Science.gov

Sample records for peony glycosides reverses

  1. Reverse transcriptase domain sequences from tree peony (Paeonia suffruticosa) long terminal repeat retrotransposons: sequence characterization and phylogenetic analysis

    PubMed Central

    Guo, Da-Long; Hou, Xiao-Gai; Jia, Tian

    2014-01-01

    Tree peony is an important horticultural plant worldwide of great ornamental and medicinal value. Long terminal repeat retrotransposons (LTR-retrotransposons) are the major components of most plant genomes and can substantially impact the genome in many ways. It is therefore crucial to understand their sequence characteristics, genetic distribution and transcriptional activity; however, no information about them is available in tree peony. Ty1-copia-like reverse transcriptase sequences were amplified from tree peony genomic DNA by polymerase chain reaction (PCR) with degenerate oligonucleotide primers corresponding to highly conserved domains of the Ty1-copia-like retrotransposons in this study. PCR fragments of roughly 270 bp were isolated and cloned, and 33 sequences were obtained. According to alignment and phylogenetic analysis, all sequences were divided into six families. The observed difference in the degree of nucleotide sequence similarity is an indication for high level of sequence heterogeneity among these clones. Most of these sequences have a frame shift, a stop codon, or both. Dot-blot analysis revealed distribution of these sequences in all the studied tree peony species. However, different hybridization signals were detected among them, which is in agreement with previous systematics studies. Reverse transcriptase PCR (RT-PCR) indicated that Ty1-copia retrotransposons in tree peony were transcriptionally inactive. The results provide basic genetic and evolutionary information of tree peony genome, and will provide valuable information for the further utilization of retrotransposons in tree peony. PMID:26019529

  2. Flavonoid composition and antioxidant activity of tree peony (Paeonia section moutan) yellow flowers.

    PubMed

    Li, Chonghui; Du, Hui; Wang, Liangsheng; Shu, Qingyan; Zheng, Yuanrun; Xu, Yanjun; Zhang, Jingjing; Zhang, Jie; Yang, Ruizhen; Ge, Yuxuan

    2009-09-23

    Tree peony flowers are edible and traditional Chinese medicine materials. In the present study, 26 flavonoids were identified and quantified in yellow flowers of tree peony by high-performance liquid chromatography with diode array detector (HPLC-DAD) and by HPLC-electrospray ionization-mass spectrometry (HPLC-ESI-MS). Seventeen of them were first reported in flowers of tree peony, and glycosides of kaempferol, luteolin, and apigenin as well as isosalipurposide were the main flavonoids investigated. Furthermore, the petal extracts showed high antioxidant activity according to DPPH*, ABTS*(+), and OH* scavenging assays and ferric reducing antioxidant power assay. There were significant correlations between antioxidant activity and both the total polyphenol content (determined by Folin-Ciocalteu method) and the total content of quercetin, kaempferol, and luteolin glycosides. This work is valuable for elucidation of phenolic composition in tree peony flowers and for further utilization of them as functional food and medicine materials. PMID:19711909

  3. Microsatellite marker development in peony using next generation sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peonies (Paeonia), the grand garden perennial of spring and early summer, are economically important to the international cut flower market. Herbaceous peonies (Paeonia section Paeonia), tree peonies (Paeonia section Moutan), and intersectional crosses between the two types (Itoh Paeonia hybrids) ...

  4. Diversity of arthropod pests from high latitude peony production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peony (Paeonia spp.) is a fairly new crop to Alaska. Alaska has a late season with peony harvests into July-August when peony flowers are not readily available on the world markets. The University of Alaska Fairbanks has developed a production package to include variety performance, panting time, ha...

  5. 'Peony Nebula' Star Settles for Silver Medal

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Poster Version Movie

    If our galaxy, the Milky Way, were to host its own version of the Olympics, the title for the brightest known star would go to a massive star called Eta Carina. However, a new runner-up now the second-brightest star in our galaxy has been discovered in the galaxy's dusty and frenzied interior. This image from NASA's Spitzer Space Telescope shows the new silver medalist, circled in the inset above, in the central region of our Milky Way.

    Dubbed the 'Peony nebula' star, this blazing ball of gas shines with the equivalent light of 3.2 million suns. The reigning champ, Eta Carina, produces the equivalent of 4.7 million suns worth of light though astronomers say these estimates are uncertain, and it's possible that the Peony nebula star could be even brighter than Eta Carina.

    If the Peony star is so bright, why doesn't it stand out more in this view? The answer is dust. This star is located in a very dusty region jam packed with stars. In fact, there could be other super bright stars still hidden deep in the stellar crowd. Spitzer's infrared eyes allowed it to pierce the dust and assess the Peony nebula star's true brightness. Likewise, infrared data from the European Southern Observatory's New Technology Telescope in Chile were integral in calculating the Peony nebula star's luminosity.

    The Peony nebula, which surrounds the Peony nebular star, is the reddish cloud of dust in and around the white circle.

    The movie begins by showing a stretch of the dusty and frenzied central region of our Milky Way galaxy. It then zooms in to reveal the 'Peony nebula' star the new second-brightest star in the Milky Way, discovered in part by NASA's Spitzer Space Telescope.

    This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array camera. Red is 24-micron light detected by Spitzer's multiband imaging photometer.

  6. Preparation and chromatographic evaluation of a newly designed steviol glycoside modified-silica stationary phase in hydrophilic interaction liquid chromatography and reversed phase liquid chromatography.

    PubMed

    Liang, Tu; Fu, Qing; Shen, Aijin; Wang, Hui; Jin, Yu; Xin, Huaxia; Ke, Yanxiong; Guo, Zhimou; Liang, Xinmiao

    2015-04-01

    A diterpene glycoside compound, rebaudioside A (commonly abbreviated as RA), was immobilized onto porous silica surface through "thiol-ene" click chemistry strategy. The successful immobilization of the RA on the silica support was confirmed by FT-IR and elemental analysis. Chromatographic characteristics of the new stationary phase, named Click TE-RA, were evaluated by a set of diverse analytes such as carbohydrates, nucleosides, and organic acids in hydrophilic interaction liquid chromatography (HILIC) mode. The effects of water content, buffer pH and concentration were investigated and a typical HILIC retention feature of Click TE-RA was observed at high organic modifier content. The Click TE-RA stationary phase was further studied by a series of glycoside compounds. Tunable retention mechanisms from hydrophilic to hydrophobic interactions were observed. Separation of very polar compounds including oligosaccharides, nucleic acid bases and nucleosides using Click TE-RA in HILIC mode was successfully accomplished. In addition, separation of saponins both in HILIC and reversed-phase liquid chromatography (RPLC) modes was performed, demonstrating the presence of orthogonality between two different modes on Click TE-RA column. The multiple interactions induced by polar sugar group and hydrophobic aglycone group allowed this Click TE-RA to serve as a multi-mode stationary phase in two-dimensional liquid chromatography. PMID:25725956

  7. Transcriptome Comparison Reveals Key Candidate Genes Responsible for the Unusual Reblooming Trait in Tree Peonies

    PubMed Central

    Zhou, Hua; Cheng, Fang-Yun; Wang, Rong; Zhong, Yuan; He, Chaoying

    2013-01-01

    Tree peonies are important ornamental plants worldwide, but growing them can be frustrating due to their short and concentrated flowering period. Certain cultivars exhibit a reblooming trait that provides a valuable alternative for extending the flowering period. However, the genetic control of reblooming in tree peonies is not well understood. In this study, we compared the molecular properties and morphology of reblooming and non-reblooming tree peonies during the floral initiation and developmental processes. Using transcriptome sequencing technology, we generated 59,275 and 63,962 unigenes with a mean size of 698 bp and 699 bp from the two types of tree peonies, respectively, and identified eight differentially expressed genes that are involved in the floral pathways of Arabidopsis thaliana. These differentially regulated genes were verified through a detailed analysis of their expression pattern during the floral process by real time RT-PCR. From this combined analysis, we identified four genes, PsFT, PsVIN3, PsCO and PsGA20OX, which likely play important roles in the regulation of the reblooming process in tree peonies. These data constitute a valuable resource for the discovery of genes involved in flowering time and insights into the molecular mechanism of flowering to further accelerate the breeding of tree peonies and other perennial woody plants. PMID:24244590

  8. Identification of heat shock proteins via transcriptome profiling of tree peony leaf exposed to high temperature.

    PubMed

    Zhang, Y Z; Cheng, Y W; Ya, H Y; Han, J M; Zheng, L

    2015-01-01

    The tree peony leaf is an important vegetative organ that is sensitive to abiotic stress and particularly to high temperature. This sensitivity affects plant growth and restricts tree peony distribution. However, the transcriptomic information currently available on the peony leaf in public databases is limited. In this study, we sequenced the transcriptomes of peony leaves subjected to high temperature using the Illumina HiSeq TM 2000 platform. We performed de novo assembly of 93,714 unigenes (average length of 639.7 bp). By searching the public databases, 22,323 unigenes and 13,107 unigenes showed significant similarities with proteins in the NCBI non-redundant protein database and SWISS-PROT database (E-value < 1e-5), respectively. We assigned 17,340 unigenes to Gene Ontology categories, and we assigned 7618 unigenes to clusters of orthologous groups for eukaryotic complete genomes. By searching the Kyoto Encyclopedia of Genes and Genomes Pathway database, 8014 unigenes were assigned to 6 main categories, including 290 KEGG pathways. To advance research on improving thermotolerance, we identified 24 potential heat shock protein genes with complete open reading frames from the transcriptomic sequences. This is the first study to characterize the leaf transcriptome of tree peony leaf using high-throughput sequencing. The information obtained from the tree peony leaf is valuable for gene discovery, and the identified heat shock protein genes can be used to improve plant stress-tolerance. PMID:26345770

  9. 75 FR 65648 - Notice of Proposed Withdrawal Extension and Opportunity for Public Meeting for the Peony, Pole...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... Secretary of the Interior for Land and Minerals Management extend PLO No. 6952 (57 FR 53587 (1992)), which... the Peony, Pole Pick, and Frank Burge Seed Orchards; Washington AGENCY: Bureau of Land Management... and functionality of the seed orchards, along with the investment of Federal funds at the Peony,...

  10. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes

    PubMed Central

    Zhang, Yanzhao; Cheng, Yanwei; Ya, Huiyuan; Xu, Shuzhen; Han, Jianming

    2015-01-01

    The pigmented cells in defined region of a petal constitute the petal spots. Petal spots attract pollinators and are found in many angiosperm families. Several cultivars of tree peony contain a single red or purple spot at the base of petal that makes the flower more attractive for the ornamental market. So far, the understanding of the molecular mechanism of spot formation is inadequate. In this study, we sequenced the transcriptome of the purple spot and the white non-spot of tree peony flower. We assembled and annotated 67,892 unigenes. Comparative analyses of the two transcriptomes showed 1,573 differentially expressed genes, among which 933 were up-regulated, and 640 were down-regulated in the purple spot. Subsequently, we examined four anthocyanin structural genes, including PsCHS, PsF3?H, PsDFR, and PsANS, which expressed at a significantly higher level in the purple spot than in the white non-spot. We further validated the digital expression data using quantitative real-time PCR. Our result uncovered transcriptome variance between the spot and non-spot of tree peony flower, and revealed that the co-expression of four anthocyanin structural genes was responsible for spot pigment in tree peony. The data will further help to unravel the genetic mechanism of peony flower spot formation. PMID:26583029

  11. Determination of eight artificial sweeteners and common Stevia rebaudiana glycosides in non-alcoholic and alcoholic beverages by reversed-phase liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Kubica, Pawe?; Namie?nik, Jacek; Wasik, Andrzej

    2015-02-01

    The method for the determination of acesulfame-K, saccharine, cyclamate, aspartame, sucralose, alitame, neohesperidin dihydrochalcone, neotame and five common steviol glycosides (rebaudioside A, rebaudioside C, steviol, steviolbioside and stevioside) in soft and alcoholic beverages was developed using high-performance liquid chromatography and tandem mass spectrometry with electrospray ionisation (HPLC-ESI-MS/MS). To the best of our knowledge, this is the first work that presents an HPLC-ESI-MS/MS method which allows for the simultaneous determination of all EU-authorised high-potency sweeteners (thaumatin being the only exception) in one analytical run. The minimalistic sample preparation procedure consisted of only two operations; dilution and centrifugation. Linearity, limits of detection and quantitation, repeatability, and trueness of the method were evaluated. The obtained recoveries at three tested concentration levels varied from 97.0 to 105.7%, with relative standard deviations lower than 4.1%. The proposed method was successfully applied for the determination of sweeteners in 24 samples of different soft and alcoholic drinks. PMID:25471292

  12. Facile synthesis of three-dimensional hierarchical Co3O4 peony-like microspheres and their lithium storage performance

    NASA Astrophysics Data System (ADS)

    Che, Hongwei; Liu, Aifeng; Liang, Shunxing; Zhang, Xiaoliang; Mu, Jingbo; Bai, Yongmei; Hou, Junxian

    2015-07-01

    Three-dimensional hierarchical Co3O4 peony-like microspheres have been successfully synthesized via a facile ethylene glycol mediated solvothermal method combined with a subsequent calcination. The as-prepared peony-like microspheres are assembled by many intercrossed nanosheets with a thickness of 30 nm. The reaction conditions such as the amount of hexadecyl trimethyl ammonium bromide and sodium acetate as well as the solvothermal time are investigated to explore the effects on the morphology of the final Co3O4 products. According to these experiment results, a possible formation mechanism of the peony-like microspheres is proposed. Furthermore, when evaluated as anode materials for lithium storage, the Co3O4 peony-like microspheres exhibit high lithium storage capacity and good cycling performance, having a discharge capacity of 975 mA h g-1 at 100 mAg-1 after 50 cycles.

  13. Anticancer activity of sea cucumber triterpene glycosides.

    PubMed

    Aminin, Dmitry L; Menchinskaya, Ekaterina S; Pisliagin, Evgeny A; Silchenko, Alexandra S; Avilov, Sergey A; Kalinin, Vladimir I

    2015-03-01

    Triterpene glycosides are characteristic secondary metabolites of sea cucumbers (Holothurioidea, Echinodermata). They have hemolytic, cytotoxic, antifungal, and other biological activities caused by membranotropic action. These natural products suppress the proliferation of various human tumor cell lines in vitro and, more importantly, intraperitoneal administration in rodents of solutions of some sea cucumber triterpene glycosides significantly reduces both tumor burden and metastasis. The anticancer molecular mechanisms include the induction of tumor cell apoptosis through the activation of intracellular caspase cell death pathways, arrest of the cell cycle at S or G2/M phases, influence on nuclear factors, NF-?B, and up-down regulation of certain cellular receptors and enzymes participating in cancerogenesis, such as EGFR (epidermal growth factor receptor), Akt (protein kinase B), ERK (extracellular signal-regulated kinases), FAK (focal adhesion kinase), MMP-9 (matrix metalloproteinase-9) and others. Administration of some glycosides leads to a reduction of cancer cell adhesion, suppression of cell migration and tube formation in those cells, suppression of angiogenesis, inhibition of cell proliferation, colony formation and tumor invasion. As a result, marked growth inhibition of tumors occurs in vitro and in vivo. Some holothurian triterpene glycosides have the potential to be used as P-gp mediated MDR reversal agents in combined therapy with standard cytostatics. PMID:25756523

  14. Anticancer Activity of Sea Cucumber Triterpene Glycosides

    PubMed Central

    Aminin, Dmitry L.; Menchinskaya, Ekaterina S.; Pisliagin, Evgeny A.; Silchenko, Alexandra S.; Avilov, Sergey A.; Kalinin, Vladimir I.

    2015-01-01

    Triterpene glycosides are characteristic secondary metabolites of sea cucumbers (Holothurioidea, Echinodermata). They have hemolytic, cytotoxic, antifungal, and other biological activities caused by membranotropic action. These natural products suppress the proliferation of various human tumor cell lines in vitro and, more importantly, intraperitoneal administration in rodents of solutions of some sea cucumber triterpene glycosides significantly reduces both tumor burden and metastasis. The anticancer molecular mechanisms include the induction of tumor cell apoptosis through the activation of intracellular caspase cell death pathways, arrest of the cell cycle at S or G2/M phases, influence on nuclear factors, NF-?B, and up-down regulation of certain cellular receptors and enzymes participating in cancerogenesis, such as EGFR (epidermal growth factor receptor), Akt (protein kinase B), ERK (extracellular signal-regulated kinases), FAK (focal adhesion kinase), MMP-9 (matrix metalloproteinase-9) and others. Administration of some glycosides leads to a reduction of cancer cell adhesion, suppression of cell migration and tube formation in those cells, suppression of angiogenesis, inhibition of cell proliferation, colony formation and tumor invasion. As a result, marked growth inhibition of tumors occurs in vitro and in vivo. Some holothurian triterpene glycosides have the potential to be used as P-gp mediated MDR reversal agents in combined therapy with standard cytostatics. PMID:25756523

  15. Variants of glycoside hydrolases

    DOEpatents

    Teter, Sarah; Ward, Connie; Cherry, Joel; Jones, Aubrey; Harris, Paul; Yi, Jung

    2013-02-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  16. Variants of glycoside hydrolases

    DOEpatents

    Teter, Sarah (Davis, CA); Ward, Connie (Hamilton, MT); Cherry, Joel (Davis, CA); Jones, Aubrey (Davis, CA); Harris, Paul (Carnation, WA); Yi, Jung (Sacramento, CA)

    2011-04-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  17. Not only dopamine D2 receptors involved in Peony-Glycyrrhiza Decoction, an herbal preparation against antipsychotic-associated hyperprolactinemia.

    PubMed

    Wang, Di; Wong, Hei Kiu; Zhang, Li; McAlonan, Grainne M; Wang, Xiao-Min; Sze, Stephen Cho Wing; Feng, Yi-Bin; Zhang, Zhang-Jin

    2012-12-01

    Clinical studies have demonstrated the effectiveness of an herbal preparation called Peony-Glycyrrhiza Decoction (PGD) in alleviating antipsychotic-induced hyperprolactinemia (hyperPRL). In the present study, we further examined the pharmacological action of PGD on prolactin (PRL) secretion using in vitro and in vivo models, with specific attention to the role of dopaminergic mediators and other sex hormones. Treatment with PGD at 1-5mg/ml significantly suppressed PRL secretion and synthesis in MMQ cells, a model of hyperPRL derived from pituitary adenoma cells. The suppressive effects were completely abolished by pretreatment with 10?M haloperidol, a dopamine D(2) receptor antagonist. Consistent with a D(2)-action, PGD did not affect PRL in rat pituitary lactotropic tumor-derived GH3 cells that lack the D(2) receptor expression but significantly increased the expression of D(2) receptors and dopamine transporters (DAT) in PC12 cells. In a rat model of hyperPRL, produced by repeated injection of the dopamine blocker metoclopramide (MCP), chronic PGD (2.5-10g/kg daily) significantly reduced elevated serum PRL. The reduction in magnitude was similar to that elicited by bromocriptine (BMT), a dopamine D(2) receptor agonist currently used for treatment of hyperPRL. Neither PGD nor BMT altered serum estradiol, but PGD reversed decreased serum progesterone to control level, whereas BMT did not. These results indicate that the anti-hyperPRL effects of PGD are associated not only with D(2) receptor and DAT modulation, but also with a normalization of other sex hormone dysfunction. This experimental evidence supports clinical use of PGD as an effective treatment of antipsychotic-induced hyperPRL. PMID:22796279

  18. Glycoside vs. Aglycon: The Role of Glycosidic Residue in Biological Activity

    NASA Astrophysics Data System (ADS)

    K?en, Vladimír

    A large number of biologically active compounds are glycosides. Sometimes the glycosidic residue is crucial for their activity, in other cases glycosylation only improves pharmacokinetic parameters. Recent developments in molecular glycobiology brought better understanding of aglycon vs. glycoside activities, and made possible the development of new, more active or more effective glycodrugs based on these findings - a very illustrative recent example is vancomycin. The new enzymatic methodology "glycorandomization" enabled preparation of glycoside libraries and opened up paths to the preparation of optimized or entirely novel glycoside antibiotics. This chapter deals with an array of glycosidic compounds currently used in medicine but also covers the biological activity of some glycosidic metabolites of known drugs. The chapter discusses glycosides of vitamins, polyphenolic glycosides (flavonoids), alkaloid glycosides, glycosides of antibiotics, glycopeptides, cardiac glycosides, steroid and terpenoid glycosides etc. The physiological role of the glycosyl moiety and structure-activity relations (SAR) in the glycosidic moiety (-ies) are also discussed.

  19. Total glucosides of peony attenuates experimental autoimmune encephalomyelitis in C57BL/6 mice.

    PubMed

    Huang, Qiling; Ma, Xiaomeng; Zhu, Dong Liang; Chen, Li; Jiang, Ying; Zhou, Linli; Cen, Lei; Pi, Rongbiao; Chen, Xiaohong

    2015-07-15

    Total glucosides of peony (TGP), an active compound extracted from the roots of Paeonia lactiflora Pall, has wide pharmacological effects on nervous system. Here we examined the effects of TGP on experimental autoimmune encephalomyelitis (EAE), an established model of multiple sclerosis (MS). The results showed that TGP can reduce the severity and progression of EAE in C57 BL/6 mice. In addition, TGP also down-regulated the Th1/Th17 inflammatory response and prevented the reduced expression of brain-derived neurotrophic factor and 2',3'-cyclic nucleotide 3'-phosphodiesterase of EAE. These findings suggest that TGP could be a potential therapeutic agent for MS. PMID:26025060

  20. Synthesis and Photochromic Properties of Configurationally Varied Azobenzene Glycosides

    PubMed Central

    Chandrasekaran, Vijayanand; Johannes, Eugen; Kobarg, Hauke; Sönnichsen, Frank D; Lindhorst, Thisbe K

    2014-01-01

    Spatial orientation of carbohydrates is a meaningful parameter in carbohydrate recognition processes. To vary orientation of sugars with temporal and spatial resolution, photosensitive glycoconjugates with favorable photochromic properties appear to be opportune. Here, a series of azobenzene glycosides were synthesized, employing glycoside synthesis and Mills reaction, to allow “switching” of carbohydrate orientation by reversible E/Z isomerization of the azobenzene N=N double bond. Their photochromic properties were tested and effects of azobenzene substitution as well as the effect of anomeric configuration and the orientation of the sugars 2-hydroxy group were evaluated. PMID:25050228

  1. Evaluation of absorbed dose in irradiated sugar-containing plant material (peony roots) by an ESR method

    NASA Astrophysics Data System (ADS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2015-12-01

    The relationship between electron spin resonance (ESR) signal intensity of irradiated plant materials and sugar content was investigated by spectral analysis using peony roots. A weak background signal near g=2.005 was observed in the roots. After a 10 kGy irradiation, the ESR line broadened and the intensity increased, and the spectral characteristics were similar to a typical spectrum of irradiated food containing crystalline sugars. The free radical concentration was nearly stable 30 days after irradiation. The spectrum of peony root 30 days after irradiation was simulated using the summation of the intensities of six assumed components: radical signals derived from (a) sucrose, (b) glucose, (c) fructose, (d) cellulose, (e) the background signal near g=2.005 and (f) unidentified component. The simulated spectra using the six components were in agreement with the observed sample spectra. The intensity of sucrose radical signal in irradiated samples increased proportionally up to 20 kGy. In addition, the intensity of sucrose radical signals was strongly correlated with the sucrose contents of the samples. The results showed that the radiation sensitivity of sucrose in peony roots was influenced little by other plant constituents. There was also a good correlation between the total area of the spectra and the sucrose content, because the sucrose content was higher than that of other sugars in the samples. In peony roots, estimation of the absorbed dose from the ESR signal intensity may be possible by a calibration method based on the sucrose content.

  2. Cytotoxicity of pregnane glycosides of Cynanchum otophyllum.

    PubMed

    Zhang, Mi; Li, Xiang; Xiang, Cheng; Qin, Yi; He, Jing; Li, Bao-Cai; Li, Peng

    2015-12-01

    Fourteen new pregnane glycosides, including nine caudatin glycosides (1-9), three qinyangshengenin glycosides (10-12), one kidjoranin glycosides (13) and one gagaminin glycosides (14), along with twelve known analogs (15-26) were isolated from roots of Cynanchum otophyllum Schneid. Their structures were deduced by detailed analysis of 1D and 2D NMR spectra, as well as HRESIMS. In this study, all pregnane glycosides obtained (1-26) were evaluated for their cytotoxic activities using three cancer cell lines (HepG2, Hela, U251). As results, except 6 and 10, other twenty-four pregnane glycosides showed cytotoxicities at different degrees against three cell lines. PMID:26297951

  3. Isoflavone glycosides from Derris scandens.

    PubMed

    Rukachaisirikul, Vatcharin; Sukpondma, Yaowapa; Jansakul, Chaweewan; Taylor, Walter C

    2002-08-01

    Five isoflavone glycosides, named derriscandenosides A-E (1-5), were isolated from the stems of Derris scandens, together with ten known compounds comprising one isoflavone, two benzoic acid derivatives, three glucosyl isoflavones and four rhamnosyl-(1-->6)-glucosyl isoflavones. The structures of the glycosides were assigned on the basis of spectroscopic data, especially of the acetate derivatives. Three known rhamnosyl-(1-->6)-glucosyl isoflavones isolated from a crude fraction were retested for hypotensive activity with varying results. PMID:12150808

  4. Monoterpene derivatives with anti-allergic activity from red peony root, the root of Paeonia lactiflora.

    PubMed

    Shi, Yan-Hong; Zhu, Shu; Ge, Yue-Wei; He, Yu-Min; Kazuma, Kohei; Wang, Zhengtao; Yoshimatsu, Kayo; Komatsu, Katsuko

    2016-01-01

    The methanolic extract and its subfractions from red peony root, the dried roots of Paeonia lactiflora Pallas showed potent antiallergic effects, as inhibition of immunoglobulin E (IgE)-mediated degranulation in rat basophil leukemia (RBL)-2H3 cells. Bioassay-guided fractionation led to the isolation of 16 monoterpene derivatives, including 3 new compounds, paeoniflorol (1), 4'-hydroxypaeoniflorigenone (2) and 4-epi-albiflorin (3), together with 13 known ones (4-16). The chemical structures of the new compounds were elucidated on the basis of spectroscopic and chemical evidences. Among the isolated monoterpene derivatives, nine compounds showed potent anti-allergic effects and compound 1 was the most effective. A primary structure-activity relationship of monoterpene derivatives was discussed. PMID:26598138

  5. Effects of shade on plant growth and flower quality in the herbaceous peony (Paeonia lactiflora Pall.).

    PubMed

    Zhao, Daqiu; Hao, Zhaojun; Tao, Jun

    2012-12-01

    Herbaceous peony (Paeonia lactiflora Pall.) is an important ornamental plant used in urban green spaces, but little is known about whether it can grow in a shaded environment or understory. In this study, effects of shade on plant growth and flower quality in the herbaceous peony were investigated. The results showed that P. lactiflora morphology parameters, including plant height, leaf number, stem diameter, branch number, node number and plant crown width, were higher in plants grown with sun exposure compared to those grown in shade; however, opposite trends were observed for the top and middle leaf areas of the plant. Compared with sun exposure, shade decreased P. lactiflora photosynthetic capacity, light saturation point (LSP) and light compensation point (LCP) and increased the apparent quantum yield (AQY), mainly due to declined stomatal conduction (Gs). These decreases caused the soluble sugar, soluble protein and malondialdehyde (MDA) contents to decline, which led to delayed initial flowering date, prolonged flowering time, reduced flower fresh weight, increased flower diameter and faded flower color. Through cloning and expression analysis of anthocyanin biosynthetic genes, we determined that the fading of flower color was the result of reduced anthocyanin content, which was caused by the combined activity of anthocyanin biosynthesis genes and, in particular, of the upstream phenylalanine ammonialyase gene (PlPAL) and chalcone synthase gene (PlCHS). These results could provide us with a theoretical basis for further application of P. lactiflora in the greening of urban spaces and an understanding of the mechanisms behind the changes induced by shade. PMID:23141672

  6. Microwave-Assisted Simultaneous Extraction of Luteolin and Apigenin from Tree Peony Pod and Evaluation of Its Antioxidant Activity

    PubMed Central

    Wang, Hongzheng; Yang, Lei; Zu, Yuangang; Zhao, Xiuhua

    2014-01-01

    An efficient microwave-assisted extraction (MAE) technique was employed in simultaneous extraction of luteolin and apigenin from tree peony pod. The MAE procedure was optimized using response surface methodology (RSM) and compared with other conventional extraction techniques of macerate extraction (ME) and heat reflux extraction (HRE). The optimal conditions of MAE were as follows: employing 70% ethanol volume fraction as solvent, soaking time of 4?h, liquid-solid ratio of 10 (mL/g), microwave irradiation power of 265?W, microwave irradiation time of 9.6?min, and 3 extraction cycles. Under the optimal conditions, 151??g/g luteolin and 104??g/g apigenin were extracted from the tree peony pod. Compared with ME and HRE, MAE gave the highest extraction efficiency. The antioxidant activities of the extracts obtained by MAE, ME, and HRE were evaluated using a 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) free radical-scavenging assay, a ferric reducing antioxidant power assay (FRAP), and a reducing power assay. Meanwhile, the structural changes of the unprocessed and processed tree peony pod samples were analyzed by scanning electron microscopy. PMID:25405227

  7. Flavonol Glycosides from Gaura Biennis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytochemical investigation of the native American plant Gaura biennis led to the isolation of three new flavonol glycosides (1-3), along with eight known ones. Their structures were established primarily by spectroscopic data as quercetin 3-O-(2"-O-a-L-rhamnopyranosyl-6"-O-E-p-coumaroyl)-ß-D- gluco...

  8. Phenylpropanoid glycosides from Penstemon serrulatus.

    PubMed

    Skrzypek, Z; Wysoki?ska, H; Swiatek, L; Wróblewski, A E

    1999-01-01

    Two new phenylpropanoid glycosides named cis-martynoside (1) and cis-leucosceptoside A (3) were recognized in cell suspension cultures of Penstemon serrulatus Menz. The structures of these compounds were determined on the basis of 1H NMR spectral data. PMID:9917298

  9. Quantitative Proteomics Analysis of Herbaceous Peony in Response to Paclobutrazol Inhibition of Lateral Branching.

    PubMed

    Zhao, Daqiu; Gong, Saijie; Hao, Zhaojun; Meng, Jiasong; Tao, Jun

    2015-01-01

    Herbaceous peony (Paeonia lactiflora Pall.) is an emerging high-grade cut flower worldwide, which is usually used in wedding bouquets and known as the "wedding flower". However, abundant lateral branches appear frequently in some excellent cultivars, and a lack of a method to remove Paeonia lactiflora lateral branches other than inefficient artificial methods is an obstacle for improving the quality of its cut flowers. In this study, paclobutrazol (PBZ) application was found to inhibit the growth of lateral branches in Paeonia lactiflora for the first time, including 96.82% decreased lateral bud number per branch, 77.79% and 42.31% decreased length and diameter of lateral branches, respectively, declined cell wall materials and changed microstructures. Subsequently, isobaric tag for relative and absolute quantitation (iTRAQ) technology was used for quantitative proteomics analysis of lateral branches under PBZ application and control. The results indicated that 178 differentially expressed proteins (DEPs) successfully obtained, 98 DEPs were up-regulated and 80 DEPs were down-regulated. Thereafter, 34 candidate DEPs associated with the inhibited growth of lateral branches were screened according to their function and classification. These PBZ-stress responsive candidate DEPs were involved in eight biological processes, which played a very important role in the growth and development of lateral branches together with the response to PBZ stress. These results provide a better understanding of the molecular theoretical basis for removing Paeonia lactiflora lateral branches using PBZ application. PMID:26473855

  10. Analysis of Codon Usage Patterns in Herbaceous Peony (Paeonia lactiflora Pall.) Based on Transcriptome Data

    PubMed Central

    Wu, Yanqing; Zhao, Daqiu; Tao, Jun

    2015-01-01

    Codon usage bias, which exists in many genomes, is mainly determined by mutation and selection. To elucidate the genetic features and evolutionary history of herbaceous peony (Paeonia lactiflora), a well-known symbol of prosperity in China, we examined synonymous codon usage in 24,216 reconstructed genes from the P. lactiflora transcriptome. The mean GC content was 44.4%, indicating that the nucleotide content of P. lactiflora genes is slightly AT rich and GC poor. The P. lactiflora genome has a wide range of GC3 (GC content at the third synonymous codon position) distribution, with a significant correlation between GC12 and GC3. ENC (effective number of codons) analysis suggested that mutational bias played a major role in shaping codon usage. Parity Rule 2 (PR2) analysis revealed that GC and AU were not used proportionally. We identified 22 “optimal codons”, most ending with an A or U. Our results suggested that nucleotide composition mutation bias and translational selection were the main driving factors of codon usage bias in P. lactiflora. These results lay the foundation for exploring the evolutionary mechanisms and heterologous expression of functionally-important proteins in P. lactiflora. PMID:26506393

  11. Quantitative Proteomics Analysis of Herbaceous Peony in Response to Paclobutrazol Inhibition of Lateral Branching

    PubMed Central

    Zhao, Daqiu; Gong, Saijie; Hao, Zhaojun; Meng, Jiasong; Tao, Jun

    2015-01-01

    Herbaceous peony (Paeonia lactiflora Pall.) is an emerging high-grade cut flower worldwide, which is usually used in wedding bouquets and known as the “wedding flower”. However, abundant lateral branches appear frequently in some excellent cultivars, and a lack of a method to remove Paeonia lactiflora lateral branches other than inefficient artificial methods is an obstacle for improving the quality of its cut flowers. In this study, paclobutrazol (PBZ) application was found to inhibit the growth of lateral branches in Paeonia lactiflora for the first time, including 96.82% decreased lateral bud number per branch, 77.79% and 42.31% decreased length and diameter of lateral branches, respectively, declined cell wall materials and changed microstructures. Subsequently, isobaric tag for relative and absolute quantitation (iTRAQ) technology was used for quantitative proteomics analysis of lateral branches under PBZ application and control. The results indicated that 178 differentially expressed proteins (DEPs) successfully obtained, 98 DEPs were up-regulated and 80 DEPs were down-regulated. Thereafter, 34 candidate DEPs associated with the inhibited growth of lateral branches were screened according to their function and classification. These PBZ-stress responsive candidate DEPs were involved in eight biological processes, which played a very important role in the growth and development of lateral branches together with the response to PBZ stress. These results provide a better understanding of the molecular theoretical basis for removing Paeonia lactiflora lateral branches using PBZ application. PMID:26473855

  12. Glycosidic monoterpenes from Linaria capraria.

    PubMed

    Bianco, Armandodoriano; Guiso, Marcella; Ballero, Mauro; Foddai, Sebastiano; Nicoletti, Marcello; Piccin, Antonella; Serafini, Mauro; Tomassini, Lamberto

    2004-06-01

    During our systematic study on the species of genus Linaria (Scrophulariaceae) present in Italy, we examined the glycosidic fraction of Linaria capraria Moris et De Not., a species endemic of Tuscany archipelago. This fraction is particularly complex and we considered in this article only the medium polarity components. In accordance with previous studies, L. capraria shows acyl derivatives of antirrhinoside 1 as specific chemotaxonomic iridoidic markers. L. capraria exhibits a complex composition, with regard to iridoidic constituents, with several chromatographic problems to be resolved. We then isolated, besides the known antirrhinoside 1, two acyl derivatives of antirrhinoside, the 6'-O-senecioyl derivative, 2, and the 6'-O-angeloyl derivative, 3. In addition a glucoside of an acyclic monoterpene, 4, was also isolated, which may be correlated to the other monoterpenic glycosides isolated from other species of Scrophulariaceae. PMID:15143834

  13. Diterpene glycosides from Egletes viscosa.

    PubMed

    Lee, Dongho; Li, Chen; Graf, Tyler N; Vigo, Jose Schunke; Graham, James G; Cabieses, Fernando; Farnsworth, Norman R; Cordell, Geoffrey A; Kinghorn, A Douglas; Kroll, David J; Wani, Mansukh C; Oberlies, Nicholas H

    2005-08-01

    A phytochemical investigation of the CHCl (3)-soluble extract of the entire plant of Egletes viscosa (Asteraceae), collected in Peru, afforded two new labdane glycosides, 13-hydroxy-7-oxolabda-8,14-diene 13( R)- O-alpha- L-arabinopyranoside and 13-hydroxylabda-7,14-diene 13( R)- O-alpha- L-arabinopyranoside, along with four known compounds. The structures of the new compounds were elucidated by spectroscopic and chemical methods. PMID:16142652

  14. The Conceptual Metaphor Theory and the Application of Barcelona Sanchez’s Typical Model of Romantic Love to Dream in Peony Pavilion 

    E-print Network

    Wang, Chenlu

    2010-11-25

    This thesis is a report on the application of Barcelona Sanchez’s typical model of romantic love to the Chinese literary work Dream in Peony Pavilion. In this play, the main theme is about love between two young people who ...

  15. The Conceptual Metaphor Theory and the Application of Barcelona Sanchez’s Typical Model of Romantic Love to Dream in Peony Pavilion 

    E-print Network

    Wang, Chenlu

    2010-11-25

    This thesis is a report on the application of Barcelona Sanchez’s typical model of romantic love to the Chinese literary work Dream in Peony Pavilion. In this play, the main theme is about love between two young people who are not supposed to have...

  16. Phenolic glycosides from Potalia amara.

    PubMed

    Li, Xing-Cong; ElSohly, Hala N; Walker, Larry A; Clark, Alice M

    2005-10-01

    Investigation of the stem bark of the unique Amazonian herbal plant Potalia amara yielded two new phenolic glycosides, potalioside A (1) and B (2), along with di-O-methylcrenatin (3), 2,6-dimethoxy-4-hydroxyphenol 1-glucoside and sweroside. The structures of potalioside A and B were established by interpretation of spectral data as 4-hydroxymethyl-2,6-dimethoxyphenyl 1-O-beta-D-glucopyranosyl(1-->6)-beta-D-glucopyranoside and 4-hydroxymethyl-2,6-dimethoxyphenyl 1-O-beta- D-xylopyranosyl(1-->6)- beta-D-glucopyranoside, respectively. PMID:16254836

  17. Two New Triterpene Glycosides from Centella asiatica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytochemical investigation of the leaves of Centella asiatica resulted in the isolation and characterization of one new ursane type triterpene glycoside; asiaticoside G along with nine known compounds, that were characterized as ursane type triterpenes and /or their glycoside; asiatic acid (2), mad...

  18. Identification of flavonoids and expression of flavonoid biosynthetic genes in two coloured tree peony flowers.

    PubMed

    Zhao, Daqiu; Tang, Wenhui; Hao, Zhaojun; Tao, Jun

    2015-04-10

    Tree peony (Paeonia suffruticosa Andr.) has been named the "king of flowers" because of its elegant and gorgeous flower colour. Among these colours, the molecular mechanisms of white formation and how white turned to red in P. suffruticosa is little known. In this study, flower colour variables, flavonoid accumulation and expression of flavonoid biosynthetic genes of white ('Xueta') and red ('Caihui') P. suffruticosa were investigated. The results showed that the flower colours of both cultivars were gradually deepened with the development of flowers. Moreover, two anthoxanthin compositions apigenin 7-O-glucoside together with apigenin deoxyheso-hexoside were identified in 'Xueta' and 'Caihui', but one main anthocyanin composition peonidin 3,5-di-O-glucoside (Pn3G5G) was only found in 'Caihui'. Total contents of anthocyanins in 'Caihui' was increased during flower development, and the same trend was presented in anthoxanthins and flavonoids of these two cultivars, but the contents of these two category flavonoid in 'Caihui' were always higher than those in 'Xueta'. Furthermore, nine structural genes in flavonoid biosynthetic pathway were isolated including the full-length cDNAs of phenylalanine ammonialyase gene (PAL), chalcone synthase gene (CHS) and chalcone isomerase gene (CHI), together with the partial-length cDNAs of flavanone 3-hydroxylase gene (F3H), flavonoid 3'-hydroxylase gene (F3'H), dihydroflavonol 4-reductase gene (DFR), anthocyanidin synthase gene (ANS), UDP-glucose: flavonoid 3-O-glucosyltransferase gene (UF3GT) and UDP-glucose: flavonoid 5-O-glucosyltransferase gene (UF5GT), and PAL, UF3GT and UF5GT were reported in P. suffruticosa for the first time. Their expression patterns showed that transcription levels of downstream genes in 'Caihui' were basically higher than those in 'Xueta', especially PsDFR and PsANS, suggesting that these two genes may play a key role in the anthocyanin biosynthesis which resulted in the shift from white to red in flowers. These results would provide a better understanding of the underlying molecular mechanisms of flower pigmentation in P. suffruticosa. PMID:25748574

  19. Antibiofilm phenylethanoid glycosides from Penstemon centranthifolius.

    PubMed

    Ye, Miao; Zhao, Yun; Norman, Vanessa L; Starks, Courtney M; Rice, Stephanie M; Goering, Matt G; O'Neil-Johnson, Mark; Eldridge, Gary R; Hu, Jin-Feng

    2010-05-01

    Bioassay-guided fractionation of the antibacterial ethyl acetate-ethanol (50 : 50) extract obtained from the aerial parts of Penstemon centranthifolius led to the isolation of six phenylethanoid glycosides (1-6) and eleven iridoid glycosides (7-17). Their structures were determined on the basis of spectroscopic analysis and comparison with the literature. Among them, two phenylethanoid glycosides, 4'''-O-acetylverbascoside (1) and verbascoside (2), were found to show significant inhibition of the formation of bacterial biofilms by Escherichia coli UTI89. Compound 1 showed 77% biofilm inhibition at 2.5 microg/mL, and compound 2 showed 60% inhibition at 5 microg/mL. PMID:19827017

  20. Natural glycosides containing allopyranose from the passion fruit plant and circular dichroism of benzaldehyde cyanohydrin glycosides.

    PubMed

    Christensen, J; Jaroszewski, J W

    2001-07-12

    [structure: see text] Leaves of the edible passion fruit plant, Passiflora edulis, contain benzylic beta-D-allopyranosides 1 and 2, representatives of a rare class of natural glycosides with D-allose as the only sugar constituent. The glycoside 1 is the first known cyanogenic glycoside containing a sugar different from D-glucose attached directly to the cyanohydrin center. Asymmetric perturbation of the (1)L(b) transition of the benzene chromophore was shown to be useful for determination of absolute configuration of the cyanohydrin center of aromatic cyanogenic glycosides. PMID:11440577

  1. Stereoselective Synthesis of ?-manno-Glycosides

    NASA Astrophysics Data System (ADS)

    Ishiwata, Akihiro; Ito, Yukishige

    Among the various types of O-glycosides with biological relevance, the ?-glycoside of D-mannose (?-manno-glycoside) has been considered as one of the most challenging targets from a synthetic point of view. The majority of synthetic approaches to ?-manno-glycoside can be put into two categories (the direct glycosylation and the glycosylation-inversion approaches). Additionally, a variety of intriguing approaches have been investigated with substantial success (alkylative glycosylation of 1,2-stannylene acetal, reductive manipulation of orthoester, intramolecular aglycon delivery, and enzymatic glycosylation). In this chapter, progress in the conceptually demanding ?-mannosylation technology will be discussed, including current state of the art, with particular focus upon applications related to the synthesis of glycoprotein-related oligosaccharides.

  2. Digital Gene Expression Analysis to Screen Disease Resistance-Relevant Genes from Leaves of Herbaceous Peony (Paeonia lactiflora Pall.) Infected by Botrytis cinerea

    PubMed Central

    Gong, Saijie; Hao, Zhaojun; Meng, Jiasong; Liu, Ding; Wei, Mengran; Tao, Jun

    2015-01-01

    Herbaceous peony (Paeonia lactiflora Pall.) is a well-known traditional flower in China and is widely used for landscaping and garden greening due to its high ornamental value. However, disease spots usually appear after the flowering of the plant and may result in the withering of the plant in severe cases. This study examined the disease incidence in an herbaceous peony field in the Yangzhou region, Jiangsu Province. Based on morphological characteristics and molecular data, the disease in this area was identified as a gray mold caused by Botrytis cinerea. Based on previously obtained transcriptome data, eight libraries generated from two herbaceous peony cultivars ‘Zifengyu’ and ‘Dafugui’ with different susceptibilities to the disease were then analyzed using digital gene expression profiling (DGE). Thousands of differentially expressed genes (DEGs) were screened by comparing the eight samples, and these genes were annotated using the Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) database. The pathways related to plant-pathogen interaction, secondary metabolism synthesis and antioxidant system were concentrated, and 51, 76, and 13 disease resistance-relevant candidate genes were identified, respectively. The expression patterns of these candidate genes differed between the two cultivars: their expression of the disease-resistant cultivar ‘Zifengyu’ sharply increased during the early stages of infection, while it was relatively subdued in the disease-sensitive cultivar ‘Dafugui’. A selection of ten candidate genes was evaluated by quantitative real-time PCR (qRT-PCR) to validate the DGE data. These results revealed the transcriptional changes that took place during the interaction of herbaceous peony with B. cinerea, providing insight into the molecular mechanisms of host resistance to gray mold. PMID:26208357

  3. Digital Gene Expression Analysis to Screen Disease Resistance-Relevant Genes from Leaves of Herbaceous Peony (Paeonia lactiflora Pall.) Infected by Botrytis cinerea.

    PubMed

    Gong, Saijie; Hao, Zhaojun; Meng, Jiasong; Liu, Ding; Wei, Mengran; Tao, Jun

    2015-01-01

    Herbaceous peony (Paeonia lactiflora Pall.) is a well-known traditional flower in China and is widely used for landscaping and garden greening due to its high ornamental value. However, disease spots usually appear after the flowering of the plant and may result in the withering of the plant in severe cases. This study examined the disease incidence in an herbaceous peony field in the Yangzhou region, Jiangsu Province. Based on morphological characteristics and molecular data, the disease in this area was identified as a gray mold caused by Botrytis cinerea. Based on previously obtained transcriptome data, eight libraries generated from two herbaceous peony cultivars 'Zifengyu' and 'Dafugui' with different susceptibilities to the disease were then analyzed using digital gene expression profiling (DGE). Thousands of differentially expressed genes (DEGs) were screened by comparing the eight samples, and these genes were annotated using the Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) database. The pathways related to plant-pathogen interaction, secondary metabolism synthesis and antioxidant system were concentrated, and 51, 76, and 13 disease resistance-relevant candidate genes were identified, respectively. The expression patterns of these candidate genes differed between the two cultivars: their expression of the disease-resistant cultivar 'Zifengyu' sharply increased during the early stages of infection, while it was relatively subdued in the disease-sensitive cultivar 'Dafugui'. A selection of ten candidate genes was evaluated by quantitative real-time PCR (qRT-PCR) to validate the DGE data. These results revealed the transcriptional changes that took place during the interaction of herbaceous peony with B. cinerea, providing insight into the molecular mechanisms of host resistance to gray mold. PMID:26208357

  4. A new steroidal glycoside from Corypha taliera Roxb., a globally endangered species.

    PubMed

    Shoeb, Mohammad; Khondker, Moniruzzaman; Nahar, Nilufar

    2016-02-01

    The reversed-phased HPLC analysis of the methanol extract of the pericarp of C. taliera Roxb. (Talipalm), a rare species of Arecaceae family, afforded a new steroidal glycoside, ?-sitosterol-3-O-?-l-rhamnopyranosyl-(1?4)-?-d-xylopyranosyl-(1?4)-?-d-glucopyranosyl-(1?4)-?-d-glucopyranoside (1). The structure of the compound was elucidated unequivocally by UV, IR, HR-ESI-MS, (1)H and (13)C NMR spectroscopic studies. PMID:26196451

  5. Enzymatic Processing of Bioactive Glycosides from Natural Sources

    NASA Astrophysics Data System (ADS)

    Weignerová, Lenka; K?en, Vladimír

    A number of biologically active natural products are glycosides. Often, the glycosidic residue is crucial for their activity. In other cases, glycosylation only improves their pharmacokinetic parameters. Enzymatic modification of these glycosides - both extension of the glycoside moiety and its selective trimming - is advantageous due to their selectivity and mildness of the reaction conditions in the presence of reactive and sensitive complex aglycones. Enzymatic reactions enable the resulting products to be used as "natural products", e.g., in nutraceuticals. This chapter concentrates on naturally occurring glycosides used in medicine but also in the food and flavor industry (e.g., sweeteners). Both "classical" and modern methods will be discussed.

  6. Two new phenolic glycosides from Syringa reticulata.

    PubMed

    Machida, Koichi; Ohkawa, Naomi; Ohsawa, Asami; Kikuchi, Masao

    2009-04-01

    Two new phenolic glycosides-3'-O-beta-D: -glucopyranosysalidroside (1) and cis-echinacoside (2)-together with four known ones-forsythoside B (3), decaffeoylacteoside (4), osmanthuside F (5) and (-)-olivil-4'-O-beta-D: -glucopyranoside (6)-were isolated from the leaves of Syringa reticulata. Their structures were established on the basis of spectral and chemical data. PMID:18985282

  7. Twisting of glycosidic bonds by hydrolases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Patterns of scissile bond twisting have been found in crystal structures of glycoside hydrolases (GHs) that are complexed with substrates and inhibitors. To estimate the increased potential energy in the substrates that results from this twisting, we have plotted torsion angles for the scissile bond...

  8. A new isoflavone glycoside from Pueraria alopecuroides.

    PubMed

    Yang, Junlin; Fan, Qingfei; Zhang, Huanli; Song, Qishi

    2016-01-01

    A new isoflavone glycoside, (-)-tuberosin-3-O-?-D-glucopyranoside (1), along with 10 known compounds 1a-10, was isolated from Pueraria alopecuroides. Their structures were determined on the basis of spectral data including 1D and 2D NMR and HREIMS. These compounds were isolated from this plant for the first time. PMID:26525177

  9. A new withanolide glycoside from physalis peruviana

    PubMed

    Ahmad; Malik; Afza; Yasmin

    1999-03-01

    A new withanolide glycoside, 17beta-hydroxy-14, 20-epoxy-1-oxo-[22R]-3beta-[O-beta-D-glucopyranosyl]-witha-5, 24-dienolide (1), has been isolated from the whole plant of Physalis peruviana. Its identity was determined using a combination of spectroscopic data including 2D NMR techniques and chemical transformations. PMID:10096867

  10. An inverting ?-1,2-mannosidase belonging to glycoside hydrolase family 130 from Dyadobacter fermentans.

    PubMed

    Nihira, Takanori; Chiku, Kazuhiro; Suzuki, Erika; Nishimoto, Mamoru; Fushinobu, Shinya; Kitaoka, Motomitsu; Ohtsubo, Ken'ichi; Nakai, Hiroyuki

    2015-11-30

    The glycoside hydrolase family (GH) 130 is composed of inverting phosphorylases that catalyze reversible phosphorolysis of ?-d-mannosides. Here we report a glycoside hydrolase as a new member of GH130. Dfer_3176 from Dyadobacter fermentans showed no synthetic activity using ?-d-mannose 1-phosphate but it released ?-d-mannose from ?-1,2-mannooligosaccharides with an inversion of the anomeric configuration, indicating that Dfer_3176 is a ?-1,2-mannosidase. Mutational analysis indicated that two glutamic acid residues are critical for the hydrolysis of ?-1,2-mannotriose. The two residues are not conserved among GH130 phosphorylases and are predicted to assist the nucleophilic attack of a water molecule in the hydrolysis of the ?-d-mannosidic bond. PMID:26476324

  11. The First High-Density Genetic Map Construction in Tree Peony (Paeonia Sect. Moutan) using Genotyping by Specific-Locus Amplified Fragment Sequencing.

    PubMed

    Cai, Changfu; Cheng, Fang-Yun; Wu, Jing; Zhong, Yuan; Liu, Gaixiu

    2015-01-01

    Genetic linkage maps, permitting the elucidation of genome structure, are one of most powerful genomic tools to accelerate marker-assisted breeding. However, due to a lack of sufficient user-friendly molecular markers, no genetic linkage map has been developed for tree peonies (Paeonia Sect. Moutan), a group of important horticultural plants worldwide. Specific-locus amplified fragment sequencing (SLAF-seq) is a recent molecular marker development technology that enable the large-scale discovery and genotyping of sequence-based marker in genome-wide. In this study, we performed SLAF sequencing of an F1 population, derived from the cross P. ostti 'FenDanBai' × P. × suffruticosa 'HongQiao', to identify sufficient high-quality markers for the construction of high-density genetic linkage map in tree peonies. After SLAF sequencing, a total of 78 Gb sequencing data and 285,403,225 pair-end reads were generated. We detected 309,198 high-quality SLAFs from these data, of which 85,124 (27.5%) were polymorphic. Subsequently, 3518 of the polymorphic markers, which were successfully encoded in to Mendelian segregation types, and were in conformity with the criteria of high-quality markers, were defined as effective markers and used for genetic linkage mapping. Finally, we constructed an integrated genetic map, which comprised 1189 markers on the five linkage groups, and spanned 920.699 centiMorgans (cM) with an average inter-marker distance of 0.774 cM. There were 1115 'SNP-only' markers, 18 'InDel-only' markers, and 56 'SNP&InDel' markers on the map. Among these markers, 450 (37.85%) showed significant segregation distortion (P < 0.05). In conclusion, this investigation reported the first large-scale marker development and high-density linkage map construction for tree peony. The results of this study will serve as a solid foundation not only for marker-assisted breeding, but also for genome sequence assembly for tree peony. PMID:26010095

  12. The First High-Density Genetic Map Construction in Tree Peony (Paeonia Sect. Moutan) using Genotyping by Specific-Locus Amplified Fragment Sequencing

    PubMed Central

    Cai, Changfu; Cheng, Fang-Yun; Wu, Jing; Zhong, Yuan; Liu, Gaixiu

    2015-01-01

    Genetic linkage maps, permitting the elucidation of genome structure, are one of most powerful genomic tools to accelerate marker-assisted breeding. However, due to a lack of sufficient user-friendly molecular markers, no genetic linkage map has been developed for tree peonies (Paeonia Sect. Moutan), a group of important horticultural plants worldwide. Specific-locus amplified fragment sequencing (SLAF-seq) is a recent molecular marker development technology that enable the large-scale discovery and genotyping of sequence-based marker in genome-wide. In this study, we performed SLAF sequencing of an F1 population, derived from the cross P. ostti ‘FenDanBai’ × P. × suffruticosa ‘HongQiao’, to identify sufficient high-quality markers for the construction of high-density genetic linkage map in tree peonies. After SLAF sequencing, a total of 78 Gb sequencing data and 285,403,225 pair-end reads were generated. We detected 309,198 high-quality SLAFs from these data, of which 85,124 (27.5%) were polymorphic. Subsequently, 3518 of the polymorphic markers, which were successfully encoded in to Mendelian segregation types, and were in conformity with the criteria of high-quality markers, were defined as effective markers and used for genetic linkage mapping. Finally, we constructed an integrated genetic map, which comprised 1189 markers on the five linkage groups, and spanned 920.699 centiMorgans (cM) with an average inter-marker distance of 0.774 cM. There were 1115 ‘SNP-only’ markers, 18 ‘InDel-only’ markers, and 56 ‘SNP&InDel’ markers on the map. Among these markers, 450 (37.85%) showed significant segregation distortion (P < 0.05). In conclusion, this investigation reported the first large-scale marker development and high-density linkage map construction for tree peony. The results of this study will serve as a solid foundation not only for marker-assisted breeding, but also for genome sequence assembly for tree peony. PMID:26010095

  13. ent-Kaurene Glycosides from Ageratina cylindrica.

    PubMed

    Bustos-Brito, Celia; Sánchez-Castellanos, Mariano; Esquivel, Baldomero; Calderón, José S; Calzada, Fernando; Yépez-Mulia, Lilian; Joseph-Nathan, Pedro; Cuevas, Gabriel; Quijano, Leovigildo

    2015-11-25

    The aqueous extract of the leaves of Ageratina cylindrica afforded six new ent-kaurenoic acid glycosides together with the known diterpenoid paniculoside V, the flavonoid astragalin, chlorogenic acid, and l-chiro-inositol. The structures were elucidated mainly by NMR and MS methods, and the absolute configuration was established by vibrational circular dichroism spectroscopy. The new compounds showed moderate antiprotozoal activity against Entamoeba histolytica and Giardia lamblia trophozoites. PMID:26517282

  14. ?-cyclodextrin assistant flavonoid glycosides enzymatic hydrolysis

    PubMed Central

    Jin, Xin; Zhang, Zhen-hai; Sun, E.; Jia, Xiao-Bin

    2013-01-01

    Background: The content of icaritin and genistein in herba is very low, preparation with relatively large quantities is an important issue for extensive pharmacological studies. Objective: This study focuses on preparing and enzymic hydrolysis of flavonoid glycosides /?-cyclodextrin inclusion complex to increase the hydrolysis rate. Materials and Methods: The physical property of newly prepared inclusion complex was tested by differential scanning calorimetry (DSC). The conditions of enzymatic hydrolysis were optimized for the bioconversion of flavonoid glycosides /?-cyclodextrin inclusion complex by mono-factor experimental design. The experiments are using the icariin and genistein as the model drugs. Results: The solubility of icariin and genistein were increased almost 17 times from 29.2 ?g/ml to 513.5 ?g/ml at 60°C and 28 times from 7.78 ?g/ml to 221.46 ?g/ml at 50°C, respectively, demonstrating that the inclusion complex could significantly increase the solubility of flavonoid glycosides. Under the optimal conditions, the reaction time of icariin and genistin decreased by 68% and 145%, when compared with that without ?-CD inclusion. By using this enzymatic condition, 473 mg icaritin (with the purity of 99.34%) and 567 mg genistein(with the purity of 99.46%), which was finally determined by melt point, ESI-MS, UV, IR, 1H NMR and 13C NMR, was obtained eventually by transforming the inclusion complex(contains 1.0 g substrates). Conclusion: This study can clearly indicate a new attempt to improve the speed of enzyme-hydrolysis of poorly water-soluble flavonoid glycosides and find a more superior condition which is used to prepare icaritin and genistein. PMID:24143039

  15. Effects of inflorescence stem structure and cell wall components on the mechanical strength of inflorescence stem in herbaceous peony.

    PubMed

    Zhao, Daqiu; Han, Chenxia; Tao, Jun; Wang, Jing; Hao, Zhaojun; Geng, Qingping; Du, Bei

    2012-01-01

    Herbaceous peony (Paeonia lactiflora Pall.) is a traditional famous flower, but its poor inflorescence stem quality seriously constrains the development of the cut flower. Mechanical strength is an important characteristic of stems, which not only affects plant lodging, but also plays an important role in stem bend or break. In this paper, the mechanical strength, morphological indices and microstructure of P. lactiflora development inflorescence stems were measured and observed. The results showed that the mechanical strength of inflorescence stems gradually increased, and that the diameter of inflorescence stem was a direct indicator in estimating mechanical strength. Simultaneously, with the development of inflorescence stem, the number of vascular bundles increased, the vascular bundle was arranged more densely, the sclerenchyma cell wall thickened, and the proportion of vascular bundle and pith also increased. On this basis, cellulose and lignin contents were determined, PlCesA3, PlCesA6 and PlCCoAOMT were isolated and their expression patterns were examined including PlPAL. The results showed that cellulose was not strictly correlated with the mechanical strength of inflorescence stem, and lignin had a significant impact on it. In addition, PlCesA3 and PlCesA6 were not key members in cellulose synthesis of P. lactiflora and their functions were also different, but PlPAL and PlCCoAOMT regulated the lignin synthesis of P. lactiflora. These data indicated that PlPAL and PlCCoAOMT could be applied to improve the mechanical strength of P. lactiflora inflorescence stem in genetic engineering. PMID:22606025

  16. Effects of Inflorescence Stem Structure and Cell Wall Components on the Mechanical Strength of Inflorescence Stem in Herbaceous Peony

    PubMed Central

    Zhao, Daqiu; Han, Chenxia; Tao, Jun; Wang, Jing; Hao, Zhaojun; Geng, Qingping; Du, Bei

    2012-01-01

    Herbaceous peony (Paeonia lactiflora Pall.) is a traditional famous flower, but its poor inflorescence stem quality seriously constrains the development of the cut flower. Mechanical strength is an important characteristic of stems, which not only affects plant lodging, but also plays an important role in stem bend or break. In this paper, the mechanical strength, morphological indices and microstructure of P. lactiflora development inflorescence stems were measured and observed. The results showed that the mechanical strength of inflorescence stems gradually increased, and that the diameter of inflorescence stem was a direct indicator in estimating mechanical strength. Simultaneously, with the development of inflorescence stem, the number of vascular bundles increased, the vascular bundle was arranged more densely, the sclerenchyma cell wall thickened, and the proportion of vascular bundle and pith also increased. On this basis, cellulose and lignin contents were determined, PlCesA3, PlCesA6 and PlCCoAOMT were isolated and their expression patterns were examined including PlPAL. The results showed that cellulose was not strictly correlated with the mechanical strength of inflorescence stem, and lignin had a significant impact on it. In addition, PlCesA3 and PlCesA6 were not key members in cellulose synthesis of P. lactiflora and their functions were also different, but PlPAL and PlCCoAOMT regulated the lignin synthesis of P. lactiflora. These data indicated that PlPAL and PlCCoAOMT could be applied to improve the mechanical strength of P. lactiflora inflorescence stem in genetic engineering. PMID:22606025

  17. Identification of miRNAs Responsive to Botrytis cinerea in Herbaceous Peony (Paeonia lactiflora Pall.) by High-Throughput Sequencing.

    PubMed

    Zhao, Daqiu; Gong, Saijie; Hao, Zhaojun; Tao, Jun

    2015-01-01

    Herbaceous peony (Paeonia lactiflora Pall.), one of the world's most important ornamental plants, is highly susceptible to Botrytis cinerea, and improving resistance to this pathogenic fungus is a problem yet to be solved. MicroRNAs (miRNAs) play an essential role in resistance to B. cinerea, but until now, no studies have been reported concerning miRNAs induction in P. lactiflora. Here, we constructed and sequenced two small RNA (sRNA) libraries from two B. cinerea-infected P. lactiflora cultivars ("Zifengyu" and "Dafugui") with significantly different levels of resistance to B. cinerea, using the Illumina HiSeq 2000 platform. From the raw reads generated, 4,592,881 and 5,809,796 sRNAs were obtained, and 280 and 306 miRNAs were identified from "Zifengyu" and "Dafugui", respectively. A total of 237 conserved and 7 novel sequences of miRNAs were differentially expressed between the two cultivars, and we predicted and annotated their potential target genes. Subsequently, 7 differentially expressed candidate miRNAs were screened according to their target genes annotated in KEGG pathways, and the expression patterns of miRNAs and corresponding target genes were elucidated. We found that miR5254, miR165a-3p, miR3897-3p and miR6450a might be involved in the P. lactiflora response to B. cinerea infection. These results provide insight into the molecular mechanisms responsible for resistance to B. cinerea in P. lactiflora. PMID:26393656

  18. Identification of miRNAs Responsive to Botrytis cinerea in Herbaceous Peony (Paeonia lactiflora Pall.) by High-Throughput Sequencing

    PubMed Central

    Zhao, Daqiu; Gong, Saijie; Hao, Zhaojun; Tao, Jun

    2015-01-01

    Herbaceous peony (Paeonia lactiflora Pall.), one of the world’s most important ornamental plants, is highly susceptible to Botrytis cinerea, and improving resistance to this pathogenic fungus is a problem yet to be solved. MicroRNAs (miRNAs) play an essential role in resistance to B. cinerea, but until now, no studies have been reported concerning miRNAs induction in P. lactiflora. Here, we constructed and sequenced two small RNA (sRNA) libraries from two B. cinerea-infected P. lactiflora cultivars (“Zifengyu” and “Dafugui”) with significantly different levels of resistance to B. cinerea, using the Illumina HiSeq 2000 platform. From the raw reads generated, 4,592,881 and 5,809,796 sRNAs were obtained, and 280 and 306 miRNAs were identified from “Zifengyu” and “Dafugui”, respectively. A total of 237 conserved and 7 novel sequences of miRNAs were differentially expressed between the two cultivars, and we predicted and annotated their potential target genes. Subsequently, 7 differentially expressed candidate miRNAs were screened according to their target genes annotated in KEGG pathways, and the expression patterns of miRNAs and corresponding target genes were elucidated. We found that miR5254, miR165a-3p, miR3897-3p and miR6450a might be involved in the P. lactiflora response to B. cinerea infection. These results provide insight into the molecular mechanisms responsible for resistance to B. cinerea in P. lactiflora. PMID:26393656

  19. Transcriptomic Analysis of the Underground Renewal Buds during Dormancy Transition and Release in ‘Hangbaishao’ Peony (Paeonia lactiflora)

    PubMed Central

    Zhang, Jiaping; Wang, Guanqun; Li, Xin; Xia, Yiping

    2015-01-01

    Paeonia lactiflora is one of the most famous species of herbaceous peonies with gorgeous flowers. Bud dormancy is a crucial developmental process that allows P. lactiflora to survive unfavorable environmental conditions. However, little information is available on the molecular mechanism of the bud dormancy in P. lactiflora. We performed de novo transcriptome sequencing using the Illumina RNA sequencing platform for the underground renewal buds of P. lactiflora ‘Hangbaishao’ to study the molecular mechanism underlying its bud dormancy transition (the period from endodormancy to ecodormancy) and release (the period from ecodormancy to bud elongation and sprouting). Approximately 300 million high-quality clean reads were generated and assembled into 207,827 (mean length = 828 bp) and 51,481 (mean length = 1250 bp) unigenes using two assembly methods named “Trinity” and “Trinity+PRICE”, respectively. Based on the data obtained by the latter method, 32,316 unigenes were annotated by BLAST against various databases. Approximately 1,251 putative transcription factors were obtained, of which the largest number of unique transcripts belonged to the basic helix-loop-helix protein (bHLH) transcription factor family, and five of the top ten highly expressed transcripts were annotated as dehydrin (DHN). A total of 17,705 simple sequence repeat (SSR) motifs distributed in 13,797 sequences were obtained. The budbreak morphology, levels of indole-3-acetic acid (IAA) and abscisic acid (ABA), and activities of guaiacol peroxidase (POD) and catalase (CAT) were observed. The expression of 20 interested unigenes, which annotated as DHN, heat shock protein (HSP), histone, late elongated hypocotyl (LHY), and phytochrome (PHY), and so on, were also analyzed. These studies were based on morphological, physiological, biochemical, and molecular levels and provide comprehensive insight into the mechanism of dormancy transition and release in P. lactiflora. Transcriptome dataset can be highly valuable for future investigation on gene expression networks in P. lactiflora as well as research on dormancy in other non-model perennial horticultural crops of commercial significance. PMID:25790307

  20. Oleandrin: A cardiac glycosides with potent cytotoxicity

    PubMed Central

    Kumar, Arvind; De, Tanmoy; Mishra, Amrita; Mishra, Arun K.

    2013-01-01

    Cardiac glycosides are used in the treatment of congestive heart failure and arrhythmia. Current trend shows use of some cardiac glycosides in the treatment of proliferative diseases, which includes cancer. Nerium oleander L. is an important Chinese folk medicine having well proven cardio protective and cytotoxic effect. Oleandrin (a toxic cardiac glycoside of N. oleander L.) inhibits the activity of nuclear factor kappa-light-chain-enhancer of activated B chain (NF-?B) in various cultured cell lines (U937, CaOV3, human epithelial cells and T cells) as well as it induces programmed cell death in PC3 cell line culture. The mechanism of action includes improved cellular export of fibroblast growth factor-2, induction of apoptosis through Fas gene expression in tumor cells, formation of superoxide radicals that cause tumor cell injury through mitochondrial disruption, inhibition of interleukin-8 that mediates tumorigenesis and induction of tumor cell autophagy. The present review focuses the applicability of oleandrin in cancer treatment and concerned future perspective in the area. PMID:24347921

  1. The Identification of Perillyl Alcohol Glycosides with Improved Antiproliferative Activity

    PubMed Central

    2015-01-01

    A facile route to perillyl alcohol (POH) differential glycosylation and the corresponding synthesis of a set of 34 POH glycosides is reported. Subsequent in vitro studies revealed a sugar dependent antiproliferative activity and the inhibition of S6 ribosomal protein phosphorylation as a putative mechanism of representative POH glycosides. The most active glycoside from this cumulative study (4?-azido-d-glucoside, PG9) represents one of the most cytotoxic POH analogues reported to date. PMID:25121720

  2. Two pentasaccharide resin glycosides from Argyreia acuta.

    PubMed

    Yin, Yong-Qin; Pan, Jie-Tao; Yu, Bang-Wei; Cui, Hong-Hua; Yan, You-Shao; Chen, Yan-Fen

    2016-01-01

    Two new compounds of acutacosides 1 and 2, pentasaccharide resin glycosides were isolated from the aerial parts of Argyreia acuta. The core of the two compounds was operculinic acid A, and they were esterfied at the same position, just one substituent group was linked at C-2 of Rha. The absolute configuration of the aglycone in the two compounds was established by Mosher's method, which was (11S)-hydroxyhexadecanoic acid (jalapinolic acid). Their structures were established by a combination of spectroscopic and chemical methods. PMID:25925631

  3. Flavonol glycosides from Calendula officinalis flowers.

    PubMed

    Vidal-Ollivier, E; Elias, R; Faure, F; Babadjamian, A; Crespin, F; Balansard, G; Boudon, G

    1989-02-01

    Seven flavonol 3- O-glycosides were isolated from the flowers of CALENDULA OFFICINALIS L. Their structures were elucidated as isorhamnetin 3- O-glucoside, rutinoside, neohesperidoside, 2 (G)-rhamnosylrutinoside, quercetin glucoside, neohesperidoside, and 2 (G)-rhamnosylrutinoside by paper and thin layer chromatography, UV, (13)C-NMR, and mass spectroscopy. The interglycosidic linkages of isorhamnetin 3- O-neohesperidoside, 2 (G)-rhamnosylrutinoside, quercetin 3- O-neohesperidoside and structural determination of quercetin 2 (G)-rhamnosylrutinoside are described for the first time in CALENDULA OFFICINALIS. PMID:17262260

  4. Evaluating the Cancer Therapeutic Potential of Cardiac Glycosides

    PubMed Central

    Calderón-Montaño, José Manuel; Burgos-Morón, Estefanía; Orta, Manuel Luis; Maldonado-Navas, Dolores; García-Domínguez, Irene; López-Lázaro, Miguel

    2014-01-01

    Cardiac glycosides, also known as cardiotonic steroids, are a group of natural products that share a steroid-like structure with an unsaturated lactone ring and the ability to induce cardiotonic effects mediated by a selective inhibition of the Na+/K+-ATPase. Cardiac glycosides have been used for many years in the treatment of cardiac congestion and some types of cardiac arrhythmias. Recent data suggest that cardiac glycosides may also be useful in the treatment of cancer. These compounds typically inhibit cancer cell proliferation at nanomolar concentrations, and recent high-throughput screenings of drug libraries have therefore identified cardiac glycosides as potent inhibitors of cancer cell growth. Cardiac glycosides can also block tumor growth in rodent models, which further supports the idea that they have potential for cancer therapy. Evidence also suggests, however, that cardiac glycosides may not inhibit cancer cell proliferation selectively and the potent inhibition of tumor growth induced by cardiac glycosides in mice xenografted with human cancer cells is probably an experimental artifact caused by their ability to selectively kill human cells versus rodent cells. This paper reviews such evidence and discusses experimental approaches that could be used to reveal the cancer therapeutic potential of cardiac glycosides in preclinical studies. PMID:24895612

  5. Enzymatic hydrolysis of steryl ferulates and steryl glycosides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Steryl ferulates and steryl glycosides are phytosterol conjugates found characteristically in cereals. Their properties in enzymatic hydrolysis are, however, not yet well known. Steryl ferulates and steryl glycosides were extracted and purified from rye and wheat bran. Their rates of hydrolysis with...

