Science.gov

Sample records for pepper 9-lipoxygenase gene

  1. Cloning and characterization of a 9-lipoxygenase gene induced by pathogen attack from Nicotiana benthamiana for biotechnological application

    PubMed Central

    2011-01-01

    Background Plant lipoxygenases (LOXs) have been proposed to form biologically active compounds both during normal developmental stages such as germination or growth as well as during responses to environmental stress such as wounding or pathogen attack. In our previous study, we found that enzyme activity of endogenous 9-LOX in Nicotiana benthamiana was highly induced by agroinfiltration using a tobacco mosaic virus (TMV) based vector system. Results A LOX gene which is expressed after treatment of the viral vectors was isolated from Nicotiana benthamiana. As the encoded LOX has a high amino acid identity to other 9-LOX proteins, the gene was named as Nb-9-LOX. It was heterologously expressed in yeast cells and its enzymatic activity was characterized. The yeast cells expressed large quantities of stable 9-LOX (0.9 U ml-1 cell cultures) which can oxygenate linoleic acid resulting in high yields (18 μmol ml-1 cell cultures) of hydroperoxy fatty acid. The product specificity of Nb-9-LOX was examined by incubation of linoleic acid and Nb-9-LOX in combination with a 13-hydroperoxide lyase from watermelon (Cl-13-HPL) or a 9/13-hydroperoxide lyase from melon (Cm-9/13-HPL) and by LC-MS analysis. The result showed that Nb-9-LOX possesses both 9- and 13-LOX specificity, with high predominance for the 9-LOX function. The combination of recombinant Nb-9-LOX and recombinant Cm-9/13-HPL produced large amounts of C9-aldehydes (3.3 μmol mg-1 crude protein). The yield of C9-aldehydes from linoleic acid was 64%. Conclusion The yeast expressed Nb-9-LOX can be used to produce C9-aldehydes on a large scale in combination with a HPL gene with 9-HPL function, or to effectively produce 9-hydroxy-10(E),12(Z)-octadecadienoic acid in a biocatalytic process in combination with cysteine as a mild reducing agent. PMID:21450085

  2. The Persimmon 9-lipoxygenase Gene DkLOX3 Plays Positive Roles in Both Promoting Senescence and Enhancing Tolerance to Abiotic Stress

    PubMed Central

    Hou, Yali; Meng, Kun; Han, Ye; Ban, Qiuyan; Wang, Biao; Suo, Jiangtao; Lv, Jingyi; Rao, Jingping

    2015-01-01

    The lipoxygenase (LOX) pathway is a key regulator for lipid peroxidation, which is crucial for plant senescence and defense pathways. In this study, the transcriptional expression patterns of three persimmon (Diospyros kaki L. ‘Fupingjianshi’) 9-lipoxygenase genes (DkLOX1, DkLOX3, and DkLOX4) were investigated. DkLOX1 was specifically expressed in fruit, particularly in young fruit, and showed little response to the postharvest environments. DkLOX4 was expressed in all tissues and slightly stimulated by mechanical damage and low temperature. DkLOX3 was expressed mainly in mature fruit, and the expression was extremely high throughout the storage period, apparently up-regulated by mechanical damage and high carbon dioxide treatments. Further functional analysis showed that overexpression of DkLOX3 in tomato (Solanum lycopersicum cv. Micro-Tom) accelerated fruit ripening and softening. This was accompanied by higher malondialdehyde (MDA) content and lycopene accumulation, advanced ethylene release peak and elevated expression of ethylene synthesis genes, including ACS2, ACO1, and ACO3. In addition, DkLOX3 overexpression promoted dark induced transgenic Arabidopsis leaf senescence with more chlorophyll loss, increased electrolyte leakage and MDA content. Furthermore, the functions of DkLOX3 in response to abiotic stresses, including osmotic stress, high salinity and drought were investigated. Arabidopsis DkLOX3 overexpression (DkLOX3-OX) transgenic lines were found to be more tolerant to osmotic stress with higher germination rate and root growth than wild-type. Moreover, DkLOX3-OX Arabidopsis plants also exhibited enhanced resistance to high salinity and drought, with similar decreased O2- and H2O2 accumulation and upregulation of stress-responsive genes expression, including RD22, RD29A, RD29B, and NCED3, except for FRY1, which plays a negative role in stress response. Overall, these results suggested that DkLOX3 plays positive roles both in promoting ripening

  3. Facilitation of Fusarium graminearum Infection by 9-Lipoxygenases in Arabidopsis and Wheat.

    PubMed

    Nalam, Vamsi J; Alam, Syeda; Keereetaweep, Jantana; Venables, Barney; Burdan, Dehlia; Lee, Hyeonju; Trick, Harold N; Sarowar, Sujon; Makandar, Ragiba; Shah, Jyoti

    2015-10-01

    Fusarium graminearum causes Fusarium head blight, an important disease of wheat. F. graminearum can also cause disease in Arabidopsis thaliana. Here, we show that the Arabidopsis LOX1 and LOX5 genes, which encode 9-lipoxygenases (9-LOXs), are targeted during this interaction to facilitate infection. LOX1 and LOX5 expression were upregulated in F. graminearum-inoculated plants and loss of LOX1 or LOX5 function resulted in enhanced disease resistance in the corresponding mutant plants. The enhanced resistance to F. graminearum infection in the lox1 and lox5 mutants was accompanied by more robust induction of salicylic acid (SA) accumulation and signaling and attenuation of jasmonic acid (JA) signaling in response to infection. The lox1- and lox5-conferred resistance was diminished in plants expressing the SA-degrading salicylate hydroxylase or by the application of methyl-JA. Results presented here suggest that plant 9-LOXs are engaged during infection to control the balance between SA and JA signaling to facilitate infection. Furthermore, since silencing of TaLpx-1 encoding a 9-LOX with homology to LOX1 and LOX5, resulted in enhanced resistance against F. graminearum in wheat, we suggest that 9-LOXs have a conserved role as susceptibility factors in disease caused by this important fungus in Arabidopsis and wheat. PMID:26075826

  4. Microarray analyses for identifying genes conferring resistance to pepper leaf curl virus in chilli pepper (Capsicum spp.).

    PubMed

    Rai, Ved Prakash; Rai, Ashutosh; Kumar, Rajesh; Kumar, Sanjay; Kumar, Sanjeet; Singh, Major; Singh, Sheo Pratap

    2016-09-01

    Pepper leaf curl virus (PepLCV) is a serious threat to pepper (Capsicum spp.) production worldwide. Molecular mechanism underlying pepper plants response to PepLCV infection is key to develop PepLCV resistant varieties. In this study, we generated transcriptome profiles of PepLCV resistant genotype (BS-35) and susceptible genotype (IVPBC-535) after artificial viral inoculation using microarray technology and detail experimental procedures and analyses are described. A total of 319 genes differentially expressed between resistant and susceptible genotypes were identified, out of that 234 unique genes were found to be up-regulated > 2-fold in resistant line BS-35 when compared to susceptible, IVPBC-535. The data set we generated has been analyzed to identify genes that are involved in the regulation of resistance against PepLCV. The raw data have been deposited in the Gene Expression Omnibus (GEO) database under accession number GSE41131. PMID:27556012

  5. Screen Identifying Arabidopsis Transcription Factors Involved in the Response to 9-Lipoxygenase-Derived Oxylipins

    PubMed Central

    Walper, Elisabeth; Weiste, Christoph; Mueller, Martin J.; Hamberg, Mats; Dröge-Laser, Wolfgang

    2016-01-01

    13-Lipoxygenase-derived oxylipins, such as jasmonates act as potent signaling molecules in plants. Although experimental evidence supports the impact of oxylipins generated by the 9-Lipoxygenase (9-LOX) pathway in root development and pathogen defense, their signaling function in plants remains largely elusive. Based on the root growth inhibiting properties of the 9-LOX-oxylipin 9-HOT (9-hydroxy-10,12,15-octadecatrienoic acid), we established a screening approach aiming at identifying transcription factors (TFs) involved in signaling and/or metabolism of this oxylipin. Making use of the AtTORF-Ex (Arabidopsis thaliana Transcription Factor Open Reading Frame Expression) collection of plant lines overexpressing TF genes, we screened for those TFs which restore root growth on 9-HOT. Out of 6,000 lines, eight TFs were recovered at least three times and were therefore selected for detailed analysis. Overexpression of the basic leucine Zipper (bZIP) TF TGA5 and its target, the monoxygenase CYP81D11 reduced the effect of added 9-HOT, presumably due to activation of a detoxification pathway. The highly related ETHYLENE RESPONSE FACTORs ERF106 and ERF107 induce a broad detoxification response towards 9-LOX-oxylipins and xenobiotic compounds. From a set of 18 related group S-bZIP factors isolated in the screen, bZIP11 is known to participate in auxin-mediated root growth and may connect oxylipins to root meristem function. The TF candidates isolated in this screen provide starting points for further attempts to dissect putative signaling pathways involving 9-LOX-derived oxylipins. PMID:27073862

  6. Screen Identifying Arabidopsis Transcription Factors Involved in the Response to 9-Lipoxygenase-Derived Oxylipins.

    PubMed

    Walper, Elisabeth; Weiste, Christoph; Mueller, Martin J; Hamberg, Mats; Dröge-Laser, Wolfgang

    2016-01-01

    13-Lipoxygenase-derived oxylipins, such as jasmonates act as potent signaling molecules in plants. Although experimental evidence supports the impact of oxylipins generated by the 9-Lipoxygenase (9-LOX) pathway in root development and pathogen defense, their signaling function in plants remains largely elusive. Based on the root growth inhibiting properties of the 9-LOX-oxylipin 9-HOT (9-hydroxy-10,12,15-octadecatrienoic acid), we established a screening approach aiming at identifying transcription factors (TFs) involved in signaling and/or metabolism of this oxylipin. Making use of the AtTORF-Ex (Arabidopsis thaliana Transcription Factor Open Reading Frame Expression) collection of plant lines overexpressing TF genes, we screened for those TFs which restore root growth on 9-HOT. Out of 6,000 lines, eight TFs were recovered at least three times and were therefore selected for detailed analysis. Overexpression of the basic leucine Zipper (bZIP) TF TGA5 and its target, the monoxygenase CYP81D11 reduced the effect of added 9-HOT, presumably due to activation of a detoxification pathway. The highly related ETHYLENE RESPONSE FACTORs ERF106 and ERF107 induce a broad detoxification response towards 9-LOX-oxylipins and xenobiotic compounds. From a set of 18 related group S-bZIP factors isolated in the screen, bZIP11 is known to participate in auxin-mediated root growth and may connect oxylipins to root meristem function. The TF candidates isolated in this screen provide starting points for further attempts to dissect putative signaling pathways involving 9-LOX-derived oxylipins. PMID:27073862

  7. Molecular cloning of a pepper gene that is homologous to SELF-PRUNING.

    PubMed

    Kim, Dong Hwan; Han, Myeong Suk; Cho, Hyun Wooh; Jo, Yeong Deuk; Cho, Myeong Cheoul; Kim, Byung-Dong

    2006-08-31

    "Determinate" and "indeterminate" inflorescences in plants are controlled by a single recessive gene, for example, SELF-PRUNING (SP) in Solanum lycopersicum, TERMINAL FLOWER1 in Arabidopsis, CENTRORADI-ALIS in Antirrhinum, and CENTRORADIALIS-like gene in tobacco. Pepper (Capsicum annuum L.) is an indeterminate species in which shoots grow indefinitely. In this study, we cloned and characterized the pepper SP-like gene (CaSP). RT-PCR revealed that the CaSP transcript accumulates to higher levels in floral buds than in other organs. Comparison of genomic DNA and cDNA sequences from indeterminate and determinate pepper plants revealed the insertion of a single base in the first exon of CaSP in the determinate pepper plants. CaSP is annotated in linkage group 8 (chromosome 6) of the SNU2 pepper genetic map and showed similar synteny to SP in tomato. Transgenic tobacco plants overexpressing CaSP displayed late-flowering phenotypes similar to the phenotypes caused by overexpression of CaSP orthologs in other plants. Collectively, these results suggest that pepper CaSP is an ortholog of SP in tomato. PMID:16951555

  8. Isolation and Characterization of Pepper Genes Interacting with the CMV-P1 Helicase Domain

    PubMed Central

    Choi, Yoomi; Kang, Min-Young; Lee, Joung-Ho; Kang, Won-Hee; Hwang, JeeNa; Kwon, Jin-Kyung; Kang, Byoung-Cheorl

    2016-01-01

    Cucumber mosaic virus (CMV) is a destructive pathogen affecting Capsicum annuum (pepper) production. The pepper Cmr1 gene confers resistance to most CMV strains, but is overcome by CMV-P1 in a process dependent on the CMV-P1 RNA1 helicase domain (P1 helicase). Here, to identify host factors involved in CMV-P1 infection in pepper, a yeast two-hybrid library derived from a C. annuum ‘Bukang’ cDNA library was screened, producing a total of 76 potential clones interacting with the P1 helicase. Beta-galactosidase filter lift assay, PCR screening, and sequencing analysis narrowed the candidates to 10 genes putatively involved in virus infection. The candidate host genes were silenced in Nicotiana benthamiana plants that were then inoculated with CMV-P1 tagged with the green fluorescent protein (GFP). Plants silenced for seven of the genes showed development comparable to N. benthamiana wild type, whereas plants silenced for the other three genes showed developmental defects including stunting and severe distortion. Silencing formate dehydrogenase and calreticulin-3 precursor led to reduced virus accumulation. Formate dehydrogenase-silenced plants showed local infection in inoculated leaves, but not in upper (systemic) leaves. In the calreticulin-3 precursor-silenced plants, infection was not observed in either the inoculated or the upper leaves. Our results demonstrate that formate dehydrogenase and calreticulin-3 precursor are required for CMV-P1 infection. PMID:26751216

  9. Isolation and Characterization of Pepper Genes Interacting with the CMV-P1 Helicase Domain.

    PubMed

    Choi, Yoomi; Kang, Min-Young; Lee, Joung-Ho; Kang, Won-Hee; Hwang, JeeNa; Kwon, Jin-Kyung; Kang, Byoung-Cheorl

    2016-01-01

    Cucumber mosaic virus (CMV) is a destructive pathogen affecting Capsicum annuum (pepper) production. The pepper Cmr1 gene confers resistance to most CMV strains, but is overcome by CMV-P1 in a process dependent on the CMV-P1 RNA1 helicase domain (P1 helicase). Here, to identify host factors involved in CMV-P1 infection in pepper, a yeast two-hybrid library derived from a C. annuum 'Bukang' cDNA library was screened, producing a total of 76 potential clones interacting with the P1 helicase. Beta-galactosidase filter lift assay, PCR screening, and sequencing analysis narrowed the candidates to 10 genes putatively involved in virus infection. The candidate host genes were silenced in Nicotiana benthamiana plants that were then inoculated with CMV-P1 tagged with the green fluorescent protein (GFP). Plants silenced for seven of the genes showed development comparable to N. benthamiana wild type, whereas plants silenced for the other three genes showed developmental defects including stunting and severe distortion. Silencing formate dehydrogenase and calreticulin-3 precursor led to reduced virus accumulation. Formate dehydrogenase-silenced plants showed local infection in inoculated leaves, but not in upper (systemic) leaves. In the calreticulin-3 precursor-silenced plants, infection was not observed in either the inoculated or the upper leaves. Our results demonstrate that formate dehydrogenase and calreticulin-3 precursor are required for CMV-P1 infection. PMID:26751216

  10. Genome-Wide Analysis and Evolution of the Pto-Like Protein Kinase (PLPK) Gene Family in Pepper

    PubMed Central

    Venkatesh, Jelli; Jahn, Molly; Kang, Byoung-Cheorl

    2016-01-01

    The tomato Pto gene, which encodes a serine/threonine kinase (STK) domain-containing protein, confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato (Pst). In this study, in vivo recognition assays using PVX constructs showed that AvrPto was specifically recognized in the pepper genotypes. This AvrPto recognition caused a nonhost hypersensitive response (HR) and localization of the PVX::AvrPto fusion protein to inoculated pepper leaf tissues, which indicates the presence of a similar Pto recognition mechanism in pepper as in tomato. However, genome-wide analysis in pepper revealed no Pto clade corresponding to that in tomato, suggesting an alternative system for Pto recognition in pepper. Nevertheless, 25 Pto-like protein kinases (PLPKs) with a highly conserved STK domain have been identified in the pepper genome. For the majority of the amino acid sites in the STK domain of Ptos and PLPKs, nonsynonymous (dN) to synonymous (dS) nucleotide substitution ratios (ω) were less than one, suggesting that purifying selection played a predominant role in the evolutionary process. However, some amino acid sites were found to be subjected to episodic positive selection in the course of evolution of Pto homologs, and, thus, different evolutionary processes might have shaped the Pto gene family in plants. Based on RNA-seq data, PLPK genes and other Pto pathway genes, such as Prf, Pti1, Pti5, and Pti6 were expressed in all tested pepper genotypes. Therefore, the nonhost HR against Pst in pepper may be due to the recognition of the AvrPto effector by a PLPK homolog, and subsequent action of downstream components of the Pto signaling pathway. However, the possibility remains that the recognition of AvrPto in pepper plants may involve activities of other receptor like kinases (RLKs). The identification of the PLPKs in this study will serve as a foundation for further efforts to understand the roles of PLPKs in nonhost resistance. PMID:27536870

  11. Genome-Wide Analysis and Evolution of the Pto-Like Protein Kinase (PLPK) Gene Family in Pepper.

    PubMed

    Venkatesh, Jelli; Jahn, Molly; Kang, Byoung-Cheorl

    2016-01-01

    The tomato Pto gene, which encodes a serine/threonine kinase (STK) domain-containing protein, confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato (Pst). In this study, in vivo recognition assays using PVX constructs showed that AvrPto was specifically recognized in the pepper genotypes. This AvrPto recognition caused a nonhost hypersensitive response (HR) and localization of the PVX::AvrPto fusion protein to inoculated pepper leaf tissues, which indicates the presence of a similar Pto recognition mechanism in pepper as in tomato. However, genome-wide analysis in pepper revealed no Pto clade corresponding to that in tomato, suggesting an alternative system for Pto recognition in pepper. Nevertheless, 25 Pto-like protein kinases (PLPKs) with a highly conserved STK domain have been identified in the pepper genome. For the majority of the amino acid sites in the STK domain of Ptos and PLPKs, nonsynonymous (dN) to synonymous (dS) nucleotide substitution ratios (ω) were less than one, suggesting that purifying selection played a predominant role in the evolutionary process. However, some amino acid sites were found to be subjected to episodic positive selection in the course of evolution of Pto homologs, and, thus, different evolutionary processes might have shaped the Pto gene family in plants. Based on RNA-seq data, PLPK genes and other Pto pathway genes, such as Prf, Pti1, Pti5, and Pti6 were expressed in all tested pepper genotypes. Therefore, the nonhost HR against Pst in pepper may be due to the recognition of the AvrPto effector by a PLPK homolog, and subsequent action of downstream components of the Pto signaling pathway. However, the possibility remains that the recognition of AvrPto in pepper plants may involve activities of other receptor like kinases (RLKs). The identification of the PLPKs in this study will serve as a foundation for further efforts to understand the roles of PLPKs in nonhost resistance. PMID:27536870

  12. Characteristic of the Pepper CaRGA2 Gene in Defense Responses against Phytophthora capsici Leonian

    PubMed Central

    Zhang, Ying-Li; Jia, Qing-Li; Li, Da-Wei; Wang, Jun-E; Yin, Yan-Xu; Gong, Zhen-Hui

    2013-01-01

    The most significant threat to pepper production worldwide is the Phytophthora blight, which is caused by the oomycete pathogen, Phytophthora capsici Leonian. In an effort to help control this disease, we isolated and characterized a P. capsici resistance gene, CaRGA2, from a high resistant pepper (C. annuum CM334) and analyzed its function by the method of real-time PCR and virus-induced gene silencing (VIGS). The CaRGA2 has a full-length cDNA of 3,018 bp with 2,874 bp open reading frame (ORF) and encodes a 957-aa protein. The protein has a predicted molecular weight of 108.6 kDa, and the isoelectric point is 8.106. Quantitative real-time PCR indicated that CaRGA2 expression was rapidly induced by P. capsici. The gene expression pattern was different between the resistant and susceptible cultivars. CaRGA2 was quickly expressed in the resistant cultivar, CM334, and reached to a peak at 24 h after inoculation with P. capsici, five-fold higher than that of susceptible cultivar. Our results suggest that CaRGA2 has a distinct pattern of expression and plays a critical role in P. capsici stress tolerance. When the CaRGA2 gene was silenced via VIGS, the resistance level was clearly suppressed, an observation that was supported by semi-quantitative RT-PCR and detached leave inoculation. VIGS analysis revealed their importance in the surveillance to P. capsici in pepper. Our results support the idea that the CaRGA2 gene may show their response in resistance against P. capsici. These analyses will aid in an effort towards breeding for broad and durable resistance in economically important pepper cultivars. PMID:23698759

  13. Genome-Wide Identification and Analysis of the SBP-Box Family Genes under Phytophthora capsici Stress in Pepper (Capsicum annuum L.)

    PubMed Central

    Zhang, Huai-Xia; Jin, Jing-Hao; He, Yu-Mei; Lu, Bo-Ya; Li, Da-Wei; Chai, Wei-Guo; Khan, Abid; Gong, Zhen-Hui

    2016-01-01

    SQUAMOSA promoter binding protein (SBP)-box genes encode plant-specific transcription factors that are extensively involved in many physiological and biochemical processes, including growth, development, and signal transduction. However, pepper (Capsicum annuum L.) SBP-box family genes have not been well characterized. We investigated SBP-box family genes in the pepper genome and characterized these genes across both compatible and incompatible strain of Phytophthora capsici, and also under different hormone treatments. The results indicated that total 15 members were identified and distributed on seven chromosomes of pepper. Phylogenetic analysis showed that SBP-box genes of pepper can be classified into six groups. In addition, duplication analysis within pepper genome, as well as between pepper and Arabidopsis genomes demonstrated that there are four pairs of homology of SBP-box genes in the pepper genome and 10 pairs between pepper and Arabidopsis genomes. Tissue-specific expression analysis of the CaSBP genes demonstrated their diverse spatiotemporal expression patterns. The expression profiles were similarly analyzed following exposure to P. capsici inoculation and hormone treatments. It was shown that nine of the CaSBP genes (CaSBP01, 02, 03, 04, 05, 06, 11, 12, and 13) exhibited a dramatic up-regulation after compatible HX-9 strain (P. capsici) inoculation, while CaSBP09 and CaSBP15 were down-regulated. In case of PC strain (P. capsici) infection six of the CaSBP genes (CaSBP02, 05, 06, 11, 12, and 13) were arose while CaSBP14 was down regulated. Furthermore, Salicylic acid, Methyl jasmonate and their biosynthesis inhibitors treatment indicated that some of the CaSBP genes are potentially involved in these hormone regulation pathways. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles of the pepper CaSBP genes, will help to improve pepper stress tolerance in the future. PMID:27148327

  14. De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids.

    PubMed

    Liu, Shaoqun; Li, Wanshun; Wu, Yimin; Chen, Changming; Lei, Jianjun

    2013-01-01

    The capsaicinoids are a group of compounds produced by chili pepper fruits and are used widely in many fields, especially in medical purposes. The capsaicinoid biosynthetic pathway has not yet been established clearly. To understand more knowledge in biosynthesis of capsaicinoids, we applied RNA-seq for the mixture of placenta and pericarp of pungent pepper (Capsicum frutescens L.). We have assessed the effect of various assembly parameters using different assembly software, and obtained one of the best strategies for de novo assembly of transcriptome data. We obtained a total 54,045 high-quality unigenes (transcripts) using Trinity software. About 92.65% of unigenes showed similarity to the public protein sequences, genome of potato and tomato and pepper (C. annuum) ESTs databases. Our results predicted 3 new structural genes (DHAD, TD, PAT), which filled gaps of the capsaicinoid biosynthetic pathway predicted by Mazourek, and revealed new candidate genes involved in capsaicinoid biosynthesis based on KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. A significant number of SSR (Simple Sequence Repeat) and SNP (Single Nucleotide Polymorphism) markers were predicted in C. frutescens and C. annuum sequences, which will be helpful in the identification of polymorphisms within chili pepper populations. These data will provide new insights to the pathway of capsaicinoid biosynthesis and subsequent research of chili peppers. In addition, our strategy of de novo transcriptome assembly is applicable to a wide range of similar studies. PMID:23349661

  15. De Novo Transcriptome Assembly in Chili Pepper (Capsicum frutescens) to Identify Genes Involved in the Biosynthesis of Capsaicinoids

    PubMed Central

    Liu, Shaoqun; Li, Wanshun; Wu, Yimin; Chen, Changming; Lei, Jianjun

    2013-01-01

    The capsaicinoids are a group of compounds produced by chili pepper fruits and are used widely in many fields, especially in medical purposes. The capsaicinoid biosynthetic pathway has not yet been established clearly. To understand more knowledge in biosynthesis of capsaicinoids, we applied RNA-seq for the mixture of placenta and pericarp of pungent pepper (Capsicum frutescens L.). We have assessed the effect of various assembly parameters using different assembly software, and obtained one of the best strategies for de novo assembly of transcriptome data. We obtained a total 54,045 high-quality unigenes (transcripts) using Trinity software. About 92.65% of unigenes showed similarity to the public protein sequences, genome of potato and tomato and pepper (C. annuum) ESTs databases. Our results predicted 3 new structural genes (DHAD, TD, PAT), which filled gaps of the capsaicinoid biosynthetic pathway predicted by Mazourek, and revealed new candidate genes involved in capsaicinoid biosynthesis based on KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. A significant number of SSR (Simple Sequence Repeat) and SNP (Single Nucleotide Polymorphism) markers were predicted in C. frutescens and C. annuum sequences, which will be helpful in the identification of polymorphisms within chili pepper populations. These data will provide new insights to the pathway of capsaicinoid biosynthesis and subsequent research of chili peppers. In addition, our strategy of de novo transcriptome assembly is applicable to a wide range of similar studies. PMID:23349661

  16. Characterization and expression profile of CaNAC2 pepper gene

    PubMed Central

    Guo, Wei-Li; Wang, Shu-Bin; Chen, Ru-Gang; Chen, Bi-Hua; Du, Xiao-Hua; Yin, Yan-Xu; Gong, Zhen-Hui; Zhang, Yu-Yuan

    2015-01-01

    The plant-specific NAC (NAM, ATAF, and CUC) transcription factors have diverse role in development and stress regulation. A new transcript encoding NAC protein, homologous to nam-like protein 4 from Petunia was identified from an ABA-regulated subtractive cDNA library of Capsicum annuum seedling. Here, this homolog (named CaNAC2) from C. annuum was characterized and investigated its role in abiotic stress tolerance. Our results indicated that a plant-specific and conserved NAC domain was located in the N-terminus domain of CaNAC2 which was predicted to encode a polypeptide of 410 amino acids. Phylogenetic analysis showed that CaNAC2 belonged to the NAC2 subgroup of the orthologous group 4d. The protein CaNAC2 was subcellularly localized in the nucleus and it had transcriptional activity in yeast cell. CaNAC2 was expressed mainly in seed and root. The transcription expression of CaNAC2 was strongly induced by cold, salt and ABA treatment and inhibited by osmotic stress and SA treatment. Silence of CaNAC2 in virus-induced gene silenced pepper seedlings resulted in the increased susceptibility to cold stress and delayed the salt-induced leaf chlorophyll degradation. These results indicated that this novel CaNAC2 gene might be involved in pepper response to abiotic stress tolerance. PMID:26442068

  17. Characterization and expression profile of CaNAC2 pepper gene.

    PubMed

    Guo, Wei-Li; Wang, Shu-Bin; Chen, Ru-Gang; Chen, Bi-Hua; Du, Xiao-Hua; Yin, Yan-Xu; Gong, Zhen-Hui; Zhang, Yu-Yuan

    2015-01-01

    The plant-specific NAC (NAM, ATAF, and CUC) transcription factors have diverse role in development and stress regulation. A new transcript encoding NAC protein, homologous to nam-like protein 4 from Petunia was identified from an ABA-regulated subtractive cDNA library of Capsicum annuum seedling. Here, this homolog (named CaNAC2) from C. annuum was characterized and investigated its role in abiotic stress tolerance. Our results indicated that a plant-specific and conserved NAC domain was located in the N-terminus domain of CaNAC2 which was predicted to encode a polypeptide of 410 amino acids. Phylogenetic analysis showed that CaNAC2 belonged to the NAC2 subgroup of the orthologous group 4d. The protein CaNAC2 was subcellularly localized in the nucleus and it had transcriptional activity in yeast cell. CaNAC2 was expressed mainly in seed and root. The transcription expression of CaNAC2 was strongly induced by cold, salt and ABA treatment and inhibited by osmotic stress and SA treatment. Silence of CaNAC2 in virus-induced gene silenced pepper seedlings resulted in the increased susceptibility to cold stress and delayed the salt-induced leaf chlorophyll degradation. These results indicated that this novel CaNAC2 gene might be involved in pepper response to abiotic stress tolerance. PMID:26442068

  18. Virulence of Meloidogyne incognita to expression of N gene in pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five root-knot nematode resistant pepper genotypes and three susceptible pepper genotypes were compared for their reactions against a population of Meloidogyne incognita (Chitwood) Kofoid and White which had been shown to be pathogenic to bell pepper (Capsicum annuum) in preliminary tests. The pepp...

  19. Functional roles of the pepper RING finger protein gene, CaRING1, in abscisic acid signaling and dehydration tolerance.

    PubMed

    Lim, Chae Woo; Hwang, Byung Kook; Lee, Sung Chul

    2015-09-01

    Plants are constantly exposed to a variety of biotic and abiotic stresses, which include pathogens and conditions of high salinity, low temperature, and drought. Abscisic acid (ABA) is a major plant hormone involved in signal transduction pathways that mediate the defense response of plants to abiotic stress. Previously, we isolated Ring finger protein gene (CaRING1) from pepper (Capsicum annuum), which is associated with resistance to bacterial pathogens, accompanied by hypersensitive cell death. Here, we report a new function of the CaRING1 gene product in the ABA-mediated defense responses of plants to dehydration stress. The expression of the CaRING1 gene was induced in pepper leaves treated with ABA or exposed to dehydration or NaCl. Virus-induced gene silencing of CaRING1 in pepper plants exhibited low degree of ABA-induced stomatal closure and high levels of transpirational water loss in dehydrated leaves. These led to be more vulnerable to dehydration stress in CaRING1-silenced pepper than in the control pepper, accompanied by reduction of ABA-regulated gene expression and low accumulation of ABA and H2O2. In contrast, CaRING1-overexpressing transgenic plants showed enhanced sensitivity to ABA during the seedling growth and establishment. These plants were also more tolerant to dehydration stress than the wild-type plants because of high ABA accumulation, enhanced stomatal closure and increased expression of stress-responsive genes. Together, these results suggest that the CaRING1 acts as positive factor for dehydration tolerance in Arabidopsis by modulating ABA biosynthesis and ABA-mediated stomatal closing and gene expression. PMID:26249046

  20. Expression of sweet pepper Hrap gene in banana enhances resistance to Xanthomonas campestris pv. musacearum.

    PubMed

    Tripathi, Leena; Mwaka, Henry; Tripathi, Jaindra Nath; Tushemereirwe, Wilberforce Kateera

    2010-11-01

    Banana Xanthomonas wilt (BXW), caused by the bacterium Xanthomonas campestris pv. musacearum, is the most devastating disease of banana in the Great Lakes region of Africa. The pathogen's rapid spread has threatened the livelihood of millions of Africans who rely on banana fruit for food security and income. The disease is very destructive, infecting all banana varieties, including both East African Highland bananas and exotic types of banana. In the absence of natural host plant resistance among banana cultivars, the constitutive expression of the hypersensitivity response-assisting protein (Hrap) gene from sweet pepper (Capsicum annuum) was evaluated for its ability to confer resistance to BXW. Transgenic lines expressing the Hrap gene under the regulation of the constitutive CaMV35S promoter were generated using embryogenic cell suspensions of two banana cultivars: 'Sukali Ndiizi' and 'Mpologoma'. These lines were characterized by molecular analysis, and were challenged with Xanthomonas campestris pv. musacearum to analyse the efficacy of the Hrap gene against BXW. The majority of transgenic lines (six of eight) expressing Hrap did not show any symptoms of infection after artificial inoculation of potted plants in the screenhouse, whereas control nontransgenic plants showed severe symptoms resulting in complete wilting. This study demonstrates that the constitutive expression of the sweet pepper Hrap gene in banana results in enhanced resistance to BXW. We describe the development of transgenic banana varieties resistant to BXW, which will boost the arsenal available to fight this epidemic disease and save livelihoods in the Great Lakes region of East and Central Africa. PMID:21029318

  1. Genome-Wide Identification and Expression Profile of Dof Transcription Factor Gene Family in Pepper (Capsicum annuum L.).

    PubMed

    Wu, Zhiming; Cheng, Jiaowen; Cui, Junjie; Xu, Xiaowan; Liang, Guansheng; Luo, Xirong; Chen, Xiaocui; Tang, Xiangqun; Hu, Kailin; Qin, Cheng

    2016-01-01

    Dof (DNA-binding One Zinc Finger) transcription factor family is unique to plants and has diverse roles associated with plant-specific phenomena, such as light, phytohormone and defense responses as well as seed development and germination. Although, genome-wide analysis of this family has been performed in many species, information regarding Dof genes in the pepper, Capsicum annuum L., is extremely limited. In this study, exhaustive searches of pepper genome revealed 33 potential CaDofs that were phylogenetically clustered into four subgroups. Twenty-nine of the 33 Dof genes could be mapped on 11 chromosomes, except for chromosome 7. The intron/exon organizations and conserved motif compositions of these genes were also analyzed. Additionally, phylogenetic analysis and classification of the Dof transcription factor family in eight plant species revealed that S. lycopersicum and C. annuum as well as O. sativa and S. bicolor Dof proteins may have evolved conservatively. Moreover, comprehensive expression analysis of CaDofs using a RNA-seq atlas and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that these genes exhibit a variety of expression patterns. Most of the CaDofs were expressed in at least one of the tissues tested, whereas several genes were identified as being highly responsive to heat and salt stresses. Overall, this study describes the first genome-wide analysis of the pepper Dof family, whose genes exhibited different expression patterns in all primary fruit developmental stages and tissue types, as in response to abiotic stress. In particular, some Dof genes might be used as biomarkers for heat and salt stress. The results could expand our understanding of the roles of Dof genes in pepper. PMID:27200047

  2. Genome-Wide Identification and Expression Profile of Dof Transcription Factor Gene Family in Pepper (Capsicum annuum L.)

    PubMed Central

    Wu, Zhiming; Cheng, Jiaowen; Cui, Junjie; Xu, Xiaowan; Liang, Guansheng; Luo, Xirong; Chen, Xiaocui; Tang, Xiangqun; Hu, Kailin; Qin, Cheng

    2016-01-01

    Dof (DNA-binding One Zinc Finger) transcription factor family is unique to plants and has diverse roles associated with plant-specific phenomena, such as light, phytohormone and defense responses as well as seed development and germination. Although, genome-wide analysis of this family has been performed in many species, information regarding Dof genes in the pepper, Capsicum annuum L., is extremely limited. In this study, exhaustive searches of pepper genome revealed 33 potential CaDofs that were phylogenetically clustered into four subgroups. Twenty-nine of the 33 Dof genes could be mapped on 11 chromosomes, except for chromosome 7. The intron/exon organizations and conserved motif compositions of these genes were also analyzed. Additionally, phylogenetic analysis and classification of the Dof transcription factor family in eight plant species revealed that S. lycopersicum and C. annuum as well as O. sativa and S. bicolor Dof proteins may have evolved conservatively. Moreover, comprehensive expression analysis of CaDofs using a RNA-seq atlas and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that these genes exhibit a variety of expression patterns. Most of the CaDofs were expressed in at least one of the tissues tested, whereas several genes were identified as being highly responsive to heat and salt stresses. Overall, this study describes the first genome-wide analysis of the pepper Dof family, whose genes exhibited different expression patterns in all primary fruit developmental stages and tissue types, as in response to abiotic stress. In particular, some Dof genes might be used as biomarkers for heat and salt stress. The results could expand our understanding of the roles of Dof genes in pepper. PMID:27200047

  3. Developmental and stress regulation of gene expression for plastid and cytosolic isoprenoid pathways in pepper fruits.

    PubMed Central

    Hugueney, P; Bouvier, F; Badillo, A; Quennemet, J; d'Harlingue, A; Camara, B

    1996-01-01

    Plant cells synthesize a myriad of isoprenoid compounds in different subcellular compartments, which include the plastid, the mitochondria, and the endoplasmic reticulum cytosol. To start the study of the regulation of these parallel pathways, we used pepper (Capsicum annuum) fruit as a model. Using different isoprenoid biosynthetic gene probes from cloned cDNAs, we showed that only genes encoding the plastid enzymes (geranylgeranyl pyrophosphate synthase, phytoene synthase, phytoene desaturase, and capasanthin-capsorubin synthase) are specifically triggered during the normal period of development, at the ripening stage. This pattern of expression can be mimicked and precociously induced by a simple wounding stress. Concerning the cytosol-located enzymes, we observed that the expression of the gene encoding farnesyl pyrophosphate synthase is constitutive, whereas that of farnesyl pyrophosphate cyclase (5-epi-aristolochene synthase) is undetectable during the normal development of the fruit. The expression of these later genes are, however, only selectively triggered after elicitor treatment. The results provide evidence for developmental control of isoprenoid biosynthesis occurring in plastids and that cytoplasmic isoprenoid biosynthesis is regulated, in part, by environmental signals. PMID:8787029

  4. Molecular cloning, sequence characterization of a novel pepper gene NADP-ICDH and its effect on cytoplasmic male sterility.

