid). These results suggest that the hydrophilic cavity of tyrosinase might accommodate the bulky carbohydrate on the bibenzyl scaffold. PMID:21334791

  7. A new pregnane glycoside from Gomphocarpus fruticosus growing in Egypt.

    PubMed

    Marzouk, Amani M; Osman, Samir M; Gohar, Ahmed A

    2016-05-01

    Phytochemical investigation of Gomphocarpus fruticosus (L.) Ait. of Egyptian origin afforded the new pregnane glycoside lineolon-3-O-[β-D-oleandropyranosyl-(1-4)-β-D-cymaropyranosyl-(1-4)-β-D-cymaropyranoside], along with six known compounds. The structures of the isolated compounds were elucidated on the basis of extensive spectroscopic evidences derived from 1D, 2D NMR experiments, mass spectrometry and by comparing their physical and spectroscopic data to literature. These included the triterpenoids 3β-taraxerol, 3β-taraxerol acetate and betulinic acid, which are identified for the first time in G. fruticosus and the cardenolides uzarigenin, gomphoside and calotropin. PMID:26595507

  8. Two new flavonoid glycosides from Semen Ziziphi Spinosae.

    PubMed

    Zhang, Lin; Xu, Zhi-Lin; Wu, Chun-Fu; Yang, Jing-Yu; Kano, Yoshihiro; Yuan, Dan

    2012-01-01

    Two novel flavonoid glycosides, 6"'-dihydrophaseoylspinosin (1) and 6″,6"'-diferuloylspinosin (2), were isolated from the MeOH extract of Semen Ziziphi Spinosae, together with six known flavonoids, isovitexin-2″-O-β-(6-O-E-feruloyl)glucopyranoside (3), spinosin (4), isospinosin (5), 6"'-feruloylspinosin (6), swertisin (7), and isovitexin-2″-O-β-d-glucopyranoside (8). The structures of 1 and 2 were elucidated by spectroscopic methods including UV, IR, ESI-TOF-MS, 1D NMR, and 2D NMR experiments. PMID:22296152

  9. Bioactive Iridoid Glycosides from the Whole Plants of Rehmannia chingii.

    PubMed

    Liu, Yan-Fei; Shi, Guo-Ru; Wang, Xin; Zhang, Chun-Lei; Wang, Yan; Chen, Ruo-Yun; Yu, De-Quan

    2016-02-26

    Nine new iridoid glycosides, rehmachingiiosides A-I (1-9), together with 16 known analogues, were isolated from the whole plants of Rehmannia chingii. The structures of compounds 1-9 were elucidated on the basis of spectroscopic data analysis and from chemical evidence. Furthermore, in two vitro assays, compounds 5 and 10 showed an inhibitory effect on LPS-induced NO production with IC50 values of 2.5 and 7.3 μM, and compounds 4, 6, and 10-12 (when evaluated at 10 μM) exhibited evidence of hepatoprotective effects against APAP-induced HepG2 cell damage. PMID:26859776

  10. Two new glycosides from the fruits of Morinda citrifolia L.

    PubMed

    Hu, Ming-Xu; Zhang, Hong-Cai; Wang, Yu; Liu, Shu-Min; Liu, Li

    2012-01-01

    To study the chemical constituents of the fruits of noni (Morinda citrifolia L.), and find novel compounds, an n-butanol extract of the ethanol soluble fraction was subjected to repeated silica gel and ODS column chromatography and HPLC. Two new glycosides were isolated and their structures elucidated by NMR and HRFAB-MS spectrometry as (2E,4E,7Z)-deca-2,4,7-trienoate-2-O-β-D-glucopyranosyl-β-D-glucopyranoside and amyl-1-O-β-D-apio-furanosyl-1,6-O-β-D-glucopyranoside, respectively. PMID:23103531

  11. Flavonoid glycosides from Byrsocarpus coccineus leaves. Schum and Thonn (Connaraceae).

    PubMed

    Ahmadu, A A; Hassan, H S; Abubakar, M U; Akpulu, I N

    2007-01-01

    The bioactive ethyl acetate and N-butanol soluble parts of an ethanolic extract of Byrsocarpus coccineus leaves was subjected to column chromatography over silica gel G (60-120 microns) and repeated purification of the flavonoid rich fraction over sephadex LH-20 eluted with methanol led to the isolation of three flavonoid glycosides identified as quercetin 3-O-alpha-arabinoside (I), quercetin (II) and quercetin 3-beta-D-glucoside. Their structures were elucidated by (1)H and (13)C-NMR data and are reported here for the first time in this plant. PMID:20161886

  12. Additional new minor cucurbitane glycosides from Siraitia grosvenorii.

    PubMed

    Prakash, Indra; Chaturvedula, Venkata Sai Prakash

    2014-01-01

    Continuous phytochemical studies of the crude extract of Luo Han Guo (Siraitia grosvenorii) furnished three additional new cucurbitane triterpene glycosides, namely 11-deoxymogroside V, 11-deoxyisomogroside V, and 11-deoxymogroside VI. The structures of all the isolated compounds were characterized on the basis of extensive NMR and mass spectral data as well as hydrolysis studies. The complete ¹H- and ¹³C-NMR spectral assignments of the three unknown compounds are reported for the first time based on COSY, TOCSY, HSQC, and HMBC spectroscopic data. PMID:24662081

  13. Inhibition of amyloid β aggregation by acteoside, a phenylethanoid glycoside.

    PubMed

    Kurisu, Manami; Miyamae, Yusaku; Murakami, Kazuma; Han, Junkyu; Isoda, Hiroko; Irie, Kazuhiro; Shigemori, Hideyuki

    2013-01-01

    We examined the effects of acteoside (1a), which was isolated from Orobanche minor, and its derivatives on the aggregation of a 42-mer amyloid β protein (Aβ42) in our search for anti-amyloidogenic compounds for Alzheimer's disease (AD) therapy. Acteoside (1a) strongly inhibited the aggregation of Aβ42 in a dose-dependent manner. The structure-activity relationship for acteoside (1a) and related compounds suggests the catechol moiety of phenylethanoid glycosides to be essential for this inhibitory activity. PMID:23748773

  14. A first new antimalarial pregnane glycoside from Gongronema napalense

    PubMed Central

    Libman, Amey; Zhang, Hongjie; Ma, Cuiying; Southavong, Bounhong; Sydara, Kongmany; Bouamanivong, Somsanith; Tan, Ghee T.; Fong, Harry H. S.; Soejarto, D. Doel

    2010-01-01

    As a part of the UIC-based ICBG project in Laos, plants were collected based on ethnomedical interviews and evaluated for antimalarial activity. A CHCl3 extract from the vine of Gongronema napalense (Wall.) Decne. (Asclepiadaceae) showed promising anti-malarial activity while exhibiting low levels of cytotoxicity and was thus followed up with further fractionation and biological evaluation. Bioassay-guided fractionation led to the isolation of a new steroidal glycoside, gongroneside A, which showed antimalarial activity in vitro with an IC50 value of 1.60 and 1.39 μM against the Plasmodium falciparum D6 and W2 clones, respectively. PMID:23653676

  15. Reaction of Glyconitriles with Organometallic Reagents: Access to Acyl β-C-Glycosides.

    PubMed

    Guisot, Nicolas E S; Ella Obame, Idriss; Ireddy, Prathap; Nourry, Arnaud; Saluzzo, Christine; Dujardin, Gilles; Dubreuil, Didier; Pipelier, Muriel; Guillarme, Stéphane

    2016-03-18

    A new strategy for the synthesis of acyl β-C-glycosides is described. The reactivity of glyconitriles toward organometallic reagents such as organomagnesium or organolithium derivatives was studied, affording acyl β-C-glycosides in moderate to good yields. In this study, glycal formation was efficiently prevented by deprotonating the hydroxyl group in position 2 of the glyconitriles during the process. PMID:26926714

  16. Environment and Genotype Affect Sweetpotato Storage Root Periderm Resin Glycoside Content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resin glycosides are complex compounds composed primarily of fatty acids and sugars that contribute to allelopathic potential and pest resistance in sweetpotato. Total periderm resin glycoside (PRG) contents of 10 sweetpotato (Ipomoea batatas L.) clones grown in three different field trials was det...

  17. New cardenolide and acylated lignan glycosides from the aerial parts of Asclepias curassavica.

    PubMed

    Warashina, Tsutomu; Shikata, Kimiko; Miyase, Toshio; Fujii, Satoshi; Noro, Tadataka

    2008-08-01

    Three new cardenolide glycosides and six new acylated lignan glycosides were obtained along with nineteen known compounds from the aerial parts of Asclepias curassavica L. (Asclepiadaceae). The structure of each compound was determined based on interpretations of NMR and MS measurements and chemical evidence. PMID:18670118

  18. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice), the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar). To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we ann...

  19. Dalvelutinoside, a new isoflavone glycoside from the methanol extract of Dalbergia velutina roots.

    PubMed

    Kaennakam, Sutin; Siripong, Pongpun; Tip-Pyang, Santi

    2016-07-01

    A new isoflavone glycoside, dalvelutinoside (1), together with one known isoflavone (2) and five known isoflavone glycosides (3-7) were isolated from the methanol extract of the roots of Dalbergia velutina. Their structures were determined by spectroscopic analysis. All isolated compounds were evaluated for their cytotoxicity against KB and HeLa cell lines. PMID:26594823

  20. Two new nor-triterpene glycosides from peruvian "Uña de Gato" (Uncaria tomentosa).

    PubMed

    Kitajima, Mariko; Hashimoto, Ken-Ichiro; Yokoya, Masashi; Takayama, Hiromitsu; Sandoval, Manuel; Aimi, Norio

    2003-02-01

    Two new 27-nor-triterpene glycosides, tomentosides A (1) and B (2), were isolated from Peruvian "Uña de Gato" (cat's claw, plant of origin: Uncaria tomentosa), a traditional herbal medicine in Peru. Their structures were determined by spectroscopic analysis and chemical interconversions. This is the first report of naturally occurring pyroquinovic acid glycosides. PMID:12608878

  1. RP-HPLC analysis of seco-iridoid glycoside swertiamarin from different Swertia species.

    PubMed

    Kshirsagar, Parthraj R; Pai, Sandeep R; Nimbalkar, Mansingraj S; Gaikwad, Nikhil B

    2016-01-01

    Genus Swertia is valued for its great medicinal potential; mainly Swertia chirayita (Roxb. ex Fleming) H. Karst. is used in traditional medicine for a wide range of diseases. Seco-iridoid glycosides like swertiamarin is referred with enormous pharmacological potentials. The aim of the study was to identify a suitable substitute to S. chirayita by quantifying seco-iridoid swertiamarin from five different Swertia species endemic to the Western Ghats. The reverse-phase high-performance liquid chromatography diode array detector analyses were performed and chromatographic separation was achieved on a Lichrospher 100, C18e (5 µm) column (250-4.6 mm). A mobile phase consisting of acetonitrile and water (25:75) was used for separation. Results indicated that the concentration of the marker compound has been found to vary largely between and within the species from different localities. The content of swertiamarin was the highest in S. chirayita compared to the other species studied herein, advocating the use of Swertia minor as an alternate source to S. chirayita. PMID:26299409

  2. Protective effects of geniposide against Tripterygium glycosides (TG)-induced liver injury and its mechanisms.

    PubMed

    Wang, Junming; Miao, Mingsan; Qu, Lingbo; Cui, Ying; Zhang, Yueyue

    2016-02-01

    Tripterygium glycosides (TG) are commonly used for basic medicine in curing rheumatoid arthritis but with a high incidence of liver injury. Geniposide (GP) has broad and diverse bioactivities, but until now it is still unknown whether GP can protect against TG-induced liver injury. This study, for the first time, observed the possible protection of GP against TG-induced liver injury in mice and its mechanisms underlying. Oral administration of TG (270 mg/kg) induced significant elevation in the levels of serum alanine / aspartate transaminase (ALT/AST), hepatic malondialdehyde (MDA) and pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) (all P < 0.01). On the other hand, remarkably decreased biomarkers, including hepatic glutathione (GSH) level, activities of glutathione transferase (GST), glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT), and anti-inflammatory cytokine interleukin (IL)-10, were observed following TG exposure (all P < 0.01). Nevertheless, all of these phenotypes were evidently reversed by pre-administration of GP for 7 continuous days. Further analysis showed that the mRNA expression of hepatic growth factor-beta1 (TGF-β1), one of tissue repair and regeneration cytokines, was enhanced by GP. Taken together, the current research suggests that GP protects against TG-induced liver injury in mice probably involved during attenuating oxidative stress and inflammation, and promoting tissue repair and regeneration. PMID:26763404

  3. Resin glycosides from Ipomoea wolcottiana as modulators of the multidrug resistance phenotype in vitro.

    PubMed

    Corona-Castañeda, Berenice; Rosas-Ramírez, Daniel; Castañeda-Gómez, Jhon; Aparicio-Cuevas, Manuel Alejandro; Fragoso-Serrano, Mabel; Figueroa-González, Gabriela; Pereda-Miranda, Rogelio

    2016-03-01

    Recycling liquid chromatography was used for the isolation and purification of resin glycosides from the CHCl3-soluble extracts prepared using flowers of Ipomoea wolcottiana Rose var. wolcottiana. Bioassay-guided fractionation, using modulation of both antibiotic activity against multidrug-resistant strains of Gram-negative bacteria and vinblastine susceptibility in breast carcinoma cells, was used to isolate the active glycolipids as modulators of the multidrug resistance phenotype. An ester-type dimer, wolcottine I, one tetra- and three pentasaccharides, wolcottinosides I-IV, in addition to the known intrapilosin VII, were characterized by NMR spectroscopy and mass spectrometry. In vitro assays established that none of these metabolites displayed antibacterial activity (MIC>512 μg/mL) against multidrug-resistant strains of Escherichia coli, and two nosocomial pathogens: Salmonella enterica serovar Typhi and Shigella flexneri; however, when tested (25 μg/mL) in combination with tetracycline, kanamycin or chloramphenicol, they exerted a potentiation effect of the antibiotic susceptibility up to eightfold (64 μg/mL from 512 μg/mL). It was also determined that these non-cytotoxic (CI50>8.68 μM) agents modulated vinblastine susceptibility at 25 μg/mL in MFC-7/Vin(+) cells with a reversal factor (RFMCF-7/Vin(+)) of 2-130 fold. PMID:26774597

  4. Functions, structures, and applications of cellobiose 2-epimerase and glycoside hydrolase family 130 mannoside phosphorylases.

    PubMed

    Saburi, Wataru

    2016-07-01

    Carbohydrate isomerases/epimerases are essential in carbohydrate metabolism, and have great potential in industrial carbohydrate conversion. Cellobiose 2-epimerase (CE) reversibly epimerizes the reducing end d-glucose residue of β-(1→4)-linked disaccharides to d-mannose residue. CE shares catalytic machinery with monosaccharide isomerases and epimerases having an (α/α)6-barrel catalytic domain. Two histidine residues act as general acid and base catalysts in the proton abstraction and addition mechanism. β-Mannoside hydrolase and 4-O-β-d-mannosyl-d-glucose phosphorylase (MGP) were found as neighboring genes of CE, meaning that CE is involved in β-mannan metabolism, where it epimerizes β-d-mannopyranosyl-(1→4)-d-mannose to β-d-mannopyranosyl-(1→4)-d-glucose for further phosphorolysis. MGPs form glycoside hydrolase family 130 (GH130) together with other β-mannoside phosphorylases and hydrolases. Structural analysis of GH130 enzymes revealed an unusual catalytic mechanism involving a proton relay and the molecular basis for substrate and reaction specificities. Epilactose, efficiently produced from lactose using CE, has superior physiological functions as a prebiotic oligosaccharide. PMID:27031293

  5. Interaction of holothurian triterpene glycoside with biomembranes of mouse immune cells.

    PubMed

    Pislyagin, E A; Gladkikh, R V; Kapustina, I I; Kim, N Yu; Shevchenko, V P; Nagaev, I Yu; Avilov, S A; Aminin, D L

    2012-09-01

    The in vitro interactions between triterpene glycoside, cucumarioside A(2)-2, isolated from the Far-Eastern holothurian Cucumaria japonica, and mouse splenocyte and peritoneal macrophage biomembranes were studied. Multiple experimental approaches were employed, including determination of biomembrane microviscosity, membrane potential and Ca(2+) signaling, and radioligand binding assays. Cucumarioside A(2)-2 exhibited strong cytotoxic effect in the micromolar range of concentrations and showed pronounced immunomodulatory activity in the nanomolar concentration range. It was established that the cucumarioside A(2)-2 effectively interacted with immune cells and increased the cellular biomembrane microviscosity. This interaction led to a dose-dependent reversible shift in cellular membrane potential and temporary biomembrane depolarization; and an increase in [Ca(2+)](i) in the cytoplasm. It is suggested that there are at least two binding sites for [(3)H]-cucumarioside A(2)-2 on cellular membranes corresponding to different biomembrane components: a low affinity site match to membrane cholesterol that is responsible for the cytotoxic properties, and a high affinity site corresponding to a hypothetical receptor that is responsible for immunostimulation. PMID:22683181

  6. Allosteric indicator displacement enzyme assay for a cyanogenic glycoside.

    PubMed

    Jose, D Amilan; Elstner, Martin; Schiller, Alexander

    2013-10-18

    Indicator displacement assays (IDAs) represent an elegant approach in supramolecular analytical chemistry. Herein, we report a chemical biosensor for the selective detection of the cyanogenic glycoside amygdalin in aqueous solution. The hybrid sensor consists of the enzyme β-glucosidase and a boronic acid appended viologen together with a fluorescent reporter dye. β-Glucosidase degrades the cyanogenic glycoside amygdalin into hydrogen cyanide, glucose, and benzaldehyde. Only the released cyanide binds at the allosteric site of the receptor (boronic acid) thereby inducing changes in the affinity of a formerly bound fluorescent indicator dye at the other side of the receptor. Thus, the sensing probe performs as allosteric indicator displacement assay (AIDA) for cyanide in water. Interference studies with inorganic anions and glucose revealed that cyanide is solely responsible for the change in the fluorescent signal. DFT calculations on a model compound revealed a 1:1 binding ratio of the boronic acid and cyanide ion. The fluorescent enzyme assay for β-glucosidase uses amygdalin as natural substrate and allows measuring Michaelis-Menten kinetics in microtiter plates. The allosteric indicator displacement assay (AIDA) probe can also be used to detect cyanide traces in commercial amygdalin samples. PMID:24123550

  7. Syntheses of alpha-tocopheryl glycosides by glucosidases.

    PubMed

    Ponrasu, Thangavel; Charles, Rajachristu Einstein; Sivakumar, Ramaiah; Divakar, Soundar

    2008-08-01

    Enzymatic syntheses of water-soluble alpha-tocopheryl glycosides were carried out in di-isopropyl ether using amyloglucosidase from Rhizopus mold or beta-glucosidase isolated from sweet almond. Optimum conditions for the amyloglucosidase were: alpha-tocopherol 0.5 mmol, D-glucose 0.5 mmol, 400 activity unit (AU) amyloglucosidase, 0.2 mM pH 7 phosphate buffer and 72 h; and for the beta-glucosidase: alpha-tocopherol 0.5 mmol, D: -glucose 0.5 mmol, 110 AU beta-glucosidase, 0.1 mM pH 6 phosphate buffer and 72 h. Out of 11 carbohydrates employed, amyloglucosidase reacted only with D-glucose to give 50% of 6-O-(alpha-D-glucopyranosyl)alpha-tocopherol. However, the beta-glucosidase gave 6-O-(beta-D-glucopyranosyl)alpha-tocopherol, 6-O-(alpha-D-galactopyranosyl)alpha-tocopherol, 6-O-(beta-D-galactopyranosyl)alpha-tocopherol, 6-O-(alpha-D-mannopyranosyl)alpha-tocopherol and 6-O-(beta-D-mannopyranosyl)alpha-tocopherol in yields ranging from 10-25%. Water solubility of 6-O-(alpha-D-glucopyranosyl)alpha-tocopherol was 26 g/l at 25 degrees C. alpha-Tocopheryl glycosides showed antioxidant activities with IC(50) values from 0.5 to 1 mM and angiotensin-converting enzyme (ACE) inhibitory activity with IC(50) values from 1.3 to 2.6 mM. PMID:18368294

  8. A new glycosidic flavonoid from Jwarhar mahakashay (antipyretic) Ayurvedic preparation

    PubMed Central

    Gupta, Mradu; Shaw, B. P.; Mukherjee, A.

    2010-01-01

    The aqueous extract of Jwarhar mahakashay Ayurvedic preparation (from the roots of Hemidesmus indicus R. Br., Rubia cordifolia L., Cissampelos pareira L.; fruits of Terminalia chebula Retz., Emblica officinalis Gaertn., Terminalia bellirica Roxb., Vitis vinifera L., Grewia asiatica L., Salvadora persica L. and granules of Saccharum officinarum L.) has been used as a traditional antipyretic. Experimental studies confirmed its antipyretic–analgesic effect with very low ulcerogenicity and toxicity. Flavonoids, glycosides and tannins were later found to be present in the extract. Detailed chemical investigations were undertaken after hydrolysis of extract using spectroscopic and chromatography methods to determine its active chemical constituent. UV-Visible spectroscopy showed absorbance maxima at 220 and 276 nm, while fourier transform infra-red investigations indicated an end carboxylic O–H structure at 2940 cm−1 suggesting the presence of glycoside-linked flavonoids. Thin layer chromatography and high performance liquid chromatography also confirmed the possibility of at least one major and two minor compounds in this abstract. Detailed examination using gas chromatography-mass spectrometry led to the identification of the principal component as 2-(1-oxopropyl)-benzoic acid, which is quite similar to the active compound found in the standard drug Aspirin (2-acetyl-oxybenzoic acid). PMID:20814525

  9. Cycloartane and oleanane-type glycosides from Astragalus pennatulus.

    PubMed

    Un, Rabia; Horo, Ibrahim; Masullo, Milena; Falco, Antonia; Senol, Serdar G; Piacente, Sonia; Alankuş-Çalıskan, Özgen

    2016-03-01

    Four new cycloartane and one new oleanane-type glycosides were isolated from Astragalus pennatulus along with five known cycloartane-type glycosides. The structures of the new compounds were established as 3-O-β-D-xylopyranosyl-6-O-β-D-glucopyranosyl-3β,6α,16β-trihydroxy-24-oxo-20(R),25-epoxycycloartane (1), 3-O-[β-D-glucuronopyranosyl-(1 → 2)-β-D-xylopyranosyl]-3β,16β,24α-trihydroxy-20(R),25-epoxycycloartane (2), 3-O-[β-D-glucuronopyranosyl-(1 → 2)-β-D-xylopyranosyl]-3β,16β,25-trihydroxy-20(R),24(S)-epoxycycloartane (3), 3,25-di-O-β-D-glucopyranosyl-6-O-β-D-xylopyranosyl-3β,6α,16β,25-tetrahydroxy-20(R),24(S)-epoxycycloartane (4), 29-O-α-L-rhamnopyranosyl-abrisapogenol B (5) by 1D and 2D-NMR experiments along with ESIMS and HRMS analyses. The aglycone of compound 1, 3β,6α,16β-trihydroxy-24-oxo-20(R),25-epoxycycloartane, is reported for the first time. The cytotoxic activity of the isolated compounds was evaluated against three cancer cell lines including A549 (human lung adenocarcinoma), A375 (human melanoma) and DeFew (human B lymphoma) cells. None of the tested compounds caused a significant reduction of the cell number. PMID:26804373

  10. New Glycosides and Trypanocidal Metabolites from Vangueria edulis

    PubMed Central

    Mohamed, Shaymaa M. M.; Elokely, Khaled M.; Bachkeet, Enaam Y.; Bayoumi, Soad A. L.; Carnevale, Vincenzo; Klein, Michael L.; Cutler, Stephen J.

    2016-01-01

    A new iridoid glucoside, 10-methoxy apodanthoside (1), and a new monoterpene glycoside, (3S,6S)-cis linalool-3,7-oxide O-β-D-glucopyranosyl-(1″→5′)-β-D-xylofuranoside (2), were isolated from V. edulis (Rubiaceae), along with eighteen known compounds (3–20), including monoterpenes, iridoid glycosides, and a lignin, which were encountered for the first time in the genus Vangueria,. The structural elucidation of the isolates was based on the analysis of spectroscopic (1D and 2D NMR) and HR-ESI-MS data. Detailed stereochemical studies of 1 and related iridoid glucosides (compounds 3, 4 and 8) were made by matching the calculated ECD peaks with the experimental ones. All isolates were tested for their antiprotozoal, antifungal, and antiplasmodial activities. Compounds 9, 15 and 16 showed good trypanocidal activities against Trypanosoma brucei brucei with IC50 values of 8.18, 9.02 and 7.80 μg/mL, respectively and IC90 values of >10, >10 and 9.76 μg/mL, respectively. Compound 16 showed a moderate activity against Candida glabrata with an IC50 value of 8.66 μg/mL. Compound 20 showed a weak antiplasmodial activity against chloroquine-sensitive (D6) and resistant (W2) Plasmodium falciparum with IC50 values of 3.29 (SI, >1.4) and 4.53 (SI, >1) μg/mL, respectively. PMID:26749819

  11. Angling for Uniqueness in Enzymatic Preparation of Glycosides

    PubMed Central

    Trincone, Antonio

    2013-01-01

    In the early days of biocatalysis, limitations of an enzyme modeled the enzymatic applications; nowadays the enzyme can be engineered to be suitable for the process requirements. This is a general bird’s-eye view and as such cannot be specific for articulated situations found in different classes of enzymes or for selected enzymatic processes. As far as the enzymatic preparation of glycosides is concerned, recent scientific literature is awash with examples of uniqueness related to the features of the biocatalyst (yield, substrate specificity, regioselectivity, and resistance to a particular reaction condition). The invention of glycosynthases is just one of the aspects that has thrust forward the research in this field. Protein engineering, metagenomics and reaction engineering have led to the discovery of an expanding number of novel enzymes and to the setting up of new bio-based processes for the preparation of glycosides. In this review, new examples from the last decade are compiled with attention both to cases in which naturally present, as well as genetically inserted, characteristics of the catalysts make them attractive for biocatalysis. PMID:24970171

  12. Steviol Glycosides Modulate Glucose Transport in Different Cell Types

    PubMed Central

    Rizzo, Benedetta; Zambonin, Laura; Leoncini, Emanuela; Vieceli Dalla Sega, Francesco; Prata, Cecilia; Fiorentini, Diana; Hrelia, Silvana

    2013-01-01

    Extracts from Stevia rebaudiana Bertoni, a plant native to Central and South America, have been used as a sweetener since ancient times. Currently, Stevia extracts are largely used as a noncaloric high-potency biosweetener alternative to sugar, due to the growing incidence of type 2 diabetes mellitus, obesity, and metabolic disorders worldwide. Despite the large number of studies on Stevia and steviol glycosides in vivo, little is reported concerning the cellular and molecular mechanisms underpinning the beneficial effects on human health. The effect of four commercial Stevia extracts on glucose transport activity was evaluated in HL-60 human leukaemia and in SH-SY5Y human neuroblastoma cells. The extracts were able to enhance glucose uptake in both cellular lines, as efficiently as insulin. Our data suggest that steviol glycosides could act by modulating GLUT translocation through the PI3K/Akt pathway since treatments with both insulin and Stevia extracts increased the phosphorylation of PI3K and Akt. Furthermore, Stevia extracts were able to revert the effect of the reduction of glucose uptake caused by methylglyoxal, an inhibitor of the insulin receptor/PI3K/Akt pathway. These results corroborate the hypothesis that Stevia extracts could mimic insulin effects modulating PI3K/Akt pathway. PMID:24327825

  13. Flacourtosides A-F, phenolic glycosides isolated from Flacourtia ramontchi.

    PubMed

    Bourjot, Mélanie; Leyssen, Pieter; Eydoux, Cécilia; Guillemot, Jean-Claude; Canard, Bruno; Rasoanaivo, Philippe; Guéritte, Françoise; Litaudon, Marc

    2012-04-27

    In an effort to identify novel inhibitors of chikungunya (CHIKV) and dengue (DENV) virus replication, a systematic study with 820 ethyl acetate extracts of madagascan plants was performed in a virus-cell-based assay for CHIKV, and a DENV NS5 RNA-dependent RNA polymerase (RdRp) assay. The extract obtained from the stem bark of Flacourtia ramontchi was selected for its significant activity in both assays. Six new phenolic glycosides, named flacourtosides A-F (1-6), phenolic glycosides itoside H, xylosmin, scolochinenoside D, and poliothrysoside, and betulinic acid 3β-caffeate were obtained using the bioassay-guided isolation process. Their structures were elucidated by comprehensive analyses of NMR spectroscopic and mass spectrometric data. Even though several extracts and fractions showed significant selective antiviral activity in the CHIKV virus-cell-based assay, none of the purified compounds did. However, in the DENV RNA polymerase assay, significant inhibition was observed with betulinic acid 3β-caffeate (IC(50) = 0.85 ± 0.1 μM) and to a lesser extent for the flacourtosides A and E (1 and 5, respectively), and scolochinenoside D (IC(50) values ~10 μM). PMID:22439591

  14. Glycosides from the stem bark of Fraxinus sieboldiana.

    PubMed

    Lin, Sheng; Wang, Sujuan; Liu, Mingtao; Gan, Maoluo; Li, Shuai; Yang, Yongchun; Wang, Yinghong; He, Wenyi; Shi, Jiangong

    2007-05-01

    A norditerpene glucopyranoside with a novel carbon skeleton (1), eight new aromatic glycosides (2-9), and 25 known glycosides have been isolated from a H2O-soluble portion of an ethanolic extract of the stem bark of Fraxinus sieboldiana. Their structures were determined by spectroscopic and chemical methods. Based on analysis of the NMR data of threo- and erythro-arylglycerols in different solvents, an application of Delta delta C8-C7 values to distinguish threo-arylglycerol and erythro-arylglycerol isomers was proposed. In the in vitro assays, compound 5 displayed TNF-alpha secretion inhibitory activity with an IC50 value of 1.6 microM, compound 6 showed antioxidative activity inhibiting Fe+2-cystine-induced rat liver microsomal lipid peroxidation with an IC50 value of 0.9 microM, and plantasioside (10) showed selective activity against the human colon cancer cell line (HCT-8) with an IC50 value of 3.4 microM. PMID:17461599

  15. Mass spectrometric imaging of flavonoid glycosides and biflavonoids in Ginkgo biloba L.

    PubMed

    Beck, Sebastian; Stengel, Julia

    2016-10-01

    Ginkgo biloba L. is known to be rich in flavonoids and flavonoid glycosides. However, the distribution within specific plant organs (e.g. within leaves) is not known. By using HPLC-MS and MS/MS we have identified a number of previously known G. biloba flavonoid glycosides and biflavonoids from leaves. Namely, kaempferol, quercetin, isorhamnetin, myricetin, laricitrin/mearnsetin and apigenin glycosides were identified. Furthermore, biflavonoids like ginkgetin/isoginkgetin were also detected. The application of MALDI mass spectrometric imaging, enabled the compilation of concentration profiles of flavonoid glycosides and biflavonoids in G. biloba L. leaves. Both, flavonoid glycosides and biflavonoids show a distinct distribution in leaf thin sections of G. biloba L. PMID:27233155

  16. Quantitation of sweet steviol glycosides by means of a HILIC-MS/MS-SIDA approach.

    PubMed

    Well, Caroline; Frank, Oliver; Hofmann, Thomas

    2013-11-27

    Meeting the rising consumer demand for natural food ingredients, steviol glycosides, the sweet principle of Stevia rebaudiana Bertoni (Bertoni), have recently been approved as food additives in the European Union. As regulatory constraints require sensitive methods to analyze the sweet-tasting steviol glycosides in foods and beverages, a HILIC-MS/MS method was developed enabling the accurate and reliable quantitation of the major steviol glycosides stevioside, rebaudiosides A-F, steviolbioside, rubusoside, and dulcoside A by using the corresponding deuterated 16,17-dihydrosteviol glycosides as suitable internal standards. This quantitation not only enables the analysis of the individual steviol glycosides in foods and beverages but also can support the optimization of breeding and postharvest downstream processing of Stevia plants to produce preferentially sweet and least bitter tasting Stevia extracts. PMID:24206531

  17. Application of an enyne metathesis/Diels-Alder cycloaddition sequence: a new versatile approach to the syntheses of C-aryl glycosides and spiro-C-aryl glycosides.

    PubMed

    Subrahmanyam, Ayyagari V; Palanichamy, Kalanidhi; Kaliappan, Krishna P

    2010-07-26

    An efficient approach for the synthesis of a variety of C-aryl and spiro-C-aryl glycosides is described. This diversity-oriented strategy employed here relies on a sequential enyne metathesis to generate the 1,3-diene moiety and Diels-Alder reaction with different dienophiles followed by aromatisation. Whereas cross-enyne metathesis with ethylene gas is used to install the 1,3-diene moiety at the anomeric centre for the synthesis of C-aryl glycosides, an intramolecular enyne metathesis on the sugar enyne is performed to generate the 1,3-diene moiety for the synthesis of spiro-C-aryl glycosides. Efforts to extend this strategy to the synthesis of the core structure of natural C-aryl glycoside gilvocarcin are also described. A combination of both C-aryl and spiro-C-aryl glycosides in the same moiety to combine the features thereof has also been accomplished. A tandem enyne metathesis/Diels-Alder reaction/aromatisation has also been attempted to directly access the C-aryl glycosides in one pot albeit in low yield. PMID:20549721

  18. DFT analysis of NMR scalar interactions across the glycosidic bond in DNA.

    PubMed

    Munzarová, Markéta L; Sklenár, Vladimír

    2003-03-26

    The relationship between the glycosidic torsion angle chi, the three-bond couplings (3)J(C2/4-H1') and (3)J(C6/8-H1'), and the one-bond coupling (1)J(C1'-H1') in deoxyribonucleosides and a number of uracil cyclo-nucleosides has been analyzed using density functional theory. The influence of the sugar pucker and the hydroxymethyl conformation has also been considered. The parameters of the Karplus relationships between the three-bond couplings and chi depend strongly on the aromatic base. (3)J(C2/4-H1') reveals different behavior for deoxyadenosine, deoxyguanosine, and deoxycytidine as compared to deoxythymidine and deoxyuridine. In the case of (3)J(C6/8-H1'), an opposite trans to cis ratio of couplings is obtained for pyrimidine nucleosides in contrast to purine nucleosides. The extremes of the Karplus curves are shifted by ca. 10 degrees with respect to syn and anti-periplanar orientations of the coupled nuclei. The change in the sugar pucker from S to N decreases (3)J(C2/4-H1') and (3)J(C6/8-H1'), while increasing (1)J(C1'-H1') for the syn rotamers, whereas all of the trends are reversed for the anti rotamers. The influence of the sugar pucker on (1)J(C1'-H1') is interpreted in terms of interactions between the n(O4'), sigma*(C1'-H1') orbitals. The (1)J(C1'-H1') are related to chi through a generalized Karplus relationship, which combines cos(chi) and cos(2)(chi) functions with mutually different phase shifts that implicitly accounts for a significant portion of the related sugar pucker effects. Most of theoretical (3)J(C2/4-H1') and (3)J(C6/8-H1') for uracil cyclo-nucleosides compare well with available experimental data. (3)J(C6/8-H1') couplings for all C2-bridged nucleosides are up to 3 Hz smaller than in the genuine nucleosides with the corresponding chi, revealing a nonlocal aspect of the spin-spin interactions across the glycosidic bond. Theoretical (1)J(C1'-H1') are underestimated with respect to the experiment by ca. 10% but reproduce the trends in (1)J

  19. Quantification of flavonol glycosides in Camellia sinensis by MRM mode of UPLC-QQQ-MS/MS.

    PubMed

    Wu, Yahui; Jiang, Xiaolan; Zhang, Shuxiang; Dai, Xinlong; Liu, Yajun; Tan, Huarong; Gao, Liping; Xia, Tao

    2016-04-01

    Phenolic compounds are major components of tea flavour, in which catechins and flavonol glycosides play important roles in the astringent taste of tea infusion. However, the flavonol glycosides are difficult to quantify because of the large variety, as well as the inefficient seperation on chromatography. In this paper, a total of 15 flavonol glycosides in the tea plant (Camellia sinensis) were identified by the high performance liquid chromatography (HPLC) coupled to a time-of-flight mass spectrometer (TOF-MS), and a quantitative method was established based on multiple reaction monitoring (MRM) mode of ultra-high performance liquid chromatography (UPLC) coupled to a triple quadrupole mass spectrometer (QQQ-MS/MS). It provided the limit of detection and quantification to the order of picogram, which was more sensitive than the HPLC detection of the order of nanogram. The relative standard deviations of the intra- and inter-day variations in retention time and signal intensity (peak area) of six analytes were less than 0.26% and 4%, respectively. The flavonol glycosides of four tea cultivars were relatively quantified using the signal intensity (peak area) of product ion, in which six flavonol glycosides were quantified by the authentic standards. The results showed that the flavonol mono-, di- and tri-glycoside mostly accumulated in young leaves of the four tea cultivars. Notably, the myricetin 3-O-galactoside was the major component among the six flavonol glycosides detected. PMID:26937589

  20. Hypotensive action of coumarin glycosides from Daucus carota.

    PubMed

    Gilani, A H; Shaheen, E; Saeed, S A; Bibi, S; Irfanullah; Sadiq, M; Faizi, S

    2000-10-01

    Daucus carota (carrot) has been used in traditional medicine to treat hypertension. Activity-directed fractionation of aerial parts of D. carota resulted in the isolation of two cumarin glycosides coded as DC-2 and DC-3. Intravenous administration of these compounds caused a dose-dependent (1-10 mg/kg) fall in arterial blood pressure in normotensive anaesthetised rats. In the in vitro studies, both compounds caused a dose-dependent (10-200 microg/ml) inhibitory effect on spontaneously beating guinea pig atria as well as on the K+ -induced contractions of rabbit aorta at similar concentrations. These results indicate that DC-2 and DC-3 may be acting through blockade of calcium channels and this effect may be responsible for the blood pressure lowering effect of the compounds observed in the in vivo studies. PMID:11081994

  1. Pregnane-type steroidal glycosides from Gymnema griffithii Craib.

    PubMed

    Srisurichan, Suphongphan; Puthong, Songchan; Pornpakakul, Surachai

    2014-10-01

    Eight pregnane-type steroidal glycosides substituted with ortho-acetate groups were isolated from the methanolic extract of the pericarp of Gymnema griffithii fruits, and named gymnemogriffithosides A-H. Their structures were determined by spectroscopic analysis (one and two dimensional nuclear magnetic resonance, high resolution electrospray ionization mass spectrometry and attenuated total reflectance-Fourier transformed infrared spectroscopy), while the absolute structure of the steroidal skeleton of one of these was additionally determined using Mosher's method. All compounds were evaluated for their in vitro (i) cytotoxic effects against five human tumor cell lines (BT 474, Chago, Hep-G2, KATO-III and SW620) and (ii) α-glucosidase inhibitory activity. PMID:25053002

  2. Uncommon Glycosidases for the Enzymatic Preparation of Glycosides

    PubMed Central

    Trincone, Antonio

    2015-01-01

    Most of the reports in literature dedicated to the use of glycosyl hydrolases for the preparation of glycosides are about gluco- (α- and β-form) and galacto-sidase (β-form), reflecting the high-availability of both anomers of glucosides and of β-galactosides and their wide-ranging applications. Hence, the idea of this review was to analyze the literature focusing on hardly-mentioned natural and engineered glycosyl hydrolases. Their performances in the synthetic mode and natural hydrolytic potential are examined. Both the choice of articles and their discussion are from a biomolecular and a biotechnological perspective of the biocatalytic process, shedding light on new applicative ideas and on the assortment of biomolecular diversity. The hope is to elicit new interest for the development of biocatalysis and to gather attention of biocatalyst practitioners for glycosynthesis. PMID:26404386