  6. Enzymatic synthesis of epothilone A glycosides

    PubMed Central

    2014-01-01

    Epothilones are extremely cytotoxic chemotherapeutic agents with epoxide, thiazole, and ketone groups that share equipotent kinetic similarity with taxol. The in vitro glycosylation catalyzed by uridine diphosphate glucosyltransferase (YjiC) from Bacillus licheniformis generated six novel epothilone A glycoside analouges including epothilone A 7-O-?-D-glucoside, epothilone A 7-O-?-D-galactoside, epothilone A 3,7-O-?-D-digalactoside, epothilone A 7-O-?-D-2-deoxyglucoside, epothilone A 7-O-?-L-rhamnoside, and epothilone A 7-O-?-L-fucoside. Epothilone A 7-O-?-D-glucoside was structurally elucidated by ultra-high performance liquid chromatography-photo diode array (UPLC-PDA) conjugated with high resolution quantitative time-of-flight-electrospray ionization mass spectroscopy (HR-QTOF ESI-MS/MS) supported by one-and two-dimensional nuclear magnetic resonance studies whereas other epothilone A glycosides were characterized by UPLC-PDA and HR-QTOF ESI-MS/MS analyses. The time dependent conversion study of epothilone A to epothilone A 7-O-?-D-glucoside found to be maximum (~26%) between 3 h to 5 h incubation. PMID:24949266

  7. Vasectomy Reversal

    MedlinePLUS

    ... Information Home Urologic Conditions Vasectomy Reversal What is Vasectomy Reversal? Vasectomy Vasectomy is minor surgery to block ... their partners have had a vasectomy. What is Vasectomy Reversal? Vasectomy reversal reconnects the pathway for the ...

  8. Steryl Glycoside Formation in Seedlings of Nicotiana tabacum L. 1

    PubMed Central

    Bush, Parshall B.; Grunwald, C.

    1974-01-01

    Particulate enzyme preparations from tobacco seedlings (Nicotiana tabacum L.) were used in the synthesis of steryl glycoside. The data obtained by measuring cholesterol-4-14C incorporation generally agree with results obtained with UDP-glucose-14C. The in vitro reaction was linear for the first 10 minutes and had a pH optimum of 7.0 to 7.4. Addition of ATP activated while UDP-glucose inhibited slightly the reaction. In short term experiments, the percentage disappearance of endogenous and added sterol was about the same. Intact tobacco seedlings incorporated cholesterol-4-14C and sitosterol-4-14C into their steryl glycosides. The acylated steryl glycosides were more rapidly labeled than the nonacylated form. After 12 hours of incubation with cholesterol-4-14C, about 5% of the radioactivity was recovered as steryl glycoside and 12% as acylated steryl glycoside. Incubation for 12 hours with authentic cholesteryl-14C glucoside gave only a 4% acylation, and under these conditions 21% of the radioactivity was recovered as free cholesterol. It is suggested that acylated steryl glycosides may be formed through the acylation of steryl glycosides or the transfer of an acyl-glycosyl group to sterol. PMID:16658662

  9. Determination of phenylethanoid glycosides and iridoid glycosides from therapeutically used Plantago species by CE-MEKC.

    PubMed

    Gonda, Sándor; Nguyen, Nhat Minh; Batta, Gyula; Gyémánt, Gyöngyi; Máthé, Csaba; Vasas, Gábor

    2013-09-01

    CE methods are valuable tools for medicinal plant quality management, screening, and analysis. Therefore, the aim of the current study was to optimize and validate a CE-MEKC method for simultaneous quantification of four chief bioactive metabolites from Plantago species. The two most important secondary metabolite groups were aimed to be separated. Different electrolyte and surfactant types were tested. Surfactant concentration, BGE pH, electrolyte concentration, and buffering capacity were optimized. The final BGE consisted of 15 mM sodium tetraborate, 20 mM TAPS, and 250 mM DOC at pH 8.50. Acceptable precision, good stability, and accuracy were achieved, with high resolution for phenylethanoid glycosides. Analytes were separated within 20 min. The method was shown to be suitable for the quantification of the iridoid glycosides aucubin and catalpol, and the phenylethanoid glycosides acteoside (verbascoside) and plantamajoside from water extracts of different samples. The method was shown to be applicable to leaf extracts of Plantago lanceolata, Plantago major, and Plantago asiatica, the main species with therapeutic applications, and a biotechnological product, plant tissue cultures (calli) of P. lanceolata. Baseline separation of the main constituents from minor peaks was achieved, regardless of the matrix type. PMID:23784714

  10. Steviol glycoside safety: are highly purified steviol glycoside sweeteners food allergens?

    PubMed

    Urban, Jonathan D; Carakostas, Michael C; Taylor, Steve L

    2015-01-01

    Steviol glycoside sweeteners are extracted from the plant Stevia rebaudiana (Bertoni), a member of the Asteraceae (Compositae) family. Many plants from this family can induce hypersensitivity reactions via multiple routes of exposure (e.g., ragweed, goldenrod, chrysanthemum, echinacea, chamomile, lettuce, sunflower and chicory). Based on this common taxonomy, some popular media reports and resources have issued food warnings alleging the potential for stevia allergy. To determine if such allergy warnings are warranted on stevia-based sweeteners, a comprehensive literature search was conducted to identify all available data related to allergic responses following the consumption of stevia extracts or highly purified steviol glycosides. Hypersensitivity reactions to stevia in any form are rare. The few cases documented in the peer-reviewed literature were reported prior to the introduction of high-purity products to the market in 2008 when many global regulatory authorities began to affirm the safety of steviol glycosides. Neither stevia manufacturers nor food allergy networks have reported significant numbers of any adverse events related to ingestion of stevia-based sweeteners, and there have been no reports of stevia-related allergy in the literature since 2008. Therefore, there is little substantiated scientific evidence to support warning statements to consumers about allergy to highly purified stevia extracts. PMID:25449199

  11. Synthesis and sensory evaluation of ent-kaurane diterpene glycosides.

    PubMed

    Prakash, Indra; Campbell, Mary; San Miguel, Rafael Ignacio; Chaturvedula, Venkata Sai Prakash

    2012-01-01

    Catalytic hydrogenation of the three ent-kaurane diterpene glycosides isolated from Stevia rebaudiana, namely rubusoside, stevioside, and rebaudioside-A has been carried out using Pd(OH)? and their corresponding dihydro derivatives have been isolated as the products. Synthesis of reduced steviol glycosides was performed using straightforward chemistry and their structures were characterized on the basis of 1D and 2D NMR spectral data and chemical studies. Also, we report herewith the sensory evaluation of all the reduced compounds against their corresponding original steviol glycosides and sucrose for the sweetness property of these molecules. PMID:22836210

  12. New steroidal glycosides from Tribulus terrestris L.

    PubMed

    Chen, Gang; Liu, Tao; Lu, Xuan; Wang, Hai-Feng; Hua, Hui-Ming; Pei, Yue-Hu

    2012-01-01

    Two new steroidal glycosides were isolated from Tribulus terrestris L. Their structures were elucidated as 26-O-?-D-glucopyranosyl-5?-furostan-12-one-20(22)-ene-3?,23,26-triol-3-O-?-D-xylopyranosyl-(1 ? 2)-[?-D-xylopyranosyl-(1 ? 3)]-?-D-glucopyranosyl-(1 ? 4)-[?-L-rhamnopyranosyl-(1 ? 2)]-?-D-galactopyranoside (1) and 26-O-?-D-glucopyranosyl-5?-furostan-20(22)-ene-3?,23,26-triol-3-O-?-D-xylopyranosyl-(1 ? 2)-[?-D-xylopyranosyl-(1 ? 3)]-?-D-glucopyranosyl-(1 ? 4)-[?-L-rhamnopyranosyl-(1 ? 2)]-?-D-galactopyranoside (2) by spectroscopic methods including 1D and 2D NMR experiments. PMID:22694659

  13. A new iridoid glycoside from Scrophularia ningpoensis.

    PubMed

    Niu, Zheng-Rui; Wang, Ru-Feng; Shang, Ming-Ying; Cai, Shao-Qing

    2009-01-01

    A new iridoid glycoside, named 6'-O-cinnamoylharpagide (1), has been isolated from the roots of Scrophularia ningpoensis (Scrophulariaceae) together with nine known compounds, harpagide (2), harpagoside (3), 8-O-feruloylharpagide (4), 8-O-(p-coumaroyl)harpagide (5), 6-O-methylcatalpol (6), aucubin (7), buergerinin B (8), teuhircoside (9) and 6-O-cinnamoyl-D-glucopyranose (10). Compound 10 was obtained as an inseparable mixture of 6-O-cinnamoyl-alpha-D-glucopyranose and 6-O-cinnamoyl-beta-D-glucopyranose at a ratio of 1 : 1, which is presumably formed by cleavage of compound 1. Their structures were elucidated on the basis of chemical and spectral analysis. PMID:19731136

  14. A new acylated flavonol glycoside from Derris triofoliata.

    PubMed

    Xu, Lu-Rong; Wu, Jun; Zhang, Si

    2006-01-01

    A new acylated flavonol glycoside, kaempferol 3-O-[(6''''-feruloyl)-beta-D-glucopyranosyl-(1 --> 3)]-[alpha-L-rhamnopyranosyl-(1 --> 6)]-beta-D-glucopyranoside and two known cyclolignan glycosides, (+)-lyoniresinol-3alpha-O-beta-D-glucopyranoside and ( - )-lyoniresinol-3alpha-O-beta-D-glucopyranoside were isolated from n-BuOH extracts of the aerial parts of Derris triofoliata, their structures were determined from spectroscopic and chemical evidences. PMID:16753776

  15. Verbascoside derivatives and iridoid glycosides from Penstemon crandallii.

    PubMed

    Ismail, L D; el-Azizi, M M; Khalifa, T I; Stermitz, F R

    1995-08-01

    The new phenylethanoid glycosides 2-O-acetyl-3'''-O-methylverbascoside and 2,4"-di-O-acetyl-3'''-O-methylverbascoside were isolated and identified from Penstemon crandallii. The major iridoid glycoside was plantarenaloside and no aucubin type iridoids were found. This contrasted with a previous analysis of P. teucrioides, from the same Penstemon subsection, which was dominated by aucubin derivatives. PMID:7669280

  16. Trans-fused iridoid glycosides from Penstemon mucronatus.

    PubMed

    Krull, R E; Stermitz, F R

    1998-12-01

    Two new trans-fused iridoid glycosides (5 alpha H)-6 alpha-8-epidihydrocornin and (5 alpha H)-6 alpha-8-hydroxy-8-epiloganin, were isolated from Penstemon mucronatus, along with cornin, penstemoside and three hastatosides. The trans-fused iridoids are only the second and third known among over 900 described cis-fused iridoid glycosides. Two pairs of iridoids, identical except for the stereochemistry at C-8, were found. Structures were determined by spectroscopic methods. PMID:9887533

  17. DNA-N-glycosylases process novel O-glycosidic sites in DNA.

    PubMed

    Admiraal, Suzanne J; O'Brien, Patrick J

    2013-06-11

    After the hydrolysis of the N-glycosyl bond between a damaged base and C1' of a deoxyribosyl moiety of DNA, human alkyladenine DNA glycosylase (AAG) and Escherichia coli 3-methyladenine DNA glycosylase II (AlkA) bind tightly to their abasic DNA products, potentially protecting these reactive species. Here we show that both AAG and AlkA catalyze reactions between bound abasic DNA and small, primary alcohols to form novel DNA-O-glycosides. The synthesis reactions are reversible, as the DNA-O-glycosides are converted back into abasic DNA upon being incubated with AAG or AlkA in the absence of alcohol. AAG and AlkA are therefore able to hydrolyze O-glycosidic bonds in addition to N-glycosyl bonds. The newly discovered DNA-O-glycosidase activities of both enzymes compare favorably with their known DNA-N-glycosylase activities: AAG removes both methanol and 1,N(6)-ethenoadenine (?A) from DNA with single-turnover rate constants that are 2.9 × 10(5)-fold greater than the corresponding uncatalyzed rates, whereas the rate enhancement of 3.7 × 10(7) for removal of methanol from DNA by AlkA is 300-fold greater than its rate enhancement for removal of ?A from DNA. Although the biological significance of the DNA-O-glycosidase reactions is not known, the evolution of new DNA repair pathways may be aided by enzymes that practice catalytic promiscuity, such as these two unrelated DNA glycosylases. PMID:23688261

  18. Acylated Steryl Glycoside Synthesis in Seedlings of Nicotiana tabacum L. 1

    PubMed Central

    Frasch, Wayne; Grunwald, Claus

    1976-01-01

    In tobacco seedlings (Nicotiana tabacum L.), glucose from supplied uridine diphosphate-[U-14C]glucose was first incorporated into steryl glycosides and later into acylated steryl glycosides. However, when [14C]cholesterol was used as substrate, the acylated steryl glycosides became labeled earlier than the steryl glycosides. With [14C]cholesteryl glucoside as substrate, most of the radioactive label was recovered as free sterol, and the acylated steryl glycosides were not readily labeled; however, palmitoyl [14C]cholesteryl glucoside was rapidly converted to steryl glycoside. In feeding experiments with free sterol, an unknown, highly radioactive steroid component was isolated. Incorporation of radioactivity into the unknown occurred before the acylated steryl glycosides were labeled. It is postulated that two pathways exist for the biosynthesis of acylated steryl glycoside: one through steryl glycosides, and the other through an unidentified steroid component. It is the latter pathway which appears to be dominant in the in vivo tobacco system. PMID:16659758

  19. Resin Glycosides from the Morning Glory Family

    NASA Astrophysics Data System (ADS)

    Pereda-Miranda, Rogelio; Rosas-Ramírez, Daniel; Castañeda-Gómez, Jhon

    Resin glycosides are part of a very extensive family of secondary metabolites known as glycolipids or lipo-oligosaccharides and are constituents of complex resins (glycoresins) (1) unique to the morning glory family, Convolvulaceae (2). These active principles are responsible for the drastic purgative action of all the important Convolvulaceous species used in traditional medicine throughout the world since ancient times. Several commercial purgative crude drugs can be prepared from the roots of different species of Mexican morning glories. Their incorporation as therapeutic agents in Europe is an outstanding example of the assimilation of botanical drugs from the Americas as substitutes for traditional Old World remedies (3). Even though phytochemical investigations on the constituents of these drugs were initiated during the second half of the nineteenth century, the structure of their active ingredients still remains poorly known for some examples of these purgative roots. During the last two decades, the higher resolution capabilities of modern analytical isolation techniques used in conjunction with powerful spectroscopic methods have facilitated the elucidation of the active principles of these relevant herbal products.

  20. Antioxidant flavonol glycosides from Schinus molle.

    PubMed

    Marzouk, Mohamed S; Moharram, Fatma A; Haggag, Eman G; Ibrahim, Magda T; Badary, Osama A

    2006-03-01

    Chromatographic separation of aqueous MeOH extract of the leaves of Schinus molle L. has yielded two new acylated quercetin glycosides, named isoquercitrin 6''-O-p-hydroxybenzoate (12) and 2''-O-alpha-L-rhamnopyranosyl-hyperin 6''-O-gallate (13), together with 12 known polyphenolic metabolites for the first time from this species, namely gallic acid (1), methyl gallate (2), chlorogenic acid (3), 2''-alpha-L-rhamnopyranosyl-hyperin (4), quercetin 3-O-beta-D-neohesperidoside (5), miquelianin (6), quercetin 3-O-beta-D-galacturonopyranoside (7), isoquercitrin (8), hyperin (9), isoquercitrin 6''-gallate (10), hyperin 6''-O-gallate (11) and (+)-catechin (14). Their structures were established on the basis of chromatographic properties, chemical, spectroscopic (UV, 1H, 13C NMR) and ESI-MS (positive and negative modes) analyses. Compounds 4-9 and 11 exhibited moderate to strong radical scavenging properties on lipid peroxidation, hydroxyl radical and superoxide anion generations with the highest activities shown by 6 and 7 in comparison with that of quercetin as a positive control in vitro. PMID:16521111

  1. Nickel-catalyzed proton-deuterium exchange (HDX) procedures for glycosidic linkage analysis of complex carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The structural analysis of complex carbohydrates typically requires the assignment of three parameters: monosaccharide composition, the position of glycosidic linkages between monosaccharides, and the position and nature of non-carbohydrate substituents. The glycosidic linkage positions are often de...

  2. ISOFLAVONE CONJUGATES AND MINOR GLYCOSIDES EXTRACTED FROM PEANUT HEARTS USING HPLC-MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High performance liquid chromatography and electrospray mass spectrometry (ESI) was used to characterize isoflavone glycosidic conjugates and minor glycosides extracted from peanut meal. The selected extraction method combined the removal of isoflavones and their conjugates with an alcoholic solvent...

  3. 2-methyl-L-erythritol glycosides from Gardenia jasminoides.

    PubMed

    Yang, Liguo; Peng, Kaifeng; Zhao, Shizhe; Zhao, Feng; Chen, Lixia; Qiu, Feng

    2013-09-01

    Two new glycosides, 2-methyl-L-erythritol-4-O-(6-O-trans-sinapoyl)-?-D-glucopyranoside (1) and 2-methyl-L-erythritol-1-O-(6-O-trans-sinapoyl)-?-D-glucopyranoside (2), along with two known triterpenoids (3-4), four quinic acid derivatives (5-8) and one flavonoid (9) were isolated from the fruit of Gardenia jasminoides. Their structures were elucidated through MS and 2D NMR experiments (HMQC and HMBC). Inhibitory effects of the isolated compounds on nitric oxide production in lipopolysaccharide-activated macrophages were evaluated. Though 2-methyl-D-erythritol and its glycosides have been reported in a few references, this is the first report about 2-methyl-L-erythritol glycosides. Based on this finding, we propose that 2-methyl-L-erythritol might be a new intermediate in the non-mevalonate biosynthesis of terpenoids. PMID:23727470

  4. Preferred conformation of the glycosidic linkage of methyl-?-mannose

    NASA Astrophysics Data System (ADS)

    Coskuner, Orkid

    2007-07-01

    The conformational preference of the glycosidic linkage of methyl-?-mannose was studied in the gas phase and in aqueous solution by ab initio calculations, and by molecular dynamics (MD) and Car-Parrinello molecular dynamics (CPMD) simulations. MD simulations were performed with various water potential functions to study the impact of the chosen water potential on the predicted conformational preference of the glycosidic linkage of the carbohydrate in solution. This study shows that the trans (t) orientation of the glycosidic linkage of methyl-?-mannose is preferred over its gauche clockwise (g+) orientation in solution. CPMD simulations clearly indicate that this preference is due to intermolecular hydrogen bonding with surrounding water molecules, whereas no such information could be demonstrated by MD simulations. This study demonstrates the importance of ab initio molecular dynamics simulations in studying the structural properties of carbohydrate-water interactions.

  5. Synthesis and photosensitivity of isoxazolin-5-one glycosides.

    PubMed

    Becker, Tobias; Kartikeya, Prashant; Paetz, Christian; von Reuss, Stephan H; Boland, Wilhelm

    2015-04-01

    A novel procedure for the synthesis of isoxazolin-5-one glycosides starting from unprotected carbohydrates is described. The substrate scope of the one-pot synthetic protocol was explored using D-configured glucose, xylose, maltose, fructose, ribose and 2-deoxyribose. Naturally occurring 2-(?-D-glucopyranosyl)-3-isoxazolin-5-one and four novel isoxazolin-5-one glycosides derived from xylose, maltose and fructose were synthesized and purified by flash chromatography. The compounds were characterized in terms of chemical structure, photophysical properties as well as pH stability. The photohydrolysis rates of the synthesized glycosides were compared with uridine as a standard to determine the quantum yields for the photoreactions in water. PMID:25723136

  6. Iridoid glycoside biosynthesis in Penstemon secundiflorus. Another H-5, H-9 trans-iridoid glycoside.

    PubMed

    Krull, R E; Stermitz, F R; Franzyk, H; Jensen, S R

    1998-11-01

    Isolation and characterization of the new iridoid 10-hydroxy-(5 alpha H)-6-epidihydrocornin from Penstemon secundiflorus (Scrophulariaceae) is described. In biosynthetic experiments, deoxyloganic acid was incorporated into the trans-fused iridoid glycosides (5 alpha H)-6-epidihydrocornin and 10-hydroxy-(5 alpha H)-6-epidihydrocornin in P. secundiflorus. Formation of the trans-fused compounds is therefore a late event in the biosynthesis and does not occur during iridoid formation by cyclization of the open chain monoterpene precursor. In the same plant, 8-epideoxyloganic acid was not incorporated into the trans-iridoids. Deoxyloganic acid was also incorporated into 10-hydroxyhastatoside (which bears an 8 beta-methyl group), while 8-epideoxyloganic acid was incorporated into penstemoside (with an 8 alpha-methyl group). Thus, iridoid biosynthetic pathways leading from both deoxyloganic acid and 8-epideoxyloganic acid were found in the same plant. PMID:9862136

  7. One new cycloartane triterpene glycoside from Beesia calthaefolia.

    PubMed

    Zhao, Jin-Yuan; Mu, Li-Hua; Dong, Xian-Zhe; Hu, Yuan; Liu, Ping

    2016-02-01

    One new cycloartane triterpene glycoside (1) was isolated from the whole plant of Beesia calthaefolia. Its structure was elucidated on the basis of extensive spectroscopic data analysis. Its inhibitory effect was measured by the classical pathway of the complement system, and compared with those of known related cycloartane glycosides 2 and 3, previously isolated by us from the same plant. Compounds 1 and 2 exhibited inhibitory activity of complement system with IC50 of 395.3 and 214 ?M, respectively. The results suggested that OH at C-12, C-18 and C-15 along with the polarity could affect the inhibitory activity. PMID:26305784

  8. Xanthone glycosides from Swertia bimaculata with ?-glucosidase inhibitory activity.

    PubMed

    Yue, Yao-Dong; Zhang, Yu-Tang; Liu, Zhao-Xia; Min, Qiu-Xia; Wan, Luo-Sheng; Wang, Yong-Long; Xiao, Zuo-Qi; Chen, Jia-Chun

    2014-04-01

    Seven new xanthone glycosides (1-7) were isolated from the n-butanol extract of Swertia bimaculata, together with six known compounds (8-13). Their structures were elucidated on the basis of extensive spectroscopic analyses (1D- and 2D-NMR, HRESIMS, UV, and IR) and comparison with data reported in the literature. All the compounds were evaluated for their ?-glucosidase inhibitory activities in vitro, and compounds 3, 4, and 7 exhibited significant activities to inhibit ?-glucosidase. Meanwhile the effects of different substitutions on the ?-glucosidase inhibitory activity of xanthone glycosides from S. bimaculata are also discussed. PMID:24687743

  9. Steroidal sapogenins and glycosides from the rhizomes of Dioscorea bulbifera.

    PubMed

    Liu, Hai; Chou, Gui-Xin; Wu, Tao; Guo, Yin-Long; Wang, Shun-Chun; Wang, Chang-Hong; Wang, Zheng-Tao

    2009-11-01

    Four new steroidal sapogenins (1-4), named diosbulbisins A-D, two new spirostane glycosides, diosbulbisides A (5) and B (6), one new cholestane glycoside, diosbulbiside C (7), and the known compounds 8-10 were isolated from rhizomes of Dioscorea bulbifera. Their structures were elucidated by 1D and 2D NMR techniques, HRFTMS, and chemical methods. The unusual furospirostanol sapogenin skeletons, as found in compounds 3 and 4, are reported in the family Dioscoreaceae for the first time. Cytotoxicity of compounds 1-10 was evaluated using two human hepatocellular carcinoma cell lines (Bel-7402 and SMMC7721). PMID:19842682

  10. Phenylethanoid and flavone glycosides from Ruellia tuberosa L.

    PubMed

    Phakeovilay, Chiobouaphong; Disadee, Wannaporn; Sahakitpichan, Poolsak; Sitthimonchai, Somkit; Kittakoop, Prasat; Ruchirawat, Somsak; Kanchanapoom, Tripetch

    2013-01-01

    A new phenylethanoid glycoside, isocassifolioside (8), and two new flavone glycosides, hispidulin 7-O-?-L-rhamnopyranosyl-(1'? ? 2?)-O-?-D-glucuronopyranoside (11) and pectolinaringenin 7-O-?-L-rhamnopyranosyl-(1'? ? 2?)-O-?-D-glucuronopyranoside (12) were isolated from the aerial portions of Ruellia tuberosa L., together with verbascoside (1), isoverbascoside (2), nuomioside (3), isonuomioside (4), forsythoside B (5), paucifloside (6), cassifolioside (7), hispidulin 7-O-?-D-glucuronopyranoside (9) and comanthoside B (10). The structure elucidations were based on analyses of chemical and spectroscopic data including 1D- and 2D-NMR. The isolated compounds 1-12 exhibited radical scavenging activity using ORAC assay. PMID:22447282

  11. Melanogenesis inhibitory activity of monoterpene glycosides from Gardeniae Fructus.

    PubMed

    Akihisa, Toshihiro; Watanabe, Kensuke; Yamamoto, Ayako; Zhang, Jie; Matsumoto, Masahiro; Fukatsu, Makoto

    2012-08-01

    A new iridoid glycoside, 10-O-(4"-O-methylsuccinoyl)geniposide (7), and two new pyronane glycosides, jasminosides Q and R (13 and 14, resp.), along with nine known iridoid glycosides, 1-6 and 8-10, and two known pyronane glycosides, 11 and 12, were isolated from a MeOH extract of Gardeniae Fructus, the dried ripe fruit of Gardenia jasminoides (Rubiaceae). The structures of new compounds were elucidated on the basis of extensive spectroscopic analyses and comparison with literature. Upon evaluation of compounds 1-14 on the melanogenesis in B16 melanoma cells induced with ?-melanocyte-stimulating hormone (?-MSH), three compounds, i.e., 6-O-p-coumaroylgeniposide (3), 7, and 6'-O-sinapoyljasminoside (12), exhibited inhibitory effects with 21.6-41.0 and 37.5-47.7% reduction of melanin content at 30 and 50 ?M, respectively, with almost no toxicity to the cells (83.7-106.1% of cell viability at 50 ?M). PMID:22899609

  12. Curation of characterized glycoside hydrolases of Fungal origin

    PubMed Central

    Murphy, Caitlin; Powlowski, Justin; Wu, Min; Butler, Greg; Tsang, Adrian

    2011-01-01

    Fungi produce a wide range of extracellular enzymes to break down plant cell walls, which are composed mainly of cellulose, lignin and hemicellulose. Among them are the glycoside hydrolases (GH), the largest and most diverse family of enzymes active on these substrates. To facilitate research and development of enzymes for the conversion of cell-wall polysaccharides into fermentable sugars, we have manually curated a comprehensive set of characterized fungal glycoside hydrolases. Characterized glycoside hydrolases were retrieved from protein and enzyme databases, as well as literature repositories. A total of 453 characterized glycoside hydrolases have been cataloged. They come from 131 different fungal species, most of which belong to the phylum Ascomycota. These enzymes represent 46 different GH activities and cover 44 of the 115 CAZy GH families. In addition to enzyme source and enzyme family, available biochemical properties such as temperature and pH optima, specific activity, kinetic parameters and substrate specificities were recorded. To simplify comparative studies, enzyme and species abbreviations have been standardized, Gene Ontology terms assigned and reference to supporting evidence provided. The annotated genes have been organized in a searchable, online database called mycoCLAP (Characterized Lignocellulose-Active Proteins of fungal origin). It is anticipated that this manually curated collection of biochemically characterized fungal proteins will be used to enhance functional annotation of novel GH genes. Database URL: http://mycoCLAP.fungalgenomics.ca/ PMID:21622642

  13. Glycosidation of Methanol with Ribose: An Interdisciplinary Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Simon, Erin; Cook, Katie; Pritchard, Meredith R.; Stripe, Wayne; Bruch, Martha; Bendinskas, Kestutis

    2010-01-01

    This exercise provides students hands-on experience with the topics of glycosidation, hemiacetal and acetal formation, proton nuclear magnetic resonance ([superscript 1]H NMR) spectroscopy, and kinetic and thermodynamic product formation. In this laboratory experiment, the methyl acetal of ribose is synthesized, and the kinetic and thermodynamic…

  14. Genetic Structure of the Tree Peony (Paeonia rockii) and the Qinling Mountains as a Geographic Barrier Driving the Fragmentation of a Large Population

    PubMed Central

    Yuan, Jun–hui; Cheng, Fang–Yun; Zhou, Shi–Liang

    2012-01-01

    Background Tree peonies are great ornamental plants associated with a rich ethnobotanical history in Chinese culture and have recently been used as an evolutionary model. The Qinling Mountains represent a significant geographic barrier in Asia, dividing mainland China into northern (temperate) and southern (semi–tropical) regions; however, their flora has not been well analyzed. In this study, the genetic differentiation and genetic structure of Paeonia rockii and the role of the Qinling Mountains as a barrier that has driven intraspecific fragmentation were evaluated using 14 microsatellite markers. Methodology/Principal Findings Twenty wild populations were sampled from the distributional range of P. rockii. Significant population differentiation was suggested (FST value of 0.302). Moderate genetic diversity at the population level (HS of 0.516) and high population diversity at the species level (HT of 0.749) were detected. Significant excess homozygosity (FIS of 0.076) and recent population bottlenecks were detected in three populations. Bayesian clusters, population genetic trees and principal coordinate analysis all classified the P. rockii populations into three genetic groups and one admixed Wenxian population. An isolation-by-distance model for P. rockii was suggested by Mantel tests (r?=?0.6074, P<0.001) and supported by AMOVA (P<0.001), revealing a significant molecular variance among the groups (11.32%) and their populations (21.22%). These data support the five geographic boundaries surrounding the Qinling Mountains and adjacent areas that were detected with Monmonier's maximum-difference algorithm. Conclusions/Significance Our data suggest that the current genetic structure of P. rockii has resulted from the fragmentation of a formerly continuously distributed large population following the restriction of gene flow between populations of this species by the Qinling Mountains. This study provides a fundamental genetic profile for the conservation and responsible exploitation of the extant germplasm of this species and for improving the genetic basis for breeding its cultivars. PMID:22523566

  15. Role of Glycoside Phosphorylases in Mannose Foraging by Human Gut Bacteria*

    PubMed Central

    Ladevèze, Simon; Tarquis, Laurence; Cecchini, Davide A.; Bercovici, Juliette; André, Isabelle; Topham, Christopher M.; Morel, Sandrine; Laville, Elisabeth; Monsan, Pierre; Lombard, Vincent; Henrissat, Bernard; Potocki-Véronèse, Gabrielle

    2013-01-01

    To metabolize both dietary fiber constituent carbohydrates and host glycans lining the intestinal epithelium, gut bacteria produce a wide range of carbohydrate-active enzymes, of which glycoside hydrolases are the main components. In this study, we describe the ability of phosphorylases to participate in the breakdown of human N-glycans, from an analysis of the substrate specificity of UhgbMP, a mannoside phosphorylase of the GH130 protein family discovered by functional metagenomics. UhgbMP is found to phosphorolyze ?-d-Manp-1,4-?-d-GlcpNAc-1,4-d-GlcpNAc and is also a highly efficient enzyme to catalyze the synthesis of this precious N-glycan core oligosaccharide by reverse phosphorolysis. Analysis of sequence conservation within family GH130, mapped on a three-dimensional model of UhgbMP and supported by site-directed mutagenesis results, revealed two GH130 subfamilies and allowed the identification of key residues responsible for catalysis and substrate specificity. The analysis of the genomic context of 65 known GH130 sequences belonging to human gut bacteria indicates that the enzymes of the GH130_1 subfamily would be involved in mannan catabolism, whereas the enzymes belonging to the GH130_2 subfamily would rather work in synergy with glycoside hydrolases of the GH92 and GH18 families in the breakdown of N-glycans. The use of GH130 inhibitors as therapeutic agents or functional foods could thus be considered as an innovative strategy to inhibit N-glycan degradation, with the ultimate goal of protecting, or restoring, the epithelial barrier. PMID:24043624

  16. Two new pregnane glycoside diesters from Caralluma russeliana.

    PubMed

    Abdel-Mogib, Mamdouh; Raghib, Hanaa M

    2013-01-01

    Two new pregnane glycoside diesters, 1 and 2, in addition to two triterpenoids, 3 and 4, and two sterols, 5 and 6 were isolated and identified from Caralluma russeliana (family Asclepiadaceae). The new pregnane glycosides, 14?-benzoyloxy-15?-isovaleroyloxy-16?-hydroxypregn-20-on-3-O-[?-D-3-O-methyl-6-deoxyoleandrosopyranosyl-(1 ? 4)-?-D-cymaropyranosyl-(1 ? 4)-?-D-cymaropyranoside] (1) and 14?-isovaleroyloxy-15?-benzoyloxy-16?-hydroxypregn-20-on-3-O-[?-D-3-O-methyl-6-deoxyoleandrosopyranosyl-(1 ? 4)-?-D-cymaropyranosyl-(1 ? 4)-?-D-cymaropyranoside] (2), are different from those isolated previously from the same species in the sugar moiety, in being diester, in being 20-one and in being 5,6 saturated by hydrogen. The isolated compounds were identified on the basis of spectral data. PMID:23061816

  17. Cytotoxic triterpene glycosides from the roots of Sanguisorba officinalis.

    PubMed

    Hu, Jiang; Song, Yan; Li, Hui; Yang, Benshou; Mao, Xia; Zhao, Yongmao; Shi, Xiaodong

    2015-06-01

    Phytochemical investigation of the ethanol extract of the roots of Sanguisorba officinalis resulted in the isolation of three new triterpene glycosides, 3?-[(?-L-arabinopyranosyl)oxy]-19?,23-dihydroxyolean-12-en-28-oic acid 28-[6-O-acetyl-?-D-glucopyranosyl] ester (1), 2?,3?,19?,23-tetrahydroxyurs-12-en-28-oic acid 28-[6-O-acetyl-?-D-glucopyranosyl] ester (2), and 3?-[(?-L-arabinopyranosyl)oxy]-19?-hydroxyurs-12,20(30)-dien-28-oic acid 28-[6-O-acetyl-?-D-glucopyranosyl] ester (3). All the triterpene glycosides exhibited the significant cytotoxic potential with low IC50 values (IC50 < 5.0 ?M) against six tumor cell lines (MCF-7, HeLa, HepG2, SGC-7901, NCI-H460, and BGC-823). PMID:25193625

  18. Cardiac glycosides from the bark of Antiaris toxicaria.

    PubMed

    Li, Xiao-San; Hu, Meng-Jie; Liu, Jie; Liu, Qian; Huang, Zhi-Xing; Li, Shun-Lin; Hao, Xiao-Jiang; Zhang, Xiao-Kun; Yao, Xin-Sheng; Tang, Jin-Shan

    2014-09-01

    Five new cardiac glycosides (1-5, namely antiaroside Y-ZC) together with 19 known compounds were obtained from the bark of Antiaris toxicaria. Their chemical structures were determined by IR, HR-ESI-MS, 1D and 2D NMR (HSQC, (1)H-(1)H COSY, HMBC, ROESY). The absolute configuration of sugar unit was defined by acid hydrolysis and appropriate derivatization. Compound 1 was rare 5?-H-10?-H-19-nor-cardenolide, which might derive from decarboxylative derivative of 19-COOH cardenolide. The inhibitory effects of cardiac glycosides 1-11 on the viability of NIH-H460 lung cancer cells and their induction of Nur77 expression were evaluated and preliminary structure-activity relationship (SAR) was also discussed. PMID:24879902

  19. New terpenoid glycosides obtained from Rosmarinus officinalis L. aerial parts.

    PubMed

    Zhang, Yi; Adelakun, Tiwalade Adegoke; Qu, Lu; Li, Xiaoxia; Li, Jian; Han, Lifeng; Wang, Tao

    2014-12-01

    Five new terpenoid glycosides, named as officinoterpenosides A? (1), A? (2), B (3), C (4), and D (5), together with 11 known ones, (1S,4S,5S)-5-exo-hydrocamphor 5-O-?-D-glucopyranoside (6), isorosmanol (7), rosmanol (8), 7-methoxyrosmanol (9), epirosmanol (10), ursolic acid (11), micromeric acid (12), oleanolic acid (13), niga-ichigoside F? (14), glucosyl tormentate (15), and asteryunnanoside B (16), were obtained from the aerial parts of Rosmarinus officinalis L. Their structures were elucidated by chemical and spectroscopic methods (UV, IR, HRESI-TOF-MS, 1D and 2D NMR). Among the new ones, 1 and 2, 3 and 4 are diterpenoid and triterpenoid glycosides, respectively; and 5 is a normonoterpenoid. For the known ones, 6 was isolated from the Rosmarinus genus first, and 15, 16 were obtained from this species for the first time. PMID:25200369

  20. Phenylpropanoid glycosides from the leaves of Paulownia coreana.

    PubMed

    Kim, Jin-Kyu; Si, Chuan-Ling; Bae, Young-Soo

    2008-02-15

    Study on the water soluble fraction from the leaves of Paulownia coreana led to the isolation of verbascoside (1), isoverbascoside (2), campneoside II (3), and a new phenylpropanoid glycoside, (R,S)-7-hydroxy-7-(3,4-dihydroxyphenyl)-ethyl-O-alpha-L-rhamnopyranosyl(1 --> 3)-beta-d-(6-O-caffeoyl)-glucopyranoside (4). The structures of these compounds were established on the basis of spectroscopic evidence. PMID:18266154

  1. Stability of aminooxy glycosides to glycosidase catalysed hydrolysis.

    PubMed

    Iqbal, Amjid; Chibli, Hicham; Hamilton, Chris J

    2013-08-01

    The stability of the amino(methoxy) beta-glycosidic bond to glycosidase catalysed hydrolysis is reported. Beta-O-benzyl glucose and beta-O-benzyl galactose are substrates hydrolysed by beta-glucosidase and beta-galactosidase from almonds and Escherichia coli, respectively. However their beta-N-benzyl-(O-methoxy)-glucoside and beta-N-benzyl-(O-methoxy)-galactoside derivatives are competitive inhibitors. PMID:23764956

  2. Diterpenoid and phenolic glycosides from the roots of Rhododendron molle.

    PubMed

    Bao, Guan-Hu; Wang, Li-Quan; Cheng, Kin-Fai; Feng, Yong-Hong; Li, Xiao-Yu; Qin, Guo-Wei

    2003-05-01

    Two new grayanane diterpenoid glucosides, rhodomosides A (1), B (2) and two new phenolic glycosides 3, 4 together with a known glucosyringic acid (5) were isolated from the roots of Rhododendron molle G. Don (Ericaceae). Their structures were elucidated on the basis of spectral analysis. Compounds 3, 4 and 5 were found to inhibit the proliferation of murine B lymphocytes in vitro, while compound 3 also showed stimulatory activity on the proliferation of murine T lymphocytes in vitro. PMID:12802725

  3. Minor diterpene glycosides from the leaves of Stevia rebaudiana.

    PubMed

    Ibrahim, Mohamed A; Rodenburg, Douglas L; Alves, Kamilla; Fronczek, Frank R; McChesney, James D; Wu, Chongming; Nettles, Brian J; Venkataraman, Sylesh K; Jaksch, Frank

    2014-05-23

    Two new diterpene glycosides in addition to five known glycosides have been isolated from a commercial extract of the leaves of Stevia rebaudiana. Compound 1 (rebaudioside KA) was shown to be 13-[(O-?-d-glucopyranosyl)oxy]ent-kaur-16-en-19-oic acid 2-O-?-d-glucopyranosyl-?-d-glucopyranosyl ester and compound 2, 12-?-[(2-O-?-d-glucopyranosyl-?-d-glucopyranosyl)oxy]ent-kaur-16-en-19-oic acid ?-d-glucopyranosyl ester. Five additional known compounds were identified, rebaudioside E, rebaudioside M, rebaudioside N, rebaudioside O, and stevioside, respectively. Enzymatic hydrolysis of stevioside afforded the known ent-kaurane aglycone 13-hydroxy-ent-kaur-16-en-19-oic acid (steviol) (3). The isolated metabolite 1 possesses the ent-kaurane aglycone steviol (3), while compound 2 represents the first example of the isomeric diterpene 12-?-hydroxy-ent-kaur-16-en-19-oic acid existing as a glycoside in S. rebaudiana. The structures of the isolated metabolites 1 and 2 were determined based on comprehensive 1D- and 2D-NMR (COSY, HSQC, and HMBC) studies. A high-quality crystal of compound 3 has formed, which allowed the acquisition of X-ray diffraction data that confirmed its structure. The structural similarities between the new metabolites and the commercially available stevioside sweeteners suggest the newly isolated metabolites should be examined for their organoleptic properties. Accordingly rebaudiosides E, M, N, O, and KA have been isolated in greater than gram quantities. PMID:24758242

  4. Sweet Poisons: Honeys Contaminated with Glycosides of the Neurotoxin Tutin.

    PubMed

    Larsen, Lesley; Joyce, Nigel I; Sansom, Catherine E; Cooney, Janine M; Jensen, Dwayne J; Perry, Nigel B

    2015-06-26

    Poisonings due to consumption of honeys containing plant toxins have been reported widely. One cause is the neurotoxin tutin, an oxygenated sesquiterpene picrotoxane, traced back to honeybees (Apis mellifera) collecting honeydew produced by passionvine hoppers (Scolypopa australis) feeding on sap of the poisonous shrub tutu (Coriaria spp.). However, a pharmacokinetic study suggested that unidentified conjugates of tutin were also present in such honeys. We now report the discovery, using ion trap LC-MS, of two tutin glycosides and their purification and structure determination as 2-(?-d-glucopyranosyl)tutin (4) and 2-[6'-(?-d-glucopyranosyl)-?-d-glucopyranosyl]tutin (5). These compounds were used to develop a quantitative triple quadrupole LC-MS method for honey analysis, which showed the presence of tutin (3.6 ± 0.1 ?g/g honey), hyenanchin (19.3 ± 0.5), tutin glycoside (4) (4.9 ± 0.4), and tutin diglycoside (5) (4.9 ± 0.1) in one toxic honey. The ratios of 4 and 5 to tutin varied widely in other tutin-containing honeys. The glycosidation of tutin may represent detoxification by one or both of the insects involved in the food chain from plant to honey. PMID:25993882

  5. Glycosidically bound flavor compounds of cape gooseberry (Physalis peruviana L.).

    PubMed

    Mayorga, H; Knapp, H; Winterhalter, P; Duque, C

    2001-04-01

    The bound volatile fraction of cape gooseberry (Physalis peruviana L.) fruit harvested in Colombia has been examined by HRGC and HRGC-MS after enzymatic hydrolysis using a nonselective pectinase (Rohapect D5L). Forty bound volatiles could be identified, with 21 of them being reported for the first time in cape gooseberry. After preparative isolation of the glycosidic precursors on XAD-2 resin, purification by multilayer coil countercurrent chromatography and HPLC of the peracetylated glycosides were carried out. Structure elucidation by NMR, ESI-MS/MS, and optical rotation enabled the identification of (1S,2S)-1-phenylpropane-1,2-diol 2-O-beta-D-glucopyranoside (1) and p-menth-4(8)-ene-1,2-diol 1-O-alpha-L-arabinopyranosyl-(1-6)-beta-D-glucopyranoside (2). Both glycosides have been identified for the first time in nature. They could be considered as immediate precursors of 1-phenylpropane-1,2-diol and p-menth-4(8)-ene-1,2-diol, typical volatiles found in the fruit of cape gooseberry. PMID:11308344

  6. Enzymatic Biosynthesis of Novel Resveratrol Glucoside and Glycoside Derivatives

    PubMed Central

    Pandey, Ramesh Prasad; Parajuli, Prakash; Shin, Ju Yong; Lee, Jisun; Lee, Seul; Hong, Young-Soo; Park, Yong Il; Kim, Joong Su

    2014-01-01

    A UDP glucosyltransferase from Bacillus licheniformis was overexpressed, purified, and incubated with nucleotide diphosphate (NDP) d- and l-sugars to produce glucose, galactose, 2-deoxyglucose, viosamine, rhamnose, and fucose sugar-conjugated resveratrol glycosides. Significantly higher (90%) bioconversion of resveratrol was achieved with ?-d-glucose as the sugar donor to produce four different glucosides of resveratrol: resveratrol 3-O-?-d-glucoside, resveratrol 4?-O-?-d-glucoside, resveratrol 3,5-O-?-d-diglucoside, and resveratrol 3,5,4?-O-?-d-triglucoside. The conversion rates and numbers of products formed were found to vary with the other NDP sugar donors. Resveratrol 3-O-?-d-2-deoxyglucoside and resveratrol 3,5-O-?-d-di-2-deoxyglucoside were found to be produced using TDP-2-deoxyglucose as a donor; however, the monoglycosides resveratrol 4?-O-?-d-galactoside, resveratrol 4?-O-?-d-viosaminoside, resveratrol 3-O-?-l-rhamnoside, and resveratrol 3-O-?-l-fucoside were produced from the respective sugar donors. Altogether, 10 diverse glycoside derivatives of the medically important resveratrol were generated, demonstrating the capacity of YjiC to produce structurally diverse resveratrol glycosides. PMID:25239890

  7. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon

    SciTech Connect

    Tyler, Ludmila; Bragg, Jennifer; Wu, Jiajie; Yang, Xiaohan; Tuskan, Gerald A; Vogel, John

    2010-01-01

    Background Glycoside hydrolases cleave the bond between a carbohydrate and another carbohydrate, a protein, lipid or other moiety. Genes encoding glycoside hydrolases are found in a wide range of organisms, from archea to animals, and are relatively abundant in plant genomes. In plants, these enzymes are involved in diverse processes, including starch metabolism, defense, and cell-wall remodeling. Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice), the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar). To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we annotated the glycoside hydrolase genes in the grasses Brachypodium distachyon (an emerging monocotyledonous model) and Sorghum bicolor (sorghum). We then compared the glycoside hydrolases across species, both at the whole-genome level and at the level of individual glycoside hydrolase families. Results We identified 356 glycoside hydrolase genes in Brachypodium and 404 in sorghum. The corresponding proteins fell into the same 34 families that are represented in rice, Arabidopsis, and poplar, helping to define a glycoside hydrolase family profile which may be common to flowering plants. Examination of individual glycoside hydrolase familes (GH5, GH13, GH18, GH19, GH28, and GH51) revealed both similarities and distinctions between monocots and dicots, as well as between species. Shared evolutionary histories appear to be modified by lineage-specific expansions or deletions. Within families, the Brachypodium and sorghum proteins generally cluster with those from other monocots. Conclusions This work provides the foundation for further comparative and functional analyses of plant glycoside hydrolases. Defining the Brachypodium glycoside hydrolases sets the stage for Brachypodium to be a monocot model for investigations of these enzymes and their diverse roles in planta. Insights gained from Brachypodium will inform translational research studies, with applications for the improvement of cereal crops and bioenergy grasses.

  8. A comparison of flavonoid glycosides by electrospray tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    March, Raymond E.; Lewars, Errol G.; Stadey, Christopher J.; Miao, Xiu-Sheng; Zhao, Xiaoming; Metcalfe, Chris D.

    2006-01-01

    A comparison is presented of product ion mass spectra of protonated and deprotonated molecules of kaempferol-3-O-glucoside, quercitin-3-O-glucoside (isoquercitrin), quercitin-3-O-galactoside (hyperoin), apigenin-7-O-glucoside, luteolin-7-O-glucoside, genistein-7-O-glucoside, naringenin-7-O-glucoside (prunin), luteolin-4'-O-glucoside, luteolin-6-C-glucoside (homoorientin, known also as isoorientin), apigenin-8-C-glucoside (vitexin), and luteolin-8-C-glucoside (orientin) together with the product ion mass spectrum of deprotonated kaempferol-7-O-glucoside. All isomeric ions were distinguishable on the basis of their product ion mass spectra. For protonated 3-O-, 7-O-, and 4'-O-glycosides at a collision energy of 46-47 eV, homolytic cleavage of the O-glycosidic bond yielded aglycon Y+ ions, whereas in deprotonated 3-O-, 7-O-, and 4'-O-glycosides, heterolytic and homolytic cleavage of the O-glycosidic bond yielded radical aglycon (Y-H)- and aglycon (Y-) ions. In each case, fragmentation of either the glycan or the aglycon or both was observed. For 6-C- and 8-C-glycosides at a collision energy of 46-47 eV, fragmentation was restricted almost exclusively to the glycan. For luteolin-6-C-glucoside, the integrity of the aglycon structure is preserved at the expense of the glycan for which some 30 fragmentations were observed. Breakdown curves were determined as a function of collision energy for protonated and deprotonated luteolin-6-C-glucoside. An attempt has been made to rationalize the product ion mass spectra derived from C-O- and C-C-luteolin glucosides in terms of computed structures that indicate significant intramolecular hydrogen bonding and rotation of the B-ring to form a coplanar luteolin structure. It is proposed that protonated and deprotonated luteolin-6-C-glucoside may afford examples of cooperative interactive bonding that plays a major role in directing fragmentation.

  9. Three new alkaloids and three new phenolic glycosides from Liparis odorata.

    PubMed

    Jiang, Piao; Liu, Hongdong; Xu, Xianghong; Liu, Bo; Zhang, Dongming; Lai, Xuewen; Zhu, Genghua; Xu, Peng; Li, Bin

    2015-12-01

    Three new alkaloids, liparis alkaloid A (1), B (2), C (3), and three new phenolic glycosides, liparis glycoside H (4), I (5), J (6), together with three known phenolic glycosides (7-9) were isolated from the whole plant of Liparis odorata. Their structures were characterized on the basis of extensive 1D-, 2D-NMR and HR-ESI-MS experiments. In addition, compounds 1-3 revealed hypolipidemic effects in the in vitro bioassays, and the ability to inhibit LPS-induced NO production of these isolated phenolic glycosides (4-9) was also evaluated. PMID:26481137

  10. Reversible Sterilization

    ERIC Educational Resources Information Center

    Largey, Gale

    1977-01-01

    Notes that difficult questions arise concerning the use of sterilization for alleged eugenic and euthenic purposes. Thus, how reversible sterilization will be used with relation to the poor, mentally ill, mentally retarded, criminals, and minors, is questioned. (Author/AM)

  11. Reversible Cardiomyopathies

    PubMed Central

    Patel, Harsh; Madanieh, Raef; Kosmas, Constantine E; Vatti, Satya K; Vittorio, Timothy J

    2015-01-01

    Cardiomyopathies (CMs) have many etiological factors that can result in severe structural and functional dysregulation. Fortunately, there are several potentially reversible CMs that are known to improve when the root etiological factor is addressed. In this article, we discuss several of these reversible CMs, including tachycardia-induced, peripartum, inflammatory, hyperthyroidism, Takotsubo, and chronic illness–induced CMs. Our discussion also includes a review on their respective pathophysiology, as well as possible management solutions. PMID:26052233

  12. Separation and characterization of soluble esterified and glycoside-bound phenolic compounds in dry-blanched peanut skins by liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Ma, Yuanyuan; Kosi?ska-Cagnazzo, Agnieszka; Kerr, William L; Amarowicz, Ryszard; Swanson, Ruthann B; Pegg, Ronald B

    2014-11-26

    A large variety of soluble phenolic compounds, including phenolic acids (hydroxybenzoic acids, ethyl protocatechuate, and hydroxycinnamic acids, as well as phenylacetic acid and phenyllactic acid), stilbenes (trans-piceatannol and trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene), flavan-3-ols (e.g., (-)-epicatechin, (+)-catechin, (-)-epiafzelechin, and their polymers (the proanthocyanidins, PACs)), other flavonoids (e.g., isoflavones, flavanols, and flavones), and biflavonoids, were released from esters and glycosides by base/acid hydrolysis and identified in acetonic extracts of dry-blanched peanut skins (PS). Reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with electrospray ionization mass spectrometry (ESI-MS(n)) was applied to separate and identify the phenolic constituents. Tentative identification of the separated phenolics was based on molecular ions and MS(n) fragmentation patterns acquired by ESI-MS in the negative-ion mode. Identification of free phenolic acids, stilbenes, and flavonoids was also achieved by commercial standards and by published literature data. Quantification was performed on the basis of peak areas of the UV signals from the HPLC chromatograms and calibration curves of the commercial standards. The flavonoids of PS exist mostly in glycoside-bound forms, but the aglycones can be liberated upon acid hydrolysis. PS contain significantly more PACs compared to free phenolic compounds: PAC monomers to tetramers constituted 92.0% of esterified phenolic compounds. The PAC monomer ((+)-catechin) and dimers are the main phenolics released from glycosides and account for 31.7 and 59.1%, respectively, of the total glycoside-bound phenolic compounds. PMID:25354220

  13. Active site and laminarin binding in glycoside hydrolase family 55.

    PubMed

    Bianchetti, Christopher M; Takasuka, Taichi E; Deutsch, Sam; Udell, Hannah S; Yik, Eric J; Bergeman, Lai F; Fox, Brian G

    2015-05-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-?-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 ?-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100-10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ?30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  14. Adsorption of Glycosidic Surfactants at the Mercury Electrode

    PubMed

    Mousty; Maurice; Mousset; Schollhorn; Lefeuvre; Plusquellec

    1996-12-25

    The adsorption of glycosidic surfactants from aqueous electrolyte solutions on a mercury electrode was studied by means of differential capacitive measurements (tensammetric method). The adsorption behavior of the mono- and disaccharidic surfactants studied is discussed in relation to their micellar properties, in particular their respective critical micellar concentration (CMC). With monosaccharidic surfactants, a broad and bell-shaped peak is observed on the tensammetric curves and it suggests the formation of a monolayer called hemimicelle at the mercury electrode. For disaccharidic compounds, the split capacity peak observed at concentrations above the CMC suggests the formation of a multilayer of micelles throughout the electrical double layer. PMID:8978573

  15. A new cembrane glycoside in Asterothamnus centrali-asiaticus from Gobi Desert.

    PubMed

    Todorova, Milka; Trendafilova, Antoaneta; Javsmaa, Namshir; Altantsetseg, Shatarin; Shatar, Sanduin

    2013-09-01

    A new cembrane glycoside, nephthenol 15-O-?-d-quinovoside, was isolated from the aerial parts of Asterothamnus centrali-asiaticus. Its structure was elucidated by 1D and 2D NMR spectroscopic analysis, as well as by mass spectrometry. This is the first report of the occurrence of a cembrane glycoside in vascular plants. PMID:23944908

  16. Three new iridoid glycosides from the fruit of gardenia jasminoides var. radicans.

    PubMed

    Qin, Fang-Min; Meng, Ling-Jie; Zou, Hui-Liang; Zhou, Guang-Xiong

    2013-01-01

    Three new iridoid glycosides, 6?-O-trans-feruloylgenipin gentiobioside (1), 2'-O-trans-p-coumaroylgardoside (2), 2'-O-trans-feruloylgardoside (3), were isolated from the fruit of Gardenia jasminoides var. radicans MAKINO (Rubiaceae). The structures of these compounds were elucidated on the basis of MS, NMR spectra analysis, glycoside hydrolysis, and sugar derivatization coupled with HPLC analysis. PMID:24088698

  17. Environment and Genotype Affect Sweetpotato Storage Root Periderm Resin Glycoside Content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resin glycosides are complex compounds composed primarily of fatty acids and sugars that contribute to allelopathic potential and pest resistance in sweetpotato. Total periderm resin glycoside (PRG) contents of 10 sweetpotato (Ipomoea batatas L.) clones grown in three different field trials was det...

  18. Stimulation of steviol glycoside accumulation in Stevia rebaudiana by red LED light.

    PubMed

    Ceunen, Stijn; Werbrouck, Stefaan; Geuns, Jan M C

    2012-05-01

    The aim of this study was to determine whether steviol glycoside accumulation is under phytochrome control. The results indicate that Stevia rebaudiana Bertoni plants grown under short-day conditions showed precocious flowering and stagnation of steviol glycoside accumulation. Long night interruption by red LED light stimulated and sustained the vegetative growth as well as the accumulation of steviol glycosides in the leaves. After 7 weeks of treatment, steviol glycoside content was about two-fold higher in LED-treated plants than in the short-day control group. The effects of red LED light were measured both in a greenhouse and in a phytotron, irrespective of cultivar-specific differences. Therefore, it can be concluded that a mid-night interruption by red LED light during short photoperiods provides an easy and inexpensive method to increase vegetative leaf biomass production with an increased steviol glycoside yield. PMID:22341569

  19. Angling for Uniqueness in Enzymatic Preparation of Glycosides

    PubMed Central

    Trincone, Antonio

    2013-01-01

    In the early days of biocatalysis, limitations of an enzyme modeled the enzymatic applications; nowadays the enzyme can be engineered to be suitable for the process requirements. This is a general bird’s-eye view and as such cannot be specific for articulated situations found in different classes of enzymes or for selected enzymatic processes. As far as the enzymatic preparation of glycosides is concerned, recent scientific literature is awash with examples of uniqueness related to the features of the biocatalyst (yield, substrate specificity, regioselectivity, and resistance to a particular reaction condition). The invention of glycosynthases is just one of the aspects that has thrust forward the research in this field. Protein engineering, metagenomics and reaction engineering have led to the discovery of an expanding number of novel enzymes and to the setting up of new bio-based processes for the preparation of glycosides. In this review, new examples from the last decade are compiled with attention both to cases in which naturally present, as well as genetically inserted, characteristics of the catalysts make them attractive for biocatalysis. PMID:24970171

  20. Oleanane-type glycosides from Tremastelma palaestinum (L.) Janchen.

    PubMed

    ?enel, Gökhan; Gülcemal, Derya; Masullo, Milena; Piacente, Sonia; Karay?ld?r?m, Tamer

    2014-03-01

    Three new oleanane-type glycosides, 1-3, were isolated from the whole plant of Tremastelma palaestinum (L.) Janchen, along with eight known triterpene glycosides. The structures of the new compounds were established as 3-O-[?-d-glucopyranosyl-(1?3)-?-l-rhamnopyranosyl-(1?3)-?-d-glucopyranosyl-(1?3)-?-l-rhamnopyranosyl-(1?2)-?-l-arabinopyranosyl]hederagenin (1), 3-O-[?-d-glucopyranosyl-(1?3)-?-l-rhamnopyranosyl-(1?3)-?-d-glucopyranosyl-(1?3)-?-l-rhamnopyranosyl-(1?2)-?-l-arabinopyranosyl]hederagenin 28-O-?-d-glucopyranosyl-(1?6)-?-d-glucopyranosyl ester (2), and 3-O-[?-l-rhamnopyranosyl-(1?3)-?-d-glucopyranosyl-(1?3)-?-l-rhamnopyranosyl-(1?2)-?-l-arabinopyranosyl]oleanolic acid 28-O-?-d-glucopyranosyl-(1?6)-?-d-glucopyranosyl ester (3) by using 1D- and 2D-NMR techniques and mass spectrometry. This is the first report on the phytochemical investigation of a species belonging to Tremastelma genus. PMID:24634070

  1. Synthesis of Indoxyl-glycosides for Detection of Glycosidase Activities.

    PubMed

    Böttcher, Stephan; Thiem, Joachim

    2015-01-01

    Indoxyl glycosides proved to be valuable and versatile tools for monitoring glycosidase activities. Indoxyls are released by enzymatic hydrolysis and are rapidly oxidized, for example by atmospheric oxygen, to indigo type dyes. This reaction enables fast and easy screening in vivo without isolation or purification of enzymes, as well as rapid tests on agar plates or in solution (e.g., blue-white screening, micro-wells) and is used in biochemistry, histochemistry, bacteriology and molecular biology. Unfortunately the synthesis of such substrates proved to be difficult, due to various side reactions and the low reactivity of the indoxyl hydroxyl function. Especially for glucose type structures low yields were observed. Our novel approach employs indoxylic acid ester as key intermediates. Indoxylic acid esters with varied substitution patterns were prepared on scalable pathways. Phase transfer glycosylations with those acceptors and peracetylated glycosyl halides can be performed under common conditions in high yields. Ester cleavage and subsequent mild silver mediated glycosylation yields the peracetylated indoxyl glycosides in high yields. Finally deprotection is performed according to Zemplén. PMID:26068577

  2. Allosteric indicator displacement enzyme assay for a cyanogenic glycoside.

    PubMed

    Jose, D Amilan; Elstner, Martin; Schiller, Alexander

    2013-10-18

    Indicator displacement assays (IDAs) represent an elegant approach in supramolecular analytical chemistry. Herein, we report a chemical biosensor for the selective detection of the cyanogenic glycoside amygdalin in aqueous solution. The hybrid sensor consists of the enzyme ?-glucosidase and a boronic acid appended viologen together with a fluorescent reporter dye. ?-Glucosidase degrades the cyanogenic glycoside amygdalin into hydrogen cyanide, glucose, and benzaldehyde. Only the released cyanide binds at the allosteric site of the receptor (boronic acid) thereby inducing changes in the affinity of a formerly bound fluorescent indicator dye at the other side of the receptor. Thus, the sensing probe performs as allosteric indicator displacement assay (AIDA) for cyanide in water. Interference studies with inorganic anions and glucose revealed that cyanide is solely responsible for the change in the fluorescent signal. DFT calculations on a model compound revealed a 1:1 binding ratio of the boronic acid and cyanide ion. The fluorescent enzyme assay for ?-glucosidase uses amygdalin as natural substrate and allows measuring Michaelis-Menten kinetics in microtiter plates. The allosteric indicator displacement assay (AIDA) probe can also be used to detect cyanide traces in commercial amygdalin samples. PMID:24123550

  3. A new glycosidic flavonoid from Jwarhar mahakashay (antipyretic) Ayurvedic preparation

    PubMed Central

    Gupta, Mradu; Shaw, B. P.; Mukherjee, A.

    2010-01-01

    The aqueous extract of Jwarhar mahakashay Ayurvedic preparation (from the roots of Hemidesmus indicus R. Br., Rubia cordifolia L., Cissampelos pareira L.; fruits of Terminalia chebula Retz., Emblica officinalis Gaertn., Terminalia bellirica Roxb., Vitis vinifera L., Grewia asiatica L., Salvadora persica L. and granules of Saccharum officinarum L.) has been used as a traditional antipyretic. Experimental studies confirmed its antipyretic–analgesic effect with very low ulcerogenicity and toxicity. Flavonoids, glycosides and tannins were later found to be present in the extract. Detailed chemical investigations were undertaken after hydrolysis of extract using spectroscopic and chromatography methods to determine its active chemical constituent. UV-Visible spectroscopy showed absorbance maxima at 220 and 276 nm, while fourier transform infra-red investigations indicated an end carboxylic O–H structure at 2940 cm?1 suggesting the presence of glycoside-linked flavonoids. Thin layer chromatography and high performance liquid chromatography also confirmed the possibility of at least one major and two minor compounds in this abstract. Detailed examination using gas chromatography-mass spectrometry led to the identification of the principal component as 2-(1-oxopropyl)-benzoic acid, which is quite similar to the active compound found in the standard drug Aspirin (2-acetyl-oxybenzoic acid). PMID:20814525

  4. Evaluation of the content variation of anthraquinone glycosides in rhubarb by UPLC-PDA

    PubMed Central

    2013-01-01

    Background Rhubarb is an important Chinese medicinal herb with a long history of over 2000 years and has been commonly used as a laxative. It is the radix and rhizome of Rheum officinale Baill., R. palmatum L. and R. tanguticum Maxim, all of which are mainly distributed in a broad region in the Tibetan plateau. Anthraquinone glycosides are a series of major active ingredients found in all three species. They are key intermediates in the anthraquinone secondary metabolism and the sennnoside biosynthesis. The variation of the anthraquinone glycoside content in rhubarb in response to specific factors remains an attractive topic. Results A simple and sensitive Ultra Performance Liquid Chromatography with Photo-Diode Array (UPLC-PDA) detector was developed for the simultaneous determination of six anthraquinone glycosides in rhubarb, i.e., aloeemodin-8-O-glucoside, rhein-8-O-glucoside, chrysophanol-1-O-glucoside, emodin-1-O-glucoside, chrysophanol-8-O-glucoside, emodin-8-O-glucoside. Twenty-seven batches from three species were submitted to the multi-component analysis. The results showed that the anthraquinone glycoside content varied significantly even within the same species. The results showed that the anthraquinone glycoside content varied significantly within the same species but not between different species. The PCA and content analysis results confirmed that the plant species has no obvious effect on the content variation. Neither was any significant correlation observed between the anthraquinone glycoside content and the geographic distribution of the rhubarb. Through correlational analysis, altitude was found to be the main factor that affects the anthraquinone glycoside content in rhubarb. Rhubarb grown at higher altitude has higher anthraquinone glycoside content. Conclusions This work provides a rapid, sensitive and accurate UPLC-PDA method for the simultaneous determination of six anthraquinone glycosides in rhubarb. The anthraquinone glycoside content varied significantly within the same species. The relationship of the anthraquinone glycoside content with plant species, geographic distribution and altitude were studied using correlational analysis, principal component analysis and spatial autocorrelation analysis through SPSS and ArcGIS. Plant species and geographic distribution were found not to affect the content of the six anthraquinone glycosides in rhubarb. The variations in the anthraquinone glycoside content were primarily due to the different altitude where the plant was grown. PMID:24160332

  5. Agrobacterium Mediated Transient Gene Silencing (AMTS) in Stevia rebaudiana: Insights into Steviol Glycoside Biosynthesis Pathway

    PubMed Central

    Guleria, Praveen; Yadav, Sudesh Kumar

    2013-01-01

    Background Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi) based Agrobacterium mediated transient gene silencing (AMTS) approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1) genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. Methodology/Principal Findings RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3) content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. Conclusions SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route. PMID:24023961

  6. Vasectomy reversal.

    PubMed

    Belker, A M

    1987-02-01

    A vasovasostomy may be performed on an outpatient basis with local anesthesia, but also may be performed on an outpatient basis with epidural or general anesthesia. Local anesthesia is preferred by most of my patients, the majority of whom choose this technique. With proper preoperative and intraoperative sedation, patients sleep lightly through most of the procedure. Because of the length of time often required for bilateral microsurgical vasoepididymostomy, epidural or general anesthesia and overnight hospitalization are usually necessary. Factors influencing the preoperative choice for vasovasostomy or vasoepididymostomy in patients undergoing vasectomy reversal are considered. The preoperative planned choice of vasovasostomy or vasoepididymostomy for patients having vasectomy reversal described herein does not have the support of all urologists who regularly perform these procedures. My present approach has evolved as the data reported in Tables 1 and 2 have become available, but it may change as new information is evaluated. However, it offers a logical method for planning choices of anesthesia and inpatient or outpatient status for patients undergoing vasectomy reversal procedures. PMID:3811050

  7. Steroidal glycosides from the underground parts of Yucca glauca and their cytotoxic activities.

    PubMed

    Yokosuka, Akihito; Suzuki, Tomoka; Tatsuno, Satoru; Mimaki, Yoshihiro

    2014-05-01

    Six steroidal glycosides and 14 known compounds were isolated from the underground parts of Yucca glauca (Agavaceae). Their structures were determined from extensive spectroscopic analysis, including analysis of two-dimensional NMR data, and from chemical transformations. The compounds were also evaluated for cytotoxic activities against HL-60 human leukemia cells and A549 human lung adenocarcinoma cells. Four spirostanol glycosides and three furostanol glycosides exhibited cytotoxic activities against both HL-60 and A549 cells. Two of the compounds induced apoptosis in HL-60 cells. PMID:24612536

  8. Iridoid and phenylpropanoid glycosides from Scrophularia ningpoensis Hemsl. and their ?-glucosidase inhibitory activities.

    PubMed

    Hua, Jing; Qi, Jin; Yu, Bo-Yang

    2014-03-01

    A new phenylpropanoid glycoside, designated Scrophuside (1) and two new iridoid glycosides, respectively named Ningposide I (2) and Ningposide II (3), along with twelve known (4-15) iridoid and phenylpropanoid glycosides were obtained from the roots of Scrophularia ningpoensis Hemsl. by various chromatographic techniques and their structures were established through chemical methods and spectroscopic analyses. Most of the obtained compounds have been screened for ?-Glucosidase inhibitory activity, in which compounds 4, 5, 7, 11, 12, 13, and 14 show significant activity. PMID:24321577

  9. Three pairs of diastereoisomeric flavanone glycosides from Viscum articulatum.

    PubMed

    Li, Haizhen; Hou, Zhun; Li, Chao; Zhang, Yao; Shen, Tao; Hu, Qingwen; Ren, Dongmei

    2015-04-01

    Phytochemical examination of the leaves and stems of Viscum articulatum resulted in the isolation of three pairs of new flavanone glycosides, 2R/2S-viscarticulide A-C (1a/1b-3a/3b), together with eight known compounds (7-14). Their structures were established by extensive spectroscopic data analyses. The diastereoisomers were separated by HPLC on a chiral phase and the absolute configuration at C-2 was determined by circular dichroism (CD) spectra. The protective effects of compounds 1-3 against H2O2-induced cytotoxicity with EA.hy926 cells were tested. The results showed that compounds 1-3 improved the survival of EA.hy926 cells after H2O2 exposure at the tested concentrations. PMID:25771122

  10. A new cyclolignan glycoside from the tubers of Pinellia ternata.

    PubMed

    Wu, Ying-Ying; Huang, Xiao-Xiao; Wu, Jie; Zhou, Le; Li, Dan-Qi; Liu, Qing-Bo; Li, Ling-Zhi; Yan, Xin-Jia; Song, Shao-Jiang

    2015-11-01

    A new 2,7'-type cyclolignan glycoside, cyclolignanyingoside A (1), together with six known compounds (2-7) were isolated from the tubers of Pinellia ternata (Thunb.) Breit. The structure of 1 was elucidated on the basis of chemical and spectral analysis, including 1D, 2D NMR analyses, HR-ESI-MS, and CD spectrometry. The cytotoxic, antioxidant and tyrosinase-inhibiting activities of all the isolates were determined. However, all the isolates exhibited no activity on the selected cell lines (Hep-3B, Bcap-37, and MCF-7). In addition, compounds 1-3 and 7 exhibited strong 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) free radical scavenging activity, and compounds 2 and 4 showed a moderate mushroom tyrsinase inhibitory activity. PMID:25989151

  11. A new antibacterial benzophenone glycoside from Psidium guajava (Linn.) leaves.

    PubMed

    Ukwueze, Stanley E; Osadebe, Patience O; Okoye, Festus B C

    2015-01-01

    Bioactivity-guided fractionation of methanol extract from the leaves of Psidium guajava L. (Myrtaceae) yielded a new benzophenone glycoside, Guajaphenone A (2) together with two known compounds, Garcimangosone D (1) and Guaijaverin (3). Their structures were elucidated by analysis of spectroscopic data including 1D and 2D NMR and electrospray ionisation mass spectrometry (ESI-MS). The isolated compounds were screened against standard strains of Gram-positive and Gram-negative bacteria using broth dilution assay method, and the MIC values determined and compared with reference antibiotic ceftriaxone. They were found to have significant antibacterial activities against Escherichia coli and Staphylococcus aureus with all of them showing better activities against S. aureus, but displaying weaker activities, in comparison to ceftriaxone. However, despite reduced effect of these compounds against the organisms, this work opens the perspective to use these molecules as 'leads' for the design of novel and selective drug candidates for some tropical infectious diseases. PMID:25631395

  12. Additional minor diterpene glycosides from Stevia rebaudiana Bertoni.

    PubMed

    Prakash, Indra; Chaturvedula, Venkata Sai Prakash

    2013-01-01

    Two additional novel minor diterpene glycosides were isolated from the commercial extract of the leaves of Stevia rebaudiana Bertoni. The structures of the new compounds were identified as 13-{?-D-glucopyranosyl-(1 ? 2)-O-[?-D-glucopyranosyl-(1 ? 3)-?-D-glucopyranosyl-oxy} ent-kaur-16-en-19-oic acid {?-D-xylopyranosyl-(1 ? 2)-O-[?-D-glucopyranosyl-(1 ? 3)]-O-?-D-glucupyranosyl-ester} (1), and 13-{?-D-6-deoxy-glucopyranosyl-(1 ? 2)-O-[?-D-glucopyranosyl-(1 ? 3)-?-D-glucopyranosyl-oxy} ent-kaur-16-en-19-oic acid {?-D-glucopyranosyl-(1 ? 2)-O-[?-D-glucopyranosyl-(1 ? 3)-?-D-gluco-pyranosyl-ester} (2), on the basis of extensive 1D (1H- and 13C-) 2D NMR (COSY, HSQC and HMBC) and MS spectroscopic data as well as chemical studies. PMID:24184820

  13. Enzymatic hydrolysis of steryl glycosides for their analysis in foods.

    PubMed

    Münger, Linda H; Nyström, Laura

    2014-11-15

    Steryl glycosides (SG) contribute significantly to the total intake of phytosterols. The standard analytical procedure involving acid hydrolysis fails to reflect the correct sterol profile of SG due to isomerization of some of the labile sterols. Therefore, various glycosylases were evaluated for their ability to hydrolyse SG under milder conditions. Using a pure SG mixture in aqueous solution, the highest glycolytic activity, as demonstrated by the decrease in SG and increase in free sterols was achieved using inulinase preparations (decrease of >95%). High glycolytic activity was also demonstrated using hemicellulase (63%). The applicability of enzymatic hydrolysis using inulinase preparations was further verified on SG extracted from foods. For example in potato peel ?(5)-avenasteryl glucoside, a labile SG, was well preserved and contributed 26.9% of the total SG. Therefore, enzymatic hydrolysis is suitable for replacing acid hydrolysis of SG in food lipid extracts to accurately determine the sterol profile of SG. PMID:24912717

  14. Uncommon Glycosidases for the Enzymatic Preparation of Glycosides

    PubMed Central

    Trincone, Antonio

    2015-01-01

    Most of the reports in literature dedicated to the use of glycosyl hydrolases for the preparation of glycosides are about gluco- (?- and ?-form) and galacto-sidase (?-form), reflecting the high-availability of both anomers of glucosides and of ?-galactosides and their wide-ranging applications. Hence, the idea of this review was to analyze the literature focusing on hardly-mentioned natural and engineered glycosyl hydrolases. Their performances in the synthetic mode and natural hydrolytic potential are examined. Both the choice of articles and their discussion are from a biomolecular and a biotechnological perspective of the biocatalytic process, shedding light on new applicative ideas and on the assortment of biomolecular diversity. The hope is to elicit new interest for the development of biocatalysis and to gather attention of biocatalyst practitioners for glycosynthesis. PMID:26404386

  15. One-pot hydrothermal synthesis of peony-like Ag/Ag0.68V2O5 hybrid as high-performance anode and cathode materials for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Wei, Denghu; Li, Xiaona; Zhu, Yongchun; Liang, Jianwen; Zhang, Kailong; Qian, Yitai

    2014-04-01

    A peony-like Ag/Ag0.68V2O5 hybrid assembled from nanosheets with the thickness of 40 nm was synthesized through a one-pot hydrothermal approach from vanadium pentoxide (V2O5), oxalic acid (H2C2O4), and silver nitrate (AgNO3) at 180 °C for 24 h. The hybrid exhibits high performance as both anode and cathode materials for rechargeable lithium batteries. Electrochemical measurements revealed that the as-prepared Ag/Ag0.68V2O5 hybrid displayed excellent cycling stability, especially as an anode material. The resulting anode retains 100% of the initial capacity after 1000 cycles under a current density of 400 mA g-1. This phenomenon may be attributed to electron conductivity improvement by the existence of metallic silver in the hybrid in addition to the convenient access to lithium ion ingress/egress because of its unique structure.A peony-like Ag/Ag0.68V2O5 hybrid assembled from nanosheets with the thickness of 40 nm was synthesized through a one-pot hydrothermal approach from vanadium pentoxide (V2O5), oxalic acid (H2C2O4), and silver nitrate (AgNO3) at 180 °C for 24 h. The hybrid exhibits high performance as both anode and cathode materials for rechargeable lithium batteries. Electrochemical measurements revealed that the as-prepared Ag/Ag0.68V2O5 hybrid displayed excellent cycling stability, especially as an anode material. The resulting anode retains 100% of the initial capacity after 1000 cycles under a current density of 400 mA g-1. This phenomenon may be attributed to electron conductivity improvement by the existence of metallic silver in the hybrid in addition to the convenient access to lithium ion ingress/egress because of its unique structure. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00250d

  16. High-throughput cloning, expression and purification of glycoside hydrolases using Ligation-Independent Cloning (LIC).