    PubMed

    Deng, M H; Wen, J F; Huo, J L; Zhu, H S; Dai, X Z; Zhang, Z Q; Zhou, H; Zou, X X

    2012-01-01

    NADP-dependent isocitrate dehydrogenase (NADP-ICDH) is an important enzyme involved in energy metabolism. The complete coding sequence of the pepper (Capsicum annuum) NADP-ICDH gene was amplified using a reverse transcriptase PCR based on the conserved sequence information of the tomato and other Solanaceae plants and known highly homologous pepper ESTs. Nucleotide sequence analysis revealed that the pepper NADP-ICDH gene encodes a protein of 415 amino acids that has high homology with the proteins of seven species, Solanum tuberosum (100%), Citrus limon (98%), Daucus carota (98%), Nicotiana tabacum (98%), Vitis vinifera (99%), Arabidopsis thaliana (97%), and Oryza sativa (98%). Tissue expression analysis demonstrated that the pepper NADP-ICDH gene is over expressed in flower, pericarp and seed, moderately in placenta, weakly in stem and leaf, hardly expressed in root. At the abortion stages, activities and expression levels of NADP-ICDH in anthers of a sterile line were strongly reduced, while those in an F(1) hybrid remained normal. Activities and expression levels of NADP-ICDH were too low to maintain balanced energy metabolism in the sterile line, which indicated that stable transcripts of NADP-ICDH are necessary to maintain energy metabolism at a normal level. When the restorer gene was transferred to the cytoplasmic male sterile line, activities and expression level of NADP-ICDH were regulated by the restorer gene and became stable. The restorer gene likely plays an important role in keeping the balance of the energy metabolism within normal levels during microspore development. PMID:22653649

  5. Overexpression of the CaTIP1-1 Pepper Gene in Tobacco Enhances Resistance to Osmotic Stresses

    PubMed Central

    Yin, Yan-Xu; Wang, Shu-Bin; Xiao, Huai-Juan; Zhang, Huai-Xia; Zhang, Zhen; Jing, Hua; Zhang, Ying-Li; Chen, Ru-Gang; Gong, Zhen-Hui

    2014-01-01

    Both the gene expression and activity of water channel protein can control transmembrane water movement. We have reported the overexpression of CaTIP1-1, which caused a decrease in chilling tolerance in transgenic plants by increasing the size of the stomatal pore. CaTIP1-1 expression was strongly induced by salt and mannitol stresses in pepper (Capsicum annuum). However, its biochemical and physiological functions are still unknown in transgenic tobacco. In this study, transient expression of CaTIP1-1-GFP in tobacco suspension cells revealed that the protein was localized in the tonoplast. CaTIP1-1 overexpressed in radicle exhibited vigorous growth under high salt and mannitol treatments more than wild-type plants. The overexpression of CaTIP1-1 pepper gene in tobacco enhanced the antioxidant enzyme activities and increased transcription levels of reactive oxygen species-related gene expression under osmotic stresses. Moreover, the viability of transgenic tobacco cells was higher than the wild-type after exposure to stress. The pepper plants with silenced CaTIP1-1 in P70 decreased tolerance to salt and osmotic stresses using the detached leaf method. We concluded that the CaTIP1-1 gene plays an important role in response to osmotic stresses in tobacco. PMID:25375192

  6. Expression of genes involved in the salicylic acid pathway in type h1 thioredoxin transiently silenced pepper plants during a begomovirus compatible interaction.

    PubMed

    Luna-Rivero, Marianne S; Hernández-Zepeda, Cecilia; Villanueva-Alonzo, Hernán; Minero-García, Yereni; Castell-González, Salvador E; Moreno-Valenzuela, Oscar A

    2016-04-01

    The type-h thioredoxins (TRXs) play a fundamental role in oxidative stress tolerance and defense responses against pathogens. In pepper plants, type-h TRXs participate in the defense mechanism against Cucumber mosaic virus. The goal of this study was to analyze the role of the CaTRXh1-cicy gene in pepper plants during compatible interaction with a DNA virus, the Euphorbia mosaic virus-Yucatan Peninsula (EuMV-YP). The effects of a transient silencing of the CaTRXh1-cicy gene in pepper plants wëre evaluated by observing the accumulation of viral DNA and the visible symptoms of pepper plants under different treatments. The accumulation of salicylic acid (SA) and the relative expression of the defense genes NPR1 and PR10 were also evaluated. Results showed that viral DNA accumulation was higher in transiently CaTRXh1-cicy silenced plants that were also infected with EuMV-YP. Symptoms in these plants were more severe compared to the non-silenced plants infected with EuMV-YP. The SA levels in the EuMV-YP-infected plants were rapidly induced at 1 h post infection (hpi) in comparison to the non-silenced plants inoculated with EuMV-YP. Additionally, in pepper plants infected with EuMV-YP, the expression of NPR1 decreased by up to 41 and 58 % at 28 days post infection (dpi) compared to the non-silenced pepper plants infected with only EuMV-YP and healthy non-inoculated pepper plants, respectively. PR10 gene expression decreased by up to 70 % at 28 dpi. Overall, the results indicate that the CaTRXh1-cicy gene participates in defense mechanisms during the compatible interaction of pepper plants with the EuMV-YP DNA virus. PMID:26606929

  7. Comparison between the N and Me3 gene conferring resistance to the root-knot nematode (Meloidogyne incognita) in genetically different pepper lines (Capsicum annuun).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic resistance to Meloidogyne incognita in pepper (Capsicum annuum L.) has been well characterized for the N and Me3 resistance genes. However, there are no studies comparing the effects of these two genes directly or are there studies investigating the combined effects when both genes are pres...

  8. Calcined Eggshell Waste for Mitigating Soil Antibiotic-Resistant Bacteria/Antibiotic Resistance Gene Dissemination and Accumulation in Bell Pepper.

    PubMed

    Ye, Mao; Sun, Mingming; Feng, Yanfang; Li, Xu; Schwab, Arthur P; Wan, Jinzhong; Liu, Manqiang; Tian, Da; Liu, Kuan; Wu, Jun; Jiang, Xin

    2016-07-13

    The combined accumulation of antibiotics, heavy metals, antibiotic-resistant bacteria (ARB)/antibiotic resistance genes (ARGs) in vegetables has become a new threat to human health. This is the first study to investigate the feasibility of calcined eggshells modified by aluminum sulfate as novel agricultural wastes to impede mixed contaminants from transferring to bell pepper (Capsicum annuum L.). In this work, calcined eggshell amendment mitigated mixed pollutant accumulation in bell pepper significantly, enhanced the dissipation of soil tetracycline, sulfadiazine, roxithromycin, and chloramphenicol, decreased the water-soluble fractions of antibiotics, and declined the diversity of ARB/ARGs inside the vegetable. Moreover, quantitative polymerase chain reaction analysis detected that ARG levels in the bell pepper fruits significantly decreased to 10(-10) copies/16S copies, indicating limited risk of ARGs transferring along the food chain. Furthermore, the restoration of soil microbial biological function suggests that calcined eggshell is an environmentally friendly amendment to control the dissemination of soil ARB/ARGs in the soil-vegetable system. PMID:27333280

  9. Cloning and characterization of the CarbcL gene related to chlorophyll in pepper (Capsicum annuum L.) under fruit shade stress.

    PubMed

    Wang, Shu-Bin; Tian, Shi-Lin; Shah, Syed N M; Pan, Bao-Gui; Diao, Wei-Ping; Gong, Zhen-Hui

    2015-01-01

    Light is an important environmental factor for fruit development and ripening in pepper plant. Fruit bagging is a significant agrotechnology practiced for the illumination regulation of fruits; some previous researches have shown that fruit bagging could improve the appearance and external quality of fruits and cause them to mature early. However, it would decrease the intrinsic qualities of fruits; especially, fruit bagging could decrease the content of capsanthin in peppers. On the basis of these details, fruit bagging was used as the method of fruit shade stress in this study to explore the characteristics and molecular mechanisms of pepper fruit's color change under shade stress. By using cDNA-AFLP under fruit shading, a fragment related to fruit color was obtained. Next, the full-length coding sequence of the gene was cloned from the pepper fruits. Homologous gene alignment confirmed that the gene has high homology with the rbcL gene, named CarbcL. The function of the CarbcL gene was identified through virus-induced gene silencing (VIGS); it was found that the fruit color changed completely from green to red except for some residue of green fleck when CarbcL gene was silenced, and the green color of fruits had not fully faded in the control group and the empty vector group. The combine determination of chlorophyll content showed that CarbcL was involved in the metabolic control of chlorophyll in pepper fruits; subsequently, HPLC was used to determine the content of capsanthin in pepper fruit which the CarbcL gene was silencing, and it was also found that the content of capsanthin decreased appreciably. These results further confirmed that CarbcL gene was involved in the adjustment of chlorophyll and capsanthin. PMID:26528313

  10. Cloning and characterization of the CarbcL gene related to chlorophyll in pepper (Capsicum annuum L.) under fruit shade stress

    PubMed Central

    Wang, Shu-Bin; Tian, Shi-Lin; Shah, Syed N. M.; Pan, Bao-Gui; Diao, Wei-Ping; Gong, Zhen-Hui

    2015-01-01

    Light is an important environmental factor for fruit development and ripening in pepper plant. Fruit bagging is a significant agrotechnology practiced for the illumination regulation of fruits; some previous researches have shown that fruit bagging could improve the appearance and external quality of fruits and cause them to mature early. However, it would decrease the intrinsic qualities of fruits; especially, fruit bagging could decrease the content of capsanthin in peppers. On the basis of these details, fruit bagging was used as the method of fruit shade stress in this study to explore the characteristics and molecular mechanisms of pepper fruit's color change under shade stress. By using cDNA-AFLP under fruit shading, a fragment related to fruit color was obtained. Next, the full-length coding sequence of the gene was cloned from the pepper fruits. Homologous gene alignment confirmed that the gene has high homology with the rbcL gene, named CarbcL. The function of the CarbcL gene was identified through virus-induced gene silencing (VIGS); it was found that the fruit color changed completely from green to red except for some residue of green fleck when CarbcL gene was silenced, and the green color of fruits had not fully faded in the control group and the empty vector group. The combine determination of chlorophyll content showed that CarbcL was involved in the metabolic control of chlorophyll in pepper fruits; subsequently, HPLC was used to determine the content of capsanthin in pepper fruit which the CarbcL gene was silencing, and it was also found that the content of capsanthin decreased appreciably. These results further confirmed that CarbcL gene was involved in the adjustment of chlorophyll and capsanthin. PMID:26528313

  11. VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves.

    PubMed

    Zhang, Zhen; Li, Da-Wei; Jin, Jing-Hao; Yin, Yan-Xu; Zhang, Huai-Xia; Chai, Wei-Guo; Gong, Zhen-Hui

    2015-01-01

    The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3'5'H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H, and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens. PMID:26217354

  12. VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves

    PubMed Central

    Zhang, Zhen; Li, Da-Wei; Jin, Jing-Hao; Yin, Yan-Xu; Zhang, Huai-Xia; Chai, Wei-Guo; Gong, Zhen-Hui

    2015-01-01

    The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3′5′H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H, and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens. PMID:26217354

  13. Tapetum-specific expression of a cytoplasmic orf507 gene causes semi-male sterility in transgenic peppers

    PubMed Central

    Ji, Jiao-Jiao; Huang, Wei; Li, Zheng; Chai, Wei-Guo; Yin, Yan-Xu; Li, Da-Wei; Gong, Zhen-Hui

    2015-01-01

    Though cytoplasmic male sterility (CMS) in peppers is associated with the orf507 gene, definitive and direct evidence that it directly causes male sterility is still lacking. In this study, differences in histochemical localization of anther cytochrome c oxidase between the pepper CMS line and maintainer line were observed mainly in the tapetal cells and tapetal membrane. Inducible and specific expression of the orf507 gene in the pepper maintainer line found that transformants were morphologically similar to untransformed and transformed control plants, but had shrunken anthers that showed little dehiscence and fewer pollen grains with lower germination rate and higher naturally damaged rate. These characters were different from those of CMS line which does not produce any pollen grains. Meanwhile a pollination test using transformants as the male parent set few fruit and there were few seeds in the limited number of fruits. At the tetrad stage, ablation of the tapetal cell induced by premature programmed cell death (PCD) occurred in the transformants and the microspores were distorted and degraded at the mononuclear stage. Stable transmission of induced semi-male sterility was confirmed by a test cross. In addition, expression of orf507 in the maintainer lines seemed to inhibit expression of atp6-2 to a certain extent, and lead to the increase of the activity of cytochrome c oxidase and the ATP hydrolysis of the mitochondrial F1Fo-ATP synthase. These results introduce the premature PCD caused by orf507 gene in tapetal cells and semi-male sterility, but not complete male sterility. PMID:25954296

  14. Involvement of the Pepper Antimicrobial Protein CaAMP1 Gene in Broad Spectrum Disease Resistance1[C][OA

    PubMed Central

    Lee, Sung Chul; Hwang, In Sun; Choi, Hyong Woo; Hwang, Byung Kook

    2008-01-01

    Pathogen-inducible antimicrobial defense-related proteins have emerged as key antibiotic peptides and enzymes involved in disease resistance in plants. A novel antimicrobial protein gene, CaAMP1 (for Capsicum annuum ANTIMICROBIAL PROTEIN1), was isolated from pepper (C. annuum) leaves infected with Xanthomonas campestris pv vesicatoria. Expression of the CaAMP1 gene was strongly induced in pepper leaves not only during pathogen infection but also after exposure to abiotic elicitors. The purified recombinant CaAMP1 protein possessed broad-spectrum antimicrobial activity against phytopathogenic bacteria and fungi. CaAMP1:smGFP fusion protein was localized mainly in the external and intercellular regions of onion (Allium cepa) epidermal cells. The virus-induced gene silencing technique and gain-of-function transgenic plants were used to determine the CaAMP1 gene function in plant defense. Silencing of CaAMP1 led to enhanced susceptibility to X. campestris pv vesicatoria and Colletotrichum coccodes infection, accompanied by reduced PATHOGENESIS-RELATED (PR) gene expression. In contrast, overexpression of CaAMP1 in Arabidopsis (Arabidopsis thaliana) conferred broad-spectrum resistance to the hemibiotrophic bacterial pathogen Pseudomonas syringae pv tomato, the biotrophic oomycete Hyaloperonospora parasitica, and the fungal necrotrophic pathogens Fusarium oxysporum f. sp. matthiolae and Alternaria brassicicola. CaAMP1 overexpression induced the salicylic acid pathway-dependent genes PR1 and PR5 but not the jasmonic acid-dependent defense gene PDF1.2 during P. syringae pv tomato infection. Together, these results suggest that the antimicrobial CaAMP1 protein is involved in broad-spectrum resistance to bacterial and fungal pathogen infection. PMID:18676663

  15. A Pepper MSRB2 Gene Confers Drought Tolerance in Rice through the Protection of Chloroplast-Targeted Genes

    PubMed Central

    Chae, Songhwa; Lee, Tae-Ho; Hwang, Duk-Ju; Oh, Sung-Dug; Park, Jong-Sug; Song, Dae-Geun; Pan, Cheol-Ho; Choi, Doil; Kim, Yul-Ho; Nahm, Baek Hie; Kim, Yeon-Ki

    2014-01-01

    Background The perturbation of the steady state of reactive oxygen species (ROS) due to biotic and abiotic stresses in a plant could lead to protein denaturation through the modification of amino acid residues, including the oxidation of methionine residues. Methionine sulfoxide reductases (MSRs) catalyze the reduction of methionine sulfoxide back to the methionine residue. To assess the role of this enzyme, we generated transgenic rice using a pepper CaMSRB2 gene under the control of the rice Rab21 (responsive to ABA protein 21) promoter with/without a selection marker, the bar gene. Results A drought resistance test on transgenic plants showed that CaMSRB2 confers drought tolerance to rice, as evidenced by less oxidative stress symptoms and a strengthened PSII quantum yield under stress conditions, and increased survival rate and chlorophyll index after the re-watering. The results from immunoblotting using a methionine sulfoxide antibody and nano-LC-MS/MS spectrometry suggest that porphobilinogen deaminase (PBGD), which is involved in chlorophyll synthesis, is a putative target of CaMSRB2. The oxidized methionine content of PBGD expressed in E. coli increased in the presence of H2O2, and the Met-95 and Met-227 residues of PBGD were reduced by CaMSRB2 in the presence of dithiothreitol (DTT). An expression profiling analysis of the overexpression lines also suggested that photosystems are less severely affected by drought stress. Conclusions Our results indicate that CaMSRB2 might play an important functional role in chloroplasts for conferring drought stress tolerance in rice. PMID:24614245

  16. The pepper GNA-related lectin and PAN domain protein gene, CaGLP1, is required for plant cell death and defense signaling during bacterial infection.

    PubMed

    Kim, Nak Hyun; Lee, Dong Hyuk; Choi, Du Seok; Hwang, Byung Kook

    2015-12-01

    Carbohydrate-binding proteins, commonly referred to as lectins or agglutinins, function in defense responses to microbial pathogens. Pepper (Capsicum annuum) GNA-related lectin and PAN-domain protein gene CaGLP1 was isolated and functionally characterized from pepper leaves infected with Xanthomonas campestris pv. vesicatoria (Xcv). CaGLP1 contained an amine-terminus prokaryotic membrane lipoprotein lipid attachment site, a Galanthus nivalis agglutinin (GNA)-related lectin domain responsible for the recognition of high-mannose N-glycans, and a carboxyl-terminus PAN/apple domain. RNA gel blot and immunoblot analyses determined that CaGLP1 was strongly induced in pepper by compatible and incompatible Xcv infection. CaGLP1 protein localized primarily to the plasma membrane and exhibited mannose-binding specificity. CaGLP1-silenced pepper plants were more susceptible to compatible or incompatible Xcv infection compared with that of non-silenced control plants. CaGLP1 silencing in pepper leaves did not accumulate H2O2 and induce cell death during incompatible Xcv infection. Defense-related CaDEF1 (defensin) gene expression was significantly reduced in CaGLP1-silenced pepper plants. CaGLP1-overexpression in Arabidopsis thaliana enhanced resistance to Pseudomonas syringae pv. tomato. Defense-related AtPDF1.2 expression was elevated in CaGLP1-overexpression lines. Together, these results suggest that CaGLP1 is required for plant cell death and defense responses through the reactive oxygen species burst and downstream defense-related gene expression in response to bacterial pathogen challenge. PMID:26706081

  17. Identification and Expression Analysis of Candidate Genes Associated with Defense Responses to Phytophthora capsici in Pepper Line “PI 201234”

    PubMed Central

    Wang, Pingyong; Liu, Xiaodan; Guo, Jinju; Liu, Chen; Fu, Nan; Shen, Huolin

    2015-01-01

    Phytophthora capsici (Leonian), classified as an oomycete, seriously threatens the production of pepper (Capsicum annuum). Current understanding of the defense responses in pepper to P. capsici is limited. In this study, RNA-sequencing analysis was utilized to identify differentially expressed genes in the resistant line “PI 201234”, with 1220 differentially expressed genes detected. Of those genes, 480 were up-regulated and 740 were down-regulated, with 211 candidate genes found to be involved in defense responses based on the gene annotations. Furthermore, the expression patterns of 12 candidate genes were further validated via quantitative real-time PCR (qPCR). These genes were found to be significantly up-regulated at different time points post-inoculation (6 hpi, 24 hpi, and 5 dpi) in the resistant line “PI 201234” and susceptible line “Qiemen”. Seven genes were found to be involved in cell wall modification, phytoalexin biosynthesis, symptom development, and phytohormone signaling pathways, thus possibly playing important roles in combating exogenous pathogens. The genes identified herein will provide a basis for further gene cloning and functional verification studies and will aid in an understanding of the regulatory mechanism of pepper resistance to P. capsici. PMID:25993303

  18. Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress.

    PubMed

    Guo, Meng; Liu, Jin-Hong; Lu, Jin-Ping; Zhai, Yu-Fei; Wang, Hu; Gong, Zhen-Hui; Wang, Shu-Bin; Lu, Ming-Hui

    2015-01-01

    The Hsp20 genes are present in all plant species and play important roles in alleviating heat stress and enhancing plant thermotolerance by preventing the irreversible aggregation of denaturing proteins. However, very little is known about the CaHsp20 gene family in pepper (Capsicum annuum L.), an important vegetable crop with character of temperate but thermosensitive. In this study, a total of 35 putative pepper Hsp20 genes (CaHsp20s) were identified and renamed on the basis of their molecular weight, and then their gene structure, genome location, gene duplication, phylogenetic relationship, and interaction network were also analyzed. The expression patterns of CaHsp20 genes in four different tissues (root, stem, leaf, and flower) from the thermotolerant line R9 under heat stress condition were measured using semi-quantitative RT-PCR. The transcripts of most CaHsp20 genes maintained a low level in all of the four tissues under normal temperature condition, but were highly induced by heat stress, while the expression of CaHsp16.6b, 16.7, and 23.8 were only detected in specific tissues and were not so sensitive to heat stress like other CaHsp20 genes. In addition, compared to those in thermotolerant line R9, the expression peak of most CaHsp20 genes in thermosensitive line B6 under heat stress was hysteretic, and several CaHsp20 genes (CaHsp16.4, 18.2a, 18.7, 21.2, 22.0, 25.8, and 25.9) showed higher expression levels in both line B6 and R9. These data suggest that the CaHsp20 genes may be involved in heat stress and defense responses in pepper, which provides the basis for further functional analyses of CaHsp20s in the formation of pepper acquired thermotoleance. PMID:26483820

  19. Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress

    PubMed Central

    Guo, Meng; Liu, Jin-Hong; Lu, Jin-Ping; Zhai, Yu-Fei; Wang, Hu; Gong, Zhen-Hui; Wang, Shu-Bin; Lu, Ming-Hui

    2015-01-01

    The Hsp20 genes are present in all plant species and play important roles in alleviating heat stress and enhancing plant thermotolerance by preventing the irreversible aggregation of denaturing proteins. However, very little is known about the CaHsp20 gene family in pepper (Capsicum annuum L.), an important vegetable crop with character of temperate but thermosensitive. In this study, a total of 35 putative pepper Hsp20 genes (CaHsp20s) were identified and renamed on the basis of their molecular weight, and then their gene structure, genome location, gene duplication, phylogenetic relationship, and interaction network were also analyzed. The expression patterns of CaHsp20 genes in four different tissues (root, stem, leaf, and flower) from the thermotolerant line R9 under heat stress condition were measured using semi-quantitative RT-PCR. The transcripts of most CaHsp20 genes maintained a low level in all of the four tissues under normal temperature condition, but were highly induced by heat stress, while the expression of CaHsp16.6b, 16.7, and 23.8 were only detected in specific tissues and were not so sensitive to heat stress like other CaHsp20 genes. In addition, compared to those in thermotolerant line R9, the expression peak of most CaHsp20 genes in thermosensitive line B6 under heat stress was hysteretic, and several CaHsp20 genes (CaHsp16.4, 18.2a, 18.7, 21.2, 22.0, 25.8, and 25.9) showed higher expression levels in both line B6 and R9. These data suggest that the CaHsp20 genes may be involved in heat stress and defense responses in pepper, which provides the basis for further functional analyses of CaHsp20s in the formation of pepper acquired thermotoleance. PMID:26483820

  20. The Pepper Mannose-Binding Lectin Gene CaMBL1 Is Required to Regulate Cell Death and Defense Responses to Microbial Pathogens1[C][W][OA

    PubMed Central

    Hwang, In Sun; Hwang, Byung Kook

    2011-01-01

    Plant mannose-binding lectins (MBLs) are crucial for plant defense signaling during pathogen attack by recognizing specific carbohydrates on pathogen surfaces. In this study, we isolated and functionally characterized a novel pepper (Capsicum annuum) MBL gene, CaMBL1, from pepper leaves infected with Xanthomonas campestris pv vesicatoria (Xcv). The CaMBL1 gene contains a predicted Galanthus nivalis agglutinin-related lectin domain responsible for the recognition of high-mannose N-glycans but lacks a middle S-locus glycoprotein domain and a carboxyl-terminal PAN-Apple domain. The CaMBL1 protein exhibits binding specificity for mannose and is mainly localized to the plasma membrane. Immunoblotting using a CaMBL1-specific antibody revealed that CaMBL1 is strongly expressed and accumulates in pepper leaves during avirulent Xcv infection. The transient expression of CaMBL1 induces the accumulation of salicylic acid (SA), the activation of defense-related genes, and the cell death phenotype in pepper. The G. nivalis agglutinin-related lectin domain of CaMBL1 is responsible for cell death induction. CaMBL1-silenced pepper plants are more susceptible to virulent or avirulent Xcv infection compared with unsilenced control plants, a phenotype that is accompanied by lowered reactive oxygen species accumulation, reduced expression of downstream SA target genes, and a concomitant decrease in SA accumulation. In contrast, CaMBL1 overexpression in Arabidopsis (Arabidopsis thaliana) confers enhanced resistance to Pseudomonas syringae pv tomato and Alternaria brassicicola infection. Together, these data suggest that CaMBL1 plays a key role in the regulation of plant cell death and defense responses through the induction of downstream defense-related genes and SA accumulation after the recognition of microbial pathogens. PMID:21205632

  1. Transfer RNA Derived Small RNAs Targeting Defense Responsive Genes Are Induced during Phytophthora capsici Infection in Black Pepper (Piper nigrum L.).

    PubMed

    Asha, Srinivasan; Soniya, Eppurath V

    2016-01-01

    Small RNAs derived from transfer RNAs were recently assigned as potential gene regulatory candidates for various stress responses in eukaryotes. In this study, we report on the cloning and identification of tRNA derived small RNAs from black pepper plants in response to the infection of the quick wilt pathogen, Phytophthora capsici. 5'tRFs cloned from black pepper were validated as highly expressed during P. capsici infection. A high-throughput systematic analysis of the small RNAome (sRNAome) revealed the predominance of 5'tRFs in the infected leaf and root. The abundance of 5'tRFs in the sRNAome and the defense responsive genes as their potential targets indicated their regulatory role during stress response in black pepper. The 5'Ala(CGC) tRF mediated cleavage was experimentally mapped at the tRF binding sites on the mRNA targets of Non-expresser of pathogenesis related protein (NPR1), which was down-regulated during pathogen infection. Comparative sRNAome further demonstrated sequence conservation of 5'Ala tRFs across the angiosperm plant groups, and many important genes in the defense response were identified in silico as their potential targets. Our findings uncovered the diversity, differential expression and stress responsive functional role of tRNA-derived small RNAs during Phytophthora infection in black pepper. PMID:27313593

  2. Transfer RNA Derived Small RNAs Targeting Defense Responsive Genes Are Induced during Phytophthora capsici Infection in Black Pepper (Piper nigrum L.)

    PubMed Central

    Asha, Srinivasan; Soniya, Eppurath V.

    2016-01-01

    Small RNAs derived from transfer RNAs were recently assigned as potential gene regulatory candidates for various stress responses in eukaryotes. In this study, we report on the cloning and identification of tRNA derived small RNAs from black pepper plants in response to the infection of the quick wilt pathogen, Phytophthora capsici. 5′tRFs cloned from black pepper were validated as highly expressed during P. capsici infection. A high-throughput systematic analysis of the small RNAome (sRNAome) revealed the predominance of 5′tRFs in the infected leaf and root. The abundance of 5′tRFs in the sRNAome and the defense responsive genes as their potential targets indicated their regulatory role during stress response in black pepper. The 5′AlaCGC tRF mediated cleavage was experimentally mapped at the tRF binding sites on the mRNA targets of Non-expresser of pathogenesis related protein (NPR1), which was down-regulated during pathogen infection. Comparative sRNAome further demonstrated sequence conservation of 5′Ala tRFs across the angiosperm plant groups, and many important genes in the defense response were identified in silico as their potential targets. Our findings uncovered the diversity, differential expression and stress responsive functional role of tRNA-derived small RNAs during Phytophthora infection in black pepper. PMID:27313593

  3. Effects of the Mi-1 and the N root-knot nematode-resistance gene on infection and reproduction of Meloidogyne enterolobii on tomato and pepper cultivars

    PubMed Central

    Dessimoz, Mireille; Franck, Lucie

    2009-01-01

    Meloidogyne enterolobii is widely considered to be an aggressive root-knot nematode species that is able to reproduce on root-knot nematode-resistant tomato and pepper cultivars. In greenhouse experiments, M. enterolobii isolates 1 and 2 from Switzerland were able to reproduce on tomato cultivars carrying the Mi-1 resistance gene as well as an N-carrying pepper cultivar. Reproduction factors (Rf) ranged between 12 and 109 depending on the plant cultivar, with M. enterolobii isolate 2 being more virulent when compared to isolate 1. In contrast, M. arenaria completely failed to reproduce on these resistant tomato and pepper cultivars. Although some variability in virulence and effectiveness of root-knot nematode-resistance genes was detected, none of the plant cultivars showed Rf values less than 1 or less than 10% of the reproduction observed on the susceptible cv. ‘Moneymaker’ (Rf = 23-44) used to characterize resistance. The ability of M. enterolobii to overcome the resistance of tomato and pepper carrying the Mi-1 and the N gene makes it difficult to manage this root-knot nematode species, particularly in organic farming systems where chemical control is not an option. PMID:22661786

  4. Analysis of TIR- and non-TIR-NBS-LRR disease resistance gene analogous in pepper: characterization, genetic variation, functional divergence and expression patterns

    PubMed Central

    2012-01-01

    Background Pepper (Capsicum annuum L.) is one of the most important vegetable crops worldwide. However, its yield and fruit quality can be severely threatened by several pathogens. The plant nucleotide-binding site (NBS)-leucine-rich repeat (LRR) gene family is the largest class of known disease resistance genes (R genes) effective against such pathogens. Therefore, the isolation and identification of such R gene homologues from pepper will provide a critical foundation for improving disease resistance breeding programs. Results A total of 78 R gene analogues (CaRGAs) were identified in pepper by degenerate PCR amplification and database mining. Phylogenetic tree analysis of the deduced amino acid sequences for 51 of these CaRGAs with typically conserved motifs ( P-loop, kinase-2 and GLPL) along with some known R genes from Arabidopsis and tomato grouped these CaRGAs into the non-Toll interleukin-1 receptor (TIR)-NBS-LRR (CaRGAs I to IV) and TIR-NBS-LRR (CaRGAs V to VII) subfamilies. The presence of consensus motifs (i.e. P-loop, kinase-2 and hydrophobic domain) is typical of the non-TIR- and TIR-NBS-LRR gene subfamilies. This finding further supports the view that both subfamilies are widely distributed in dicot species. Functional divergence analysis provided strong statistical evidence of altered selective constraints during protein evolution between the two subfamilies. Thirteen critical amino acid sites involved in this divergence were also identified using DIVERGE version 2 software. Analyses of non-synonymous and synonymous substitutions per site showed that purifying selection can play a critical role in the evolutionary processes of non-TIR- and TIR-NBS-LRR RGAs in pepper. In addition, four specificity-determining positions were predicted to be responsible for functional specificity. qRT-PCR analysis showed that both salicylic and abscisic acids induce the expression of CaRGA genes, suggesting that they may primarily be involved in defence responses by

  5. De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes

    PubMed Central

    2012-01-01

    Background Molecular breeding of pepper (Capsicum spp.) can be accelerated by developing DNA markers associated with transcriptomes in breeding germplasm. Before the advent of next generation sequencing (NGS) technologies, the majority of sequencing data were generated by the Sanger sequencing method. By leveraging Sanger EST data, we have generated a wealth of genetic information for pepper including thousands of SNPs and Single Position Polymorphic (SPP) markers. To complement and enhance these resources, we applied NGS to three pepper genotypes: Maor, Early Jalapeño and Criollo de Morelos-334 (CM334) to identify SNPs and SSRs in the assembly of these three genotypes. Results Two pepper transcriptome assemblies were developed with different purposes. The first reference sequence, assembled by CAP3 software, comprises 31,196 contigs from >125,000 Sanger-EST sequences that were mainly derived from a Korean F1-hybrid line, Bukang. Overlapping probes were designed for 30,815 unigenes to construct a pepper Affymetrix GeneChip® microarray for whole genome analyses. In addition, custom Python scripts were used to identify 4,236 SNPs in contigs of the assembly. A total of 2,489 simple sequence repeats (SSRs) were identified from the assembly, and primers were designed for the SSRs. Annotation of contigs using Blast2GO software resulted in information for 60% of the unigenes in the assembly. The second transcriptome assembly was constructed from more than 200 million Illumina Genome Analyzer II reads (80–120 nt) using a combination of Velvet, CLC workbench and CAP3 software packages. BWA, SAMtools and in-house Perl scripts were used to identify SNPs among three pepper genotypes. The SNPs were filtered to be at least 50 bp from any intron-exon junctions as well as flanking SNPs. More than 22,000 high-quality putative SNPs were identified. Using the MISA software, 10,398 SSR markers were also identified within the Illumina transcriptome assembly and primers were

  6. Suppression Subtractive Hybridization Analysis of Genes Regulated by Application of Exogenous Abscisic Acid in Pepper Plant (Capsicum annuum L.) Leaves under Chilling Stress

    PubMed Central

    Gong, Zhen-Hui; Yin, Yan-Xu; Li, Da-Wei

    2013-01-01

    Low temperature is one of the major factors limiting pepper (Capsicum annuum L.) production during winter and early spring in non-tropical regions. Application of exogenous abscisic acid (ABA) effectively alleviates the symptoms of chilling injury, such as wilting and formation of necrotic lesions on pepper leaves; however, the underlying molecular mechanism is not understood. The aim of this study was to identify genes that are differentially up- or downregulated in ABA-pretreated hot pepper seedlings incubated at 6°C for 48 h, using a suppression subtractive hybridization (SSH) method. A total of 235 high-quality ESTs were isolated, clustered and assembled into a collection of 73 unigenes including 18 contigs and 55 singletons. A total of 37 unigenes (50.68%) showed similarities to genes with known functions in the non-redundant database; the other 36 unigenes (49.32%) showed low similarities or unknown functions. Gene ontology analysis revealed that the 37 unigenes could be classified into nine functional categories. The expression profiles of 18 selected genes were analyzed using quantitative RT-PCR; the expression levels of 10 of these genes were at least two-fold higher in the ABA-pretreated seedlings under chilling stress than water-pretreated (control) plants under chilling stress. In contrast, the other eight genes were downregulated in ABA-pretreated seedlings under chilling stress, with expression levels that were one-third or less of the levels observed in control seedlings under chilling stress. These results suggest that ABA can positively and negatively regulate genes in pepper plants under chilling stress. PMID:23825555

  7. A New Ethylene-Responsive Factor CaPTI1 Gene of Pepper (Capsicum annuum L.) Involved in the Regulation of Defense Response to Phytophthora capsici

    PubMed Central

    Jin, Jing-Hao; Zhang, Huai-Xia; Tan, Jun-Yi; Yan, Ming-Jia; Li, Da-Wei; Khan, Abid; Gong, Zhen-Hui

    2016-01-01

    Ethylene-responsive factors (ERF) are usually considered to play diverse roles in plant response to biotic and abiotic stresses. In this study, an ERF gene CaPTI1 was isolated from pepper transcriptome database. CaPTI1 contains an open reading frame (ORF) of 543 bp, which encodes a putative polypeptide of 180 amino acids with a theoretical molecular weight of 20.30 kDa. Results of expression profile showed that CaPTI1 had a highest expression level in roots and this gene could not only response to the infection of Phytophthora capsici and the stresses of cold and drought, but also be induced by the signaling molecule (salicylic acid, Methyl Jasmonate, Ethephon, and hydogen peroxide). Furthermore, virus-induce gene silencing (VIGS) of CaPTI1 in pepper weakened the defense response significantly by reducing the expression of defense related genes CaPR1, CaDEF1 and CaSAR82 and also the root activity. These results suggested that CaPTI1 is involved in the regulation of defense response to P. capsici in pepper. PMID:26779241

  8. Genome-Wide Identification, Expression Diversication of Dehydrin Gene Family and Characterization of CaDHN3 in Pepper (Capsicum annuum L.)

    PubMed Central

    Ma, Ji-Hui; Khan, Abid; Wang, Xiao; Zhao, Li-Yang; Gong, Zhen-Hui; Chen, Ru-Gang

    2016-01-01

    Dehydrins (DHNs) play a crucial role in enhancing abiotic stress tolerance in plants. Although DHNs have been identified and characterized in many plants, there is little known about Capsicum annuum L., one of the economically important vegetable crops. In this study, seven CaDHNs in the pepper genome were identified, which could be divided into two classes: YnSKn- and SKn-type, based on their highly conserved domains. Quantitative real-time PCR (qRT-PCR) results showed that the seven DHN genes were expressed in all tissues and might be involved in the growth and development of pepper. The gene expression profiles analysis suggested that most of the CaDHN genes were induced by various stresses (low temperature, salt and mannitol) and signaling molecules (ABA, SA and MeJA). Furthermore, the CaDHN3 (YSK2)-silenced pepper plants showed obvious lower resistance to abiotic stresses (cold, salt and mannitol) than the control plants (TRV2:00). So the CaDHN3 might act as a positive role in resisting abiotic stresses. This study lays the foundation for further studies into the regulation of their expression under various conditions. PMID:27551973

  9. Genome-Wide Identification, Expression Diversication of Dehydrin Gene Family and Characterization of CaDHN3 in Pepper (Capsicum annuum L.).

