Science.gov

Sample records for pepper bzip transcription

  1. Expression and Functional Roles of the Pepper Pathogen-Induced bZIP Transcription Factor CabZIP2 in Enhanced Disease Resistance to Bacterial Pathogen Infection.

    PubMed

    Lim, Chae Woo; Baek, Woonhee; Lim, Sohee; Han, Sang-Wook; Lee, Sung Chul

    2015-07-01

    A pepper bZIP transcription factor gene, CabZIP2, was isolated from pepper leaves infected with a virulent strain of Xanthomonas campestris pv. vesicatoria. Transient expression analysis of the CabZIP2-GFP fusion protein in Nicotiana benthamiana revealed that the CabZIP2 protein is localized in the cytoplasm as well as the nucleus. The acidic domain in the N-terminal region of CabZIP2 that is fused to the GAL4 DNA-binding domain is required to activate the transcription of reporter genes in yeast. Transcription of CabZIP2 is induced in pepper plants inoculated with virulent or avirulent strains of X. campestris pv. vesicatoria. The CabZIP2 gene is also induced by defense-related hormones such as salicylic acid, methyl jasmonate, and ethylene. To elucidate the in vivo function of the CabZIP2 gene in plant defense, virus-induced gene silencing in pepper and overexpression in Arabidopsis were used. CabZIP2-silenced pepper plants were susceptible to infection by the virulent strain of X. campestris pv. vesicatoria, which was accompanied by reduced expression of defense-related genes such as CaBPR1 and CaAMP1. CabZIP2 overexpression in transgenic Arabidopsis plants conferred enhanced resistance to Pseudomonas syringae pv. tomato DC3000. Together, these results suggest that CabZIP2 is involved in bacterial disease resistance. PMID:25738319

  2. In vivo binding of hot pepper bZIP transcription factor CabZIP1 to the G-box region of pathogenesis-related protein 1 promoter

    SciTech Connect

    Lee, Boo-Ja; Park, Chang-Jin; Kim, Sung-Kyu; Kim, Ki-Jeong; Paek, Kyung-Hee . E-mail: khpaek95@korea.ac.kr

    2006-05-26

    We find that salicylic acid and ethephon treatment in hot pepper increases the expression of a putative basic/leucine zipper (bZIP) transcription factor gene, CabZIP1. CabZIP1 mRNA is expressed ubiquitously in various organs. The green fluorescent protein-fused transcription factor, CabZIP1::GFP, can be specifically localized to the nucleus, an action that is consistent with the presence of a nuclear localization signal in its protein sequence. Transient overexpression of the CabZIP1 transcription factor results in an increase in PR-1 transcripts level in Nicotiana benthamiana leaves. Using chromatin immunoprecipitation, we demonstrate that CabZIP1 binds to the G-box elements in native promoter of the hot pepper pathogenesis-related protein 1 (CaPR-1) gene in vivo. Taken together, our results suggest that CabZIP1 plays a role as a transcriptional regulator of the CaPR-1 gene.

  3. bZIPs and WRKYs: two large transcription factor families executing two different functional strategies

    PubMed Central

    Llorca, Carles M.; Potschin, Maren; Zentgraf, Ulrike

    2014-01-01

    bZIPs and WRKYs are two important plant transcription factor (TF) families regulating diverse developmental and stress-related processes. Since a partial overlap in these biological processes is obvious, it can be speculated that they fulfill non-redundant functions in a complex regulatory network. Here, we focus on the regulatory mechanisms that are so far described for bZIPs and WRKYs. bZIP factors need to heterodimerize for DNA-binding and regulation of transcription, and based on a bioinformatics approach, bZIPs can build up more than the double of protein interactions than WRKYs. In contrast, an enrichment of the WRKY DNA-binding motifs can be found in WRKY promoters, a phenomenon which is not observed for the bZIP family. Thus, the two TF families follow two different functional strategies in which WRKYs regulate each other’s transcription in a transcriptional network whereas bZIP action relies on intensive heterodimerization. PMID:24817872

  4. System-wide characterization of bZIP transcription factor proteins involved in infection-related morphogenesis of Magnaporthe oryzae

    PubMed Central

    Tang, Wei; Ru, Yanyan; Hong, Li; Zhu, Qian; Zuo, Rongfang; Guo, Xianxian; Wang, Jingzhen; Zhang, Haifeng; Zheng, Xiaobo; Wang, Ping; Zhang, Zhengguang

    2014-01-01

    The basic-leucine zipper (bZIP) domain-containing transcription factors (TFs) function as key regulators of cellular growth and differentiation in eukaryotic organisms including fungi. We have previously identified MoAp1 and MoAtf1 as bZIP TFs in Magnaporthe oryzae and demonstrated that they regulate the oxidative stress response and are critical in conidiogenesis and pathogenicity. Studies of bZIP proteins could provide a novel strategy for controlling rice blast, but a systematic examination of the bZIP proteins has not been carried out. Here, we identified 19 additional bZIP TFs and characterized their functions. We found that the majority of these TFs exhibit active functions, most notably, in conidiogenesis. We showed that MoHac1 regulates the endoplasmic reticulum (ER)-stress response through a conserved unfolded protein response (UPR) pathway, MoMetR controls amino acid metabolism to govern growth and differentiation, and MoBzip10 governs appressorium function and invasive hyphal growth. Moreover, MoBzip5 participates in appressorium formation through a pathway distinct from that MoBzip10, and MoMeaB appears to exert a regulatory role through nutrient uptake and nitrogen utilization. Collectively, our results provide insights into shared and specific functions associated with each of these TFs and link the regulatory roles to the fungal growth, conidiation, appressorium formation, host penetration, and pathogenicity. PMID:25186614

  5. Expression analysis of bZIP transcription factor encoding genes in response to water deficit stress in rice.

    PubMed

    Ali, Kishwar; Rai, R D; Tyagi, Aruna

    2016-05-01

    In plants, basic region/leucine zipper motif (bZIP) transcription factors regulate several developmental processes and activate genes in response to biotic and abiotic stresses. Role of stress responsive bZIP transcription factors was studied in paddy in relation to different stages of development and water deficit stress (WDS) in a drought tolerant cultivar N22 and susceptible IR 64. Further, relative water content (RWC), membrane stability index (MSI) and abscisic acid (ABA) content were measured as indices of WDS at different stages of development and levels of stress. Expression of stress responsive bZIP transcription factors was directly correlated to developmental stage and WDS and indirectly to RWC, MSI and ABA content. PMID:27319052

  6. The Role of bZIP Transcription Factors in Green Plant Evolution: Adaptive Features Emerging from Four Founder Genes

    PubMed Central

    Schrago, Carlos Guerra; dos Santos, Renato Vicentini; Mueller-Roeber, Bernd; Vincentz, Michel

    2008-01-01

    Background Transcription factors of the basic leucine zipper (bZIP) family control important processes in all eukaryotes. In plants, bZIPs are regulators of many central developmental and physiological processes including photomorphogenesis, leaf and seed formation, energy homeostasis, and abiotic and biotic stress responses. Here we performed a comprehensive phylogenetic analysis of bZIP genes from algae, mosses, ferns, gymnosperms and angiosperms. Methodology/Principal Findings We identified 13 groups of bZIP homologues in angiosperms, three more than known before, that represent 34 Possible Groups of Orthologues (PoGOs). The 34 PoGOs may correspond to the complete set of ancestral angiosperm bZIP genes that participated in the diversification of flowering plants. Homologous genes dedicated to seed-related processes and ABA-mediated stress responses originated in the common ancestor of seed plants, and three groups of homologues emerged in the angiosperm lineage, of which one group plays a role in optimizing the use of energy. Conclusions/Significance Our data suggest that the ancestor of green plants possessed four bZIP genes functionally involved in oxidative stress and unfolded protein responses that are bZIP-mediated processes in all eukaryotes, but also in light-dependent regulations. The four founder genes amplified and diverged significantly, generating traits that benefited the colonization of new environments. PMID:18698409

  7. Functional dissection of a small anaerobically induced bZIP transcription factor from tomato.

    PubMed

    Sell, Simone; Hehl, Reinhard

    2004-11-01

    A small anaerobically induced tomato transcription factor was isolated from a subtractive library. This factor, designated ABZ1 (anaerobic basic leucine zipper), is anaerobically induced in fruits, leaves and roots and encodes a nuclear localized protein. ABZ1 shares close structural and sequence homology with the S-family of small basic leucine zipper (bZIP) transcription factors that are implicated in stress response. Nuclear localization of ABZ1 is mediated by the basic region and occurs under normoxic conditions. ABZ1 binds to G-box-like target sites as a dimer. Binding can be abolished by heterodimerization with a truncated protein retaining the leucine zipper but lacking the DNA binding domain. The protein binds in a sequence specific manner to the CaMV 35S promoter which is down regulated when ABZ1 is coexpressed. This correlates with the anaerobic down regulation of the 35S promoter in tomato and tobacco. These results may suggest that small bZIP proteins are involved in the negative regulation of gene expression under anaerobic conditions. PMID:15560794

  8. The phylogeny of C/S1 bZIP transcription factors reveals a shared algal ancestry and the pre-angiosperm translational regulation of S1 transcripts

    PubMed Central

    Peviani, Alessia; Lastdrager, Jeroen; Hanson, Johannes; Snel, Berend

    2016-01-01

    Basic leucine zippers (bZIPs) form a large plant transcription factor family. C and S1 bZIP groups can heterodimerize, fulfilling crucial roles in seed development and stress response. S1 sequences also harbor a unique regulatory mechanism, termed Sucrose-Induced Repression of Translation (SIRT). The conservation of both C/S1 bZIP interactions and SIRT remains poorly characterized in non-model species, leaving their evolutionary origin uncertain and limiting crop research. In this work, we explored recently published plant sequencing data to establish a detailed phylogeny of C and S1 bZIPs, investigating their intertwined role in plant evolution, and the origin of SIRT. Our analyses clarified C and S1 bZIP orthology relationships in angiosperms, and identified S1 sequences in gymnosperms. We experimentally showed that the gymnosperm orthologs are regulated by SIRT, tracing back the origin of this unique regulatory mechanism to the ancestor of seed plants. Additionally, we discovered an earlier S ortholog in the charophyte algae Klebsormidium flaccidum, together with a C ortholog. This suggests that C and S groups originated by duplication from a single algal proto-C/S ancestor. Based on our observations, we propose a model wherein the C/S1 bZIP dimer network evolved in seed plants from pre-existing C/S bZIP interactions. PMID:27457880

  9. The phylogeny of C/S1 bZIP transcription factors reveals a shared algal ancestry and the pre-angiosperm translational regulation of S1 transcripts.

    PubMed

    Peviani, Alessia; Lastdrager, Jeroen; Hanson, Johannes; Snel, Berend

    2016-01-01

    Basic leucine zippers (bZIPs) form a large plant transcription factor family. C and S1 bZIP groups can heterodimerize, fulfilling crucial roles in seed development and stress response. S1 sequences also harbor a unique regulatory mechanism, termed Sucrose-Induced Repression of Translation (SIRT). The conservation of both C/S1 bZIP interactions and SIRT remains poorly characterized in non-model species, leaving their evolutionary origin uncertain and limiting crop research. In this work, we explored recently published plant sequencing data to establish a detailed phylogeny of C and S1 bZIPs, investigating their intertwined role in plant evolution, and the origin of SIRT. Our analyses clarified C and S1 bZIP orthology relationships in angiosperms, and identified S1 sequences in gymnosperms. We experimentally showed that the gymnosperm orthologs are regulated by SIRT, tracing back the origin of this unique regulatory mechanism to the ancestor of seed plants. Additionally, we discovered an earlier S ortholog in the charophyte algae Klebsormidium flaccidum, together with a C ortholog. This suggests that C and S groups originated by duplication from a single algal proto-C/S ancestor. Based on our observations, we propose a model wherein the C/S1 bZIP dimer network evolved in seed plants from pre-existing C/S bZIP interactions. PMID:27457880

  10. Transcriptome analysis of newly classified bZIP transcription factors of Brassica rapa in cold stress response.

    PubMed

    Hwang, Indeok; Jung, Hee-Jeong; Park, Jong-In; Yang, Tae-Jin; Nou, Ill-Sup

    2014-09-01

    Plant bZIP transcription factors play crucial roles in biological processes. In this study, 136 putative bZIP transcription members were identified in Brassica rapa. The bZIP family can be divided into nine groups according to the specific amino acid rich domain in B. rapa and Arabidopsis thaliana. To screen the cold stress responsive BrbZIP genes, we evaluated whether the transcription patterns of the BrbZIP genes were enhanced by cold treatment in the inbred lines, Chiifu and Kenshin, by microarray data analysis and qRT-PCR. The expression level of six genes increased significantly in Kenshin, but these genes were unchanged in Chiifu. These findings suggest that the six genes that encoded proteins containing N-rich regions might be involved in cold stress response. The results presented herein provide valuable information regarding the molecular basis of the bZIP transcription factors and their potential function in regulation growth and development, particularly in cold stress response. PMID:25075938

  11. Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor

    PubMed Central

    Nagashima, Yukihiro; Mishiba, Kei-ichiro; Suzuki, Eiji; Shimada, Yukihisa; Iwata, Yuji; Koizumi, Nozomu

    2011-01-01

    IRE1 plays an essential role in the endoplasmic reticulum (ER) stress response in yeast and mammals. We found that a double mutant of Arabidopsis IRE1A and IRE1B (ire1a/ire1b) is more sensitive to the ER stress inducer tunicamycin than the wild-type. Transcriptome analysis revealed that genes whose induction was reduced in ire1a/ire1b largely overlapped those in the bzip60 mutant. We observed that the active form of bZIP60 protein detected in the wild-type was missing in ire1a/ire1b. We further demonstrated that bZIP60 mRNA is spliced by ER stress, removing 23 ribonucleotides and therefore causing a frameshift that replaces the C-terminal region of bZIP60 including the transmembrane domain (TMD) with a shorter region without a TMD. This splicing was detected in ire1a and ire1b single mutants, but not in the ire1a/ire1b double mutant. We conclude that IRE1A and IRE1B catalyse unconventional splicing of bZIP60 mRNA to produce the active transcription factor. PMID:22355548

  12. Coupling of folding and DNA-binding in the bZIP domains of Jun-Fos heterodimeric transcription factor.

    PubMed

    Seldeen, Kenneth L; McDonald, Caleb B; Deegan, Brian J; Farooq, Amjad

    2008-05-01

    In response to mitogenic stimuli, the heterodimeric transcription factor Jun-Fos binds to the promoters of a diverse array of genes involved in critical cellular responses such as cell growth and proliferation, cell cycle regulation, embryogenic development and cancer. In so doing, Jun-Fos heterodimer regulates gene expression central to physiology and pathology of the cell in a specific and timely manner. Here, using the technique of isothermal titration calorimetry (ITC), we report detailed thermodynamics of the bZIP domains of Jun-Fos heterodimer to synthetic dsDNA oligos containing the TRE and CRE consensus promoter elements. Our data suggest that binding of the bZIP domains to both TRE and CRE is under enthalpic control and accompanied by entropic penalty at physiological temperatures. Although the bZIP domains bind to both TRE and CRE with very similar affinities, the enthalpic contributions to the free energy of binding to CRE are more favorable than TRE, while the entropic penalty to the free energy of binding to TRE is smaller than CRE. Despite such differences in their thermodynamic signatures, enthalpy and entropy of binding of the bZIP domains to both TRE and CRE are highly temperature-dependent and largely compensate each other resulting in negligible effect of temperature on the free energy of binding. From the plot of enthalpy change versus temperature, the magnitude of heat capacity change determined is much larger than that expected from the direct association of bZIP domains with DNA. This observation is interpreted to suggest that the basic regions in the bZIP domains are largely unstructured in the absence of DNA and only become structured upon interaction with DNA in a coupled folding and binding manner. Our new findings are rationalized in the context of 3D structural models of bZIP domains of Jun-Fos heterodimer in complex with dsDNA oligos containing the TRE and CRE consensus sequences. Taken together, our study demonstrates that enthalpy is

  13. Molecular cloning of a putative novel human bZIP transcription factor on chromosome 17q22

    SciTech Connect

    Luna, L.; Johnsen, O.; Skartlien, A.H.

    1994-08-01

    We have cloned and characterized cDNA clones representing several mRNA isoforms generated by alternative splicing of a single gene localized to chromosome 17q22. Sequence analysis showed that the predicted translational product of the longest open reading frame (2316 nucleotides, 772 amino acids) is related to transcription factors of the basic elucine zipper (bZIP) class. The sequence contained several regions characteristic of transcriptional regulatory domains. A cluster of amino acids flanking the bZIP region on both sides was highly conserved between TCF11 and p45 NF-E2, a subunit of the human globin locus control region-binding protein, NF-E2. These same regions showed remarkable homology to two invertebrate proteins, CNC and skn-1, postulated to regulate embryonic development in Drosophila melanogaster and Caenorhabditis elegans, respectively. 46 refs., 7 figs., 1 tab.

  14. The bZIP Transcription Factor PERIANTHIA: A Multifunctional Hub for Meristem Control

    PubMed Central

    Maier, Annette T.; Stehling-Sun, Sandra; Offenburger, Sarah-Lena; Lohmann, Jan U.

    2011-01-01

    As sessile organisms, plants are exposed to extreme variations in environmental conditions over the course of their lives. Since plants grow and initiate new organs continuously, they have to modulate the underlying developmental program accordingly to cope with this challenge. At the heart of this extraordinary developmental plasticity are pluripotent stem cells, which are maintained during the entire life-cycle of the plant and that are embedded within dynamic stem cell niches. While the complex regulatory principles of plant stem cell control under artificial constant growth conditions begin to emerge, virtually nothing is known about how this circuit adapts to variations in the environment. In addition to the local feedback system constituted by the homeodomain transcription factor WUSCHEL (WUS) and the CLAVATA signaling cascade in the center of the shoot apical meristem (SAM), the bZIP transcription factor PERIANTHIA (PAN) not only has a broader expression domain in SAM and flowers, but also carries out more diverse functions in meristem maintenance: pan mutants show alterations in environmental response, shoot meristem size, floral organ number, and exhibit severe defects in termination of floral stem cells in an environment dependent fashion. Genetic and genomic analyses indicate that PAN interacts with a plethora of developmental pathways including light, plant hormone, and meristem control systems, suggesting that PAN is as an important regulatory node in the network of plant stem cell control. PMID:22645551

  15. Functional analysis of a light-responsive plant bZIP transcriptional regulator.

    PubMed Central

    Feldbrügge, M; Sprenger, M; Dinkelbach, M; Yazaki, K; Harter, K; Weisshaar, B

    1994-01-01

    Common plant regulatory factor 1 (CPRF1) is a parsley basic region/leucine zipper (bZIP) transcription factor that recognizes specific nucleotide sequences containing ACGT cores. Such a sequence is contained within LRU1, the composite light regulatory unit that is necessary and sufficient for light-dependent activity of the parsley chalcone synthase (CHS) promoter. After light treatment of both etiolated and green seedlings, CPRF1 mRNA levels increased prior to CHS mRNA accumulation. The change in CPRF1 mRNA leads to a light-responsive increase in CPRF1 protein. Transient expression analysis in parsley protoplasts using the CPRF1 promoter fused to the beta-glucuronidase (GUS) open reading frame indicated that light-dependent CPRF1 mRNA accumulation was under transcriptional control. The 5' untranslated region of the CPRF1 gene includes a cis-acting nucleotide sequence that contains two ACGT elements at a distance of 12 bp between their palindromic centers. This feature is reminiscent of as-1 and octopine synthase (ocs) elements identified in promoters from plant pathogens. This double ACGT Element element, designated dACECPRF1, stimulated transcription when placed 5' to a heterologous core promoter. CPRF1 bound to dACECPRF1 DNA as well as to the ACGT element from the CHS promoter in vitro. Cotransfection experiments demonstrated that CPRF1 interacts with these elements in vivo and that overexpression of CPRF1 actually reduced light-dependent transcription from the CHS promoter. CPRF1 thus appears to contribute to the regulation of the CPRF1 gene and to interfere with the activities of light-regulated promoters. PMID:7827494

  16. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava.

    PubMed

    Hu, Wei; Yang, Hubiao; Yan, Yan; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Zuo, Jiao; Peng, Ming; Li, Kaimian

    2016-01-01

    The basic leucine zipper (bZIP) transcription factor family plays crucial roles in various aspects of biological processes. Currently, no information is available regarding the bZIP family in the important tropical crop cassava. Herein, 77 bZIP genes were identified from cassava. Evolutionary analysis indicated that MebZIPs could be divided into 10 subfamilies, which was further supported by conserved motif and gene structure analyses. Global expression analysis suggested that MebZIPs showed similar or distinct expression patterns in different tissues between cultivated variety and wild subspecies. Transcriptome analysis of three cassava genotypes revealed that many MebZIP genes were activated by drought in the root of W14 subspecies, indicating the involvement of these genes in the strong resistance of cassava to drought. Expression analysis of selected MebZIP genes in response to osmotic, salt, cold, ABA, and H2O2 suggested that they might participate in distinct signaling pathways. Our systematic analysis of MebZIPs reveals constitutive, tissue-specific and abiotic stress-responsive candidate MebZIP genes for further functional characterization in planta, yields new insights into transcriptional regulation of MebZIP genes, and lays a foundation for understanding of bZIP-mediated abiotic stress response. PMID:26947924

  17. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava

    PubMed Central

    Hu, Wei; Yang, Hubiao; Yan, Yan; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Zuo, Jiao; Peng, Ming; Li, Kaimian

    2016-01-01

    The basic leucine zipper (bZIP) transcription factor family plays crucial roles in various aspects of biological processes. Currently, no information is available regarding the bZIP family in the important tropical crop cassava. Herein, 77 bZIP genes were identified from cassava. Evolutionary analysis indicated that MebZIPs could be divided into 10 subfamilies, which was further supported by conserved motif and gene structure analyses. Global expression analysis suggested that MebZIPs showed similar or distinct expression patterns in different tissues between cultivated variety and wild subspecies. Transcriptome analysis of three cassava genotypes revealed that many MebZIP genes were activated by drought in the root of W14 subspecies, indicating the involvement of these genes in the strong resistance of cassava to drought. Expression analysis of selected MebZIP genes in response to osmotic, salt, cold, ABA, and H2O2 suggested that they might participate in distinct signaling pathways. Our systematic analysis of MebZIPs reveals constitutive, tissue-specific and abiotic stress-responsive candidate MebZIP genes for further functional characterization in planta, yields new insights into transcriptional regulation of MebZIP genes, and lays a foundation for understanding of bZIP-mediated abiotic stress response. PMID:26947924

  18. Genomic identification of group A bZIP transcription factors and their responses to abiotic stress in carrot.

    PubMed

    Que, F; Wang, G L; Huang, Y; Xu, Z S; Wang, F; Xiong, A S

    2015-01-01

    The basic-region/leucine-zipper (bZIP) family is one of the major transcription factor (TF) families associated with responses to abiotic stresses. Many members of group A in this family have been extensively examined and are reported to perform significant functions in ABA signaling as well as in responses to abiotic stresses. In this study, 10 bZIP factors in carrot were classified into group A based on their DNA-binding domains. The cis-acting regulatory elements and folding states of these 10 factors were analyzed. Evolutionary analysis of the group A members suggested their importance during the course of evolution in plants. In addition, cis-acting elements and the folding state of proteins were important for DNA binding and could affect gene expression. Quantitative RT-PCR was conducted to investigate the stress response of 10 genes encoding the group A factors. Six genes showed responses to abiotic stresses, while four genes showed other special phenomenon. The current analysis on group A bZIP family TFs in carrot is the first to investigate the TFs of Apiaceae via genome analysis. These results provide new information for future studies on carrot. PMID:26535641

  19. Genome-Wide Identification and Characterization of bZIP Transcription Factors in Brassica oleracea under Cold Stress.

    PubMed

    Hwang, Indeok; Manoharan, Ranjith Kumar; Kang, Jong-Goo; Chung, Mi-Young; Kim, Young-Wook; Nou, Ill-Sup

    2016-01-01

    Cabbages (Brassica oleracea L.) are an important vegetable crop around world, and cold temperature is among the most significant abiotic stresses causing agricultural losses, especially in cabbage crops. Plant bZIP transcription factors play diverse roles in biotic/abiotic stress responses. In this study, 119 putative BolbZIP transcription factors were identified using amino acid sequences from several bZIP domain consensus sequences. The BolbZIP members were classified into 63 categories based on amino acid sequence similarity and were also compared with BrbZIP and AtbZIP transcription factors. Based on this BolbZIP identification and classification, cold stress-responsive BolbZIP genes were screened in inbred lines, BN106 and BN107, using RNA sequencing data and qRT-PCR. The expression level of the 3 genes, Bol008071, Bol033132, and Bol042729, was significantly increased in BN107 under cold conditions and was unchanged in BN106. The upregulation of these genes in BN107, a cold-susceptible inbred line, suggests that they might be significant components in the cold response. Among three identified genes, Bol033132 has 97% sequence similarity to Bra020735, which was identified in a screen for cold-related genes in B. rapa and a protein containing N-rich regions in LCRs. The results obtained in this study provide valuable information for understanding the potential function of BolbZIP transcription factors in cold stress responses. PMID:27314020

  20. Genome-Wide Identification and Characterization of bZIP Transcription Factors in Brassica oleracea under Cold Stress

    PubMed Central

    Hwang, Indeok; Manoharan, Ranjith Kumar; Kang, Jong-Goo; Chung, Mi-Young; Kim, Young-Wook; Nou, Ill-Sup

    2016-01-01

    Cabbages (Brassica oleracea L.) are an important vegetable crop around world, and cold temperature is among the most significant abiotic stresses causing agricultural losses, especially in cabbage crops. Plant bZIP transcription factors play diverse roles in biotic/abiotic stress responses. In this study, 119 putative BolbZIP transcription factors were identified using amino acid sequences from several bZIP domain consensus sequences. The BolbZIP members were classified into 63 categories based on amino acid sequence similarity and were also compared with BrbZIP and AtbZIP transcription factors. Based on this BolbZIP identification and classification, cold stress-responsive BolbZIP genes were screened in inbred lines, BN106 and BN107, using RNA sequencing data and qRT-PCR. The expression level of the 3 genes, Bol008071, Bol033132, and Bol042729, was significantly increased in BN107 under cold conditions and was unchanged in BN106. The upregulation of these genes in BN107, a cold-susceptible inbred line, suggests that they might be significant components in the cold response. Among three identified genes, Bol033132 has 97% sequence similarity to Bra020735, which was identified in a screen for cold-related genes in B. rapa and a protein containing N-rich regions in LCRs. The results obtained in this study provide valuable information for understanding the potential function of BolbZIP transcription factors in cold stress responses. PMID:27314020

  1. bZIP Transcription Factors in the Oomycete Phytophthora infestans with Novel DNA-Binding Domains Are Involved in Defense against Oxidative Stress

    PubMed Central

    Gamboa-Meléndez, Heber; Huerta, Apolonio I.

    2013-01-01

    Transcription factors of the basic leucine zipper (bZIP) family control development and stress responses in eukaryotes. To date, only one bZIP has been described in any oomycete; oomycetes are members of the stramenopile kingdom. In this study, we describe the identification of 38 bZIPs from the Phytophthora infestans genome. Half contain novel substitutions in the DNA-binding domain at a site that in other eukaryotes is reported to always be Asn. Interspecific comparisons indicated that the novel substitutions (usually Cys, but also Val and Tyr) arose after oomycetes diverged from other stramenopiles. About two-thirds of P. infestans bZIPs show dynamic changes in mRNA levels during the life cycle, with many of the genes being upregulated in sporangia, zoospores, or germinated zoospore cysts. One bZIP with the novel Cys substitution was shown to reside in the nucleus throughout growth and development. Using stable gene silencing, the functions of eight bZIPs with the Cys substitution were tested. All but one were found to play roles in protecting P. infestans from hydrogen peroxide-induced injury, and it is proposed that the novel Cys substitution serves as a redox sensor. A ninth bZIP lacking the novel Asn-to-Cys substitution, but having Cys nearby, was also shown through silencing to contribute to defense against peroxide. Little effect on asexual development, plant pathogenesis, or resistance to osmotic stress was observed in transformants silenced for any of the nine bZIPs. PMID:23975888

  2. Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1

    PubMed Central

    Smykowski, Anja; Fischer, Stefan M.; Zentgraf, Ulrike

    2015-01-01

    Massive changes in the transcriptome of Arabidopsis thaliana during onset and progression of leaf senescence imply a central role for transcription factors. While many transcription factors are themselves up- or down-regulated during senescence, the bZIP transcription factor G-box-binding factor 1 (GBF1/bZIP41) is constitutively expressed in Arabidopsis leaf tissue but at the same time triggers the onset of leaf senescence, suggesting posttranscriptional mechanisms for senescence-specific GBF1 activation. Here we show that GBF1 is phosphorylated by the threonine/serine CASEIN KINASE II (CKII) in vitro and that CKII phosphorylation had a negative effect on GBF1 DNA-binding to G-boxes of two direct target genes, CATALASE2 and RBSCS1a. Phosphorylation mimicry at three serine positions in the basic region of GBF1 also had a negative effect on DNA-binding. Kinase assays revealed that CKII phosphorylates at least one serine in the basic domain but has additional phosphorylation sites outside this domain. Two different ckII α subunit1 and one α subunit2 T-DNA insertion lines showed no visible senescence phenotype, but in all lines the expression of the senescence marker gene SAG12 was remarkably diminished. A model is presented suggesting that senescence-specific GBF1 activation might be achieved by lowering the phosphorylation of GBF1 by CKII. PMID:27135347

  3. The bZIP repressor proteins, c-Jun dimerization protein 2 and activating transcription factor 3, recruit multiple HDAC members to the ATF3 promoter.

    PubMed

    Darlyuk-Saadon, Ilona; Weidenfeld-Baranboim, Keren; Yokoyama, Kazunari K; Hai, Tsonwin; Aronheim, Ami

    2012-01-01

    JDP2, is a basic leucine zipper (bZIP) protein displaying a high degree of homology with the stress inducible transcription factor, ATF3. Both proteins bind to cAMP and TPA response elements and repress transcription by multiple mechanisms. Histone deacetylases (HDACs) play a key role in gene inactivation by deacetylating lysine residues on histones. Here we describe the association of JDP2 and ATF3 with HDACs 1, 2-6 and 10. Association of HDAC3 and HDAC6 with JDP2 and ATF3 occurs via direct protein-protein interactions. Only part of the N-terminal bZIP motif of JDP2 and ATF3 basic domain is necessary and sufficient for the interaction with HDACs in a manner that is independent of coiled-coil dimerization. Class I HDACs associate with the bZIP repressors via the DAC conserved domain whereas the Class IIb HDAC6 associates through its C-terminal unique binder of ubiquitin Zn finger domain. Both JDP2 and ATF3 are known to bind and repress the ATF3 promoter. MEF cells treated with histone deacetylase inhibitor, trichostatin A (TSA) display enhanced ATF3 transcription. ATF3 enhanced transcription is significantly reduced in MEF cells lacking both ATF3 and JDP2. Collectively, we propose that the recruitment of multiple HDAC members to JDP2 and ATF3 is part of their transcription repression mechanism. PMID:22989952

  4. Identification of Two bZIP Transcription Factors Interacting with the Promoter of Soybean Rubisco Activase Gene (GmRCAα)

    PubMed Central

    Zhang, Jinyu; Du, Hongyang; Chao, Maoni; Yin, Zhitong; Yang, Hui; Li, Yakai; Huang, Fang; Yu, Deyue

    2016-01-01

    Rubisco activase (RCA), a key photosynthetic protein, catalyses the activation of Rubisco and thus plays an important role in photosynthesis. Although the RCA gene has been characterized in a variety of species, the molecular mechanism regulating its transcription remains unclear. Our previous studies on RCA gene expression in soybean suggested that expression of this gene is regulated by trans-acting factors. In the present study, we verified activity of the GmRCAα promoter in both soybean and Arabidopsis and used a yeast one-hybrid (Y1H) system for screening a leaf cDNA expression library to identify transcription factors (TFs) interacting with the GmRCAα promoter. Four basic leucine zipper (bZIP) TFs, GmbZIP04g, GmbZIP07g, GmbZIP1, and GmbZIP71, were isolated, and GmbZIP04g and GmbZIP07g were confirmed as able to bind to a 21-nt G-box-containing sequence. Additionally, the expression patterns of GmbZIP04g, GmbZIp07g, and GmRCAα were analyzed in response to abiotic stresses and during a 24-h period. Our study will help to advance elucidation of the network regulating GmRCAα transcription. PMID:27242832

  5. FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize.

    PubMed

    Pautler, Michael; Eveland, Andrea L; LaRue, Therese; Yang, Fang; Weeks, Rebecca; Lunde, China; Je, Byoung Il; Meeley, Robert; Komatsu, Mai; Vollbrecht, Erik; Sakai, Hajime; Jackson, David

    2015-01-01

    Plant architecture is dictated by precise control of meristematic activity. In the shoot, an imbalance in positive or negative maintenance signals can result in a fasciated or enlarged meristem phenotype. fasciated ear4 (fea4) is a semidwarfed mutant with fasciated ears and tassels as well as greatly enlarged vegetative and inflorescence meristems. We identified FEA4 as a bZIP transcription factor, orthologous to Arabidopsis thaliana PERIANTHIA. FEA4 was expressed in the peripheral zone of the vegetative shoot apical meristem and in the vasculature of immature leaves and conspicuously excluded from the stem cell niche at the tip of the shoot apical meristem and from incipient leaf primordia. Following the transition to reproductive fate, FEA4 was expressed throughout the entire inflorescence and floral meristems. Native expression of a functional YFP:FEA4 fusion recapitulated this pattern of expression. We used chromatin immunoprecipitation-sequencing to identify 4060 genes proximal to FEA4 binding sites, including ones that were potentially bound and modulated by FEA4 based on transcriptional changes in fea4 mutant ears. Our results suggest that FEA4 promotes differentiation in the meristem periphery by regulating auxin-based responses and genes associated with leaf differentiation and polarity, potentially in opposition to factors such as KNOTTED1 and WUSCHEL. PMID:25616871

  6. bZIP transcription factor zip-2 mediates an early response to Pseudomonas aeruginosa infection in Caenorhabditis elegans

    PubMed Central

    Estes, Kathleen A.; Dunbar, Tiffany L.; Powell, Jennifer R.; Ausubel, Frederick M.; Troemel, Emily R.