    PubMed

    Camilo, Cesar M; Polikarpov, Igor

    2014-07-01

    Recent advances in DNA sequencing techniques have led to an explosion in the amount of available genome sequencing data and this provided an inexhaustible source of uncharacterized glycoside hydrolases (GH) to be studied both structurally and enzymatically. Ligation-Independent Cloning (LIC), an interesting alternative to traditional, restriction enzyme-based cloning, and commercial recombinatorial cloning, was adopted and optimized successfully for a high throughput cloning, expression and purification pipeline. Using this platform, 130 genes encoding mainly uncharacterized glycoside hydrolases from 13 different organisms were cloned and submitted to a semi-automated protein expression and solubility screening in Escherichia coli, resulting in 73 soluble targets. The high throughput approach proved to be a powerful tool for production of recombinant glycoside hydrolases for further structural and biochemical characterization and confirmed that thioredoxin fusion tag (TRX) is a better choice to increase solubility of recombinant glycoside hydrolases expressed in E. coli, when compared to His-tag alone. PMID:24680731

  17. Enzyme-catalyzed synthesis of heptyl-?-glycosides: effect of water coalescence at high temperature.

    PubMed

    Montiel, Carmina; Bustos-Jaimes, Ismael; Bárzana, Eduardo

    2013-09-01

    Alkyl glycosides can be synthesized by glycosidases in organic media with limited amounts of water. These systems, however, limit the solubility of the sugar substrates and decrease reaction yields. Herein we report the enzymatic synthesis of heptyl-?-glycosides in heptanol catalyzed by a hyperthermophilic ?-glycosidase at 90°C. Our results indicate that dispersion of water in heptanol changes with time producing coalescence of water at the bottom of the reactor, playing a key role in the reaction yield. Water-soluble substrate, enzyme and products are concentrated in the aqueous phase, according to their partition coefficients, promoting side reactions that inactivate the enzyme. Reaction yield of heptyl-?-glycosides was 35% relative to lactose, at 7% water. The increase in the water phase to 12% diminished the enzyme inactivation and increased the heptyl-?-glycosides yield to 52%. Surface-active compounds, SDS and octyl glucoside, increased water dispersion but were unable to prevent coalescence. PMID:23863873

  18. Solubility Enhancement of Steviol Glycosides and Characterization of Their Inclusion Complexes with Gamma-Cyclodextrin

    PubMed Central

    Upreti, Mani; Strassburger, Ken; Chen, You L.; Wu, Shaoxiong; Prakash, Indra

    2011-01-01

    Steviol glycosidesrebaudioside (reb) A, C and D have low aqueous solubilities. To improve their aqueous solubilities, inclusion complex of steviol glycosides, reb A, C and D and gamma cyclodextrin were prepared by freeze drying method and further characterized by means of differential scanning calorimetry, Fourier transform infrared spectroscopy and Raman spectroscopy. The effect of gamma cyclodextrin on chemical shifts of the steviol glycosides was also studied in proton NMR experiments as well as in solid state 13C CP/MAS NMR experiments. These results indicated that the steviol glycosides were clearly in inclusion complex formation with the gamma cyclodextrin which also results in solubility enhancement of these steviol glycosides. Phase solubility studies showed that amounts of soluble reb A, C and D increased with increasing amounts of gamma cyclodextrin indicating formation of 1:1 stoichiometric and higher order inclusion complexes. PMID:22174615

  19. Resin glycosides from the yellow-skinned variety of sweet potato (Ipomoea batatas).

    PubMed

    Rosas-Ramírez, Daniel; Pereda-Miranda, Rogelio

    2013-10-01

    Native to tropical America, Ipomoea batatas has been cultivated for over 5000 years in Mexico. The yellow-skinned tuber crop variety, with an orange flesh, has a higher nutritional value than potato. Raw sweet potato can cause a purge due to its resin glycoside content. Purification of the chloroform-soluble resin glycosides from the roots of this variety was accomplished by preparative-scale HPLC, which allowed for the collection of six oligosaccharides, batatin VII (1) and batatinosides VII-IX (2-4), all of novel structure, together with the known resin glycosides pescaprein I and batatinoside IV. High-field NMR spectroscopy and FAB mass spectrometry were used to characterize each structure, identifying operculinic acid A for compounds 2 and 4, and simonic acid B for 3, as their pentasaccharide glycosidic cores. Batatin VII (1) represents a dimer of the know batatinoside IV, consisting of two units of simonic acid B. PMID:24053411

  20. Cyclic Steroid Glycosides from the Starfish Echinaster luzonicus: Structures and Immunomodulatory Activities.

    PubMed

    Kicha, Alla A; Kalinovsky, Anatoly I; Malyarenko, Timofey V; Ivanchina, Natalia V; Dmitrenok, Pavel S; Menchinskaya, Ekaterina S; Yurchenko, Ekaterina A; Pislyagin, Evgeny A; Aminin, Dmitry L; Huong, Trinh T T; Long, Pham Quoc; Stonik, Valentin A

    2015-06-26

    Five new steroid glycosides, luzonicosides B-E (2-5), belonging to a rare structure group of marine glycosides, containing carbohydrate moieties incorporated into a macrocycle, and a related open carbohydrate chain steroid glycoside, luzonicoside F (6), were isolated from the starfish Echinaster luzonicus along with the previously known cyclic steroid glycoside luzonicoside A (1). The structures of compounds 2-6 were established by extensive NMR and ESIMS techniques as well as chemical transformations. Luzonicoside A (1) at concentrations of 0.01-0.1 ?M was shown to be potent in lysosomal activity stimulation, intracellular ROS level elevation, and NO synthesis up-regulation in RAW 264.7 murine macrophages. Luzonicoside D (4) was less active in these biotests. PMID:26068600

  1. Characterization and Modeling of the Collision Induced Dissociation Patterns of Deprotonated Glycosphingolipids: Cleavage of the Glycosidic Bond

    NASA Astrophysics Data System (ADS)

    Rožman, Marko

    2015-08-01

    Glycosphingolipid fragmentation behavior was investigated by combining results from analysis of a series of negative ion tandem mass spectra and molecular modeling. Fragmentation patterns extracted from 75 tandem mass spectra of mainly acidic glycosphingolipid species (gangliosides) suggest prominent cleavage of the glycosidic bonds with retention of the glycosidic oxygen atom by the species formed from the reducing end (B and Y ion formation). Dominant product ions arise from dissociation of sialic acids glycosidic bonds whereas product ions resulting from cleavage of other glycosidic bonds are less abundant. Potential energy surfaces and unimolecular reaction rates of several low-energy fragmentation pathways leading to cleavage of glycosidic bonds were estimated in order to explain observed dissociation patterns. Glycosidic bond cleavage in both neutral (unsubstituted glycosyl group) and acidic glycosphingolipids was the outcome of the charge-directed intramolecular nucleophilic substitution (SN2) mechanism. According to the suggested mechanism, the nucleophile in a form of carboxylate or oxyanion attacks the carbon at position one of the sugar ring, simultaneously breaking the glycosidic bond and yielding an epoxide. For gangliosides, unimolecular reaction rates suggest that dominant product ions related to the cleavage of sialic acid glycosidic bonds are formed via direct dissociation channels. On the other hand, low abundant product ions related to the dissociation of other glycosidic bonds are more likely to be the result of sequential dissociation. Although results from this study mainly contribute to the understanding of glycosphingolipid fragmentation chemistry, some mechanistic findings regarding cleavage of the glycosidic bond may be applicable to other glycoconjugates.

  2. Quercetin ameliorates liver injury induced with Tripterygium glycosides by reducing oxidative stress and inflammation.

    PubMed

    Wang, Junming; Miao, Mingsan; Zhang, Yueyue; Liu, Ruixin; Li, Xaobing; Cui, Ying; Qu, Lingbo

    2015-06-01

    Quercetin (Que) is one of main compounds in Lysimachia christinae Hance (Christina loosestrife), and has both medicinal and nutritional value. Glycosides from Tripterygium wilfordii Hook.f. (léi g?ng téng [the thunder duke vine]; TG) have diverse and broad bioactivities but with a high incidence of liver injury. Our previous study reported on the hepatoprotective properties of an ethanol extract from L. christinae against TG-induced liver injury in mice. This research is designed to observe, for the first time, the possible protective properties of the compound Que against TG-induced liver injury, and the underlying mechanisms that are involved in oxidative stress and anti-inflammation. The results indicated that TG caused excessive elevation in serum levels of alanine/aspartate transaminase (ALT/AST), alkaline phosphatase (ALP), gamma glutamyl transferase (?-GT), and pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-?), as well as hepatic lipid peroxidation (all P < 0.01). On the other hand, following TG exposure, we observed significantly reduced levels of biomarkers, including hepatic glutathione (GSH), glutathione-S-transferase (GST), glutathione peroxidase (GPx), and the anti-inflammatory cytokine interleukin (IL)-10, as well as the enzyme activity and mRNA expression of copper- and zinc-containing superoxide dismutase (CuZn-SOD) and catalase (CAT) (all P < 0.01). Nevertheless, all of these alterations were reversed by the pre-administration of Que or the drug bifendate (positive control) for 7 consecutive days. Therefore, this study suggests that Que ameliorates TG-induced acute liver injury, probably through its ability to reduce oxidative stress and its anti-inflammatory properties. PMID:25894526

  3. Processivity and Enzymatic Mode of a Glycoside Hydrolase Family 5 Endoglucanase from Volvariella volvacea

    PubMed Central

    Zheng, Fei

    2013-01-01

    EG1 is a modular glycoside hydrolase family 5 endoglucanase from Volvariella volvacea consisting of an N-terminal carbohydrate-binding module (CBM1) and a catalytic domain (CD). The ratios of soluble to insoluble reducing sugar produced from filter paper after 8 and 24 h of exposure to EG1 were 6.66 and 8.56, respectively, suggesting that it is a processive endoglucanase. Three derivatives of EG1 containing a core domain only or additional CBMs were constructed in order to evaluate the contribution of the CBM to the processivity and enzymatic mode of EG1 under stationary and agitated conditions. All four enzymatic forms exhibited the same mode of action on both soluble and insoluble cellulosic substrates with cellobiose as a main end product. An additional CBM fused at either the N or C terminus reduced specific activity toward soluble and insoluble celluloses under stationary reaction conditions. Deletion of the CBM significantly decreased enzyme processivity. Insertion of an additional CBM also resulted in a dramatic decrease in processivity in enzyme-substrate reaction mixtures incubated for 0.5 h, but this effect was reversed when reactions were allowed to proceed for longer periods (24 h). Further significant differences were observed in the substrate adsorption/desorption patterns of EG1 and enzyme derivatives equipped with an additional CBM under agitated reaction conditions. An additional family 1 CBM improved EG1 processivity on insoluble cellulose under highly agitated conditions. Our data indicate a strong link between high adsorption levels and low desorption levels in the processivity of EG1 and possibly other processive endoglucanses. PMID:23204424

  4. Two New Flavonol Glycosides from Polygala sibirica L. var megalopha Fr.

    PubMed

    Huang, Yan-Jie; Zhou, Ling-Yun; Wang, Jun-Min; Li, Qiang; Geng, Yuan-Yuan; Liu, Hai-Yang; Hua, Yan

    2015-01-01

    Two new flavonol glycosides, named polygalin H (1) and polygalin I (2), as well as the known compound polygalin D (3), were isolated from the whole plant of Polygala sibirica L. var megalopha Fr. Their structures were elucidated on the basis of spectroscopic data analysis. These flavonol glycosides exhibited strong inhibitory activities against xanthine oxidase in vitro. Their half-maximal inhibitory concentrations (IC50) were calculated, which were 9.48, 8.31, 16.00 ?M, respectively. PMID:26633343

  5. Controlling selectivity and enhancing yield of flavonoid glycosides in recombinant yeast.

    PubMed

    Werner, Sean R; Morgan, John A

    2010-09-01

    Flavonoid glycosides are known for their medicinal properties and potential use as natural sweeteners. In this study, Saccharomyces cerevisiae expressing a flavonoid glucosyltransferase from Dianthus caryophyllus was used as a whole-cell biocatalyst. The yeast system's performance was characterized using the flavanone naringenin as a model substrate for the production of naringenin glycosides. It was found that final naringenin glycoside yields increased in a dose-dependent manner with increasing initial naringenin substrate concentrations. However, naringenin concentrations >0.5 mM did not give further enhancements in glycoside yield. In addition, a method for controlling overall selectivity was discovered where the glucose content in the culture medium could be altered to control the selectivity, making either naringenin-7-O-glucoside (N7O) or naringenin-4'-O-glucoside (N4O) the major products. The highest yields achieved were 87 mg/L of N7O and 82 mg/L of N4O using 40MSGI and 2xMSGI media, respectively. The effects of two intermediates involved in UDP-glucose biosynthesis, uridine 5'-monophosphate (UMP) and orotic acid, on glycoside yields were also determined. Addition of UMP to the culture medium significantly decreased glycoside yield. In contrast, addition of orotic acid to the culture medium significantly enhanced the glycoside yield and shifted the selectivity toward N7O. The highest naringenin glycoside yield achieved using 10 mM orotic acid in the 40MSGI media was 155 mg/L, a 71% conversion of substrate to product. PMID:20148267

  6. Serruloside and Serrulatoside, two New Iridoid Glycosides from Penstemon serrulatus1.

    PubMed

    Junior, P

    1984-10-01

    From leaves of PENSTEMON SERRULATUS Menz. two new iridoid glycosides have been isolated. Both glycosides have the same aglycon part, but differ in their carbohydrate moieties. The structure of serru-loside (penstemidaglucon-11- O-beta- D-ribohexos -3-uloside) and serrulatoside (penstemidaglucon-ll- O-beta-4'-desoxyaltropyranosido-6'- O-beta- D-glucopyranoside) was established by spectroscopic methods (mainly (1)H- and (13)C-NMR) and comparison with known compounds. PMID:17340343

  7. Stereoselective Synthesis of 2-Deoxy-?-Glycosides Using Anomeric O-Alkylation/Arylation

    PubMed Central

    Morris, William J.; Shair, Matthew D.

    2009-01-01

    Anomeric O-alkylation/arylation is applied to the synthesis of 2-deoxy-?-glycosides. Treatment of lactols with NaH in dioxane followed by the addition of electrophiles leads to the formation of 2-deoxy-?-glycosides in high yield and high selectivity. The high ?-selectivity observed here demonstrates a powerful stereoelectronic effect for the stereoselective formation of acetals under kinetic control. PMID:19061365

  8. Iridoid glycosides isolated from Scrophularia dentata Royle ex Benth. and their anti-inflammatory activity.

    PubMed

    Zhang, Liuqiang; Zhu, Tiantian; Qian, Fei; Xu, Jinwen; Dorje, Gaawe; Zhao, Zhili; Guo, Fujiang; Li, Yiming

    2014-10-01

    Scrodentosides A-E (1-5), five new acylated iridoid glycosides, together with 19 known ones, were isolated from the whole plant of Scrophularia dentata Royle ex Benth. The structures of these isolated glycosides were elucidated by spectroscopic methods. Bioassay showed that compounds 7 and 11 had significant inhibitory effect against NF-?B activation with IC50 value of 43.7 ?M and 1.02 ?M respectively. PMID:25016952

  9. New oleyl glycoside as anti-cancer agent that targets on neutral sphingomyelinase.

    PubMed

    Romero-Ramírez, Lorenzo; García-Álvarez, Isabel; Casas, Josefina; Barreda-Manso, M Asunción; Yanguas-Casás, Natalia; Nieto-Sampedro, Manuel; Fernández-Mayoralas, Alfonso

    2015-09-15

    We designed and synthesized two anomeric oleyl glucosaminides as anti-cancer agents where the presence of a trifluoroacetyl group close to the anomeric center makes them resistant to hydrolysis by hexosaminidases. The oleyl glycosides share key structural features with synthetic and natural oleyl derivatives that have been reported to exhibit anti-cancer properties. While both glycosides showed antiproliferative activity on cancer cell lines, only the ?-anomer caused endoplasmic reticulum (ER) stress and cell death on C6 glioma cells. Analysis of sphingolipids and glycosphingolipds in cells treated with the glycosides showed that the ?-anomer caused a drastic accumulation of ceramide and glucosylceramide and reduction of lactosylceramide and GM3 ganglioside at concentrations above a threshold of 20 ?M. In order to understand how ceramide levels increase in response to ?-glycoside treatment, further investigations were done using specific inhibitors of sphingolipid metabolic pathways. The pretreatment with 3-O-methylsphingomyelin (a neutral sphingomyelinase inhibitor) restored sphingomyelin levels together with the lactosylceramide and GM3 ganglioside levels and prevented the ER stress and cell death caused by the ?-glycoside. The results indicated that the activation of neutral sphingomyelinase is the main cause of the alterations in sphingolipids that eventually lead to cell death. The new oleyl glycoside targets a key enzyme in sphingolipid metabolism with potential applications in cancer therapy. PMID:26206186

  10. Influence of steviol glycosides on the stability of vitamin C and anthocyanins.

    PubMed

    Wo?niak, ?ukasz; Marsza?ek, Krystian; Sk?pska, Sylwia

    2014-11-19

    A high level of sweetness and health-promoting properties make steviol glycosides an interesting alternative to sugars or artificial sweeteners. The radical oxygen species scavenging activity of these compounds may influence the stability of labile particles present in food. Model buffer solutions containing steviol glycosides, a selected food antioxidant (vitamin C or anthocyanins), and preservative were analyzed during storage. The addition of steviol glycosides at concentrations of 50, 125, and 200 mg/L increased the stability of both ascorbic and dehydroascorbic acid (degradation rates decreased up to 3.4- and 4.5-fold, respectively); the effect was intensified by higher sweetener concentrations and higher acidity of the solutions. Glycosides used alone did not affect the stability of anthocyanins; however, they enhanced the protective effect of sugars; half-life times increased by ca. 33% in the presence of sucrose (100 g/L) and by ca. 52% when both sucrose (100 g/L) and glycosides (total 200 mg/L) were used. Steviol glycosides concentrations remained stable during experiments. PMID:25376304

  11. Fecalase: a model for activation of dietary glycosides to mutagens by intestinal flora

    SciTech Connect

    Tamura, G.; Gold, C.; Ferro-Luzzi, A.; Ames, B.N.

    1980-08-01

    Many substances in the plant kingdom and in man's diet occur as glycosides. Recent studies have indicated that many glycosides that are not mutagenic in tests such as the Salmonella test become mutagenic upon hydrolysis of the glycosidic linkages. The Salmonella test utilizes a liver homogenate to approximate mammalian metabolism but does not provide a source of the enzymes present in intestinal bacterial flora that hydrolyze the wide variety of glycosides present in nature. We describe a stable cell-free extract of human feces, fecalase, which is shown to contain various glycosidases that allow the in vitro activation of many natural glycosides to mutagens in the Salmonella/liver homogenate test. Many beverages, such as red wine (but apparently not white wine) and tea, contain glycosides of the mutagen quercetin. Red wine, red grape juice, and teas were mutagenic in the test when fecalase was added, and red wine contained considerable direct mutagenic activity in the absence of fecalase. The implications of quercetin mutagenicity and carcinogenicity are discussed.

  12. Extracellular Glycoside Hydrolase Activities in the Human Oral Cavity.

    PubMed

    Inui, Taichi; Walker, Lauren C; Dodds, Michael W J; Hanley, A Bryan

    2015-08-15

    Carbohydrate availability shifts when bacteria attach to a surface and form biofilm. When salivary planktonic bacteria form an oral biofilm, a variety of polysaccharides and glycoproteins are the primary carbon sources; however, simple sugar availabilities are limited due to low diffusion from saliva to biofilm. We hypothesized that bacterial glycoside hydrolase (GH) activities would be higher in a biofilm than in saliva in order to maintain metabolism in a low-sugar, high-glycoprotein environment. Salivary bacteria from 13 healthy individuals were used to grow in vitro biofilm using two separate media, one with sucrose and the other limiting carbon sources to a complex carbohydrate. All six GHs measured were higher in vitro when grown in the medium with complex carbohydrate as the sole carbon source. We then collected saliva and overnight dental plaque samples from the same individuals and measured ex vivo activities for the same six enzymes to determine how oral microbial utilization of glycoconjugates shifts between the planktonic phase in saliva and the biofilm phase in overnight dental plaque. Overall higher GH activities were observed in plaque samples, in agreement with in vitro observation. A similar pattern was observed in GH activity profiles between in vitro and ex vivo data. 16S rRNA gene analysis showed that plaque samples had a higher abundance of microorganisms with larger number of GH gene sequences. These results suggest differences in sugar catabolism between the oral bacteria located in the biofilm and those in saliva. PMID:26048943

  13. Antioxidant chalcone glycosides and flavanones from Maclura (Chlorophora) tinctoria.

    PubMed

    Cioffi, Giuseppina; Morales Escobar, Luis; Braca, Alessandra; De Tommasi, Nunziatina

    2003-08-01

    Four chalcone glycosides (1-4), including three new natural products, and three flavanones (5-7) were isolated from the methanol extract of stem bark of Maclura tinctoria. The new compounds have been characterized as 4'-O-beta-D-(2' '-p-coumaroyl)glucopyranosyl-4,2',3'-trihydroxychalcone (1), 4'-O-beta-D-(2' '-p-coumaroyl-6' '-acetyl)glucopyranosyl-4,2',3'-trihydroxychalcone (2), and 3'-(3-methyl-2-butenyl)-4'-O-beta-D-glucopyranosyl-4,2'-dihydroxychalcone (3); the known derivatives were elucidated as 4'-O-beta-D-(2' '-acetyl-6' '-cinnamoyl)glucopyranosyl-4,2',3'-trihydroxychalcone (4), eriodictyol 7-O-beta-D-glucopyranoside (5), naringenin (6), and naringenin 4'-O-beta-D-glucopyranoside (7). Their structures were determined by 1D and 2D NMR and ESIMS. The antioxidant activity of all the isolated compounds was determined by measuring free-radical-scavenging effects using two different assays, namely, the Trolox Equivalent Antioxidant Capacity (TEAC) assay and the coupled oxidation of beta-carotene and linoleic acid (autoxidation assay). The results showed that compound 3 was the most active in both antioxidant assays. PMID:12932124

  14. Steroidal glycosides from the marine sponge Pandaros acanthifolium.

    PubMed

    Cachet, Nadja; Regalado, Erik L; Genta-Jouve, Grégory; Mehiri, Mohamed; Amade, Philippe; Thomas, Olivier P

    2009-09-01

    The chemical composition of the Caribbean sponge Pandaros acanthifolium was investigated and led to the isolation of seven new steroidal glycosides namely pandarosides A-D (1, 3, 4 and 6) along with the three methyl esters of pandarosides A, C, and D (2, 5 and 7). Their structures were characterized as 3beta-[beta-glucopyranosyl-(1-->2)-beta-glucopyranosyloxyuronic acid]-16-hydroxy-5alpha,14beta-poriferast-16-ene-15,23-dione (1) and its methyl ester (2), 3beta-[beta-glucopyranosyloxyuronic acid]-16-hydroxy-5alpha,14beta-poriferast-16-ene-15,23-dione (3), 3beta-[beta-glucopyranosyl-(1-->2)-beta-glucopyranosyloxyuronic acid]-16-hydroxy-5alpha,14beta-cholest-16-ene-15,23-dione (4) and its methyl ester (5), 3beta-(beta-glucopyranosyloxyuronic acid)-16-hydroxy-5alpha,14beta-cholest-16-ene-15,23-dione (6) and its methyl ester (7) on the basis of detailed spectroscopic analyses, including 2D NMR and HRESIMS studies. Pandarosides A-D and their methyl esters (1-7) are all characterized by a rare 2-hydroxycyclopentenone D-ring with a 14beta configuration. The absolute configuration of the aglycon part of pandaroside A (1) was assigned by comparison between experimental and TDDFT calculated circular dichroism spectra on the more stable conformer. PMID:19541002

  15. Antioxidant and Anti-Inflammatory Phenolic Glycosides from Clematis tashiroi.

    PubMed

    Zhang, Li-Jie; Huang, Hung-Tse; Huang, Shih-Yen; Lin, Zhi-Hu; Shen, Chien-Chang; Tsai, Wei-Jern; Kuo, Yao-Haur

    2015-07-24

    From the 95% EtOH extract of dried aerial parts of Clematis tashiroi, eight new and four known phenolic (caffeic acid, coumaric acid, ferrulic acid) glycosides were isolated and characterized. The structures of the new isolates (clematisides A-H) were elucidated by spectroscopic data interpretation as trans-4-O-(6-O-trans-caffeoyl-?-D- glucopyranosyl)-9-O-?-D-glucopyranosyl caffeic acid (1), trans-4-O-(6-O-trans-feruloyl-?-D-glucopyranosyll)-9-O-?-D-glucopyranosyl caffeic acid (2), trans-4-O-(6-O-trans-p-coumaroyl-?-D-glucopyranosyl)-9-O-?-D-glucopyranosyl caffeic acid (3), trans-4-O-(6-O-trans-caffeoyl-?-D-glucopyranosyl)-9-O-?-D-glucopyranosyl p-coumaric acid (4), trans-3-O-(6-O-trans-caffeoyl-?-D-glucopyranosyl)-9-O-?-D-glucopyranosyl caffeic acid (5), trans-3-O-(6-O-trans-p-coumaroyl-?-D-glucopyranosyl)-9-O-?-D-glucopyranosyl caffeic acid (6), 6-(3',4'-dihydroxystyryl)-2-pyrone-4-O-(6-O-trans-caffeoyl)-?-D-glucopyranoside (7), and 6-(3',4'-dihydroxystyryl)-2-pyrone-4-O-{6-O-[4-O-(6-O-trans-caffeoyl)-?-D-glucopyranosyl]-trans-caffeoyl}-?-D-glucopyranoside (8), respectively. In a DPPH radical-scavenging test, compounds 1, 7, and 8 showed more potent antioxidant activity than that of the positive control, vitamin E. In addition, compound 7 also showed inhibitory activity in an antinitric oxide release assay. PMID:26143931

  16. Host dependent iridoid glycoside sequestration patterns in Cionus hortulanus.

    PubMed

    Baden, Christian Ulrich; Franke, Stephan; Dobler, Susanne

    2013-08-01

    Weevils of the genus Cionus (Curculionidae, Mecininae) sequester the iridoid glycosides (IGs) aucubin and catalpol from their host plants Scrophularia or Verbascum (Scrophulariaceae). Cionus hortulanus is the only member of the genus that feeds on both plant genera. We previously showed that sequestration patterns in C. hortulanus depend on the local host. To investigate whether IG patterns are driven by their availability in the hosts or genetic differences between populations, we collected C. hortulanus from S. nodosa in the field and reared them either on S. nodosa or on V. nigrum. The differences in IG concentrations were specific for the host plant upon which the weevils developed. Similar to monophagous species of the Cionini, individuals from S. nodosa had more aucubin than catalpol and mirrored the concentrations of their host plants. Specimens from V. nigrum, on the other hand, had higher concentrations of aucubin and of catalpol than their host. On V. nigrum, the ratio of catalpol to aucubin differed significantly between plant and beetle samples due to much higher catalpol concentrations in the weevils. Our data thus contradict genetically fixed differences between populations living on either plant but rather document the host plants' influence on the beetles' metabolism. PMID:23846185

  17. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species.

    PubMed

    Pi?manová, Martina; Neilson, Elizabeth H; Motawia, Mohammed S; Olsen, Carl Erik; Agerbirk, Niels; Gray, Christopher J; Flitsch, Sabine; Meier, Sebastian; Silvestro, Daniele; Jørgensen, Kirsten; Sánchez-Pérez, Raquel; Møller, Birger Lindberg; Bjarnholt, Nanna

    2015-08-01

    Cyanogenic glycosides are phytoanticipins involved in plant defence against herbivores by virtue of their ability to release toxic hydrogen cyanide (HCN) upon tissue disruption. In addition, endogenous turnover of cyanogenic glycosides without the liberation of HCN may offer plants an important source of reduced nitrogen at specific developmental stages. To investigate the presence of putative turnover products of cyanogenic glycosides, comparative metabolic profiling using LC-MS/MS and high resolution MS (HR-MS) complemented by ion-mobility MS was carried out in three cyanogenic plant species: cassava, almond and sorghum. In total, the endogenous formation of 36 different chemical structures related to the cyanogenic glucosides linamarin, lotaustralin, prunasin, amygdalin and dhurrin was discovered, including di- and tri-glycosides derived from these compounds. The relative abundance of the compounds was assessed in different tissues and developmental stages. Based on results common to the three phylogenetically unrelated species, a potential recycling endogenous turnover pathway for cyanogenic glycosides is described in which reduced nitrogen and carbon are recovered for primary metabolism without the liberation of free HCN. Glycosides of amides, carboxylic acids and 'anitriles' derived from cyanogenic glycosides appear as common intermediates in this pathway and may also have individual functions in the plant. The recycling of cyanogenic glycosides and the biological significance of the presence of the turnover products in cyanogenic plants open entirely new insights into the multiplicity of biological roles cyanogenic glycosides may play in plants. PMID:26205491

  18. Flavonoid Glycosides of Polygonum capitatum Protect against Inflammation Associated with Helicobacter pylori Infection

    PubMed Central

    Zhang, Shu; Mo, Fei; Luo, Zhaoxun; Huang, Jian; Sun, Chaoqin; Zhang, Ran

    2015-01-01

    The antibacterial and anti-inflammatory activities, and protective effects of extracts (flavonoid glycosides) of Polygonum capitatum were investigated to detect the evidence for the utilization of the herb in the clinical therapy of gastritis caused by H. pylori. A mouse gastritis model was established using H. pylori. According to treating methods, model mice were random assigned into a model group (MG group), a triple antibiotics group (TG group, clarithromycin, omeprazole and amoxicillin), low/middle/high concentrations of flavonoid glycosides groups (LF, MF and HF groups) and low/middle/high concentrations of flavonoid glycosides and amoxicillin groups (LFA, MFA and HFA groups). A group with pathogen-free mice was regarded as a control group (CG group). The eradicate rates of H. pylori were 100%, 93%, 89% in TG, MFA and HF groups. The serum levels of IFN-gamma and gastrin were higher in a MG group than those from all other groups (P < 0.05). The serum levels of IFN-gamma and gastrin were reduced significantly in LF, MF and HF groups (P < 0.05) while little changes were observed in LFA, MFA and HFA groups. In contrast, the serum levels of IL-4 were lower and higher in MG and CG groups compared with other groups (P<0.05). The serum levels of IL-4 were increased significantly in LF, MF and HF groups (P < 0.05) while little changes were found in LFA, MFA and HFA groups. According to pathological scores, flavonoid glycosides therapy showed better protection for gastric injuries than the combination of flavonoid glycoside and amoxicillin (P < 0.05). The results suggested that flavonoid glycoside has repairing functions for gastric injuries. The results suggest that the plant can treat gastritis and protect against gastric injuries. The flavonoid glycosides from Polygonum capitatum should be developed as a potential drug for the therapy of gastritis caused by H. pylori. PMID:25993258

  19. Gold-catalyzed glycosidation for the synthesis of trisaccharides by applying the armed–disarmed strategy

    PubMed Central

    Kayastha, Abhijeet K

    2013-01-01

    Summary The synthesis of oligosaccharides is still a challenging task as there is no universal glycosyl donor for the synthesis of all oligosaccharides. The gold catalysis for glycosidation reactions, in which alkynylated glycosides are used, has emerged as one of the versatile options in this regard. A cleavage of the interglycosidic bond that was thought to be due to the higher reaction temperature and the acidic medium was observed during the synthesis of trisaccharides. In addition, a very little percentage of deprotection of benzyl protecting groups at the C-6 position was observed and no deprotection of benzyl ethers in aliphatic molecules was noticed. In order to overcome this fact, a collection of leaving groups that contain an alkynyl moiety were screened. It was found that 1-ethynylcyclohexanyl (Ech) glycosides are suitable for carrying out the glycosidation at 25 °C in the presence of 5 mol % each of AuCl3 and AgSbF6. Subsequently, Ech-glycosides were observed to be suitable for the synthesis of trisaccharides under gold catalysis conditions. PMID:24204427

  20. Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases

    SciTech Connect

    Li L. L.; van der Lelie D.; Taghavi, S.; McCorkle, S. M.; Zhang, Y.-B.; Blewitt, M. G.; Brunecky, R.; Adney, W. S.; Himmel, M. E.; Brumm, P.; Drinkwater, C.; Mead, D. A.; Tringe, S. G.

    2011-08-01

    To efficiently deconstruct recalcitrant plant biomass to fermentable sugars in industrial processes, biocatalysts of higher performance and lower cost are required. The genetic diversity found in the metagenomes of natural microbial biomass decay communities may harbor such enzymes. Our goal was to discover and characterize new glycoside hydrolases (GHases) from microbial biomass decay communities, especially those from unknown or never previously cultivated microorganisms. From the metagenome sequences of an anaerobic microbial community actively decaying poplar biomass, we identified approximately 4,000 GHase homologs. Based on homology to GHase families/activities of interest and the quality of the sequences, candidates were selected for full-length cloning and subsequent expression. As an alternative strategy, a metagenome expression library was constructed and screened for GHase activities. These combined efforts resulted in the cloning of four novel GHases that could be successfully expressed in Escherichia coli. Further characterization showed that two enzymes showed significant activity on p-nitrophenyl-{alpha}-L-arabinofuranoside, one enzyme had significant activity against p-nitrophenyl-{beta}-D-glucopyranoside, and one enzyme showed significant activity against p-nitrophenyl-{beta}-D-xylopyranoside. Enzymes were also tested in the presence of ionic liquids. Metagenomics provides a good resource for mining novel biomass degrading enzymes and for screening of cellulolytic enzyme activities. The four GHases that were cloned may have potential application for deconstruction of biomass pretreated with ionic liquids, as they remain active in the presence of up to 20% ionic liquid (except for 1-ethyl-3-methylimidazolium diethyl phosphate). Alternatively, ionic liquids might be used to immobilize or stabilize these enzymes for minimal solvent processing of biomass.

  1. A galloylated cyanogenic glycoside from the Australian endemic rainforest tree Elaeocarpus sericopetalus (Elaeocarpaceae).

    PubMed

    Miller, Rebecca E; Stewart, Michael; Capon, Robert J; Woodrow, Ian E

    2006-07-01

    A cyanogenic glycoside - 6'-O-galloylsambunigrin - has been isolated from the foliage of the Australian tropical rainforest tree species Elaeocarpus sericopetalus F. Muell. (Elaeocarpaceae). This is the first formal characterisation of a cyanogenic constituent in the Elaeocarpaceae family, and only the second in the order Malvales. 6'-O-galloylsambunigrin was identified as the principal glycoside, accounting for 91% of total cyanogen in a leaf methanol extract. Preliminary analyses indicated that the remaining cyanogen content may comprise small quantities of sambunigrin, as well as di- and tri-gallates of sambunigrin. E. sericopetalus was found to have foliar concentrations of cyanogenic glycosides among the highest reported for tree leaves, up to 5.2 mg CN g(-1) dry wt. PMID:16716370

  2. Unusual fernane and gammacerane glycosides from the aerial parts of Spergula fallax.

    PubMed

    Hamed, Arafa I; Masullo, Milena; Pecio, Lukasz; Gallotta, Dario; Mahalel, Usama A; Pawelec, Sylwia; Stochmal, Anna; Piacente, Sonia

    2014-03-28

    The aerial parts of Spergula fallax afforded four glycosides (1-4) based on two new triterpene aglycones (1a and 2a), along with the known hopane glycoside succulentoside A. Compound 1 was identified as belonging to the fernane class, unusual migrated hopane triterpenoids, mainly isolated from ferns and only rarely from higher plants. Compounds 2-4 were assigned as gammacerane glycosides, having as aglycone a hydroxylated derivative of tetrahymanol. The structures of the isolated compounds 1-4 and their aglycones 1a and 2a obtained by acid hydrolysis were elucidated by spectroscopic data interpretation. The growth inhibitory activity of the isolated compounds and their aglycones was evaluated against the HeLa and DLD-1 cancer cell lines. PMID:24527835

  3. Studies on Kochiae Fructus. V. Antipruritic effects of oleanolic acid glycosides and the structure-requirement.

    PubMed

    Matsuda, H; Dai, Y; Ido, Y; Murakami, T; Matsuda, H; Yoshikawa, M; Kubo, M

    1998-11-01

    We examined the antipruritic effects of various oleanolic acid glycosides from natural medicines such as Kochiae Fructus (the fruit of Kochia scoparia SCHRAD.) and Momordicae Radix (the roots of Momordica cochinchinensis SPRENG.) using a compound 48/80-induced pruritic model in mice. Oleanolic acid 3-O-monodesmosides showed an antipruritic effect, while oleanolic acid 3,28-O-bisdesmosides and their common sapogenol oleanolic acid lacked the activity. This evidence indicated that the 3-O-glycoside moiety and the 28-carboxyl group in oleanolic acid glycosides were essential for exhibiting the antipruritic effect. Furthermore, it was found that the 3-O-glucuronides showed more potent activity than the corresponding 3-O-glucosides. PMID:9853421

  4. Partial characterization of a biologically active steroid glycoside isolated from the starfish Marthasterias glacialis

    PubMed Central

    Mackie, A. M.; Turner, A. B.

    1970-01-01

    1. A steroid glycoside (M2), which induces avoidance and other reactions in the mollusc Buccinum undatum, has been isolated from extracts of the starfish Marthasterias glacialis by ion-exchange chromatography. 2. The steroid glycoside was homogeneous by t.l.c. and contained glucose, quinovose, fucose and sulphate in the molar proportions 1:2:1:1, in addition to a water-insoluble aglycone. 3. The aglycone was identified as a cholestane derivative containing an unusual ?24-23-ketone system, two secondary hydroxyl groups and an olefinic double bond, and had the molecular formula C27H42O3. 4. The rates of release of sugars and sulphate suggested that fucose was at the non-reducing end of the oligosaccharide, with glucose glycosidically linked to the steroid. The sulphate group appeared to be linked to the other hydroxyl group of the steroid. PMID:5419749

  5. Two new quinochalcone C-glycosides from the florets of Carthamus tinctorius.

    PubMed

    Yue, Shijun; Tang, Yuping; Xu, Chengmei; Li, Shujiao; Zhu, Yue; Duan, Jin-Ao

    2014-01-01

    Two new quinochalcone C-glycosides, named hydroxysafflor yellow B (1) and hydroxysafflor yellow C (2), along with two known quinochalcone C-glycosides, safflomin C (3) and saffloquinoside C (4), and one known flavanone, (2R)-4',5-dihydroxyl-6, 7-di-O-?-d-glucopyranosyl flavanone (5), were isolated from the florets of Carthamus tinctorius. Their structures were determined by extensive spectroscopic (UV, IR, HR-ESI-MS, 1D and 2D NMR) analyses. In addition, these quinochalcone C-glycosides together with hydroxysafflor yellow A and anhydrosafflor yellow B were evaluated for their anti-oxidative effects against H2O2-induced cytotoxicity in cultured H9c2 cells. Among them, compound 2 exhibited significant anti-oxidative effects. PMID:25247575

  6. Re-evaluating the role of ascorbic acid and phenolic glycosides in ozone scavenging in the leaf apoplast of

    E-print Network

    Jones, Alan M.

    Re-evaluating the role of ascorbic acid and phenolic glycosides in ozone scavenging in the leaf and peroxidase substrates, suggesting that compounds in addition to ascorbate may have functional importance of ascorbic acid (AA) and phenolic glycosides in Arabidopsis thaliana L. Col-0 wild-type plants were

  7. Differential EI Fragmentation Pathways for Peracetylated C-Glycoside Ketones as a Consequence of Bicyclic Ketal Ring Structures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several C-glycoside ketones and peracetylated C-glycoside ketones have been synthesized from 13 structurally-diverse aldoses sugars (including isotope labeled [1-**13C]Glc, [U-**13C]Glc, and [6,6’-**2H2]Glc) via an aqueous-based Knoevanagel condensation with aliphatic 1,3-diketones. Sodium adduct m...

  8. Temporary reduction of radiation does not permanently reduce flavonoid glycosides and phenolic acids in red lettuce.

    PubMed

    Becker, Christine; Kläring, Hans-Peter; Kroh, Lothar W; Krumbein, Angelika

    2013-11-01

    Applying transparent daytime screens in greenhouses in cool seasons reduces the amount of energy needed for heating, but also the solar radiation available for crops. This can reduce yield and product quality of leafy vegetables because of constrained photosynthesis and altered biosynthesis. To study this, we cultivated five-week old red leaf lettuce (Lactuca sativa L.) for four weeks in growth chambers under a photosynthetic photon flux density (PPFD) of 225 and 410 ?mol m(-2) s(-1), respectively. Some plants were exchanged between radiation intensities after two weeks. We investigated the concentration of five flavonoid glycosides, three caffeic acid derivatives, reducing sugars as well as plant growth. Remarkably, no significant influence of radiation intensity on the concentration of phenolic acids or anthocyanin glycosides was observed. In contrast, quercetin and luteolin glycoside concentration was between 14 and 34% lower in plants growing under lower compared to higher PPFD. Already after two weeks of cultivation, plants grown under lower PPFD contained less quercetin and luteolin glycosides but they completely compensated if subsequently transferred to higher PPFD until harvest. Hence, marketable lettuce heads which experienced temporary shading followed by an unshaded phase did not contain lower concentrations of flavonoid glycosides or phenolic acids. Also, there was no reduction of head mass in this variant. Our results suggest that saving energy in early growth stages is feasible without losses in yield or health promoting phenolic substances. In addition, there was a close correlation between the concentration of reducing sugars and some flavonoid glycosides, indicating a close metabolic connection between their biosynthesis and the availability of carbohydrates. PMID:23735845

  9. Electrospray-ionization mass spectrometry of mixtures of triterpene glycosides with paracetamol

    NASA Astrophysics Data System (ADS)

    Lekar, A. V.; Vetrova, E. V.; Borisenko, N. I.; Yakovishin, L. A.; Grishkovets, V. I.

    2010-11-01

    Molecular complexation of paracetamol with hederagenin 3-O-?-L-rhamnopyranosyl-(1 ? 2)-O-?-L-arabinopyranoside (?-hederin) and its 28-O-?-L-rhamnopyranosyl-(1 ? 4)-O-?-D-glucopyranosyl-(1 ? 6)-O-?-Dglucopyranosyl ether (hederasaponin C) was investigated for the first time using electrospray-ionization mass spectrometry (ESI-MS). The glycosides form complexes with paracetamol in a 1:1 molar ratio. The hederasaponin C complex is more stable. The structures of the glycosides and paracetamol are concluded to have an impact on the complexation process.

  10. Electrospray ionization mass spectrometry of mixtures of triterpene glycosides with L-phenylalanine

    NASA Astrophysics Data System (ADS)

    Lekar, A. V.; Vetrova, E. V.; Borisenko, N. I.; Yakovishin, L. A.; Grishkovets, V. I.; Borisenko, S. N.

    2011-09-01

    Electrospray-ionization mass spectrometry (ESI-MS) was used to investigate for the first time the molecular complexation of L-phenylalanine with hederagenin 3-O- ?- L-rhamnopyranosyl-(1 ? 2)-O- ?- L-arabinopyranoside ( ?-hederin) and its 28-O- ?- L-rhamnopyranosyl-(1 ? 4)-O-?- D-glucopyranosyl-(1 ? 6)-O-?- D-glucopyranosyl ester (hederasaponin C). The glycoside/ L-phenylalanine complexes with a 1:1 molar ratio turned out to be most stable. The structures of the glycosides and L-phenylalanine have been concluded to have an impact on the complexation process.

  11. Phenylpropanoid and lignan glycosides from the aerial parts of Lespedeza cuneata.

    PubMed

    Zhou, Jian; Li, Chuang-Jun; Yang, Jing-Zhi; Ma, Jie; Wu, Lian-Qiu; Wang, Wen-Jie; Zhang, Dong-Ming

    2016-01-01

    Four phenylpropanoid glucosides (1-4) and five lignan glycosides (5-9) were isolated from the aerial parts of Lespedeza cuneata, together with three known lignan glycosides (10-12). Their structures were elucidated on the basis of spectroscopic analyses, and the absolute configurations of compounds 5-9 were determined from the CD spectra. In addition, the compounds were tested for their ability to activate the transcription effect on xbp1 promoter. Compounds 4, 5, 7, 9, 10, and 12 could activate the transcription of xbp1 to varying degrees, with EC50 values ranging from 0.18 to 0.64?M. PMID:26475664

  12. Phenolic glycosides and other constituents from the bark of Magnolia officinalis.

    PubMed

    Yan, Ren-Yi; Liu, Hong-Liang; Zhang, Jian-Yong; Yang, Bin

    2014-01-01

    A new phenolic glycoside, syringic acid 4-O-?-D-glucopyranosyl-(1 ? 5)-?-L-rhamnopyranoside (1), together with 12 known compounds consisting of eight phenolic glycosides (2-9), two phenolic acids (10 and 11), and two norsesquiterpenoids (12 and 13), was isolated from the methanol extract of the bark of Magnolia officinalis. Their structures were elucidated on the basis of spectroscopic analysis and chemical methods. Compounds 1-11 were evaluated for their inhibitory activities against fructose-1,6-bisphosphatase, aldose reductase, lipase, dipeptidyl peptidase-IV, ?-glucosidase, and three cancer cell lines. However, all the compounds showed weak or no activities in these tests. PMID:23909378

  13. Cholestane steroid glycosides from the root of Dioscorea villosa (wild yam)

    PubMed Central

    Ali, Zulfiqar; Smillie, Troy J.; Khan, Ikhlas A.

    2014-01-01

    Phytochemical investigation of the MeOH extract of Dioscorea villosa root resulted in the isolation of two new bidesmosidic cholestane steroid glycosides, dioscoreavillosides A and B (1 and 2). In addition, the extract yielded 12 previously known furostane and spirostane steroid glycosides (3-14), along with diosgenin (15). Compounds 3-7, 9, 14, and 15 were isolated for the first time from D. villosa. The structures of the isolated compounds were determined using spectroscopic and chemical methods including 1D and 2D NMR. The antimicrobial action of most of these compounds was tested against five fungal and five bacterial strains. PMID:23454141

  14. Identification of Novel Phenyl Butenonyl C-Glycosides with Ureidyl and Sulfonamidyl Moieties as Antimalarial Agents

    PubMed Central

    2014-01-01

    A new series of C-linked phenyl butenonyl glycosides bearing ureidyl(thioureidyl) and sulfonamidyl moieties in the phenyl rings were designed, synthesized, and evaluated for their in vitro antimalarial activities against Plasmodium falciparum 3D7 (CQ sensitive) and K1 (CQ resistant) strains. Among all the compounds screened the C-linked phenyl butenonyl glycosides bearing sulfonamidyl moiety (5a) and ureidyl moiety in the phenyl ring (7d and 8c) showed promising antimalarial activities against both 3D7 and K1 strains with IC50 values in micromolar range and low cytotoxicity offering new HITS for further exploration. PMID:25147607

  15. A New Diterpene Glycoside: 15?-Hydroxy-Rebaudioside M Isolated from Stevia rebaudiana.

    PubMed

    Prakash, Indra; Ma, Gil; Bunders, Cynthia; Devkota, Krishna P; Charan, Romila D; Ramirez, Catherine; Snyder, Tara M; Priedemann, Christopher

    2015-07-01

    In a continued search for novel diterpenoid glycosides, we recently isolated and characterized a Rebaudioside M derivative with a hydroxyl group at position 15 in the central diterpene core from an extract of Stevia rebaudiana Bertoni. Here we report the complete structure elucidation of 15?-hydroxy-Rebaudioside M (2) on the basis of NMR (1H, 13C, COSY, HSQC-DEPT, HMBC, 1D TOCSY, NOESY) and mass spectral data. Steviol glycoside with a hydroxyl group at C-15 in the central diterpene core has not been previously reported. PMID:26410999

  16. A steryl glycoside fraction with hemolytic activity from tubers of Momordica cochinchinensis.

    PubMed

    Ng, T B; Li, W W; Yeung, H W

    1986-10-01

    A hemolytic fraction has been obtained from fresh tubers of Momordica cochinchinensis. The fraction was strongly adsorbed on DEAE-Sepharose CL6B. It did not stain with Coomassie brilliant blue in SDS-polyacrylamide gel electrophoresis and it gave no immunoprecipitin arcs in immunoelectrophoresis. The hemolytic activity of the fraction was resistant to heat and proteolytic enzymes. The behavior of the fraction in thin-layer chromatography and its positive reaction in Liebermann-Burchard test indicated that the hemolytic activity of the fraction can be attributed to a steryl glycoside(s). PMID:3821135

  17. New Labdane Diterpenes and Their Glycoside Derivatives from the Roots of Isodon adenantha.

    PubMed

    Wu, La-Bin; Xiao, Chao-Jiang; Jiang, Xue; Qiu, Lin; Dong, Xiang; Jiang, Bei

    2015-08-01

    Two new labdane-type diterpenes (adenanthic acids A and B; 1 and 2, resp.) and three new labdane diterpene glycosides (adenanthosides A-C; 3-5, resp.) were isolated from the roots of Isodon adenantha, together with 23 known constituents including seven diterpenoids (6-12), eight triterpenoids (13-20), one lignan glycoside (21), six steroids (22-27), and one ceramide (28). Their structures were elucidated by spectroscopic methods including extensive 2D-NMR techniques. Cytotoxicity and antibacterial activities of the samples were measured by the MTT method and the filter paper disc agar diffusion method. But none of them showed significant activities. PMID:26265575

  18. Characterization and Modeling of the Collision Induced Dissociation Patterns of Deprotonated Glycosphingolipids: Cleavage of the Glycosidic Bond.

    PubMed

    Rožman, Marko

    2016-01-01

    Glycosphingolipid fragmentation behavior was investigated by combining results from analysis of a series of negative ion tandem mass spectra and molecular modeling. Fragmentation patterns extracted from 75 tandem mass spectra of mainly acidic glycosphingolipid species (gangliosides) suggest prominent cleavage of the glycosidic bonds with retention of the glycosidic oxygen atom by the species formed from the reducing end (B and Y ion formation). Dominant product ions arise from dissociation of sialic acids glycosidic bonds whereas product ions resulting from cleavage of other glycosidic bonds are less abundant. Potential energy surfaces and unimolecular reaction rates of several low-energy fragmentation pathways leading to cleavage of glycosidic bonds were estimated in order to explain observed dissociation patterns. Glycosidic bond cleavage in both neutral (unsubstituted glycosyl group) and acidic glycosphingolipids was the outcome of the charge-directed intramolecular nucleophilic substitution (SN2) mechanism. According to the suggested mechanism, the nucleophile in a form of carboxylate or oxyanion attacks the carbon at position one of the sugar ring, simultaneously breaking the glycosidic bond and yielding an epoxide. For gangliosides, unimolecular reaction rates suggest that dominant product ions related to the cleavage of sialic acid glycosidic bonds are formed via direct dissociation channels. On the other hand, low abundant product ions related to the dissociation of other glycosidic bonds are more likely to be the result of sequential dissociation. Although results from this study mainly contribute to the understanding of glycosphingolipid fragmentation chemistry, some mechanistic findings regarding cleavage of the glycosidic bond may be applicable to other glycoconjugates. Graphical Abstract ?. PMID:26297186

  19. Evaluation of the glycoside hydrolase activity of a Brettanomyces strain on glycosides from sour cherry (Prunus cerasus L.) used in the production of special fruit beers.

    PubMed

    Daenen, Luk; Sterckx, Femke; Delvaux, Freddy R; Verachtert, Hubert; Derdelinckx, Guy

    2008-11-01

    The glycoside hydrolase activity of Saccharomyces cerevisiae and Brettanomyces custersii was examined on sour cherry (Prunus cerasus L.) glycosides with bound volatile compounds. Refermentations by the beta-glucosidase-negative S. cerevisiae strains LD25 and LD40 of sour cherry juice-supplemented beer demonstrated only a moderate increase of volatiles. In contrast, the beta-glucosidase-positive B. custersii strain LD72 showed a more pronounced activity towards glycosides with aliphatic alcohols, aromatic compounds and terpenoid alcohols. Important contributors to sour cherry aroma such as benzaldehyde, linalool and eugenol were released during refermentation as shown by analytical tools. A gradually increasing release was observed during refermentations by B. custersii when whole sour cherries, sour cherry pulp or juice were supplemented in the beer. Refermentations with whole sour cherries and with sour cherry stones demonstrated an increased formation of benzyl compounds. Thus, amygdalin was partially hydrolysed, and a large part of the benzaldehyde formed was mainly reduced to benzyl alcohol and some further esterified to benzyl acetate. These findings demonstrate the importance and interesting role of certain Brettanomyces species in the production of fruit lambic beers such as 'Kriek'. PMID:18673394

  20. Comprehensive characterization of Stevia rebaudiana using two-dimensional reversed-phase liquid chromatography/hydrophilic interaction liquid chromatography.

    PubMed

    Fu, Qing; Guo, Zhimou; Zhang, Xiuli; Liu, Yanfang; Liang, Xinmiao

    2012-07-01

    Two-dimensional reversed-phase liquid chromatography/hydrophilic interaction liquid chromatography (2D-RPLC/HILIC) system was successfully applied for comprehensive characterization of steviol glycosides from Stevia rebaudiana. The experiments were performed in offline mode using an XCharge C18 column in first dimension and an XAmide column in second dimension. In first dimension, preliminary separation of Stevia aqueous extract was accomplished and 30 fractions were collected. Then fractions 1-20 were selected for further purification and 13 compounds with high purity were obtained in second dimension. Comprehensive characterization of these compounds was completed by determination of their retention time, accurate molecular weight, diagnostic fragmentation ions, and nuclear magnetic resonance spectroscopy. As a result, all nine known steviol glycosides, as well as other four steviol glycosides were fully purified. The result demonstrated that this procedure is an effective approach for the preparative separation and comprehensive characterization of steviol glycosides in Stevia. This 2D-RPLC/HILIC method will be a promising tool for the purification of low-abundance compounds from natural products. PMID:22807364

  1. Developing Promiscuous Glycosidases for Glycoside Synthesis: Residues W433 and E432

    E-print Network

    Davis, Ben G.

    .[4] Howev- er, although the expense of the nucleotide sugar substrates has been overcome at the anomeric centre.[10,11] The 2.6 -resolution crystal structure[12,13] of SsbG revealed a (a/b)8 triose aldose donor with an excess of an acceptor, such as an alcohol or sugar, to give a glycoside and water

  2. Enhanced profiling of flavonol glycosides in the fruits of sea buckthorn (Hippophae rhamnoides).

    PubMed

    Fang, Rui; Veitch, Nigel C; Kite, Geoffrey C; Porter, Elaine A; Simmonds, Monique S J

    2013-04-24

    Use of enhanced LC-MS/MS methods to identify common glycosyl groups of flavonoid glycosides enabled better characterization of the flavonoids in fruits of sea buckthorn (Hippophae rhamnoides). The saccharide moieties of 48 flavonol O-glycosides detected in a methanol extract were identified by these methods. Several of the flavonol glycosides were acylated, two of which were isolated and found to be new compounds. Their structures were determined using spectroscopic and chemical methods as isorhamnetin 3-O-(6-O-E-sinapoyl-?-D-glucopyranosyl)-(1?2)-?-D-glucopyranoside-7-O-?-L-rhamnopyranoside (24) and isorhamnetin 3-O-(6-O-E-feruloyl-?-D-glucopyranosyl)-(1?2)-?-D-glucopyranoside-7-O-?-L-rhamnopyranoside (30). Analysis of the acylated glycosyl groups of 24 and 30 by serial mass spectrometry provided evidence to suggest the acylation position of 11 other minor flavonol glycosides acylated with hydroxycinnamic or hydroxybenzoic acids. The nitric oxide scavenging activities of 24 and 30 were compared with those of other flavonoids and with ascorbic acid and the potassium salt of 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazolyl-1-oxy-3-oxide (carboxy-PTIO). PMID:23517173

  3. Cloning, Expression and Characterization of a Glycoside Hydrolase Family 39 Xylosidase from Bacillus Halodurans C-125

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gene encoding a glycoside hydrolase family 39 xylosidase (BH1068) from the alkaliphile Bacillus halodurans strain C-125 was cloned with a C-terminal His-tag and the recombinant gene product termed XylBH1068 was expressed in E. coli. Of the artificial substrates tested, XylBH1068 hydrolyzed nitro...

  4. Total Synthesis of Linckosides A and B, the Representative Starfish Polyhydroxysteroid Glycosides with Neuritogenic Activities.

    PubMed

    Zhu, Dapeng; Yu, Biao

    2015-12-01

    Linckosides A and B, two starfish metabolites with promising neuritogenic activities, are synthesized in a longest linear sequence of 32 steps and 0.5% overall yield; this represents the first synthesis of members of the polyhydroxysteroid glycoside family, which occur widely in starfishes. PMID:26595819

  5. Clerodane and Ent-kaurane Diterpene Glycosyl and Glycoside Derivatives from the Leaves of Casearia sylvestris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five new clerodane diterpene glycosides caseariasides A-E (1-4) and three new ent-kaurane diterpene glucosides sylvestrisides C-E (6-8) were isolated from the leaves of Casearia sylvestris. Their structures were determined on the basis of chemical and spectroscopic analyses....

  6. Anti-hepatitis B virus activities and absolute configurations of sesquiterpenoid glycosides from Phyllanthus emblica.

    PubMed

    Lv, Jun-Jiang; Wang, Ya-Feng; Zhang, Jing-Min; Yu, Shan; Wang, Dong; Zhu, Hong-Tao; Cheng, Rong-Rong; Yang, Chong-Ren; Xu, Min; Zhang, Ying-Jun

    2014-11-21

    During the process exploring anti-viral compounds from Phyllanthus species, eight new highly oxygenated bisabolane sesquiterpenoid glycoside phyllaemblicins G1–G8 (1–8) were isolated from Phyllanthus emblica, along with three known compounds, phyllaemblicin F (9), phyllaemblic acid (10) and glochicoccin D (11). Phyllaemblicin G2 (2), bearing a tricyclo [3.1.1.1] oxygen bridge ring system, is an unusual sesquiterpenoid glycoside, while phyllaemblicins G6–G8 (6–8) are dimeric sesquiterpenoid glycosides with two norbisabolane units connecting through a disaccharide. All the structures were elucidated by the extensive analysis of HRMS and NMR data. The relative configuration of phyllaemblicin G2 was constructed based on heteronuclear coupling constants measurement, and the absolute configurations for all new compounds were established by calculated electronic circular dichroism (ECD) using time dependent density functional theory. The sesquiterpenoid glycoside dimers 6–9 displayed potential anti-hepatitis B virus (HBV) activities, especially for the new compound 6 with IC50 of 8.53 ± 0.97 and 5.68 ± 1.75 ?M towards the HBV surface antigen (HBsAg) and HBV excreted antigen (HBeAg) secretion, respectively. PMID:25268491

  7. Potential anti-inflammatory phenolic glycosides from the medicinal plant Moringa oleifera fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioassay-guided isolation and purification of the ethyl acetate extract of Moringa oleifera fruits yielded three new phenolic glycosides; 4-[(2'-O-acetyl-a-L-rhamnosyloxy) benzyl]isothiocyanate (1), 4-[(3'-O-acetyl-a-L-rhamnosyloxy)benzyl]isothiocyanate (2), and S-methyl-N-{4-[(a-L-rhamnosyloxy)benz...

  8. An anti-inflammatory and anti-microbial flavone glycoside from flowers of Cleome viscosa

    PubMed Central

    2012-01-01

    Background Natural products isolated from plant sources have been demonstrated as potential candidates against several ailments. The scientific investigations on the underlying principles of phytotherapy can pave way for the convergence of traditional medicines and modern science and technologies. Results Quercetin 3-O-(2??-acetyl)-glucoside obtained from ethyl acetate fraction of Cleome viscosa is studied against inflammatory of carrageenan-induced rat paw edema ( in vivo) and microbial activity on ( in vitro). The structure of the glycoside is confirmed by means of hydrogen-1 nuclear magnetic resonance spectroscopy, carbon nuclear magnetic resonance spectroscopy, attached proton test, and mass spectrum. The flavonoid glycoside showed significant anti-inflammatory activity of on carrageenan-induced rat paw edema ( in vivo) and anti-microbial activity ( in vitro) on Staphylococcus aureus (gram positive) and Escherichia coli (gram negative). The anti-inflammatory effect of the flavonoid glycoside may be due to the inhibition of prostaglandin synthesis. Selective toxicity with flavonoid glycoside towards the gram-positive bacteria was found on S. aureus. Conclusions The present study reveals the anti-inflammatory and antimicrobial activities of an isolated quercetin 3-O-(2??-acetyl)-glucoside from a natural source ( C. viscosa). PMID:22613049

  9. Rehabilitation of faulty kinetic determinations and misassigned glycoside hydrolase family of retaining mechanism ß-xylosidases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We obtained Cx1 from a commercial supplier, whose catalog listed it as a ß-xylosidase of glycoside hydrolase family 43. NMR experiments indicate retention of anomeric configuration in its reaction stereochemistry, opposing the assignment of GH43, which follows an inverting mechanism. Partial protein...

  10. Highly active ß-xylosidases of glycoside hydrolase family 43 operating on natural and artificial substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hemicellulose xylan constitutes a major portion of plant biomass, a renewable feedstock available for conversion to biofuels and other bioproducts. ß-xylosidase operates in the deconstruction of the polysaccharide to fermentable sugars. Glycoside hydrolase family 43 has been identified as a so...

  11. Characterization of two-step deglycosylation via oxidation by glycoside oxidoreductase and defining their subfamily

    PubMed Central

    Kim, Eun-Mi; Seo, Joo-Hyun; Baek, Kiheon; Kim, Byung-Gee

    2015-01-01

    Herein, we report a two-step deglycosylation mediated by the oxidation of glycoside which is different from traditional glycoside hydrolase (GH) mechanism. Previously, we reported a novel flavin adenine dinucleotide (FAD)-dependent glycoside oxidoreductase (FAD-GO) having deglycosylation activity. Various features of the reaction of FAD-GO such as including mechanism and catalytic residue and substrate specificity were studied. In addition, classification of novel FAD-GO subfamily was attempted. Deglycosylation of glycoside was performed spontaneously via oxidation of 3-OH of glycone moiety by FAD-GO mediated oxidation reaction. His493 residue was identified as a catalytic residue for the oxidation step. Interestingly, this enzyme has broad glycone and aglycon specificities. For the classification of FAD-GO enzyme subfamily, putative FAD-GOs were screened based on the FAD-GO from Rhizobium sp. GIN611 (gi 365822256) using BLAST search. The homologs of R. sp. GIN611 included the putative FAD-GOs from Stenotrophomonas strains, Sphingobacterium strains, Agrobacterium tumefaciens str. C58, and etc. All the cloned FAD-GOs from the three strains catalyzed the deglycosylation via enzymatic oxidation. Based on their substrate specificities, deglycosylation and oxidation activities to various ginsenosides, the FAD-GO subfamily members can be utilized as novel biocatalysts for the production of various aglycones. PMID:26057169

  12. Utilisation of steviol glycosides from Stevia rebaudiana (Bertoni) by lactobacilli and bifidobacteria in in vitro conditions.

    PubMed

    Kunová, Gabriela; Rada, Vojt?ch; Vidaillac, Adrien; Lisova, Ivana

    2014-05-01

    In the current study, eight strains of bifidobacteria and seven strains of lactobacilli were tested for their ability to grow in the presence of rebaudioside A and steviol glycosides from the sweetener Natusweet M001 originating from herb Stevia rebaudiana (Bertoni). Stevia is gaining popularity as a natural, non-caloric sugar substitute, and recently, it was allowed as a food additive by European Union too. Utilisation of steviol glycosides by intestinal microbiota suggests that they might have potential prebiotic effect. Based on the evaluation of bacterial density and pH values in our in vitro study, it was found that lactobacilli and bifidobacteria tested were able to utilise steviol glycosides as a carbon source only to a very limited extent. All strains tested showed significantly lower change in the absorbance A540 (P?glycosides. PMID:24249153

  13. KOLOKOSIDES A-D: TRITERPENOID GLYCOSIDES FROM A HAWAIIAN ISOLATE OF XYLARIA SP.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four new triterpenoid glycosides, kolokosides A-D (1-4), along with the known compound 19, 20-epoxycytochalasin N, were isolated from cultures of a Hawaiian wood-decay fungus (Xylaria sp.) The structures and relative configurations of 1-4 were determined primarily by analysis of NMR data, and the ab...

  14. IDENTIFICATION OF FLAVONE AGLYCONES AND GLYCOSIDES IN SOYBEAN PODS BY LIQUID CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (HPLC-APCI-MS) was used to identify flavone aglycones and glycosides in soybean pods. Tandem mass spectrometry (MS/MS and MS3) and photodiode array detection were also utilized in flavone characterizat...

  15. DFT STUDY OF ALPHA-MALTOSE: INFLUENCE OF HYDROXYL ORIENTATIONS ON THE GLYCOSIDIC BOND

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The result of DFT geometry optimization of 68 unique alpha-maltose conformers at the B3LYP/6-311++G** level of theory is described. Particular attention is paid to the hydroxyl group rotational positions and their influence on the glycosidic bond dihedral angles. The orientation of lone pair elect...

  16. Theoretical Calculation of Electronic Circular Dichroism of a Hexahydroxydiphenoyl-Containing Flavanone Glycoside

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Time-dependent density functional theory (TDDFT) was employed for theoretical calculation of electronic circular dichroism (ECD) of a hexahydroxydiphenoyl (HHDP)-containing flavanone glycoside, mattucinol-7-O-[4'',6''-O-(aS)-hexahydroxydiphenoyl]-ß-d-glucopyranoside (2). It identified the roles of t...

  17. Synthesis of glycosyl fluorides from (phenylthio)glycosides using IF5-pyridine-HF.

    PubMed

    Kunigami, Masataka; Hara, Shoji

    2015-11-19

    IF5-pyridine-HF, an air- and moisture-stable fluorinating reagent, was applied to the synthesis of glycosyl fluorides from (phenylthio)glycosides. Common protecting groups of alcohol and diol can tolerate the reaction conditions performed, and therefore, the present method is applicable to the synthesis of various glycosyl fluorides. PMID:26432611

  18. Neoadenoloside A, a highly functionalized diterpene C-glycoside, from Isodon adenolomus.

    PubMed

    Zhao, Wei; Wang, Wei-Guang; Li, Xiao-Nian; Du, Xue; Zhan, Rui; Zou, Juan; Li, Yan; Zhang, Hai-Bo; He, Fei; Pu, Jian-Xin; Sun, Han-Dong

    2012-08-11

    Neoadenoloside A (1), an unprecedented diterpene C-glycoside with a unique C(26) framework, along with lasiokaurin (3) were isolated from the leaves of Isodon adenolomus. The absolute configuration of 2, a derivative of 1, was determined by spectroscopic methods and single-crystal X-ray diffraction analysis. PMID:22743545

  19. Crypthophilic Acids A, B, and C: Resin Glycosides from Aerial Parts of Scrophularia crypthophila

    E-print Network

    Rüedi, Peter

    Crypthophilic Acids A, B, and C: Resin Glycosides from Aerial Parts of Scrophularia crypthophilaVed October 16, 2006 The water-soluble part of the methanolic extract from the aerial parts of Scrophularia, taxonomically unrelated family (Scrophulariaceae). In the flora of Turkey, the genus Scrophularia is represented

  20. Structural investigations of flavonol glycosides from sea buckthorn (Hippophaë rhamnoides) pomace by NMR spectroscopy and HPLC-ESI-MS(n).