    PubMed

    Jing, Hua; Li, Chao; Ma, Fang; Ma, Ji-Hui; Khan, Abid; Wang, Xiao; Zhao, Li-Yang; Gong, Zhen-Hui; Chen, Ru-Gang

    2016-01-01

    Dehydrins (DHNs) play a crucial role in enhancing abiotic stress tolerance in plants. Although DHNs have been identified and characterized in many plants, there is little known about Capsicum annuum L., one of the economically important vegetable crops. In this study, seven CaDHNs in the pepper genome were identified, which could be divided into two classes: YnSKn- and SKn-type, based on their highly conserved domains. Quantitative real-time PCR (qRT-PCR) results showed that the seven DHN genes were expressed in all tissues and might be involved in the growth and development of pepper. The gene expression profiles analysis suggested that most of the CaDHN genes were induced by various stresses (low temperature, salt and mannitol) and signaling molecules (ABA, SA and MeJA). Furthermore, the CaDHN3 (YSK2)-silenced pepper plants showed obvious lower resistance to abiotic stresses (cold, salt and mannitol) than the control plants (TRV2:00). So the CaDHN3 might act as a positive role in resisting abiotic stresses. This study lays the foundation for further studies into the regulation of their expression under various conditions. PMID:27551973

  10. Pepper Oil Surprise

    NASA Video Gallery

    Astronauts Cady Coleman and Paolo Nespoli perform the Pepper Oil Surprise experiment from Potlatch Elementary School in Potlatch, Idaho. This research investigates the interaction of liquid pepper/...

  11. Maize death acids, 9-lipoxygenase-derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators.

    PubMed

    Christensen, Shawn A; Huffaker, Alisa; Kaplan, Fatma; Sims, James; Ziemann, Sebastian; Doehlemann, Gunther; Ji, Lexiang; Schmitz, Robert J; Kolomiets, Michael V; Alborn, Hans T; Mori, Naoki; Jander, Georg; Ni, Xinzhi; Sartor, Ryan C; Byers, Sara; Abdo, Zaid; Schmelz, Eric A

    2015-09-01

    Plant damage promotes the interaction of lipoxygenases (LOXs) with fatty acids yielding 9-hydroperoxides, 13-hydroperoxides, and complex arrays of oxylipins. The action of 13-LOX on linolenic acid enables production of 12-oxo-phytodienoic acid (12-OPDA) and its downstream products, termed "jasmonates." As signals, jasmonates have related yet distinct roles in the regulation of plant resistance against insect and pathogen attack. A similar pathway involving 9-LOX activity on linolenic and linoleic acid leads to the 12-OPDA positional isomer, 10-oxo-11-phytodienoic acid (10-OPDA) and 10-oxo-11-phytoenoic acid (10-OPEA), respectively; however, physiological roles for 9-LOX cyclopentenones have remained unclear. In developing maize (Zea mays) leaves, southern leaf blight (Cochliobolus heterostrophus) infection results in dying necrotic tissue and the localized accumulation of 10-OPEA, 10-OPDA, and a series of related 14- and 12-carbon metabolites, collectively termed "death acids." 10-OPEA accumulation becomes wound inducible within fungal-infected tissues and at physiologically relevant concentrations acts as a phytoalexin by suppressing the growth of fungi and herbivores including Aspergillus flavus, Fusarium verticillioides, and Helicoverpa zea. Unlike previously established maize phytoalexins, 10-OPEA and 10-OPDA display significant phytotoxicity. Both 12-OPDA and 10-OPEA promote the transcription of defense genes encoding glutathione S transferases, cytochrome P450s, and pathogenesis-related proteins. In contrast, 10-OPEA only weakly promotes the accumulation of multiple protease inhibitor transcripts. Consistent with a role in dying tissue, 10-OPEA application promotes cysteine protease activation and cell death, which is inhibited by overexpression of the cysteine protease inhibitor maize cystatin-9. Unlike jasmonates, functions for 10-OPEA and associated death acids are consistent with specialized roles in local defense reactions. PMID:26305953

  12. Pepper EST database: comprehensive in silico tool for analyzing the chili pepper (Capsicum annuum) transcriptome

    PubMed Central

    Kim, Hyun-Jin; Baek, Kwang-Hyun; Lee, Seung-Won; Kim, JungEun; Lee, Bong-Woo; Cho, Hye-Sun; Kim, Woo Taek; Choi, Doil; Hur, Cheol-Goo

    2008-01-01

    Background There is no dedicated database available for Expressed Sequence Tags (EST) of the chili pepper (Capsicum annuum), although the interest in a chili pepper EST database is increasing internationally due to the nutritional, economic, and pharmaceutical value of the plant. Recent advances in high-throughput sequencing of the ESTs of chili pepper cv. Bukang have produced hundreds of thousands of complementary DNA (cDNA) sequences. Therefore, a chili pepper EST database was designed and constructed to enable comprehensive analysis of chili pepper gene expression in response to biotic and abiotic stresses. Results We built the Pepper EST database to mine the complexity of chili pepper ESTs. The database was built on 122,582 sequenced ESTs and 116,412 refined ESTs from 21 pepper EST libraries. The ESTs were clustered and assembled into virtual consensus cDNAs and the cDNAs were assigned to metabolic pathway, Gene Ontology (GO), and MIPS Functional Catalogue (FunCat). The Pepper EST database is designed to provide a workbench for (i) identifying unigenes in pepper plants, (ii) analyzing expression patterns in different developmental tissues and under conditions of stress, and (iii) comparing the ESTs with those of other members of the Solanaceae family. The Pepper EST database is freely available at . Conclusion The Pepper EST database is expected to provide a high-quality resource, which will contribute to gaining a systemic understanding of plant diseases and facilitate genetics-based population studies. The database is also expected to contribute to analysis of gene synteny as part of the chili pepper sequencing project by mapping ESTs to the genome. PMID:18844979

  13. Pepper's Ghost

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2011-09-01

    Without applications of physics such as counter-weighted sets and backdrops, inclined planes, stage lighting instruments, and other mechanisms for deus ex machina, dramatic productions would revert to the words only—fine for Shakespeare and Becket, but not good for audiences who are accustomed to experiencing plays with the eye as well as the ear. Pepper's Ghost is a 19th-century stage illusion, based on basic optical principles, that can find its way into your introductory classroom.

  14. Induced change of formative processes in pepper (Capsicum annuum L. ). I. Effect of mutagenic treatment on the crossingover frequency of the linked and recombination of unlinked marker genes

    SciTech Connect

    Samovol, A.P.

    1986-05-01

    The effect of mutagenic treatment of the F/sub 1/ seeds of pepper on the crossingover frequency in the al/sub 2/-b segment, monohybrid and dihybrid segregation for the unlinked marker genes al/sub 2/ and pi was studied. It has been demonstrated that treatment leads to a significant reduction in the crossover frequency in the al/sub 2/-b zone. Highly significant differences between the control and individual treatment of the hybrid seeds indicated reduction in recombinations due to the mutagens used. A case of induced deviation in independent segregation of al/sub 2/ and pi, i.e., quasilinkage has been recorded.

  15. Development of bacterial spot on near-isogenic lines of bell pepper carrying gene pyramids composed of defeated major resistance genes.

    PubMed

    Kousik, C S; Ritchie, D F

    1999-11-01

    ABSTRACT Disease severity caused by races 1 through 6 of Xanthomonas campestris pv. vesicatoria on eight near-isogenic lines (isolines) of Early Calwonder (ECW) with three major resistance genes (Bs1, Bs2, and Bs3) in different combinations was evaluated in the greenhouse and field. Strains representing races 1, 3, 4, and 6 caused similar high levels of disease severity, followed by races 2 and 5 on susceptible ECW. Race 3 caused severe disease on all isolines lacking resistance gene Bs2. Race 4, which defeats Bs1 and Bs2, caused less disease on isoline ECW-12R (carries Bs1 + Bs2), than on isolines ECW, ECW-10R (carries Bs1), and ECW-20R (carries Bs2). Similar results were obtained with race 4 strains in field studies conducted during 1997 and 1998. In greenhouse studies, race 6, which defeats all three major genes, caused less disease on isoline ECW-13R (carries Bs1 + Bs3) and ECW-123R (carries Bs1 + Bs2 + Bs3) than on isolines ECW, ECW-10R, ECW-20R, and ECW-30R (carries Bs3), but not on ECW-23R (carries Bs2 + Bs3). In greenhouse studies with commercial hybrids, strains of races 4 and 6 caused less disease on Boynton Bell (carries Bs1 + Bs2) than on Camelot (carries no known resistance genes), King Arthur (carries Bs1), and X3R Camelot (carries Bs2). Race 6 caused less disease on hybrid R6015 (carries Bs1 + Bs2 + Bs3) and Sentinel (carries Bs1 + Bs3) than on Camelot. Residual effects were not as evident in field studies with race 6 strains. Defeated major resistance genes deployed in specific gene combinations (i.e., gene pyramids) were associated with less area under the disease progress curve than when genes were deployed individually in isolines of ECW or commercial hybrids. Successful management of bacterial spot of pepper is achieved incrementally by integrating multiple tactics. Although there is evidence of residual effects from defeated genes, these effects alone likely will not provide acceptable bacterial spot control in commercial production fields

  16. Identification and functional characterization of the pepper CaDRT1 gene involved in the ABA-mediated drought stress response.

    PubMed

    Baek, Woonhee; Lim, Sohee; Lee, Sung Chul

    2016-05-01

    Plants are constantly challenged by various environmental stresses, including high salinity and drought, and they have evolved defense mechanisms to counteract the deleterious effects of these stresses. The plant hormone abscisic acid (ABA) regulates plant growth and developmental processes and mediates abiotic stress responses. Here, we identified the Capsicum annuum DRought Tolerance 1 (CaDRT1) gene from pepper leaves treated with ABA. CaDRT1 was strongly expressed in pepper leaves in response to environmental stresses and after ABA treatment, suggesting that the CaDRT1 protein functions in the abiotic stress response. Knockdown expression of CaDRT1 via virus-induced gene silencing resulted in a high level of drought susceptibility, and this was characterized by increased transpirational water loss via decreased stomatal closure. CaDRT1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative, seedling, and adult stages. Additionally, these CaDRT1-OX plants exhibited a drought-tolerant phenotype characterized by low levels of transpirational water loss, high leaf temperatures, increased stomatal closure, and enhanced expression levels of drought-responsive genes. Taken together, our results suggest that CaDRT1 is a positive regulator of the ABA-mediated drought stress response. PMID:26869261

  17. Network Inference Analysis Identifies an APRR2-Like Gene Linked to Pigment Accumulation in Tomato and Pepper Fruits1[W][OA

    PubMed Central

    Pan, Yu; Bradley, Glyn; Pyke, Kevin; Ball, Graham; Lu, Chungui; Fray, Rupert; Marshall, Alexandra; Jayasuta, Subhalai; Baxter, Charles; van Wijk, Rik; Boyden, Laurie; Cade, Rebecca; Chapman, Natalie H.; Fraser, Paul D.; Hodgman, Charlie; Seymour, Graham B.

    2013-01-01

    Carotenoids represent some of the most important secondary metabolites in the human diet, and tomato (Solanum lycopersicum) is a rich source of these health-promoting compounds. In this work, a novel and fruit-related regulator of pigment accumulation in tomato has been identified by artificial neural network inference analysis and its function validated in transgenic plants. A tomato fruit gene regulatory network was generated using artificial neural network inference analysis and transcription factor gene expression profiles derived from fruits sampled at various points during development and ripening. One of the transcription factor gene expression profiles with a sequence related to an Arabidopsis (Arabidopsis thaliana) ARABIDOPSIS PSEUDO RESPONSE REGULATOR2-LIKE gene (APRR2-Like) was up-regulated at the breaker stage in wild-type tomato fruits and, when overexpressed in transgenic lines, increased plastid number, area, and pigment content, enhancing the levels of chlorophyll in immature unripe fruits and carotenoids in red ripe fruits. Analysis of the transcriptome of transgenic lines overexpressing the tomato APPR2-Like gene revealed up-regulation of several ripening-related genes in the overexpression lines, providing a link between the expression of this tomato gene and the ripening process. A putative ortholog of the tomato APPR2-Like gene in sweet pepper (Capsicum annuum) was associated with pigment accumulation in fruit tissues. We conclude that the function of this gene is conserved across taxa and that it encodes a protein that has an important role in ripening. PMID:23292788

  18. Diversity of genetic backgrounds modulating the durability of a major resistance gene. Analysis of a core collection of pepper landraces resistant to Potato virus Y.

    PubMed

    Quenouille, Julie; Saint-Felix, Ludovic; Moury, Benoit; Palloix, Alain

    2016-02-01

    The evolution of resistance-breaking capacity in pathogen populations has been shown to depend on the plant genetic background surrounding the resistance genes. We evaluated a core collection of pepper (Capsicum annuum) landraces, representing the worldwide genetic diversity, for its ability to modulate the breakdown frequency by Potato virus Y of major resistance alleles at the pvr2 locus encoding the eukaryotic initiation factor 4E (eIF4E). Depending on the pepper landrace, the breakdown frequency of a given resistance allele varied from 0% to 52.5%, attesting to their diversity and the availability of genetic backgrounds favourable to resistance durability in the plant germplasm. The mutations in the virus genome involved in resistance breakdown also differed between plant genotypes, indicating differential selection effects exerted on the virus population by the different genetic backgrounds. The breakdown frequency was positively correlated with the level of virus accumulation, confirming the impact of quantitative resistance loci on resistance durability. Among these loci, pvr6, encoding an isoform of eIF4E, was associated with a major effect on virus accumulation and on the breakdown frequency of the pvr2-mediated resistance. This exploration of plant genetic diversity delivered new resources for the control of pathogen evolution and the increase in resistance durability. PMID:25967744

  19. Comparative molecular and biochemical characterization of segmentally duplicated 9-lipoxygenase genes ZmLOX4 and ZmLOX5 of maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipoxygenases (LOX) catalyze hydroperoxidation of polyunsaturated fatty acids to form structurally and functionally diverse oxylipins. Precise physiological and biochemical functions of individual members of plant multigene LOX families are largely unknown. Herein we report on detailed molecular and...

  20. The Pepper Extracellular Xyloglucan-Specific Endo-β-1,4-Glucanase Inhibitor Protein Gene, CaXEGIP1, Is Required for Plant Cell Death and Defense Responses1[C][W][OA

    PubMed Central

    Choi, Hyong Woo; Kim, Nak Hyun; Lee, Yeon Kyeong; Hwang, Byung Kook

    2013-01-01

    Plants produce various proteinaceous inhibitors to protect themselves against microbial pathogen attack. A xyloglucan-specific endo-β-1,4-glucanase inhibitor1 gene, CaXEGIP1, was isolated and functionally characterized in pepper (Capsicum annuum) plants. CaXEGIP1 was rapidly and strongly induced in pepper leaves infected with avirulent Xanthomonas campestris pv vesicatoria, and purified CaXEGIP1 protein significantly inhibited the hydrolytic activity of the glycoside hydrolase74 family xyloglucan-specific endo-β-1,4-glucanase from Clostridium thermocellum. Soluble-modified green fluorescent protein-tagged CaXEGIP1 proteins were mainly localized to the apoplast of onion (Allium cepa) epidermal cells. Agrobacterium tumefaciens-mediated overexpression of CaXEGIP1 triggered pathogen-independent, spontaneous cell death in pepper and Nicotiana benthamiana leaves. CaXEGIP1 silencing in pepper conferred enhanced susceptibility to virulent and avirulent X. campestris pv vesicatoria, accompanied by a compromised hypersensitive response and lowered expression of defense-related genes. Overexpression of dexamethasone:CaXEGIP1 in Arabidopsis (Arabidopsis thaliana) enhanced resistance to Hyaloperonospora arabidopsidis infection. Comparative histochemical and proteomic analyses revealed that CaXEGIP1 overexpression induced a spontaneous cell death response and also increased the expression of some defense-related proteins in transgenic Arabidopsis leaves. This response was also accompanied by cell wall thickening and darkening. Together, these results suggest that pathogen-inducible CaXEGIP1 positively regulates cell death-mediated defense responses in plants. PMID:23093361

  1. Evidence that the nonstructural protein of Tomato spotted wilt virus is the avirulence determinant in the interaction with resistant pepper carrying the TSW gene.

    PubMed

    Margaria, P; Ciuffo, M; Pacifico, D; Turina, M

    2007-05-01

    All known pepper cultivars resistant to Tomato spotted wilt virus (TSWV) possess a single dominant resistance gene, Tsw. Recently, naturally occurring resistance-breaking (RB) TSWV strains have been identified, causing major concerns. We used a collection of such strains to identify the specific genetic determinant that allows the virus to overcome the Tsw gene in Capsicum spp. A reverse genetic approach is still not feasible for TSWV; therefore, we analyzed reassortants between wild-type (WT) and RB strains. Our results confirmed that the S RNA, which encodes both the nucleocapsid protein (N) and a nonstructural protein (NSs), carries the genetic determinant responsible for Tsw resistance breakdown. We then used full-length S RNA segments or the proteins they encode to compare the sequences of WT and related RB strains, and obtained indirect evidence that the NSs protein is the avirulence factor in question. Transient expression of NSs protein from WT and RB strains showed that they both can equally suppress post-transcriptional gene silencing (PTGS). Moreover, biological characterization of two RB strains carrying deletions in the NSs protein showed that NSs is important in maintaining TSWV infection in newly emerging leaves over time, preventing recovery. Analysis of another RB strain phenotype allowed us to conclude that local necrotic response is not sufficient for resistance in Capsicum spp. carrying the Tsw gene. PMID:17506332

  2. Characterization of Capsicum annuum Genetic Diversity and Population Structure Based on Parallel Polymorphism Discovery with a 30K Unigene Pepper GeneChip

    PubMed Central

    Hill, Theresa A.; Ashrafi, Hamid; Reyes-Chin-Wo, Sebastian; Yao, JiQiang; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard W.; Van Deynze, Allen

    2013-01-01

    The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome

  3. Characterization of Capsicum annuum genetic diversity and population structure based on parallel polymorphism discovery with a 30K unigene Pepper GeneChip.

    PubMed

    Hill, Theresa A; Ashrafi, Hamid; Reyes-Chin-Wo, Sebastian; Yao, JiQiang; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard W; Van Deynze, Allen

    2013-01-01

    The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome

  4. Spacing Studies in Peppers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Higher plant stand densities usually result in greater pepper fruit yields. While the impact of stand density on yield has been studied for bell and non-bell peppers, but very little information exists regarding implications on pesticide efficacy. The objective of these studies was to determine th...

  5. Mapping of a Novel Race Specific Resistance Gene to Phytophthora Root Rot of Pepper (Capsicum annuum) Using Bulked Segregant Analysis Combined with Specific Length Amplified Fragment Sequencing Strategy

    PubMed Central

    Xu, Xiaomei; Chao, Juan; Cheng, Xueli; Wang, Rui; Sun, Baojuan; Wang, Hengming; Luo, Shaobo; Xu, Xiaowan; Wu, Tingquan; Li, Ying

    2016-01-01

    Phytophthora root rot caused by Phytophthora capsici (P. capsici) is a serious limitation to pepper production in Southern China, with high temperature and humidity. Mapping PRR resistance genes can provide linked DNA markers for breeding PRR resistant varieties by molecular marker-assisted selection (MAS). Two BC1 populations and an F2 population derived from a cross between P. capsici-resistant accession, Criollo de Morelos 334 (CM334) and P. capsici-susceptible accession, New Mexico Capsicum Accession 10399 (NMCA10399) were used to investigate the genetic characteristics of PRR resistance. PRR resistance to isolate Byl4 (race 3) was controlled by a single dominant gene, PhR10, that was mapped to an interval of 16.39Mb at the end of the long arm of chromosome 10. Integration of bulked segregant analysis (BSA) and Specific Length Amplified Fragment sequencing (SLAF-seq) provided an efficient genetic mapping strategy. Ten polymorphic Simple Sequence Repeat (SSR) markers were found within this region and used to screen the genotypes of 636 BC1 plants, delimiting PhR10 to a 2.57 Mb interval between markers P52-11-21 (1.5 cM away) and P52-11-41 (1.1 cM). A total of 163 genes were annotated within this region and 31 were predicted to be associated with disease resistance. PhR10 is a novel race specific gene for PRR, and this paper describes linked SSR markers suitable for marker-assisted selection of PRR resistant varieties, also laying a foundation for cloning the resistance gene. PMID:26992080

  6. Pepper, chili (Capsicum annuum).

    PubMed

    Min, Jung; Shin, Sun Hee; Jeon, En Mi; Park, Jung Mi; Hyun, Ji Young; Harn, Chee Hark

    2015-01-01

    Pepper is a recalcitrant plant for Agrobacterium-mediated genetic transformation. Several obstacles to genetic transformation remain such as extremely low transformation rates; the choice of correct genotype is critical; and there is a high frequency of false positives due to direct shoot formation. Here, we report a useful protocol with a suitable selection method. The most important aspect of the pepper transformation protocol is selecting shoots growing from the callus, which is referred to as callus-mediated shoot formation. This protocol is a reproducible and reliable system for pepper transformation. PMID:25300851

  7. Localization of 5S and 25S rRNA genes on somatic and meiotic chromosomes in Capsicum species of chili pepper.

    PubMed

    Kwon, Jin-Kyung; Kim, Byung-Dong

    2009-02-28

    The loci of the 5S and 45S rRNA genes were localized on chromosomes in five species of Capsicum, namely, annuum, chacoense, frutescens, baccatum, and chinense by FISH. The 5S rDNA was localized to the distal region of one chromosome in all species observed. The number of 45S rDNA loci varied among species; one in annuum, two in chacoense, frutescens, and chinense, and four in baccatum, with the exceptions that 'CM334' of annuum had three loci and 'tabasco' of frutescens had one locus. 'CM334'-derived BAC clones, 384B09 and 365P05, were screened with 5S rDNA as a probe, and BACs 278M03 and 262A23 were screened with 25S rDNA as a probe. Both ends of these BAC clones were sequenced. FISH with these BAC probes on pachytenes from 'CM334' plant showed one 5S rDNA locus and three 45S rDNA loci, consistent with the patterns on the somatic chromosomes. The 5S rDNA probe was also applied on extended DNA fibers to reveal that its coverage measured as long as 0.439 Mb in the pepper genome. FISH techniques applied on somatic and meiotic chromosomes and fibers have been established for chili to provide valuable information about the copy number variation of 45S rDNA and the actual physical size of the 5S rDNA in chili. PMID:19277503

  8. Pepper, sweet (Capsicum annuum).

    PubMed

    Heidmann, Iris; Boutilier, Kim

    2015-01-01

    Capsicum (pepper) species are economically important crops that are recalcitrant to genetic transformation by Agrobacterium (Agrobacterium tumefaciens). A number of protocols for pepper transformation have been described but are not routinely applicable. The main bottleneck in pepper transformation is the low frequency of cells that are both susceptible for Agrobacterium infection and have the ability to regenerate. Here, we describe a protocol for the efficient regeneration of transgenic sweet pepper (C. annuum) through inducible activation of the BABY BOOM (BBM) AP2/ERF transcription factor. Using this approach, we can routinely achieve a transformation efficiency of at least 0.6 %. The main improvements in this protocol are the reproducibility in transforming different genotypes and the ability to produce fertile shoots. An added advantage of this protocol is that BBM activity can be induced subsequently in stable transgenic lines, providing a novel regeneration system for clonal propagation through somatic embryogenesis. PMID:25300852

  9. The novel monocot-specific 9-lipoxygenase ZmLOX12 is required to mount an effective jasmonate-mediated defense against Fusarium verticillioides in maize.

    PubMed

    Christensen, Shawn A; Nemchenko, Andriy; Park, Yong-Soon; Borrego, Eli; Huang, Pei-Cheng; Schmelz, Eric A; Kunze, Susan; Feussner, Ivo; Yalpani, Nasser; Meeley, Robert; Kolomiets, Michael V

    2014-11-01

    Fusarium verticillioides is a major limiting factor for maize production due to ear and stalk rot and the contamination of seed with the carcinogenic mycotoxin fumonisin. While lipoxygenase (LOX)-derived oxylipins have been implicated in defense against diverse pathogens, their function in maize resistance against F. verticillioides is poorly understood. Here, we functionally characterized a novel maize 9-LOX gene, ZmLOX12. This gene is distantly related to known dicot LOX genes, with closest homologs found exclusively in other monocot species. ZmLOX12 is predominantly expressed in mesocotyls in which it is strongly induced in response to F. verticillioides infection. The Mutator transposon-insertional lox12-1 mutant is more susceptible to F. verticillioides colonization of mesocotyls, stalks, and kernels. The infected mutant kernels accumulate a significantly greater amount of the mycotoxin fumonisin. Reduced resistance to the pathogen is accompanied by diminished levels of the jasmonic acid (JA) precursor 12-oxo phytodienoic acid, JA-isoleucine, and expression of jasmonate-biosynthetic genes. Supporting the strong defense role of jasmonates, the JA-deficient opr7 opr8 double mutant displayed complete lack of immunity to F. verticillioides. Unexpectedly, the more susceptible lox12 mutant accumulated higher levels of kauralexins, suggesting that F. verticillioides is tolerant to this group of antimicrobial phytoalexins. This study demonstrates that this unique monocot-specific 9-LOX plays a key role in defense against F. verticillioides in diverse maize tissues and provides genetic evidence that JA is the major defense hormone against this pathogen. PMID:25122482

  10. Avirulence proteins AvrBs7 from Xanthomonas gardneri and AvrBs1.1 from Xanthomonas euvesicatoria contribute to a novel gene-for-gene interaction in pepper.

    PubMed

    Potnis, Neha; Minsavage, Gerald; Smith, J Kennon; Hurlbert, Jason C; Norman, David; Rodrigues, Rosana; Stall, Robert E; Jones, Jeffrey B

    2012-03-01

    A novel hypersensitive resistance (HR) in Capsicum baccatum var. pendulum against the bacterial spot of pepper pathogen, Xanthomonas gardneri, was introgressed into C. annuum cv. Early Calwonder (ECW) to create the near-isogenic line designated as ECW-70R. A corresponding avirulence gene avrBs7, in X. gardneri elicited a strong HR in ECW-70R. A homolog of avrBs7, avrBs1.1, was found in X. euvesicatoria 85-10, which showed delayed HR on ECW-70R leaves. Genetic analysis confirmed the presence of a single dominant resistance gene, Bs7, corresponding to the two avr genes. Both AvrBs7 and AvrBs1.1 share a consensus protein tyrosine phosphatase (PTP) active site domain and can dephosphorylate para-nitrophenyl phosphate. Mutation of Cys(265) to Ser in the PTP domain and subsequent loss of enzymatic activity and HR activity indicated the importance of the PTP domain in the recognition of the Avr protein by the Bs7 gene transcripts. Superpositioning of AvrBs7 and AvrBs1.1 homology models indicated variation in the geometry of the loops adjacent to the active sites. These predicted structural differences might be responsible for the differences in HR timing due to differential activation of the resistance gene. Mutating the PTP domain of AvrBs1.1 to match that of AvrBs7 failed to activate HR on ECW-70R, indicating the possibility of differential substrate specificities between AvrBs1.1 and AvrBs7. PMID:22112215

  11. Pepper harvest technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peppers (Capsicum spp.) include a diverse collection of cultivars produced for a wide variety of end uses. This specialty crop and its processing industry are in the midst of a dual transition driven by labor cost and unavailability. Production and post-harvest processing is either converting to m...

  12. PEPPER HARVESTER DEVELOPMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peppers (Capsicum spp.) include a diverse collection of cultivars produced for a wide variety of end uses. This specialty crop and its processing industry are in the midst of a transition driven by labor cost and unavailability. Production and post-harvest processing is either converting to mechan...

  13. Characterization of CaHsp70-1, a Pepper Heat-Shock Protein Gene in Response to Heat Stress and Some Regulation Exogenous Substances in Capsicum annuum L.

    PubMed Central

    Guo, Meng; Zhai, Yu-Fei; Lu, Jin-Ping; Chai, Lin; Chai, Wei-Guo; Gong, Zhen-Hui; Lu, Ming-Hui

    2014-01-01

    Pepper (Capsicum annuum L.) is sensitive to heat stress (HS). Heat shock proteins 70 (Hsp70s) play a crucial role in protecting plant cells against HS and control varies characters in different plants. However, CaHsp70-1 gene was not well characterized in pepper. In this study, CaHsp70-1 was cloned from the pepper thermotolerant line R9, which encoded a protein of 652 amino acids, with a molecular weight of 71.54 kDa and an isoelectric point of 5.20. CaHsp70-1 belongs to the cytosolic Hsp70 subgroup, and best matched with tomato SlHsp70. CaHsp70-1 was highly induced in root, stem, leaf and flower in R9 with HS treatment (40 °C for 2 h). In both thermosensitive line B6 and thermotolerant line R9, CaHsp70-1 significantly increased after 0.5 h of HS (40 °C), and maintained in a higher level after 4 h HS. The expression of CaHsp70-1 induced by CaCl2, H2O2 and putrescine (Put) under HS were difference between B6 and R9 lines. The different expression patterns may be related to the differences in promoters of CaHsp70-1 from the two lines. These results suggest that CaHsp70-1 as a member of cytosolic Hsp70 subgroup, may be involved in HS defense response via a signal transduction pathway contained Ca2+, H2O2 and Put. PMID:25356507

  14. A Further Analysis of the Relationship between Yellow Ripe-Fruit Color and the Capsanthin-Capsorubin Synthase Gene in Pepper (Capsicum sp.) Indicated a New Mutant Variant in C. annuum and a Tandem Repeat Structure in Promoter Region

    PubMed Central

    Gui, Xiao-Ling; Chang, Xiao-Bei; Gong, Zhen-Hui

    2013-01-01

    Mature pepper (Capsicum sp.) fruits come in a variety of colors, including red, orange, yellow, brown, and white. To better understand the genetic and regulatory relationships between the yellow fruit phenotype and the capsanthin-capsorubin synthase gene (Ccs), we examined 156 Capsicum varieties, most of which were collected from Northwest Chinese landraces. A new ccs variant was identified in the yellow fruit cultivar CK7. Cluster analysis revealed that CK7, which belongs to the C. annuum species, has low genetic similarity to other yellow C. annuum varieties. In the coding sequence of this ccs allele, we detected a premature stop codon derived from a C to G change, as well as a downstream frame-shift caused by a 1-bp nucleotide deletion. In addition, the expression of the gene was detected in mature CK7 fruit. Furthermore, the promoter sequences of Ccs from some pepper varieties were examined, and we detected a 176-bp tandem repeat sequence in the promoter region. In all C. annuum varieties examined in this study, the repeat number was three, compared with four in two C. chinense accessions. The sequence similarity ranged from 84.8% to 97.7% among the four types of repeats, and some putative cis-elements were also found in every repeat. This suggests that the transcriptional regulation of Ccs expression is complex. Based on the analysis of the novel C. annuum mutation reported here, along with the studies of three mutation types in yellow C. annuum and C. chinense accessions, we suggest that the mechanism leading to the production of yellow color fruit may be not as complex as that leading to orange fruit production. PMID:23637942

  15. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species.

    PubMed

    Kim, Seungill; Park, Minkyu; Yeom, Seon-In; Kim, Yong-Min; Lee, Je Min; Lee, Hyun-Ah; Seo, Eunyoung; Choi, Jaeyoung; Cheong, Kyeongchae; Kim, Ki-Tae; Jung, Kyongyong; Lee, Gir-Won; Oh, Sang-Keun; Bae, Chungyun; Kim, Saet-Byul; Lee, Hye-Young; Kim, Shin-Young; Kim, Myung-Shin; Kang, Byoung-Cheorl; Jo, Yeong Deuk; Yang, Hee-Bum; Jeong, Hee-Jin; Kang, Won-Hee; Kwon, Jin-Kyung; Shin, Chanseok; Lim, Jae Yun; Park, June Hyun; Huh, Jin Hoe; Kim, June-Sik; Kim, Byung-Dong; Cohen, Oded; Paran, Ilan; Suh, Mi Chung; Lee, Saet Buyl; Kim, Yeon-Ki; Shin, Younhee; Noh, Seung-Jae; Park, Junhyung; Seo, Young Sam; Kwon, Suk-Yoon; Kim, Hyun A; Park, Jeong Mee; Kim, Hyun-Jin; Choi, Sang-Bong; Bosland, Paul W; Reeves, Gregory; Jo, Sung-Hwan; Lee, Bong-Woo; Cho, Hyung-Taeg; Choi, Hee-Seung; Lee, Min-Soo; Yu, Yeisoo; Do Choi, Yang; Park, Beom-Seok; van Deynze, Allen; Ashrafi, Hamid; Hill, Theresa; Kim, Woo Taek; Pai, Hyun-Sook; Ahn, Hee Kyung; Yeam, Inhwa; Giovannoni, James J; Rose, Jocelyn K C; Sørensen, Iben; Lee, Sang-Jik; Kim, Ryan W; Choi, Ik-Young; Choi, Beom-Soon; Lim, Jong-Sung; Lee, Yong-Hwan; Choi, Doil

    2014-03-01

    Hot pepper (Capsicum annuum), one of the oldest domesticated crops in the Americas, is the most widely grown spice crop in the world. We report whole-genome sequencing and assembly of the hot pepper (Mexican landrace of Capsicum annuum cv. CM334) at 186.6× coverage. We also report resequencing of two cultivated peppers and de novo sequencing of the wild species Capsicum chinense. The genome size of the hot pepper was approximately fourfold larger than that of its close relative tomato, and the genome showed an accumulation of Gypsy and Caulimoviridae family elements. Integrative genomic and transcriptomic analyses suggested that change in gene expression and neofunctionalization of capsaicin synthase have shaped capsaicinoid biosynthesis. We found differential molecular patterns of ripening regulators and ethylene synthesis in hot pepper and tomato. The reference genome will serve as a platform for improving the nutritional and medicinal values of Capsicum species. PMID:24441736

  16. Characterization of a new potyvirus infecting pepper crops in Ecuador.

    PubMed

    Janzac, Bérenger; Fabre, Marie-Françoise; Palloix, Alain; Moury, Benoît

    2008-01-01

    Sequencing 2,951 nucleotides of the 3' proximal region of the genome of a potyvirus isolate collected from Capsicum pubescens (rocoto) pepper in Ecuador revealed that this was the first representative of a new species tentatively named Ecuadorian rocoto virus (ERV). Phylogeny reconstruction showed that this isolate clustered with potato virus V (PVV), Peru tomato virus and wild potato mosaic virus into a monophyletic group, and was closest to PVV. The isolate was shown to be infectious in tobacco, tomato and, contrary to PVV, in pepper. The pvr2(1), pvr2(2), and Pvr4 genes present in many pepper cultivars conferred resistance toward this isolate and could help control ERV. PMID:18553171

  17. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization

    PubMed Central

    Qin, Cheng; Yu, Changshui; Shen, Yaou; Fang, Xiaodong; Chen, Lang; Min, Jiumeng; Cheng, Jiaowen; Zhao, Shancen; Xu, Meng; Luo, Yong; Yang, Yulan; Wu, Zhiming; Mao, Likai; Wu, Haiyang; Ling-Hu, Changying; Zhou, Huangkai; Lin, Haijian; González-Morales, Sandra; Trejo-Saavedra, Diana L.; Tian, Hao; Tang, Xin; Zhao, Maojun; Huang, Zhiyong; Zhou, Anwei; Yao, Xiaoming; Cui, Junjie; Li, Wenqi; Chen, Zhe; Feng, Yongqiang; Niu, Yongchao; Bi, Shimin; Yang, Xiuwei; Li, Weipeng; Cai, Huimin; Luo, Xirong; Montes-Hernández, Salvador; Leyva-González, Marco A.; Xiong, Zhiqiang; He, Xiujing; Bai, Lijun; Tan, Shu; Tang, Xiangqun; Liu, Dan; Liu, Jinwen; Zhang, Shangxing; Chen, Maoshan; Zhang, Lu; Zhang, Li; Zhang, Yinchao; Liao, Weiqin; Zhang, Yan; Wang, Min; Lv, Xiaodan; Wen, Bo; Liu, Hongjun; Luan, Hemi; Zhang, Yonggang; Yang, Shuang; Wang, Xiaodian; Xu, Jiaohui; Li, Xueqin; Li, Shuaicheng; Wang, Junyi; Palloix, Alain; Bosland, Paul W.; Li, Yingrui; Krogh, Anders; Rivera-Bustamante, Rafael F.; Herrera-Estrella, Luis; Yin, Ye; Yu, Jiping; Hu, Kailin; Zhang, Zhiming

    2014-01-01

    As an economic crop, pepper satisfies people’s spicy taste and has medicinal uses worldwide. To gain a better understanding of Capsicum evolution, domestication, and specialization, we present here the genome sequence of the cultivated pepper Zunla-1 (C. annuum L.) and its wild progenitor Chiltepin (C. annuum var. glabriusculum). We estimate that the pepper genome expanded ∼0.3 Mya (with respect to the genome of other Solanaceae) by a rapid amplification of retrotransposons elements, resulting in a genome comprised of ∼81% repetitive sequences. Approximately 79% of 3.48-Gb scaffolds containing 34,476 protein-coding genes were anchored to chromosomes by a high-density genetic map. Comparison of cultivated and wild pepper genomes with 20 resequencing accessions revealed molecular footprints of artificial selection, providing us with a list of candidate domestication genes. We also found that dosage compensation effect of tandem duplication genes probably contributed to the pungent diversification in pepper. The Capsicum reference genome provides crucial information for the study of not only the evolution of the pepper genome but also, the Solanaceae family, and it will facilitate the establishment of more effective pepper breeding programs. PMID:24591624

  18. Notice of Release of PA-559, a Root-knot Nematode Resistant, Red-fruited, Habanero-type Pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA has developed a new Habanero-type pepper designated PA-559. The new breeding line is the product of a backcross/pedigree breeding procedure to incorporate a dominant root-knot nematode resistance gene from the Scotch Bonnet-type accession PA-426 into a red-fruited Habanero-type pepper. PA...