    2010-01-01

    Very little is known about how animals discriminate pathogens from innocuous microbes. To address this question, we examined infection-response gene induction in the nematode Caenorhabditis elegans. We focused on genes that are induced in C. elegans by infection with the bacterial pathogen Pseudomonas aeruginosa, but are not induced by an isogenic attenuated gacA mutant. Most of these genes are induced independently of known immunity pathways. We generated a GFP reporter for one of these genes, infection response gene 1 (irg-1), which is induced strongly by wild-type P. aeruginosa strain PA14, but not by other C. elegans pathogens or by other wild-type P. aeruginosa strains that are weakly pathogenic to C. elegans. To identify components of the pathway that induces irg-1 in response to infection, we performed an RNA interference screen of C. elegans transcription factors. This screen identified zip-2, a bZIP transcription factor that is required for inducing irg-1, as well as several other genes, and is important for defense against infection by P. aeruginosa. These data indicate that zip-2 is part of a specialized pathogen response pathway that is induced by virulent strains of P. aeruginosa and provides defense against this pathogen. PMID:20133860

  7. Nuclear Import of the Parsley bZIP Transcription Factor CPRF2 Is Regulated by Phytochrome Photoreceptors

    PubMed Central

    Kircher, Stefan; Wellmer, Frank; Nick, Peter; Rügner, Alexander; Schäfer, Eberhard; Harter, Klaus

    1999-01-01

    In plants, light perception by photoreceptors leads to differential expression of an enormous number of genes. An important step for differential gene expression is the regulation of transcription factor activities. To understand these processes in light signal transduction we analyzed the three well-known members of the common plant regulatory factor (CPRF) family from parsley (Petroselinum crispum). Here, we demonstrate that these CPRFs, which belong to the basic- region leucine-zipper (bZIP) domain-containing transcription factors, are differentially distributed within parsley cells, indicating different regulatory functions within the regulatory networks of the plant cell. In particular, we show by cell fractionation and immunolocalization approaches that CPRF2 is transported from the cytosol into the nucleus upon irradiation due to action of phytochrome photoreceptors. Two NH2-terminal domains responsible for cytoplasmic localization of CPRF2 in the dark were characterized by deletion analysis using a set of CPRF2-green fluorescent protein (GFP) gene fusion constructs transiently expressed in parsley protoplasts. We suggest that light-induced nuclear import of CPRF2 is an essential step in phytochrome signal transduction. PMID:9922448

  8. Rite of passage: a bZIP transcription factor must transit the cell apex to become competent.

    PubMed

    Momany, Michelle

    2015-11-01

    In the filamentous fungus Aspergillus nidulans BrlA triggers the central developmental pathway that controls the transition from vegetative growth to asexual reproduction. Upstream regulators including the bZIP transcription factor FlbB activate the expression of brlA. Previous work has established that FlbB localizes to both the apex of the hypha, where it interacts with and is anchored by FlbE, and to nuclei, with highest levels in the nucleus closest to the apex and successively lower levels in nuclei further away from the apex. In this issue, Herrero-Garcia et al. dissect the roles of these two FlbB pools and the mechanisms underlying their localization and activity. Using a photoactivatable tag, they demonstrate that FlbB moves from the tip into the apical nucleus. Through a series of deletion constructs, they show that import of FlbB into the nucleus requires a bipartite NLS, that FlbB localization at the tip requires actin and that the FlbB tip-high gradient appears to be mass action dependent as the gradient is lost with FlbB constitutive upregulation. They show that while the pool of FlbB at the apex is required for triggering asexual development, the tip high nuclear gradient is not required. PMID:26387769

  9. Identification of an Arabidopsis transmembrane bZIP transcription factor involved in the endoplasmic reticulum stress response

    SciTech Connect

    Tajima, Hiromi; Iwata, Yuji; Iwano, Megumi; Takayama, Seiji; Koizumi, Nozomu

    2008-09-19

    Among 75 bZIP transcription factors identified in Arabidopsis, 3 (AtbZIP17, AtbZIP28, and AtbZIP49) possess a putative transmembrane domain (TMD) in addition to AtbZIP60, which was characterized previously. In the present study, cDNAs of AtbZIP17 and AtbZIP28 were isolated. Truncated forms of AtbZIP17 and AtbZIP28 lacking the C-terminal domain including TMD were examined as putative active forms. One of them, AtbZIP28{delta}C, activated BiP1 and BiP3 promoters through the cis-elements P-UPRE and ERSE responsible for the ER stress response. Subsequently, a fusion protein of green fluorescent protein (GFP) and AtbZIP28 was expressed in Arabidopsis cultured cells. Under non-stress conditions, GFP fluorescence localization almost overlapped with an ER marker; however, tunicamycin and dithiothreitol treatment clearly increased GFP fluorescence in the nucleus suggesting that the N-terminal fragment of AtbZIP28 translocates to the nucleus in response to ER stress.

  10. Ectopic expression of a hot pepper bZIP-like transcription factor in potato enhances drought tolerance without decreasing tuber yield.

    PubMed

    Moon, Seok-Jun; Han, Se-Youn; Kim, Dool-Yi; Yoon, In Sun; Shin, Dongjin; Byun, Myung-Ok; Kwon, Hawk-Bin; Kim, Beom-Gi

    2015-11-01

    Over-expression of group A bZIP transcription factor genes in plants improves abiotic stress tolerance but usually reduces yields. Thus, there have been several efforts to overcome yield penalty in transgenic plants. In this study, we characterized that expression of the hot pepper (Capsicum annuum) gene CaBZ1, which encodes a group S bZIP transcription factor, was induced by salt and osmotic stress as well as abscisic acid (ABA). Transgenic potato (Solanum tuberosum) plants over-expressing CaBZ1 exhibited reduced rates of water loss and faster stomatal closure than non transgenic potato plants under drought and ABA treatment conditions. CaBZ1 over-expression in transgenic potato increased the expression of ABA- and stress-related genes (such as CYP707A1, CBF and NAC-like genes) and improved drought stress tolerance. Interestingly, over-expression of CaBZ1 in potato did not produce undesirable growth phenotypes in major agricultural traits such as plant height, leaf size and tuber formation under normal growth conditions. The transgenic potato plants also had higher tuber yields than non transgenic potato plants under drought stress conditions. Thus, CaBZ1 may be useful for improving drought tolerance in tuber crops. This might be the first report of the production of transgenic potato with improved tuber yields under drought conditions. PMID:26394867

  11. The vrille gene of Drosophila is a maternal enhancer of decapentaplegic and encodes a new member of the bZIP family of transcription factors.

    PubMed

    George, H; Terracol, R

    1997-08-01

    We report here the genetical and molecular characterization of a new Drosophila zygotic lethal locus, vrille (vri). Vri alleles act not only as dominant maternal enhancers of embryonic dorsoventral patterning defects caused by easter and decapentaplegic (dpp) mutations, but also as dominant zygotic enhancers of dpp alleles for phenotypes in wing. The vri gene encodes a new member of the bZIP family of transcription factors closely related to gene 9 of Xenopus laevis, induced by thyroid hormone during the tadpole tail resorption program, and NF-IL3A, a human T cell transcription factor that transactivates the interleukin-3 promoter. NF-IL3A shares 93% similarity and 60% identity with Vri for a stretch of 68 amino acids that includes the bZIP domain. Although all the alleles tested behave like antimorphs, the dominant enhancement is also seen with a nonsense mutation allele that prevents translation of the bZIP domain. Because of the strong domainant enhancement of dpp phenotypes by vri alleles in both embryo and wing, and also the similarity between the wing vein phenotypes caused by the vri and shortvein dpp alleles, we postulate that vri interacts either directly or indirectly with certain components of the dpp (a TGF beta homologue) signal transduction pathway. PMID:9258679

  12. Multiple PAR and E4BP4 bZIP transcription factors in zebrafish: diverse spatial and temporal expression patterns.

    PubMed

    Ben-Moshe, Zohar; Vatine, Gad; Alon, Shahar; Tovin, Adi; Mracek, Philipp; Foulkes, Nicholas S; Gothilf, Yoav

    2010-09-01

    Circadian rhythms of physiology and behavior are generated by an autonomous circadian oscillator that is synchronized daily with the environment, mainly by light input. The PAR subfamily of transcriptional activators and the related E4BP4 repressor belonging to the basic leucine zipper (bZIP) family are clock-controlled genes that are suggested to mediate downstream circadian clock processes and to feedback onto the core oscillator. Here, the authors report the characterization of these genes in the zebrafish, an increasingly important model in the field of chronobiology. Five novel PAR and six novel e4bp4 zebrafish homolog genes were identified using bioinformatic tools and their coding sequences were cloned. Based on their evolutionary relationships, these genes were annotated as ztef2, zhlf1 and zhlf2, zdbp1 and zdbp2, and ze4bp4-1 to -6. The spatial and temporal mRNA expression pattern of each of these factors was characterized in zebrafish embryos in the context of a functional circadian clock and regulation by light. Nine of the factors exhibited augmented and rhythmic expression in the pineal gland, a central clock organ in zebrafish. Moreover, these genes were found to be regulated, to variable extents, by the circadian clock and/or by light. Differential expression patterns of multiple paralogs in zebrafish suggest multiple roles for these factors within the vertebrate circadian clock. This study, in the genetically accessible zebrafish model, lays the foundation for further research regarding the involvement and specific roles of PAR and E4BP4 transcription factors in the vertebrate circadian clock mechanism. PMID:20854132

  13. The bZIP transcription factor PfZipA regulates secondary metabolism and oxidative stress response in the plant endophytic fungus Pestalotiopsis fici.

    PubMed

    Wang, Xiuna; Wu, Fan; Liu, Ling; Liu, Xingzhong; Che, Yongsheng; Keller, Nancy P; Guo, Liyun; Yin, Wen-Bing

    2015-08-01

    The bZIP transcription factors are conserved in all eukaryotes and play critical roles in organismal responses to environmental challenges. In filamentous fungi, several lines of evidence indicate that secondary metabolism (SM) is associated with oxidative stress mediated by bZIP proteins. Here we uncover a connection with a bZIP protein and oxidative stress induction of SM in the plant endophytic fungus Pestalotiopsis fici. A homology search of the P. fici genome with the bZIP protein RsmA, involved in SM and the oxidative stress response in Aspergillus nidulans, identified PfZipA. Deletion of PfzipA resulted in a strain that displayed resistant to the oxidative reagents tert-butylhydroperoxide (tBOOH), diamide, and menadione sodium bisulfite (MSB), but increased sensitivity to H2O2 as compared to wild type (WT). Secondary metabolite production presented a complex pattern dependent on PfzipA and oxidative reagents. Without oxidative treatment, the ΔPfzipA strain produced less isosulochrin and ficipyroneA than WT; addition of tBOOH further decreased production of iso-A82775C and pestaloficiol M in ΔPfzipA; diamide treatment resulted in equivalent production of isosulochrin and ficipyroneA in the two strains; MSB treatment further decreased production of RES1214-1 and iso-A82775C but increased pestaloficiol M production in the mutant; and H2O2 treatment resulted in enhanced production of isosulochrin, RES1214-1 and pestheic acid but decreased ficipyroneA and pestaloficiol M in ΔPfzipA compared to WT. Our results suggest that PfZipA regulation of SM is modified by oxidative stress pathways and provide insights into a possible role of PfZipA in mediating SM synthesis in the endophytic lifestyle of P. fici. PMID:25847004

  14. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis.

    PubMed

    Ying, Sheng; Zhang, Deng-Feng; Fu, Jing; Shi, Yun-Su; Song, Yan-Chun; Wang, Tian-Yu; Li, Yu

    2012-02-01

    In plants, the bZIP (basic leucine zipper) transcription factors regulate diverse functions, including processes such as plant development and stress response. However, few have been functionally characterized in maize (Zea mays). In this study, we cloned ZmbZIP72, a bZIP transcription factor gene from maize, which had only one copy in the maize genome and harbored three introns. Analysis of the amino acid sequence of ZmbZIP72 revealed a highly conserved bZIP DNA-binding domain in its C-terminal region, and four conserved sequences distributed in N- or C-terminal region. The ZmbZIP72 gene expressed differentially in various organs of maize plants and was induced by abscisic acid, high salinity, and drought treatment in seedlings. Subcellular localization analysis in onion epidermal cells indicated that ZmbZIP72 was a nuclear protein. Transactivation assay in yeast demonstrated that ZmbZIP72 functioned as a transcriptional activator and its N terminus (amino acids 23-63) was necessary for the transactivation activity. Heterologous overexpression of ZmbZIP72 improved drought and partial salt tolerance of transgenic Arabidopsis plants, as determined by physiological analyses of leaf water loss, electrolyte leakage, proline content, and survival rate under stress. In addition, the seeds of ZmbZIP72-overexpressing transgenic plants were hypersensitive to ABA and osmotic stress. Moreover, overexpression of ZmbZIP72 enhanced the expression of ABA-inducible genes such as RD29B, RAB18, and HIS1-3. These results suggest that the ZmbZIP72 protein functions as an ABA-dependent transcription factor in positive modulation of abiotic stress tolerance and may be a candidate gene with potential application in molecular breeding to enhance stress tolerance in crops. PMID:21866346

  15. Arabidopsis GARP transcriptional activators interact with the Pro-rich activation domain shared by G-box-binding bZIP factors.

    PubMed

    Tamai, Hiroki; Iwabuchi, Masaki; Meshi, Tetsuo

    2002-01-01

    The Pro-rich regions, found in a subset of plant bZIP transcription factors, including G-box-binding factors (GBFs) of Arabidopsis thaliana, are thought to be deeply involved in transcriptional regulation. However, the molecular mechanisms of the Pro-rich region-mediated transcriptional regulation are still largely unknown. Here we report evidence showing that two closely related Arabidopsis proteins, designated GPRI1 and GPRI2, containing a GARP DNA-binding domain, are likely partners of one or more GBFs. The results of yeast two-hybrid assays and in vitro binding assays indicated that GPRI1 can interact with the Pro-rich regions of GBF1 and GBF3. GPRI2 interacted with the Pro-rich region of GBF1. GPRI1 and GPRI2 transactivated transcription in yeast. In GPRI1 the region responsible for this activation was mapped in the N-terminal third of the protein. Transient assays showed that in Arabidopsis cells not only the N-terminal but also the C-terminal regions of GPRI1 can function as a separable activation domain. GPRI1 and GPRI2 may function in some promoters in concert with a GBF through interaction with its Pro-rich region to enhance the transcriptional level of the corresponding genes. PMID:11828027

  16. Role of the C-terminal domains of rice (Oryza sativa L.) bZIP proteins RF2a and RF2b in regulating transcription

    PubMed Central

    Liu, Yi; Dai, Shunhong; Beachy, Roger N.

    2007-01-01

    Rice (Oryza sativa L.) transcription factors RF2a and RF2b are bZIP (basic leucine zipper) proteins that interact with, and activate transcription from the RTBV (rice tungro bacilliform virus) promoter. Here we characterize the C-terminal domains of RF2a and RF2b: these domains are rich in glutamine and proline/glutamine, respectively. Affinity pull-down assays demonstrated that the C-terminal domains of RF2a and RF2b can associate to form either homodimers or heterodimers; however, they do not interact with other domains of RF2a or RF2b. Results of in vitro transcription assays using a rice whole-cell extract demonstrate that the C-terminal domains of both RF2a and RF2b activate transcription from the RTBV promoter. In addition, dimerization of the RF2a C-terminal domain is involved in regulating the transcription activation function of RF2a. The predicted helical region within the RF2a C-terminal glutamine-rich domain was determined to be involved in inter-molecular dimerization, and contributed to the regulatory functions of RF2a in these assays. PMID:17371296

  17. Genome-Wide Analysis of the bZIP Gene Family Identifies Two ABI5-Like bZIP Transcription Factors, BrABI5a and BrABI5b, as Positive Modulators of ABA Signalling in Chinese Cabbage.

    PubMed

    Bai, Yili; Zhu, Wenbo; Hu, Xiaochen; Sun, Congcong; Li, Yanlin; Wang, Dandan; Wang, Qinhu; Pei, Guoliang; Zhang, Yanfeng; Guo, Aiguang; Zhao, Huixian; Lu, Haibin; Mu, Xiaoqian; Hu, Jingjiang; Zhou, Xiaona; Xie, Chang Gen

    2016-01-01

    bZIP (basic leucine zipper) transcription factors coordinate plant growth and development and control responses to environmental stimuli. The genome of Chinese cabbage (Brassica rapa) encodes 136 putative bZIP transcription factors. The bZIP transcription factors in Brassica rapa (BrbZIP) are classified into 10 subfamilies. Phylogenetic relationship analysis reveals that subfamily A consists of 23 BrbZIPs. Two BrbZIPs within subfamily A, Bra005287 and Bra017251, display high similarity to ABI5 (ABA Insensitive 5). Expression of subfamily A BrbZIPs, like BrABI5a (Bra005287/BrbZIP14) and BrABI5b (Bra017251/BrbZIP13), are significantly induced by the plant hormone ABA. Subcellular localization assay reveal that both BrABI5a and BrABI5b have a nuclear localization. BrABI5a and BrABI5b could directly stimulate ABA Responsive Element-driven HIS (a HIS3 reporter gene, which confers His prototrophy) or LUC (LUCIFERASE) expression in yeast and Arabidopsis protoplast. Deletion of the bZIP motif abolished BrABI5a and BrABI5b transcriptional activity. The ABA insensitive phenotype of Arabidopsis abi5-1 is completely suppressed in transgenic lines expressing BrABI5a or BrABI5b. Overall, these results suggest that ABI5 orthologs, BrABI5a and BrABI5b, have key roles in ABA signalling in Chinese cabbage. PMID:27414644

  18. Genome-Wide Analysis of the bZIP Gene Family Identifies Two ABI5-Like bZIP Transcription Factors, BrABI5a and BrABI5b, as Positive Modulators of ABA Signalling in Chinese Cabbage

    PubMed Central

    Hu, Xiaochen; Sun, Congcong; Li, Yanlin; Wang, Dandan; Wang, Qinhu; Pei, Guoliang; Zhang, Yanfeng; Guo, Aiguang; Zhao, Huixian; Lu, Haibin; Mu, Xiaoqian; Hu, Jingjiang; Zhou, Xiaona; Xie, Chang Gen

    2016-01-01

    bZIP (basic leucine zipper) transcription factors coordinate plant growth and development and control responses to environmental stimuli. The genome of Chinese cabbage (Brassica rapa) encodes 136 putative bZIP transcription factors. The bZIP transcription factors in Brassica rapa (BrbZIP) are classified into 10 subfamilies. Phylogenetic relationship analysis reveals that subfamily A consists of 23 BrbZIPs. Two BrbZIPs within subfamily A, Bra005287 and Bra017251, display high similarity to ABI5 (ABA Insensitive 5). Expression of subfamily A BrbZIPs, like BrABI5a (Bra005287/BrbZIP14) and BrABI5b (Bra017251/BrbZIP13), are significantly induced by the plant hormone ABA. Subcellular localization assay reveal that both BrABI5a and BrABI5b have a nuclear localization. BrABI5a and BrABI5b could directly stimulate ABA Responsive Element-driven HIS (a HIS3 reporter gene, which confers His prototrophy) or LUC (LUCIFERASE) expression in yeast and Arabidopsis protoplast. Deletion of the bZIP motif abolished BrABI5a and BrABI5b transcriptional activity. The ABA insensitive phenotype of Arabidopsis abi5-1 is completely suppressed in transgenic lines expressing BrABI5a or BrABI5b. Overall, these results suggest that ABI5 orthologs, BrABI5a and BrABI5b, have key roles in ABA signalling in Chinese cabbage. PMID:27414644

  19. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor.

    PubMed

    Heidmann, Iris; de Lange, Brenda; Lambalk, Joep; Angenent, Gerco C; Boutilier, Kim

    2011-06-01

    Pepper (Capsicum L.) is a nutritionally and economically important crop that is cultivated throughout the world as a vegetable, condiment, and food additive. Genetic transformation using Agrobacterium tumefaciens (agrobacterium) is a powerful biotechnology tool that could be used in pepper to develop community-based functional genomics resources and to introduce important agronomic traits. However, pepper is considered to be highly recalcitrant for agrobacterium-mediated transformation, and current transformation protocols are either inefficient, cumbersome or highly genotype dependent. The main bottleneck in pepper transformation is the inability to generate cells that are competent for both regeneration and transformation. Here, we report that ectopic expression of the Brassica napus BABY BOOM AP2/ERF transcription factor overcomes this bottleneck and can be used to efficiently regenerate transgenic plants from otherwise recalcitrant sweet pepper (C. annuum) varieties. Transient activation of BABY BOOM in the progeny plants induced prolific cell regeneration and was used to produce a large number of somatic embryos that could be converted readily to seedlings. The data highlight the utility of combining biotechnology and classical plant tissue culture approaches to develop an efficient transformation and regeneration system for a highly recalcitrant vegetable crop. PMID:21305301

  20. A novel bZIP transcription factor ClrC positively regulates multiple stress responses, conidiation and cellulase expression in Penicillium oxalicum.

    PubMed

    Lei, Yunfeng; Liu, Guodong; Yao, Guangshan; Li, Zhonghai; Qin, Yuqi; Qu, Yinbo

    2016-06-01

    Cellulase production in filamentous fungi is largely regulated at the transcriptional level, and several transcription factors have been reported to be involved in this process. In this study, we identified ClrC, a novel transcription factor in cellulase production in Penicillium oxalicum. ClrC and its orthologs have a highly conserved basic leucine zipper (bZIP) DNA binding domain, and their biological functions have not been explored. Deletion of clrC resulted in pleiotropic effects, including altered growth, reduced conidiation and increased sensitivity to oxidative and cell wall stresses. In particular, the clrC deletion mutant ΔclrC showed 46.1% ± 8.1% and 58.0% ± 8.7% decreases in production of filter paper enzyme and xylanase activities in cellulose medium, respectively. In contrast, 57.4% ± 10.0% and 70.9% ± 19.4% increased production of filter paper enzyme, and xylanase was observed in the clrC overexpressing strain, respectively. The transcription levels of major cellulase genes, as well as two cellulase transcriptional activator genes, clrB and xlnR, were significantly downregulated in ΔclrC, but substantially upregulated in clrC overexpressing strains. Furthermore, we observed that the absence of ClrC reduced full induction of cellulase expression even in the clrB overexpressing strain. These results indicated that ClrC is a novel and efficient engineering target for improving cellulolytic enzyme production in filamentous fungi. PMID:27012606

  1. Orphan nuclear receptor Errγ induces C-reactive protein gene expression through induction of ER-bound Bzip transmembrane transcription factor CREBH.

    PubMed

    Misra, Jagannath; Chanda, Dipanjan; Kim, Don-Kyu; Cho, Seung-Rye; Koo, Seung-Hoi; Lee, Chul-Ho; Back, Sung Hoon; Choi, Hueng-Sik

    2014-01-01

    The orphan nuclear receptor estrogen-related receptor-γ (ERRγ) is a constitutively active transcription factor regulating genes involved in several important cellular processes, including hepatic glucose metabolism, alcohol metabolism, and the endoplasmic reticulum (ER) stress response. cAMP responsive element-binding protein H (CREBH) is an ER-bound bZIP family transcription factor that is activated upon ER stress and regulates genes encoding acute-phase proteins whose expression is increased in response to inflammation. Here, we report that ERRγ directly regulates CREBH gene expression in response to ER stress. ERRγ bound to the ERRγ response element (ERRE) in the CREBH promoter. Overexpression of ERRγ by adenovirus significantly increased expression of CREBH as well as C-reactive protein (CRP), whereas either knockdown of ERRγ or inhibition of ERRγ by ERRγ specific inverse agonist, GSK5182, substantially inhibited ER stress-mediated induction of CREBH and CRP. The transcriptional coactivator PGC1α was required for ERRγ mediated induction of the CREBH gene as demonstrated by the chromatin immunoprecipitation (ChIP) assay showing binding of both ERRγ and PGC1α on the CREBH promoter. The ChIP assay also revealed that histone H3 and H4 acetylation occurred at the ERRγ and PGC1α binding site. Moreover, chronic alcoholic hepatosteatosis, as well as the diabetic obese condition significantly increased CRP gene expression, and this increase was significantly attenuated by GSK5182 treatment. We suggest that orphan nuclear receptor ERRγ directly regulates the ER-bound transcription factor CREBH in response to ER stress and other metabolic conditions. PMID:24466039

  2. Orphan Nuclear Receptor Errγ Induces C-Reactive Protein Gene Expression through Induction of ER-Bound Bzip Transmembrane Transcription Factor CREBH

    PubMed Central

    Misra, Jagannath; Chanda, Dipanjan; Kim, Don-Kyu; Cho, Seung-Rye; Koo, Seung-Hoi; Lee, Chul-Ho; Back, Sung Hoon; Choi, Hueng-Sik

    2014-01-01

    The orphan nuclear receptor estrogen-related receptor-γ (ERRγ) is a constitutively active transcription factor regulating genes involved in several important cellular processes, including hepatic glucose metabolism, alcohol metabolism, and the endoplasmic reticulum (ER) stress response. cAMP responsive element-binding protein H (CREBH) is an ER-bound bZIP family transcription factor that is activated upon ER stress and regulates genes encoding acute-phase proteins whose expression is increased in response to inflammation. Here, we report that ERRγ directly regulates CREBH gene expression in response to ER stress. ERRγ bound to the ERRγ response element (ERRE) in the CREBH promoter. Overexpression of ERRγ by adenovirus significantly increased expression of CREBH as well as C-reactive protein (CRP), whereas either knockdown of ERRγ or inhibition of ERRγ by ERRγ specific inverse agonist, GSK5182, substantially inhibited ER stress-mediated induction of CREBH and CRP. The transcriptional coactivator PGC1α was required for ERRγ mediated induction of the CREBH gene as demonstrated by the chromatin immunoprecipitation (ChIP) assay showing binding of both ERRγ and PGC1α on the CREBH promoter. The ChIP assay also revealed that histone H3 and H4 acetylation occurred at the ERRγ and PGC1α binding site. Moreover, chronic alcoholic hepatosteatosis, as well as the diabetic obese condition significantly increased CRP gene expression, and this increase was significantly attenuated by GSK5182 treatment. We suggest that orphan nuclear receptor ERRγ directly regulates the ER-bound transcription factor CREBH in response to ER stress and other metabolic conditions. PMID:24466039

  3. AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana.

    PubMed

    Zhong, Li; Chen, Dandan; Min, Donghong; Li, Weiwei; Xu, Zhaoshi; Zhou, Yongbin; Li, Liancheng; Chen, Ming; Ma, Youzhi

    2015-02-13

    To cope with environmental stress caused by global climate change and excessive nitrogen application, it is important to improve water and nitrogen use efficiencies in crop plants. It has been reported that higher nitrogen uptake could alleviate the damaging impact of drought stress. However, there is scant evidence to explain how nitrogen uptake affects drought resistance. In this study we observed that bZIP transcription factor AtTGA4 (TGACG motif-binding factor 4) was induced by both drought and low nitrogen stresses, and that overexpression of AtTGA4 simultaneously improved drought resistance and reduced nitrogen starvation in Arabidopsis. Following drought stress there were higher nitrogen and proline contents in transgenic AtTGA4 plants than in wild type controls, and activity of the key enzyme nitrite reductase (NIR) involved in nitrate assimilation processes was also higher. Expressions of the high-affinity nitrate transporter genes NRT2.1 and NRT2.2 and nitrate reductase genes NIA1 and NIA2 in transgenic plants were all higher than in wild type indicating that higher levels of nitrate transport and assimilation activity contributed to enhanced drought resistance of AtTGA4 transgenic plants. Thus genetic transformation with AtTGA4 may provide a new approach to simultaneously improve crop tolerance to drought and low nitrogen stresses. PMID:25596127

  4. Influence of the Valine Zipper Region on the Structure and Aggregation of the Basic Leucine Zipper (bZIP) Domain of Activating Transcription Factor 5 (ATF5)

    PubMed Central

    Ciaccio, Natalie A.; Reynolds, T. Steele; Middaugh, C. Russell; Laurence, Jennifer S.