    PubMed

    Rösch, Daniel; Krumbein, Angelika; Mügge, Clemens; Kroh, Lothar W

    2004-06-30

    Four flavonol glycosides were isolated from an extract of sea buckthorn pomace (Hippophaë rhamnoides) by Sephadex LH-20 gel chromatography and semipreparative HPLC. Their structures were elucidated by hydrolysis studies, ESI-MS(n), UV, and (1)H and (13)C NMR spectroscopy. The occurrence of the major flavonol glycoside kaempferol 3-O-beta-sophoroside-7-O-alpha-rhamnoside in sea buckthorn is described here for the first time. A further 21 flavonol glycosides of Sephadex LH-20 fractions of sea buckthorn pomace were characterized by HPLC-DAD-ESI-MS. The characteristic MS-MS and MS(3) fragmentation pattern of flavonol glycosides previously identified in sea buckthorn juice and of flavonol glycosides identified by NMR spectroscopy gave valuable indications for their identification. The results demonstrate that loss of the sugar moiety from C-7 of the aglycon is more favored than fission of the glycosidic linkage at the C-3 position. Thus, most of the compounds identified were 7-rhamnosides of isorhamnetin, kaempferol, and quercetin, which exhibit different substitution patterns at the C-3 position, mainly glucosides, rutinosides, and sophorosides. In addition, numerous flavonol glycosides were detected lacking a sugar moiety at C-7. Finally, eight flavonol derivatives were identified that are acylated by hydroxybenzoic or hydoxycinnamic acids. PMID:15212446

  1. High sensitivity of the Na+, K+-pump of human red blood cells to genins of cardiac glycosides.

    PubMed

    Senn, N; Lelièvre, L G; Braquet, P; Garay, R

    1988-04-01

    1. Four different cardiac glycosides (ouabain, digitoxin, digoxin and gitoxin) and their corresponding genins were tested on Na+, K+-pump fluxes measured under steady-state and initial rate conditions (non equilibrium conditions) in human and rat erythrocytes and in mouse macrophages. 2. In human red cells, Na+, K+-pump fluxes exhibited up to 8 fold higher sensitivity to genins than to glycosides. In addition genins, but not the corresponding glycosides, exhibited double reactivity with regard to the erythrocyte Na+, K+-pump (with the exception of gitoxigenin). A weak reactivity component was similar to the one of the corresponding glycosides (IC50 of about 10(-6) M) and a high reactivity component exhibited IC50 values varying from 0.1 to 0.5 X 10(-6) M for digitoxigenin and ouabagenin respectively. 3. In contrast with human red cells, the initial rate of Na+, K+-pump fluxes in rat erythrocytes and mouse macrophages was less sensitive to genins than to the corresponding cardiac glycosides. 4. Dihydroouabain was 3, 10 and 75 times less active than ouabain in inhibiting the initial rate of Na+, K+-pump fluxes in human and rat erythrocytes and in mouse macrophages respectively. 5. In conclusion, Na+, K+-pump fluxes measured under initial rate conditions in human erythrocytes exhibit an unusually high sensitivity to genins of cardiac glycosides. This property probably results from the fast binding rate constants of genins and the slow association rates of glycosides to human red cells. PMID:3390651

  2. Determination of the triterpene glycosides in sea cucumbers by liquid chromatography with evaporative light scattering and mass spectrometry detection.

    PubMed

    Yang, Jie; Wang, Yuanhong; Zhang, Ran; Jiang, Tifngfu; Lv, Zhihua

    2015-04-01

    Holothurian triterpene glycosides possess various kinds of biological activities, including antifungal, cytotoxic, hemolytic, cytostatic, and immunomodulatory effects. In this study, a rapid extraction method of triterpene glycosides from sea cucumbers using a small column of C18 solid phase was first developed. Furthermore, a novel high-performance liquid chromatography method coupled with evaporative light scattering detection and electrospray ionization mass spectrometry was established for the determination of each triterpene glycosides from different sea cucumbers. Simultaneous separation of all kind of triterpene glycoside were achieved on a C18 column. A gradient of aqueous acetonitrile was applied, and the method was validated. The liquid chromatography method was applied to the online mass detection to identify the triterpene glycosides in the purified extraction of eight kinds of pulverized sea cucumber from the market of Qingdao, China. The negative mode of [M-H](-)/[M-Na](-) exclusively shown signals corresponding to the triterpene glycosides previously reported and the MS(2) product ions of those ions indicate the specific structure of each triterpene glycoside. PMID:25604752

  3. Colochirosides B1, B2, B3 and C, Novel Sulfated Triterpene Glycosides from the Sea Cucumber Colochirus robustus (Cucumariidae, Dendrochirotida).

    PubMed

    Silchenko, Alexandra S; Kalinovsky, Anatoly I; Avilov, Sergey A; Andryjaschenko, Pelageya V; Dmitrenok, Pavel S; Kalinin, Vladimir I; Yurchenko, Ekaterina A; Dolmatov, Igor Yu

    2015-10-01

    Four new triterpene glycosides, colochirosides B1 (1), B2 (2), B3 (3) and C (4) have been isolated from the sea cucumber Colochirus robustus (Cucumariidae, Dendrochirotida). Six known earlier glycosides from representatives of two families of the order Dendrochirotida have also been found in C. robustus. Structures of the glycosides have been elucidated by 2D NMR spectroscopy and mass spectrometry. All the glycosides belong to the holostane series and contain tetrasaccharide linear carbohydrate chains with one or two sulfate groups. Cytotoxic activities of glycosides 1-4 against the ascite form of mouse Ehrlich carcinoma cells and hemolytic activities against mouse erythrocytes have been studied. Hemolytic activity of the glycosides was higher than cytotoxic. Glycosides 3 and 4 demonstrated strong effects, whereas compounds 1 and 2 containing the hydroxy-group in the side chains showed moderate hemolytic activity and were not cytotoxic. PMID:26669103

  4. Phenylethanoid glycosides in tepals of Magnolia salicifolia and their occurrence in flowers of Magnoliaceae.

    PubMed

    Porter, Elaine A; Kite, Geoffrey C; Veitch, Nigel C; Geoghegan, Ivey A; Larsson, Sonny; Simmonds, Monique S J

    2015-09-01

    Phenylethanoid glycosides were among the major UV-absorbing components in 80% aq. CH3OH extracts of the tepals of Magnolia salicifolia (Siebold & Zucc.) Maxim. (Magnoliaceae; Magnolia subgenus Yulania). Structural characterisation of isolated compounds by spectroscopic and chemical methods revealed three previously unrecorded examples, yulanoside A, yulanoside B and 2'-rhamnoechinacoside, and the known compounds echinacoside and crassifolioside; chromatographic methods also identified verbascoside in the tepal extract. Yulanoside A is the first reported example of a phenylethanoid pentaglycoside, namely hydroxytyrosol 1-O-{?-D-glucopyranosyl-(1?4)-?-D-glucopyranosyl-(1?6)-[3,4-dihydroxycinnamoyl-(?4)][?-L-rhamnopyranosyl-(1?3)][?-L-rhamnopyranosyl-(1?2)]-?-D-glucopyranoside}. A survey of Magnolia sensu lato and Liriodendron (the two genera of Magnoliaceae) suggested that yulanoside A and its deglucosyl derivative (yulanoside B) were a feature of the tepal chemistry of Magnolia subgenus Yulania (except Magnolia acuminata, the sole member of section Tulipastrum, which did not accumulate phenylethanoid glycosides). The two species of Liriodendron and examined examples of Magnolia subgenus Magnolia sections Magnolia and Rytidospermum (subsection Oyama) also accumulated phenylethanoid glycosides in their tepals and in these species, and in subgenus Yulania, the major compounds were one or more of echinacoside, 2'-rhamnoechinacoside, crassifolioside and verbascoside. Levels of phenylethanoid glycosides were found to be much lower in species studied from Magnolia sections Gwillimia, Macrophylla and Rytidospermum (subsection Rytidospermum), although yulanoside A was detectable in M. macrophylla and this may have some bearing on the placement of section Macrophylla, which is currently uncertain. In the isolates of yulanoside B and echinacoside, minor phenylethanoid glycosides were determined to be analogues of these compounds with ?-D-xylose at C-3' of the primary glucose rather than ?-L-rhamnose. PMID:26093323

  5. Steroidal sapogenins and glycosides from the fibrous roots of Polygonatum odoratum with inhibitory effect on tissue factor (TF) procoagulant activity.

    PubMed

    Zhang, Hong; Chen, Ling; Kou, Jun-Ping; Zhu, Dan-Ni; Qi, Jin; Yu, Bo-Yang

    2014-11-01

    Six new spirostane glycosides (1-6), named polygodosides A-F, one new furostanol glycoside, polygodoside G (7), one new cholestane glycoside, polygodoside H (8), and one new steroidal sapogenin, polygodosin A (9), together with thirteen known compounds (10-22) were isolated from a 90% MeOH extract of the fibrous roots of Polygonatum odoratum (Mill.) Druce. The structures of new compounds were elucidated by extensive 1D and 2D NMR spectroscopic analyses and mass spectrometry. The effects on TF procoagulant activity in THP-1 cells were tested for most of the compounds. PMID:25042471

  6. The method of integrated kinetics and its applicability to the exo-glycosidase-catalyzed hydrolysis of p-nitrophenyl glycosides.

    PubMed

    Borisova, Anna S; Reddy, Sumitha K; Ivanen, Dina R; Bobrov, Kirill S; Eneyskaya, Elena V; Rychkov, Georgy N; Sandgren, Mats; Stålbrand, Henrik; Sinnott, Michael L; Kulminskaya, Anna A; Shabalin, Konstantin A

    2015-08-14

    In the present work we suggest an efficient method, using the whole time course of the reaction, whereby parameters kcat, Km and product KI for the hydrolysis of a p-nitrophenyl glycoside by an exo-acting glycoside hydrolase can be estimated in a single experiment. Its applicability was demonstrated for three retaining exo-glycoside hydrolases, ?-xylosidase from Aspergillus awamori, ?-galactosidase from Penicillium sp. and ?-galactosidase from Thermotoga maritima (TmGalA). During the analysis of the reaction course catalyzed by the TmGalA enzyme we had observed that a non-enzymatic process, mutarotation of the liberated ?-d-galactose, affected the reaction significantly. PMID:26005928

  7. Tubal ligation reversal

    MedlinePLUS

    Tubal ligation reversal is surgery done to allow a woman who has had her tubes tied (tubal ligation) to become pregnant again. The fallopian tubes are reconnected in this reversal surgery. A tubal ligation can't always be ...

  8. Reverse Correlation in Neurophysiology

    ERIC Educational Resources Information Center

    Ringach, Dario; Shapley, Robert

    2004-01-01

    This article presents a review of reverse correlation in neurophysiology. We discuss the basis of reverse correlation in linear transducers and in spiking neurons. The application of reverse correlation to measure the receptive fields of visual neurons using white noise and m-sequences, and classical findings about spatial and color processing in…

  9. Justice and Reverse Discrimination.

    ERIC Educational Resources Information Center

    Goldman, Alan H.

    Defining reverse discrimination as hiring or admissions decisions based on normally irrelevant criteria, this book develops principles of rights, compensation, and equal opportunity applicable to the reverse discrimination issue. The introduction defines the issue and discusses deductive and inductive methodology as applied to reverse

  10. Reverse Engineering Design Patterns

    E-print Network

    Herbordt, Martin

    Reverse Engineering Design Patterns Detecting Design Patterns in Compiled Programs. Thesis for MET CS Master of Science Tom VanCourt #12;Tom VanCourt Reverse Engineering Design Pattern Occurrences: Page 1 of 35 Detecting Design Patterns in Compiled Programs Reverse Engineering Design Pattern

  11. Reversal of Oral Anticoagulation

    PubMed Central

    Limdi, Nita A.

    2013-01-01

    Although the use of dabigatran and rivaroxaban are increasing, data on reversal of their effects are limited. The lack of reliable monitoring methods and specific reversal agents renders treatment strategies empirical and as a result, , treatment consists mainly of supportive measures. Therefore, we performed a systematic search of the PubMed database to find studies and reviews pertaining to oral anticoagulation reversal strategies. This review discusses current anticoagulation reversal recommendations for the oral anticoagulants warfarin, dabigatran, and rivaroxaban for patients at a heightened risk of bleeding, actively bleeding or those in need for pre-procedural anticoagulation reversal. We highlight the literature that shaped these recommendations and provide directions for future research to address knowledge gaps. While reliable recommendations are available for anticoagulation reversal in patients treated with warfarin, guidance on reversal of dabigatran and rivaroxaban is varied and equivocal. Given the increasing use of the newer agents, focused research is needed to identify effective reversal strategies and develop and implement an accurate method (assay) to guide reversal of the newer agents. Determining patient-specific factors that influence the effectiveness of reversal treatments and comparing the effectiveness of various treatment strategies are pertinent areas for future anticoagulation reversal research. PMID:23606318

  12. Induction of apoptosis in colon cancer cells treated with isorhamnetin glycosides from Opuntia ficus-indica pads.

    PubMed

    Antunes-Ricardo, Marilena; Moreno-García, Beatriz E; Gutiérrez-Uribe, Janet A; Aráiz-Hernández, Diana; Alvarez, Mario M; Serna-Saldivar, Sergio O

    2014-12-01

    (OFI) contains health-promoting compounds like flavonoids, being the isorhamnetin glycosides the most abundant. We evaluated the effect of OFI extracts with different isorhamnetin glycosides against two different human colon cancer cells (HT-29 and Caco2). The extracts were obtained by alkaline hydrolysis with NaOH at 40 °C during 15, 30 or 60 min. Tri and diglycosides were the most abundant isorhamnetin glycosides, therefore these compounds were isolated to compare their cytotoxic effect with the obtained from the extracts. The OFI extracts and purified isorhamnetin glycosides were more cytotoxic against HT-29 cells than Caco2 cells. OFI-30 exhibited the lowest IC50 value against HT-29 (4.9?±?0.5 ?g/mL) and against Caco2 (8.2?±?0.3 ?g/mL). Isorhamnetin diglycosides IG5 and IG6 were more cytotoxic than pure isorhamnetin aglycone or triglycosides when they were tested in HT-29 cells. Bioluminescent analysis revealed increased activity of caspase 3/7 in OFI extracts-treated cells, particularly for the extract with the highest concentration of isorhamnetin triglycosides. Flow cytometry analysis confirmed that OFI extract and isorhamnetin glycosides induced a higher percentage of apoptosis in HT-29 than in Caco2, while isorhamnetin was more apoptotic in Caco2. This research demonstrated that glycosilation affected antiproliferative effect of pure isorhamnetin glycosides or when they are mixed with other phytochemicals in an extract obtained from OFI. PMID:25186940

  13. Terpene glycosides and cytotoxic constituents from the seeds of Amomum xanthioides.

    PubMed

    Kim, Ki Hyun; Choi, Jung Wook; Choi, Sang Un; Lee, Kang Ro

    2010-03-01

    Column chromatographic isolation of the MeOH extract of the seeds of Amomum xanthioides afforded a new diterpene glycoside, amoxanthoside A (1), two new monoterpene glycosides, (1 S,4 S,5 S)-5- EXO-hydroxycamphor 5-O-beta-D-glucopyranoside (2) and (1 R,4 R,5 S)-5-ENDO-hydroxycamphor 5-O-beta-D-glucopyranoside (3), together with four known compounds, hedychiol A (4), pygmol (5), (1 S,4 R,6 R)-(+)-6- ENDO-hydroxycamphor (6), and dihydroyashabushiketol (7). The structures of the new compounds were determined through spectral analysis, including extensive 2D NMR data. The isolated compounds were tested for their cytotoxicity against four human cancer cell lines IN VITRO using a sulforhodamine B bioassay. PMID:19830656

  14. Forsythoneosides A-D, Neuroprotective Phenethanoid and Flavone Glycoside Heterodimers from the Fruits of Forsythia suspensa.

    PubMed

    Zhang, Fan; Yang, Ya-Nan; Song, Xiu-Yun; Shao, Si-Yuan; Feng, Zi-Ming; Jiang, Jian-Shuang; Li, Li; Chen, Nai-Hong; Zhang, Pei-Cheng

    2015-10-23

    Forsythoneosides A-D (1-4), four unusual adducts of a flavonoid unit fused to a phenylethanoid glycoside through a pyran ring or carbon-carbon bond, and four new phenylethanoid glycosides (5-8) were isolated from the fruits of Forsythia suspensa, together with nine known compounds. The structures of 1-8, including their absolute configurations, were elucidated by spectroscopic data as well as experimental and calculated electronic circular dichroism analysis. Compounds 2 and 4 inhibited PC12 cell damage induced by rotenone, and increased cell viability from 53.9 ± 7.1% to 70.1 ± 4.0% and 67.9 ± 5.2% at 0.1 ?M, respectively. PMID:26422318

  15. Two new quercetin glycoside derivatives from the fruits of Gardenia jasminoides var. radicans.

    PubMed

    Yu, Shaofu; Fu, Shuna; Liu, Bailian; Zhang, Ying; Zhou, Guangxiong

    2015-01-01

    Two new quercetin glycoside derivatives named quercetin-3-O-[2-O-trans-caffeoyl-?-L-rhamnopyranosyl-(1 ? 6)-?-D-glucopyranoside] (1) and quercetin-3-O-[2-O-trans-caffeoyl-?-L-rhamnopyranosyl-(1 ? 6)-?-D-glucopyranoside] (2) along with three known flavonoids, 5-hydroxy-6,7,3',4',5'-pentamethoxyflavone (3), 5,7-dihydroxy-8-methoxyflavone (4) and kaempferol 3-O-?-D-glucopyranoside (5), were isolated from the fruits of Gardenia jasminoides var. radicans. The structures of the new compounds were determined by means of extensive spectroscopic analysis (1D, 2D NMR and HR-ESI-MS), glycoside hydrolysis and sugar HPLC analysis after derivatisation. This is the first report on the isolation of a pair of compounds with ? or ?-L-rhamnopyranosyl configuration from plant and the first detail assignment of their NMR data. PMID:25656831

  16. Cardenolides and bufadienolide glycosides from Kalanchoe tubiflora and evaluation of cytotoxicity.

    PubMed

    Huang, Hui-Chi; Lin, Ming-Kuem; Yang, Hsin-Ling; Hseu, You-Cheng; Liaw, Chih-Chuang; Tseng, Yen-Hsueh; Tsuzuki, Minoru; Kuo, Yueh-Hsiung

    2013-09-01

    Two new cardenolides, kalantubolide A (1) and kalantubolide B (2), and two bufadienolide glycosides, kalantuboside A (3) and kalantuboside B (4), as well as eleven known compounds were isolated and characterized from the EtOH extract of Kalanchoe tubiflora. The structures of compounds were assigned based on 1D and 2D NMR spectroscopic analyses including HMQC, HMBC, and NOESY. Biological evaluation indicated that cardenolides (1-2) and bufadienolide glycosides (3-7) showed strong cytotoxicity against four human tumor cell lines (A549, Cal-27, A2058, and HL-60) with IC50 values ranging from 0.01 µM to 10.66 µM. Cardenolides (1-2) also displayed significant cytotoxicity toward HL-60 tumor cell line. In addition, compounds 3, 4, 5, 6, and 7 blocked the cell cycle in the G2/M-phase and induced apoptosis in HL-60 cells. PMID:23877916

  17. Relationships between chemical structures and functions of triterpene glycosides isolated from sea cucumbers

    NASA Astrophysics Data System (ADS)

    Park, Joo-In; Bae, Hae-Rahn; Kim, Chang Gun; Stonik, Valentin; Kwak, Jong-Young

    2014-09-01

    Many marine triterpene glycosides have in vitro and in vivo activities with very low toxicity, suggesting that they are suitable agents for the prevention and treatment of different diseases, particularly cancer. However, the molecular mechanisms of action of natural marine compounds in cancer, immune and other various cells are not fully known. This review focuses on the structural characteristics of marine triterpene glycosides and how these affect their biological activities and molecular mechanisms. In particular, the membranotropic and membranolytic activities of frondoside A and cucumariosides from sea cucumbers and their ability to induce cytotoxicity and apoptosis have been discussed, with a focus on structure-activity relationships. In addition, the structural characteristics and antitumor effects of stichoposide C and stichoposide D have been reviewed along with underlying their molecular mechanisms.

  18. Relationships between chemical structures and functions of triterpene glycosides isolated from sea cucumbers

    PubMed Central

    Park, Joo-In; Bae, Hae-Rahn; Kim, Chang Gun; Stonik, Valentin A.; Kwak, Jong-Young

    2014-01-01

    Many marine triterpene glycosides have in vitro and in vivo activities with very low toxicity, suggesting that they are suitable agents for the prevention and treatment of different diseases, particularly cancer. However, the molecular mechanisms of action of natural marine compounds in cancer, immune, and other various cells are not fully known. This review focuses on the structural characteristics of marine triterpene glycosides and how these affect their biological activities and molecular mechanisms. In particular, the membranotropic and membranolytic activities of frondoside A and cucumariosides from sea cucumbers and their ability to induce cytotoxicity and apoptosis have been discussed, with a focus on structure-activity relationships. In addition, the structural characteristics and antitumor effects of stichoposide C and stichoposide D have been reviewed along with underlying their molecular mechanisms. PMID:25250309

  19. Synthesis of thymol glycosides under SCCO2 conditions using amyloglucosidase from Rhizopus mold.

    PubMed

    Kumar, Tiruppur Venkatachallam Suresh; Sankar, Kadimi-Udaya; Divakar, Soundar

    2013-08-01

    Enzymatic synthesis of water soluble thymol glycosides were carried out using amyloglucosidase from Rhizopus mold under supercritical carbon dioxide (SCCO2) conditions of 120 bar pressure at 50 °C. Thymol 1 formed glycosides with D-galactose 2, D-mannose 3, D-fructose 4, D-ribose 5 and D-arabinose 6 in yields ranging from 20.6% to 54.2%. Spectral characterization studies revealed that the reaction occurred between the phenolic OH group of thymol and 1-O/2-O groups of D-fructose and C-1 group of D-galactose, D-mannose, D-ribose and D-arabinose resulting in monoglycosylated/arylated derivatives. PMID:24425985

  20. Pseudoglycosyltransferase Catalyzes Non-Glycosidic C-N Coupling in Validamycin A Biosynthesis

    PubMed Central

    Asamizu, Shumpei; Yang, Jongtae; Almabruk, Khaled H.; Mahmud, Taifo

    2011-01-01

    Glycosyltransferases are ubiquitous in nature. They catalyze a glycosidic bond formation between sugar donors and sugar or non-sugar acceptors to produce oligo/polysaccharides, glycoproteins, glycolipids, glycosylated natural products, and other sugar-containing entities. However, a trehalose 6-phosphate synthase-like protein has been found to catalyze an unprecedented non-glycosidic C-N bond formation in the biosynthesis of the aminocyclitol antibiotic validamycin A. This dedicated ‘pseudoglycosyltransferase’ catalyzes a condensation between GDP-valienol and validamine 7-phosphate to give validoxylamine A 7?-phosphate with net retention of the ‘anomeric’ configuration of the donor cyclitol in the product. The enzyme operates in sequence with a phosphatase, which dephosphorylates validoxylamine A 7?-phosphate to validoxylamine A. PMID:21766819

  1. Mycotoxins and cyanogenic glycosides in staple foods of three indigenous people of the Colombian Amazon.

    PubMed

    Diaz, Gonzalo J; Krska, Rudolf; Sulyok, Michael

    2015-12-01

    A study was conducted to determine the incidence and levels of mycotoxins in the main staple foods of three indigenous people of the Colombian Amazon. A total of 20 corn, 24 rice and 59 cassava samples were analysed by a multi-analyte liquid chromatography-tandem mass spectrometry method covering the major classes of mycotoxins. In addition, cassava samples were also analysed for cyanogenic glycosides. The indigenous Amazon communities tested are exposed to potentially carcinogenic mycotoxins (particularly aflatoxins), as well as other mycotoxins, mainly through the intake of locally grown corn. Citrinin content in this corn was unusually high and has not been reported elsewhere. Two cassava samples contained high levels of cyanogenic glycosides. It is strongly recommended not to grow corn in the Amazon but instead purchase it from vendors capable of guaranteeing mycotoxin levels below the maximum allowable concentration in Colombia. PMID:26391446

  2. BACE1 (beta-secretase) inhibitory chromone glycosides from Aloe vera and Aloe nobilis.

    PubMed

    Lv, Liang; Yang, Qing-Yun; Zhao, Ying; Yao, Chun-Suo; Sun, Yang; Yang, Eun-Ju; Song, Kyung-Sik; Mook-Jung, Inhee; Fang, Wei-Shuo

    2008-04-01

    Four new chromone glycosides allo-aloeresin D (2) , C-2'-decoumaroyl-aloeresin G (8), 2'-O-coumaroyl-(S)-aloesinol (9), 2'-O-[ P-methoxy-(E)-cinnamoyl]-(S)-aloesinol (10) and nine known chromone glycosides ( 1, 3 - 7, 11 - 13) were isolated from two Aloe spp. plants, A. vera and A. nobilis. Among them, 1 and 8 showed significant inhibitory activity against BACE1 (beta-secretase) with IC (50) values of 39.0 and 20.5 x 10 (-6) M, as well as inhibition of Abeta (1-42) production by 7.4 and 12.3 %, respectively, in B103 neuroblastoma cells at 30 ppm. The preliminary structure-activity relationships of ALOE chromone glucosides were also discussed. PMID:18543151

  3. Synthesis and Characterization of Hapten-Protein Conjugates for Antibody Production against Cyanogenic Glycosides.

    PubMed

    Bolarinwa, Islamiyat Folashade

    2015-07-01

    Consumption of cyanogenic plants can cause serious health problems for humans. The ability to detect and quantify cyanogenic glycosides, capable of generating cyanide, could contribute to prevention of cyanide poisoning from the consumption of improperly processed cyanogenic plants. Hapten-protein conjugates were synthesized with amygdalin and linamarin by using a novel approach. Polyclonal antibodies were generated by immunizing four New Zealand White rabbits with synthesized amygdalin-bovine serum albumin and linamarin-bovine serum albumin immunogen. This is the first time an antibody was produced against linamarin. Antibody titer curves were obtained from all the four rabbits by using a noncompetitive enzyme-linked immunosorbent assay. High antibody titer was obtained at dilutions greater than 1:50,000 from both immunogens. This new method is an important step forward in preventing ingestion of toxic cyanogenic glycosides. PMID:26197297

  4. Three new pentasaccharide resin glycosides from the roots of sweet potato (Ipomoea batatas).

    PubMed

    Yin, Yong-Qin; Huang, Xue-Feng; Kong, Ling-Yi; Niwa, Masatake

    2008-12-01

    Three new pentasaccharide resin glycosides, batatosides III-V (1-3), were isolated from the roots of Sweet potato (Ipomoea batatas). Saponification of the crude resin glycoside mixture yielded substituents and simonic acid B. The structures of the isolated compounds (1-3) were established through spectroscopic analyses, including high field NMR spectroscopy and HR-ESI-MS, and chemical correlation. The major characteristics of 3 are the presence of three different substituents, especially the substituent of cinnamic acid was seldom. The monosaccharides of 1-3 were proved by GC-MS and the absolute configuration of aglycone was further established as S by Mosher's method with R-methyloxyphenylacetic acid (MPA) and S-MPA. PMID:19043237

  5. Anti-inflammatory properties of a triterpenoidal glycoside from Momordica cochinchinensis in LPS-stimulated macrophages.

    PubMed

    Jung, Kiwon; Chin, Young-Won; Yoon, Kee dong; Chae, Hee-Sung; Kim, Chul Young; Yoo, Hunseung; Kim, Jinwoong

    2013-02-01

    Two triterpenoidal saponins were isolated from the seeds of Momordica cochinchinensis Sprenger (Cucurbitaceae). Identification of chemical structures has been performed by (1)H- and (13)C-NMR spectroscopy and gas chromatography (GC). One of the saponins is a new gypsogenin glycoside, named as gypsogenin 3-O-?-D-galactopyranosyl(1?2)-[?-L-rhamnopyranosyl(1?3)]-?-D-glucuronopyranoside (compound 1), which is reported for the first time from natural resources. The other saponin is a quillaic acid glycoside (compound 2), which showed anti-inflammatory activities in RAW 264.7 cells. The mechanistic understanding of anti-inflammatory activities demonstrates that compound 2 inhibits lipopolysaccharide-induced expression of nitric oxide and IL-6 via NF-?B pathway. PMID:22916793

  6. Characterization of alkyl polyglycosides by both reversed-phase and normal-phase modes of high-performance liquid chromatography.

    PubMed

    Czichocki, Gunther; Fiedler, Harald; Haage, Klaus; Much, Helmut; Weidner, Steffen

    2002-01-18

    Alkyl polyglycosides today represent the most important sugar surfactant. Nonionic sugar surfactants produced via different synthetic routes are mixtures of alkyl homologues, oligomers, anomers and isomers. Alkyl homologues and oligomers of alkyl mono- and diglucosides were separated by reversed-phase high-performance liquid chromatography (HPLC) with methanol-water as the mobile phase using a gradient elution. The gradient was optimized in respect to a simultaneous separation of alkyl glycosides according to their alkyl chain length and alkyl polyoxyethylene glucosides with regard to their length of the polyoxyethylene spacer. The separation of alkyl glycosides into alpha- and beta-anomers was carried out by normal-phase HPLC with isooctane-ethyl acetate (60:40, v/v)-2-propanol in the gradient mode. Light scattering detection was used. Matrix-assisted laser desorption ionization time-of-flight mass spectra of alkyl glucosides and dodecyl glucosides with oxyethylene spacer groups are presented. PMID:11833644

  7. Two new phenylpropanoid glycosides with interesterification from Scrophularia dentata Royle ex Benth

    NASA Astrophysics Data System (ADS)

    Zhang, Liuqiang; Yang, Zhuo; Jia, Qi; Dorje, Gaawe; Zhao, Zhili; Guo, Fujiang; Li, Yiming

    2013-10-01

    Two new phenylpropanoid glycosides (1-2), along with seven known ones (3-9), were isolated from the whole plant of Scrophularia dentata Royle ex Benth. Their structures were elucidated by spectroscopic methods. Among them, compounds 1 and 2 failed to separated, because they can easily transform into each other by acyl migrant reaction. In this paper, the interesterification mechanism was discussed firstly and the rule can be used in the similar structure elucidation in future.

  8. [Flavone C-glycosides from seeds of Ziziphus jujuba var. spinosa].

    PubMed

    Chen, Ke-xian; Zhao, Li-mei; Ji, Chang-jiu; Tan, Ning-hua

    2015-04-01

    Five flavone C-glycosides were isolated from the methanol extract of the degrease seeds of Ziziphus jujuba var. spinosa though various column chromatography methods including silica gel, MPLC, and HPLC. The structures were elucidated as 6"-feruloyl- 6'''-vanillylspinosin(1), 6",6'"-diferuloylspinosin(2), spinosin(3), swertisin(4) and isoswertisin(5) based on the NMR and MS spectral data. 1 is a new compound. PMID:26281588

  9. New cytotoxic triterpene glycoside from the East China Sea cucumber Holothuria nobilis.

    PubMed

    Zhang, Jia-Jia; Zhu, Qi-Ke; Wu, Jun; Zhang, Hui-Wen

    2015-02-01

    A new cytotoxic triterpene glycoside named nobiliside E (1) has been obtained from the East China Sea cucumber Holothuria nobilis Selenka. Its structure was determined on the basis of NMR spectroscopic and MS analyses, together with chemical evidence. The new compound showed significant cytotoxicity to eight human tumor cell lines with IC50 values in the range of 0.53-4.06 ?g/mL. PMID:25920252

  10. Production of Hesperetin Glycosides by Xanthomonas campestris and Cyclodextrin Glucanotransferase and Their Anti-allergic Activities

    PubMed Central

    Shimoda, Kei; Hamada, Hiroki

    2010-01-01

    The production of hesperetin glycosides was investigated using glycosylation with Xanthomonas campestris and cyclodextrin glucanotransferase (CGTase). X. campestris glucosylated hesperetin to its 3'-, 5-, and 7-O-glucosides, and CGTase converted hesperetin glucosides into the corresponding maltosides. The resulting 7-O-glucoside and 7-O-maltoside of hesperetin showed inhibitory effects on IgE antibody production and on O2- generation from rat neutrophils. PMID:22254014

  11. Palladium-catalyzed glycosylation: novel synthetic approach to diverse N-heterocyclic glycosides.

    PubMed

    Ji, Li; Xiang, Shao-Hua; Leng, Wei-Lin; Hoang, Kim Le Mai; Liu, Xue-Wei

    2015-03-20

    An efficient and highly stereoselective method for the construction of N-heterocyclic glycosides is reported. This method is based on a palladium-catalyzed allylation which proceeded to provide N-heterocyclic glycosyl compounds in good-to-excellent yields with ?- or ?-selectivity. Various N-nucleophiles were examined for this reaction and selected N-glycosyl isatin substrates were further elaborated to bis-indole sugars which have potential as antiproliferative drugs. PMID:25730324

  12. [Isolation and properties of Sarothamnoside, a novel isoflavone glycoside from various Sarothamnus species].

    PubMed

    Brum-Bousquet, M; Lallemand, J Y; Tillequin, F; Faugeras, G; Delaveau, P

    1981-12-01

    Sarothamnoside (genistein 7,4'-di-O-[4-O-beta-D-glucopyranosyl-beta-D-apiofuranoside]), a novel isoflavone glycoside, has been isolated from Sarothamnus scoparius and S. patens seeds. The structure, in agreement with acid and enzymatic hydrolysis experiments, has been unambiguously determined, using spectral methods: SM, (1)H NMR and (13)C NMR. (1)H NMR spectra showed the beta configuration of the two apioses, whereas (13)C NMR provided evidence of the sugar linkages. PMID:17402061

  13. A novel ?-xylosidase structure from Geobacillus thermoglucosidasius: the first crystal structure of a glycoside hydrolase family GH52 enzyme reveals unpredicted similarity to other glycoside hydrolase folds.

    PubMed

    Espina, Giannina; Eley, Kirstin; Pompidor, Guillaume; Schneider, Thomas R; Crennell, Susan J; Danson, Michael J

    2014-05-01

    Geobacillus thermoglucosidasius is a thermophilic bacterium that is able to ferment both C6 and C5 sugars to produce ethanol. During growth on hemicellulose biomass, an intracellular ?-xylosidase catalyses the hydrolysis of xylo-oligosaccharides to the monosaccharide xylose, which can then enter the pathways of central metabolism. The gene encoding a G. thermoglucosidasius ?-xylosidase belonging to CAZy glycoside hydrolase family GH52 has been cloned and expressed in Escherichia coli. The recombinant enzyme has been characterized and a high-resolution (1.7 Å) crystal structure has been determined, resulting in the first reported structure of a GH52 family member. A lower resolution (2.6 Å) structure of the enzyme-substrate complex shows the positioning of the xylobiose substrate to be consistent with the proposed retaining mechanism of the family; additionally, the deep cleft of the active-site pocket, plus the proximity of the neighbouring subunit, afford an explanation for the lack of catalytic activity towards the polymer xylan. Whilst the fold of the G. thermoglucosidasius ?-xylosidase is completely different from xylosidases in other CAZy families, the enzyme surprisingly shares structural similarities with other glycoside hydrolases, despite having no more than 13% sequence identity. PMID:24816105

  14. Inhibition of aldose reductase by phenylethanoid glycoside isolated from the seeds of Paulownia coreana.

    PubMed

    Kim, Jin Kyu; Lee, Yeon Sil; Kim, Seon Ha; Bae, Young Soo; Lim, Soon Sung

    2011-01-01

    Aldose reductase (AR) inhibitors have considerable therapeutic potential against diabetic complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of the 70% acetone extract obtained from Paulownia coreana seeds, phenylpropanoid glycosides (compounds 1-4) and 5 phenolic compounds were isolated (compounds 5-9). Their structures were determined on the basis of spectroscopic analysis and comparison with reported data. All the isolates were subjected to in vitro bioassays to evaluate their inhibitory activities against recombinant human aldose reductase (rhAR) and sorbitol formation in human erythrocytes. Phenylethanoid glycosides showed more effective than the phenolic compounds in inhibiting rhAR. Among the compounds, isocampneoside II (3) was found to significantly inhibit rhAR with an IC(50) value of 9.72 µM. In kinetic analyses performed using Lineweaver-Burk plots of 1/velocity and 1/concentration of substrate, isocampneoside II (3) showed uncompetitive inhibition against rhAR. Furthermore, it inhibited sorbitol formation in a rat lens incubated with a high concentration of glucose; this finding indicated that isocampneoside II (3) may effectively prevent osmotic stress in hyperglycemia. Thus, the P. coreana-derived phenylethanoid glycoside isocampneoside II (3) may have a potential therapeutics against diabetic complications. PMID:21212537

  15. A male gift to its partner? Cyanogenic glycosides in the spermatophore of longwing butterflies (Heliconius)

    NASA Astrophysics Data System (ADS)

    Cardoso, Márcio Zikán; Gilbert, Lawrence E.

    2007-01-01

    Males of several insect species transfer nuptial gifts to females during mating, typically in the form of a protein-rich spermatophore. In chemically defended species, males could potentially enhance such a gift with chemicals that help protect the female, her eggs, or both. This was shown for lepidopteran species that accumulate pyrrolizidine alkaloids. Most Heliconius butterflies are presumably protected from predators by virtue of de novo synthesized and/or sequestered cyanogenic glycosides. Males of Heliconius species are known to transfer nutritional gifts to the females but whether defensive chemicals could also be transferred is not known. To ascertain whether transfer of cyanogens occurs, we dissected freshly mated females from nine different Heliconius species and analyzed spermatophores for cyanogenic glycosides. We found cyanogens in the spermatophores of all nine species. This is the first time cyanogenic glycosides are reported in the spermatophores of arthropods. We discuss the implications of these findings for Heliconius biology and for other cyanogenic insects as well. We suggest that chemically defended species commonly lace their nuptial gifts with defensive chemicals to improve gift quality.

  16. Influence of Extraction Methods on the Yield of Steviol Glycosides and Antioxidants in Stevia rebaudiana Extracts.

    PubMed

    Periche, Angela; Castelló, Maria Luisa; Heredia, Ana; Escriche, Isabel

    2015-06-01

    This study evaluated the application of ultrasound techniques and microwave energy, compared to conventional extraction methods (high temperatures at atmospheric pressure), for the solid-liquid extraction of steviol glycosides (sweeteners) and antioxidants (total phenols, flavonoids and antioxidant capacity) from dehydrated Stevia leaves. Different temperatures (from 50 to 100 °C), times (from 1 to 40 min) and microwave powers (1.98 and 3.30 W/g extract) were used. There was a great difference in the resulting yields according to the treatments applied. Steviol glycosides and antioxidants were negatively correlated; therefore, there is no single treatment suitable for obtaining the highest yield in both groups of compounds simultaneously. The greatest yield of steviol glycosides was obtained with microwave energy (3.30 W/g extract, 2 min), whereas, the conventional method (90 °C, 1 min) was the most suitable for antioxidant extraction. Consequently, the best process depends on the subsequent use (sweetener or antioxidant) of the aqueous extract of Stevia leaves. PMID:25726419

  17. Sph3 Is a Glycoside Hydrolase Required for the Biosynthesis of Galactosaminogalactan in Aspergillus fumigatus.

    PubMed

    Bamford, Natalie C; Snarr, Brendan D; Gravelat, Fabrice N; Little, Dustin J; Lee, Mark J; Zacharias, Caitlin A; Chabot, Josée C; Geller, Alexander M; Baptista, Stefanie D; Baker, Perrin; Robinson, Howard; Howell, P Lynne; Sheppard, Donald C

    2015-11-13

    Aspergillus fumigatus is the most virulent species within the Aspergillus genus and causes invasive infections with high mortality rates. The exopolysaccharide galactosaminogalactan (GAG) contributes to the virulence of A. fumigatus. A co-regulated five-gene cluster has been identified and proposed to encode the proteins required for GAG biosynthesis. One of these genes, sph3, is predicted to encode a protein belonging to the spherulin 4 family, a protein family with no known function. Construction of an sph3-deficient mutant demonstrated that the gene is necessary for GAG production. To determine the role of Sph3 in GAG biosynthesis, we determined the structure of Aspergillus clavatus Sph3 to 1.25 Å. The structure revealed a (?/?)8 fold, with similarities to glycoside hydrolase families 18, 27, and 84. Recombinant Sph3 displayed hydrolytic activity against both purified and cell wall-associated GAG. Structural and sequence alignments identified three conserved acidic residues, Asp-166, Glu-167, and Glu-222, that are located within the putative active site groove. In vitro and in vivo mutagenesis analysis demonstrated that all three residues are important for activity. Variants of Asp-166 yielded the greatest decrease in activity suggesting a role in catalysis. This work shows that Sph3 is a glycoside hydrolase essential for GAG production and defines a new glycoside hydrolase family, GH135. PMID:26342082

  18. Nickel-Catalyzed Proton-Deuterium Exchange (HDX) Procedures for Glycosidic Linkage Analysis of Complex Carbohydrates.

    PubMed

    Price, Neil P J; Hartman, Trina M; Vermillion, Karl E

    2015-07-21

    The structural analysis of complex carbohydrates typically requires the assignment of three parameters: monosaccharide composition, the position of glycosidic linkages between monosaccharides, and the position and nature of noncarbohydrate substituents. The glycosidic linkage positions are often determined by permethylation analysis, but this can be complicated by high viscosity or poor solubility, resulting in under-methylation. This is a drawback because an under-methylated position may be misinterpreted as the erroneous site of a linkage or substituent. Here, we describe an alternative approach to linkage analysis that makes use of a nonreversible deuterium exchange of C-H protons on the carbohydrate backbone. The exchange reaction is conducted in deuterated water catalyzed by Raney nickel, and results in the selective exchange of C-H protons adjacent to free hydroxyl groups. Hence, the position of the residual C-H protons is indicative of the position of glycosidic linkages or other substituents and can be readily assigned by heteronuclear single quantum coherence-nuclear magnetic resonance (HSQC-NMR) or, following suitable derivatization, by gas chromatography-mass spectroscopy (GC/MS) analysis. Moreover, because the only changes to the parent sugar are proton/deuterium exchanges, the composition and linkage analysis can be determined in a single step. PMID:26075577

  19. Direct synthesis of C-glycosides from unprotected 2-N-acyl-aldohexoses via aldol condensation-oxa-Michael reactions with unactivated ketones.

    PubMed

    Johnson, Sherida; Tanaka, Fujie

    2016-01-01

    C-glycosides are important compounds as they are used as bioactive molecules and building blocks. We have developed methods to concisely synthesize C-glycosides from unprotected 2-N-acyl-aldohexoses and unactivated ketones; we designed aldol-condensation-oxa-Michael addition reactions catalyzed by amine-based catalysts using additives. Depending on the conditions used, C-glycosides were stereoselectively obtained. Our methods allowed the C-C bond formations at the anomeric centers of unprotected carbohydrates under mild conditions to lead the C-glycosides in atom- and step-economical ways. PMID:26565955

  20. Cardiac Glycoside Activities Link Na+/K+ ATPase Ion-Transport to Breast Cancer Cell Migration via Correlative SAR

    PubMed Central

    2015-01-01

    The cardiac glycosides ouabain and digitoxin, established Na+/K+ ATPase inhibitors, were found to inhibit MDA-MB-231 breast cancer cell migration through an unbiased chemical genetics screen for cell motility. The Na+/K+ ATPase acts both as an ion-transporter and as a receptor for cardiac glycosides. To delineate which function is related to breast cancer cell migration, structure–activity relationship (SAR) profiles of cardiac glycosides were established at the cellular (cell migration inhibition), molecular (Na+/K+ ATPase inhibition), and atomic (computational docking) levels. The SAR of cardiac glycosides and their analogs revealed a similar profile, a decrease in potency when the parent cardiac glycoside structure was modified, for each activity investigated. Since assays were done at the cellular, molecular, and atomic levels, correlation of SAR profiles across these multiple assays established links between cellular activity and specific protein–small molecule interactions. The observed antimigratory effects in breast cancer cells are directly related to the inhibition of Na+/K+ transport. Specifically, the orientation of cardiac glycosides at the putative cation permeation path formed by transmembrane helices ?M1–M6 correlates with the Na+ pump activity and cell migration. Other Na+/K+ ATPase inhibitors that are structurally distinct from cardiac glycosides also exhibit antimigratory activity, corroborating the conclusion that the antiport function of Na+/K+ ATPase and not the receptor function is important for supporting the motility of MDA-MB-231 breast cancer cells. Correlative SAR can establish new relationships between specific biochemical functions and higher-level cellular processes, particularly for proteins with multiple functions and small molecules with unknown or various modes of action. PMID:25334087

  1. Quantum reverse hypercontractivity

    NASA Astrophysics Data System (ADS)

    Cubitt, Toby; Kastoryano, Michael; Montanaro, Ashley; Temme, Kristan

    2015-10-01

    We develop reverse versions of hypercontractive inequalities for quantum channels. By generalizing classical techniques, we prove a reverse hypercontractive inequality for tensor products of qubit depolarizing channels. We apply this to obtain a rapid mixing result for depolarizing noise applied to large subspaces and to prove bounds on a quantum generalization of non-interactive correlation distillation.

  2. Fragmentation study of iridoid glycosides and phenylpropanoid glycosides in Radix Scrophulariae by rapid resolution liquid chromatography with diode-array detection and electrospray ionization time-of-flight mass spectrometry.

    PubMed

    Wu, Qian; Yuan, Quan; Liu, E-Hu; Qi, Lian-Wen; Bi, Zhi-Ming; Li, Ping

    2010-08-01

    Rapid resolution liquid chromatography (RRLC) coupled with diode array detection (DAD) and electrospray ionization time-of-flight mass spectrometry (ESI-TOF MS) method was applied to the mass spectral study of a series of naturally occurring iridoid glycosides and phenylpropanoid glycosides in Radix Scrophulariae, which provides higher speed and increased sensitivity without loss of resolution. With dynamic adjustment as the key role of the fragmentor voltage and confirmed with authentic standards, valuable structural information regarding the nature of both the glycoside skeletons was thus obtained. Most compositions were found to possess organic acid moiety such as cinnamoyl, caffeoyl and ferulyol. Besides extensive fragmentation of the carbohydrate moiety, losses of the hydroxyl and glucose residue units showed in the spectra, permitting the exploration of the skeleton and the identity of substituents in the molecule. Ten major iridoid glycosides and 10 phenylpropanoid glycosides were identified or tentatively characterized based on their retention times, UV and TOF MS data. The major fragmentation pathways of PGs in Radix Scrophulariae obtained through the MS data was schemed systematically for the first time, which provides a reference for other PGs derivatives. PMID:20017212

  3. Metabolic fate of cardiac glycosides and flavonoids upon fermentation of aqueous sea squill (Drimia maritima L.) extracts.

    PubMed

    Knittel, Diana N; Stintzing, Florian C; Kammerer, Dietmar R

    2015-06-10

    Sea squill (Drimia maritima L.) extracts have been used for centuries for the medical treatment of heart diseases. A procedure for the preparation of Drimia extracts applied for such purposes comprising a fermentation step is described in the German Homoeopathic Pharmacopoeia (GHP). However, little is known about the secondary metabolite profile of such extracts and the fate of these components upon processing and storage. Thus, in the present study sea squill extracts were monitored during fermentation and storage by HPLC-DAD-MS(n) and GC-MS to characterise and quantitate individual cardiac glycosides and phenolic compounds. For this purpose, a previously established HPLC method for the separation and quantitation of pharmacologically relevant cardiac glycosides (bufadienolides) was validated. Within 12 months of storage, total bufadienolide contents decreased by about 50%, which was attributed to microbial and plant enzyme activities. The metabolisation and degradation rates of individual bufadienolide glycosides significantly differed, which was attributed to differing structures of the aglycones. Further degradation of bufadienolide aglycones was also observed. Besides reactions well known from human metabolism studies, dehydration of individual compounds was monitored. Quantitatively predominating flavonoids were also metabolised throughout the fermentation process. The present study provides valuable information about the profile and stability of individual cardiac glycosides and phenolic compounds in fermented Drimia extracts prepared for medical applications, and expands the knowledge of cardiac glycoside conversion upon microbial fermentation. PMID:25841205

  4. Effects of pregnane glycosides on food intake depend on stimulation of the melanocortin pathway and BDNF in an animal model.

    PubMed

    Komarnytsky, Slavko; Esposito, Debora; Rathinasabapathy, Thirumurugan; Poulev, Alexander; Raskin, Ilya

    2013-02-27

    Pregnane glycosides appear to modulate food intake by possibly affecting the hypothalamic feeding circuits; however, the mechanisms of the appetite-regulating effect of pregnane glycosides remain obscure. Here, we show that pregnane glycoside-enriched extracts from swamp milkweed Asclepias incarnata at 25-100 mg/kg daily attenuated food intake (up to 47.1 ± 8.5% less than controls) and body weight gain in rats (10% for males and 9% for females, respectively) by activating melanocortin signaling and inhibiting gastric emptying. The major milkweed pregnane glycoside, ikemagenin, exerted its appetite-regulating effect by decreasing levels of agouti-related protein (0.6-fold) but not NPY satiety peptides. Ikemagenin treatment also increased secretion of brain-derived neurotropic factor (BDNF) downstream of melanocortin receptors in the hypothalamus (1.4-fold) and in the C6 rat glioma cell culture in vitro (up to 6-fold). These results support the multimodal effects of pregnane glycosides on feeding regulation, which depends on the activity of the melanocortin signaling pathway and BDNF. PMID:23308358

  5. Molluscicidal activity of cardiac glycosides from Nerium indicum against Pomacea canaliculata and its implications for the mechanisms of toxicity.

    PubMed

    Dai, Lingpeng; Wang, Wanxian; Dong, Xinjiao; Hu, Renyong; Nan, Xuyang

    2011-09-01

    Cardiac glycosides from fresh leaves of Nerium indicum were evaluated for its molluscicidal activity against Pomacea canaliculata (golden apple snail: GAS) under laboratory conditions. The results showed that LC(50) value of cardiac glycosides against GAS was time dependent and the LC(50) value at 96 h was as low as 3.71 mg/L, which was comparable with that of metaldehyde at 72 h (3.88 mg/L). These results indicate that cardiac glycosides could be an effective molluscicide against GAS. The toxicological mechanism of cardiac glucosides on GAS was also evaluated through changes of selected biochemical parameters, including cholinesterase (ChE) and esterase (EST) activities, glycogen and protein contents in hepatopancreas tissues of GAS. Exposure to sublethal concentrations of cardiac glycosides, GAS showed lower activities of EST isozyme in the later stages of the exposure period as well as drastically decreased glycogen content, although total protein content was not affected at the end of 24 and 48 h followed by a significant depletion at the end of 72 and 96 h. The initial increase followed by a decline of ChE activity was also observed during the experiment. These results suggest that cardiac glycosides seriously impair normal physiological metabolism, resulting in fatal alterations in major biochemical constituents of hepatopancreas tissues of P. canaliculata. PMID:21843803

  6. Identification, quantification and antioxidant activity of acylated flavonol glycosides from sea buckthorn (Hippophae rhamnoides ssp. sinensis).

    PubMed

    Chen, Chu; Xu, Xue-Min; Chen, Yang; Yu, Meng-Yao; Wen, Fei-Yan; Zhang, Hao

    2013-12-01

    A novel acylated flavonol glycoside: isorhamnetin (3-O-[(6-O-E-sinapoyl)-?-D-glucopyranosyl-(1?2)]-?-D-glucopyranosyl-7-O-?-L-rhamnopyranoside) (1), together with two known acylated flavonol glycosides: quercetin (3-O-[(6-O-E-sinapoyl)-?-D-glucopyranosyl-(1?2)]-?-D-glucopyranosyl-7-O-?-L-rhamnopyranoside) (2) and kaempferol (3-O-[(6-O-E-sinapoyl)-?-D-glucopyranosyl-(1?2)]-?-D-glucopyranosyl-7-O-?-L-rhamnopyranoside) (3) were isolated from the n-butanol fraction of sea buckthorn (Hippophae rhamnoides ssp. sinensis) berries for the first time by chromatographic methods, and their structures were elucidated using UV, MS, (1)H and (13)C NMR, and 2D NMR. Compounds 1-3 showed good scavenging activities, with respective IC50 values of 8.91, 4.26 and 30.90 ?M toward the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical; respective Trolox equivalent antioxidant capacities of 2.89, 4.04 and 2.44 ?M ?M(-1) toward 2,2'-azino-bis-3-ethyl-benzothiazoline-6-sulphonate (ABTS) radical. The quantitative analysis of the isolated acylated flavonol glycosides was performed by HPLC-DAD method. The contents of compounds 1-3 were in the range of 12.2-31.4, 4.0-25.3, 7.5-59.7 mg/100 g dried berries and 9.1-34.5, 75.1-182.1, 29.2-113.4 mg/100 g dried leaves, respectively. PMID:23870862

  7. Biological and taxonomic perspective of triterpenoid glycosides of sea cucumbers of the family Holothuriidae (Echinodermata, Holothuroidea).

    PubMed

    Honey-Escandón, Magali; Arreguín-Espinosa, Roberto; Solís-Marín, Francisco Alonso; Samyn, Yves

    2015-02-01

    Since the discovery of saponins in sea cucumbers, more than 150 triterpene glycosides have been described for the class Holothuroidea. The family Holothuriidae has been increasingly studied in search for these compounds. With many species awaiting recognition and formal description this family currently consists of five genera and the systematics at the species-level taxonomy is, however, not yet fully understood. We provide a bibliographic review of the triterpene glycosides that has been reported within the Holothuriidae and analyzed the relationship of certain compounds with the presence of Cuvierian tubules. We found 40 species belonging to four genera and 121 compounds. Holothurin A and B are the most common saponins for Actinopyga, Holothuria, and Pearsonothuria. The genus Bohadschia presents mainly bivittoside C and D. Actinopyga has only sulfated saponins mainly oxidized, Bohadschia non-sulfated ones mainly non-oxidized, Holothuria and Pearsonothuria contain both types of compounds, mainly oxidized. Within the genus Holothuria, the subgenus Panningothuria only has non-sulfated saponins. The presence of sulfated and non-sulfated compounds seemingly relates to the expellability or the absence of Cuvierian tubules and the temporal or permanent concealing habits of the species. Our study concludes that better insights into the systematic distribution of saponins in Holothuriidae will only be possible if the identifications of the investigated species are confirmed by a taxonomist, especially in this group wherein cryptic species and variation between life-history stages are common and yet poorly understood. Understanding of saponin distribution within the Holothuriidae would also benefit from a stabilization of triterpene glycoside nomenclature. PMID:25263252

  8. Induction of cytotoxic and genotoxic responses by natural and novel quercetin glycosides.

    PubMed

    Engen, Anya; Maeda, Junko; Wozniak, David E; Brents, Colleen A; Bell, Justin J; Uesaka, Mitsuru; Aizawa, Yasushi; Kato, Takamitsu A

    2015-06-01

    The flavonoids quercetin, and its natural glycosides isoquercetin and rutin, are phytochemicals commonly consumed in plant-derived foods. Semi-synthetic water-soluble isoquercetin and rutin glycosides, maltooligosyl isoquercetin, monoglucosyl rutin and maltooligosyl rutin were developed by synthetic glycosylation to overcome solubility challenges for improved incorporation in food and medicinal applications. Quercetin and its natural glycosides are known to induce genetic instability and decrease cell proliferation. Using a system of Chinese hamster ovary (CHO) cells, this study examined the differences in cytotoxic and genotoxic responses induced by natural and synthetic flavonoids. Bioactivity evaluations using poly(ADP-ribose) polymerase (PARP) ELISA showed that the synthetic flavonoids were less effective in inhibiting PARP than the natural flavonoids, where PARP inhibitory effects decreased with glycosylation of flavonoids. In the genotoxic studies, treatments with flavonoids at a concentration range of 0.2 ?M-1 mM induced significant frequencies of sister chromatid exchange (SCE) and micronuclei in CHO cells compared to spontaneous occurrences. The synthetic flavonoids monoglucosyl rutin and maltooligosyl rutin induced less genotoxic effects than the natural flavonoids. However, maltooligosyl isoquercetin induced similar responses as isoquercetin and rutin. The growth inhibition studies showed glycosylation dependent cytotoxicity in natural flavonoids. The quercetin aglycone exhibited the highest toxicity out of all the flavonoids studied. Differences in growth inhibition were not observed between the synthetic flavonoids, maltooligosyl isoquercetin and monoglucosyl rutin, and natural isoquercetin and rutin, respectively. Maltooligosyl rutin induced less cytotoxicity than rutin and monoglucosyl rutin. Our in vitro studies demonstrated that the synthetic flavonoids generally induced less genotoxic responses than their natural counterparts. PMID:26046972

  9. On thermodynamic and microscopic reversibility

    SciTech Connect

    Crooks, Gavin E.

    2011-07-12

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa.

  10. Ophiopojaponin D, a new phenylpropanoid glycoside from Ophiopogon japonicus Ker-Gawl.

    PubMed

    Dai, Hao Fu; Mei, Wen Li

    2005-11-01

    A new phenolic glycoside, ophiopojaponin D (1), together with two known compounds, was isolated from the tubers of a famous traditional Chinese herb-Ophiopogon japonicus Ker-Gawl. The spectroscopic and chemical data revealed their structures to be 3-tetradecyloxy-4-hydroxy-allylbenzene-4-O-alpha-L-rhamnopyranosyl (1-->6)-beta-D-glucopyranoside (1), 3, 4-dihydroxy-allylbenzene-4-O-alpha-L-rhamnopyranosyl (1-->6)-beta-D-glucopyranoside (2) and L-pyroglutamic acid (3). PMID:16350848

  11. Fast repair of thymine-hydroxyl radical adduct by phenylpropanoid glycosides

    NASA Astrophysics Data System (ADS)

    Wenyan, Li; Zhihua, Zou; Rongliang, Zheng; Changzeng, Wang; Zhongjian, Jia; Side, Yao; Nianyun, Lin

    1997-04-01

    The repair effect on thymine-hydroxyl adduct by phenylpropanoid glycosides (PPG): verbascoside, and pedicularioside A, isolated from Pedicularis, were studied using pulse radiolysis technique. From the analysis of transient absorption spectra, the rapid electron transfer from PPG to T-OH - was observed. Phenoxyl radical of PPG were generated via one-electron-transfer reaction. This result showed that two PPG exhibited repair activities on oxidizing T-OH -. The reaction rate constants of electron transfer from PPGs were 1.27 × 10 9 and 1.29 × 10 9 dm 3·mol -1s -1 respectively.

  12. Two new ent-kaurane-type diterpene glycosides from zucchini (Cucurbita pepo L.) seeds.

    PubMed

    Kikuchi, Takashi; Ando, Hiromi; Maekawa, Ken-Ichiro; Arie, Hiroki; Yamada, Takeshi; Tanaka, Reiko

    2015-12-01

    Two new ent-kaurane diterpene glycosides; 12?-(?-d-glucopyranosyloxy)-7?-hydroxykaurenolide (1) and 7?-(?-d-glucopyranosyloxy)-12?-hydroxykaurenolide (2), a new steroid; (24S)-stigmasta-7,22E,25-trien-3-one (12), and known compounds (3-11, 13-14) were isolated from zucchini (Cucurbita pepo L.) seeds. The absolute structures of 1 and 2 were determined by acid hydrolysis and application of a modified Moscher's method. Furthermore, isolated compounds (1-14), and a derivative, 1a, were evaluated for their inhibitory effects on macrophage activation by an inhibitory assay of nitric oxide (NO) production. PMID:26420344

  13. A New Benzofuran Glycoside and Indole Alkaloids from a Sponge-Associated Rare Actinomycete, Amycolatopsis sp.

    PubMed Central

    Kwon, Yun; Kim, Seong-Hwan; Shin, Yoonho; Bae, Munhyung; Kim, Byung-Yong; Lee, Sang Kook; Oh, Ki-Bong; Shin, Jongheon; Oh, Dong-Chan

    2014-01-01

    Three new secondary metabolites, amycofuran (1), amycocyclopiazonic acid (2), and amycolactam (3), were isolated from the sponge-associated rare actinomycete Amycolatopsis sp. Based on combined spectroscopic analyses, the structures of 1–3 were determined to be a new benzofuran glycoside and new indole alkaloids related to cyclopiazonic acids, a class that has previously only been reported in fungi. The absolute configurations of 1 and 3 were deduced by ECD calculations, whereas that of 2 was determined using the modified Mosher method. Amycolactam (3) displayed significant cytotoxicity against the gastric cancer cell line SNU638 and the colon cancer cell line HCT116. PMID:24759001

  14. A set of two diastereomers of cyanogenic glycosides from Passiflora quadrangularis.

    PubMed

    Saeki, Daisuke; Yamada, Takeshi; Kajimoto, Tetsuya; Muraoka, Osamu; Tanaka, Reiko

    2011-08-01

    A set of two diastereomers of phenylcyano glycosides, (7S)- and (7R)-phenylcyanomethyl 1'-O-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (1, 2), were isolated from the methanol extract of dried vines of P. quadrangularis. The absolute configurations of the benzylic methine centers were determined mainly by the comparison of 13C NMR spectra of these compounds, prunasin (3) and sambunigrin (4), of which the last two cyanoglycosides are known to have (R)- and (S)-configurations, respectively. PMID:21922906

  15. Steroidal saponins obtained by biotransformation of total furostanol glycosides from Dioscorea zingiberensis with Absidia coerulea.

    PubMed

    Pang, Xu; Wen, Di; Zhao, Yang; Xiong, Cheng-Qi; Wang, Xiao-Qin; Yu, Li-Yan; Ma, Bai-Ping

    2015-01-30

    Five new steroidal saponins (1-5) were isolated from the fermentation broth of total furostanol glycosides from tubers of Dioscorea zingiberensis C.H. Wright incubated with a fungal, Absidia coerulea AS 3.3389, along with known saponins, zingiberensis new saponin (6), deltonin (7), prosapogenin A of dioscin (8), and protobioside (9), and their structures were established by NMR spectroscopy and mass spectrometry as well as by comparison with previously reported spectral data in the literatures. The induced effects in vitro on rat platelet aggregation of all compounds were evaluated. PMID:25498025

  16. A new antimicrobial and radical-scavenging glycoside from Paullinia pinnata var. cameroonensis.

    PubMed

    Lunga, Paul-Keilah; Qin, Xu-Jie; Yang, Xing-Wei; Kuiate, Jules-Roger; Du, Zhi-Zhi; Gatsing, Donatien

    2015-01-01

    A new glycoside, pinnatoside A (1), together with two known compounds (2 and 3), were isolated from the stems of Paullinia pinnata. Their structures were elucidated on the basis of extensive spectroscopic analysis and chemical methods. Compound 1 showed significant antibacterial activity with a minimum inhibitory concentration (MIC) value of 1.56 ?g/mL against Escherichia coli, and 2 displayed significant antibacterial activity with a MIC value of 1.56 ?g/mL against Enterobacter aerogenes and E. coli. Equally, compound 1 exhibited the best radical-scavenging activity (RSa50 = 25.07 ± 0.49 ?g/mL). PMID:25563339

  17. Two new flavonoid glycosides from the whole herbs of Hyssopus officinalis.

    PubMed

    Wang, Nan; Yang, Xiu-Wei

    2010-12-01

    Two new flavonoid glycosides, quercetin 7-O-?-D-apiofuranosyl-(1 ? 2)-?-D-xylopyranoside (1) and quercetin 7-O-?-D-apiofuranosyl-(1 ? 2)-?-D-xylopyranoside 3'-O-?-D-glucopyranoside (2), together with nine known flavonoids were isolated from the whole herbs of Hyssopus officinalis L. cultivated in Xinjiang Uygur Autonomous Region of China. All structures were characterized by the spectroscopic methods including UV, IR, ESI-MS, 1D, and 2D NMR. Their potent free radical scavenging activity against the stable 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical was evaluated. PMID:21128145

  18. A new flavonol glycoside from the florets of Carthamus tinctorius L.

    PubMed

    Xie, Xue; Zhou, Jianming; Sun, Lin; Zhang, Hongda; Zhao, Yiwu; Song, Yaling; Wang, Xuejing; Ni, Fuyong; Huang, Wenzhe; Wang, Zhenzhong; Xiao, Wei

    2016-01-01

    One new flavonol glycoside, 6-hydroxykaempferol-3-O-?-D-glucoside-7-O-?-D-glucuronide (1), together with eight known flavonoids and three known quinochalcones, was isolated from the florets of Carthamus tinctorius L. Their structures were determined by extensive spectroscopic analyses. Their cardioprotective effects against H2O2-induced apoptosis in H9c2 cells were also evaluated; compounds 1, 2, 4-5, 7-10 and 12 provided significant protective effects on H2O2-induced H9c2 cells at the concentration of 25 ?g/mL. PMID:26185946

  19. A new ent-kaurane diterpenoid glycoside from Isodon japonica var. glaucocalyx.

    PubMed

    Xiang, Zhao-Bao; Wang, Guang-Li; Huang, Lan-Zhi; Heng, Lin-Sen; Li, Xiao-Hui

    2013-01-01

    A new ent-kaurane diterpenoid glycoside (1), named glaucocalyxin G, has been isolated from the n-butanol-soluble fraction of the dried whole plants of Isodon japonica var. glaucocalyx along with two known compounds, namely arjunglucoside (2) and kaempferol-3-O-rutinoside (3). The structures of the isolated compounds were assigned on the basis of their (1)H and (13)C NMR spectra including two-dimensional NMR techniques such as HMQC, HMBC, and NOESY experiments and comparison with the literature data. PMID:23614395

  20. Effects of hesperidin, a flavanone glycoside interaction on the conformation, stability, and aggregation of lysozyme: multispectroscopic and molecular dynamic simulation studies?

    PubMed

    Ratnaparkhi, Aditi; Muthu, Shivani A; Shiriskar, Sonali M; Pissurlenkar, Raghuvir R S; Choudhary, Sinjan; Ahmad, Basir

    2015-09-01

    Hesperidin (HESP), a flavanone glycoside, shows high antioxidant properties and possess ability to go through the blood-brain barrier. Therefore, it could be a potential drug molecule against aggregation based diseases such as Alzheimer's, Parkinson's, and systemic amyloidoses. In this work, we investigated the potential of HESP to interact with hen egg-white lysozyme (HEWL) monomer and prevent its aggregation. The HESP-HEWL binding studies were performed using a fluorescence quenching technique, molecular docking and molecular dynamics simulations. We found a strong interaction of HESP with the lysozyme monomer (Ka, ~ 5 × 10(4) M(-1)) mainly through hydrogen bonding, water bridges, and hydrophobic interactions. We showed that HESP molecule spanned the highly aggregation prone region (amino acid residues 48-101) of HEWL and prevented its fibrillar aggregation. Further, we found that HESP binding completely inhibited amorphous aggregation of the protein induced by disulfide-reducing agent tries-(2-carboxyethyl) phosphine. Conformational and stability studies as followed by various tertiary and secondary structure probes revealed that HESP binding only marginally affected the lysozyme monomer conformation and increased both stability and reversibility of the protein against thermal denaturation. Future studies should investigate detail effects of HESP on solvent dynamics, structure, and toxicity of various aggregates. The answers to these questions will not only target the basic sciences, but also have application in biomedical and biotechnological sciences. PMID:25301518

  1. Cardiac glycosides correct aberrant splicing of IKBKAP-encoded mRNA in familial dysautonomia derived cells by suppressing expression of SRSF3.

    PubMed

    Liu, Bo; Anderson, Sylvia L; Qiu, Jinsong; Rubin, Berish Y

    2013-08-01

    The ability to modulate the production of the wild-type transcript in cells bearing the splice-altering familial dysautonomia (FD) causing mutation in the IKBKAP gene prompted a study of the impact of a panel of pharmaceuticals on the splicing of this transcript, which revealed the ability of the cardiac glycoside digoxin to increase the production of the wild-type, exon-20-containing, IKBKAP-encoded transcript and the full-length I?B-kinase-complex-associated protein in FD-derived cells. Characterization of the cis elements and trans factors involved in the digoxin-mediated effect on splicing reveals that this response is dependent on an SRSF3 binding site(s) located in the intron 5' of the alternatively spliced exon and that digoxin mediates its effect by suppressing the level of the SRSF3 protein. Characterization of the digoxin-mediated effect on the RNA splicing process was facilitated by the identification of several RNA splicing events in which digoxin treatment mediates the enhanced inclusion of exonic sequence. Moreover, we demonstrate the ability of digoxin to impact the splicing process in neuronal cells, a cell type profoundly impacted by FD. This study represents the first demonstration that digoxin possesses splice-altering capabilities that are capable of reversing the impact of the FD-causing mutation. These findings support the clinical evaluation of the impact of digoxin on the FD patient population. PMID:23711097

  2. Tripterygium glycosides induce premature ovarian failure in rats by promoting p53 phosphorylation and activating the serine/threonine kinase 11-p53-p21 signaling pathway

    PubMed Central

    LIU, TE; ZHANG, LINA; WANG, SUWEI; CHEN, CHUAN; ZHENG, JIN

    2015-01-01

    Premature ovarian failure (POF) is a typical pathological disease of the reproductive system in aging females. Infection, inflammation, immune abnormalities, genetic mutation, radiotherapy and chemotherapy can cause POF. Tripterygium glycosides (TGs) are a component extracted from the Chinese herb Tripterygium wilfordii Hook. f., also known as Huangteng. Although TGs have been used to treat various diseases, drug resistance and toxicity can affect patients. The aim of the present study was to investigate the mechanism of TG-induced POF in rats. The rats were treated with different concentrations of TG, and pathology assays showed that the TG-induced POF was predominantly composed of interstitial cells in a fibrous matrix with a reduced number of follicles at each stage and an increased number of collapsed oocytes. Furthermore, reverse transcription-quantitative polymerase chain reaction (PCR) and immunohistochemistry assays indicated that the expression levels of serine/threonine kinase 11 (Stk11), p53 p21 and activated caspase-3 were elevated significantly in the TG-treated groups. Serine 15 phosphorylation of p53 was also enhanced significantly in the TG-treated groups. In addition, a chromatin immunoprecipitation-PCR assay revealed that the TGs induced p53 activation and enhanced the transcription of p21. In conclusion, TGs induce apoptosis and necrosis in rat ovarian tissues, as well as POF, via p53 phosphorylation and activation of the Stk11-p53-p21 signaling pathway. PMID:26170905

  3. In silico analysis and molecular docking studies of potential angiotensin-converting enzyme inhibitor using quercetin glycosides

    PubMed Central

    Muhammad, Syed Aun; Fatima, Nighat

    2015-01-01

    The purpose of this study was to analyze the inhibitory action of quercetin glycosides by computational docking studies. For this, natural metabolite quercetin glycosides isolated from buckwheat and onions were used as ligand for molecular interaction. The crystallographic structure of molecular target angiotensin-converting enzyme (ACE) (peptidyl-dipeptidase A) was obtained from PDB database (PDB ID: 1O86). Enalapril, a well-known brand of ACE inhibitor was taken as the standard for comparative analysis. Computational docking analysis was performed using PyRx, AutoDock Vina option based on scoring functions. The quercetin showed optimum binding affinity with a molecular target (angiotensin-converting-enzyme) with the binding energy of ?8.5 kcal/mol as compared to the standard (?7.0 kcal/mol). These results indicated that quercetin glycosides could be one of the potential ligands to treat hypertension, myocardial infarction, and congestive heart failure. PMID:26109757

  4. In silico analysis and molecular docking studies of potential angiotensin-converting enzyme inhibitor using quercetin glycosides.

    PubMed

    Muhammad, Syed Aun; Fatima, Nighat

    2015-05-01

    The purpose of this study was to analyze the inhibitory action of quercetin glycosides by computational docking studies. For this, natural metabolite quercetin glycosides isolated from buckwheat and onions were used as ligand for molecular interaction. The crystallographic structure of molecular target angiotensin-converting enzyme (ACE) (peptidyl-dipeptidase A) was obtained from PDB database (PDB ID: 1O86). Enalapril, a well-known brand of ACE inhibitor was taken as the standard for comparative analysis. Computational docking analysis was performed using PyRx, AutoDock Vina option based on scoring functions. The quercetin showed optimum binding affinity with a molecular target (angiotensin-converting-enzyme) with the binding energy of -8.5 kcal/mol as compared to the standard (-7.0 kcal/mol). These results indicated that quercetin glycosides could be one of the potential ligands to treat hypertension, myocardial infarction, and congestive heart failure. PMID:26109757

  5. Reversing the arms race

    SciTech Connect

    von Hippel, F. ); Sagdeev, R.Z. )

    1992-01-01

    This paper contains proceedings of Reversing The Arms Race. Topics covered include: Verifying Reductions of Nuclear Warheads; Verifying Limits on Nuclear-Armed Cruise Missiles; and The Technical Basis for Warhead Detection.

  6. Reversible shape memory

    NASA Astrophysics Data System (ADS)

    Sheiko, Sergei; Zhou, Jing; White, Sarah; Ashby, Valerie

    2012-02-01

    An ``Achilles' heel'' of shape memory materials is that shape transformations triggered by an external stimulus are usually irreversible. Here we present a new concept of reversible transitions between two well-defined shapes by controlling hierarchic crystallization of a dual-network elastomer. The reversibility was demonstrated for different types of shape transformations including rod bending, winding of a helical coil, and widening an aperture. The distinct feature of the reversible shape alterations is that both counter-shapes are infinitely stable at a temperature of exploitation. Shape reversibility is highly desirable property in many practical applications such as non-surgical removal of a previously inserted catheter and handfree wrapping up of an earlier unraveled solar sail on a space shuttle.