  3. A new triterpene glycoside from the stems of Lagerstroemia indica.

    PubMed

    Woo, Kyeong Wan; Cha, Joon Min; Choi, Sang Un; Lee, Kang Ro

    2016-05-01

    A bioassay-guided fractionation and chemical investigation of the stems of Lagerstroemia indica resulted in the isolation and identification of a new triterpene glycoside, lagerindiside (1), along with nine known triterpenes (2-10). The structure of this new compound was elucidated on the basis of 1D and 2D nuclear magnetic resonance spectroscopic data analysis as well as chemical method. The cytotoxic activities of the isolates (1-10) were evaluated by determining their inhibitory effects on four human tumor cell lines (A549, SK-OV-3, SK-MEL-2, and HCT15) using a sulforhodamine B bioassay. Compounds 3 and 4 showed potent cytotoxicity on the tumor cell lines with IC50 values ranging from 3.38 to 6.29 μM. PMID:27107863

  4. Antiallergic effect of flavonoid glycosides obtained from Mentha piperita L.

    PubMed

    Inoue, Toshio; Sugimoto, Yukio; Masuda, Hideki; Kamei, Chiaki

    2002-02-01

    Six flavonoid glycosides, eriocitrin (1), narirutin (2), hesperidin (3), luteolin-7-O-rutinoside (4), isorhoifolin (5), diosmin (6), rosmarinic acid (7) and 5,7-dihydroxycromone-7-O-rutinoside (8), were isolated from the aerial part of Mentha piperita L. Among these compounds, compound 4 showed a potent inhibitory effect on histamine release induced by compound 48/80 and antigen-antibody reaction. This compound was more effective than luteolin and luteolin-7-O-glucoside in inhibiting histamine release from rat peritoneal mast cells. Compound 4 also caused a dose-related inhibition of the antigen-induced nasal response and significant effects were observed at doses of 100 and 300 mg/kg. These results indicate that compound 4 may be clinically useful in alleviating the nasal symptoms of allergic rhinitis. PMID:11853178

  5. New flavonolignan glycosides from the aerial parts of Zizania latifolia.

    PubMed

    Lee, Seung-Su; Baek, Nam-In; Baek, Yoon-Su; Chung, Dae-Kyun; Song, Myoung-Chong; Bang, Myun-Ho

    2015-01-01

    Two new flavonolignan glycosides, tricin-4'-O-(threo-β-guaiacylglyceryl) ether 7''-O-β-D-glucopyranose (4) and tricin-4'-O-(erythro-β-guaiacylglyceryl) ether 7''-O-β-D-glucopyranose (5) were isolated from the roots of Zizania latifolia, together with tricin-7-O-β-D-glucopyranose (1), tricin-4'-O-(threo-β-guaiacylglyceryl) ether 7-O-β-D-glucopyranose (2), and tricin-4'-O-(erythro-β-guaiacylglyceryl) ether 7-O-β-D-glucopyranose (3). Their structures were identified on the basis of spectroscopic techniques, including HR-ESI/MS, 1D-NMR (1H, 13C, DEPT), 2D-NMR (gCOSY, gHSQC, gHMBC), and IR spectroscopy. PMID:25830790

  6. A new antibacterial benzophenone glycoside from Psidium guajava (Linn.) leaves.

    PubMed

    Ukwueze, Stanley E; Osadebe, Patience O; Okoye, Festus B C

    2015-01-01

    Bioactivity-guided fractionation of methanol extract from the leaves of Psidium guajava L. (Myrtaceae) yielded a new benzophenone glycoside, Guajaphenone A (2) together with two known compounds, Garcimangosone D (1) and Guaijaverin (3). Their structures were elucidated by analysis of spectroscopic data including 1D and 2D NMR and electrospray ionisation mass spectrometry (ESI-MS). The isolated compounds were screened against standard strains of Gram-positive and Gram-negative bacteria using broth dilution assay method, and the MIC values determined and compared with reference antibiotic ceftriaxone. They were found to have significant antibacterial activities against Escherichia coli and Staphylococcus aureus with all of them showing better activities against S. aureus, but displaying weaker activities, in comparison to ceftriaxone. However, despite reduced effect of these compounds against the organisms, this work opens the perspective to use these molecules as 'leads' for the design of novel and selective drug candidates for some tropical infectious diseases. PMID:25631395

  7. Aromatic glycosides from the whole plants of Iris japonica.

    PubMed

    Shi, Guo-Ru; Wang, Xin; Liu, Yan-Fei; Zhang, Chun-Lei; Wang, Yan; Li, Li; Ni, Gang; Chen, Ruo-Yun; Yu, De-Quan

    2016-10-01

    Phytochemical investigation on the whole plants of Iris japonica led to the isolation of four new aromatic glycosides. Their structures including the absolute configurations were determined by spectroscopic and chemical methods as (-)-4-hydroxy-3-methoxy acetophenone 4-O-β-d-{6-O-[4-O-(7R,8S)-(4-hydroxy-3-methoxyphenylglycerol-8-yl)-3-methoxybenzoyl]}-glucopyranoside (1), (-)-4-hydroxy-3-methoxy acetophenone 4-O-β-d-{6-O-[4-O-(7S,8R)-(4-hydroxy-3-methoxyphenylglycerol-8-yl)-3-methoxybenzoyl]}-glucopyranoside (2), (-)-4-hydroxy-3-methoxy acetophenone 4-O-β-d-{6-O-[4-O-(7R,8R)-(4-hydroxy-3-methoxyphenylglycerol-8-yl)-3-methoxybenzoyl]}-glucopyranoside (3), (-)-4-hydroxy-3-methoxy acetophenone 4-O-β-d-{6-O-[4-O-(7S,8S)-(4-hydroxy-3-methoxyphenylglycerol-8-yl)-3-methoxybenzoyl]}-glucopyranoside (4), respectively. PMID:27310650

  8. Acutifoliside, a novel benzoic acid glycoside from Salix acutifolia.

    PubMed

    Wu, Yanqi; Dobermann, Darja; Beale, Michael H; Ward, Jane L

    2016-08-01

    Ultra high-performance liquid chromatography-mass spectrometry (UHPLC-MS) profiling of a polar solvent extract of juvenile stem tissue of Salix acutifolia Willd. identified a range of phenolic metabolites. Salicortin, 1, a well-known salicinoid, was the major compound present and the study identified young stem tissue of this species as a potential source of this compound for future studies. Three further known metabolites (salicin 2, catechin 3 and tremuloidin 4) were also present. The UHPLC-MS analysis also revealed the presence of a further, less polar, unknown compound, which was isolated via HPLC peak collection. The structure was elucidated by high-resolution mass spectroscopic analysis, 1- and 2-D NMR analysis and chemical derivatisation and was shown to be a novel benzoic acid glycoside 5, which we have named as acutifoliside. PMID:26820172

  9. Acetylated flavonoid glycosides potentiating NGF action from Scoparia dulcis.

    PubMed

    Li, Yushan; Chen, Xigui; Satake, Masayuki; Oshima, Yasukatsu; Ohizumi, Yasushi

    2004-04-01

    Three new acetylated flavonoid glycosides, 5,6,4'-trihydroxyflavone 7-O-alpha-L-2,3-di-O-acetylrhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (1), apigenin 7-O-alpha-L-3-O-acetylrhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (2), and apigenin 7-O-alpha-L-2,3-di-O-acetylrhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (3), were isolated from Scoparia dulcis together with the known compound eugenyl beta-D-glucopyranoside (4). Their structures were elucidated by spectroscopic analyses. Compounds 2 and 3 showed an enhancing activity of nerve growth factor-mediated neurite outgrowth in PC12D cells. PMID:15104516

  10. Four new glycosides from the fruit of Xanthium sibiricum Patr.

    PubMed

    Jiang, Hai; Yang, Liu; Liu, Chang; Hou, Hui; Wang, Qiuhong; Wang, Zhibin; Yang, Bingyou; Kuang, Haixue

    2013-01-01

    Four new glycosides, namely 3β-norpinan-2-one 3-O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside (1), (6Z)-3-hydroxymethyl-7-methylocta-1,6-dien-3-ol 8-O-β-d-glucopyranoside (2), (6E)-3-hydroxymethyl-7-methylocta-1,6-dien-3-ol 8-O-β-d-gluco-pyranoside (3), and 7-[(β-d-apiofuranosyl-(1→6)-β-d-glucopyranosyl)oxymethy]-8,8-dimethyl-4,8-dihydrobenzo[1,4]thiazine-3,5-dione (4), were isolated from the fruits of Xanthium sibiricum Patr together with three known compounds, xanthiside (5), adenosine (6), and 2,3-dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-propan-1-one (7). The structures of the new compounds were determined on the basis of detailed spectroscopic analyses. PMID:24152669

  11. Two new sesquiterpenoid glycosides from the leaves of Lycium barbarum.

    PubMed

    Wang, Yan; Zhao, Bo; Ma, Hai-Rong; Aisa, Haji Akber

    2016-09-01

    Two new sesquiterpenoid glycosides, lyciumionosides A-B (1-2), together with four known compounds (3-6), were isolated from the leaves of Lycium barbarum. Their structures were mainly established on the basis of MS, 1D and 2D NMR spectroscopic techniques. The antiproliferative activities of compounds 1-5 were evaluated. Compound 1 showed highest inhibitory activity against A549 cells with IC50 value of 32.6 ± 2.6 μM, compound 3 showed highest inhibitory activity against PC-3 cells with IC50 value of 36.0 ± 2.9 μM, and compound 5 exhibited highest inhibitory activity against HeLa cells with IC50 value of 32.3 ± 4.2 μM. PMID:27176709

  12. Phenylpropanoid Glycosides from the Leaves of Ananas comosus.

    PubMed

    Chen, Wen-Hao; Huang, Xiao-Juan; Shu, Huo-Ming; Hui, Yang; Guo, Fei-Yan; Song, Xiao-Ping; Ji, Ming-Hui; Chen, Guang-Ying

    2015-12-01

    Two new phenylpropanoid glycosides, named β-D-(1-O-acetyl-3,6-O-diferuloyl) fructofuranosyl β-D-6'-O-acetylglucopyranoside (1) and β-D-(1-O-acetyl-3,6-O-diferuloyl) fructofuranosyl α-D-glucopyranoside (2), along with two known analogues (3-4) and four glycerides (5-8), were isolated from the EtOAc extract of the leaves of Ananas comosus. Their structures were elucidated on the basis of 1D- and 2D-NMR analyses, as well as HR-ESI-MS experiments. Compounds 1-4 showed significant antibacterial activities against Staphylococcus aureus and Escherichia coli. PMID:26882684

  13. Enzymatic hydrolysis of steryl glycosides for their analysis in foods.

    PubMed

    Münger, Linda H; Nyström, Laura

    2014-11-15

    Steryl glycosides (SG) contribute significantly to the total intake of phytosterols. The standard analytical procedure involving acid hydrolysis fails to reflect the correct sterol profile of SG due to isomerization of some of the labile sterols. Therefore, various glycosylases were evaluated for their ability to hydrolyse SG under milder conditions. Using a pure SG mixture in aqueous solution, the highest glycolytic activity, as demonstrated by the decrease in SG and increase in free sterols was achieved using inulinase preparations (decrease of >95%). High glycolytic activity was also demonstrated using hemicellulase (63%). The applicability of enzymatic hydrolysis using inulinase preparations was further verified on SG extracted from foods. For example in potato peel Δ(5)-avenasteryl glucoside, a labile SG, was well preserved and contributed 26.9% of the total SG. Therefore, enzymatic hydrolysis is suitable for replacing acid hydrolysis of SG in food lipid extracts to accurately determine the sterol profile of SG. PMID:24912717

  14. Neolignans and glycosides from the stem bark of Illicium difengpi.

    PubMed

    Fang, Lei; Du, Dan; Ding, Guang-Zhi; Si, Yi-Kang; Yu, Shi-Shan; Liu, Yang; Wang, Wen-Jie; Ma, Shuang-Gang; Xu, Song; Qu, Jing; Wang, Jia-Ming; Liu, Yu-Xi

    2010-05-28

    Five new neolignans (1-4 and 9), two pairs of neolignan epimers (5-8), and two new aromatic glycosides (10 and 11) have been isolated from the stem bark of Illicium difengpi. Their structures were determined by spectroscopic methods, including 1D and 2D NMR, HRESIMS, CD experiments, and chemical methods. The absolute configurations of the 3,4-diol moiety in 1 and 1,3-diol moiety in 2 were confirmed by Snatzke's method, observing the induced circular dichroism after addition of dimolybdenum tetraacetate in DMSO. Compounds 3, 4, and 11 exhibited moderate anti-inflammatory activities with IC(50) values ranging from 1.62 to 24.4 microM, while compound 3 displayed antioxidant activity with an IC(50) value of 42.3 microM. PMID:20411974

  15. A new phenylethanoid glycoside from Orobanche cernua Loefling.

    PubMed

    Qu, Zheng-Yi; Zhang, Yu-Wei; Zheng, Si-Wen; Yao, Chun-Lin; Jin, Yin-Ping; Zheng, Pei-He; Sun, Cheng-He; Wang, Ying-Ping

    2016-04-01

    A novel phenylethanoid glycoside, 3'-O-methyl isocrenatoside (1), along with two known compounds, methyl caffeate (2) and protocatechuic aldehyde (3), were isolated from the fresh whole plant of Orobanche cernua Loefling. All the isolated compounds (1-3) were elucidated on the basis of spectroscopic analysis including IR, MS and NMR data. The cytotoxic activities of these compounds were evaluated. Results showed that 3'-O-methyl isocrenatoside (1) and methyl caffeate (2) exhibited significant cytotoxicity, with IC50 values of 71.89, 36.97 μg/mL and 32.32, 34.58 μg/mL against the B16F10 murine melanoma and Lewis lung carcinoma cell lines, respectively. PMID:26358786

  16. Variations in human urinary O-hydroxylysyl glycoside levels and their relationship to collagen metabolism

    PubMed Central

    Segrest, Jere P.; Cunningham, Leon W.

    1970-01-01

    Two O-hydroxylysyl glycosides, Hyl-Gal-Glc and Hyl-Gal, have been isolated from normal human urine and shown to be identical to two glycosides isolated from alkaline hydrolysates of collagen. A relatively sample and reproducible analytical procedure has been devised to measure the levels of these glycosides in human urine. By the use of this procedure it was shown that a normal diet has only a small effect on 24-hr urinary excretion levels of these glycosides indicating an endogenous origin. Urinary glycoside levels appear to be highest in children, roughly paralleling collagen turnover as indicated by urinary hydroxyproline levels. Collagen turnover equivalents calculated from urinary hydroxylysyl glycoside levels were found to be significantly larger than collagen turnover equivalents calculated from urinary hydroxyproline levels. This suggests that urinary glycosides are more quantitative indicators of collagen metabolism than urinary hydroxyproline. The ratio of Hyl-Gal-Glc to Hyl-Gal was measured in urines of diseased as well as normal individuals and a bimodal distribution was found. Alkaline hydrolysates of different human connective tissue collagens showed that only bone collagen, of the collagens examined, had a low ratio of Hyl-Gal-Glc to Hyl-Gal compared to human urine. Other collagens examined had higher ratios than found in human urine. On the basis of these results it is postulated that the bimodal distribution of glycoside ratios represents two populations of collagen turnover, the lower ratio population having a high bone collagen turnover, the lower ratio population having a high bone collagen turnover relative to the second population. Examination of the types of subjects making up the two populations supports this hypothesis. These data suggest that urinary O-hydroxylysyl glycoside excretion, in addition to providing a more quantitative estimate of collagen turnover than urinary hydroxyproline, may prove to be of value as a specific means of

  17. Steroidal glycosides from the underground parts of Yucca glauca and their cytotoxic activities.

    PubMed

    Yokosuka, Akihito; Suzuki, Tomoka; Tatsuno, Satoru; Mimaki, Yoshihiro

    2014-05-01

    Six steroidal glycosides and 14 known compounds were isolated from the underground parts of Yucca glauca (Agavaceae). Their structures were determined from extensive spectroscopic analysis, including analysis of two-dimensional NMR data, and from chemical transformations. The compounds were also evaluated for cytotoxic activities against HL-60 human leukemia cells and A549 human lung adenocarcinoma cells. Four spirostanol glycosides and three furostanol glycosides exhibited cytotoxic activities against both HL-60 and A549 cells. Two of the compounds induced apoptosis in HL-60 cells. PMID:24612536

  18. Variation in cardiac glycoside content of monarch butterflies from natural populations in eastern North America.

    PubMed

    Brower, L P; McEvoy, P B; Williamson, K L; Flannery, M A

    1972-08-01

    A new spectrophotometric assay has been used to determine the gross concentration of cardiac glycoside in individual monarch butterflies. Adults sampled during the fall migration in four areas of eastern North America exhibited a wide variation in cardiac glycoside concentration. The correlation between spectrophotometrically measured concentrations and emetic dose determinations supports the existence of a broad palatability spectrum in wild monarch butterflies. The cardiac gylcoside concentration is greater in females than in males and is independent of the dry weight of the butterflies; contrary to prediction, both the concentration mean and variance decrease southward. The defensive advantage of incorporating cardiac glycosides may be balanced by detrimental effects on individual viability. PMID:5043141

  19. Solubility Enhancement of Steviol Glycosides and Characterization of Their Inclusion Complexes with Gamma-Cyclodextrin

    PubMed Central

    Upreti, Mani; Strassburger, Ken; Chen, You L.; Wu, Shaoxiong; Prakash, Indra

    2011-01-01

    Steviol glycosidesrebaudioside (reb) A, C and D have low aqueous solubilities. To improve their aqueous solubilities, inclusion complex of steviol glycosides, reb A, C and D and gamma cyclodextrin were prepared by freeze drying method and further characterized by means of differential scanning calorimetry, Fourier transform infrared spectroscopy and Raman spectroscopy. The effect of gamma cyclodextrin on chemical shifts of the steviol glycosides was also studied in proton NMR experiments as well as in solid state 13C CP/MAS NMR experiments. These results indicated that the steviol glycosides were clearly in inclusion complex formation with the gamma cyclodextrin which also results in solubility enhancement of these steviol glycosides. Phase solubility studies showed that amounts of soluble reb A, C and D increased with increasing amounts of gamma cyclodextrin indicating formation of 1:1 stoichiometric and higher order inclusion complexes. PMID:22174615

  20. Two new cycloartane glycosides from the underground parts of Aquilegia vulgaris.

    PubMed

    Yoshimitsu, Hitoshi; Nishida, Makiko; Nohara, Toshihiro

    2008-11-01

    Two new cycloartane glycosides, named aquilegiosides K and L, have been isolated from the dried underground parts of Aquilegia vulgaris. Their structures were determined by two dimensional (2D) NMR spectroscopic analysis and chemical evidence. PMID:18981620

  1. 6-Hydroxypelargonidin glycosides in the orange-red flowers of Alstroemeria.

    PubMed

    Tatsuzawa, Fumi; Saito, Norio; Murata, Naho; Shinoda, Koichi; Shigihara, Atsushi; Honda, Toshio

    2003-04-01

    Two 6-hydroxypelargonidin glycosides were isolated from the orange-red flowers of Alstroemeria cultivars, and determined to be 6-hydroxypelargonidin 3-O-(beta-D-glucopyranoside) and 3-O-[6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranoside], respectively, by chemical and spectroscopic methods. In addition, five known anthocyanidin glycosides, 6-hydroxycyanidin 3-malonylglucoside, 6-hydroxycyanidin 3-rutinoside, cyanidin 3-malonylglucoside, cyanidin 3-rutinoside and pelargonidin 3-rutinoside were identified in the flowers. PMID:12648544

  2. A new taraxastane-type triterpenoid glycoside from the roots of Clematis uncinata.

    PubMed

    Li, Shuo-Guo; Li, Man-Mei; Zhao, Bing-Xin; Wang, Ying; Ye, Wen-Cai

    2015-01-01

    A new taraxastane-type triterpenoid glycoside, clematiunicinoside I (1), together with four known ones (2-5), was isolated from the roots of Clematis uncinata. The structure of the new compound was elucidated on the basis of spectroscopic analyses and acid hydrolysis. The cytotoxic activities of all the compounds against caski cervical cancer (Caski) cells were evaluated. This is the first report of the presence of taraxastane-type triterpenoid glycoside in the genus Clematis. PMID:26651184

  3. O2 Protonation Controls Threshold Behavior for N-Glycosidic Bond Cleavage of Protonated Cytosine Nucleosides.

    PubMed

    Wu, R R; Rodgers, M T

    2016-06-01

    IRMPD action spectroscopy studies of protonated 2'-deoxycytidine and cytidine, [dCyd+H](+) and [Cyd+H](+), have established that both N3 and O2 protonated conformers coexist in the gas phase. Threshold collision-induced dissociation (CID) of [dCyd+H](+) and [Cyd+H](+) is investigated here using guided ion beam tandem mass spectrometry techniques to elucidate the mechanisms and energetics for N-glycosidic bond cleavage. N-Glycosidic bond cleavage is observed as the major dissociation pathways resulting in competitive elimination of either protonated or neutral cytosine for both protonated cytosine nucleosides. Electronic structure calculations are performed to map the potential energy surfaces (PESs) for both N-glycosidic bond cleavage pathways observed. The molecular parameters derived from theoretical calculations are employed for thermochemical analysis of the energy-dependent CID data to determine the minimum energies required to cleave the N-glycosidic bond along each pathway. B3LYP and MP2(full) computed activation energies for N-glycosidic bond cleavage associated with elimination of protonated and neutral cytosine, respectively, are compared to measured values to evaluate the efficacy of these theoretical methods in describing the dissociation mechanisms and PESs for N-glycosidic bond cleavage. The 2'-hydroxyl of [Cyd+H](+) is found to enhance the stability of the N-glycosidic bond vs that of [dCyd+H](+). O2 protonation is found to control the threshold energies for N-glycosidic bond cleavage as loss of neutral cytosine from the O2 protonated conformers is found to require ∼25 kJ/mol less energy than the N3 protonated analogues, and the activation energies and reaction enthalpies computed using B3LYP exhibit excellent agreement with the measured thresholds for the O2 protonated conformers. PMID:27159774

  4. Kaempferol 3,7,4'-glycosides from the flowers of Clematis cultivars.

    PubMed

    Sakaguchi, Keisuke; Kitajima, Junichi; Iwashina, Tsukasa

    2013-08-01

    A new kaempferol glycoside, kaempferol 3-O-alpha-rhamnopyranosyl-(1 --> 6)-beta-glucopyranoside-7,4'-di-O-beta-glucopyranoside (1) was isolated from the flowers of Clematis cultivars "Jackmanii Superba" and "Fujimusume", together with the known compound kaempferol 3,7,4'-tri-O-beta-glucopyranoside (2). The chemical structures of the isolated kaemferol glycosides were established by UV, 1H and 13C NMR spectroscopy, LC-MS, and characterization of acid hydrolysates. PMID:24079175

  5. A New Resin Glycoside, Muricatin IX, from the Seeds of Ipomoea muricata.

    PubMed

    Ono, Masateru; Taketomi, Saki; Kakiki, Yuichi; Yasuda, Shin; Okawa, Masafumi; Kinjo, Junei; Yoshimitsu, Hitoshi; Nohara, Toshihiro

    2016-01-01

    A new resin glycoside, named muricatin IX (1), was isolated from the seeds of Ipomoea muricata (L.) JACQ. (Convolvulaceae). The structure of 1 was determined on the basis of spectroscopic data as well as chemical evidence. Compound 1 is the first representative of resin glycosides in which an organic acid connects the sugar moiety and the aglycone moiety to form macrocyclic ester ring. PMID:27581646

  6. Processivity and enzymatic mode of a glycoside hydrolase family 5 endoglucanase from Volvariella volvacea.

    PubMed

    Zheng, Fei; Ding, Shaojun

    2013-02-01

    EG1 is a modular glycoside hydrolase family 5 endoglucanase from Volvariella volvacea consisting of an N-terminal carbohydrate-binding module (CBM1) and a catalytic domain (CD). The ratios of soluble to insoluble reducing sugar produced from filter paper after 8 and 24 h of exposure to EG1 were 6.66 and 8.56, respectively, suggesting that it is a processive endoglucanase. Three derivatives of EG1 containing a core domain only or additional CBMs were constructed in order to evaluate the contribution of the CBM to the processivity and enzymatic mode of EG1 under stationary and agitated conditions. All four enzymatic forms exhibited the same mode of action on both soluble and insoluble cellulosic substrates with cellobiose as a main end product. An additional CBM fused at either the N or C terminus reduced specific activity toward soluble and insoluble celluloses under stationary reaction conditions. Deletion of the CBM significantly decreased enzyme processivity. Insertion of an additional CBM also resulted in a dramatic decrease in processivity in enzyme-substrate reaction mixtures incubated for 0.5 h, but this effect was reversed when reactions were allowed to proceed for longer periods (24 h). Further significant differences were observed in the substrate adsorption/desorption patterns of EG1 and enzyme derivatives equipped with an additional CBM under agitated reaction conditions. An additional family 1 CBM improved EG1 processivity on insoluble cellulose under highly agitated conditions. Our data indicate a strong link between high adsorption levels and low desorption levels in the processivity of EG1 and possibly other processive endoglucanses. PMID:23204424

  7. Processivity and Enzymatic Mode of a Glycoside Hydrolase Family 5 Endoglucanase from Volvariella volvacea

    PubMed Central

    Zheng, Fei

    2013-01-01

    EG1 is a modular glycoside hydrolase family 5 endoglucanase from Volvariella volvacea consisting of an N-terminal carbohydrate-binding module (CBM1) and a catalytic domain (CD). The ratios of soluble to insoluble reducing sugar produced from filter paper after 8 and 24 h of exposure to EG1 were 6.66 and 8.56, respectively, suggesting that it is a processive endoglucanase. Three derivatives of EG1 containing a core domain only or additional CBMs were constructed in order to evaluate the contribution of the CBM to the processivity and enzymatic mode of EG1 under stationary and agitated conditions. All four enzymatic forms exhibited the same mode of action on both soluble and insoluble cellulosic substrates with cellobiose as a main end product. An additional CBM fused at either the N or C terminus reduced specific activity toward soluble and insoluble celluloses under stationary reaction conditions. Deletion of the CBM significantly decreased enzyme processivity. Insertion of an additional CBM also resulted in a dramatic decrease in processivity in enzyme-substrate reaction mixtures incubated for 0.5 h, but this effect was reversed when reactions were allowed to proceed for longer periods (24 h). Further significant differences were observed in the substrate adsorption/desorption patterns of EG1 and enzyme derivatives equipped with an additional CBM under agitated reaction conditions. An additional family 1 CBM improved EG1 processivity on insoluble cellulose under highly agitated conditions. Our data indicate a strong link between high adsorption levels and low desorption levels in the processivity of EG1 and possibly other processive endoglucanses. PMID:23204424

  8. Characterization and Modeling of the Collision Induced Dissociation Patterns of Deprotonated Glycosphingolipids: Cleavage of the Glycosidic Bond

    NASA Astrophysics Data System (ADS)

    Rožman, Marko

    2016-01-01

    Glycosphingolipid fragmentation behavior was investigated by combining results from analysis of a series of negative ion tandem mass spectra and molecular modeling. Fragmentation patterns extracted from 75 tandem mass spectra of mainly acidic glycosphingolipid species (gangliosides) suggest prominent cleavage of the glycosidic bonds with retention of the glycosidic oxygen atom by the species formed from the reducing end (B and Y ion formation). Dominant product ions arise from dissociation of sialic acids glycosidic bonds whereas product ions resulting from cleavage of other glycosidic bonds are less abundant. Potential energy surfaces and unimolecular reaction rates of several low-energy fragmentation pathways leading to cleavage of glycosidic bonds were estimated in order to explain observed dissociation patterns. Glycosidic bond cleavage in both neutral (unsubstituted glycosyl group) and acidic glycosphingolipids was the outcome of the charge-directed intramolecular nucleophilic substitution (SN2) mechanism. According to the suggested mechanism, the nucleophile in a form of carboxylate or oxyanion attacks the carbon at position one of the sugar ring, simultaneously breaking the glycosidic bond and yielding an epoxide. For gangliosides, unimolecular reaction rates suggest that dominant product ions related to the cleavage of sialic acid glycosidic bonds are formed via direct dissociation channels. On the other hand, low abundant product ions related to the dissociation of other glycosidic bonds are more likely to be the result of sequential dissociation. Although results from this study mainly contribute to the understanding of glycosphingolipid fragmentation chemistry, some mechanistic findings regarding cleavage of the glycosidic bond may be applicable to other glycoconjugates.

  9. Taming the Reactivity of Glycosyl Iodides To Achieve Stereoselective Glycosidation.

    PubMed

    Gervay-Hague, Jacquelyn

    2016-01-19

    that even highly functionalized aglycon acceptors add. Following the coupling event, the TMS ethers are readily removed by methanolysis, and since all of the byproducts are volatile, multiple reactions can be performed in a single reaction vessel without isolation of intermediates. In this fashion, per-O-TMS monosaccharides can be converted to biologically relevant α-linked glycolipids in one pot. The stereochemical outcome of these reactions can also be switched to β-glycoside formation by addition of silver to chelate the iodide, thus favoring SN2 displacement of the α-iodide. While iodides derived from benzyl and silyl ether-protected oligosaccharides are susceptible to interglycosidic bond cleavage when treated with TMSI, the introduction of a single acetate protecting group prevents this unwanted side reaction. Partial acetylation of armed glycosyl iodides also attenuates HI elimination side reactions. Conversely, fully acetylated glycosyl iodides are deactivated and require metal catalysis in order for glycosidation to occur. Recent findings indicate that I2 activation of per-O-acetylated mono-, di-, and trisaccharides promotes glycosidation of cyclic ethers to give β-linked iodoalkyl glycoconjugates in one step. Products of these reactions have been converted into multivalent carbohydrate displays. With these synthetic pathways elucidated, chemical reactivity can be exquisitely controlled by the judicious selection of protecting groups to achieve high stereocontrol in step-economical processes. PMID:26524481

  10. New oleyl glycoside as anti-cancer agent that targets on neutral sphingomyelinase.

    PubMed

    Romero-Ramírez, Lorenzo; García-Álvarez, Isabel; Casas, Josefina; Barreda-Manso, M Asunción; Yanguas-Casás, Natalia; Nieto-Sampedro, Manuel; Fernández-Mayoralas, Alfonso

    2015-09-15

    We designed and synthesized two anomeric oleyl glucosaminides as anti-cancer agents where the presence of a trifluoroacetyl group close to the anomeric center makes them resistant to hydrolysis by hexosaminidases. The oleyl glycosides share key structural features with synthetic and natural oleyl derivatives that have been reported to exhibit anti-cancer properties. While both glycosides showed antiproliferative activity on cancer cell lines, only the α-anomer caused endoplasmic reticulum (ER) stress and cell death on C6 glioma cells. Analysis of sphingolipids and glycosphingolipds in cells treated with the glycosides showed that the α-anomer caused a drastic accumulation of ceramide and glucosylceramide and reduction of lactosylceramide and GM3 ganglioside at concentrations above a threshold of 20 μM. In order to understand how ceramide levels increase in response to α-glycoside treatment, further investigations were done using specific inhibitors of sphingolipid metabolic pathways. The pretreatment with 3-O-methylsphingomyelin (a neutral sphingomyelinase inhibitor) restored sphingomyelin levels together with the lactosylceramide and GM3 ganglioside levels and prevented the ER stress and cell death caused by the α-glycoside. The results indicated that the activation of neutral sphingomyelinase is the main cause of the alterations in sphingolipids that eventually lead to cell death. The new oleyl glycoside targets a key enzyme in sphingolipid metabolism with potential applications in cancer therapy. PMID:26206186

  11. Fecalase: a model for activation of dietary glycosides to mutagens by intestinal flora

    SciTech Connect

    Tamura, G.; Gold, C.; Ferro-Luzzi, A.; Ames, B.N.

    1980-08-01

    Many substances in the plant kingdom and in man's diet occur as glycosides. Recent studies have indicated that many glycosides that are not mutagenic in tests such as the Salmonella test become mutagenic upon hydrolysis of the glycosidic linkages. The Salmonella test utilizes a liver homogenate to approximate mammalian metabolism but does not provide a source of the enzymes present in intestinal bacterial flora that hydrolyze the wide variety of glycosides present in nature. We describe a stable cell-free extract of human feces, fecalase, which is shown to contain various glycosidases that allow the in vitro activation of many natural glycosides to mutagens in the Salmonella/liver homogenate test. Many beverages, such as red wine (but apparently not white wine) and tea, contain glycosides of the mutagen quercetin. Red wine, red grape juice, and teas were mutagenic in the test when fecalase was added, and red wine contained considerable direct mutagenic activity in the absence of fecalase. The implications of quercetin mutagenicity and carcinogenicity are discussed.

  12. Influence of steviol glycosides on the stability of vitamin C and anthocyanins.

    PubMed

    Woźniak, Łukasz; Marszałek, Krystian; Skąpska, Sylwia

    2014-11-19

    A high level of sweetness and health-promoting properties make steviol glycosides an interesting alternative to sugars or artificial sweeteners. The radical oxygen species scavenging activity of these compounds may influence the stability of labile particles present in food. Model buffer solutions containing steviol glycosides, a selected food antioxidant (vitamin C or anthocyanins), and preservative were analyzed during storage. The addition of steviol glycosides at concentrations of 50, 125, and 200 mg/L increased the stability of both ascorbic and dehydroascorbic acid (degradation rates decreased up to 3.4- and 4.5-fold, respectively); the effect was intensified by higher sweetener concentrations and higher acidity of the solutions. Glycosides used alone did not affect the stability of anthocyanins; however, they enhanced the protective effect of sugars; half-life times increased by ca. 33% in the presence of sucrose (100 g/L) and by ca. 52% when both sucrose (100 g/L) and glycosides (total 200 mg/L) were used. Steviol glycosides concentrations remained stable during experiments. PMID:25376304

  13. Transition of phenolics and cyanogenic glycosides from apricot and cherry fruit kernels into liqueur.

    PubMed

    Senica, Mateja; Stampar, Franci; Veberic, Robert; Mikulic-Petkovsek, Maja

    2016-07-15

    Popular liqueurs made from apricot/cherry pits were evaluated in terms of their phenolic composition and occurrence of cyanogenic glycosides (CGG). Analyses consisted of detailed phenolic and cyanogenic profiles of cherry and apricot seeds as well as beverages prepared from crushed kernels. Phenolic groups and cyanogenic glycosides were analyzed with the aid of high-performance liquid chromatography (HPLC) and mass spectrophotometry (MS). Lower levels of cyanogenic glycosides and phenolics have been quantified in liqueurs compared to fruit kernels. During fruit pits steeping in the alcohol, the phenolics/cyanogenic glycosides ratio increased and at the end of beverage manufacturing process higher levels of total analyzed phenolics were detected compared to cyanogenic glycosides (apricot liqueur: 38.79 μg CGG per ml and 50.57 μg phenolics per ml; cherry liqueur 16.08 μg CGG per ml and 27.73 μg phenolics per ml). Although higher levels of phenolics are characteristic for liqueurs made from apricot and cherry pits these beverages nevertheless contain considerable amounts of cyanogenic glycosides. PMID:26948641

  14. Direct analysis of Stevia leaves for diterpene glycosides by desorption electrospray ionization mass spectrometry.

    PubMed

    Jackson, Ayanna U; Tata, Alessandra; Wu, Chunping; Perry, Richard H; Haas, George; West, Leslie; Cooks, R Graham

    2009-05-01

    The analysis of Stevia leaves has been demonstrated without any sample preparation using desorption electrospray ionization (DESI) mass spectrometry. Direct rapid analysis was achieved using minimal amounts of sample ( approximately 0.15 cm x 0.15 cm leaf fragment). Characteristic constituents of the Stevia plant are observed in both the positive and negative ion modes including a series of diterpene 'sweet' glycosides. The presence of the glycosides was confirmed via tandem mass spectrometry analysis using collision-induced dissociation and further supported by exact mass measurements using an LTQ-Orbitrap. The analysis of both untreated and hexane-extracted dry leaves proved that DESI can be successfully used to analyze untreated leaf fragments as identical profiles were obtained from both types of samples. Characterization and semi-quantitative determination of the glycosides was achieved based on the glycoside profile within the full mass spectrum. In addition, the presence of characteristic glycosides in an all-natural commercial Stevia dietary supplement was confirmed. This study provides an example of the application of DESI to direct screening of plant materials, in this case diterpene glycosides. PMID:19381377

  15. [Determination of 7 flavonol glycosides in Ginkgo biloba reference extract].

    PubMed

    Wang, Jing-hui; Chen, Jing; Wang, Meng-meng; Fu, Xin-tong; Chen, You-gen; Guo, Hong-zhu

    2015-10-01

    Six flavonol glycosides were isolated and calibrated from Ginkgo biloba extract, and then used to calibrate the content in 2 baiches of G. biloba reference extract, so was rutin. RSD values of rutin, kaempferol-3-O-rutinoside, kaempferol-3-O-rhamnoside-2-glu- coside, quercetin-3-O-rhamnop-yranosyl-2-O-(6-O-p-coumaroyl)-glucoside, kaempferol-3-O-rhamnopyranosyl-2-O-(6-O-p-coum-aroyl) - glucoside were around 1.1%-4.6%, nevertheless, RSD values of quercetin-3-O-glucoside and isorhamnetin-3-O-rutinoside were more than 5%. According to the results, the reference extract of G. biloba can be used as the substitute to determine rutin, kaempferol-3-O- rutinoside, kaempferol-3-O-rhamnoside-2-glucoside, quercetin-3-O-rhamnopyranosyl-2-O-(6-O-p-coumaroyl)-glucoside and kaempferol-3-0-rhamnopyranosyl-2-O-(6-O-p-coumaroyl)-glucoside instead of corresponding reference substances. So reference extract in place of single component reference in assay is feasible. PMID:27062820

  16. New acylated triterpene glycosides from the roots of Polygala tenuifolia.

    PubMed

    Kuroda, Minpei; Shizume, Takaaki; Mimaki, Yoshihiro

    2014-03-01

    Two new and five known acylated triterpene glycosides were isolated from the MeOH extract of the roots of Polygala tenuifolia. Based on extensive spectroscopic analysis, including 2D NMR experiments, and the results of alkaline hydrolysis, the structures of the new compounds were assigned as 3beta-[(beta-D-glucopyranosyl)oxy]-2 beta,27-dihydroxyolean- 12-ene-23,28-dioic acid 28-O-beta-D-apiofuranosyl-( 1--3)-[beta-D-galactopyranosyl-(1-->4)-beta-D-xylopyranosyl-(1 -4)]-alpha-L-rhamnopyranosyl-(1-2)-3-O-(E)-3,4,5-trimeth oxycinnamoyl-beta-D-fucopyranosyl ester (1) and 3beta-[(beta-D-glucopyranosyl)oxy]-2beta,27-dihydroxyolean-1 2-ene-23,28-dioic acid 28-O-beta-D-apiofuranosyl-(l---3)-[beta-D-galactopyranosyl-(1-->4)-beta-D-xylopyranosyl-( 1-->4)]-alpha-L-rhamnopyranosyl-(1 -2)-[alpha-L-rhamnopyranosyl-( 1 -3 )]-4-O-(E)-3,4-dimethoxycinnamoyl-beta-D-fucopyranosyl ester (2). PMID:24689222

  17. beta-glucosidase catalyzed syntheses of pyridoxine glycosides.