    2012-01-01

    Protein aggregation is a major problem for biopharmaceuticals. While the control of aggregation is critically important for the future of protein pharmaceuticals, mechanisms of aggregate assembly, particularly the role that structure plays, are still poorly understood. Increasing evidence indicates that partially folded intermediates critically influence the aggregation pathway. We have previously reported the use of the basic leucine zipper (bZIP) domain of Activating Transcription Factor 5 (ATF5) as a partially folded model system to investigate protein aggregation. This domain contains three regions with differing structural propensity: a N-terminal polybasic region, a central helical leucine zipper region, and a C-terminal extended valine zipper region. Additionally, a centrally positioned cysteine residue readily forms an intermolecular disulfide bond that reduces aggregation. Computational analysis of ATF5 predicts that the valine zipper region facilitates self-association. Here we test this hypothesis using a truncated mutant lacking the C-terminal valine zipper region. We compare the structure and aggregation of this mutant to the wild-type (WT) form under both reducing and non-reducing conditions. Our data indicate that removal of this region results in a loss of alpha-helical structure in the leucine zipper and a change in the mechanism of self-association. The mutant form displays increased association at low temperature but improved resistance to thermally induced aggregation. PMID:23067245

  5. Basic Leucine Zipper (bZIP) Domain Transcription Factor MBZ1 Regulates Cell Wall Integrity, Spore Adherence, and Virulence in Metarhizium robertsii *

    PubMed Central

    Huang, Wei; Shang, Yanfang; Chen, Peilin; Cen, Kai; Wang, Chengshu

    2015-01-01

    Transcription factors (TFs) containing the basic leucine zipper (bZIP) domain are widely distributed in eukaryotes and display an array of distinct functions. In this study, a bZIP-type TF gene (MBZ1) was deleted and functionally characterized in the insect pathogenic fungus Metarhizium robertsii. The deletion mutant (ΔMBZ1) showed defects in cell wall integrity, adhesion to hydrophobic surfaces, and topical infection of insects. Relative to the WT, ΔMBZ1 was also impaired in growth and conidiogenesis. Examination of putative target gene expression indicated that the genes involved in chitin biosynthesis were differentially transcribed in ΔMBZ1 compared with the WT, which led to the accumulation of a higher level of chitin in mutant cell walls. MBZ1 exhibited negative regulation of subtilisin proteases, but positive control of an adhesin gene, which is consistent with the observation of effects on cell autolysis and a reduction in spore adherence to hydrophobic surfaces in ΔMBZ1. Promoter binding assays indicated that MBZ1 can bind to different target genes and suggested the possibility of heterodimer formation to increase the diversity of the MBZ1 regulatory network. The results of this study advance our understanding of the divergence of bZIP-type TFs at both intra- and interspecific levels. PMID:25673695

  6. Calcium-dependent protein kinases responsible for the phosphorylation of a bZIP transcription factor FD crucial for the florigen complex formation

    PubMed Central

    Kawamoto, Nozomi; Sasabe, Michiko; Endo, Motomu; Machida, Yasunori; Araki, Takashi

    2015-01-01

    Appropriate timing of flowering is critical for reproductive success and necessarily involves complex genetic regulatory networks. A mobile floral signal, called florigen, is a key molecule in this process, and FLOWERING LOCUS T (FT) protein is its major component in Arabidopsis. FT is produced in leaves, but promotes the floral transition in the shoot apex, where it forms a complex with a basic region/leucine-zipper (bZIP) transcription factor, FD. Formation of the florigen complex depends on the supposed phosphorylation of FD; hitherto, however, the responsible protein kinase(s) have not been identified. In this study, we prepared protein extracts from shoot apices of plants around the floral transition, and detected a protein kinase activity that phosphorylates a threonine residue at position 282 of FD (FD T282), which is a crucial residue for the complex formation with FT via 14-3-3. The kinase activity was calcium-dependent. Subsequent biochemical, cellular, and genetic analyses showed that three calcium-dependent protein kinases (CDPKs) efficiently phosphorylate FD T282. Two of them (CPK6 and CPK33) are expressed in shoot apical meristem and directly interact with FD, suggesting they have redundant functions. The loss of function of one CDPK (CPK33) resulted in a weak but significant late-flowering phenotype. PMID:25661797

  7. A tobacco bZip transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes.

    PubMed Central

    Oeda, K; Salinas, J; Chua, N H

    1991-01-01

    Tobacco nuclear extract contains a factor that binds specifically to the motif I sequence (5'-GTACGTGGCG-3') conserved among rice rab genes and cotton lea genes. We isolated from a tobacco cDNA expression library, a partial cDNA clone encoding a truncated derivative of a protein designated as TAF-1. The truncated TAF-1 (Mr = 26,000) contains an acidic region at its N-terminus and a bZip motif at its C-terminus. Using a panel of motif I mutants as probes, we showed that the truncated TAF-1 and the tobacco nuclear factor for motif I have similar, it not identical, binding specificities. In particular, both show high-affinity binding to the perfect palindrome 5'-GCCACGTGGC-3' which is also known as the G-box motif. TAF-1 mRNA is highly expressed in root, but the level is at least 10 times lower in stem and leaf. Consistent with this observation, we found that a motif I tetramer, when fused to the -90 derivative of the CaMV 35S promoter, is inactive in leaf of transgenic tobacco. The activity, however, can be elevated by transient expression of the truncated TAF-1. We conclude from these results that TAF-1 can bind to the G-box and related motifs and that it functions as a transcription activator. Images PMID:2050116

  8. Feedback Regulation of ABA Signaling and Biosynthesis by a bZIP Transcription Factor Targets Drought-Resistance-Related Genes.

    PubMed

    Zong, Wei; Tang, Ning; Yang, Jun; Peng, Lei; Ma, Siqi; Xu, Yan; Li, Guoliang; Xiong, Lizhong

    2016-08-01

    The OsbZIP23 transcription factor has been characterized for its essential role in drought resistance in rice (Oryza sativa), but the mechanism is unknown. In this study, we first investigated the transcriptional activation of OsbZIP23. A homolog of SnRK2 protein kinase (SAPK2) was found to interact with and phosphorylate OsbZIP23 for its transcriptional activation. SAPK2 also interacted with OsPP2C49, an ABI1 homolog, which deactivated the SAPK2 to inhibit the transcriptional activation activity of OsbZIP23. Next, we performed genome-wide identification of OsbZIP23 targets by immunoprecipitation sequencing and RNA sequencing analyses in the OsbZIP23-overexpression, osbzip23 mutant, and wild-type rice under normal and drought stress conditions. OsbZIP23 directly regulates a large number of reported genes that function in stress response, hormone signaling, and developmental processes. Among these targets, we found that OsbZIP23 could positively regulate OsPP2C49, and overexpression of OsPP2C49 in rice resulted in significantly decreased sensitivity of the abscisic acid (ABA) response and rapid dehydration. Moreover, OsNCED4 (9-cis-epoxycarotenoid dioxygenase4), a key gene in ABA biosynthesis, was also positively regulated by OsbZIP23. Together, our results suggest that OsbZIP23 acts as a central regulator in ABA signaling and biosynthesis, and drought resistance in rice. PMID:27325665

  9. Overexpression of the bZIP transcription factor OsbZIP79 suppresses the production of diterpenoid phytoalexin in rice cells.

    PubMed

    Miyamoto, Koji; Nishizawa, Yoko; Minami, Eiichi; Nojiri, Hideaki; Yamane, Hisakazu; Okada, Kazunori

    2015-01-15

    Phytoalexins are antimicrobial specialised metabolites that are produced by plants in response to pathogen attack. Momilactones and phytocassanes are major diterpenoid phytoalexins in rice that are synthesised from geranylgeranyl diphosphate that is derived from the methylerythritol phosphate (MEP) pathway. We have previously reported that rice cells overexpressing the basic leucine zipper (bZIP) transcription factor OsTGAP1 exhibit a hyperaccumulation of momilactones and phytocassanes, with hyperinductive expression of momilactone and phytocassane biosynthetic genes and MEP pathway genes, upon response to a chitin oligosaccharide elicitor. For a better understanding of OsTGAP1-mediated regulation of diterpenoid phytoalexin production, we identified OsTGAP1-interacting proteins using yeast two-hybrid screening. Among the OsTGAP1-interacting protein candidates, a TGA factor OsbZIP79 was investigated to verify its physical interaction with OsTGAP1 and involvement in the regulation of phytoalexin production. An in vitro pull-down assay demonstrated that OsTGAP1 and OsbZIP79 exhibited a heterodimeric as well as a homodimeric interaction. A bimolecular fluorescence complementation analysis also showed the interaction between OsTGAP1 and OsbZIP79 in vivo. Intriguingly, whereas OsbZIP79 transactivation activity was observed in a transient reporter assay, the overexpression of OsbZIP79 resulted in suppression of the elicitor-inducible expression of diterpenoid phytoalexin biosynthetic genes, and thus caused a decrease in the accumulation of phytoalexin in rice cells. These results suggest that OsbZIP79 functions as a negative regulator of phytoalexin production triggered by a chitin oligosaccharide elicitor in rice cells, although it remains open under which conditions OsbZIP79 can work with OsTGAP1. PMID:25462074

  10. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene.

    PubMed

    Sagor, G H M; Berberich, Thomas; Tanaka, Shun; Nishiyama, Manabu; Kanayama, Yoshinori; Kojima, Seiji; Muramoto, Koji; Kusano, Tomonobu

    2016-04-01

    Enhancement of sugar content and sweetness is desirable in some vegetables and in almost all fruits; however, biotechnological methods to increase sugar content are limited. Here, a completely novel methodological approach is presented that produces sweeter tomato fruits but does not have any negative effects on plant growth. Sucrose-induced repression of translation (SIRT), which is mediated by upstream open reading frames (uORFs), was initially reported in Arabidopsis AtbZIP11, a class S basic region leucine zipper (bZIP) transcription factor gene. Here, two AtbZIP11 orthologous genes, SlbZIP1 and SlbZIP2, were identified in tomato (Solanum lycopersicum). SlbZIP1 and SlbZIP2 contained four and three uORFs, respectively, in the cDNA 5'-leader regions. The second uORFs from the 5' cDNA end were conserved and involved in SIRT. Tomato plants were transformed with binary vectors in which only the main open reading frames (ORFs) of SlbZIP1 and SlbZIP2, without the SIRT-responsive uORFs, were placed under the control of the fruit-specific E8 promoter. Growth and morphology of the resulting transgenic tomato plants were comparable to those of wild-type plants. Transgenic fruits were approximately 1.5-fold higher in sugar content (sucrose/glucose/fructose) than nontransgenic tomato fruits. In addition, the levels of several amino acids, such as asparagine and glutamine, were higher in transgenic fruits than in wild-type fruits. This was expected because SlbZIP transactivates the asparagine synthase and proline dehydrogenase genes. This 'sweetening' technology is broadly applicable to other plants that utilize sucrose as a major translocation sugar. PMID:26402509

  11. Transcriptional control of spliced and unspliced human T-cell leukemia virus type 1 bZIP factor (HBZ) gene.

    PubMed

    Yoshida, Mika; Satou, Yorifumi; Yasunaga, Jun-Ichirou; Fujisawa, Jun-Ichi; Matsuoka, Masao

    2008-10-01

    The human T-cell leukemia virus type 1 (HTLV-1) basic leucine zipper factor (HBZ) gene is encoded by the minus strand of the HTLV-1 provirus and transcribed from the 3' long terminal repeat (LTR). HBZ gene expression not only inhibits the Tax-mediated activation of viral gene transcription through the 5' LTR but also promotes the proliferation of infected cells. However, the HBZ promoter region and the transcriptional regulation of the gene have not been studied. In this study, we characterize the promoters of the spliced version of the HBZ gene (sHBZ) and the unspliced version of the HBZ gene (usHBZ) by luciferase assay. Both promoters were TATA-less and contained initiators and downstream promoter elements. Detailed studies of the promoter for the sHBZ gene showed that Sp1 sites were critical for its activity. The activities of the sHBZ and usHBZ gene promoters were upregulated by Tax through Tax-responsible elements in the 3' LTR. We compared the functions of the proteins derived from the sHBZ and usHBZ transcripts. sHBZ showed a stronger suppression of Tax-mediated transcriptional activation through the 5' LTR than did usHBZ; the level of suppression correlated with the level of protein produced. The expression of sHBZ had a growth-promoting function in a T-cell line, while usHBZ expression did not. This study demonstrates that Sp1 is critical for sHBZ transcription, which accounts for the constitutive expression of the sHBZ gene. Functional differences between sHBZ and usHBZ suggest that the sHBZ gene plays a significant role in the proliferation of infected cells. PMID:18653454

  12. Inhibitory effects of black pepper (Piper nigrum) extracts and compounds on human tumor cell proliferation, cyclooxygenase enzymes, lipid peroxidation and nuclear transcription factor-kappa-B.

    PubMed

    Liu, Yunbao; Yadev, Vivek R; Aggarwal, Bharat B; Nair, Muraleedharan G

    2010-08-01

    Black pepper (Piper nigrum) and hot pepper (Capsicum spp.) are widely used in traditional medicines. Although hot Capsicum spp. extracts and its active principles, capsaicinoids, have been linked with anticancer and anti-inflammatory activities, whether black pepper and its active principle exhibit similar activities is not known. In this study, we have evaluated the antioxidant, anti-inflammatory and anticancer activities of extracts and compounds from black pepper by using proinflammatory transcription factor NF-kappaB, COX-1 and -2 enzymes, human tumor cell proliferation and lipid peroxidation (LPO). The capsaicinoids, the alkylamides, isolated from the hot pepper Scotch Bonnet were also used to compare the bioactivities of alkylamides and piperine from black pepper. All compounds derived from black pepper suppressed TNF-induced NF-kappaB activation, but alkyl amides, compound 4 from black pepper and 5 from hot pepper, were most effective. The human cancer cell proliferation inhibitory activities of piperine and alklyl amides in Capsicum and black pepper were dose dependant. The inhibitory concentrations 50% (IC50) of the alklylamides were in the range 13-200 microg/mL. The extracts of black pepper at 200 microg/mL and its compounds at 25 microg/mL inhibited LPO by 45-85%, COX enzymes by 31-80% and cancer cells proliferation by 3.5-86.8%. Overall, these results suggest that black pepper and its constituents like hot pepper, exhibit anti-inflammatory, antioxidant and anticancer activities. PMID:20839630

  13. The DNA-binding domain of two bZIP transcription factors, the Epstein-Barr virus switch gene product EB1 and Jun, is a bipartite nuclear targeting sequence.

    PubMed Central

    Mikaélian, I; Drouet, E; Marechal, V; Denoyel, G; Nicolas, J C; Sergeant, A

    1993-01-01

    The Epstein-Barr virus BZLF1 gene product EB1 (also called ZEBRA and Zta), is a transcription factor belonging to the bZIP (basic domain leucine zipper) family of nuclear proteins. Translocation to the nucleus of EB1 (J. Becker, U. Leser, M. Marschall, A. Langford, W. Jilg, H. Gelderblom, P. Reichart, and H. Wolf, Proc. Natl. Acad. Sci. USA 88:8332-8336, 1991) and of two other bZIP proteins, c-Jun and c-Fos (P. Roux, J.-M. Blanchard, A. Fernandez, N. Lamb, P. Jeanteur, and M. Piechaczyk, Cell 63:341-351, 1990), has been shown to be subject to regulation. We show here that for both EB1 and Jun the nuclear targeting signals (NTS) in the proteins' primary sequences are two clusters of positively charged amino acids. These clusters, called BRA and BRB, are necessary and sufficient to direct beta-galactosidase to the nuclear compartment and act as a bipartite NTS. They are conserved among all the bZIP proteins, and although they are not identical, they probably share the same function. Site-directed mutagenesis studies made on these basic clusters suggest that they also act as a bipartite NTS in the EB1 protein. Our results also demonstrate that in EB1 and Jun, these bipartite NTS are superimposed with bipartite DNA-binding domains, since BRA and BRB are required in vitro for direct and specific contact between these proteins and their DNA-binding sites. Images PMID:8380464

  14. Genome-wide expression analysis upon constitutive activation of the HacA bZIP transcription factor in Aspergillus niger reveals a coordinated cellular response to counteract ER stress

    PubMed Central

    2012-01-01

    Background HacA/Xbp1 is a conserved bZIP transcription factor in eukaryotic cells which regulates gene expression in response to various forms of secretion stress and as part of secretory cell differentiation. In the present study, we replaced the endogenous hacA gene of an Aspergillus niger strain with a gene encoding a constitutively active form of the HacA transcription factor (HacACA). The impact of constitutive HacA activity during exponential growth was explored in bioreactor controlled cultures using transcriptomic analysis to identify affected genes and processes. Results Transcription profiles for the wild-type strain (HacAWT) and the HacACA strain were obtained using Affymetrix GeneChip analysis of three replicate batch cultures of each strain. In addition to the well known HacA targets such as the ER resident foldases and chaperones, GO enrichment analysis revealed up-regulation of genes involved in protein glycosylation, phospholipid biosynthesis, intracellular protein transport, exocytosis and protein complex assembly in the HacACA mutant. Biological processes over-represented in the down-regulated genes include those belonging to central metabolic pathways, translation and transcription. A remarkable transcriptional response in the HacACA strain was the down-regulation of the AmyR transcription factor and its target genes. Conclusions The results indicate that the constitutive activation of the HacA leads to a coordinated regulation of the folding and secretion capacity of the cell, but with consequences on growth and fungal physiology to reduce secretion stress. PMID:22846479

  15. Genome-Wide Identification and Expression Profile of Dof Transcription Factor Gene Family in Pepper (Capsicum annuum L.).

    PubMed

    Wu, Zhiming; Cheng, Jiaowen; Cui, Junjie; Xu, Xiaowan; Liang, Guansheng; Luo, Xirong; Chen, Xiaocui; Tang, Xiangqun; Hu, Kailin; Qin, Cheng

    2016-01-01

    Dof (DNA-binding One Zinc Finger) transcription factor family is unique to plants and has diverse roles associated with plant-specific phenomena, such as light, phytohormone and defense responses as well as seed development and germination. Although, genome-wide analysis of this family has been performed in many species, information regarding Dof genes in the pepper, Capsicum annuum L., is extremely limited. In this study, exhaustive searches of pepper genome revealed 33 potential CaDofs that were phylogenetically clustered into four subgroups. Twenty-nine of the 33 Dof genes could be mapped on 11 chromosomes, except for chromosome 7. The intron/exon organizations and conserved motif compositions of these genes were also analyzed. Additionally, phylogenetic analysis and classification of the Dof transcription factor family in eight plant species revealed that S. lycopersicum and C. annuum as well as O. sativa and S. bicolor Dof proteins may have evolved conservatively. Moreover, comprehensive expression analysis of CaDofs using a RNA-seq atlas and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that these genes exhibit a variety of expression patterns. Most of the CaDofs were expressed in at least one of the tissues tested, whereas several genes were identified as being highly responsive to heat and salt stresses. Overall, this study describes the first genome-wide analysis of the pepper Dof family, whose genes exhibited different expression patterns in all primary fruit developmental stages and tissue types, as in response to abiotic stress. In particular, some Dof genes might be used as biomarkers for heat and salt stress. The results could expand our understanding of the roles of Dof genes in pepper. PMID:27200047

  16. Genome-Wide Identification and Expression Profile of Dof Transcription Factor Gene Family in Pepper (Capsicum annuum L.)

    PubMed Central

    Wu, Zhiming; Cheng, Jiaowen; Cui, Junjie; Xu, Xiaowan; Liang, Guansheng; Luo, Xirong; Chen, Xiaocui; Tang, Xiangqun; Hu, Kailin; Qin, Cheng

    2016-01-01

    Dof (DNA-binding One Zinc Finger) transcription factor family is unique to plants and has diverse roles associated with plant-specific phenomena, such as light, phytohormone and defense responses as well as seed development and germination. Although, genome-wide analysis of this family has been performed in many species, information regarding Dof genes in the pepper, Capsicum annuum L., is extremely limited. In this study, exhaustive searches of pepper genome revealed 33 potential CaDofs that were phylogenetically clustered into four subgroups. Twenty-nine of the 33 Dof genes could be mapped on 11 chromosomes, except for chromosome 7. The intron/exon organizations and conserved motif compositions of these genes were also analyzed. Additionally, phylogenetic analysis and classification of the Dof transcription factor family in eight plant species revealed that S. lycopersicum and C. annuum as well as O. sativa and S. bicolor Dof proteins may have evolved conservatively. Moreover, comprehensive expression analysis of CaDofs using a RNA-seq atlas and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that these genes exhibit a variety of expression patterns. Most of the CaDofs were expressed in at least one of the tissues tested, whereas several genes were identified as being highly responsive to heat and salt stresses. Overall, this study describes the first genome-wide analysis of the pepper Dof family, whose genes exhibited different expression patterns in all primary fruit developmental stages and tissue types, as in response to abiotic stress. In particular, some Dof genes might be used as biomarkers for heat and salt stress. The results could expand our understanding of the roles of Dof genes in pepper. PMID:27200047

  17. Feedback Regulation of ABA Signaling and Biosynthesis by a bZIP Transcription Factor Targets Drought-Resistance-Related Genes1[OPEN

    PubMed Central

    Tang, Ning; Yang, Jun; Peng, Lei; Ma, Siqi; Xu, Yan; Li, Guoliang

    2016-01-01

    The OsbZIP23 transcription factor has been characterized for its essential role in drought resistance in rice (Oryza sativa), but the mechanism is unknown. In this study, we first investigated the transcriptional activation of OsbZIP23. A homolog of SnRK2 protein kinase (SAPK2) was found to interact with and phosphorylate OsbZIP23 for its transcriptional activation. SAPK2 also interacted with OsPP2C49, an ABI1 homolog, which deactivated the SAPK2 to inhibit the transcriptional activation activity of OsbZIP23. Next, we performed genome-wide identification of OsbZIP23 targets by immunoprecipitation sequencing and RNA sequencing analyses in the OsbZIP23-overexpression, osbzip23 mutant, and wild-type rice under normal and drought stress conditions. OsbZIP23 directly regulates a large number of reported genes that function in stress response, hormone signaling, and developmental processes. Among these targets, we found that OsbZIP23 could positively regulate OsPP2C49, and overexpression of OsPP2C49 in rice resulted in significantly decreased sensitivity of the abscisic acid (ABA) response and rapid dehydration. Moreover, OsNCED4 (9-cis-epoxycarotenoid dioxygenase4), a key gene in ABA biosynthesis, was also positively regulated by OsbZIP23. Together, our results suggest that OsbZIP23 acts as a central regulator in ABA signaling and biosynthesis, and drought resistance in rice. PMID:27325665

  18. Frequency-Dependent Regulation of Follicle-Stimulating Hormone β by Pulsatile Gonadotropin-Releasing Hormone Is Mediated by Functional Antagonism of bZIP Transcription Factors ▿

    PubMed Central

    Ciccone, Nick A.; Xu, Shuyun; Lacza, Charlemagne T.; Carroll, Rona S.; Kaiser, Ursula B.

    2010-01-01

    Oscillatory synthesis and secretion of the gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), under the control of pulsatile hypothalamic gonadotropin-releasing hormone (GnRH), is essential for normal reproductive development and fertility. The molecular mechanisms by which various patterns of pulsatile GnRH regulate gonadotrope responsiveness remain poorly understood. In contrast to the α and LHβ subunit genes, FSHβ subunit transcription is preferentially stimulated at low rather than high frequencies of pulsatile GnRH. In this study, mutation of a cyclic AMP response element (CRE) within the FSHβ promoter resulted in the loss of preferential GnRH stimulation at low pulse frequencies. We hypothesized that high GnRH pulse frequencies might stimulate a transcriptional repressor(s) to attenuate the action of CRE binding protein (CREB) and show that inducible cAMP early repressor (ICER) fulfills such a role. ICER was not detected under basal conditions, but pulsatile GnRH stimulated ICER to a greater extent at high than at low pulse frequencies. ICER binds to the FSHβ CRE site to reduce CREB occupation and abrogates both maximal GnRH stimulation and GnRH pulse frequency-dependent effects on FSHβ transcription. These data suggest that ICER production antagonizes the stimulatory action of CREB to attenuate FSHβ transcription at high GnRH pulse frequencies, thereby playing a critical role in regulating cyclic reproductive function. PMID:20008557

  19. Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development.

    PubMed

    Thurow, Corinna; Schiermeyer, Andreas; Krawczyk, Stefanie; Butterbrodt, Thomas; Nickolov, Kaloian; Gatz, Christiane

    2005-10-01

    Salicylic acid (SA) is a crucial internal signaling molecule needed for the induction of plant defense responses upon attack of a variety of pathogens. Basic leucine zipper transcription factors of the TGA family bind to activating sequence-1 (as-1)-like elements which are SA-responsive cis elements found in promoters of 'immediate early' and 'late' SA-inducible genes. TGA2.2 constitutes the main component of tobacco as-1-binding factor-1 (ASF-1). TGA2.1, which differs from TGA2.2 by being able to activate transcription in yeast, constitutes a minor fraction of the complex. Both proteins interact with NPR1, a protein essential for SA inducibility of 'late' genes. Here we demonstrate using dsRNAi mediated gene silencing that reducing the amount of TGA2.2 and TGA2.1 correlates with a significant decrease in ASF-1 activity and with a decreased inducibility of both 'immediate early' and 'late' genes. In contrast, reducing the amount of TGA2.1 alone had no effect on the expression of these target genes suggesting that TGA2.1 is dispensable for SA-inducible gene expression from the as-1 element. Expression of a TGA2.2 mutant unable to form heterodimers with the endogenous pool of TGA factors led to reduced SA-inducibility of 'immediate early' gene Nt103, indicating that the native leucine zipper is important for the protein to act positively on transcription. Plants with reduced amounts of TGA2.1 developed petal like stamens indicating a regulatory role of TGA2.1 in defining organ identity in tobacco flowers. A model is suggested that unifies conflicting results on the function of tobacco TGA factors with respect to activation of the 'late' PR-1a promoter. PMID:16167899

  20. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides.

    PubMed

    Sun, Yingjiao; Wang, Yonglin; Tian, Chengming

    2016-10-01

    Yeast AP1 transcription factor is a regulator of oxidative stress response. Here, we report the identification and characterization of CgAP1, an ortholog of YAP1 in poplar anthracnose fungus Colletotrichum gloeosporioides. The expression of CgAP1 was highly induced by reactive oxygen species. CgAP1 deletion mutants displayed enhanced sensitivity to oxidative stress compared with the wild-type strain, and their poplar leaf virulence was obviously reduced. However, the mutants exhibited no obvious defects in aerial hyphal growth, conidia production, and appressoria formation. CgAP1::eGFP fusion protein localized to the nucleus after TBH (tert-Butyl hydroperoxide) treatment, suggesting that CgAP1 functions as a redox sensor in C. gloeosporioides. In addition, CgAP1 prevented the accumulation of ROS during early stages of biotrophic growth. CgAP1 also acted as a positive regulator of several ROS-related genes (i.e., Glr1, Hyr1, and Cyt1) involved in the antioxidative response. These results highlight the key regulatory role of CgAP1 transcription factor in oxidative stress response and provide insights into the function of ROS detoxification in virulence of C. gloeosporioides. PMID:27544415

  1. Trafficking of the bZIP transmembrane transcription factor CREB-H into alternate pathways of ERAD and stress-regulated intramembrane proteolysis.

    PubMed

    Bailey, Daniel; Barreca, Cristina; O'Hare, Peter

    2007-12-01

    CREB-H is an ATF6-related, transmembrane transcription factor that, in response to endoplasmic reticulum (ER)-associated stress, is cleaved by Golgi proteases and transported to the nucleus to effect appropriate adaptive responses. We characterize the ER processing and turnover of CREB-H with results which have important implications for ER stress regulation and signalling. We show that CREB-H is glycosylated and demonstrate that both the ER and nuclear forms of CREB-H have short half-lives. We also show that CREB-H is subject to cycles of retrotranslocation, deglycosylation and degradation through the ER-associated degradation (ERAD) pathway. Proteasome inhibition resulted in accumulation of a cytosolic intermediate but additionally, in contrast to inhibition of glycosylation, promoted specific cleavage of CREB-H and nuclear transport of the N-terminal-truncated product. Our data indicate that under normal conditions CREB-H is transported back from the ER to the cytosol, where it is subject to ERAD, but under conditions that repress proteasome function or promote load CREB-H is diverted from this pathway instead undergoing cleavage and nuclear transport. Finally, we identify a cytoplasmic determinant involved in CREB-H ER retention, deletion of which results in constitutive Golgi transport and corresponding cleavage. We present a model where cellular stresses may be sensed at different levels by different members of the basic and leucine zipper domain transmembrane proteins. PMID:17875199

  2. The bZIP Transcription Factor HAC-1 Is Involved in the Unfolded Protein Response and Is Necessary for Growth on Cellulose in Neurospora crassa

    PubMed Central

    Larrondo, Luis F.

    2015-01-01

    High protein secretion capacity in filamentous fungi requires an extremely efficient system for protein synthesis, folding and transport. When the folding capacity of the endoplasmic reticulum (ER) is exceeded, a pathway known as the unfolded protein response (UPR) is triggered, allowing cells to mitigate and cope with this stress. In yeast, this pathway relies on the transcription factor Hac1, which mediates the up-regulation of several genes required under these stressful conditions. In this work, we identified and characterized the ortholog of the yeast HAC1 gene in the filamentous fungus Neurospora crassa. We show that its mRNA undergoes an ER stress-dependent splicing reaction, which in N. crassa removes a 23 nt intron and leads to a change in the open reading frame. By disrupting the N. crassa hac-1 gene, we determined it to be crucial for activating UPR and for proper growth in the presence of ER stress-inducing chemical agents. Neurospora is naturally found growing on dead plant material, composed primarily by lignocellulose, and is a model organism for the study of plant cell wall deconstruction. Notably, we found that growth on cellulose, a substrate that requires secretion of numerous enzymes, imposes major demands on ER function and is dramatically impaired in the absence of hac-1, thus broadening the range of physiological functions of the UPR in filamentous fungi. Growth on hemicellulose however, another carbon source that necessitates the secretion of various enzymes for its deconstruction, is not impaired in the mutant nor is the amount of proteins secreted on this substrate, suggesting that secretion, as a whole, is unaltered in the absence of hac-1. The characterization of this signaling pathway in N. crassa will help in the study of plant cell wall deconstruction by fungi and its manipulation may result in important industrial biotechnological applications. PMID:26132395

  3. The bZIP Transcription Factor Fgap1 Mediates Oxidative Stress Response and Trichothecene Biosynthesis But Not Virulence in Fusarium graminearum

    PubMed Central

    Montibus, Mathilde; Ducos, Christine; Bonnin-Verdal, Marie-Noelle; Bormann, Jorg; Ponts, Nadia; Richard-Forget, Florence; Barreau, Christian

    2013-01-01

    Redox sensing is of primary importance for fungi to cope with oxidant compounds found in their environment. Plant pathogens are particularly subject to the oxidative burst during the primary steps of infection. In the budding yeast Saccharomyces cerevisiae, it is the transcription factor Yap1 that mediates the response to oxidative stress via activation of genes coding for detoxification enzymes. In the cereal pathogen Fusarium graminearum, Fgap1 a homologue of Yap1 was identified and its role was investigated. During infection, this pathogen produces mycotoxins belonging to the trichothecenes family that accumulate in the grains. The global regulation of toxin biosynthesis is not completely understood. However, it is now clearly established that an oxidative stress activates the production of toxins by F. graminearum. The involvement of Fgap1 in this activation was investigated. A deleted mutant and a strain expressing a truncated constitutive form of Fgap1 were constructed. None of the mutants was affected in pathogenicity. The deleted mutant showed higher level of trichothecenes production associated with overexpression of Tri genes. Moreover activation of toxin accumulation in response to oxidative stress was no longer observed. Regarding the mutant with the truncated constitutive form of Fgap1, toxin production was strongly reduced. Expression of oxidative stress response genes was not activated in the deleted mutant and expression of the gene encoding the mitochondrial superoxide dismutase MnSOD1 was up-regulated in the mutant with the truncated constitutive form of Fgap1. Our results demonstrate that Fgap1 plays a key role in the link between oxidative stress response and F. graminearum secondary metabolism. PMID:24349499

  4. Crosstalk between Two bZIP Signaling Pathways Orchestrates Salt-Induced Metabolic Reprogramming in Arabidopsis Roots

    PubMed Central

    Hartmann, Laura; Pedrotti, Lorenzo; Weiste, Christoph; Fekete, Agnes; Schierstaedt, Jasper; Göttler, Jasmin; Kempa, Stefan; Krischke, Markus; Dietrich, Katrin; Mueller, Martin J.; Vicente-Carbajosa, Jesus; Hanson, Johannes; Dröge-Laser, Wolfgang

    2015-01-01

    Soil salinity increasingly causes crop losses worldwide. Although roots are the primary targets of salt stress, the signaling networks that facilitate metabolic reprogramming to induce stress tolerance are less understood than those in leaves. Here, a combination of transcriptomic and metabolic approaches was performed in salt-treated Arabidopsis thaliana roots, which revealed that the group S1 basic leucine zipper transcription factors bZIP1 and bZIP53 reprogram primary C- and N-metabolism. In particular, gluconeogenesis and amino acid catabolism are affected by these transcription factors. Importantly, bZIP1 expression reflects cellular stress and energy status in roots. In addition to the well-described abiotic stress response pathway initiated by the hormone abscisic acid (ABA) and executed by SnRK2 (Snf1-RELATED-PROTEIN-KINASE2) and AREB-like bZIP factors, we identify a structurally related ABA-independent signaling module consisting of SnRK1s and S1 bZIPs. Crosstalk between these signaling pathways recruits particular bZIP factor combinations to establish at least four distinct gene expression patterns. Understanding this signaling network provides a framework for securing future crop productivity. PMID:26276836

  5. Crosstalk between Two bZIP Signaling Pathways Orchestrates Salt-Induced Metabolic Reprogramming in Arabidopsis Roots.

    PubMed

    Hartmann, Laura; Pedrotti, Lorenzo; Weiste, Christoph; Fekete, Agnes; Schierstaedt, Jasper; Göttler, Jasmin; Kempa, Stefan; Krischke, Markus; Dietrich, Katrin; Mueller, Martin J; Vicente-Carbajosa, Jesus; Hanson, Johannes; Dröge-Laser, Wolfgang

    2015-08-01

    Soil salinity increasingly causes crop losses worldwide. Although roots are the primary targets of salt stress, the signaling networks that facilitate metabolic reprogramming to induce stress tolerance are less understood than those in leaves. Here, a combination of transcriptomic and metabolic approaches was performed in salt-treated Arabidopsis thaliana roots, which revealed that the group S1 basic leucine zipper transcription factors bZIP1 and bZIP53 reprogram primary C- and N-metabolism. In particular, gluconeogenesis and amino acid catabolism are affected by these transcription factors. Importantly, bZIP1 expression reflects cellular stress and energy status in roots. In addition to the well-described abiotic stress response pathway initiated by the hormone abscisic acid (ABA) and executed by SnRK2 (Snf1-RELATED-PROTEIN-KINASE2) and AREB-like bZIP factors, we identify a structurally related ABA-independent signaling module consisting of SnRK1s and S1 bZIPs. Crosstalk between these signaling pathways recruits particular bZIP factor combinations to establish at least four distinct gene expression patterns. Understanding this signaling network provides a framework for securing future crop productivity. PMID:26276836

  6. Pepper, sweet (Capsicum annuum).

    PubMed

    Heidmann, Iris; Boutilier, Kim

    2015-01-01

    Capsicum (pepper) species are economically important crops that are recalcitrant to genetic transformation by Agrobacterium (Agrobacterium tumefaciens). A number of protocols for pepper transformation have been described but are not routinely applicable. The main bottleneck in pepper transformation is the low frequency of cells that are both susceptible for Agrobacterium infection and have the ability to regenerate. Here, we describe a protocol for the efficient regeneration of transgenic sweet pepper (C. annuum) through inducible activation of the BABY BOOM (BBM) AP2/ERF transcription factor. Using this approach, we can routinely achieve a transformation efficiency of at least 0.6 %. The main improvements in this protocol are the reproducibility in transforming different genotypes and the ability to produce fertile shoots. An added advantage of this protocol is that BBM activity can be induced subsequently in stable transgenic lines, providing a novel regeneration system for clonal propagation through somatic embryogenesis. PMID:25300852

  7. The Elucidation of the Interactome of 16 Arabidopsis bZIP Factors Reveals Three Independent Functional Networks

    PubMed Central

    Llorca, Carles Marco; Berendzen, Kenneth Wayne; Malik, Waqas Ahmed; Mahn, Stefan; Piepho, Hans-Peter; Zentgraf, Ulrike

    2015-01-01

    The function of the bZIP transcription factors is strictly dependent on their ability to dimerize. Heterodimerization has proven to be highly specific and is postulated to operate as a combinatorial mechanism allowing the generation of a large variety of dimers with unique qualities by specifically combining a small set of monomers; an assumption that has not yet been tested systematically. Here, the interaction pattern and the transactivation properties of 16 Arabidopsis thaliana bZIPs are examined in transiently transformed Arabidopsis protoplasts to deliver a perspective on the relationship between bZIP dimerization and function. An interaction matrix of bZIPs belonging to the C, G, H, and S1 bZIP groups was resolved by Bimolecular Fluorescent Complementation (BiFC) coupled to quantitative flow cytometric analysis, while an extensive GUS reporter gene assay was carried out to determine the effect of different bZIP pairs on the expression of four different known bZIP-targeted promoters. Statistical data treatment and complementary bioinformatic analysis were performed to substantiate the biological findings. According to these results, the 16 bZIPs interact in three isolated networks, within which their members dimerize non-specifically and exhibit a significant level of functional redundancy. A coherent explanation for these results is supported by in silico analysis of differences in the length, structure and composition of their leucine zippers and appears to explain their dimerization specificity and dynamics observed in vivo quite well. A model in which the bZIP networks act as functional units is proposed. PMID:26452049

  8. Divergence of the bZIP Gene Family in Strawberry, Peach, and Apple Suggests Multiple Modes of Gene Evolution after Duplication

    PubMed Central

    Wang, Xiao-Long; Zhong, Yan; Cheng, Zong-Ming; Xiong, Jin-Song

    2015-01-01

    The basic leucine zipper (bZIP) transcription factors are the most diverse members of dimerizing transcription factors. In the present study, 50, 116, and 47 bZIP genes were identified in Malus domestica (apple), Prunus persica (peach), and Fragaria vesca (strawberry), respectively. Species-specific duplication was the main contributor to the large number of bZIPs observed in apple. After WGD in apple genome, orthologous bZIP genes corresponding to strawberry on duplicated regions in apple genome were retained. However, in peach ancestor, these syntenic regions were quickly lost or deleted. Maybe the positive selection contributed to the expansion of clade S to adapt to the development and environment stresses. In addition, purifying selection was mainly responsible for bZIP sequence-specific DNA binding. The analysis of orthologous pairs between chromosomes indicates that these orthologs derived from one gene duplication located on one of the nine ancient chromosomes in the Rosaceae. The comparative analysis of bZIP genes in three species provides information on the evolutionary fate of bZIP genes in apple and peach after they diverged from strawberry. PMID:26770968

  9. Divergence of the bZIP Gene Family in Strawberry, Peach, and Apple Suggests Multiple Modes of Gene Evolution after Duplication.