  7. Energy by reverse electrodialysis

    NASA Astrophysics Data System (ADS)

    Lacey, R. E.

    The use of reverse electrodialysis, a reverse desalinization process, to derive energy from the difference between the chemical potentials of concentrated and dilute salt solutions is evaluated. The process employs the flows of brine and dilute solutions through alternating cells bounded by cation- and anion-exchange membranes in a stack placed between two electrodes to generate a voltage by the passage of salt through the membranes. Potential sources of brine include the salt domes of oil and gas wells, salt water lakes, and geothermal brines. Experiments have shown the technical feasibility of reverse electrodialysis, and have confirmed equations derived to predict their performance. Calculations show that in order for reverse electrolysis to be economically attractive, the internal resistance of the cells should be minimized and net output power maximized by using large concentration ratios between the brine and the dilute solution, the minimum dilute compartment and diffusive boundary layer thicknesses, low-resistance, highly selective membranes and appropriate manufacturing methods.

  8. Effect of harvest timing on leaf production and yield of diterpene glycosides in Stevia rebaudiana Bert: a specialty perennial crop for Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stevia rebaundiana (Bertoni), a perennial shrub of the Asteraceae, is one of the most important sources of non-caloric natural sweeteners. Stevia’s plant extracts and glycosides have been used for several years in Paraguay and Brazil. Several studies suggest that Stevia and its glycosides exert ben...

  9. Cardiac glycosides induced toxicity in human cells expressing ?1-, ?2-, or ?3-isoforms of Na-K-ATPase.

    PubMed

    Cherniavsky Lev, Marina; Karlish, Steven J D; Garty, Haim

    2015-07-15

    The Na+-K+-ATPase is specifically inhibited by cardiac glycosides, some of which may also function as endogenous mammalian hormones. Previous studies using Xenopus oocytes, yeast cells, or purified isoforms demonstrated that affinities of various cardiac glycosides for three isoforms of the Na+-K+-ATPase (?1-?3?1) may differ, a finding with potential clinical implication. The present study investigates isoform selectivity and effects of cardiac glycosides on cultured mammalian cells under more physiological conditions. H1299 cells (non-small cell lung carcinoma) were engineered to express only one ?-isoform (?1, ?2, or ?3) by combining stable transfection of isoforms and silencing endogenous ?1. Cardiac glycoside binding was measured by displacement of bound 3H-ouabain. The experiments confirm moderate ?1/?3:?2 selectivity of ouabain, moderate ?2:?1 selectivity of digoxin, and enhanced ?2:?1 selectivity of synthetic derivatives (Katz A, Tal DM, Heller D, Haviv H, Rabah B, Barkana Y, Marcovich AL, Karlish SJD. J Biol Chem 289: 21153-21162, 2014). Relative ?2:?1 selectivity of digoxin vs. ouabain was also manifested by enhanced internalization of ?2 in response to digoxin. Cellular proliferation assays of H1299 cells confirmed the patterns of ?2:?1 selectivity for ouabain, digoxin, and a synthetic derivative and reveal a crucial role of surface pump density on sensitivity to cardiac glycosides. Because cardiac glycosides are being considered as drugs for treatment of cancer, effects of ouabain on proliferation of 12 cancer and noncancer cell lines, with variable plasma membrane expression of ?1, have been tested. These demonstrated that sensitivity to ouabain indeed depends linearly on the plasma membrane surface density of Na+-K+-ATPase irrespective of status, malignant or nonmalignant. PMID:25994790

  10. Studies on the constituents of Syringa species. X. Five new iridoid glycosides from the leaves of Syringa reticulata (Blume) Hara.

    PubMed

    Machida, Koichi; Kaneko, Atsuko; Hosogai, Tomokazu; Kakuda, Rie; Yaoita, Yasunori; Kikuchi, Masao

    2002-04-01

    Five new iridoid glycosides, (8Z)-ligstroside (1), (8Z)-nüzhenide (3), 6'-O-alpha-D-glucopyranosylsyringopicroside (4), 3'-O-beta-D-glucopyranosylsyringopicroside (5) and 4'-O-beta-D-glucopyranosylsyringopicroside (6) were isolated, together with a known one, (8E)-nüzhenide (2), from the leaves of Syringa reticulata. Their structures were established on the basis of chemical and spectral data. Compounds 1 and 3 are the first findings of a (8Z)-oleoside-type secoiridoid. Compound 4 is the first naturally occurring iridoid di-glycoside having an isomaltose. PMID:11963996

  11. Studies on the constituents of Syringa species. XII. New glycosides from the leaves of Syringa reticulata (BLUME) HARA.

    PubMed

    Machida, Koichi; Unagami, Eriko; Ojima, Hiromi; Kikuchi, Masao

    2003-07-01

    Three new glycosides, 6'-O-alpha-D-galactopyranosylsyringopicroside (1), secologanoside 7-methyl ester (2) and (+)-lariciresinol 4'-O-beta-D-glucopyranosyl-(1-->3)-beta-D-glucopyranoside (3), were isolated from the leaves of Syringa reticulata. Their structures were established on the basis of chemical and spectral data. Compound 1 is the first naturally occurring iridoid di-glycoside having melibiose. Comparison of the spectral data of 2 and that previously recognized as secologanoside 7-methyl ester led to the conclusion that the recognized structure should be revised to the sodium salt of secoxyloganin (2'). PMID:12843604

  12. Differential Recognition and Hydrolysis of Host Carbohydrate Antigens by Streptococcus pneumoniae Family 98 Glycoside Hydrolases

    SciTech Connect

    Higgins, M.; Whitworth, G; El Warry, N; Randriantsoa, M; Samain, E; Burke, R; Vocadlo, D; Boraston, A

    2009-01-01

    The presence of a fucose utilization operon in the Streptococcus pneumoniae genome and its established importance in virulence indicates a reliance of this bacterium on the harvesting of host fucose-containing glycans. The identities of these glycans, however, and how they are harvested is presently unknown. The biochemical and high resolution x-ray crystallographic analysis of two family 98 glycoside hydrolases (GH98s) from distinctive forms of the fucose utilization operon that originate from different S. pneumoniae strains reveal that one enzyme, the predominant type among pneumococcal isolates, has a unique endo-{beta}-galactosidase activity on the LewisY antigen. Altered active site topography in the other species of GH98 enzyme tune its endo-{beta}-galactosidase activity to the blood group A and B antigens. Despite their different specificities, these enzymes, and by extension all family 98 glycoside hydrolases, use an inverting catalytic mechanism. Many bacterial and viral pathogens exploit host carbohydrate antigens for adherence as a precursor to colonization or infection. However, this is the first evidence of bacterial endoglycosidase enzymes that are known to play a role in virulence and are specific for distinct host carbohydrate antigens. The strain-specific distribution of two distinct types of GH98 enzymes further suggests that S. pneumoniae strains may specialize to exploit host-specific antigens that vary from host to host, a factor that may feature in whether a strain is capable of colonizing a host or establishing an invasive infection.

  13. Comparative Analysis of Glycoside Hydrolases Activities from Phylogenetically Diverse Marine Bacteria of the Genus Arenibacter

    PubMed Central

    Bakunina, Irina; Nedashkovskaya, Olga; Balabanova, Larissa; Zvyagintseva, Tatyana; Rasskasov, Valery; Mikhailov, Valery

    2013-01-01

    A total of 16 marine strains belonging to the genus Arenibacter, recovered from diverse microbial communities associated with various marine habitats and collected from different locations, were evaluated in degradation of natural polysaccharides and chromogenic glycosides. Most strains were affiliated with five recognized species, and some presented three new species within the genus Arenibacter. No strains contained enzymes depolymerizing polysaccharides, but synthesized a wide spectrum of glycosidases. Highly active ?-N-acetylglucosaminidases and ?-N-acetylgalactosaminidases were the main glycosidases for all Arenibacter. The genes, encoding two new members of glycoside hydrolyses (GH) families, 20 and 109, were isolated and characterized from the genomes of Arenibacter latericius. Molecular genetic analysis using glycosidase-specific primers shows the absence of GH27 and GH36 genes. A sequence comparison with functionally-characterized GH20 and GH109 enzymes shows that both sequences are closest to the enzymes of chitinolytic bacteria Vibrio furnissii and Cellulomonas fimi of marine and terrestrial origin, as well as human pathogen Elisabethkingia meningoseptica and simbionts Akkermansia muciniphila, gut and non-gut Bacteroides, respectively. These results revealed that the genus Arenibacter is a highly taxonomic diverse group of microorganisms, which can participate in degradation of natural polymers in marine environments depending on their niche and habitat adaptations. They are new prospective candidates for biotechnological applications due to their production of unique glycosidases. PMID:23752354

  14. Development of a High Throughput Platform for Screening Glycoside Hydrolases Based on Oxime-NIMS

    PubMed Central

    Deng, Kai; Guenther, Joel M.; Gao, Jian; Bowen, Benjamin P.; Tran, Huu; Reyes-Ortiz, Vimalier; Cheng, Xiaoliang; Sathitsuksanoh, Noppadon; Heins, Richard; Takasuka, Taichi E.; Bergeman, Lai F.; Geertz-Hansen, Henrik; Deutsch, Samuel; Loqué, Dominique; Sale, Kenneth L.; Simmons, Blake A.; Adams, Paul D.; Singh, Anup K.; Fox, Brian G.; Northen, Trent R.

    2015-01-01

    Cost-effective hydrolysis of biomass into sugars for biofuel production requires high-performance low-cost glycoside hydrolase (GH) cocktails that are active under demanding process conditions. Improving the performance of GH cocktails depends on knowledge of many critical parameters, including individual enzyme stabilities, optimal reaction conditions, kinetics, and specificity of reaction. With this information, rate- and/or yield-limiting reactions can be potentially improved through substitution, synergistic complementation, or protein engineering. Given the wide range of substrates and methods used for GH characterization, it is difficult to compare results across a myriad of approaches to identify high performance and synergistic combinations of enzymes. Here, we describe a platform for systematic screening of GH activities using automatic biomass handling, bioconjugate chemistry, robotic liquid handling, and nanostructure-initiator mass spectrometry (NIMS). Twelve well-characterized substrates spanning the types of glycosidic linkages found in plant cell walls are included in the experimental workflow. To test the application of this platform and substrate panel, we studied the reactivity of three engineered cellulases and their synergy of combination across a range of reaction conditions and enzyme concentrations. We anticipate that large-scale screening using the standardized platform and substrates will generate critical datasets to enable direct comparison of enzyme activities for cocktail design. PMID:26528471

  15. BDNF mediates neuroprotection against oxygen-glucose deprivation by the cardiac glycoside oleandrin.

    PubMed

    Van Kanegan, Michael J; He, Dong Ning; Dunn, Denise E; Yang, Peiying; Newman, Robert A; West, Anne E; Lo, Donald C

    2014-01-15

    We have previously shown that the botanical drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, provides neuroprotection in both in vitro and in vivo brain slice-based models for focal ischemia (Dunn et al., 2011). Intriguingly, plasma levels of the neurotrophin BDNF were increased in patients treated with PBI-05204 in a phase I clinical trial (Bidyasar et al., 2009). We thus tested the hypothesis that neuroprotection provided by PBI-05204 to rat brain slices damaged by oxygen-glucose deprivation (OGD) is mediated by BDNF. We found, in fact, that exogenous BDNF protein itself is sufficient to protect brain slices against OGD, whereas downstream activation of TrkB receptors for BDNF is necessary for neuroprotection provided by PBI-05204, using three independent methods. Finally, we provide evidence that oleandrin, the principal cardiac glycoside component of PBI-05204, can quantitatively account for regulation of BDNF at both the protein and transcriptional levels. Together, these findings support further investigation of cardiac glycosides in providing neuroprotection in the context of ischemic stroke. PMID:24431454

  16. BDNF Mediates Neuroprotection against Oxygen-Glucose Deprivation by the Cardiac Glycoside Oleandrin

    PubMed Central

    Van Kanegan, Michael J.; He, Dong Ning; Dunn, Denise E.; Yang, Peiying; Newman, Robert A.; West, Anne E.

    2014-01-01

    We have previously shown that the botanical drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, provides neuroprotection in both in vitro and in vivo brain slice-based models for focal ischemia (Dunn et al., 2011). Intriguingly, plasma levels of the neurotrophin BDNF were increased in patients treated with PBI-05204 in a phase I clinical trial (Bidyasar et al., 2009). We thus tested the hypothesis that neuroprotection provided by PBI-05204 to rat brain slices damaged by oxygen-glucose deprivation (OGD) is mediated by BDNF. We found, in fact, that exogenous BDNF protein itself is sufficient to protect brain slices against OGD, whereas downstream activation of TrkB receptors for BDNF is necessary for neuroprotection provided by PBI-05204, using three independent methods. Finally, we provide evidence that oleandrin, the principal cardiac glycoside component of PBI-05204, can quantitatively account for regulation of BDNF at both the protein and transcriptional levels. Together, these findings support further investigation of cardiac glycosides in providing neuroprotection in the context of ischemic stroke. PMID:24431454

  17. Cyanogenic glycosides in plant-based foods available in New Zealand.

    PubMed

    Cressey, Peter; Saunders, Darren; Goodman, Janet

    2013-01-01

    Cyanogenic glycosides occur in a wide range of plant species. The potential toxicity of cyanogenic glycosides arises from enzymatic degradation to produce hydrogen cyanide, which may result in acute cyanide poisoning and has also been implicated in the aetiology of several chronic diseases. One hundred retail foods were sampled and analysed for the presence of total hydrocyanic acid using an acid hydrolysis-isonicotinic/barbituric acid colourimetric method. Food samples included cassava, bamboo shoots, almonds and almond products, pome fruit products, flaxseed/linseed, stone fruit products, lima beans, and various seeds and miscellaneous products, including taro leaves, passion fruit, spinach and canned stuffed vine leaves. The concentrations of total hydrocyanic acid (the hydrocyanic acid equivalents of all cyanogenic compounds) found were consistent with or lower than concentrations reported in the scientific literature. Linseed/flaxseed contained the highest concentrations of total hydrocyanic acid of any of the analysed foods (91-178 mg kg(-1)). Linseed-containing breads were found to contain total hydrocyanic acid at concentrations expected from their linseed content, indicating little impact of processing on the total hydrocyanic acid content. Simulation modelling was used to assess the risk due to the total hydrocyanic acid in fruit juice and linseed-containing bread.  PMID:23984870

  18. Crystal Structure and Characterization of the Glycoside Hydrolase Family 62 ?-l-Arabinofuranosidase from Streptomyces coelicolor*

    PubMed Central

    Maehara, Tomoko; Fujimoto, Zui; Ichinose, Hitomi; Michikawa, Mari; Harazono, Koichi; Kaneko, Satoshi

    2014-01-01

    ?-l-Arabinofuranosidase, which belongs to the glycoside hydrolase family 62 (GH62), hydrolyzes arabinoxylan but not arabinan or arabinogalactan. The crystal structures of several ?-l-arabinofuranosidases have been determined, although the structures, catalytic mechanisms, and substrate specificities of GH62 enzymes remain unclear. To evaluate the substrate specificity of a GH62 enzyme, we determined the crystal structure of ?-l-arabinofuranosidase, which comprises a carbohydrate-binding module family 13 domain at its N terminus and a catalytic domain at its C terminus, from Streptomyces coelicolor. The catalytic domain was a five-bladed ?-propeller consisting of five radially oriented anti-parallel ?-sheets. Sugar complex structures with l-arabinose, xylotriose, and xylohexaose revealed five subsites in the catalytic cleft and an l-arabinose-binding pocket at the bottom of the cleft. The entire structure of this GH62 family enzyme was very similar to that of glycoside hydrolase 43 family enzymes, and the catalytically important acidic residues found in family 43 enzymes were conserved in GH62. Mutagenesis studies revealed that Asp202 and Glu361 were catalytic residues, and Trp270, Tyr461, and Asn462 were involved in the substrate-binding site for discriminating the substrate structures. In particular, hydrogen bonding between Asn462 and xylose at the nonreducing end subsite +2 was important for the higher activity of substituted arabinofuranosyl residues than that for terminal arabinofuranoses. PMID:24482228

  19. Resveratrol-Related Polymethoxystilbene Glycosides: Synthesis, Antiproliferative Activity, and Glycosidase Inhibition.

    PubMed

    Cardullo, Nunzio; Spatafora, Carmela; Musso, Nicolò; Barresi, Vincenza; Condorelli, Daniele; Tringali, Corrado

    2015-11-25

    A small library of polymethoxystilbene glycosides (20-25) related to the natural polyphenol resveratrol have been synthesized and subjected, together with their aglycones 17-19, to an antiproliferative activity bioassay toward Caco-2 and SH-SY5Y cancer cells. Six of the compounds exhibit antiproliferative activity against at least one cell line. In particular, compounds 17 and 18 proved highly active on at least one of the two cell cultures. Compound 18 showed a GI50 value of 3 ?M against Caco-2 cells, a value comparable to that of the anticancer drug 5-fluorouracil. The closely related compound 19 proved inactive, and its conjugates 22 and 25 showed weak cell growth inhibition. The results indicate that minimal differences in the structure of both polymethoxystilbenes and their glycosides can substantially affect the antiproliferative activity. The possible hydrolytic release of the aglycones 17-19 by ?-glucosidase or ?-galactosidase was also evaluated. Compounds 20-25 were also tested as potential ?-glucosidase, ?-galactosidase, and ?-glucosidase inhibitors. A promising inhibitory activity toward ?-glucosidase was observed for 21 (IC50 = 78 ?M) and 25 (IC50 = 70 ?M), which might be indicative of their potential as lead compounds for development of antidiabetic or antiobesity agents. PMID:26539626

  20. Ability of human oral microbiota to produce wine odorant aglycones from odourless grape glycosidic aroma precursors.

    PubMed

    Muñoz-González, Carolina; Cueva, Carolina; Ángeles Pozo-Bayón, M; Victoria Moreno-Arribas, M

    2015-11-15

    Grape aroma precursors are odourless glycosides that represent a natural reservoir of potential active odorant molecules in wines. Since the first step of wine consumption starts in the oral cavity, the processing of these compounds in the mouth could be an important factor in influencing aroma perception. Therefore, the objective of this work has been to evaluate the ability of human oral microbiota to produce wine odorant aglycones from odourless grape glycosidic aroma precursors previously isolated from white grapes. To do so, two methodological approaches involving the use of typical oral bacteria or the whole oral microbiota isolated from human saliva were followed. Odorant aglycones released in the culture mediums were isolated and analysed by HS-SPME-GC/MS. Results showed the ability of oral bacteria to hydrolyse grape aroma precursors, releasing different types of odorant molecules (terpenes, benzenic compounds and lipid derivatives). The hydrolytic activity seemed to be bacteria-dependent and was subject to large inter-individual variability. PMID:25977005

  1. Rapid differentiation of isobaric and positional isomers of structurally related glycosides from Phytolacca bogotensis.

    PubMed

    Montoya, Guillermo; Arango, Gabriel J; Ramírez-Pineda, José R

    2009-11-01

    Through the action of glycosyltransferases, a plant can biosynthetically assemble small different aglycons or 'templates' to various polysaccharides to produce numerous glycoconjugates differing in the type of the attached aglycon, the anomeric configuration of C-1 of the glycosylating sugar, the type of sugar and the different position of attachments of the sugar unit present in the polysaccharide chain. The position of attachments and the anomeric configuration of the different sugar present in the polysaccharide create the opportunity to generate molecules with either the same or very close molecular weights, which have relative structural similarity--forming isobaric and positional isomers. Although isomeric differentiation was once considered outside of the domain of mass spectrometry, this task can now be resolved using tandem mass spectrometry. In a standardized purified glycoconjugate fraction (SPT01) from Phytolacca bogotensis, we report conventional electrospray ionization mass spectrometry and collision-induced dissociation (CID) MS/MS parameters which favored the formation of characteristic product ions. This allowed us to suggest the type of sugar linkages present in a specific glycoconjugate. Ten new glycoconjugate are described from this plant and another twelve known saponins were structurally characterized using the automatic MSn acquisition mode. The differentiation of two pairs of positional isomers and four isobaric glycosides and the production of a library of 30 glycosides present in P. bogotensis were accomplished. PMID:19785003

  2. Triterpene glycosides and other polar constituents of shea (Vitellaria paradoxa) kernels and their bioactivities.

    PubMed

    Zhang, Jie; Kurita, Masahiro; Shinozaki, Takuro; Ukiya, Motohiko; Yasukawa, Ken; Shimizu, Naoto; Tokuda, Harukuni; Masters, Eliot T; Akihisa, Momoko; Akihisa, Toshihiro

    2014-12-01

    The MeOH extract of defatted shea (Vitellaria paradoxa; Sapotaceae) kernels was investigated for its constituents, and fifteen oleanane-type triterpene acids and glycosides, two steroid glucosides, two pentane-2,4-diol glucosides, seven phenolic compounds, and three sugars, were isolated. The structures of five triterpene glycosides were elucidated on the basis of spectroscopic and chemical methods. Upon evaluation of the bioactivity of the isolated compounds, it was found that some or most of the compounds have potent or moderate inhibitory activities against the following: melanogenesis in B16 melanoma cells induced by ?-melanocyte-stimulating hormone (?-MSH); generation of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, against Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-teradecanoylphorbol 13-acetate (TPA) in Raji cells; t TPA-induced inflammation in mice, and proliferation of one or more of HL-60, A549, AZ521, and SK-BR-3 human cancer cell lines, respectively. Western blot analysis established that paradoxoside E inhibits melanogenesis by regulation of expression of microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related protein-1 (TRP-1) and TRP-2. In addition, tieghemelin A was demonstrated to exhibit cytotoxic activity against A549 cells (IC50 13.5 ?M) mainly due to induction of apoptosis by flow cytometry. The extract of defatted shea kernels and its constituents may be, therefore, valuable as potential antioxidant, anti-inflammatory, skin-whitening, chemopreventive, and anticancer agents. PMID:25446237

  3. Effects of salt stress on the growth, physiological responses, and glycoside contents of Stevia rebaudiana Bertoni.

    PubMed

    Zeng, Jianwei; Chen, Aimeng; Li, Dandan; Yi, Bin; Wu, Wei

    2013-06-19

    This study examined the effects of three different NaCl concentrations (60, 90, and 120 mM) on the growth, physiological responses, and steviol glycoside composition of Stevia rebaudiana Bertoni for 4 weeks. The results showed that the total dry weight decreased by 40% at 120 mM NaCl but remained the same at 60 and 90 mM NaCl. As salt concentration increased, chlorophyll contents decreased markedly by 10-70%, whereas the increments of the antioxidant enzyme activities were 1.0-1.6, 1.2-1.3, and 2.0-4.0 times, respectively, for superoxide dismutase, peroxidase, and catalase. The proline contents in salt-treated plants were 17-42 times higher than that in control. Moreover, leaf possessed significantly higher K? content and K?/Na? ratio than stem and root for all salt treatments. In addition, 90-120 mM NaCl treatment notably decreased the content of rebaudioside A (RA) and stevioside (ST) by 16.2-38.2%, whereas the increment of the ratio of RA/ST of salt-treated plants was 1.1-1.4 times. These results indicate that S. rebaudiana is moderately tolerant to salt stress. Hypohaline soil can be utilized in the plantation of S. rebaudiana and may be profitable for optimizing the steviol glycoside composition. PMID:23711229

  4. Identification, quantification, and sensory characterization of steviol glycosides from differently processed Stevia rebaudiana commercial extracts.

    PubMed

    Espinoza, María Inés; Vincken, Jean-Paul; Sanders, Mark; Castro, Cristian; Stieger, Markus; Agosin, Eduardo

    2014-12-10

    Stevia rebaudiana is known for its sweet-tasting ent-kaurene diterpenoid glycosides. Several manufacturing strategies are currently employed to obtain Stevia sweeteners with the lowest possible off-flavors. The chemical composition of four commercial S. rebaudiana extracts, obtained by different technologies, was characterized using UHPLC-ESI-MS(n). The composition of one of the ethanol-crystallized extracts (EC2) was entirely rebaudioside A, whereas the enzymatically modified (EM) extract contained the lowest concentration of this compound (2.7 mg/100 mg). The membrane-purified (MP) extract had the highest content of minor natural steviol glycosides (23.7 mg/100 mg total extract) versus an average of 2.4 mg/100 mg total extract for the EC samples. Thirteen trained panelists evaluated sweetness, bitterness, licorice, and metallic attributes of all four extracts. The highest licorice intensity (p ? 0.05) was found for MP. Both samples EC1 and EC2, despite their different chemical compositions, showed no significant differences in sensory perception. PMID:25393842

  5. Influence of drying method on steviol glycosides and antioxidants in Stevia rebaudiana leaves.

    PubMed

    Periche, Angela; Castelló, María Luisa; Heredia, Ana; Escriche, Isabel

    2015-04-01

    The application of different drying conditions (hot air drying at 100 °C and 180 °C, freeze drying and shade drying) on steviol glycosides (stevioside, dulcoside A, rebaudioside A and rebaudioside C) and antioxidants in Stevia leaves was evaluated. Stevioside, the major glycoside found in fresh leaves (81.2mg/g), suffered an important reduction in all cases, although shade drying was the least aggressive treatment. Considering the antioxidant parameters (total phenols, flavonoids and total antioxidants), the most suitable drying method was hot air at 180 °C, since it substantially increased all of them (76.8 mg gallic acid, 45.1mg catechin and 126 mg Trolox, all equivalent/g Stevia, respectively), with respect to those present in fresh leaves (44.4, 2.5 and 52.9 mg equivalent/g). Therefore, the ideal method for drying Stevia leaves depends on their final use (sweetener or antioxidant), although, hot air at 180 °C is the most recommendable if only one treatment has to be chosen. PMID:25442516

  6. Fast methodology of analysing major steviol glycosides from Stevia rebaudiana leaves.

    PubMed

    Lorenzo, Cándida; Serrano-Díaz, Jéssica; Plaza, Miguel; Quintanilla, Carmen; Alonso, Gonzalo L

    2014-08-15

    The aim of this work is to propose an HPLC method for analysing major steviol glycosides as well as to optimise the extraction and clarification conditions for obtaining these compounds. Toward this aim, standards of stevioside and rebaudioside A with purities ?99.0%, commercial samples from different companies and Stevia rebaudiana Bertoni leaves from Paraguay supplied by Insobol, S.L., were used. The analytical method proposed is adequate in terms of selectivity, sensitivity and accuracy. Optimum extraction conditions and adequate clarification conditions have been set. Moreover, this methodology is safe and eco-friendly, as we use only water for extraction and do not use solid-phase extraction, which requires solvents that are banned in the food industry to condition the cartridge and elute the steviol glycosides. In addition, this methodology consumes little time as leaves are not ground and the filtration is faster, and the peak resolution is better as we used an HPLC method with gradient elution. PMID:24679813

  7. Response surface methodology to optimise Accelerated Solvent Extraction of steviol glycosides from Stevia rebaudiana Bertoni leaves.

    PubMed

    Jentzer, Jean-Baptiste; Alignan, Marion; Vaca-Garcia, Carlos; Rigal, Luc; Vilarem, Gérard

    2015-01-01

    Following the approval of steviol glycosides as a food additive in Europe in December 2011, large-scale stevia cultivation will have to be developed within the EU. Thus there is a need to increase the efficiency of stevia evaluation through germplasm enhancement and agronomic improvement programs. To address the need for faster and reproducible sample throughput, conditions for automated extraction of dried stevia leaves using Accelerated Solvent Extraction were optimised. A response surface methodology was used to investigate the influence of three factors: extraction temperature, static time and cycle number on the stevioside and rebaudioside A extraction yields. The model showed that all the factors had an individual influence on the yield. Optimum extraction conditions were set at 100 °C, 4 min and 1 cycle, which yielded 91.8% ± 3.4% of total extractable steviol glycosides analysed. An additional optimisation was achieved by reducing the grind size of the leaves giving a final yield of 100.8% ± 3.3%. PMID:25053094

  8. Comparative analysis of glycoside hydrolases activities from phylogenetically diverse marine bacteria of the genus Arenibacter.

    PubMed

    Bakunina, Irina; Nedashkovskaya, Olga; Balabanova, Larissa; Zvyagintseva, Tatyana; Rasskasov, Valery; Mikhailov, Valery

    2013-06-01

    A total of 16 marine strains belonging to the genus Arenibacter, recovered from diverse microbial communities associated with various marine habitats and collected from different locations, were evaluated in degradation of natural polysaccharides and chromogenic glycosides. Most strains were affiliated with five recognized species, and some presented three new species within the genus Arenibacter. No strains contained enzymes depolymerizing polysaccharides, but synthesized a wide spectrum of glycosidases. Highly active ?-N-acetylglucosaminidases and ?-N-acetylgalactosaminidases were the main glycosidases for all Arenibacter. The genes, encoding two new members of glycoside hydrolyses (GH) families, 20 and 109, were isolated and characterized from the genomes of Arenibacter latericius. Molecular genetic analysis using glycosidase-specific primers shows the absence of GH27 and GH36 genes. A sequence comparison with functionally-characterized GH20 and GH109 enzymes shows that both sequences are closest to the enzymes of chitinolytic bacteria Vibrio furnissii and Cellulomonas fimi of marine and terrestrial origin, as well as human pathogen Elisabethkingia meningoseptica and simbionts Akkermansia muciniphila, gut and non-gut Bacteroides, respectively. These results revealed that the genus Arenibacter is a highly taxonomic diverse group of microorganisms, which can participate in degradation of natural polymers in marine environments depending on their niche and habitat adaptations. They are new prospective candidates for biotechnological applications due to their production of unique glycosidases. PMID:23752354

  9. Anthrone and oxanthrone C-glycosides from Picramnia latifolia collected in Peru.

    PubMed

    Diaz, Fredyc; Chai, Hee-Byung; Mi, Qiuwen; Su, Bao-Ning; Vigo, Jose Schunke; Graham, James G; Cabieses, Fernando; Farnsworth, Norman R; Cordell, Geoffrey A; Pezzuto, John M; Swanson, Steven M; Kinghorn, A Douglas

    2004-03-01

    Cytotoxicity-based, bioassay-guided fractionation of the chloroform-soluble extracts of both the roots and leaves of Picramnia latifolia led to the isolation of two new anthrone C-glycosides, picramniosides G (1) and H (2), two new oxanthrone C-glycosides, mayosides D (3) and E (4), and a new benzanthrone natural product, 6,8-dihydroxy-10-methyl-7H-benz[de]anthracen-7-one (5), together with 10 known compounds, 6,8-dihydroxy-4-methyl-7H-benz[de]anthracen-7-one (6), nataloe-emodin (7), chrysophanein, chrysophanol, 1,5-dihydroxy-7-methoxy-3-methylanthraquinone, pulmatin, 7-hydroxycoumarin, 7-hydroxy-6-methoxycoumarin, beta-sitosterol, and beta-sitosterol glucoside. The structures of 1-5 were established by spectroscopic methods, including 1D and 2D NMR, HRMS, and CD data interpretation. The cytotoxic activity of all isolates was evaluated in a small panel of human cancer cell lines. Compound 7 exhibited significant in vitro cytotoxic activity in the tested cell lines, but no significant activity was observed with an in vivo hollow fiber model at doses of 6.25, 12.5, 25, and 50 mg/kg/injection. PMID:15043409

  10. HPLC-MSn identification and quantification of flavonol glycosides in 28 wild and cultivated berry species.

    PubMed

    Mikulic-Petkovsek, Maja; Slatnar, Ana; Stampar, Franci; Veberic, Robert

    2012-12-15

    Berries and red fruits are rich dietary sources of polyphenols with reported health benefits. More than 50 different flavonols (glycosides of quercetin, myricetin, kaempferol, isorhamnetin, syringetin and laricitrin) have been detected and quantified with HPLC-MS(n) in fruits of blueberry, bilberry, cranberry, lingonberry, eastern shadbush, Japanese wineberry, black mulberry, chokeberry, red, black and white currants, jostaberry, red and white gooseberry, hardy kiwifruit, goji berry, rowan, dog rose, Chinese and midland hawthorn, wild and cultivated species of blackberry, raspberry, strawberry and elderberry. The phenolic constituents and contents varied considerably among the analyzed berry species. Elderberry contained the highest amount of total flavonols (450-568 mgkg(-1) FW), followed by berry species, containing more than 200 mgkg(-1) FW of total: chokeberry (267mgkg(-1)), eastern shadbush (261 mgkg(-1)), wild grown blackberry (260 mgkg(-1)), rowanberry (232 mgkg(-1)), american cranberry (213 mgkg(-1)) and blackcurrants (204 mgkg(-1)). Strawberry (10.5 mgkg(-1)) and white currants (4.5 mgkg(-1)) contained the lowest amount of total flavonols. Quercetins represent the highest percentage (46-100%) among flavonols in most analyzed berries. In wild strawberry and gooseberry the prevailing flavonols belong to the group of isorhamnetins (50-62%) and kaempferols, which represent the major part of flavonols in currants (49-66%). Myricetin glycosides could only be detected in chokeberry, rowanberry and species from the Grossulariaceae, and Adoxaceae family and Vaccinium genus. Wild strawberry and blackberry contained from 3- to 5-fold higher total flavonols than the cultivated one. PMID:22980782

  11. Topical Anti-Inflammatory Effects of Isorhamnetin Glycosides Isolated from Opuntia ficus-indica

    PubMed Central

    Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A.; Martínez-Vitela, Carlos; Serna-Saldívar, Sergio O.

    2015-01-01

    Opuntia ficus-indica (OFI) has been widely used in Mexico as a food and for the treatment of different health disorders such as inflammation and skin aging. Its biological properties have been attributed to different phytochemicals such as the isorhamnetin glycosides which are the most abundant flavonoids. Moreover, these compounds are considered a chemotaxonomic characteristic of OFI species. The aim of this study was to evaluate the effect of OFI extract and its isorhamnetin glycosides on different inflammatory markers in vitro and in vivo. OFI extract was obtained by alkaline hydrolysis of OFI cladodes powder and pure compounds were obtained by preparative chromatography. Nitric oxide (NO), cyclooxygenase-2 (COX-2), tumor necrosis factor- (TNF-) ?, and interleukin- (IL-) 6 production were measured. NO production was tested in lipopolysaccharide-stimulated RAW 264.7 cells while in vivo studies were carried on croton oil-induced ear edema model. OFI extract and diglycoside isorhamnetin-glucosyl-rhamnoside (IGR) at 125?ng/mL suppressed the NO production in vitro (73.5 ± 4.8% and 68.7 ± 5.0%, resp.) without affecting cell viability. Likewise, IGR inhibited the ear edema (77.4 ± 5.7%) equating the indomethacin effects (69.5 ± 5.3%). Both IGR and OFI extract significantly inhibited the COX-2, TNF-?, and IL-6 production. IGR seems to be a suitable natural compound for development of new anti-inflammatory ingredient. PMID:25821823

  12. Topical anti-inflammatory effects of isorhamnetin glycosides isolated from Opuntia ficus-indica.

    PubMed

    Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A; Martínez-Vitela, Carlos; Serna-Saldívar, Sergio O

    2015-01-01

    Opuntia ficus-indica (OFI) has been widely used in Mexico as a food and for the treatment of different health disorders such as inflammation and skin aging. Its biological properties have been attributed to different phytochemicals such as the isorhamnetin glycosides which are the most abundant flavonoids. Moreover, these compounds are considered a chemotaxonomic characteristic of OFI species. The aim of this study was to evaluate the effect of OFI extract and its isorhamnetin glycosides on different inflammatory markers in vitro and in vivo. OFI extract was obtained by alkaline hydrolysis of OFI cladodes powder and pure compounds were obtained by preparative chromatography. Nitric oxide (NO), cyclooxygenase-2 (COX-2), tumor necrosis factor- (TNF-) ?, and interleukin- (IL-) 6 production were measured. NO production was tested in lipopolysaccharide-stimulated RAW 264.7 cells while in vivo studies were carried on croton oil-induced ear edema model. OFI extract and diglycoside isorhamnetin-glucosyl-rhamnoside (IGR) at 125?ng/mL suppressed the NO production in vitro (73.5 ± 4.8% and 68.7 ± 5.0%, resp.) without affecting cell viability. Likewise, IGR inhibited the ear edema (77.4 ± 5.7%) equating the indomethacin effects (69.5 ± 5.3%). Both IGR and OFI extract significantly inhibited the COX-2, TNF-?, and IL-6 production. IGR seems to be a suitable natural compound for development of new anti-inflammatory ingredient. PMID:25821823

  13. Glycosidic Enzyme Activity in Pea Tissue and Pea-Fusarium solani Interactions 12

    PubMed Central

    Nichols, Everett J.; Beckman, Jean M.; Hadwiger, Lee A.

    1980-01-01

    Membrane barriers which prevent direct contact between Fusarium solani and pea endocarp tissue prevent fungal spores from inducing phytoalexin production. Conversely, preinduced host resistance responses are not readily transported from the plant across the membrane barrier to Fusarium macroconidia. Crude enzyme extracts from pea endocarp tissues partially degrade Fusarium solani f. sp. phaseoli cell walls. Activities of the glycosidic enzymes, chitinase, ?-1,3-glucanase, chitosanase, ?-D-N-acetylglucosaminidase, ?-D-N-acetylgalactosaminidase, ?-D-glucosidase, ?-D-glucosidase, and ?-D-mannosidase, were detected in pea endocarp tissue. If pods are challenged with Fusarium spores or chitosan, the chitinase activity of the infected tissue remains higher than water-treated pods 0.5 to 6 hours after treatment. The ?-1,3-glucanase activity increases within 6 hours in both inoculated and control tissue. Chitosanase activity was lower in tissue treated with Fusarium solani f. sp. pisi, f. sp. phaseoli or chitosan than in water-treated control tissue. Thus, the pea tissue contains glycosidic enzymes with the potential to degrade the major compounds of the Fusarium cell walls. PMID:16661404

  14. Zebrafish bioassay-guided microfractionation identifies anticonvulsant steroid glycosides from the Philippine medicinal plant Solanum torvum.

    PubMed

    Challal, Soura; Buenafe, Olivia E M; Queiroz, Emerson F; Maljevic, Snezana; Marcourt, Laurence; Bock, Merle; Kloeti, Werner; Dayrit, Fabian M; Harvey, Alan L; Lerche, Holger; Esguerra, Camila V; de Witte, Peter A M; Wolfender, Jean-Luc; Crawford, Alexander D

    2014-10-15

    Medicinal plants used for the treatment of epilepsy are potentially a valuable source of novel antiepileptic small molecules. To identify anticonvulsant secondary metabolites, we performed an in vivo, zebrafish-based screen of medicinal plants used in Southeast Asia for the treatment of seizures. Solanum torvum Sw. (Solanaceae) was identified as having significant anticonvulsant activity in zebrafish larvae with seizures induced by the GABAA antagonist pentylenetetrazol (PTZ). This finding correlates well with the ethnomedical use of this plant in the Philippines, where a water decoction of S. torvum leaves is used to treat epileptic seizures. HPLC microfractionation of the bioactive crude extract, in combination with the in vivo zebrafish seizure assay, enabled the rapid localization of several bioactive compounds that were partially identified online by UHPLC-TOF-MS as steroid glycosides. Targeted isolation of the active constituents from the methanolic extract enabled the complete de novo structure identification of the six main bioactive compounds that were also present in the traditional preparation. To partially mimic the in vivo metabolism of these triterpene glycosides, their common aglycone was generated by acid hydrolysis. The isolated molecules exhibited significant anticonvulsant activity in zebrafish seizure assays. These results underscore the potential of zebrafish bioassay-guided microfractionation to rapidly identify novel bioactive small molecules of natural origin. PMID:25127088

  15. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community

    SciTech Connect

    Allgaier, M.; Reddy, A.; Park, J. I.; Ivanova, N.; D'haeseleer, P.; Lowry, S.; Sapra, R.; Hazen, T.C.; Simmons, B.A.; VanderGheynst, J. S.; Hugenholtz, P.

    2009-11-15

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Small-subunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, {approx}10% were putative cellulases mostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50 C and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.

  16. Targeted Discovery of Glycoside Hydrolases from a Switchgrass-Adapted Compost Community

    SciTech Connect

    Reddy, Amitha; Allgaier, Martin; Park, Joshua I.; Ivanoval, Natalia; Dhaeseleer, Patrik; Lowry, Steve; Sapra, Rajat; Hazen, Terry C.; Simmons, Blake A.; VanderGheynst, Jean S.; Hugenholtz, Philip

    2011-05-11

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Smallsubunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, ,10percent were putative cellulasesmostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50uC and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.

  17. Biogenesis of C-Glycosyl Flavones and Profiling of Flavonoid Glycosides in Lotus (Nelumbo nucifera)

    PubMed Central

    Li, Shan-Shan; Wu, Jie; Chen, Li-Guang; Du, Hui; Xu, Yan-Jun; Wang, Li-Jing; Zhang, Hui-Jin; Zheng, Xu-Chen; Wang, Liang-Sheng

    2014-01-01

    Flavonoids in nine tissues of Nelumbo nucifera Gaertner were identified and quantified by high-performance liquid chromatography with diode array detector (HPLC-DAD) and HPLC-electrospray ionization-mass spectrometry (HPLC-ESI-MSn). Thirty-eight flavonoids were identified; eleven C-glycosides and five O-glycosides were discovered for the first time in N. nucifera. Most importantly, the C-glycosyl apigenin or luteolin detected in lotus plumules proved valuable for deep elucidation of flavonoid composition in lotus tissues and for further utilization as functional tea and medicine materials. Lotus leaves possessed the significantly highest amount of flavonoids (2.06E3±0.08 mg 100 g?1 FW) and separating and purifying the bioactive compound, quercetin 3-O-glucuronide, from leaves showed great potential. In contrast, flavonoids in flower stalks, seed coats and kernels were extremely low. Simultaneously, the optimal picking time was confirmed by comparing the compound contents in five developmental phases. Finally, we proposed the putative flavonoid biosynthesis pathway in N. nucifera. PMID:25279809

  18. Phenylethanoid glycosides from Digitalis purpurea and Penstemon linarioides with PKCalpha-inhibitory activity.

    PubMed

    Zhou, B N; Bahler, B D; Hofmann, G A; Mattern, M R; Johnson, R K; Kingston, D G

    1998-11-01

    In a continuation of our search for potential tumor inhibitors from plants, it was found that the CH2Cl2-MeOH (1:1) extracts from Digitalis purpurea and Penstemon linarioides both showed PKCalpha-inhibitory bioactivity. Bioassay-directed fractionation of the extract from D. purpurea yielded the new, weakly active phenylethanoid glycoside 2-(3-hydroxy-4-methoxy-phenyl)-ethyl-O-(alpha-L-rhamnosyl)-(1-->3) -O- (alpha-L-rhamnosyl)-(1-->6)-4-O-E-feruloyl-beta-D-glucopy ran oside (1) together with the four known compounds calceolarioside A (2), calceolarioside B (3), forsythiaside (4), and plantainoside D (5). The extract from P. linarioides yielded the three known glycosides leucosceptoside A (6), acteoside (7), and poliumoside (8), together with the iridoid plantarenaloside (9). All of the isolated compounds, except compound 9, showed inhibitory activity against PKCalpha with IC50 values (in microM) of 125 (1), 0.6 (2), 4.6 (3), 1.9 (4), 14.8 (5), 19.0 (6), 9.3 (7), and 24.4 (8). PMID:9834166

  19. Reverse Auction Bidding - Multiple Group Study 

    E-print Network

    Zhou, Xun

    2012-10-19

    ) and (Guhya, 2010) .......................................................................................... 32 Figure 5. Reverse Auction Bidding Login Screen ......................................................... 35 Figure 6. Reverse Auction...

  20. In silico analysis and expression profiling of miRNAs targeting genes of steviol glycosides biosynthetic pathway and their relationship with steviol glycosides content in different tissues of Stevia rebaudiana.

    PubMed

    Saifi, Monica; Nasrullah, Nazima; Ahmad, Malik Mobeen; Ali, Athar; Khan, Jawaid A; Abdin, M Z

    2015-09-01

    miRNAs are emerging as potential regulators of the gene expression. Their proven promising role in regulating biosynthetic pathways related gene networks may hold the key to understand the genetic regulation of these pathways which may assist in selection and manipulation to get high performing plant genotypes with better secondary metabolites yields and increased biomass. miRNAs associated with genes of steviol glycosides biosynthetic pathway, however, have not been identified so far. In this study miRNAs targeting genes of steviol glycosides biosynthetic pathway were identified for the first time whose precursors were potentially generated from ESTs and nucleotide sequences of Stevia rebaudiana. Thereafter, stem-loop coupled real time PCR based expressions of these miRNAs in different tissues of Stevia rebaudiana were investigated and their relationship pattern was analysed with the expression levels of their target mRNAs as well as steviol glycoside contents. All the miRNAs investigated showed differential expressions in all the three tissues studied, viz. leaves, flowers and stems. Out of the eleven miRNAs validated, the expression levels of nine miRNAs (miR319a, miR319b, miR319c, miR319d, miR319e, miR319f, miR319h, miRstv_7, miRstv_9) were found to be inversely related, while expression levels of the two, i.e. miR319g and miRstv_11 on the contrary, showed direct relation with the expression levels of their target mRNAs and steviol glycoside contents in the leaves, flowers and stems. This study provides a platform for better understanding of the steviol glycosides biosynthetic pathway and these miRNAs can further be employed to manipulate the biosynthesis of these metabolites to enhance their contents and yield in S. rebaudiana. PMID:26042546

  1. Purification and characterization of a glycoside hydrolase family 43 Beta-xylosidase from Geobacillus thermoleovorans IT-08

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gene encoding a glycoside hydrolase family 43 enzyme termed deAX was isolated and subcloned from a culture seeded with a compost starter mixed bacterium population, expressed with a C-terminal His6-tag, and purified to apparent homogeneity. deAX was monomeric in solution, and had a broad pH maxi...

  2. Determination of flavonol glycosides in green tea, oolong tea and black tea by UHPLC compared to HPLC.

    PubMed

    Jiang, Heyuan; Engelhardt, Ulrich H; Thräne, Claudia; Maiwald, Beate; Stark, Janina

    2015-09-15

    An UHPLC method for the determination of flavonol glycosides (FOG) from green and oolong tea vs. black tea has been developed for the first time. Sample clean-up method by means of polyamide column chromatography was optimized with multiple-step elution. Using UHPLC and HPLC with gradient elution and photodiode array detection, eighteen FOG compounds were determined with the aid of electrospray tandem mass spectrometry. These FOG compounds were qualified on both UHPLC and HPLC, and this UHPLC method successfully separated rutin (quercetin-3-O-rutinoside) and K-grg (kaempferol-3-O-glucorhamnoglucoside) while conventional HPLC method did not. The total amounts of FOG compounds in the tea samples were 2.32-5.67g/kg dry weight (calculated as aglycones), and there is no significant difference for the total FOG content among green tea, oolong tea and black tea. However, kaempferol glycosides are more abundant in green teas, while oolong tea has more quercetin and myricetin glycosides. In black tea quercetin glycosides were most abundant. PMID:25863606

  3. 2724 J. Org. Chem. 1994,59, 2724-2728 Boronic Acids Mediate Glycoside Transport through a Liquid

    E-print Network

    Smith, Bradley D.

    was achieved by including boric acid in the receiving phase and lipophilic boronic acid in the organic layer2724 J. Org. Chem. 1994,59, 2724-2728 Boronic Acids Mediate Glycoside Transport through a Liquid of Notre Dame, Notre Dame, Indiana 46556 Received December 29, 1993 The ability of phenylboronic acid and 3

  4. Determination of six steviol glycosides of Stevia rebaudiana (Bertoni) from different geographical origin by LC-ESI-MS/MS.

    PubMed

    Montoro, Paola; Molfetta, Ilaria; Maldini, Mariateresa; Ceccarini, Lucia; Piacente, Sonia; Pizza, Cosimo; Macchia, Mario

    2013-11-15

    Liquid chromatography electro-spray tandem mass spectrometry (LC-ESI/MS/MS) was applied to the determination of sweet glycosides (steviol glycosides), and toxic aglycon steviol in 24 samples of Stevia rebaudiana (Bertoni) aerial parts, which had been experimentally cultivated in Italy, although derived from seeds of different geographical origin. On the basis of the specific fragmentation of these compounds, an LC-MS/MS method was developed with the aim of quantifying analytes in plant material. Although toxic steviol was not detectable in all the samples, the samples with the highest levels of steviol glycosides were identified. Analysis of the different samples revealed that they were good quality samples, quality being directly linked to the presence of sweet glycosides in the plants cultivated in Italy, although there were differences in the content of these compounds according to the origin of the seeds, and in particular, a major concentration of compounds with major sweetness activity and minor toxicity was found in the population coming from Brazil (for example: sample 10, stevioside content 15.74±2.0% p/p and rebaudioside A content 3.09±0.39% p/p of dried plant). Finally, based on this metabolomic targeted approach, the results obtained for the samples were treated by Principal Component Analysis, identifying specific genotypic differences based on the geographic origin of the seeds. PMID:23790843

  5. Validation of HPLC-UV method for determination of minor glycosides contained in Stevia rebaudiana Bertoni leaves.

    PubMed

    Aranda-González, Irma; Moguel-Ordoñez, Yolanda; Betancur-Ancona, David

    2015-05-01

    Leaves of Stevia rebaudiana contain glycosides with sweetness and biological activity. However besides the major glycosides, there are other glycosides within extracts that may contribute to its activity, and therefore it is important to quantify them. In this work, an isocratic HPLC method was validated for determination of dulcoside A, steviolbioside, rebaudioside C and rebaudioside B. An HPLC method was performed using a C18 column (250?×?4.6?mm, particle size 5?µm) and a UV detector set at 210?nm. The mobile phase consisted of a 32:68 (v/v) mixture of acetonitrile and sodium phosphate buffer (10?mmol/L, pH?2.6), set to a flow rate of 1.0?mL/min. The calculated parameters were: sensitivity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy and precision. The calibration curves were linear over the working range 25-150?µg/mL, with coefficient of correlation of ?0.99 and coefficient of determination of ?0.98. The LOD was 5.68-8.81?µg/mL, while the LOQ was 17.21-26.69?µg/mL. The percentage recoveries of fortified samples were 100?±?10% and precision, relative standard deviation, was <10%. The method validation showed accuracy, linearity and precision; therefore this method can be applied for quantitative analysis of minor steviol glycosides in S. rebaudiana leaves. PMID:25296637

  6. Electron Impact Ion Fragmentation Pathways of Peracetylated C-glycoside Ketones Derived from Cyclic 1,3-diketones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monosaccharide C-glycoside ketones have been prepared by aqueous-based Knoevenagel condensation of isotopically-labeled and unlabeled aldoses with cyclic diketones, 5,5-dimethyl-1,3-cyclohexanedione (dimedone) and 1,3-cyclohexanedione (1,3-CHD). The reaction products and their corresponding acetyla...

  7. Cyanuric Chloride as an Efficient Catalyst for the Synthesis of 2,3-Unsaturated O-Glycosides by Ferrier Rearrangement

    PubMed Central

    Yang, Xiaojuan; Li, Na

    2014-01-01

    Cyanuric chloride has been found to be an efficient catalyst for the synthesis of 2,3-unsaturated O-glycosides from the reaction of 3,4,6-tri-O-acetyl-D-glucal and a wide range of alcohols in dichloromethane at room temperature. The experimental procedure is simple, and the products are obtained in high yields. PMID:24574881

  8. Cytotoxic Flavonol Glycosides from Triplaris cumingiana Ahmed A. Hussein,, Icela Barberena, Mireya Correa, Phyllis D. Coley,, Pablo N. Solis, and

    E-print Network

    Coley, Phyllis

    Notes Cytotoxic Flavonol Glycosides from Triplaris cumingiana Ahmed A. Hussein,, Icela Barberena by spectroscopic methods. Compounds 1-5 were evaluated for their cytotoxic activities against the MCF-7, H-460- soluble extract of the young leaves of Triplaris cumingiana showed cytotoxic activity against the MCF-7, H

  9. Direct determination of protonation states and visualization of hydrogen bonding in a glycoside hydrolase with neutron crystallography.

    PubMed

    Wan, Qun; Parks, Jerry M; Hanson, B Leif; Fisher, Suzanne Zoe; Ostermann, Andreas; Schrader, Tobias E; Graham, David E; Coates, Leighton; Langan, Paul; Kovalevsky, Andrey

    2015-10-01

    Glycoside hydrolase (GH) enzymes apply acid/base chemistry to catalyze the decomposition of complex carbohydrates. These ubiquitous enzymes accept protons from solvent and donate them to substrates at close to neutral pH by modulating the pKa values of key side chains during catalysis. However, it is not known how the catalytic acid residue acquires a proton and transfers it efficiently to the substrate. To better understand GH chemistry, we used macromolecular neutron crystallography to directly determine protonation and ionization states of the active site residues of a family 11 GH at multiple pD (pD = pH + 0.4) values. The general acid glutamate (Glu) cycles between two conformations, upward and downward, but is protonated only in the downward orientation. We performed continuum electrostatics calculations to estimate the pKa values of the catalytic Glu residues in both the apo- and substrate-bound states of the enzyme. The calculated pKa of the Glu increases substantially when the side chain moves down. The energy barrier required to rotate the catalytic Glu residue back to the upward conformation, where it can protonate the glycosidic oxygen of the substrate, is 4.3 kcal/mol according to free energy simulations. These findings shed light on the initial stage of the glycoside hydrolysis reaction in which molecular motion enables the general acid catalyst to obtain a proton from the bulk solvent and deliver it to the glycosidic oxygen. PMID:26392527

  10. A general approach to quantification of hydroxycinnamic acid derivatives and flavones, flavonols, and their glycosides by UV spectrophotometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A general method was developed for the quantification of hydroxycinnamic acid derivatives and flavones, flavonols, and their glycosides based on the UV molar relative response factors (MRRF) of the standards. Each of these phenolic compounds contains a cinnamoyl structure and has a maximum absorban...

  11. Iridoid and aromatic glycosides from Scrophularia ningpoensis Hemsl. and their inhibition of [Ca2+](i) increase induced by KCl.

    PubMed

    Chen, Bin; Liu, Yan; Liu, Hong-Wei; Wang, Nai-Li; Yang, Bao-Feng; Yao, Xin-Sheng

    2008-09-01

    Bioassay-guided fractionation of EtOH extract of the roots of Scrophularia ningpoensis Hemsl. resulted in the isolation of three new iridoid glycosides, i.e., 6''-O-caffeoylharpagide (1), 6''-O-feruloylharpagide (2), and 6''-O-beta-glucopyranosylharpagoside (3), and five new aromatic glycosides, i.e., 2-(3-hydroxy-4-methoxyphenyl)ethyl O-alpha-arabinopyranosyl-(1-->6)-O-alpha-rhamnopyranosyl-(1-->3)-O-beta-glucopyranoside (4), phenyl O-beta-xylopyranosyl-(1-->6)-O-beta-glucopyranoside (5), 3-methylphenyl O-beta-xylopyranosyl-(1-->6)-O-beta-glucopyranoside (6), 6-O-cinnamoyl beta-fructofuranosyl-(2-->1)-O-alpha-glucopyranosyl-(6-->1)-O-alpha-glucopyranoside (7), and 6-O-feruloyl beta-fructofuranosyl-(2-->1)-O-alpha-glucopyranosyl-(6-->1)-O-alpha-glucopyranoside (8), together with four known compounds, i.e., 6''-O-alpha-D-galactopyranosyl harpagoside (9), 6''-O-(p-coumaroyl) harpagide (10), harpagoside (11), and angoroside C (12). Activity of the isolated compounds on [Ca2+](i) increase induced by KCl was evaluated on rat cardiac myocytes using confocal laser scanning microscopy. Iridoid glycosides 1, 10, and 11, and aromatic glycosides 5 and 6 significantly inhibited the increase of [Ca2+](i) induced by KCl at 100 microM. PMID:18816525

  12. Palladium(0)-catalysed synthesis of 2,3- and 3,4-unsaturated aryl ?-O-glycosides.

    PubMed

    Kubiak, Agnieszka; Ko?odziuk, Robert; Porwa?ski, Stanis?aw; Zawisza, Anna

    2015-11-19

    Arylation of 6-O-tert-butyldiphenylsilyl-3,4-di-O-isobutyloxycarbonyl-d-glucal (3) with various phenols in the presence of a catalytic amount of palladium(0) gave the corresponding 2,3- and 3,4-unsaturated ?-O-glycosides. The reaction is stereospecific, in all cases, only the ?-anomer is formed. PMID:26406453

  13. Unlike quercetin glycosides, cyanidin glycoside in red leaf lettuce responds more sensitively to increasing low radiation intensity before than after head formation has started.

    PubMed

    Becker, Christine; Klaering, Hans-Peter; Schreiner, Monika; Kroh, Lothar W; Krumbein, Angelika

    2014-07-23

    This study investigated the effect of low-level photosynthetic photon flux density (PPFD; 43-230 ?mol m(-2) s(-1)) on the major phenolic compounds of red leaf lettuce in three growth stages, before, during, and after head formation, using HPLC-DAD-ESI-MS(2) and evaluating via multiple regression analysis. Generally, the light-related increase of flavonoid glycosides was structure and growth stage-dependent. In detail, an interaction was detected between plant age and PPFD regarding cyanidin-3-O-(6"-O-malonyl)-glucoside concentration: the increase was strongest before head formation. The relationship between PPFD and quercetin-3-O-(6"-O-malonyl)-glucoside concentration was linear, whereas the increase of quercetin-3-O-glucoside and -3-O-glucuronide concentrations abated with increasing PPFD. Independent of growth stage, the caffeic acid derivatives concentration was not related to PPFD. All major phenolic compounds decreased with plant age. These results show the differential regulation of cyanidin, quercetin, and caffeic acid derivatives in lettuce, although closely connected biosynthetically, and emphasize the importance of ontogeny in the study of plant physiology. PMID:24382136

  14. Unlike Quercetin Glycosides, Cyanidin Glycoside in Red Leaf Lettuce Responds More Sensitively to Increasing Low Radiation Intensity before than after Head Formation Has Started

    PubMed Central

    2014-01-01

    This study investigated the effect of low-level photosynthetic photon flux density (PPFD; 43–230 ?mol m–2 s–1) on the major phenolic compounds of red leaf lettuce in three growth stages, before, during, and after head formation, using HPLC-DAD-ESI-MS2 and evaluating via multiple regression analysis. Generally, the light-related increase of flavonoid glycosides was structure and growth stage-dependent. In detail, an interaction was detected between plant age and PPFD regarding cyanidin-3-O-(6?-O-malonyl)-glucoside concentration: the increase was strongest before head formation. The relationship between PPFD and quercetin-3-O-(6?-O-malonyl)-glucoside concentration was linear, whereas the increase of quercetin-3-O-glucoside and -3-O-glucuronide concentrations abated with increasing PPFD. Independent of growth stage, the caffeic acid derivatives concentration was not related to PPFD. All major phenolic compounds decreased with plant age. These results show the differential regulation of cyanidin, quercetin, and caffeic acid derivatives in lettuce, although closely connected biosynthetically, and emphasize the importance of ontogeny in the study of plant physiology. PMID:24382136

  15. Glycosidic Bond Cleavage in DNA Nucleosides: Effect of Nucleobase Damage and Activation on the Mechanism and Barrier.

    PubMed

    Lenz, Stefan A P; Kellie, Jennifer L; Wetmore, Stacey D

    2015-12-24

    Although DNA damage can have a variety of deleterious effects on cells (e.g., senescence, death, and rapid growth), the base excision repair (BER) pathway combats the effects by removing several types of damaged DNA. Since the first BER step involves cleavage of the bond between the damaged nucleobase and the DNA sugar-phosphate backbone, we have used density functional theory to compare the intrinsic stability of the glycosidic bond in a number of common DNA oxidation, deamination, and alkylation products to the corresponding natural nucleosides. Our calculations predict that the dissociative (SN1) and associative (SN2) pathways are nearly isoenergetic, with the dissociative pathway only slightly favored on the Gibbs reaction surface for all canonical and damaged nucleosides, which suggests that DNA damage does not affect the inherently most favorable deglycosylation pathway. More importantly, with the exception of thymine glycol, all DNA lesions exhibit reduced glycosidic bond stability relative to the undamaged nucleosides. Furthermore, the trend in the magnitude of the deglycosylation barrier reduction directly correlates with the relative nucleobase acidity (at N9 for purines or N1 for pyrimidines), which thereby provides a computationally efficient, qualitative measure of the glycosidic bond stability in DNA damage. The effect of nucleobase activation (protonation) at different sites predicts that the positions leading to the largest reductions in the deglycosylation barrier are typically used by DNA glycosylases to facilitate base excision. Finally, deaza purine derivatives are found to have greater glycosidic bond stability than the canonical counterparts, which suggests that alterations to excision rates measured using these derivatives to probe DNA glycosylase function must be interpreted in reference to the inherent differences in the nucleoside reactivity. Combined with previous studies of the deglycosylation of DNA nucleosides, the current study provides a greater fundamental understanding about the reactivity of the glycosidic bond in damaged DNA, which has direct implications to the function of critical DNA repair enzymes. PMID:26618397

  16. Reverse Coherent Information

    NASA Astrophysics Data System (ADS)

    García-Patrón, Raúl; Pirandola, Stefano; Lloyd, Seth; Shapiro, Jeffrey H.

    2009-04-01

    We define a family of entanglement distribution protocols assisted by classical feedback communication that gives an operational interpretation to reverse coherent information, i.e., the symmetric counterpart of the well-known coherent information. This protocol family leads to the definition of a new entanglement distribution capacity that exceeds the unassisted entanglement distribution capacity for some interesting channels.

  17. Reverse Coherent Information

    NASA Astrophysics Data System (ADS)

    García-Patrón, Raúl; Pirandola, Stefano; Lloyd, Seth; Shapiro, Jeffrey H.

    2009-05-01

    In this Letter we define a family of entanglement distribution protocols assisted by feedback classical communication that gives an operational interpretation to reverse coherent information, i.e., the symmetric counterpart of the well-known coherent information. This leads to the definition of a new entanglement distribution capacity that exceeds the unassisted capacity for some interesting channels.

  18. Time reversal communication system

    DOEpatents

    Candy, James V. (Danville, CA); Meyer, Alan W. (Danville, CA)

    2008-12-02

    A system of transmitting a signal through a channel medium comprises digitizing the signal, time-reversing the digitized signal, and transmitting the signal through the channel medium. The channel medium may be air, earth, water, tissue, metal, and/or non-metal.

  19. REVERSE ENGINEERING RECENT ADVANCES

    E-print Network

    Telea, Alexandru C.

    and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information, Tilak Mitra and Usha Thulasiram Chapter 5 Reverse Engineering the Peer to Peer Streaming Media System 95, the amount of data produced by scientific, engineering, and

  20. Steroidal sapogenins and glycosides from the fibrous roots of Ophiopogon japonicus and Liriope spicata var. prolifera with anti-inflammatory activity.

    PubMed

    Qi, Jin; Hu, Zheng-fang; Zhou, Yi-feng; Hu, Yuan-jia; Yu, Bo-yang

    2015-01-01

    Two new steroidal glycosides (1 and 2), together with 15 known compounds (3-17) were isolated from the fibrous roots of Ophiopogon japonicus, and three new steroidal glycosides (18-20), together with 14 known compounds (21-34) were isolated from the fibrous roots of Liriope spicata var. prolifera. The structures of the new compounds were elucidated on the basis of extensive one-dimensional (1D)- and 2D-NMR spectroscopic analyses and mass spectrometry. The isolated compounds were evaluated for their anti-inflammatory activity in vitro. Most of these steroidal glycosides showed significant inhibitory activity against neutrophil respiratory burst stimulated by phorbol myristate acetate. PMID:25757489

  1. Studies on the phenylethanoid glycosides with anti-complement activity from Paulownia tomentosa var. tomentosa wood.

    PubMed

    Si, Chuan-Ling; Deng, Xiao-Juan; Liu, Zhong; Kim, Jin-Kyu; Bae, Young-Soo

    2008-01-01

    Four epimeric phenylethanoid glycosides, including a new one, R,S-beta-ethoxy-beta-(3,4-dihydroxyphenyl)-ethyl-O-alpha-L-rhamnopyranosyl(1-->3)-beta-D-(6-O-E-caffeoyl)-glucopyranoside named isoilicifolioside A (1), and three known compounds, ilicifolioside A (2), campneoside II (3), and isocampneoside II (4), were isolated from Paulownia tomentosa var. tomentosa wood. The structures of the four compounds were elucidated by the interpretation of 1D and 2D NMR and MS spectra. This is the first report of the chemical profile of this tree. Compounds 1-4 exhibited excellent anti-complement activity with IC(50) values less than 74 microM, compared with tiliroside (IC(50) = 104 microM) and rosmarinic acid (IC(50) = 182 microM) that were used as positive controls. PMID:19031237

  2. A triterpene glycoside from black cohosh that inhibits osteoclastogenesis by modulating RANKL and TNFalpha signaling pathways.

    PubMed

    Qiu, Samuel X; Dan, Chun; Ding, Li-Sheng; Peng, Shulin; Chen, Shao-Nong; Farnsworth, Norman R; Nolta, Jan; Gross, Michael L; Zhou, Ping

    2007-07-01

    Osteoporosis is a major age-related source of morbidity and mortality. Increased bone resorption mediated by osteoclasts is central to its pathogenesis. Cytokines, particularly RANKL and TNFalpha, are often increased under pathologic conditions, leading to enhanced osteoclastogenesis. Black cohosh (Actaea/Cimicifuga racemosa L), a popular herbal supplement for the treatment of menopausal symptoms, was recently shown to have the beneficial effect of preventing bone loss. Here, we demonstrate that 25-acetylcimigenol xylopyranoside (ACCX), a triterpenoid glycoside isolated from black cohosh, potently blocks in vitro osteoclastogenesis induced by either RANKL or TNFalpha. This blockage of osteoclastogenesis elicited by ACCX results from abrogation of the NF-kappaB and ERK pathways induced by either RANKL or TNFalpha, respectively. Importantly, this compound attenuates TNFalpha-induced bone loss in vivo. Therefore, ACCX represents a potential lead for the development of a new class of antiosteoporosis agents. PMID:17656322

  3. Antimutagenic activity of Sesbania javanica Miq. flower DMSO extract and its major flavonoid glycoside.

    PubMed

    Tangvarasittichai, Surapon; Sriprang, Nimit; Harnroongroj, Talabporn; Changbumrung, Supranee

    2005-11-01

    The antimutagenic activity of Sesbania javanica Miq. or Sano, an edible vegetable flower DMSO extract against aflatoxin B1 (AFB1) benzo (a) pyrene [B(a)P], was evaluated by means of the Ames' test. The Sesbania javanica Miq. flower DMSO extract showed a strong inhibitory effect against AFB1 and B(a)P mutagens. A search to isolate the major flavonoid in Sesbania javanica Miq. flower extract found the flavonol glycoside, Quercetin 3-2(G)-rhamnosylrutinoside, which was confirmed by its physicochemical properties as a major constituent of the flower. Quercetin 3-2(G)-rhamnosylrutinoside (207 microg/plate) also showeda strong inhibitory effect against AFB1 and B(a)P with a more than 70% inhibition rate. PMID:16610660

  4. Identification of C-glycoside flavonoids as potential mutagenic compounds in kava.

    PubMed

    Jhoo, J-W; Ang, C Y W; Heinze, T M; Deck, J; Schnackenberg, L K; Beger, R D; Dragull, K; Tang, C-S

    2007-03-01

    Kava (Piper methysticum) extract products have been implicated in a number of severe hepatotoxicity cases. However, systematic toxicological studies regarding kava consumption have not been reported. In this study, 6 major kavalactones and different solvent fractions of kava roots, leaves, and stem peelings were evaluated for their mutagenic potential. None of the kavalactones was found to be positive in the experimental concentration ranges tested by the umu test (a sensitive test for point mutations). However, among the different solvent fractions, the n-butanol fraction of kava leaves was positive. Further investigations using bioassay-directed isolation and analysis indicated that 2 C-glycoside flavonoid compounds accounted for the positive mutagenic results. Two isolated compounds were identified as 2''-O-rhamnosylvitexin and schaftoside by NMR and MS techniques. PMID:17995826

  5. New Ent-Kaurane-Type Diterpene Glycosides and Benzophenone from Ranunculus muricatus Linn.

    PubMed

    Wu, Bi-Ling; Zou, Hui-Liang; Qin, Fang-Min; Li, Hong-Yu; Zhou, Guang-Xiong

    2015-01-01

    Two new ent-kaurane diterpene glycosides, ranunculosides A (1) and B (2), and a new benzophenone, ranunculone C (3), were isolated from the aerial part of Ranunculus muricatus Linn. The chemical structures of compounds 1-3 were established to be (2S)-ent-kauran-2?-ol-15-en-14-O-?-d-glucopyranoside, (2S,4S)-ent-kauran-2?,18-diol-15-en-14-O-?-d-glucopyranoside, and (R)-3-[2-(3,4-dihydroxybenzoyl)-4,5-dihydroxy-phenyl]-2-hydroxylpropanoic acid, respectively, by spectroscopic data and chemical methods. The absolute configuration of 1 was determined by the combinational application of RP-HPLC analysis and Mosher's method. PMID:26694331

  6. Antioxidative properties of hydroxycinnamic acid derivatives and a phenylpropanoid glycoside. A pulse radiolysis study

    NASA Astrophysics Data System (ADS)

    Lin, Weizhen; Navaratnam, Suppiah; Yao, Side; Lin, Nianyun

    1998-10-01

    Spectral and redox properties of the phenoxyl radicals from hydroxycinnamic acid derivatives and one selected component of phenylpropanoid glycosides, verbascoside, were studied using pulse radiolysis techniques. On the basis of the pH dependence of phenoxyl radical absorptions, the p Ka values for deprotonation of sinapic acid radical and ferulic acid radical are 4.9 and 5.2. The rate constants of one electron oxidation of those antioxidants by azide radical and bromide radical ion were determined at pH 7. The redox potentials of those antioxidants were determined as 0.59-0.71 V vs NHE at pH 7 with reference standard 4-methoxyphenol and resorcinol.

  7. Enzymatic acylation of flavonoid glycosides by a carbohydrate esterase of family 16.

    PubMed

    Biely, Peter; Cziszárová, Mária; Wong, Ken K Y; Fernyhough, Alan

    2014-11-01

    The acetyl esterase of Trichoderma reesei belonging to carbohydrate esterase (CE) family 16 catalyzes transacylations to carbohydrate moieties of flavonoid glycosides, esculin and rutin. The enzyme recognizes as acyl donors vinyl esters of short carboxylic acids. Esculin was acylated at position 3 of the glucosyl residue in aqueous solutions saturated with vinyl acetate and vinyl propionate. The yields of esculin monoacetate and monopropionate of esculin in aqueous medium (esculin 40 mM, enzyme 40 µg/ml, 40 °C, 3 days) were 67 and 55 %, respectively. Replacement of water by 2-propanol was required for a similar acylation of rutin at 4 mM concentration. The yields of rutin monoacetate and propionate were 60 and 30 %, respectively. The results indicate that the enzyme could be used for an easy modification of solubility and hydrophobicity of glycosylated compounds, including drugs and functional food additives. PMID:25048225

  8. Study of Kaempferol Glycoside as an Insulin Mimic Reveals Glycon To Be the Key Active Structure

    PubMed Central

    2010-01-01

    Diabetes mellitus is increasing in prevalence with patient numbers rising throughout the world. Current treatments for diabetes mellitus focus on control of blood glucose levels. Certain kinds of flavonoids or their glycosides stimulate cells to improve glucose uptake and lower blood glucose levels. We synthesized kaempferol 3-O-neohesperidoside (1), a naturally occurring substance present in Cyathea phalerata Mart., reported to mimic the action of insulin. Synthetic 1 promoted glucose uptake in the cultured cell line, L6. Further studies to determine the core structure responsible for this activity using synthetic compounds revealed neohesperidose to be the primary pharmacophore. These findings support the use of certain saccharides as a potential novel treatment for diabetes mellitus by replacing or supporting insulin. PMID:24900249

  9. Use of Nanostructure-Initiator Mass Spectrometry to Deduce Selectivity of Reaction in Glycoside Hydrolases

    PubMed Central

    Deng, Kai; Takasuka, Taichi E.; Bianchetti, Christopher M.; Bergeman, Lai F.; Adams, Paul D.; Northen, Trent R.; Fox, Brian G.