    PubMed

    Charles, Rajachristu Einstein; Divakar, Soundar

    2009-01-01

    Enzymatic syntheses of pyridoxine glycosides were carried out in di-isopropyl ether organic medium using beta-glucosidase isolated from sweet almond. Optimum conditions determined for the reaction with D-glucose were 40% (w/w D-glucose) beta-glucosidase at 0.18 mM (1.8 ml) of pH 5 acetate buffer over a 72 h incubation period. Of 11 carbohydrates employed, beta-glucosidase gave 7-O-(alpha-D-glucopyranosyl)pyridoxine 5a, 7-O-(beta-D-glucopyranosyl)pyridoxine 5b, 6-O-(alpha-D-glucopyranosyl)pyridoxine 5c, 7-O-(alpha-D-galactopyranosyl)pyridoxine 6a, 7-O-(beta-D-galactopyranosyl)pyridoxine 6b, 6-O-(alpha-D-galactopyranosyl)pyridoxine 6c, 7-O-(alpha-D-mannopyranosyl)pyridoxine 7a, 7-O-(beta-D-mannopyranosyl)pyridoxine 7b, and 6-O-(alpha-D-mannopyranosyl)pyridoxine 7c in yields ranging from 23 to 40%. PMID:19129657

  18. Effects of synthetic glycosides on steroid balance in Macaca fascicularis

    SciTech Connect

    Malinow, M.R.; Elliott, W.H.; McLaughlin, P.; Upson, B.

    1987-01-01

    The predominantly beta-anomer of diosgenin glucoside (DG) was synthesized and its effects on cholesterol homeostasis were tested in monkeys. Cynomolgus macaques (Macaca fascicularis) were fed, during two 3-week periods, a semipurified diet with 0.1% cholesterol and a similar ration containing 1% DG, respectively. A Chow diet was given for 5 weeks between the experimental periods. Cholesterol and bile acid balance were analyzed during the last week of each semipurified diet. Diosgenin glucoside reduced cholesterolemia from 292 mg/dl to 172 mg/dl, decreased intestinal absorption of exogenous cholesterol from 62.4% to 26.0%, and increased secretion of endogenous cholesterol from -0.8 to 93.5 mg/day. The fecal excretion of neutral steroids rose from 40.7 to 157.3 mg/day; that of bile acids changed, nonsignificantly, from 23.1 to 16.0 mg/day. The cholesterol balance was -44 mg/day in the control period, and 88 mg/day in the DG-fed animals. No toxic signs were observed. Thus, when long-term studies demonstrate that the glucoside is well tolerated, DG and other synthetic glycosides with similar activities may be of use in the management of hypercholesterolemia and atherosclerosis.

  19. Six new C21 steroidal glycosides from Asclepias curassavica L.

    PubMed

    Li, Jun-Zhu; Liu, Hai-Yang; Lin, Yi-Ju; Hao, Xiao-Jiang; Ni, Wei; Chen, Chang-Xiang

    2008-07-01

    Six new C(21) steroidal glycosides, named curassavosides A-F (3-8), were obtained from the aerial parts of Asclepias curassavica (Asclepiadaceae), along with two known oxypregnanes, 12-O-benzoyldeacylmetaplexigenin (1) and 12-O-benzoylsarcostin (2). By spectroscopic methods, the structures of the six new compounds were determined as 12-O-benzoyldeacylmetaplexigenin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (3), 12-O-benzoylsarcostin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (4), sarcostin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (5), sarcostin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-D-digitoxopyranoside (6), 12-O-benzoyldeacylmetaplexigenin 3-O-beta-D-glucopyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-d-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (7), and 12-O-benzoylsarcostin 3-O-beta-D-glucopyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-d-canaropyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (8), respectively. All compounds (1-8) were tested for in vitro cytotoxicity; only compound 3 showed weak inhibitory activity against Raji and AGZY cell lines. PMID:18328519

  20. Cytotoxicity of cardenolides and cardenolide glycosides from Asclepias curassavica.

    PubMed

    Li, Jun-Zhu; Qing, Chen; Chen, Chang-Xiang; Hao, Xiao-Jiang; Liu, Hai-Yang

    2009-04-01

    A new cardenolide, 12beta,14beta-dihydroxy-3beta,19-epoxy-3alpha-methoxy-5alpha-card-20(22)-enolide (6), and a new doubly linked cardenolide glycoside, 12beta-hydroxycalotropin (13), together with eleven known compounds, coroglaucigenin (1), 12beta-hydroxycoroglaucigenin (2), calotropagenin (3), desglucouzarin (4), 6'-O-feruloyl-desglucouzarin (5), calotropin (7), uscharidin (8), asclepin (9), 16alpha-hydroxyasclepin (10), 16alpha-acetoxycalotropin (11), and 16alpha-acetoxyasclepin (12), were isolated from the aerial part of ornamental milkweed, Asclepias curassavica and chemically elucidated through spectral analyses. All the isolates were evaluated for their cytotoxic activity against HepG2 and Raji cell lines. The results showed that asclepin (9) had the strongest cytotoxic activity with an IC(50) value of 0.02 microM against the two cancer cell lines and the new compound 13 had significant cytotoxic activity with IC(50) values of 0.69 and 1.46 microM, respectively. PMID:19251412

  1. New approaches to enzymatic glycoside synthesis through directed evolution.

    PubMed

    Kittl, Roman; Withers, Stephen G

    2010-07-01

    The expanding field of glycobiology requires tools for the synthesis of structurally defined oligosaccharides and glycoconjugates, while any potential therapeutic applications of sugar-based derivates would require access to substantial quantities of such compounds. Classical chemical approaches are not well suited for such large-scale syntheses, thus enzymatic approaches are sought. Traditional routes to the enzymatic assembly of oligosaccharides have involved the use of either Nature's own biosynthetic enzymes, the glycosyl transferases, or glycosidases run in transglycosylation mode. However, each approach has drawbacks that have limited its application. Glycosynthases are mutant glycosidases in which the catalytic nucleophile has been replaced by mutation, inactivating them as hydrolases. When used in conjunction with glycosyl fluorides of the opposite anomeric configuration to that of the substrate, these enzymes function as highly efficient transferases, frequently giving stoichiometric yields of products. Further improvements can be obtained through directed evolution of the gene encoding the enzyme in question, but this requires the ability to screen very large libraries of catalysts. In this review we survey new screening methods for the formation of glycosidic linkages using high-throughput techniques, such as FACS, chemical complementation, and robot-assisted ELISA assays. Enzymes were evolved to have higher catalytic activity with their natural substrates, to show altered substrate specificities or to be promiscuous for efficient application in oligosaccharide, glycolipid, and glycoprotein synthesis. PMID:20427037

  2. Polyketide Glycosides from Bionectria ochroleuca Inhibit Candida albicans Biofilm Formation

    PubMed Central

    2015-01-01

    One of the challenges presented by Candida infections is that many of the isolates encountered in the clinic produce biofilms, which can decrease these pathogens’ susceptibilities to standard-of-care antibiotic therapies. Inhibitors of fungal biofilm formation offer a potential solution to counteracting some of the problems associated with Candida infections. A screening campaign utilizing samples from our fungal extract library revealed that a Bionectria ochroleuca isolate cultured on Cheerios breakfast cereal produced metabolites that blocked the in vitro formation of Candida albicans biofilms. A scale-up culture of the fungus was undertaken using mycobags (also known as mushroom bags or spawn bags), which afforded four known [TMC-151s C–F (1–4)] and three new [bionectriols B–D (5–7)] polyketide glycosides. All seven metabolites exhibited potent biofilm inhibition against C. albicans SC5314, as well as exerted synergistic antifungal activities in combination with amphotericin B. In this report, we describe the structure determination of the new metabolites, as well as compare the secondary metabolome profiles of fungi grown in flasks and mycobags. These studies demonstrate that mycobags offer a useful alternative to flask-based cultures for the preparative production of fungal secondary metabolites. PMID:25302529

  3. Peruvoside, a Cardiac Glycoside, Induces Primitive Myeloid Leukemia Cell Death.

    PubMed

    Feng, Qian; Leong, Wa Seng; Liu, Liang; Chan, Wai-In

    2016-01-01

    Despite the available chemotherapy and treatment, leukemia remains a difficult disease to cure due to frequent relapses after treatment. Among the heterogeneous leukemic cells, a rare population referred as the leukemic stem cell (LSC), is thought to be responsible for relapses and drug resistance. Cardiac glycosides (CGs) have been used in treating heart failure despite its toxicity. Recently, increasing evidence has demonstrated its new usage as a potential anti-cancer drug. Ouabain, one of the CGs, specifically targeted CD34⁺CD38(-) leukemic stem-like cells, but not the more mature CD34⁺CD38⁺ leukemic cells, making this type of compounds a potential treatment for leukemia. In search of other potential anti-leukemia CGs, we found that Peruvoside, a less studied CG, is more effective than Ouabain and Digitoxin at inducing cell death in primitive myeloid leukemia cells without obvious cytotoxicity on normal blood cells. Similar to Ouabain and Digitoxin, Peruvoside also caused cell cycle arrest at G₂/M stage. It up-regulates CDKN1A expression and activated the cleavage of Caspase 3, 8 and PARP, resulting in apoptosis. Thus, Peruvoside showed potent anti-leukemia effect, which may serve as a new anti-leukemia agent in the future. PMID:27110755

  4. Antioxidant flavone glycosides from the leaves of Sasa borealis.

    PubMed

    Park, Hae-Suk; Lim, Ju Hee; Kim, Hyun Jung; Choi, Hyun Jin; Lee, Ik-Soo

    2007-02-01

    Sasa borealis (Poaceae) is a perennial medicinal plant which is a major source of bamboo leaves in Korea. The n-BuOH extract of S. borealis leaves exhibited significant antioxidant activity against the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and a cytoprotective effect against oxidative damage in HepG2 cells. Bioactivity-guided fractionation by column chromatography led to the isolation of two antioxidative flavonoid C-glycoside derivatives, isoorientin (2) and isoorientin 2"-O-alpha-L-rhamnoside (4) along with tricin 7-O-beta-D-glucopyranoside (1) and apigenin 6-C-beta-D-xylopyranosyl-8-C-beta-D-glucopyranoside (3). Their structures were identified on the basis of chemical and spectroscopic methods. The radical scavenging activity and cytoprotective effect against oxidative damage of all the isolated compounds were also evaluated. Isoorientin (2) and isoorientin 2-O-alpha-L-rhamnoside (4) showed potent free radical scavenging activity with IC50 values of 9.5 and 34.5 microM, respectively, and strong cytoprotective effects against t-BOOH-induced oxidative damage in HepG2 cells, at very low concentrations of 1.1 microM isoorientin and 0.8 microM isoorientin 2-O-alpha-L-rhamnoside. This is the first report of the isolation and antioxidant activity of compounds 2 and 4 from S. borealis. PMID:17366736

  5. Additional minor diterpene glycosides from Stevia rebaudiana Bertoni.

    PubMed

    Prakash, Indra; Chaturvedula, Venkata Sai Prakash

    2013-01-01

    Two additional novel minor diterpene glycosides were isolated from the commercial extract of the leaves of Stevia rebaudiana Bertoni. The structures of the new compounds were identified as 13-{β-D-glucopyranosyl-(1 → 2)-O-[β-D-glucopyranosyl-(1 → 3)-β-D-glucopyranosyl-oxy} ent-kaur-16-en-19-oic acid {β-D-xylopyranosyl-(1 → 2)-O-[β-D-glucopyranosyl-(1 → 3)]-O-β-D-glucupyranosyl-ester} (1), and 13-{β-D-6-deoxy-glucopyranosyl-(1 → 2)-O-[β-D-glucopyranosyl-(1 → 3)-β-D-glucopyranosyl-oxy} ent-kaur-16-en-19-oic acid {β-D-glucopyranosyl-(1 → 2)-O-[β-D-glucopyranosyl-(1 → 3)-β-D-gluco-pyranosyl-ester} (2), on the basis of extensive 1D (1H- and 13C-) 2D NMR (COSY, HSQC and HMBC) and MS spectroscopic data as well as chemical studies. PMID:24184820

  6. A new indole glycoside from the seeds of Raphanus sativus.

    PubMed

    Jin, Hong-Guang; Ko, Hae Ju; Chowdhury, Md Anisuzzaman; Lee, Dong-Sung; Woo, Eun-Rhan

    2016-06-01

    A new indole glycoside, β-D-glucopyranosyl 2-(methylthio)-1H-indole-3-carboxylate, named raphanuside A (1), as well as eight known compounds, β-D-fructofuranosyl-(2 → 1)-(6-O-sinapoyl)-α-D-glucopyranoside (2), (3-O-sinapoyl)-β-D-fructofuranosyl-(2 → 1)-α-D-glucopyranoside (3), (3-O-sinapoyl)-β-D-fructofuranosyl-(2 → 1)-(6-O-sinapoyl)-α-D-glucopyranoside (4), (3,4-O-disinapoyl)-β-D-fructofuranosyl-(2 → 1)-(6-O-sinapoyl)-α-D-glucopyranoside (5), isorhamnetin 3,4'-di-O-β-D-glucoside (6), isorhamnetin 3-O-β-D-glucoside-7-O-α-L-rhamnoside (7), isorhamnetin 3-O-β-D-glucoside (8) and 3'-O-methyl-(-)-epicatechin 7-O-β-D-glucoside (9) were isolated from the seeds of Raphanus sativus. Furthermore, compounds 1-3 and 6-9, were isolated from this plant for the first time. The structures of compounds 1-9 were identified using 1D and 2D NMR, including (1)H-(1)H COSY, HSQC, HMBC and NOESY spectroscopic analyses. The inhibitory activity of these isolated compounds against interleukin-6 (IL-6) production in TNF-α stimulated MG-63 cells was also examined. PMID:27193305

  7. Extracellular Glycoside Hydrolase Activities in the Human Oral Cavity.

    PubMed

    Inui, Taichi; Walker, Lauren C; Dodds, Michael W J; Hanley, A Bryan

    2015-08-15

    Carbohydrate availability shifts when bacteria attach to a surface and form biofilm. When salivary planktonic bacteria form an oral biofilm, a variety of polysaccharides and glycoproteins are the primary carbon sources; however, simple sugar availabilities are limited due to low diffusion from saliva to biofilm. We hypothesized that bacterial glycoside hydrolase (GH) activities would be higher in a biofilm than in saliva in order to maintain metabolism in a low-sugar, high-glycoprotein environment. Salivary bacteria from 13 healthy individuals were used to grow in vitro biofilm using two separate media, one with sucrose and the other limiting carbon sources to a complex carbohydrate. All six GHs measured were higher in vitro when grown in the medium with complex carbohydrate as the sole carbon source. We then collected saliva and overnight dental plaque samples from the same individuals and measured ex vivo activities for the same six enzymes to determine how oral microbial utilization of glycoconjugates shifts between the planktonic phase in saliva and the biofilm phase in overnight dental plaque. Overall higher GH activities were observed in plaque samples, in agreement with in vitro observation. A similar pattern was observed in GH activity profiles between in vitro and ex vivo data. 16S rRNA gene analysis showed that plaque samples had a higher abundance of microorganisms with larger number of GH gene sequences. These results suggest differences in sugar catabolism between the oral bacteria located in the biofilm and those in saliva. PMID:26048943

  8. Host dependent iridoid glycoside sequestration patterns in Cionus hortulanus.

    PubMed

    Baden, Christian Ulrich; Franke, Stephan; Dobler, Susanne

    2013-08-01

    Weevils of the genus Cionus (Curculionidae, Mecininae) sequester the iridoid glycosides (IGs) aucubin and catalpol from their host plants Scrophularia or Verbascum (Scrophulariaceae). Cionus hortulanus is the only member of the genus that feeds on both plant genera. We previously showed that sequestration patterns in C. hortulanus depend on the local host. To investigate whether IG patterns are driven by their availability in the hosts or genetic differences between populations, we collected C. hortulanus from S. nodosa in the field and reared them either on S. nodosa or on V. nigrum. The differences in IG concentrations were specific for the host plant upon which the weevils developed. Similar to monophagous species of the Cionini, individuals from S. nodosa had more aucubin than catalpol and mirrored the concentrations of their host plants. Specimens from V. nigrum, on the other hand, had higher concentrations of aucubin and of catalpol than their host. On V. nigrum, the ratio of catalpol to aucubin differed significantly between plant and beetle samples due to much higher catalpol concentrations in the weevils. Our data thus contradict genetically fixed differences between populations living on either plant but rather document the host plants' influence on the beetles' metabolism. PMID:23846185

  9. Thermus thermophilus Glycoside Hydrolase Family 57 Branching Enzyme

    PubMed Central

    Palomo, Marta; Pijning, Tjaard; Booiman, Thijs; Dobruchowska, Justyna M.; van der Vlist, Jeroen; Kralj, Slavko; Planas, Antoni; Loos, Katja; Kamerling, Johannis P.; Dijkstra, Bauke W.; van der Maarel, Marc J. E. C.; Dijkhuizen, Lubbert; Leemhuis, Hans

    2011-01-01

    Branching enzyme (EC 2.4.1.18; glycogen branching enzyme; GBE) catalyzes the formation of α1,6-branching points in glycogen. Until recently it was believed that all GBEs belong to glycoside hydrolase family 13 (GH13). Here we describe the cloning and expression of the Thermus thermophilus family GH57-type GBE and report its biochemical properties and crystal structure at 1.35-Å resolution. The enzyme has a central (β/α)7-fold catalytic domain A with an inserted domain B between β2 and α5 and an α-helix-rich C-terminal domain, which is shown to be essential for substrate binding and catalysis. A maltotriose was modeled in the active site of the enzyme which suggests that there is insufficient space for simultaneously binding of donor and acceptor substrates, and that the donor substrate must be cleaved before acceptor substrate can bind. The biochemical assessment showed that the GH57 GBE possesses about 4% hydrolytic activity with amylose and in vitro forms a glucan product with a novel fine structure, demonstrating that the GH57 GBE is clearly different from the GH13 GBEs characterized to date. PMID:21097495

  10. Mechanisms and energetics for N-glycosidic bond cleavage of protonated adenine nucleosides: N3 protonation induces base rotation and enhances N-glycosidic bond stability.

    PubMed

    Wu, R R; Rodgers, M T

    2016-06-21

    Our previous gas-phase infrared multiple photon dissociation action spectroscopy study of protonated 2'-deoxyadenosine and adenosine, [dAdo+H](+) and [Ado+H](+), found that both N3 and N1 protonated conformers are populated with the N3 protonated ground-state conformers predominant in the experiments. Therefore, N-glycosidic bond dissociation mechanisms of N3 and N1 protonated [dAdo+H](+) and [Ado+H](+) and the associated quantitative thermochemical values are investigated here using both experimental and theoretical approaches. Threshold collision-induced dissociation (TCID) of [dAdo+H](+) and [Ado+H](+) with Xe is studied using guided ion beam tandem mass spectrometry techniques. For both systems, N-glycosidic bond cleavage reactions are observed as the major dissociation pathways resulting in production of protonated adenine or elimination of neutral adenine. Electronic structure calculations are performed at the B3LYP/6-311+G(d,p) level of theory to probe the potential energy surfaces (PESs) for N-glycosidic bond cleavage of [dAdo+H](+) and [Ado+H](+). Relative energetics of the reactants, transition states, intermediates and products along the PESs for N-glycosidic bond cleavage are determined at the B3LYP/6-311+G(2d,2p), B3LYP-GD3BJ/6-311+G(2d,2p), and MP2(full)/6-311+G(2d,2p) levels of theory. The predicted N-glycosidic bond dissociation mechanisms for the N3 and N1 protonated species differ. Base rotation of the adenine residue enables formation of a strong N3H(+)O5' hydrogen-bonding interaction that stabilizes the N3 protonated species and its glycosidic bond. Comparison between experiment and theory indicates that the N3 protonated species determine the threshold energies, as excellent agreement between the measured and B3LYP computed activation energies (AEs) and reaction enthalpies (ΔHrxns) for N-glycosidic bond cleavage of the N3 protonated species is found. PMID:27240654

  11. Flavonoid Glycosides of Polygonum capitatum Protect against Inflammation Associated with Helicobacter pylori Infection

    PubMed Central

    Zhang, Shu; Mo, Fei; Luo, Zhaoxun; Huang, Jian; Sun, Chaoqin; Zhang, Ran

    2015-01-01

    The antibacterial and anti-inflammatory activities, and protective effects of extracts (flavonoid glycosides) of Polygonum capitatum were investigated to detect the evidence for the utilization of the herb in the clinical therapy of gastritis caused by H. pylori. A mouse gastritis model was established using H. pylori. According to treating methods, model mice were random assigned into a model group (MG group), a triple antibiotics group (TG group, clarithromycin, omeprazole and amoxicillin), low/middle/high concentrations of flavonoid glycosides groups (LF, MF and HF groups) and low/middle/high concentrations of flavonoid glycosides and amoxicillin groups (LFA, MFA and HFA groups). A group with pathogen-free mice was regarded as a control group (CG group). The eradicate rates of H. pylori were 100%, 93%, 89% in TG, MFA and HF groups. The serum levels of IFN-gamma and gastrin were higher in a MG group than those from all other groups (P < 0.05). The serum levels of IFN-gamma and gastrin were reduced significantly in LF, MF and HF groups (P < 0.05) while little changes were observed in LFA, MFA and HFA groups. In contrast, the serum levels of IL-4 were lower and higher in MG and CG groups compared with other groups (P<0.05). The serum levels of IL-4 were increased significantly in LF, MF and HF groups (P < 0.05) while little changes were found in LFA, MFA and HFA groups. According to pathological scores, flavonoid glycosides therapy showed better protection for gastric injuries than the combination of flavonoid glycoside and amoxicillin (P < 0.05). The results suggested that flavonoid glycoside has repairing functions for gastric injuries. The results suggest that the plant can treat gastritis and protect against gastric injuries. The flavonoid glycosides from Polygonum capitatum should be developed as a potential drug for the therapy of gastritis caused by H. pylori. PMID:25993258

  12. FeCl3-promoted and ultrasound-assisted synthesis of resveratrol O-derived glycoside analogs.

    PubMed

    Marzag, Hamid; Robert, Guillaume; Dufies, Maeva; Bougrin, Khalid; Auberger, Patrick; Benhida, Rachid

    2015-01-01

    Phenol derived O-glycosides were synthesized using a direct and convenient O-glycosidation, starting from acetylated sugars in the presence of FeCl3, an inexpensive, mild and benign Lewis acid catalyst. The reactions were carried out under both conventional and ultrasonic irradiation conditions. In general, improvement in rates and yields were observed when reactions were carried out under sonication compared with conventional conditions leading to the corresponding β-O-glycosides as the major anomer. Post-synthetic transformations of iodophenol intermediates led to new resveratrol O-glycoside analogs in good overall yields. PMID:24961448

  13. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species.

    PubMed

    Pičmanová, Martina; Neilson, Elizabeth H; Motawia, Mohammed S; Olsen, Carl Erik; Agerbirk, Niels; Gray, Christopher J; Flitsch, Sabine; Meier, Sebastian; Silvestro, Daniele; Jørgensen, Kirsten; Sánchez-Pérez, Raquel; Møller, Birger Lindberg; Bjarnholt, Nanna

    2015-08-01

    Cyanogenic glycosides are phytoanticipins involved in plant defence against herbivores by virtue of their ability to release toxic hydrogen cyanide (HCN) upon tissue disruption. In addition, endogenous turnover of cyanogenic glycosides without the liberation of HCN may offer plants an important source of reduced nitrogen at specific developmental stages. To investigate the presence of putative turnover products of cyanogenic glycosides, comparative metabolic profiling using LC-MS/MS and high resolution MS (HR-MS) complemented by ion-mobility MS was carried out in three cyanogenic plant species: cassava, almond and sorghum. In total, the endogenous formation of 36 different chemical structures related to the cyanogenic glucosides linamarin, lotaustralin, prunasin, amygdalin and dhurrin was discovered, including di- and tri-glycosides derived from these compounds. The relative abundance of the compounds was assessed in different tissues and developmental stages. Based on results common to the three phylogenetically unrelated species, a potential recycling endogenous turnover pathway for cyanogenic glycosides is described in which reduced nitrogen and carbon are recovered for primary metabolism without the liberation of free HCN. Glycosides of amides, carboxylic acids and 'anitriles' derived from cyanogenic glycosides appear as common intermediates in this pathway and may also have individual functions in the plant. The recycling of cyanogenic glycosides and the biological significance of the presence of the turnover products in cyanogenic plants open entirely new insights into the multiplicity of biological roles cyanogenic glycosides may play in plants. PMID:26205491

  14. Immunomodulatory action of monosulfated triterpene glycosides from the sea cucumber Cucumaria okhotensis: stimulation of activity of mouse peritoneal macrophages.

    PubMed

    Aminin, Dmitry L; Silchenko, Alexandra S; Avilov, Sergey A; Stepanov, Vadim G; Kalinin, Vladimir I

    2010-12-01

    Six monosulfated triterpene glycosides, frondoside A1 (1), okhotoside B1 (2), okhotoside A1-1 (3), frondoside A (4), okhotoside A2-1 (5) and cucumarioside A2-5 (6), isolated from Cucumaria okhotensis Levin et Stepanov, stimulate spreading and lysosomal activity of mouse macrophages and ROS-formation in the macrophages. The highest macrophage spreading and stimulation of their lysosomal activity was induced by glycosides 1, 4 and 6. All glycosides similarly stimulate ROS formation in macrophages, but glycoside 2 caused minimal stimulation. PMID:21299111

  15. Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases

    PubMed Central

    2011-01-01

    Background To efficiently deconstruct recalcitrant plant biomass to fermentable sugars in industrial processes, biocatalysts of higher performance and lower cost are required. The genetic diversity found in the metagenomes of natural microbial biomass decay communities may harbor such enzymes. Our goal was to discover and characterize new glycoside hydrolases (GHases) from microbial biomass decay communities, especially those from unknown or never previously cultivated microorganisms. Results From the metagenome sequences of an anaerobic microbial community actively decaying poplar biomass, we identified approximately 4,000 GHase homologs. Based on homology to GHase families/activities of interest and the quality of the sequences, candidates were selected for full-length cloning and subsequent expression. As an alternative strategy, a metagenome expression library was constructed and screened for GHase activities. These combined efforts resulted in the cloning of four novel GHases that could be successfully expressed in Escherichia coli. Further characterization showed that two enzymes showed significant activity on p-nitrophenyl-α-L-arabinofuranoside, one enzyme had significant activity against p-nitrophenyl-β-D-glucopyranoside, and one enzyme showed significant activity against p-nitrophenyl-β-D-xylopyranoside. Enzymes were also tested in the presence of ionic liquids. Conclusions Metagenomics provides a good resource for mining novel biomass degrading enzymes and for screening of cellulolytic enzyme activities. The four GHases that were cloned may have potential application for deconstruction of biomass pretreated with ionic liquids, as they remain active in the presence of up to 20% ionic liquid (except for 1-ethyl-3-methylimidazolium diethyl phosphate). Alternatively, ionic liquids might be used to immobilize or stabilize these enzymes for minimal solvent processing of biomass. PMID:21816041

  16. Biochemistry and toxicology of the diterpenoid glycoside atractyloside.

    PubMed

    Obatomi, D K; Bach, P H

    1998-04-01

    Atractyloside (Atr) is a diterpenoid glycoside that occurs naturally in plants (many of which are used in ethnomedicines) found in Europe, Africa, South America, Asia and the far East. It is also present in animal grazing forage. Atr (and its analogues) may be present at levels as high as 600 mg/kg dried plant material. Consumption of the plants containing Atr or carboxyatractyloside (carboxyAtr) has caused fatal renal proximal tubule necrosis and/or centrilobular hepatic necrosis in man and farm animals. Although pure Atr and crude plant extracts disrupt carbohydrate homeostasis and induce similar pathophysiological lesions in the kidney and liver, it is also possible that the toxicity of Atr may be confounded by the presence of other natural constituents in plants. Atr competitively inhibits the adenine nucleoside carrier in isolated mitochondria and thus blocks oxidative phosphorylation. This has been assumed to explain changes in carbohydrate metabolism and the toxic effects in liver and kidney. Although the acute toxicity of Atr is well described, many aspects of Atr toxicity (subchronic and chronic toxicity, reproductive toxicity, mutagenicity and carcinogenicity) have not been investigated and pharmacokinetic and metabolism data are limited. In vitro proximal tubular cells are selectively sensitive to Atr, whereas other renal cell types are quite resistant. There are also differences in the response of liver and renal tissue to Atr. Thus, not all of the clinical, biochemical and morphological changes caused by Atr can simply be explained on the basis of inhibition of mitochondrial phosphorylation. The relevance to a wider human risk is shown by the presence of Atr analogues in dried roasted Coffea arabica beans (17.5 32 mg/kg). There are no data to help identify the risk of low dose chronic exposure in human coffee consumers, nor is there information on the levels of Atr or its analogues in other commonly consumed human foodstuffs. PMID:9651051

  17. Antioxidant and Anti-Inflammatory Phenolic Glycosides from Clematis tashiroi.

    PubMed

    Zhang, Li-Jie; Huang, Hung-Tse; Huang, Shih-Yen; Lin, Zhi-Hu; Shen, Chien-Chang; Tsai, Wei-Jern; Kuo, Yao-Haur

    2015-07-24

    From the 95% EtOH extract of dried aerial parts of Clematis tashiroi, eight new and four known phenolic (caffeic acid, coumaric acid, ferrulic acid) glycosides were isolated and characterized. The structures of the new isolates (clematisides A-H) were elucidated by spectroscopic data interpretation as trans-4-O-(6-O-trans-caffeoyl-β-D- glucopyranosyl)-9-O-β-D-glucopyranosyl caffeic acid (1), trans-4-O-(6-O-trans-feruloyl-β-D-glucopyranosyll)-9-O-β-D-glucopyranosyl caffeic acid (2), trans-4-O-(6-O-trans-p-coumaroyl-β-D-glucopyranosyl)-9-O-β-D-glucopyranosyl caffeic acid (3), trans-4-O-(6-O-trans-caffeoyl-β-D-glucopyranosyl)-9-O-β-D-glucopyranosyl p-coumaric acid (4), trans-3-O-(6-O-trans-caffeoyl-β-D-glucopyranosyl)-9-O-β-D-glucopyranosyl caffeic acid (5), trans-3-O-(6-O-trans-p-coumaroyl-β-D-glucopyranosyl)-9-O-β-D-glucopyranosyl caffeic acid (6), 6-(3',4'-dihydroxystyryl)-2-pyrone-4-O-(6-O-trans-caffeoyl)-β-D-glucopyranoside (7), and 6-(3',4'-dihydroxystyryl)-2-pyrone-4-O-{6-O-[4-O-(6-O-trans-caffeoyl)-β-D-glucopyranosyl]-trans-caffeoyl}-β-D-glucopyranoside (8), respectively. In a DPPH radical-scavenging test, compounds 1, 7, and 8 showed more potent antioxidant activity than that of the positive control, vitamin E. In addition, compound 7 also showed inhibitory activity in an antinitric oxide release assay. PMID:26143931

  18. Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases

    SciTech Connect

    Li L. L.; van der Lelie D.; Taghavi, S.; McCorkle, S. M.; Zhang, Y.-B.; Blewitt, M. G.; Brunecky, R.; Adney, W. S.; Himmel, M. E.; Brumm, P.; Drinkwater, C.; Mead, D. A.; Tringe, S. G.

    2011-08-01

    To efficiently deconstruct recalcitrant plant biomass to fermentable sugars in industrial processes, biocatalysts of higher performance and lower cost are required. The genetic diversity found in the metagenomes of natural microbial biomass decay communities may harbor such enzymes. Our goal was to discover and characterize new glycoside hydrolases (GHases) from microbial biomass decay communities, especially those from unknown or never previously cultivated microorganisms. From the metagenome sequences of an anaerobic microbial community actively decaying poplar biomass, we identified approximately 4,000 GHase homologs. Based on homology to GHase families/activities of interest and the quality of the sequences, candidates were selected for full-length cloning and subsequent expression. As an alternative strategy, a metagenome expression library was constructed and screened for GHase activities. These combined efforts resulted in the cloning of four novel GHases that could be successfully expressed in Escherichia coli. Further characterization showed that two enzymes showed significant activity on p-nitrophenyl-{alpha}-L-arabinofuranoside, one enzyme had significant activity against p-nitrophenyl-{beta}-D-glucopyranoside, and one enzyme showed significant activity against p-nitrophenyl-{beta}-D-xylopyranoside. Enzymes were also tested in the presence of ionic liquids. Metagenomics provides a good resource for mining novel biomass degrading enzymes and for screening of cellulolytic enzyme activities. The four GHases that were cloned may have potential application for deconstruction of biomass pretreated with ionic liquids, as they remain active in the presence of up to 20% ionic liquid (except for 1-ethyl-3-methylimidazolium diethyl phosphate). Alternatively, ionic liquids might be used to immobilize or stabilize these enzymes for minimal solvent processing of biomass.

  19. Proteomic Analysis of a Novel Bacillus Jumbo Phage Revealing Glycoside Hydrolase As Structural Component

    PubMed Central

    Yuan, Yihui; Gao, Meiying

    2016-01-01

    Tailed phages with genomes of larger than 200 kbp are classified as Jumbo phages and exhibited extremely high uncharted diversity. The genomic annotation of Jumbo phage is often disappointing because most of the predicted proteins, including structural proteins, failed to make good hits to the sequences in the databases. In this study, 23 proteins of a novel Bacillus Jumbo phage, vB_BpuM_BpSp, were identified as phage structural proteins by the structural proteome analysis, including 14 proteins of unknown function, 5 proteins with predicted function as structural proteins, a glycoside hydrolase, a Holliday junction resolvase, a RNA-polymerase β-subunit, and a host-coding portal protein, which might be hijacked from the host strain during phage virion assembly. The glycoside hydrolase (Gp255) was identified as phage virion component and was found to interact with the phage baseplate protein. Gp255 shows specific lytic activity against the phage host strain GR8 and has high temperature tolerance. In situ peptidoglycan-hydrolyzing activities analysis revealed that the expressed Gp255 and phage structural proteome exhibited glycoside hydrolysis activity against the tested GR8 cell extracts. This study identified the first functional individual structural glycoside hydrolase in phage virion. The presence of activated glycoside hydrolase in phage virions might facilitate the injection of the phage genome during infection by forming pores on the bacterial cell wall. PMID:27242758

  20. Spatial organisation of four enzymes from Stevia rebaudiana that are involved in steviol glycoside synthesis.

    PubMed

    Humphrey, Tania V; Richman, Alex S; Menassa, Rima; Brandle, Jim E

    2006-05-01

    The sweet steviol glycosides found in the leaves of Stevia rebaudiana Bert. are derived from the diterpene steviol which is produced from a branch of the gibberellic acid (GA) biosynthetic pathway. An understanding of the spatial organisation of the two pathways including subcellular compartmentation provides important insight for the metabolic engineering of steviol glycosides as well as other secondary metabolites in plants. The final step of GA biosynthesis, before the branch point for steviol production, is the formation of (-)-kaurenoic acid from (-)-kaurene, catalysed by kaurene oxidase (KO). Downstream of this, the first committed step in steviol glycoside synthesis is the hydroxylation of kaurenoic acid to form steviol which is then sequentially glucosylated by a series of UDP-glucosyltransferases (UGTs) to produce the variety of steviol glycosides. The subcellular location of KO and three of the UGTs involved in steviol glycoside biosynthesis was investigated by expression of GFP fusions and cell fractionation which revealed KO to be associated with the endoplasmic reticulum and the UGTs in the cytoplasm. It has also been shown by expressing the Stevia UGTs in Arabidopsis that the pathway can be partially reconstituted by recruitment of a native Arabidopsis glucosyltransferase. PMID:16786291

  1. Taxifolin glycoside inhibits dendritic cell responses stimulated by lipopolysaccharide and lipoteichoic acid.

    PubMed

    Kim, Yun Jeong; Choi, Sun Eun; Lee, Min Won; Lee, Chung Soo

    2008-11-01

    Antigen-presenting dendritic cells may play an important role in the pathogenesis of atopic dermatitis. Taxifolin is demonstrated to have anti-inflammatory effects. The present study was designed to assess the effect of taxifolin glycoside against stimulated responses of dendritic cells isolated from mouse bone marrow and spleen. Dendritic cells exposed to lipopolysaccharide, lipoteichoic acid or interleukin (IL)-1beta exhibited increased production of IL-12 p70 and tumour necrosis factor alpha, increased formation of reactive oxygen species (ROS) and nitric oxide (NO), and elevation of intracellular Ca2+ levels. Treatment with taxifolin glycoside inhibited responses stimulated by the microbial products or IL-1beta in dendritic cells in a dose-dependent manner. Taxifolin glycoside had a significant inhibitory effect on the production of cytokines, formation of ROS and NO, and change in intracellular Ca2+ levels in dendritic cells of bone marrow and spleen. The results show that taxifolin glycoside seems to inhibit the dendritic cell responses stimulated by microbial products and IL-1beta, suggesting that taxifolin glycoside may exert an inhibitory effect against dendritic-cell-mediated immune responses. PMID:18957167

  2. Proteomic Analysis of a Novel Bacillus Jumbo Phage Revealing Glycoside Hydrolase As Structural Component.

    PubMed

    Yuan, Yihui; Gao, Meiying

    2016-01-01

    Tailed phages with genomes of larger than 200 kbp are classified as Jumbo phages and exhibited extremely high uncharted diversity. The genomic annotation of Jumbo phage is often disappointing because most of the predicted proteins, including structural proteins, failed to make good hits to the sequences in the databases. In this study, 23 proteins of a novel Bacillus Jumbo phage, vB_BpuM_BpSp, were identified as phage structural proteins by the structural proteome analysis, including 14 proteins of unknown function, 5 proteins with predicted function as structural proteins, a glycoside hydrolase, a Holliday junction resolvase, a RNA-polymerase β-subunit, and a host-coding portal protein, which might be hijacked from the host strain during phage virion assembly. The glycoside hydrolase (Gp255) was identified as phage virion component and was found to interact with the phage baseplate protein. Gp255 shows specific lytic activity against the phage host strain GR8 and has high temperature tolerance. In situ peptidoglycan-hydrolyzing activities analysis revealed that the expressed Gp255 and phage structural proteome exhibited glycoside hydrolysis activity against the tested GR8 cell extracts. This study identified the first functional individual structural glycoside hydrolase in phage virion. The presence of activated glycoside hydrolase in phage virions might facilitate the injection of the phage genome during infection by forming pores on the bacterial cell wall. PMID:27242758

  3. Reversible Thermoset Adhesives

    NASA Technical Reports Server (NTRS)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  4. Occurrence of iridoid glycosides in in vitro cultures and intact plants of Scrophularia nodosa L.