  19. Virus diseases of peppers (Capsicum spp.) and their control.

    PubMed

    Kenyon, Lawrence; Kumar, Sanjeet; Tsai, Wen-Shi; Hughes, Jacqueline d'A

    2014-01-01

    The number of virus species infecting pepper (Capsicum spp.) crops and their incidences has increased considerably over the past 30 years, particularly in tropical and subtropical pepper production systems. This is probably due to a combination of factors, including the expansion and intensification of pepper cultivation in these regions, the increased volume and speed of global trade of fresh produce (including peppers) carrying viruses and vectors to new locations, and perhaps climate change expanding the geographic range suitable for the viruses and vectors. With the increased incidences of diverse virus species comes increased incidences of coinfection with two or more virus species in the same plant. There is then greater chance of synergistic interactions between virus species, increasing symptom severity and weakening host resistance, as well as the opportunity for genetic recombination and component exchange and a possible increase in aggressiveness, virulence, and transmissibility. The main virus groups infecting peppers are transmitted by aphids, whiteflies, or thrips, and a feature of many populations of these vector groups is that they can develop resistance to some of the commonly used insecticides relatively quickly. This, coupled with the increasing concern over the impact of over- or misuse of insecticides on the environment, growers, and consumers, means that there should be less reliance on insecticides to control the vectors of viruses infecting pepper crops. To improve the durability of pepper crop protection measures, there should be a shift away from the broadscale use of insecticides and the use of single, major gene resistance to viruses. Instead, integrated and pragmatic virus control measures should be sought that combine (1) cultural practices that reduce sources of virus inoculum and decrease the rate of spread of viruliferous vectors into the pepper crop, (2) synthetic insecticides, which should be used judiciously and only when the

  20. Multiple recognition of RXLR effectors is associated with nonhost resistance of pepper against Phytophthora infestans

    PubMed Central

    Lee, Hyun-Ah; Kim, Shin-Young; Oh, Sang-Keun; Yeom, Seon-In; Kim, Saet-Byul; Kim, Myung-Shin; Kamoun, Sophien; Choi, Doil

    2014-01-01

    Nonhost resistance (NHR) is a plant immune response to resist most pathogens. The molecular basis of NHR is poorly understood, but recognition of pathogen effectors by immune receptors, a response known as effector-triggered immunity, has been proposed as a component of NHR. We performed transient expression of 54 Phytophthora infestansRXLR effectors in pepper (Capsicum annuum) accessions. We used optimized heterologous expression methods and analyzed the inheritance of effector-induced cell death in an F2 population derived from a cross between two pepper accessions. Pepper showed a localized cell death response upon inoculation with P. infestans, suggesting that recognition of effectors may contribute to NHR in this system. Pepper accessions recognized as many as 36 effectors. Among the effectors, PexRD8 and Avrblb2 induced cell death in a broad range of pepper accessions. Segregation of effector-induced cell death in an F2 population derived from a cross between two pepper accessions fit 15 : 1, 9 : 7 or 3 : 1 ratios, depending on the effector. Our genetic data suggest that a single or two independent/complementary dominant genes are involved in the recognition of RXLR effectors. Multiple loci recognizing a series of effectors may underpin NHR of pepper to P. infestans and confer resistance durability. PMID:24889686

  1. The Hot Pepper (Capsicum annuum) MicroRNA Transcriptome Reveals Novel and Conserved Targets: A Foundation for Understanding MicroRNA Functional Roles in Hot Pepper

    PubMed Central

    Kim, Donghyun; Choi, Yourim; Kim, Soyoung; Reeves, Gregory; Yeom, Seon-In; Lee, Jeong-Soo; Park, Minkyu; Kim, Seungill; Choi, Ik-Young; Choi, Doil; Shin, Chanseok

    2013-01-01

    MicroRNAs (miRNAs) are a class of non-coding RNAs approximately 21 nt in length which play important roles in regulating gene expression in plants. Although many miRNA studies have focused on a few model plants, miRNAs and their target genes remain largely unknown in hot pepper (Capsicum annuum), one of the most important crops cultivated worldwide. Here, we employed high-throughput sequencing technology to identify miRNAs in pepper extensively from 10 different libraries, including leaf, stem, root, flower, and six developmental stage fruits. Based on a bioinformatics pipeline, we successfully identified 29 and 35 families of conserved and novel miRNAs, respectively. Northern blot analysis was used to validate further the expression of representative miRNAs and to analyze their tissue-specific or developmental stage-specific expression patterns. Moreover, we computationally predicted miRNA targets, many of which were experimentally confirmed using 5′ rapid amplification of cDNA ends analysis. One of the validated novel targets of miR-396 was a domain rearranged methyltransferase, the major de novo methylation enzyme, involved in RNA-directed DNA methylation in plants. This work provides the first reliable draft of the pepper miRNA transcriptome. It offers an expanded picture of pepper miRNAs in relation to other plants, providing a basis for understanding the functional roles of miRNAs in pepper. PMID:23737975

  2. Biochemistry and molecular biology of carotenoid biosynthesis in chili peppers (Capsicum spp.).

    PubMed

    Gómez-García, María del Rocío; Ochoa-Alejo, Neftalí

    2013-01-01

    Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits' yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from different species, cultivars, varieties or genotypes. The types and levels of carotenoids differ between different chili pepper fruits, and they are also influenced by environmental conditions. Yellow-orange colors of chili pepper fruits are mainly due to the accumulation of α- and β-carotene, zeaxanthin, lutein and β-cryptoxanthin. Carotenoids such as capsanthin, capsorubin and capsanthin-5,6-epoxide confer the red colors. Chromoplasts are the sites of carotenoid pigment synthesis and storage. According to the most accepted theory, the synthesis of carotenoids in chili peppers is controlled by three loci: c1, c2 and y. Several enzymes participating in carotenoid biosynthesis in chili pepper fruits have been isolated and characterized, and the corresponding gene sequences have been reported. However, there is currently limited information on the molecular mechanisms that regulate this biosynthetic pathway. Approaches to gain more knowledge of the regulation of carotenoid biosynthesis are discussed. PMID:24065101

  3. Biochemistry and Molecular Biology of Carotenoid Biosynthesis in Chili Peppers (Capsicum spp.)

    PubMed Central

    del Rocío Gómez-García, María; Ochoa-Alejo, Neftalí

    2013-01-01

    Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits’ yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from different species, cultivars, varieties or genotypes. The types and levels of carotenoids differ between different chili pepper fruits, and they are also influenced by environmental conditions. Yellow-orange colors of chili pepper fruits are mainly due to the accumulation of α- and β-carotene, zeaxanthin, lutein and β-cryptoxanthin. Carotenoids such as capsanthin, capsorubin and capsanthin-5,6-epoxide confer the red colors. Chromoplasts are the sites of carotenoid pigment synthesis and storage. According to the most accepted theory, the synthesis of carotenoids in chili peppers is controlled by three loci: c1, c2 and y. Several enzymes participating in carotenoid biosynthesis in chili pepper fruits have been isolated and characterized, and the corresponding gene sequences have been reported. However, there is currently limited information on the molecular mechanisms that regulate this biosynthetic pathway. Approaches to gain more knowledge of the regulation of carotenoid biosynthesis are discussed. PMID:24065101

  4. Dynamics of the chili pepper transcriptome during fruit development

    PubMed Central

    2014-01-01

    Background The set of all mRNA molecules present in a cell constitute the transcriptome. The transcriptome varies depending on cell type as well as in response to internal and external stimuli during development. Here we present a study of the changes that occur in the transcriptome of chili pepper fruit during development and ripening. Results RNA-Seq was used to obtain transcriptomes of whole Serrano-type chili pepper fruits (Capsicum annuum L.; ‘Tampiqueño 74’) collected at 10, 20, 40 and 60 days after anthesis (DAA). 15,550,468 Illumina MiSeq reads were assembled de novo into 34,066 chili genes. We classified the expression patterns of individual genes as well as genes grouped into Biological Process ontologies and Metabolic Pathway categories using statistical criteria. For the analyses of gene groups we added the weighted expression of individual genes. This method was effective in interpreting general patterns of expression changes and increased the statistical power of the analyses. We also estimated the variation in diversity and specialization of the transcriptome during chili pepper development. Approximately 17% of genes exhibited a significant change of expression in at least one of the intervals sampled. In contrast, significant differences in approximately 63% of the Biological Processes and 80% of the Metabolic Pathways studied were detected in at least one interval. Confirming previous reports, genes related to capsaicinoid and ascorbic acid biosynthesis were significantly upregulated at 20 DAA while those related to carotenoid biosynthesis were highly expressed in the last period of fruit maturation (40–60 DAA). Our RNA-Seq data was validated by examining the expression of nine genes involved in carotenoid biosynthesis by qRT-PCR. Conclusions In general, more profound changes in the chili fruit transcriptome were observed in the intervals between 10 to 20 and 40 to 60 DAA. The last interval, between 40 to 60 DAA, included 49% of all

  5. Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper.

    PubMed

    Paran, Ilan; van der Knaap, Esther

    2007-01-01

    Tomato and pepper are two Solanaceous fruit crops that display an enormous diversity in fruit morphology. In this review, we will present an overview of the history of tomato and pepper and discuss key plant traits that were specifically selected during domestication of the two species. The traits discussed are fruit weight, shape, colour, ripening, pungency and plant architecture. We will review these characteristics as well as the genetic loci or genes that control these features, questioning whether mutations at orthologous loci occurred independently in these two species or whether unique plant and fruit features resulted in selection at different genes. PMID:18037678

  6. Demonstrating Integrated Pest Management of Hot Peppers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the effects of organic and synthetic chemical fertilizers on crop growth, yield and associated insect pests for two varieties of hot pepper, Capsicum chinense Jacquin (Solanaceae): “Scotch Bonnet” and “Caribbean Red” in north Florida. Hot peppers were grown under three treatments: poultr...

  7. Pepper Harvest Mechanization: Past and Present

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peppers (Capsicum spp.) include a diverse collection of cultivars produced for a wide variety of end uses. Labor for hand harvest is as much as half of the cost of production. There have been attempts to mechanize pepper harvest since 1965, yet many segments of the industry still depend on hand la...

  8. DEMONSTRATING INTEGRATED PEST MANAGEMENT OF HOT PEPPERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the effects of organic and synthetic chemical fertilizers on crop growth, yield and associated insect pests for two varieties of hot pepper, Capsicum chinense Jacquin (Solanaceae): “Scotch Bonnet” and “Caribbean Red” in north Florida. Hot peppers were grown under three treatments: poultr...

  9. Visualizing Capsaicinoids: Colorimetric Analysis of Chili Peppers

    ERIC Educational Resources Information Center

    Thompson, Robert Q.; Chu, Christopher; Gent, Robin; Gould, Alexandra P.; Rios, Laura; Vertigan, Theresa M.

    2012-01-01

    A colorimetric method for total capsaicinoids in chili pepper ("Capsicum") fruit is described. The placental material of the pepper, containing 90% of the capsaicinoids, was physically separated from the colored materials in the pericarp and extracted twice with methanol, capturing 85% of the remaining capsaicinoids. The extract, evaporated and…

  10. Chile Pepper Response to Nitrogen Fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2008, we evaluated the effects of N fertilization (6 N rates) on chile pepper fresh yield and biomass accumulation following two years of continuous corn production. A polymer-coated urea, ESN® (Environmentally Smart Nitrogen), N fertilizer source was used. Fresh chile pepper yields increased ...

  11. A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding

    PubMed Central

    Hulse-Kemp, Amanda M; Ashrafi, Hamid; Plieske, Joerg; Lemm, Jana; Stoffel, Kevin; Hill, Theresa; Luerssen, Hartmut; Pethiyagoda, Charit L; Lawley, Cindy T; Ganal, Martin W; Van Deynze, Allen

    2016-01-01

    The Capsicum genus (Pepper) is a part of the Solanacae family. It has been important in many cultures worldwide for its key nutritional components and uses as spices, medicines, ornamentals and vegetables. Worldwide population growth is associated with demand for more nutritionally valuable vegetables while contending with decreasing resources and available land. These conditions require increased efficiency in pepper breeding to deal with these imminent challenges. Through resequencing of inbred lines we have completed a valuable haplotype map (HapMap) for the pepper genome based on single-nucleotide polymorphisms (SNP). The identified SNPs were annotated and classified based on their gene annotation in the pepper draft genome sequence and phenotype of the sequenced inbred lines. A selection of one marker per gene model was utilized to create the PepperSNP16K array, which simultaneously genotyped 16 405 SNPs, of which 90.7% were found to be informative. A set of 84 inbred and hybrid lines and a mapping population of 90 interspecific F2 individuals were utilized to validate the array. Diversity analysis of the inbred lines shows a distinct separation of bell versus chile/hot pepper types and separates them into five distinct germplasm groups. The interspecific population created between Tabasco (C. frutescens chile type) and P4 (C. annuum blocky type) produced a linkage map with 5546 markers separated into 1361 bins on twelve 12 linkage groups representing 1392.3 cM. This publically available genotyping platform can be used to rapidly assess a large number of markers in a reproducible high-throughput manner for pepper. As a standardized tool for genetic analyses, the PepperSNP16K can be used worldwide to share findings and analyze QTLs for important traits leading to continued improvement of pepper for consumers. Data and information on the array are available through the Solanaceae Genomics Network. PMID:27602231

  12. A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding.

    PubMed

    Hulse-Kemp, Amanda M; Ashrafi, Hamid; Plieske, Joerg; Lemm, Jana; Stoffel, Kevin; Hill, Theresa; Luerssen, Hartmut; Pethiyagoda, Charit L; Lawley, Cindy T; Ganal, Martin W; Van Deynze, Allen

    2016-01-01

    The Capsicum genus (Pepper) is a part of the Solanacae family. It has been important in many cultures worldwide for its key nutritional components and uses as spices, medicines, ornamentals and vegetables. Worldwide population growth is associated with demand for more nutritionally valuable vegetables while contending with decreasing resources and available land. These conditions require increased efficiency in pepper breeding to deal with these imminent challenges. Through resequencing of inbred lines we have completed a valuable haplotype map (HapMap) for the pepper genome based on single-nucleotide polymorphisms (SNP). The identified SNPs were annotated and classified based on their gene annotation in the pepper draft genome sequence and phenotype of the sequenced inbred lines. A selection of one marker per gene model was utilized to create the PepperSNP16K array, which simultaneously genotyped 16 405 SNPs, of which 90.7% were found to be informative. A set of 84 inbred and hybrid lines and a mapping population of 90 interspecific F2 individuals were utilized to validate the array. Diversity analysis of the inbred lines shows a distinct separation of bell versus chile/hot pepper types and separates them into five distinct germplasm groups. The interspecific population created between Tabasco (C. frutescens chile type) and P4 (C. annuum blocky type) produced a linkage map with 5546 markers separated into 1361 bins on twelve 12 linkage groups representing 1392.3 cM. This publically available genotyping platform can be used to rapidly assess a large number of markers in a reproducible high-throughput manner for pepper. As a standardized tool for genetic analyses, the PepperSNP16K can be used worldwide to share findings and analyze QTLs for important traits leading to continued improvement of pepper for consumers. Data and information on the array are available through the Solanaceae Genomics Network. PMID:27602231

  13. Corneal abrasions associated with pepper spray exposure.

    PubMed

    Brown, L; Takeuchi, D; Challoner, K

    2000-05-01

    Pepper spray containing oleoresin capsicum is used by law enforcement and the public as a form of nonlethal deterrent. Stimulated by the identification of a case of a corneal abrasion associated with pepper spray exposure, a descriptive retrospective review of a physician-maintained log of patients presenting to a jail ward emergency area over a 3-year period was performed. The objective was to give some quantification to the frequency with which an emergency physician could expect to see corneal abrasions associated with pepper spray exposure. Of 100 cases of pepper spray exposure identified, seven patients had sustained corneal abrasions. We conclude that corneal abrasions are not rare events when patients are exposed to pepper spray and that fluorescein staining and slit lamp or Wood's lamp examination should be performed on all exposed patients in whom corneal abrasions cannot be excluded on clinical grounds. PMID:10830682

  14. Capsicum Annuum L. Lil' Pumpkin and Pepper Jack

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA, ARS announces the release of two new pepper cultivars 05C37-3 (trademarked as Lil’ Pumpkin) and 05C69-12 (trademarked as Pepper Jack). Lil’ Pumpkin and Pepper Jack are intended for ornamental applications. Lil’ Pumpkin’s unique black foliage and orange pumpkin-like fruit and Pepper Jack’s ...

  15. Resistance breaking tomato spotted wilt virus isolates on resistant pepper varieties in Italy.

    PubMed

    Crescenzi, A; Viggiano, A; Fanigliulo, A

    2013-01-01

    In spring 2012, resistance breaking (RB) isolates of tomato spotted wilt virus (TSWV) that overcome the resistance conferred by the Tsw gene in different pepper hybrids have been recovered in different locations in southern Italy (Campania and Apulia regions) in protected cultivation, about one month after transplant. The percentage of symptomatic plants was 5-10% and, only in particular cases of advanced stage of cultivation, it reached 30-50% at the end of cycle. All TSWV isolates induced similar systemic symptoms in all resistant infected pepper hybrids: yellowing or browning of apical leaves, which later become necrotic, long necrotic streakson stems, extending to the terminal shoots, complete necrosis of younger fruits and large necrotic streaks and spots on fruits formed after infection. On ripe fruits, yellow spots with concentric rings or necrotic streaks could be observed. Leaf extracts of these samples were tested in ELISA for the detection of TSWV, Cucumber mosaic virus (CMV), Tobacco mosaic virus (TMV), Tomato mosaic virus (ToMV), Impatiens necrotic spot virus (INSV), Potato virus Y (PVY), Alfalfa mosaic virus (AMV), Pepper mild mottle virus (PMMoV) and Pepper Mottle Virus (PepMoV). Only TSWV was detected in all the field samples tested. The correspondent virus isolates were inoculated mechanically and by Frankliniella occidentalis on to a set of different pepper and tomato hybrids, as well as on some herbaceous test plants, in order to investigate for their ability to overcome the resistance genes Tsw and Sw5, respectively. Tomato hybrids carrying the Sw5 gene were uninfected by all RB isolates, whereas all resistant pepper hybrids became systemically infected. RB isolates did not differ noticeably in transmission efficiency when they were tested with the thrips F. occidentalis. Obtained results demonstrate that evolved strains of TSWV have emerged, that they are able to overcome the Tsw resistance gene in pepper plants experimentally inoculated both

  16. In silico identification of Bell pepper endornavirus from pepper transcriptomes and their phylogenetic and recombination analyses.

    PubMed

    Jo, Yeonhwa; Choi, Hoseong; Yoon, Ju-Yeon; Choi, Seung-Kook; Cho, Won Kyong

    2016-01-10

    Here, we identified eight Bell pepper endornavirus (BPEV) isolates from nine different pepper transcriptomes. BPEV was present with low copy numbers ranging from 0.01% to 0.18% in the host transcriptome. Phylogenetic identified two different groups of BPEV isolates. Sequence alignment of the five BPEV genomes revealed conservation of the 5' and 3' untranslated regions. Recombination analysis identified two possible recombinant events in the isolate Yolo Wonder. Single nucleotide variation profiles revealed the presence of BPEV variants within a single pepper cultivar. Taken together, this study provides phylogenetic and recombination analyses of the genus Endornavirus using pepper transcriptome data. PMID:26410036

  17. Effects of Japanese pepper and red pepper on the microbial community during nukadoko fermentation

    PubMed Central

    ONO, Hiroshi; NISHIO, Shoko; TSURII, Jun; KAWAMOTO, Tetsuhiro; SONOMOTO, Kenji; NAKAYAMA, Jiro

    2014-01-01

    Nukadoko is a fermented rice bran bed traditionally used for pickling vegetables in Japan. To date, the production of both homemade and commercial nukadoko has depended on natural fermentation without using starter cultures. Spices, Japanese pepper, and red pepper, are added to nukadoko empirically, but the functions of spices in nukadoko have not been fully elucidated. To investigate the effects of Japanese pepper and red pepper on nukadoko fermentation, we compared the chemical and microbiological changes during 2 months of fermentation of a laboratory model nukadoko with or without spices. The successive pH values and colony counts in the first 10 days showed that the spices promoted lactic acid bacteria (LAB) growth and fermentation in the nukadoko niche. The successive bacterial communities during natural fermentation of nukadoko were carefully monitored by pyrotag 16S rRNA analysis, and the effect of spices on the development and maintenance of the nukadoko microbiota was investigated. It was shown that addition of Japanese peppers and red peppers shortened the pre-lactic acid fermentation phase, during which Staphylococcus saprophyticus grew dominantly, and promoted the development of a microbiota that LAB dominated. Notably, the growth of the dominant LAB, Pediococcus pentosaceus, was improved by adding either Japanese pepper or red pepper. The differences in the LAB species, which were associated with the differences in chemical composition of the nukadoko, were dependent on the type of pepper used. We conclude that the spices used can affect the bacterial community and modulate its metabolic profile in nukadoko. PMID:25625032

  18. Effects of Japanese pepper and red pepper on the microbial community during nukadoko fermentation.

    PubMed

    Ono, Hiroshi; Nishio, Shoko; Tsurii, Jun; Kawamoto, Tetsuhiro; Sonomoto, Kenji; Nakayama, Jiro

    2015-01-01

    Nukadoko is a fermented rice bran bed traditionally used for pickling vegetables in Japan. To date, the production of both homemade and commercial nukadoko has depended on natural fermentation without using starter cultures. Spices, Japanese pepper, and red pepper, are added to nukadoko empirically, but the functions of spices in nukadoko have not been fully elucidated. To investigate the effects of Japanese pepper and red pepper on nukadoko fermentation, we compared the chemical and microbiological changes during 2 months of fermentation of a laboratory model nukadoko with or without spices. The successive pH values and colony counts in the first 10 days showed that the spices promoted lactic acid bacteria (LAB) growth and fermentation in the nukadoko niche. The successive bacterial communities during natural fermentation of nukadoko were carefully monitored by pyrotag 16S rRNA analysis, and the effect of spices on the development and maintenance of the nukadoko microbiota was investigated. It was shown that addition of Japanese peppers and red peppers shortened the pre-lactic acid fermentation phase, during which Staphylococcus saprophyticus grew dominantly, and promoted the development of a microbiota that LAB dominated. Notably, the growth of the dominant LAB, Pediococcus pentosaceus, was improved by adding either Japanese pepper or red pepper. The differences in the LAB species, which were associated with the differences in chemical composition of the nukadoko, were dependent on the type of pepper used. We conclude that the spices used can affect the bacterial community and modulate its metabolic profile in nukadoko. PMID:25625032

  19. PA-559, a Root-knot Nematode Resistant, Red-fruited, Habanero-type Pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Research Service of the U.S. Department of Agriculture has released a new Habanero-type pepper designated PA-559. The new breeding line is the product of a recurrent backcross breeding procedure to incorporate a dominant root-knot nematode resistance gene from the Scotch Bonnet-typ...

  20. De Novo Assembly and Characterization of Fruit Transcriptome in Black Pepper (Piper nigrum)

    PubMed Central

    Hu, Lisong; Hao, Chaoyun; Fan, Rui; Wu, Baoduo; Tan, Lehe; Wu, Huasong

    2015-01-01

    Black pepper is one of the most popular and oldest spices in the world and valued for its pungent constituent alkaloids. Pinerine is the main bioactive compound in pepper alkaloids, which perform unique physiological functions. However, the mechanisms of piperine synthesis are poorly understood. This study is the first to describe the fruit transcriptome of black pepper by sequencing on Illumina HiSeq 2000 platform. A total of 56,281,710 raw reads were obtained and assembled. From these raw reads, 44,061 unigenes with an average length of 1,345 nt were generated. During functional annotation, 40,537 unigenes were annotated in Gene Ontology categories, Kyoto Encyclopedia of Genes and Genomes pathways, Swiss-Prot database, and Nucleotide Collection (NR/NT) database. In addition, 8,196 simple sequence repeats (SSRs) were detected. In a detailed analysis of the transcriptome, housekeeping genes for quantitative polymerase chain reaction internal control, polymorphic SSRs, and lysine/ornithine metabolism-related genes were identified. These results validated the availability of our database. Our study could provide useful data for further research on piperine synthesis in black pepper. PMID:26121657

  1. De Novo Assembly and Characterization of Fruit Transcriptome in Black Pepper (Piper nigrum).

    PubMed

    Hu, Lisong; Hao, Chaoyun; Fan, Rui; Wu, Baoduo; Tan, Lehe; Wu, Huasong

    2015-01-01

    Black pepper is one of the most popular and oldest spices in the world and valued for its pungent constituent alkaloids. Pinerine is the main bioactive compound in pepper alkaloids, which perform unique physiological functions. However, the mechanisms of piperine synthesis are poorly understood. This study is the first to describe the fruit transcriptome of black pepper by sequencing on Illumina HiSeq 2000 platform. A total of 56,281,710 raw reads were obtained and assembled. From these raw reads, 44,061 unigenes with an average length of 1,345 nt were generated. During functional annotation, 40,537 unigenes were annotated in Gene Ontology categories, Kyoto Encyclopedia of Genes and Genomes pathways, Swiss-Prot database, and Nucleotide Collection (NR/NT) database. In addition, 8,196 simple sequence repeats (SSRs) were detected. In a detailed analysis of the transcriptome, housekeeping genes for quantitative polymerase chain reaction internal control, polymorphic SSRs, and lysine/ornithine metabolism-related genes were identified. These results validated the availability of our database. Our study could provide useful data for further research on piperine synthesis in black pepper. PMID:26121657

  2. PA-560, A Southern Root-knot Nematode Resistant, Yellow-fruited, Habanero-type Pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA has developed a yellow-fruited, Habanero-type pepper (Capsicum chinense Jacq.) that is highly resistant to root-knot nematodes. The new breeding line, designated PA-560, is the product of a backcross/pedigree breeding procedure to incorporate a root-knot nematode resistance gene from the S...

  3. Truhart-NR, A Root-knot Nematode Resistant, Pimento-type Pepper Cultivar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efforts to develop a high-yielding, pimento-type pepper (Capsicum annuum L.) cultivar that is highly resistant to root-knot nematodes were completed with the official release of Truhart-NR on October 20, 2009. The new cultivar is homozygous for the dominant N gene that conditions a high level of re...

  4. Mycoflora and mycotoxins in Brazilian black pepper, white pepper and Brazil nuts.

    PubMed

    Freire, F C; Kozakiewicz, Z; Paterson, R R

    2000-01-01

    A wide range of field and storage fungi were isolated from black pepper, white pepper and Brazil nut kernels from Amazonia. A total of 42 species were isolated from both peppers. Aspergillus flavus and A. niger were isolated more frequently from black than from white pepper. Other potential mycotoxigenic species isolated included: A. ochraceus, A. tamarii, A. versicolor, Emericella nidulans and Chaetomium globosum, Penicillium brevicompactum, P. citrinum, P. islandicum and P. glabrum. Species isolated from pepper for the first time were Acrogenospora sphaerocephala, Cylindrocarpon lichenicola, Lacellinopsis sacchari, Microascus cinereus, Petriella setifera and Sporormiella minima. Seventeen species were isolated from Brazil nut kernels. A. flavus was the dominant species followed by A. niger. P. citrinum and P. glabrum were the only penicillia isolated. Species isolated for the first time included Acremonium curvulum, Cunninghamella elegans, Exophiala sp., Fusarium oxysporum, Pseudoallescheria boydii, Rhizopus oryzae, Scopulariopsis sp., Thielavia terricola and Trichoderma citrinoviride. Considerably more metabolites were detected from black than white pepper in qualitative analyses. Chaetocin, penitrem A, and xanthocillin were identified only from black pepper, and tenuazonic acid was identified from both black and white pepper. Aflatoxin G2, chaetoglobosin C, and spinulosin were identified from poor quality brazil nuts. Aflatoxin B1 and B2 were also only detected in poor quality brazil nuts at concentrations of 27.1 micrograms kg-1 and 2.1 micrograms kg-1 respectively (total 29.2 micrograms kg-1). PMID:11229375

  5. Quantitative analysis of capsaicinoids in fresh peppers, oleoresin capsicum and pepper spray products.

    PubMed

    Reilly, C A; Crouch, D J; Yost, G S

    2001-05-01

    Liquid chromatography-mass spectrometry was used to identify and quantify the predominant capsaicinoid analogues in extracts of fresh peppers, in oleoresin capsicum, and pepper sprays. The concentration of capsaicinoids in fresh peppers was variable. Variability was dependent upon the relative pungency of the pepper type and geographical origin of the pepper. Nonivamide was conclusively identified in the extracts of fresh peppers, despite numerous reports that nonivamide was not a natural product. In the oleoresin capsicum samples, the pungency was proportional to the total concentration of capsaicinoids and was related by a factor of approximately 15,000 Scoville Heat Units (SHU)/microg of total capsaicinoids. The principle analogues detected in oleoresin capsicum were capsaicin and dihydrocapsaicin and appeared to be the analogues primarily responsible for the pungency of the sample. The analysis of selected samples of commercially available pepper spray products also demonstrated variability in the capsaicinoid concentrations. Variability was observed among products obtained from different manufacturers as well as from different product lots from the same manufacturer. These data indicate that commercial pepper products are not standardized for capsaicinoid content even though they are classified by SHU. Variability in the capsaicinoid concentrations in oleoresin capsicum-based self-defense weapons could alter potency and ultimately jeopardize the safety and health of users and assailants. PMID:11372985

  6. Transcriptome analysis of symptomatic and recovered leaves of geminivirus-infected pepper (Capsicum annuum)

    PubMed Central

    2012-01-01

    Background Geminiviruses are a large and important family of plant viruses that infect a wide range of crops throughout the world. The Begomovirus genus contains species that are transmitted by whiteflies and are distributed worldwide causing disease on an array of horticultural crops. Symptom remission, in which newly developed leaves of systemically infected plants exhibit a reduction in symptom severity (recovery), has been observed on pepper (Capsicum annuum) plants infected with Pepper golden mosaic virus (PepGMV). Previous studies have shown that transcriptional and post-transcriptional gene silencing mechanisms are involved in the reduction of viral nucleic acid concentration in recovered tissue. In this study, we employed deep transcriptome sequencing methods to assess transcriptional variation in healthy (mock), symptomatic, and recovered pepper leaves following PepGMV infection. Results Differential expression analyses of the pepper leaf transcriptome from symptomatic and recovered stages revealed a total of 309 differentially expressed genes between healthy (mock) and symptomatic or recovered tissues. Computational prediction of differential expression was validated using quantitative reverse-transcription PCR confirming the robustness of our bioinformatic methods. Within the set of differentially expressed genes associated with the recovery process were genes involved in defense responses including pathogenesis-related proteins, reactive oxygen species, systemic acquired resistance, jasmonic acid biosynthesis, and ethylene signaling. No major differences were found when compared the differentially expressed genes in symptomatic and recovered tissues. On the other hand, a set of genes with novel roles in defense responses was identified including genes involved in histone modification. This latter result suggested that post-transcriptional and transcriptional gene silencing may be one of the major mechanisms involved in the recovery process. Genes

  7. Quality Characteristics of Stirred Yoghurt Added with Fermented Red Pepper

    PubMed Central

    Yu, Mi-Sang; Kim, Jeong-Mee; Lee, Chi-Ho; Son, Yoon-Jeong; Kim, Soo-Ki

    2014-01-01

    Pungency of hot pepper has limited its usage even though it shows various health beneficial effects. This study was conducted to develop the novel yoghurt containing hot pepper with diminishing pungency and aimed to examine the quality characteristics of yoghurt prepared with fermented red pepper. Hot pepper was first fermented with Bacillus licheniformis SK1230 to reduce the pungency of capsaicin. We then examined the quality, sensory characteristics, and antioxidant activity of yoghurt containing the fermented red pepper. The titratable acidity of this yoghurt increased whereas the viscosity decreased with increasing amounts of added red pepper. The total polyphenol content increased in proportion to the amount of added red pepper. The antioxidant activity significantly increased with the addition of red pepper (p<0.05). Color evaluation showed that the L value decreased whereas the a and b values increased significantly with the amount of red pepper added (p<0.05). In the sensory evaluation, yoghurt prepared with higher amounts of fermented red pepper received lower scores. However, yoghurt containing fermented red pepper at a concentration of 0.05% received higher scores for taste, flavor, and overall acceptability than yoghurt prepared with non-fermented pepper. Therefore, it can be concluded that the application of red pepper fermented by Bacillus licheniformis SK1230 gives beneficial feature to the preparation of yoghurt. PMID:26761278

  8. Characterization of a new curtovirus, pepper yellow dwarf virus, from chile pepper and distribution in weed hosts in New Mexico.

    PubMed

    Lam, Nhan; Creamer, Rebecca; Rascon, Jaime; Belfon, Robert

    2009-01-01

    Over 4,950 asymptomatic weed samples from more than 20 weed species that are host plants for curtoviruses were collected from ten chile pepper fields in southern New Mexico (NM) during 2003, 2004 and 2005 to identify whether they were infected with curtoviruses and to determine which curtoviruses were distributed in the weed population. Polymerase chain reaction using primers designed to detect a portion of the coat protein (cp) gene were used to detect curtoviruses, and infected plants were further tested for specific curtoviruses using primers designed to detect to a portion of the replication-associated protein (rep) gene. Amplification of the cp gene was successful from 3.7, 1.17, and 1.9% of the weed samples in 2003, 2004, and 2005, respectively. Seventy-three amplicons from those samples were sequenced and compared to well-characterized curtoviruses. Analysis of the rep nucleotide sequences showed that approximately 32.9% of the weed isolates tested were closely related to beet mild curly top virus (BMCTV). Approximately 12.4% were closely related to beet severe curly top virus (BSCTV). The rest of the weed isolates (54.7%), which shared a very high level of nucleotide sequence identity to each other, represent a new curtovirus species. Using eight primers designed for PCR, complete genomes of three curtoviruses isolated from chile pepper samples representing the three groups of curtoviruses in southern New Mexico were sequenced. Comparisons of whole sequences of the genomes revealed that the DG2SW171601 isolate (2,929 nucleotides) was nearly identical to BMCTV-W4 (approximately 98% nucleotide sequence identity). The LRME27601 isolate (2,927 nucleotides) was most closely related to BSCTV (approximately 92% nucleotide sequence identity). The LJN17601 isolate (2,959 nucleotides) shared only from 49.9 to 88.8% nucleotide sequence identity with other well-characterized curtoviruses. Based on the accepted cut-off of 89%, we propose that the LJN17601 isolate is a

  9. The Effect of Long-Term Continuous Cropping of Black Pepper on Soil Bacterial Communities as Determined by 454 Pyrosequencing.

    PubMed

    Xiong, Wu; Li, Zhigang; Liu, Hongjun; Xue, Chao; Zhang, Ruifu; Wu, Huasong; Li, Rong; Shen, Qirong

    2015-01-01

    In the present study, 3 replanted black pepper orchards with continuously cropping histories for 10, 21, and 55 years in tropical China, were selected for investigating the effect of monoculture on soil physiochemical properties, enzyme activities, bacterial abundance, and bacterial community structures. Results showed long-term continuous cropping led to a significant decline in soil pH, organic matter contents, enzymatic activities, and resulted in a decrease in soil bacterial abundance. 454 pyrosequencing analysis of 16S rRNA genes revealed that the Acidobacteria and Proteobacteria were the main phyla in the replanted black pepper orchard soils, comprising up to 73.82% of the total sequences; the relative abundances of Bacteroidetes and Firmicutes phyla decreased with long-term continuous cropping; and at genus level, the Pseudomonas abundance significantly depleted after 21 years continuous cropping. In addition, bacterial diversity significantly decreased after 55 years black pepper continuous cropping; obvious variations for community structures across the 3 time-scale replanted black pepper orchards were observed, suggesting monoculture duration was the major determinant for bacterial community structure. Overall, continuous cropping during black pepper cultivation led to a significant decline in soil pH, organic matter contents, enzymatic activities, resulted a decrease in soil bacterial abundance, and altered soil microbial community membership and structure, which in turn resulted in black pepper poor growth in the continuous cropping system. PMID:26317364

  10. The Effect of Long-Term Continuous Cropping of Black Pepper on Soil Bacterial Communities as Determined by 454 Pyrosequencing

    PubMed Central

    Xiong, Wu; Li, Zhigang; Liu, Hongjun; Xue, Chao; Zhang, Ruifu; Wu, Huasong; Li, Rong; Shen, Qirong

    2015-01-01

    In the present study, 3 replanted black pepper orchards with continuously cropping histories for 10, 21, and 55 years in tropical China, were selected for investigating the effect of monoculture on soil physiochemical properties, enzyme activities, bacterial abundance, and bacterial community structures. Results showed long-term continuous cropping led to a significant decline in soil pH, organic matter contents, enzymatic activities, and resulted in a decrease in soil bacterial abundance. 454 pyrosequencing analysis of 16S rRNA genes revealed that the Acidobacteria and Proteobacteria were the main phyla in the replanted black pepper orchard soils, comprising up to 73.82% of the total sequences; the relative abundances of Bacteroidetes and Firmicutes phyla decreased with long-term continuous cropping; and at genus level, the Pseudomonas abundance significantly depleted after 21 years continuous cropping. In addition, bacterial diversity significantly decreased after 55 years black pepper continuous cropping; obvious variations for community structures across the 3 time-scale replanted black pepper orchards were observed, suggesting monoculture duration was the major determinant for bacterial community structure. Overall, continuous cropping during black pepper cultivation led to a significant decline in soil pH, organic matter contents, enzymatic activities, resulted a decrease in soil bacterial abundance, and altered soil microbial community membership and structure, which in turn resulted in black pepper poor growth in the continuous cropping system. PMID:26317364

  11. 7 CFR 319.56-32 - Peppers from New Zealand.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Peppers from New Zealand. 319.56-32 Section 319.56-32... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Fruits and Vegetables § 319.56-32 Peppers from New Zealand. Peppers (fruit) (Capsicum spp.) from New Zealand may be imported into the...