    PubMed

    Wang, Xiao-Long; Zhong, Yan; Cheng, Zong-Ming; Xiong, Jin-Song

    2015-01-01

    The basic leucine zipper (bZIP) transcription factors are the most diverse members of dimerizing transcription factors. In the present study, 50, 116, and 47 bZIP genes were identified in Malus domestica (apple), Prunus persica (peach), and Fragaria vesca (strawberry), respectively. Species-specific duplication was the main contributor to the large number of bZIPs observed in apple. After WGD in apple genome, orthologous bZIP genes corresponding to strawberry on duplicated regions in apple genome were retained. However, in peach ancestor, these syntenic regions were quickly lost or deleted. Maybe the positive selection contributed to the expansion of clade S to adapt to the development and environment stresses. In addition, purifying selection was mainly responsible for bZIP sequence-specific DNA binding. The analysis of orthologous pairs between chromosomes indicates that these orthologs derived from one gene duplication located on one of the nine ancient chromosomes in the Rosaceae. The comparative analysis of bZIP genes in three species provides information on the evolutionary fate of bZIP genes in apple and peach after they diverged from strawberry. PMID:26770968

  10. Human T-cell leukemia virus type 2 produces a spliced antisense transcript encoding a protein that lacks a classic bZIP domain but still inhibits Tax2-mediated transcription

    PubMed Central

    Halin, Marilène; Douceron, Estelle; Clerc, Isabelle; Journo, Chloé; Ko, Nga Ling; Landry, Sébastien; Murphy, Edward L.; Gessain, Antoine; Lemasson, Isabelle; Mesnard, Jean-Michel

    2009-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) and type 2 (HTLV-2) retroviruses infect T lymphocytes. The minus strand of the HTLV-1 genome encodes HBZ, a protein that could play a role in the development of leukemia in infected patients. Herein, we demonstrate that the complementary strand of the HTLV-2 genome also encodes a protein that we named APH-2 for “antisense protein of HTLV-2.” APH-2 mRNA is spliced, polyadenylated, and initiates in the 3′-long terminal repeat at different positions. This transcript was detected in all HTLV-2–infected cell lines and short-term culture of lymphocytes obtained from HTLV-2 African patients tested and in 4 of 15 HTLV-2–infected blood donors. The APH-2 protein is 183 amino acids long, is localized in the cell nucleus, and is detected in vivo. Despite the lack of a consensus basic leucine zipper domain, APH-2 interacts with cyclic adenosine monophosphate-response element binding protein (CREB) and represses Tax2-mediated transcription in Tax2-expressing cells and in cells transfected with an HTLV-2 molecular clone. Altogether, our results demonstrate the existence of an antisense strand–encoded protein in HTLV-2, which could represent an important player in the development of disorders, such as lymphocytosis, which is frequently observed in HTLV-2 patients. PMID:19602711

  11. Human T-cell leukemia virus type 2 produces a spliced antisense transcript encoding a protein that lacks a classic bZIP domain but still inhibits Tax2-mediated transcription.

    PubMed

    Halin, Marilène; Douceron, Estelle; Clerc, Isabelle; Journo, Chloé; Ko, Nga Ling; Landry, Sébastien; Murphy, Edward L; Gessain, Antoine; Lemasson, Isabelle; Mesnard, Jean-Michel; Barbeau, Benoît; Mahieux, Renaud

    2009-09-17

    Human T-cell leukemia virus type 1 (HTLV-1) and type 2 (HTLV-2) retroviruses infect T lymphocytes. The minus strand of the HTLV-1 genome encodes HBZ, a protein that could play a role in the development of leukemia in infected patients. Herein, we demonstrate that the complementary strand of the HTLV-2 genome also encodes a protein that we named APH-2 for "antisense protein of HTLV-2." APH-2 mRNA is spliced, polyadenylated, and initiates in the 3'-long terminal repeat at different positions. This transcript was detected in all HTLV-2-infected cell lines and short-term culture of lymphocytes obtained from HTLV-2 African patients tested and in 4 of 15 HTLV-2-infected blood donors. The APH-2 protein is 183 amino acids long, is localized in the cell nucleus, and is detected in vivo. Despite the lack of a consensus basic leucine zipper domain, APH-2 interacts with cyclic adenosine monophosphate-response element binding protein (CREB) and represses Tax2-mediated transcription in Tax2-expressing cells and in cells transfected with an HTLV-2 molecular clone. Altogether, our results demonstrate the existence of an antisense strand-encoded protein in HTLV-2, which could represent an important player in the development of disorders, such as lymphocytosis, which is frequently observed in HTLV-2 patients. PMID:19602711

  12. Data-Driven Prediction and Design of bZIP Coiled-Coil Interactions

    PubMed Central

    Potapov, Vladimir; Kaplan, Jenifer B.; Keating, Amy E.

    2015-01-01

    Selective dimerization of the basic-region leucine-zipper (bZIP) transcription factors presents a vivid example of how a high degree of interaction specificity can be achieved within a family of structurally similar proteins. The coiled-coil motif that mediates homo- or hetero-dimerization of the bZIP proteins has been intensively studied, and a variety of methods have been proposed to predict these interactions from sequence data. In this work, we used a large quantitative set of 4,549 bZIP coiled-coil interactions to develop a predictive model that exploits knowledge of structurally conserved residue-residue interactions in the coiled-coil motif. Our model, which expresses interaction energies as a sum of interpretable residue-pair and triplet terms, achieves a correlation with experimental binding free energies of R = 0.68 and significantly out-performs other scoring functions. To use our model in protein design applications, we devised a strategy in which synthetic peptides are built by assembling 7-residue native-protein heptad modules into new combinations. An integer linear program was used to find the optimal combination of heptads to bind selectively to a target human bZIP coiled coil, but not to target paralogs. Using this approach, we designed peptides to interact with the bZIP domains from human JUN, XBP1, ATF4 and ATF5. Testing more than 132 candidate protein complexes using a fluorescence resonance energy transfer assay confirmed the formation of tight and selective heterodimers between the designed peptides and their targets. This approach can be used to make inhibitors of native proteins, or to develop novel peptides for applications in synthetic biology or nanotechnology. PMID:25695764

  13. bZIP67 Regulates the Omega-3 Fatty Acid Content of Arabidopsis Seed Oil by Activating FATTY ACID DESATURASE3[W][OPEN

    PubMed Central

    Mendes, Ana; Kelly, Amélie A.; van Erp, Harrie; Shaw, Eve; Powers, Stephen J.; Kurup, Smita; Eastmond, Peter J.

    2013-01-01

    Arabidopsis thaliana seed maturation is accompanied by the deposition of storage oil, rich in the essential ω-3 polyunsaturated fatty acid α-linolenic acid (ALA). The synthesis of ALA is highly responsive to the level of FATTY ACID DESATURASE3 (FAD3) expression, which is strongly upregulated during embryogenesis. By screening mutants in LEAFY COTYLEDON1 (LEC1)–inducible transcription factors using fatty acid profiling, we identified two mutants (lec1-like and bzip67) with a seed lipid phenotype. Both mutants share a substantial reduction in seed ALA content. Using a combination of in vivo and in vitro assays, we show that bZIP67 binds G-boxes in the FAD3 promoter and enhances FAD3 expression but that activation is conditional on bZIP67 association with LEC1-LIKE (L1L) and NUCLEAR FACTOR-YC2 (NF-YC2). Although FUSCA3 and ABSCISIC ACID INSENSITIVE3 are required for L1L and bZIP67 expression, neither protein is necessary for [bZIP67:L1L:NF-YC2] to activate FAD3. We conclude that a transcriptional complex containing L1L, NF-YC2, and bZIP67 is induced by LEC1 during embryogenesis and specifies high levels of ALA production for storage oil by activating FAD3 expression. PMID:23995083

  14. An Aspergillus nidulans bZIP response pathway hardwired for defensive secondary metabolism operates through aflR

    PubMed Central

    Yin, Wenbing; Amaike, Saori; Wohlbach, Dana J.; Gasch, Audrey P.; Chiang, Yi-Ming; Wang, Clay C.; Bok, JinWoo; Rohlfs, Marko; Keller, Nancy P.

    2012-01-01

    Summary The eukaryotic bZIP transcription factors are critical players in organismal response to environmental challenges. In fungi, the production of secondary metabolites (SMs) is hypothesized as one of the responses to environmental insults, e.g. attack by fungivorous insects, yet little data to support this hypothesis exists. Here we establish a mechanism of bZIP regulation of SMs through RsmA, a recently discovered YAP-like bZIP protein. RsmA greatly increases SM production by binding to two sites in the A. nidulans AflR promoter region, a C6 transcription factor known for activating production of the carcinogenic and anti-predation SM, sterigmatocystin (ST). Deletion of aflR in an overexpression rsmA (OE::rsmA) background not only eliminates ST production but also significantly reduces asperthecin synthesis. Furthermore, the fungivore, Folsomia candida, exhibited a distinct preference for feeding on wild type rather than an OE::rsmA strain. RsmA may thus have a critical function in mediating direct chemical resistance against predation. Taken together, these results suggest RsmA represents a bZIP pathway hardwired for defensive SM production. PMID:22283524

  15. SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants

    PubMed Central

    Mair, Andrea; Pedrotti, Lorenzo; Wurzinger, Bernhard; Anrather, Dorothea; Simeunovic, Andrea; Weiste, Christoph; Valerio, Concetta; Dietrich, Katrin; Kirchler, Tobias; Nägele, Thomas; Vicente Carbajosa, Jesús; Hanson, Johannes; Baena-González, Elena; Chaban, Christina; Weckwerth, Wolfram; Dröge-Laser, Wolfgang; Teige, Markus

    2015-01-01

    Metabolic adjustment to changing environmental conditions, particularly balancing of growth and defense responses, is crucial for all organisms to survive. The evolutionary conserved AMPK/Snf1/SnRK1 kinases are well-known metabolic master regulators in the low-energy response in animals, yeast and plants. They act at two different levels: by modulating the activity of key metabolic enzymes, and by massive transcriptional reprogramming. While the first part is well established, the latter function is only partially understood in animals and not at all in plants. Here we identified the Arabidopsis transcription factor bZIP63 as key regulator of the starvation response and direct target of the SnRK1 kinase. Phosphorylation of bZIP63 by SnRK1 changed its dimerization preference, thereby affecting target gene expression and ultimately primary metabolism. A bzip63 knock-out mutant exhibited starvation-related phenotypes, which could be functionally complemented by wild type bZIP63, but not by a version harboring point mutations in the identified SnRK1 target sites. DOI: http://dx.doi.org/10.7554/eLife.05828.001 PMID:26263501

  16. Novel DNA binding specificities of a putative herpesvirus bZIP oncoprotein.

    PubMed Central

    Qian, Z; Brunovskis, P; Lee, L; Vogt, P K; Kung, H J

    1996-01-01

    Marek's disease virus is a highly oncogenic herpesvirus that can cause T lymphomas and peripheral nerve demyelination in chickens. meq, a candidate oncogene of Marek's disease virus, encodes a basic leucine zipper (bZIP) transcription factor which contains a large proline-rich domain in its C terminus. On the basis of its bZIP structural homology, meq is perhaps the only member of the jun-fos gene family completely viral in origin. We previously showed that Meq's C-terminal domain has potent transactivation activity and that its bZIP domain can dimerize with itself and with c-Jun also. In an effort to identify viral and cellular targets of Meq, we have determined the optimal binding sites for Meq-Jun heterodimers and Meq-Meq homodimers. By a PCR-based approach using cyclic amplification of selected targets, Meq-Jun heterodimers were found to optimally bind tetradecanoylphorbol acetate response element (TRE) and cyclic AMP response element (CRE) consensus sequences. This result was consistent with the results of our previous functional analysis implicating Meq-Jun heterodimers in the transactivation of the Meq promoter through a TRE- or CRE-like sequence. Interestingly, Meq-Meq homodimers were found to bind two distinct motif elements. The first [GAGTGATG AC(G)TCATC] has a consensus which includes a TRE or CRE core flanked by additional nucleotides critical for tight binding. Methylation interference and mutational analyses confirmed the importance of the flanking residues. The sequences of a subset of TRE and CRE sites selected by Meq-Meq are closely related to the binding motif of Maf, another bZIP oncoprotein. The second putative Meq binding site (RACACACAY) bears a completely different consensus not shared by other bZIP proteins. Binding to this consensus sequence also requires secondary structure characteristics associated with DNA bending. CACA motifs are known to promote DNA curvature and function in a number of special biological processes. Our results lend

  17. IRE1/bZIP60-Mediated Unfolded Protein Response Plays Distinct Roles in Plant Immunity and Abiotic Stress Responses

    PubMed Central

    Blanco, Francisca; Boatwright, Jon Lucas; Moreno, Ignacio; Jordan, Melissa R.; Chen, Yani; Brandizzi, Federica; Dong, Xinnian

    2012-01-01

    Endoplasmic reticulum (ER)-mediated protein secretion and quality control have been shown to play an important role in immune responses in both animals and plants. In mammals, the ER membrane-located IRE1 kinase/endoribonuclease, a key regulator of unfolded protein response (UPR), is required for plasma cell development to accommodate massive secretion of immunoglobulins. Plant cells can secrete the so-called pathogenesis-related (PR) proteins with antimicrobial activities upon pathogen challenge. However, whether IRE1 plays any role in plant immunity is not known. Arabidopsis thaliana has two copies of IRE1, IRE1a and IRE1b. Here, we show that both IRE1a and IRE1b are transcriptionally induced during chemically-induced ER stress, bacterial pathogen infection and treatment with the immune signal salicylic acid (SA). However, we found that IRE1a plays a predominant role in the secretion of PR proteins upon SA treatment. Consequently, the ire1a mutant plants show enhanced susceptibility to a bacterial pathogen and are deficient in establishing systemic acquired resistance (SAR), whereas ire1b is unaffected in these responses. We further demonstrate that the immune deficiency in ire1a is due to a defect in SA- and pathogen-triggered, IRE1-mediated cytoplasmic splicing of the bZIP60 mRNA, which encodes a transcription factor involved in the expression of UPR-responsive genes. Consistently, IRE1a is preferentially required for bZIP60 splicing upon pathogen infection, while IRE1b plays a major role in bZIP60 processing upon Tunicamycin (Tm)-induced stress. We also show that SA-dependent induction of UPR-responsive genes is altered in the bzip60 mutant resulting in a moderate susceptibility to a bacterial pathogen. These results indicate that the IRE1/bZIP60 branch of UPR is a part of the plant response to pathogens for which the two Arabidopsis IRE1 isoforms play only partially overlapping roles and that IRE1 has both bZIP60-dependent and bZIP60-independent functions in

  18. A Measurable Activation of the bZIP Transcription Factor Atf1 in a Fission Yeast Strain Devoid of Stress-activated and Cell Integrity Mitogen-activated Protein Kinase (MAPK) Activities*

    PubMed Central

    Zhou, Xin; Ma, Yan; Kato, Toshiaki; Kuno, Takayoshi

    2012-01-01

    In Schizosaccharomyces pombe, the stress-activated Sty1 MAPK pathway is essential for cell survival under stress conditions. The Sty1 MAPK regulates Atf1 transcription factor to elicit stress responses in extreme conditions of osmolarity and reactive oxygen species-generating agents such as hydrogen peroxide, heat, low glucose, and heavy metal. Herein, using a newly developed Renilla luciferase reporter assay with enhanced detection sensitivity and accuracy, we show that distinct signaling pathways respond to cadmium and other reactive oxygen species-generating agents for the activation of Atf1. Also, surprisingly, a measurable activation of Atf1 transcription factor was still observed devoid of Sty1 MAPK activity. Further genetic and biological analyses revealed that the residual activation is caused by the activation of the cell wall integrity Pmk1 MAPK pathway and a redox-mediated activation of Atf1. PMID:22661707

  19. Pepper Oil Surprise

    NASA Video Gallery

    Astronauts Cady Coleman and Paolo Nespoli perform the Pepper Oil Surprise experiment from Potlatch Elementary School in Potlatch, Idaho. This research investigates the interaction of liquid pepper/...

  20. Deciphering the Combinatorial DNA-binding Code of the CCAAT-binding Complex and the Iron-regulatory Basic Region Leucine Zipper (bZIP) Transcription Factor HapX*

    PubMed Central

    Hortschansky, Peter; Ando, Eriko; Tuppatsch, Katja; Arikawa, Hisashi; Kobayashi, Tetsuo; Kato, Masashi; Haas, Hubertus; Brakhage, Axel A.

    2015-01-01

    The heterotrimeric CCAAT-binding complex (CBC) is evolutionarily conserved in eukaryotic organisms, including fungi, plants, and mammals. The CBC consists of three subunits, which are named in the filamentous fungus Aspergillus nidulans HapB, HapC, and HapE. HapX, a fourth CBC subunit, was identified exclusively in fungi, except for Saccharomyces cerevisiae and the closely related Saccharomycotina species. The CBC-HapX complex acts as the master regulator of iron homeostasis. HapX belongs to the class of basic region leucine zipper transcription factors. We demonstrated that the CBC and HapX bind cooperatively to bipartite DNA motifs with a general HapX/CBC/DNA 2:1:1 stoichiometry in a class of genes that are repressed by HapX-CBC in A. nidulans during iron limitation. This combinatorial binding mode requires protein-protein interaction between the N-terminal domain of HapE and the N-terminal CBC binding domain of HapX as well as sequence-specific DNA binding of both the CBC and HapX. Initial binding of the CBC to CCAAT boxes is mandatory for DNA recognition of HapX. HapX specifically targets the minimal motif 5′-GAT-3′, which is located at a distance of 11–12 bp downstream of the respective CCAAT box. Single nucleotide substitutions at the 5′- and 3′-end of the GAT motif as well as different spacing between the CBC and HapX DNA-binding sites revealed a remarkable promiscuous DNA-recognition mode of HapX. This flexible DNA-binding code may have evolved as a mechanism for fine-tuning the transcriptional activity of CBC-HapX at distinct target promoters. PMID:25589790

  1. The IRE1/bZIP60 pathway and Bax inhibitor 1 suppress systemic accumulation of potyviruses and potexviruses in Arabidopsis and N. benthamiana plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inositol requiring enzyme (IRE1) is an endoplasmic reticulum (ER) stress sensor and when activated it splices the bZIP60 mRNA producing a truncated transcription factor that upregulates expression of genes involved in the unfolded protein response (UPR). Bax inhibitor 1 (BI-1) is another ER stre...

  2. Pepper's Ghost

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2011-09-01

    Without applications of physics such as counter-weighted sets and backdrops, inclined planes, stage lighting instruments, and other mechanisms for deus ex machina, dramatic productions would revert to the words only—fine for Shakespeare and Becket, but not good for audiences who are accustomed to experiencing plays with the eye as well as the ear. Pepper's Ghost is a 19th-century stage illusion, based on basic optical principles, that can find its way into your introductory classroom.

  3. Ultra-High Density, Transcript-Based Genetic Maps of Pepper Define Recombination in the Genome and Synteny Among Related Species

    PubMed Central

    Hill, Theresa; Ashrafi, Hamid; Chin-Wo, Sebastian Reyes; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard; Van Deynze, Allen

    2015-01-01

    Our ability to assemble complex genomes and construct ultradense genetic maps now allows the determination of recombination rates, translocations, and the extent of genomic collinearity between populations, species, and genera. We developed two ultradense genetic linkage maps for pepper from single-position polymorphisms (SPPs) identified de novo with a 30,173 unigene pepper genotyping array. The Capsicum frutescens × C. annuum interspecific and the C. annuum intraspecific genetic maps were constructed comprising 16,167 and 3,878 unigene markers in 2108 and 783 genetic bins, respectively. Accuracies of marker groupings and orders are validated by the high degree of collinearity between the two maps. Marker density was sufficient to locate the chromosomal breakpoint resulting in the P1/P8 translocation between C. frutescens and C. annuum to a single bin. The two maps aligned to the pepper genome showed varying marker density along the chromosomes. There were extensive chromosomal regions with suppressed recombination and reduced intraspecific marker density. These regions corresponded to the pronounced nonrecombining pericentromeric regions in tomato, a related Solanaceous species. Similar to tomato, the extent of reduced recombination appears to be more pronounced in pepper than in other plant species. Alignment of maps with the tomato and potato genomes shows the presence of previously known translocations and a translocation event that was not observed in previous genetic maps of pepper. PMID:26355020

  4. Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature-high humidity challenge in a positive feedback loop with CaWRKY40.

    PubMed

    Shen, Lei; Liu, Zhiqin; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Lin, Wei; Wang, Rongzhang; Yu, Huanxin; Mou, Shaoliang; Hussain, Ansar; Cheng, Wei; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin

    2016-04-01

    CaWRKY40 is known to act as a positive regulator in the response of pepper (Capsicum annuum) to Ralstonia solanacearum inoculation (RSI) or high temperature-high humidity (HTHH), but the underlying mechanism remains elusive. Herein, we report that CabZIP63, a pepper bZIP family member, participates in this process by regulating the expression of CaWRKY40. CabZIP63 was found to localize in the nuclei, be up-regulated by RSI or HTHH, bind to promoters of both CabZIP63(pCabZIP63) and CaWRKY40(pCaWRKY40), and activate pCabZIP63- and pCaWRKY40-driven β-glucuronidase expression in a C- or G-box-dependent manner. Silencing of CabZIP63 by virus-induced gene silencing (VIGS) in pepper plants significantly attenuated their resistance to RSI and tolerance to HTHH, accompanied by down-regulation of immunity- or thermotolerance-associated CaPR1, CaNPR1, CaDEF1, and CaHSP24. Hypersensitive response-mediated cell death and expression of the tested immunity- and thermotolerance-associated marker genes were induced by transient overexpression (TOE) of CabZIP63, but decreased by that of CabZIP63-SRDX. Additionally, binding of CabZIP63 to pCaWRKY40 was up-regulated by RSI or HTHH, and the transcript level of CaWRKY40 and binding of CaWRKY40 to the promoters of CaPR1, CaNPR1, CaDEF1 and CaHSP24 were up-regulated by TOE of CabZIP63. On the other hand, CabZIP63 was also up-regulated transcriptionally by TOE of CaWRKY40. The data suggest collectively that CabZIP63 directly or indirectly regulates the expression of CaWRKY40 at both the transcriptional and post-transcriptional level, forming a positive feedback loop with CaWRKY40 during pepper's response to RSI or HTHH. Altogether, our data will help to elucidate the underlying mechanism of crosstalk between pepper's response to RSI and HTHH. PMID:26936828

  5. Genomic surveys and expression analysis of bZIP gene family in castor bean (Ricinus communis L.).

    PubMed

    Jin, Zhengwei; Xu, Wei; Liu, Aizhong

    2014-02-01

    The basic leucine zipper (bZIP) transcription factors comprise a family of transcriptional regulators present extensively in plants, involved in regulating diverse biological processes such as flower and vascular development, seed maturation, stress signaling and pathogen defense. Castor bean (Ricinus communis L. Euphorbiaceae) is one of the most important non-edible oilseed crops and its seed oil is broadly used for industrial applications. We performed a comprehensive genome-wide identification and analysis of the bZIP transcription factors that exist in the castor bean genome in this study. In total, 49 RcbZIP transcription factors were identified, characterized and categorized into 11 groups (I-XI) based on their gene structure, DNA-binding sites, conserved motifs, and phylogenetic relationships. The dimerization properties of 49 RcbZIP proteins were predicted on the basis of the characteristic features in the leucine zipper. Global expression profiles of 49 RcbZIP genes among different tissues were examined using high-throughput sequencing of digital gene expression profiles, and resulted in diverse expression patterns that may provide basic information to further reveal the function of the 49 RcbZIP genes in castor bean. The results obtained from this study would provide valuable information in understanding the molecular basis of the RcbZIP transcription factor family and their potential function in regulating the growth and development, particularly in seed filling of castor bean. PMID:24165825

  6. The dynamic of the splicing of bZIP60 and the proteins encoded by the spliced and unspliced mRNAs reveals some unique features during the activation of UPR in Arabidopsis thaliana.

    PubMed

    Parra-Rojas, Juan; Moreno, Adrian A; Mitina, Irina; Orellana, Ariel

    2015-01-01

    The unfolded protein response (UPR) is a signaling pathway that is activated when the workload of the endoplasmic reticulum (ER) is surpassed. IRE1 is a sensor involved in triggering the UPR and plays a key role in the unconventional splicing of an mRNA leading to the formation of a transcription factor that up-regulates the transcription of genes that play a role in restoring the homeostasis in the ER. In plants, bZIP60 is the substrate for IRE1; however, questions such as what is the dynamics of the splicing of bZIP60 and the fate of the proteins encoded by the spliced and unspliced forms of the mRNA, remain unanswered. In the present work, we analyzed the processing of bZIP60 by determining the levels of the spliced form mRNA in plants exposed to different conditions that trigger UPR. The results show that induction of ER stress increases the content of the spliced form of bZIP60 (bZIP60s) reaching a maximum, that depending on the stimuli, varied between 30 min or 2 hrs. In most cases, this was followed by a decrease in the content. In contrast to other eukaryotes, the splicing never occurred to full extent. The content of bZIP60s changed among different organs upon induction of the UPR suggesting that splicing is regulated differentially throughout the plant. In addition, we analyzed the distribution of a GFP-tagged version of bZIP60 when UPR was activated. A good correlation between splicing of bZIP60 and localization of the protein in the nucleus was observed. No fluorescence was observed under basal conditions, but interestingly, the fluorescence was recovered and found to co-localize with an ER marker upon treatment with an inhibitor of the proteasome. Our results indicate that the dynamics of bZIP60, both the mRNA and the protein, are highly dynamic processes which are tissue-specific and stimulus-dependent. PMID:25860807

  7. Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana

    PubMed Central

    Hu, Wei; Wang, Lianzhe; Tie, Weiwei; Yan, Yan; Ding, Zehong; Liu, Juhua; Li, Meiying; Peng, Ming; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The leucine zipper (bZIP) transcription factors play important roles in multiple biological processes. However, less information is available regarding the bZIP family in the important fruit crop banana. In this study, 121 bZIP transcription factor genes were identified in the banana genome. Phylogenetic analysis showed that MabZIPs were classified into 11 subfamilies. The majority of MabZIP genes in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis of two banana genotypes revealed the differential expression patterns of MabZIP genes in different organs, in various stages of fruit development and ripening, and in responses to abiotic stresses, including drought, cold, and salt. Interaction networks and co-expression assays showed that group A MabZIP-mediated networks participated in various stress signaling, which was strongly activated in Musa ABB Pisang Awak. This study provided new insights into the complicated transcriptional control of MabZIP genes and provided robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MabZIP genes for potential applications in the genetic improvement of banana cultivars. PMID:27445085

  8. Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana.