    PubMed

    Sesterhenn, Katja; Distl, Melanie; Wink, Michael

    2007-03-01

    Shoot, root, and callus cultures of Scrophularia nodosa L. (Scrophulariaceae) were established and cultivated in vitro. Iridoid glycosides, such as harpagoside, aucubin, and catalpol were identified by LC-ESI-MS and their contents determined by HPLC. For comparison intact plants of S. nodosa were analysed. In shoot cultures slightly lower amounts of detectable iridoid glycosides (4.36% dry weight) were determined than in the field grown plants (4.88%). Concentration of harpagoside was highest in leaves of field plants (1.05%) and in flowers of in vitro plantlets (1.10%). For aucubin the highest amount was found in the leaves of in vitro plantlets (1.67%) whereas the levels of aucubin in the leaves of field plants were remarkably lower. Catalpol was produced as a trace compound in intact plants and shoot cultures. Callus and root cultures were apparently not able to synthesise iridoid glycosides. PMID:16972093

  5. Studies on Kochiae Fructus. V. Antipruritic effects of oleanolic acid glycosides and the structure-requirement.

    PubMed

    Matsuda, H; Dai, Y; Ido, Y; Murakami, T; Matsuda, H; Yoshikawa, M; Kubo, M

    1998-11-01

    We examined the antipruritic effects of various oleanolic acid glycosides from natural medicines such as Kochiae Fructus (the fruit of Kochia scoparia SCHRAD.) and Momordicae Radix (the roots of Momordica cochinchinensis SPRENG.) using a compound 48/80-induced pruritic model in mice. Oleanolic acid 3-O-monodesmosides showed an antipruritic effect, while oleanolic acid 3,28-O-bisdesmosides and their common sapogenol oleanolic acid lacked the activity. This evidence indicated that the 3-O-glycoside moiety and the 28-carboxyl group in oleanolic acid glycosides were essential for exhibiting the antipruritic effect. Furthermore, it was found that the 3-O-glucuronides showed more potent activity than the corresponding 3-O-glucosides. PMID:9853421

  6. Organosolv pretreatment of Sitka spruce wood: conversion of hemicelluloses to ethyl glycosides.

    PubMed

    Bouxin, Florent P; David Jackson, S; Jarvis, Michael C

    2014-01-01

    A range of Organosolv pretreatments, using ethanol:water mixtures with dilute sulphuric acid, were applied to Sitka spruce sawdust with the aim of generating useful co-products as well as improving saccharification yield. The most efficient of the pretreatment conditions, resulting in subsequent saccharification yields of up to 86%, converted a large part of the hemicellulose sugars to their ethyl glycosides as identified by GC/MS. These conditions also reduced conversion of pentoses to furfural, the ethyl glycosides being more stable to dehydration than the parent pentoses. Through comparison with the behaviour of model compounds under the same reaction conditions it was shown that the anomeric composition of the products was consistent with a predominant transglycosylation reaction mechanism, rather than hydrolysis followed by glycosylation. The ethyl glycosides have potential as intermediates in the sustainable production of high-value chemicals. PMID:24269088

  7. Temporary reduction of radiation does not permanently reduce flavonoid glycosides and phenolic acids in red lettuce.

    PubMed

    Becker, Christine; Kläring, Hans-Peter; Kroh, Lothar W; Krumbein, Angelika

    2013-11-01

    Applying transparent daytime screens in greenhouses in cool seasons reduces the amount of energy needed for heating, but also the solar radiation available for crops. This can reduce yield and product quality of leafy vegetables because of constrained photosynthesis and altered biosynthesis. To study this, we cultivated five-week old red leaf lettuce (Lactuca sativa L.) for four weeks in growth chambers under a photosynthetic photon flux density (PPFD) of 225 and 410 μmol m(-2) s(-1), respectively. Some plants were exchanged between radiation intensities after two weeks. We investigated the concentration of five flavonoid glycosides, three caffeic acid derivatives, reducing sugars as well as plant growth. Remarkably, no significant influence of radiation intensity on the concentration of phenolic acids or anthocyanin glycosides was observed. In contrast, quercetin and luteolin glycoside concentration was between 14 and 34% lower in plants growing under lower compared to higher PPFD. Already after two weeks of cultivation, plants grown under lower PPFD contained less quercetin and luteolin glycosides but they completely compensated if subsequently transferred to higher PPFD until harvest. Hence, marketable lettuce heads which experienced temporary shading followed by an unshaded phase did not contain lower concentrations of flavonoid glycosides or phenolic acids. Also, there was no reduction of head mass in this variant. Our results suggest that saving energy in early growth stages is feasible without losses in yield or health promoting phenolic substances. In addition, there was a close correlation between the concentration of reducing sugars and some flavonoid glycosides, indicating a close metabolic connection between their biosynthesis and the availability of carbohydrates. PMID:23735845

  8. Angiotensin-converting enzyme inhibitory and antioxidant activities of enzymatically synthesized phenolic and vitamin glycosides.

    PubMed

    Charles, Rajachristu Einstein; Ponrasu, Thangavel; Sivakumar, Ramaiah; Divakar, Soundar

    2009-03-01

    Amyloglucosidase from Rhizopus mould and beta-glucosidase from sweet almond were employed for the preparation of phenolic and vitamin glycosides of vanillin, N-vanillylnonanamide, DL-dopa, dopamine, curcumin, alpha-tocopherol (vitamin E), pyridoxine (vitamin B(6)), ergocalciferol (vitamin D(2)), thiamin (vitamin B(1)) and riboflavin (vitamin B(2)). Approx. 20 enzymatically prepared phenolic and vitamin glycosides were subjected to ACE (angiotensin-converting enzyme) inhibition activity measurements, and 14 glycosides were tested for antioxidant activities. Both phenolic and vitamin glycosides exhibited IC(50) values for ACE inhibition in the 0.52+/-0.03-3.33+/-0.17 mM range and antioxidant activities ranging from 0.8+/-0.04 to 1.18+/-0.06 mM. Comparable ACE inhibition values were observed between free phenols and vitamin glycosides. However, antioxidant activities of glycosides were, in general, lesser than those of free phenols. Best IC(50) value for ACE inhibition were observed for 11-O-(D-fructofuranosyl)thiamin (0.52+/-0.03 mM), 3-hydroxy-4-O-(6-D-sorbitol)phenylalanine (0.56+/-0.03 mM), 4-O-(beta-D-glucopyranosyl)vanillin (0.61+/-0.03 mM), 4-O-(D-galactopyranosyl)vanillin (0.61+/-0.03 mM) and pyridoxine-D-glucoside (0.84+/-0.04 mM). Similarly, best IC(50) values for antioxidant activity were observed for 1,7-O-(bis-beta-D-glucopyranosyl)curcumin (0.8+/-0.04 mM), 4-O-(beta-D-glucopyranosyl)vanillin (0.9+/-0.05 mM), 3-hydroxy-4-O-(beta-D-galactopyranosyl-(1'-->4)beta-D-glucopyranosyl)phenylalanine (0.9+/-0.05 mM), 20-O-(D-glucopyranosyl)ergocalciferol (0.9+/-0.05 mM) and dopamine-D-galactoside (0.93+/-0.05 mM). PMID:18547170

  9. Quantitative determination of triterpenoid glycosides in Fatsia japonica Decne. & Planch. using high performance liquid chromatography.

    PubMed

    Ye, Xuewei; Yu, Siran; Lian, Xiao-Yuan; Zhang, Zhizhen

    2014-01-01

    Fatsia japonica Decne. & Planch. is a triterpenoid glycoside-rich herb with anti-inflammatory activity for the treatment of rheumatoid arthritis. A method for quantitative analysis of the complex triterpenoid glycosides in this medicinal plant has not been established so far. In this study, a high performance liquid chromatography (HPLC) method was developed for simultaneous qualification of 11 glycosides in F. japonica. The analysis was performed on an ODS-2 Hypersil column (250mm×4.6mm, 5μm) with a binary gradient mobile phase of water and acetonitrile. The established HPLC method was validated in terms of linearity, sensitivity, stability, precision, accuracy, and recovery. Results showed that this method had good linearity with R(2) at 0.99992-0.99999 in the test range of 0.04-9.00μg/μL. The limit of detection (LOD) and limit of quantification (LOQ) for the standard compounds were 0.013-0.020μg/μL and 0.040-0.060μg/μL. The relative standard deviations (RSDs%) of run variations were 0.83-1.40% for intra-day and 0.84-3.59% for inter-day. The analyzed compounds in the samples were stable for at least 36h, and the spike recoveries of the detected glycosides were 99.67-103.11%. The developed HPLC method was successfully applied for the measurements of the contents of 11 triterpenoid glycoside in different parts of F. japonica. Taken together, the HPLC method newly developed in this study could be used for qualitative and quantitative analysis of the bioactive triterpenoid glycosides in F. japonica and its products. PMID:24176752

  10. Differential EI Fragmentation Pathways for Peracetylated C-Glycoside Ketones as a Consequence of Bicyclic Ketal Ring Structures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several C-glycoside ketones and peracetylated C-glycoside ketones have been synthesized from 13 structurally-diverse aldoses sugars (including isotope labeled [1-**13C]Glc, [U-**13C]Glc, and [6,6’-**2H2]Glc) via an aqueous-based Knoevanagel condensation with aliphatic 1,3-diketones. Sodium adduct m...

  11. Cholestane steroid glycosides from the rhizomes of Dioscorea villosa (wild yam).

    PubMed

    Ali, Zulfiqar; Smillie, Troy J; Khan, Ikhlas A

    2013-04-01

    Phytochemical investigation of the MeOH extract of Dioscorea villosa rhizomes resulted in the isolation of two new bidesmosidic cholestane steroid glycosides, dioscoreavillosides A and B (1 and 2). In addition, the extract yielded 12 previously known furostan and spirostan steroid glycosides (3-14), along with diosgenin (15). Compounds 3-7, 9, 14, and 15 were isolated for the first time from D. villosa. The structures of the isolated compounds were determined using spectroscopic and chemical methods including 1D and 2D NMR. The antimicrobial action of most of these compounds was tested against five fungal and five bacterial strains. PMID:23454141

  12. Cholestane steroid glycosides from the root of Dioscorea villosa (wild yam)

    PubMed Central

    Ali, Zulfiqar; Smillie, Troy J.; Khan, Ikhlas A.

    2014-01-01

    Phytochemical investigation of the MeOH extract of Dioscorea villosa root resulted in the isolation of two new bidesmosidic cholestane steroid glycosides, dioscoreavillosides A and B (1 and 2). In addition, the extract yielded 12 previously known furostane and spirostane steroid glycosides (3-14), along with diosgenin (15). Compounds 3-7, 9, 14, and 15 were isolated for the first time from D. villosa. The structures of the isolated compounds were determined using spectroscopic and chemical methods including 1D and 2D NMR. The antimicrobial action of most of these compounds was tested against five fungal and five bacterial strains. PMID:23454141

  13. Syntheses of retinol glycosides using beta-glucosidase in SCCO(2) media.

    PubMed

    Einstein Charles, Rajachristu; Ponrasu, Thangavel; Sankar, Kadimi Udaya; Divakar, Soundar

    2009-10-01

    beta-Glucosidase isolated from sweet almond catalyzed syntheses of water soluble retinol glycosides were carried out in SCCO(2) media with carbohydrates-D-glucose 2, D-galactose 3, D-mannose 4, D-fructose 5, and D-sorbitol 6. Retinol glycosides yields were in the 9-34% range. Reaction with D-fructose 5 gave a highest yield of 34%. Excellent regioselectivity was observed with D-mannose 4 and D-sorbitol 6 which gave exclusively C1beta-mannoside and C1-D-sorbitolide. PMID:19005623

  14. Antifungal activity in triterpene glycosides from the sea cucumber Actinopyga lecanora.

    PubMed

    Kumar, Rajesh; Chaturvedi, Ashok Kumar; Shukla, Praveen Kumar; Lakshmi, Vijai

    2007-08-01

    Bioassay-guided fractionation of methanol extract of sea cucumber Actinopyga lecanora led to the isolation of a new triterpene glycoside (1), along with two known glycosides holothurin B (3) and holothurin A (4). The structure has been elucidated on the basis of extensive 2D NMR spectroscopic analysis. The saponin (3) showed in vitro antifungal activity against all the twenty fungal test isolates including ATCC strain and was found to be most effective against Trychophyton mentagrophytes and Sporothrix schenckii, MIC range of 1.56 microg/ml. PMID:17587569

  15. New Labdane Diterpenes and Their Glycoside Derivatives from the Roots of Isodon adenantha.

    PubMed

    Wu, La-Bin; Xiao, Chao-Jiang; Jiang, Xue; Qiu, Lin; Dong, Xiang; Jiang, Bei

    2015-08-01

    Two new labdane-type diterpenes (adenanthic acids A and B; 1 and 2, resp.) and three new labdane diterpene glycosides (adenanthosides A-C; 3-5, resp.) were isolated from the roots of Isodon adenantha, together with 23 known constituents including seven diterpenoids (6-12), eight triterpenoids (13-20), one lignan glycoside (21), six steroids (22-27), and one ceramide (28). Their structures were elucidated by spectroscopic methods including extensive 2D-NMR techniques. Cytotoxicity and antibacterial activities of the samples were measured by the MTT method and the filter paper disc agar diffusion method. But none of them showed significant activities. PMID:26265575

  16. Identification of Novel Phenyl Butenonyl C-Glycosides with Ureidyl and Sulfonamidyl Moieties as Antimalarial Agents

    PubMed Central

    2014-01-01

    A new series of C-linked phenyl butenonyl glycosides bearing ureidyl(thioureidyl) and sulfonamidyl moieties in the phenyl rings were designed, synthesized, and evaluated for their in vitro antimalarial activities against Plasmodium falciparum 3D7 (CQ sensitive) and K1 (CQ resistant) strains. Among all the compounds screened the C-linked phenyl butenonyl glycosides bearing sulfonamidyl moiety (5a) and ureidyl moiety in the phenyl ring (7d and 8c) showed promising antimalarial activities against both 3D7 and K1 strains with IC50 values in micromolar range and low cytotoxicity offering new HITS for further exploration. PMID:25147607

  17. A steryl glycoside fraction with hemolytic activity from tubers of Momordica cochinchinensis.

    PubMed

    Ng, T B; Li, W W; Yeung, H W

    1986-10-01

    A hemolytic fraction has been obtained from fresh tubers of Momordica cochinchinensis. The fraction was strongly adsorbed on DEAE-Sepharose CL6B. It did not stain with Coomassie brilliant blue in SDS-polyacrylamide gel electrophoresis and it gave no immunoprecipitin arcs in immunoelectrophoresis. The hemolytic activity of the fraction was resistant to heat and proteolytic enzymes. The behavior of the fraction in thin-layer chromatography and its positive reaction in Liebermann-Burchard test indicated that the hemolytic activity of the fraction can be attributed to a steryl glycoside(s). PMID:3821135

  18. A new lignan glycoside from the stem bark of Styrax japonica S. et Z.

    PubMed

    Kim, Mi-Ran; Moon, Hyun Teak; Lee, Dong Gun; Woo, Eun-Rhan

    2007-04-01

    A new lignan glycoside was isolated from the stem bark of Styrax japonica (Styracaceae). This lignan glycoside, named styraxjaponoside C (1), was identified by spectroscopic methods. In addition, six known compounds, arctiin (2), pinoresinol-4-O-beta-D-glucopyranoside (3), matairesinoside (4), methylsyringin (5), syringin (6), and egonol (7) were isolated from this plant. The structures of 1-7 were determined on the basis of spectroscopic and physicochemical data. Compounds 2 and 5 were isolated from this plant for the first time. PMID:17489357

  19. A New Diterpene Glycoside: 15α-Hydroxy-Rebaudioside M Isolated from Stevia rebaudiana.

    PubMed

    Prakash, Indra; Ma, Gil; Bunders, Cynthia; Devkota, Krishna P; Charan, Romila D; Ramirez, Catherine; Snyder, Tara M; Priedemann, Christopher

    2015-07-01

    In a continued search for novel diterpenoid glycosides, we recently isolated and characterized a Rebaudioside M derivative with a hydroxyl group at position 15 in the central diterpene core from an extract of Stevia rebaudiana Bertoni. Here we report the complete structure elucidation of 15α-hydroxy-Rebaudioside M (2) on the basis of NMR (1H, 13C, COSY, HSQC-DEPT, HMBC, 1D TOCSY, NOESY) and mass spectral data. Steviol glycoside with a hydroxyl group at C-15 in the central diterpene core has not been previously reported. PMID:26410999

  20. Two new glycosides from Dryopteris fragrans with anti-inflammatory activities.

    PubMed

    Peng, Bing; Bai, Rui-Feng; Li, Ping; Han, Xu-Yang; Wang, Hong; Zhu, Chong-Chong; Zeng, Zu-Ping; Chai, Xing-Yun

    2016-01-01

    Phytochemical investigation on the aqueous extract from Dryopteris fragrans led to the isolation of one new chromone glycoside, frachromone C (1), and one new coumarin glycoside, dryofracoulin A (2), together with one known undulatoside A (3). Their structures were elucidated by a combination of 1D and 2D NMR, HRMS, and chemical analysis. Compounds 1-3 exhibited inhibition on nitric oxide production in lipopolysaccharide induced RAW 264.7 macrophages with their IC50 values of 45.8, 65.8, and 49.8 μM, respectively. PMID:26700189

  1. Paeonicluside, a new salicylic glycoside from the Greek endemic species Paeonia clusii.

    PubMed

    Papandreou, Vasiliki; Magiatis, Prokopios; Kalpoutzakis, Eleftherios; Skaltsounis, Alexios-Leandros; Harvala, Catherine

    2002-01-01

    A new glycoside of salicylic aldehyde, paeonicluside, was isolated from the roots of the Greek endemic species Paeonia clusii subsp. clusii and identified as alpha-L-arabinopyranosyl-(1-->6)-O-beta-D-glucopyranoside of salicylic aldehyde (1). In addition, one characteristic monoterpene and two monoterpene glycosides were identified as paeoniflorigenone, paeoniflorin and benzoyl paeoniflorin, respectively. The structure of 1 was elucidated on the basis of its spectroscopic data and chemical correlation. It is the first time that a derivative of salicylic aldehyde is isolated from the well-studied Paeonia genus. PMID:12064719

  2. Electrospray-ionization mass spectrometry of mixtures of triterpene glycosides with paracetamol

    NASA Astrophysics Data System (ADS)

    Lekar, A. V.; Vetrova, E. V.; Borisenko, N. I.; Yakovishin, L. A.; Grishkovets, V. I.

    2010-11-01

    Molecular complexation of paracetamol with hederagenin 3-O-α-L-rhamnopyranosyl-(1 → 2)-O-α-L-arabinopyranoside (α-hederin) and its 28-O-α-L-rhamnopyranosyl-(1 → 4)-O-β-D-glucopyranosyl-(1 → 6)-O-β-Dglucopyranosyl ether (hederasaponin C) was investigated for the first time using electrospray-ionization mass spectrometry (ESI-MS). The glycosides form complexes with paracetamol in a 1:1 molar ratio. The hederasaponin C complex is more stable. The structures of the glycosides and paracetamol are concluded to have an impact on the complexation process.

  3. Beneficial effects of tripterygium glycosides tablet on biomarkers in patients with ankylosing spondylitis.

    PubMed

    Ji, Wei; Chen, Yajun; Zhao, Xia; Guo, Yunke; Zhong, Lingyu; Li, Honggang; Wang, Dan; Song, Yanna

    2015-07-01

    The aim of the current study was to explore the effects and possible mechanisms of tripterygium glycosides tablet (TGT) in the treatment of active ankylosing spondylitis (AS). Thirty-six patients with active AS were given a 20 mg TGT treatment three times per day for 12 weeks, and 21 unrelated healthy controls were recruited as the control group. Efficacy measures included the Bath AS disease activity index (BASDAI), erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) prior and subsequent to TGT treatment. Serum dickkopf homolog 1 (DKK1) and interleukin-17 (IL-17) levels before and after TGT treatment were assessed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and ELISA assay. The levels of several serum biomarkers were determined by ELISA, including receptor activator of nuclear factor κ-B ligand (RANKL), osteoprotegerin (OPG), bone alkaline phosphatase (BAP), bone morphogenetic protein-2 (BMP-2), matrix metalloproteinase-3 (MMP-3), cross-linked telopeptide of type II collagen (CTX-II), vascular endothelial growth factor (VEGF), and prostaglandin E2 (PGE2). After 12 weeks of TGT treatment, the BASDAI score of the patients was significantly reduced (P<0.05), their levels of ESR and CRP were significantly reduced to a normal level (P<0.05, P<0.05), RT-PCR and ELISA showed a significant increase in the level of DKK1 expression (P<0.05) and a significant decreased IL-17 expression (P<0.05), there was a significant increase in the expression of OPG, BAP and BMP-2 (P<0.01, P<0.01, P<0.01) and a significant reduction in the expression levels of RANKL, CTX-II. MMP-3, PGE2, and VEGF (P<0.01, P<0.01, P<0.01, P<0.05, P<0.01) compared with those of the controls. TGT is effective at improving the signs and symptoms of patients with AS through the regulation of serum biomarkers, and the mechanisms may be associated with the anti-inflammatory effect, inhibition of new bone formation and potential bone-protective effects. PMID

  4. Colochirosides A₁, A₂, A₃, and D, Four Novel Sulfated Triterpene Glycosides from the Sea Cucumber Colochirus robustus (Cucumariidae, Dendrochirotida).

    PubMed

    Silchenko, Alexandra S; Kalinovsky, Anatoly I; Avilov, Sergey A; Andryjaschenko, Pelageya V; Dmitrenok, Pavel S; Kalinin, Vladimir I; Yurchenko, Ekaterina A; Dolmatov, Igor Yu

    2016-03-01

    Four new triterpene glycosides, colochirosides A₁ (1), A₂ (2), A₃ (3) and D (4), have been isolated from the sea cucumber Colochirus robustus (Cucumariidae, Dendrochirotida). Structures of the glycosides have been elucidated by 2D NMR spectroscopy and mass-spectrometry. Colochiroside D (4) has a new type of carbohydrate chain having the only sulfate group attached to C-6 of the third (glucose) monosaccharide residue. Cytotoxic activities of glycosides 1-4 against the ascite form of mouse Ehrlich carcinoma cells and hemolytic activity against mouse erythrocytes have been studied. Hemolytic activity of the glycosides was higher than cytotoxic. Glycosides 1, 3 and 4 demonstrated strong effects, whereas compound 2 showed only moderate activity. PMID:27169187

  5. Reverse Correlation in Neurophysiology

    ERIC Educational Resources Information Center

    Ringach, Dario; Shapley, Robert

    2004-01-01

    This article presents a review of reverse correlation in neurophysiology. We discuss the basis of reverse correlation in linear transducers and in spiking neurons. The application of reverse correlation to measure the receptive fields of visual neurons using white noise and m-sequences, and classical findings about spatial and color processing in…

  6. Characterization and Modeling of the Collision Induced Dissociation Patterns of Deprotonated Glycosphingolipids: Cleavage of the Glycosidic Bond.

    PubMed

    Rožman, Marko

    2016-01-01

    Glycosphingolipid fragmentation behavior was investigated by combining results from analysis of a series of negative ion tandem mass spectra and molecular modeling. Fragmentation patterns extracted from 75 tandem mass spectra of mainly acidic glycosphingolipid species (gangliosides) suggest prominent cleavage of the glycosidic bonds with retention of the glycosidic oxygen atom by the species formed from the reducing end (B and Y ion formation). Dominant product ions arise from dissociation of sialic acids glycosidic bonds whereas product ions resulting from cleavage of other glycosidic bonds are less abundant. Potential energy surfaces and unimolecular reaction rates of several low-energy fragmentation pathways leading to cleavage of glycosidic bonds were estimated in order to explain observed dissociation patterns. Glycosidic bond cleavage in both neutral (unsubstituted glycosyl group) and acidic glycosphingolipids was the outcome of the charge-directed intramolecular nucleophilic substitution (SN2) mechanism. According to the suggested mechanism, the nucleophile in a form of carboxylate or oxyanion attacks the carbon at position one of the sugar ring, simultaneously breaking the glycosidic bond and yielding an epoxide. For gangliosides, unimolecular reaction rates suggest that dominant product ions related to the cleavage of sialic acid glycosidic bonds are formed via direct dissociation channels. On the other hand, low abundant product ions related to the dissociation of other glycosidic bonds are more likely to be the result of sequential dissociation. Although results from this study mainly contribute to the understanding of glycosphingolipid fragmentation chemistry, some mechanistic findings regarding cleavage of the glycosidic bond may be applicable to other glycoconjugates. PMID:26297186

  7. Analysis of glycosidically bound aroma precursors in tea leaves. 1. Qualitative and quantitative analyses of glycosides with aglycons as aroma compounds.

    PubMed

    Wang, D; Yoshimura, T; Kubota, K; Kobayashi, A

    2000-11-01

    Twenty-six synthetic glycosides constituting aglycons of the main tea aroma compounds ((Z)-3-hexenol, benzyl alcohol, 2-phenylethanol, methyl salicylate, geraniol, linalool, and four isomers of linalool oxides) were synthesized in our laboratory as authentic compounds. Those compounds were used to carry out a direct qualitative and quantitative determination of the glycosides as aroma precursors in different tea cultivars by capillary gas chromatographic-mass spectrometric (GC-MS) analyses after trifluoroacetyl conversion of the tea glycosidic fractions. Eleven beta-D-glucopyranosides, 10 beta-primeverosides (6-O-beta-D-xylopyranosyl-beta-D-glucopyranoside) with aglycons as the above alcohols, and geranyl beta-vicianoside (6-O-alpha-L-arabinopyranosyl-beta-D-glucopyranoside) were identified (tentatively identified in the case of methyl salicylate beta-primeveroside) in fresh tea leaves and quantified on the basis of calibration curves that had been established by using the synthetic compounds. Primeverosides were more abundant than glucosides in each cultivar we investigated for making green tea, oolong tea, and black tea. Separation of the diastereoisomers of linalool and four isomers of linalool oxides by GC analyses is also discussed. PMID:11087494

  8. Influence of the configurational pattern of sp(2)-iminosugar pseudo N-, S-, O- and C-glycosides on their glycoside inhibitory and antitumor properties.

    PubMed

    Sánchez-Fernández, Elena M; Gonçalves-Pereira, Rita; Rísquez-Cuadro, Rocío; Plata, Gabriela B; Padrón, José M; García Fernández, José M; Ortiz Mellet, Carmen

    2016-06-24

    The synthesis of a complete series of cyclic carbamate-type sp(2)-iminosugar N-, S-, O- and C-octyl pseudoglycosides related to nojirimycin, mannojirimycin and galactonojirimycin, all having the α-pseudoanomeric configuration, is reported. The gem-diamine-type N-pseudoglycosides can be accessed directly from the corresponding reducing sp(2)-imisosugar precursors by reaction with octylamine in methanol, whereas per-O-acetyl or 1-fluoro derivatives were used as pseudoglycosyl donors for the preparation of S-pseudoglycosides or O- and C-pseudoglycosides, respectively. Evaluation of their inhibitory properties against a panel of glycosidases evidenced selectivity profiles that strongly depend on the configurational pattern and the nature of the glycosidic linkage. On the contrary, the antiproliferative activity determined against a panel of tumor cell lines was largely independent of the relative orientation of the hydroxyl groups in the sp(2)-iminosugar moiety. Indeed, sp(2)-iminosugar representatives exhibiting significant growth inhibition potencies were identified in all three configurationally different types of compounds studied, namely α-d-gluco, α-d-manno and α-d-galacto glycoside analogs. Interestingly, none of the compounds affected viability and mortality of normal cells at the used concentrations. Altogether, the results strongly suggest that the anticancer activity of amphiphilic sp(2)-iminosugar glycosides might be unrelated, or not solely related, to their glycosidase inhibitory activity. PMID:26850915

  9. Quantum Operation Time Reversal

    SciTech Connect

    Crooks, Gavin E.

    2008-03-25

    The dynamics of an open quantum system can be described by a quantum operation: A linear, complete positive map of operators. Here, I exhibit a compact expression for the time reversal of a quantum operation, which is closely analogous to the time reversal of a classical Markov transition matrix. Since open quantum dynamics are stochastic, and not, in general, deterministic, the time reversal is not, in general, an inversion of the dynamics. Rather, the system relaxes toward equilibrium in both the forward and reverse time directions. The probability of a quantum trajectory and the conjugate, time reversed trajectory are related by the heat exchanged with the environment.

  10. Synthesis and biological analysis of novel glycoside derivatives of l-AEP, as targeted antibacterial agents.

    PubMed

    Bovill, Richard; Evans, Philip G; Howse, Gemma L; Osborn, Helen M I

    2016-08-01

    To develop targeted methods for treating bacterial infections, the feasibility of using glycoside derivatives of the antibacterial compound l-R-aminoethylphosphonic acid (l-AEP) has been investigated. These derivatives are hypothesized to be taken up by bacterial cells via carbohydrate uptake mechanisms, and then hydrolyzed in situ by bacterial borne glycosidase enzymes, to selectively afford l-AEP. Therefore the synthesis and analysis of ten glycoside derivatives of l-AEP, for selective targeting of specific bacteria, is reported. The ability of these derivatives to inhibit the growth of a panel of Gram-negative bacteria in two different media is discussed. β-Glycosides (12a) and (12b) that contained l-AEP linked to glucose or galactose via a carbamate linkage inhibited growth of a range of organisms with the best MICs being <0.75mg/ml; for most species the inhibition was closely related to the hydrolysis of the equivalent chromogenic glycosides. This suggests that for (12a) and (12b), release of l-AEP was indeed dependent upon the presence of the respective glycosidase enzyme. PMID:27268308

  11. Characterization of two-step deglycosylation via oxidation by glycoside oxidoreductase and defining their subfamily

    PubMed Central

    Kim, Eun-Mi; Seo, Joo-Hyun; Baek, Kiheon; Kim, Byung-Gee

    2015-01-01

    Herein, we report a two-step deglycosylation mediated by the oxidation of glycoside which is different from traditional glycoside hydrolase (GH) mechanism. Previously, we reported a novel flavin adenine dinucleotide (FAD)-dependent glycoside oxidoreductase (FAD-GO) having deglycosylation activity. Various features of the reaction of FAD-GO such as including mechanism and catalytic residue and substrate specificity were studied. In addition, classification of novel FAD-GO subfamily was attempted. Deglycosylation of glycoside was performed spontaneously via oxidation of 3-OH of glycone moiety by FAD-GO mediated oxidation reaction. His493 residue was identified as a catalytic residue for the oxidation step. Interestingly, this enzyme has broad glycone and aglycon specificities. For the classification of FAD-GO enzyme subfamily, putative FAD-GOs were screened based on the FAD-GO from Rhizobium sp. GIN611 (gi 365822256) using BLAST search. The homologs of R. sp. GIN611 included the putative FAD-GOs from Stenotrophomonas strains, Sphingobacterium strains, Agrobacterium tumefaciens str. C58, and etc. All the cloned FAD-GOs from the three strains catalyzed the deglycosylation via enzymatic oxidation. Based on their substrate specificities, deglycosylation and oxidation activities to various ginsenosides, the FAD-GO subfamily members can be utilized as novel biocatalysts for the production of various aglycones. PMID:26057169

  12. Total Synthesis of Linckosides A and B, the Representative Starfish Polyhydroxysteroid Glycosides with Neuritogenic Activities.

    PubMed

    Zhu, Dapeng; Yu, Biao

    2015-12-01

    Linckosides A and B, two starfish metabolites with promising neuritogenic activities, are synthesized in a longest linear sequence of 32 steps and 0.5% overall yield; this represents the first synthesis of members of the polyhydroxysteroid glycoside family, which occur widely in starfishes. PMID:26595819

  13. Theoretical Calculation of Electronic Circular Dichroism of a Hexahydroxydiphenoyl-Containing Flavanone Glycoside

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Time-dependent density functional theory (TDDFT) was employed for theoretical calculation of electronic circular dichroism (ECD) of a hexahydroxydiphenoyl (HHDP)-containing flavanone glycoside, mattucinol-7-O-[4'',6''-O-(aS)-hexahydroxydiphenoyl]-ß-d-glucopyranoside (2). It identified the roles of t...

  14. Reinvestigation of the stereochemistry of the C-glycosidic ellagitannins, vescalagin and castalagin.

    PubMed

    Matsuo, Yosuke; Wakamatsu, Hatsumi; Omar, Mohamed; Tanaka, Takashi

    2015-01-01

    The stereochemistry of the C-glycosidic ellagitannins, vescalagin and castalagin, has been reinvestigated using computational methods. DFT calculations of their (1)H and (13)C NMR spectra, as well as TDDFT calculations of the ECD spectra of their des-hexahydroxydiphenoyl analogues, revealed that the structure of the triphenoyl moiety of vescalagin and castalagin should be revised. PMID:25496565

  15. New abietane-type diterpene glycosides from the roots of Tripterygium wilfordii.

    PubMed

    Li, Hong-Mei; Wan, Da-Wu; Li, Rong-Tao

    2015-01-01

    Two new abietane diterpene glycosides, wilfordosides A (1) and B (2), were isolated from the roots of Tripterygium wilfordii. The structures of compounds 1 and 2 were established using spectroscopic methods including extensive 1D and 2D NMR analysis, in combination with chemical reactions. PMID:25588600

  16. Clerodane and Ent-kaurane Diterpene Glycosyl and Glycoside Derivatives from the Leaves of Casearia sylvestris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five new clerodane diterpene glycosides caseariasides A-E (1-4) and three new ent-kaurane diterpene glucosides sylvestrisides C-E (6-8) were isolated from the leaves of Casearia sylvestris. Their structures were determined on the basis of chemical and spectroscopic analyses....

  17. A New ent-Labdane Diterpene Glycoside form the Leaves of Casearia sylvestris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sylvestin (1), a new ent-labdane glycoside, was isolated from the leaves of Casearia sylvestris. The structure was determined on the basis of 1D and 2 D NMR and HR-ESI-MS analyses. The diterpenoid of ent-labdane type was isolated for the first time from C. sylvestris....

  18. DFT STUDY OF ALPHA-MALTOSE: INFLUENCE OF HYDROXYL ORIENTATIONS ON THE GLYCOSIDIC BOND

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The result of DFT geometry optimization of 68 unique alpha-maltose conformers at the B3LYP/6-311++G** level of theory is described. Particular attention is paid to the hydroxyl group rotational positions and their influence on the glycosidic bond dihedral angles. The orientation of lone pair elect...

  19. [STEROIDAL GENINS AND GLYCOSIDES OF SPIROSTAN AND FUROSTAN SERIES AS ANTHELMINTHIC AGENTS].

    PubMed

    Islamova, Zh I; Khushbaktova, Z A; Abdullaev, N D; Syrov, V N

    2016-01-01

    It was established that steroidal genins and their glycosides of the spirostan series and (especially) furostan series show anticestodal activity against Hymeiolepis nana species. Search for anthelminthic agents in the indicated series of compounds is a promising direction of research. PMID:27455578

  20. A GH57 4-α-glucanotransferase of hyperthermophilic origin with potential for alkyl glycoside production.

    PubMed

    Paul, Catherine J; Leemhuis, Hans; Dobruchowska, Justyna M; Grey, Carl; Önnby, Linda; van Leeuwen, Sander S; Dijkhuizen, Lubbert; Karlsson, Eva Nordberg

    2015-09-01

    4-α-Glucanotransferase (GTase) enzymes (EC 2.4.1.25) modulate the size of α-glucans by cleaving and reforming α-1,4 glycosidic bonds in α-glucans, an essential process in starch and glycogen metabolism in plants and microorganisms. The glycoside hydrolase family 57 enzyme (GTase57) studied in the current work catalyzes both disproportionation and cyclization reactions. Amylose was converted into cyclic amylose (with a minimum size of 17 glucose monomers) as well as to a spectrum of maltodextrins, but in contrast to glycoside hydrolase family 13 cyclodextrin glucanotransferases (CGTases), no production of cyclodextrins (C6-C8) was observed. GTase57 also effectively produced alkyl-glycosides with long α-glucan chains from dodecyl-β-D-maltoside and starch, demonstrating the potential of the enzyme to produce novel variants of surfactants. Importantly, the GTase57 has excellent thermostability with a maximal activity at 95 °C and an activity half-life of 150 min at 90 °C which is highly advantageous in this manufacturing process suggesting that enzymes from this relatively uncharacterized family, GH57, can be powerful biocatalysts for the production of large head group glucosides from soluble starch. PMID:25693671

  1. Enzyme-catalyzed synthesis of heptyl-β-glycosides: effect of water coalescence at high temperature.

    PubMed

    Montiel, Carmina; Bustos-Jaimes, Ismael; Bárzana, Eduardo

    2013-09-01

    Alkyl glycosides can be synthesized by glycosidases in organic media with limited amounts of water. These systems, however, limit the solubility of the sugar substrates and decrease reaction yields. Herein we report the enzymatic synthesis of heptyl-β-glycosides in heptanol catalyzed by a hyperthermophilic β-glycosidase at 90°C. Our results indicate that dispersion of water in heptanol changes with time producing coalescence of water at the bottom of the reactor, playing a key role in the reaction yield. Water-soluble substrate, enzyme and products are concentrated in the aqueous phase, according to their partition coefficients, promoting side reactions that inactivate the enzyme. Reaction yield of heptyl-β-glycosides was 35% relative to lactose, at 7% water. The increase in the water phase to 12% diminished the enzyme inactivation and increased the heptyl-β-glycosides yield to 52%. Surface-active compounds, SDS and octyl glucoside, increased water dispersion but were unable to prevent coalescence. PMID:23863873

  2. 7-O-methylpelargonidin glycosides from the pale red flowers of Catharanthus roseus.

    PubMed

    Tatsuzawa, Fumi

    2013-08-01

    Two new anthocyanidin glycosides were isolated from the pale red flowers of Catharanthus roseus 'Equator Apricot with Red Eye', and identified as 7-O-methylpelargonidin 3-O-[6-O-(alpha-rhamnopyranosyl)-beta-galactopyranoside] and 7-O-methylpelargonidin 3-O-(beta-galactopyranoside) by chemical and spectroscopic methods. PMID:24079176

  3. Rehabilitation of faulty kinetic determinations and misassigned glycoside hydrolase family of retaining mechanism ß-xylosidases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We obtained Cx1 from a commercial supplier, whose catalog listed it as a ß-xylosidase of glycoside hydrolase family 43. NMR experiments indicate retention of anomeric configuration in its reaction stereochemistry, opposing the assignment of GH43, which follows an inverting mechanism. Partial protein...

  4. Highly active ß-xylosidases of glycoside hydrolase family 43 operating on natural and artificial substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hemicellulose xylan constitutes a major portion of plant biomass, a renewable feedstock available for conversion to biofuels and other bioproducts. ß-xylosidase operates in the deconstruction of the polysaccharide to fermentable sugars. Glycoside hydrolase family 43 has been identified as a so...

  5. Acetylated Triterpene Glycosides and Their Biological Activity from Holothuroidea Reported in the Past Six Decades.

    PubMed

    Bahrami, Yadollah; Franco, Christopher M M

    2016-01-01

    Sea cucumbers have been valued for many centuries as a tonic and functional food, dietary delicacies and important ingredients of traditional medicine in many Asian countries. An assortment of bioactive compounds has been described in sea cucumbers. The most important and abundant secondary metabolites from sea cucumbers are triterpene glycosides (saponins). Due to the wide range of their potential biological activities, these natural compounds have gained attention and this has led to their emergence as high value compounds with extended application in nutraceutical, cosmeceutical, medicinal and pharmaceutical products. They are characterized by bearing a wide spectrum of structures, such as sulfated, non-sulfated and acetylated glycosides. Over 700 triterpene glycosides have been reported from the Holothuroidea in which more than 145 are decorated with an acetoxy group having 38 different aglycones. The majority of sea cucumber triterpene glycosides are of the holostane type containing a C18 (20) lactone group and either Δ(7(8)) or Δ(9(11)) double bond in their genins. The acetoxy group is mainly connected to the C-16, C-22, C-23 and/or C-25 of their aglycone. Apparently, the presence of an acetoxy group, particularly at C-16 of the aglycone, plays a significant role in the bioactivity; including induction of caspase, apoptosis, cytotoxicity, anticancer, antifungal and antibacterial activities of these compounds. This manuscript highlights the structure of acetylated saponins, their biological activity, and their structure-activity relationships. PMID:27527190

  6. High-Throughput In Vitro Glycoside Hydrolase (HIGH) Screening for Enzyme Discovery

    SciTech Connect

    Kim, Tae-Wan; Chokhawala, Harshal A.; Hess, Matthias; Dana, Craig M.; Baer, Zachary; Sczyrba, Alexander; Rubin, Edward M.; Blanch, Harvey W.; Clark, Douglas S.

    2011-09-16

    A high-throughput protein-expression and screening method (HIGH method, see picture) provides a rapid approach to the discovery of active glycoside hydrolases in environmental samples. Finally, HIGH screening combines cloning, protein expression, and enzyme hydrolysis in one pot; thus, the entire process from gene expression to activity detection requires only three hours.

  7. Cloning, Expression and Characterization of a Glycoside Hydrolase Family 39 Xylosidase from Bacillus Halodurans C-125

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gene encoding a glycoside hydrolase family 39 xylosidase (BH1068) from the alkaliphile Bacillus halodurans strain C-125 was cloned with a C-terminal His-tag and the recombinant gene product termed XylBH1068 was expressed in E. coli. Of the artificial substrates tested, XylBH1068 hydrolyzed nitro...