  12. 7 CFR 319.56-32 - Peppers from New Zealand.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Peppers from New Zealand. 319.56-32 Section 319.56-32... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Fruits and Vegetables § 319.56-32 Peppers from New Zealand. Peppers (fruit) (Capsicum spp.) from New Zealand may be imported into the...

  13. 7 CFR 319.56-32 - Peppers from New Zealand.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Peppers from New Zealand. 319.56-32 Section 319.56-32... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Fruits and Vegetables § 319.56-32 Peppers from New Zealand. Peppers (fruit) (Capsicum spp.) from New Zealand may be imported into the...

  14. 7 CFR 319.56-32 - Peppers from New Zealand.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Peppers from New Zealand. 319.56-32 Section 319.56-32... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Fruits and Vegetables § 319.56-32 Peppers from New Zealand. Peppers (fruit) (Capsicum spp.) from New Zealand may be imported into the...

  15. 7 CFR 319.56-32 - Peppers from New Zealand.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Peppers from New Zealand. 319.56-32 Section 319.56-32... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Fruits and Vegetables § 319.56-32 Peppers from New Zealand. Peppers (fruit) (Capsicum spp.) from New Zealand may be imported into the...

  16. Microflora of Black and Red Pepper1

    PubMed Central

    Christensen, C. M.; Fanse, H. A.; Nelson, G. H.; Bates, Fern; Mirocha, C. J.

    1967-01-01

    Dilution cultures of 30 samples of ground black pepper yielded an average of 39,000 colonies of fungi per g, with a range of 1,700 to 310,000 per g. Total numbers of colonies of bacteria from 11 samples averaged 194,000,000 per g, with a range from 8,300,000 to 704,000,000 per g. A variety of fungi grew from nearly all surface-disinfected whole peppercorns that were cultured. Thirteen samples of ground red pepper from the United States yielded an average of 1,600 colonies of storage fungi per g and an equal number of other fungi; five samples from India yielded an average of 78,900 colonies of storage fungi per g and 169,400 colonies of other fungi per g. Among the fungi from both black and red pepper were Aspergillus flavus and A. ochraceus, some isolates of which, when grown for 8 to 10 days on moist autoclaved corn and fed to white rats or to 2-day-old Pekin ducklings, were rapidly lethal to them. Aflatoxin B1 was isolated from one of the samples of corn on which A. flavus from black pepper was grown. Among the bacteria isolated from ground black pepper were Escherichia coli, E. freudii, Serratia sp., Klebsiella sp., Bacillus sp., Staphylococcus sp., and Streptococcus sp. No cultures of Shigella or Salmonella were found. Images Fig. 1 Fig. 2 PMID:6035055

  17. Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper

    PubMed Central

    2011-01-01

    Background Bacterial spot of tomato and pepper is caused by four Xanthomonas species and is a major plant disease in warm humid climates. The four species are distinct from each other based on physiological and molecular characteristics. The genome sequence of strain 85-10, a member of one of the species, Xanthomonas euvesicatoria (Xcv) has been previously reported. To determine the relationship of the four species at the genome level and to investigate the molecular basis of their virulence and differing host ranges, draft genomic sequences of members of the other three species were determined and compared to strain 85-10. Results We sequenced the genomes of X. vesicatoria (Xv) strain 1111 (ATCC 35937), X. perforans (Xp) strain 91-118 and X. gardneri (Xg) strain 101 (ATCC 19865). The genomes were compared with each other and with the previously sequenced Xcv strain 85-10. In addition, the molecular features were predicted that may be required for pathogenicity including the type III secretion apparatus, type III effectors, other secretion systems, quorum sensing systems, adhesins, extracellular polysaccharide, and lipopolysaccharide determinants. Several novel type III effectors from Xg strain 101 and Xv strain 1111 genomes were computationally identified and their translocation was validated using a reporter gene assay. A homolog to Ax21, the elicitor of XA21-mediated resistance in rice, and a functional Ax21 sulfation system were identified in Xcv. Genes encoding proteins with functions mediated by type II and type IV secretion systems have also been compared, including enzymes involved in cell wall deconstruction, as contributors to pathogenicity. Conclusions Comparative genomic analyses revealed considerable diversity among bacterial spot pathogens, providing new insights into differences and similarities that may explain the diverse nature of these strains. Genes specific to pepper pathogens, such as the O-antigen of the lipopolysaccharide cluster, and genes

  18. Anther culture of chili pepper (Capsicum spp.).

    PubMed

    Ochoa-Alejo, Neftalí

    2012-01-01

    Chili pepper (Capsicum spp.) is a very important horticultural crop around the world and is especially important for Mexicans because of its impact in the culture and the cuisine. Biotechnological tools such as tissue culture techniques and specifically anther culture may be applied successfully for plant breeding and genetic improvement in order to generate isogenic lines (100% homozygous) in a shorter time in comparison with the classic breeding methods. In this chapter, a protocol for efficient recovery of chili pepper haploid plants from in vitro cultured anthers is described. PMID:22610631

  19. Anther Culture in Pepper (Capsicum annuum L.).

    PubMed

    Parra-Vega, Verónica; Seguí-Simarro, Jose M

    2016-01-01

    Anther culture is the most popular of the techniques used to induce microspore embryogenesis. This technique is well set up in a wide range of crops, including pepper. In this chapter, a protocol for anther culture in pepper is described. The protocol presented hereby includes the steps from the selection of buds from donor plants to the regeneration and acclimatization of doubled haploid plants derived from the embryos, as well as a description of how to analyze the ploidy level of the regenerated plants. PMID:26619881

  20. Interactions of Phytophthora capsici with Resistant and Susceptible Pepper Roots and Stems.

    PubMed

    Dunn, Amara R; Smart, Christine D

    2015-10-01

    Using host resistance is an important strategy for managing pepper root and crown rot caused by Phytophthora capsici. An isolate of P. capsici constitutively expressing a gene for green fluorescent protein was used to investigate pathogen interactions with roots, crowns, and stems of Phytophthora-susceptible bell pepper 'Red Knight', Phytophthora-resistant bell pepper 'Paladin', and Phytophthora-resistant landrace Criollos de Morelos 334 (CM-334). In this study, the same number of zoospores attached to and germinated on roots of all cultivars 30 and 120 min postinoculation (pi), respectively. At 3 days pi, significantly more secondary roots had necrotic lesions on Red Knight than on Paladin and CM-334 plants. By 4 days pi, necrotic lesions had formed on the taproot of Red Knight but not Paladin or CM-334 plants. Although hyphae were visible in the crowns and stems of all Red Knight plants observed at 4 days pi, hyphae were observed in crowns of only a few Paladin and in no CM-334 plants, and never in stems of either resistant cultivar at 4 days pi. These results improve our understanding of how P. capsici infects plants and may contribute to the use of resistant pepper cultivars for disease management and the development of new cultivars. PMID:26010399

  1. Biocontrol activity and primed systemic resistance by compost water extracts against anthracnoses of pepper and cucumber.

    PubMed

    Sang, Mee Kyung; Kim, Ki Deok

    2011-06-01

    We investigated direct and indirect effects of compost water extracts (CWEs) from Iljuk-3, Iljuk-7, Shinong-8, and Shinong-9 for the control of anthracnoses caused by Colletotrichum coccodes on pepper and C. orbiculare on cucumber. All tested CWEs significantly (P < 0.05) inhibited in vitro conidial germination and appressorium formation of the fungal pathogens; however, DL-β-amino-n-butyric acid (BABA) failed to inhibit the conidial development of the pathogens. Direct treatments of the CWEs and BABA on pepper and cucumber leaves at 1 and 3 days before or after inoculation significantly (P < 0.05) reduced anthracnose severities; Iljuk-3, Shinong-9, and BABA for pepper and Iljuk-7 for cucumber had more protective activities than curative activities. In addition, root treatment of CWEs suppressed anthracnoses on the plants by the pathogens; however, CWE treatment on lower leaves failed to reduce the diseases on the upper leaves of the plants. The CWE root treatments enhanced not only the expression of the pathogenesis-related (PR) genes CABPR1, CABGLU, CAChi2, CaPR-4, CAPO1, and CaPR-10 in pepper and PR1-1a, PR-2, PR-3, and APOX in cucumber but also the activity of β-1,3-glucanase, chitinase, and peroxidase and the generation of hydrogen peroxide in pepper and cucumber under pathogen-inoculated conditions. However, the CWE treatments failed to induce the plant responses under pathogen-free conditions. These results indicated that the CWEs had direct effects, reducing anthracnoses by C. coccodes on pepper leaves and C. orbiculare on cucumber leaves through protective and curative effects. In addition, CWE root treatments could induce systemic resistance in the primed state against pathogens on plant leaves that enhanced PR gene expression, defense-related enzyme production, and hydrogen peroxide generation rapidly and effectively immediately after pathogen infection. Thus, the CWEs might suppress anthracnoses on leaves of both pepper and cucumber through primed

  2. Expression and Functional Roles of the Pepper Pathogen-Induced bZIP Transcription Factor CabZIP2 in Enhanced Disease Resistance to Bacterial Pathogen Infection.

    PubMed

    Lim, Chae Woo; Baek, Woonhee; Lim, Sohee; Han, Sang-Wook; Lee, Sung Chul

    2015-07-01

    A pepper bZIP transcription factor gene, CabZIP2, was isolated from pepper leaves infected with a virulent strain of Xanthomonas campestris pv. vesicatoria. Transient expression analysis of the CabZIP2-GFP fusion protein in Nicotiana benthamiana revealed that the CabZIP2 protein is localized in the cytoplasm as well as the nucleus. The acidic domain in the N-terminal region of CabZIP2 that is fused to the GAL4 DNA-binding domain is required to activate the transcription of reporter genes in yeast. Transcription of CabZIP2 is induced in pepper plants inoculated with virulent or avirulent strains of X. campestris pv. vesicatoria. The CabZIP2 gene is also induced by defense-related hormones such as salicylic acid, methyl jasmonate, and ethylene. To elucidate the in vivo function of the CabZIP2 gene in plant defense, virus-induced gene silencing in pepper and overexpression in Arabidopsis were used. CabZIP2-silenced pepper plants were susceptible to infection by the virulent strain of X. campestris pv. vesicatoria, which was accompanied by reduced expression of defense-related genes such as CaBPR1 and CaAMP1. CabZIP2 overexpression in transgenic Arabidopsis plants conferred enhanced resistance to Pseudomonas syringae pv. tomato DC3000. Together, these results suggest that CabZIP2 is involved in bacterial disease resistance. PMID:25738319

  3. Conservation Biological Control in Pepper and Eggplant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several important factors contribute to low productivity in pepper and eggplant due to western flower thrips. Research has been conducted to develop an understanding of flower thrips population dynamics and insecticide efficacy studies have allowed us to direct recommendations for biological contro...

  4. MIDAS™ DEMONSTRATION PLOTS IN BELL PEPPER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A demonstration trial comparing MIDAS™ (methyl iodide:chloropicrin 50:50) to methyl bromide:chloropicrin (67:33) was conducted in Saint Lucie County, FL on a commercial bell pepper production farm. Methyl bromide:chloropicrin was shank injected into performed beds at 392 kg/ha using three 25 cm dee...

  5. Irrigation frequency and timing influence pepper yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information on how fertilizer and irrigation affect production of vegetables can help growers improve resource use efficiency and profitability. Fertilizer was applied at the recommended rate and twice the recommended rate to bell and non-pungent jalapeno peppers, both Capsicum annuum L., in 2009 a...

  6. Antioxidants in Hot Pepper: Variation Among Accessions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA/ARS pepper (Capsicum spp.) germplasm collection contains several thousand accessions. Many of these have not been previously analyzed for their concentrations of ascorbic acid, capsaicin, and total phenolic compounds, which are important antioxidants and have a number of nutritional or hea...

  7. 'NuMex Las Cruces' Cayenne pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘NuMex Las Cruces’ is a high-yielding, high-heat, cayenne pepper with a maturity similar to that of ‘Large Red Thick’, an early maturing cayenne cultivar. In addition, it possesses resistance to curly top virus, having resistance to at least three Curtovirus species: Beet curly top virus (BCTV; for...

  8. Irrigation timing and fertilizer rate in peppers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessive rain fall might leach nutrients from the soil or cause producers to not supply irrigation to pepper (Capsicum sp.). Fertilizer at 150 or 300 lb/acre of triple 17 NPK, the lower rate is the recommended rate, was supplied to either bell, cv. Jupiter, or non-pungent jalapeno, cv. Pace 105, pe...

  9. New Insights on Eggplant/Tomato/Pepper Synteny and Identification of Eggplant and Pepper Orthologous QTL

    PubMed Central

    Rinaldi, Riccardo; Van Deynze, Allen; Portis, Ezio; Rotino, Giuseppe L.; Toppino, Laura; Hill, Theresa; Ashrafi, Hamid; Barchi, Lorenzo; Lanteri, Sergio

    2016-01-01

    Eggplant, pepper, and tomato are the most exploited berry-producing vegetables within the Solanaceae family. Their genomes differ in size, but each has 12 chromosomes which have undergone rearrangements causing a redistribution of loci. The genome sequences of all three species are available but differ in coverage, assembly quality and percentage of anchorage. Determining their syntenic relationship and QTL orthology will contribute to exploit genomic resources and genetic data for key agronomic traits. The syntenic analysis between tomato and pepper based on the alignment of 34,727 tomato CDS to the pepper genome sequence, identified 19,734 unique hits. The resulting synteny map confirmed the 14 inversions and 10 translocations previously documented, but also highlighted 3 new translocations and 4 major new inversions. Furthermore, each of the 12 chromosomes exhibited a number of rearrangements involving small regions of 0.5–0.7 Mbp. Due to high fragmentation of the publicly available eggplant genome sequence, physical localization of most eggplant QTL was not possible, thus, we compared the organization of the eggplant genetic map with the genome sequence of both tomato and pepper. The eggplant/tomato syntenic map confirmed all the 10 translocations but only 9 of the 14 known inversions; on the other hand, a newly detected inversion was recognized while another one was not confirmed. The eggplant/pepper syntenic map confirmed 10 translocations and 8 inversions already detected and suggested a putative new translocation. In order to perform the assessment of eggplant and pepper QTL orthology, the eggplant and pepper sequence-based markers located in their respective genetic map were aligned onto the pepper genome. GBrowse in pepper was used as reference platform for QTL positioning. A set of 151 pepper QTL were located as well as 212 eggplant QTL, including 76 major QTL (PVE ≥ 10%) affecting key agronomic traits. Most were confirmed to cluster in orthologous

  10. New Insights on Eggplant/Tomato/Pepper Synteny and Identification of Eggplant and Pepper Orthologous QTL.

    PubMed

    Rinaldi, Riccardo; Van Deynze, Allen; Portis, Ezio; Rotino, Giuseppe L; Toppino, Laura; Hill, Theresa; Ashrafi, Hamid; Barchi, Lorenzo; Lanteri, Sergio

    2016-01-01

    Eggplant, pepper, and tomato are the most exploited berry-producing vegetables within the Solanaceae family. Their genomes differ in size, but each has 12 chromosomes which have undergone rearrangements causing a redistribution of loci. The genome sequences of all three species are available but differ in coverage, assembly quality and percentage of anchorage. Determining their syntenic relationship and QTL orthology will contribute to exploit genomic resources and genetic data for key agronomic traits. The syntenic analysis between tomato and pepper based on the alignment of 34,727 tomato CDS to the pepper genome sequence, identified 19,734 unique hits. The resulting synteny map confirmed the 14 inversions and 10 translocations previously documented, but also highlighted 3 new translocations and 4 major new inversions. Furthermore, each of the 12 chromosomes exhibited a number of rearrangements involving small regions of 0.5-0.7 Mbp. Due to high fragmentation of the publicly available eggplant genome sequence, physical localization of most eggplant QTL was not possible, thus, we compared the organization of the eggplant genetic map with the genome sequence of both tomato and pepper. The eggplant/tomato syntenic map confirmed all the 10 translocations but only 9 of the 14 known inversions; on the other hand, a newly detected inversion was recognized while another one was not confirmed. The eggplant/pepper syntenic map confirmed 10 translocations and 8 inversions already detected and suggested a putative new translocation. In order to perform the assessment of eggplant and pepper QTL orthology, the eggplant and pepper sequence-based markers located in their respective genetic map were aligned onto the pepper genome. GBrowse in pepper was used as reference platform for QTL positioning. A set of 151 pepper QTL were located as well as 212 eggplant QTL, including 76 major QTL (PVE ≥ 10%) affecting key agronomic traits. Most were confirmed to cluster in orthologous

  11. Draft Genome Sequence of a Biocontrol Rhizobacterium, Chryseobacterium kwangjuense Strain KJ1R5, Isolated from Pepper (Capsicum annuum).

    PubMed

    Jeong, Jin-Ju; Park, Hongjae; Park, Byeong Hyeok; Mannaa, Mohamed; Sang, Mee Kyung; Choi, In-Geol; Kim, Ki Deok

    2016-01-01

    Strain KJ1R5 of the rhizobacterium ITALIC! Chryseobacterium kwangjuenseis an effective biocontrol agent against Phytophthora blight of pepper caused by a destructive soilborne oomycete, ITALIC! Phytophthora capsici Here, we present the draft genome sequence of strain KJ1R5, which contains genes related to biocontrol, plant growth promotion, and environmental stress adaptation. PMID:27103726

  12. TigerPaw-NR, a New, High Yielding, Root-knot Nematode Resistant, Highly Pungent, Habanero-type Pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-ARS has released a new Habanero-type pepper (Capsicum chinense Jacq.) cultivar named TigerPaw-NR. The new cultivar is the product of a backcross breeding program to transfer a dominant root-knot nematode resistance gene from the Scotch Bonnet accession PA-426 into the Habanero-type accessi...

  13. Draft Genome Sequence of a Biocontrol Rhizobacterium, Chryseobacterium kwangjuense Strain KJ1R5, Isolated from Pepper (Capsicum annuum)

    PubMed Central

    Jeong, Jin-Ju; Park, Hongjae; Park, Byeong Hyeok; Mannaa, Mohamed; Sang, Mee Kyung

    2016-01-01

    Strain KJ1R5 of the rhizobacterium Chryseobacterium kwangjuense is an effective biocontrol agent against Phytophthora blight of pepper caused by a destructive soilborne oomycete, Phytophthora capsici. Here, we present the draft genome sequence of strain KJ1R5, which contains genes related to biocontrol, plant growth promotion, and environmental stress adaptation. PMID:27103726

  14. Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease in peppers from Sichuan Province, China

    PubMed Central

    Liu, Fangling; Tang, Guiting; Zheng, Xiaojuan; Li, Ying; Sun, Xiaofang; Qi, Xiaobo; Zhou, You; Xu, Jing; Chen, Huabao; Chang, Xiaoli; Zhang, Sirong; Gong, Guoshu

    2016-01-01

    The anthracnose caused by Colletotrichum species is an important disease that primarily causes fruit rot in pepper. Eighty-eight strains representing seven species of Colletotrichum were obtained from rotten pepper fruits in Sichuan Province, China, and characterized according to morphology and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) sequence. Fifty-two strains were chosen for identification by phylogenetic analyses of multi-locus sequences, including the nuclear ribosomal internal transcribed spacer (ITS) region and the β-tubulin (TUB2), actin (ACT), calmodulin (CAL) and GAPDH genes. Based on the combined datasets, the 88 strains were identified as Colletotrichum gloeosporioides, C. siamense, C. fructicola, C. truncatum, C. scovillei, and C. brevisporum, and one new species was detected, described as Colletotrichum sichuanensis. Notably, C. siamense and C. scovillei were recorded for the first time as the causes of anthracnose in peppers in China. In addition, with the exception of C. truncatum, this is the first report of all of the other Colletotrichum species studied in pepper from Sichuan. The fungal species were all non-host-specific, as the isolates were able to infect not only Capsicum spp. but also Pyrus pyrifolia in pathogenicity tests. These findings suggest that the fungal species associated with anthracnose in pepper may inoculate other hosts as initial inoculum. PMID:27609555

  15. Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease in peppers from Sichuan Province, China.

    PubMed

    Liu, Fangling; Tang, Guiting; Zheng, Xiaojuan; Li, Ying; Sun, Xiaofang; Qi, Xiaobo; Zhou, You; Xu, Jing; Chen, Huabao; Chang, Xiaoli; Zhang, Sirong; Gong, Guoshu

    2016-01-01

    The anthracnose caused by Colletotrichum species is an important disease that primarily causes fruit rot in pepper. Eighty-eight strains representing seven species of Colletotrichum were obtained from rotten pepper fruits in Sichuan Province, China, and characterized according to morphology and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) sequence. Fifty-two strains were chosen for identification by phylogenetic analyses of multi-locus sequences, including the nuclear ribosomal internal transcribed spacer (ITS) region and the β-tubulin (TUB2), actin (ACT), calmodulin (CAL) and GAPDH genes. Based on the combined datasets, the 88 strains were identified as Colletotrichum gloeosporioides, C. siamense, C. fructicola, C. truncatum, C. scovillei, and C. brevisporum, and one new species was detected, described as Colletotrichum sichuanensis. Notably, C. siamense and C. scovillei were recorded for the first time as the causes of anthracnose in peppers in China. In addition, with the exception of C. truncatum, this is the first report of all of the other Colletotrichum species studied in pepper from Sichuan. The fungal species were all non-host-specific, as the isolates were able to infect not only Capsicum spp. but also Pyrus pyrifolia in pathogenicity tests. These findings suggest that the fungal species associated with anthracnose in pepper may inoculate other hosts as initial inoculum. PMID:27609555

  16. CaBLIND regulates axillary meristem initiation and transition to flowering in pepper.

    PubMed

    Jeifetz, Dar; David-Schwartz, Rakefet; Borovsky, Yelena; Paran, Ilan

    2011-12-01

    Plant architecture is a major motif in plant diversity. The shape of the plant is regulated by genes that have been found to have similar or related functions in different species. However, changes in gene regulation or their recruitment to additional developmental pathways contribute to the wide range of plant patterns. Our aim was to unravel the genetic mechanisms governing the unique architecture of pepper (Capsicum annuum) and to determine whether these genetic factors have conserved functions in other plant species. We describe the pepper CaBLIND (CaBL) gene that is orthologous to the tomato (Solanum lycopersicum) BLIND (BL) and to the Arabidopsis thaliana REGULATOR OF AXILLARY MERISTEMS (RAX). We identified two allelic Cabl mutants that show dramatic reduction in axillary meristem initiation. In addition, Cabl exhibits late flowering and ectopic vegetative growth during the reproductive phase. Double-mutant and expression analyses suggest that CaBL functions independently of FASCICULATE, the pepper ortholog of SELF PRUNING in regulating sympodial growth, but is epistatic to FASCICULATE in controlling axillary meristem formation. Furthermore, CaBL operates independently of CaREVOLUTA and CaLATERAL SUPPRESSOR in regulating axillary branching. Our results provide evidence of CaBL's conserved function with BL and RAX genes in regulating axillary meristem initiation early in development. In addition, similar to BL but opposite to RAX, CaBL acts to promote the transition from vegetative to reproductive phase. However, in contrast to BL and RAX, CaBL is co-opted to play a role in suppressing vegetative growth during the reproductive phase in pepper. PMID:21773792

  17. Aconitase B Is Required for Optimal Growth of Xanthomonas campestris pv. vesicatoria in Pepper Plants

    PubMed Central

    Kirchberg, Janine; Büttner, Daniela; Thiemer, Barbara; Sawers, R. Gary

    2012-01-01

    The aerobic plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) colonizes the intercellular spaces of pepper and tomato. One enzyme that might contribute to the successful proliferation of Xcv in the host is the iron-sulfur protein aconitase, which catalyzes the conversion of citrate to isocitrate in the tricarboxylic acid (TCA) cycle and might also sense reactive oxygen species (ROS) and changes in cellular iron levels. Xcv contains three putative aconitases, two of which, acnA and acnB, are encoded by a single chromosomal locus. The focus of this study is aconitase B (AcnB). acnB is co-transcribed with two genes, XCV1925 and XCV1926, encoding putative nucleic acid-binding proteins. In vitro growth of acnB mutants was like wild type, whereas in planta growth and symptom formation in pepper plants were impaired. While acnA, XCV1925 or XCV1926 mutants showed a wild-type phenotype with respect to bacterial growth and in planta symptom formation, proliferation of the acnB mutant in susceptible pepper plants was significantly impaired. Furthermore, the deletion of acnB led to reduced HR induction in resistant pepper plants and an increased susceptibility to the superoxide-generating compound menadione. As AcnB complemented the growth deficiency of an Escherichia coli aconitase mutant, it is likely to be an active aconitase. We therefore propose that optimal growth and survival of Xcv in pepper plants depends on AcnB, which might be required for the utilization of citrate as carbon source and could also help protect the bacterium against oxidative stress. PMID:22493725

  18. Developmentally regulated sesquiterpene production confers resistance to Colletotrichum gloeosporioides in ripe pepper fruits.

    PubMed

    Park, Sangkyu; Park, Ae Ran; Im, Soonduk; Han, Yun-Jeong; Lee, Sungbeom; Back, Kyoungwhan; Kim, Jeong-Il; Kim, Young Soon

    2014-01-01

    Sesquiterpenoid capsidiol, exhibiting antifungal activity against pathogenic fungus, is accumulated in infected ripe pepper fruits. In this study, we found a negative relation between the capsidiol level and lesion size in fruits infected with Colletotrichum gloeosporioides, depending on the stage of ripening. To understand the developmental regulation of capsidiol biosynthesis, fungal-induced gene expressions in the isoprenoid biosynthetic pathways were examined in unripe and ripe pepper fruits. The sterol biosynthetic pathway was almost shut down in healthy ripe fruits, showing very low expression of hydroxymethyl glutaryl CoA reductase (HMGR) and squalene synthase (SS) genes. In contrast, genes in the carotenoid pathway were highly expressed in ripe fruits. In the sesquiterpene pathway, 5-epi-aristolochene synthase (EAS), belonging to a sesquiterpene cyclase (STC) family, was significantly induced in the ripe fruits upon fungal infection. Immunoblot and enzyme activity analyses showed that the STCs were induced both in the infected unripe and ripe fruits, while capsidiol was synthesized discriminatively in the ripe fruits, implying diverse enzymatic specificity of multiple STCs. Thereby, to divert sterol biosynthesis into sesquiterpene production, infected fruits were pretreated with an SS inhibitor, zaragozic acid (ZA), resulting in increased levels of capsidiol by more than 2-fold in the ripe fruits, with concurrent reduction of phytosterols. Taken together, the present results suggest that the enhanced expression and activity of EAS in the ripe fruits play an important role in capsidiol production, contributing to the incompatibility between the anthracnose fungus and the ripe pepper fruits. PMID:25286411

  19. Developmentally Regulated Sesquiterpene Production Confers Resistance to Colletotrichum gloeosporioides in Ripe Pepper Fruits

    PubMed Central

    Im, Soonduk; Han, Yun-Jeong; Lee, Sungbeom; Back, Kyoungwhan; Kim, Jeong-Il; Kim, Young Soon

    2014-01-01

    Sesquiterpenoid capsidiol, exhibiting antifungal activity against pathogenic fungus, is accumulated in infected ripe pepper fruits. In this study, we found a negative relation between the capsidiol level and lesion size in fruits infected with Colletotrichum gloeosporioides, depending on the stage of ripening. To understand the developmental regulation of capsidiol biosynthesis, fungal-induced gene expressions in the isoprenoid biosynthetic pathways were examined in unripe and ripe pepper fruits. The sterol biosynthetic pathway was almost shut down in healthy ripe fruits, showing very low expression of hydroxymethyl glutaryl CoA reductase (HMGR) and squalene synthase (SS) genes. In contrast, genes in the carotenoid pathway were highly expressed in ripe fruits. In the sesquiterpene pathway, 5-epi-aristolochene synthase (EAS), belonging to a sesquiterpene cyclase (STC) family, was significantly induced in the ripe fruits upon fungal infection. Immunoblot and enzyme activity analyses showed that the STCs were induced both in the infected unripe and ripe fruits, while capsidiol was synthesized discriminatively in the ripe fruits, implying diverse enzymatic specificity of multiple STCs. Thereby, to divert sterol biosynthesis into sesquiterpene production, infected fruits were pretreated with an SS inhibitor, zaragozic acid (ZA), resulting in increased levels of capsidiol by more than 2-fold in the ripe fruits, with concurrent reduction of phytosterols. Taken together, the present results suggest that the enhanced expression and activity of EAS in the ripe fruits play an important role in capsidiol production, contributing to the incompatibility between the anthracnose fungus and the ripe pepper fruits. PMID:25286411

  20. An alternative method to screen for pepper spray residue.

    PubMed

    Gillis, Trevor D; Kubic, Thomas A; De Forest, Peter R

    2003-01-01

    A method was developed to screen for pepper spray residue using instruments and methods other than those techniques commonly employed to analyze chemical residue (i.e.. gas chromatography mass spectrometry-GCMS or liquid chromatography mass spectrometry-LCMS). The method employed gas chromatography (GC), thin layer chromatography (TLC), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to screen for dried pepper spray stains. Pepper sprays from nine different manufacturers were investigated. Capsaicin and dihydrocapsaicin were identified and unique IR reflectance spectra are presented. An additional five compounds were presumptively found. Results showed that a particular stain could be characterized as a pepper-based stain. PMID:12570209

  1. The Pepper Commission Report and the response.

    PubMed

    1990-01-01

    The recommendations of the "Pepper Commission" [the Bipartisan Commission on Comprehensive Health Care] on health care policy reform (see box on page 20) would cost an estimated $66 billion to implement. As a result, many in Congress already have declared the Pepper report to be politically nonviable. Nevertheless, Commission Chairman John D. Rockefeller IV intends to pursue legislative activity on the report. Recently, Rockefeller said that the Commission's majority recommendations likely will be offered in Congress as one large bill--with the option to break out some of its features for individual consideration. For example, Rockefeller said he will try this year to enact the Commission's recommendations to improve health care coverage for pregnant women and children--as well as suggestions for reform in the health insurance industry. The West Virginia senator said he believes these two proposals will cost about $3.5 billion in new federal funds. The basics of the plan, and the political obstacles facing its enactment, were discussed by several members of the Pepper Commission during the press conference at which the recommendations were unveiled. FAHS Review covered that press conference, and below we reprint excerpts from a tape transcription of the remarks of several Commission members. PMID:10113210

  2. Inheritance of resistance to Pepper yellow mosaic virus in Capsicum baccatum var. pendulum.

    PubMed

    Bento, C S; Rodrigues, R; Gonçalves, L S A; Oliveira, H S; Santos, M H; Pontes, M C; Sudré, C P

    2013-01-01

    We investigated inheritance of resistance to Pepper yellow mosaic virus (PepYMV) in Capsicum baccatum var. pendulum accessions UENF 1616 (susceptible) crossed with UENF 1732 (resistant). Plants from generations P1, P2, F1, F2, BC1:1, and BC1:2 were inoculated and the symptoms were evaluated for 25 days. Subsequently, an area under the disease progress curve was calculated and subjected to generation means analysis. Only the average and epistatic effects were significant. The broad and narrow sense heritability estimates were 35.52 and 21.79%, respectively. The estimate of the minimum number of genes that control resistance was 7, indicating that resistance is polygenic and complex. Thus, methods to produce segregant populations that advocate selection in more advanced generations would be the most appropriate to produce chili pepper cultivars resistant to PepYMV. PMID:23661433

  3. Detection of pepper mild mottle virus in pepper sauce in China.

    PubMed

    Peng, Jiejun; Shi, Bingbin; Zheng, Hongying; Lu, Yuwen; Lin, Lin; Jiang, Tong; Chen, Jianping; Yan, Fei

    2015-08-01

    Pepper mild mottle virus (PMMoV) was detected by RT-PCR in all 42 pepper sauce samples from the 10 main manufacturing provinces in China at concentrations ranging from 3.8 to 8.8 (Log10 copies/mL). Their coat protein nucleotide sequences had 97.4 to 100 % identity to each other and 92.4 to 100 % to other published isolates. The samples remained infectious to N. benthamiana, indicating that commercial trade in sauce could contribute to the natural spread of PMMoV. PMID:26021835

  4. Overexpression of a defensin enhances resistance to a fruit-specific anthracnose fungus in pepper.

    PubMed

    Seo, Hyo-Hyoun; Park, Sangkyu; Park, Soomin; Oh, Byung-Jun; Back, Kyoungwhan; Han, Oksoo; Kim, Jeong-Il; Kim, Young Soon

    2014-01-01

    Functional characterization of a defensin, J1-1, was conducted to evaluate its biotechnological potentiality in transgenic pepper plants against the causal agent of anthracnose disease, Colletotrichum gloeosporioides. To determine antifungal activity, J1-1 recombinant protein was generated and tested for the activity against C. gloeosporioides, resulting in 50% inhibition of fungal growth at a protein concentration of 0.1 mg·mL-1. To develop transgenic pepper plants resistant to anthracnose disease, J1-1 cDNA under the control of 35S promoter was introduced into pepper via Agrobacterium-mediated genetic transformation method. Southern and Northern blot analyses confirmed that a single copy of the transgene in selected transgenic plants was normally expressed and also stably transmitted to subsequent generations. The insertion of T-DNA was further analyzed in three independent homozygous lines using inverse PCR, and confirmed the integration of transgene in non-coding region of genomic DNA. Immunoblot results showed that the level of J1-1 proteins, which was not normally accumulated in unripe fruits, accumulated high in transgenic plants but appeared to differ among transgenic lines. Moreover, the expression of jasmonic acid-biosynthetic genes and pathogenesis-related genes were up-regulated in the transgenic lines, which is co-related with the resistance of J1-1 transgenic plants to anthracnose disease. Consequently, the constitutive expression of J1-1 in transgenic pepper plants provided strong resistance to the anthracnose fungus that was associated with highly reduced lesion formation and fungal colonization. These results implied the significance of the antifungal protein, J1-1, as a useful agronomic trait to control fungal disease. PMID:24848280

  5. Mining secreted proteins that function in pepper fruit development and ripening using a yeast secretion trap (YST)

    SciTech Connect

    Lee, Je Min; Lee, Sang-Jik; Rose, Jocelyn K.C.; Yeam, Inhwa; Kim, Byung-Dong

    2014-04-18

    Highlights: • Yeast secretion trap (YST) is a valuable tool for mining secretome. • A total of 80 secreted proteins are newly identified via YST in pepper fruits. • The secreted proteins are differentially regulated during pepper development and ripening. • Transient GFP-fusion assay and in planta secretion trap can effectively validate the secretion of proteins. - Abstract: Plant cells secrete diverse sets of constitutively- and conditionally-expressed proteins under various environmental and developmental states. Secreted protein populations, or secretomes have multiple functions, including defense responses, signaling, metabolic processes, and developmental regulation. To identify genes encoding secreted proteins that function in fruit development and ripening, a yeast secretion trap (YST) screen was employed using pepper (Capsicum annuum) fruit cDNAs. The YST screen revealed 80 pepper fruit-related genes (CaPFRs) encoding secreted proteins including cell wall proteins, several of which have not been previously described. Transient GFP-fusion assay and an in planta secretion trap were used to validate the secretion of proteins encoded by selected YST clones. In addition, RNA gel blot analyses provided further insights into their expression and regulation during fruit development and ripening. Integrating our data, we conclude that the YST provides a valuable functional genomics tool for the identification of substantial numbers of novel secreted plant proteins that are associated with biological processes, including fruit development and ripening.

  6. Development of a SNP array and its application to genetic mapping and diversity assessment in pepper (Capsicum spp.).

    PubMed

    Cheng, Jiaowen; Qin, Cheng; Tang, Xin; Zhou, Huangkai; Hu, Yafei; Zhao, Zicheng; Cui, Junjie; Li, Bo; Wu, Zhiming; Yu, Jiping; Hu, Kailin

    2016-01-01

    The development and application of single nucleotide polymorphisms (SNPs) is in its infancy for pepper. Here, a set of 15,000 SNPs were chosen from the resequencing data to develop an array for pepper with 12,720 loci being ultimately synthesized. Of these, 8,199 (~64.46%) SNPs were found to be scorable and covered ~81.18% of the whole genome. With this array, a high-density interspecific genetic map with 5,569 SNPs was constructed using 297 F2 individuals, and genetic diversity of a panel of 399 pepper elite/landrace lines was successfully characterized. Based on the genetic map, one major QTL, named Up12.1, was detected for the fruit orientation trait. A total of 65 protein-coding genes were predicted within this QTL region based on the current annotation of the Zunla-1 genome. In summary, the thousands of well-validated SNP markers, high-density genetic map and genetic diversity information will be useful for molecular genetics and innovative breeding in pepper. Furthermore, the mapping results lay foundation for isolating the genes underlying variation in fruit orientation of Capsicum. PMID:27623541

  7. Molecular genetic analysis of cucumber mosaic virus populations infecting pepper suggests unique patterns of evolution in Korea.