    2015-01-01

    Chemically synthesized nanostructure-initiator mass spectrometry (NIMS) probes derivatized with tetrasaccharides were used to study the reactivity of representative Clostridium thermocellum ?-glucosidase, endoglucanases, and cellobiohydrolase. Diagnostic patterns for reactions of these different classes of enzymes were observed. Results show sequential removal of glucose by the ?-glucosidase and a progressive increase in specificity of reaction from endoglucanases to cellobiohydrolase. Time-dependent reactions of these polysaccharide-selective enzymes were modeled by numerical integration, which provides a quantitative basis to make functional distinctions among a continuum of naturally evolved catalytic properties. Consequently, our method, which combines automated protein translation with high-sensitivity and time-dependent detection of multiple products, provides a new approach to annotate glycoside hydrolase phylogenetic trees with functional measurements. PMID:26579511

  10. Chitosanases from Family 46 of Glycoside Hydrolases: From Proteins to Phenotypes

    PubMed Central

    Viens, Pascal; Lacombe-Harvey, Marie-Ève; Brzezinski, Ryszard

    2015-01-01

    Chitosanases, enzymes that catalyze the endo-hydrolysis of glycolytic links in chitosan, are the subject of numerous studies as biotechnological tools to generate low molecular weight chitosan (LMWC) or chitosan oligosaccharides (CHOS) from native, high molecular weight chitosan. Glycoside hydrolases belonging to family GH46 are among the best-studied chitosanases, with four crystallography-derived structures available and more than forty enzymes studied at the biochemical level. They were also subjected to numerous site-directed mutagenesis studies, unraveling the molecular mechanisms of hydrolysis. This review is focused on the taxonomic distribution of GH46 proteins, their multi-modular character, the structure-function relationships and their biological functions in the host organisms. PMID:26516868

  11. Stereoselective C-glycosidation of D-fucose derivatives directed by the protective groups.

    PubMed

    Cortezano-Arellano, Omar; Meléndez-Becerra, Camilo A; Cortés, Fernando; Sartillo-Piscil, Fernando; Cordero-Vargas, Alejandro

    2014-07-01

    Stereoselectivity in the C-glycosidation of lactones derived from D-fucose by following Kishi's method, which involves the addition of a nucleophile onto a carbohydrate-derived lactone and subsequent reduction of the lactol, was found to be reliant on the nature of the C2 and C3 protective groups. Lactones bearing TBDMS protecting groups selectively afford 1,3-trans products (? anomer), in which the stereoselective outcome is in apparent concordance with Woerpel's model. On the other hand, their benzylated congeners produce the 1,3-cis products (? anomer) as the major diastereoisomers. The latter results suggest an abnormal behavior during the stereoselective nucleophilic substitution at the anomeric position of the benzylated lactones. PMID:24893263

  12. Hesperidin and hesperetin membrane interaction: understanding the role of 7-O-glycoside moiety in flavonoids.

    PubMed

    Londoño-Londoño, Julián; Lima, Vânia Rodrigues De; Jaramillo, Consuelo; Creczynski-Pasa, Tânia

    2010-07-01

    Citrus species contain various typical flavonoids. However, absorption and metabolism of flavonoids are complex processes that determine its bioavailability which remain not clear until now. The aim of this study was to investigate the interactions among dimyristoyl-phosphatidyl choline (DMPC) liposomes and the flavanones hesperidin (glycoside) and hesperetin (aglycone). The results describe the molecular details of these interactions and the consequences for the membranes properties, by using differential scanning calorimetry (DSC), atomic force microscopy (AFM), fluorescence (using MC540 as probe), X-ray diffraction and theoretical study. The results show that hesperetin interacts with membranes stronger than hesperidin. It is possible to hypostatize that hesperidin, due to its rutinoside moiety, is located at the level of polar head whereas hesperetin interacts better with acyl chains and adopts a more planar conformation. The findings of this work may contribute to explain the high bioavailability of aglycones due to better membrane interaction. PMID:20447374

  13. Chitosanases from Family 46 of Glycoside Hydrolases: From Proteins to Phenotypes.

    PubMed

    Viens, Pascal; Lacombe-Harvey, Marie-Ève; Brzezinski, Ryszard

    2015-01-01

    Chitosanases, enzymes that catalyze the endo-hydrolysis of glycolytic links in chitosan, are the subject of numerous studies as biotechnological tools to generate low molecular weight chitosan (LMWC) or chitosan oligosaccharides (CHOS) from native, high molecular weight chitosan. Glycoside hydrolases belonging to family GH46 are among the best-studied chitosanases, with four crystallography-derived structures available and more than forty enzymes studied at the biochemical level. They were also subjected to numerous site-directed mutagenesis studies, unraveling the molecular mechanisms of hydrolysis. This review is focused on the taxonomic distribution of GH46 proteins, their multi-modular character, the structure-function relationships and their biological functions in the host organisms. PMID:26516868

  14. Isolation and structural characterization of a new minor diterpene glycoside from Stevia rebaudiana.

    PubMed

    Chaturvedula, Venkata Sai Prakash; Zamora, Julian

    2014-12-01

    From the commercial extract of the leaves of the sweet plant Stevia rebaudiana Bertoni obtained from Sinochem Qingdao Co. Ltd., a new diterpene glycoside having three ?-D-glucopyranosyl units of which two of them were connected in a relatively rare linkage of 3-?-D-glucobiosyl substitution at C-19 position of the aglycone steviol. The structure of the new compound has been characterized as 13-?-D-glucopyranosyloxy ent-kaur-16-en-19-oic acid-[(3-O-?-D- glucopyranosyl-?-D-glucopyranosyl) ester (1) on the basis of extensive 1D (1H and 13C) and 2D NMR (TOCSY, HMQC, and HMBC), and High Resolution mass spectroscopic data as well as hydrolysis studies. PMID:25632456

  15. Flavonoid glycosides from the aerial parts of Acacia pennata in Myanmar.

    PubMed

    Kim, Anna; Choi, Janggyoo; Htwe, Khin Myo; Chin, Young-Won; Kim, Jinwoong; Yoon, Kee Dong

    2015-10-01

    Phytochemical investigations of the aerial parts of Acacia pennata (Mimosaceae) from Myanmar led to the isolation of five flavonoid glycosides and six known compounds. The new compounds were identified as (2R,3S)-3,5,7-trihdyroxyflavan-3-O-?-L-rhamnopyranoside, (2S)-5,7-dihydroxyflavan-7-O-?-D-glucopyranoside-(4? ? 8)-epiafzelechin-3-O-gallate, (2R)-4',7-dihydroxyflavan-(4? ? 8)-(2R,3S)-3,5,7-trihdyroxyflavan-3?-O-?-L-rhamnopyranoside, 5,7-dihydroxyflavone 6-C-?-boivinopyranosyl-7-O-?-D-glucopyranoside, and 5,7-dihydroxyflavone 7-O-?-D-glucopyranosyl-8-C-?-boivinopyranoside based on interpretation of spectroscopic data. PMID:26256031

  16. Nizwaside: a new anticancer pregnane glycoside from the sap of Desmidorchis flava.

    PubMed

    Hussain, Hidayat; Raees, Muhammad Adil; Rehman, Najeeb Ur; Al-Rawahi, Ahmed; Csuk, René; Khan, Husain Yar; Abbas, Ghulam; Al-Broumi, Mohammed Abdullah; Green, Ivan R; Elyassi, Ali; Mahmood, Talat; Al-Harrasi, Ahmed

    2015-12-01

    The sap from the succulent Desmidorchis flava (N.E.Br) Meve and Liede yielded a new pregnane glycoside, named nizwaside whose structure was established using 1D and 2D NMR techniques as well as mass spectrometry (ESIMS). Nizwaside was tested for anticancer, DPPH antioxidant, urease enzyme inhibition, ?-glucosidase enzyme inhibition and acetylcholinesterase inhibition activities. Interestingly, nizwaside showed significant anti-proliferative effects on MDA MB231 breast cancer cells with an IC50 of 23.5 µg/ml. Moreover, nizwaside was more effective than Doxorubicin, a well-known clinical anticancer drug, in suppressing MDA MB231 cell proliferation even at concentrations lower than that of Doxorubicin (75 µg/ml nizwaside vs. 100 µg/ml Doxorubicin). On the other hand, nizwaside showed relatively weak antioxidant activity with 15 % inhibition. PMID:26335549

  17. New flavonol glycosides from the leaves and flowers of Primula sieboidii.

    PubMed

    Hashimoto, Nana; Ohsawa, Ryo; Kitajima, Junichi; Iwashina, Tsukasa

    2015-03-01

    Three flavonol glycosides were isolated from the leaves of Primula sieboldii. They were identified as quercetin 3-O-?-[xylopyranosyl-(1-->2)-?- glucopyranosyl-(1-->6)-?-glucopyranoside] (1), kaempferol 3-O-?-[glucopyranosyl-(1-->2)-?-glucopyranosyl-(1-->6)-?-glucopyranoside] (2) and kaempferol 3- O-?-[xylopyranosyl-(1-->2)-?-glucopyranosyl-(1-->6)-?-glucopyranoside] (3). Their chemical structures were determined by UV, 1H and 13C NMR spectroscopy, LC-MS and acid hydrolysis. Compounds 1 and 3 are found in nature for the first time. They were also detected in the flowers, together with two anthocyanins, malvidin 3,5-di-O-glucoside and a minor petunidin dihexoside. PMID:25924519

  18. Synthesis of 3-aminopropyl glycosides of linear ?-(1?3)-d-glucooligosaccharides.

    PubMed

    Yashunsky, Dmitry V; Tsvetkov, Yury E; Grachev, Alexey A; Chizhov, Alexander O; Nifantiev, Nikolay E

    2016-01-01

    3-Aminopropyl glycosides of a series of linear ?-(1?3)-linked d-glucooligosaccharides containing from 3 to 13 monosaccharide units were efficiently prepared. The synthetic scheme featured highly regioselective glycosylation of 4,6-O-benzylidene-protected 2,3-diol glycosyl acceptors with a disaccharide thioglycoside donor bearing chloroacetyl groups at O-2' and -3' as a temporary protection of the diol system. Iteration of the deprotection and glycosylation steps afforded the series of the title oligoglucosides differing in length by two monosaccharide units. A novel procedure for selective removal of acetyl groups in the presence of benzoyl ones consisting in a brief treatment with a large excess of hydrazine hydrate has been proposed. PMID:26595660

  19. Synthesis of novel bioactive lactose-derived oligosaccharides by microbial glycoside hydrolases

    PubMed Central

    Díez-Municio, Marina; Herrero, Miguel; Olano, Agustín; Moreno, F Javier

    2014-01-01

    Prebiotic oligosaccharides are increasingly demanded within the Food Science domain because of the interesting healthy properties that these compounds may induce to the organism, thanks to their beneficial intestinal microbiota growth promotion ability. In this regard, the development of new efficient, convenient and affordable methods to obtain this class of compounds might expand even further their use as functional ingredients. This review presents an overview on the most recent interesting approaches to synthesize lactose-derived oligosaccharides with potential prebiotic activity paying special focus on the microbial glycoside hydrolases that can be effectively employed to obtain these prebiotic compounds. The most notable advantages of using lactose-derived carbohydrates such as lactosucrose, galactooligosaccharides from lactulose, lactulosucrose and 2-?-glucosyl-lactose are also described and commented. PMID:24690139

  20. A new polyoxygenated cyclohexene and a new megastigmane glycoside from Uvaria grandiflora.

    PubMed

    Ho, Duc Viet; Kodama, Takeshi; Le, Hien Thi Bich; Phan, Kiem Van; Do, Thao Thi; Bui, Tai Huu; Le, Anh Tuan; Win, Nwet Nwet; Imagawa, Hiroshi; Ito, Takuya; Morita, Hiroyuki; Nguyen, Hoai Thi

    2015-08-15

    A new polyoxygenated cyclohexene, (-)-3-O-debenzoylzeylenone (1), and a new megastigmane glycoside, grandionoside A (2), were isolated from the aerial parts of Uvaria grandiflora collected in Vietnam, together with ten known compounds including polyoxygenated cyclohexenes (3-6), a triterpenoid (7), an alkaloid (8), a long chain alcohol (9), hexenyl glycopyranoside (10), and saponins (11-12). Their chemical structures were elucidated by a combination of extensive NMR spectroscopy with X-ray crystallographic analysis for 1, and chemical conversion for 2. Compound 1 exhibited significant cytotoxicity against the LU-1 and SK-Mel-2 cell lines with IC50 values of 4.68 and 3.63 ?M, respectively. Remarkably, the cytotoxicity of 12 against the LU-1, KB, Hep-G2, MKN-7, and SW-480 cell lines was comparable to that of ellipticine, the positive control, with IC50 values ranging from 1.24 to 1.60 ?M. PMID:26077495

  1. Isolation of two new bioactive sesquiterpene lactone glycosides from the roots of Ixeris dentata.

    PubMed

    Park, SeonJu; Nhiem, Nguyen Xuan; Lee, Taek Hwan; Kim, Nanyoung; Kim, Sun Yeou; Chae, Han-Jung; Kim, Seung Hyun

    2015-10-15

    Two new sesquiterpene lactone glycosides, 3-O-?-d-glucopyranosyl-8-hydroxy-(1,5,6,7,11)-guaia-3,10(14)-dien-12,6-olide (1) and 3-O-?-d-glucopyranosyl-8-(4-hydroxyphenylacetyloxy)-(1.5.6,7)-guaia-3,10(14),11(13)-trien-12,6-olide (2), and 12 known sesquiterpene lactone derivatives (3-14) were isolated from the roots of Ixeris dentata. Their structures were determined by extensive spectroscopic methods including 1D and 2D NMR and MS spectra data. All compounds were tested for their ability to inhibit lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV-2 microglial cell. 3-O-?-d-Glucopyranosyl-8-(4-hydroxyphenylacetyloxy)-(1.5.6,7)-guaia-3,10(14),11(13)-trien-12,6-olide (2) showed the most potent inhibitory activity at a concentration of 20?M. PMID:26341134

  2. Extraction of Cs-137 by alcohol-water solvents from plants containing cardiac glycosides

    E-print Network

    Dzyubak, S N; Dzyubak, O P; Sorokin, P V; Popov, V F; Orlov, A A; Krasnov, V P; Gubin, Yu.I.

    2001-01-01

    As a result of nuclear power plant accidents, large areas receive radioactive inputs of Cs-137. This cesium accumulates in herbs growing in such territories. The problem is whether the herbs contaminated by radiocesium may be used as a raw material for medicine. The answer depends on the amount of Cs-137 transfered from the contaminated raw material to the medicine. We have presented new results of the transfer of Cs-137 from contaminated Digitalis grandiflora Mill. and Convallaria majalis L. to medicine. We found that the extraction of Cs-137 depends strongly on the hydrophilicity of the solvent. For example 96.5%(vol.) ethyl alcohol extracts less Cs-137 (11.6%) than 40%(vol.) ethyl alcohol or pure water (66.2%). The solubility of the cardiac glycosides is inverse to the solubility of cesium, which may be of use in the technological processes for manufacturing ecologically pure herbal medicine.

  3. Characterizing the catalyzed hydrolysis of ?-1,4 glycosidic bonds using density functional theory.

    PubMed

    Fleming, Kelly L; Pfaendtner, Jim

    2013-12-27

    Unraveling the mechanistic details of biomass deconstruction at ambient conditions has remained a challenge for many years. In this study we examine a crucial step in the pretreatment of biomass: the hydrolytic cleavage of the glycosidic bond present in many forms of biomass and other oligomeric saccharides. We present the detailed mechanistic steps found using density functional theory and transition state calculations on the acid catalyzed hydrolysis of a pyranose dimer linked by a ?-1,4 glycosidic bond in a vacuum and various continuum solvation models. The order that the bonds in the double displacement reaction form and break was revealed along with the transition state energies and an overall intrinsic reaction pathway for the two-step mechanism. The uncatalyzed hydrolysis reaction, mediated by a single water splitting event, was also determined with DFT calculations and a detailed comparison to the two-step catalyzed reaction was performed. The effects of the surrounding solvent on the reaction energetics were studied by systematically changing the dielectric strength and polarity of the solvent model. For acidic solvents, a trend was observed that related the transition state energy barrier to the inverse of the dielectric constant whereas solvents that varied slightly in dielectric strength but strongly in polarity (e.g., alcohols) did not significantly change the reaction energetics. The effects of the substituents on the model sugar were also studied by changing from a model pyranose dimer to xylobiose and cellobiose. Irrespective of the solvent choice or model sugar characteristics we observed identical ordering of all bond breaking/forming in both transition states in the double displacement mechanism. PMID:24266504

  4. Novel ?-1,4-Mannanase Belonging to a New Glycoside Hydrolase Family in Aspergillus nidulans.

    PubMed

    Shimizu, Motoyuki; Kaneko, Yuhei; Ishihara, Saaya; Mochizuki, Mai; Sakai, Kiyota; Yamada, Miyuki; Murata, Shunsuke; Itoh, Eriko; Yamamoto, Tatsuya; Sugimura, Yu; Hirano, Tatsuya; Takaya, Naoki; Kobayashi, Tetsuo; Kato, Masashi

    2015-11-13

    Many filamentous fungi produce ?-mannan-degrading ?-1,4-mannanases that belong to the glycoside hydrolase 5 (GH5) and GH26 families. Here we identified a novel ?-1,4-mannanase (Man134A) that belongs to a new glycoside hydrolase (GH) family (GH134) in Aspergillus nidulans. Blast analysis of the amino acid sequence using the NCBI protein database revealed that this enzyme had no similarity to any sequences and no putative conserved domains. Protein homologs of the enzyme were distributed to limited fungal and bacterial species. Man134A released mannobiose (M2), mannotriose (M3), and mannotetraose (M4) but not mannopentaose (M5) or higher manno-oligosaccharides when galactose-free ?-mannan was the substrate from the initial stage of the reaction, suggesting that Man134A preferentially reacts with ?-mannan via a unique catalytic mode. Man134A had high catalytic efficiency (kcat/Km) toward mannohexaose (M6) compared with the endo-?-1,4-mannanase Man5C and notably converted M6 to M2, M3, and M4, with M3 being the predominant reaction product. The action of Man5C toward ?-mannans was synergistic. The growth phenotype of a Man134A disruptant was poor when ?-mannans were the sole carbon source, indicating that Man134A is involved in ?-mannan degradation in vivo. These findings indicate a hitherto undiscovered mechanism of ?-mannan degradation that is enhanced by the novel ?-1,4-mannanase, Man134A, when combined with other mannanolytic enzymes including various endo-?-1,4-mannanases. PMID:26385921

  5. Novel ?-1,4-Mannanase Belonging to a New Glycoside Hydrolase Family in Aspergillus nidulans*

    PubMed Central

    Shimizu, Motoyuki; Kaneko, Yuhei; Ishihara, Saaya; Mochizuki, Mai; Sakai, Kiyota; Yamada, Miyuki; Murata, Shunsuke; Itoh, Eriko; Yamamoto, Tatsuya; Sugimura, Yu; Hirano, Tatsuya; Takaya, Naoki; Kobayashi, Tetsuo; Kato, Masashi

    2015-01-01

    Many filamentous fungi produce ?-mannan-degrading ?-1,4-mannanases that belong to the glycoside hydrolase 5 (GH5) and GH26 families. Here we identified a novel ?-1,4-mannanase (Man134A) that belongs to a new glycoside hydrolase (GH) family (GH134) in Aspergillus nidulans. Blast analysis of the amino acid sequence using the NCBI protein database revealed that this enzyme had no similarity to any sequences and no putative conserved domains. Protein homologs of the enzyme were distributed to limited fungal and bacterial species. Man134A released mannobiose (M2), mannotriose (M3), and mannotetraose (M4) but not mannopentaose (M5) or higher manno-oligosaccharides when galactose-free ?-mannan was the substrate from the initial stage of the reaction, suggesting that Man134A preferentially reacts with ?-mannan via a unique catalytic mode. Man134A had high catalytic efficiency (kcat/Km) toward mannohexaose (M6) compared with the endo-?-1,4-mannanase Man5C and notably converted M6 to M2, M3, and M4, with M3 being the predominant reaction product. The action of Man5C toward ?-mannans was synergistic. The growth phenotype of a Man134A disruptant was poor when ?-mannans were the sole carbon source, indicating that Man134A is involved in ?-mannan degradation in vivo. These findings indicate a hitherto undiscovered mechanism of ?-mannan degradation that is enhanced by the novel ?-1,4-mannanase, Man134A, when combined with other mannanolytic enzymes including various endo-?-1,4-mannanases. PMID:26385921

  6. Gridded electron reversal ionizer

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor)

    1993-01-01

    A gridded electron reversal ionizer forms a three dimensional cloud of zero or near-zero energy electrons in a cavity within a filament structure surrounding a central electrode having holes through which the sample gas, at reduced pressure, enters an elongated reversal volume. The resultant negative ion stream is applied to a mass analyzer. The reduced electron and ion space-charge limitations of this configuration enhances detection sensitivity for material to be detected by electron attachment, such as narcotic and explosive vapors. Positive ions may be generated by generating electrons having a higher energy, sufficient to ionize the target gas and pulsing the grid negative to stop the electron flow and pulsing the extraction aperture positive to draw out the positive ions.

  7. Reversible Dysphasia and Statins

    PubMed Central

    2012-01-01

    This paper presents a case of reversible dysphasia occurring in a patient prescribed atorvastatin in combination with indapamide. A milder dysphasia recurred with the prescription of rosuvastatin and was documented on clinical examination. This resolved following cessation of rosuvastatin. The case highlights both a need for a wider understanding of potential drug interactions through the CYP 450 system and for an increased awareness, questioning and reporting of drug side-effects. PMID:22468114

  8. Reversing Glass Wettability

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Smith, J. E., Jr.; Kaukler, W. F.

    1985-01-01

    Treatment reverses wettability of glassware: Liquids that normally wet glass no longer do, and those that do not wet glass are made to do so. Useful in research on container effects in nucleation and growth of secondary phase from solution. Treatment consists of spreading 3 percent (by weight) solution of silicone oil in hexane isomers over glass, drying in air, and curing at 300 degrees C in vacuum for one hour.

  9. Reversal of Envy

    E-print Network

    Sultana, Rezina

    2011-01-26

    December 2010 CWPE 1106 Paper presented at Silvaplana 2010 19th Workshop on Political Economy, July 2010 REVERSAL OF ENVY Rezina Sultana? Department of Economics, Bar-Ilan University, 52900 Ramat-Gan, Israel Abstract Studies... the given opportunity set. 11 In the context of classical exchange economies, unanimous envy (i.e., every agent envies another) cannot exist in an efficient allocation (Varian, 1974) but it is also possible to have unanimous envy at the interim stage...

  10. Tevatron reverse injection

    SciTech Connect

    Saritepe, S.; Annala, G.

    1993-06-25

    In the new injection scenario antiprotons are injected onto a helical orbit in the Tevatron in order to avoid the detrimental effects of the beam-beam interaction at 150 GeV. The new scenario required changes in the tuning procedure. Antiprotons are too precious to be used for tuning, therefore the antiproton injection line has to be tuned with protons by reverse injecting them from the Tevatron into the Main Pang (MR). Previously, the reverse injection was performed in one supercycle. One batch of uncoalesced bunches was injected into the Tevatron and ejected after 40 seconds. Then the orbit closure was performed in the MR. In the new scheme the lambertson magnets have to be moved and separator polarities have to be switched, activities that cannot be completed in one supercycle. Therefore, the reverse injection sequence was changed. This involved the redefinition of TVBS dock event $D8 as MRBS $D8 thus marking it possible to inject 6 proton batches and eject them one at a time on command, performing orbit closure each time in the MR.

  11. Investigations on computed 13C NMR one-dimensional non-refocused INEPT experiments for structural determinations in O-methylated glycosides

    NASA Astrophysics Data System (ADS)

    Pouységu, Laurent; Nobert, Philippe; Deffieux, Denis; De Jéso, Bernard; Lartigue, Jean-Claude; Pétraud, Michel; Ratier, Max

    1999-10-01

    A new one-dimensional 13C NMR approach for the determination of methoxyl substituents configuration in O-methylated glycosides is presented. Assignments are based on structural investigations by non-refocused INEPT experiments associated with numerical methods.

  12. Molecular Characterization of a Highly-Active Thermophilic ?-Glucosidase from Neosartorya fischeri P1 and Its Application in the Hydrolysis of Soybean Isoflavone Glycosides

    PubMed Central

    Shi, Pengjun; Huang, Huoqing; Bai, Yingguo; Wang, Yaru; Yang, Peilong; Fan, Yunliu; Yao, Bin

    2014-01-01

    Isoflavone occurs abundantly in leguminous seeds in the form of glycoside and aglycone. However, isoflavone glycoside has anti-nutritional effect and only the free type is beneficial to human health. In the present study we identified a ?-glucosidase from thermophilic Neosartorya fischeri P1, termed NfBGL1, capable of efficiently converting isoflavone glycosides into free isoflavones. The gene, belonging to glycoside hydrolase family 3, was successfully overexpressed in Pichia pastoris at high cell density in a 3.7-l fermentor. Purified recombinant NfBGL1 had higher specific activity (2189±1.7 U/mg) and temperature optimum (80°C) than other fungal counterparts when using p-nitrophenyl ?-d-glucopyranoside as the substrate. It retained stable at temperatures up to 70°C and over a broad pH range of 3.0?10.0. NfBGL1 had broad substrate specificity including glucosidase, cellobiase, xylanase and glucanase activities, and displayed preference for hydrolysis of ?-1,2 glycosidic bond rather than ?-1,3, ?-1,4, ?-1,6 bonds. The enzyme showed high bioconversion ability for major soybean isoflavone glycosides (daidin, gensitin and glycitin) into free forms. These properties make NfBGL1 potential for the wide use in the food, feed, pharmacy and biofuel industries. PMID:25188254

  13. Synthesis and an evaluation of the bioactivity of the C-glycoside of pseudopterosin A methyl ether.

    PubMed

    Zhong, Wei; Moya, Claudia; Jacobs, R S; Little, R Daniel

    2008-09-19

    The Suzuki-Miyaura cross-coupling protocol was applied to the synthesis of 1a, the C-glycoside analogue of PsA methyl ether. This marks the first construction of a C-glycoside for this class of marine natural products, thereby offering an opportunity to compare its bioactivity to the natural substances. Its activity profile resembled that of PsA (1) and PsA O-methyl ether (1b) when assayed for its anti-inflammatory activity and its ability to inhibit phagocytosis. We conclude that the intact structure is present when a pseudopterosin expresses its anti-inflammatory and phagocytosis inhibitory properties and that they are, therefore, not likely to be prodrugs. Results show that 1a is an effective binding agent toward the A2A and A3 adenosine receptors, displaying IC50 values of 20 and 10 microM, respectively. PMID:18710290

  14. ISOLATION OF GLYCOSIDES FROM THE BARKS OF ILEX ROTUNDA BY HIGH-SPEED COUNTER-CURRENT CHROMATOGRAPHY

    PubMed Central

    Wang, Chun; Chao, Zhimao; Sun, Wen; Wu, Xiaoyi; Ito, Yoichiro

    2013-01-01

    Semi-preparative and preparative high-speed counter-current chromatography (HSCCC) were successfully used for isolation of glycosides from 50% ethanol extract of the dried barks of Ilex rotunda Thunb. (Aquifoliaceae) by using a two-phase solvent system composed of ethyl acetate-n-butanol-water (1:6:7, v/v/v). From 1.0 g of the extract, syringaresinol 4',4"-di-o-?-d-glucopyranoside (I, 20.2 mg),, syringin (II, 56.8 mg), sinapaldehyde glucoside (III, 26.2 mg),, syringaresinol 4'-o-?-d-glucopyranoside (IV, 20.4 mg), and pedunculoside (V, 45.1 mg) were obtained by one run of TBE-1000A HSCCC instrument with 1000 mL of column volume. Their structures were identified by IR, MS, and 1H and 13C NMR studies. Glycoside I was isolated from this plant for the first time. PMID:25132792

  15. Colloid-based multiplexed method for screening plant biomass-degrading glycoside hydrolase activities in microbial communities

    SciTech Connect

    Reindl, W.; Deng, K.; Gladden, J.M.; Cheng, G.; Wong, A.; Singer, S.W.; Singh, S.; Lee, J.-C.; Yao, J.-S.; Hazen, T.C.; Singh, A.K; Simmons, B.A.; Adams, P.D.; Northen, T.R.

    2011-05-01

    The enzymatic hydrolysis of long-chain polysaccharides is a crucial step in the conversion of biomass to lignocellulosic biofuels. The identification and characterization of optimal glycoside hydrolases is dependent on enzyme activity assays, however existing methods are limited in terms of compatibility with a broad range of reaction conditions, sample complexity, and especially multiplexity. The method we present is a multiplexed approach based on Nanostructure-Initiator Mass Spectrometry (NIMS) that allowed studying several glycolytic activities in parallel under diverse assay conditions. Although the substrate analogs carried a highly hydrophobic perfluorinated tag, assays could be performed in aqueous solutions due colloid formation of the substrate molecules. We first validated our method by analyzing known {beta}-glucosidase and {beta}-xylosidase activities in single and parallel assay setups, followed by the identification and characterization of yet unknown glycoside hydrolase activities in microbial communities.

  16. Cardiac glycosides induce autophagy in human non-small cell lung cancer cells through regulation of dual signaling pathways.

    PubMed

    Wang, Yan; Qiu, Qiang; Shen, Jia-Jia; Li, Dian-Dong; Jiang, Xue-Jun; Si, Shu-Yi; Shao, Rong-Guang; Wang, Zhen

    2012-11-01

    Na(+)/K(+)-ATPase targeted cancer therapy has attracted increasing interests of oncologists in lung cancer field. Although multiple anti-cancer mechanisms of cardiac glycosides as Na(+)/K(+)-ATPase inhibitors are revealed, the role of autophagy and related molecular signaling pathway for the class of compounds in human non-small cell lung cancer (NSCLC) cells has not been systematically examined. We herein investigated the anti-cancer effects of two representative cardiac glycosides, digoxin and ouabain, in A549 and H460 cell lines. Both agents caused significant growth inhibition at nanomolar level. The cardiac glycosides were found to induce moderate G(2)/M arrest but not apoptosis at IC(50) level in the NSCLC cell lines. Moreover, autophagy was markedly induced by both agents, as evidenced by the time- and dose-dependent increase of LC3-II, up-regulation of Atg5 and Beclin1, as well as by the observations through acridine orange staining, transmission electron microscopy and quantification of GFP-LC3 fluorescence. Importantly, AMP-activated protein kinase (AMPK) pathway was activated, resulting in mammalian target of rapamycin (mTOR) deactivation during autophagy induction. Moreover, extracellular-signal-regulated kinase 1/2 (ERK1/2) activation was simultaneously found to be involved in the autophagy regulation. Co-treatment with respective inhibitors or siRNAs could either block the autophagic phenotypes and signals, or significantly increase the cellular viability, indicating the drugs-induced autophagy plays tumor-suppressing role. This work provides first evidence showing that the cardiac glycosides induce autophagy in human NSCLC cells through regulation of both mTOR and ERK1/2 signaling pathways. The autophagy may at least partially account for the growth inhibitory effects of the compounds in human NSCLC cells. PMID:22750415

  17. An Improved Helferich Method for the ?/?-Stereoselective Synthesis of 4-Methylumbelliferyl Glycosides for the Detection of Microorganisms.

    PubMed

    Wei, Xianhu; Ma, Yanxia; Wu, Qingping; Zhang, Jumei; Cai, Zhihe; Lu, Mianfei

    2015-01-01

    An improved Helferich method is presented. It involves the glycosylation of 4-methyl-umbelliferone with glycosyl acetates in the presence of boron trifluoride etherate combined with triethylamine, pyridine, or 4-dimethylaminopyridine under mild conditions, followed by deprotection to give fluorogenic 4-methylumbelliferyl glycoside substrates. Due to the use of base, the glycosylation reaction proceeds more easily, is uncommonly ?- or ?-stereoselective, and affords the corresponding products in moderate to excellent yields (51%-94%) under appropriate conditions. PMID:26690097

  18. Reversible brazing process

    SciTech Connect

    Pierce, J.D.; Stephens, J.J.; Walker, C.A.

    1999-09-14

    A method of reversibly brazing surfaces together is disclosed. An interface is affixed to each surface. The interfaces can be affixed by processes such as mechanical joining, welding, or brazing. The two interfaces are then brazed together using a brazing process that does not defeat the surface to interface joint. Interfaces of materials such as Ni-200 can be affixed to metallic surfaces by welding or by brazing with a first braze alloy. The Ni-200 interfaces can then be brazed together using a second braze alloy. The second braze alloy can be chosen so that it minimally alters the properties of the interfaces to allow multiple braze, heat and disassemble, rebraze cycles.

  19. Reversible brazing process

    DOEpatents

    Pierce, Jim D. (Albuquerque, NM); Stephens, John J. (Albuquerque, NM); Walker, Charles A. (Albuquerque, NM)

    1999-01-01

    A method of reversibly brazing surfaces together. An interface is affixed to each surface. The interfaces can be affixed by processes such as mechanical joining, welding, or brazing. The two interfaces are then brazed together using a brazing process that does not defeat the surface to interface joint. Interfaces of materials such as Ni-200 can be affixed to metallic surfaces by welding or by brazing with a first braze alloy. The Ni-200 interfaces can then be brazed together using a second braze alloy. The second braze alloy can be chosen so that it minimally alters the properties of the interfaces to allow multiple braze, heat and disassemble, rebraze cycles.

  20. Reversal bending fatigue testing

    DOEpatents

    Wang, Jy-An John; Wang, Hong; Tan, Ting

    2014-10-21

    Embodiments for apparatuses for testing reversal bending fatigue in an elongated beam are disclosed. Embodiments are configured to be coupled to first and second end portions of the beam and to apply a bending moment to the beam and create a pure bending condition in an intermediate portion of the beam. Embodiments are further configured to cyclically alternate the direction of the bending moment applied to the beam such that the intermediate portion of the beam cyclically bends in opposite directions in a pure bending condition.

  1. Preparation of 4-butylaniline-bonded silica gel for the solid-phase extraction of flavone glycosides.

    PubMed

    Chu, Ganghui; Cai, Wensheng; Shao, Xueguang

    2015-04-01

    To extract flavone glycosides efficiently, a new extraction material based on 4-butylaniline-bonded silica gel was prepared using a two-step grafting method including a ring-opening reaction and synchronous hydrolysis. Preparation of the silica-based material was easily achieved under mild conditions, and the material was characterized by Fourier transform infrared spectroscopy, elemental analysis, and scanning electron microscopy. The material was used in solid-phase extraction, and the extraction can be performed in neutral conditions without regard to ionic strength. Selectivity tests of 14 compounds on the extraction cartridge showed that the material has a high affinity to flavone glycosides in contrast to octadecyl silica, and the extraction yields for four flavone glycosides were found to be >93%. Selectivity tests further reveal that the adsorption on its surface is likely attributed to multiple interactions, including hydrophobic interactions, ?-? interactions, and hydrogen bonding. To explore the applicability of 4-butylaniline-bonded silica gel, naringin and hesperidin from Simotang oral liquid were extracted, and the extraction yields were >90%, which is distinguished from <28% on octadecyl silica cartridge. PMID:25604828

  2. Two new flavonol glycosides and a metabolite profile of Bryophyllum pinnatum, a phytotherapeutic used in obstetrics and gynaecology.

    PubMed

    Fürer, Karin; Raith, Melanie; Brenneisen, Rudolf; Mennet, Monica; Simões-Wüst, Ana Paula; von Mandach, Ursula; Hamburger, Matthias; Potterat, Olivier

    2013-11-01

    Bryophyllum pinnatum is a succulent perennial plant native to Madagascar which is used in anthroposophical medicine to treat psychiatric disorders and as a tocolytic agent to prevent premature labour. We performed a metabolite profiling study in order to obtain a comprehensive picture of the constituents in B. pinnatum leaves and to identify chromatographic markers for quality control and safety assessment of medicinal preparations. Preliminary HPLC-PDA-ESIMS analyses revealed that flavonoid glycosides were the main UV-absorbing constituents in the MeOH extract of B. pinnatum. Two phenolic glucosides, syringic acid ?-D-glucopyranosyl ester (1) and 4'-O-?-D-glucopyranosyl-cis-p-coumaric acid (2), as well as nine flavonoids (3-11) including kaempferol, quercetin, myricetin, acacetin, and diosmetin glycosides were unambiguously identified by 1H and 2D?NMR analysis after isolation from a MeOH extract. The flavonol glycosides quercetin 3-O-?-L-arabinopyranosyl-(1???2)-?-L-rhamnopyranoside 7-O-?-D-glucopyranoside (3) and myricetin 3-O-?-L-arabinopyranosyl-(1???2)-?-L-rhamnopyranoside (4) were new natural products. With the aid of HPLC-PDA-APCIMS and authentic references isolated from the related species B. daigremontianum, the presence of four bufadienolides, bersaldegenin-1-acetate (12), bryophyllin A (13), bersaldegenin-3-acetate (14), and bersaldegenin-1,3,5-orthoacetate (15) was detected in B. pinnatum. PMID:24072500

  3. Stereochemical assignment of five new lignan glycosides from Viscum album by NMR study combined with CD spectroscopy.

    PubMed

    Nhiem, Nguyen Xuan; Lee, Hwa Young; Kim, Nan Young; Park, Seon Ju; Kim, Eun Sil; Han, Jeong Eun; Yang, Heejung; Kim, Seung Hyun

    2012-11-01

    The chemical study of the leaves and twigs of Viscum album led to the isolation of five new lignan glycosides, namely, ligalbumosides A-E (2-6) and one known lignan glycoside, alangilignoside C (1). The structures of five new lignan glycosides were determined to be (7R,8S,8'S)-4,9,4'-trihydroxy-3,5,3',5'-tetramethoxy-7,9'-epoxylignan 9-O-?-D-glucopyranoside (2), (7S,8S,7'S,8'R)-4,9,4'-trihydroxy-3,5,3',5',7'-pentamethoxy-7,9'-epoxylignan 9-O-?-D-glucopyranoside (3), (7R,8R,7'S,8'S)-4,9,4'-trihydroxy-3,5,3',5',7'-pentamethoxy-7,9'-epoxylignan 9-O-?-D-glucopyranoside (4), (7S,8R,7'S,8'R)-4,9,4'-trihydroxy-3,5,3',5',7'-pentamethoxy-7,9'-epoxylignan 9-O-?-D-glucopyranoside (5), and (7R,8S,7'R,8'S)-4,9,4',7'-tetrahydroxy-3,5,3',5'-tetramethoxy-7,9'-epoxylignan 9-O-?-D-glucopyranoside (6) using 1D-, 2D-NMR, and CD spectra, chemical methods, as well as comparing the results with those reported in the literature. PMID:22996565

  4. Discovery of glycoside hydrolase enzymes in an avicel-adapted forest soil fungal community by a metatranscriptomic approach.

    PubMed

    Takasaki, Kazuto; Miura, Takamasa; Kanno, Manabu; Tamaki, Hideyuki; Hanada, Satoshi; Kamagata, Yoichi; Kimura, Nobutada

    2013-01-01

    To discover the structural and functional novel glycoside hydrolase enzymes from soil fungal communities that decompose cellulosic biomass, transcripts of functional genes in a forest soil were analyzed. Pyrosequencing of the Avicel and wheat-amended soil cDNAs produced 56,084 putative protein-coding sequence (CDS) fragments, and the most dominant group of putative CDSs based on the taxonomic analysis was assigned to the domain Eukarya, which accounted for 99% of the total number of the putative CDSs. Of 9,449 eukaryotic CDSs whose functions could be categorized, approximately 40% of the putative CDSs corresponded to metabolism-related genes, including genes involved in carbohydrate, amino acid, and energy metabolism. Among the carbohydrate-metabolism genes, 129 sequences encoded glycoside hydrolase enzymes, with 47 sequences being putative cellulases belonging to 13 GH families. To characterize the function of glycoside hydrolase enzymes, we synthesized the putative CelA gene with codon optimization for heterologous expression in Escherichia coli, which was shown to be similar to the structure of plant expansins, and observed stimulation for cellulase activity on Avicel degradation. This study demonstrated that fungal communities adapt to Avicel and wheat decomposition and that metatranscriptomic sequence data can be reference data for identifying a novel gene. PMID:23393585

  5. Effects of cardiac glycosides on excitation-contraction coupling in frog skeletal muscle fibres.

    PubMed Central

    Sárközi, S; Szentesi, P; Jona, I; Csernoch, L

    1996-01-01

    1. The effects of digoxin and ouabain on the calcium release flux from the sarcoplasmic reticulum (SR), isometric tension and intramembrane charge movement were studied in voltage clamped skeletal muscle fibres of the frog. 2. Both cardiac glycosides increased both calcium transients and simultaneously recorded tension at all membrane potentials, showing different effects on the peak and on the steady components of the calcium release flux. These effects were attained at an extracellular digoxin concentration of 5 nM and an estimated intracellular ouabain concentration of 1-2 nM. Digoxin and ouabain thus exerted their effects at the same concentration on calcium release in skeletal muscle as previously observed in isolated cardiac-type ryanodine receptor (RyR) calcium release channels. 3. The peak of SR calcium release increased at all voltages, with the largest potentiation at intermediate membrane potentials. This increase in calcium release flux was attained despite an unchanged SR calcium content. The attenuated release rate therefore reflected an increased number of open RyR channels rather than increased SR loading. 4. These effects could be attributed to an increase in calcium release activation and not a decrease in the rate of inactivation. Rather, the rate of inactivation was enhanced at all voltages as expected from the increased calcium concentration in the triadic junction. 5. In contrast, CMA (17 alpha-acetoxy-6-chloro-4, 6-pregnadiene-3,20-dione; 5 microM), a Na(+)-K(+)-ATPase inhibitor with no positive inotropic effects on the heart, neither influenced SR calcium release nor antagonized the effects of ouabain. 6. Both digoxin and ouabain preserved total intramembrane charge apart from a small negative shift in the mid-point voltage and increase in slope factor. 7. Both digoxin and ouabain induced calcium release from heavy SR vesicles at rates comparable to that induced by ryanodine or caffeine. 8. It is concluded that at least part of the inactivating component of SR calcium release involves distinct RyR calcium release channels that resemble the cardiac RyR isoform in its specific sensitivity to cardiac glycosides. PMID:8887770

  6. Transport and epithelial secretion of the cardiac glycoside, digoxin, by human intestinal epithelial (Caco-2) cells.

    PubMed Central

    Cavet, M. E.; West, M.; Simmons, N. L.

    1996-01-01

    1. Human intestinal epithelial Caco-2 cells have been used to investigate the transepithelial permeation of the cardiac glycoside, digoxin. 2. Transepithelial basal to apical [3H]-digoxin flux exceeds apical to basal flux, a net secretion of [3H]-digoxin being observed. At 200 microM digoxin, net secretory flux (Jnet) was 10.8 +/- 0.6 nmol cm-2 h-1. Maximal secretory flux (Jmax) of vinblastine was 1.3 +/- 0.1 nmol cm-2 h-1. Cellular uptake of digoxin was different across apical and basal cell boundaries. It was greatest across the basal surface at 1 microM, whereas at 200 microM, apical uptake exceeded basal uptake. 3. Net secretion of [3H]-digoxin was subject to inhibition by digitoxin and bufalin but was not inhibited by ouabain, convallatoxin, and strophanthidin (all 100 microM). Inhibition was due to both a decrease in Jb-a and an increase in Ja-b. Uptake of [3H]-digoxin at the apical surface was increased by digitoxin and bufalin. All cardiac glycosides decreased [3H]-digoxin uptake at the basal cell surface (except for 100 microM digitoxin). 4. The competitive P-glycoprotein inhibitors, verapamil (100 microM), nifedipine (50 microM) and vinblastine (50 microM) all abolished net secretion of [3H]-digoxin due to both a decrease in Jb-a and an increase in Ja-b. Cellular accumulation of [3H]-digoxin was also increased across both the apical and basal cell surfaces. I-Chloro-2,4,-dinitrobenzene (10 microM), a substrate for glutathione-S-transferase and subsequent ATP-dependent glutathione-S-conjugate secretion, failed to inhibit net secretion of [3H]-digoxin. The increase in absorptive permeability Pa-b (= Ja-b/Ca) and cellular [3H]-digoxin uptake upon P-glycoprotein inhibition, showed that the intestinal epithelium was rendered effectively impermeable by ATP-dependent extrusion at the apical surface. 5. A model for [3H]-digoxin secretion by the intestinal epithelium is likely to involve both diffusional uptake and Na(+)-K+ pump-mediated endocytosis, followed by active extrusion at the apical membrane. PMID:8832062

  7. A Novel ?-L-Arabinofuranosidase of Family 43 Glycoside Hydrolase (Ct43Araf) from Clostridium thermocellum

    PubMed Central

    Ahmed, Shadab; Luis, Ana Sofia; Bras, Joana L. A.; Ghosh, Arabinda; Gautam, Saurabh; Gupta, Munishwar N.; Fontes, Carlos M. G. A.; Goyal, Arun

    2013-01-01

    The study describes a comparative analysis of biochemical, structural and functional properties of two recombinant derivatives from Clostridium thermocellum ATCC 27405 belonging to family 43 glycoside hydrolase. The family 43 glycoside hydrolase encoding ?-L-arabinofuranosidase (Ct43Araf) displayed an N-terminal catalytic module CtGH43 (903 bp) followed by two carbohydrate binding modules CtCBM6A (405 bp) and CtCBM6B (402 bp) towards the C-terminal. Ct43Araf and its truncated derivative CtGH43 were cloned in pET-vectors, expressed in Escherichia coli and functionally characterized. The recombinant proteins displayed molecular sizes of 63 kDa (Ct43Araf) and 34 kDa (CtGH43) on SDS-PAGE analysis. Ct43Araf and CtGH43 showed optimal enzyme activities at pH 5.7 and 5.4 and the optimal temperature for both was 50°C. Ct43Araf and CtGH43 showed maximum activity with rye arabinoxylan 4.7 Umg?1 and 5.0 Umg?1, respectively, which increased by more than 2-fold in presence of Ca2+ and Mg2+ salts. This indicated that the presence of CBMs (CtCBM6A and CtCBM6B) did not have any effect on the enzyme activity. The thin layer chromatography and high pressure anion exchange chromatography analysis of Ct43Araf hydrolysed arabinoxylans (rye and wheat) and oat spelt xylan confirmed the release of L-arabinose. This is the first report of ?-L-arabinofuranosidase from C. thermocellum having the capacity to degrade both p-nitrophenol-?-L-arabinofuranoside and p-nitrophenol-?-L-arabinopyranoside. The protein melting curves of Ct43Araf and CtGH43 demonstrated that CtGH43 and CBMs melt independently. The presence of Ca2+ ions imparted thermal stability to both the enzymes. The circular dichroism analysis of CtGH43 showed 48% ?-sheets, 49% random coils but only 3% ?-helices. PMID:24039988

  8. Effects of cardiac glycosides on excitation-contraction coupling in frog skeletal muscle fibres.

    PubMed

    Sárközi, S; Szentesi, P; Jona, I; Csernoch, L

    1996-09-15

    1. The effects of digoxin and ouabain on the calcium release flux from the sarcoplasmic reticulum (SR), isometric tension and intramembrane charge movement were studied in voltage clamped skeletal muscle fibres of the frog. 2. Both cardiac glycosides increased both calcium transients and simultaneously recorded tension at all membrane potentials, showing different effects on the peak and on the steady components of the calcium release flux. These effects were attained at an extracellular digoxin concentration of 5 nM and an estimated intracellular ouabain concentration of 1-2 nM. Digoxin and ouabain thus exerted their effects at the same concentration on calcium release in skeletal muscle as previously observed in isolated cardiac-type ryanodine receptor (RyR) calcium release channels. 3. The peak of SR calcium release increased at all voltages, with the largest potentiation at intermediate membrane potentials. This increase in calcium release flux was attained despite an unchanged SR calcium content. The attenuated release rate therefore reflected an increased number of open RyR channels rather than increased SR loading. 4. These effects could be attributed to an increase in calcium release activation and not a decrease in the rate of inactivation. Rather, the rate of inactivation was enhanced at all voltages as expected from the increased calcium concentration in the triadic junction. 5. In contrast, CMA (17 alpha-acetoxy-6-chloro-4, 6-pregnadiene-3,20-dione; 5 microM), a Na(+)-K(+)-ATPase inhibitor with no positive inotropic effects on the heart, neither influenced SR calcium release nor antagonized the effects of ouabain. 6. Both digoxin and ouabain preserved total intramembrane charge apart from a small negative shift in the mid-point voltage and increase in slope factor. 7. Both digoxin and ouabain induced calcium release from heavy SR vesicles at rates comparable to that induced by ryanodine or caffeine. 8. It is concluded that at least part of the inactivating component of SR calcium release involves distinct RyR calcium release channels that resemble the cardiac RyR isoform in its specific sensitivity to cardiac glycosides. PMID:8887770

  9. 49 CFR 230.89 - Reverse gear.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Reverse gear. 230.89 Section 230.89 Transportation... Reversing Gear § 230.89 Reverse gear. (a) General provisions. Reverse gear, reverse levers, and quadrants... quadrant. Proper counterbalance shall be provided for the valve gear. (b) Air-operated power reverse...

  10. 49 CFR 230.89 - Reverse gear.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Reverse gear. 230.89 Section 230.89 Transportation... Reversing Gear § 230.89 Reverse gear. (a) General provisions. Reverse gear, reverse levers, and quadrants... quadrant. Proper counterbalance shall be provided for the valve gear. (b) Air-operated power reverse...

  11. 49 CFR 230.89 - Reverse gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Reverse gear. 230.89 Section 230.89 Transportation... Reversing Gear § 230.89 Reverse gear. (a) General provisions. Reverse gear, reverse levers, and quadrants... quadrant. Proper counterbalance shall be provided for the valve gear. (b) Air-operated power reverse...

  12. 49 CFR 230.89 - Reverse gear.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Reverse gear. 230.89 Section 230.89 Transportation... Reversing Gear § 230.89 Reverse gear. (a) General provisions. Reverse gear, reverse levers, and quadrants... quadrant. Proper counterbalance shall be provided for the valve gear. (b) Air-operated power reverse...

  13. A novel member of glycoside hydrolase family 30 subfamily 8 with altered substrate specificity.

    PubMed

    St John, Franz J; Dietrich, Diane; Crooks, Casey; Pozharski, Edwin; González, Javier M; Bales, Elizabeth; Smith, Kennon; Hurlbert, Jason C

    2014-11-01

    Endoxylanases classified into glycoside hydrolase family 30 subfamily 8 (GH30-8) are known to hydrolyze the hemicellulosic polysaccharide glucuronoxylan (GX) but not arabinoxylan or neutral xylooligosaccharides. This is owing to the specificity of these enzymes for the ?-1,2-linked glucuronate (GA) appendage of GX. Limit hydrolysis of this substrate produces a series of aldouronates each containing a single GA substituted on the xylose penultimate to the reducing terminus. In this work, the structural and biochemical characterization of xylanase 30A from Clostridium papyrosolvens (CpXyn30A) is presented. This xylanase possesses a high degree of amino-acid identity to the canonical GH30-8 enzymes, but lacks the hallmark ?8-?8 loop region which in part defines the function of this GH30 subfamily and its role in GA recognition. CpXyn30A is shown to have a similarly low activity on all xylan substrates, while hydrolysis of xylohexaose revealed a competing transglycosylation reaction. These findings are directly compared with the model GH30-8 enzyme from Bacillus subtilis, XynC. Despite its high sequence identity to the GH30-8 enzymes, CpXyn30A does not have any apparent specificity for the GA appendage. These findings confirm that the typically conserved ?8-?8 loop region of these enzymes influences xylan substrate specificity but not necessarily ?-1,4-xylanase function. PMID:25372685

  14. A new flavonol glycoside and activity of compounds from the flower of Nymphaea candida.

    PubMed

    Liu, R-N; Wang, W; Ding, Y; Xie, W-D; Ma, C; Du, L-J

    2007-01-01

    A new compound, kaempferol 3-O-(2''-O-galloylrutinoside) (1), was isolated from the white flower of Nymphaea candida, together with nine known flavonol glycosides, kaempferol (2), kaempferol 3-O-beta-D-glucopyranoside (3), kaempferol 3-O-alpha-l-rhamnopyranoside (4), kaempferol 3-O-alpha-l-rhamnopyranosylglucopyranoside (5), kaempferol 7-O-beta-D-glucopyranoside 3-(O-alpha-l-rhamnopyranosylglucopyranoside) (6), quercetin (7), quercetin 3-O-beta-D-xylopyranoside (8), myricetin (9), myricetin 3'-O-beta-D-xylopyranoside (10). The structure of 1 was established on the basis of the analysis of its 1D and 2D NMR spectral data. Compounds 1-7 and 9 exhibited moderate to significant antioxidant activities, which were evaluated by measurement of low-density lipoprotein (LDL) and malondialdehyde (MDA) levels in vitro. Compounds 1, 3, 4, 6 and 9 exhibited promising neuroprotective effects on ischemic injury model of cultured rat cortical neurons treated with sodium dithionite in glucose-free medium. Furthermore, compounds 1, 5, and 9 had distinct cytotoxicity to adrenal gland pheochromocytoma, PC12 cells, being treated by the same way. PMID:17613618

  15. Early downregulation of Mcl-1 regulates apoptosis triggered by cardiac glycoside UNBS1450

    PubMed Central

    Cerella, C; Muller, F; Gaigneaux, A; Radogna, F; Viry, E; Chateauvieux, S; Dicato, M; Diederich, M

    2015-01-01

    Cardiac glycosides (CGs), prescribed to treat cardiovascular alterations, display potent anti-cancer activities. Despite their well-established target, the sodium/potassium (Na+/K+)-ATPase, downstream mechanisms remain poorly elucidated. UNBS1450 is a hemi-synthetic cardenolide derived from 2?-oxovorusharin extracted from the plant Calotropis procera, which is effective against various cancer cell types with an excellent differential toxicity. By comparing adherent and non-adherent cancer cell types, we validated Mcl-1 as a general and early target of UNBS1450. A panel of CGs including cardenolides ouabain, digitoxin and digoxin as well as bufadienolides cinobufagin and proscillaridin A allowed us to generalize our findings. Our results show that Mcl-1, but not Bcl-xL nor Bcl-2, is rapidly downregulated prior to induction of apoptosis. From a mechanistic point of view, we exclude an effect on transcription and demonstrate involvement of a pathway affecting protein stability and requiring the proteasome in the early CG-induced Mcl-1 downregulation, without the involvement of caspases or the BH3-only protein NOXA. Strategies aiming at preventing UNBS1450-induced Mcl-1 downregulation by overexpression of a mutated, non-ubiquitinable form of the protein or the use of the proteasome inhibitor MG132 inhibited the compound's ability to induce apoptosis. Altogether our results point at Mcl-1 as a ubiquitous factor, downregulated by CGs, whose modulation is essential to achieve cell death. PMID:26068790

  16. Fast repair of TMP radical anions by phenylpropanoid glycosides (PPGs) and their analogs

    NASA Astrophysics Data System (ADS)

    Shi, Yimin; Lin, Weizheng; Fan, Potao; Jia, Zhongjian; Yao, Side; Kang, Jiuhong; Wang, Wengfeng; Zheng, Rongliang

    2000-04-01

    Repair effect on TMP radical anions by phenylpropanoid glycosides (PPGs) and their analogs, isolated from Chinese folk medicinal herbs, were studied using a pulse radiolysis technique. The radical anion of TMP was formed by the reaction of hydrated electron with TMP. On pulse irradiation of a nitrogen saturated TMP aqueous solution containing 0.2 mol/l t-BuOH and one of the PPGs or their analogs, the transient absorption spectrum of the radical anion of TMP decayed with the formation of that of the radical anion of PPGs or their analogs within several decades of microseconds after electron pulse irradiation. The results indicated that TMP radical anions can be repaired by PPGs or their analogs. The rate constants of the repair reactions were deduced to be 1.64-2.75×10 9 M -1 s -1. A deeper understanding of this new repair mechanism will undoubtedly help researchers design strategies to prevent and/or intervene more effectively in free radical related diseases.

  17. Resin glycosides from Ipomoea tyrianthina and their sedative and vasorelaxant effects.

    PubMed

    León-Rivera, Ismael; Castro, José Manuel; Mirón-López, Gumersindo; del Río-Portilla, Federico; Enríquez, Raúl G; Reynolds, William F; Estrada-Soto, Samuel; Rendón-Vallejo, Priscilla; del Carmen Gutiérrez, María; Herrera-Ruiz, Maribel; Mendoza, Angeles; Vargas, Gabriela

    2014-10-01

    The methanol-soluble extract from the root of Ipomoea tyrianthina was studied in order to isolate compounds with activity on the central nervous system and vasorelaxant effects. Chromatographic methods were used to isolate and purify seven new glycolipids (2-8). The structures of compounds 1-8 were elucidated by a combination of NMR spectroscopy and mass spectrometry. Tyrianthinoic acid (1) is a glycosidic acid composed of a linear pentasaccharide core bonded to a 11-hydroxyhexadecanoic acid. The structure of tyrianthinic acids III (2), IV (3), and V (4) consists of a partially acylated tyrianthinoic acid. Tyrianthinic acid VI (8) is a tetrasaccharide core bonded to a jalapinolic acid, acylated by a 2-methyl-3-hydroxybutanoic acid. Tyrianthins C (5), D (6), and E (7) are ester-type heterodimers of scammonic acid A with different acylating residues in the two monomeric units. The macrolactonization site was located at C-3 of the rhamnose unit. The position of the ester linkage for monomeric unit B on the macrocyclic unit A was established at C-4 of the terminal quinovose. Compounds 5-7 increased the sleeping time induced by pentobarbital and the release of gamma-aminobutyric acid in brain cortex. In addition, compounds 5-7 showed significant in vitro relaxant effects on aortic rat rings, in endothelium- and concentration-dependent manners. PMID:24838512

  18. Antioxidant and tyrosinase inhibitory effects of neolignan glycosides from Crataegus pinnatifida seeds.

    PubMed

    Huang, Xiao-Xiao; Liu, Qing-Bo; Wu, Jie; Yu, Li-Hong; Cong, Qian; Zhang, Yan; Lou, Li-Li; Li, Ling-Zhi; Song, Shao-Jiang

    2014-12-01

    In our efforts to find an inhibitor of melanin formation and develop potential depigmenting agents for skin-protecting cosmetics and medicinal products from natural resources, we focused on the seeds of Crataegus pinnatifida which showed antioxidant and tyrosinase-inhibiting activities. By activity-guided fractionation of an extract of C. pinnatifida seeds, four new neolignan glycosides, pinnatifidaninsides A-D (1-4), along with two known compounds (5-6), were isolated. Their structures were elucidated by spectroscopic analyses, especially 1D, 2D?NMR and CD spectra. The antioxidant and tyrosinase-inhibiting activities of all isolates were assayed. Compound 6 showed good activity against 2,2-diphenyl-1-pikrylhydrazyl, while compounds 1, 2, 5, and 6 exhibited strong 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) free radical scavenging activity, being as effective as, or even more effective than the positive control Trolox. Moreover, compounds 5 and 6 displayed a moderate mushroom tyrosinase inhibitory activity. PMID:25377118

  19. Comparison of Enzymatic Hydrolysis and Acid Hydrolysis of Sterol Glycosides from Foods Rich in ?(7)-Sterols.

    PubMed

    Münger, Linda H; Jutzi, Sabrina; Lampi, Anna-Maija; Nyström, Laura

    2015-08-01

    In this study, we present the difference in sterol composition of extracted steryl glycosides (SG) hydrolyzed by either enzymatic or acid hydrolysis. SG were analyzed from foods belonging to the plant families Cucurbitaceae (melon and pumpkin seeds) and Amaranthaceae (amaranth and beetroot), both of which are dominated by ?(7)-sterols. Released sterols were quantified by gas chromatography with a flame ionization detector (GC-FID) and identified using gas chromatography/mass spectrometry (GC-MS). All ?(7)-sterols identified (?(7)-stigmastenyl, spinasteryl, ?(7)-campesteryl, ?(7)-avenasteryl, poriferasta-7,25-dienyl and poriferasta-7,22,25-trienyl glucoside) underwent isomerization under acidic conditions and high temperature. Sterols with an ethylidene or methylidene side chain were found to form multiple artifacts. The artifact sterols coeluted with residues of incompletely isomerized ?(7)-sterols, or ?(5)-sterols if present, and could be identified as ?(8(14))-sterols on the basis of relative retention time, and their MS spectra as trimethylsilyl (TMS) and acetate derivatives. For instance, SG from melon were composed of 66% ?(7)-stigmastenol when enzymatic hydrolysis was performed, whereas with acid hydrolysis only 8% of ?(7)-stigmastenol was determined. The artifact of ?(7)-stigmastenol coeluted with residual non-isomerized spinasterol, demonstrating the high risk of misinterpretation of compositional data obtained after acid hydrolysis. Therefore, the accurate composition of SG from foods containing sterols with a double bond at C-7 can only be obtained by enzymatic hydrolysis or by direct analysis of the intact SG. PMID:25757602

  20. Bioactive oleanane glycosides from Polyscias duplicata from the Madagascar dry forest.

    PubMed

    Eaton, Alexander L; Brodie, Peggy J; Callmander, Martin W; Rakotondrajaona, Roland; Rakotobe, Etienne; Rasamison, Vincent E; Kingston, David G I

    2015-04-01

    As part of the International Cooperative Biodiversity Group (ICBG) program, in a search for antiproliferative compounds, an ethanol extract of Polyscias duplicata was investigated due to its antiproliferative activity against the A2780 human ovarian cell cancer line (IC50 6 µg/mL). Seven known oleanane glycosides, 3?-[(?-L-arabinopyranosyl)oxy]-16?-hydroxyolean-12-en-28-oic acid (1, IC50 8 µM), 3?-[(?-L-arabinopyranosyl)oxy]-16?,23-dihydroxyolean-12-en-18-oic acid (2, IC50 13 µM), 3?-[(O-?-D-glucopyranosyl-(t-->3)-?-L-arabinopyranosyl)oxy]-16?-hydroxyolean-12-en-28-oic acid (3, IC50 7 µM), 3?-[(O-?-L-rhamnopyranosyl-(1-2)-?-L-arabinopyranosyl)oxy]-16?-hydroxyolean-12-en-28-oic acid (4, IC50 2.8 µM), 3?-[(O-?-D-glucopyranosyl-(l-->3)-?-L- arabinopyranosyl)oxy]-23-hydroxyolean-12-en-28-oic acid (5, IC50 10 µM), ?-[(O-?-L-rhamnopyranosyl-(-1.2)-?-L-arabinopyranosyl)oxy]-23-hydroxyolean-12-en-28-oic acid (6, IC50 3.4 µM), and 3?-[(?-L-arabinopyranosyl)oxy]-23-hydroxyolean-12-en-28-oic acid (7, IC50 3.4 µM) were isolated, and their structures determined using spectroscopic methods. PMID:25960824

  1. Influences of monosaccharides and its glycosidic linkage on infrared spectral characteristics of disaccharides in aqueous solutions.

    PubMed

    Kanou, Mikihito; Nakanishi, Kenichi; Hashimoto, Atsushi; Kameoka, Takaharu

    2005-07-01

    The infrared spectral characteristics of ten different types of disaccharides (trehalose, kojibiose, nigerose, maltose, isomaltose, trehalulose, sucrose, turanose, maltulose, and palatinose) and five different types of monosaccharides (glucose, mannose, galactose, talose, and fructose) in aqueous solutions (H2O and D2O) were determined. The infrared spectra were collected using the Fourier transform infrared attenuated total reflectance (FT-IR/ATR) method and comparisons between the degrees of absorption band-shift of the saccharide spectra in the H2O solution with those in the D2O solution with respect to the saccharide concentrations were done. The study revealed that the wavenumber shifts in the bands of mono- and disaccharides in the H2O and D2O solutions could be used as an indicator of the level of interaction between the saccharides and water. The study also focused on the glycosidic linkage position and the constituent monosaccharides and found that they have a significant influence on the infrared spectroscopic characterization of disaccharides in an aqueous solution. PMID:16053559

  2. Interaction model of steviol glycosides from Stevia rebaudiana (Bertoni) with sweet taste receptors: A computational approach.

    PubMed

    Mayank; Jaitak, Vikas

    2015-08-01

    Docking studies were performed on natural sweeteners from Stevia rebaudiana by constructing homology models of T1R2 and T1R3 subunits of human sweet taste receptors. Ramachandran plot, PROCHECK results and ERRAT overall quality factor were used to validate the quality of models. Furthermore, docking results of steviol glycosides (SG's) were correlated significantly with data available in the literature which enabled to predict the exact sweetness rank order of SG's. The binding pattern indicated that Asn 44, Ans 52, Ala 345, Pro 343, Ile 352, Gly 346, Gly 47, Ala 354, Ser 336, Thr 326 and Ser 329 are the main interacting amino acid residues in case of T1R2 and Arg 56, Glu 105, Asp 215, Asp 216, Glu 148, Asp 258, Lys 255, Ser 104, Glu 217, Leu 51, Arg 52 for T1R3, respectively. Amino acids interact with SG's mainly by forming hydrogen bonds with the hydroxyl group of glucose moieties. Significant variation in docked poses of all the SG's were found. In this study, we have proposed the mechanism of the sweetness of the SG's in the form of multiple point stimulation model by considering the diverse binding patterns of various SG's, as well as their structural features. It will give further insight in understanding the differences in the quality of taste and will be used to improve the taste of SG's using semi-synthetic approaches. PMID:26021732

  3. Preparation and Characterization of Tripterygium wilfordii Multi-Glycoside Nanoparticle Using Supercritical Anti-Solvent Process

    PubMed Central

    Chen, Fengli; Li, Tong; Li, Shuangyang; Hou, Kexin; Liu, Zaizhi; Li, Lili; Cui, Guoqiang; Zu, Yuangang; Yang, Lei

    2014-01-01

    The aim of this study was to prepare nanosized Tripterygium wilfordii multi-glycoside (GTW) powders by the supercritical antisolvent precipitation process (SAS), and to evaluate the anti-inflammatory effects. Ethanol was used as solvent and carbon dioxide was used as an antisolvent. The effects of process parameters such as precipitation pressure (15–35 MPa), precipitation temperature (45–65 °C), drug solution flow rates (3–7 mL/min) and drug concentrations (10–30 mg/mL) were investigated. The nanospheres obtained with mean diameters ranged from 77.5 to 131.8 nm. The processed and unprocessed GTW were characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy and thermal gravimetric analysis. The present study was designed to investigate the beneficial effect of the GTW nanoparticles on adjuvant-induced arthritis in albino rats. The processed and unprocessed GTW were tested against Freund’s complete adjuvant-induced arthritis in rats. Blood samples were collected for the estimation of interleukins (IL-1?, IL-1?) and tumor necrosis factor-? (TNF-?). It was concluded that physicochemical properties and anti-inflammatory activity of GTW nanoparticles could be improved by physical modification, such as particle size reduction using supercritical antisolvent (SAS) process. Further, SAS process was a powerful methodology for improving the physicochemical properties and anti-inflammatory activity of GTW. PMID:24549173

  4. New insights into plant glycoside hydrolase family 32 in Agave species

    PubMed Central

    Avila de Dios, Emmanuel; Gomez Vargas, Alan D.; Damián Santos, Maura L.; Simpson, June

    2015-01-01

    In order to optimize the use of agaves for commercial applications, an understanding of fructan metabolism in these species at the molecular and genetic level is essential. Based on transcriptome data, this report describes the identification and molecular characterization of cDNAs and deduced amino acid sequences for genes encoding fructosyltransferases, invertases and fructan exohydrolases (FEH) (enzymes belonging to plant glycoside hydrolase family 32) from four different agave species (A. tequilana, A. deserti, A. victoriae-reginae, and A. striata). Conserved amino acid sequences and a hypervariable domain allowed classification of distinct isoforms for each enzyme type. Notably however neither 1-FFT nor 6-SFT encoding cDNAs were identified. In silico analysis revealed that distinct isoforms for certain enzymes found in a single species, showed different levels and tissue specific patterns of expression whereas in other cases expression patterns were conserved both within the species and between different species. Relatively high levels of in silico expression for specific isoforms of both invertases and fructosyltransferases were observed in floral tissues in comparison to vegetative tissues such as leaves and stems and this pattern was confirmed by Quantitative Real Time PCR using RNA obtained from floral and leaf tissue of A. tequilana. Thin layer chromatography confirmed the presence of fructans with degree of polymerization (DP) greater than DP three in both immature buds and fully opened flowers also obtained from A. tequilana. PMID:26300895

  5. Nitrogen Limitation Alters Biomass Production but Enhances Steviol Glycoside Concentration in Stevia rebaudiana Bertoni

    PubMed Central

    Barbet-Massin, Claire; Giuliano, Simon; Alletto, Lionel; Daydé, Jean; Berger, Monique

    2015-01-01

    The need for medicinal and aromatic plants for industrial uses creates an opportunity for farmers to produce alternative crops. Stevia rebaudiana Bertoni, a perennial shrub originating from Paraguay, is of increasing interest as a source of zero-calorie natural sweeteners: the steviol glycosides (SVglys). The aim of this study was to investigate the relevance of nitrogen (N) supply for leaf yield and for SVgly concentrations in leaves, which are the two major components of S. rebaudiana productivity. In this regard, the relationship between leaf N concentration, CO2 assimilation, leaf production and SVgly accumulation was investigated. The experiments were conducted consecutively in growth-chamber (CC: controlled conditions), in greenhouse (SCC: semi-controlled conditions) and in field conditions (FC) on two genotypes. In CC and SCC, three levels of N fertilization were applied. Plants were grown on four locations in the FC experiment. Both N supply (CC and SCC) and location (FC) had a significant effect on N content in leaves. When light was not limiting (SCC and FC) N content in leaves was positively correlated with CO2 assimilation rate and biomass accumulation. Irrespective of the growth conditions, N content in leaves was negatively correlated with SVgly content. However, increased SVgly content was correlated with a decreased ratio of rebaudioside A over stevioside. The evidence that the increased SVgly accumulation compensates for the negative effect on biomass production suggests that adequate SVgly productivity per plant may be achieved with relatively low fertilization. PMID:26192921

  6. Influence of photoperiodism on the spatio-temporal accumulation of steviol glycosides in Stevia rebaudiana (Bertoni).

    PubMed

    Ceunen, Stijn; Geuns, Jan M C

    2013-01-01

    The effect of photoperiodism on steviol glycoside (SVgly) accumulation was investigated in Stevia rebaudiana. Topped plants were cultivated to develop new branches under a 16h or 8h photoperiod. During different ontogenetic phases, leaves, stems, lateral shoots, roots and reproductive organs were collected and analysed for nine SVglys. Long-day (LD) conditions prolonged vegetative growth, significantly increasing leaf biomass and total SVgly content. In both photoperiods, declines in SVglys were observed during reproductive development, occurring mainly in mature leaves under LDs or young leaves under SDs. When lateral shoots were included in plants under LDs, total leaf and SVgly yield per branch significantly increased, indicating a harvest during flowering is possible. The ratio of rebaudioside A (Reb A) to stevioside (ST) amounts was influenced by ontogeny and daylength, with larger ratios during vegetative growth under SDs. Linear correlations were observed between dry matter and total SVglys and between the major SVglys individually. Minor SVglys showed larger fluctuations, especially under SDs. Under LDs, the Reb A to ST ratio was inversely correlated with both leaf dry matter and total SVglys. The highly dynamic nature of the observed patterns suggests a complex regulation of SVgly metabolism on molecular and biochemical level. PMID:23199688

  7. Nitrogen Limitation Alters Biomass Production but Enhances Steviol Glycoside Concentration in Stevia rebaudiana Bertoni.