  8. A new phenolic glycoside and two new monoterpenoid furocoumarins from Aurantii Fructus Immaturus.

    PubMed

    Xiong, Ying; Chang, Meiyan; Deng, Kezhong; Luo, Yongming

    2016-07-01

    A new phenolic glycoside, citrauranoside A (1), and two new monoterpenoid furocoumarins, citraurancoumarin A (2) and citraurancoumarin B (3), along with four known compounds (4-7) were isolated from the young fruit of Citrus aurantium L. The structures were elucidated by their comprehensive analysis including 1D, 2DNMR, IR and mass spectra. PMID:26728329

  9. Utilisation of steviol glycosides from Stevia rebaudiana (Bertoni) by lactobacilli and bifidobacteria in in vitro conditions.

    PubMed

    Kunová, Gabriela; Rada, Vojtěch; Vidaillac, Adrien; Lisova, Ivana

    2014-05-01

    In the current study, eight strains of bifidobacteria and seven strains of lactobacilli were tested for their ability to grow in the presence of rebaudioside A and steviol glycosides from the sweetener Natusweet M001 originating from herb Stevia rebaudiana (Bertoni). Stevia is gaining popularity as a natural, non-caloric sugar substitute, and recently, it was allowed as a food additive by European Union too. Utilisation of steviol glycosides by intestinal microbiota suggests that they might have potential prebiotic effect. Based on the evaluation of bacterial density and pH values in our in vitro study, it was found that lactobacilli and bifidobacteria tested were able to utilise steviol glycosides as a carbon source only to a very limited extent. All strains tested showed significantly lower change in the absorbance A540 (P < 0.05) and pH decrease of the growth media as compared with the positive controls (medium containing glucose as a carbon source and de Man Rogosa Sharpe broth). We concluded that a suggested prebiotic effect was not confirmed either in the case of rebaudioside A or in the case of the sweetener Natusweet M001 containing a mixture of steviol glycosides. PMID:24249153

  10. Acetylated Triterpene Glycosides and Their Biological Activity from Holothuroidea Reported in the Past Six Decades

    PubMed Central

    Bahrami, Yadollah; Franco, Christopher M. M.

    2016-01-01

    Sea cucumbers have been valued for many centuries as a tonic and functional food, dietary delicacies and important ingredients of traditional medicine in many Asian countries. An assortment of bioactive compounds has been described in sea cucumbers. The most important and abundant secondary metabolites from sea cucumbers are triterpene glycosides (saponins). Due to the wide range of their potential biological activities, these natural compounds have gained attention and this has led to their emergence as high value compounds with extended application in nutraceutical, cosmeceutical, medicinal and pharmaceutical products. They are characterized by bearing a wide spectrum of structures, such as sulfated, non-sulfated and acetylated glycosides. Over 700 triterpene glycosides have been reported from the Holothuroidea in which more than 145 are decorated with an acetoxy group having 38 different aglycones. The majority of sea cucumber triterpene glycosides are of the holostane type containing a C18 (20) lactone group and either Δ7(8) or Δ9(11) double bond in their genins. The acetoxy group is mainly connected to the C-16, C-22, C-23 and/or C-25 of their aglycone. Apparently, the presence of an acetoxy group, particularly at C-16 of the aglycone, plays a significant role in the bioactivity; including induction of caspase, apoptosis, cytotoxicity, anticancer, antifungal and antibacterial activities of these compounds. This manuscript highlights the structure of acetylated saponins, their biological activity, and their structure-activity relationships. PMID:27527190

  11. Differential El Ion Fragmentation Pathways for Peracetylated C-Glycoside Ketals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aqueous-based Knoevenagel condensation of sugars with beta-diketones is a useful method for preparing beta-C-glycoside ketones. A mechanism has been proposed in which C-C bond formation between the anomeric sugar carbon and the bridged methylene of the diketone is followed by beta-elimination of wa...

  12. Method validation of a survey of thevetia cardiac glycosides in serum samples.

    PubMed

    Kohls, Sarah; Scholz-Böttcher, Barbara; Rullkötter, Jürgen; Teske, Jörg

    2012-02-10

    A sensitive and specific liquid chromatography tandem mass spectrometry (HPLC-ESI(+)-MS/MS) procedure was developed and validated for the identification and quantification of thevetin B and further cardiac glycosides in human serum. The seeds of Yellow Oleander (Thevetia peruviana) contain cardiac glycosides that can cause serious intoxication. A mixture of six thevetia glycosides was extracted from these seeds and characterized. Thevetin B, isolated and efficiently purified from that mixture, is the main component and can be used as evidence. Solid phase extraction (SPE) proved to be an effective sample preparation method. Digoxin-d3 was used as the internal standard. Although ion suppression occurs, the limit of detection (LOD) is 0.27 ng/ml serum for thevetin B. Recovery is higher than 94%, and accuracy and precision were proficient. Method refinement was carried out with regard to developing a general screening method for cardiac glycosides. The assay is linear over the range of 0.5-8 ng/ml serum. Finally, the method was applied to a case of thevetia seed ingestion. PMID:21376490

  13. New non-glycosidic diterpenes from the leaves of Stevia rebaudiana.

    PubMed

    McGarvey, Brian D; Attygalle, Athula B; Starratt, Alvin N; Xiang, Bosong; Schroeder, Frank C; Brandle, James E; Meinwald, Jerrold

    2003-10-01

    Six new labdane-type, non-glycosidic diterpenes, sterebins I-N (1-6), were isolated from the leaves of Stevia rebaudiana. Their structures, analogous to those of the previously described sterebins A-H, were elucidated on the basis of spectroscopic and chemical studies. PMID:14575446

  14. Potential anti-inflammatory phenolic glycosides from the medicinal plant Moringa oleifera fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioassay-guided isolation and purification of the ethyl acetate extract of Moringa oleifera fruits yielded three new phenolic glycosides; 4-[(2'-O-acetyl-a-L-rhamnosyloxy) benzyl]isothiocyanate (1), 4-[(3'-O-acetyl-a-L-rhamnosyloxy)benzyl]isothiocyanate (2), and S-methyl-N-{4-[(a-L-rhamnosyloxy)benz...

  15. Absorption of Anthocyanins from Berries: Metabolic Products and Influence of Glycoside

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanins (ACNs) are unique among the flavonoids in that they are absorbed as the intact glycoside. Berries are rich sources of anthocyanins; differences among the berries in aglycone as well as in sugar moieties provide opportunities to study factors that influence absorption/metabolism. The rel...

  16. Phenylethanoid glycosides in tepals of Magnolia salicifolia and their occurrence in flowers of Magnoliaceae.

    PubMed

    Porter, Elaine A; Kite, Geoffrey C; Veitch, Nigel C; Geoghegan, Ivey A; Larsson, Sonny; Simmonds, Monique S J

    2015-09-01

    Phenylethanoid glycosides were among the major UV-absorbing components in 80% aq. CH3OH extracts of the tepals of Magnolia salicifolia (Siebold & Zucc.) Maxim. (Magnoliaceae; Magnolia subgenus Yulania). Structural characterisation of isolated compounds by spectroscopic and chemical methods revealed three previously unrecorded examples, yulanoside A, yulanoside B and 2'-rhamnoechinacoside, and the known compounds echinacoside and crassifolioside; chromatographic methods also identified verbascoside in the tepal extract. Yulanoside A is the first reported example of a phenylethanoid pentaglycoside, namely hydroxytyrosol 1-O-{β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)-[3,4-dihydroxycinnamoyl-(→4)][α-L-rhamnopyranosyl-(1→3)][α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside}. A survey of Magnolia sensu lato and Liriodendron (the two genera of Magnoliaceae) suggested that yulanoside A and its deglucosyl derivative (yulanoside B) were a feature of the tepal chemistry of Magnolia subgenus Yulania (except Magnolia acuminata, the sole member of section Tulipastrum, which did not accumulate phenylethanoid glycosides). The two species of Liriodendron and examined examples of Magnolia subgenus Magnolia sections Magnolia and Rytidospermum (subsection Oyama) also accumulated phenylethanoid glycosides in their tepals and in these species, and in subgenus Yulania, the major compounds were one or more of echinacoside, 2'-rhamnoechinacoside, crassifolioside and verbascoside. Levels of phenylethanoid glycosides were found to be much lower in species studied from Magnolia sections Gwillimia, Macrophylla and Rytidospermum (subsection Rytidospermum), although yulanoside A was detectable in M. macrophylla and this may have some bearing on the placement of section Macrophylla, which is currently uncertain. In the isolates of yulanoside B and echinacoside, minor phenylethanoid glycosides were determined to be analogues of these compounds with β-D-xylose at C-3' of the

  17. Colochirosides B1, B2, B3 and C, Novel Sulfated Triterpene Glycosides from the Sea Cucumber Colochirus robustus (Cucumariidae, Dendrochirotida).

    PubMed

    Silchenko, Alexandra S; Kalinovsky, Anatoly I; Avilov, Sergey A; Andryjaschenko, Pelageya V; Dmitrenok, Pavel S; Kalinin, Vladimir I; Yurchenko, Ekaterina A; Dolmatov, Igor Yu

    2015-10-01

    Four new triterpene glycosides, colochirosides B1 (1), B2 (2), B3 (3) and C (4) have been isolated from the sea cucumber Colochirus robustus (Cucumariidae, Dendrochirotida). Six known earlier glycosides from representatives of two families of the order Dendrochirotida have also been found in C. robustus. Structures of the glycosides have been elucidated by 2D NMR spectroscopy and mass spectrometry. All the glycosides belong to the holostane series and contain tetrasaccharide linear carbohydrate chains with one or two sulfate groups. Cytotoxic activities of glycosides 1-4 against the ascite form of mouse Ehrlich carcinoma cells and hemolytic activities against mouse erythrocytes have been studied. Hemolytic activity of the glycosides was higher than cytotoxic. Glycosides 3 and 4 demonstrated strong effects, whereas compounds 1 and 2 containing the hydroxy-group in the side chains showed moderate hemolytic activity and were not cytotoxic. PMID:26669103

  18. A comparative study in vitro of physiological activity of triterpene glycosides of marine invertebrates of echinoderm type.

    PubMed

    Kuznetsova, T A; Anisimov, M M; Popov, A M; Baranova, S I; Afiyatullov, Sh Sh; Kapustina, I I; Antonov, A S; Elyakov, G B

    1982-01-01

    1. The cytostatic and antimicrobial activity of triterpene glycosides of 19 holothurian species of the Pacific tropical zone has been studied. 2. It has been demonstrated that yeast and tumor cells display a comparable sensibility to the action of triterpene oligosides of sea cucumbers. 3. Gram-positive and Gram-negative bacteria are not sensible to the action of glycosides in doses to 500 mkg/ml. 4. Triterpene glycosides-stichoposides, thelothurins and oligosides of Holothuria of genus Bohadschia are the most active in relation to fungal, yeast microflora and tumor cells. PMID:6128178

  19. Reverse Transfer in Australia

    ERIC Educational Resources Information Center

    Moodie, Gavin

    2004-01-01

    This article considers national Australian data on reverse transfer--the transfer of students from bachelor programs or higher to sub baccalaureate programs, institutions and sectors. It finds that previous studies have overstated the prevalence and perhaps also the significance of reverse transfer. The data are not good, but the best conclusion…

  20. Quantum reverse hypercontractivity

    SciTech Connect

    Cubitt, Toby; Kastoryano, Michael; Montanaro, Ashley; Temme, Kristan

    2015-10-15

    We develop reverse versions of hypercontractive inequalities for quantum channels. By generalizing classical techniques, we prove a reverse hypercontractive inequality for tensor products of qubit depolarizing channels. We apply this to obtain a rapid mixing result for depolarizing noise applied to large subspaces and to prove bounds on a quantum generalization of non-interactive correlation distillation.

  1. Justice and Reverse Discrimination.

    ERIC Educational Resources Information Center

    Goldman, Alan H.

    Defining reverse discrimination as hiring or admissions decisions based on normally irrelevant criteria, this book develops principles of rights, compensation, and equal opportunity applicable to the reverse discrimination issue. The introduction defines the issue and discusses deductive and inductive methodology as applied to reverse…

  2. Reverse Discrimination: Recent Cases.

    ERIC Educational Resources Information Center

    Steinhilber, August W.

    This paper discusses reverse discrimination cases with particular emphasis on Bakke v. Regents of University of California and those cases which preceded it. A brief history is given of court cases used by opponents and proponents in the discussion of reverse discrimination. Legal theory and a discussion of court cases that preceded Bakke follow.…

  3. Ultrasonic Time Reversal Mirrors

    NASA Astrophysics Data System (ADS)

    Fink, Mathias; Montaldo, Gabriel; Tanter, Mickael

    2004-11-01

    For more than ten years, time reversal techniques have been developed in many different fields of applications including detection of defects in solids, underwater acoustics, room acoustics and also ultrasound medical imaging and therapy. The essential property that makes time reversed acoustics possible is that the underlying physical process of wave propagation would be unchanged if time were reversed. In a non dissipative medium, the equations governing the waves guarantee that for every burst of sound that diverges from a source there exists in theory a set of waves that would precisely retrace the path of the sound back to the source. If the source is pointlike, this allows focusing back on the source whatever the medium complexity. For this reason, time reversal represents a very powerful adaptive focusing technique for complex media. The generation of this reconverging wave can be achieved by using Time Reversal Mirrors (TRM). It is made of arrays of ultrasonic reversible piezoelectric transducers that can record the wavefield coming from the sources and send back its time-reversed version in the medium. It relies on the use of fully programmable multi-channel electronics. In this paper we present some applications of iterative time reversal mirrors to target detection in medical applications.

  4. Reversible Shape Memory

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Li, Qiaoxi; Turner, Sara; Brosnan, Sarah; Tippets, Cary; Carrillo, Jan-Michael; Nykypnachuk, Dmytro; Gang, Oleg; Dobrynin, Andrey; Lopez, Rene; Ashby, Valerie; Sheiko, Sergei

    2014-03-01

    Reversible shape memory has been achieved on various shapes, e.g. hairpin, origami, coil, robotic gripper and flow rate control device, allowing for multiple switching between encoded shapes without applying any external force. Also, the reversible photonic structure molded in dielectric elastomers has been designed. Maximum reversibility can be achieved by tuning the crosslinking density and the degree of crystallinity of semi-crystalline elastomers. Different crystallization protocols including isothermal and cooling crystallization have been applied to develop a universal picture integrating different shape memory (SM) behaviors: conventional one-way SM, two-way reversible SM, and one-way reversible SM. Acknowledge financial support from the NSF DMR-1122483, DMR- 1004576, and DMR-1206957.

  5. Identification and quantitation of glycosidically bound aroma compounds in three tobacco types by gas chromatography-mass spectrometry.

    PubMed

    Cai, Kai; Xiang, Zhangmin; Pan, Wenjie; Zhao, Huina; Ren, Zhu; Lei, Bo; Geng, Zhaoliang

    2013-10-11

    Glycosidically bound aroma compounds in three different types of tobacco were investigated. After isolation of extracts obtained by Amberlite XAD-2 adsorption and ethyl acetate elution, glycosides were analyzed after enzymatic hydrolysis by gas chromatography-mass spectrometry (GC-MS) or directly after trifluoroacetylated (TFA) derivatization by GC-MS in electron ionization (EI) and negative chemical ionization (NCI) mode. In total 21 bound aglycones were identified by β-glucosidase hydrolysis. These aglycones mainly consisted of C13-norisoprenoids, aromatic components and sesquiterpenoids. Additionally, with the aid of enzymatic hydrolysis, 15 β-d-glucopyranosides and 1 β-d-rutinoside were tentatively identified by TFA derivatization. TFA method was validated by repeatability and successfully employed to analyze different types of tobacco. Principal component analysis (PCA) was carried out on identified glycoside variables to visualize the difference between the tobacco types and the relationship between the glycoside variables and the tobacco types was established. PMID:24011421

  6. Acid-Assisted Ball Milling of Cellulose as an Efficient Pretreatment Process for the Production of Butyl Glycosides.

    PubMed

    Boissou, Florent; Sayoud, Nassim; De Oliveira Vigier, Karine; Barakat, Abdellatif; Marinkovic, Sinisa; Estrine, Boris; Jérôme, François

    2015-10-12

    Ball milling of cellulose in the presence of a catalytic amount of H2SO4 was found to be a promising pre-treatment process to produce butyl glycosides in high yields. Conversely to the case of water, n-butanol has only a slight effect on the recrystallization of ball-milled cellulose. As a result, thorough depolymerization of cellulose prior the glycosylation step is no longer required, which is a pivotal aspect with respect to energy consumption. This process was successfully transposed to wheat straw from which butyl glycosides and xylosides were produced in good yields. Butyl glycosides and xylosides are important chemicals as they can be used as hydrotropes but also as intermediates in the production of valuable amphiphilic alkyl glycosides. PMID:26346950

  7. Cytotoxic action of triterpene glycosides from sea cucumbers from the genus Cucumaria on mouse spleen lymphocytes. Inhibition of nonspecific esterase.

    PubMed

    Aminin, Dmitry L; Silchenko, Alexandra S; Avilov, Sergey A; Stepanov, Vadim G; Kalinin, Vladimir I

    2009-06-01

    Four triterpene glycosides from sea cucumbers belonging to the genus Cucumaria, okhotoside A(1)-1 (1), cucumarioside A(0)-1 (2), frondoside A (3) and cucumarioside A(2)-2 (4) inhibit the activity of nonspecific esterase of mouse spleen lymphocytes. The dependence of the inhibitory activity of the glycosides on their structure is similar to that for hemolytic activity. The absence of inhibitory activity for the preparation Cumaside, which is a complex of cucumarioside A(2)-2 and related compounds with cholesterol, shows a cholesterol-dependent character of the inhibitory action of the glycosides. The effective inhibitory concentrations of frondoside A and cucumarioside A(2)-2 are significantly higher than the immunomodulatory doses of these glycosides. PMID:19634320

  8. β-Hydroxydihydrochalcone and flavonoid glycosides along with triterpene saponin and sesquiterpene from the herbs of Pimpinella rhodantha Boiss.

    PubMed

    Özbek, Hilal; Güvenalp, Zühal; Kuruüzüm-Uz, Ay E; Kazaz, Cavit; Demirezer, L Ömür

    2016-01-01

    A new β-hydroxydihydrochalcone glycoside named ziganin (1) and a new acylated flavonol glycoside named isorhamnetin-3-O-α-L-(2″,3″-di-O-trans-coumaroyl)-rhamnopyranoside) (2), along with two known flavonoid glycosides, a β-hydroxydihydrochalcone glycoside, a hydroxybenzoic acid derivative, a trinorguaiane type sesquiterpenoid, a triterpenic saponin and a polyol were isolated from the herbs of Pimpinella rhodantha Boiss. Their structures were elucidated on the basis of spectroscopic analyses including 1D-and 2D-NMR, UV, IR, CD, ESI-MS, APCI-MS, HR-ESI-MS techniques. The isolated compounds were evaluated for their antioxidant capacity through the DPPH free-radical scavenging assay and ferrous ion-chelating power test. PMID:26207840

  9. Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents.

    PubMed

    Lee, Byung-Hwan; Choi, Sun-Hye; Kim, Hyeon-Joong; Jung, Seok-Won; Hwang, Sung-Hee; Pyo, Mi-Kyung; Rhim, Hyewhon; Kim, Hyoung-Chun; Kim, Ho-Kyoung; Lee, Sang-Mok; Nah, Seung-Yeol

    2016-07-01

    Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin- 3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance α7 nicotinic acetylcholine receptor (α7 nAChR)-mediated ion currents. However, the role of the carbohydrates attached to quercetin in the regulation of α7 nAChR channel activity has not been determined. In the present study, we investigated the effects of quercetin glycosides on the acetylcholine induced peak inward current (IACh) in Xenopus oocytes expressing the α7 nAChR. IACh was measured with a two-electrode voltage clamp technique. In oocytes injected with α7 nAChR copy RNA, quercetin enhanced IACh, whereas quercetin glycosides inhibited IACh. Quercetin glycosides mediated an inhibition of IACh, which increased when they were pre-applied and the inhibitory effects were concentration dependent. The order of IACh inhibition by quercetin glycosides was Rutin≥Rham1>Rham2. Quercetin glycosides-mediated IACh enhancement was not affected by ACh concentration and appeared voltage-independent. Furthermore, quercetin-mediated IACh inhibition can be attenuated when quercetin is co-applied with Rham1 and Rutin, indicating that quercetin glycosides could interfere with quercetin-mediated α7 nAChR regulation and that the number of carbohydrates in the quercetin glycoside plays a key role in the interruption of quercetin action. These results show that quercetin and quercetin glycosides regulate the α7 nAChR in a differential manner. PMID:27098860

  10. New monoterpene glycosides from the root cortex of Paeonia suffruticosa and their potential anti-inflammatory activity.

    PubMed

    Zhu, Xia; Fang, Ze-Hai

    2014-01-01

    The methanol extract of the root cortex of Paeonia suffruticosa afforded two new monoterpene glycosides, paeoniside A (1) and paeoniside B (2), and three known monoterpene glycosides, paeoniflorin (3), benzoylpaeoniflorin (4) and 4-O-methyl-paeoniflorin (5). Their structures were elucidated on the basis of spectroscopic means including 1D and 2D NMR experiments. Compounds 1-5 were found to be active against cyclooxygenase-1 and cyclooxygenase-2 enzymes. PMID:24236670

  11. Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents

    PubMed Central

    Lee, Byung-Hwan; Choi, Sun-Hye; Kim, Hyeon-Joong; Jung, Seok-Won; Hwang, Sung-Hee; Pyo, Mi-Kyung; Rhim, Hyewhon; Kim, Hyoung-Chun; Kim, Ho-Kyoung; Lee, Sang-Mok; Nah, Seung-Yeol

    2016-01-01

    Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin-3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance α7 nicotinic acetylcholine receptor (α7 nAChR)-mediated ion currents. However, the role of the carbohydrates attached to quercetin in the regulation of α7 nAChR channel activity has not been determined. In the present study, we investigated the effects of quercetin glycosides on the acetylcholine induced peak inward current (IACh) in Xenopus oocytes expressing the α7 nAChR. IACh was measured with a two-electrode voltage clamp technique. In oocytes injected with α7 nAChR copy RNA, quercetin enhanced IACh, whereas quercetin glycosides inhibited IACh. Quercetin glycosides mediated an inhibition of IACh, which increased when they were pre-applied and the inhibitory effects were concentration dependent. The order of IACh inhibition by quercetin glycosides was Rutin≥Rham1>Rham2. Quercetin glycosides-mediated IACh enhancement was not affected by ACh concentration and appeared voltage-independent. Furthermore, quercetin-mediated IACh inhibition can be attenuated when quercetin is co-applied with Rham1 and Rutin, indicating that quercetin glycosides could interfere with quercetin-mediated α7 nAChR regulation and that the number of carbohydrates in the quercetin glycoside plays a key role in the interruption of quercetin action. These results show that quercetin and quercetin glycosides regulate the α7 nAChR in a differential manner. PMID:27098860

  12. [Complexation between triterpene glycosides of holothurians and cholesterol is the basis of lipid-saponin carriers of subunit protein antigens].

    PubMed

    Mazeĭka, A N; Popov, A M; Kalinin, V I; Avilov, S A; Sil'chenko, A S; Kostetskiĭ, E Ia

    2008-01-01

    The ability of some triterpene glycosides of holothurians: cucumarioside A2-2 from Cucumaria japonica, cucumarioside G1 from Cucumaria fraudatrix, frondoside A from Cucumaria frondosa, and holotoxin A1 from A postichopus japonicus to form lipid-saponin supramolecular complexes was studied. The formation of supramolecular cholesterol-glycosides complexes between cholesterol and these glycosides in water medium was observed by transmission electron microscopy. These complexes were considered as nanoparticles with different structure. Complexes formed by cholesterol with cucumarioside A2-2, holotoxin A1, and frondoside A are tubular nanoparticles. In contrast, complexes between cholesterol and cucumarioside G1 have different structured. The structure of nanoparticles formed in the presence of cucumarioside A2-2, holotoxin A1, and cucumarioside G1 was dependent on the ratio of cholesterol in the lipid-saponin system. On the other hand, frondoside A did not shown this tendency. In lipid-saponin systems with a similar molar ratio cholesterol-glycoside, the ordering of the supramolecular structure decreases in the following order: cucumarioside A2-2, holotoxin A1, frondoside A. A comparative analysis of the morphology of the supramolecular complexes and the peculiarities of the molecular structure of triterpene glycosides studied, demonstrated that the structure of supramolecular complexes formed depends on the branching and length of the glycoside carbohydrate chain. On the other hand, the formation of monomeric cholesterol-glycosides complexes depends on the peculiarities of the structure of aglycone. Thus, the possibility of the formation of a new type of antigen carries on the basis of marine triterpene glycosides was proved. PMID:18954012

  13. Pharmacokinetics, tissue distribution and excretion study of a furostanol glycoside-based standardized fenugreek seed extract in rats.

    PubMed

    Kandhare, Amit D; Bodhankar, Subhash L; Mohan, V; Thakurdesai, Prasad A

    2015-08-01

    The furostanol glycoside isolated from the seed of fenugreek (SFSE-G) has an array of pharmacological activities. To date, no validated high-performance liquid chromatography (HPLC) method has been reported for quantification of SFSE-G in biological samples. Hence, the aim of the present study was to study the pharmacokinetics, tissue distribution and excretion profiles of SFSE-G after oral administration in rats. A rapid, sensitive, selective, robust and reproducible HPLC method has been developed for determination of SFSE-G in the rat biological samples. The chromatographic separation was accomplished on a reversed-phase C18 column using formic acid and acetonitrile (80:20) as mobile phase at a flow rate of 1.0 mL/min and 274 nm as a detection wavelength. The assay was linear for SFSE-G with the correlation coefficients (R(2)) >0.996. The analytes were stable during samples storage and handling, and no matrix effects were observed. After oral dosing of SFSE-G at a dose of 200 mg/kg, the elimination half-life was app. 40.10 h. It showed relatively slowly distribution and eliminated in urine and feces after 24 h, and could be detected until 108 h post-dosing. Following oral single dose (200 mg/kg), SFSE-G was detected in lung and brain which indicated that it could cross the blood-brain barrier. It is a major route of elimination is excretion through urine and feces. In conclusion, oral administration of SFSE-G showed slow distribution to tissues, such as lung and brain, but showed fast renal elimination. PMID:26104039

  14. Relationships between chemical structures and functions of triterpene glycosides isolated from sea cucumbers

    NASA Astrophysics Data System (ADS)

    Park, Joo-In; Bae, Hae-Rahn; Kim, Chang Gun; Stonik, Valentin; Kwak, Jong-Young

    2014-09-01

    Many marine triterpene glycosides have in vitro and in vivo activities with very low toxicity, suggesting that they are suitable agents for the prevention and treatment of different diseases, particularly cancer. However, the molecular mechanisms of action of natural marine compounds in cancer, immune and other various cells are not fully known. This review focuses on the structural characteristics of marine triterpene glycosides and how these affect their biological activities and molecular mechanisms. In particular, the membranotropic and membranolytic activities of frondoside A and cucumariosides from sea cucumbers and their ability to induce cytotoxicity and apoptosis have been discussed, with a focus on structure-activity relationships. In addition, the structural characteristics and antitumor effects of stichoposide C and stichoposide D have been reviewed along with underlying their molecular mechanisms.

  15. Effect of Blueberry Anthocyanins Malvidin and Glycosides on the Antioxidant Properties in Endothelial Cells

    PubMed Central

    Huang, Wuyang; Zhu, Yunming; Li, Chunyang

    2016-01-01

    The objective of this research was to survey the antioxidant functional role of the main anthocyanins of blueberries in endothelial cells. Changes on the reactive oxygen species (ROS), xanthine oxidase-1 (XO-1), superoxide dismutase (SOD), and heme oxygenase-1 (HO-1) in cells of malvidin and the two glycosides were investigated. The results showed that these anthocyanins decreased the levels of ROS and XO-1 but increased the levels of SOD and HO-1. Glycosides improved the antioxidant capacity of malvidin to a great extent. The changes in the antioxidant properties of malvidin-3-glucoside were more pronounced than malvidin-3-galactoside. Variation in levels of malvidin-3-glucoside and malvidin-3-galactoside had a significant impact on antioxidant properties to different extents. It indicates that blueberries are a good resource of anthocyanins, which can protect cells from oxidative deterioration and use blueberry as a potential functional food to prevent diseases related to oxidative stress. PMID:27034731

  16. Supraphysiological Levels of Quercetin Glycosides are Required to Alter Mineralization in Saos2 Cells

    PubMed Central

    Nash, Leslie A.; Peters, Sandra J.; Sullivan, Philip J.; Ward, Wendy E.

    2016-01-01

    Flavonoid intake is positively correlated to bone mineral density (BMD) in women. Flavonoids such as quercetin exhibit strong anti-oxidant and anti-inflammatory activity that may be beneficial for bone health. Quercetin, previously shown to positively influence osteoblasts, is metabolized into glycosides including rutin and hyperoside. We compared the effects of these glycosides on mineralization in human osteoblast (Saos2) cells. Administration of rutin (≥25 µM) and hyperoside (≥5 µM) resulted in higher mineral content, determined using the alizarin red assay. This was accompanied by higher alkaline phosphatase activity with no cell toxicity. The expression of osteopontin, sclerostin, TNFα and IL6, known stimuli for decreasing osteoblast activity, were reduced with the addition of rutin or hyperoside. In summary, rutin and hyperoside require supraphysiological levels, when administered individually, to positively influence osteoblast activity. This information may be useful in developing nutraceuticals to support bone health. PMID:27136576

  17. Effect of Blueberry Anthocyanins Malvidin and Glycosides on the Antioxidant Properties in Endothelial Cells.

    PubMed

    Huang, Wuyang; Zhu, Yunming; Li, Chunyang; Sui, Zhongquan; Min, Weihong

    2016-01-01

    The objective of this research was to survey the antioxidant functional role of the main anthocyanins of blueberries in endothelial cells. Changes on the reactive oxygen species (ROS), xanthine oxidase-1 (XO-1), superoxide dismutase (SOD), and heme oxygenase-1 (HO-1) in cells of malvidin and the two glycosides were investigated. The results showed that these anthocyanins decreased the levels of ROS and XO-1 but increased the levels of SOD and HO-1. Glycosides improved the antioxidant capacity of malvidin to a great extent. The changes in the antioxidant properties of malvidin-3-glucoside were more pronounced than malvidin-3-galactoside. Variation in levels of malvidin-3-glucoside and malvidin-3-galactoside had a significant impact on antioxidant properties to different extents. It indicates that blueberries are a good resource of anthocyanins, which can protect cells from oxidative deterioration and use blueberry as a potential functional food to prevent diseases related to oxidative stress. PMID:27034731

  18. New bibenzyl glycosides from leaves of Camellia oleifera Abel. with cytotoxic activities.

    PubMed

    Chen, Yuelong; Tang, Ling; Feng, Baomin; Shi, Liying; Wang, Huiguo; Wang, Yongqi

    2011-04-01

    Studies on the chemical constituents of leaves of Camellia oleifera Abel. led to the isolation of 3 new bibenzyl glycosides. Their structures have been elucidated as 1-(3',5'-dihydroxy)phenyl-2-(4″-O-β-D-glucopyranosyl)phenylethane (1), 1-(3',5'-dimethoxy)phenyl-2-(4″-O-β-D-glucopyranosyl)phenylethane (2) and 1-(3',5'-dimethoxy)phenyl-2-[4″-O-β-D-glucopyranosyl(6→1)-O-α-L-rhamnopyranosyl]phenylethane (3) through spectral studies including HR-ESI-MS, ((1))H NMR, ((13))C NMR and 2D NMR experiments. All the above 3 bibenzyl glycosides showed cytotoxic activities to Hela and hep2 cell lines. PMID:21219989

  19. Cardenolides and bufadienolide glycosides from Kalanchoe tubiflora and evaluation of cytotoxicity.

    PubMed

    Huang, Hui-Chi; Lin, Ming-Kuem; Yang, Hsin-Ling; Hseu, You-Cheng; Liaw, Chih-Chuang; Tseng, Yen-Hsueh; Tsuzuki, Minoru; Kuo, Yueh-Hsiung

    2013-09-01

    Two new cardenolides, kalantubolide A (1) and kalantubolide B (2), and two bufadienolide glycosides, kalantuboside A (3) and kalantuboside B (4), as well as eleven known compounds were isolated and characterized from the EtOH extract of Kalanchoe tubiflora. The structures of compounds were assigned based on 1D and 2D NMR spectroscopic analyses including HMQC, HMBC, and NOESY. Biological evaluation indicated that cardenolides (1-2) and bufadienolide glycosides (3-7) showed strong cytotoxicity against four human tumor cell lines (A549, Cal-27, A2058, and HL-60) with IC50 values ranging from 0.01 µM to 10.66 µM. Cardenolides (1-2) also displayed significant cytotoxicity toward HL-60 tumor cell line. In addition, compounds 3, 4, 5, 6, and 7 blocked the cell cycle in the G2/M-phase and induced apoptosis in HL-60 cells. PMID:23877916

  20. Anti-inflammatory properties of a triterpenoidal glycoside from Momordica cochinchinensis in LPS-stimulated macrophages.

    PubMed

    Jung, Kiwon; Chin, Young-Won; Yoon, Kee dong; Chae, Hee-Sung; Kim, Chul Young; Yoo, Hunseung; Kim, Jinwoong

    2013-02-01

    Two triterpenoidal saponins were isolated from the seeds of Momordica cochinchinensis Sprenger (Cucurbitaceae). Identification of chemical structures has been performed by (1)H- and (13)C-NMR spectroscopy and gas chromatography (GC). One of the saponins is a new gypsogenin glycoside, named as gypsogenin 3-O-β-D-galactopyranosyl(1→2)-[α-L-rhamnopyranosyl(1→3)]-β-D-glucuronopyranoside (compound 1), which is reported for the first time from natural resources. The other saponin is a quillaic acid glycoside (compound 2), which showed anti-inflammatory activities in RAW 264.7 cells. The mechanistic understanding of anti-inflammatory activities demonstrates that compound 2 inhibits lipopolysaccharide-induced expression of nitric oxide and IL-6 via NF-κB pathway. PMID:22916793

  1. Synthesis and Characterization of Hapten-Protein Conjugates for Antibody Production against Cyanogenic Glycosides.

    PubMed

    Bolarinwa, Islamiyat Folashade

    2015-07-01

    Consumption of cyanogenic plants can cause serious health problems for humans. The ability to detect and quantify cyanogenic glycosides, capable of generating cyanide, could contribute to prevention of cyanide poisoning from the consumption of improperly processed cyanogenic plants. Hapten-protein conjugates were synthesized with amygdalin and linamarin by using a novel approach. Polyclonal antibodies were generated by immunizing four New Zealand White rabbits with synthesized amygdalin-bovine serum albumin and linamarin-bovine serum albumin immunogen. This is the first time an antibody was produced against linamarin. Antibody titer curves were obtained from all the four rabbits by using a noncompetitive enzyme-linked immunosorbent assay. High antibody titer was obtained at dilutions greater than 1:50,000 from both immunogens. This new method is an important step forward in preventing ingestion of toxic cyanogenic glycosides. PMID:26197297

  2. Anti-allergic inflammatory effects of cyanogenic and phenolic glycosides from the seed of Prunus persica.

    PubMed

    Kim, Geum Jin; Choi, Hyun Gyu; Kim, Ji Hyang; Kim, Sang Hyun; Kim, Jeong Ah; Lee, Seung Ho

    2013-12-01

    A methanol extract of the seed of Prunus persica (Rosaceae) was found to inhibit histamine release in human mast cells. Activity-guided fractionation of the methanol extract yielded three cyanogenic glycosides (1-3) and other phenolic compounds (4-8). To evaluate their anti-allergic and anti-inflammatory activities, the isolates (1-8) were tested for their inhibitory effects on histamine release and on the gene expressions of tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 in human mast cells. Of these, phenolic glycosides 7 and 8 suppressed histamine release and inhibited the pro-inflammatory cytokines TNF-alpha and IL-6. These results suggest that isolates from P. persica are among the anti-allergic inflammatory principles in this medicinal plant. PMID:24555287

  3. Mycotoxins and cyanogenic glycosides in staple foods of three indigenous people of the Colombian Amazon.

    PubMed

    Diaz, Gonzalo J; Krska, Rudolf; Sulyok, Michael

    2015-01-01

    A study was conducted to determine the incidence and levels of mycotoxins in the main staple foods of three indigenous people of the Colombian Amazon. A total of 20 corn, 24 rice and 59 cassava samples were analysed by a multi-analyte liquid chromatography-tandem mass spectrometry method covering the major classes of mycotoxins. In addition, cassava samples were also analysed for cyanogenic glycosides. The indigenous Amazon communities tested are exposed to potentially carcinogenic mycotoxins (particularly aflatoxins), as well as other mycotoxins, mainly through the intake of locally grown corn. Citrinin content in this corn was unusually high and has not been reported elsewhere. Two cassava samples contained high levels of cyanogenic glycosides. It is strongly recommended not to grow corn in the Amazon but instead purchase it from vendors capable of guaranteeing mycotoxin levels below the maximum allowable concentration in Colombia. PMID:26391446

  4. Synthesis of thymol glycosides under SCCO2 conditions using amyloglucosidase from Rhizopus mold.

    PubMed

    Kumar, Tiruppur Venkatachallam Suresh; Sankar, Kadimi-Udaya; Divakar, Soundar

    2013-08-01

    Enzymatic synthesis of water soluble thymol glycosides were carried out using amyloglucosidase from Rhizopus mold under supercritical carbon dioxide (SCCO2) conditions of 120 bar pressure at 50 °C. Thymol 1 formed glycosides with D-galactose 2, D-mannose 3, D-fructose 4, D-ribose 5 and D-arabinose 6 in yields ranging from 20.6% to 54.2%. Spectral characterization studies revealed that the reaction occurred between the phenolic OH group of thymol and 1-O/2-O groups of D-fructose and C-1 group of D-galactose, D-mannose, D-ribose and D-arabinose resulting in monoglycosylated/arylated derivatives. PMID:24425985

  5. Structures of the novel α-glucosyl linked diterpene glycosides from Stevia rebaudiana.

    PubMed

    Chaturvedula, Venkata Sai Prakash; Upreti, Mani; Prakash, Indra

    2011-09-27

    From the commercial extract of the leaves of Stevia rebaudiana, two new minor diterpene glycosides having α-glucosyl linkage were isolated besides the known steviol glycosides including stevioside, steviolbioside, rebaudiosides A-F, rubusoside and dulcoside A. The structures of the two compounds were identified as 13-[(2-O-(3-α-O-d-glucopyranosyl)-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester (1), and 13-[(2-O-β-d-glucopyranosyl-3-O-(4-O-α-d-glucopyranosyl)-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester (2), on the basis of extensive NMR and MS spectral data as well as chemical studies. PMID:21798525

  6. DPPH radical-scavenging effect of several phenylpropanoid compounds and their glycoside derivatives.

    PubMed

    Tominaga, Hitoshi; Kobayashi, Yuka; Goto, Takashi; Kasemura, Kazuo; Nomura, Masato

    2005-04-01

    Eugenol, isoeugenol, caffeic acid, ferulic acid, isoferulic acid, estragole, trans-anethole, and paeonol are components of a Chinese herbal medicine used as a painkiller and stomachic. We investigated the potential role of these compounds as antioxidants. We studied the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical-scavenging effect of these molecules, together with some glycoside derivatives, to ascertain their potential in reducing the levels of activated oxygen species in vivo. The DPPH radical-scavenging effects of eugenol, isoeugenol, and the glycoside derivatives of caffeic acid, ferulic acid, and isoferulic acid (SC(50)=8-28 microM) were similar to those of alpha-tocopherol, which was used as a positive control. PMID:15802883

  7. Towards a molecular-level theory of carbohydrate processivity in glycoside hydrolases.

    PubMed

    Beckham, Gregg T; Ståhlberg, Jerry; Knott, Brandon C; Himmel, Michael E; Crowley, Michael F; Sandgren, Mats; Sørlie, Morten; Payne, Christina M