    PubMed

    Kim, Mi-Kyeong; Seo, Jang-Kyun; Kwak, Hae-Ryun; Kim, Jeong-Soo; Kim, Kook-Hyung; Cha, Byeong-Jin; Choi, Hong-Soo

    2014-09-01

    Studying genetic structure and diversity of viruses is important to understand the evolutionary mechanisms that generate and maintain variations in viral populations. Cucumber mosaic virus (CMV) is endemic in most pepper fields in Korea. Currently, no effective methods for control of CMV are available due to many environmental and biological factors such as the extensive evolutionary capacity of CMV. Thus, analyzing the genetic structure of CMV populations may facilitate the development of strategies for the control of CMV. In this study, 252 pepper (Capsicum annuum) samples showing virus symptoms were collected by field surveys performed throughout Korea in 2007. Reverse-transcription polymerase chain reaction analyses revealed that, in total, 165 collected samples were infected with CMV. Forty-five CMV isolates were randomly selected within each regional subpopulation and analyzed by full-genome sequencing. Analyses of genetic diversity showed that the 2b gene of CMV is under weaker purifying selection than the other genes. Based on the phylogenetic analysis of RNA1, the CMV isolates from pepper were divided into three clusters in subgroup I. Our full-genome sequence-based molecular analyses of the CMV Korean population suggest that the subpopulations of CMV have been geographically localized in pepper fields in Korea. PMID:25116642

  8. The pepper phosphoenolpyruvate carboxykinase CaPEPCK1 is involved in plant immunity against bacterial and oomycete pathogens.

    PubMed

    Choi, Du Seok; Kim, Nak Hyun; Hwang, Byung Kook

    2015-09-01

    Phosphoenolpyruvate carboxykinase, a member of the lyase family, is involved in the metabolic pathway of gluconeogenesis in organisms. Although the major function of PEPCK in gluconeogenesis is well established, it is unclear whether this enzyme is involved in plant immunity. Here, we isolated and identified the pepper (Capsicum annuum) PEPCK (CaPEPCK1) gene from pepper leaves infected with Xanthomonas campestris pv. vesicatoria (Xcv). CaPEPCK1 was strongly expressed in pepper leaves during the incompatible interaction with avirulent Xcv and in response to environmental stresses, especially salicylic acid (SA) treatment. PEPCK activity was low in healthy leaves but dramatically increased in avirulent Xcv-infected leaves. Knock-down expression of CaPEPCK1 by virus-induced gene silencing resulted in high levels of susceptibility to both virulent and avirulent Xcv infection. CaPEPCK1 silencing in pepper compromised induction of the basal defense-marker genes CaPR1 (pathogenesis-related 1 protein), CaPR10 (pathogenesis-related 10 protein) and CaDEF1 (defensin) during Xcv infection. SA accumulation was also significantly suppressed in the CaPEPCK1-silenced pepper leaves infected with Xcv. CaPEPCK1 in an Arabidopsis overexpression (OX) line inhibited the proliferation of Pseudomonas syringae pv. tomato (Pst) and Hyaloperonospora arabidopsidis (Hpa). CaPEPCK1-OX plants developed more rapidly, with enlarged leaves, compared to wild-type plants. The T-DNA insertion Arabidopsis orthologous mutants pck1-3 and pck1-4 were more susceptible to the bacterial Pst and oomycete Hpa pathogens than the wild type. Taken together, these results suggest that CaPEPCK positively contributes to plant innate immunity against hemibiotrophic bacterial and obligate biotrophic oomycete pathogens. PMID:26233534

  9. Emittance formula for slits and pepper-pot measurement

    SciTech Connect

    Zhang, M.

    1996-10-01

    In this note, a rigid formula for slits and pepper-pot emittance measurement is derived. The derivation is based on the one- dimensional slit measurement setup. A mathematical generalization of the slit emittance formula to the pepper-pot measurement is discussed.

  10. Toward Valid Measurement of Stephen Pepper's World Hypotheses.

    ERIC Educational Resources Information Center

    Johnson, John A.

    Two measures of the "world hypotheses" of Stephen Pepper were mailed to 100 sociobiologists, 87 behaviorists, 79 personality psychologists, and 45 human developmentalists. The World Hypothesis Scale (WHS) was designed to measure Pepper's four world views: (1) formism; (2) mechanism; (3) organicism; and (4) contextualism. The Organicism-Mechanism…

  11. Non-pungent jalapeno peppers: Weed control and yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unknown to most consumers, non-pungent jalapeno peppers are used for making commercial picante sauces (salsas). The non-pungent jalapeno peppers produce the required jalapeno flavor along with the appropriate texture necessary for picante sauce. Capsaicin is added during processing to produce the va...

  12. Properties and detection of two cryptoviruses from pepper (Capsicum annuum).

    PubMed

    Sabanadzovic, Sead; Valverde, Rodrigo A

    2011-10-01

    Pepper (Capsicum annuum L.) contains a range of endogenous dsRNA molecules resembling the genomes of cryptoviruses. In this work, we have completed the molecular characterization of Pepper cryptic virus 1 (PCV-1) from cv "Jalapeño M" and generated complete genomic sequences of another cryptovirus from cv "Hungarian Wax" designated Pepper cryptic virus 2 (PCV-2). The two viruses share limited identical amino acid content in both genomic segments and appear phylogenetically closer to cryptoviruses reported from other crops (i.e. Raphanus sativus cryptic virus 3, Black raspberry cryptic virus) than to each other. Two sets of virus-specific primers were successfully used in RT-PCR tests for the simultaneous and discriminative detection of these two viruses in pepper leaves and seeds. Both viruses were detected in several pepper cultivars tested, either as single or mixed infections. PMID:21695493

  13. Detection of gamma irradiated pepper and papain by chemiluminescence

    NASA Astrophysics Data System (ADS)

    Sattar, Abdus; Delincée, H.; Diehl, J. F.

    Chemiluminescence (CL) measurements of black pepper and of papain using luminol and lucigenin reactions were studied. Effects of grinding, irradiation (5-20 kGy) and particle size (750-140 μm) on CL of pepper, and of irradiation (10-30 kGy) on CL of papain, were investigated. All the tested treatments affected the luminescence response in both the luminol and lucigenin reactions; however, the pattern of changes in each case, was inconsistent. Optimum pepper size for maximum luminescence was 560 μm, and optimum irradiation doses were >15 kGy for pepper and >20 kGy for papain. Chemiluminescence may possibly be used as an indicator or irradiation treatment for pepper and papain at a dose of 10 kGy or higher, but further research is needed to establish the reliability of this method.

  14. ‘TigerPaw-NR’, a New Root-knot Nematode Resistant Habanero-type Pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most peppers grown in the United States belong to the species Capsicum annuum. However, the increasing popularity of hot peppers has created intense interest in the Habanero, a type of pepper that belongs to another domesticated Capsicum species, C. chinense. Habanero-type peppers are some of the ...

  15. Antihyperglucolipidaemic and anticarbonyl stress properties in green, yellow and red sweet bell peppers (Capsicum annuum L.).

    PubMed

    Shukla, Srishti; Kumar, Dommati Anand; Anusha, Sanga Venkata; Tiwari, Ashok Kumar

    2016-01-01

    Effect of aqueous methanol extract of different colour sweet bell peppers (Capsicum annuum L.) on parameters of diabesity and carbonyl stress was analysed in vitro. Yellow pepper displayed significantly (p < 0.001) higher intestinal α-glucosidase inhibitory activity than green and red pepper. Porcine pancreatic lipase inhibitory activity was significantly (p < 0.01) high in yellow and red pepper than in green pepper. Green and red pepper inhibited vesperlysine-type advanced glycation end products (AGEs) more potently than yellow pepper; however, pentosidine-type AGEs were similarly inhibited by all three peppers. Yellow and red pepper inhibited lipid peroxidation more potently (p < 0.01) than green pepper. Total polyphenol content and free radicals scavenging activities in yellow and red bell peppers were higher than in green pepper. Total flavonoid content was high in green pepper than that present in yellow and red peppers. Green pepper displayed presence of proanthocyanins; however, oligomeric anthocyanins were detected in yellow and red peppers. PMID:25868614

  16. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capscicum species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hot pepper is an important spice crop the world-over and is closely related to sweet peppers that represent an important vegetable crop in many cultures. Both hot and mild peppers are important sources of dietary nutrients and hot pepper is a source of the medicinal compound capsaicin, which is wide...

  17. 7 CFR 457.148 - Fresh market pepper crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Fresh market pepper crop insurance provisions. 457.148... pepper crop insurance provisions. The fresh market pepper crop insurance provisions for the 1999 and... Fresh Market Pepper Crop Provisions If a conflict exists among the policy provisions, the order...

  18. 7 CFR 457.148 - Fresh market pepper crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Fresh market pepper crop insurance provisions. 457.148... pepper crop insurance provisions. The fresh market pepper crop insurance provisions for the 1999 and... Fresh Market Pepper Crop Provisions If a conflict exists among the policy provisions, the order...

  19. Transcriptome Analysis of Pepper (Capsicum annuum) Revealed a Role of 24-Epibrassinolide in Response to Chilling

    PubMed Central

    Li, Jie; Yang, Ping; Kang, Jungen; Gan, Yantai; Yu, Jihua; Calderón-Urrea, Alejandro; Lyu, Jian; Zhang, Guobin; Feng, Zhi; Xie, Jianming

    2016-01-01

    Brassinosteroids (BRs) have positive effects on many processes during plant growth, development, and various abiotic stress responses. However, little information is available regarding the global gene expression of BRs in response to chilling stress in pepper. In this study, we used RNA sequencing to determine the molecular roles of 24-epibrassinolide (EBR) during a chilling stress response. There were 39,829 transcripts, and, among them, 656 were differently-expressed genes (DEGs) following EBR treatment (Chill+EBR) compared with the control (Chill only), including 335 up-regulated and 321 down-regulated DEGs. We selected 20 genes out of the 656 DEGs for RT-qPCR analysis to confirm the RNA-Seq. Based on GO enrich and KEGG pathway analysis, we found that photosynthesis was significantly up-enriched in biological processes, accompanied by significant increases in the net photosynthetic rate (Pn), Fv/Fm, and chlorophyll content. Furthermore, the results indicate that EBR enhanced endogenous levels of salicylic acid (SA) and jasmonic acid (JA) while suppressing the ethylene (ETH) biosynthesis pathway, suggesting that BRs function via a synergistic cross-talk with SA, JA, and ETH signaling pathways in response to chilling stress. In addition, EBR induced cellulose synthase-like protein and UDP-glycosyltransferase, suggesting a contribution to the formation of cell wall and hormone metabolism. EBR also triggered the calcium signaling transduction in cytoplasm, and activated the expression of cellular redox homeostasis related genes, such as GSTX1, PER72, and CAT2. This work, therefor, identified the specific genes showed different expression patterns in EBR-treated pepper and associated with the processes of hormone metabolism, redox, signaling, transcription, and defense. Our study provides the first evidence of the potent roles of BRs, at the transcription level, to induce the tolerance to chilling stress in pepper as a function of the combination of the

  20. Transcriptome Analysis of Pepper (Capsicum annuum) Revealed a Role of 24-Epibrassinolide in Response to Chilling.

    PubMed

    Li, Jie; Yang, Ping; Kang, Jungen; Gan, Yantai; Yu, Jihua; Calderón-Urrea, Alejandro; Lyu, Jian; Zhang, Guobin; Feng, Zhi; Xie, Jianming

    2016-01-01

    Brassinosteroids (BRs) have positive effects on many processes during plant growth, development, and various abiotic stress responses. However, little information is available regarding the global gene expression of BRs in response to chilling stress in pepper. In this study, we used RNA sequencing to determine the molecular roles of 24-epibrassinolide (EBR) during a chilling stress response. There were 39,829 transcripts, and, among them, 656 were differently-expressed genes (DEGs) following EBR treatment (Chill+EBR) compared with the control (Chill only), including 335 up-regulated and 321 down-regulated DEGs. We selected 20 genes out of the 656 DEGs for RT-qPCR analysis to confirm the RNA-Seq. Based on GO enrich and KEGG pathway analysis, we found that photosynthesis was significantly up-enriched in biological processes, accompanied by significant increases in the net photosynthetic rate (Pn), Fv/Fm, and chlorophyll content. Furthermore, the results indicate that EBR enhanced endogenous levels of salicylic acid (SA) and jasmonic acid (JA) while suppressing the ethylene (ETH) biosynthesis pathway, suggesting that BRs function via a synergistic cross-talk with SA, JA, and ETH signaling pathways in response to chilling stress. In addition, EBR induced cellulose synthase-like protein and UDP-glycosyltransferase, suggesting a contribution to the formation of cell wall and hormone metabolism. EBR also triggered the calcium signaling transduction in cytoplasm, and activated the expression of cellular redox homeostasis related genes, such as GSTX1, PER72, and CAT2. This work, therefor, identified the specific genes showed different expression patterns in EBR-treated pepper and associated with the processes of hormone metabolism, redox, signaling, transcription, and defense. Our study provides the first evidence of the potent roles of BRs, at the transcription level, to induce the tolerance to chilling stress in pepper as a function of the combination of the

  1. Resistant Pepper Genotypes and Soil Treatments for Managing Root Disease and Root-knot Nematode in Pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistant pepper cultivars and soil treatments in various combinations were evaluated for managing Pythium and root-knot nematodes in field trials in Charleston, SC and Citra, FL. Five pepper genotypes differing in resistance to Phytophthora capsici and Meloidogyne incognita were studied in combina...

  2. Antioxidants in hot pepper: variation among accessions.

    PubMed

    Antonious, George F; Kochhar, Tejinder S; Jarret, Robert L; Snyder, John C

    2006-01-01

    The U.S. Department of Agriculture (USDA) pepper (Capsicum spp.) germplasm collection contains several thousand members or accessions. Many of these species and cultivars have not been analyzed for their concentrations of ascorbic acid, capsaicin, and total phenolic compounds, which are important antioxidants having a number of benefits for human health. The objective of this investigation was to select candidate accessions of hot pepper having high concentrations of ascorbic acid, capsaicin, free sugars, and total phenols for use as parents in breeding for these compounds. Seventeen accessions of pepper from the core Capsicum germplasm collection (four accessions of Capsicum chinense; five accessions of C. baccatum; six accessions of C. annuum; and two of C. frutescens) were field grown and their mature fruits were analyzed for their antioxidant composition. Concentrations of these compounds tended to be higher in C. chinense and C. baccatum, than in C. annuum and C. frutescens. Across all accessions the concentration of total phenols was correlated with ascorbic acid (r = 0.97) and free sugars (r = 0.80). Concentrations of total phenols (1.4, 1.3, and 1.3 mg g-1 fruit) and ascorbic acid (1.6, 1.2, and 1.3 mg g-1 fruit) were significantly greater in PI-633757, PI-387833, and PI-633754, respectively, compared to other accessions analyzed. Total capsaicinoids concentrations were greatest (1.3 mg g-1 fruit) in PI-438622 and lowest (0.002 mg g-1 fruit) in Grif-9320. The great variability within and among Capsicum species for these phytochemicals suggests that these selected accessions may be useful as parents in hybridization programs to produce fruits with value-added traits. PMID:16923603

  3. Field evaluation of the bacterial volatile derivative 3-pentanol in priming for induced resistance in pepper.

    PubMed

    Choi, Hye Kyung; Song, Geun Cheol; Yi, Hwe-Su; Ryu, Choong-Min

    2014-08-01

    Plants are defended from attack by emission of volatile organic compounds (VOCs) that can act directly against pathogens and herbivores or indirectly by recruiting natural enemies of herbivores. However, microbial VOC have been less investigated as potential triggers of plant systemic defense responses against pathogens in the field. Bacillus amyloliquefaciens strain IN937a, a plant growth-promoting rhizobacterium that colonizes plant tissues, stimulates induced systemic resistance (ISR) via its emission of VOCs. We investigated the ISR capacity of VOCs and derivatives collected from strain IN937a against bacterial spot disease caused by Xanthomonas axonopodis pv. vesicatoria in pepper. Of 15 bacterial VOCs and their derivatives, 3-pentanol, which is a C8 amyl alcohol reported to be a component of sex pheromones in insects, was selected for further investigation. Pathogens were infiltrated into pepper leaves 10, 20, 30, and 40 days after treatment and transplantation to the field. Disease severity was assessed 7 days after transplantation. Treatment with 3-pentanol significantly reduced disease severity caused by X. axonopodis and naturally occurring Cucumber mosaic virus in field trials over 2 years. We used quantitative real-time polymerase chain analysis to examine Pathogenesis-Related genes associated with salicylic acid (SA), jasmonic acid (JA), and ethylene defense signaling. The expression of Capsicum annuum Pathogenesis-Related protein 1 (CaPR1), CaPR2, and Ca protease inhibitor2 (CaPIN2) increased in field-grown pepper plants treated with 3-pentanol. Taken together, our results show that 3-pentanol triggers induced resistance by priming SA and JA signaling in pepper under field conditions. PMID:25149655

  4. pc8.1, a major QTL for pigment content in pepper fruit, is associated with variation in plastid compartment size.

    PubMed

    Brand, Arnon; Borovsky, Yelena; Meir, Sagit; Rogachev, Ilana; Aharoni, Asaph; Paran, Ilan

    2012-03-01

    Studies on the genetic control of pigment content in pepper fruit have focused mainly on monogenic mutations leading to changes in fruit color. In addition to the qualitative variation in fruit color, quantitative variation in pigment content and color intensity exists in pepper giving rise to a range of color intensities. However, the genetic basis for this variation is poorly understood, hindering the development of peppers that are rich in these beneficial compounds. In this paper, quantitative variation in pigment content was studied in a cross between a dark-green Capsicum annuum pepper and a light-green C. chinense pepper. Two major pigment content QTLs that control chlorophyll content were identified, pc8.1 and pc10.1. The major QTL pc8.1, also affected carotenoid content in the ripe fruit. However, additional analyses in subsequent generations did not reveal a consistent effect of this QTL on carotenoid content in ripe fruit. Confocal microscopy analyses of green immature fruits of the parents and of near-isogenic lines for pc8.1 indicated that the QTL exerts its effect via increasing chloroplast compartment size in the dark-green genotypes, predominantly in a fruit-specific manner. Metabolic analyses indicated that in addition to chlorophyll, chloroplast-associated tocopherols and carotenoids are also elevated. Future identification of the genes controlling pigment content QTLs in pepper will provide a better understanding of this important trait and new opportunities for breeding peppers and other Solanaceae species with enhanced nutritional value. PMID:21987007

  5. Silencing of a Germin-Like Protein Gene (CchGLP) in Geminivirus-Resistant Pepper (Capsicum chinense Jacq.) BG-3821 Increases Susceptibility to Single and Mixed Infections by Geminiviruses PHYVV and PepGMV

    PubMed Central

    Mejía-Teniente, Laura; Joaquin-Ramos, Ahuizolt de Jesús; Torres-Pacheco, Irineo; Rivera-Bustamante, Rafael F.; Guevara-Olvera, Lorenzo; Rico-García, Enrique; Guevara-Gonzalez, Ramon G.

    2015-01-01

    Germin-like proteins (GLPs) are encoded by a family of genes found in all plants, and in terms of function, the GLPs are implicated in the response of plants to biotic and abiotic stresses. CchGLP is a gene encoding a GLP identified in a geminivirus-resistant Capsicum chinense Jacq accession named BG-3821, and it is important in geminivirus resistance when transferred to susceptible tobacco in transgenic experiments. To characterize the role of this GLP in geminivirus resistance in the original accession from which this gene was identified, this work aimed at demonstrating the possible role of CchGLP in resistance to geminiviruses in Capsicum chinense Jacq. BG-3821. Virus-induced gene silencing studies using a geminiviral vector based in PHYVV component A, displaying that silencing of CchGLP in accession BG-3821, increased susceptibility to geminivirus single and mixed infections. These results suggested that CchGLP is an important factor for geminivirus resistance in C. chinense BG-3821 accession. PMID:26610554

  6. Silencing of a Germin-Like Protein Gene (CchGLP) in Geminivirus-Resistant Pepper (Capsicum chinense Jacq.) BG-3821 Increases Susceptibility to Single and Mixed Infections by Geminiviruses PHYVV and PepGMV.

    PubMed

    Mejía-Teniente, Laura; Joaquin-Ramos, Ahuizolt de Jesús; Torres-Pacheco, Irineo; Rivera-Bustamante, Rafael F; Guevara-Olvera, Lorenzo; Rico-García, Enrique; Guevara-Gonzalez, Ramon G

    2015-12-01

    Germin-like proteins (GLPs) are encoded by a family of genes found in all plants, and in terms of function, the GLPs are implicated in the response of plants to biotic and abiotic stresses. CchGLP is a gene encoding a GLP identified in a geminivirus-resistant Capsicum chinense Jacq accession named BG-3821, and it is important in geminivirus resistance when transferred to susceptible tobacco in transgenic experiments. To characterize the role of this GLP in geminivirus resistance in the original accession from which this gene was identified, this work aimed at demonstrating the possible role of CchGLP in resistance to geminiviruses in Capsicum chinense Jacq. BG-3821. Virus-induced gene silencing studies using a geminiviral vector based in PHYVV component A, displaying that silencing of CchGLP in accession BG-3821, increased susceptibility to geminivirus single and mixed infections. These results suggested that CchGLP is an important factor for geminivirus resistance in C. chinense BG-3821 accession. PMID:26703712

  7. Silencing of a Germin-Like Protein Gene (CchGLP) in Geminivirus-Resistant Pepper (Capsicum chinense Jacq.) BG-3821 Increases Susceptibility to Single and Mixed Infections by Geminiviruses PHYVV and PepGMV.

    PubMed

    Mejía-Teniente, Laura; Joaquin-Ramos, Ahuizolt de Jesús; Torres-Pacheco, Irineo; Rivera-Bustamante, Rafael F; Guevara-Olvera, Lorenzo; Rico-García, Enrique; Guevara-Gonzalez, Ramon G

    2015-12-01

    Germin-like proteins (GLPs) are encoded by a family of genes found in all plants, and in terms of function, the GLPs are implicated in the response of plants to biotic and abiotic stresses. CchGLP is a gene encoding a GLP identified in a geminivirus-resistant Capsicum chinense Jacq accession named BG-3821, and it is important in geminivirus resistance when transferred to susceptible tobacco in transgenic experiments. To characterize the role of this GLP in geminivirus resistance in the original accession from which this gene was identified, this work aimed at demonstrating the possible role of CchGLP in resistance to geminiviruses in Capsicum chinense Jacq. BG-3821. Virus-induced gene silencing studies using a geminiviral vector based in PHYVV component A, displaying that silencing of CchGLP in accession BG-3821, increased susceptibility to geminivirus single and mixed infections. These results suggested that CchGLP is an important factor for geminivirus resistance in C. chinense BG-3821 accession. PMID:26610554

  8. A preliminary assessment of genetic relationships among agronomically important cultivars of black pepper

    PubMed Central

    Joy, Nisha; Abraham, Z; Soniya, EV

    2007-01-01

    Background The impact of diseases such as Phytophthora foot rot and the replacement of unproductive cultivars by high yielding ones has brought about the disappearance of varieties in Piper species, like any other crop. Black pepper (King of spices), is a major spice crop consumed throughout the world. It is widely cultivated across various parts of the world apart from India. The different cultivars may be genetically related and could be a source of valuable genes for disease resistance and an increase in quantity and quality. Even though Western Ghats in India is believed to be the site of origin of this crop, numerous accessions from the NBPGR have not yet been evaluated. Our study aims to investigate the genetic relatedness in major cultivars of black pepper using Amplified Fragment Length Polymorphism. Results Amplified Fragment Length Polymorphic (AFLP) DNA analysis was performed in thirty popular cultivars of black pepper from National Bureau of Plant Genetic Resources (NBPGR), India. Fingerprint profiles were generated initially with, five different primer combinations, from which three primer pair combinations (EAGC/MCAA, EAGG/MCTA and EAGC/MCTG) gave consistent and scorable banding patterns. From 173 scorable markers, 158(> 90%) were polymorphic which shows there is considerable variation in the available germplasm. The dendrogram derived by unweighted pair group method analysis (UPGMA) grouped the accessions into three major clusters and four diverse cultivars with only 30% similarity. Karimunda, a widely grown and popular cultivar was unique in the fingerprint profiles obtained. Conclusion There are currently few fingerprinting studies using the valuable spice crop black pepper. We found considerable genetic variability among cultivars of black pepper. Fingerprinting analysis with AFLP proved to be an ideal tool for cultivar identification and phylogenetic studies. It shows the high level of polymorphism and the unique characterization of the major

  9. Hot Chili Peppers: Extraction, Cleanup, and Measurement of Capsaicin

    NASA Astrophysics Data System (ADS)

    Huang, Jiping; Mabury, Scott A.; Sagebiel, John C.

    2000-12-01

    Capsaicin, the pungent ingredient of the red pepper or Capsicum annuum, is widely used in food preparation. The purpose of this experiment was to acquaint students with the active ingredients of hot chili pepper (capsaicin and dihydrocapsaicin), the extraction, cleanup, and analysis of these chemicals, as a fun and informative analytical exercise. Fresh peppers were prepared and extracted with acetonitrile, removing plant co-extractives by addition to a C-18 solid-phase extraction cartridge. Elution of the capsaicinoids was accomplished with a methanol-acetic acid solution. Analysis was completed by reverse-phase HPLC with diode-array or variable wavelength detection and calibration with external standards. Levels of capsaicin and dihydrocapsaicin were typically found to correlate with literature values for a specific hot pepper variety. Students particularly enjoyed relating concentrations of capsaicinoids to their perceived valuation of "hotness".

  10. 75 FR 30303 - Importation of Peppers From Panama

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... introduced into the United States via peppers, including 8 insect pests, 1 bacterium, 1 fungus, and 2 viruses...). Melon thrips (Thrips palmi). Bacterium: Bacterial wilt (Ralstonia solanacearum race 3 biovar 2)....

  11. Multiple Classes of Immune-Related Proteases Associated with the Cell Death Response in Pepper Plants

    PubMed Central

    Bae, Chungyun; Kim, Su-min; Lee, Dong Ju; Choi, Doil

    2013-01-01

    Proteases regulate a large number of biological processes in plants, such as metabolism, physiology, growth, and defense. In this study, we carried out virus-induced gene silencing assays with pepper cDNA clones to elucidate the biological roles of protease superfamilies. A total of 153 representative protease genes from pepper cDNA were selected and cloned into a Tobacco rattle virus-ligation independent cloning vector in a loss-of-function study. Silencing of 61 proteases resulted in altered phenotypes, such as the inhibition of shoot growth, abnormal leaf shape, leaf color change, and lethality. Furthermore, the silencing experiments revealed that multiple proteases play a role in cell death and immune response against avirulent and virulent pathogens. Among these 153 proteases, 34 modulated the hypersensitive cell death response caused by infection with an avirulent pathogen, and 16 proteases affected disease symptom development caused by a virulent pathogen. Specifically, we provide experimental evidence for the roles of multiple protease genes in plant development and immune defense following pathogen infection. With these results, we created a broad sketch of each protease function. This information will provide basic information for further understanding the roles of the protease superfamily in plant growth, development, and defense. PMID:23696830

  12. The Pepper CaOSR1 Protein Regulates the Osmotic Stress Response via Abscisic Acid Signaling

    PubMed Central

    Park, Chanmi; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Plants are sessile organisms, and their growth and development is detrimentally affected by environmental stresses such as drought and high salinity. Defense mechanisms are tightly regulated and complex processes, which respond to changing environmental conditions; however, the precise mechanisms that function under adverse conditions remain unclear. Here, we report the identification and functional characterization of the CaOSR1 gene, which functions in the adaptive response to abiotic stress. We found that CaOSR1 gene expression in pepper leaves was up-regulated after exposure to abscisic acid (ABA), drought, and high salinity. In addition, we demonstrated that the fusion protein of CaOSR1 with green fluorescent protein (GFP) is localized in the nucleus. We used CaOSR1-silenced pepper plants and CaOSR1-OX-overexpressing (OX) transgenic Arabidopsis plants to show that the CaOSR1 protein regulates the osmotic stress response. CaOSR1-silenced pepper plants showed increased drought susceptibility, and this was accompanied by a high transpiration rate. CaOSR1-OX plants displayed phenotypes that were hypersensitive to ABA and hyposensitive to osmotic stress, during the seed germination and seedling growth stages; furthermore, these plants exhibited enhanced drought tolerance at the adult stage, and this was characterized by higher leaf temperatures and smaller stomatal apertures because of ABA hypersensitivity. Taken together, our data indicate that CaOSR1 positively regulates osmotic stress tolerance via ABA-mediated cell signaling. These findings suggest an involvement of a novel protein in ABA and osmotic stress signalings in plants. PMID:27446121

  13. The Pepper CaOSR1 Protein Regulates the Osmotic Stress Response via Abscisic Acid Signaling.

    PubMed

    Park, Chanmi; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Plants are sessile organisms, and their growth and development is detrimentally affected by environmental stresses such as drought and high salinity. Defense mechanisms are tightly regulated and complex processes, which respond to changing environmental conditions; however, the precise mechanisms that function under adverse conditions remain unclear. Here, we report the identification and functional characterization of the CaOSR1 gene, which functions in the adaptive response to abiotic stress. We found that CaOSR1 gene expression in pepper leaves was up-regulated after exposure to abscisic acid (ABA), drought, and high salinity. In addition, we demonstrated that the fusion protein of CaOSR1 with green fluorescent protein (GFP) is localized in the nucleus. We used CaOSR1-silenced pepper plants and CaOSR1-OX-overexpressing (OX) transgenic Arabidopsis plants to show that the CaOSR1 protein regulates the osmotic stress response. CaOSR1-silenced pepper plants showed increased drought susceptibility, and this was accompanied by a high transpiration rate. CaOSR1-OX plants displayed phenotypes that were hypersensitive to ABA and hyposensitive to osmotic stress, during the seed germination and seedling growth stages; furthermore, these plants exhibited enhanced drought tolerance at the adult stage, and this was characterized by higher leaf temperatures and smaller stomatal apertures because of ABA hypersensitivity. Taken together, our data indicate that CaOSR1 positively regulates osmotic stress tolerance via ABA-mediated cell signaling. These findings suggest an involvement of a novel protein in ABA and osmotic stress signalings in plants. PMID:27446121

  14. Molecular characterization of Korean Pepper mottle virus isolates and its relationship to symptom variations.

    PubMed

    Kim, Yu-Jeong; Jonson, Miranda Gilda; Choi, Hong Soo; Ko, Sug-Ju; Kim, Kook-Hyung

    2009-09-01

    The symptom variations among Korean Pepper mottle virus (PepMoV) isolates infecting pepper, tomato and potato were described and the cause of variations in relation to molecular variability were investigated. In addition, the entire genome of the 13 PepMoV isolates, collected from five provinces (Kyonggi, Chungnam, Gyeongnam, Jeonbuk and Jeonnam) in Korea, were determined and compared including the previously reported Korean-Vb isolate and 2 other PepMoV isolates isolated from America (CA and FL). Our results showed that the nucleotide sequence of all Korean isolates tested were nearly identical (98-99%) and only 94% similar to American isolates. In general, the complete nucleotide sequences and deduced polyprotein sequences indicated low genetic variation among isolates showing 0.1-3% nucleotide changes per site. However, based on ratio between nucleotide diversity values in nonsynonymous and synonymous position (dN/dS ratio) surprisingly, P1 and 6K2 genes showed relatively high nucleotide substitution ratio (0.8 and 1.0 nucleotide, respectively). When the 6K2 amino acid were aligned, there were 15 amino acid substitutions found in PepMoV-infected potato and only 1 amino acid change from two isolates of PepMoV-infected bell pepper. Interestingly, three isolates including isolate numbers 731, 205135 and 205136 that possessed different aa changes at 6K2 region also showed distinct symptom differentiation in indicator hosts and cosegregated in the phylogenetic analysis. These results further proved previous studies that P1 and 6K2 genes with other proteins might have some involvement on host specificity and pathogenicity. PMID:19374928

  15. Loss of Function in Mlo Orthologs Reduces Susceptibility of Pepper and Tomato to Powdery Mildew Disease Caused by Leveillula taurica

    PubMed Central

    Zheng, Zheng; Pavan, Stefano; Matsuda, Yoshinori; Toyoda, Hideyoshi; Wolters, Anne-Marie A.; Visser, Richard G. F.; Bai, Yuling

    2013-01-01

    Powdery mildew disease caused by Leveillula taurica is a serious fungal threat to greenhouse tomato and pepper production. In contrast to most powdery mildew species which are epiphytic, L. taurica is an endophytic fungus colonizing the mesophyll tissues of the leaf. In barley, Arabidopsis, tomato and pea, the correct functioning of specific homologues of the plant Mlo gene family has been found to be required for pathogenesis of epiphytic powdery mildew fungi. The aim of this study was to investigate the involvement of the Mlo genes in susceptibility to the endophytic fungus L. taurica. In tomato (Solanum lycopersicum), a loss-of-function mutation in the SlMlo1 gene results in resistance to powdery mildew disease caused by Oidium neolycopersici. When the tomato Slmlo1 mutant was inoculated with L. taurica in this study, it proved to be less susceptible compared to the control, S. lycopersicum cv. Moneymaker. Further, overexpression of SlMlo1 in the tomato Slmlo1 mutant enhanced susceptibility to L. taurica. In pepper, the CaMlo2 gene was isolated by applying a homology-based cloning approach. Compared to the previously identified CaMlo1 gene, the CaMlo2 gene is more similar to SlMlo1 as shown by phylogenetic analysis, and the expression of CaMlo2 is up-regulated at an earlier time point upon L. taurica infection. However, results of virus-induced gene silencing suggest that both CaMlo1 and CaMlo2 may be involved in the susceptibility of pepper to L. taurica. The fact that overexpression of CaMlo2 restored the susceptibility of the tomato Slmlo1 mutant to O. neolycopersici and increased its susceptibility to L. taurica confirmed the role of CaMlo2 acting as a susceptibility factor to different powdery mildews, though the role of CaMlo1 as a co-factor for susceptibility cannot be excluded. PMID:23923019

  16. Molecular characterization of tospoviruses associated with ringspot disease in bell pepper from different districts of Himachal Pradesh.

    PubMed

    Sharma, Anshul; Kulshrestha, Saurabh

    2016-06-01

    Bell pepper (Capsicum annuum L.), an important cash crop for the farmers of Himachal Pradesh was found to be affected with tospovirus like disease. An extensive survey was conducted in the bell pepper grown areas in the five districts of Himachal Pradesh to identify and characterize the causative agent. Hence, 60 symptomatic bell pepper plants exhibiting characteristics symptoms were collected from Solan, Sirmaur, Hamirpur, Kangra and Bilaspur districts. Out of 60 samples, 53 samples were found to be positive by DAS-ELISA with tospovirus group specific antiserum. To confirm the presence of tospovirus, DAC-ELISA was performed using GBNV/CaCV polyclonal antiserum and DAS-ELISA with two monoclonal antibodies i.e. TSWV, GRSV. All the 53 samples were found negative for TSWV and GRSV and positive for GBNV/CaCV. Further, eleven infected isolates from both poly-house and open field conditions were selected for characterization at molecular level. RT-PCR was performed with N gene specific primers for TSWV, GBNV and CaCV. The eleven samples selected for molecular identification were further found to be negative for TSWV and positive for CaCV using RT-PCR. One of the samples from district Sirmaur was found to be positive for mixed infection of GBNV and CaCV. N gene phylogenetic analysis of CaCV/GBNV provided important information about the movement and evolution of tospoviruses in Himachal Pradesh. PMID:27366771

  17. Susceptibility of ornamental pepper banker plant candidates to common greenhouse pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Susceptibility of four potential ornamental pepper banker plant candidates [Black Pearl (BP), Explosive Ember (EE), Masquerade (MA), Red Missile (RM), and a commercial pepper cultivar Blitz (BL)] were evaluated against three common greenhouse pests - Bemisia tabaci, Polyphagotarsonemus latus and Fra...