    PubMed

    Barbet-Massin, Claire; Giuliano, Simon; Alletto, Lionel; Daydé, Jean; Berger, Monique

    2015-01-01

    The need for medicinal and aromatic plants for industrial uses creates an opportunity for farmers to produce alternative crops. Stevia rebaudiana Bertoni, a perennial shrub originating from Paraguay, is of increasing interest as a source of zero-calorie natural sweeteners: the steviol glycosides (SVglys). The aim of this study was to investigate the relevance of nitrogen (N) supply for leaf yield and for SVgly concentrations in leaves, which are the two major components of S. rebaudiana productivity. In this regard, the relationship between leaf N concentration, CO2 assimilation, leaf production and SVgly accumulation was investigated. The experiments were conducted consecutively in growth-chamber (CC: controlled conditions), in greenhouse (SCC: semi-controlled conditions) and in field conditions (FC) on two genotypes. In CC and SCC, three levels of N fertilization were applied. Plants were grown on four locations in the FC experiment. Both N supply (CC and SCC) and location (FC) had a significant effect on N content in leaves. When light was not limiting (SCC and FC) N content in leaves was positively correlated with CO2 assimilation rate and biomass accumulation. Irrespective of the growth conditions, N content in leaves was negatively correlated with SVgly content. However, increased SVgly content was correlated with a decreased ratio of rebaudioside A over stevioside. The evidence that the increased SVgly accumulation compensates for the negative effect on biomass production suggests that adequate SVgly productivity per plant may be achieved with relatively low fertilization. PMID:26192921

  8. Cloning, Expression and Characterization of a Glycoside Hydrolase Family 39 Xylosidase from Bacillus Halodurans C-125

    NASA Astrophysics Data System (ADS)

    Wagschal, Kurt; Franqui-Espiet, Diana; Lee, Charles C.; Robertson, George H.; Wong, Dominic W. S.

    The gene encoding a glycoside hydrolase family 39 xylosidase (BH1068) from the alkaliphile Bacillus halodurans strain C-125 was cloned with a C-terminal His-tag, and the recombinant gene product termed BH1068(His)6 was expressed in Escherichia coli. Of the artificial substrates tested, BH1068(His)6 hydrolyzed nitrophenyl derivatives of ?-d-xylopyranose, ?-l-arabinofuranose, and ?-l-arabinopyranose. Deviation from Michaelis-Menten kinetics at higher substrate concentrations indicative of transglycosylation was observed, and k cat and K m values were measured at both low and high substrate concentrations to illuminate the relative propensities to proceed along this alternate reaction pathway. The pH maximum was 6.5, and under the conditions tested, maximal activity was at 47°C, and thermal instability occurred above 45°C. BH1068(His)6 was inactive on arabinan, hydrolyzed xylooligosaccharides, and released only xylose from oat, wheat, rye, beech, and birch arabinoxylan, and thus, can be classified as a xylosidase with respect to natural substrate specificity. The enzyme was not inhibited by up to 200 mM xylose. The oligomerization state was tetrameric under the size-exclusion chromatography conditions employed.

  9. Straightforward rapid spectrophotometric quantification of total cyanogenic glycosides in fresh and processed cassava products.

    PubMed

    Tivana, Lucas Daniel; Da Cruz Francisco, Jose; Zelder, Felix; Bergenståhl, Bjorn; Dejmek, Petr

    2014-09-01

    In this study, we extend pioneering studies and demonstrate straightforward applicability of the corrin-based chemosensor, aquacyanocobyrinic acid (ACCA), for the instantaneous detection and rapid quantification of endogenous cyanide in fresh and processed cassava roots. Hydrolytically liberated endogenous cyanide from cyanogenic glycosides (CNp) reacts with ACCA to form dicyanocobyrinic acid (DCCA), accompanied by a change of colour from orange to violet. The method was successfully tested on various cassava samples containing between 6 and 200 mg equiv. HCN/kg as verified with isonicotinate/1,3-dimethylbarbiturate as an independent method. The affinity of ACCA sensor to cyanide is high, coordination occurs fast and the colorimetric response can therefore be instantaneously monitored with spectrophotometric methods. Direct applications of the sensor without need of extensive and laborious extraction processes are demonstrated in water-extracted samples, in acid-extracted samples, and directly on juice drops. ACCA showed high precision with a standard deviation (STDV) between 0.03 and 0.06 and high accuracy (93-96%). Overall, the ACCA procedure is straightforward, safe and easily performed. In a proof-of-concept study, rapid screening of ten samples within 20 min has been tested. PMID:24731309

  10. An efficient fermentation method for the degradation of cyanogenic glycosides in flaxseed.

    PubMed

    Wu, C-F; Xu, X-M; Huang, S-H; Deng, M-C; Feng, A-J; Peng, J; Yuan, J-P; Wang, J-H

    2012-01-01

    Recently, flaxseed has become increasingly popular in the health food market because it contains a considerable amount of specific beneficial nutrients such as lignans and omega-3 fatty acids. However, the presence of cyanogenic glycosides (CGs) in flaxseed severely limits the exploitation of its health benefits and nutritive value. We, therefore, developed an effective fermentation method, optimised by response surface methodology (RSM), for degrading CGs with an enzymatic preparation that includes 12.5% ?-glucosidase and 8.9% cyanide hydratase. These optimised conditions resulted in a maximum CG degradation level of 99.3%, reducing the concentration of cyanide in the flaxseed power from 1.156 to 0.015 mg g(-1) after 48 h of fermentation. The avoidance of steam heat to evaporate hydrocyanic acid (HCN) results in lower energy consumption and no environmental pollution. In addition, the detoxified flaxseed retained the beneficial nutrients, lignans and fatty acids at the same level as untreated flaxseed, and this method could provide a new means of removing CGs from other edible plants, such as cassava, almond and sorghum by simultaneously expressing cyanide hydratase and ?-glucosidase. PMID:22530603

  11. Novel flavonol glycosides from the aerial parts of lentil (Lens culinaris).

    PubMed

    ?uchowski, Jerzy; Pecio, ?ukasz; Stochmal, Anna

    2014-01-01

    While the phytochemical composition of lentil (Lens culinaris) seeds is well described in scientific literature, there is very little available data about secondary metabolites from lentil leaves and stems. Our research reveals that the aerial parts of lentil are a rich source of flavonoids. Six kaempferol and twelve quercetin glycosides were isolated, their structures were elucidated using NMR spectroscopy and chemical methods. This group includes 16 compounds which have not been previously described in the scientific literature: quercetin 3-O-?-D-glucopyranosyl(1?2)-?-D-galactopyranoside-7-O-?-D-glucuropyranoside (1), kaempferol 3-O-?-D-glucopyranosyl(1?2)-?-D-galacto-pyranoside-7-O-?-D-glucuropyranoside (3), their derivatives 4-10,12-15,17,18 acylated with caffeic, p-coumaric, ferulic, or 3,4,5-trihydroxycinnamic acid and kaempferol 3-O-{[(6-O-E-p-coumaroyl)-?-D-glucopyranosyl(1?2)]-?-L-rhamnopyranosyl(1?6)}-?-D-galactopyranoside-7-O-?-L-rhamnopyranoside (11). Their DPPH scavenging activity was also evaluated. This is probably the first detailed description of flavonoids from the aerial parts of lentil. PMID:25383753

  12. The Structural Basis of Exopolygalacturonase Activity in a Family 28 Glycoside Hydrolase

    SciTech Connect

    Abbott,D.; Boraston, A.

    2007-01-01

    Family 28 glycoside hydrolases (polygalacturonases) are found in organisms across the plant, fungal and bacterial kingdoms, where they are central to diverse biological functions such as fruit ripening, biomass recycling and plant pathogenesis. The structures of several polygalacturonases have been reported; however, all of these enzymes utilize an endo-mode of digestion, which generates a spectrum of oligosaccharide products with varying degrees of polymerization. The structure of a complementary exo-acting polygalacturonase and an accompanying explanation of the molecular determinants for its specialized activity have been noticeably lacking. We present the structure of an exopolygalacturonase from Yersinia enterocolitica, YeGH28 in a native form (solved to 2.19 {angstrom} resolution) and a digalacturonic acid product complex (solved to 2.10 {angstrom} resolution). The activity of YeGH28 is due to inserted stretches of amino acid residues that transform the active site from the open-ended channel observed in the endopolygalacturonases to a closed pocket that restricts the enzyme to the exclusive attack of the non-reducing end of oligogalacturonide substrates. In addition, YeGH28 possesses a fused FN3 domain with unknown function, the first such structure described in pectin active enzymes.

  13. Mechanisms for enzymatic cleavage of the N-glycosidic bond in DNA.

    PubMed

    Drohat, Alexander C; Maiti, Atanu

    2014-11-14

    DNA glycosylases remove damaged or enzymatically modified nucleobases from DNA, thereby initiating the base excision repair (BER) pathway, which is found in all forms of life. These ubiquitous enzymes promote genomic integrity by initiating repair of mutagenic and/or cytotoxic lesions that arise continuously due to alkylation, deamination, or oxidation of the normal bases in DNA. Glycosylases also perform essential roles in epigenetic regulation of gene expression, by targeting enzymatically-modified forms of the canonical DNA bases. Monofunctional DNA glycosylases hydrolyze the N-glycosidic bond to liberate the target base, while bifunctional glycosylases mediate glycosyl transfer using an amine group of the enzyme, generating a Schiff base intermediate that facilitates their second activity, cleavage of the DNA backbone. Here we review recent advances in understanding the chemical mechanism of monofunctional DNA glycosylases, with an emphasis on how the reactions are influenced by the properties of the nucleobase leaving-group, the moiety that varies across the vast range of substrates targeted by these enzymes. PMID:25181003

  14. Development of optimized extraction methodology for cyanogenic glycosides from flaxseed (Linum usitatissimum).

    PubMed

    Barthet, Véronique J; Bacala, Ray

    2010-01-01

    A reference method (higher accuracy) and a routine method (higher throughput) were developed for the extraction of cyanogenic glycosides from flaxseed. Conditions of (essentially) complete extraction were identified by comparing grinding methods and extraction solvent composition, and optimizing solvent-to-meal ratio, extraction time, and repeat extraction. The reference extraction method consists of sample grinding using a high-speed impact plus sieving mill at 18 000 rpm with a 1.0 mm sieve coupled with triple-pooled extraction in a sonicating water bath (40 degrees C, 30 min) using 75% methanol. The routine method differs by the use of a coffee mill to grind samples and a single extraction. The 70 and 80% methanol solutions were equal and superior to other combinations from 50 to 100% aqueous ethanol or methanol. The extraction efficiencies of the routine method (relative to the reference method) was 87.9 +/- 2.0% SD (linustatin) and 87.6 +/- 1.9% SD (neolinustatin) using four composite samples that were generated from seeds of multiple cultivars over two crop years and locations across Western Canada. Ground flaxseed was stable after storage at room temperature, refrigeration, or freezing for up to 7 days, and frozen for at least 2 weeks but less than 2 months. Extracts were stable for up to 1 week at room temperature and at least 2 weeks when refrigerated or frozen. PMID:20480892

  15. Bioglycans and Natural Glycosides As a Promising Research Topic in Bioorganic Chemistriy

    PubMed Central

    2010-01-01

    This review defines bioorganic chemistry as one of the most important constituents of physico–chemical biology, which is a fundamental life science. The problems and goals of bioorganic chemistry are examined through a comparatively small number of examples. Bioorganic chemistry is supposed to be a logical continuation of the chemistry of the natural substances that arose many years ago. Bioorganic chemistry has contributed some achievements in solving the problems of the chemical structure, biological function, and physiological activity of biopolymers and low–molecular–weight bioregulators, as well as in the elucidation of the molecular mechanisms of different life processes. The most striking achievements in bioorganic chemistry are discussed in this paper. However, this review discusses not only the general achievements in this field of science, but also research data obtained by scientists from the Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences (Vladivostok, Russia), and the Institute of Physiology, Komi Science Centre, The Urals Branch, Russian Academy of Sciences (Syktyvkar, Russia). Particular attention is focused on comprehensive research into polysaccharides and biopolymers (bioglycans) and some natural glycosides that the author of this review has studied for a long time. The author has worked in these institutes for a long time and was honored by being chosen to head one of the scientific schools in the field of bioorganic chemistry and molecular immunology. PMID:22649639

  16. Five new cyotoxic steroidal glycosides from the fruits of Solanum torvum.

    PubMed

    Li, Jinsheng; Zhang, Lu; Huang, Cheng; Guo, Fujiang; Li, Yiming

    2014-03-01

    The fruits of Solanum torvum Swartz, commonly known as Turkey berry, are edible and commonly used as a vegetable in the South Indian population's diet and as an essential ingredient in Thai cuisine. Five new steroidal glycosides together with five known ones were isolated from the fruits of S. torvum Swartz. Based on chemical and spectral evidence, the five new compounds were identified to be 25(S)-26-O-?-D-glucopyranosyl-5?-furost-22(20)-en-3?,6?,26-triol-6-O-[?-L-rhamnopyranosyl-(1?3)-O-?-D-quinovopyranoside] (1), 25(S)-26-O-?-D-glucopyranosyl-5?-furost-22(20)-en-3-one-6?,26-diol-6-O-[?-L-rhamnopyranosyl-(1?3)-O-?-D-quinovopyranoside] (2), 25(S)-26-O-?-D-glucopyranosyl-5?-furost-22(20)-en-3?,6?,26-triol-6-O-?-D-quinovopyranoside (3), 5?-pregn-16-en-20-one-3?,6?-diol-6-O-[?-L-rhamnopyranosyl-(1?3)-?-D-quinovopyranoside] (4), and 5?-pregn-16-en-3,20-dione-6?-ol-6-O-[?-L-rhamnopyranosyl-(1?3)-?-D-quinovopyranoside] (5). These new compounds were assayed for cytotoxicities in vitro, and 1 to 4 showed cyotoxic activity against the human melanoma cell line A375, with IC50 values of 30 ?M to 260 ?M. PMID:24444891

  17. Early downregulation of Mcl-1 regulates apoptosis triggered by cardiac glycoside UNBS1450.

    PubMed

    Cerella, C; Muller, F; Gaigneaux, A; Radogna, F; Viry, E; Chateauvieux, S; Dicato, M; Diederich, M

    2015-01-01

    Cardiac glycosides (CGs), prescribed to treat cardiovascular alterations, display potent anti-cancer activities. Despite their well-established target, the sodium/potassium (Na(+)/K(+))-ATPase, downstream mechanisms remain poorly elucidated. UNBS1450 is a hemi-synthetic cardenolide derived from 2?-oxovorusharin extracted from the plant Calotropis procera, which is effective against various cancer cell types with an excellent differential toxicity. By comparing adherent and non-adherent cancer cell types, we validated Mcl-1 as a general and early target of UNBS1450. A panel of CGs including cardenolides ouabain, digitoxin and digoxin as well as bufadienolides cinobufagin and proscillaridin A allowed us to generalize our findings. Our results show that Mcl-1, but not Bcl-xL nor Bcl-2, is rapidly downregulated prior to induction of apoptosis. From a mechanistic point of view, we exclude an effect on transcription and demonstrate involvement of a pathway affecting protein stability and requiring the proteasome in the early CG-induced Mcl-1 downregulation, without the involvement of caspases or the BH3-only protein NOXA. Strategies aiming at preventing UNBS1450-induced Mcl-1 downregulation by overexpression of a mutated, non-ubiquitinable form of the protein or the use of the proteasome inhibitor MG132 inhibited the compound's ability to induce apoptosis. Altogether our results point at Mcl-1 as a ubiquitous factor, downregulated by CGs, whose modulation is essential to achieve cell death. PMID:26068790

  18. Flavonol Glycosides in Currant Leaves and Variation with Growth Season, Growth Location, and Leaf Position.

    PubMed

    Yang, Wei; Alanne, Aino-Liisa; Liu, Pengzhan; Kallio, Heikki; Yang, Baoru

    2015-10-28

    Flavonol glycosides (FG) were analyzed in the leaves of six currant cultivars (Ribes spp.) with HPLC-DAD, HPLC-MS/MS, and NMR. The average amounts of the 12 major, identified FG constituted 86-93% (9.6-14.1 mg/g DW) of the total of 27 FG found. Quercetin and kaempferol were the major aglycones with trace amounts of myricetin. Quercetin-3-O-(2,6-?-dirhamnopyranosyl-?-glucopyranoside), quercetin-3-O-(2-?-xylopyranosyl-6-?-rhamnopyranosyl-?-glucopyranoside), and kaempferol-3-O-(3,6-?-dirhamnopyranosyl-?-glucopyranoside) were identified for the first time in currant leaves and existed in a white currant cultivar 'White Dutch' only. Kaempferol-3-O-?-(6'-malonyl)glucopyranoside was also a new compound existing in abundance in five cultivars but not in the white one. The results show the primary importance of the genetic background of the cultivars. The content of malonylated FG of special importance in cardiovascular health decreased regularly during summer. Time of collection and leaf position were more prominent factors affecting the composition than were the year of harvest or the growth latitude. Randomly collected leaves differed in their FG profiles from those collected from the middle position of new branches. PMID:26448427

  19. Distribution and evolution of glycoside hydrolase family 45 cellulases in nematodes and fungi

    PubMed Central

    2014-01-01

    Background Horizontal gene transfer (HGT) has been suggested as the mechanism by which various plant parasitic nematode species have obtained genes important in parasitism. In particular, cellulase genes have been acquired by plant parasitic nematodes that allow them to digest plant cell walls. Unlike the typical glycoside hydrolase (GH) family 5 cellulase genes which are found in several nematode species from the order Tylenchida, members of the GH45 cellulase have only been identified in a cluster including the families Parasitaphelenchidae (with the pinewood nematode Bursaphelenchus xylophilus) and Aphelenchoididae, and their origins remain unknown. Results In order to investigate the distribution and evolution of GH45 cellulase genes in nematodes and fungi we performed a wide ranging screen for novel putative GH45 sequences. This revealed that the sequences are widespread mainly in Ascomycetous fungi and have so far been found in a single major nematode lineage. Close relationships between the sequences from nematodes and fungi were found through our phylogenetic analyses. An intron position is shared by sequences from Bursaphelenchus nematodes and several Ascomycetous fungal species. Conclusions The close phylogenetic relationships and conserved gene structure between the sequences from nematodes and fungi strongly supports the hypothesis that nematode GH45 cellulase genes were acquired via HGT from fungi. The rapid duplication and turnover of these genes within Bursaphelenchus genomes demonstrate that useful sequences acquired via HGT can become established in the genomes of recipient organisms and may open novel niches for these organisms to exploit. PMID:24690293

  20. Functional Association of Catalytic and Ancillary Modules Dictates Enzymatic Activity in Glycoside Hydrolase Family 43 ?-Xylosidase*

    PubMed Central

    Moraïs, Sarah; Salama-Alber, Orly; Barak, Yoav; Hadar, Yitzhak; Wilson, David B.; Lamed, Raphael; Shoham, Yuval; Bayer, Edward A.

    2012-01-01

    ?-Xylosidases are hemicellulases that hydrolyze short xylo-oligosaccharides into xylose units, thus complementing endoxylanase degradation of the hemicellulose component of lignocellulosic substrates. Here, we describe the cloning, characterization, and kinetic analysis of a glycoside hydrolase family 43 ?-xylosidase (Xyl43A) from the aerobic cellulolytic bacterium, Thermobifida fusca. Temperature and pH optima of 55–60 °C and 5.5–6, respectively, were determined. The apparent Km value was 0.55 mm, using p-nitrophenyl xylopyranoside as substrate, and the catalytic constant (kcat) was 6.72 s?1. T. fusca Xyl43A contains a catalytic module at the N terminus and an ancillary module (termed herein as Module-A) of undefined function at the C terminus. We expressed the two recombinant modules independently in Escherichia coli and examined their remaining catalytic activity and binding properties. The separation of the two Xyl43A modules caused the complete loss of enzymatic activity, whereas potent binding to xylan was fully maintained in the catalytic module and partially in the ancillary Module-A. Nondenaturing gel electrophoresis revealed a specific noncovalent coupling of the two modules, thereby restoring enzymatic activity to 66.7% (relative to the wild-type enzyme). Module-A contributes a phenylalanine residue that functions as an essential part of the active site, and the two juxtaposed modules function as a single functional entity. PMID:22270362

  1. Reverse Literate Programming Markus Knasmller

    E-print Network

    Mössenböck, Hanspeter

    Reverse Literate Programming Markus Knasmüller Johannes Kepler University Linz Altenbergerstraße 39 costs dominate over all other life­cycle costs. Standish (1984), for example, discovered, that the time

  2. Reverse photoacoustic standoff spectroscopy

    DOEpatents

    Van Neste, Charles W. (Kingston, TN); Senesac, Lawrence R. (Knoxville, TN); Thundat, Thomas G. (Knoxville, TN)

    2011-04-12

    A system and method are disclosed for generating a reversed photoacoustic spectrum at a greater distance. A source may emit a beam to a target and a detector measures signals generated as a result of the beam being emitted on the target. By emitting a chopped/pulsed light beam to the target, it may be possible to determine the target's optical absorbance by monitoring the intensity of light collected at the detector at different wavelengths. As the wavelength of light is changed, the target may absorb or reject each optical frequency. Rejection may increase the intensity at the sensing element and absorption may decrease the intensity. Accordingly, an identifying spectrum of the target may be made with the intensity variation of the detector as a function of illuminating wavelength.

  3. Reverse Osmosis Optimization

    SciTech Connect

    McMordie Stoughton, Kate; Duan, Xiaoli; Wendel, Emily M.

    2013-08-26

    This technology evaluation was prepared by Pacific Northwest National Laboratory on behalf of the U.S. Department of Energy’s Federal Energy Management Program (FEMP). ¬The technology evaluation assesses techniques for optimizing reverse osmosis (RO) systems to increase RO system performance and water efficiency. This evaluation provides a general description of RO systems, the influence of RO systems on water use, and key areas where RO systems can be optimized to reduce water and energy consumption. The evaluation is intended to help facility managers at Federal sites understand the basic concepts of the RO process and system optimization options, enabling them to make informed decisions during the system design process for either new projects or recommissioning of existing equipment. This evaluation is focused on commercial-sized RO systems generally treating more than 80 gallons per hour.¬

  4. Reverse Osmosis Optimization

    SciTech Connect

    2013-08-01

    This technology evaluation was prepared by Pacific Northwest National Laboratory on behalf of the U.S. Department of Energy’s Federal Energy Management Program (FEMP). The technology evaluation assesses techniques for optimizing reverse osmosis (RO) systems to increase RO system performance and water efficiency. This evaluation provides a general description of RO systems, the influence of RO systems on water use, and key areas where RO systems can be optimized to reduce water and energy consumption. The evaluation is intended to help facility managers at Federal sites understand the basic concepts of the RO process and system optimization options, enabling them to make informed decisions during the system design process for either new projects or recommissioning of existing equipment. This evaluation is focused on commercial-sized RO systems generally treating more than 80 gallons per hour.

  5. Multiple stimulus reversible hydrogels

    DOEpatents

    Gutowska, Anna; Krzyminski, Karol J.

    2003-12-09

    A polymeric solution capable of gelling upon exposure to a critical minimum value of a plurality of environmental stimuli is disclosed. The polymeric solution may be an aqueous solution utilized in vivo and capable of having the gelation reversed if at least one of the stimuli fall below, or outside the range of, the critical minimum value. The aqueous polymeric solution can be used either in industrial or pharmaceutical environments. In the medical environment, the aqueous polymeric solution is provided with either a chemical or radioisotopic therapeutic agent for delivery to a specific body part. The primary advantage of the process is that exposure to one environmental stimuli alone will not cause gelation, thereby enabling the therapeutic agent to be conducted through the body for relatively long distances without gelation occurring.

  6. Multiple stimulus reversible hydrogels

    DOEpatents

    Gutowska, Anna; Krzyminski, Karol J.

    2006-04-25

    A polymeric solution capable of gelling upon exposure to a critical minimum value of a plurality of environmental stimuli is disclosed. The polymeric solution may be an aqueous solution utilized in vivo and capable of having the gelation reversed if at least one of the stimuli fall below, or outside the range of, the critical minimum value. The aqueous polymeric solution can be used either in industrial or pharmaceutical environments. In the medical environment, the aqueous polymeric solution is provided with either a chemical or radioisotopic therapeutic agent for delivery to a specific body part. The primary advantage of the process is that exposure to one environmental stimuli alone will not cause gelation, thereby enabling the therapeutic agent to be conducted through the body for relatively long distances without gelation occurring.

  7. Reverse slapper detonator

    DOEpatents

    Weingart, Richard C. (Livermore, CA)

    1990-01-01

    A reverse slapper detonator (70), and methodology related thereto, are provided. The detonator (70) is adapted to be driven by a pulse of electric power from an external source (80). A conductor (20) is disposed along the top (14), side (18), and bottom (16) surfaces of a sheetlike insulator (12). Part of the conductor (20) comprises a bridge (28), and an aperture (30) is positioned within the conductor (20), with the bridge (28) and the aperture (30) located on opposite sides of the insulator (12). A barrel (40) and related explosive charge (50) are positioned adjacent to and in alignment with the aperture (30), and the bridge (28) is buttressed with a backing layer (60). When the electric power pulse vaporizes the bridge (28), a portion of the insulator (12) is propelled through the aperture (30) and barrel (40), and against the explosive charge (50), thereby detonating it.

  8. The Geomagnetic Field During a Reversal

    NASA Technical Reports Server (NTRS)

    Heirtzler, James R.

    2003-01-01

    By modifying the IGRF it is possible to learn what may happen to the geomagnetic field during a geomagnetic reversal. If the entire IGRF reverses then the declination and inclination only reverse when the field strength is zero. If only the dipole component of the IGRF reverses a large geomagnetic field remains when the dipole component is zero and he direction of the field at the end of the reversal is not exactly reversed from the directions at the beginning of the reversal.

  9. Reverse Transfer Project, Summer 1986.

    ERIC Educational Resources Information Center

    Reis, Elizabeth

    In 1986, a Reverse Transfer Project was initiated at Moraine Valley Community College (MVCC) in order to promote the summer school attendance at MVCC of "reverse transfer" students (i.e., students who attended another institution during the regular academic year). A mailing, containing a cover letter, informational brochure, summer catalog, and…

  10. Preference Reversal in Multiattribute Choice

    ERIC Educational Resources Information Center

    Tsetsos, Konstantinos; Usher, Marius; Chater, Nick

    2010-01-01

    A central puzzle for theories of choice is that people's preferences between options can be reversed by the presence of decoy options (that are not chosen) or by the presence of other irrelevant options added to the choice set. Three types of reversal effect reported in the decision-making literature, the attraction, compromise, and similarity…

  11. Reversible simulation of irreversible computation

    NASA Astrophysics Data System (ADS)

    Li, Ming; Tromp, John; Vitányi, Paul

    1998-09-01

    Computer computations are generally irreversible while the laws of physics are reversible. This mismatch is penalized by among other things generating excess thermic entropy in the computation. Computing performance has improved to the extent that efficiency degrades unless all algorithms are executed reversibly, for example by a universal reversible simulation of irreversible computations. All known reversible simulations are either space hungry or time hungry. The leanest method was proposed by Bennett and can be analyzed using a simple ‘reversible’ pebble game. The reachable reversible simulation instantaneous descriptions (pebble configurations) of such pebble games are characterized completely. As a corollary we obtain the reversible simulation by Bennett and, moreover, show that it is a space-optimal pebble game. We also introduce irreversible steps and give a theorem on the tradeoff between the number of allowed irreversible steps and the memory gain in the pebble game. In this resource-bounded setting the limited erasing needs to be performed at precise instants during the simulation. The reversible simulation can be modified so that it is applicable also when the simulated computation time is unknown.

  12. Flavonol glycosides of sea buckthorn (Hippophaë rhamnoides ssp. sinensis) and lingonberry (Vaccinium vitis-idaea) are bioavailable in humans and monoglucuronidated for excretion.

    PubMed

    Lehtonen, Henna-Maria; Lehtinen, Outi; Suomela, Jukka-Pekka; Viitanen, Matti; Kallio, Heikki

    2010-01-13

    Glucuronidation and excretion of sea buckthorn and lingonberry flavonols were investigated in a postprandial trial by analyzing the intact forms of flavonol glycosides as well as glucuronides in plasma, urine, and feces. Four study subjects consumed sea buckthorn (study day 1) and lingonberry (study day 2) breakfasts, and blood, urine, and fecal samples were collected for 8, 24, and 48 h, respectively. Both glycosides and glucuronides of the flavonol quercetin as well as kaempferol glucuronides were detected in urine and plasma samples after the consumption of lingonberries; 14% of flavonols in urine were glycosides, and 86% were glucuronidated forms (wt %). After the consumption of sea buckthorn, 5% of flavonols excreted in urine were detected intact, and 95% as the glucuronides (wt %). Solely glucuronides of flavonols isorhamnetin and quercetin were found in plasma after the consumption of sea buckthorn berries. Only glycosides were detected in the feces after each berry trial. Flavonol glycosides and glucuronides remained in blood and urine quite long, and the peak concentrations appeared slightly later than previously described. The berries seemed to serve as a good flavonol supply, providing steady flavonol input for the body for a relatively long time. PMID:20050706

  13. Classical Analog to Entanglement Reversibility.

    PubMed

    Chitambar, Eric; Fortescue, Ben; Hsieh, Min-Hsiu

    2015-08-28

    In this Letter we study the problem of secrecy reversibility. This asks when two honest parties can distill secret bits from some tripartite distribution p(XYZ) and transform secret bits back into p(XYZ) at equal rates using local operation and public communication. This is the classical analog to the well-studied problem of reversibly concentrating and diluting entanglement in a quantum state. We identify the structure of distributions possessing reversible secrecy when one of the honest parties holds a binary distribution, and it is possible that all reversible distributions have this form. These distributions are more general than what is obtained by simply constructing a classical analog to the family of quantum states known to have reversible entanglement. An indispensable tool used in our analysis is a conditional form of the Gács-Körner common information. PMID:26371633

  14. Classical Analog to Entanglement Reversibility

    NASA Astrophysics Data System (ADS)

    Chitambar, Eric; Fortescue, Ben; Hsieh, Min-Hsiu

    2015-08-01

    In this Letter we study the problem of secrecy reversibility. This asks when two honest parties can distill secret bits from some tripartite distribution pX Y Z and transform secret bits back into pX Y Z at equal rates using local operation and public communication. This is the classical analog to the well-studied problem of reversibly concentrating and diluting entanglement in a quantum state. We identify the structure of distributions possessing reversible secrecy when one of the honest parties holds a binary distribution, and it is possible that all reversible distributions have this form. These distributions are more general than what is obtained by simply constructing a classical analog to the family of quantum states known to have reversible entanglement. An indispensable tool used in our analysis is a conditional form of the Gács-Körner common information.

  15. Biochemical characterization of a glycoside hydrolase family 61 endoglucanase from Aspergillus kawachii.

    PubMed

    Koseki, Takuya; Mese, Yuichiro; Fushinobu, Shinya; Masaki, Kazuo; Fujii, Tsutomu; Ito, Kiyoshi; Shiono, Yoshihito; Murayama, Tetsuya; Iefuji, Haruyuki

    2008-01-01

    The glycoside hydrolase family 61 endoglucanase from Aspergillus kawachii (AkCel61) is a modular enzyme that consists of a catalytic domain and a carbohydrate-binding module belonging to family 1 (CBM1) that are connected by a Ser-Thr linker region longer than 100 amino acids. We expressed the recombinant AkCel61, wild-type enzyme (rAkCel61), and a truncated enzyme consisting of the catalytic domain (rAkCel61DeltaCBM) in Pichia pastoris and analyzed their biochemical properties. Purified rAkCel61 and rAkCel61DeltaCBM migrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and were demonstrated to have apparent molecular masses of 81,000 and 34,000 Da, respectively. After treatment with endoglycosidase H, both proteins showed an increase in mobility, thus, demonstrating estimated molecular masses of 78,000 and 28,000 Da, respectively. Mass spectrometry analysis revealed that rAkCel61 and rAkCel61DeltaCBM expressed in P. pastoris are heterogeneous due to protein glycosylation. The rAkCel61 protein bound to crystalline cellulose but not to arabinoxylan. The rAkCel61 and rAkCel61DeltaCBM proteins produced small amounts of oligosaccharides from soluble carboxymethylcellulose. They also exhibited a slight hydrolytic activity toward laminarin. However, they showed no detectable activity toward microcrystalline cellulose, arabinoxylan, and pectin. Both recombinant enzymes also showed no detectable activity toward p-nitrophenyl beta-D: -glucoside, p-nitrophenyl beta-D: -cellobioside, and p-nitrophenyl beta-D -cellotrioside. PMID:18071646

  16. Processivity, Substrate Positioning, and Binding: The Role of Polar Residues in a Family 18 Glycoside Hydrolase.

    PubMed

    Hamre, Anne Grethe; Jana, Suvamay; Reppert, Nicole K; Payne, Christina M; Sørlie, Morten

    2015-12-15

    The enzymatic degradation of recalcitrant polysaccharides such as cellulose (?-1,4-linked glucose) and chitin (?-1,4-linked N-acetylglucosamine) by glycoside hydrolases (GHs) is of significant biological and economical importance. In nature, depolymerization is primarily accomplished by processive GHs, which remain attached to the substrate between subsequent hydrolytic reactions. Recent computational efforts have suggested that the processive ability of a GH is directly linked to the ligand binding free energy. The contribution of individual aromatic residues in the active site of these enzymes has been extensively studied. In this study, we offer the first experimental evidence confirming correlation of binding free energy and degree of processivity and evidence that polar residues are essential for maintaining processive ability. Exchanging Thr(276) with Ala in substrate binding subsite -2 in the processive ChiA of Serratia marcescens results in a decrease in both the enthalpy (2.6 and 3.8 kcal/mol) and free energy (0.5 and 2.2 kcal/mol) for the binding to the substrate (GlcNAc)6 and the inhibitor allosamidin, respectively, compared to that of the wild type. Moreover, the initial apparent processivity as measured by [(GlcNAc)2]/[GlcNAc] ratios (17.1 ± 0.4) and chitin degradation efficiency (20%) are greatly reduced for ChiA-T276A versus those of the wild type (30.1 ± 1.5 and 75%, respectively). Mutation of Arg(172) to Ala reduces the level of recognition and positioning of the substrate into the active site. Molecular dynamics simulations indicate ChiA-R172A behaves like the wild type, but the dynamics of ChiA-T276A are greatly influenced by mutation, which is reflective of their influence on processivity. PMID:26503416

  17. Experimental and DFT studies on the antioxidant activity of a C-glycoside from Rhynchosia capitata

    NASA Astrophysics Data System (ADS)

    Praveena, R.; Sadasivam, K.; Kumaresan, R.; Deepha, V.; Sivakumar, Raman

    2013-02-01

    Rhynchosia capitata (=Glycine capitata) Heyne ex roth, was found to possess polyphenolics including flavonoids, which acts as potential antioxidant. The study of ethanolic extract of roots and leaves reveals that the leaves possess high polyphenolics including flavonoids than roots. This was also confirmed by DPPH radical scavenging activity. Leaf powder of the plant was extracted with different solvents by soxhlet apparatus in the order of increasing polarity. The DPPH scavenging activity of methanol fraction was found to be high compared to the crude extract and other fractions. Nitric oxide scavenging activity was dominant in chloroform fraction compared to methanol fraction. Presence of flavonoids especially vitexin, a C-glycoside in methanol and chloroform fractions were confirmed by high pressure thin layer chromatography (HPTLC) analysis. The structural and molecular characteristics of naturally occurring flavonoid, vitexin was investigated in gas phase using density functional theory (DFT) approach with B3LYP/6-311G(d,p) level of theory. Analysis of bond dissociation enthalpy (BDE) reveals that the OH site that requires minimum energy for dissociation is 4'-OH from B-ring. To explore the radical scavenging activity of vitexin, the adiabatic ionization potential, electron affinity, hardness, softness, electronegativity and electrophilic index properties were computed and interpreted. The nonvalidity of Koopman's theorem has been verified by the computation of Eo and Ev energy magnitudes. Interestingly, from BDE calculations it was observed that BDE for 4'-OH, 5-OH and 7-OH are comparatively low for vitexin than its aglycone apigenin and this may be due to the presence of C-8 glucoside in vitexin. To substantiate this, plot of frontier molecular orbital and spin density distribution analysis for neutral and the corresponding radical species for the compound vitexin have been presented.

  18. Identifying glycoside hydrolase family 18 genes in the mycoparasitic fungal species Clonostachys rosea.

    PubMed

    Tzelepis, Georgios; Dubey, Mukesh; Jensen, Dan Funck; Karlsson, Magnus

    2015-07-01

    Clonostachysrosea is a mycoparasitic fungal species that is an efficient biocontrol agent against many plant diseases. During mycoparasitic interactions, one of the most crucial steps is the hydrolysis of the prey's fungal cell wall, which mainly consists of glucans, glycoproteins and chitin. Chitinases are hydrolytic enzymes responsible for chitin degradation and it is suggested that they play an important role in fungal-fungal interactions. Fungal chitinases belong exclusively to the glycoside hydrolase (GH) family 18.These GH18 proteins are categorized into three distinct phylogenetic groups (A, B and C), subdivided into several subgroups. In this study, we identified 14 GH18 genes in the C. rosea genome, which is remarkably low compared with the high numbers found in mycoparasitic Trichoderma species. Phylogenetic analysis revealed that C. rosea contains eight genes in group A, two genes in group B, two genes in group C, one gene encoding a putative ENGase (endo-?-N-acetylglucosaminidase) and the ech37 gene, which is of bacterial origin. Gene expression analysis showed that only two genes had higher transcription levels during fungal-fungal interactions, while eight out of 14 GH18 genes were triggered by chitin. Furthermore, deletion of the C group chiC2 gene decreased the growth inhibitory activity of C. rosea culture filtrates against Botrytis cinerea and Rhizoctonia solani, although the biocontrol ability of C. rosea against B. cinerea was not affected. In addition, a potential role of the CHIC2 chitinase in the sporulation process was revealed. These results provide new information about the role of GH18 proteins in mycoparasitic interactions. PMID:25881898

  19. Synergism of Glycoside Hydrolase Secretomes from Two Thermophilic Bacteria Cocultivated on Lignocellulose

    PubMed Central

    Zhang, Kundi; Chen, Xiaohua; Schwarz, Wolfgang H.

    2014-01-01

    Two cellulolytic thermophilic bacterial strains, CS-3-2 and CS-4-4, were isolated from decayed cornstalk by the addition of growth-supporting factors to the medium. According to 16S rRNA gene-sequencing results, these strains belonged to the genus Clostridium and showed 98.87% and 98.86% identity with Clostridium stercorarium subsp. leptospartum ATCC 35414T and Clostridium cellulosi AS 1.1777T, respectively. The endoglucanase and exoglucanase activities of strain CS-4-4 were approximately 3 to 5 times those of strain CS-3-2, whereas the ?-glucosidase activity of strain CS-3-2 was 18 times higher than that of strain CS-4-4. The xylanase activity of strain CS-3-2 was 9 times that of strain CS-4-4, whereas the ?-xylosidase activity of strain CS-4-4 was 27 times that of strain CS-3-2. The enzyme activities in spent cultures following cocultivation of the two strains with cornstalk as the substrate were much greater than those in pure cultures or an artificial mixture of samples, indicating synergism of glycoside hydrolase secretomes between the two strains. Quantitative measurement of the two strains in the cocultivation system indicated that strain CS-3-2 grew robustly during the initial stages, whereas strain CS-4-4 dominated the system in the late-exponential phase. Liquid chromatography-tandem mass spectrometry analysis of protein bands appearing in the native zymograms showed that ORF3880 and ORF3883 from strain CS-4-4 played key roles in the lignocellulose degradation process. Both these open reading frames (ORFs) exhibited endoglucanase and xylanase activities, but ORF3880 showed tighter adhesion to insoluble substrates at 4, 25, and 60°C owing to its five carbohydrate-binding modules (CBMs). PMID:24532065

  20. A comprehensive analysis of fifteen genes of steviol glycosides biosynthesis pathway in Stevia rebaudiana (Bertoni).

    PubMed

    Kumar, Hitesh; Kaul, Kiran; Bajpai-Gupta, Suphla; Kaul, Vijay Kumar; Kumar, Sanjay

    2012-01-15

    Stevia [Stevia rebuaidana (Bertoni); family: Asteraceae] is known to yield diterpenoid steviol glycosides (SGs), which are about 300 times sweeter than sugar. The present work analyzed the expression of various genes of the SGs biosynthesis pathway in different organs of the plant in relation to the SGs content. Of the various genes of the pathway, SrDXS, SrDXR, SrCPPS, SrKS, SrKO and three glucosyltransferases namely SrUGT85C2, SrUGT74G1 and SrUGT76G1 were reported from stevia. Here, we report cloning of seven additional full-length cDNA sequences namely, SrMCT, SrCMK, SrMDS, SrHDS, SrHDR, SrIDI and SrGGDPS followed by expression analysis of all the fifteen genes vis-à-vis SGs content analysis. SGs content was highest in the leaf at 3rd node position (node position with reference to the apical leaf as the first leaf) as compared to the leaves at other node positions. Except for SrDXR and SrKO, gene expression was maximum in leaf at 1st node and minimum in leaf at 5th node. The expression of SrKO was highest in leaf at 3rd node while in case of SrDXR expression showed an increase up to 3rd leaf and decrease thereafter. SGs accumulated maximum in leaf tissue followed by stem and root, and similar was the pattern of expression of all the fifteen genes. The genes responded to the modulators of the terpenopids biosynthesis. Gibberellin (GA(3)) treatment up-regulated the expression of SrMCT, SrCMK, SrMDS and SrUGT74G1, whereas methyl jasmonate and kinetin treatment down-regulated the expression of all the fifteen genes of the pathway. PMID:22037480

  1. Crystal Structures of a Glycoside Hydrolase Family 20 Lacto-N-biosidase from Bifidobacterium bifidum *

    PubMed Central

    Ito, Tasuku; Katayama, Takane; Hattie, Mitchell; Sakurama, Haruko; Wada, Jun; Suzuki, Ryuichiro; Ashida, Hisashi; Wakagi, Takayoshi; Yamamoto, Kenji; Stubbs, Keith A.; Fushinobu, Shinya

    2013-01-01

    Human milk oligosaccharides contain a large variety of oligosaccharides, of which lacto-N-biose I (Gal-?1,3-GlcNAc; LNB) predominates as a major core structure. A unique metabolic pathway specific for LNB has recently been identified in the human commensal bifidobacteria. Several strains of infant gut-associated bifidobacteria possess lacto-N-biosidase, a membrane-anchored extracellular enzyme, that liberates LNB from the nonreducing end of human milk oligosaccharides and plays a key role in the metabolic pathway of these compounds. Lacto-N-biosidase belongs to the glycoside hydrolase family 20, and its reaction proceeds via a substrate-assisted catalytic mechanism. Several crystal structures of GH20 ?-N-acetylhexosaminidases, which release monosaccharide GlcNAc from its substrate, have been determined, but to date, a structure of lacto-N-biosidase is unknown. Here, we have determined the first three-dimensional structures of lacto-N-biosidase from Bifidobacterium bifidum JCM1254 in complex with LNB and LNB-thiazoline (Gal-?1,3-GlcNAc-thiazoline) at 1.8-? resolution. Lacto-N-biosidase consists of three domains, and the C-terminal domain has a unique ?-trefoil-like fold. Compared with other ?-N-acetylhexosaminidases, lacto-N-biosidase has a wide substrate-binding pocket with a ?2 subsite specific for ?-1,3-linked Gal, and the residues responsible for Gal recognition were identified. The bound ligands are recognized by extensive hydrogen bonds at all of their hydroxyls consistent with the enzyme's strict substrate specificity for the LNB moiety. The GlcNAc sugar ring of LNB is in a distorted conformation near 4E, whereas that of LNB-thiazoline is in a 4C1 conformation. A possible conformational pathway for the lacto-N-biosidase reaction is discussed. PMID:23479733

  2. Phylogenetic, Microbiological, and Glycoside Hydrolase Diversities within the Extremely Thermophilic, Plant Biomass-Degrading Genus Caldicellulosiruptor?

    PubMed Central

    Blumer-Schuette, Sara E.; Lewis, Derrick L.; Kelly, Robert M.

    2010-01-01

    Phylogenetic, microbiological, and comparative genomic analyses were used to examine the diversity among members of the genus Caldicellulosiruptor, with an eye toward the capacity of these extremely thermophilic bacteria to degrade the complex carbohydrate content of plant biomass. Seven species from this genus (C. saccharolyticus, C. bescii, C. hydrothermalis, C. owensensis, C. kronotskyensis, C. lactoaceticus, and C. kristjanssonii) were compared on the basis of 16S rRNA gene phylogeny and cross-species DNA-DNA hybridization to a whole-genome C. saccharolyticus oligonucleotide microarray, revealing that C. saccharolyticus was the most divergent within this group. Growth physiology of the seven Caldicellulosiruptor species on a range of carbohydrates showed that, while all could be cultivated on acid-pretreated switchgrass, only C. saccharolyticus, C. bescii, C. kronotskyensis, and C. lactoaceticus were capable of hydrolyzing Whatman no. 1 filter paper. Two-dimensional gel electrophoresis of the secretomes from cells grown on microcrystalline cellulose revealed that the cellulolytic species also had diverse secretome fingerprints. The C. saccharolyticus secretome contained a prominent S-layer protein that appears in the cellulolytic Caldicellulosiruptor species, suggesting a possible role in cell-substrate interactions. Growth physiology also correlated with glycoside hydrolase (GH) and carbohydrate-binding module (CBM) inventories for the seven bacteria, as deduced from draft genome sequence information. These inventories indicated that the absence of a single GH and CBM family was responsible for diminished cellulolytic capacity. Overall, the genus Caldicellulosiruptor appears to contain more genomic and physiological diversity than previously reported, and this argues for continued efforts to isolate new members from high-temperature terrestrial biotopes. PMID:20971878

  3. Structural Analysis of a Glycoside Hydrolase Family 11 Xylanase from Neocallimastix patriciarum

    PubMed Central

    Cheng, Ya-Shan; Chen, Chun-Chi; Huang, Chun-Hsiang; Ko, Tzu-Ping; Luo, Wenhua; Huang, Jian-Wen; Liu, Je-Ruei; Guo, Rey-Ting

    2014-01-01

    The catalytic domain of XynCDBFV, a glycoside hydrolase family 11 (GH11) xylanase from ruminal fungus Neocallimastix patriciarum previously engineered to exhibit higher specific activity and broader pH adaptability, holds great potential in commercial applications. Here, the crystal structures of XynCDBFV and its complex with substrate were determined to 1.27–1.43 ? resolution. These structures revealed a typical GH11 ?-jelly-roll fold and detailed interaction networks between the enzyme and ligands. Notably, an extended N-terminal region (NTR) consisting of 11 amino acids was identified in the XynCDBFV structure, which is found unique among GH11 xylanases. The NTR is attached to the catalytic core by hydrogen bonds and stacking forces along with a disulfide bond between Cys-4 and Cys-172. Interestingly, the NTR deletion mutant retained 61.5% and 19.5% enzymatic activity at 55 °C and 75 °C, respectively, compared with the wild-type enzyme, whereas the C4A/C172A mutant showed 86.8% and 23.3% activity. These results suggest that NTR plays a role in XynCDBFV thermostability, and the Cys-4/Cys-172 disulfide bond is critical to the NTR-mediated interactions. Furthermore, we also demonstrated that Pichia pastoris produces XynCDBFV with higher catalytic activity at higher temperature than Escherichia coli, in which incorrect NTR folding and inefficient disulfide bond formation might have occurred. In conclusion, these structural and functional analyses of the industrially favored XynCDBFV provide a molecular basis of NTR contribution to its thermostability. PMID:24619408

  4. Molecular Evolution of Glycoside Hydrolase Genes in the Western Corn Rootworm (Diabrotica virgifera virgifera)

    PubMed Central

    Eyun, Seong-il; Wang, Haichuan; Pauchet, Yannick; ffrench-Constant, Richard H.; Benson, Andrew K.; Valencia-Jiménez, Arnubio; Moriyama, Etsuko N.; Siegfried, Blair D.

    2014-01-01

    Cellulose is an important nutritional resource for a number of insect herbivores. Digestion of cellulose and other polysaccharides in plant-based diets requires several types of enzymes including a number of glycoside hydrolase (GH) families. In a previous study, we showed that a single GH45 gene is present in the midgut tissue of the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). However, the presence of multiple enzymes was also suggested by the lack of a significant biological response when the expression of the gene was silenced by RNA interference. In order to clarify the repertoire of cellulose-degrading enzymes and related GH family proteins in D. v. virgifera, we performed next-generation sequencing and assembled transcriptomes from the tissue of three different developmental stages (eggs, neonates, and third instar larvae). Results of this study revealed the presence of seventy-eight genes that potentially encode GH enzymes belonging to eight families (GH45, GH48, GH28, GH16, GH31, GH27, GH5, and GH1). The numbers of GH45 and GH28 genes identified in D. v. virgifera are among the largest in insects where these genes have been identified. Three GH family genes (GH45, GH48, and GH28) are found almost exclusively in two coleopteran superfamilies (Chrysomeloidea and Curculionoidea) among insects, indicating the possibility of their acquisitions by horizontal gene transfer rather than simple vertical transmission from ancestral lineages of insects. Acquisition of GH genes by horizontal gene transfers and subsequent lineage-specific GH gene expansion appear to have played important roles for phytophagous beetles in specializing on particular groups of host plants and in the case of D. v. virgifera, its close association with maize. PMID:24718603

  5. Insight into Dominant Cellulolytic Bacteria from Two Biogas Digesters and Their Glycoside Hydrolase Genes

    PubMed Central

    Zhang, Jun; Zhang, Lei; Geng, Alei; Liu, Fanghua; Zhao, Guoping; Wang, Shengyue; Zhou, Zhihua; Yan, Xing

    2015-01-01

    Diverse cellulolytic bacteria are essential for maintaining high lignocellulose degradation ability in biogas digesters. However, little was known about functional genes and gene clusters of dominant cellulolytic bacteria in biogas digesters. This is the foundation to understand lignocellulose degradation mechanisms of biogas digesters and apply these gene resource for optimizing biofuel production. A combination of metagenomic and 16S rRNA gene clone library methods was used to investigate the dominant cellulolytic bacteria and their glycoside hydrolase (GH) genes in two biogas digesters. The 16S rRNA gene analysis revealed that the dominant cellulolytic bacteria were strains closely related to Clostridium straminisolvens and an uncultured cellulolytic bacterium designated BG-1. To recover GH genes from cellulolytic bacteria in general, and BG-1 in particular, a refined assembly approach developed in this study was used to assemble GH genes from metagenomic reads; 163 GH-containing contigs ? 1 kb in length were obtained. Six recovered GH5 genes that were expressed in E. coli demonstrated multiple lignocellulase activities and one had high mannanase activity (1255 U/mg). Eleven fosmid clones harboring the recovered GH-containing contigs were sequenced and assembled into 10 fosmid contigs. The composition of GH genes in the 163 assembled metagenomic contigs and 10 fosmid contigs indicated that diverse GHs and lignocellulose degradation mechanisms were present in the biogas digesters. In particular, a small portion of BG-1 genome information was recovered by PhyloPythiaS analysis. The lignocellulase gene clusters in BG-1 suggested that it might use a possible novel lignocellulose degradation mechanism to efficiently degrade lignocellulose. Dominant cellulolytic bacteria of biogas digester possess diverse GH genes, not only in sequences but also in their functions, which may be applied for production of biofuel in the future. PMID:26070087

  6. Plan Reversals for Recovery in Execution Monitoring

    E-print Network

    Faber, Wolfgang

    in various ways such as by (a) finding a reverse plan, (b) reversing the given plan, (c) reversing action. The most general one, (a), amounts to solving a planning problem, and any plan is acceptable. In (b of a reverse action and a reverse plan for an action in a general frame- work, addressing both items (b) and (c

  7. Time Reversal Violation

    SciTech Connect

    Quinn, H; /SLAC

    2009-01-27

    This talk briefly reviews three types of time-asymmetry in physics, which I classify as universal, macroscopic and microscopic. Most of the talk is focused on the latter, namely the violation of T-reversal invariance in particle physics theories. In sum tests of microscopic T-invariance, or observations of its violation, are limited by the fact that, while we can measure many processes, only in very few cases can we construct a matched pair of process and inverse process and observe it with sufficient sensitivity to make a test. In both the cases discussed here we can achieve an observable T violation making use of flavor tagging, and in the second case also using the quantum properties of an antisymmetric coherent state of two B mesons to construct a CP-tag. Both these tagging properties depend only on very general properties of the flavor and/or CP quantum numbers and so provide model independent tests for T-invariance violations. The microscopic laws of physics are very close to T-symmetric. There are small effects that give CP- and T-violating processes in three-generation-probing weak decays. Where a T-violating observable can be constructed we see the relationships between T-violation and CP-violation expected in a CPT conserving theory. These microscopic effects are unrelated to the 'arrow of time' that is defined by increasing entropy, or in the time direction defined by the expansion of our Universe.

  8. Reversible micromachining locator

    DOEpatents

    Salzer, Leander J. (Los Alamos, NM); Foreman, Larry R. (Los Alamos, NM)

    1999-01-01

    This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved.

  9. Time-Reversal Violation

    NASA Astrophysics Data System (ADS)

    Bernabéu, José; Martínez-Vidal, Fernando

    2015-10-01

    The violation of CP symmetry between matter and antimatter in the neutral K and B meson systems is well established, with a high degree of consistency between all available experimental measurements and with the Standard Model of particle physics. On the basis of the up-to-now-unbroken CPT symmetry, the violation of CP symmetry strongly suggests that the behavior of these particles under weak interactions must also be asymmetric under time reversal T. Many searches for T violation have been performed and proposed using different observables and experimental approaches. These include T-odd observables, such as triple products in weak decays, and genuine observables, such as permanent electric dipole moments of nondegenerate stationary states and the breaking of the reciprocity relation. We discuss the conceptual basis of the required exchange of initial and final states with unstable particles, using quantum entanglement and the decay as a filtering measurement, for the case of neutral B and K mesons. Using this method, the BaBar experiment at SLAC has clearly observed T violation in B mesons.

  10. Reverse osmosis reverses conventional wisdom with Superfund cleanup success

    SciTech Connect

    Collins, M. ); Miller, K. )

    1994-09-01

    Although widely recognized as the most efficient means of water purification, reverse osmosis has not been considered effective for remediating hazardous wastewater. Scaling and fouling, which can cause overruns and downtime, and require membrane replacement, have inhibited success in high-volume wastewater applications. Despite this background, a reverse osmosis technology developed in Europe recently was used successfully to treat large volumes of contaminated water at a major Superfund site in Texas. The technology's success there may increase the chances for reverse osmosis to find wider use in future cleanups and other waste treatment applications.

  11. Glycosidic moiety changes the spectroscopic properties of DL-?-tocopherol in DMSO/water solution and in organic solvents

    NASA Astrophysics Data System (ADS)

    Neunert, G.; Polewski, P.; Walejko, P.; Markiewicz, M.; Witkowski, S.; Polewski, K.

    2009-07-01

    In this study we estimated how conjugation with a sugar moiety influences the spectral properties of tocopherol and relate the spectroscopic properties of glycosides to solvent properties such as viscosity and polarity. Spectroscopic properties (absorption, fluorescence, fluorescence anisotropy and fluorescence lifetime) of three DL-?-tocopheryl glycosides (DL-?-tocopheryl orthoacetate derivative and glycosides of DL-?-tocopherol model compounds: 2,2,5,7,8-pentamethyl-6-chromanol and Trolox) were studied in DMSO/water solution. In all investigated compounds dissolved in DMSO/water mixture the absorption and emission maxima were blue-shifted. The fluorescence lifetimes were longer compared with those obtained for the parent compounds, except for the Trolox glucoside, in which it was shorter. The observed effect is connected with an increase in the electronic energy in the ground state due to electron rearrangement in the chromanol system caused by interaction with the sugar moiety. The extent of the spectral shift is related to the sugar moiety substituted at the phenolic oxygen rather than to substitution at the 2a position in the chromanol ring. The fluorescent properties of DL-?-tocopheryl glucoside in organic solvents were measured. The Stokes shift was related to the orientational polarizability of the solvents. The study of viscosity suggested two different mechanisms explaining the results observed in a low- and high-viscosity environment. The results indicated the fundamental role of interactions between the chromophore and sugar moiety in a low-viscosity environment. The results obtained at high values of viscosity are discussed in terms of a frictional boundary solvent-solute interaction model.

  12. Stabilization of cucurbitacin E-glycoside, a feeding stimulant for diabroticite beetles, extracted from bitter Hawkesbury watermelon

    PubMed Central

    Martin, Phyllis A.W.; Blackburn, Michael; Schroder, Robert F.W.; Matsuo, Koharto; Li, Betty W.

    2002-01-01

    Cucurbitacins are feeding stimulants for diabroticite beetles, including corn rootworms and cucumber beetles, which can be added to a bait containing an insecticide thereby reducing the levels of other insecticide treatments needed to control these pests. One of them, cucurbitacin E-glycoside, is water soluble and easily processed from mutant bitter Hawkesbury watermelons (BHW) that express elevated levels of cucurbitacin. Storage of BHW extract at room temperature resulted in a 92% reduction of cucurbitacin E-glycoside over two months, while refrigeration or freezing resulted in a 60% loss of the active ingredient during this time. The loss of the active ingredient was correlated with an increase in BHW extract pH from 5 to greater than 9. The increase in pH of the BHW extracts at room temperature appeared to be due to the growth of certain bacteria, especially Bacillus spp. In refrigerated extracts, the pH remained relatively constant, and bacterial growth was dominated by bacteria such as Lactobacilli. An alternative to refrigeration is concentration of BHW extract. One means of concentration is spray drying, but the high sugar content of the BHW extract (20mg/ml glucose, 40mg/ml fructose) makes this technique impractical. Fermentation of the BHW extract by the yeast, Saccharomyces boulardii, eliminated the sugars and did not raise the pH nor alter the cucurbitacin E-glycoside content of the extract. Elimination of the sugars by fermentation produced an extract that could be successfully spray dried. BHW extract fermented by S. boulardii produced a higher level of feeding stimulation for spotted cucumber beetles in laboratory choice tests. When applied to cucumbers, there was no difference in control of spotted and striped cucumber beetles between baits of fresh or fermented juices combined with the same insecticide. PMID:15455053

  13. Streptococcus pneumoniae Endohexosaminidase D, Structural and Mechanistic Insight into Substrate-Assisted Catalysis in Family 85 Glycoside Hydrolases

    SciTech Connect

    Abbott, D.; Macauley, M; Vocadlo, D; Boraston, A

    2009-01-01

    Endo-?-d-glucosaminidases from family 85 of glycoside hydrolases (GH85 endohexosaminidases) act to cleave the glycosidic linkage between the two N-acetylglucosamine units that make up the chitobiose core of N-glycans. Endohexosaminidase D (Endo-D), produced by Streptococcus pneumoniae, is believed to contribute to the virulence of this organism by playing a role in the deglycosylation of IgG antibodies. Endohexosaminidases have received significant attention for this reason and, moreover, because they are powerful tools for chemoenzymatic synthesis of proteins having defined glycoforms. Here we describe mechanistic and structural studies of the catalytic domain (SpGH85) of Endo-D that provide compelling support for GH85 enzymes using a catalytic mechanism involving substrate-assisted catalysis. Furthermore, the structure of SpGH85 in complex with the mechanism-based competitive inhibitor NAG-thiazoline (Kd = 28 ?m) provides a coherent rationale for previous mutagenesis studies of Endo-D and other related GH85 enzymes. We also find GH85, GH56, and GH18 enzymes have a similar configuration of catalytic residues. Notably, GH85 enzymes have an asparagine in place of the aspartate residue found in these other families of glycosidases. We propose that this residue, as the imidic acid tautomer, acts analogously to the key catalytic aspartate of GH56 and GH18 enzymes. This topographically conserved arrangement of the asparagine residue and a conserved glutamic acid, coupled with previous kinetic studies, suggests these enzymes may use an unusual proton shuttle to coordinate effective general acid and base catalysis to aid cleavage of the glycosidic bond. These results collectively provide a blueprint that may be used to facilitate protein engineering of these enzymes to improve their function as biocatalysts for synthesizing glycoproteins having defined glycoforms and also may serve as a guide for generating inhibitors of GH85 enzymes.

  14. Three-dimensional structure of a putative non-cellulosomal cohesin module from a Clostridium perfringens family 84 glycoside hydrolase.

    PubMed

    Chitayat, Seth; Gregg, Katie; Adams, Jarrett J; Ficko-Blean, Elizabeth; Bayer, Edward A; Boraston, Alisdair B; Smith, Steven P

    2008-01-01

    The genomes of myonecrotic strains of Clostridium perfringens encode a large number of secreted glycoside hydrolases. The activities of these enzymes are consistent with degradation of the mucosal layer of the human gastrointestinal tract, glycosaminoglycans and other cellular glycans found throughout the body. In many cases this is thought to aid in the propagation of the major toxins produced by C. perfringens. One such example is the family 84 glycoside hydrolases, which contains five C. perfringens members (CpGH84A-E), each displaying a unique modular architecture. The smallest and most extensively studied member, CpGH84C, comprises an N-terminal catalytic domain with beta-N-acetylglucosaminidase activity, a family 32 carbohydrate-binding module, a family 82 X-module (X82) of unknown function, and a fibronectin type-III-like module. Here we present the structure of the X82 module from CpGH84C, determined by both NMR spectroscopy and X-ray crystallography. CpGH84C X82 adopts a jell-roll fold comprising two beta-sheets formed by nine beta-strands. CpGH84C X82 displays distant amino acid sequence identity yet close structural similarity to the cohesin modules of cellulolytic anaerobic bacteria. Cohesin modules are responsible for the assembly of numerous hydrolytic enzymes in a cellulose-degrading multi-enzyme complex, termed the cellulosome, through a high-affinity interaction with the calcium-binding dockerin module. A planar surface is located on the face of the CpGH84 X82 structure that corresponds to the dockerin-binding region of cellulolytic cohesin modules and has the approximate dimensions to accommodate a dockerin module. The presence of cohesin-like X82 modules in glycoside hydrolases of C. perfringens is an indication that the formation of novel X82-dockerin mediated multi-enzyme complexes, with potential roles in pathogenesis, is possible. PMID:17999932

  15. Ultra-HPLC method for quality and adulterant assessment of steviol glycosides sweeteners - Stevia rebaudiana and stevia products.

    PubMed

    Wang, Yan-Hong; Avula, Bharathi; Tang, Wenzhao; Wang, Mei; Elsohly, Mahmoud A; Khan, Ikhlas A

    2015-01-01

    Stevia products are advertised as a zero-calorie sweetener. Glucose should not be an intrinsic component of this product, but it has been identified from some of stevia products in a preliminary study. An UHPLC-UV method was developed for the quantitative determination of glucose from stevia products. After stevia products reacted with 1-phenyl-3-methyl-5-pyrazolone (PMP), PMP derivatives were analysed and glucose was found in seven out of 35 products in the range 0.3-91.5% (w/w). Two products, SPR-12 and SPR-27, showed remarkable amounts of glucose at 61.6% and 91.5%, respectively. In addition, an UHPLC-UV-evaporative light-scattering detector (ELSD) method was developed for the quantitative determination of rebaudioside A, stevioside, rebaudioside D, dulcoside A and steviolbioside from Stevia rebaudiana and related products. In a 12 min run, five steviol glycosides were baseline-separated. ELSD and ultraviolet (UV) detections showed comparable results. The LC methods were validated for linearity, repeatability, accuracy, limits of detection (LOD) and limits of quantification (LOQ). For steviol glycosides, the LODs and LOQs were found to be less than 10 and 30 ?g ml(-1), respectively. The RSD for intra- and inter-day analyses was less than 2.5%, and the recovery was 90-94%. For PMP derivative of glucose, the LOD and LOQ were 0.01 and 0.05 ?g ml(-1), respectively. Repeatability (RSD) was less than 2.6%; recovery was 98.6-101.7%. The methods are useful for the identification, quality assurance, and adulterant assessment of S. rebaudiana and steviol glycosides sweeteners (stevia products). PMID:25822696

  16. Structural genomics analysis of uncharacterized protein families overrepresented in human gut bacteria identifies a novel glycoside hydrolase

    PubMed Central

    2014-01-01

    Background Bacteroides spp. form a significant part of our gut microbiome and are well known for optimized metabolism of diverse polysaccharides. Initial analysis of the archetypal Bacteroides thetaiotaomicron genome identified 172 glycosyl hydrolases and a large number of uncharacterized proteins associated with polysaccharide metabolism. Results BT_1012 from Bacteroides thetaiotaomicron VPI-5482 is a protein of unknown function and a member of a large protein family consisting entirely of uncharacterized proteins. Initial sequence analysis predicted that this protein has two domains, one on the N- and one on the C-terminal. A PSI-BLAST search found over 150 full length and over 90 half size homologs consisting only of the N-terminal domain. The experimentally determined three-dimensional structure of the BT_1012 protein confirms its two-domain architecture and structural analysis of both domains suggests their specific functions. The N-terminal domain is a putative catalytic domain with significant similarity to known glycoside hydrolases, the C-terminal domain has a beta-sandwich fold typically found in C-terminal domains of other glycosyl hydrolases, however these domains are typically involved in substrate binding. We describe the structure of the BT_1012 protein and discuss its sequence-structure relationship and their possible functional implications. Conclusions Structural and sequence analyses of the BT_1012 protein identifies it as a glycosyl hydrolase, expanding an already impressive catalog of enzymes involved in polysaccharide metabolism in Bacteroides spp. Based on this we have renamed the Pfam families representing the two domains found in the BT_1012 protein, PF13204 and PF12904, as putative glycoside hydrolase and glycoside hydrolase-associated C-terminal domain respectively. PMID:24742328

  17. The GH130 Family of Mannoside Phosphorylases Contains Glycoside Hydrolases That Target ?-1,2-Mannosidic Linkages in Candida Mannan*

    PubMed Central

    Cuskin, Fiona; Baslé, Arnaud; Ladevèze, Simon; Day, Alison M.; Gilbert, Harry J.; Davies, Gideon J.; Potocki-Véronèse, Gabrielle; Lowe, Elisabeth C.

    2015-01-01

    The depolymerization of complex glycans is an important biological process that is of considerable interest to environmentally relevant industries. ?-Mannose is a major component of plant structural polysaccharides and eukaryotic N-glycans. These linkages are primarily cleaved by glycoside hydrolases, although recently, a family of glycoside phosphorylases, GH130, have also been shown to target ?-1,2- and ?-1,4-mannosidic linkages. In these phosphorylases, bond cleavage was mediated by a single displacement reaction in which phosphate functions as the catalytic nucleophile. A cohort of GH130 enzymes, however, lack the conserved basic residues that bind the phosphate nucleophile, and it was proposed that these enzymes function as glycoside hydrolases. Here we show that two Bacteroides enzymes, BT3780 and BACOVA_03624, which lack the phosphate binding residues, are indeed ?-mannosidases that hydrolyze ?-1,2-mannosidic linkages through an inverting mechanism. Because the genes encoding these enzymes are located in genetic loci that orchestrate the depolymerization of yeast ?-mannans, it is likely that the two enzymes target the ?-1,2-mannose residues that cap the glycan produced by Candida albicans. The crystal structure of BT3780 in complex with mannose bound in the ?1 and +1 subsites showed that a pair of glutamates, Glu227 and Glu268, hydrogen bond to O1 of ?-mannose, and either of these residues may function as the catalytic base. The candidate catalytic acid and the other residues that interact with the active site mannose are conserved in both GH130 mannoside phosphorylases and ?-1,2-mannosidases. Functional phylogeny identified a conserved lysine, Lys199 in BT3780, as a key specificity determinant for ?-1,2-mannosidic linkages. PMID:26286752

  18. Purification and enzymatic characterization of secretory glycoside hydrolase family 3 (GH3) aryl ?-glucosidases screened from Aspergillus oryzae genome.

    PubMed

    Kudo, Kanako; Watanabe, Akira; Ujiie, Seiryu; Shintani, Takahiro; Gomi, Katsuya

    2015-12-01

    By a global search of the genome database of Aspergillus oryzae, we found 23 genes encoding putative ?-glucosidases, among which 10 genes with a signal peptide belonging to glycoside hydrolase family 3 (GH3) were overexpressed in A. oryzae using the improved glaA gene promoter. Consequently, crude enzyme preparations from three strains, each harboring the genes AO090038000223 (bglA), AO090103000127 (bglF), and AO090003001511 (bglJ), showed a substrate preference toward p-nitrophenyl-?-d-glucopyranoside (pNPGlc) and thus were purified to homogeneity and enzymatically characterized. All the purified enzymes (BglA, BglF, and BglJ) preferentially hydrolyzed aryl ?-glycosides, including pNPGlc, rather than cellobiose, and these enzymes were proven to be aryl ?-glucosidases. Although the specific activity of BglF toward all the substrates tested was significantly low, BglA and BglJ showed appreciably high activities toward pNPGlc and arbutin. The kinetic parameters of BglA and BglJ for pNPGlc suggested that both the enzymes had relatively higher hydrolytic activity toward pNPGlc among the fungal ?-glucosidases reported. The thermal and pH stabilities of BglA were higher than those of BglJ, and BglA was particularly stable in a wide pH range (pH 4.5-10). In contrast, BglJ was the most heat- and alkaline-labile among the three ?-glucosidases. Furthermore, BglA was more tolerant to ethanol than BglJ; as a result, it showed much higher hydrolytic activity toward isoflavone glycosides in the presence of ethanol than BglJ. This study suggested that the mining of novel ?-glucosidases exhibiting higher activity from microbial genome sequences is of great use for the production of beneficial compounds such as isoflavone aglycones. PMID:25936960

  19. Evaluation of antiprotozoal and antimycobacterial activities of the resin glycosides and the other metabolites of Scrophularia cryptophila.

    PubMed

    Tasdemir, Deniz; Brun, Reto; Franzblau, Scott G; Sezgin, Yükselen; Calis, Ihsan

    2008-03-01

    Resin glycosides are secondary metabolites exclusive to the convolvulaceous plants. In this study, crypthophilic acids A-C (1-3), the first resin glycosides occurring in another family (Scrophulariaceae), and the other constituents of Scrophularia cryptophila were examined for in vitro antiprotozoal and antimycobacterial potentials. Except for crypthophilic acid B (2), all tested compounds exhibited growth-inhibitory effect against Trypanosoma brucei rhodesiense, with l-tryptophan (6) and buddlejasaponin III (7) being the most potent ones (IC(50)'s 4.1 and 9.7 microg/ml). In contrast, the activity towards Trypanosoma cruzi was poor, and only crypthophilic acid C (3), 6 and 7 were trypanocidal at concentrations above 40 microg/ml. With the exception of 2 and 6, all compounds were active against Leishmania donovani. Harpagide (4) and 3 emerged as the best leishmanicidal agents (IC(50)'s 2.0 and 5.8 microg/ml). Only compounds 3, 6 and 7 showed antimalarial activity against Plasmodium falciparum with IC(50) values of 4.2, 16.6 and 22.4 microg/ml. Overall the best and broadest spectrum activity was presented by compounds 3 and 7, as they inhibited all four parasitic protozoa. None of the isolates had significant activity against Mycobacterium tuberculosis (MICs >100 microg/ml) or were toxic towards mammalian (L6) cells. This is the first report of antiprotozoal activity for natural resin glycosides, as well as for harpagide (4), acetylharpagide (5), tryptophan (6) and buddlejasaponin III (7). PMID:17761408

  20. Bionectriol A, a polyketide glycoside from the fungus Bionectria sp. associated with the fungus-growing ant, Apterostigma dentigerum

    PubMed Central

    Freinkman, Elizaveta; Oh, Dong-Chan; Scott, Jarrod J.; Currie, Cameron R.; Clardy, Jon

    2009-01-01

    A new polyketide glycoside, bionectriol A (1), was produced by a fungal culture of Bionectria sp., which was isolated from a fungus garden of the fungus-growing ant Apterostigma dentigerum, in Costa Rica. The structure of bionectriol A was determined mainly through NMR and mass spectroscopic data, as well as UV and IR spectra. The relative configurations of the main chain, the pyranohexose, and the pentitol moiety were elucidated by 1H-1H coupling constants and ROESY NMR spectral analysis. PMID:20160864

  1. The structural elucidation and antimicrobial activities of two isoflavane glycosides from Astragalus membranaceus (Fisch) Bge. var. mongholicus (Bge) Hsiao

    NASA Astrophysics Data System (ADS)

    Wang, Qing-Hu; Han, Na-ren-chao-ke-tu; Dai, Na-yin-tai; Wang, Xiu-lan; Ao, Wu-Li-Ji

    2014-11-01

    Two isoflavane glycoside had been isolated from the EtOAc-soluble fraction of the roots of Astragalus membranaceus (Fisch) Bge. var. mongholicus (Bge) Hsiao. This is the first report on the structure elucidation of 2?,5?-dicarbonyl-3?,4?-dimethoxyisoflavanequinone-7-O-?-D-glucoside (1) based on spectroscopic methods including UV (Ultraviolet Spectrophotometry), IR (Infrared Absorption Spectroscopy), ESI-MS (Electrospray Ionization Mass Spectrometry), 1D NMR (Nuclear Magnetic Resonance Spectroscopy) and 2D NMR techniques. At the same time, antimicrobial activity of the two compounds was evaluated against various bacteria and fungi.