    2014-06-01

    Polysaccharide depolymerization in nature is primarily accomplished by processive glycoside hydrolases (GHs), which abstract single carbohydrate chains from polymer crystals and cleave glycosidic linkages without dissociating after each catalytic event. Understanding the molecular-level features and structural aspects of processivity is of importance due to the prevalence of processive GHs in biomass-degrading enzyme cocktails. Here, we describe recent advances towards the development of a molecular-level theory of processivity for cellulolytic and chitinolytic enzymes, including the development of novel methods for measuring rates of key steps in processive action and insights gained from structural and computational studies. Overall, we present a framework for developing structure-function relationships in processive GHs and outline additional progress towards developing a fundamental understanding of these industrially important enzymes. PMID:24863902

  8. Acylated delphinidin glycosides from violet and violet-blue flowers of Clematis cultivars and their coloration.

    PubMed

    Sakaguchi, Keisuke; Kitajima, Junichi; Iwashina, Tsukasa

    2013-11-01

    Three new acylated delphinidin glycosides, delphinidin 3-O-beta-[(2"-trans-caffeoylglucopyranosyl)-(1 --> 2)-(6"-succinylgalactopyranoside)]-7-O-beta-glucopyranoside (1), delphinidin 3-O-beta-[(2"-trans-caffeoylglucopyranosyl)-(1 --> 2)-(6"-trans-caffeoyl-tartaroyl-malonylgalactopyranoside)]-7-O-beta-glucopyranoside (2), and delphinidin 3-O-beta-[(2"-trans-caffeoylglucopyranosyl)-(1 --> 2)-(6"-trans-caffeoyl-tartaroyl-malonylgalactopyranoside)]-3'-O-beta-glucuronopyranoside (3), were isolated from the violet and violet-blue sepals of Clematis cultivars 'Jackmanii Superba' and 'Fujimusume'. The chemical structures of the isolated anthocyanins were determined by LC-MS, characterization of hydrolyzates, and UV, 1H and 13C NMR spectroscopy. The visible absorption spectra of these anthocyanins were compared with those of fresh sepals and crude extracts in pH 5.1 buffer solution. In addition, the co-pigment effect with some kaempferol glycosides and caffeoylglucose was examined. PMID:24427942

  9. Supraphysiological Levels of Quercetin Glycosides are Required to Alter Mineralization in Saos2 Cells.

    PubMed

    Nash, Leslie A; Peters, Sandra J; Sullivan, Philip J; Ward, Wendy E

    2016-01-01

    Flavonoid intake is positively correlated to bone mineral density (BMD) in women. Flavonoids such as quercetin exhibit strong anti-oxidant and anti-inflammatory activity that may be beneficial for bone health. Quercetin, previously shown to positively influence osteoblasts, is metabolized into glycosides including rutin and hyperoside. We compared the effects of these glycosides on mineralization in human osteoblast (Saos2) cells. Administration of rutin (≥25 µM) and hyperoside (≥5 µM) resulted in higher mineral content, determined using the alizarin red assay. This was accompanied by higher alkaline phosphatase activity with no cell toxicity. The expression of osteopontin, sclerostin, TNFα and IL6, known stimuli for decreasing osteoblast activity, were reduced with the addition of rutin or hyperoside. In summary, rutin and hyperoside require supraphysiological levels, when administered individually, to positively influence osteoblast activity. This information may be useful in developing nutraceuticals to support bone health. PMID:27136576

  10. Chemistry and biological activity of steroidal glycosides from the Lilium genus.

    PubMed

    Munafo, John P; Gianfagna, Thomas J

    2015-03-01

    Plants from the Lilium genus are a rich source of chemical diversity and have been the focus of natural products chemistry research for over twenty years. This manuscript provides a background on the chemistry and nomenclature of steroidal glycosides, as well as a chronological account of the progress between the years of 1989 up to 2014, with respect to their isolation and characterization from the genus. This review highlights the traditional use of lilies, as both food and medicine, and brings attention to the fact that the genus contains 110 accepted species of which the chemistry and biological activity of the steroidal glycosides from the majority have not been investigated to date. Thus, making the genus a relatively untapped resource that contains a potential treasure trove of chemical diversity waiting to be discovered. PMID:25407469

  11. A phytochemical screening procedure for sweet ent-kaurene glycosides in the genus Stevia.

    PubMed

    Kinghorn, A D; Soejarto, D D; Nanayakkara, N P; Compadre, C M; Makapugay, H C; Hovanec-Brown, J M; Medon, P J; Kamath, S K

    1984-01-01

    Altogether, 110 species of the genus Stevia, comprising both herbarium and fresh leaf samples, were screened for the presence of sweet ent-kaurene glycosides, using a combination of tlc and hplc, followed by gc/ms. Stevioside and rebaudiosides A and C were detected in a Stevia rebaudiana herbarium specimen collected in Paraguay in 1919, and stevioside was observed as a constituent of a Stevia phlebophylla herbarium specimen collected in Mexico in 1889. Steviol glycosides were not detected in any of the other 108 Stevia species studied. The phytochemical results obtained in this study are correlated with those of preliminary organoleptic tests on the sweetness of these Stevia samples, and the chemotaxonomic implications of the present findings are discussed. PMID:6481357

  12. Relationships between chemical structures and functions of triterpene glycosides isolated from sea cucumbers

    PubMed Central

    Park, Joo-In; Bae, Hae-Rahn; Kim, Chang Gun; Stonik, Valentin A.; Kwak, Jong-Young

    2014-01-01

    Many marine triterpene glycosides have in vitro and in vivo activities with very low toxicity, suggesting that they are suitable agents for the prevention and treatment of different diseases, particularly cancer. However, the molecular mechanisms of action of natural marine compounds in cancer, immune, and other various cells are not fully known. This review focuses on the structural characteristics of marine triterpene glycosides and how these affect their biological activities and molecular mechanisms. In particular, the membranotropic and membranolytic activities of frondoside A and cucumariosides from sea cucumbers and their ability to induce cytotoxicity and apoptosis have been discussed, with a focus on structure-activity relationships. In addition, the structural characteristics and antitumor effects of stichoposide C and stichoposide D have been reviewed along with underlying their molecular mechanisms. PMID:25250309

  13. A new ellagic acid glycoside and DNA topoisomerase IB inhibitory activity of saponins from Putranjiva roxburghii.

    PubMed

    Kumar, Ashish; Chowdhury, Somenath Roy; Chakrabarti, Tulika; Majumdarb, Hemanta K; Jha, Tarun; Mukhopadhyay, Sibabrata

    2014-05-01

    Chemical investigation of the stem bark and leaves of Putranjiva roxburghii has resulted in the isolation of a new ellagic acid glycoside (5) along with four saponins (1-4). The structures of the isolated compounds were established by detailed spectral analysis. Incidentally putranoside-A methyl ester (4) has been isolated for the first time from this species and the saponins (1-4) exhibited potent DNA topoisomerase IB inhibitory activity. PMID:25026719

  14. Production of Hesperetin Glycosides by Xanthomonas campestris and Cyclodextrin Glucanotransferase and Their Anti-allergic Activities

    PubMed Central

    Shimoda, Kei; Hamada, Hiroki

    2010-01-01

    The production of hesperetin glycosides was investigated using glycosylation with Xanthomonas campestris and cyclodextrin glucanotransferase (CGTase). X. campestris glucosylated hesperetin to its 3'-, 5-, and 7-O-glucosides, and CGTase converted hesperetin glucosides into the corresponding maltosides. The resulting 7-O-glucoside and 7-O-maltoside of hesperetin showed inhibitory effects on IgE antibody production and on O2- generation from rat neutrophils. PMID:22254014

  15. Two New Oxindole Alkaloid Glycosides from the Leaves of Nauclea officinalis.

    PubMed

    Fan, Long; Huang, Xiao-Jun; Fan, Chun-Lin; Li, Guo-Qiang; Wu, Zhen-Long; Li, Shuo-Guo; He, Zhen-Dan; Wang, Ying; Ye, Wen-Cai

    2015-12-01

    Two new oxindole alkaloid glycosides, nauclealomide A and (3S,7R)-javaniside, were isolated from the leaves of Nauclea officinalis. Their structures and absolute configurations were elucidated by means of NMR, HRESIMS, X-ray diffraction, acid hydrolysis and quantum chemical CD calculation. Nauclealomide A is a novel monoterpenoid oxindole alkaloid possessing a rare tetrahydro-2H-1,3-oxazine ring. PMID:26882671

  16. Evaluation of glycosylation and malonylation patterns in flavonoid glycosides during LC/MS/MS metabolite profiling.

    PubMed

    Kachlicki, P; Einhorn, J; Muth, D; Kerhoas, L; Stobiecki, M

    2008-05-01

    Flavonoid conjugates constitute several classes of plant phenolic secondary metabolites including many isomeric compounds differing in the hydroxylation pattern and substitution of their rings with different groups such as alkyls, acyls or sugars. These compounds occur in plant tissues mainly as glycosides and in many cases it is necessary to have reliable and detailed information concerning the structure of these natural products. Our results were obtained using leaf extracts of Arabidopsis thaliana and Lupinus angustifolius in which different glycosides of flavones, flavonols and isoflavones are present. Analysis of collision-induced dissociation (CID)/MS/MS spectra of protonated [M + H](+), sodiated [M + Na](+) or deprotonated [M - H](-) molecules recorded during HPLC runs may bring needed information in this respect. However, registration of mass spectra of [M + Na](+) ions with a good efficiency is possible only after post-column addition of a sodium acetate solution to the LC column eluate. The retention of sodium cation on the saccharidic parts of the molecule is observed after the CID fragmentation. In many cases, the location of this cation on the glycan attached to C-3 hydroxyl group of flavonol led to assignment of its structure. Additionally, the determination of the structure of the aglycone and of the sequence of the glycan part was made possible through the CID data obtained from the [M + H](+) and [M - H](-) ions. CID spectra show a different order of sugar elimination from hydroxyl groups at C-3 and C-7 in flavonol glycosides isolated from A. thaliana leaves and give sufficient information to discriminate flavonoid O-diglycosides from flavonoid di-O-glycosides. PMID:18074333

  17. Multifunctional, Biocompatible Supramolecular Hydrogelators Consist Only of Nucleobase, Amino Acid, and Glycoside

    PubMed Central

    Li, Xinming; Kuang, Yi; Shi, Junfeng; Gao, Yuan; Lin, Hsin-Chieh; Xu, Bing

    2011-01-01

    The integration of nucleobase, amino acid, and glycoside into a single molecule results in a novel class of supramolecular hydrogelators, which not only exhibit biocompatibility and biostability, but also facilitate the entry of nucleic acids into cytosol and nuclei of cells. This work illustrates a simple way to generate an unprecedented molecular architecture from the basic biological building blocks for the development of sophisticated soft nanomaterials, including supramolecular hydrogels. PMID:21928792

  18. Polygonumnolides C1-C4; minor dianthrone glycosides from the roots of Polygonum multiflorum Thunb.

    PubMed

    Yang, Jian-Bo; Li, Li; Dai, Zhong; Wu, Yu; Geng, Xing-Chao; Li, Bo; Ma, Shuang-Cheng; Wang, Ai-Guo; Su, Ya-Lun

    2016-09-01

    Four new dianthrone glycosides, named polygonumnolides C1-C4 (1-4), were isolated from the dried roots of Polygonum multiflorum Thunb, together with two known emodin dianthrones (5-6). Their hepatotoxicities were evaluated against L-02 cell lines. Compounds 1-4 showed weak hepatotoxicity against L-02 cell lines with IC50 values of 313.05, 205.20, 294.20, and 207.35 μM, respectively. PMID:27139982

  19. Methylenebisnicotiflorin: a rare methylene-bridged bisflavonoid glycoside from ripe Pu-er tea.

    PubMed

    Tao, Mu-Ke; Xu, Min; Zhang, Han; Chen, Hui; Liu, Chang; Zhu, Hong-Tao; Wang, Dong; Yang, Chong-Ren; Zhang, Ying-Jun

    2016-04-01

    A new methylene-bridged dimeric flavonol glycoside, methylenebisnicotiflorin (1), was isolated from ripe Pu-er tea, along with 10 known flavonoids (2-11) and seven known phenolic compounds (12-18). The structure elucidation was based on spectroscopic analysis. Among them, 1,3-dihydroxyphenyl-2-O-sulfate (13), 2,3,4-trihydroxybenzoic acid (16) and 3,3',4,4'-tetrahydroxybiphenyl (18) are reported from tea plants for the first time. PMID:26273895

  20. Highly Diastereoselective thioglycosylation of functionalized peracetylated glycosides catalyzed by MoO2Cl2.

    PubMed

    Weng, Shiue-Shien; Lin, Yow-Dzer; Chen, Chien-Tien

    2006-11-23

    Among 18 oxometallic species, MoO2Cl2 was found to be the most reactive in catalytic thioglycosylation of O-acetylated glycosides with functionalized thiols in CH2Cl2, leading cleanly to 1,2-trans-thioglycosides with exclusive diastereocontrol. The new catalytic protocol is applicable to a monoglycoside building block and beta-(1-->6)-S-linked-thiodisaccharide synthesis. [reaction: see text]. PMID:17107090

  1. A new sesquiterpene lactone glycoside and a new quinic acid methyl ester from Patrinia villosa.

    PubMed

    Yang, Yong-Fen; Ma, Hong-Mei; Chen, Gang; Wang, Hai-Feng; Xiang, Zheng; Feng, Qing-Mei; Hua, Hui-Ming; Pei, Yue-Hu

    2016-10-01

    A new sesquiterpene lactone glycoside (1) and a new quinic acid methyl ester (2) were isolated from Patrinia villosa, together with another two known compounds chlorogenic acid n-butyl ester (3), 3, 4-di-O-caffeoylquinic acid methyl ester (4). Their structures were established using 1D/2D-NMR spectroscopy, mass spectrometry, and comparing with spectroscopic data reported in the literature. PMID:27156969

  2. Oblongionosides A-F, megastigmane glycosides from the leaves of Croton oblongifolius Roxburgh.

    PubMed

    Takeshige, Yuya; Kawakami, Susumu; Matsunami, Katsuyoshi; Otsuka, Hideaki; Lhieochaiphant, Duangporn; Lhieochaiphant, Sorasak

    2012-08-01

    From the 1-BuOH-soluble fraction of a MeOH extract of the leaves of Croton oblongifolius Roxburgh, collected in Chiang Mai, Thailand, six megastigmane glycosides, named oblongionosides A-F were isolated together with eight known compounds, and their structures elucidated on the basis of spectroscopic data. Absolute structures were determined by HPLC analyses and application of the modified Mosher's method. PMID:22683317

  3. Sedative activity of two flavonol glycosides isolated from the flowers of Albizzia julibrissin Durazz.

    PubMed

    Kang, T H; Jeong, S J; Kim, N Y; Higuchi, R; Kim, Y C

    2000-07-01

    The flowers of Albizzia julibrissin are used as a sedative in oriental traditional medicine. The phytochemical study of this plant allowed the isolation of two flavonol glycosides, quercitrin (1) and isoquercitrin (2). The sedative activity of these compounds was evaluated, and both compounds 1 and 2 increased pentobarbital-induced sleeping time in dose-dependent manner in mice. These results support the use of the flowers of this plant as a sedative agent. PMID:10904180

  4. Sedative and anticonvulsant activities of goodyerin, a flavonol glycoside from Goodyera schlechtendaliana.

    PubMed

    Du, Xiao-Ming; Sun, Ning-Yi; Takizawa, Nanako; Guo, Yong-Tian; Shoyama, Yukihiro

    2002-05-01

    Goodyerin is a flavonol glycoside isolated from the whole plants of Goodyera schlechtendaliana which has been used as a substitute for the crude drug, Anoectochilus formosanus. The pharmacological properties of goodyerin were assayed for effects on spontaneous locomotor activity, on pentobarbital-induced hypnosis, and on anticonvulsant activity against picrotoxin-induced seizures in rodents. Goodyerin exhibited a significant and dose-dependent sedative and anticonvulsant effect. PMID:12164273

  5. Solid-phase de novo synthesis of a (+/-)-2-deoxy-glycoside.

    PubMed

    Lucchesi, Céline; Arboré, Amélie; Pascual, Sagrario; Fontaine, Laurent; Maignan, Christian; Dujardin, Gilles

    2010-04-19

    The solid-phase synthesis of methyl 2-deoxy-3-O-benzyl-D,L-arabino-hexopyranoside was achieved in a six-step sequence via a de novo strategy based on the hetero-Diels-Alder reaction of a vinyl ether supported on an azalactone-functionalized polystyrene resin, followed by the functional modification of the heteroadduct and the final release of the methyl glycoside by acidic solvolysis. PMID:20171610

  6. Calcinogenic factor in Solanum malacoxylon: evidence that it is 1,25-dihydroxyvitamin D3-glycoside.

    PubMed

    Wasserman, R H; Henion, J D; Haussler, M R; McCain, T A

    1976-11-19

    After glycosidic cleavage of the water-soluble vitamin D-like principle of the calcinogenic plant Solanum malacoxylon, the active lipophilic portion was purified by column chromatography and analyzed by combined gas chromatography and mass spectrometry. It was identified as 1,25-dihydroxyvitamin D3, the active form of vitamin D. Thus this active metabolite of vitamin D exists in the plant world, and its presence probably accounts for pathologic calcification in grazing animals ingesting Solanum malacoxylon. PMID:982048

  7. Hyalodendrosides A and B, antifungal triterpenoid glycosides from a lignicolous hyphomycete, Hyalodendron species.

    PubMed

    Bills, G; Dombrowski, A; Morris, S A; Hensens, O; Liesch, J M; Zink, D L; Onishi, J; Meinz, M S; Rosenbach, M; Thompson, J R; Schwartz, R E

    2000-01-01

    Two antifungal triterpenoid glycosides, hyalodendrosides A and B (1 and 2), were isolated from a solid matrix fermentation of a lignicolous hyphomycete, Hyalodendron sp. Their structures were determined based upon extensive examination of spectral parameters, particularly NMR and MS data. Both compounds have beta-linked glucose moieties. Compounds 1 and 2 show weak to moderate antifungal activity against some clinically relevant fungi. PMID:10650085

  8. Diastereoselective metal-catalyzed synthesis of C-aryl and C-vinyl glycosides.

    PubMed

    Nicolas, Lionel; Angibaud, Patrick; Stansfield, Ian; Bonnet, Pascal; Meerpoel, Lieven; Reymond, Sébastien; Cossy, Janine

    2012-10-29

    Cobalt, the catalyst of choice: The diastereoselective cobalt-catalyzed cross-coupling of 1-bromo glycosides and aryl or vinyl Grignard reagents is described. A convenient and inexpensive catalyst, [Co(acac)(3)]/tmeda (acac = acetylacetonate, tmeda = N,N'-tetramethylethylenediamine), gives full α selectivity in the mannose and galactose series, and an α selectivity in the glucose series with α/β ratios of 1.3:1-3:1. PMID:23023954

  9. The new steroidal glycosides from the aerial parts of Lepidogrammitis drymoglossoides.

    PubMed

    Wei, Hua; Jiang, Hai; Liu, Zhu-Xiang; Li, Gui; Long, Hua; He, Jian-Wu; Chen, Gong-Xi; Yang, Jun-Shan; Ma, Guo-Xu

    2016-09-01

    Two new steroidal glycosides ponasteroside C (1) and ponasteroside D (2) were isolated from the aerial parts of Lepidogrammitis drymoglossoides. Their structures were elucidated by various spectroscopic techniques (IR, HRESIMS, 1D and 2D NMR). All compounds were evaluated for their cytotoxicity against HeLa and HCT-8 cell lines, and compounds 1 and 2 showed mild activity against all the test cell lines. PMID:27094175

  10. Steviol and steviol-glycoside: glucosyltransferase activities in Stevia rebaudiana Bertoni--purification and partial characterization.

    PubMed

    Shibata, H; Sawa, Y; Oka, T; Sonoke, S; Kim, K K; Yoshioka, M

    1995-08-20

    The leaves of Stevia rebaudiana Bertoni contain sweet compounds which are glycosides of diterpene derivative steviol (ent-13-hydroxykaur-16-en-19-oic acid). Its main constituents are stevioside (triglucosylated steviol; 13-O-beta-sophorosyl-19-O-beta-glucosyl-steviol) and rebaudioside-A (tetraglucosylated steviol; 2'-O-beta-glucosyl-13-O-beta-sophorosyl-19-O-beta-glucosyl-stev iol). From the extracts of S. rebaudiana Bertoni, two glucosyltransferases (GTases I and IIB) acting on steviol and steviol-glycosides were isolated, and another distinct activity (GTase IIA) acting on steviol was detected. Purified GTase I (subunit M(r) 24,600) catalyzed glucose transfer from UDP-glucose to steviol and steviolmonoside (steviol-13-O-glucopyranoside), but not to other steviol-glycosides. Apparent Km values were 71.4 microM for steviol and 360 microM for UDP-glucose. GTase IIB (subunit M(r) 30,700) showed a broad substrate specificity, acting on steviol, steviolmonoside, steviolbioside (13-O-beta-sophorosyl-steviol), and stevioside. Apparent Km values were 182 microM for steviol, 44 microM for steviolbioside, 95 microM for stevioside, and 385 microM for UDP-glucose. The two enzymes had a similar optimum pH at 6.5. They also acted effectively on ubiquitous flavonol aglycones, quercetin, and kaempferol and utilized kaempferol at a higher rate than steviol and steviol-glycosides. The apparent Km values of GTase I and IIB for kaempferol were 12 and 31 microM, respectively. PMID:7646064

  11. Human skeletal muscle digitalis glycoside receptors (Na,K-ATPase)--importance during digitalization.

    PubMed

    Schmidt, T A; Holm-Nielsen, P; Kjeldsen, K

    1993-02-01

    The aims of the present study were to evaluate in humans the putative importance of skeletal muscle digitalis glycoside receptors (Na,K-ATPase) in the volume of distribution of digoxin and to assess whether therapeutic digoxin exposure might cause digitalis receptor upregulation in skeletal muscle. Samples of the vastus lateralis were obtained postmortem from 11 long-term (9 months to 9 years) digitalized (125-187.5 micrograms daily) and eight undigitalized subjects. In intact samples from digitalized patients, vanadate-facilitated 3H-ouabain binding increased 15% (p < 0.02) from 150 +/- 18 to 173 +/- 13 pmol/g wet wt. (mean +/- SEM) after clearing receptors of bound digoxin by washing samples in excess specific digoxin antibody fragments. 3H-ouabain binding in the untreated group was 257 +/- 28 and 274 +/- 26 pmol/g wet wt. (7%, p > 0.30) before and after washing in specific digoxin antibody fragments, respectively. Thus, the present study indicates a approximately 13% occupancy of skeletal muscle digitalis glycoside receptors with digoxin during digitalization. In light of the large skeletal muscle contribution to body mass, this indicates that the skeletal muscle Na,K-ATPase pool constitutes a major volume of distribution for digoxin during digitalization. The results gave no indication of skeletal muscle digitalis glycoside receptor upregulation in response to digoxin treatment. On the contrary, there was evidence of significantly lower (37%, p < 0.005) digitalis glycoside receptor concentration in the vastus lateralis of the digitalized patients, which may be of importance for skeletal muscle incapacity in heart failure. PMID:8387326

  12. Aspergillus niger DLFCC-90 rhamnoside hydrolase, a new type of flavonoid glycoside hydrolase.

    PubMed

    Liu, Tingqiang; Yu, Hongshan; Zhang, Chunzhi; Lu, Mingchun; Piao, Yongzhe; Ohba, Masashi; Tang, Minqian; Yuan, Xiaodong; Wei, Shenghua; Wang, Kan; Ma, Anzhou; Feng, Xue; Qin, Siqing; Mukai, Chisato; Tsuji, Akira; Jin, Fengxie

    2012-07-01

    A novel rutin-α-L-rhamnosidase hydrolyzing α-L-rhamnoside of rutin, naringin, and hesperidin was purified and characterized from Aspergillus niger DLFCC-90, and the gene encoding this enzyme, which is highly homologous to the α-amylase gene, was cloned and expressed in Pichia pastoris GS115. The novel enzyme was classified in glycoside-hydrolase (GH) family 13. PMID:22544243

  13. Regioselectivity of enzymatic glycosylation of 6-O-acyl glycosides in supersaturated solutions.

    PubMed

    MacManus, D A; Vulfson, E N

    2000-09-20

    The regioselectivity of enzymatic transglycosylation of 6-O-acetyl glycosides in supersaturated solutions was investigated using a range of commercially available enzymes, Escherichia coli, barley, and Kluyveromyces spp. beta-galactosidase, green coffee bean alpha-galactosidase, jack bean alpha-mannosidase, rice alpha-glucosidase, and almond beta-glucosidase. It has been shown that 6-O-acetyl glycosides serve as good substrates for these enzymes, which, under the reaction conditions, are "forced" to transfer monosaccharide units to the secondary hydroxyl groups of the acceptors. In a variety of transglycosylations studied the (1-3)-linked disaccharide products were the predominant regioisomers isolated. The selectivity of the reaction varied significantly depending on the acceptor glycosides and the enzyme used. Exquisite specificity was observed in some cases, but in others approximately equal quantities of two disaccharides products were isolated. In the best transfers the yield approached 30%. The methodology described offers a quick and facile route to disaccharides that may be difficult and/or time consuming to make by conventional chemical synthesis. PMID:10918132

  14. [Isolation and determination of homoeriodictyol-7-O-beta-D-glycoside in Viscum coloratum].

    PubMed

    Zhao, Yunli; Ma, Mingyan; Gao, Xiaoxia; Liu, Tao; Yu, Zhiguo; Bi, Kaishun

    2006-09-01

    The homoeriodictyol-7-O-beta-D-glycoside was isolated from Viscum coloratum and identified by mass spectrometry and nuclear magnetic resonance (NMR) (1H NMR and 13C NMR). A method for determination of homoeriodictyol-7-O-beta-D-glycoside in Viscum coloratum was developed by using a Kromasil C18 column (200 mm x 4.6 mm i.d., 5 microm) with a mixture of acetonitrile and 0.5% glacial acetic acid solution (18:82, v/v) as mobile phase at a flow rate of 1.0 mL/min. The detection wavelength was set at 284 nm and temperature was set at 30 degrees C. The volume of injection was 10 miccro L. Good linear relationship (r = 0.9997) between the mass concentration and the peak area of homoeriodictyol-7-O-beta-D-glycoside was obtained in the range of 1.0-32.0 mg/L. The recoveries were found to be in the range of 96.0%-100.1%. The results of the experiments demonstrated that the established method is rapid and simple with good accuracy and reproducibility. The method is suitable for the quality control of Viscum coloratum from different sources. PMID:17165542

  15. Strategies to reduce end-product inhibition in family 48 glycoside hydrolases

    DOE PAGESBeta

    Chen, Mo; Bu, Lintao; Alahuhta, Markus; Brunecky, Roman; Xu, Qi; Lunin, Vladimir V.; Brady, John W.; Crowley, Michael F.; Himmel, Michael E.; Bomble, Yannick J.

    2016-02-01

    Family 48 cellobiohydrolases are some of the most abundant glycoside hydrolases in nature. They are able to degrade cellulosic biomass and therefore serve as good enzyme candidates for biofuel production. Family 48 cellulases hydrolyze cellulose chains via a processive mechanism, and produce end products composed primarily of cellobiose as well as other cellooligomers (dp ≤ 4). The challenge of utilizing cellulases in biofuel production lies in their extremely slow turnover rate. A factor contributing to the low enzyme activity is suggested to be product binding to enzyme and the resulting performance inhibition. In this study, we quantitatively evaluated the productmore » inhibitory effect of four family 48 glycoside hydrolases using molecular dynamics simulations and product expulsion free-energy calculations. We also suggested a series of single mutants of the four family 48 glycoside hydrolases with theoretically reduced level of product inhibition. As a result, the theoretical calculations provide a guide for future experimental studies designed to produce mutant cellulases with enhanced activity.« less

  16. Release of adenine nucleotide metabolites by toxic concentrations of cardiac glycosides.

    PubMed

    Bernauer, W

    1994-01-01

    In isolated perfused guinea-pig hearts the effect of toxic concentrations of cardiac glycosides on the release of the adenine nucleotide metabolites adenosine, inosine, hypoxanthine, xanthine, and uric acid was investigated. Digoxin concentrations of 0.03-1 mumol.l-1 produced moderate to severe tachyarrhythmias. Large amounts of metabolites were released by concentrations of 0.1 mumol.l-1, and higher. Occurrence of glycoside-induced ventricular fibrillation was associated with a particularly high release. Metabolite release was also obtained when fibrillation was elicited electrically in normal control hearts, or in hearts receiving simultaneously a marginally toxic digoxin concentration (0.03 mumol.l-1). Digoxin-induced tachyarrhythmias and metabolite release were almost completely prevented by a high potassium concentration in the coronary perfusion fluid (8.1 mmol.l-1). The antiarrhythmic effect was also obtained with lidocaine (60 mumol.l-1), but the release was only partially antagonized. Similar results concerning arrhythmias and metabolite release as with digoxin were obtained with ouabain. The findings suggest that the decrease in myocardial ATP observed in glycoside-intoxicated heart preparations is partly due to the loss of nucleotide precursor substances. Moreover, it appears likely that liberated adenosine in the interstitium of severely intoxicated heart preparations reaches pharmacologically effective concentrations. PMID:7826306

  17. Oviposition stimulants for the monarch butterfly: flavonol glycosides from Asclepias curassavica.

    PubMed

    Haribal, M; Renwick, J A

    1996-01-01

    The monarch butterfly, Danaus plexippus oviposits on milkweed plants, primarily within the Asclepiadaceae. Oviposition stimulants responsible for host plant recognition were isolated from Asclepias curassavica. Six flavonoid glycosides-quercetin 3-O-(2",6"-alpha-L-dirhamnopyranosyl)-beta-D-galactopyranoside, quercetin 3-O-beta-D-glucopyranosyl-(1-->6)-beta-D-galactopyranoside, quercetin 3-O-(2"-O-alpha-L-rhamnopyranosyl)-beta-D-galactopyranoside, quercetin 3-O-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranoside, quercetin 3-O-beta-D-galactopyranoside, quercetin 3-O-beta-D-glucopyranoside, and an unidentified flavonoid mixture were isolated and characterized from this plant. An additional glycoside, possibly quercetin 3-O-(2",6"-alpha-L-dirhamnopyranosyl)-beta-D-glucopyranoside, which could not be separated from the first triglycoside, was also found in some batches of plant extract. The two dirhamnosyl glycosides, the glucosylgalactose and the rutinoside were found to be active as oviposition stimulants at 0.5 g leaf equivalents. PMID:8588865

  18. The uptake of cardiac glycosides in relation to their actions in isolated cardiac muscle

    PubMed Central

    Godfraind, T.; Lesne, M.

    1972-01-01

    1. The uptake of 3H-digitoxin, 3H-ouabain and 3H-dihydro-ouabain by isolated guinea-pig atria has been studied and compared with the inhibition of the sodium pump and with the inotropic effect. 2. Analysis of the curve relating the uptake of digitoxin and ouabain at equilibrium to the bath concentration enabled a non-saturable and a saturable binding site to be distinguished. 3. The uptake of inactive doses of dihydro-ouabain was only by a non-saturable mechanism. 4. The uptake of labelled digitoxin and ouabain was reduced in the presence of another glycoside. The amount of bound glycoside was nearly equivalent to the estimated non-saturable uptake. 5. The uptake was reduced at 4° C to the clearance of the non-saturable site. 6. ED50 of digitoxin and of ouabain for inhibition of the sodium pump were measured and compared to the ED50 for inotropic effect and to the concentrations producing a half-saturation of the saturable binding site. 7. It is concluded that binding to the saturable site may be responsible for the cardiac actions of the glycosides. PMID:4656610

  19. A male gift to its partner? Cyanogenic glycosides in the spermatophore of longwing butterflies (Heliconius)

    NASA Astrophysics Data System (ADS)

    Cardoso, Márcio Zikán; Gilbert, Lawrence E.

    2007-01-01

    Males of several insect species transfer nuptial gifts to females during mating, typically in the form of a protein-rich spermatophore. In chemically defended species, males could potentially enhance such a gift with chemicals that help protect the female, her eggs, or both. This was shown for lepidopteran species that accumulate pyrrolizidine alkaloids. Most Heliconius butterflies are presumably protected from predators by virtue of de novo synthesized and/or sequestered cyanogenic glycosides. Males of Heliconius species are known to transfer nutritional gifts to the females but whether defensive chemicals could also be transferred is not known. To ascertain whether transfer of cyanogens occurs, we dissected freshly mated females from nine different Heliconius species and analyzed spermatophores for cyanogenic glycosides. We found cyanogens in the spermatophores of all nine species. This is the first time cyanogenic glycosides are reported in the spermatophores of arthropods. We discuss the implications of these findings for Heliconius biology and for other cyanogenic insects as well. We suggest that chemically defended species commonly lace their nuptial gifts with defensive chemicals to improve gift quality.

  20. A new phenolic constituent and a cyanogenic glycoside from Balanophora involucrata (Balanophoraceae).

    PubMed

    She, Gai-Mei; Zhang, Ying-Jun; Yang, Chong-Ren

    2013-06-01

    Balanophora involucrata HOOK.f. & THOMSON (Balanophoraceae) is a parasite plant often growing on the roots of leguminous plants. The whole herb has been used medicinally for the treatment of irregular menstruation, cough, hemoptysis, traumatic injury and bleeding, dizziness and gastralgia in Yunnan Province, China. The 2,2-diphenyl-2-picrylhydrazyl (DPPH) assay on the 60% aq. acetone extract of the fresh whole plant of B. involucrata showed considerable radical-scavenging activity (SC₅₀ 15.3 μg/ml). Further purification on the extract led to the isolation of one new phenolic glycoside, sieboldin-3'-ketocarboxylic acid (1), and one new cyanogenic glycoside, proacacipetalin 6'-O-β-D-glucopyranoside (2), together with 26 known compounds including three 4"-O-galloyl and 2",3"-O-(S)-hexahydroxydiphenoyl (HHDP) derivatives of dihydrochalcone glucosides, seven hydrolyzable tannins, and alkane glycosides. The cyanogenic compound isolated from the Balanophoraceae family for the first time might be a signal molecule between B. involucrata and its hosts. The free-radical-scavenging activity of the isolated compounds was also examined by DPPH assay. PMID:23776023

  1. Influence of Extraction Methods on the Yield of Steviol Glycosides and Antioxidants in Stevia rebaudiana Extracts.

    PubMed

    Periche, Angela; Castelló, Maria Luisa; Heredia, Ana; Escriche, Isabel

    2015-06-01

    This study evaluated the application of ultrasound techniques and microwave energy, compared to conventional extraction methods (high temperatures at atmospheric pressure), for the solid-liquid extraction of steviol glycosides (sweeteners) and antioxidants (total phenols, flavonoids and antioxidant capacity) from dehydrated Stevia leaves. Different temperatures (from 50 to 100 °C), times (from 1 to 40 min) and microwave powers (1.98 and 3.30 W/g extract) were used. There was a great difference in the resulting yields according to the treatments applied. Steviol glycosides and antioxidants were negatively correlated; therefore, there is no single treatment suitable for obtaining the highest yield in both groups of compounds simultaneously. The greatest yield of steviol glycosides was obtained with microwave energy (3.30 W/g extract, 2 min), whereas, the conventional method (90 °C, 1 min) was the most suitable for antioxidant extraction. Consequently, the best process depends on the subsequent use (sweetener or antioxidant) of the aqueous extract of Stevia leaves. PMID:25726419

  2. Non‐glycosidic compounds can stimulate both human and mouse iNKT cells

    PubMed Central

    Jukes, John‐Paul; Gileadi, Uzi; Ghadbane, Hemza; Yu, Ting‐Fong; Shepherd, Dawn; Cox, Liam R.; Besra, Gurdyal S.

    2016-01-01

    Invariant natural killer T (iNKT) cells recognize CD1d/glycolipid complexes and upon activation with synthetic agonists display immunostimulatory properties. We have previously described that the non‐glycosidic CD1d‐binding lipid, threitolceramide (ThrCer) activates murine and human iNKT cells. Here, we show that incorporating the headgroup of ThrCer into a conformationally more restricted 6‐ or 7‐membered ring results in significantly more potent non‐glycosidic analogs. In particular, ThrCer 6 was found to promote strong anti‐tumor responses and to induce a more prolonged stimulation of iNKT cells than does the canonical α‐galactosylceramide (α‐GalCer), achieving an enhanced T‐cell response at lower concentrations compared with α‐GalCer both in vitro, using human iNKT‐cell lines and in vivo, using C57BL/6 mice. Collectively, these studies describe novel non‐glycosidic ThrCer‐based analogs that have improved potency in iNKT‐cell activation compared with that of α‐GalCer, and are clinically relevant iNKT‐cell agonists. PMID:26873393

  3. Anti-inflammatory activity of methyl salicylate glycosides isolated from Gaultheria yunnanensis (Franch.) Rehder.

    PubMed

    Zhang, Dan; Liu, Rui; Sun, Lan; Huang, Chao; Wang, Chao; Zhang, Dong-Ming; Zhang, Tian-Tai; Du, Guan-Hua

    2011-01-01

    Gaultheria yunnanensis (Franch.) Rehder is a kind of traditional Chinese herbal medicine used for the treatments of rheumatoid arthritis, swelling and pain. Two methyl salicylate glycosides, namely methyl benzoate-2-O-β-D-xylopyranosyl(1-6)-O-β-D-gluco-pyranoside (J12122) and methyl benzoate-2-O-β-D-xylopyranosyl(1-2)[O-β-D-xylopyranosyl(1-6)]-O-β-D-glucopyranoside (J12123), are natural salicylic derivatives isolated from Gaultheria yunnanensis. In this study, we investigated the anti-inflammatory activity of J12122 and J12123 on LPS-induced RAW264.7 macrophage cells by measuring the production of pro-inflammatory cytokines, accumulation of nitric oxide (NO), and level of reactive oxygen species (ROS). The results showed that both methyl salicylate glycosides dose-dependently inhibited the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, respectively. Consistent with these observations, J12122 and J12123 significantly suppressed the accumulation of NO, with an inhibitory rate of 56.20% and 51.72% at 3.0 μg/mL concentration, respectively. Furthermore, the two methyl salicylate glycosides reduced the level of ROS induced by LPS. These results showed that the isolated compounds possess anti-inflammatory properties through inhibition the production pro-inflammatory cytokines, NO, and ROS. PMID:21555977

  4. Validated high-performance thin-layer chromatography method for steviol glycosides in Stevia rebaudiana.

    PubMed

    Jaitak, Vikas; Gupta, A P; Kaul, V K; Ahuja, P S

    2008-08-01

    A high-performance thin-layer chromatographic (HPTLC) method was developed and validated as per ICH (International Conferences on Harmonization) guidelines for simultaneous quantification of three steviol glycosides, i.e. steviolbioside, stevioside and rebaudioside-A in Stevia rebaudiana leaves. For achieving good separation, mobile phase of ethyl acetate-ethanol-water (80:20:12, v/v/v) on pre-coated silica gel 60 F254 HPTLC plates were used. The densitometric quantification of steviol glycosides was carried out at lambda=510 nm in reflection-absorption mode after spraying with acetic anhydride:sulphuric acid:ethanol reagent. The calibration curves were linear in the range of 160-960 ng/spot for steviolbioside, 1-6 microg/spot for stevioside and 0.5-3 microg/spot for rebaudioside-A with good correlation coefficients (0.998-0.999). The method was found to be reproducible for quantitative analysis of steviol glycosides in S. rebaudiana leaves collected from ten different locations and will serve as a quality control indicator to monitor the commercial production of stevioside and its allied molecules during different stages of its processing. PMID:18456448

  5. Variegatusides: New Non-Sulphated Triterpene Glycosides from the Sea Cucumber Stichopus variegates Semper

    PubMed Central

    Wang, Xiao-Hua; Zou, Zheng-Rong; Yi, Yang-Hua; Han, Hua; Li, Ling; Pan, Min-Xiang

    2014-01-01

    Four new triterpene glycosides, variegatusides C–F (1–4), together with three structurally known triterpene glycosides, variegatusides A and B (5, 6), and holothurin B (7), were isolated from the sea cucumber Stichopus variegates Semper (Holothuriidae), collected from the South China Sea. Their structures were elucidated on the basis of extensive spectral analysis (nuclear magnetic resonance (NMR) and electrospray ionization mass spectrometry (ESIMS)) and chemical evidence. Variegatusides C–F exhibit the same structural feature consisting of the presence of a 23-hydroxyl group at the holostane-type triterpene aglycone side chain. Variegatuside C (1) has a double bond (24, 25) in this same chain, while variegatuside D (2) exhibits a 8(9)-ene bond in the holostane-type triterpene aglycone, which has not been extracted from other sea cucumber species. Compound 4 is a native compound from the sea cucumber S. variegates Semper, which has been reported to be desacetylstichloroside B1. Except for holothurin B, these glycosides have no sulfate group in their sugar chain and show potent antifungal activities in vitro biotests. PMID:24699115

  6. Nickel-Catalyzed Proton-Deuterium Exchange (HDX) Procedures for Glycosidic Linkage Analysis of Complex Carbohydrates.

    PubMed

    Price, Neil P J; Hartman, Trina M; Vermillion, Karl E

    2015-07-21

    The structural analysis of complex carbohydrates typically requires the assignment of three parameters: monosaccharide composition, the position of glycosidic linkages between monosaccharides, and the position and nature of noncarbohydrate substituents. The glycosidic linkage positions are often determined by permethylation analysis, but this can be complicated by high viscosity or poor solubility, resulting in under-methylation. This is a drawback because an under-methylated position may be misinterpreted as the erroneous site of a linkage or substituent. Here, we describe an alternative approach to linkage analysis that makes use of a nonreversible deuterium exchange of C-H protons on the carbohydrate backbone. The exchange reaction is conducted in deuterated water catalyzed by Raney nickel, and results in the selective exchange of C-H protons adjacent to free hydroxyl groups. Hence, the position of the residual C-H protons is indicative of the position of glycosidic linkages or other substituents and can be readily assigned by heteronuclear single quantum coherence-nuclear magnetic resonance (HSQC-NMR) or, following suitable derivatization, by gas chromatography-mass spectroscopy (GC/MS) analysis. Moreover, because the only changes to the parent sugar are proton/deuterium exchanges, the composition and linkage analysis can be determined in a single step. PMID:26075577

  7. Reversible shape memory

    NASA Astrophysics Data System (ADS)

    Sheiko, Sergei; Zhou, Jing; White, Sarah; Ashby, Valerie

    2012-02-01

    An ``Achilles' heel'' of shape memory materials is that shape transformations triggered by an external stimulus are usually irreversible. Here we present a new concept of reversible transitions between two well-defined shapes by controlling hierarchic crystallization of a dual-network elastomer. The reversibility was demonstrated for different types of shape transformations including rod bending, winding of a helical coil, and widening an aperture. The distinct feature of the reversible shape alterations is that both counter-shapes are infinitely stable at a temperature of exploitation. Shape reversibility is highly desirable property in many practical applications such as non-surgical removal of a previously inserted catheter and handfree wrapping up of an earlier unraveled solar sail on a space shuttle.