  18. Prevalence and genetic diversity of Bacillus cereus in dried red pepper in Korea.

    PubMed

    Choo, Euiyoung; Jang, Sung Sik; Kim, Kyumson; Lee, Kwang-Geun; Heu, Sunggi; Ryu, Sangryeol

    2007-04-01

    Bacillus cereus is a foodborne spore-forming bacterial pathogen that is ubiquitous in the natural environment. Infections with this pathogen manifest as diarrheal or emetic types of food poisoning. In this study, 140 samples of dried red pepper purchased in Korea were assayed for the presence of B. cereus according to the U.S. Food and Drug Administration standard culture method. A multiplex PCR assay was developed for the rapid confirmation of B. cereus as an alternative to conventional biochemical confirmation tests. The genetic diversity of B. cereus isolates was investigated using a random amplified polymorphic DNA (RAPD) assay. B. cereus was found in 84.3% of the dried red pepper samples, with an average concentration of 1.9 x 10(4) CFU/g. B. cereus could be detected and distinguished from B. thuringiensis in the multiplex PCR assay by using the BCFW1 plus BCrevnew and the K3 plus K5 primer sets designed to detect the gyrB gene of B. cereus and B. thuringiensis and the cry gene of B. thuringiensis. A RAPD assay using the OPG 16 and MUP 3 primers was used to successfully distinguish among isolates, thus elucidating the genetic diversity of B. cereus isolates. The discriminating ability of the OPG 16 primer (142 types) was about threefold higher than that of MUP 3 (52 types) in the RAPD assay. PMID:17477261

  19. Authentication of bell peppers using boron and strontium isotope compositions

    NASA Astrophysics Data System (ADS)

    Rosner, Martin; Pritzkow, Wolfgang; Vogl, Jochen; Voerkelius, Susanne

    2010-05-01

    The wrong declaration of food in terms of geographical origin and production method is a major problem for the individual consumer and public regulatory authorities. The authentication of food matrices using H-C-N-O-S isotopic compositions is already well established. However, specific questions require additional isotopic systems, which are more diagonstic for the source reservoires involved or production methods used. Here we present B and Sr isotopic compositions of bell peppers from Europe (Germany, Austria, Netherlands, Spain) and Israel to verfiy their origin. The bell peppers' B isotopic compositions between different locations are highly variable (d11BNISTSRM951 -8 to +35 ‰), whereas the 87Sr/86Sr ratios are all close to modern seawater Sr isotopic composition of about 0.7092 (0.7078 to 0.7107), but still can reliably be distinguished. Distinct isotopically heavy and light B isotopic fingerprints are obtained for bell peppers from Israel and the Netherlands. Samples from Germany, Austria, and Spain display overlapping d11B values between 0 and +12 ‰. Bell peppers from Israel show high d11B values (+28 to +35 ‰) combined with 87Sr/86Sr ratios slightly more unradiogenic than modern seawater (ca 0.7079). Bell peppers from the Netherlands, however, show low d11B values (-8 ‰) combinded with 87Sr/86Sr ratios of modern seawater (approx. 0.7085). Mainly based on diagnostic B isotopic compositions bell peppers from Israel and the Netherlands can be related to a specific geographical growing environment (Israel) or production method (Netherlands). The isotope fingerprints of bell peppers from the Netherlands are consistent with growing conditions in greenhouses typical for the Netherlands vegetable farming. Using optimized production methods crops in greenhouses were supplied with nutritients by liquid fertilizers on artificial substrates. As most fertilizers derive from non-marine salt deposits, fertilization typically imprints invariant d11B values close

  20. Garlic exerts allelopathic effects on pepper physiology in a hydroponic co-culture system.

    PubMed

    Ding, Haiyan; Cheng, Zhihui; Liu, Menglong; Hayat, Sikandar; Feng, Han

    2016-01-01

    A hydroponic co-culture system was adopted to determine the allelopathic potential of garlic on the growth of pepper plants. Different numbers of garlic plants (0, 2, 4, 8 and 12) were hydroponically co-cultured with two pepper plants to investigate allelopathic effects on the growth attributes and antioxidative defense system of the test pepper plants. The responses of the pepper plants depended on the number of garlic plants included in the co-culture system, indicating an association of pepper growth with the garlic root exudate concentration. When grown at a pepper/garlic ratio of 1:1 or 1:2, the pepper plant height, chlorophyll content, and peroxidase (POD), catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were significantly increased after 30 days of co-culture; in contrast, reduction in methane dicarboxylic aldehyde (MDA) content was observed. However, when the pepper/garlic ratio was 1:4 or higher, these morphological indices and protective enzyme activities were significantly inhibited, whereas MDA levels in the pepper leaves were significantly increased due to severe membrane lipid peroxidation. The results indicate that although low concentrations of garlic root exudates appear to induce protective enzyme systems and promote pepper growth, high concentrations have deleterious effects. These findings suggest that further investigations should optimize the co-culture pepper/garlic ratio to reduce continuous cropping obstacles in pepper production. PMID:27095440

  1. Complete Genome Sequence of a Bell Pepper Endornavirus Isolate from Canada

    PubMed Central

    Chen, Bin; Bernards, Mark

    2015-01-01

    Bell pepper endornavirus (BPEV) is a double-stranded RNA virus infecting economically important crops, such as peppers. Next-generation sequencing of small RNAs extracted from the leaves of a pepper plant showing mild viral symptoms, along with subsequent analysis, identified BPEV. The complete genome of this isolate was cloned and sequenced. PMID:26294624

  2. Genetic diversity provides opportunities for improvement of fresh-cut pepper quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extensive genetic diversity present in the Capsicum genepool has been utilized extensively to improve pepper disease resistance, fruit quality and varied yield attributes. Little attention has been dedicated to genetic enhancement of pepper fresh-cut quality. We evaluated pepper accessions with dive...

  3. 7 CFR 319.56-40 - Peppers from certain Central American countries.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) The peppers must be packed in insect-proof cartons or containers or covered with insect-proof mesh or... 24 hours of harvest in a pest-exclusionary packinghouse. The peppers must be safeguarded by an insect.... Peppers must be packed in insect-proof cartons or containers, or covered with insect-proof mesh or...

  4. Electronic Nose Based Alternative Method for the Determination of Capsaicin in Hot Chili Pepper

    NASA Astrophysics Data System (ADS)

    Mohamed, E. I.; Andreoli, A.; Martinelli, E.; Candeloro, N.; Mantini, A.; di Natale, C.; de Lorenzo, A.

    2000-12-01

    The aim of the present study is to examine the EN aptitude to evaluate different pepper brands' freshness by repeated measurements of chosen pepper samples. This, in addition to study the possibility of differentiation and classification of Bell, Thai and Scotch Bonnet pepper brands, available in the Italian market.

  5. Complete Genome Sequence of a Bell Pepper Endornavirus Isolate from Canada.

    PubMed

    Chen, Bin; Bernards, Mark; Wang, Aiming

    2015-01-01

    Bell pepper endornavirus (BPEV) is a double-stranded RNA virus infecting economically important crops, such as peppers. Next-generation sequencing of small RNAs extracted from the leaves of a pepper plant showing mild viral symptoms, along with subsequent analysis, identified BPEV. The complete genome of this isolate was cloned and sequenced. PMID:26294624

  6. 7 CFR 319.56-42 - Peppers from the Republic of Korea.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... accordance with the conditions in 7 CFR 319.56-42 and were inspected and found free from Agrotis segetum... 7 Agriculture 5 2014-01-01 2014-01-01 false Peppers from the Republic of Korea. 319.56-42 Section... Peppers from the Republic of Korea. Peppers (Capsicum annuum L. var. annuum) from the Republic of...

  7. 7 CFR 319.56-42 - Peppers from the Republic of Korea.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... accordance with the conditions in 7 CFR 319.56-42 and were inspected and found free from Agrotis segetum... 7 Agriculture 5 2010-01-01 2010-01-01 false Peppers from the Republic of Korea. 319.56-42 Section... Peppers from the Republic of Korea. Peppers (Capsicum annuum L. var. annuum) from the Republic of...

  8. Garlic exerts allelopathic effects on pepper physiology in a hydroponic co-culture system

    PubMed Central

    Ding, Haiyan; Liu, Menglong; Hayat, Sikandar; Feng, Han

    2016-01-01

    ABSTRACT A hydroponic co-culture system was adopted to determine the allelopathic potential of garlic on the growth of pepper plants. Different numbers of garlic plants (0, 2, 4, 8 and 12) were hydroponically co-cultured with two pepper plants to investigate allelopathic effects on the growth attributes and antioxidative defense system of the test pepper plants. The responses of the pepper plants depended on the number of garlic plants included in the co-culture system, indicating an association of pepper growth with the garlic root exudate concentration. When grown at a pepper/garlic ratio of 1:1 or 1:2, the pepper plant height, chlorophyll content, and peroxidase (POD), catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were significantly increased after 30 days of co-culture; in contrast, reduction in methane dicarboxylic aldehyde (MDA) content was observed. However, when the pepper/garlic ratio was 1:4 or higher, these morphological indices and protective enzyme activities were significantly inhibited, whereas MDA levels in the pepper leaves were significantly increased due to severe membrane lipid peroxidation. The results indicate that although low concentrations of garlic root exudates appear to induce protective enzyme systems and promote pepper growth, high concentrations have deleterious effects. These findings suggest that further investigations should optimize the co-culture pepper/garlic ratio to reduce continuous cropping obstacles in pepper production. PMID:27095440

  9. Antimutagenic activity of carotenoids in green peppers against some nitroarenes.

    PubMed

    Gonzáez de Mejía, E; Quintanar-Hernández, A; Loarca-Piña, G

    1998-08-01

    In Mexico, as well as in Central and South American countries, the consumption of peppers (Capsicum annuum) has been tradition for thousands of years; the per capita dietary intake of peppers is about 40 g/day. Peppers are an important source of beta-carotene and vitamin A, which have antimutagenic and/or anticarcinogenic properties. In the present study, Salmonella typhimurium tester strain YG1024 in the plate-incorporation test was used to examine the antimutagenicity of carotenois extracted from five different types of Capsicum spp. ('Chilaca', 'Poblano', 'Serrano', 'Jalapeño' and 'Pimiento') which were chosen, based on their consumption and availability on the local market. Extracts from these peppers were tested against 1-6-dinitropyrene (1,6-DNP) and 1,8-dinitropyrene (1,8-DNP) mutagenicity. Dose-response mutagenicity curves of 1-NP; 1,6-DNP and 1,8-DNP were obtained. For the antimutagenicity studies, doses of 0.05 microgram/plate, 0.20 ng/plate and 0.06 ng/plate for 1-NP, 1,6-DPN and 1,8-DNP respectively were chosen, and the number of net revertants/plate were 1008 for 1-NP, 512 for 1,6-DNP, and 712 for 1,8-DPN. Trans-beta-carotene and the extracts were not toxic to the bacteria at the concentrations tested. The extracts obtained from the peppers showed more inhibition than pure trans-beta-carotene on 1-NP; 1,6-DNP and 1,8-DNP mutagenicity. Chilaca pepper extract required 0.36 g (34 nmol expressed as trans-beta-carotene equivalents) of fresh pepper to inhibit 94% on 1-NP mutagenicity, 78% on 1,6-DNP mutagenicity and 84% on 1,8-DNP mutagenicity. Bell pepper ('Pimiento') extract required 1.53 g (50 nmol expressed as trans-beta-carotene) to obtain 87%, 79% and 73% inhibition on 1-NP; 1,6-DNP and 1,8-DNP mutagenicity respectively. Since pure beta-carotene inhibited only approximately 50% the mutagenicity of nitroarenes, these results suggest that each one of the pepper extracts have more than one antimutagenic compound (e.g., beta-carotene and xanthophylls) and

  10. Pungency Quantitation of Hot Pepper Sauces Using HPLC

    NASA Astrophysics Data System (ADS)

    Betts, Thomas A.

    1999-02-01

    A class of compounds known as capsaicinoids are responsible for the "heat" of hot peppers. To determine the pungency of a particular pepper or pepper product, one may quantify the capsaicinoids and relate those concentrations to the perceived heat. The format of the laboratory described here allows students to collectively develop an HPLC method for the quantitation of the two predominant capsaicinoids (capsaicin and dihydrocapsaicin) in hot-pepper products. Each small group of students investigated one of the following aspects of the method: detector wavelength, mobile-phase composition, extraction of capsaicinoids, calibration, and quantitation. The format of the lab forced students to communicate and cooperate to develop this method. The resulting HPLC method involves extraction with acetonitrile followed by solid-phase extraction clean-up, an isocratic 80:20 methanol-water mobile phase, a 4.6 mm by 25 cm C-18 column, and UV absorbance detection at 284 nm. The method developed by the students was then applied to the quantitation of capsaicinoids in a variety of hot pepper sauces. Editor's Note on Hazards in our April 2000 issue addresses the above.

  11. Visualization and LC/MS analysis of colorless pepper sprays.

    PubMed

    Cavett, Valerie; Waninger, Eileen M; Krutak, James J; Eckenrode, Brian A

    2004-05-01

    Pepper sprays are used in a variety of circumstances, including criminal activity, self-defense, and law enforcement. As such, the presence or absence of pepper sprays on evidentiary materials is often important when determining the facts of an incident. When no visible stains are present on evidentiary materials, ascertaining the presence or absence of pepper spray can be a challenge to the forensic analyst. A method, based on a chemical derivatization of capsaicinoids using a diazonium salt, has been developed for the visualization of colorless, ultraviolet (UV) activated fluorescent dye-free pepper sprays on textiles. Identification of both the capsaicinoids and their derivatives is confirmed via extraction of the derivatized capsaicinoids followed by liquid chromatography/mass spectrometry (LC/MS) analysis. LC/MS analysis is conducted using a YMC Basic column and elution of the compounds using a gradient of 10 mM ammonium formate, pH 4.2 and methanol at 0.35 mL/min. Full-scan MS data are collected for the full 6.5 min LC analysis. Although this method is qualitative in nature, visual detection of as little as 50 microL of a 0.2% pepper spray (equivalent to approximately 0.1 mg) on a variety of garments is possible, and more than adequate signal-to-noise is obtained for reconstructed ion chromatograms on LC/MS analysis at these levels. PMID:15171161

  12. Metabolomics Provides Quality Characterization of Commercial Gochujang (Fermented Pepper Paste).

    PubMed

    Lee, Gyu Min; Suh, Dong Ho; Jung, Eun Sung; Lee, Choong Hwan

    2016-01-01

    To identify the major factors contributing to the quality of commercial gochujang (fermented red pepper paste), metabolites were profiled by mass spectrometry. In principal component analysis, cereal type (wheat, brown rice, and white rice) and species of hot pepper (Capsicum annuum, C. annuum cv. Chung-yang, and C. frutescens) affected clustering patterns. Relative amino acid and citric acid levels were significantly higher in wheat gochujang than in rice gochujang. Sucrose, linoleic acid, oleic acid, and lysophospholipid levels were high in brown-rice gochujang, whereas glucose, maltose, and γ-aminobutyric acid levels were high in white-rice gochujang. The relative capsaicinoid and luteolin derivative contents in gochujang were affected by the hot pepper species used. Gochujang containing C. annuum cv. Chung-yang and C. frutescens showed high capsaicinoid levels. The luteolin derivative level was high in gochujang containing C. frutescens. These metabolite variations in commercial gochujang may be related to different physicochemical phenotypes and antioxidant activity. PMID:27428946

  13. Oleoresin capsicum (pepper) spray and "in-custody deaths".

    PubMed

    Steffee, C H; Lantz, P E; Flannagan, L M; Thompson, R L; Jason, D R

    1995-09-01

    Increasing use of oleoresin capsicum (OC) spray devices (i.e., pepper spray, pepper mace, OC, capsaicin) by law enforcement agencies as a means of sublethal force to control suspects has brought into question whether exposure to this noxious irritant (capsaicin) can cause or contribute to unexpected in-custody deaths. Capsaicin stimulates nociceptors in exposed mucous membranes to produce intense pain, particularly involving the conjunctiva, and generates systemic physiologic and behavioral responses consonant with such extreme discomfort. We describe two cases of in-custody death, both associated temporally with the use of pepper spray, to illustrate salient investigative considerations. As with any other in-custody death, a thorough autopsy and toxicologic analysis, coupled with evaluation of the premortem chain of events, postexposure symptomatology, and the extent of natural disease processes, will help to reveal the role of oleoresin capsicum spray as unrelated, contributory, or causative. PMID:7495257

  14. Genetic diversity and mycotoxin production of Fusarium lactis species complex isolates from sweet pepper.

    PubMed

    Van Poucke, Kris; Monbaliu, Sofie; Munaut, Françoise; Heungens, Kurt; De Saeger, Sarah; Van Hove, François

    2012-02-01

    An internal fruit rot disease of sweet peppers was first detected in Belgium in 2003. Research conducted mostly in Canada indicates that this disease is primarily caused by Fusarium lactis Pirotta. Ninety-eight Fusarium isolates obtained from diseased sweet peppers from Belgium, as well as from other countries (Canada, the Netherlands and the United Kingdom) were identified by sequencing the translation elongation factor 1α (EF). Of these 98 isolates, 13 were identified as F. oxysporum Schltdl., nine as F. proliferatum (Matsush.) Nirenberg and two belonged to clade 3 of the F. solani species complex. Of the 74 remaining isolates, the EF sequence showed 97% to 98% similarity to F. lactis. Of these isolates, the β-tubulin (TUB), calmodulin (CAM) and the second largest subunit of RNA polymerase II (RPB2) genes were also sequenced. Analysis of the combined sequences revealed that the 74 isolates share nine combined sequences that correspond to nine multilocus sequence types (STs), while the F. lactis neotype strain and one other strain, both isolated from figs, form a separate ST. Together, these 10 STs represent a monophyletic F. lactis species complex (FLASC). An unusually high level of genetic diversity was observed between (groups of) these STs. Two of them (ST5 and ST6) fulfilled the criteria for species recognition based on genealogical exclusivity and together represent a new monophyletic species lineage (FLASC-1). The seven other STs, together with the F. lactis neotype ST, form a paraphyletic species lineage in the African clade of the Gibberella fujikuroi species complex (GFSC). From each of the 10 STs, the mycotoxin production was assessed using a multi-mycotoxin liquid chromatography mass spectrometry method. Out of the 27 analyzed mycotoxins, beauvericin and fumonisins were detected in sweet pepper tissue and in maize kernels. The 10 STs clearly differed in the amount of mycotoxin produced, but there was only limited congruence between the production

  15. The influence of red pepper powder on the density of Weissella koreensis during kimchi fermentation

    PubMed Central

    Kang, Bo Kyoung; Cho, Min Seok; Ahn, Tae-Young; Lee, Eui Seok; Park, Dong Suk

    2015-01-01

    Weissella koreensis is a psychrophilic bacterium that is the dominant species found in kimchi and exhibits anti-obesity effects via its production of ornithine. In this study, we mined the genome of W. koreensis KACC15510 to identify species-specific genes that can serve as new targets for the detection and quantification of W. koreensis in kimchi. A specific polymerase chain reaction (PCR) primer set for the membrane protein-encoding gene of W. koreensis KACC15510 was designed and investigated to quantify its sensitivity and specificity for detecting the bacterium in kimchi. The specificity of the primer set was evaluated using genomic DNA from eight isolates of W. koreensis, 11 different species of Weissella and 13 other reference lactic acid bacterium (LAB) strains. In addition, red pepper powder was observed to strongly influence the density of W. koreensis during kimchi fermentation. PMID:26497926

  16. Systemic Induction of the Small Antibacterial Compound in the Leaf Exudate During Benzothiadiazole-elicited Systemic Acquired Resistance in Pepper.

    PubMed

    Lee, Boyoung; Park, Yong-Soon; Yi, Hwe-Su; Ryu, Choong-Min

    2013-09-01

    Plants protect themselves from diverse potential pathogens by induction of the immune systems such as systemic acquired resistance (SAR). Most bacterial plant pathogens thrive in the intercellular space (apoplast) of plant tissues and cause symptoms. The apoplastic leaf exudate (LE) is believed to contain nutrients to provide food resource for phytopathogenic bacteria to survive and to bring harmful phytocompounds to protect plants against bacterial pathogens. In this study, we employed the pepper-Xanthomonas axonopodis system to assess whether apoplastic fluid from LE in pepper affects the fitness of X. axonopodis during the induction of SAR. The LE was extracted from pepper leaves 7 days after soil drench-application of a chemical trigger, benzothiadiazole (BTH). Elicitation of plant immunity was confirmed by significant up-regulation of four genes, CaPR1, CaPR4, CaPR9, and CaCHI2, by BTH treatment. Bacterial fitness was evaluated by measuring growth rate during cultivation with LE from BTH- or water-treated leaves. LE from BTH-treatment significantly inhibited bacterial growth when compared to that from the water-treated control. The antibacterial activity of LE from BTH-treated samples was not affected by heating at 100°C for 30 min. Although the antibacterial molecules were not precisely identified, the data suggest that small (less than 5 kDa), heat-stable compound(s) that are present in BTH-induced LE directly attenuate bacterial growth during the elicitation of plant immunity. PMID:25288963

  17. Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress.

    PubMed

    Airaki, Morad; Leterrier, Marina; Mateos, Rosa M; Valderrama, Raquel; Chaki, Mounira; Barroso, Juan B; Del Río, Luis A; Palma, José M; Corpas, Francisco J

    2012-02-01

    Low temperature is an environmental stress that affects crop production and quality and regulates the expression of many genes, and the level of a number of proteins and metabolites. Using leaves from pepper (Capsicum annum L.) plants exposed to low temperature (8 °C) for different time periods (1 to 3 d), several key components of the metabolism of reactive nitrogen and oxygen species (RNS and ROS, respectively) were analysed. After 24 h of exposure at 8 °C, pepper plants exhibited visible symptoms characterized by flaccidity of stems and leaves. This was accompanied by significant changes in the metabolism of RNS and ROS with an increase of both protein tyrosine nitration (NO(2) -Tyr) and lipid peroxidation, indicating that low temperature induces nitrosative and oxidative stress. During the second and third days at low temperature, pepper plants underwent cold acclimation by adjusting their antioxidant metabolism and reverting the observed nitrosative and oxidative stress. In this process, the levels of the soluble non-enzymatic antioxidants ascorbate and glutathione, and the activity of the main NADPH-generating dehydrogenases were significantly induced. This suggests that ascorbate, glutathione and the NADPH-generating dehydrogenases have a role in the process of cold acclimation through their effect on the redox state of the cell. PMID:21414013

  18. Defense-Related Responses in Fruit of the Nonhost Chili Pepper against Xanthomonas axonopodis pv. glycines Infection

    PubMed Central

    Chang, Sung Pae; Jeon, Yong Ho; Kim, Young Ho

    2016-01-01

    Xanthomonas axonopodis pv. glycines (Xag ) is a necrotrophic bacterial pathogen of the soybean that causes bacterial pustules and is a nonhost pathogen of the chili pepper. In the current study, chili pepper fruit wound inoculated in planta with Xag 8ra formed necrotic lesions on the fruit surface and induced several structural and chemical barriers systemically in the fruit tissue. The initial defense response included programmed cell death of necrotizing and necrotized cells, which was characterized by nuclear DNA cleavage, as detected by TUNEL-confocal laser scanning microscopy (CLSM), and phosphatidylserine exposure on cell walls distal to the infection site, as detected by Annexin V FLUOS-CLSM. These two responses may facilitate cell killing and enhance transportation of cell wall materials used for cell wall thickening, respectively. The cells beneath the necrotic tissue were enlarged and divided to form periclinal cell walls, resulting in extensive formation of several parallel boundary layers at the later stages of infection, accompanying the deposition of wall fortification materials for strengthening structural defenses. These results suggest that nonhost resistance of chili pepper fruit against the nonhost necrotrophic pathogen Xag 8ra is activated systematically from the initial infection until termination of the infection cycle, resulting in complete inhibition of bacterial pathogenesis by utilizing organ-specific in situ physiological events governed by the expression of genes in the plant fruit organ. PMID:27493606

  19. Defense-Related Responses in Fruit of the Nonhost Chili Pepper against Xanthomonas axonopodis pv. glycines Infection.

    PubMed

    Chang, Sung Pae; Jeon, Yong Ho; Kim, Young Ho

    2016-08-01

    Xanthomonas axonopodis pv. glycines (Xag ) is a necrotrophic bacterial pathogen of the soybean that causes bacterial pustules and is a nonhost pathogen of the chili pepper. In the current study, chili pepper fruit wound inoculated in planta with Xag 8ra formed necrotic lesions on the fruit surface and induced several structural and chemical barriers systemically in the fruit tissue. The initial defense response included programmed cell death of necrotizing and necrotized cells, which was characterized by nuclear DNA cleavage, as detected by TUNEL-confocal laser scanning microscopy (CLSM), and phosphatidylserine exposure on cell walls distal to the infection site, as detected by Annexin V FLUOS-CLSM. These two responses may facilitate cell killing and enhance transportation of cell wall materials used for cell wall thickening, respectively. The cells beneath the necrotic tissue were enlarged and divided to form periclinal cell walls, resulting in extensive formation of several parallel boundary layers at the later stages of infection, accompanying the deposition of wall fortification materials for strengthening structural defenses. These results suggest that nonhost resistance of chili pepper fruit against the nonhost necrotrophic pathogen Xag 8ra is activated systematically from the initial infection until termination of the infection cycle, resulting in complete inhibition of bacterial pathogenesis by utilizing organ-specific in situ physiological events governed by the expression of genes in the plant fruit organ. PMID:27493606

  20. A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection

    SciTech Connect

    Julie Anne Roden, Branids Belt, Jason Barzel Ross, Thomas Tachibana, Joe Vargas, Mary Beth Mudgett

    2004-11-23

    The bacterial pathogen Xanthomonas campestris pv. vesicatoria (Xcv) uses a type III secretion system (TTSS) to translocate effector proteins into host plant cells. The TTSS is required for Xcv colonization, yet the identity of many proteins translocated through this apparatus is not known. We used a genetic screen to functionally identify Xcv TTSS effectors. A transposon 5 (Tn5)-based transposon construct including the coding sequence for the Xcv AvrBs2 effector devoid of its TTSS signal was randomly inserted into the Xcv genome. Insertion of the avrBs2 reporter gene into Xcv genes coding for proteins containing a functional TTSS signal peptide resulted in the creation of chimeric TTSS effector::AvrBs2 fusion proteins. Xcv strains containing these fusions translocated the AvrBs2 reporter in a TTSS-dependent manner into resistant BS2 pepper cells during infection, activating the avrBs2-dependent hypersensitive response (HR). We isolated seven chimeric fusion proteins and designated the identified TTSS effectors as Xanthomonas outer proteins (Xops). Translocation of each Xop was confirmed by using the calmodulin-dependent adenylate cydase reporter assay. Three xop genes are Xanthomonas spp.-specific, whereas homologs for the rest are found in other phytopathogenic bacteria. XopF1 and XopF2 define an effector gene family in Xcv. XopN contains a eukaryotic protein fold repeat and is required for full Xcv pathogenicity in pepper and tomato. The translocated effectors identified in this work expand our knowledge of the diversity of proteins that Xcv uses to manipulate its hosts.

  1. Heritability and genetic advance among chili pepper genotypes for heat tolerance and morphophysiological characteristics.

    PubMed

    Usman, Magaji G; Rafii, M Y; Ismail, M R; Malek, M A; Abdul Latif, Mohammad

    2014-01-01

    High temperature tolerance is an important component of adaptation to arid and semiarid cropping environment in chili pepper. Two experiments were carried out to study the genetic variability among chili pepper for heat tolerance and morphophysiological traits and to estimate heritability and genetic advance expected from selection. There was a highly significant variation among the genotypes in response to high temperature (CMT), photosynthesis rate, plant height, disease incidence, fruit length, fruit weight, number of fruits, and yield per plant. At 5% selection intensity, high genetic advance as percent of the mean (>20%) was observed for CMT, photosynthesis rate, fruit length, fruit weight, number of fruits, and yield per plant. Similarly, high heritability (>60%) was also observed indicating the substantial effect of additive gene more than the environmental effect. Yield per plant showed strong to moderately positive correlations (r = 0.23-0.56) at phenotypic level while at genotypic level correlation coefficient ranged from 0.16 to 0.72 for CMT, plant height, fruit length, and number of fruits. Cluster analysis revealed eight groups and Group VIII recorded the highest CMT and yield. Group IV recorded 13 genotypes while Groups II, VII, and VIII recorded one each. The results showed that the availability of genetic variance could be useful for exploitation through selection for further breeding purposes. PMID:25478590

  2. Heritability and Genetic Advance among Chili Pepper Genotypes for Heat Tolerance and Morphophysiological Characteristics

    PubMed Central

    Usman, Magaji G.; Rafii, M. Y.; Ismail, M. R.; Malek, M. A.; Abdul Latif, Mohammad

    2014-01-01

    High temperature tolerance is an important component of adaptation to arid and semiarid cropping environment in chili pepper. Two experiments were carried out to study the genetic variability among chili pepper for heat tolerance and morphophysiological traits and to estimate heritability and genetic advance expected from selection. There was a highly significant variation among the genotypes in response to high temperature (CMT), photosynthesis rate, plant height, disease incidence, fruit length, fruit weight, number of fruits, and yield per plant. At 5% selection intensity, high genetic advance as percent of the mean (>20%) was observed for CMT, photosynthesis rate, fruit length, fruit weight, number of fruits, and yield per plant. Similarly, high heritability (>60%) was also observed indicating the substantial effect of additive gene more than the environmental effect. Yield per plant showed strong to moderately positive correlations (r = 0.23–0.56) at phenotypic level while at genotypic level correlation coefficient ranged from 0.16 to 0.72 for CMT, plant height, fruit length, and number of fruits. Cluster analysis revealed eight groups and Group VIII recorded the highest CMT and yield. Group IV recorded 13 genotypes while Groups II, VII, and VIII recorded one each. The results showed that the availability of genetic variance could be useful for exploitation through selection for further breeding purposes. PMID:25478590

  3. Pepper Heat Shock Protein 70a Interacts with the Type III Effector AvrBsT and Triggers Plant Cell Death and Immunity1[OPEN

    PubMed Central

    Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Heat shock proteins (HSPs) function as molecular chaperones and are essential for the maintenance and/or restoration of protein homeostasis. The genus Xanthomonas type III effector protein AvrBsT induces hypersensitive cell death in pepper (Capsicum annuum). Here, we report the identification of the pepper CaHSP70a as an AvrBsT-interacting protein. Bimolecular fluorescence complementation and coimmunoprecipitation assays confirm the specific interaction between CaHSP70a and AvrBsT in planta. The CaHSP70a peptide-binding domain is essential for its interaction with AvrBsT. Heat stress (37°C) and Xanthomonas campestris pv vesicatoria (Xcv) infection distinctly induce CaHSP70a in pepper leaves. Cytoplasmic CaHSP70a proteins significantly accumulate in pepper leaves to induce the hypersensitive cell death response by Xcv (avrBsT) infection. Transient CaHSP70a overexpression induces hypersensitive cell death under heat stress, which is accompanied by strong induction of defense- and cell death-related genes. The CaHSP70a peptide-binding domain and ATPase-binding domain are required to trigger cell death under heat stress. Transient coexpression of CaHSP70a and avrBsT leads to cytoplasmic localization of the CaHSP70a-AvrBsT complex and significantly enhances avrBsT-triggered cell death in Nicotiana benthamiana. CaHSP70a silencing in pepper enhances Xcv growth but disrupts the reactive oxygen species burst and cell death response during Xcv infection. Expression of some defense marker genes is significantly reduced in CaHSP70a-silenced leaves, with lower levels of the defense hormones salicylic acid and jasmonic acid. Together, these results suggest that CaHSP70a interacts with the type III effector AvrBsT and is required for cell death and immunity in plants. PMID:25491184

  4. Pepper Weevil (Coleoptera: Curculionidae) Preferences for Specific Pepper Cultivars, Plant Parts, Fruit Colors, Fruit Sizes, and Timing.

    PubMed

    Seal, Dakshina R; Martin, Cliff G

    2016-01-01

    Peppers (Capsicum spp.) are an important crop in the USA, with about 32,000 ha cultivated in 2007, which resulted in $588 million in farm revenue. The pepper weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae), is the most troublesome insect pest of peppers in the southern United States. It is therefore urgent to find different vulnerabilities of pepper cultivars, fruit and plants parts, fruit colors and sizes, and timing to infestation by A. eugenii. Also relevant is testing whether fruit length and infestation state affect fruit numbers, weights, and proportions of fruit that are infested. Counts of A. eugenii adults and marks from oviposition and feeding suggested that C. chinense Jacquin "Habanero" was least susceptible, and C. annuum L. cultivars "SY" and "SR" were most susceptible. Comparison of plant parts and fruit sizes revealed that A. eugenii preferred the peduncle, calyx, and top of pepper fruits over the middle, bottom, leaves, or remainder of flowers. Anthonomus eugenii does not discriminate between green or yellow fruit color nor vary diurnally in numbers. Based on adult counts, medium to extra-large fruits (≥1.5 cm long) attracted more weevils than small fruits (<1.5 cm). However based on proportions of fruit numbers or fruit weights that were infested, there were no differences between large and small fruits. Choice of pepper cultivar can thus be an important part of an IPM cultural control program designed to combat A. eugenii by reduced susceptibility or by synchronous fruit drop of infested fruits. Our results are potentially helpful in developing scouting programs including paying particular attention to the preferred locations of adults and their sites of feeding and oviposition on the fruit. The results also suggested the potential value of spraying when the fruits are still immature to prevent and control infestation. PMID:26959066

  5. Pepper Weevil (Coleoptera: Curculionidae) Preferences for Specific Pepper Cultivars, Plant Parts, Fruit Colors, Fruit Sizes, and Timing

    PubMed Central

    Seal, Dakshina R.; Martin, Cliff G.

    2016-01-01

    Peppers (Capsicum spp.) are an important crop in the USA, with about 32,000 ha cultivated in 2007, which resulted in $588 million in farm revenue. The pepper weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae), is the most troublesome insect pest of peppers in the southern United States. It is therefore urgent to find different vulnerabilities of pepper cultivars, fruit and plants parts, fruit colors and sizes, and timing to infestation by A. eugenii. Also relevant is testing whether fruit length and infestation state affect fruit numbers, weights, and proportions of fruit that are infested. Counts of A. eugenii adults and marks from oviposition and feeding suggested that C. chinense Jacquin “Habanero” was least susceptible, and C. annuum L. cultivars “SY” and “SR” were most susceptible. Comparison of plant parts and fruit sizes revealed that A. eugenii preferred the peduncle, calyx, and top of pepper fruits over the middle, bottom, leaves, or remainder of flowers. Anthonomus eugenii does not discriminate between green or yellow fruit color nor vary diurnally in numbers. Based on adult counts, medium to extra-large fruits (≥1.5 cm long) attracted more weevils than small fruits (<1.5 cm). However based on proportions of fruit numbers or fruit weights that were infested, there were no differences between large and small fruits. Choice of pepper cultivar can thus be an important part of an IPM cultural control program designed to combat A. eugenii by reduced susceptibility or by synchronous fruit drop of infested fruits. Our results are potentially helpful in developing scouting programs including paying particular attention to the preferred locations of adults and their sites of feeding and oviposition on the fruit. The results also suggested the potential value of spraying when the fruits are still immature to prevent and control infestation. PMID:26959066

  6. Linkage analysis between the partial restoration (pr) and the restorer-of-fertility (Rf) loci in pepper cytoplasmic male sterility.

    PubMed

    Lee, Jundae; Yoon, Jae Bok; Park, Hyo Guen

    2008-08-01

    Cytoplasmic male sterility (CMS) in chili pepper is restored by one major dominant nuclear gene, restorer-of-fertility (Rf), together with some modifier genes and is also affected by temperature. As a result, male fertility was identified as having several phenotypes. That identified and used in the present study allowed partial restoration of fertility, producing plants that simultaneously produce normal and aborted pollen grains, with most grains stuck to the anther wall, even after dehiscence, resulting in low seed set per fruit. The trait was visible only in the presence of Paterson's sterile cytoplasm and was controlled by a recessive nuclear gene, partial restoration (pr). A CAPS marker, PR-CAPS, closely linked to the trait, has been developed by Lee et al. (2008). In this study, linkage analysis was performed in 205 F(2) individuals derived from the 'Buja' Korean commercial F(1) chili pepper variety using the PR-CAPS marker and the three Rf-linked markers (OPP13-CAPS, AFRF8-CAPS, and CRF-SCAR) previously reported. Consequently, we found that these four markers were tightly linked. This result means that the pr gene might be tightly linked to the Rf locus or the third allele of Rf locus. The sequence diversity of the pr- and Rf-linked markers was also analyzed. The internal sequences of OPP13-CAPS (1,180 bp) and PR-CAPS (640 bp) markers in 91 Korean inbred lines were clearly divided into three haplotypes. According to the sequencing results, a new PR-CAPS (MseI or SphI digestion) marker was designed to distinguish the three haplotypes. This marker will be useful for marker-assisted selection to develop new maintainers and restorers in commercial hybrid pepper breeding using CMS. PMID:18465115

  7. Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance

    PubMed Central

    An, Soo Hyun; Sohn, Kee Hoon; Choi, Hyong Woo; Hwang, In Sun; Lee, Sung Chul

    2008-01-01

    Pectin is one of the main components of the plant cell wall that functions as the primary barrier against pathogens. Among the extracellular pectinolytic enzymes, pectin methylesterase (PME) demethylesterifies pectin, which is secreted into the cell wall in a highly methylesterified form. Here, we isolated and functionally characterized the pepper (Capsicum annuum L.) gene CaPMEI1, which encodes a pectin methylesterase inhibitor protein (PMEI), in pepper leaves infected by Xanthomonascampestris pv. vesicatoria (Xcv). CaPMEI1 transcripts are localized in the xylem of vascular bundles in leaf tissues, and pathogens and abiotic stresses can induce differential expression of this gene. Purified recombinant CaPMEI1 protein not only inhibits PME, but also exhibits antifungal activity against some plant pathogenic fungi. Virus-induced gene silencing of CaPMEI1 in pepper confers enhanced susceptibility to Xcv, accompanied by suppressed expression of some defense-related genes. Transgenic ArabidopsisCaPMEI1-overexpression lines exhibit enhanced resistance to Pseudomonas syringae pv. tomato, mannitol and methyl viologen, but not to the biotrophic pathogen Hyaloperonospora parasitica. Together, these results suggest that CaPMEI1, an antifungal protein, may be involved in basal disease resistance, as well as in drought and oxidative stress tolerance in plants. Electronic supplementary material The online version of this article (doi:10.1007/s00425-008-0719-z) contains supplementary material, which is available to authorized users. PMID:18327607

  8. Genetic and geographic diversity of Moroccan pepper virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Moroccan pepper virus (MPV) is one of two tombusviruses responsible for the disease, lettuce dieback, which is responsible for severe losses in western U.S. lettuce production. MPV also affects vegetable and ornamental production, and is being found with increased frequency throughout the world. In...