    PubMed

    Hu, Wei; Wang, Lianzhe; Tie, Weiwei; Yan, Yan; Ding, Zehong; Liu, Juhua; Li, Meiying; Peng, Ming; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The leucine zipper (bZIP) transcription factors play important roles in multiple biological processes. However, less information is available regarding the bZIP family in the important fruit crop banana. In this study, 121 bZIP transcription factor genes were identified in the banana genome. Phylogenetic analysis showed that MabZIPs were classified into 11 subfamilies. The majority of MabZIP genes in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis of two banana genotypes revealed the differential expression patterns of MabZIP genes in different organs, in various stages of fruit development and ripening, and in responses to abiotic stresses, including drought, cold, and salt. Interaction networks and co-expression assays showed that group A MabZIP-mediated networks participated in various stress signaling, which was strongly activated in Musa ABB Pisang Awak. This study provided new insights into the complicated transcriptional control of MabZIP genes and provided robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MabZIP genes for potential applications in the genetic improvement of banana cultivars. PMID:27445085

  9. Nucleolar and nuclear localization properties of a herpesvirus bZIP oncoprotein, MEQ.

    PubMed Central

    Liu, J L; Lee, L F; Ye, Y; Qian, Z; Kung, H J

    1997-01-01

    Marek's disease virus (MDV) is one of the most oncogenic herpesviruses and induces T lymphomas in chickens within weeks after infection. Only a limited number of viral transcripts are detected in MDV tumor samples and cell lines. One of the major transcripts encodes MEQ, a 339-amino-acid bZIP protein which is homologous to the Jun/Fos family of transcription factors. The C-terminal half of MEQ contains proline-rich repeats and, when fused to the DNA-binding domain of a yeast transcription factor, Gal4 (residues 1 to 147), exhibits transactivation function. MEQ can dimerize with itself and with c-Jun. The MEQ-c-Jun heterodimers bind to an AP-1-like enhancer within the MEQ promoter region with greater affinity than do homodimers of either protein, and they transactivate MEQ expression. Here we show that MEQ is expressed in the nucleus but, interestingly, with a predominant fraction in the nucleoli and coiled bodies. This makes MEQ the first bZIP protein to be identified in the nucleoli. MEQ contains two stretches of basic residues, designated basic region 1 (BR1) and basic region 2 (BR2). Using a series of deletion mutants, we have mapped the primary nuclear localization signal (NLS) and the sole nucleolar localization signal (NoLS) to the BR2 region. BR1 was shown to provide an auxiliary signal in nuclear translocation. To demonstrate that BR2 is an authentic NoLS, BR2 was fused to cytoplasmic v-Raf (delta gag) kinase. The BR2-Raf fusion protein was observed to migrate into the nucleoplasm and the nucleolus. The BR2 region can be further divided into two long arginine-lysine stretches, BR2N and BR2C, which are separated by the five amino acids Asn-Arg-Asp-Ala-Ala (NRDAA). We provide evidence that the requirement for nuclear translocation is less stringent than that for nucleolar translocation, as either BR2N or BR2C alone is sufficient to translocate the cytoplasmic v-Raf (delta gag) into the nucleus, but only in combination can they translocate v-Raf (delta gag

  10. Spacing Studies in Peppers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Higher plant stand densities usually result in greater pepper fruit yields. While the impact of stand density on yield has been studied for bell and non-bell peppers, but very little information exists regarding implications on pesticide efficacy. The objective of these studies was to determine th...

  11. Integrative comparative analyses of transcript and metabolite profiles from pepper and tomato ripening and development stages uncovers species-specific patterns of network regulatory behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integrative comparative analyses of transcript and metabolite levels from climacteric and nonclimacteric fruits can be employed to unravel the similarities and differences of the underlying regulatory processes. To this end, we conducted combined gas chromatography-mass spectrometry, and heterologou...

  12. Pepper, chili (Capsicum annuum).

    PubMed

    Min, Jung; Shin, Sun Hee; Jeon, En Mi; Park, Jung Mi; Hyun, Ji Young; Harn, Chee Hark

    2015-01-01

    Pepper is a recalcitrant plant for Agrobacterium-mediated genetic transformation. Several obstacles to genetic transformation remain such as extremely low transformation rates; the choice of correct genotype is critical; and there is a high frequency of false positives due to direct shoot formation. Here, we report a useful protocol with a suitable selection method. The most important aspect of the pepper transformation protocol is selecting shoots growing from the callus, which is referred to as callus-mediated shoot formation. This protocol is a reproducible and reliable system for pepper transformation. PMID:25300851

  13. A light-regulated bZIP module, photozipper, induces the binding of fused proteins to the target DNA sequence in a blue light-dependent manner.

    PubMed

    Hisatomi, Osamu; Furuya, Keigo

    2015-11-01

    Aureochrome-1 (AUREO1) has been identified as a blue light (BL) receptor responsible for the BL-induced blanching of a stramenopile alga, Vaucheria frigida. BL induces the dimerization of monomeric AUREO1, which subsequently increases its affinity for the target sequence. We made a synthetic gene encoding N-terminally truncated monomeric AUREO1 (Photozipper protein) containing a basic region/leucine zipper (bZIP) domain and a light-oxygen-voltage-sensing domain. In the present study, yellow fluorescent protein or mCherry protein was fused with the Photozipper (PZ) protein, and their oligomeric structures and DNA-binding were compared in the dark and light states. Dynamic light scattering and size exclusion chromatography demonstrated that the hydrodynamic radii and molecular masses of the fusion proteins increased upon BL illumination, suggesting that fusion PZs underwent BL-induced dimerization. Moreover, BL-induced dimerization enhanced their affinities for the target sequence. Taken together, PZ likely functions as a BL-regulated bZIP module in fusion proteins, and can possibly provide a new approach for controlling bZIP transcription factors. PMID:26441326

  14. Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature–high humidity challenge in a positive feedback loop with CaWRKY40

    PubMed Central

    Shen, Lei; Liu, Zhiqin; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Lin, Wei; Wang, Rongzhang; Yu, Huanxin; Mou, Shaoliang; Hussain, Ansar; Cheng, Wei; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin

    2016-01-01

    CaWRKY40 is known to act as a positive regulator in the response of pepper (Capsicum annuum) to Ralstonia solanacearum inoculation (RSI) or high temperature–high humidity (HTHH), but the underlying mechanism remains elusive. Herein, we report that CabZIP63, a pepper bZIP family member, participates in this process by regulating the expression of CaWRKY40. CabZIP63 was found to localize in the nuclei, be up-regulated by RSI or HTHH, bind to promoters of both CabZIP63 (pCabZIP63) and CaWRKY40 (pCaWRKY40), and activate pCabZIP63- and pCaWRKY40-driven β-glucuronidase expression in a C- or G-box-dependent manner. Silencing of CabZIP63 by virus-induced gene silencing (VIGS) in pepper plants significantly attenuated their resistance to RSI and tolerance to HTHH, accompanied by down-regulation of immunity- or thermotolerance-associated CaPR1, CaNPR1, CaDEF1, and CaHSP24. Hypersensitive response-mediated cell death and expression of the tested immunity- and thermotolerance-associated marker genes were induced by transient overexpression (TOE) of CabZIP63, but decreased by that of CabZIP63-SRDX. Additionally, binding of CabZIP63 to pCaWRKY40 was up-regulated by RSI or HTHH, and the transcript level of CaWRKY40 and binding of CaWRKY40 to the promoters of CaPR1, CaNPR1, CaDEF1 and CaHSP24 were up-regulated by TOE of CabZIP63. On the other hand, CabZIP63 was also up-regulated transcriptionally by TOE of CaWRKY40. The data suggest collectively that CabZIP63 directly or indirectly regulates the expression of CaWRKY40 at both the transcriptional and post-transcriptional level, forming a positive feedback loop with CaWRKY40 during pepper’s response to RSI or HTHH. Altogether, our data will help to elucidate the underlying mechanism of crosstalk between pepper’s response to RSI and HTHH. PMID:26936828

  15. Pepper harvest technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peppers (Capsicum spp.) include a diverse collection of cultivars produced for a wide variety of end uses. This specialty crop and its processing industry are in the midst of a dual transition driven by labor cost and unavailability. Production and post-harvest processing is either converting to m...

  16. PEPPER HARVESTER DEVELOPMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peppers (Capsicum spp.) include a diverse collection of cultivars produced for a wide variety of end uses. This specialty crop and its processing industry are in the midst of a transition driven by labor cost and unavailability. Production and post-harvest processing is either converting to mechan...

  17. The Pepper Commission Report and the response.

    PubMed

    1990-01-01

    The recommendations of the "Pepper Commission" [the Bipartisan Commission on Comprehensive Health Care] on health care policy reform (see box on page 20) would cost an estimated $66 billion to implement. As a result, many in Congress already have declared the Pepper report to be politically nonviable. Nevertheless, Commission Chairman John D. Rockefeller IV intends to pursue legislative activity on the report. Recently, Rockefeller said that the Commission's majority recommendations likely will be offered in Congress as one large bill--with the option to break out some of its features for individual consideration. For example, Rockefeller said he will try this year to enact the Commission's recommendations to improve health care coverage for pregnant women and children--as well as suggestions for reform in the health insurance industry. The West Virginia senator said he believes these two proposals will cost about $3.5 billion in new federal funds. The basics of the plan, and the political obstacles facing its enactment, were discussed by several members of the Pepper Commission during the press conference at which the recommendations were unveiled. FAHS Review covered that press conference, and below we reprint excerpts from a tape transcription of the remarks of several Commission members. PMID:10113210

  18. The bZIP Protein VIP1 Is Involved in Touch Responses in Arabidopsis Roots.

    PubMed

    Tsugama, Daisuke; Liu, Shenkui; Takano, Tetsuo

    2016-06-01

    VIP1 is a bZIP transcription factor in Arabidopsis (Arabidopsis thaliana). VIP1 transiently accumulates in the nucleus when cells are exposed to hypoosmotic conditions, but its physiological relevance is unclear. This is possibly because Arabidopsis has approximately 10 close homologs of VIP1 and they function redundantly. To examine their physiological roles, transgenic plants overexpressing a repression domain-fused form of VIP1 (VIP1-SRDXox plants), in which the gene activation mediated by VIP1 is expected to be repressed, were generated. Because hypoosmotic stress can mimic mechanical stimuli (e.g. touch), the touch-induced root-waving phenotypes and gene expression patterns in those transgenic plants were examined. VIP1-SRDXox plants exhibited more severe root waving and lower expression of putative VIP1 target genes. The expression of the VIP1-green fluorescent protein (GFP) fusion protein partially suppressed the VIP1-SRDX-induced increase in root waving when expressed in the VIP1-SRDXox plants. These results suggest that VIP1 can suppress the touch-induced root waving. The VIP1-SRDX-induced increase in root waving was also suppressed when the synthetic auxin 2,4-dichlorophenoxy acetic acid or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, which is known to activate auxin biosynthesis, was present in the growth medium. Root cap cells with the auxin marker DR5rev::GFP were more abundant in the VIP1-SRDXox background than in the wild-type background. Auxin is transported via the root cap, and the conditions of outermost root cap layers were abnormal in VIP1-SRDXox plants. These results raise the possibility that VIP1 influences structures of the root cap and thereby regulates the local auxin responses in roots. PMID:27208231

  19. Characterization of Citrus sinensis transcription factors closely associated with the non-host response to Xanthomonas campestris pv. vesicatoria.

    PubMed

    Daurelio, Lucas D; Romero, María S; Petrocelli, Silvana; Merelo, Paz; Cortadi, Adriana A; Talón, Manuel; Tadeo, Francisco R; Orellano, Elena G

    2013-07-01

    Plants, when exposed to certain pathogens, may display a form of genotype-independent resistance, known as non-host response. In this study, the response of Citrus sinensis (sweet orange) leaves to Xanthomonas campestris pv. vesicatoria (Xcv), a pepper and tomato pathogenic bacterium, was analyzed through biochemical assays and cDNA microarray hybridization and compared with Asiatic citrus canker infection caused by Xanthomonas citri subsp. citri. Citrus leaves exposed to the non-host bacterium Xcv showed hypersensitive response (HR) symptoms (cell death), a defense mechanism common in plants but poorly understood in citrus. The HR response was accompanied by differentially expressed genes that are associated with biotic stress and cell death. Moreover, 58 transcription factors (TFs) were differentially regulated by Xcv in citrus leaves, including 26 TFs from the stress-associated families AP2-EREBP, bZip, Myb and WRKY. Remarkably, in silico analysis of the distribution of expressed sequence tags revealed that 10 of the 58 TFs, belonging to C2C2-GATA, C2H2, CCAAT, HSF, NAC and WRKY gene families, were specifically over-represented in citrus stress cDNA libraries. This study identified candidate TF genes for the regulation of key steps during the citrus non-host HR. Furthermore, these TFs might be useful in future strategies of molecular breeding for citrus disease resistance. PMID:23453188

  20. N-terminal segments modulate the α-helical propensities of the intrinsically disordered basic regions of bZIP proteins.

    PubMed

    Das, Rahul K; Crick, Scott L; Pappu, Rohit V

    2012-02-17

    Basic region leucine zippers (bZIPs) are modular transcription factors that play key roles in eukaryotic gene regulation. The basic regions of bZIPs (bZIP-bRs) are necessary and sufficient for DNA binding and specificity. Bioinformatic predictions and spectroscopic studies suggest that unbound monomeric bZIP-bRs are uniformly disordered as isolated domains. Here, we test this assumption through a comparative characterization of conformational ensembles for 15 different bZIP-bRs using a combination of atomistic simulations and circular dichroism measurements. We find that bZIP-bRs have quantifiable preferences for α-helical conformations in their unbound monomeric forms. This helicity varies from one bZIP-bR to another despite a significant sequence similarity of the DNA binding motifs (DBMs). Our analysis reveals that intramolecular interactions between DBMs and eight-residue segments directly N-terminal to DBMs are the primary modulators of bZIP-bR helicities. We test the accuracy of this inference by designing chimeras of bZIP-bRs to have either increased or decreased overall helicities. Our results yield quantitative insights regarding the relationship between sequence and the degree of intrinsic disorder within bZIP-bRs, and might have general implications for other intrinsically disordered proteins. Understanding how natural sequence variations lead to modulation of disorder is likely to be important for understanding the evolution of specificity in molecular recognition through intrinsically disordered regions (IDRs). PMID:22226835

  1. AtbZIP16 and AtbZIP68, two new members of GBFs, can interact with other G group bZIPs in Arabidopsis thaliana.

    PubMed

    Shen, Huaishun; Cao, Kaiming; Wang, Xiping

    2008-02-29

    AtbZIP16 and AtbZIP68 are two putative G group bZIP transcription factors in Arabidopsis thaliana, the other three members of G group bZIPs are GBF1-3 which can bind G-box. Members of G group have conservative protein structure: highly homological basic region and a proline-rich domain in the N-terminal region. Here, we report that AtbZIP16 and AtbZIP68 could bind cis elements with ACGT core, such as G-box, Hex, C-box and As-1, but with different binding affinities which from high to low were G-box > Hex > C-box > As-1; AtbZIP16 and AtbZIP68 could form homodimer and form heterodimer with other members of G group; N-terminal proline rich domain of AtbZIP16 had transactivation activity in yeast cells while that of AtbZIP68 did not; AtbZIP16 and AtbZIP68 GFP fusion protein localized in the nucleus of onion epidermal cells. These results indicated that AtbZIP16 and AtbZIP68 were two new members of GBFs. In Arabidopsis, AtbZIP16 and AtbZIP68 may also participate in light-responsive process in which GBF1-3 are involved. PMID:18315949

  2. Evolutionary and Expression Analyses of the Apple Basic Leucine Zipper Transcription Factor Family

    PubMed Central

    Zhao, Jiao; Guo, Rongrong; Guo, Chunlei; Hou, Hongmin; Wang, Xiping; Gao, Hua

    2016-01-01

    Transcription factors (TFs) play essential roles in the regulatory networks controlling many developmental processes in plants. Members of the basic leucine (Leu) zipper (bZIP) TF family, which is unique to eukaryotes, are involved in regulating diverse processes, including flower and vascular development, seed maturation, stress signaling, and defense responses to pathogens. The bZIP proteins have a characteristic bZIP domain composed of a DNA-binding basic region and a Leu zipper dimerization region. In this study, we identified 112 apple (Malus domestica Borkh) bZIP TF-encoding genes, termed MdbZIP genes. Synteny analysis indicated that segmental and tandem duplication events, as well as whole genome duplication, have contributed to the expansion of the apple bZIP family. The family could be divided into 11 groups based on structural features of the encoded proteins, as well as on the phylogenetic relationship of the apple bZIP proteins to those of the model plant Arabidopsis thaliana (AtbZIP genes). Synteny analysis revealed that several paired MdbZIP genes and AtbZIP gene homologs were located in syntenic genomic regions. Furthermore, expression analyses of group A MdbZIP genes showed distinct expression levels in 10 different organs. Moreover, changes in these expression profiles in response to abiotic stress conditions and various hormone treatments identified MdbZIP genes that were responsive to high salinity and drought, as well as to different phytohormones. PMID:27066030

  3. Molecular Mechanism of Photozipper, a Light-Regulated Dimerizing Module Consisting of the bZIP and LOV Domains of Aureochrome-1.

    PubMed

    Nakatani, Yoichi; Hisatomi, Osamu

    2015-06-01

    Aureochrome-1 (AUREO1) is a blue light (BL) receptor responsible for the BL-induced blanching of a stramenopile alga, Vaucheria frigida. The AUREO1 protein contains a central basic region/leucine zipper (bZIP) domain, and a C-terminal light-oxygen-voltage-sensing (LOV) domain. BL induces the dimerization of monomeric AUREO1, which subsequently increases the affinity of this transcription factor for its target DNA [Hisatomi, O., et al. (2014) J. Biol. Chem. 289, 17379-17391]. We constructed a synthetic gene encoding N-terminally truncated monomeric AUREO1 (designated Photozipper) to elucidate the molecular mechanism of this BL-regulated transcription factor and to develop it as an optogenetic tool. In this study, four different Photozipper (PZ) protein constructs were prepared comprising different N-terminal truncations. The monomer-dimer equilibria of the PZ constructs were investigated in the dark and light states. Dynamic light scattering and size-exclusion chromatography analyses revealed that the apparent dissociation constants of PZ dimers with and without the ZIP region were ~100 and 30 μM, respectively, indicating that the ZIP region stabilized the monomeric form in the dark state. In the light state, fluorescence resonance energy transfer analyses demonstrated that deletion of the ZIP region increased the dissociation constant from ~0.15 to 0.6 μM, suggesting that intermolecular LOV-LOV and ZIP-ZIP interactions stabilized the dimeric forms. Our results suggest that synergistic interactions between the LOV and bZIP domains stabilize the monomeric form in the dark state and the dimeric form in the light state, which possibly contributes to the function of PZ as a BL-regulated molecular switch. PMID:25932652

  4. Molecular cloning and characterization of a tomato cDNA encoding a systemically wound-inducible bZIP DNA-binding protein

    NASA Technical Reports Server (NTRS)

    Stankovic, B.; Vian, A.; Henry-Vian, C.; Davies, E.

    2000-01-01

    Localized wounding of one leaf in intact tomato (Lycopersicon esculentum Mill.) plants triggers rapid systemic transcriptional responses that might be involved in defense. To better understand the mechanism(s) of intercellular signal transmission in wounded tomatoes, and to identify the array of genes systemically up-regulated by wounding, a subtractive cDNA library for wounded tomato leaves was constructed. A novel cDNA clone (designated LebZIP1) encoding a DNA-binding protein was isolated and identified. This clone appears to be encoded by a single gene, and belongs to the family of basic leucine zipper domain (bZIP) transcription factors shown to be up-regulated by cold and dark treatments. Analysis of the mRNA levels suggests that the transcript for LebZIP1 is both organ-specific and up-regulated by wounding. In wounded wild-type tomatoes, the LebZIP1 mRNA levels in distant tissue were maximally up-regulated within only 5 min following localized wounding. Exogenous abscisic acid (ABA) prevented the rapid wound-induced increase in LebZIP1 mRNA levels, while the basal levels of LebZIP1 transcripts were higher in the ABA mutants notabilis (not), sitiens (sit), and flacca (flc), and wound-induced increases were greater in the ABA-deficient mutants. Together, these results suggest that ABA acts to curtail the wound-induced synthesis of LebZIP1 mRNA.

  5. Molecular cloning of a pepper gene that is homologous to SELF-PRUNING.

    PubMed

    Kim, Dong Hwan; Han, Myeong Suk; Cho, Hyun Wooh; Jo, Yeong Deuk; Cho, Myeong Cheoul; Kim, Byung-Dong

    2006-08-31

    "Determinate" and "indeterminate" inflorescences in plants are controlled by a single recessive gene, for example, SELF-PRUNING (SP) in Solanum lycopersicum, TERMINAL FLOWER1 in Arabidopsis, CENTRORADI-ALIS in Antirrhinum, and CENTRORADIALIS-like gene in tobacco. Pepper (Capsicum annuum L.) is an indeterminate species in which shoots grow indefinitely. In this study, we cloned and characterized the pepper SP-like gene (CaSP). RT-PCR revealed that the CaSP transcript accumulates to higher levels in floral buds than in other organs. Comparison of genomic DNA and cDNA sequences from indeterminate and determinate pepper plants revealed the insertion of a single base in the first exon of CaSP in the determinate pepper plants. CaSP is annotated in linkage group 8 (chromosome 6) of the SNU2 pepper genetic map and showed similar synteny to SP in tomato. Transgenic tobacco plants overexpressing CaSP displayed late-flowering phenotypes similar to the phenotypes caused by overexpression of CaSP orthologs in other plants. Collectively, these results suggest that pepper CaSP is an ortholog of SP in tomato. PMID:16951555

  6. HTLV-1 bZIP Factor RNA and Protein Impart Distinct Functions on T-cell Proliferation and Survival.

    PubMed

    Mitobe, Yuichi; Yasunaga, Jun-ichirou; Furuta, Rie; Matsuoka, Masao

    2015-10-01

    Infection of T cells with human T-cell leukemia virus type-1 (HTLV-1) induces clonal proliferation and is closely associated with the onset of adult T-cell leukemia-lymphoma (ATL) and inflammatory diseases. Although Tax expression is frequently suppressed in HTLV-1-infected cells, the accessory gene, HTLV-1 bZIP factor (HBZ), is continuously expressed and has been implicated in HTLV-1 pathogenesis. Here, we report that transduction of mouse T cells with specific mutants of HBZ that distinguish between its RNA and protein activity results in differential effects on T-cell proliferation and survival. HBZ RNA increased cell number by attenuating apoptosis, whereas HBZ protein induced apoptosis. However, both HBZ RNA and protein promoted S-phase entry of T cells. We further identified that the first 50 bp of the HBZ coding sequence are required for RNA-mediated cell survival. Transcriptional profiling of T cells expressing wild-type HBZ, RNA, or protein revealed that HBZ RNA is associated with genes involved in cell cycle, proliferation, and survival, while HBZ protein is more closely related to immunological properties of T cells. Specifically, HBZ RNA enhances the promoter activity of survivin, an inhibitor of apoptosis, to upregulate its expression. Inhibition of survivin using YM155 resulted in impaired proliferation of several ATL cell lines as well as a T-cell line expressing HBZ RNA. The distinct functions of HBZ RNA and protein may have several implications for the development of strategies to control the proliferation and survival mechanisms associated with HTLV-1 infection and ATL. PMID:26383166

  7. The bZIP Protein VIP1 Is Involved in Touch Responses in Arabidopsis Roots1[OPEN

    PubMed Central

    Liu, Shenkui; Takano, Tetsuo

    2016-01-01

    VIP1 is a bZIP transcription factor in Arabidopsis (Arabidopsis thaliana). VIP1 transiently accumulates in the nucleus when cells are exposed to hypoosmotic conditions, but its physiological relevance is unclear. This is possibly because Arabidopsis has approximately 10 close homologs of VIP1 and they function redundantly. To examine their physiological roles, transgenic plants overexpressing a repression domain-fused form of VIP1 (VIP1-SRDXox plants), in which the gene activation mediated by VIP1 is expected to be repressed, were generated. Because hypoosmotic stress can mimic mechanical stimuli (e.g. touch), the touch-induced root-waving phenotypes and gene expression patterns in those transgenic plants were examined. VIP1-SRDXox plants exhibited more severe root waving and lower expression of putative VIP1 target genes. The expression of the VIP1-green fluorescent protein (GFP) fusion protein partially suppressed the VIP1-SRDX-induced increase in root waving when expressed in the VIP1-SRDXox plants. These results suggest that VIP1 can suppress the touch-induced root waving. The VIP1-SRDX-induced increase in root waving was also suppressed when the synthetic auxin 2,4-dichlorophenoxy acetic acid or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, which is known to activate auxin biosynthesis, was present in the growth medium. Root cap cells with the auxin marker DR5rev::GFP were more abundant in the VIP1-SRDXox background than in the wild-type background. Auxin is transported via the root cap, and the conditions of outermost root cap layers were abnormal in VIP1-SRDXox plants. These results raise the possibility that VIP1 influences structures of the root cap and thereby regulates the local auxin responses in roots. PMID:27208231

  8. Transcriptional factors, Mafs and their biological roles

    PubMed Central

    Tsuchiya, Mariko; Misaka, Ryoichi; Nitta, Kosaku; Tsuchiya, Ken

    2015-01-01

    The Maf family of transcription factors is characterized by a typical bZip structure; these transcription factors act as important regulators of the development and differentiation of many organs and tissues, including the kidney. The Maf family consists of two subgroups that are characterized according to their structure: large Maf transcription factors and small Maf transcription factors. The large Maf subgroup consists of four proteins, designated as MAFA, MAFB, c-MAF and neural retina-specific leucine zipper. In particular, MAFA is a distinct molecule that has been attracting the attention of researchers because it acts as a strong transactivator of insulin, suggesting that Maf transcription factors are likely to be involved in systemic energy homeostasis. In this review, we focused on the regulation of glucose/energy balance by Maf transcription factors in various organs. PMID:25685288

  9. Demonstrating Integrated Pest Management of Hot Peppers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the effects of organic and synthetic chemical fertilizers on crop growth, yield and associated insect pests for two varieties of hot pepper, Capsicum chinense Jacquin (Solanaceae): “Scotch Bonnet” and “Caribbean Red” in north Florida. Hot peppers were grown under three treatments: poultr...

  10. Pepper Harvest Mechanization: Past and Present

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peppers (Capsicum spp.) include a diverse collection of cultivars produced for a wide variety of end uses. Labor for hand harvest is as much as half of the cost of production. There have been attempts to mechanize pepper harvest since 1965, yet many segments of the industry still depend on hand la...

  11. DEMONSTRATING INTEGRATED PEST MANAGEMENT OF HOT PEPPERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the effects of organic and synthetic chemical fertilizers on crop growth, yield and associated insect pests for two varieties of hot pepper, Capsicum chinense Jacquin (Solanaceae): “Scotch Bonnet” and “Caribbean Red” in north Florida. Hot peppers were grown under three treatments: poultr...

  12. Visualizing Capsaicinoids: Colorimetric Analysis of Chili Peppers

    ERIC Educational Resources Information Center

    Thompson, Robert Q.; Chu, Christopher; Gent, Robin; Gould, Alexandra P.; Rios, Laura; Vertigan, Theresa M.

    2012-01-01

    A colorimetric method for total capsaicinoids in chili pepper ("Capsicum") fruit is described. The placental material of the pepper, containing 90% of the capsaicinoids, was physically separated from the colored materials in the pericarp and extracted twice with methanol, capturing 85% of the remaining capsaicinoids. The extract, evaporated and…

  13. Chile Pepper Response to Nitrogen Fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2008, we evaluated the effects of N fertilization (6 N rates) on chile pepper fresh yield and biomass accumulation following two years of continuous corn production. A polymer-coated urea, ESN® (Environmentally Smart Nitrogen), N fertilizer source was used. Fresh chile pepper yields increased ...

  14. Corneal abrasions associated with pepper spray exposure.

    PubMed

    Brown, L; Takeuchi, D; Challoner, K

    2000-05-01

    Pepper spray containing oleoresin capsicum is used by law enforcement and the public as a form of nonlethal deterrent. Stimulated by the identification of a case of a corneal abrasion associated with pepper spray exposure, a descriptive retrospective review of a physician-maintained log of patients presenting to a jail ward emergency area over a 3-year period was performed. The objective was to give some quantification to the frequency with which an emergency physician could expect to see corneal abrasions associated with pepper spray exposure. Of 100 cases of pepper spray exposure identified, seven patients had sustained corneal abrasions. We conclude that corneal abrasions are not rare events when patients are exposed to pepper spray and that fluorescein staining and slit lamp or Wood's lamp examination should be performed on all exposed patients in whom corneal abrasions cannot be excluded on clinical grounds. PMID:10830682

  15. Capsicum Annuum L. Lil' Pumpkin and Pepper Jack

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA, ARS announces the release of two new pepper cultivars 05C37-3 (trademarked as Lil’ Pumpkin) and 05C69-12 (trademarked as Pepper Jack). Lil’ Pumpkin and Pepper Jack are intended for ornamental applications. Lil’ Pumpkin’s unique black foliage and orange pumpkin-like fruit and Pepper Jack’s ...

  16. Pepper EST database: comprehensive in silico tool for analyzing the chili pepper (Capsicum annuum) transcriptome

    PubMed Central

    Kim, Hyun-Jin; Baek, Kwang-Hyun; Lee, Seung-Won; Kim, JungEun; Lee, Bong-Woo; Cho, Hye-Sun; Kim, Woo Taek; Choi, Doil; Hur, Cheol-Goo

    2008-01-01

    Background There is no dedicated database available for Expressed Sequence Tags (EST) of the chili pepper (Capsicum annuum), although the interest in a chili pepper EST database is increasing internationally due to the nutritional, economic, and pharmaceutical value of the plant. Recent advances in high-throughput sequencing of the ESTs of chili pepper cv. Bukang have produced hundreds of thousands of complementary DNA (cDNA) sequences. Therefore, a chili pepper EST database was designed and constructed to enable comprehensive analysis of chili pepper gene expression in response to biotic and abiotic stresses. Results We built the Pepper EST database to mine the complexity of chili pepper ESTs. The database was built on 122,582 sequenced ESTs and 116,412 refined ESTs from 21 pepper EST libraries. The ESTs were clustered and assembled into virtual consensus cDNAs and the cDNAs were assigned to metabolic pathway, Gene Ontology (GO), and MIPS Functional Catalogue (FunCat). The Pepper EST database is designed to provide a workbench for (i) identifying unigenes in pepper plants, (ii) analyzing expression patterns in different developmental tissues and under conditions of stress, and (iii) comparing the ESTs with those of other members of the Solanaceae family. The Pepper EST database is freely available at . Conclusion The Pepper EST database is expected to provide a high-quality resource, which will contribute to gaining a systemic understanding of plant diseases and facilitate genetics-based population studies. The database is also expected to contribute to analysis of gene synteny as part of the chili pepper sequencing project by mapping ESTs to the genome. PMID:18844979

  17. Transcriptome analysis of symptomatic and recovered leaves of geminivirus-infected pepper (Capsicum annuum)

    PubMed Central

    2012-01-01

    Background Geminiviruses are a large and important family of plant viruses that infect a wide range of crops throughout the world. The Begomovirus genus contains species that are transmitted by whiteflies and are distributed worldwide causing disease on an array of horticultural crops. Symptom remission, in which newly developed leaves of systemically infected plants exhibit a reduction in symptom severity (recovery), has been observed on pepper (Capsicum annuum) plants infected with Pepper golden mosaic virus (PepGMV). Previous studies have shown that transcriptional and post-transcriptional gene silencing mechanisms are involved in the reduction of viral nucleic acid concentration in recovered tissue. In this study, we employed deep transcriptome sequencing methods to assess transcriptional variation in healthy (mock), symptomatic, and recovered pepper leaves following PepGMV infection. Results Differential expression analyses of the pepper leaf transcriptome from symptomatic and recovered stages revealed a total of 309 differentially expressed genes between healthy (mock) and symptomatic or recovered tissues. Computational prediction of differential expression was validated using quantitative reverse-transcription PCR confirming the robustness of our bioinformatic methods. Within the set of differentially expressed genes associated with the recovery process were genes involved in defense responses including pathogenesis-related proteins, reactive oxygen species, systemic acquired resistance, jasmonic acid biosynthesis, and ethylene signaling. No major differences were found when compared the differentially expressed genes in symptomatic and recovered tissues. On the other hand, a set of genes with novel roles in defense responses was identified including genes involved in histone modification. This latter result suggested that post-transcriptional and transcriptional gene silencing may be one of the major mechanisms involved in the recovery process. Genes

  18. Production and Testing of Transgenic Cotton that Expresses Transcription Factors for Enhanced Seed and Fiber Traits and Productivity Under Drought Stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abscisic acid (ABA) is a plant hormone involved in abiotic and biotic stress adaptation and seed development. We have previously shown that Basic3 (B3) domain and basic leucine zipper (b-ZIP) transcription factors from the model plant species maize and Arabidopsis thaliana can transactivate monocot...

  19. In silico identification of Bell pepper endornavirus from pepper transcriptomes and their phylogenetic and recombination analyses.