  2. New monoterpene glycosides from sunflower seeds and their protective effects against H2O2-induced myocardial cell injury.

    PubMed

    Fei, Yonghe; Zhao, Jianping; Liu, Yanli; Li, Xiaoran; Xu, Qiongming; Wang, Taoyun; Khan, Ikhlas A; Yang, Shilin

    2015-11-15

    Three new monoterpene glycosides (1-3) and eleven known compounds (4-14) were isolated from seeds of Helianthus annuus L. (sunflower). Their structures were determined by spectroscopic and chemical methods. All the compounds were isolated from sunflower seeds for the first time. Protective effects of compounds 1-14 against H2O2-induced H9c2 cardiomyocyte injury were evaluated, and compounds 1 and 2 showed some cell-protective effects. No significant DPPH radical scavenging activity was observed for compounds 1-14. PMID:25977041

  3. Changes in Cytokinins and Gibberellin-Like Substances in Pinus radiata Buds during Lateral Shoot Initiation and the Characterization of Ribosyl Zeatin and a Novel Ribosyl Zeatin Glycoside 1

    PubMed Central

    Taylor, John S.; Koshioka, Masaji; Pharis, Richard P.; Sweet, Geoffrey B.

    1984-01-01

    Based on detection and quantitation by bioassay, endogenous gibberellin-like substances (GAs) and cytokinins (CKs) in Pinus radiata D. Don buds during sequential shoot initiation shift from less polar to more polar forms (GAs) and from conjugated to free forms (CKs). As the terminal bud moves from the production of “short shoots” (needle fascicles) to “long shoots” (lateral branches or female conebuds), a more polar GA appears while a glucoside-conjugate of zeatin riboside is reduced, and zeatin riboside levels increase markedly. Permethyl derivatives of the two highly active CK fractions were examined by capillary gas chromatography-mass spectrometry after separation by C18 reverse phase high performance liquid chromatography. The mass spectra indicated the presence of: 9-?-d-ribofuranosyl-6-(4-hydroxy-3-methyl-but-2-enylamino)purine (zeatin riboside) and 9-[hexosyl(probably glucosyl)-?-d-ribofuranosyl]-6-(4-hydroxy-3-methyl-but-2- enylamino)purine (a glycoside of zeatin riboside in which the glycosyl moiety is attached directly to the ribosyl moiety at an unknown position). PMID:16663472

  4. Current status of vasectomy reversal.

    PubMed

    Schwarzer, J Ullrich; Steinfatt, Heiko

    2013-04-01

    Vasectomy reversal is the most common microsurgical intervention for the treatment of male infertility. Originally introduced in 1977, microsurgical vasectomy reversal has become highly sophisticated and is a minimally invasive, highly efficient and cost-effective treatment option for men with a desire to have children after vasectomy. It can be an effective physiological method of restoring fertility in more than 90% of vasectomized men. Although assisted reproductive technology (ART) is an alternative to vasectomy reversal, it is normally associated with higher costs without offering higher cumulative chances of a pregnancy. Recovery of physiological male fertility can take up to 2 years after vasectomy reversal, especially if reversal is performed >10 years after vasectomy, owing to impaired epididymal function. Under these circumstances, ART can be used to bridge the time until recovery of natural fertility. Although the basic principles of microsurgical vasovasostomy have been established since the late 1970s, there have since been numerous technical innovations to improve the delicate operation and promising new technical modifications, particularly for vasoepididymostomy, have been described. Robotic vasectomy reversal is an emerging field in specialized urologic centers, but whether the high quality of conventional microsurgical vasectomy reversal can be matched by robotic platforms is yet to be seen. PMID:23399733

  5. Identification and characterization of the phenolic glycosides of Lagenaria siceraria Stand. (bottle gourd) fruit by liquid chromatography-tandem mass spectrometry.

    PubMed

    Jaiswal, Rakesh; Kuhnert, Nikolai

    2014-02-12

    Bottle gourd, Lagenaria siceraria Stand. (Cucurbitaceae), fruit is used in folk medicines and for culinary purposes in Asia. The phenolics of bottle gourd fruit were investigated qualitatively by LC-MS(n). Twenty-two phenolic glycosides were detected and characterized on the basis of their unique fragmentation pattern in the negative ion mode tandem MS spectra. Twenty of them were extracted for the first time from this source, and twelve of them have not been reported previously in nature. It was also possible to distinguish between the individual classes of isobaric phenolic glycosides by tandem and high-resolution mass spectrometry. In this study we also discuss the mass spectrometric fragmentation mechanism of 6-(hydroxycinnamoyl)glucoses. This is the first report of the full characterization of phenolic glycosides of bottle gourd fruit by LC-MS²??. PMID:24447091

  6. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, John L. (Richland, WA); Smith, Richard D. (Richland, WA)

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  7. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  8. 14 CFR 33.97 - Thrust reversers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...reversers. (a) If the engine incorporates a reverser, the endurance calibration, operation, and vibration tests prescribed...section must be made. This test may be scheduled as part of the endurance run. (b) 175 reversals must be made from...

  9. Successive Olfactory Reversal Learning in Honeybees

    E-print Network

    Menzel, Randolf - Institut für Biologie

    Research Successive Olfactory Reversal Learning in Honeybees Bernhard Komischke,1 Martin Giurfa,2 successive olfactory differential conditioning tasks involving different overlapping pairs of odors or not successive reversal learning is possible and whether or not learning olfactory discrimination reversals

  10. Iridoid glycoside variation in the invasive plant Dalmatian toadflax, Linaria dalmatica (Plantaginaceae), and sequestration by the biological control agent, Calophasia lunula.

    PubMed

    Jamieson, Mary A; Bowers, M Deane

    2010-01-01

    Invasive plant species can have significant ecological and economic impacts. Although numerous hypotheses highlight the importance of the chemical defenses of invasive plant species, the chemical ecology of many invasive plants has not yet been investigated. In this study, we provide the first quantitative investigation of variation in iridoid glycoside concentrations of the invasive plant Dalmatian toadflax (Linaria dalmatica). We examined variation in chemical defenses at three levels: (1) variation within and among populations; (2) variation due to phenology and/or seasonal differences; and (3) variation among plant parts (leaves, flowers, and stems). Further, we examined two biological control agents introduced to control L. dalmatica for the ability to sequester iridoid glycosides from this invasive plant. Results indicate that L. dalmatica plants can contain high concentrations of iridoid glycosides (up to 17.4% dry weight of leaves; mean = 6.28?±?0.5 SE). We found significant variation in iridoid glycoside concentrations both within and among plant populations, over the course of the growing season, and among plant parts. We also found that one biological control agent, Calophasia lunula (Lepidoptera: Noctuidae), was capable of sequestering antirrhinoside, an iridoid glycoside found in L. dalmatica, at levels ranging from 2.7 to 7.5% dry weight. A second biological control agent, Mecinus janthinus (Coleoptera: Curculionidae), a stem-mining weevil, did not sequester iridoid glycosides. The demonstrated variation in L. dalmatica chemical defenses may have implications for understanding variation in the degree of invasiveness of different populations as well as variation in the efficacy of biological control efforts. PMID:20077129

  11. Reversible concentric ring microfluidic interconnects

    E-print Network

    Thompson, Mary Kathryn, 1980-

    2004-01-01

    A reversible, Chip-to-Chip microfluidic interconnect was designed for use in high temperature, high pressure applications such as chemical microreactor systems. The interconnect uses two sets of concentric, interlocking ...

  12. Reverse engineering quantum field theory

    NASA Astrophysics Data System (ADS)

    Oeckl, Robert

    2012-12-01

    An approach to the foundations of quantum theory is advertised that proceeds by "reverse engineering" quantum field theory. As a concrete instance of this approach, the general boundary formulation of quantum theory is outlined.

  13. Time-Reversible Maxwell's Demon

    E-print Network

    Skordos, P. A.

    1992-09-01

    A time-reversible Maxwell's demon is demonstrated which creates a density difference between two chambers initialized to have equal density. The density difference is estimated theoretically and confirmed by computer ...

  14. Enzymatic Synthesis of Rhamnose Containing Chemicals by Reverse Hydrolysis.

    PubMed

    Lu, Lili; Liu, Qian; Jin, Lan; Yin, Zhenhao; Xu, Li; Xiao, Min

    2015-01-01

    Rhamnose containing chemicals (RCCs) are widely occurred in plants and bacteria and are known to possess important bioactivities. However, few of them were available using the enzymatic synthesis method because of the scarcity of the ?-L-rhamnosidases with wide acceptor specificity. In this work, an ?-L-rhamnosidase from Alternaria sp. L1 was expressed in Pichia pastroris strain GS115. The recombinant enzyme was purified and used to synthesize novel RCCs through reverse hydrolysis in the presence of rhamnose as donor and mannitol, fructose or esculin as acceptors. The effects of initial substrate concentrations, reaction time, and temperature on RCC yields were investigated in detail when using mannitol as the acceptor. The mannitol derivative achieved a maximal yield of 36.1% by incubation of the enzyme with 0.4 M L-rhamnose and 0.2 M mannitol in pH 6.5 buffers at 55°C for 48 h. In identical conditions except for the initial acceptor concentrations, the maximal yields of fructose and esculin derivatives reached 11.9% and 17.9% respectively. The structures of the three derivatives were identified to be ?-L-rhamnopyranosyl-(1?6')-D-mannitol, ?-L-rhamnopyranosyl-(1?1')-?-D-fructopyranose, and 6,7-dihydroxycoumarin ?-L-rhamnopyranosyl-(1?6')-?-D-glucopyranoside by ESI-MS and NMR spectroscopy. The high glycosylation efficiency as well as the broad acceptor specificity of this enzyme makes it a powerful tool for the synthesis of novel rhamnosyl glycosides. PMID:26505759

  15. Enzymatic Synthesis of Rhamnose Containing Chemicals by Reverse Hydrolysis

    PubMed Central

    Jin, Lan; Yin, Zhenhao; Xu, Li; Xiao, Min

    2015-01-01

    Rhamnose containing chemicals (RCCs) are widely occurred in plants and bacteria and are known to possess important bioactivities. However, few of them were available using the enzymatic synthesis method because of the scarcity of the ?-L-rhamnosidases with wide acceptor specificity. In this work, an ?-L-rhamnosidase from Alternaria sp. L1 was expressed in Pichia pastroris strain GS115. The recombinant enzyme was purified and used to synthesize novel RCCs through reverse hydrolysis in the presence of rhamnose as donor and mannitol, fructose or esculin as acceptors. The effects of initial substrate concentrations, reaction time, and temperature on RCC yields were investigated in detail when using mannitol as the acceptor. The mannitol derivative achieved a maximal yield of 36.1% by incubation of the enzyme with 0.4 M L-rhamnose and 0.2 M mannitol in pH 6.5 buffers at 55°C for 48 h. In identical conditions except for the initial acceptor concentrations, the maximal yields of fructose and esculin derivatives reached 11.9% and 17.9% respectively. The structures of the three derivatives were identified to be ?-L-rhamnopyranosyl-(1?6')-D-mannitol, ?-L-rhamnopyranosyl-(1?1')-?-D-fructopyranose, and 6,7-dihydroxycoumarin ?-L-rhamnopyranosyl-(1?6')-?-D-glucopyranoside by ESI-MS and NMR spectroscopy. The high glycosylation efficiency as well as the broad acceptor specificity of this enzyme makes it a powerful tool for the synthesis of novel rhamnosyl glycosides. PMID:26505759

  16. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    SciTech Connect

    Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Sund, Christian J.; Hurley, Margaret M.

    2015-07-29

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-?-hairpin barrel with two ?-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate specificity from that of YteR.

  17. Efficient regeneration for enhanced steviol glycosides production in Stevia rebaudiana (Bertoni).

    PubMed

    Aman, Nazish; Hadi, Fazal; Khalil, Shahid Akbar; Zamir, Roshan; Ahmad, Nisar

    2013-10-01

    An efficient method of regeneration for antidiabetic plant (Stevia rebaudiana) has been established for healthy biomass and main steviol glycosides (SGs) production, using different PGRs and agar concentrations. Higher callus induction (93.3%) was recorded when leaf explants were placed on an MS medium supplemented with 3.5 gL(-1) agar and 2.0 mgL(-1) 2,4-D. The addition of 7.0 gL(-1) agar and BA (1.0, 2.0 and 4.0 mgL(-1)) significantly (P<0.01) influences shooting response (100%). A maximum mean shoot length (13.03 cm) and 28 shoots per explant were observed on a medium containing 1.0 mgL(-1) BA. However, the maximum number of leaves (132.67) was encouraged by the addition of BA (1.0 mgL(-1)) and Kin (1.0 mgL(-1)). Lower agar (3.5 gL(-1)), IAA (2.0 mgL(-1)), and NAA (2.0 mgL(-1)) concentrations significantly influence the rooting percent (100%), the mean root length (2.9 cm), and the number of roots per plantlet (26.3). These plantlets were successfully acclimatized in the soil. The BA (3.0 mgL(-1)) in combination with Kin (3.0 mgL(-1)) and 3.5 gL(-1) agar increases dulcoside-A content (Dul-A; 71.8 ?g/g-DW) in shoots compared to control (50.81 ?g/g-DW). Similar PGRs with 7.0 gL(-1) significantly increases the production of steviosides (Stev. 82.48 ?g/g-DW). A higher rebaudioside-A content (Reb-A; 12.35 ?g/g-DW) was observed in shoots that underwent the addition of BA (1.0 mgL(-1)) and 7.0 gL(-1) agar than in control (07.39 ?g/g-DW). Hereby, we developed an efficient and cost-effective method for regeneration and major SGs production, which could be helpful for future studies on this species. PMID:24246890

  18. Insight into Glycoside Hydrolases for Debranched Xylan Degradation from Extremely Thermophilic Bacterium Caldicellulosiruptor lactoaceticus

    PubMed Central

    Jia, Xiaojing; Mi, Shuofu; Wang, Jinzhi; Qiao, Weibo; Peng, Xiaowei; Han, Yejun

    2014-01-01

    Caldicellulosiruptor lactoaceticus 6A, an anaerobic and extremely thermophilic bacterium, uses natural xylan as carbon source. The encoded genes of C. lactoaceticus 6A for glycoside hydrolase (GH) provide a platform for xylan degradation. The GH family 10 xylanase (Xyn10A) and GH67 ?-glucuronidase (Agu67A) from C. lactoaceticus 6A were heterologously expressed, purified and characterized. Both Xyn10A and Agu67A are predicted as intracellular enzymes as no signal peptides identified. Xyn10A and Agu67A had molecular weight of 47.0 kDa and 80.0 kDa respectively as determined by SDS-PAGE, while both appeared as homodimer when analyzed by gel filtration. Xyn10A displayed the highest activity at 80°C and pH 6.5, as 75°C and pH 6.5 for Agu67A. Xyn10A had good stability at 75°C, 80°C, and pH 4.5–8.5, respectively, and was sensitive to various metal ions and reagents. Xyn10A possessed hydrolytic activity towards xylo-oligosaccharides (XOs) and beechwood xylan. At optimum conditions, the specific activity of Xyn10A was 44.6 IU/mg with beechwood xylan as substrate, and liberated branched XOs, xylobiose, and xylose. Agu67A was active on branched XOs with methyl-glucuronic acids (MeGlcA) sub-chains, and primarily generated XOs equivalents and MeGlcA. The specific activity of Agu67A was 1.3 IU/mg with aldobiouronic acid as substrate. The synergistic action of Xyn10A and Agu67A was observed with MeGlcA branched XOs and xylan as substrates, both backbone and branched chain of substrates were degraded, and liberated xylose, xylobiose, and MeGlcA. The synergism of Xyn10A and Agu67A provided not only a thermophilic method for natural xylan degradation, but also insight into the mechanisms for xylan utilization of C. lactoaceticus. PMID:25184498

  19. Reversible Shape Memory Optical Gratings

    NASA Astrophysics Data System (ADS)

    Li, Qiaoxi; Tippets, Cary; Fu, Yulan; Donev, Eugene; Turner, Sara; Ashby, Valerie; Lopez, Rene; Sheiko, Sergei

    2015-03-01

    Recent advancements in the understanding of the mechanisms that control shape memory in semi-crystalline polymers, has led to the development of protocols that allow for reversibility in complex shape transformations. The shifting between two programmable shapes is reversible without applying any external force. This is made possible by thermodynamically driven relaxation of extended polymer chains on heating is then inverted by kinetically preferred pathways of polymer crystallization on cooling. Reversible shapeshifting was applied to modulation of photonic gratings to create hands-free reversibly tunable optical elements. We have fabricated a sub-micron ratio optical square grating that presents reversible magnitude changes of its diffraction intensity (up to about 38% modulation) when subject to changes in temperature. This result is attributed to programmable changes in the grating height due to reversible shape memory and is repeatable over multiple cycles. Besides, roughness-induced variations in scattering signal observed upon heating-cooling cycles may offer another way to monitor kinetics of polymer melting and crystallization. Grants: NSF DMR-1407645,

  20. Reverse Current in Solar Flares

    NASA Technical Reports Server (NTRS)

    Knight, J. W., III

    1978-01-01

    An idealized steady state model of a stream of energetic electrons neutralized by a reverse current in the pre-flare solar plasma was developed. These calculations indicate that, in some cases, a significant fraction of the beam energy may be dissipated by the reverse current. Joule heating by the reverse current is a more effective mechanism for heating the plasma than collisional losses from the energetic electrons because the Ohmic losses are caused by thermal electrons in the reverse current which have much shorter mean free paths than the energetic electrons. The heating due to reverse currents is calculated for two injected energetic electron fluxes. For the smaller injected flux, the temperature of the coronal plasma is raised by about a factor of two. The larger flux causes the reverse current drift velocity to exceed the critical velocity for the onset of ion cyclotron turbulence, producing anomalous resistivity and an order of magnitude increase in the temperature. The heating is so rapid that the lack of ionization equilibrium may produce a soft X-ray and EUV pulse from the corona.

  1. Hydrolysis of Glycosidic Flavonoids during the Preparation of Danggui Buxue Tang: An Outcome of Moderate Boiling of Chinese Herbal Mixture.

    PubMed

    Zhang, Wendy Li; Chen, Jian-Ping; Lam, Kelly Yin-Ching; Zhan, Janis Ya-Xian; Yao, Ping; Dong, Tina Ting-Xia; Tsim, Karl Wah-Keung

    2014-01-01

    Chemical change during boiling of herbal mixture is a puzzle. By using Danggui Buxue Tang (DBT), a herbal decoction that contains Astragali Radix (AR) and Angelicae Sinensis Radix (ASR), we developed a model in analyzing the hydrolysis of flavonoid glycosides during the boiling of herbal mixture in water. A proper preparation of DBT is of great benefit to the complete extraction of bioactive ingredients. Boiling of DBT in water increased the solubility of AR-derived astragaloside IV, calycosin, formononetin, calycosin-7-O- ? -D-glucoside, and ononin in a time- and temperature-dependent manner: the amounts of these chemicals reached a peak at 2?h. The glycosidic resides of AR, calycosin-7-O- ? -D-glucoside, and ononin could be hydrolyzed during the moderate boiling process to form calycosin and formononetin, respectively. The hydrolysis efficiency was strongly affected by pH, temperature, and amount of herbs. Interestingly, the preheated herbs were not able to show this hydrolytic activity. The current results supported the rationality of ancient preparation of DBT in boiling water by moderate heat. PMID:24744813

  2. Cytotoxic and apoptosis-inducing properties of a C21-steroidal glycoside isolated from the roots of Cynanchum auriculatum

    PubMed Central

    YE, LIANG-FEI; WANG, YI-QI; YANG, BO; ZHANG, RU-SONG

    2013-01-01

    The present study aimed to investigate the anti-cancer effect of a C21-steroidal glycoside (CG) isolated from the roots of Cynanchum auriculatum. CG was able to inhibit the growth of human cancer cells (SGC-7901 cells) in a concentration and time-dependent manner in vitro. SGC-7901 cells exposed to CG (10.8 and 21.6 ?M) exhibited typical morphological apoptosis characteristics, such as nuclear-chromatin condensation and apoptotic body formation. Flow cytometric analysis showed that after treatment with CG at 10.8 and 21.6 ?M for 24 h, the percentage of apoptotic cells increased to 30.4 and 43.2%, respectively, while the number of cells in the G0/G1, S and G2/M phases of the cell cycle decreased (P<0.05). Furthermore, treatment with CG at a concentration of 21.6 ?M for 24 h significantly increased the expression of caspase-3 and the activity of caspase-3 was increased ?3-fold in SGC-7901 cells. These results suggest that CG is the active anticancer component of the total C21-glycosides of the roots of Cynanchum auriculatum which is able to inhibit the growth of cancer cells and induce cancer cell apoptosis through caspase-3-dependent pathways. PMID:23599803

  3. Large-scale profiling of diterpenoid glycosides from Stevia rebaudiana using ultrahigh performance liquid chromatography/tandem mass spectrometry.

    PubMed

    Shafii, Behnaz; Vismeh, Ramin; Beaudry, Randy; Warner, Ryan; Jones, A Daniel

    2012-07-01

    The plant Stevia rebaudiana accumulates a suite of diterpenoid metabolites that are natural sweeteners finding increased use as sugar substitutes. To guide breeding of stevia plants that accumulate substances with desirable flavor in high yield, rapid and accurate methods are needed to profile these substances in plant populations. This report describes an 8-min ultrahigh performance liquid chromatography-tandem mass spectrometry method for separation and quantification of seven stevia glycosides including steviolbioside; stevioside; rebaudiosides A, B, and C; rubusoside; and dulcoside as well as aglycones steviol and isosteviol. This negative mode electrospray ionization/multiple reaction monitoring method yielded low limits of detection <1 ng/mL for steviol, 6 ng/mL for isosteviol, and <15 ng/mL for all stevia glycosides. Stevioside and Reb A, B, and C were quantified in more than 1,100 extracts from stevia leaves as part of a large-scale profiling exercise. Leaf tissue levels in this population spanned about two orders of magnitude for stevioside (2-125 mg/g dry weight), Reb A (2.5-164 mg/g), Reb B (0.5-50 mg/g), and Reb C (1.5-125 mg/g), but levels of individual metabolites exhibited independent variation. The wide spread of metabolite levels highlights the utility and importance of performing targeted metabolic profiling for large plant populations. PMID:22580424

  4. Effects of Tripterygium wilfordii glycosides on regulatory T cells and Th17 in an IgA nephropathy rat model.

    PubMed

    Chen, F; Ma, Y L; Ding, H; Chen, B P

    2015-01-01

    In this study, we examined the effects of Tripterygium wilfordii glycosides (TWGs) on Th17 and regulatory T cells (Tregs) in an immunoglobulin A nephropathy (IgAN) rat model. IgAN model rats were randomly divided into the model group, TWG treatment group, and prednisone group. Normal rats were included as controls. There were 6 rats in each group. The urine protein levels and the number of red blood cells in urine were analyzed at 24 h. IgA deposition in renal tissue was detected by fluorescence microscopy. The concentration of interleukin-17 in serum was detected by an enzyme-linked immunosorbent assay and the number of Tregs in blood was analyzed by flow cytometry. TWGs and prednisone significantly reduced urine protein levels and urine red blood cells at 24 h in IgAN model rats (P < 0.01), but prednisone had a greater effect than did TWGs (P < 0.05). TWGs and prednisone reduced IgA deposition in renal tissue, but prednisone had a greater effect than TWGs. T. wilfordii glycosides and prednisone significantly decreased the serum IL-17 level in an IgAN rat model and increased the number of Tregs in the blood (P < 0.01). There was no significant difference between prednisone and TWGs  (P > 0.05). In conclusion, TWGs had therapeutic effects on IgAN model rats and may regulate the immune balance of Th17 and Tregs. PMID:26600551

  5. Stable isotopically-enriched ribonucleosides: synthesis and use in studies of furnose, N-glycoside and hydroxymethyl group conformation

    SciTech Connect

    Kline, P.C.; Serianni, A.S.

    1986-05-01

    (1'-/sup 13/C)- and (2'-/sup 13/C)-enriched ribonucleosides (adenosine, cytidine, uridine) (99 atom-% /sup 13/C) have been synthesized in millimole quantities. /sup 1/H (300 MHz) and /sup 13/C (75 MHz) NMR spectra have been obtained from which /sup 13/C-/sup 1/H and /sup 13/C-/sup 13/C spin couplings have been measured and studied in terms of preferred furanose and N-glycoside conformation. Using a recently-reported chemical method to stereoselectively deuterate hydroxymethyl groups of sugars adenosine, cytidine and uridine were synthesized with chiral C5' hydroxymethyl groups, permitting unequivocal stereochemical assignment of the NMR signals of these protons. From these assignments the conformational properties of the exocyclic groups were assessed based on /sup 1/H-/sup 1/H spin coupling. A theoretical (computational) analysis of the use of /sup 1/H-/sup 1/H internuclear distances to assess N-glycoside conformation in purine and pyrimidine nucleosides was conducted. DESERT (Deuterium Substitution Effects on Proton Relaxation Times) experiments using (1'-/sup 2/H)2,2'-anhydrouridine and uridine have been conducted to test the validity of these theoretical considerations.

  6. Steviol glycosides targeted analysis in leaves of Stevia rebaudiana (Bertoni) from plants cultivated under chilling stress conditions.

    PubMed

    Soufi, Sihem; D'Urso, Gilda; Pizza, Cosimo; Rezgui, Salah; Bettaieb, Taoufik; Montoro, Paola

    2016-01-01

    Stevia rebaudiana is an important agricultural crop for the production of a high-potency natural sweetener, sensitive to low temperature during the developmental stage. Stimulation of chilling stress with a pre-treatment with endogenous signalling components and in particular with salicylic acid (SA), hydrogen peroxide (H2O2), 6-benzylaminopurine (BAP) and calcium chloride (CaCl2) could induce tolerance to chilling and could constitute a suitable way to maintain quality and quantity of steviol glycosides under controlled artificial environment. In the present work the effects of different putative signalling molecules on the morpho-physiological parameters were evaluated, and a specific method for the quali-quantitative analysis of steviol glycosides in S. rebaudiana plants cultivated under controlled conditions was developed, by using LC-ESI-FT (Orbitrap) MS, LC-ESI-QqQ-MS/MS and multivariate data analysis. This approach underlined that the pre-treatment has influence on the production of secondary metabolites. In particular Stevia plants characterised by higher contents of rebaudioside A and stevioside, were identified. PMID:26213012

  7. Role of Ca2+ on uterine force stimulated by a glycoside from the root of Dalbergia saxatilis.

    PubMed

    Uchendu, C N

    1999-04-01

    Uterine muscle contraction is dependent on external Ca2+ and Ca2+ release from cytoplasmic storage sites. In this study, the mechanism of Ca2+ mobilization in uterine muscle cells by glycoside, dalsaxini, isolated from the root of D. Saxatilis was investigated in the rat. Uterine muscle contractility stimulated by dalsaxin was concentration dependent (ED50 0.13 mg/ml) and was significantly attenuated (85%; P < 0.01) in Ca(2+)-free physiological solution and in solutions containing verapamil (0.06-0.48 mumol). The small transient contraction observed in Ca(2+)-free medium was further suppressed by caffeine (2 mmol) and completely abolished in solutions containing Lanthanum chloride [(La3+), 2 mmol]. Contractions stimulated by the glycoside were unaffected by amiloride (50-83 mumol) in Ca(2+)-free and Ca(2+)-containing media. Dalsaxin also altered the pattern of uterine contraction stimulated by high potassium depolarization from fast-phasic to a sustained but transient plateau. It is concluded that dalsaxin causes uterine muscle contraction by mobilizing external Ca2+ through predominantly a voltage-dependent Ca2+ channel. PMID:10365308

  8. Reversing: A Fundamental Idea in Computer Science

    ERIC Educational Resources Information Center

    Armoni, Michal; Ginat, David

    2008-01-01

    Reversing is the notion of thinking or working in reverse. Computer science textbooks and tutors recognize it primarily in the form of recursion. However, recursion is only one form of reversing. Reversing appears in the computer science curriculum in many other forms, at various intellectual levels, in a variety of fundamental courses. As such,…

  9. Pharmacokinetics of flavanone glycosides after ingestion of single doses of fresh-squeezed orange juice versus commercially processed orange juice in healthy humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Orange juice is a rich source of flavonoids known to be beneficial to cardiovascular health in humans. The objective of this study was to analyze the pharmacokinetics of the main flavanone glycosides, hesperidin and narirutin, in humans after the consumption of two types of orange juice, fresh squee...

  10. In vitro and in vivo neuroprotective activity of the cardiac glycoside oleandrin from Nerium oleander in brain slice-based stroke models.

    PubMed

    Dunn, Denise E; He, Dong Ning; Yang, Peiying; Johansen, Mary; Newman, Robert A; Lo, Donald C

    2011-11-01

    The principal active constituent of the botanical drug candidate PBI-05204, a supercritical CO(2) extract of Nerium oleander, is the cardiac glycoside oleandrin. PBI-05204 shows potent anticancer activity and is currently in phase I clinical trial as a treatment for patients with solid tumors. We have previously shown that neriifolin, which is structurally related to oleandrin, provides robust neuroprotection in brain slice and whole animal models of ischemic injury. However, neriifolin itself is not a suitable drug development candidate and the FDA-approved cardiac glycoside digoxin does not cross the blood-brain barrier. We report here that both oleandrin as well as the full PBI-05204 extract can also provide significant neuroprotection to neural tissues damaged by oxygen and glucose deprivation as occurs in ischemic stroke. Critically, we show that the neuroprotective activity of PBI-05204 is maintained for several hours of delay of administration after oxygen and glucose deprivation treatment. We provide evidence that the neuroprotective activity of PBI-05204 is mediated through oleandrin and/or other cardiac glycoside constituents, but that additional, non-cardiac glycoside components of PBI-05204 may also contribute to the observed neuroprotective activity. Finally, we show directly that both oleandrin and the protective activity of PBI-05204 are blood brain barrier penetrant in a novel model for in vivo neuroprotection. Together, these findings suggest clinical potential for PBI-05204 in the treatment of ischemic stroke and prevention of associated neuronal death. PMID:21950737

  11. UHPLC-PDA-ESI/HRMS/MSn analysis of anthocyanins, flavonol glycosides, and hydroxycinnamic acid derivatives in red mustard green (Brassica juncea (L) Coss variety)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An UHPLC-PDA-ESI/HRMS/MSn profiling method was used for a comprehensive study of the polyphenols in red mustard greens and identified 209 phenolic compounds: 67 anthocyanin, 102 flavonol glycosides, and 40 hydroxycinnamic acid derivatives. The glycosylation patterns of the flavonoids were assigned ...

  12. Re-evaluating the role of phenolic glycosides and ascorbic acid in ozone scavenging in the leaf apoplast of Arabidopsis thaliana L

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine if membrane-bound G-proteins are involved in the regulation of defense responses against ozone in the leaf apoplast, the apoplastic concentrations of ascorbic acid and phenolic glycosides in Arabidopsis thaliana L. lines with null mutations in the alpha- and beta-subunits were compared ...

  13. Rapid quantification of iridoid glycosides analogues in the formulated Chinese medicine Longdan Xiegan Decoction using high-performance liquid chromatography coupled with mass spectrometry [corrected].

    PubMed

    Yang, Li; Wang, Yun; Wang, Longxing; Xiao, Hongbin; Wang, Zhengtao; Hu, Zhibi

    2009-03-13

    Longdan Xiegan Decoction (LXD) is a formulated preparation composed of 10 ingredient herbs, with iridoids as the main bioactive components. In this study, a rapid, simple and reliable method of simultaneous determination of four iridoid glycosides in LXD using high-performance liquid chromatography (HPLC) coupled with electrospray ionization mass spectrometry (MS) was first developed and validated. The four iridoid glycosides references were isolated from LXD extract and purified using a preparative HPLC chromatography. The sample preparation for quantification comprised of a simple ultrasonic extraction and the satisfactory chromatographic separation of the four structurally similar iridoid glycosides was effected in less than three minutes on a CAPCELL PAK C(18) MGII column (3 microm, 100 mm x 2.0 mm), using an elution system of 10% methanol and their concentrations in different batches of LXD and ingredient herbs were simultaneously determined by HPLC-MS/MS using a multiple reaction monitoring (MRM) mode. The method was validated with respect to the overall intra- and inter-day variation (RSD less than 8%) and the limits of quantification for the four iridoid glycosides were 35, 20, 37 and 33 ng/mL, respectively. PMID:18656203

  14. Rapid Screening for Flavone C-Glycosides in the Leaves of Different Species of Bamboo and Simultaneous Quantitation of Four Marker Compounds by HPLC-UV/DAD

    PubMed Central

    Wang, Jin; Yue, Yong-de; Jiang, Hao; Tang, Feng

    2012-01-01

    A strategy for analyzing flavone C-glucosides in the leaves of different species of bamboo was developed. Firstly, the flavone C-glycosides were extracted from the bamboo leaves (51 species in 17 genera) with methanol and chromatographed on silica gel 60 plates in automatic developing chamber (ADC2), and a qualitative survey using simple derivatization steps with the NP reagent was carried out. The flavone C-glycosides were found in 40 of 51 species of bamboo examined. Secondly, an HPLC method with photodiode array and multiple wavelength detector was optimized and validated for the simultaneous determination of flavone C-glycosides, including isoorientin, isovitexin, orientin, and vitexin in the leaves of three species of bamboo and the flavone C-glycosides were confirmed by LC/MS. The optimized HPLC method proved to be linear in the concentration range tested (0.2–100??g/mL, r2 ? 0.9997), precise (RSD ? 1.56%), and accurate (88–106%). The concentration ranges of isoorientin, isovitexin, orientin, and vitexin in three bamboo leaves samples were 1.00–2.78, 0–0.31, 0–0.07, and 0.20–0.68?mg/g, respectively. The proposed method was validated to be simple and reliable and can be a tool for quality control of bamboo leaf extract or its commercial products. PMID:22654910

  15. Colloidal gold-based indirect competitive immunochromatographic assay for rapid detection of bioactive isoflavone glycosides daidzin and genistin in soy products.

    PubMed

    Sakamoto, Seiichi; Yusakul, Gorawit; Pongkitwitoon, Benyakan; Tanaka, Hiroyuki; Morimoto, Satoshi

    2016-03-01

    Daidzin (DZ) and genistin (GEN) are two major soy isoflavone glycosides isolated from soybeans. Soy products containing isoflavones have recently been widely accepted for commercial use. However, the Japanese Government has suggested that soy isoflavone intake should be limited because of their estrogenic effects due to their interactions with estrogen receptors. In this study, we established a one-step indirect competitive immunochromatographic assay (ICA) for rapid and sensitive detection of total isoflavone glycosides (DZ and GEN) using gold nanoparticles conjugated with a monoclonal antibody against DZ. This assay was able to be completed in 15min following the immersion of a test strip in an analyte solution. Furthermore, the limit of detection for the total amount of isoflavone glycosides was ?125ngmL(-1). Considering that the major soy isoflavone glycosides found in soy products are DZ and GEN, this study demonstrates the potential use of ICA for the assessments of over consumption of isoflavones in soy supplements and foods, which would increase the safe dietary intake of soy products. PMID:26471543

  16. Identification of new flavonol O-glycosides from indigo (Polygonum tinctorium Lour) leaves and their inhibitory activity against 3-hydroxy-3-methylglutaryl-CoA reductase.

    PubMed

    Kimura, Hideto; Tokuyama, Shota; Ishihara, Tomoe; Ogawa, Satoshi; Yokota, Kazushige

    2015-04-10

    Indigo plant (Polygonum tinctorium Lour) has been utilized as a medicinal plant with a variety of biological activities. We have recently detected higher levels of flavonoids in indigo leaves. This study was undertaken to conduct the simultaneous analysis of those flavonoids using total extracts from indigo leaves by ultra-performance liquid chromatography-electrospray ionization-time-of-flight/mass spectrometry(E) (UPLC-ESI-TOF/MS(E)). The analysis by UPLC-ESI-TOF/MS(E) allowed us to determine 11 peaks of flavonoid species. The chemical structures of these compounds were identified as flavonol O-glycosides with different types of aglycones by the combination of spectroscopic and chemical methods. The predominant compounds were flavonol O-glycosides with 3,5,4'-trihydroxy-6,7-methylenedioxyflavone as an aglycone. Of these, three compounds were elucidated as new compounds. All the isolated flavonol O-glycosides exhibited the inhibitory activity against 3-hydroxy-3-methylglutaryl-CoA reductase in a dose-dependent manner with different potencies. Taken together, our results suggest the potential usefulness of the major flavonol O-glycosides from indigo leaves in controlling cholesterol biosynthesis. PMID:25734526

  17. 2'-O-(8-Hydroxy-2,6-dimethyl-2(E),6(E)-octadienoyl)-dihydropenstemide, a new iridoid glycoside from Penstemon confertus.

    PubMed

    Gering-Ward, B

    1989-02-01

    A new iridoid glycoside, 2'- O-(8-hydroxy-2,6-dimethyl-2( E),6( E)-octadienoyl)-dihydropenstemide, has been isolated from PENSTEMON CONFERTUS Dougl. Its structure was elucidated by FD-mass, (1)H-NMR, and (13)C-NMR spectroscopy. PMID:17262262

  18. Reversible logic gate using adiabatic superconducting devices.

    PubMed

    Takeuchi, N; Yamanashi, Y; Yoshikawa, N

    2014-01-01

    Reversible computing has been studied since Rolf Landauer advanced the argument that has come to be known as Landauer's principle. This principle states that there is no minimum energy dissipation for logic operations in reversible computing, because it is not accompanied by reductions in information entropy. However, until now, no practical reversible logic gates have been demonstrated. One of the problems is that reversible logic gates must be built by using extremely energy-efficient logic devices. Another difficulty is that reversible logic gates must be both logically and physically reversible. Here we propose the first practical reversible logic gate using adiabatic superconducting devices and experimentally demonstrate the logical and physical reversibility of the gate. Additionally, we estimate the energy dissipation of the gate, and discuss the minimum energy dissipation required for reversible logic operations. It is expected that the results of this study will enable reversible computing to move from the theoretical stage into practical usage. PMID:25220698

  19. Reversible logic gate using adiabatic superconducting devices

    NASA Astrophysics Data System (ADS)

    Takeuchi, N.; Yamanashi, Y.; Yoshikawa, N.

    2014-09-01

    Reversible computing has been studied since Rolf Landauer advanced the argument that has come to be known as Landauer's principle. This principle states that there is no minimum energy dissipation for logic operations in reversible computing, because it is not accompanied by reductions in information entropy. However, until now, no practical reversible logic gates have been demonstrated. One of the problems is that reversible logic gates must be built by using extremely energy-efficient logic devices. Another difficulty is that reversible logic gates must be both logically and physically reversible. Here we propose the first practical reversible logic gate using adiabatic superconducting devices and experimentally demonstrate the logical and physical reversibility of the gate. Additionally, we estimate the energy dissipation of the gate, and discuss the minimum energy dissipation required for reversible logic operations. It is expected that the results of this study will enable reversible computing to move from the theoretical stage into practical usage.

  20. Functional characterization and target discovery of glycoside hydrolases from the digestome of the lower termite Coptotermes gestroi

    PubMed Central

    2011-01-01

    Background Lignocellulosic materials have been moved towards the forefront of the biofuel industry as a sustainable resource. However, saccharification and the production of bioproducts derived from plant cell wall biomass are complex and lengthy processes. The understanding of termite gut biology and feeding strategies may improve the current state of biomass conversion technology and bioproduct production. Results The study herein shows comprehensive functional characterization of crude body extracts from Coptotermes gestroi along with global proteomic analysis of the termite's digestome, targeting the identification of glycoside hydrolases and accessory proteins responsible for plant biomass conversion. The crude protein extract from C. gestroi was enzymatically efficient over a broad pH range on a series of natural polysaccharides, formed by glucose-, xylose-, mannan- and/or arabinose-containing polymers, linked by various types of glycosidic bonds, as well as ramification types. Our proteomic approach successfully identified a large number of relevant polypeptides in the C. gestroi digestome. A total of 55 different proteins were identified and classified into 29 CAZy families. Based on the total number of peptides identified, the majority of components found in the C. gestroi digestome were cellulose-degrading enzymes. Xylanolytic enzymes, mannan- hydrolytic enzymes, pectinases and starch-degrading and debranching enzymes were also identified. Our strategy enabled validation of liquid chromatography with tandem mass spectrometry recognized proteins, by enzymatic functional assays and by following the degradation products of specific 8-amino-1,3,6-pyrenetrisulfonic acid labeled oligosaccharides through capillary zone electrophoresis. Conclusions Here we describe the first global study on the enzymatic repertoire involved in plant polysaccharide degradation by the lower termite C. gestroi. The biochemical characterization of whole body termite extracts evidenced their ability to cleave all types of glycosidic bonds present in plant polysaccharides. The comprehensive proteomic analysis, revealed a complete collection of hydrolytic enzymes including cellulases (GH1, GH3, GH5, GH7, GH9 and CBM 6), hemicellulases (GH2, GH10, GH11, GH16, GH43 and CBM 27) and pectinases (GH28 and GH29). PMID:22081966

  1. Intensified Separation of Steviol Glycosides from a Crude Aqueous Extract of Stevia rebaudiana Leaves Using Centrifugal Partition Chromatography.

    PubMed

    Hubert, Jane; Borie, Nicolas; Chollet, Sébastien; Perret, Joël; Barbet-Massin, Claire; Berger, Monique; Daydé, Jean; Renault, Jean-Hugues

    2015-11-01

    Aqueous extracts of Stevia rebaudiana leaves have been approved since 2008 by the Joint Expert Committee for Food Additives as sugar substitutes in many food and beverages in Western and Far East Asian countries. The compounds responsible for the natural sweetness of Stevia leaves include a diversity of diterpenoid glycosides derived from a steviol skeleton. These steviol glycosides also exhibit a low calorific value as well as promising therapeutic applications, particularly for the treatment of sugar metabolism disturbances. In this work, centrifugal partition chromatography is proposed as an efficient technical alternative to purify steviol glycosides from crude aqueous extracts of Stevia leaves on a multigram scale. Two different commercial instruments, including an ASCPC250® and a FCPE300® made of columns containing 1890 and 231 twin-cells, respectively, were evaluated and compared. All experiments were performed with a polar biphasic solvent system composed of ethyl acetate, n-butanol, and water in a gradient elution mode. When using the 1890 partition cell centrifugal partition chromatography column of 250?mL, 42?mg of stevioside, 68?mg of dulcoside A, and 172?mg of rebaudioside A, three major constituents of the initial extract were obtained from 1?g of the initial mixture at purities of 81?%, 83?%, and 99?%, respectively. The productivity was further improved by intensifying the procedure on the 231 partition cell centrifugal partition chromatography column of 303?mL with the sample mass loading increased up to 5?g, resulting in the recovery of 1.2?g of stevioside, 100?mg of dulcoside A, and 1.1?g of rebaudioside A at purities of 79?%, 62?%, and 98?%, respectively. The structures of the isolated compounds were validated by HPLC-UV, ESI-MS, (1)H, and (13)C NMR analyses. Altogether, the results demonstrate that the column design (i.e., the partition cell number) is an important aspect to be considered for a larger scale centrifugal partition chromatography isolation of Stevia-derived natural sweeteners. PMID:25798642

  2. Ice ages and geomagnetic reversals

    NASA Technical Reports Server (NTRS)

    Wu, Patrick

    1992-01-01

    There have been speculations on the relationship between climatic cooling and polarity reversals of the earth's magnetic field during the Pleistocene. Two of the common criticisms on this relationship have been the reality of these short duration geomagnetic events and the accuracy of their dates. Champion et al. (1988) have reviewed recent progress in this area. They identified a total of 10 short-duration polarity events in the last 1 Ma and 6 of these events have been found in volcanic rocks, which also have K-Ar dates. Supposing that the speculated relationship between climatic cooling and geomagnetic reversals actually exist, two mechanisms that assume climatic cooling causes short period magnetic reversals will be investigated. These two methods are core-mantle boundary topography and transfer of the rotational energy to the core.

  3. Phospholipid-based reverse micelles.

    PubMed

    Walde, P; Giuliani, A M; Boicelli, C A; Luisi, P L

    1990-03-01

    Physicochemical investigations on the aggregation of phospholipids (mainly phosphatidylcholines) in organic solvents are reviewed and compared with the aggregation behaviour of phospholipids in aqueous medium. In particular we review the data showing that phosphatidylcholines (lecithins) form reverse micellar structures in certain apolar solvents. In these systems not only low molecular weight compounds but also catalytically active enzymes and entire cells can be solubilized. In addition, highly viscous phosphatidylcholine gels can be obtained in organic solvents upon solubilizing a critical amount of water. Generally, phospholipid-based reverse micelles can be regarded as thermodynamically stable models for inverted micellar lipid structures possibly occurring in biological membranes. PMID:2187627

  4. Stagnation point reverse flow combustor

    NASA Technical Reports Server (NTRS)

    Zinn, Ben T. (Inventor); Neumeier, Yedidia (Inventor); Seitzman, Jerry M. (Inventor); Jagoda, Jechiel (Inventor); Weksler, Yoav (Inventor)

    2008-01-01

    A method for combusting a combustible fuel includes providing a vessel having an opening near a proximate end and a closed distal end defining a combustion chamber. A combustible reactants mixture is presented into the combustion chamber. The combustible reactants mixture is ignited creating a flame and combustion products. The closed end of the combustion chamber is utilized for directing combustion products toward the opening of the combustion chamber creating a reverse flow of combustion products within the combustion chamber. The reverse flow of combustion products is intermixed with combustible reactants mixture to maintain the flame.

  5. Effects of naringin, a flavanone glycoside in grapefruits and citrus fruits, on the nigrostriatal dopaminergic projection in the adult brain

    PubMed Central

    Jung, Un Ju; Kim, Sang Ryong

    2014-01-01

    Recently, we have demonstrated the ability of naringin, a well-known flavanone glycoside of grapefruits and citrus fruits, to prevent neurodegeneration in a neurotoxin model of Parkinson's disease. Intraperitoneal injection of naringin protected the nigrostriatal dopaminergic projection by increasing glial cell line-derived neurotrophic factor expression and decreasing the level of tumor necrosis factor-alpha in dopaminergic neurons and microglia, respectively. These results suggest that naringin can impart to the adult dopaminergic neurons the ability to produce glial cell line-derived neurotrophic factor against Parkinson's disease with anti-inflammatory effects. Based on these results, we would like to describe an important perspective on its possibility as a therapeutic agent for Parkinson's disease. PMID:25317167

  6. New furoquinoline alkaloid and flavanone glycoside derivatives from the leaves of Oricia suaveolens and Oricia renieri (Rutaceae).

    PubMed

    Nouga, Achille B; Ndom, Jean C; Mpondo, Emmanuel M; Nyobe, Judith Caroline Ngo; Njoya, Alain; Meva'a, Luc M; Cranwell, Phillipa B; Howell, James A S; Harwood, Laurence M; Wansi, Jean Duplex

    2016-02-01

    Fractionation of the methanol extract of the leaves of Oricia renieri and Oricia suaveolens (Rutaceae) led to the isolation of 13 compounds including the hitherto unknown furoquinoline alkaloid named 6,7-methylenedioxy-5-hydroxy-8-methoxy-dictamnine (1) and a flavanone glycoside named 5-hydroxy-4'-methoxy-7-O-[?-l-rhamnopyranosyl(1??5?)-?-d-apiofuranosyl]-flavanoside (2), together with 11 known compounds (3-13). The structures of the compounds were determined by comprehensive analyses of their 1D and 2D NMR, mass spectral data and comparison. All compounds isolated were examined for their activity against human carcinoma cell lines. The alkaloids 1, 5, 12, 13 and the phenolic 2, 8, 11 tested compounds exhibited non-selective moderate cytotoxic activity with IC50 8.7-15.9 ?M whereas compounds 3, 4, 6, 7, 9 and 10 showed low activity. PMID:26222678

  7. Molecular mechanisms underlying wound healing and anti-inflammatory properties of naturally occurring biotechnologically produced phenylpropanoid glycosides.

    PubMed

    Korkina, L G; Mikhal'chik, E; Suprun, M V; Pastore, S; Dal Toso, R

    2007-01-01

    Two phenylpropanoid glycosides, verbascoside (VB) and teupolioside (TP), produced biotechnologically by Syringa vulgaris and Ajuga reptans plant cell cultures, were studied in vitro and in vivo for their anti-inflammatory and wound healing activities. It was shown that TP- and VB-containing extracts significantly accelerated wound healing and possessed remarkable anti-inflammatory action in the excision wound model. These effects correlated with the inhibition of reactive oxygen species release from the whole blood leukocytes and with the ferrous ion chelating capacity. On the other hand, they don't correlate either with free radical scavenging or with the inhibition of lipid peroxidation in the cell-free systems. Furthermore, both VB- and TP-containing extracts were extremely effective inhibitors of chemokine and growth factor expression by cultured human keratinocytes treated with pro-inflammatory cytokines, TNF-alpha and interferon-gamma. PMID:17543237

  8. Quantitative analysis of steroidal glycosides in different organs of Easter lily (Lilium longiflorum Thunb.) by LC-MS/MS.

    PubMed

    Munafo, John P; Gianfagna, Thomas J

    2011-02-01

    The bulbs of the Easter lily ( Lilium longiflorum Thunb.) are regularly consumed in Asia as both food and medicine, and the beautiful white flowers are appreciated worldwide as an attractive ornamental. The Easter lily is a rich source of steroidal glycosides, a group of compounds that may be responsible for some of the traditional medicinal uses of lilies. Since the appearance of recent reports on the role steroidal glycosides in animal and human health, there is increasing interest in the concentration of these natural products in plant-derived foods. A LC-MS/MS method performed in multiple reaction monitoring (MRM) mode was used for the quantitative analysis of two steroidal glycoalkaloids and three furostanol saponins, in the different organs of L. longiflorum. The highest concentrations of the total five steroidal glycosides were 12.02 ± 0.36, 10.09 ± 0.23, and 9.36 ± 0.27 mg/g dry weight in flower buds, lower stems, and leaves, respectively. The highest concentrations of the two steroidal glycoalkaloids were 8.49 ± 0.3, 6.91 ± 0.22, and 5.83 ± 0.15 mg/g dry weight in flower buds, leaves, and bulbs, respectively. In contrast, the highest concentrations of the three furostanol saponins were 4.87 ± 0.13, 4.37 ± 0.07, and 3.53 ± 0.06 mg/g dry weight in lower stems, fleshy roots, and flower buds, respectively. The steroidal glycoalkaloids were detected in higher concentrations as compared to the furostanol saponins in all of the plant organs except the roots. The ratio of the steroidal glycoalkaloids to furostanol saponins was higher in the plant organs exposed to light and decreased in proportion from the aboveground organs to the underground organs. Additionally, histological staining of bulb scales revealed differential furostanol accumulation in the basal plate, bulb scale epidermal cells, and vascular bundles, with little or no staining in the mesophyll of the bulb scale. An understanding of the distribution of steroidal glycosides in the different organs of L. longiflorum is the first step in developing insight into the role these compounds play in plant biology and chemical ecology and aids in the development of extraction and purification methodologies for food, health, and industrial applications. In the present study, (22R,25R)-spirosol-5-en-3?-yl O-?-l-rhamnopyranosyl-(1?2)-?-d-glucopyranosyl-(1?4)-?-d-glucopyranoside, (22R,25R)-spirosol-5-en-3?-yl O-?-l-rhamnopyranosyl-(1?2)-[6-O-acetyl-?-d-glucopyranosyl-(1?4)]-?-d-glucopyranoside, (25R)-26-O-(?-d-glucopyranosyl)furost-5-ene-3?,22?,26-triol 3-O-?-l-rhamnopyranosyl-(1?2)-?-d-glucopyranosyl-(1?4)-?-d-glucopyranoside, (25R)-26-O-(?-d-glucopyranosyl)furost-5-ene-3?,22?,26-triol 3-O-?-l-rhamnopyranosyl-(1?2)-?-l-arabinopyranosyl-(1?3)-?-d-glucopyranoside, and (25R)-26-O-(?-d-glucopyranosyl)furost-5-ene-3?,22?,26-triol 3-O-?-l-rhamnopyranosyl-(1?2)-?-l-xylopyranosyl-(1?3)-?-d-glucopyranoside were quantified in the different organs of L. longiflorum for the first time. PMID:21235207

  9. Isolation, NMR Spectral Analysis and Hydrolysis Studies of a Hepta Pyranosyl Diterpene Glycoside from Stevia rebaudiana Bertoni

    PubMed Central

    Chaturvedula, Venkata Sai Prakash; Chen, Steven; Yu, Oliver; Mao, Guohong

    2013-01-01

    From the commercial extract of the leaves of Stevia rebaudiana Bertoni, a minor steviol glycoside, 13-[(2-O-?-d-glucopyranosyl-3-O-?-d-glucopyranosyl-?-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-[(2-O-(3-O-?-d-glucopyranosyl-?-l-rhamnopyranosyl)-3-O-?-d-glucopyranosyl-?-d-glucopyranosyl) ester] (1); also known as rebaudioside O having seven sugar units has been isolated. Its structural characterization has been achieved by the extensive 1D (1H and 13C), and 2D NMR (COSY, HMQC, HMBC) as well as mass spectral data. Further, hydrolysis studies were performed on rebaudioside O using acid and enzymatic methods to identify aglycone and sugar residues in its structure as well as their configurations. PMID:24970189

  10. Isolation, NMR Spectral Analysis and Hydrolysis Studies of a Hepta Pyranosyl Diterpene Glycoside from Stevia rebaudiana Bertoni.

    PubMed

    Chaturvedula, Venkata Sai Prakash; Chen, Steven; Yu, Oliver; Mao, Guohong

    2013-01-01

    From the commercial extract of the leaves of Stevia rebaudiana Bertoni, a minor steviol glycoside, 13-[(2-O-?-D-glucopyranosyl-3-O-?-D-glucopyranosyl-?-D-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-[(2-O-(3-O-?-D-glucopyranosyl-?-L-rhamnopyranosyl)-3-O-?-D-glucopyranosyl-?-D-glucopyranosyl) ester] (1); also known as rebaudioside O having seven sugar units has been isolated. Its structural characterization has been achieved by the extensive 1D (1H and 13C), and 2D NMR (COSY, HMQC, HMBC) as well as mass spectral data. Further, hydrolysis studies were performed on rebaudioside O using acid and enzymatic methods to identify aglycone and sugar residues in its structure as well as their configurations. PMID:24970189

  11. Synthesis of glycosides of resveratrol, pterostilbene, and piceatannol, and their anti-oxidant, anti-allergic, and neuroprotective activities.

    PubMed

    Sato, Daisuke; Shimizu, Nobuyoshi; Shimizu, Yoshiko; Akagi, Masaaki; Eshita, Yuki; Ozaki, Shin-ichi; Nakajima, Nobuyoshi; Ishihara, Kohji; Masuoka, Noriyoshi; Hamada, Hiroki; Shimoda, Kei; Kubota, Naoji

    2014-01-01

    Resveratrol was glucosylated to its 3- and 4'-?-glucosides by cultured cells of Phytolacca americana. On the other hand, cultured P. americana cells glucosylated pterostilbene to its 4'-?-glucoside. P. americana cells converted piceatannol into its 4'-?-glucoside. The 3- and 4'-?-glucosides of resveratrol were further glucosylated to 3- and 4'-?-maltosides of resveratrol, 4'-?-maltoside of which is a new compound, by cyclodextrin glucanotransferase. Resveratrol 3-?-glucoside and 3-?-maltoside showed low 2,2-diphenyl-1-picrylhydrazyl free-radical-scavenging activity, whereas other glucosides had no radical-scavenging activity. Piceatannol 4'-?-glucoside showed the strongest inhibitory activity among the stilbene glycosides towards histamine release from rat peritoneal mast cells. Pterostilbene 4'-?-glucoside showed high phosphodiesterase inhibitory activity. PMID:25229845

  12. Hypouricemic effects of phenylpropanoid glycosides acteoside of Scrophularia ningpoensis on serum uric acid levels in potassium oxonate-pretreated Mice.

    PubMed

    Huang, Cai Guo; Shang, Yan Jun; Zhang, Jun; Zhang, Jian Rong; Li, Wen Jie; Jiao, Bin Hua

    2008-01-01

    Phenylpropanoid glycoside acteoside was extracted from the traditional Chinese medicine Scrophularia ningpoenis Hemsl. In the present study, we investigated the effects of acteoside administration on serum uric acid levels in mice rendered hyperuricemic with the uricase inhibitor potassium oxonate. When administered orally for 3 days at doses of 50, 100 and 150 mg/kg, acteoside reduced serum uric acid levels by 15.2, 23.8 and 33.1%, respectively, relative to vehicle-treated hyperuricemic mice. Importantly, in non-hyperuricemic mice, the serum uric acid levels were not affected by acetoside treatment. Acteoside also inhibited mouse liver xanthine dehydrogenase XDH and xanthine oxidase XO activity at all three doses. These results suggest that the hypouricemic action of acteoside may be attributable to its inhibition of XDH/XO activity. PMID:18306458

  13. Environmental cues induce changes of steviol glycosides contents and transcription of corresponding biosynthetic genes in Stevia rebaudiana.

    PubMed

    Yang, Yongheng; Huang, Suzhen; Han, Yulin; Yuan, Haiyan; Gu, Chunsun; Wang, Zhongwei

    2015-01-01

    Plant growth and secondary metabolism are commonly regulated by external cues such as light, temperature and water availability. In this study, the influences of low and high temperatures, dehydration, photoperiods, and different growing stages on the changes of steviol glycosides (SGs) contents and transcription levels of fifteen genes involved in SGs biosynthesis of Stevia rebaudiana Bertoni were examined using HPLC and RT-PCR. The observations showed that the transcript levels of all the fifteen genes were maximum under 25 °C treatment, and the transcription of SrDXS, SrDXR, SrMCT, SrCMK, SrMDS, SrHDS, SrHDR, SrIDI, SrGGDPS, SrCPPS1, SrUGT85C2 and SrUGT76G1 were restrained both in low temperature (15 °C) and high temperature (35 °C). Most genes in SGs biosynthesis pathway exhibited down-regulation in dehydration. To elucidate the effect of photoperiods, the plants were treated by different simulated photoperiods (8 L/16 D, 1 0L/14 D, 14 L/10 D and 16 L/8 D), but no significant transcription changes were observed. In the study of growing stages, there were evident changes of SGs contents, and the transcript levels of all the fifteen genes were minimal in fast growing period, and exhibited evident increase both in flower-bud appearing stage and flowering stage. The obtained results strongly suggest that the effect of environmental cues on steviol glycosides contents and transcription of corresponding biosynthetic genes in S. rebaudiana is significant. It is worth to study deeply. PMID:25500454

  14. Quercetin and quercetin 3-O-glycosides from Bauhinia longifolia (Bong.) Steud. show anti-Mayaro virus activity

    PubMed Central

    2014-01-01

    Background The arthropod-borne Mayaro virus (MAYV) causes ‘Mayaro fever’, a disease of medical significance, primarily affecting individuals in permanent contact with forested areas in tropical South America. Recently, MAYV has attracted attention due to its likely urbanization. Currently, there are no licensed drugs against most mosquito-transmitted viruses. Here, we investigated the in vitro anti-MAYV activity of the flavonoids quercetin and its derivatives from the Brazilian shrub Bauhinia longifolia (Bong.) Steud. Methods Flavonoids were purified by chromatographic fractionation from leaf extracts of B. longifolia and chemically identified as quercetin and quercetin glycosides using spectroscopic techniques. Cytotoxicity of purified flavonoids and of EtOAc- and n-BuOH-containing flavonoid mixtures was measured by the dye-uptake assay while their antiviral activity was evaluated by a virus yield inhibition assay. Results The following flavonoids were purified from B. longifolia leaves: non-glycosylated quercetin and its glycosides guaijaverin, quercitrin, isoquercitrin, and hyperin. EtOAc and n-BuOH fractions containing these flavonoids demonstrated the highest antiviral activity of all tested substances, while quercetin had the highest antiviral activity amongst purified flavonoids. Quercetin, EtOAc, or n-BuOH fractions inhibited MAYV production by more than 90% at 25 ?g/mL, displaying a stronger antiviral effect than the licensed antiviral ribavirin. A mixture of the isomers isoquercitrin and hyperin had a modest antiviral effect (IC90?=?104.9), while guaijaverin and quercitrin did not show significant antiviral activity. Conclusions B. longifolia is a good source of flavonoids with anti-Mayaro virus activity. This is the first report of the activity of quercetin and its derivatives against an alphavirus. PMID:24678592

  15. Distinct substrate specificities of three glycoside hydrolase family 42 ?-galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697.

    PubMed

    Viborg, Alexander H; Katayama, Takane; Abou Hachem, Maher; Andersen, Mathias C F; Nishimoto, Mamoru; Clausen, Mads H; Urashima, Tadasu; Svensson, Birte; Kitaoka, Motomitsu

    2014-02-01

    Glycoside hydrolase family 42 (GH42) includes ?-galactosidases catalyzing the release of galactose (Gal) from the non-reducing end of different ?-d-galactosides. Health-promoting probiotic bifidobacteria, which are important members of the human gastrointestinal tract microbiota, produce GH42 enzymes enabling utilization of ?-galactosides exerting prebiotic effects. However, insight into the specificity of individual GH42 enzymes with respect to substrate monosaccharide composition, glycosidic linkage and degree of polymerization is lagging. Kinetic analysis of natural and synthetic substrates resembling various milk and plant galactooligosaccharides distinguishes the three GH42 members, Bga42A, Bga42B and Bga42C, encoded by the probiotic B. longum subsp. infantis ATCC 15697 and revealed the glycosyl residue at subsite +1 and its linkage to the terminal Gal at subsite -1 to be key specificity determinants. Bga42A thus prefers the ?1-3-galactosidic linkage from human milk and other ?1-3- and ?1-6-galactosides with glucose or Gal situated at subsite +1. In contrast, Bga42B very efficiently hydrolyses 4-galactosyllactose (Gal?1-4Gal?1-4Glc) as well as 4-galactobiose (Gal?1-4Gal) and 4-galactotriose (Gal?1-4Gal?1-4Gal). The specificity of Bga42C resembles that of Bga42B, but the activity was one order of magnitude lower. Based on enzyme kinetics, gene organization and phylogenetic analyses, Bga42C is proposed to act in the metabolism of arabinogalactan-derived oligosaccharides. The distinct kinetic signatures of the three GH42 enzymes correlate to unique sequence motifs denoting specific clades in a GH42 phylogenetic tree providing novel insight into GH42 subspecificities. Overall, the data illustrate the metabolic adaptation of bifidobacteria to the ?-galactoside-rich gut niche and emphasize the importance and diversity of ?-galactoside metabolism in probiotic bifidobacteria. PMID:24270321

  16. Efficient enzymatic systems for synthesis of novel ?-mangostin glycosides exhibiting antibacterial activity against Gram-positive bacteria.

    PubMed

    Le, Tuoi Thi; Pandey, Ramesh Prasad; Gurung, Rit Bahadur; Dhakal, Dipesh; Sohng, Jae Kyung

    2014-10-01

    Two enzymatic systems were developed for the efficient synthesis of glycoside products of ?-mangostin, a natural xanthonoid exhibiting anti-oxidant, antibacterial, anti-inflammatory, and anticancer activities. In these systems, one-pot reactions for the synthesis of UDP-?-D-glucose and UDP-?-D-2-deoxyglucose were modified and combined with a glycosyltransferase (GT) from Bacillus licheniformis DSM-13 to afford C-3 and C-6 position modified glucose and 2-deoxyglucose conjugated novel ?-mangostin derivatives. ?-Mangostin 3-O-?-D-glucopyranoside, ?-mangostin 6-O-?-D-glucopyranoside, ?-mangostin 3,6-di-O-?-D-glucopyranoside, ?-mangostin 3-O-?-D-2-deoxyglucopyranoside, ?-mangostin 6-O-?-D-2-deoxyglucopyranoside, and ?-mangostin 3,6-di-O-?-D-2-deoxyglucopyranoside were successfully produced in practical quantities and characterized by high-resolution quadruple time-of-flight electrospray ionization-mass spectrometry (HR-QTOF ESI/MS), (1)H and (13)C NMR analyses. In excess of the substrate, the maximum productions of three ?-mangostin glucopyranosides (4.8 mg/mL, 86.5 % overall conversion of ?-mangostin) and three ?-mangostin 2-deoxyglucopyronosides (4.0 mg/mL, 79 % overall conversion of ?-mangostin) were achieved at 4-h incubation period. All the ?-mangostin glycosides exhibited improved water solubility, and their antibacterial activity against three Gram-positive bacteria Micrococcus luteus, Bacillus subtilis, and Staphylococcus aureus was drastically enhanced by the glucosylation at C-3 position. In this study, diverse glycosylated ?-mangostin were produced in significant quantities by using inexpensive starting materials and recycling co-factors within a reaction vessel without use of expensive NDP-sugars in the glycosylation reactions. PMID:25038930

  17. Stimulation of N--glycoside transfer in deoxythymidine glycol: mechanism of the initial step in base excision repair.

    PubMed

    Chen, Ze-qin; Liu, Xiao-qiang; Xue, Ying

    2014-03-01

    Thymine glycol (Tg), a toxic oxidative DNA lesion, is preferentially removed by endonuclease III (Endo III). To investigate the glycosylase activity of Endo III, the N--glycoside transfer mechanism in deoxythymidine glycol (dTg) is examined in this theoretical study based on the BHandHLYP/6-311++G(d,p) level of theory. Two controversial mechanisms were characterized, i.e., the displacement and endocyclic mechanisms. For each mechanism, three types of reaction models were established, including the direct reaction, local microhydration and protonated models. The calculated results indicate that (i) all three reaction models favor the displacement mechanism more than the endocyclic mechanism; (ii) the local microhydration model allows for discrete proton transfer and contributes to the reduction of activation energies, nevertheless, large activation energies are still involved; (iii) the O4'-protonated endocyclic model can efficiently promote the nucleophilic attack of lysine residue and an amino acid residue other than the nucleophilic lysine should be responsible for the opening of the sugar ring; (iv) the O2-protonated displacement model facilitates the leaving group (Tg) stabilization and therefore is the preferred mechanism for the N--glycoside transfer of dTg, whose activation energy of 17.7 kcal mol?¹ is in good agreement with the experimental estimate of 19.0 kcal mol?¹. As a result, the protonation of nucleobase plays a significant role in predicting the preferred glycosylase mechanism. Our findings can propose appropriate mechanisms for future large-scale enzymatic modeling of Endo III and provide more fundamental information about the important residues that may be included in the enzyme-catalyzed reactions. PMID:24595719

  18. The effect of isorhamnetin glycosides extracted from Opuntia ficus-indica in a mouse model of diet induced obesity.

    PubMed

    Rodríguez-Rodríguez, César; Torres, Nimbe; Gutiérrez-Uribe, Janet A; Noriega, Lilia G; Torre-Villalvazo, Iván; Leal-Díaz, Ana M; Antunes-Ricardo, Marilena; Márquez-Mota, Claudia; Ordaz, Guillermo; Chavez-Santoscoy, Rocío A; Serna-Saldivar, Sergio O; Tovar, Armando R

    2015-03-01

    A diet rich in polyphenols can ameliorate some metabolic alterations associated with obesity and type 2 diabetes. Opuntia ficus-indica (OFI) is a plant rich in isorhamnetin glycosides and is highly consumed in Mexico. The purpose of this research was to determine the metabolic effect of an OFI extract on a mouse model of diet-induced obesity and in isolated pancreatic islets. OFI extract was added to a high fat (HF) diet at a low (0.3%) or high (0.6%) dose and administered to C57BL/6 mice for 12 weeks. Mice fed the HF diet supplemented with the OFI extract gained less body weight and exhibited significantly lower circulating total cholesterol, LDL cholesterol and HDL cholesterol compared to those fed the HF diet alone. The HF-OFI diet fed mice presented lower glucose and insulin concentration than the HF diet fed mice. However, the HF-OFI diet fed mice tended to have higher insulin concentration than control mice. The OFI extract stimulated insulin secretion in vitro, associated with increased glucose transporter 2 (GLUT2) and peroxisome proliferator-activated receptor gamma (PPAR?) mRNA content. Furthermore, the OFI extract improved glucose tolerance, and additionally increased energy expenditure. These metabolic improvements were associated with reduced adipocyte size, increased hepatic IRS1 tyr-608 and S6 K thr-389 phosphorylation. OFI isorhamnetin glycosides also diminished the hepatic lipid content associated with reduced mRNA expression of the endoplasmic reticulum stress markers and lipogenic enzymes and increased mRNA expression of genes related to fatty acid oxidation. Overall, the OFI extract prevented the development of metabolic abnormalities associated with diet-induced obesity. PMID:25588195

  19. Plasma concentration, uptake by liver, and biliary excretion of tritiated cardiac glycosides in the isolated perfused guinea-pig liver

    PubMed Central

    Kolenda, K.-D.; Lüllmann, H.; Peters, T.; Seiler, K.-U.

    1971-01-01

    1. Investigations were carried out on isolated perfused guinea-pig livers. Different doses of tritiated ouabain, digoxin, and digitoxin were added to the perfusion medium and the subsequent plasma elimination, hepatic uptake, and biliary excretion quantitatively measured. After the perfusion, extracts of liver, bile and plasma were subjected to thin layer chromatography in order to detect the radioactively labelled glycosides and their metabolites. 2. The ouabain concentration in the plasma approached the equilibrium stage within 45 minutes. At this time 40% of the administered dose had been taken up by the liver, and no further elimination occurred. The elimination curve for ouabain followed a simple exponential function. After 1 h the tissue medium (T/M) ratio was approximately 3. In bile hardly any radioactivity could be detected. Ouabain was therefore not excreted by the liver. 3. Up to 80% of the digitoxin was eliminated from the plasma within 4 hours. The elimination of radioactive material for the dose range studied could be described by a hyperbolic function. The T/M ratio in the liver varied with time. At the beginning it was as high as 10 and after 4 h reduced to approximately 3. After 45-60 min the concentration of radioactive material in the bile was 500 times as high as that in the plasma. Almost 70% of the administered radioactivity was excreted with the bile within 4 hours. At the end of the perfusion almost all the identifiable substances in plasma and bile were polar metabolites, as shown by thin layer radiochromatography. 4. Digoxin behaved similarly to digitoxin. 5. The findings led to the following hypothesis: uptake of cardiac glycosides into the liver cells occurs by a passive diffusion process and is related to their lipid solubility. On the other hand excretion in the bile occurs in general if polar metabolites are formed in the liver cells. PMID:5579463

  20. Time-Reversed Information Transmission

    NASA Astrophysics Data System (ADS)

    Gatlin, Lila L.

    1980-01-01

    Tolman's paradox forbidding time-reversed information transmission is nonexistent and rests only on our ingrained thought processes involving hidden, unnecessary assumptions. When the assumption of a passive channel is removed, the paradox cannot be derived and information can flow intermittently or nondeterministically from the future over a simple computer with at least one independent decision-making component.