  8. Tubal ligation reversal

    MedlinePlus

    ... Fernandez H, Gervaise A. Tubal anastomosis after tubal sterilization: a review. Arch Gynecol Obstet . 2011 May;283( ... Berger GS, Zerden ML. Pregnancy success after hysteroscopic sterilization reversal. Obstet Gynecol . 2014 Dec;124(6):1183- ...

  9. Giant rodlike reversed micelles

    SciTech Connect

    Yu, Z.J.; Neuman, R.D. )

    1994-05-04

    Herein we report that sodium bis(2-ethylhexyl)phosphate, which is similar in structure to the classical surfactant sodium bis(2-ethylhexyl)sulfosuccinate (AOT), forms very large rodlike reversed micelles and that their size can be even much larger if water is removed from the apolar solution. We further suggest that long-range electrostatic interactions are the primary driving force for the formation of giant reversed micelles. 19 refs., 3 figs.

  10. On thermodynamic and microscopic reversibility

    SciTech Connect

    Crooks, Gavin E.

    2011-07-12

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa.

  11. Direct synthesis of C-glycosides from unprotected 2-N-acyl-aldohexoses via aldol condensation-oxa-Michael reactions with unactivated ketones.

    PubMed

    Johnson, Sherida; Tanaka, Fujie

    2016-01-01

    C-glycosides are important compounds as they are used as bioactive molecules and building blocks. We have developed methods to concisely synthesize C-glycosides from unprotected 2-N-acyl-aldohexoses and unactivated ketones; we designed aldol-condensation-oxa-Michael addition reactions catalyzed by amine-based catalysts using additives. Depending on the conditions used, C-glycosides were stereoselectively obtained. Our methods allowed the C-C bond formations at the anomeric centers of unprotected carbohydrates under mild conditions to lead the C-glycosides in atom- and step-economical ways. PMID:26565955

  12. Reversible collisionless magnetic reconnection

    SciTech Connect

    Ishizawa, A.; Watanabe, T.-H.

    2013-10-15

    Reversible magnetic reconnection is demonstrated for the first time by means of gyrokinetic numerical simulations of a collisionless magnetized plasma. Growth of a current-driven instability in a sheared magnetic field is accompanied by magnetic reconnection due to electron inertia effects. Following the instability growth, the collisionless reconnection is accelerated with development of a cross-shaped structure of current density, and then all field lines are reconnected. The fully reconnected state is followed by the secondary reconnection resulting in a weakly turbulent state. A time-reversed simulation starting from the turbulent state manifests that the collisionless reconnection process proceeds inversely leading to the initial state. During the reversed reconnection, the kinetic energy is reconverted into the original magnetic field energy. In order to understand the stability of reversed process, an external perturbation is added to the fully reconnected state, and it is found that the accelerated reconnection is reversible when the deviation of the E × B streamlines due to the perturbation is comparable with or smaller than a current layer width.

  13. Sequential Polarity-Reversing Circuit

    NASA Technical Reports Server (NTRS)

    Labaw, Clayton C.

    1994-01-01

    Proposed circuit reverses polarity of electric power supplied to bidirectional dc motor, reversible electro-mechanical actuator, or other device operating in direction depending on polarity. Circuit reverses polarity each time power turned on, without need for additional polarity-reversing or direction signals and circuitry to process them.

  14. Metabolic fate of cardiac glycosides and flavonoids upon fermentation of aqueous sea squill (Drimia maritima L.) extracts.

    PubMed

    Knittel, Diana N; Stintzing, Florian C; Kammerer, Dietmar R

    2015-06-10

    Sea squill (Drimia maritima L.) extracts have been used for centuries for the medical treatment of heart diseases. A procedure for the preparation of Drimia extracts applied for such purposes comprising a fermentation step is described in the German Homoeopathic Pharmacopoeia (GHP). However, little is known about the secondary metabolite profile of such extracts and the fate of these components upon processing and storage. Thus, in the present study sea squill extracts were monitored during fermentation and storage by HPLC-DAD-MS(n) and GC-MS to characterise and quantitate individual cardiac glycosides and phenolic compounds. For this purpose, a previously established HPLC method for the separation and quantitation of pharmacologically relevant cardiac glycosides (bufadienolides) was validated. Within 12 months of storage, total bufadienolide contents decreased by about 50%, which was attributed to microbial and plant enzyme activities. The metabolisation and degradation rates of individual bufadienolide glycosides significantly differed, which was attributed to differing structures of the aglycones. Further degradation of bufadienolide aglycones was also observed. Besides reactions well known from human metabolism studies, dehydration of individual compounds was monitored. Quantitatively predominating flavonoids were also metabolised throughout the fermentation process. The present study provides valuable information about the profile and stability of individual cardiac glycosides and phenolic compounds in fermented Drimia extracts prepared for medical applications, and expands the knowledge of cardiac glycoside conversion upon microbial fermentation. PMID:25841205

  15. Effects of pregnane glycosides on food intake depend on stimulation of the melanocortin pathway and BDNF in an animal model.

    PubMed

    Komarnytsky, Slavko; Esposito, Debora; Rathinasabapathy, Thirumurugan; Poulev, Alexander; Raskin, Ilya

    2013-02-27

    Pregnane glycosides appear to modulate food intake by possibly affecting the hypothalamic feeding circuits; however, the mechanisms of the appetite-regulating effect of pregnane glycosides remain obscure. Here, we show that pregnane glycoside-enriched extracts from swamp milkweed Asclepias incarnata at 25-100 mg/kg daily attenuated food intake (up to 47.1 ± 8.5% less than controls) and body weight gain in rats (10% for males and 9% for females, respectively) by activating melanocortin signaling and inhibiting gastric emptying. The major milkweed pregnane glycoside, ikemagenin, exerted its appetite-regulating effect by decreasing levels of agouti-related protein (0.6-fold) but not NPY satiety peptides. Ikemagenin treatment also increased secretion of brain-derived neurotropic factor (BDNF) downstream of melanocortin receptors in the hypothalamus (1.4-fold) and in the C6 rat glioma cell culture in vitro (up to 6-fold). These results support the multimodal effects of pregnane glycosides on feeding regulation, which depends on the activity of the melanocortin signaling pathway and BDNF. PMID:23308358

  16. Effects of Pregnane Glycosides on Food Intake Depend on Stimulation of the Melanocortin Pathway and BDNF in an Animal Model

    PubMed Central

    Komarnytsky, Slavko; Esposito, Debora; Rathinasabapathy, Thirumurugan; Poulev, Alexander; Raskin, Ilya

    2013-01-01

    Pregnane glycosides appear to modulate food intake by possibly affecting the hypothalamic feeding circuits; however, the mechanisms of the appetite-regulating effect of pregnane glycosides remain obscure. Here, we show that pregnane glycoside-enriched extracts from swamp milkweed Asclepias incarnata at 25–100 mg/kg daily attenuated food intake (up to 47.1 ± 8.5% less than controls) and body weight gain in rats (10% for males and 9% for females, respectively) by activating melanocortin signaling and inhibiting gastric emptying. The major milkweed pregnane glycoside, ikemagenin, exerted its appetite-regulating effect by decreasing levels of agouti-related protein (0.6-fold) but not NPY satiety peptides. Ikemagenin treatment also increased secretion of brain-derived neurotropic factor (BDNF) downstream of melanocortin receptors in the hypothalamus (1.4-fold) and in the C6 rat glioma cell culture in vitro (up to 6-fold). These results support the multimodal effects of pregnane glycosides on feeding regulation, which depends on the activity of the melanocortin signaling pathway and BDNF. PMID:23308358

  17. Metabolism of cardiac glycosides studied in the isolated perfused guinea-pig liver

    PubMed Central

    Kolenda, K.-D.; Lüllmann, H.; Peters, T.

    1971-01-01

    1. Metabolic degradation of tritiated ouabain, digoxin, and digitoxin has been investigated quantitatively using the isolated perfused guinea-pig liver. The cardiac glycosides and their metabolites have been extracted from the plasma, liver, and bile by different solvents and identified as far as possible by radio-chromatographic analysis. 2. The total metabolic activity in the experimental system was localized in the liver. 3. The hydrophilic glycoside ouabain could not penetrate into the metabolically active compartment of the liver and was, therefore, not degraded. The more lipophilic compound digitoxin, however, was completely degraded due to its high affinity for the metabolically active sites. The unchanged digitoxin cannot enter the aqueous bile fluid in contrast to its more hydrophilic metabolites. 4. The only detectable metabolic degradation of digoxin was a conjugation with glucuronic and/or sulphuric acid, but a cleavage of sugar molecules seemed not to occur. 5. In the case of digitoxin the metabolic processes are more complicated: sugar cleavage, conjugation, and C-12 hydroxylation take place simultaneously. An immediate hydroxylation of digitoxin leading to digoxin was not observed. After administration of digitoxin conjugation products as well as digoxigenin-bis-and digoxigenin-mono-digitoxosides were present in each of the compartments investigated, but the digitoxosides of digitoxigenin were intermediates in concentrations too low to be determined indicating a very high rate of conjugation and/or C-12 hydroxylation as compared with the cleavage of the digitoxoses. 6. A scheme for the metabolic pathways of the cardiac glycosides based on experimental results is presented. The metabolic behaviour of each of the three compounds involved is closely related to their physicochemical properties, especially the lipid solubility. PMID:5579464

  18. Identification, quantification and antioxidant activity of acylated flavonol glycosides from sea buckthorn (Hippophae rhamnoides ssp. sinensis).

    PubMed

    Chen, Chu; Xu, Xue-Min; Chen, Yang; Yu, Meng-Yao; Wen, Fei-Yan; Zhang, Hao

    2013-12-01

    A novel acylated flavonol glycoside: isorhamnetin (3-O-[(6-O-E-sinapoyl)-β-D-glucopyranosyl-(1→2)]-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside) (1), together with two known acylated flavonol glycosides: quercetin (3-O-[(6-O-E-sinapoyl)-β-D-glucopyranosyl-(1→2)]-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside) (2) and kaempferol (3-O-[(6-O-E-sinapoyl)-β-D-glucopyranosyl-(1→2)]-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside) (3) were isolated from the n-butanol fraction of sea buckthorn (Hippophae rhamnoides ssp. sinensis) berries for the first time by chromatographic methods, and their structures were elucidated using UV, MS, (1)H and (13)C NMR, and 2D NMR. Compounds 1-3 showed good scavenging activities, with respective IC50 values of 8.91, 4.26 and 30.90 μM toward the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical; respective Trolox equivalent antioxidant capacities of 2.89, 4.04 and 2.44 μM μM(-1) toward 2,2'-azino-bis-3-ethyl-benzothiazoline-6-sulphonate (ABTS) radical. The quantitative analysis of the isolated acylated flavonol glycosides was performed by HPLC-DAD method. The contents of compounds 1-3 were in the range of 12.2-31.4, 4.0-25.3, 7.5-59.7 mg/100 g dried berries and 9.1-34.5, 75.1-182.1, 29.2-113.4 mg/100 g dried leaves, respectively. PMID:23870862

  19. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms

    PubMed Central

    Baker, Perrin; Hill, Preston J.; Snarr, Brendan D.; Alnabelseya, Noor; Pestrak, Matthew J.; Lee, Mark J.; Jennings, Laura K.; Tam, John; Melnyk, Roman A.; Parsek, Matthew R.; Sheppard, Donald C.; Wozniak, Daniel J.; Howell, P. Lynne

    2016-01-01

    Bacterial biofilms present a significant medical challenge because they are recalcitrant to current therapeutic regimes. A key component of biofilm formation in the opportunistic human pathogen Pseudomonas aeruginosa is the biosynthesis of the exopolysaccharides Pel and Psl, which are involved in the formation and maintenance of the structural biofilm scaffold and protection against antimicrobials and host defenses. Given that the glycoside hydrolases PelAh and PslGh encoded in the pel and psl biosynthetic operons, respectively, are utilized for in vivo exopolysaccharide processing, we reasoned that these would provide specificity to target P. aeruginosa biofilms. Evaluating these enzymes as potential therapeutics, we demonstrate that these glycoside hydrolases selectively target and degrade the exopolysaccharide component of the biofilm matrix. PelAh and PslGh inhibit biofilm formation over a 24-hour period with a half maximal effective concentration (EC50) of 69.3 ± 1.2 and 4.1 ± 1.1 nM, respectively, and are capable of disrupting preexisting biofilms in 1 hour with EC50 of 35.7 ± 1.1 and 12.9 ± 1.1 nM, respectively. This treatment was effective against clinical and environmental P. aeruginosa isolates and reduced biofilm biomass by 58 to 94%. These noncytotoxic enzymes potentiated antibiotics because the addition of either enzyme to a sublethal concentration of colistin reduced viable bacterial counts by 2.5 orders of magnitude when used either prophylactically or on established 24-hour biofilms. In addition, PelAh was able to increase neutrophil killing by ~50%. This work illustrates the feasibility and benefits of using bacterial exopolysaccharide biosynthetic glycoside hydrolases to develop novel antibiofilm therapeutics. PMID:27386527

  20. Anti-proliferative and computational studies of two new pregnane glycosides from Desmidorchis flava.

    PubMed

    Raees, Muhammad Adil; Hussain, Hidayat; Al-Rawahi, Ahmed; Csuk, René; Muhammad, Syed Aun; Khan, Husain Yar; Rehman, Najeeb Ur; Abbas, Ghulam; Al-Broumi, Mohammed Abdullah; Green, Ivan R; Elyassi, Ali; Mahmood, Talat; Al-Harrasi, Ahmed

    2016-08-01

    Two new pregnane glycosides named desmiflavasides C (1) and D (2) were isolated from the sap of Desmidorchis flava (N.E.Br.) Meve & Liede and have had their structures confirmed from 1D and 2D NMR spectroscopic techniques and mass spectrometry (ESIMS). Further, the effects of desmiflavasides C (1) and D (2) on the proliferation of breast and ovarian cancer cells as well as normal breast epithelial cells in culture were examined. Interestingly, desmiflavasides C (1) and D (2) were able to cause a substantial decline in the viability of cancer cells in a concentration-dependent manner. Moreover, treatment of normal cells with compound 2 resulted in no significant growth inhibition, indicating that its cytotoxicity was selective towards cancer cells. Furthermore, the activity of compound 2 against cancer as well as normal epithelial cells was found to be similar to that of a previously reported pregnane glycoside, nizwaside (3). Molecular docking studies of desmiflavasides C (1) and D (2) and nizwaside (3) were carried out to ascertain if it was possible to predict any important binding orientations required of small molecule drug candidates with suggested protein target molecules for the purposes of being able to predict the affinity and activity to an acceptable degree by such compounds. Desmiflavaside D (2) showed a relatively good binding affinity (-22.4449kcal/mol) as compared to the other two compounds viz., nizwaside (3) (-20.0319kcal/mol), and desmiflavaside C (1) (-19.4042kcal/mol). Docking results of the three pregnane glycosides viz., 1-3 revealed that these ligand molecules can accurately interact with the target protein. PMID:27299811

  1. Crystal structure of glycoside hydrolase family 127 β-L-arabinofuranosidase from Bifidobacterium longum

    SciTech Connect

    Ito, Tasuku; Saikawa, Kyo; Kim, Seonah; Fujita, Kiyotaka; Ishiwata, Akihiro; Kaeothip, Sophon; Arakawa, Takatoshi; Wakagi, Takayoshi; Beckham, Gregg T.; Ito, Yukishige; Fushinobu, Shinya

    2014-04-25

    Graphical abstract: - Highlights: • HypBA1 β-L-arabinofuranosidase belongs to glycoside hydrolase family 127. • Crystal structure of HypBA1 was determined. • HypBA1 consists of a catalytic barrel and two additional β-sandwich domains. • The active site contains a Zn{sup 2+} coordinated by glutamate and three cysteines. • A possible reaction mechanism involving cysteine as the nucleophile is proposed. - Abstract: Enzymes acting on β-linked arabinofuranosides have been unknown until recently, in spite of wide distribution of β-L-arabinofuranosyl oligosaccharides in plant cells. Recently, a β-L-arabinofuranosidase from the glycoside hydrolase family 127 (HypBA1) was discovered in the newly characterized degradation system of hydroxyproline-linked β-L-arabinooligosaccharides in the bacterium Bifidobacterium longum. Here, we report the crystal structure of HypBA1 in the ligand-free and β-L-arabinofuranose complex forms. The structure of HypBA1 consists of a catalytic barrel domain and two additional β-sandwich domains, with one β-sandwich domain involved in the formation of a dimer. Interestingly, there is an unprecedented metal-binding motif with Zn{sup 2+} coordinated by glutamate and three cysteines in the active site. The glutamate residue is located far from the anomeric carbon of the β-L-arabinofuranose ligand, but one cysteine residue is appropriately located for nucleophilic attack for glycosidic bond cleavage. The residues around the active site are highly conserved among GH127 members. Based on biochemical experiments and quantum mechanical calculations, a possible reaction mechanism involving cysteine as the nucleophile is proposed.

  2. New perspective on glycoside hydrolase binding to lignin from pretreated corn stover

    DOE PAGESBeta

    Yarbrough, John M.; Mittal, Ashutosh; Mansfield, Elisabeth; Taylor, II, Larry E.; Hobdey, Sarah E.; Sammond, Deanne W.; Bomble, Yannick J.; Crowley, Michael F.; Decker, Stephen R.; Himmel, Michael E.; et al

    2015-12-18

    In this study, non-specific binding of cellulases to lignin has been implicated as a major factor in the loss of cellulase activity during biomass conversion to sugars. It is believed that this binding may strongly impact process economics through loss of enzyme activities during hydrolysis and enzyme recycling scenarios. The current model suggests glycoside hydrolase activities are lost though non-specific/non-productive binding of carbohydrate-binding domains to lignin, limiting catalytic site access to the carbohydrate components of the cell wall.

  3. A new phenyl glycoside from the aerial parts of Equisetum hyemale.

    PubMed

    Jin, Mei; Zhang, Changhao; Zheng, Tie; Yao, Dalei; Shen, Le; Luo, Jie; Jiang, Zhe; Ma, Juan; Jin, Xue-Jun; Cui, Jiongmo; Lee, Jung Joon; Li, Gao

    2014-01-01

    A new phenyl glycoside, 2-(sophorosyl)-1-(4-hydroxyphenyl)ethanone (9), was isolated from the ethanolic extract of the aerial parts of Equisetum hyemale L., together with eight known compounds (1-8). The structures of these compounds were elucidated using a combination of spectroscopic analyses and chemical method. Of these nine compounds, 4 and 7 showed hepatoprotective effects towards tacrine-induced cytotoxicity in Hep 3B cells with EC50 values of 42.7 ± 1.5 and 132.6 ± 2.8 μM, respectively. PMID:25117054

  4. A new steroidal glycoside and fatty acid esters from the stem bark of Tectona grandis Linn.

    PubMed

    Khan, Zeba; Ali, M; Bagri, Priyanka

    2010-07-01

    The phytochemical investigation of the bark of Tectona grandis Linn. afforded a new steroidal glycoside identified as beta-sitosterol-beta-D-[4'-linolenyl-6'-(tridecan-4'''-one-1'''-oxy)] glucuranopyranoside and three new fatty esters, 7'-hydroxy-n-octacosanoyl n-decanoate, 20'-hydroxy eicosanyl linolenate and 18'-hydroxy n-hexacosanyl n-decanoate, along with the known compounds n-docosane, lup-20(29)-en-3beta-ol, betulinic acid and stigmast-5-en-3-O-beta-D-glucopyranoside. Their stereostructures have been elucidated on the basis of spectral data analyses and chemical reactions. PMID:20552529

  5. A new flavonol glycoside from the florets of Carthamus tinctorius L.

    PubMed

    Xie, Xue; Zhou, Jianming; Sun, Lin; Zhang, Hongda; Zhao, Yiwu; Song, Yaling; Wang, Xuejing; Ni, Fuyong; Huang, Wenzhe; Wang, Zhenzhong; Xiao, Wei

    2016-01-01

    One new flavonol glycoside, 6-hydroxykaempferol-3-O-β-D-glucoside-7-O-β-D-glucuronide (1), together with eight known flavonoids and three known quinochalcones, was isolated from the florets of Carthamus tinctorius L. Their structures were determined by extensive spectroscopic analyses. Their cardioprotective effects against H2O2-induced apoptosis in H9c2 cells were also evaluated; compounds 1, 2, 4-5, 7-10 and 12 provided significant protective effects on H2O2-induced H9c2 cells at the concentration of 25 μg/mL. PMID:26185946

  6. Novel glycoside hydrolases identified by screening a Chinese Holstein dairy cow rumen-derived metagenome library.

    PubMed

    Zhao, Shengguo; Wang, Jiaqi; Bu, Dengpan; Liu, Kailang; Zhu, Yaxin; Dong, Zhiyang; Yu, Zhongtang

    2010-10-01

    One clone encoding glycoside hydrolases was identified through functional screening of a rumen bacterial artificial chromosome (BAC) library. Of the 68 open reading frames (ORFs) predicted, one ORF encodes a novel endo-β-1,4-xylanase with two catalytic domains of family GH43 and two cellulose-binding modules (CBMs) of family IV. Partial characterization showed that this endo-xylanase has a greater specific activity than a number of other xylanases over a wide temperature range at neutral pH and could be useful in some industrial applications. PMID:20709844

  7. Transglutaminase-catalyzed site-specific glycosidation of catalase with aminated dextran.

    PubMed

    Valdivia, Aymara; Villalonga, Reynaldo; Di Pierro, Prospero; Pérez, Yunel; Mariniello, Loredana; Gómez, Leissy; Porta, Raffaele

    2006-04-10

    An enzymatic approach, based on a transglutaminase-catalyzed coupling reaction, was investigated to modify bovine liver catalase with an end-group aminated dextran derivative. We demonstrated that catalase activity increased after enzymatic glycosidation and that the conjugate was 3.8-fold more stable to thermal inactivation at 55 degrees C and 2-fold more resistant to proteolytic degradation by trypsin. Moreover, the transglutaminase-mediated modification also improved the pharmacokinetics behavior of catalase, increasing 2.5-fold its plasma half-life time and reducing 3-fold the total clearance after its i.v. administration in rats. PMID:16446004

  8. A new antimicrobial and radical-scavenging glycoside from Paullinia pinnata var. cameroonensis.

    PubMed

    Lunga, Paul-Keilah; Qin, Xu-Jie; Yang, Xing-Wei; Kuiate, Jules-Roger; Du, Zhi-Zhi; Gatsing, Donatien

    2015-01-01

    A new glycoside, pinnatoside A (1), together with two known compounds (2 and 3), were isolated from the stems of Paullinia pinnata. Their structures were elucidated on the basis of extensive spectroscopic analysis and chemical methods. Compound 1 showed significant antibacterial activity with a minimum inhibitory concentration (MIC) value of 1.56 μg/mL against Escherichia coli, and 2 displayed significant antibacterial activity with a MIC value of 1.56 μg/mL against Enterobacter aerogenes and E. coli. Equally, compound 1 exhibited the best radical-scavenging activity (RSa50 = 25.07 ± 0.49 μg/mL). PMID:25563339

  9. Shamiminol: a new aromatic glycoside from the stem bark of Bombax ceiba.

    PubMed

    Faizi, Shaheen; Zikr-Ur-Rehman, Sadia; Versiani, Muhammad Ali

    2011-12-01

    A new aromatic glycoside, shamiminol was isolated from the stem bark of Bombax ceiba along with the known constituents stigmasta-3,5-diene, lupenone, (+/-)-lyoniresinol 2a-O-beta-D-glucopyranoside and opuntiol, obtained for the first time from this plant. The structure of shamiminol was elucidated on the basis of extensive 1D- and 2D-NMR spectroscopic and mass spectrometric studies as 3,4,5-trimethoxyphenol 1-O-beta-D-xylopyranosyl-(1 --> 2)-beta-D-glucopyranoside (1). PMID:22312733

  10. A new ent-kaurane diterpenoid glycoside from Isodon japonica var. glaucocalyx.

    PubMed

    Xiang, Zhao-Bao; Wang, Guang-Li; Huang, Lan-Zhi; Heng, Lin-Sen; Li, Xiao-Hui

    2013-01-01

    A new ent-kaurane diterpenoid glycoside (1), named glaucocalyxin G, has been isolated from the n-butanol-soluble fraction of the dried whole plants of Isodon japonica var. glaucocalyx along with two known compounds, namely arjunglucoside (2) and kaempferol-3-O-rutinoside (3). The structures of the isolated compounds were assigned on the basis of their (1)H and (13)C NMR spectra including two-dimensional NMR techniques such as HMQC, HMBC, and NOESY experiments and comparison with the literature data. PMID:23614395

  11. Polyflavanostilbene A, a new flavanol-fused stilbene glycoside from Polygonum cuspidatum.

    PubMed

    Li, Fushuang; Zhan, Zhilai; Liu, Fu; Yang, Yanan; Li, Li; Feng, Ziming; Jiang, Jianshuang; Zhang, Peicheng

    2013-02-01

    Polyflavanostilbene A, a new flavanol-fused stilbene glycoside, was isolated from the rhizome of Polygonum cuspidatum. Its unusual structure, including its absolute stereochemistry, was determined by UV, IR, HRESIMS, and 1D and 2D NMR data and by the comparison of experimental and calculated electronic circular dichroism (ECD) spectra. Polyflavanostilbene A has an unprecedented rearranged flavanol skeleton fused to stilbene via a hexahydrocyclopenta[c]furan moiety. Polyflavanostilbene A showed strong inhibitory activity against α-glucosidase with an IC(50) value of 17.7 μM. PMID:23320550

  12. A new flavone C-glycoside and a new bibenzyl from Bulbophyllum retusiusculum.

    PubMed

    Yang, Ming-Hui; Fang, Yun-Shan; Cai, Le; Li, Ying; Dong, Jian-Wei; Yin, Tian-Peng; Huang, Cai-Li; Ding, Zhong-Tao

    2016-07-01

    A new flavone C-glycoside, apigenin 6-C-α-arabinofuranosyl 8-C-α-arabinopyranoside (1) and a new bibenzyl, bulbotetusine (2), were isolated from the tubers of Bulbophyllum retusiusculum. Their structures were established on the basis of extensive spectroscopic analyses. The absolute configuration of 2 was determined by the comparison of experimental and calculated electronic circular dichroism. Compounds 1 and 2 showed no obvious cytotoxic activity against any five human tumour cell lines with IC50 values >40 μM. PMID:26729275

  13. Patagonicosides B and C, two Antifungal Sulfated Triterpene Glycosides from the Sea Cucumber Psolus patagonicus

    PubMed Central

    Careaga, Valeria P.; Muniain, Claudia; Maier, Marta S.

    2013-01-01

    Two new triterpene glycosides, patagonicosides B (2) and C (3), together with the known patagonicoside A (1), have been isolated from the ethanolic extract of the sea cucumber Psolus patagonicus. The structures of the new compounds were established on the basis of extensive NMR spectroscopy (1H and13C NMR,1H–1H COSY, HMBC, HSQC, TOCSY, and NOESY), HRESIMS, and chemical transformations. Compounds 1–3 and their desulfated analogs showed antifungal activity against the phytopathogenic fungus Cladosporium cladosporoides in a dose dependent activity. PMID:21404430

  14. A new acylated quercetin glycoside from the leaves of Stevia rebaudiana Bertoni.

    PubMed

    Li, Jun; Jiang, Hua; Shi, Renbing

    2009-01-01

    A new acylated quercetin glycoside quercetin-3-O-(4'''-O-trans-caffeoyl)-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-galacopyranoside (1), along with luteolin (2), quercetin (3), luteolin-7-O-beta-D-glucoside (4), apigenin-7-O-beta-D-glucoside (5), quercitrin (6), quercetin-3-O-beta-D-arabinoside (7) and 4,5-di-O-caffeoyl quinic acid (8) have been isolated from the leaves of Stevia rebaudiana Bertoni. The structures of these compounds were determined by spectroscopic methods (1H- and 13C-NMR, IR and MS) and by 2D-NMR experiments. PMID:19809909

  15. Stimulatory effect of cyanidin 3-glycosides on the regeneration of rhodopsin.

    PubMed

    Matsumoto, Hitoshi; Nakamura, Yuko; Tachibanaki, Shuji; Kawamura, Satoru; Hirayama, Masao

    2003-06-01

    Anthocyanins have been suggested to improve visual functions. This study examined the effect of four anthocyanins in black currant fruits on the regeneration of rhodopsin using frog rod outer segment (ROS) membranes. Cyanidin 3-glycosides, glucoside and rutinoside, stimulated the regeneration, but the corresponding delphinidins showed no significant effect. The formation of a regeneration intermediate was suggested to be accelerated by cyanidin 3-rutinoside. Their effects on the cGMP-phosphodiesterase activity in the ROS membranes were also investigated but found to be negligible. It was concluded that the major effect of anthocyanins in rod photoreceptors is on the regeneration of rhodopsin. PMID:12769524

  16. The specific substance from Pneumococcus type 34. The configuration of the glycosidic linkages

    PubMed Central

    Dixon, J. R.; Buchanan, J. G.; Baddiley, J.

    1966-01-01

    1. The specific compound from Pneumococcus type 34 was isolated from capsular material by ion-exchange chromatography. This separated it from a substance with chemical and serological properties corresponding to those reported for C-substance. 2. The configuration of the two galactofuranosyl linkages in the repeating unit of S.34 was determined and the configurations previously assigned to the other glycosidic linkages were confirmed. 3. The dephosphorylated deacetylated repeating unit is thus O-β-d-galactofuranosyl-(1→3)-O-α-d-glucopyranosyl-(1→2)-O-β-d-galactofuranosyl-(1→3)-O-α-d-galactopyranosyl- (1→2)-ribitol. PMID:4381831

  17. Two new flavonoid glycosides from the whole herbs of Hyssopus officinalis.

    PubMed

    Wang, Nan; Yang, Xiu-Wei

    2010-12-01

    Two new flavonoid glycosides, quercetin 7-O-β-D-apiofuranosyl-(1 → 2)-β-D-xylopyranoside (1) and quercetin 7-O-β-D-apiofuranosyl-(1 → 2)-β-D-xylopyranoside 3'-O-β-D-glucopyranoside (2), together with nine known flavonoids were isolated from the whole herbs of Hyssopus officinalis L. cultivated in Xinjiang Uygur Autonomous Region of China. All structures were characterized by the spectroscopic methods including UV, IR, ESI-MS, 1D, and 2D NMR. Their potent free radical scavenging activity against the stable 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical was evaluated. PMID:21128145

  18. Effect of Morinda citrifolia fruit extract and its iridoid glycosides on blood fluidity.

    PubMed

    Murata, Kazuya; Abe, Yumi; Futamura-Masuda, Megumi; Uwaya, Akemi; Isami, Fumiyuki; Deng, Shixin; Matsuda, Hideaki

    2014-07-01

    The aim of this study was to investigate the effect of Morinda citrifolia fruit on blood fluidity. M. citrifolia fruit extract (MCF-ext) was investigated for its influence on blood aggregation and fibrinolysis. MCF-ext inhibited polybrene-induced erythrocyte aggregation and thrombin activity. The fibrinolytic activity of MCF-ext, in the euglobulin lysis time test and fibrin plate assay, is reported here for the first time. One of the active compounds was an iridoid glycoside, asperulosidic acid. The results indicated that MCF-ext is a potentially useful health food which is capable of improving blood flow and preventing lifestyle-related diseases. PMID:24604344

  19. Two new ent-kaurane-type diterpene glycosides from zucchini (Cucurbita pepo L.) seeds.

    PubMed

    Kikuchi, Takashi; Ando, Hiromi; Maekawa, Ken-Ichiro; Arie, Hiroki; Yamada, Takeshi; Tanaka, Reiko

    2015-12-01

    Two new ent-kaurane diterpene glycosides; 12α-(β-d-glucopyranosyloxy)-7β-hydroxykaurenolide (1) and 7β-(β-d-glucopyranosyloxy)-12α-hydroxykaurenolide (2), a new steroid; (24S)-stigmasta-7,22E,25-trien-3-one (12), and known compounds (3-11, 13-14) were isolated from zucchini (Cucurbita pepo L.) seeds. The absolute structures of 1 and 2 were determined by acid hydrolysis and application of a modified Moscher's method. Furthermore, isolated compounds (1-14), and a derivative, 1a, were evaluated for their inhibitory effects on macrophage activation by an inhibitory assay of nitric oxide (NO) production. PMID:26420344

  20. Steroidal saponins obtained by biotransformation of total furostanol glycosides from Dioscorea zingiberensis with Absidia coerulea.

    PubMed

    Pang, Xu; Wen, Di; Zhao, Yang; Xiong, Cheng-Qi; Wang, Xiao-Qin; Yu, Li-Yan; Ma, Bai-Ping

    2015-01-30

    Five new steroidal saponins (1-5) were isolated from the fermentation broth of total furostanol glycosides from tubers of Dioscorea zingiberensis C.H. Wright incubated with a fungal, Absidia coerulea AS 3.3389, along with known saponins, zingiberensis new saponin (6), deltonin (7), prosapogenin A of dioscin (8), and protobioside (9), and their structures were established by NMR spectroscopy and mass spectrometry as well as by comparison with previously reported spectral data in the literatures. The induced effects in vitro on rat platelet aggregation of all compounds were evaluated. PMID:25498025

  1. Time reversal communication system

    DOEpatents

    Candy, James V.; Meyer, Alan W.

    2008-12-02

    A system of transmitting a signal through a channel medium comprises digitizing the signal, time-reversing the digitized signal, and transmitting the signal through the channel medium. The channel medium may be air, earth, water, tissue, metal, and/or non-metal.

  2. Justice and Reverse Discrimination

    ERIC Educational Resources Information Center

    Strike, Kenneth A.

    1976-01-01

    Although this article does not necessarily recommend policies of reverse discrimination, arguments indicating that such policies are not contradictory to accepted concepts of justice are presented. The necessity of dispersing any consequent injury to society as a whole rather than to individuals is stressed. (RW)

  3. Reversing Discrimination: A Perspective

    ERIC Educational Resources Information Center

    Pati, Gopal; Reilly, Charles W.

    1977-01-01

    Examines the debate over affirmative action and reverse discrimination, and discusses how and why the present dilemma has developed. Suggests that organizations can best address the problem through an honest, in-depth analysis of their organizational structure and management practices. (JG)

  4. Andexanet: Effectively Reversing Anticoagulation.

    PubMed

    Lippi, Giuseppe; Sanchis-Gomar, Fabian; Favaloro, Emmanuel J

    2016-06-01

    Despite direct oral anticoagulants becoming a mainstay of anticoagulant therapy, the effective, timely, and safe reversal of their anticoagulant effect remains challenging. Emerging evidence attests that andexanet, a recombinant and inactive variant of native factor X (FXa), competitively inhibits and counteracts the anticoagulant effect of many inhibitors of native activated FXa. PMID:27048885

  5. Reversible Ising dynamics

    SciTech Connect

    Creutz, M.

    1985-01-01

    The author discusses a reversible deterministic dynamics for Ising spins. The algorithm is a variation of microcanonical Monte Carlo techniques and is easily implemented with simple bit manipulation. This provides fast programs to study non-equilibrium phenomena such as heat flow.

  6. Reverse Coherent Information

    NASA Astrophysics Data System (ADS)

    García-Patrón, Raúl; Pirandola, Stefano; Lloyd, Seth; Shapiro, Jeffrey H.

    2009-05-01

    In this Letter we define a family of entanglement distribution protocols assisted by feedback classical communication that gives an operational interpretation to reverse coherent information, i.e., the symmetric counterpart of the well-known coherent information. This leads to the definition of a new entanglement distribution capacity that exceeds the unassisted capacity for some interesting channels.

  7. Reverse Coherent Information

    NASA Astrophysics Data System (ADS)

    García-Patrón, Raúl; Pirandola, Stefano; Lloyd, Seth; Shapiro, Jeffrey H.

    2009-04-01

    We define a family of entanglement distribution protocols assisted by classical feedback communication that gives an operational interpretation to reverse coherent information, i.e., the symmetric counterpart of the well-known coherent information. This protocol family leads to the definition of a new entanglement distribution capacity that exceeds the unassisted entanglement distribution capacity for some interesting channels.