    PubMed

    Jo, Yeonhwa; Choi, Hoseong; Yoon, Ju-Yeon; Choi, Seung-Kook; Cho, Won Kyong

    2016-01-10

    Here, we identified eight Bell pepper endornavirus (BPEV) isolates from nine different pepper transcriptomes. BPEV was present with low copy numbers ranging from 0.01% to 0.18% in the host transcriptome. Phylogenetic identified two different groups of BPEV isolates. Sequence alignment of the five BPEV genomes revealed conservation of the 5' and 3' untranslated regions. Recombination analysis identified two possible recombinant events in the isolate Yolo Wonder. Single nucleotide variation profiles revealed the presence of BPEV variants within a single pepper cultivar. Taken together, this study provides phylogenetic and recombination analyses of the genus Endornavirus using pepper transcriptome data. PMID:26410036

  20. Effects of Japanese pepper and red pepper on the microbial community during nukadoko fermentation

    PubMed Central

    ONO, Hiroshi; NISHIO, Shoko; TSURII, Jun; KAWAMOTO, Tetsuhiro; SONOMOTO, Kenji; NAKAYAMA, Jiro

    2014-01-01

    Nukadoko is a fermented rice bran bed traditionally used for pickling vegetables in Japan. To date, the production of both homemade and commercial nukadoko has depended on natural fermentation without using starter cultures. Spices, Japanese pepper, and red pepper, are added to nukadoko empirically, but the functions of spices in nukadoko have not been fully elucidated. To investigate the effects of Japanese pepper and red pepper on nukadoko fermentation, we compared the chemical and microbiological changes during 2 months of fermentation of a laboratory model nukadoko with or without spices. The successive pH values and colony counts in the first 10 days showed that the spices promoted lactic acid bacteria (LAB) growth and fermentation in the nukadoko niche. The successive bacterial communities during natural fermentation of nukadoko were carefully monitored by pyrotag 16S rRNA analysis, and the effect of spices on the development and maintenance of the nukadoko microbiota was investigated. It was shown that addition of Japanese peppers and red peppers shortened the pre-lactic acid fermentation phase, during which Staphylococcus saprophyticus grew dominantly, and promoted the development of a microbiota that LAB dominated. Notably, the growth of the dominant LAB, Pediococcus pentosaceus, was improved by adding either Japanese pepper or red pepper. The differences in the LAB species, which were associated with the differences in chemical composition of the nukadoko, were dependent on the type of pepper used. We conclude that the spices used can affect the bacterial community and modulate its metabolic profile in nukadoko. PMID:25625032

  1. Effects of Japanese pepper and red pepper on the microbial community during nukadoko fermentation.

    PubMed

    Ono, Hiroshi; Nishio, Shoko; Tsurii, Jun; Kawamoto, Tetsuhiro; Sonomoto, Kenji; Nakayama, Jiro

    2015-01-01

    Nukadoko is a fermented rice bran bed traditionally used for pickling vegetables in Japan. To date, the production of both homemade and commercial nukadoko has depended on natural fermentation without using starter cultures. Spices, Japanese pepper, and red pepper, are added to nukadoko empirically, but the functions of spices in nukadoko have not been fully elucidated. To investigate the effects of Japanese pepper and red pepper on nukadoko fermentation, we compared the chemical and microbiological changes during 2 months of fermentation of a laboratory model nukadoko with or without spices. The successive pH values and colony counts in the first 10 days showed that the spices promoted lactic acid bacteria (LAB) growth and fermentation in the nukadoko niche. The successive bacterial communities during natural fermentation of nukadoko were carefully monitored by pyrotag 16S rRNA analysis, and the effect of spices on the development and maintenance of the nukadoko microbiota was investigated. It was shown that addition of Japanese peppers and red peppers shortened the pre-lactic acid fermentation phase, during which Staphylococcus saprophyticus grew dominantly, and promoted the development of a microbiota that LAB dominated. Notably, the growth of the dominant LAB, Pediococcus pentosaceus, was improved by adding either Japanese pepper or red pepper. The differences in the LAB species, which were associated with the differences in chemical composition of the nukadoko, were dependent on the type of pepper used. We conclude that the spices used can affect the bacterial community and modulate its metabolic profile in nukadoko. PMID:25625032

  2. Genome-Wide Identification and Analysis of the SBP-Box Family Genes under Phytophthora capsici Stress in Pepper (Capsicum annuum L.)

    PubMed Central

    Zhang, Huai-Xia; Jin, Jing-Hao; He, Yu-Mei; Lu, Bo-Ya; Li, Da-Wei; Chai, Wei-Guo; Khan, Abid; Gong, Zhen-Hui

    2016-01-01

    SQUAMOSA promoter binding protein (SBP)-box genes encode plant-specific transcription factors that are extensively involved in many physiological and biochemical processes, including growth, development, and signal transduction. However, pepper (Capsicum annuum L.) SBP-box family genes have not been well characterized. We investigated SBP-box family genes in the pepper genome and characterized these genes across both compatible and incompatible strain of Phytophthora capsici, and also under different hormone treatments. The results indicated that total 15 members were identified and distributed on seven chromosomes of pepper. Phylogenetic analysis showed that SBP-box genes of pepper can be classified into six groups. In addition, duplication analysis within pepper genome, as well as between pepper and Arabidopsis genomes demonstrated that there are four pairs of homology of SBP-box genes in the pepper genome and 10 pairs between pepper and Arabidopsis genomes. Tissue-specific expression analysis of the CaSBP genes demonstrated their diverse spatiotemporal expression patterns. The expression profiles were similarly analyzed following exposure to P. capsici inoculation and hormone treatments. It was shown that nine of the CaSBP genes (CaSBP01, 02, 03, 04, 05, 06, 11, 12, and 13) exhibited a dramatic up-regulation after compatible HX-9 strain (P. capsici) inoculation, while CaSBP09 and CaSBP15 were down-regulated. In case of PC strain (P. capsici) infection six of the CaSBP genes (CaSBP02, 05, 06, 11, 12, and 13) were arose while CaSBP14 was down regulated. Furthermore, Salicylic acid, Methyl jasmonate and their biosynthesis inhibitors treatment indicated that some of the CaSBP genes are potentially involved in these hormone regulation pathways. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles of the pepper CaSBP genes, will help to improve pepper stress tolerance in the future. PMID:27148327

  3. Divergence and Conservation of the Major UPR Branch IRE1-bZIP Signaling Pathway across Eukaryotes.

    PubMed

    Zhang, Lingrui; Zhang, Changwei; Wang, Aiming

    2016-01-01

    The unfolded protein response (UPR) is crucial to life by regulating the cellular response to the stress in the endoplasmic reticulum (ER) imposed by abiotic and biotic cues such as heat shock and viral infection. The inositol requiring enzyme 1 (IRE1) signaling pathway activated by the IRE1-mediated unconventional splicing of HAC1 in yeast, bZIP60 in plants and XBP1 in metazoans, is the most ancient branch of the UPR. In this study, we systematically examined yeast IRE1p-HAC1, plant IRE1A/IRE1B-bZIP60 and human hIRE1-XBP1 pairs. We found that, unlike bZIP60, XBP1 is unable to functionally swap HAC1p in yeast, and that the inter-species heterotypic interactions among HAC1p, bZIP60 and XBP1 are not permitted. These data demonstrate evolutionary divergence of the downstream signaling of IRE1-bZIP. We also discovered that the dual cytosolic domains of plant IRE1s act in vivo in a mechanism consistent with IRE1p and hIRE1, and that plant IRE1B not only interacts with IRE1p but also forms typical IRE1 dynamic foci in yeast. Thus, the upstream components of the IRE1 signaling branch including IRE1 activation and action mechanisms are highly conserved. Taken together these data advance the molecular understanding of evolutionary divergence and conservation of the IRE1 signaling pathway across kingdoms. PMID:27256815

  4. DNA binding of Jun and Fos bZip domains: homodimers and heterodimers induce a DNA conformational change in solution.

    PubMed Central

    John, M; Leppik, R; Busch, S J; Granger-Schnarr, M; Schnarr, M

    1996-01-01

    We constructed plasmids encoding the sequences for the bZip modules of c-Jun and c-Fos which could then be expressed as soluble proteins in Escherichia coli. The purified bZip modules were tested for their binding capacities of synthetic oligonucleotides containing either TRE or CRE recognition sites in electrophoretic mobility shift assays and circular dichroism (CD). Electrophoretic mobility shift assays showed that bZip Jun homodimers and bZip Jun/Fos heterodimers bind a collagenase-like TRE (CTGACTCAT) with dissociation constants of respectively 1.4 x 10(-7) M and 5 x 10(-8) M. As reported earlier [Patel et al. (1990) Nature 347, 572-575], DNA binding induces a marked change of the protein structure. However, we found that the DNA also undergoes a conformational change. This is most clearly seen with small oligonucleotides of 13 or 14 bp harboring respectively a TRE (TGACTCA) or a CRE (TGACGTCA) sequence. In this case, the positive DNA CD signal at 280 nm increases almost two-fold with a concomitant blue-shift of 3-4 nm. Within experimental error the same spectral changes are observed for TRE and CRE containing DNA fragments. The spectral changes observed with a non-specific DNA fragment are weaker and the signal of free DNA is recovered upon addition of much smaller salt concentrations than required for a specific DNA fragment. Surprisingly the spectral changes induced by Jun/Jun homodimers are not identical to those induced by Jun/Fos heterodimers. However, in both cases the increase of the positive CD band and the concomitant blue shift would be compatible with a B to A-transition of part of the binding site or a DNA conformation intermediate between the canonical A and B structures. PMID:8948639

  5. Divergence and Conservation of the Major UPR Branch IRE1-bZIP Signaling Pathway across Eukaryotes

    PubMed Central

    Zhang, Lingrui; Zhang, Changwei; Wang, Aiming

    2016-01-01

    The unfolded protein response (UPR) is crucial to life by regulating the cellular response to the stress in the endoplasmic reticulum (ER) imposed by abiotic and biotic cues such as heat shock and viral infection. The inositol requiring enzyme 1 (IRE1) signaling pathway activated by the IRE1-mediated unconventional splicing of HAC1 in yeast, bZIP60 in plants and XBP1 in metazoans, is the most ancient branch of the UPR. In this study, we systematically examined yeast IRE1p-HAC1, plant IRE1A/IRE1B-bZIP60 and human hIRE1-XBP1 pairs. We found that, unlike bZIP60, XBP1 is unable to functionally swap HAC1p in yeast, and that the inter-species heterotypic interactions among HAC1p, bZIP60 and XBP1 are not permitted. These data demonstrate evolutionary divergence of the downstream signaling of IRE1-bZIP. We also discovered that the dual cytosolic domains of plant IRE1s act in vivo in a mechanism consistent with IRE1p and hIRE1, and that plant IRE1B not only interacts with IRE1p but also forms typical IRE1 dynamic foci in yeast. Thus, the upstream components of the IRE1 signaling branch including IRE1 activation and action mechanisms are highly conserved. Taken together these data advance the molecular understanding of evolutionary divergence and conservation of the IRE1 signaling pathway across kingdoms. PMID:27256815

  6. Membrane-associated transcription factor peptidase, site-2 protease, antagonizes ABA signaling in Arabidopsis.

    PubMed

    Zhou, Shun-Fan; Sun, Le; Valdés, Ana Elisa; Engström, Peter; Song, Ze-Ting; Lu, Sun-Jie; Liu, Jian-Xiang

    2015-10-01

    Abscisic acid plays important roles in maintaining seed dormancy while gibberellins (GA) and other phytohormones antagonize ABA to promote germination. However, how ABA signaling is desensitized during the transition from dormancy to germination is still poorly understood. We functionally characterized the role of membrane-associated transcription factor peptidase, site-2 protease (S2P), in ABA signaling during seed germination in Arabidopsis. Genetic analysis showed that loss-of-function of S2P conferred high ABA sensitivity during seed germination, and expression of the activated form of membrane-associated transcription factor bZIP17, in which the transmembrane domain and endoplasmic reticulum (ER) lumen-facing C-terminus were deleted, in the S2P mutant rescued its ABA-sensitive phenotype. MYC and green fluorescent protein (GFP)-tagged bZIP17 were processed and translocated from the ER to the nucleus in response to ABA treatment. Furthermore, genes encoding negative regulators of ABA signaling, such as the transcription factor ATHB7 and its target genes HAB1, HAB2, HAI1 and AHG3, were up-regulated in seeds of the wild-type upon ABA treatment; this up-regulation was impaired in seeds of S2P mutants. Our results suggest that S2P desensitizes ABA signaling during seed germination through regulating the activation of the membrane-associated transcription factor bZIP17 and therefore controlling the expression level of genes encoding negative regulators of ABA signaling. PMID:25919792

  7. The Arabidopsis bZIP Gene AtbZIP63 Is a Sensitive Integrator of Transient Abscisic Acid and Glucose Signals1[W][OA

    PubMed Central

    Matiolli, Cleverson Carlos; Tomaz, Juarez Pires; Duarte, Gustavo Turqueto; Prado, Fernanda Manso; Del Bem, Luiz Eduardo Vieira; Silveira, Amanda Bortolini; Gauer, Luciane; Corrêa, Luiz Gustavo Guedes; Drumond, Rodrigo Duarte; Viana, Américo José Carvalho; Di Mascio, Paolo; Meyer, Christian; Vincentz, Michel

    2011-01-01

    Glucose modulates plant metabolism, growth, and development. In Arabidopsis (Arabidopsis thaliana), Hexokinase1 (HXK1) is a glucose sensor that may trigger abscisic acid (ABA) synthesis and sensitivity to mediate glucose-induced inhibition of seedling development. Here, we show that the intensity of short-term responses to glucose can vary with ABA activity. We report that the transient (2 h/4 h) repression by 2% glucose of AtbZIP63, a gene encoding a basic-leucine zipper (bZIP) transcription factor partially involved in the Snf1-related kinase KIN10-induced responses to energy limitation, is independent of HXK1 and is not mediated by changes in ABA levels. However, high-concentration (6%) glucose-mediated repression appears to be modulated by ABA, since full repression of AtbZIP63 requires a functional ABA biosynthetic pathway. Furthermore, the combination of glucose and ABA was able to trigger a synergistic repression of AtbZIP63 and its homologue AtbZIP3, revealing a shared regulatory feature consisting of the modulation of glucose sensitivity by ABA. The synergistic regulation of AtbZIP63 was not reproduced by an AtbZIP63 promoter-5′-untranslated region::β-glucuronidase fusion, thus suggesting possible posttranscriptional control. A transcriptional inhibition assay with cordycepin provided further evidence for the regulation of mRNA decay in response to glucose plus ABA. Overall, these results indicate that AtbZIP63 is an important node of the glucose-ABA interaction network. The mechanisms by which AtbZIP63 may participate in the fine-tuning of ABA-mediated abiotic stress responses according to sugar availability (i.e., energy status) are discussed. PMID:21844310

  8. Mycoflora and mycotoxins in Brazilian black pepper, white pepper and Brazil nuts.

    PubMed

    Freire, F C; Kozakiewicz, Z; Paterson, R R

    2000-01-01

    A wide range of field and storage fungi were isolated from black pepper, white pepper and Brazil nut kernels from Amazonia. A total of 42 species were isolated from both peppers. Aspergillus flavus and A. niger were isolated more frequently from black than from white pepper. Other potential mycotoxigenic species isolated included: A. ochraceus, A. tamarii, A. versicolor, Emericella nidulans and Chaetomium globosum, Penicillium brevicompactum, P. citrinum, P. islandicum and P. glabrum. Species isolated from pepper for the first time were Acrogenospora sphaerocephala, Cylindrocarpon lichenicola, Lacellinopsis sacchari, Microascus cinereus, Petriella setifera and Sporormiella minima. Seventeen species were isolated from Brazil nut kernels. A. flavus was the dominant species followed by A. niger. P. citrinum and P. glabrum were the only penicillia isolated. Species isolated for the first time included Acremonium curvulum, Cunninghamella elegans, Exophiala sp., Fusarium oxysporum, Pseudoallescheria boydii, Rhizopus oryzae, Scopulariopsis sp., Thielavia terricola and Trichoderma citrinoviride. Considerably more metabolites were detected from black than white pepper in qualitative analyses. Chaetocin, penitrem A, and xanthocillin were identified only from black pepper, and tenuazonic acid was identified from both black and white pepper. Aflatoxin G2, chaetoglobosin C, and spinulosin were identified from poor quality brazil nuts. Aflatoxin B1 and B2 were also only detected in poor quality brazil nuts at concentrations of 27.1 micrograms kg-1 and 2.1 micrograms kg-1 respectively (total 29.2 micrograms kg-1). PMID:11229375

  9. Quantitative analysis of capsaicinoids in fresh peppers, oleoresin capsicum and pepper spray products.

    PubMed

    Reilly, C A; Crouch, D J; Yost, G S

    2001-05-01

    Liquid chromatography-mass spectrometry was used to identify and quantify the predominant capsaicinoid analogues in extracts of fresh peppers, in oleoresin capsicum, and pepper sprays. The concentration of capsaicinoids in fresh peppers was variable. Variability was dependent upon the relative pungency of the pepper type and geographical origin of the pepper. Nonivamide was conclusively identified in the extracts of fresh peppers, despite numerous reports that nonivamide was not a natural product. In the oleoresin capsicum samples, the pungency was proportional to the total concentration of capsaicinoids and was related by a factor of approximately 15,000 Scoville Heat Units (SHU)/microg of total capsaicinoids. The principle analogues detected in oleoresin capsicum were capsaicin and dihydrocapsaicin and appeared to be the analogues primarily responsible for the pungency of the sample. The analysis of selected samples of commercially available pepper spray products also demonstrated variability in the capsaicinoid concentrations. Variability was observed among products obtained from different manufacturers as well as from different product lots from the same manufacturer. These data indicate that commercial pepper products are not standardized for capsaicinoid content even though they are classified by SHU. Variability in the capsaicinoid concentrations in oleoresin capsicum-based self-defense weapons could alter potency and ultimately jeopardize the safety and health of users and assailants. PMID:11372985

  10. Quality Characteristics of Stirred Yoghurt Added with Fermented Red Pepper

    PubMed Central

    Yu, Mi-Sang; Kim, Jeong-Mee; Lee, Chi-Ho; Son, Yoon-Jeong; Kim, Soo-Ki

    2014-01-01

    Pungency of hot pepper has limited its usage even though it shows various health beneficial effects. This study was conducted to develop the novel yoghurt containing hot pepper with diminishing pungency and aimed to examine the quality characteristics of yoghurt prepared with fermented red pepper. Hot pepper was first fermented with Bacillus licheniformis SK1230 to reduce the pungency of capsaicin. We then examined the quality, sensory characteristics, and antioxidant activity of yoghurt containing the fermented red pepper. The titratable acidity of this yoghurt increased whereas the viscosity decreased with increasing amounts of added red pepper. The total polyphenol content increased in proportion to the amount of added red pepper. The antioxidant activity significantly increased with the addition of red pepper (p<0.05). Color evaluation showed that the L value decreased whereas the a and b values increased significantly with the amount of red pepper added (p<0.05). In the sensory evaluation, yoghurt prepared with higher amounts of fermented red pepper received lower scores. However, yoghurt containing fermented red pepper at a concentration of 0.05% received higher scores for taste, flavor, and overall acceptability than yoghurt prepared with non-fermented pepper. Therefore, it can be concluded that the application of red pepper fermented by Bacillus licheniformis SK1230 gives beneficial feature to the preparation of yoghurt. PMID:26761278

  11. 7 CFR 319.56-32 - Peppers from New Zealand.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Peppers from New Zealand. 319.56-32 Section 319.56-32... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Fruits and Vegetables § 319.56-32 Peppers from New Zealand. Peppers (fruit) (Capsicum spp.) from New Zealand may be imported into the...

  12. 7 CFR 319.56-32 - Peppers from New Zealand.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Peppers from New Zealand. 319.56-32 Section 319.56-32... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Fruits and Vegetables § 319.56-32 Peppers from New Zealand. Peppers (fruit) (Capsicum spp.) from New Zealand may be imported into the...

  13. 7 CFR 319.56-32 - Peppers from New Zealand.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Peppers from New Zealand. 319.56-32 Section 319.56-32... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Fruits and Vegetables § 319.56-32 Peppers from New Zealand. Peppers (fruit) (Capsicum spp.) from New Zealand may be imported into the...

  14. 7 CFR 319.56-32 - Peppers from New Zealand.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Peppers from New Zealand. 319.56-32 Section 319.56-32... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Fruits and Vegetables § 319.56-32 Peppers from New Zealand. Peppers (fruit) (Capsicum spp.) from New Zealand may be imported into the...

  15. 7 CFR 319.56-32 - Peppers from New Zealand.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Peppers from New Zealand. 319.56-32 Section 319.56-32... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Fruits and Vegetables § 319.56-32 Peppers from New Zealand. Peppers (fruit) (Capsicum spp.) from New Zealand may be imported into the...

  16. Microflora of Black and Red Pepper1

    PubMed Central

    Christensen, C. M.; Fanse, H. A.; Nelson, G. H.; Bates, Fern; Mirocha, C. J.

    1967-01-01

    Dilution cultures of 30 samples of ground black pepper yielded an average of 39,000 colonies of fungi per g, with a range of 1,700 to 310,000 per g. Total numbers of colonies of bacteria from 11 samples averaged 194,000,000 per g, with a range from 8,300,000 to 704,000,000 per g. A variety of fungi grew from nearly all surface-disinfected whole peppercorns that were cultured. Thirteen samples of ground red pepper from the United States yielded an average of 1,600 colonies of storage fungi per g and an equal number of other fungi; five samples from India yielded an average of 78,900 colonies of storage fungi per g and 169,400 colonies of other fungi per g. Among the fungi from both black and red pepper were Aspergillus flavus and A. ochraceus, some isolates of which, when grown for 8 to 10 days on moist autoclaved corn and fed to white rats or to 2-day-old Pekin ducklings, were rapidly lethal to them. Aflatoxin B1 was isolated from one of the samples of corn on which A. flavus from black pepper was grown. Among the bacteria isolated from ground black pepper were Escherichia coli, E. freudii, Serratia sp., Klebsiella sp., Bacillus sp., Staphylococcus sp., and Streptococcus sp. No cultures of Shigella or Salmonella were found. Images Fig. 1 Fig. 2 PMID:6035055

  17. De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids.

    PubMed

    Liu, Shaoqun; Li, Wanshun; Wu, Yimin; Chen, Changming; Lei, Jianjun

    2013-01-01

    The capsaicinoids are a group of compounds produced by chili pepper fruits and are used widely in many fields, especially in medical purposes. The capsaicinoid biosynthetic pathway has not yet been established clearly. To understand more knowledge in biosynthesis of capsaicinoids, we applied RNA-seq for the mixture of placenta and pericarp of pungent pepper (Capsicum frutescens L.). We have assessed the effect of various assembly parameters using different assembly software, and obtained one of the best strategies for de novo assembly of transcriptome data. We obtained a total 54,045 high-quality unigenes (transcripts) using Trinity software. About 92.65% of unigenes showed similarity to the public protein sequences, genome of potato and tomato and pepper (C. annuum) ESTs databases. Our results predicted 3 new structural genes (DHAD, TD, PAT), which filled gaps of the capsaicinoid biosynthetic pathway predicted by Mazourek, and revealed new candidate genes involved in capsaicinoid biosynthesis based on KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. A significant number of SSR (Simple Sequence Repeat) and SNP (Single Nucleotide Polymorphism) markers were predicted in C. frutescens and C. annuum sequences, which will be helpful in the identification of polymorphisms within chili pepper populations. These data will provide new insights to the pathway of capsaicinoid biosynthesis and subsequent research of chili peppers. In addition, our strategy of de novo transcriptome assembly is applicable to a wide range of similar studies. PMID:23349661

  18. De Novo Transcriptome Assembly in Chili Pepper (Capsicum frutescens) to Identify Genes Involved in the Biosynthesis of Capsaicinoids

    PubMed Central

    Liu, Shaoqun; Li, Wanshun; Wu, Yimin; Chen, Changming; Lei, Jianjun

    2013-01-01

    The capsaicinoids are a group of compounds produced by chili pepper fruits and are used widely in many fields, especially in medical purposes. The capsaicinoid biosynthetic pathway has not yet been established clearly. To understand more knowledge in biosynthesis of capsaicinoids, we applied RNA-seq for the mixture of placenta and pericarp of pungent pepper (Capsicum frutescens L.). We have assessed the effect of various assembly parameters using different assembly software, and obtained one of the best strategies for de novo assembly of transcriptome data. We obtained a total 54,045 high-quality unigenes (transcripts) using Trinity software. About 92.65% of unigenes showed similarity to the public protein sequences, genome of potato and tomato and pepper (C. annuum) ESTs databases. Our results predicted 3 new structural genes (DHAD, TD, PAT), which filled gaps of the capsaicinoid biosynthetic pathway predicted by Mazourek, and revealed new candidate genes involved in capsaicinoid biosynthesis based on KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. A significant number of SSR (Simple Sequence Repeat) and SNP (Single Nucleotide Polymorphism) markers were predicted in C. frutescens and C. annuum sequences, which will be helpful in the identification of polymorphisms within chili pepper populations. These data will provide new insights to the pathway of capsaicinoid biosynthesis and subsequent research of chili peppers. In addition, our strategy of de novo transcriptome assembly is applicable to a wide range of similar studies. PMID:23349661

  19. HTLV-1 bZIP factor protein targets the Rb/E2F-1 pathway to promote proliferation and apoptosis of primary CD4(+) T cells.

    PubMed

    Kawatsuki, A; Yasunaga, J-I; Mitobe, Y; Green, P L; Matsuoka, M

    2016-08-25

    Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that induces a fatal T-cell malignancy, adult T-cell leukemia (ATL). Among several regulatory/accessory genes in HTLV-1, HTLV-1 bZIP factor (HBZ) is the only viral gene constitutively expressed in infected cells. Our previous study showed that HBZ functions in two different molecular forms, HBZ protein and HBZ RNA. In this study, we show that HBZ protein targets retinoblastoma protein (Rb), which is a critical tumor suppressor in many types of cancers. HBZ protein interacts with the Rb/E2F-1 complex and activates the transcription of E2F-target genes associated with cell cycle progression and apoptosis. Mouse primary CD4(+) T cells transduced with HBZ show accelerated G1/S transition and apoptosis, and importantly, T cells from HBZ transgenic (HBZ-Tg) mice also demonstrate enhanced cell proliferation and apoptosis. To evaluate the functions of HBZ protein alone in vivo, we generated a new transgenic mouse strain that expresses HBZ mRNA altered by silent mutations but encoding intact protein. In these mice, the numbers of effector/memory and Foxp3(+) T cells were increased, and genes associated with proliferation and apoptosis were upregulated. This study shows that HBZ protein promotes cell proliferation and apoptosis in primary CD4(+) T cells through activation of the Rb/E2F pathway, and that HBZ protein also confers onto CD4(+) T-cell immunophenotype similar to those of ATL cells, suggesting that HBZ protein has important roles in dysregulation of CD4(+) T cells infected with HTLV-1. PMID:26804169

  20. Anther culture of chili pepper (Capsicum spp.).

    PubMed

    Ochoa-Alejo, Neftalí

    2012-01-01

    Chili pepper (Capsicum spp.) is a very important horticultural crop around the world and is especially important for Mexicans because of its impact in the culture and the cuisine. Biotechnological tools such as tissue culture techniques and specifically anther culture may be applied successfully for plant breeding and genetic improvement in order to generate isogenic lines (100% homozygous) in a shorter time in comparison with the classic breeding methods. In this chapter, a protocol for efficient recovery of chili pepper haploid plants from in vitro cultured anthers is described. PMID:22610631

  1. Anther Culture in Pepper (Capsicum annuum L.).

    PubMed

    Parra-Vega, Verónica; Seguí-Simarro, Jose M

    2016-01-01

    Anther culture is the most popular of the techniques used to induce microspore embryogenesis. This technique is well set up in a wide range of crops, including pepper. In this chapter, a protocol for anther culture in pepper is described. The protocol presented hereby includes the steps from the selection of buds from donor plants to the regeneration and acclimatization of doubled haploid plants derived from the embryos, as well as a description of how to analyze the ploidy level of the regenerated plants. PMID:26619881

  2. Role of basic leucine zipper proteins in transcriptional regulation of the steroidogenic acute regulatory protein gene

    PubMed Central

    Manna, Pulak R.; Dyson, Matthew T.; Stocco, Douglas M.

    2016-01-01

    The regulation of steroidogenic acute regulatory protein (StAR) gene transcription by cAMP-dependent mechanisms occurs in the absence of a consensus cAMP response element (CRE, TGACGTGA). This regulation is coordinated by multiple transcription factors that bind to sequence-specific elements located approximately 150 bp upstream of the transcription start site. Among the proteins that bind within this region, the basic leucine zipper (bZIP) family of transcription factors, i.e. CRE binding protein (CREB)/CRE modulator (CREM)/activating transcription factor (ATF), activator protein 1 (AP-1; Fos/Jun), and CCAAT enhancer binding protein β (C/EBPβ), interact with an overlapping region (−81/−72 bp) in the StAR promoter, mediate stimulus-transcription coupling of cAMP signaling and play integral roles in regulating StAR gene expression. These bZIP proteins are structurally similar and bind to DNA sequences as dimers; however, they exhibit discrete transcriptional activities, interact with several transcription factors and other properties that contribute in their regulatory functions. The 5′-flanking −81/−72 bp region of the StAR gene appears to function as a key element within a complex cAMP response unit by binding to different bZIP members, and the StAR promoter displays variable states of cAMP responsivity contingent upon the occupancy of these cis-elements with these transcription factors. The expression and activities of CREB/CREM/ATF, Fos/Jun and C/EBPβ have been demonstrated to be mediated by a plethora of extracellular signals, and the phosphorylation of these proteins at several Ser and Thr residues allows recruitment of the transcriptional coactivator CREB binding protein (CBP) or its functional homolog p300 to the StAR promoter. This review will focus on the current level of understanding of the roles of selective bZIP family proteins within the complex series of processes involved in regulating StAR gene transcription. PMID:19150388

  3. PePPER: a webserver for prediction of prokaryote promoter elements and regulons

    PubMed Central

    2012-01-01

    Background Accurate prediction of DNA motifs that are targets of RNA polymerases, sigma factors and transcription factors (TFs) in prokaryotes is a difficult mission mainly due to as yet undiscovered features in DNA sequences or structures in promoter regions. Improved prediction and comparison algorithms are currently available for identifying transcription factor binding sites (TFBSs) and their accompanying TFs and regulon members. Results We here extend the current databases of TFs, TFBSs and regulons with our knowledge on Lactococcus lactis and developed a webserver for prediction, mining and visualization of prokaryote promoter elements and regulons via a novel concept. This new approach includes an all-in-one method of data mining for TFs, TFBSs, promoters, and regulons for any bacterial genome via a user-friendly webserver. We demonstrate the power of this method by mining WalRK regulons in Lactococci and Streptococci and, vice versa, use L. lactis regulon data (CodY) to mine closely related species. Conclusions The PePPER webserver offers, besides the all-in-one analysis method, a toolbox for mining for regulons, promoters and TFBSs and accommodates a new L. lactis regulon database in addition to already existing regulon data. Identification of putative regulons and full annotation of intergenic regions in any bacterial genome on the basis of existing knowledge on a related organism can now be performed by biologists and it can be done for a wide range of regulons. On the basis of the PePPER output, biologist can design experiments to further verify the existence and extent of the proposed regulons. The PePPER webserver is freely accessible at http://pepper.molgenrug.nl. PMID:22747501

  4. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis.

    PubMed

    Hai, T; Hartman, M G

    2001-07-25

    The mammalian ATF/CREB family of transcription factors represents a large group of basic region-leucine zipper (bZip) proteins which was originally defined in the late 1980s by their ability to bind to the consensus ATF/CRE site 'TGACGTCA'. Over the past decade, cDNA clones encoding identical or homologous proteins have been isolated by different laboratories and given different names. These proteins can be grouped into subgroups according to their amino acid similarity. In this review, we will briefly describe the classification of these proteins with a historical perspective of their nomenclature. We will then review three members of the ATF/CREB family of proteins: ATF3, ATF4 and ATF6. We will address four issues for each protein: (a) homologous proteins and alternative names, (b) dimer formation with other bZip proteins, (c) transcriptional activity, and (d) potential physiological functions. Although the name Activating Transcription Factor (ATF) implies that they are transcriptional activators, some of these proteins are transcriptional repressors. ATF3 homodimer is a transcriptional repressor and ATF4 has been reported to be either an activator or a repressor. We will review the reports on the transcriptional activities of ATF4, and propose potential explanations for the discrepancy. Although the physiological functions of these proteins are not well understood, some clues can be gained from studies with different approaches. When the data are available, we will address the following questions. (a) How is the expression (at the mRNA level or protein level) regulated? (b) How are the transcriptional activities regulated? (c) What are the interacting proteins (other than bZip partners)? (d) What are the consequences of ectopically expressing the gene (gain-of-function) or deleting the gene (loss-of-function)? Although answers to these questions are far from being complete, together they provide clues to the functions of these ATF proteins. Despite the

  5. Conservation Biological Control in Pepper and Eggplant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several important factors contribute to low productivity in pepper and eggplant due to western flower thrips. Research has been conducted to develop an understanding of flower thrips population dynamics and insecticide efficacy studies have allowed us to direct recommendations for biological contro...