  9. Photooxidation Tolerance Characters of a New Purple Pepper

    PubMed Central

    Ou, Li-jun; Zhang, Zhu-qing; Dai, Xiong-ze; Zou, Xue-xiao

    2013-01-01

    Huai Zi (HZ) is a new purple mutant of green pepper (PI 631133) that is obtained from the United States Department of Agriculture. The net photosynthetic rate (PN), chlorophyll fluorescence parameters, antioxidant substances, antioxidant enzymes, photosystem 1 (PS1) and PS2 activities were studied through methyl viologen (MV) treatment. The results showed that the PN, actual photochemical efficiency of PS2 (ΦPS2), photochemical quenching coefficient (qP), PS1 and PS2 activities in HZ were lower than those in green pepper. HZ had a stronger ability to eliminate reactive oxygen species(O2•−) and accumulated less malondialdehyde (MDA) (a membrane lipid peroxidation product) than did green pepper, and had a higher content of antioxidants and antioxidant enzyme activity. This suggests that the lower light energy absorption and higher thermal dissipation and antioxidant activity of HZ contributed to a more stable PS2 photosynthetic capacity, which resulted in photooxidation tolerance. Hence, our study strongly suggests that pepper hybrids can achieve a modest ratio of chlorophyll and anthocyanin content, high PN and resistance to photooxidation, improving yield and resistance to adverse environments. PMID:23704924

  10. The Drought-Stress Transcriptome of Chile Pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chile pepper is an economically important crop in semi-arid subtropical regions of Mexico and the Southwestern United States. Because these areas are often water limited and high thermal stress environments, significant decreases in yield are routine. The identification of genetic factors controllin...

  11. 7 CFR 319.56-31 - Peppers from Spain.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... October 1, and continuing through April 30, MAFF must set and maintain Mediterranean fruit fly (Ceratitis... transit other fruit fly-supporting areas unless shipping containers are sealed by MAFF with an official... from Spain. Peppers (fruit) (Capsicum spp.) may be imported into the United States from Spain...

  12. 7 CFR 319.56-31 - Peppers from Spain.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... October 1, and continuing through April 30, MAFF must set and maintain Mediterranean fruit fly (Ceratitis... transit other fruit fly-supporting areas unless shipping containers are sealed by MAFF with an official... from Spain. Peppers (fruit) (Capsicum spp.) may be imported into the United States from Spain...

  13. 7 CFR 319.56-31 - Peppers from Spain.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... October 1, and continuing through April 30, MAFF must set and maintain Mediterranean fruit fly (Ceratitis... transit other fruit fly-supporting areas unless shipping containers are sealed by MAFF with an official... from Spain. Peppers (fruit) (Capsicum spp.) may be imported into the United States from Spain...

  14. High-throughput sequencing of black pepper root transcriptome

    PubMed Central

    2012-01-01

    Background Black pepper (Piper nigrum L.) is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host’s root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper. Results The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant’s root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology. Conclusions This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms. PMID:22984782

  15. I'm Not a Chili Pepper: Are You?

    ERIC Educational Resources Information Center

    Franciosi, Rob

    2006-01-01

    RateMyProfessors.com helps students rank their professors using a five-point rating scale in three areas, namely, helpfulness, clarity, and easiness. A college professor finds himself addicted to the site, which is rather low on substance and rates professors with a smiley face to indicate "good quality" and a red hot chili pepper to indicate the…

  16. Analysis of the January 2006 Pepper-Pot Experiments

    SciTech Connect

    Westenskow, G; Chambers, F; Bieniosek, F; Henestroza, E

    2006-03-22

    Between January 9-12, 2006 a series of experiments were performed on the DARHT-II injector to measure the beam's emittance. Part of these experiments were pepper-pot measurements. This note describes the analysis of the data, and our conclusions from the experiments.

  17. Post-directed weed control in bell peppers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic pepper (Capsicum annuum L.) producers need appropriate herbicides that can effectively provide post-emergent weed control. Research was conducted in southeast Oklahoma (Atoka County, Lane, OK) to determine the impact of a potential organic herbicide on weed control efficacy, crop injury, an...

  18. Localization, growth, and inactivation of Salmonella Saintpaul on jalapeno peppers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of Salmonella-contaminated jalapeño peppers has been implicated in one of the largest foodborne illness outbreaks in the summer of 2008. The objective of this study was to investigate representative groups of native microflora and the distribution, growth, and inactivation of experiment...

  19. Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.

    PubMed Central

    Diao, Wei-Ping; Snyder, John C.; Wang, Shu-Bin; Liu, Jin-Bing; Pan, Bao-Gui; Guo, Guang-Jun; Wei, Ge

    2016-01-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating multiple biological processes, especially in regulating defense against biotic and abiotic stresses. However, little information is available about WRKYs in pepper (Capsicum annuum L.). The recent release of completely assembled genome sequences of pepper allowed us to perform a genome-wide investigation for pepper WRKY proteins. In the present study, a total of 71 WRKY genes were identified in the pepper genome. According to structural features of their encoded proteins, the pepper WRKY genes (CaWRKY) were classified into three main groups, with the second group further divided into five subgroups. Genome mapping analysis revealed that CaWRKY were enriched on four chromosomes, especially on chromosome 1, and 15.5% of the family members were tandemly duplicated genes. A phylogenetic tree was constructed depending on WRKY domain' sequences derived from pepper and Arabidopsis. The expression of 21 selected CaWRKY genes in response to seven different biotic and abiotic stresses (salt, heat shock, drought, Phytophtora capsici, SA, MeJA, and ABA) was evaluated by quantitative RT-PCR; Some CaWRKYs were highly expressed and up-regulated by stress treatment. Our results will provide a platform for functional identification and molecular breeding studies of WRKY genes in pepper. PMID:26941768

  20. Characterisation of Phytophthora capsici isolates from black pepper in Vietnam.

    PubMed

    Truong, Nguyen V; Liew, Edward C Y; Burgess, Lester W

    2010-01-01

    Phytophthora foot rot of black pepper caused by Phytophthora capsici is a major disease of black pepper (Piper nigrum) throughout Vietnam. To understand the population structure of P. capsici, a large collection of P. capsici isolates from black pepper was studied on the basis of mating type, random amplified microsatellites (RAMS) and repetitive extragenic palindromic (REP) fingerprinting. Two mating types A1 and A2 were detected in four provinces in two climatic regions, with A1:A2 ratios ranging from 1:3 to 1:5. In several instances A1 and A2 mating types were found to co-exist in the same farm or black pepper pole, suggesting the potential for sexual reproduction of P. capsici in the field in Vietnam although its contribution to disease epidemics is uncertain. RAMS and REP DNA fingerprinting analysis of 118 isolates of P. capsici from black pepper showed that the population was genetically more diverse where two mating types were found, although the overall genetic diversity was low with most of the isolates belonging to one clonal group. The implication of these findings is discussed. The low diversity among isolates suggests that the P. capsici population may have originated from a single source. There was no genetic differentiation of isolates from different climatic regions. In addition to the large clonal group, several isolates with unique RAMS/REP phenotypes were also detected. Most of these unique phenotypes belonged to the minority A1 mating type. This may have significant implications for a gradual increase in overall genetic diversity. PMID:20960972

  1. Managing the pepper maggot (Diptera: Tephritidae) using perimeter trap cropping.

    PubMed

    Boucher, T Jude; Ashley, Richard; Durgy, Robert; Sciabarrasi, Michael; Calderwood, William

    2003-04-01

    A perimeter trap crop barrier of hot cherry peppers, border-row insecticide applications, and a combination of the two management strategies were evaluated to see if they could protect a centrally located main crop of bell peppers from oviposition and infestation by the pepper maggot, Zonosemata electa (Say). In large plots, the main cash crop of bell peppers was protected from the majority of the oviposition and infestation by all three barriers. The combination sprayed/trap crop barrier provided the best protection against both oviposition and infestation and resulted in over 98% pest-free fruit at harvest. Maggots infested only 1.7% of the main crop fruit when protected by a sprayed or unsprayed trap crop barrier, compared with 15.4% in control plots. The perimeter sprayed/trap crop strategy was employed in three commercial fields in 2000 and 2001. The combination barrier resulted in superior insect control and reduced insecticide use at all commercial locations, compared with the same farms' past history or to farms using conventional and integrated pest management (IPM) methods. Economic analysis showed that the technique is more cost effective and profitable than relying on whole-field insecticide applications to control the pepper maggot. Farmer users were surveyed and found the perimeter trap crop technique simple to use, with many hard-to-measure benefits associated with worker protection issues, marketing, personnel/management relations, pest control and the environment. Use of the perimeter trap crop technique as part of an IPM or organic program can help improve crop quality and overall farm profitability, while reducing pesticide use and the possibility of secondary pest outbreaks. PMID:14994810

  2. Toxic carriers in pepper sprays may cause corneal erosion.

    PubMed

    Holopainen, Juha M; Moilanen, Jukka A O; Hack, Tapani; Tervo, Timo M T

    2003-02-01

    We describe four patients who developed corneal erosion after an exposure to a pepper spray containing toxic carriers. Two of these patients were exposed to a pepper gas containing 5% oleoresin capsicum (OC) as an irritant and 92% trichlorethylene or unknown amount of dichloromethane as a carrier. One patient was exposed to a mock (containing 92% trichlorethylene as a carrier) training pepper gas without OC. The fourth patient was exposed to an unidentified Russian pepper gas spray. Two of the patients were examined by in vivo confocal microscopy to demonstrate the depth and quality of the stromal damage. To test the toxicity of the commercial tear spray, it was analyzed and test sprayed on a soft contact lens and into a plastic cup. Visual acuity was measured and the eyes were examined with a slit-lamp up to 5 months. Physical damage to a soft contact lens was visually acquired. All patients showed a long-lasting, deep corneal and conjuctival erosion, which resolved partly with medical therapy during the following weeks/months. Confocal microscopy revealed corneal nerve damage, and keratocyte activation reaching two-thirds of stroma for one patient. The spray caused serious damage to both the soft contact lens and the plastic cup. The safety of the commercially available pepper sprays should be assessed before marketing, and a list of acceptable ingredients created. The sprays should also have instructions on the use of the compound as well as on the first aid measures after the exposure. Solvents known to be toxic should not be used. PMID:12620368

  3. Effects of red pepper powder on microbial communities and metabolites during kimchi fermentation.

    PubMed

    Jeong, Sang Hyeon; Lee, Hyo Jung; Jung, Ji Young; Lee, Se Hee; Seo, Hye-Young; Park, Wan-Soo; Jeon, Che Ok

    2013-01-01

    To investigate the effects of red pepper powder on kimchi fermentation, Baechu (Chinese cabbage) and Mu (radish) kimchi, with and without red pepper powder, were prepared and their characteristics, including pH, colony-forming units (CFU), microbial communities, and metabolites, were periodically monitored for 40days. Measurements of pH and CFU showed that the lag phases of kimchi fermentation were clearly extended by the addition of red pepper powder. Microbial community analysis using a barcoded pyrosequencing analysis showed that the bacterial diversities in kimchi with red pepper powder decreased more slowly than kimchi without red pepper powder as kimchi fermentation progressed. The kimchi microbial communities were represented mainly by the genera Leuconostoc and Lactobacillus in all kimchi, and the abundance of Weissella was negligible in kimchi without red pepper powder. However, interestingly, kimchi with red pepper powder contained much higher proportions of Weissella than kimchi without red pepper powder, while the proportions of Leuconostoc and Lactobacillus were evidently lower in kimchi with red pepper powder compared to kimchi without red pepper powder. Metabolite analysis using a (1)H NMR technique also showed that the fermentation of kimchi with red pepper powder progressed a little more slowly than that of kimchi without red pepper powder. Principle component analysis using microbial communities and metabolites supported the finding that the addition of red pepper powder into kimchi resulted in the slowing of the kimchi fermentation process, especially during the early fermentation period and influenced the microbial succession and metabolite production during the kimchi fermentation processes. PMID:23290232

  4. Construction of an Interspecific Genetic Map Based on InDel and SSR for Mapping the QTLs Affecting the Initiation of Flower Primordia in Pepper (Capsicum spp.)

    PubMed Central

    Qin, Cheng; Nong, Ding-Guo; Li, Wei-Peng; Tang, Xin; Wu, Zhi-Ming; Hu, Kai-Lin

    2015-01-01

    Re-sequencing permits the mining of genome-wide variations on a large scale and provides excellent resources for the research community. To accelerate the development and application of molecular markers and identify the QTLs affecting the flowering time-related trait in pepper, a total of 1,038 pairs of InDel and 674 SSR primers from different sources were used for genetic mapping using the F2 population (n = 154) derived from a cross between BA3 (C. annuum) and YNXML (C. frutescens). Of these, a total of 224 simple PCR-based markers, including 129 InDels and 95 SSRs, were validated and integrated into a map, which was designated as the BY map. The BY map consisted of 13 linkage groups (LGs) and spanned a total genetic distance of 1,249.77 cM with an average marker distance of 5.60 cM. Comparative analysis of the genetic and physical map based on the anchored markers showed that the BY map covered nearly the whole pepper genome. Based on the BY map, one major and five minor QTLs affecting the number of leaves on the primary axis (Nle) were detected on chromosomes P2, P7, P10 and P11 in 2012. The major QTL on P2 was confirmed based on another subset of the same F2 population (n = 147) in 2014 with selective genotyping of markers from the BY map. With the accomplishment of pepper whole genome sequencing and annotations (release 2.0), 153 candidate genes were predicted to embed in the Nle2.2 region, of which 12 important flowering related genes were obtained. The InDel/SSR-based interspecific genetic map, QTLs and candidate genes obtained by the present study will be useful for the downstream isolation of flowering time-related gene and other genetic applications for pepper. PMID:25781878

  5. Spatial and temporal regulation of the metabolism of reactive oxygen and nitrogen species during the early development of pepper (Capsicum annuum) seedlings

    PubMed Central

    Airaki, Morad; Leterrier, Marina; Valderrama, Raquel; Chaki, Mounira; Begara-Morales, Juan C.; Barroso, Juan B.; del Río, Luis A.; Palma, José M.; Corpas, Francisco J.

    2015-01-01

    Background and Aims The development of seedlings involves many morphological, physiological and biochemical processes, which are controlled by many factors. Some reactive oxygen and nitrogen species (ROS and RNS, respectively) are implicated as signal molecules in physiological and phytopathological processes. Pepper (Capsicum annuum) is a very important crop and the goal of this work was to provide a framework of the behaviour of the key elements in the metabolism of ROS and RNS in the main organs of pepper during its development. Methods The main seedling organs (roots, hypocotyls and green cotyledons) of pepper seedlings were analysed 7, 10 and 14 d after germination. Activity and gene expression of the main enzymatic antioxidants (catalase, ascorbate–glutathione cycle enzymes), NADP-generating dehydrogenases and S-nitrosoglutathione reductase were determined. Cellular distribution of nitric oxide (·NO), superoxide radical (O2·–) and peroxynitrite (ONOO–) was investigated using confocal laser scanning microscopy. Key Results The metabolism of ROS and RNS during pepper seedling development was highly regulated and showed significant plasticity, which was co-ordinated among the main seedling organs, resulting in correct development. Catalase showed higher activity in the aerial parts of the seedling (hypocotyls and green cotyledons) whereas roots of 7-d-old seedlings contained higher activity of the enzymatic components of the ascorbate glutathione cycle, NADP-isocitrate dehydrogenase and NADP-malic enzyme. Conclusions There is differential regulation of the metabolism of ROS, nitric oxide and NADP dehydrogenases in the different plant organs during seedling development in pepper in the absence of stress. The metabolism of ROS and RNS seems to contribute significantly to plant development since their components are involved directly or indirectly in many metabolic pathways. Thus, specific molecules such as H2O2 and NO have implications for signalling

  6. The pepper late embryogenesis abundant protein CaLEA1 acts in regulating abscisic acid signaling, drought and salt stress response.

    PubMed

    Lim, Chae Woo; Lim, Sohee; Baek, Woonhee; Lee, Sung Chul

    2015-08-01

    As sessile organisms, plants are constantly challenged by environmental stresses, including drought and high salinity. Among the various abiotic stresses, osmotic stress is one of the most important factors for growth and significantly reduces crop productivity in agriculture. Here, we report a function of the CaLEA1 protein in the defense responses of plants to osmotic stress. Our analyses showed that the CaLEA1 gene was strongly induced in pepper leaves exposed to drought and increased salinity. Furthermore, we determined that the CaLEA1 protein has a late embryogenesis abundant (LEA)_3 homolog domain highly conserved among other known group 5 LEA proteins and is localized in the processing body. We generated CaLEA1-silenced peppers and CaLEA1-overexpressing (OX) transgenic Arabidopsis plants to evaluate their responses to dehydration and high salinity. Virus-induced gene silencing of CaLEA1 in pepper plants conferred enhanced sensitivity to drought and salt stresses, which was accompanied by high levels of lipid peroxidation in dehydrated and NaCl-treated leaves. CaLEA1-OX plants exhibited enhanced sensitivity to abscisic acid (ABA) during seed germination and in the seedling stage; furthermore, these plants were more tolerant to drought and salt stress than the wild-type plants because of enhanced stomatal closure and increased expression of stress-responsive genes. Collectively, our data suggest that CaLEA1 positively regulates drought and salinity tolerance through ABA-mediated cell signaling. PMID:25302464

  7. Antioxidant activity of fresh and processed Jalapeño and Serrano peppers.

    PubMed

    Alvarez-Parrilla, Emilio; de la Rosa, Laura A; Amarowicz, Ryszard; Shahidi, Fereidoon

    2011-01-12

    In this research, total phenols, flavonoids, capsaicinoids, ascorbic acid, and antioxidant activity (ORAC, hydroxyl radical, DPPH, and TEAC assays) of fresh and processed (pickled and chipotle canned) Jalapeño and Serrano peppers were determined. All fresh and processed peppers contained capsaicin, dihydrocapsaicin, and nordihydrocapsaicin, even though the latter could be quantified only in fresh peppers. Processed peppers contained lower amounts of phytochemicals and had lower antioxidant activity, compared to fresh peppers. Good correlations between total phenols and ascorbic acid with antioxidant activity were observed. Elimination of chlorophylls by silicic acid chromatography reduced the DPPH scavenging activity of the extracts, compared to crude extracts, confirming the antioxidant activity of chlorophylls present in Jalapeño and Serrano peppers. PMID:21126003

  8. Antioxidant, Antinociceptive, and Anti-Inflammatory Effects of Carotenoids Extracted from Dried Pepper (Capsicum annuum L.)

    PubMed Central

    Hernández-Ortega, Marcela; Ortiz-Moreno, Alicia; Hernández-Navarro, María Dolores; Chamorro-Cevallos, Germán; Dorantes-Alvarez, Lidia; Necoechea-Mondragón, Hugo

    2012-01-01

    Carotenoids extracted from dried peppers were evaluated for their antioxidant, analgesic, and anti-inflammatory activities. Peppers had a substantial carotenoid content: guajillo 3406 ± 4 μg/g, pasilla 2933 ± 1 μg/g, and ancho 1437 ± 6 μg/g of sample in dry weight basis. A complex mixture of carotenoids was discovered in each pepper extract. The TLC analysis revealed the presence of chlorophylls in the pigment extract from pasilla and ancho peppers. Guajillo pepper carotenoid extracts exhibited good antioxidant activity and had the best scavenging capacity for the DPPH+ cation (24.2%). They also exhibited significant peripheral analgesic activity at 5, 20, and 80 mg/kg and induced central analgesia at 80 mg/kg. The results suggest that the carotenoids in dried guajillo peppers have significant analgesic and anti-inflammatory benefits and could be useful for pain and inflammation relief. PMID:23091348

  9. CaCDPK15 positively regulates pepper responses to Ralstonia solanacearum inoculation and forms a positive-feedback loop with CaWRKY40 to amplify defense signaling.

    PubMed

    Shen, Lei; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Cheng, Wei; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Mou, Shaoliang; Liu, Zhiqin; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin

    2016-01-01

    CaWRKY40 is a positive regulator of pepper (Capsicum annum) response to Ralstonia solanacearum inoculation (RSI), but the underlying mechanism remains largely unknown. Here, we functionally characterize CaCDPK15 in the defense signaling mediated by CaWRKY40. Pathogen-responsive TGA, W, and ERE boxes were identified in the CaCDPK15 promoter (pCaCDPK15), and pCaCDPK15-driven GUS expression was significantly enhanced in response to RSI and exogenously applied salicylic acid, methyl jasmonate, abscisic acid, and ethephon. Virus-induced gene silencing (VIGS) of CaCDPK15 significantly increased the susceptibility of pepper to RSI and downregulated the immunity-associated markers CaNPR1, CaPR1, and CaDEF1. By contrast, transient CaCDPK15 overexpression significantly activated hypersensitive response associated cell death, upregulated the immunity-associated marker genes, upregulated CaWRKY40 expression, and enriched CaWRKY40 at the promoters of its targets genes. Although CaCDPK15 failed to interact with CaWRKY40, the direct binding of CaWRKY40 to pCaCDPK15 was detected by chromatin immunoprecipitation, which was significantly potentiated by RSI in pepper plants. These combined results suggest that RSI in pepper induces CaCDPK15 and indirectly activates downstream CaWRKY40, which in turn potentiates CaCDPK15 expression. This positive-feedback loop would amplify defense signaling against RSI and efficiently activate strong plant immunity. PMID:26928570

  10. CaCDPK15 positively regulates pepper responses to Ralstonia solanacearum inoculation and forms a positive-feedback loop with CaWRKY40 to amplify defense signaling

    PubMed Central

    Shen, Lei; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Cheng, Wei; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Mou, Shaoliang; Liu, Zhiqin; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin

    2016-01-01

    CaWRKY40 is a positive regulator of pepper (Capsicum annum) response to Ralstonia solanacearum inoculation (RSI), but the underlying mechanism remains largely unknown. Here, we functionally characterize CaCDPK15 in the defense signaling mediated by CaWRKY40. Pathogen-responsive TGA, W, and ERE boxes were identified in the CaCDPK15 promoter (pCaCDPK15), and pCaCDPK15-driven GUS expression was significantly enhanced in response to RSI and exogenously applied salicylic acid, methyl jasmonate, abscisic acid, and ethephon. Virus-induced gene silencing (VIGS) of CaCDPK15 significantly increased the susceptibility of pepper to RSI and downregulated the immunity-associated markers CaNPR1, CaPR1, and CaDEF1. By contrast, transient CaCDPK15 overexpression significantly activated hypersensitive response associated cell death, upregulated the immunity-associated marker genes, upregulated CaWRKY40 expression, and enriched CaWRKY40 at the promoters of its targets genes. Although CaCDPK15 failed to interact with CaWRKY40, the direct binding of CaWRKY40 to pCaCDPK15 was detected by chromatin immunoprecipitation, which was significantly potentiated by RSI in pepper plants. These combined results suggest that RSI in pepper induces CaCDPK15 and indirectly activates downstream CaWRKY40, which in turn potentiates CaCDPK15 expression. This positive-feedback loop would amplify defense signaling against RSI and efficiently activate strong plant immunity. PMID:26928570

  11. A Maize 9-Lipoxygenase is Required for Resistance to Aflatoxin Contamination, Insects, and Nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipoxygenases (LOXs) are dioxygenases that catalyze the addition of molecular oxygen to polyunsaturated fatty acids including linoleic (LA) and linolenic acid (LeA), either at position 9 or 13 of their carbon chains, to produce a group of acyclic and cyclic hydropexides compounds called oxylipins. T...

  12. Mixed noble gas effect on cut green peppers

    NASA Astrophysics Data System (ADS)

    Raymond, L. V.; Zhang, M.; Karangwa, E.; Chesereka, M. J.

    2013-01-01

    Increasing attempts at using gas which leads to hydrate formation as a preservative tool in fresh-cut fruits and vegetables have been reported. In this study, changes in some physical and biochemical properties of fresh-cut green peppers under compressed noble gas treatments were examined. Mixed argonkrypton and argon treatments were performed before cold storage at 5°C for 15 days. Mass loss and cell membrane permeability were found to be the lowest in mixed argon-krypton samples. Besides, a lower CO2 concentration and vitamin C loss were detected in gastreated samples compared to untreated samples (control). While the total phenol degradation was moderately reduced, the effect of the treatment on polyphenoloxidase activity was better at the beginning of the storage period. The minimum changes in quality observed in cut peppers resulted from both mixed and gas treatment alone.

  13. Antibacterial mechanism and activities of black pepper chloroform extract.

    PubMed

    Zou, Lan; Hu, Yue-Ying; Chen, Wen-Xue

    2015-12-01

    Black pepper extracts reportedly inhibit food spoilage and food pathogenic bacteria. This study explored the antimicrobial activity of black pepper chloroform extract (BPCE) against Escherichia coli and Staphylococcus aureus. The antibacterial mechanism of BPCE was elucidated by analyzing the cell morphology, respiratory metabolism, pyruvic acid content, and ATP levels of the target bacteria. Scanning electron micrographs showed that the bacterial cells were destroyed and that plasmolysis was induced. BPCE inhibited the tricarboxylic acid pathway of the bacteria. The extract significantly increased pyruvic acid concentration in bacterial solutions and reduced ATP level in bacterial cells. BPCE destroyed the permeability of the cell membrane, which consequently caused metabolic dysfunction, inhibited energy synthesis, and triggered cell death. PMID:26604394

  14. Pepper weevil attraction to volatiles from host and nonhost plants.

    PubMed

    Addesso, Karla M; McAuslane, Heather J

    2009-02-01

    The location of wild and cultivated host plants by pepper weevil (Anthonomus eugenii Cano) may be aided by visual cues, the male-produced aggregation pheromone, herbivore-induced, or constitutive host plant volatiles. The attractiveness of constitutive plant volatiles to pioneer weevils is important in understanding, and perhaps controlling, dispersal of this insect between wild and cultivated hosts. Ten-day-old male and 2- and 10-day-old female weevils were tested in short-range Y-tube assays. Ten-day-old male and female weevils were attracted to the volatiles released by whole plants of three known oviposition hosts, 'Jalapeno' pepper, American black nightshade, and eggplant, as well as tomato, a congener, which supports feeding but not oviposition. Two-day-old females were attracted to all plants tested, including lima bean, an unrelated, nonhost plant. Fruit volatiles from all three hosts and flower volatiles from nightshade and eggplant were also attractive. In choice tests, weevils showed different preferences for the oviposition hosts, depending on age and sex. Upwind response of 10-day-old male and female weevils to host plant volatiles was also tested in long-range wind tunnel assays. Weevils responded to pepper, nightshade, and eggplant volatiles by moving upwind. There was no difference in the observed upwind response of the weevils to the three host plants under no-choice conditions. Reproductively mature pepper weevils can detect, orient to, and discriminate between the volatile plumes of host plants in the absence of visual cues, conspecific feeding damage, or the presence of their aggregation pheromone. PMID:19791617

  15. Influence of agricultural practices on fruit quality of bell pepper.

    PubMed

    Abu-Zahra, T R

    2011-09-15

    An experiment was carried out under plastic house conditions to compare the effect of four fermented organic matter sources (cattle, poultry and sheep manure in addition to 1:1:1 mixture of the three organic matter sources) in which 4 kg organic matter m(-2) were used, with that of the conventional agriculture (chemical fertilizers) treatments on Marvello red pepper fruit quality, by using a Randomized Complete Block Design (RCBD) with four replicates. Pepper fruits characteristics cultivated in soil supplemented with manure were generally better than those from plants grown in soil only. Addition of animal manure increased bell pepper fruit content of soluble solids, ascorbic acid, total phenols, crude fibre and intensity of red color as compare with conventional agriculture that produced fruits with higher titratable acidity, water content, lycopene and bigger fruit size. In most cases of animal manure treatments, best results were obtained by the sheep manure treatment that produced the highest TSS, while the worst results were obtained by the poultry manure treatment that produced the smallest fruit and lowest fruit lycopene content. PMID:22518928

  16. EPR investigations of gamma-irradiated ground black pepper

    NASA Astrophysics Data System (ADS)

    Polovka, Martin; Brezová, Vlasta; Staško, Andrej; Mazúr, Milan; Suhaj, Milan; Šimko, Peter

    2006-02-01

    The γ-radiation treatment of ground black pepper samples resulted in the production of three paramagnetic species ( GI- GIII) which arise from a different origin and have different thermal behavior and stability. The axially symmetric spectra can be characterized by the spin Hamiltonian parameters: GI ( g⊥=2.0060, g∥=2.0032; A⊥=0.85 mT, A∥=0.70 mT) and GII ( g⊥=2.0060, g∥=2.0050; A⊥=0.50 mT, A∥=0.40 mT) assigned to carbohydrate radical structures. The parameters of EPR signal GIII ( g⊥=2.0029, g∥=2.0014; A⊥=3.00 mT, A∥=1.80 mT) possessed features characteristic of cellulose radical species. The activation energies, evaluated by Arrhenius analysis, are in order Ea( GI)< Ea( GIII)< Ea( GII). The EPR measurements performed 20 weeks after radiation process confirmed that a temperature increase from 298 to 353 K, caused a significant decrease of integral EPR signal intensity for γ-irradiated samples (˜40%), compared to the reference (non-irradiated) ground black pepper, where a decrease of ˜13% was found. The influence of γ-radiation treatment on the radical-scavenging activities of aqueous and ethanol extracts of black pepper were investigated by both an EPR spin trapping technique and DPPH assay. No changes were detected in either the water or ethanol extracts for a γ-irradiation dose of 10 kGy.

  17. Phylogenetic analysis of Tomato spotted wilt virus (TSWV) NSs protein demonstrates the isolated emergence of resistance-breaking strains in pepper.

    PubMed

    Almási, Asztéria; Csilléry, Gábor; Csömör, Zsófia; Nemes, Katalin; Palkovics, László; Salánki, Katalin; Tóbiás, István

    2015-02-01

    Resurgence of Tomato spotted wilt virus (TSWV) worldwide as well as in Hungary causing heavy economic losses directed the attention to the factors contributing to the outbreak of this serious epidemics. The introgression of Tsw resistance gene into various pepper cultivars seemed to solve TSWV control, but widely used resistant pepper cultivars bearing the same, unique resistance locus evoked the rapid emergence of resistance-breaking (RB) TSWV strains. In Hungary, the sporadic appearance of RB strains in pepper-producing region was first observed in 2010-2011, but in 2012 it was detected frequently. Previously, the non-structural protein (NSs) encoded by small RNA (S RNA) of TSWV was verified as the avirulence factor for Tsw resistance, therefore we analyzed the S RNA of the Hungarian RB and wild type (WT) isolates and compared to previously analyzed TSWV strains with RB properties from different geographical origins. Phylogenetic analysis demonstrated that the different RB strains had the closest relationship with the local WT isolates and there is no conserved mutation present in all the NSs genes of RB isolates from different geographical origins. According to these results, we concluded that the RB isolates evolved separately in geographic point of view, and also according to the RB mechanism. PMID:25331341

  18. 76 FR 65162 - Notice of Request for Extension of Approval of an Information Collection; Importation of Peppers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... Collection; Importation of Peppers From the Republic of Korea AGENCY: Animal and Plant Health Inspection... with regulations for the importation of peppers from the Republic of Korea. DATES: We will consider all...: For information on regulations for the importation of peppers from the Republic of Korea, contact...

  19. 76 FR 78231 - Notice of Request for Extension of Approval of an Information Collection; Importation of Peppers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... Collection; Importation of Peppers From Certain Central American Countries AGENCY: Animal and Plant Health... collection associated with regulations for the importation of peppers from certain Central American countries... INFORMATION CONTACT: For information on regulations for the importation of peppers from certain...

  20. The industrial melanism mutation in British peppered moths is a transposable element.

    PubMed

    Van't Hof, Arjen E; Campagne, Pascal; Rigden, Daniel J; Yung, Carl J; Lingley, Jessica; Quail, Michael A; Hall, Neil; Darby, Alistair C; Saccheri, Ilik J

    2016-06-01

    Discovering the mutational events that fuel adaptation to environmental change remains an important challenge for evolutionary biology. The classroom example of a visible evolutionary response is industrial melanism in the peppered moth (Biston betularia): the replacement, during the Industrial Revolution, of the common pale typica form by a previously unknown black (carbonaria) form, driven by the interaction between bird predation and coal pollution. The carbonaria locus has been coarsely localized to a 200-kilobase region, but the specific identity and nature of the sequence difference controlling the carbonaria-typica polymorphism, and the gene it influences, are unknown. Here we show that the mutation event giving rise to industrial melanism in Britain was the insertion of a large, tandemly repeated, transposable element into the first intron of the gene cortex. Statistical inference based on the distribution of recombined carbonaria haplotypes indicates that this transposition event occurred around 1819, consistent with the historical record. We have begun to dissect the mode of action of the carbonaria transposable element by showing that it increases the abundance of a cortex transcript, the protein product of which plays an important role in cell-cycle regulation, during early wing disc development. Our findings fill a substantial knowledge gap in the iconic example of microevolutionary change, adding a further layer of insight into the mechanism of adaptation in response to natural selection. The discovery that the mutation itself is a transposable element will stimulate further debate about the importance of 'jumping genes' as a source of major phenotypic novelty. PMID:27251284

  1. Genetic Diversity of pathogenic and nonpathogenic populations of Phytophthora capsici from pepper plants and soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty-six Phytophthora capsici strains and one Phytophthora parasitica strain were evaluated for pathogenicity and disease severity on pepper (Capsicum annuum) plants. The strains represent a range of geographic locations and were collected primarily from pepper stems or roots of plants with sympto...

  2. First Complete Genome Sequence of Pepper vein yellows virus from Australia.

    PubMed

    Maina, Solomon; Edwards, Owain R; Jones, Roger A C

    2016-01-01

    We present here the first complete genomic RNA sequence of the polerovirus Pepper vein yellows virus (PeVYV) obtained from a pepper plant in Australia. We compare it with complete PeVYV genomes from Japan and China. The Australian genome was more closely related to the Japanese than the Chinese genome. PMID:27231375

  3. Impact of preplant incorporated herbicides on non-pungent jalapeno pepper yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producer surveys often rank weed competition as their most serious concern in maximizing vegetable yields. Non-pungent jalapeno peppers have a potential for outstanding yields in Oklahoma. Non-pungent jalapeno peppers are used for making commercial picante sauces (salsas). There is incomplete inform...

  4. Initial screening of chili and sweet pepper germplasm for resistance to chili thrips, Scirtothrips dorsalis Hood.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A preliminary evaluation for resistance to chili thrips, Scirtothrips dorsalis Hood of 41 and 194 pepper (Capsicum annuum L.) germplasms during 1987 and 1988, espectively, indicated chili accessions may be a promising source of resistance . In contrast, all sweet pepper accessions tested were highly...

  5. 509-45-1: A C. annuum Pepper germplasm containing high concentrations of capsinoids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication reports the public release of pepper (Capsicum annuum) germplasm ‘509-45-1’. Pepper germplasm 509-45-1 is a small-fruited, non-pungent single plant selection from PI 645509. Fruit of ‘509-45-1’ contain high concentrations of capsinoids [capsiate ((4-hydroxy-3-methoxybenzyl (E)-8...

  6. Effects of vermicomposts produced from food waste on the growth and yields of greenhouse peppers.

    PubMed

    Arancon, Norman Q; Edwards, Clive A; Atiyeh, Rola; Metzger, James D

    2004-06-01

    Vermicomposts, produced commercially from food wastes, were substituted at a range of different concentrations into a soil-less commercial bedding plant container medium, Metro-Mix 360 (MM360), to evaluate their effects on the growth and yields of peppers in the greenhouse. Six-week-old peppers (Capsicum annum L. var. California) were transplanted into 100%, 80%, 60%, 40%, 20% or 10% MM360 substituted with 0%, 10%, 20%, 40%, 60%, 80% and 100% vermicompost. All plants were watered three times weekly with 200 ppm Peter's Nutrient Solution from the time of transplanting up to 107 days. Peppers grown in potting mixtures containing 40% food waste vermicomposts and 60% MM360 yielded 45% more fruit weights and had 17% greater mean number of fruits than those grown in MM360 only. The mean heights, numbers of buds and numbers of flowers of peppers grown in potting mixtures containing 10-80% vermicompost although greater did not differ significantly from those of peppers grown in MM360. There were no positive correlations between the increases in pepper yields, and the amounts of mineral-N and microbial biomass-N in the potting mixtures, or the concentrations of nitrogen in the shoot tissues of peppers. Factors such as: an improvement of the physical structure of the potting medium, increases in populations of beneficial microorganisms and the potential availability of plant growth-influencing-substances produced by microorganisms in vermicomposts, could have contributed to the increased pepper yields obtained. PMID:15051075

  7. Selection of genetically diverse trichoderma spp. isolates for suppression of phytophthora capsici on bell pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Environmentally compatible control measures are needed for suppression of Phytophthora capsici on pepper. Twenty-four isolates of Trichoderma were screened for suppression of this pathogen on bell pepper in greenhouse pot assays. Of these twenty-four isolates, GL12, GL13, and Th23 provided signifi...

  8. 7 CFR 319.56-40 - Peppers from certain Central American countries.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... mitigation has been achieved. (3) The peppers must be packed in insect-proof cartons or containers or covered with insect-proof mesh or plastic tarpaulin at the packinghouse for transit to the United States. These...-exclusionary packinghouse. The peppers must be safeguarded by an insect-proof mesh screen or plastic...

  9. Does infection by southern root-knot nematode influence development of Phytophthora blight in pepper?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The southern root-knot nematode, Meloidogyne incognita, and Phytophthora capsici, the causal agent of Phytophthora blight, are both important pathogens of pepper (Capsicum annuum L.) in the U.S. and worldwide. Although there is significant information in the literature about the responses of pepper...

  10. Tospoviruses and Thrips and Integrated Resistance Management Strategies in Pepper in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Florida ranks second in the production and value of bell pepper in the U.S. In 2015, Florida produced over one-half billion pounds of bell pepper on over 12,000 acres, valued at over 220 million dollars. In recent years, several invasive species of thrips and thrips-vectored tospoviruses have beco...