  8. A Direct Comparison of the Anticancer Activities of Digitoxin MeON-Neoglycosides and O-Glycosides

    PubMed Central

    2010-01-01

    Digitoxin is a cardiac glycoside currently being investigated for potential use in oncology; however, an investigation of anticancer activity as a function of oligosaccharide chain length has not yet been performed. We generated mono-, di-, and tri-O-digitoxoside derivatives of digitoxin and compared their activities to the corresponding MeON-neoglycosides. Both classes of cardenolide derivatives display comparable oligosaccharide chain length-dependent cytotoxicity toward human cancer cell lines. Further investigation revealed that both classes of compounds induce caspase-9-mediated apoptosis in non-small cell lung cancer cells (NCI-H460). Because O-glycosides and MeON-neoglycosides share a similar mode of action, the convenience of MeON-neoglycosylation could be exploited in future SAR work to rapidly survey large numbers of carbohydrates to prioritize selected O-glycoside candidates for traditional synthesis. PMID:21103068

  9. Characterization by 1H NMR of glycosidic conformations in the tetramolecular complex formed by d(GGTTTTTGG).

    PubMed Central

    Wang, Y; Jin, R; Gaffney, B; Jones, R A; Breslauer, K J

    1991-01-01

    We have conducted two dimensional NOESY studies on the molecule d(G2T5G2) to characterize the structure of the tetramolecular complex previously identified by calorimetric and spectroscopic studies (1). Analysis of the NOE and exchange cross peaks observed in the NOESY spectra establishes the formation of structured conformations at low temperature (5 degrees C). Significantly, within each strand of these structured conformations, the G1 and G8 residues adopt syn glycosidic torsion angles, while the G2 and G9 residues adopt anti glycosidic torsion angles. Consequently, any structure proposed for the tetramolecular complex of d(G2T5G2) must have alternating G(syn) and G(anti) glycosidic torsion angles within each strand. The implications of this observation for potential structures of the tetramolecular complex of d(G2T5G2) are discussed. PMID:1891352

  10. Effect of qualitative and quantitative variation in allelochemicals on a generalist insect: Iridoid glycosides and the southern armyworm.

    PubMed

    Puttick, G M; Bowers, M D

    1988-01-01

    The behavioral and physiological effects of plant allelochemicals have been difficult to demonstrate; it is not often clear whether the compounds are deterrent, toxic, or both. In this study, we compared the qualitative and quantitative effects of several iridoid glycosides on a generalist lepidopteran herbivore,Spodoptera eridania (Noctuidae). Larval growth and survivorship and larval preference or avoidance were measured on artificial diets containing different iridoid glycosides at different concentrations. We also tested the toxicity/deterrence of these compounds. We found that iridoid glycosides retarded larval growth significantly at relatively low concentrations and that they were usually avoided in preference tests. The toxicity/ deterrence test did not always reflect the results of these other tests. The merits of using a variety of methods for determining deterrence and/or toxicity of plant allelochemicals are discussed. PMID:24277013

  11. In silico analysis and molecular docking studies of potential angiotensin-converting enzyme inhibitor using quercetin glycosides

    PubMed Central

    Muhammad, Syed Aun; Fatima, Nighat

    2015-01-01

    The purpose of this study was to analyze the inhibitory action of quercetin glycosides by computational docking studies. For this, natural metabolite quercetin glycosides isolated from buckwheat and onions were used as ligand for molecular interaction. The crystallographic structure of molecular target angiotensin-converting enzyme (ACE) (peptidyl-dipeptidase A) was obtained from PDB database (PDB ID: 1O86). Enalapril, a well-known brand of ACE inhibitor was taken as the standard for comparative analysis. Computational docking analysis was performed using PyRx, AutoDock Vina option based on scoring functions. The quercetin showed optimum binding affinity with a molecular target (angiotensin-converting-enzyme) with the binding energy of −8.5 kcal/mol as compared to the standard (−7.0 kcal/mol). These results indicated that quercetin glycosides could be one of the potential ligands to treat hypertension, myocardial infarction, and congestive heart failure. PMID:26109757

  12. Differential effects on the cyanogenic glycoside content of fermenting cassava root pulp by beta-glucosidase and microbial activities.

    PubMed

    Maduagwu, E N

    1983-03-01

    The degradation of cyanogenic glycosides was studied in spontaneously fermenting cassava root pulp and in fresh pulp samples pretreated to prevent either endogenous beta-glycosidase activity, fermentation, or both. The rate of disappearance of the glycosides, as measured by hydrocyanic acid (HCN) production in situ, in membrane-sterilised media or in samples containing 1% sodium iodoacetate, was comparable with the untreated control in which 85% of the substrate was broken down within 72 h. Pretreatment of the fresh pulp with the beta-glucosidase inhibitor 1,5-gluconolactone (1%) markedly reduced the rate of disappearance of the cyanogens while inclusion of glucose in this test medium at the 3% level appeared to induce some hydrolysis. Loss of bound (glycosidic) cyanide in sterilised medium containing the glucosidase inhibitor was negligible. The results suggest that the contribution of the fermentation process in cyanide detoxification of pulped cassava roots is minimal. PMID:6404010

  13. [Monosulfated triterpene glycosides from Cucumaria okhotensis Levin et Stepanov, a new species of sea cucumbers from Sea of Okhotsk].

    PubMed

    Sil'chenko, A S; Avilov, S A; Kalinin, V I; Stonik, V A; Kalinovskiĭ, A I; Dmitrenok, P S; Stepanov, V G

    2007-01-01

    Three compounds were isolated from the fraction of monosulfated triterpene glycosides from Cucumaria okhotensis, a new sea cucumber species, and their structures were elucidated. First of them, okhotoside A1-1, is a new glycoside containing tetrasaccharide sugar moiety; the second, okhotoside A2-1, is a new pentaoside with a glucose residue in the second position of sugar moiety (such a structural peculiarity has been found in holothurians of the genus Cucumaria for the first time); and the third is a previously known pentaoside cucumarioside A0-1 from C. japonica. The species-specificity of the triterpene glycosides from C. okhotensis was revealed, which justifies the description of this sea cucumber as a new species. PMID:17375663

  14. Induction of apoptosis in colon cancer cells treated with isorhamnetin glycosides from Opuntia ficus-indica pads.

    PubMed

    Antunes-Ricardo, Marilena; Moreno-García, Beatriz E; Gutiérrez-Uribe, Janet A; Aráiz-Hernández, Diana; Alvarez, Mario M; Serna-Saldivar, Sergio O

    2014-12-01

    (OFI) contains health-promoting compounds like flavonoids, being the isorhamnetin glycosides the most abundant. We evaluated the effect of OFI extracts with different isorhamnetin glycosides against two different human colon cancer cells (HT-29 and Caco2). The extracts were obtained by alkaline hydrolysis with NaOH at 40 °C during 15, 30 or 60 min. Tri and diglycosides were the most abundant isorhamnetin glycosides, therefore these compounds were isolated to compare their cytotoxic effect with the obtained from the extracts. The OFI extracts and purified isorhamnetin glycosides were more cytotoxic against HT-29 cells than Caco2 cells. OFI-30 exhibited the lowest IC50 value against HT-29 (4.9 ± 0.5 μg/mL) and against Caco2 (8.2 ± 0.3 μg/mL). Isorhamnetin diglycosides IG5 and IG6 were more cytotoxic than pure isorhamnetin aglycone or triglycosides when they were tested in HT-29 cells. Bioluminescent analysis revealed increased activity of caspase 3/7 in OFI extracts-treated cells, particularly for the extract with the highest concentration of isorhamnetin triglycosides. Flow cytometry analysis confirmed that OFI extract and isorhamnetin glycosides induced a higher percentage of apoptosis in HT-29 than in Caco2, while isorhamnetin was more apoptotic in Caco2. This research demonstrated that glycosilation affected antiproliferative effect of pure isorhamnetin glycosides or when they are mixed with other phytochemicals in an extract obtained from OFI. PMID:25186940

  15. Effect of harvest timing on leaf production and yield of diterpene glycosides in Stevia rebaudiana Bert: a specialty perennial crop for Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stevia rebaundiana (Bertoni), a perennial shrub of the Asteraceae, is one of the most important sources of non-caloric natural sweeteners. Stevia’s plant extracts and glycosides have been used for several years in Paraguay and Brazil. Several studies suggest that Stevia and its glycosides exert ben...

  16. Isolation and purification of six iridoid glycosides from gardenia jasminoides fruit by medium-pressure liquid chromatography combined with macroporous resin chromatography.

    PubMed

    Wang, Yun; Liu, Hui; Shen, Lifeng; Yao, Lan; Ma, Yinlian; Yu, Dingrong; Chen, Jianhong; Li, Puling; Chen, Ying; Zhang, Cun

    2015-12-01

    Gardeniae fructus is one of the most frequently used herbs in traditional Chinese medicine. In the present study, a process for the enrichment of six iridoid glycosides from Gardeniae fructus was developed using medium-pressure liquid chromatography combined with macroporous resin and reversed-phase chromatography. The purities of different fractions from Gardeniae fructus were assessed using quantitative high-performance liquid chromatography. After fractionation using HPD-100 column chromatography, a 30% ethanol fraction was selected based on high-performance liquid chromatography and liquid chromatography with mass spectrometry qualitative analysis to separate and purify. Based on the orientation analysis results, six compounds-deacetyl asperulosidic acid methyl ester, gardenoside, ixoroside, scandoside methyl ester, genipin-1-O-β-d-gentiobioside, and geniposide-were successfully isolated and purified in three to four combined steps from Gardeniae fructus. The purities of these compounds were found by high-performance liquid chromatography analysis to be 97.9, 98.1, 95.5, 96.3, 97.1, and 98.7%, respectively. Moreover, their structures were elucidated by NMR spectroscopy and liquid chromatography with tandem mass spectrometry. The separation process was highly efficient, rapid, and accurate, making it a potential approach for the large-scale production of iridoids in the laboratory and providing several marker compounds for quality control. This procedure may be meaningful for the purification of other natural products used in traditional Chinese medicine. PMID:26768549

  17. Effects of hesperidin, a flavanone glycoside interaction on the conformation, stability, and aggregation of lysozyme: multispectroscopic and molecular dynamic simulation studies?

    PubMed

    Ratnaparkhi, Aditi; Muthu, Shivani A; Shiriskar, Sonali M; Pissurlenkar, Raghuvir R S; Choudhary, Sinjan; Ahmad, Basir

    2015-09-01

    Hesperidin (HESP), a flavanone glycoside, shows high antioxidant properties and possess ability to go through the blood-brain barrier. Therefore, it could be a potential drug molecule against aggregation based diseases such as Alzheimer's, Parkinson's, and systemic amyloidoses. In this work, we investigated the potential of HESP to interact with hen egg-white lysozyme (HEWL) monomer and prevent its aggregation. The HESP-HEWL binding studies were performed using a fluorescence quenching technique, molecular docking and molecular dynamics simulations. We found a strong interaction of HESP with the lysozyme monomer (Ka, ~ 5 × 10(4) M(-1)) mainly through hydrogen bonding, water bridges, and hydrophobic interactions. We showed that HESP molecule spanned the highly aggregation prone region (amino acid residues 48-101) of HEWL and prevented its fibrillar aggregation. Further, we found that HESP binding completely inhibited amorphous aggregation of the protein induced by disulfide-reducing agent tries-(2-carboxyethyl) phosphine. Conformational and stability studies as followed by various tertiary and secondary structure probes revealed that HESP binding only marginally affected the lysozyme monomer conformation and increased both stability and reversibility of the protein against thermal denaturation. Future studies should investigate detail effects of HESP on solvent dynamics, structure, and toxicity of various aggregates. The answers to these questions will not only target the basic sciences, but also have application in biomedical and biotechnological sciences. PMID:25301518

  18. Biosynthesis of malonylated flavonoid glycosides on the basis of malonyltransferase activity in the petals of Clitoria ternatea.

    PubMed

    Kogawa, Koichiro; Kazuma, Kohei; Kato, Naoki; Noda, Naonobu; Suzuki, Masahiko

    2007-07-01

    The crude malonyltransferase from the petals of Clitoria ternatea was characterized enzymatically to investigate its role on the biosynthetic pathways of anthocyanins and flavonol glycosides. In C. ternatea, a blue flower cultivars (DB) and mauve flower variety (WM) accumulate polyacylated anthocyanins (ternatins) and delphinidin 3-O-(6''-O-malonyl)-beta-glucoside which is one of the precursors of ternatins, respectively. Moreover, WM accumulates minor delphinidin glycosides - 3-O-beta-glucoside, 3-O-(2''-O-alpha-rhamnosyl)-beta-glucoside, 3-O-(2''-O-alpha-rhamnosyl-6''-O-malonyl)-beta-glucoside of delphinidin. These glycosidic patterns for minor anthocyanins in WM are also found among the minor flavonol glycosides in all the varieties including a white flower variety (WW) although the major flavonol glycosides are 3-O-(2''-O-alpha-rhamnosyl)-beta-glucoside, 3-O-(6''-O-alpha-rhamnosyl)-beta-glucoside, 3-O-(2'',6''-di-O-alpha-rhamnosyl)-beta-glucoside of kaempferol, quercetin, and myricetin. How do the enzymatic characteristics affect the variety of glycosidic patterns in the flavonoid glycoside biosynthesis among these varieties? While the enzyme from DB highly preferred delphinidin 3-O-beta-glucoside in the presence of malonyl-CoA, it also has a preference for other anthocyanidin 3-O-beta-glucosides. It could use flavonol 3-O-beta-glucosides in much lower specific activities than anthocyanins; however, it could not utilize 3-O-(2''-O-alpha-rhamnosyl)-beta-glucosides of anthocyanins and flavonols, and 3,3'-di- and 3,3',5'-tri-O-beta-glucoside of delphinidin - other possible precursors in ternatins biosynthesis. It highly preferred malonyl-CoA as an acyl donor in the presence of delphinidin 3-O-beta-glucoside. The crude enzymes prepared from WM and WW had the same enzymatic characteristics. These results suggested that 3-O-(2''-O-alpha-rhamnosyl-6''-O-malonyl)-beta-glucosides of flavonoids were synthesized via 3-O-(6''-O-malonyl)-beta-glucosides rather than via 3-O

  19. Apigenin-7-O-β-D-glycoside isolation from the highly copper-tolerant plant Elsholtzia splendens.

    PubMed

    Peng, Hong-Yun; Zhang, Xue-Hong; Xu, Jin-Zhong

    2016-06-01

    Elsholtzia splendens (Lamiaceae) is a copper-tolerant plant species growing on copper deposits in the south of China. Chromatographic separation of n-BuOH extracts from the flowering aerial biomass afforded apigenin-7-O-β-D-glycoside, using macroporous resin, Sephadex™ LH-20 gel, polyamide resin as well as preparative high-performance liquid chromatography (P-HPLC) columns. Chemical structure was elucidated using HPLC/ESI-MS (electrospray ionization-mass spectrometry), Fourier transform infrared (FTIR), and (1)D- and (2)D-nuclear magnetic resonance (NMR). Apigenin-7-O-β-D-glycoside could be the post-harvesting product from E. splendens biomass. PMID:27256678

  20. Gas-phase intramolecular elimination reaction studies of steviol glycosides in positive electrospray and tandem mass spectrometry.

    PubMed

    Upreti, Mani; Clos, John F; Somayajula, Kasi V; Milanowski, Dennis J; Mocek, Ulla; Dubois, Grant E; Prakash, Indra

    2009-01-01

    This paper reports the first study of the gas-phase intramolecular elimination reaction of steviol glycosides in positive electrospray mass spectrometry. The observed glycosylated product ions are proposed to be formed via an intramolecular elimination of sugar units from the parent molecule ion. It was further proven by MS/MS studies and deuterium labeling experiments with one of the steviol glycosides, rebaudioside A. These mass spectrometric results confirmed that the new glycosylated product ions observed are most likely formed by the combination of glucose moieties (Glu) II-IV and Glu I via a gas-phase intramolecular elimination reaction. PMID:19174590

  1. Apigenin-7-O-β-D-glycoside isolation from the highly copper-tolerant plant Elsholtzia splendens *

    PubMed Central

    Peng, Hong-yun; Zhang, Xue-hong; Xu, Jin-zhong

    2016-01-01

    Elsholtzia splendens (Lamiaceae) is a copper-tolerant plant species growing on copper deposits in the south of China. Chromatographic separation of n-BuOH extracts from the flowering aerial biomass afforded apigenin-7-O-β-D-glycoside, using macroporous resin, Sephadex™ LH-20 gel, polyamide resin as well as preparative high-performance liquid chromatography (P-HPLC) columns. Chemical structure was elucidated using HPLC/ESI-MS (electrospray ionization-mass spectrometry), Fourier transform infrared (FTIR), and 1D-and 2D-nuclear magnetic resonance (NMR). Apigenin-7-O-β-D-glycoside could be the post-harvesting product from E. splendens biomass. PMID:27256678

  2. 49 CFR 230.89 - Reverse gear.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Reversing Gear § 230.89 Reverse gear. (a) General provisions. Reverse gear, reverse levers, and quadrants shall be maintained in a safe and suitable condition for service. Reverse lever latch shall be...

  3. 49 CFR 230.89 - Reverse gear.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Reversing Gear § 230.89 Reverse gear. (a) General provisions. Reverse gear, reverse levers, and quadrants shall be maintained in a safe and suitable condition for service. Reverse lever latch shall be...

  4. 49 CFR 230.89 - Reverse gear.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Reversing Gear § 230.89 Reverse gear. (a) General provisions. Reverse gear, reverse levers, and quadrants shall be maintained in a safe and suitable condition for service. Reverse lever latch shall be...

  5. 49 CFR 230.89 - Reverse gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Reversing Gear § 230.89 Reverse gear. (a) General provisions. Reverse gear, reverse levers, and quadrants shall be maintained in a safe and suitable condition for service. Reverse lever latch shall be...

  6. Zebrafish bioassay-guided microfractionation identifies anticonvulsant steroid glycosides from the Philippine medicinal plant Solanum torvum.

    PubMed

    Challal, Soura; Buenafe, Olivia E M; Queiroz, Emerson F; Maljevic, Snezana; Marcourt, Laurence; Bock, Merle; Kloeti, Werner; Dayrit, Fabian M; Harvey, Alan L; Lerche, Holger; Esguerra, Camila V; de Witte, Peter A M; Wolfender, Jean-Luc; Crawford, Alexander D

    2014-10-15

    Medicinal plants used for the treatment of epilepsy are potentially a valuable source of novel antiepileptic small molecules. To identify anticonvulsant secondary metabolites, we performed an in vivo, zebrafish-based screen of medicinal plants used in Southeast Asia for the treatment of seizures. Solanum torvum Sw. (Solanaceae) was identified as having significant anticonvulsant activity in zebrafish larvae with seizures induced by the GABAA antagonist pentylenetetrazol (PTZ). This finding correlates well with the ethnomedical use of this plant in the Philippines, where a water decoction of S. torvum leaves is used to treat epileptic seizures. HPLC microfractionation of the bioactive crude extract, in combination with the in vivo zebrafish seizure assay, enabled the rapid localization of several bioactive compounds that were partially identified online by UHPLC-TOF-MS as steroid glycosides. Targeted isolation of the active constituents from the methanolic extract enabled the complete de novo structure identification of the six main bioactive compounds that were also present in the traditional preparation. To partially mimic the in vivo metabolism of these triterpene glycosides, their common aglycone was generated by acid hydrolysis. The isolated molecules exhibited significant anticonvulsant activity in zebrafish seizure assays. These results underscore the potential of zebrafish bioassay-guided microfractionation to rapidly identify novel bioactive small molecules of natural origin. PMID:25127088

  7. Antiproliferative Activity of Triterpene Glycoside Nutrient from Monk Fruit in Colorectal Cancer and Throat Cancer.

    PubMed

    Liu, Can; Dai, Longhai; Liu, Yueping; Rong, Long; Dou, Dequan; Sun, Yuanxia; Ma, Lanqing

    2016-01-01

    Colorectal cancer and throat cancer are the world's most prevalent neoplastic diseases, and a serious threat to human health. Plant triterpene glycosides have demonstrated antitumor activity. In this study, we investigated potential anticancer effects of mogroside IVe, a triterpenoid glycoside from monk fruit, using in vitro and in vivo models of colorectal and laryngeal cancer. The effects of mogroside IVe on the proliferation of colorectal cancer HT29 cells and throat cancer Hep-2 cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the expression levels of p53, phosphorylated ERK1/2, and MMP-9 were analyzed by western blotting and immunohistochemistry. The results indicated that mogroside IVe inhibited, in a dose-dependent manner, the proliferation of HT29 and Hep-2 cells in culture and in xenografted mice, which was accompanied by the upregulation of tumor suppressor p53, and downregulation of matrix metallopeptidase 9 (MMP-9) and phosphorylated extracellular signal-regulated kinases (ERK)1/2. This study revealed the suppressive activity of mogroside IVe towards colorectal and throat cancers and identified the underlying mechanisms, suggesting that mogroside IVe may be potentially used as a biologically-active phytochemical supplement for treating colorectal and throat cancers. PMID:27304964

  8. Topical anti-inflammatory effects of isorhamnetin glycosides isolated from Opuntia ficus-indica.

    PubMed

    Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A; Martínez-Vitela, Carlos; Serna-Saldívar, Sergio O

    2015-01-01

    Opuntia ficus-indica (OFI) has been widely used in Mexico as a food and for the treatment of different health disorders such as inflammation and skin aging. Its biological properties have been attributed to different phytochemicals such as the isorhamnetin glycosides which are the most abundant flavonoids. Moreover, these compounds are considered a chemotaxonomic characteristic of OFI species. The aim of this study was to evaluate the effect of OFI extract and its isorhamnetin glycosides on different inflammatory markers in vitro and in vivo. OFI extract was obtained by alkaline hydrolysis of OFI cladodes powder and pure compounds were obtained by preparative chromatography. Nitric oxide (NO), cyclooxygenase-2 (COX-2), tumor necrosis factor- (TNF-) α, and interleukin- (IL-) 6 production were measured. NO production was tested in lipopolysaccharide-stimulated RAW 264.7 cells while in vivo studies were carried on croton oil-induced ear edema model. OFI extract and diglycoside isorhamnetin-glucosyl-rhamnoside (IGR) at 125 ng/mL suppressed the NO production in vitro (73.5 ± 4.8% and 68.7 ± 5.0%, resp.) without affecting cell viability. Likewise, IGR inhibited the ear edema (77.4 ± 5.7%) equating the indomethacin effects (69.5 ± 5.3%). Both IGR and OFI extract significantly inhibited the COX-2, TNF-α, and IL-6 production. IGR seems to be a suitable natural compound for development of new anti-inflammatory ingredient. PMID:25821823

  9. Topical Anti-Inflammatory Effects of Isorhamnetin Glycosides Isolated from Opuntia ficus-indica

    PubMed Central

    Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A.; Martínez-Vitela, Carlos; Serna-Saldívar, Sergio O.

    2015-01-01

    Opuntia ficus-indica (OFI) has been widely used in Mexico as a food and for the treatment of different health disorders such as inflammation and skin aging. Its biological properties have been attributed to different phytochemicals such as the isorhamnetin glycosides which are the most abundant flavonoids. Moreover, these compounds are considered a chemotaxonomic characteristic of OFI species. The aim of this study was to evaluate the effect of OFI extract and its isorhamnetin glycosides on different inflammatory markers in vitro and in vivo. OFI extract was obtained by alkaline hydrolysis of OFI cladodes powder and pure compounds were obtained by preparative chromatography. Nitric oxide (NO), cyclooxygenase-2 (COX-2), tumor necrosis factor- (TNF-) α, and interleukin- (IL-) 6 production were measured. NO production was tested in lipopolysaccharide-stimulated RAW 264.7 cells while in vivo studies were carried on croton oil-induced ear edema model. OFI extract and diglycoside isorhamnetin-glucosyl-rhamnoside (IGR) at 125 ng/mL suppressed the NO production in vitro (73.5 ± 4.8% and 68.7 ± 5.0%, resp.) without affecting cell viability. Likewise, IGR inhibited the ear edema (77.4 ± 5.7%) equating the indomethacin effects (69.5 ± 5.3%). Both IGR and OFI extract significantly inhibited the COX-2, TNF-α, and IL-6 production. IGR seems to be a suitable natural compound for development of new anti-inflammatory ingredient. PMID:25821823

  10. Effects of verbascoside, a phenylpropanoid glycoside from lemon verbena, on phospholipid model membranes.

    PubMed

    Funes, Lorena; Laporta, Olga; Cerdán-Calero, Manuela; Micol, Vicente

    2010-02-01

    Phenylpropanoid glycosides are water-soluble compounds widely distributed, most of them deriving from medicinal herbs. Among them, verbascoside or acteoside has exhibited a wide biological activity, being free radical scavenging the most representative one. Moreover, antitumor, antimicrobial, anti-inflammatory, anti-thrombotic and wound healing properties have been previously described. Herein, the interaction of verbascoside with phospholipid membranes has been studied by means of differential scanning calorimetry, fluorescence anisotropy and dynamic light scattering. Verbascoside showed stronger affinity for negatively charged membranes composed of phosphatidylglycerol (PG) than for phosphatidylcholine (PC) membranes. This compound promoted phase separation of lipid domains in PC membranes and formed a stable lipid complex with and approximate phospholipid/verbascoside ratio of 4:1. Despite its hydrophilic character, verbascoside's caffeoyl moiety was located deep into the hydrophobic core of PC membranes and was almost inaccessible to spin probes located at different depths in PG membranes. This compound affected the ionization behavior of the PG phosphate group and most likely interacted with the vesicles surface. The presence of verbascoside decreased the particle size in PG unilamellar vesicles through the increase of the phospholipid head group area. A localization of verbascoside filling the upper region of PG bilayers close to the phospholipid/water interface is proposed. These effects on membranes may help to understand the mechanism of the biological activity of verbascoside and other similar phenylpropanoid glycosides. PMID:19925782

  11. Antiproliferative Activity of Triterpene Glycoside Nutrient from Monk Fruit in Colorectal Cancer and Throat Cancer

    PubMed Central

    Liu, Can; Dai, Longhai; Liu, Yueping; Rong, Long; Dou, Dequan; Sun, Yuanxia; Ma, Lanqing

    2016-01-01

    Colorectal cancer and throat cancer are the world’s most prevalent neoplastic diseases, and a serious threat to human health. Plant triterpene glycosides have demonstrated antitumor activity. In this study, we investigated potential anticancer effects of mogroside IVe, a triterpenoid glycoside from monk fruit, using in vitro and in vivo models of colorectal and laryngeal cancer. The effects of mogroside IVe on the proliferation of colorectal cancer HT29 cells and throat cancer Hep-2 cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the expression levels of p53, phosphorylated ERK1/2, and MMP-9 were analyzed by western blotting and immunohistochemistry. The results indicated that mogroside IVe inhibited, in a dose-dependent manner, the proliferation of HT29 and Hep-2 cells in culture and in xenografted mice, which was accompanied by the upregulation of tumor suppressor p53, and downregulation of matrix metallopeptidase 9 (MMP-9) and phosphorylated extracellular signal-regulated kinases (ERK)1/2. This study revealed the suppressive activity of mogroside IVe towards colorectal and throat cancers and identified the underlying mechanisms, suggesting that mogroside IVe may be potentially used as a biologically-active phytochemical supplement for treating colorectal and throat cancers. PMID:27304964

  12. Free and glycosidically bound aroma compounds in cherry (Prunus avium L.).

    PubMed

    Wen, Ya-Qin; He, Fei; Zhu, Bao-Qing; Lan, Yi-Bin; Pan, Qiu-Hong; Li, Chun-You; Reeves, Malcolm J; Wang, Jun

    2014-01-01

    This paper reports the occurrence of both free and glycosidically bound aroma compounds in three sweet cherry cultivars ('Hongdeng', 'Hongyan' and 'Rainier'), with 97 compounds being identified in the three cultivars. The major free volatile compounds found were hexanal, (E)-2-hexenal, (E)-2-hexen-1-ol, benzyl alcohol and benzaldehyde. The major bound volatile compounds found were benzyl alcohol, geraniol, 2-phenylethanol. Also 4-vinylphenol was found in cherry fruit for the first time, and has a relatively high concentration of the glycosidically-bound form in 'Rainier'. Odour activity values (OAVs) were determined for both free and bound volatiles, with 18 compounds having an OAV above 1. The highest OAVs for three cultivars were (E)-β-ionone, hexanal, decanal and (E)-2-hexenal with the highest being over 800 for (E)-β-ionone in 'Honyang'. From these results, it was concluded that the aroma compounds present were similar in all three cultivars, but there was significant variation found in their levels and hence contribution to the aroma of these cultivars. PMID:24444903

  13. Production of oleanolic acid glycosides by hairy root established cultures of Calendula officinalis L.

    PubMed

    Długosz, Marek; Wiktorowska, Ewa; Wiśniewska, Anita; Pączkowski, Cezary

    2013-01-01

    In order to initiate hairy root culture initiation cotyledons and hypocotyls of Calendula officinalis L. were infected with Agrobacterium rhizogenes strain ATCC 15834 or the same strain containing pCAMBIA 1381Z vector with β-glucuronidase reporter gene under control of promoter of NIK (Nematode Induced Kinase) gene. The efficiency of induction of hairy roots reached 33.8% for cotyledons and 66.6% for hypocotyls together for both transformation experiments. Finally, eight control and nine modified lines were established as a long-term culture. The hairy root cultures showed the ability to synthesize oleanolic acid mainly (97%) as glycosides; control lines contained it at the average 8.42 mg · g(-1) dry weight in tissue and 0.23 mg · dm(-3) in medium; modified lines: 4.59 mg · g(-1) for the tissue, and 0.48 mg · dm(-3) for the medium. Additionally lines showed high positive correlation between dry/fresh weight and oleanolic acid concentration in tissue. Using the Killiani mixture in acidic hydrolysis of oleanolic acid glycosides released free aglycones that were partially acetylated in such conditions. PMID:24040627

  14. Comparative Analysis of Glycoside Hydrolases Activities from Phylogenetically Diverse Marine Bacteria of the Genus Arenibacter

    PubMed Central

    Bakunina, Irina; Nedashkovskaya, Olga; Balabanova, Larissa; Zvyagintseva, Tatyana; Rasskasov, Valery; Mikhailov, Valery

    2013-01-01

    A total of 16 marine strains belonging to the genus Arenibacter, recovered from diverse microbial communities associated with various marine habitats and collected from different locations, were evaluated in degradation of natural polysaccharides and chromogenic glycosides. Most strains were affiliated with five recognized species, and some presented three new species within the genus Arenibacter. No strains contained enzymes depolymerizing polysaccharides, but synthesized a wide spectrum of glycosidases. Highly active β-N-acetylglucosaminidases and α-N-acetylgalactosaminidases were the main glycosidases for all Arenibacter. The genes, encoding two new members of glycoside hydrolyses (GH) families, 20 and 109, were isolated and characterized from the genomes of Arenibacter latericius. Molecular genetic analysis using glycosidase-specific primers shows the absence of GH27 and GH36 genes. A sequence comparison with functionally-characterized GH20 and GH109 enzymes shows that both sequences are closest to the enzymes of chitinolytic bacteria Vibrio furnissii and Cellulomonas fimi of marine and terrestrial origin, as well as human pathogen Elisabethkingia meningoseptica and simbionts Akkermansia muciniphila, gut and non-gut Bacteroides, respectively. These results revealed that the genus Arenibacter is a highly taxonomic diverse group of microorganisms, which can participate in degradation of natural polymers in marine environments depending on their niche and habitat adaptations. They are new prospective candidates for biotechnological applications due to their production of unique glycosidases. PMID:23752354

  15. [Inhibition of adherence of Corynebacterium diphtheriae to human buccal epithelium by glycoside hydrolases from marine hydrobiontes].

    PubMed

    Zaporozhets, T S; Makarenkova, I D; Bakunina, I Iu; Burtseva, Iu V; Kusaĭkin, M I; Balabanova, L A; Zviagintseva, T N; Besednova, N N; Rasskazov, V A

    2010-01-01

    A possibility of adhesion inhibition of Corynebacterium diphtheriae to human buccal epithelium by glycoside hydrolases of marine hydrobiontes was investigated using alpha-galactosidase from marine bacterium Pseudoalteromonas sp. KMM 701, total enzyme preparation and beta-1,3-glucanase from marine fungi Chaetomium, total enzyme preparation and beta-1,3-glucanase from marine mollusk Littorina kurila, and total enzyme preparation from crystalline style of marine mollusk Spisula sachalinensis were used. The enzymes were added to test-tubes containing buccal epithelial cells and/or the toxigenic bacterial strain C. diphtheriae No 1129, v. gravis. All the investigated enzymes were able to abort C. diphtheriae adherence, to human buccal epithelocytes. Inhibition of adhesion was more pronounced in the case of treatment of epithelocytes with highly purified enzymes of marine hydrobiontes in comparison with total enzyme preparations. The significant inhibition of C. diphtheriae adhesion was observed when the enzymes were added to the epithelocytes with the attached microorganisms. The results obtained show that glycoside hydrolases of marine hydrobiontes degrade any carbohydrates expressed on cell surface of bacterium or human buccal epithelocytes, impair unique lectin-carbohydrate interaction and prevent the adhesion. PMID:20695214

  16. Development of a High Throughput Platform for Screening Glycoside Hydrolases Based on Oxime-NIMS

    PubMed Central

    Deng, Kai; Guenther, Joel M.; Gao, Jian; Bowen, Benjamin P.; Tran, Huu; Reyes-Ortiz, Vimalier; Cheng, Xiaoliang; Sathitsuksanoh, Noppadon; Heins, Richard; Takasuka, Taichi E.; Bergeman, Lai F.; Geertz-Hansen, Henrik; Deutsch, Samuel; Loqué, Dominique; Sale, Kenneth L.; Simmons, Blake A.; Adams, Paul D.; Singh, Anup K.; Fox, Brian G.; Northen, Trent R.

    2015-01-01

    Cost-effective hydrolysis of biomass into sugars for biofuel production requires high-performance low-cost glycoside hydrolase (GH) cocktails that are active under demanding process conditions. Improving the performance of GH cocktails depends on knowledge of many critical parameters, including individual enzyme stabilities, optimal reaction conditions, kinetics, and specificity of reaction. With this information, rate- and/or yield-limiting reactions can be potentially improved through substitution, synergistic complementation, or protein engineering. Given the wide range of substrates and methods used for GH characterization, it is difficult to compare results across a myriad of approaches to identify high performance and synergistic combinations of enzymes. Here, we describe a platform for systematic screening of GH activities using automatic biomass handling, bioconjugate chemistry, robotic liquid handling, and nanostructure-initiator mass spectrometry (NIMS). Twelve well-characterized substrates spanning the types of glycosidic linkages found in plant cell walls are included in the experimental workflow. To test the application of this platform and substrate panel, we studied the reactivity of three engineered cellulases and their synergy of combination across a range of reaction conditions and enzyme concentrations. We anticipate that large-scale screening using the standardized platform and substrates will generate critical datasets to enable direct comparison of enzyme activities for cocktail design. PMID:26528471

  17. Differential Recognition and Hydrolysis of Host Carbohydrate Antigens by Streptococcus pneumoniae Family 98 Glycoside Hydrolases

    SciTech Connect

    Higgins, M.; Whitworth, G; El Warry, N; Randriantsoa, M; Samain, E; Burke, R; Vocadlo, D; Boraston, A

    2009-01-01

    The presence of a fucose utilization operon in the Streptococcus pneumoniae genome and its established importance in virulence indicates a reliance of this bacterium on the harvesting of host fucose-containing glycans. The identities of these glycans, however, and how they are harvested is presently unknown. The biochemical and high resolution x-ray crystallographic analysis of two family 98 glycoside hydrolases (GH98s) from distinctive forms of the fucose utilization operon that originate from different S. pneumoniae strains reveal that one enzyme, the predominant type among pneumococcal isolates, has a unique endo-{beta}-galactosidase activity on the LewisY antigen. Altered active site topography in the other species of GH98 enzyme tune its endo-{beta}-galactosidase activity to the blood group A and B antigens. Despite their different specificities, these enzymes, and by extension all family 98 glycoside hydrolases, use an inverting catalytic mechanism. Many bacterial and viral pathogens exploit host carbohydrate antigens for adherence as a precursor to colonization or infection. However, this is the first evidence of bacterial endoglycosidase enzymes that are known to play a role in virulence and are specific for distinct host carbohydrate antigens. The strain-specific distribution of two distinct types of GH98 enzymes further suggests that S. pneumoniae strains may specialize to exploit host-specific antigens that vary from host to host, a factor that may feature in whether a strain is capable of colonizing a host or establishing an invasive infection.

  18. Response surface methodology to optimise Accelerated Solvent Extraction of steviol glycosides from Stevia rebaudiana Bertoni leaves.

    PubMed

    Jentzer, Jean-Baptiste; Alignan, Marion; Vaca-Garcia, Carlos; Rigal, Luc; Vilarem, Gérard

    2015-01-01

    Following the approval of steviol glycosides as a food additive in Europe in December 2011, large-scale stevia cultivation will have to be developed within the EU. Thus there is a need to increase the efficiency of stevia evaluation through germplasm enhancement and agronomic improvement programs. To address the need for faster and reproducible sample throughput, conditions for automated extraction of dried stevia leaves using Accelerated Solvent Extraction were optimised. A response surface methodology was used to investigate the influence of three factors: extraction temperature, static time and cycle number on the stevioside and rebaudioside A extraction yields. The model showed that all the factors had an individual influence on the yield. Optimum extraction conditions were set at 100 °C, 4 min and 1 cycle, which yielded 91.8% ± 3.4% of total extractable steviol glycosides analysed. An additional optimisation was achieved by reducing the grind size of the leaves giving a final yield of 100.8% ± 3.3%. PMID:25053094

  19. Salicylic Acid Treatment Increases the Levels of Triterpene Glycosides in Black Cohosh (Actaea Racemosa) Rhizomes.

    PubMed

    De Capite, Annette; Lancaster, Tyler; Puthoff, David

    2016-01-01

    Black cohosh (Actaea racemosa) serves as the host plant for the Appalachian azure butterfly, Celastrina neglectamajor. Overharvesting of Black cohosh for the dietary supplement industry may result in its extirpation, and may also cause the elimination of the dependent butterfly. One way to increase or maintain the number of host plants in forested environments would be to reduce the number harvested, for example by increasing the levels of the desired metabolites in Black cohosh rhizomes. The secondary metabolites actein and deoxyactein are triterpene glycosides and are among the compounds associated with the putative activity of Black cohosh extracts. Acetein and deoxyacetein are used to standardize Black cohosh supplements. To gain an understanding of mechanisms that may control actein and deoxyactein accumulation, Black cohosh rhizomes were treated with exogenous salicylic acid, jasmonic acid, or ethylene, or were mechanically wounded. Salicylic acid treatment significantly increased the levels of actein and deoxyactein in the rhizome of Black cohosh, suggesting that the synthesis of triterpene glycosides is controlled in part by salicylic acid. Using salicylic acid or related chemicals to increase the levels of actein and deoxyactein in rhizomes may help supply the supplement industry and, simultaneously, help conserve Black cohosh and species dependent upon it. PMID:26634573

  20. Flavonoid Glycosides and Their Derivatives from the Herbs of Scorzonera austriaca Wild.

    PubMed

    Xie, Yang; Guo, Qiu-Shi; Wang, Guang-Shu

    2016-01-01

    Five flavonoid glycosides and two derivatives were isolated from the herbs of Scorzonera austriaca Wild by silica gel column chromatography and preparative HPLC. Their structures were identified, using chemical and spectroscopic methods, as 5,7,4'-trihydroxyflavone 6-C-(2''-O-β-d-glucopyranosyl β-d-glucopyranoside) (1), 5,7,3',4'-tetrahydroxyflavone 6-C-(2''-O-β-d-glucopyranosyl β-d-glucopyranoside) (2), quercetin 3-O-rutinoside (3), 5,7,4'-trihydroxyflavone 6-C-β-d-glucopyranoside (4), 3'-methoxy-5,7,4'-trihydroxyflavone 6-C-β-d-glucopyranoside (5), 5,7,4'-trihydroxyflavone 8-C-(6''-O-trans-caffeoyl β-d-glucopyranoside) (6), and 5,7,3',4'-tetrahydroxyflavone 8-C-(6''-O-trans-caffeoyl β-d-glucopyranoside) (7). Compounds 6 and 7 are new flavonoid glycoside derivatives, and compounds 1-5 were isolated from the herbs of Scorzonera austriaca for the first time. Compounds 6 and 7 were also assayed for their hepatoprotective activities with rat hepatocytes in vitro. PMID:27338324