  6. MIDAS™ DEMONSTRATION PLOTS IN BELL PEPPER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A demonstration trial comparing MIDAS™ (methyl iodide:chloropicrin 50:50) to methyl bromide:chloropicrin (67:33) was conducted in Saint Lucie County, FL on a commercial bell pepper production farm. Methyl bromide:chloropicrin was shank injected into performed beds at 392 kg/ha using three 25 cm dee...

  7. Irrigation frequency and timing influence pepper yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information on how fertilizer and irrigation affect production of vegetables can help growers improve resource use efficiency and profitability. Fertilizer was applied at the recommended rate and twice the recommended rate to bell and non-pungent jalapeno peppers, both Capsicum annuum L., in 2009 a...

  8. Antioxidants in Hot Pepper: Variation Among Accessions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA/ARS pepper (Capsicum spp.) germplasm collection contains several thousand accessions. Many of these have not been previously analyzed for their concentrations of ascorbic acid, capsaicin, and total phenolic compounds, which are important antioxidants and have a number of nutritional or hea...

  9. 'NuMex Las Cruces' Cayenne pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘NuMex Las Cruces’ is a high-yielding, high-heat, cayenne pepper with a maturity similar to that of ‘Large Red Thick’, an early maturing cayenne cultivar. In addition, it possesses resistance to curly top virus, having resistance to at least three Curtovirus species: Beet curly top virus (BCTV; for...

  10. Irrigation timing and fertilizer rate in peppers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessive rain fall might leach nutrients from the soil or cause producers to not supply irrigation to pepper (Capsicum sp.). Fertilizer at 150 or 300 lb/acre of triple 17 NPK, the lower rate is the recommended rate, was supplied to either bell, cv. Jupiter, or non-pungent jalapeno, cv. Pace 105, pe...

  11. Transcriptome Analysis of Pepper (Capsicum annuum) Revealed a Role of 24-Epibrassinolide in Response to Chilling

    PubMed Central

    Li, Jie; Yang, Ping; Kang, Jungen; Gan, Yantai; Yu, Jihua; Calderón-Urrea, Alejandro; Lyu, Jian; Zhang, Guobin; Feng, Zhi; Xie, Jianming

    2016-01-01

    Brassinosteroids (BRs) have positive effects on many processes during plant growth, development, and various abiotic stress responses. However, little information is available regarding the global gene expression of BRs in response to chilling stress in pepper. In this study, we used RNA sequencing to determine the molecular roles of 24-epibrassinolide (EBR) during a chilling stress response. There were 39,829 transcripts, and, among them, 656 were differently-expressed genes (DEGs) following EBR treatment (Chill+EBR) compared with the control (Chill only), including 335 up-regulated and 321 down-regulated DEGs. We selected 20 genes out of the 656 DEGs for RT-qPCR analysis to confirm the RNA-Seq. Based on GO enrich and KEGG pathway analysis, we found that photosynthesis was significantly up-enriched in biological processes, accompanied by significant increases in the net photosynthetic rate (Pn), Fv/Fm, and chlorophyll content. Furthermore, the results indicate that EBR enhanced endogenous levels of salicylic acid (SA) and jasmonic acid (JA) while suppressing the ethylene (ETH) biosynthesis pathway, suggesting that BRs function via a synergistic cross-talk with SA, JA, and ETH signaling pathways in response to chilling stress. In addition, EBR induced cellulose synthase-like protein and UDP-glycosyltransferase, suggesting a contribution to the formation of cell wall and hormone metabolism. EBR also triggered the calcium signaling transduction in cytoplasm, and activated the expression of cellular redox homeostasis related genes, such as GSTX1, PER72, and CAT2. This work, therefor, identified the specific genes showed different expression patterns in EBR-treated pepper and associated with the processes of hormone metabolism, redox, signaling, transcription, and defense. Our study provides the first evidence of the potent roles of BRs, at the transcription level, to induce the tolerance to chilling stress in pepper as a function of the combination of the

  12. Transcriptome Analysis of Pepper (Capsicum annuum) Revealed a Role of 24-Epibrassinolide in Response to Chilling.

    PubMed

    Li, Jie; Yang, Ping; Kang, Jungen; Gan, Yantai; Yu, Jihua; Calderón-Urrea, Alejandro; Lyu, Jian; Zhang, Guobin; Feng, Zhi; Xie, Jianming

    2016-01-01

    Brassinosteroids (BRs) have positive effects on many processes during plant growth, development, and various abiotic stress responses. However, little information is available regarding the global gene expression of BRs in response to chilling stress in pepper. In this study, we used RNA sequencing to determine the molecular roles of 24-epibrassinolide (EBR) during a chilling stress response. There were 39,829 transcripts, and, among them, 656 were differently-expressed genes (DEGs) following EBR treatment (Chill+EBR) compared with the control (Chill only), including 335 up-regulated and 321 down-regulated DEGs. We selected 20 genes out of the 656 DEGs for RT-qPCR analysis to confirm the RNA-Seq. Based on GO enrich and KEGG pathway analysis, we found that photosynthesis was significantly up-enriched in biological processes, accompanied by significant increases in the net photosynthetic rate (Pn), Fv/Fm, and chlorophyll content. Furthermore, the results indicate that EBR enhanced endogenous levels of salicylic acid (SA) and jasmonic acid (JA) while suppressing the ethylene (ETH) biosynthesis pathway, suggesting that BRs function via a synergistic cross-talk with SA, JA, and ETH signaling pathways in response to chilling stress. In addition, EBR induced cellulose synthase-like protein and UDP-glycosyltransferase, suggesting a contribution to the formation of cell wall and hormone metabolism. EBR also triggered the calcium signaling transduction in cytoplasm, and activated the expression of cellular redox homeostasis related genes, such as GSTX1, PER72, and CAT2. This work, therefor, identified the specific genes showed different expression patterns in EBR-treated pepper and associated with the processes of hormone metabolism, redox, signaling, transcription, and defense. Our study provides the first evidence of the potent roles of BRs, at the transcription level, to induce the tolerance to chilling stress in pepper as a function of the combination of the

  13. New Insights on Eggplant/Tomato/Pepper Synteny and Identification of Eggplant and Pepper Orthologous QTL

    PubMed Central

    Rinaldi, Riccardo; Van Deynze, Allen; Portis, Ezio; Rotino, Giuseppe L.; Toppino, Laura; Hill, Theresa; Ashrafi, Hamid; Barchi, Lorenzo; Lanteri, Sergio

    2016-01-01

    Eggplant, pepper, and tomato are the most exploited berry-producing vegetables within the Solanaceae family. Their genomes differ in size, but each has 12 chromosomes which have undergone rearrangements causing a redistribution of loci. The genome sequences of all three species are available but differ in coverage, assembly quality and percentage of anchorage. Determining their syntenic relationship and QTL orthology will contribute to exploit genomic resources and genetic data for key agronomic traits. The syntenic analysis between tomato and pepper based on the alignment of 34,727 tomato CDS to the pepper genome sequence, identified 19,734 unique hits. The resulting synteny map confirmed the 14 inversions and 10 translocations previously documented, but also highlighted 3 new translocations and 4 major new inversions. Furthermore, each of the 12 chromosomes exhibited a number of rearrangements involving small regions of 0.5–0.7 Mbp. Due to high fragmentation of the publicly available eggplant genome sequence, physical localization of most eggplant QTL was not possible, thus, we compared the organization of the eggplant genetic map with the genome sequence of both tomato and pepper. The eggplant/tomato syntenic map confirmed all the 10 translocations but only 9 of the 14 known inversions; on the other hand, a newly detected inversion was recognized while another one was not confirmed. The eggplant/pepper syntenic map confirmed 10 translocations and 8 inversions already detected and suggested a putative new translocation. In order to perform the assessment of eggplant and pepper QTL orthology, the eggplant and pepper sequence-based markers located in their respective genetic map were aligned onto the pepper genome. GBrowse in pepper was used as reference platform for QTL positioning. A set of 151 pepper QTL were located as well as 212 eggplant QTL, including 76 major QTL (PVE ≥ 10%) affecting key agronomic traits. Most were confirmed to cluster in orthologous

  14. New Insights on Eggplant/Tomato/Pepper Synteny and Identification of Eggplant and Pepper Orthologous QTL.

    PubMed

    Rinaldi, Riccardo; Van Deynze, Allen; Portis, Ezio; Rotino, Giuseppe L; Toppino, Laura; Hill, Theresa; Ashrafi, Hamid; Barchi, Lorenzo; Lanteri, Sergio

    2016-01-01

    Eggplant, pepper, and tomato are the most exploited berry-producing vegetables within the Solanaceae family. Their genomes differ in size, but each has 12 chromosomes which have undergone rearrangements causing a redistribution of loci. The genome sequences of all three species are available but differ in coverage, assembly quality and percentage of anchorage. Determining their syntenic relationship and QTL orthology will contribute to exploit genomic resources and genetic data for key agronomic traits. The syntenic analysis between tomato and pepper based on the alignment of 34,727 tomato CDS to the pepper genome sequence, identified 19,734 unique hits. The resulting synteny map confirmed the 14 inversions and 10 translocations previously documented, but also highlighted 3 new translocations and 4 major new inversions. Furthermore, each of the 12 chromosomes exhibited a number of rearrangements involving small regions of 0.5-0.7 Mbp. Due to high fragmentation of the publicly available eggplant genome sequence, physical localization of most eggplant QTL was not possible, thus, we compared the organization of the eggplant genetic map with the genome sequence of both tomato and pepper. The eggplant/tomato syntenic map confirmed all the 10 translocations but only 9 of the 14 known inversions; on the other hand, a newly detected inversion was recognized while another one was not confirmed. The eggplant/pepper syntenic map confirmed 10 translocations and 8 inversions already detected and suggested a putative new translocation. In order to perform the assessment of eggplant and pepper QTL orthology, the eggplant and pepper sequence-based markers located in their respective genetic map were aligned onto the pepper genome. GBrowse in pepper was used as reference platform for QTL positioning. A set of 151 pepper QTL were located as well as 212 eggplant QTL, including 76 major QTL (PVE ≥ 10%) affecting key agronomic traits. Most were confirmed to cluster in orthologous

  15. Characterization and expression profile of CaNAC2 pepper gene

    PubMed Central

    Guo, Wei-Li; Wang, Shu-Bin; Chen, Ru-Gang; Chen, Bi-Hua; Du, Xiao-Hua; Yin, Yan-Xu; Gong, Zhen-Hui; Zhang, Yu-Yuan

    2015-01-01

    The plant-specific NAC (NAM, ATAF, and CUC) transcription factors have diverse role in development and stress regulation. A new transcript encoding NAC protein, homologous to nam-like protein 4 from Petunia was identified from an ABA-regulated subtractive cDNA library of Capsicum annuum seedling. Here, this homolog (named CaNAC2) from C. annuum was characterized and investigated its role in abiotic stress tolerance. Our results indicated that a plant-specific and conserved NAC domain was located in the N-terminus domain of CaNAC2 which was predicted to encode a polypeptide of 410 amino acids. Phylogenetic analysis showed that CaNAC2 belonged to the NAC2 subgroup of the orthologous group 4d. The protein CaNAC2 was subcellularly localized in the nucleus and it had transcriptional activity in yeast cell. CaNAC2 was expressed mainly in seed and root. The transcription expression of CaNAC2 was strongly induced by cold, salt and ABA treatment and inhibited by osmotic stress and SA treatment. Silence of CaNAC2 in virus-induced gene silenced pepper seedlings resulted in the increased susceptibility to cold stress and delayed the salt-induced leaf chlorophyll degradation. These results indicated that this novel CaNAC2 gene might be involved in pepper response to abiotic stress tolerance. PMID:26442068

  16. Characterization and expression profile of CaNAC2 pepper gene.

    PubMed

    Guo, Wei-Li; Wang, Shu-Bin; Chen, Ru-Gang; Chen, Bi-Hua; Du, Xiao-Hua; Yin, Yan-Xu; Gong, Zhen-Hui; Zhang, Yu-Yuan

    2015-01-01

    The plant-specific NAC (NAM, ATAF, and CUC) transcription factors have diverse role in development and stress regulation. A new transcript encoding NAC protein, homologous to nam-like protein 4 from Petunia was identified from an ABA-regulated subtractive cDNA library of Capsicum annuum seedling. Here, this homolog (named CaNAC2) from C. annuum was characterized and investigated its role in abiotic stress tolerance. Our results indicated that a plant-specific and conserved NAC domain was located in the N-terminus domain of CaNAC2 which was predicted to encode a polypeptide of 410 amino acids. Phylogenetic analysis showed that CaNAC2 belonged to the NAC2 subgroup of the orthologous group 4d. The protein CaNAC2 was subcellularly localized in the nucleus and it had transcriptional activity in yeast cell. CaNAC2 was expressed mainly in seed and root. The transcription expression of CaNAC2 was strongly induced by cold, salt and ABA treatment and inhibited by osmotic stress and SA treatment. Silence of CaNAC2 in virus-induced gene silenced pepper seedlings resulted in the increased susceptibility to cold stress and delayed the salt-induced leaf chlorophyll degradation. These results indicated that this novel CaNAC2 gene might be involved in pepper response to abiotic stress tolerance. PMID:26442068

  17. The AP-1 transcription factor homolog Pf-AP-1 activates transcription of multiple biomineral proteins and potentially participates in Pinctada fucata biomineralization

    PubMed Central

    Zheng, Xiangnan; Cheng, Minzhang; Xiang, Liang; Liang, Jian; Xie, Liping; Zhang, Rongqing

    2015-01-01

    Activator protein-1 (AP-1) is an important bZIP transcription factor that regulates a series of physiological processes by specifically activating transcription of several genes, and one of its well-chartered functions in mammals is participating in bone mineralization. We isolated and cloned the complete cDNA of a Jun/AP-1 homolog from Pinctada fucata and called it Pf-AP-1. Pf-AP-1 had a highly conserved bZIP region and phosphorylation sites compared with those from mammals. A tissue distribution analysis showed that Pf-AP-1 was ubiquitously expressed in P. fucata and the mRNA level of Pf-AP-1 is extremely high in mantle. Pf-AP-1 expression was positively associated with multiple biomineral proteins in the mantle. The luciferase reporter assay in a mammalian cell line showed that Pf-AP-1 significantly up-regulates the transcriptional activity of the promoters of KRMP, Pearlin, and Prisilkin39. Inhibiting the activity of Pf-AP-1 depressed the expression of multiple matrix proteins. Pf-AP-1 showed a unique expression pattern during shell regeneration and pearl sac development, which was similar to the pattern observed for biomineral proteins. These results suggest that the Pf-AP-1 AP-1 homolog is an important transcription factor that regulates transcription of several biomineral proteins simultaneously and plays a role in P. fucata biomineralization, particularly during pearl and shell formation. PMID:26404494

  18. An alternative method to screen for pepper spray residue.

    PubMed

    Gillis, Trevor D; Kubic, Thomas A; De Forest, Peter R

    2003-01-01

    A method was developed to screen for pepper spray residue using instruments and methods other than those techniques commonly employed to analyze chemical residue (i.e.. gas chromatography mass spectrometry-GCMS or liquid chromatography mass spectrometry-LCMS). The method employed gas chromatography (GC), thin layer chromatography (TLC), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to screen for dried pepper spray stains. Pepper sprays from nine different manufacturers were investigated. Capsaicin and dihydrocapsaicin were identified and unique IR reflectance spectra are presented. An additional five compounds were presumptively found. Results showed that a particular stain could be characterized as a pepper-based stain. PMID:12570209

  19. Molecular genetic analysis of cucumber mosaic virus populations infecting pepper suggests unique patterns of evolution in Korea.

    PubMed

    Kim, Mi-Kyeong; Seo, Jang-Kyun; Kwak, Hae-Ryun; Kim, Jeong-Soo; Kim, Kook-Hyung; Cha, Byeong-Jin; Choi, Hong-Soo

    2014-09-01

    Studying genetic structure and diversity of viruses is important to understand the evolutionary mechanisms that generate and maintain variations in viral populations. Cucumber mosaic virus (CMV) is endemic in most pepper fields in Korea. Currently, no effective methods for control of CMV are available due to many environmental and biological factors such as the extensive evolutionary capacity of CMV. Thus, analyzing the genetic structure of CMV populations may facilitate the development of strategies for the control of CMV. In this study, 252 pepper (Capsicum annuum) samples showing virus symptoms were collected by field surveys performed throughout Korea in 2007. Reverse-transcription polymerase chain reaction analyses revealed that, in total, 165 collected samples were infected with CMV. Forty-five CMV isolates were randomly selected within each regional subpopulation and analyzed by full-genome sequencing. Analyses of genetic diversity showed that the 2b gene of CMV is under weaker purifying selection than the other genes. Based on the phylogenetic analysis of RNA1, the CMV isolates from pepper were divided into three clusters in subgroup I. Our full-genome sequence-based molecular analyses of the CMV Korean population suggest that the subpopulations of CMV have been geographically localized in pepper fields in Korea. PMID:25116642

  20. Detection of pepper mild mottle virus in pepper sauce in China.

    PubMed

    Peng, Jiejun; Shi, Bingbin; Zheng, Hongying; Lu, Yuwen; Lin, Lin; Jiang, Tong; Chen, Jianping; Yan, Fei

    2015-08-01

    Pepper mild mottle virus (PMMoV) was detected by RT-PCR in all 42 pepper sauce samples from the 10 main manufacturing provinces in China at concentrations ranging from 3.8 to 8.8 (Log10 copies/mL). Their coat protein nucleotide sequences had 97.4 to 100 % identity to each other and 92.4 to 100 % to other published isolates. The samples remained infectious to N. benthamiana, indicating that commercial trade in sauce could contribute to the natural spread of PMMoV. PMID:26021835

  1. Regulating expression of cell and tissue-specific genes by modifying transcription

    SciTech Connect

    Beachy, Roger N; Dai, Shunhong

    2010-06-14

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Rice bZIP transcription factors RF2a, RF2b and RLP1 play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV), through their interactions with the Box II essential cis element located in the promoter (Dai et al., 2006., Dai et al., 2004., Yin et al., 1997). RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. It is equally as important to recognize that these proteins control plant development by regulating differentiation and/or function of the vascular tissues. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins will not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants. We have proposed characterize the function domains of RF2a, RF2b and RLP1 and explore the biological function of the transcription repressor RLP1.

  2. Emittance formula for slits and pepper-pot measurement

    SciTech Connect

    Zhang, M.

    1996-10-01

    In this note, a rigid formula for slits and pepper-pot emittance measurement is derived. The derivation is based on the one- dimensional slit measurement setup. A mathematical generalization of the slit emittance formula to the pepper-pot measurement is discussed.

  3. Toward Valid Measurement of Stephen Pepper's World Hypotheses.

    ERIC Educational Resources Information Center

    Johnson, John A.

    Two measures of the "world hypotheses" of Stephen Pepper were mailed to 100 sociobiologists, 87 behaviorists, 79 personality psychologists, and 45 human developmentalists. The World Hypothesis Scale (WHS) was designed to measure Pepper's four world views: (1) formism; (2) mechanism; (3) organicism; and (4) contextualism. The Organicism-Mechanism…

  4. Non-pungent jalapeno peppers: Weed control and yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unknown to most consumers, non-pungent jalapeno peppers are used for making commercial picante sauces (salsas). The non-pungent jalapeno peppers produce the required jalapeno flavor along with the appropriate texture necessary for picante sauce. Capsaicin is added during processing to produce the va...

  5. Properties and detection of two cryptoviruses from pepper (Capsicum annuum).

    PubMed

    Sabanadzovic, Sead; Valverde, Rodrigo A

    2011-10-01

    Pepper (Capsicum annuum L.) contains a range of endogenous dsRNA molecules resembling the genomes of cryptoviruses. In this work, we have completed the molecular characterization of Pepper cryptic virus 1 (PCV-1) from cv "Jalapeño M" and generated complete genomic sequences of another cryptovirus from cv "Hungarian Wax" designated Pepper cryptic virus 2 (PCV-2). The two viruses share limited identical amino acid content in both genomic segments and appear phylogenetically closer to cryptoviruses reported from other crops (i.e. Raphanus sativus cryptic virus 3, Black raspberry cryptic virus) than to each other. Two sets of virus-specific primers were successfully used in RT-PCR tests for the simultaneous and discriminative detection of these two viruses in pepper leaves and seeds. Both viruses were detected in several pepper cultivars tested, either as single or mixed infections. PMID:21695493

  6. Detection of gamma irradiated pepper and papain by chemiluminescence

    NASA Astrophysics Data System (ADS)

    Sattar, Abdus; Delincée, H.; Diehl, J. F.

    Chemiluminescence (CL) measurements of black pepper and of papain using luminol and lucigenin reactions were studied. Effects of grinding, irradiation (5-20 kGy) and particle size (750-140 μm) on CL of pepper, and of irradiation (10-30 kGy) on CL of papain, were investigated. All the tested treatments affected the luminescence response in both the luminol and lucigenin reactions; however, the pattern of changes in each case, was inconsistent. Optimum pepper size for maximum luminescence was 560 μm, and optimum irradiation doses were >15 kGy for pepper and >20 kGy for papain. Chemiluminescence may possibly be used as an indicator or irradiation treatment for pepper and papain at a dose of 10 kGy or higher, but further research is needed to establish the reliability of this method.

  7. ‘TigerPaw-NR’, a New Root-knot Nematode Resistant Habanero-type Pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most peppers grown in the United States belong to the species Capsicum annuum. However, the increasing popularity of hot peppers has created intense interest in the Habanero, a type of pepper that belongs to another domesticated Capsicum species, C. chinense. Habanero-type peppers are some of the ...

  8. Antihyperglucolipidaemic and anticarbonyl stress properties in green, yellow and red sweet bell peppers (Capsicum annuum L.).

    PubMed

    Shukla, Srishti; Kumar, Dommati Anand; Anusha, Sanga Venkata; Tiwari, Ashok Kumar

    2016-01-01

    Effect of aqueous methanol extract of different colour sweet bell peppers (Capsicum annuum L.) on parameters of diabesity and carbonyl stress was analysed in vitro. Yellow pepper displayed significantly (p < 0.001) higher intestinal α-glucosidase inhibitory activity than green and red pepper. Porcine pancreatic lipase inhibitory activity was significantly (p < 0.01) high in yellow and red pepper than in green pepper. Green and red pepper inhibited vesperlysine-type advanced glycation end products (AGEs) more potently than yellow pepper; however, pentosidine-type AGEs were similarly inhibited by all three peppers. Yellow and red pepper inhibited lipid peroxidation more potently (p < 0.01) than green pepper. Total polyphenol content and free radicals scavenging activities in yellow and red bell peppers were higher than in green pepper. Total flavonoid content was high in green pepper than that present in yellow and red peppers. Green pepper displayed presence of proanthocyanins; however, oligomeric anthocyanins were detected in yellow and red peppers. PMID:25868614

  9. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capscicum species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hot pepper is an important spice crop the world-over and is closely related to sweet peppers that represent an important vegetable crop in many cultures. Both hot and mild peppers are important sources of dietary nutrients and hot pepper is a source of the medicinal compound capsaicin, which is wide...

  10. 7 CFR 457.148 - Fresh market pepper crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Fresh market pepper crop insurance provisions. 457.148... pepper crop insurance provisions. The fresh market pepper crop insurance provisions for the 1999 and... Fresh Market Pepper Crop Provisions If a conflict exists among the policy provisions, the order...

  11. 7 CFR 457.148 - Fresh market pepper crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Fresh market pepper crop insurance provisions. 457.148... pepper crop insurance provisions. The fresh market pepper crop insurance provisions for the 1999 and... Fresh Market Pepper Crop Provisions If a conflict exists among the policy provisions, the order...

  12. Resistant Pepper Genotypes and Soil Treatments for Managing Root Disease and Root-knot Nematode in Pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistant pepper cultivars and soil treatments in various combinations were evaluated for managing Pythium and root-knot nematodes in field trials in Charleston, SC and Citra, FL. Five pepper genotypes differing in resistance to Phytophthora capsici and Meloidogyne incognita were studied in combina...

  13. Antioxidants in hot pepper: variation among accessions.

    PubMed

    Antonious, George F; Kochhar, Tejinder S; Jarret, Robert L; Snyder, John C

    2006-01-01

    The U.S. Department of Agriculture (USDA) pepper (Capsicum spp.) germplasm collection contains several thousand members or accessions. Many of these species and cultivars have not been analyzed for their concentrations of ascorbic acid, capsaicin, and total phenolic compounds, which are important antioxidants having a number of benefits for human health. The objective of this investigation was to select candidate accessions of hot pepper having high concentrations of ascorbic acid, capsaicin, free sugars, and total phenols for use as parents in breeding for these compounds. Seventeen accessions of pepper from the core Capsicum germplasm collection (four accessions of Capsicum chinense; five accessions of C. baccatum; six accessions of C. annuum; and two of C. frutescens) were field grown and their mature fruits were analyzed for their antioxidant composition. Concentrations of these compounds tended to be higher in C. chinense and C. baccatum, than in C. annuum and C. frutescens. Across all accessions the concentration of total phenols was correlated with ascorbic acid (r = 0.97) and free sugars (r = 0.80). Concentrations of total phenols (1.4, 1.3, and 1.3 mg g-1 fruit) and ascorbic acid (1.6, 1.2, and 1.3 mg g-1 fruit) were significantly greater in PI-633757, PI-387833, and PI-633754, respectively, compared to other accessions analyzed. Total capsaicinoids concentrations were greatest (1.3 mg g-1 fruit) in PI-438622 and lowest (0.002 mg g-1 fruit) in Grif-9320. The great variability within and among Capsicum species for these phytochemicals suggests that these selected accessions may be useful as parents in hybridization programs to produce fruits with value-added traits. PMID:16923603

  14. Growth, yield, and fruit quality of pepper plants amended with two sanitized sewage sludges.

    PubMed

    Pascual, Immaculada; Azcona, Iñaki; Aguirreolea, Jone; Morales, Fermín; Corpas, Francisco Javier; Palma, José Manuel; Rellán-Alvarez, Rubén; Sánchez-Díaz, Manuel

    2010-06-01

    Organic wastes such as sewage sludge have been successfully used to increase crop productivity of horticultural soils. Nevertheless, considerations of the impact of sludges on vegetable and fruit quality have received little attention. Therefore, the objective of the present work was to investigate the impact of two sanitized sewage sludges, autothermal thermophilic aerobic digestion (ATAD) and compost sludge, on the growth, yield, and fruit quality of pepper plants ( Capsicum annuum L. cv. Piquillo) grown in the greenhouse. Two doses of ATAD (15 and 30% v/v) and three of composted sludge (15, 30, and 45%) were applied to a peat-based potting mix. Unamended substrate was included as control. ATAD and composted sludge increased leaf, shoot, and root dry matter, as well as fruit yield, mainly due to a higher number of fruits per plant. There was no effect of sludge on fruit size (dry matter per fruit and diameter). The concentrations of Zn and Cu in fruit increased with the addition of sewage sludges. Nevertheless, the levels of these elements remained below toxic thresholds. Pepper fruits from sludge-amended plants maintained low concentrations of capsaicin and dihydrocapsaicin, thus indicating low pungency level, in accordance with the regulations prescribed by the Control Board of "Lodosa Piquillo peppers" Origin Denomination. The application of sludges did not modify the concentration of vitamin C (ASC) in fruit, whereas the highest doses of composted sludge tended to increase the content of reduced (GSH) and oxidized (GSSG) glutathione, without change in the GSH/GSSG ratio. There were no effects of sludge on the transcript levels of enzymes involved in the synthesis of vitamin C, l-galactono-1,4-lactone dehydrogenase (GLDH) or in the ascorbate-glutathione cycle, ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR). Results suggest that the synthesis and degradation of ASC and GSH were compensated for in most of the

  15. ABF transcription factors of Thellungiella salsuginea

    PubMed Central

    Vysotskii, Denis A.; de Vries-van Leeuwen, Ingrid J.; Souer, Erik; Babakov, Alexei V.; de Boer, Albertus H.

    2013-01-01

    ABF transcription factors are the key regulators of ABA signaling. Using RACE-PCR, we identified and sequenced the coding regions of four genes that encode ABF transcription factors in the extremophile plant Thellungiella salsuginea, a close relative of Arabidopsis thaliana that possesses high tolerance to abiotic stresses. An analysis of the deduced amino acid sequences revealed that the similarity between Thellungiella and Arabidopsis ABFs ranged from 71% to 88%. Similar to their Arabidopsis counterparts, Thellungiella ABFs share a bZIP domain and four conservative domains, including a highly conservative motif at the C-terminal tail, which was reported to be a canonical site for binding by 14-3-3 regulatory proteins. Gene expression analysis by real-time PCR revealed a rapid transcript induction of three of the ABF genes in response to salt stress. To check whether Thellungiella ABF transcription factors can interact with abundant 14-3-3 proteins, multiple constructs were designed, and yeast two-hybrid experiments were conducted. Six of the eight tested Ts14-3-3 proteins were able to bind the TsABFs in an isoform-specific manner. A serine-to-alanine substitution in the putative 14-3-3 binding motif resulted in the complete loss of interaction between the 14-3-3 proteins and the ABFs. The role of 14-3-3 interaction with ABFs in the salt and ABA signaling pathways is discussed in the context of Thellungiella survivability. PMID:23221757

  16. Regulating expressin of cell and tissue-specific genes by modifying transcription

    SciTech Connect

    Beachy, R N; Dai, Shunhong

    2009-12-15

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Our research supported by this program has led to the identification of rice bZIP transcription factors RF2a, RF2b and RLP1 that play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV) through their interactions with the Box II essential cis element located in the promoter. RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants and to improve biofuel feedstock.

  17. Unraveling transcription factor interactions with heterochromatin protein 1 using fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Siegel, Amanda P.; Hays, Nicole M.; Day, Richard N.

    2013-02-01

    The epigenetic control of heterochromatin deposition is achieved through a network of protein interactions mediated by the heterochromatin protein 1 (HP1). In earlier studies, we showed that the CCAAT/enhancer-binding protein alpha (C/EBPα), a transcription factor that controls cell differentiation, localizes to heterochromatin, and interacts with HP1α. Here, deletion and mutagenesis are combined with live-cell imaging approaches to characterize these protein interactions. The results demonstrate that the basic region and leucine zipper (BZip) domain of C/EBPα is sufficient for the interaction with HP1α in regions of heterochromatin. Fluorescence correlation spectroscopy and cross-correlation (FCS and FCCS) revealed very different diffusion profiles for HP1α and the BZip protein, and co-expression studies indicated that the mobile fractions of these nuclear proteins diffuse independently of one another. The steady-state interactions of these proteins in regions of heterochromatin were monitored using Förster resonance energy transfer (FRET). A point mutation in HP1α, W174A, which disrupts the interactions with proteins containing the common PxVxL motif did not affect the interaction with the BZip protein. In contrast, the HP1α W41A mutation, which prevents binding to methylated histones, exhibited greatly reduced FRET efficiency when compared to the wild type HP1α or HP1αW174A. The functional significance of these interactions is discussed.

  18. The transcriptional basis of adipocyte development.

    PubMed

    Rosen, Evan D

    2005-07-01

    Adipogenesis is the developmental process by which a multipotent mesenchymal stem cell differentiates into a mature adipocyte. This process involves a highly regulated and coordinated cascade of transcription factors that together lead to the establishment of the differentiated state. In the presence of the correct hormonal cues, committed pre-adipocytes express the bZIP factors C/EBPb and C/EBPd. These factors in turn induce the expression of C/EBPa and peroxisome proliferator-activated receptor g (PPARg). C/EBPa and PPARg together promote differentiation by activating adipose-specific gene expression and by maintaining each others expression at high levels. We have investigated the relative contributions of PPARg and C/EBPa to adipogenesis by selectively ablating these genes in mouse embryonic fibroblasts (MEFs). MEFs that lack C/EBPa are able to undergo adipogenesis, but only when PPARg is ectopically expressed. Interestingly, these cells are not sensitive to the metabolic actions of insulin. By way of contrast, cells that lack PPARg are utterly incapable of adipogenic conversion, even when supplemented with high levels of C/EBPa. Our current investigations are centered on the identification of novel adipogenic transcription factors, utilizing a variety of techniques, ranging from BAC transgenics to computational approaches. These approaches will be discussed, along with the roles of some new transcriptional players in adipogenesis, including the O/E family of proteins. PMID:15936931

  19. Cooperative DNA binding and sequence discrimination by the Opaque2 bZIP factor.

    PubMed Central

    Yunes, J A; Vettore, A L; da Silva, M J; Leite, A; Arruda, P

    1998-01-01

    The maize Opaque2 (O2) protein is a basic leucine zipper transcription factor that controls the expression of distinct classes of endosperm genes through the recognition of different cis-acting elements in their promoters. The O2 target region in the promoter of the alpha-coixin gene was analyzed in detail and shown to comprise two closely adjacent binding sites, named O2u and O2d, which are related in sequence to the GCN4 binding site. Quantitative DNase footprint analysis indicated that O2 binding to alpha-coixin target sites is best described by a cooperative model. Transient expression assays showed that the two adjacent sites act synergistically. This synergy is mediated in part by cooperative DNA binding. In tobacco protoplasts, O2 binding at the O2u site is more important for enhancer activity than is binding at the O2d site, suggesting that the architecture of the O2-DNA complex is important for interaction with the transcriptional machinery. PMID:9811800

  20. Hot Chili Peppers: Extraction, Cleanup, and Measurement of Capsaicin

    NASA Astrophysics Data System (ADS)

    Huang, Jiping; Mabury, Scott A.; Sagebiel, John C.

    2000-12-01

    Capsaicin, the pungent ingredient of the red pepper or Capsicum annuum, is widely used in food preparation. The purpose of this experiment was to acquaint students with the active ingredients of hot chili pepper (capsaicin and dihydrocapsaicin), the extraction, cleanup, and analysis of these chemicals, as a fun and informative analytical exercise. Fresh peppers were prepared and extracted with acetonitrile, removing plant co-extractives by addition to a C-18 solid-phase extraction cartridge. Elution of the capsaicinoids was accomplished with a methanol-acetic acid solution. Analysis was completed by reverse-phase HPLC with diode-array or variable wavelength detection and calibration with external standards. Levels of capsaicin and dihydrocapsaicin were typically found to correlate with literature values for a specific hot pepper variety. Students particularly enjoyed relating concentrations of capsaicinoids to their perceived valuation of "hotness".

  1. 75 FR 30303 - Importation of Peppers From Panama

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... introduced into the United States via peppers, including 8 insect pests, 1 bacterium, 1 fungus, and 2 viruses...). Melon thrips (Thrips palmi). Bacterium: Bacterial wilt (Ralstonia solanacearum race 3 biovar 2)....

  2. Wheat Transcription Factor TaAREB3 Participates in Drought and Freezing Tolerances in Arabidopsis.

    PubMed

    Wang, Jingyi; Li, Qian; Mao, Xinguo; Li, Ang; Jing, Ruilian

    2016-01-01

    AREB (ABA response element binding) proteins in plants play direct regulatory roles in response to multiple stresses, but their functions in wheat (Triticum aestivum L.) are not clear. In the present study, TaAREB3, a new member of the AREB transcription factor family, was isolated from wheat. Sequence analysis showed that the TaAREB3 protein is composed of three parts, a conserved N-terminal, a variable M region, and a conserved C-terminal with a bZIP domain. It belongs to the group A subfamily of bZIP transcription factors. TaAREB3 was constitutively expressed in stems, leaves, florets, anthers, pistils, seeds, and most highly, in roots. TaAREB3 gene expression was induced with abscisic acid (ABA) and low temperature stress, and its protein was localized in the nucleus when transiently expressed in tobacco epidermal cells and stably expressed in transgenic Arabidopsis. TaAREB3 protein has transcriptional activation activity, and can bind to the ABRE cis-element in vitro. Overexpression of TaAREB3 in Arabidopsis not only enhanced ABA sensitivity, but also strengthened drought and freezing tolerances. TaAREB3 also activated RD29A, RD29B, COR15A, and COR47 by binding to their promoter regions in transgenic Arabidopsis. These results demonstrated that TaAREB3 plays an important role in drought and freezing tolerances in Arabidopsis. PMID:26884722

  3. Wheat Transcription Factor TaAREB3 Participates in Drought and Freezing Tolerances in Arabidopsis

    PubMed Central

    Wang, Jingyi; Li, Qian; Mao, Xinguo; Li, Ang; Jing, Ruilian

    2016-01-01

    AREB (ABA response element binding) proteins in plants play direct regulatory roles in response to multiple stresses, but their functions in wheat (Triticum aestivum L.) are not clear. In the present study, TaAREB3, a new member of the AREB transcription factor family, was isolated from wheat. Sequence analysis showed that the TaAREB3 protein is composed of three parts, a conserved N-terminal, a variable M region, and a conserved C-terminal with a bZIP domain. It belongs to the group A subfamily of bZIP transcription factors. TaAREB3 was constitutively expressed in stems, leaves, florets, anthers, pistils, seeds, and most highly, in roots. TaAREB3 gene expression was induced with abscisic acid (ABA) and low temperature stress, and its protein was localized in the nucleus when transiently expressed in tobacco epidermal cells and stably expressed in transgenic Arabidopsis. TaAREB3 protein has transcriptional activation activity, and can bind to the ABRE cis-element in vitro. Overexpression of TaAREB3 in Arabidopsis not only enhanced ABA sensitivity, but also strengthened drought and freezing tolerances. TaAREB3 also activated RD29A, RD29B, COR15A, and COR47 by binding to their promoter regions in transgenic Arabidopsis. These results demonstrated that TaAREB3 plays an important role in drought and freezing tolerances in Arabidopsis. PMID:26884722

  4. Overexpression of the CaTIP1-1 Pepper Gene in Tobacco Enhances Resistance to Osmotic Stresses

    PubMed Central

    Yin, Yan-Xu; Wang, Shu-Bin; Xiao, Huai-Juan; Zhang, Huai-Xia; Zhang, Zhen; Jing, Hua; Zhang, Ying-Li; Chen, Ru-Gang; Gong, Zhen-Hui

    2014-01-01

    Both the gene expression and activity of water channel protein can control transmembrane water movement. We have reported the overexpression of CaTIP1-1, which caused a decrease in chilling tolerance in transgenic plants by increasing the size of the stomatal pore. CaTIP1-1 expression was strongly induced by salt and mannitol stresses in pepper (Capsicum annuum). However, its biochemical and physiological functions are still unknown in transgenic tobacco. In this study, transient expression of CaTIP1-1-GFP in tobacco suspension cells revealed that the protein was localized in the tonoplast. CaTIP1-1 overexpressed in radicle exhibited vigorous growth under high salt and mannitol treatments more than wild-type plants. The overexpression of CaTIP1-1 pepper gene in tobacco enhanced the antioxidant enzyme activities and increased transcription levels of reactive oxygen species-related gene expression under osmotic stresses. Moreover, the viability of transgenic tobacco cells was higher than the wild-type after exposure to stress. The pepper plants with silenced CaTIP1-1 in P70 decreased tolerance to salt and osmotic stresses using the detached leaf method. We concluded that the CaTIP1-1 gene plays an important role in response to osmotic stresses in tobacco. PMID:25375192

  5. Molecular cloning, sequence characterization of a novel pepper gene NADP-ICDH and its effect on cytoplasmic male sterility.

    PubMed

    Deng, M H; Wen, J F; Huo, J L; Zhu, H S; Dai, X Z; Zhang, Z Q; Zhou, H; Zou, X X

    2012-01-01

    NADP-dependent isocitrate dehydrogenase (NADP-ICDH) is an important enzyme involved in energy metabolism. The complete coding sequence of the pepper (Capsicum annuum) NADP-ICDH gene was amplified using a reverse transcriptase PCR based on the conserved sequence information of the tomato and other Solanaceae plants and known highly homologous pepper ESTs. Nucleotide sequence analysis revealed that the pepper NADP-ICDH gene encodes a protein of 415 amino acids that has high homology with the proteins of seven species, Solanum tuberosum (100%), Citrus limon (98%), Daucus carota (98%), Nicotiana tabacum (98%), Vitis vinifera (99%), Arabidopsis thaliana (97%), and Oryza sativa (98%). Tissue expression analysis demonstrated that the pepper NADP-ICDH gene is over expressed in flower, pericarp and seed, moderately in placenta, weakly in stem and leaf, hardly expressed in root. At the abortion stages, activities and expression levels of NADP-ICDH in anthers of a sterile line were strongly reduced, while those in an F(1) hybrid remained normal. Activities and expression levels of NADP-ICDH were too low to maintain balanced energy metabolism in the sterile line, which indicated that stable transcripts of NADP-ICDH are necessary to maintain energy metabolism at a normal level. When the restorer gene was transferred to the cytoplasmic male sterile line, activities and expression level of NADP-ICDH were regulated by the restorer gene and became stable. The restorer gene likely plays an important role in keeping the balance of the energy metabolism within normal levels during microspore development. PMID:22653649

  6. Susceptibility of ornamental pepper banker plant candidates to common greenhouse pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Susceptibility of four potential ornamental pepper banker plant candidates [Black Pearl (BP), Explosive Ember (EE), Masquerade (MA), Red Missile (RM), and a commercial pepper cultivar Blitz (BL)] were evaluated against three common greenhouse pests - Bemisia tabaci, Polyphagotarsonemus latus and Fra...

  7. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response.

    PubMed Central

    Haze, K; Okada, T; Yoshida, H; Yanagi, H; Yura, T; Negishi, M; Mori, K

    2001-01-01

    Eukaryotic cells control the levels of molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) by a transcriptional induction process termed the unfolded protein response (UPR). The mammalian UPR is mediated by the cis-acting ER stress response element consisting of 19 nt (CCAATN(9)CCACG), the CCACG part of which is considered to provide specificity. We recently identified the basic leucine zipper (bZIP) protein ATF6 as a mammalian UPR-specific transcription factor; ATF6 is activated by ER stress-induced proteolysis and binds directly to CCACG. Here we report that eukaryotic cells express another bZIP protein closely related to ATF6 in both structure and function. This protein encoded by the G13 (cAMP response element binding protein-related protein) gene is constitutively synthesized as a type II transmembrane glycoprotein anchored in the ER membrane and processed into a soluble form upon ER stress as occurs with ATF6. The proteolytic processing of ATF6 and the G13 gene product is accompanied by their relocation from the ER to the nucleus; their basic regions seem to function as a nuclear localization signal. Overexpression of the soluble form of the G13 product constitutively activates the UPR, whereas overexpression of a mutant lacking the activation domain exhibits a strong dominant-negative effect. Furthermore, the soluble forms of ATF6 and the G13 gene product are unable to bind to several point mutants of the cis-acting ER stress response element in vitro that hardly respond to ER stress in vivo. We thus concluded that the two related bZIP proteins are crucial transcriptional regulators of the mammalian UPR, and propose calling the ATF6 gene product ATF6alpha and the G13 gene product ATF6beta. PMID:11256944

  8. Authentication of bell peppers using boron and strontium isotope compositions

    NASA Astrophysics Data System (ADS)

    Rosner, Martin; Pritzkow, Wolfgang; Vogl, Jochen; Voerkelius, Susanne

    2010-05-01

    The wrong declaration of food in terms of geographical origin and production method is a major problem for the individual consumer and public regulatory authorities. The authentication of food matrices using H-C-N-O-S isotopic compositions is already well established. However, specific questions require additional isotopic systems, which are more diagonstic for the source reservoires involved or production methods used. Here we present B and Sr isotopic compositions of bell peppers from Europe (Germany, Austria, Netherlands, Spain) and Israel to verfiy their origin. The bell peppers' B isotopic compositions between different locations are highly variable (d11BNISTSRM951 -8 to +35 ‰), whereas the 87Sr/86Sr ratios are all close to modern seawater Sr isotopic composition of about 0.7092 (0.7078 to 0.7107), but still can reliably be distinguished. Distinct isotopically heavy and light B isotopic fingerprints are obtained for bell peppers from Israel and the Netherlands. Samples from Germany, Austria, and Spain display overlapping d11B values between 0 and +12 ‰. Bell peppers from Israel show high d11B values (+28 to +35 ‰) combined with 87Sr/86Sr ratios slightly more unradiogenic than modern seawater (ca 0.7079). Bell peppers from the Netherlands, however, show low d11B values (-8 ‰) combinded with 87Sr/86Sr ratios of modern seawater (approx. 0.7085). Mainly based on diagnostic B isotopic compositions bell peppers from Israel and the Netherlands can be related to a specific geographical growing environment (Israel) or production method (Netherlands). The isotope fingerprints of bell peppers from the Netherlands are consistent with growing conditions in greenhouses typical for the Netherlands vegetable farming. Using optimized production methods crops in greenhouses were supplied with nutritients by liquid fertilizers on artificial substrates. As most fertilizers derive from non-marine salt deposits, fertilization typically imprints invariant d11B values close

  9. Garlic exerts allelopathic effects on pepper physiology in a hydroponic co-culture system.

    PubMed

    Ding, Haiyan; Cheng, Zhihui; Liu, Menglong; Hayat, Sikandar; Feng, Han

    2016-01-01

    A hydroponic co-culture system was adopted to determine the allelopathic potential of garlic on the growth of pepper plants. Different numbers of garlic plants (0, 2, 4, 8 and 12) were hydroponically co-cultured with two pepper plants to investigate allelopathic effects on the growth attributes and antioxidative defense system of the test pepper plants. The responses of the pepper plants depended on the number of garlic plants included in the co-culture system, indicating an association of pepper growth with the garlic root exudate concentration. When grown at a pepper/garlic ratio of 1:1 or 1:2, the pepper plant height, chlorophyll content, and peroxidase (POD), catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were significantly increased after 30 days of co-culture; in contrast, reduction in methane dicarboxylic aldehyde (MDA) content was observed. However, when the pepper/garlic ratio was 1:4 or higher, these morphological indices and protective enzyme activities were significantly inhibited, whereas MDA levels in the pepper leaves were significantly increased due to severe membrane lipid peroxidation. The results indicate that although low concentrations of garlic root exudates appear to induce protective enzyme systems and promote pepper growth, high concentrations have deleterious effects. These findings suggest that further investigations should optimize the co-culture pepper/garlic ratio to reduce continuous cropping obstacles in pepper production. PMID:27095440

  10. Complete Genome Sequence of a Bell Pepper Endornavirus Isolate from Canada

    PubMed Central

    Chen, Bin; Bernards, Mark

    2015-01-01

    Bell pepper endornavirus (BPEV) is a double-stranded RNA virus infecting economically important crops, such as peppers. Next-generation sequencing of small RNAs extracted from the leaves of a pepper plant showing mild viral symptoms, along with subsequent analysis, identified BPEV. The complete genome of this isolate was cloned and sequenced. PMID:26294624

  11. Genetic diversity provides opportunities for improvement of fresh-cut pepper quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extensive genetic diversity present in the Capsicum genepool has been utilized extensively to improve pepper disease resistance, fruit quality and varied yield attributes. Little attention has been dedicated to genetic enhancement of pepper fresh-cut quality. We evaluated pepper accessions with dive...

  12. Virulence of Meloidogyne incognita to expression of N gene in pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five root-knot nematode resistant pepper genotypes and three susceptible pepper genotypes were compared for their reactions against a population of Meloidogyne incognita (Chitwood) Kofoid and White which had been shown to be pathogenic to bell pepper (Capsicum annuum) in preliminary tests. The pepp...

  13. 7 CFR 319.56-40 - Peppers from certain Central American countries.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) The peppers must be packed in insect-proof cartons or containers or covered with insect-proof mesh or... 24 hours of harvest in a pest-exclusionary packinghouse. The peppers must be safeguarded by an insect.... Peppers must be packed in insect-proof cartons or containers, or covered with insect-proof mesh or...

  14. Electronic Nose Based Alternative Method for the Determination of Capsaicin in Hot Chili Pepper

    NASA Astrophysics Data System (ADS)

    Mohamed, E. I.; Andreoli, A.; Martinelli, E.; Candeloro, N.; Mantini, A.; di Natale, C.; de Lorenzo, A.

    2000-12-01

    The aim of the present study is to examine the EN aptitude to evaluate different pepper brands' freshness by repeated measurements of chosen pepper samples. This, in addition to study the possibility of differentiation and classification of Bell, Thai and Scotch Bonnet pepper brands, available in the Italian market.

  15. Complete Genome Sequence of a Bell Pepper Endornavirus Isolate from Canada.

    PubMed

    Chen, Bin; Bernards, Mark; Wang, Aiming

    2015-01-01

    Bell pepper endornavirus (BPEV) is a double-stranded RNA virus infecting economically important crops, such as peppers. Next-generation sequencing of small RNAs extracted from the leaves of a pepper plant showing mild viral symptoms, along with subsequent analysis, identified BPEV. The complete genome of this isolate was cloned and sequenced. PMID:26294624

  16. 7 CFR 319.56-42 - Peppers from the Republic of Korea.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... accordance with the conditions in 7 CFR 319.56-42 and were inspected and found free from Agrotis segetum... 7 Agriculture 5 2014-01-01 2014-01-01 false Peppers from the Republic of Korea. 319.56-42 Section... Peppers from the Republic of Korea. Peppers (Capsicum annuum L. var. annuum) from the Republic of...

  17. 7 CFR 319.56-42 - Peppers from the Republic of Korea.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... accordance with the conditions in 7 CFR 319.56-42 and were inspected and found free from Agrotis segetum... 7 Agriculture 5 2010-01-01 2010-01-01 false Peppers from the Republic of Korea. 319.56-42 Section... Peppers from the Republic of Korea. Peppers (Capsicum annuum L. var. annuum) from the Republic of...

  18. Garlic exerts allelopathic effects on pepper physiology in a hydroponic co-culture system

    PubMed Central

    Ding, Haiyan; Liu, Menglong; Hayat, Sikandar; Feng, Han

    2016-01-01

    ABSTRACT A hydroponic co-culture system was adopted to determine the allelopathic potential of garlic on the growth of pepper plants. Different numbers of garlic plants (0, 2, 4, 8 and 12) were hydroponically co-cultured with two pepper plants to investigate allelopathic effects on the growth attributes and antioxidative defense system of the test pepper plants. The responses of the pepper plants depended on the number of garlic plants included in the co-culture system, indicating an association of pepper growth with the garlic root exudate concentration. When grown at a pepper/garlic ratio of 1:1 or 1:2, the pepper plant height, chlorophyll content, and peroxidase (POD), catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were significantly increased after 30 days of co-culture; in contrast, reduction in methane dicarboxylic aldehyde (MDA) content was observed. However, when the pepper/garlic ratio was 1:4 or higher, these morphological indices and protective enzyme activities were significantly inhibited, whereas MDA levels in the pepper leaves were significantly increased due to severe membrane lipid peroxidation. The results indicate that although low concentrations of garlic root exudates appear to induce protective enzyme systems and promote pepper growth, high concentrations have deleterious effects. These findings suggest that further investigations should optimize the co-culture pepper/garlic ratio to reduce continuous cropping obstacles in pepper production. PMID:27095440

  19. Antimutagenic activity of carotenoids in green peppers against some nitroarenes.

    PubMed

    Gonzáez de Mejía, E; Quintanar-Hernández, A; Loarca-Piña, G

    1998-08-01

    In Mexico, as well as in Central and South American countries, the consumption of peppers (Capsicum annuum) has been tradition for thousands of years; the per capita dietary intake of peppers is about 40 g/day. Peppers are an important source of beta-carotene and vitamin A, which have antimutagenic and/or anticarcinogenic properties. In the present study, Salmonella typhimurium tester strain YG1024 in the plate-incorporation test was used to examine the antimutagenicity of carotenois extracted from five different types of Capsicum spp. ('Chilaca', 'Poblano', 'Serrano', 'Jalapeño' and 'Pimiento') which were chosen, based on their consumption and availability on the local market. Extracts from these peppers were tested against 1-6-dinitropyrene (1,6-DNP) and 1,8-dinitropyrene (1,8-DNP) mutagenicity. Dose-response mutagenicity curves of 1-NP; 1,6-DNP and 1,8-DNP were obtained. For the antimutagenicity studies, doses of 0.05 microgram/plate, 0.20 ng/plate and 0.06 ng/plate for 1-NP, 1,6-DPN and 1,8-DNP respectively were chosen, and the number of net revertants/plate were 1008 for 1-NP, 512 for 1,6-DNP, and 712 for 1,8-DPN. Trans-beta-carotene and the extracts were not toxic to the bacteria at the concentrations tested. The extracts obtained from the peppers showed more inhibition than pure trans-beta-carotene on 1-NP; 1,6-DNP and 1,8-DNP mutagenicity. Chilaca pepper extract required 0.36 g (34 nmol expressed as trans-beta-carotene equivalents) of fresh pepper to inhibit 94% on 1-NP mutagenicity, 78% on 1,6-DNP mutagenicity and 84% on 1,8-DNP mutagenicity. Bell pepper ('Pimiento') extract required 1.53 g (50 nmol expressed as trans-beta-carotene) to obtain 87%, 79% and 73% inhibition on 1-NP; 1,6-DNP and 1,8-DNP mutagenicity respectively. Since pure beta-carotene inhibited only approximately 50% the mutagenicity of nitroarenes, these results suggest that each one of the pepper extracts have more than one antimutagenic compound (e.g., beta-carotene and xanthophylls) and

  20. Pungency Quantitation of Hot Pepper Sauces Using HPLC

    NASA Astrophysics Data System (ADS)

    Betts, Thomas A.

    1999-02-01

    A class of compounds known as capsaicinoids are responsible for the "heat" of hot peppers. To determine the pungency of a particular pepper or pepper product, one may quantify the capsaicinoids and relate those concentrations to the perceived heat. The format of the laboratory described here allows students to collectively develop an HPLC method for the quantitation of the two predominant capsaicinoids (capsaicin and dihydrocapsaicin) in hot-pepper products. Each small group of students investigated one of the following aspects of the method: detector wavelength, mobile-phase composition, extraction of capsaicinoids, calibration, and quantitation. The format of the lab forced students to communicate and cooperate to develop this method. The resulting HPLC method involves extraction with acetonitrile followed by solid-phase extraction clean-up, an isocratic 80:20 methanol-water mobile phase, a 4.6 mm by 25 cm C-18 column, and UV absorbance detection at 284 nm. The method developed by the students was then applied to the quantitation of capsaicinoids in a variety of hot pepper sauces. Editor's Note on Hazards in our April 2000 issue addresses the above.

  1. Visualization and LC/MS analysis of colorless pepper sprays.

    PubMed

    Cavett, Valerie; Waninger, Eileen M; Krutak, James J; Eckenrode, Brian A

    2004-05-01

    Pepper sprays are used in a variety of circumstances, including criminal activity, self-defense, and law enforcement. As such, the presence or absence of pepper sprays on evidentiary materials is often important when determining the facts of an incident. When no visible stains are present on evidentiary materials, ascertaining the presence or absence of pepper spray can be a challenge to the forensic analyst. A method, based on a chemical derivatization of capsaicinoids using a diazonium salt, has been developed for the visualization of colorless, ultraviolet (UV) activated fluorescent dye-free pepper sprays on textiles. Identification of both the capsaicinoids and their derivatives is confirmed via extraction of the derivatized capsaicinoids followed by liquid chromatography/mass spectrometry (LC/MS) analysis. LC/MS analysis is conducted using a YMC Basic column and elution of the compounds using a gradient of 10 mM ammonium formate, pH 4.2 and methanol at 0.35 mL/min. Full-scan MS data are collected for the full 6.5 min LC analysis. Although this method is qualitative in nature, visual detection of as little as 50 microL of a 0.2% pepper spray (equivalent to approximately 0.1 mg) on a variety of garments is possible, and more than adequate signal-to-noise is obtained for reconstructed ion chromatograms on LC/MS analysis at these levels. PMID:15171161

  2. The Importance of Being Flexible: The Case of Basic Region Leucine Zipper Transcriptional Regulators

    PubMed Central

    Miller, Maria

    2009-01-01

    Large volumes of protein sequence and structure data acquired by proteomic studies led to the development of computational bioinformatic techniques that made possible the functional annotation and structural characterization of proteins based on their primary structure. It has become evident from genome-wide analyses that many proteins in eukaryotic cells are either completely disordered or contain long unstructured regions that are crucial for their biological functions. The content of disorder increases with evolution indicating a possibly important role of disorder in the regulation of cellular systems. Transcription factors are no exception and several proteins of this class have recently been characterized as premolten/molten globules. Yet, mammalian cells rely on these proteins to control expression of their 30,000 or so genes. Basic region:leucine zipper (bZIP) DNA-binding proteins constitute a major class of eukaryotic transcriptional regulators. This review discusses how conformational flexibility “built” into the amino acid sequence allows bZIP proteins to interact with a large number of diverse molecular partners and to accomplish their manifold cellular tasks in a strictly regulated and coordinated manner. PMID:19519454

  3. The CREB Transcription Factor Controls Transcriptional Activity of the Human RIC8B Gene.

    PubMed

    Maureira, Alejandro; Sánchez, Rodolfo; Valenzuela, Nicole; Torrejón, Marcela; Hinrichs, María V; Olate, Juan; Gutiérrez, José L

    2016-08-01

    Proper regulation of gene expression is essential for normal development, cellular growth, and differentiation. Differential expression profiles of mRNA coding for vertebrate Ric-8B during embryo and adult stages have been observed. In addition, Ric-8B is expressed in few cerebral nuclei subareas. These facts point to a dynamic control of RIC8B gene expression. In order to understand the transcriptional regulation of this gene, we searched for cis-elements in the sequence of the human RIC8B promoter region, identifying binding sites for the basic/leucine zipper (bZip) CREB transcription factor family (CRE sites) and C/EBP transcription factor family (C/EBP sites). CRE sites were found clustered near the transcription start site, while the C/EBP sites were found clustered at around 300 bp upstream the CRE sites. Here, we demonstrate the ability of CREB1 and C/EBPβ to bind their respective elements identified in the RIC8B promoter. Comparative protein-DNA interaction analyses revealed only the proximal elements as high affinity sites for CREB1 and only the distal elements as high affinity sites for C/EBPβ. Chromatin immunoprecipitation analyses, carried out using a human neuroblastoma cell line, confirmed the preferential association of CREB to the proximal region of the RIC8B promoter. By performing luciferase reporter assays, we found the CRE sites as the most relevant elements for its transcriptional activity. Taken together, these data show the existence of functional CREB and C/EBP binding sites in the human RIC8B gene promoter, a particular distribution of these sites and demonstrate a relevant role of CREB in stimulating transcriptional activity of this gene. J. Cell. Biochem. 117: 1797-1805, 2016. © 2016 Wiley Periodicals, Inc. PMID:26729411

  4. Genome-wide identification and transcriptional expression analysis of mitogen-activated protein kinase and mitogen-activated protein kinase kinase genes in Capsicum annuum

    PubMed Central

    Liu, Zhiqin; Shi, Lanping; Liu, Yanyan; Tang, Qian; Shen, Lei; Yang, Sheng; Cai, Jinsen; Yu, Huanxin; Wang, Rongzhang; Wen, Jiayu; Lin, Youquan; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Mou, Shaoliang; He, Shuilin

    2015-01-01

    The tripartite mitogen-activated protein kinase (MAPK) signaling cascades have been implicated in plant growth, development, and environment adaptation, but a comprehensive understanding of MAPK signaling at genome-wide level is limited in Capsicum annuum. Herein, genome-wide identification and transcriptional expression analysis of MAPK and MAPK kinase (MAPKK) were performed in pepper. A total of 19 pepper MAPK (CaMAPKs) genes and five MAPKK (CaMAPKKs) genes were identified. Phylogenetic analysis indicated that CaMAPKs and CaMAPKKs could be classified into four groups and each group contains similar exon-intron structures. However, significant divergences were also found. Notably, five members of the pepper MAPKK family were much less conserved than those found in Arabidopsis, and 9 Arabidopsis MAPKs did not have orthologs in pepper. Additionally, 7 MAPKs in Arabidopsis had either two or three orthologs in the pepper genome, and six pepper MAPKs and one MAPKK differing in sequence were found in three pepper varieties. Quantitative real-time RT-PCR analysis showed that the majority of MAPK and MAPKK genes were ubiquitously expressed and transcriptionally modified in pepper leaves after treatments with heat, salt, and Ralstonia solanacearum inoculation as well as exogenously applied salicylic acid, methyl jasmonate, ethephon, and abscisic acid. The MAPKK-MAPK interactome was tested by yeast two-hybrid assay, the results showed that one MAPKK might interact with multiple MAPKs, one MAPK might also interact with more than one MAPKKs, constituting MAPK signaling networks which may collaborate in transmitting upstream signals into appropriate downstream cellular responses and processes. These results will facilitate future functional characterization of MAPK cascades in pepper. PMID:26442088

  5. Characterization of a new potyvirus infecting pepper crops in Ecuador.

    PubMed

    Janzac, Bérenger; Fabre, Marie-Françoise; Palloix, Alain; Moury, Benoît

    2008-01-01

    Sequencing 2,951 nucleotides of the 3' proximal region of the genome of a potyvirus isolate collected from Capsicum pubescens (rocoto) pepper in Ecuador revealed that this was the first representative of a new species tentatively named Ecuadorian rocoto virus (ERV). Phylogeny reconstruction showed that this isolate clustered with potato virus V (PVV), Peru tomato virus and wild potato mosaic virus into a monophyletic group, and was closest to PVV. The isolate was shown to be infectious in tobacco, tomato and, contrary to PVV, in pepper. The pvr2(1), pvr2(2), and Pvr4 genes present in many pepper cultivars conferred resistance toward this isolate and could help control ERV. PMID:18553171

  6. Metabolomics Provides Quality Characterization of Commercial Gochujang (Fermented Pepper Paste).

    PubMed

    Lee, Gyu Min; Suh, Dong Ho; Jung, Eun Sung; Lee, Choong Hwan

    2016-01-01

    To identify the major factors contributing to the quality of commercial gochujang (fermented red pepper paste), metabolites were profiled by mass spectrometry. In principal component analysis, cereal type (wheat, brown rice, and white rice) and species of hot pepper (Capsicum annuum, C. annuum cv. Chung-yang, and C. frutescens) affected clustering patterns. Relative amino acid and citric acid levels were significantly higher in wheat gochujang than in rice gochujang. Sucrose, linoleic acid, oleic acid, and lysophospholipid levels were high in brown-rice gochujang, whereas glucose, maltose, and γ-aminobutyric acid levels were high in white-rice gochujang. The relative capsaicinoid and luteolin derivative contents in gochujang were affected by the hot pepper species used. Gochujang containing C. annuum cv. Chung-yang and C. frutescens showed high capsaicinoid levels. The luteolin derivative level was high in gochujang containing C. frutescens. These metabolite variations in commercial gochujang may be related to different physicochemical phenotypes and antioxidant activity. PMID:27428946

  7. Oleoresin capsicum (pepper) spray and "in-custody deaths".

    PubMed

    Steffee, C H; Lantz, P E; Flannagan, L M; Thompson, R L; Jason, D R

    1995-09-01

    Increasing use of oleoresin capsicum (OC) spray devices (i.e., pepper spray, pepper mace, OC, capsaicin) by law enforcement agencies as a means of sublethal force to control suspects has brought into question whether exposure to this noxious irritant (capsaicin) can cause or contribute to unexpected in-custody deaths. Capsaicin stimulates nociceptors in exposed mucous membranes to produce intense pain, particularly involving the conjunctiva, and generates systemic physiologic and behavioral responses consonant with such extreme discomfort. We describe two cases of in-custody death, both associated temporally with the use of pepper spray, to illustrate salient investigative considerations. As with any other in-custody death, a thorough autopsy and toxicologic analysis, coupled with evaluation of the premortem chain of events, postexposure symptomatology, and the extent of natural disease processes, will help to reveal the role of oleoresin capsicum spray as unrelated, contributory, or causative. PMID:7495257

  8. ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants.

    PubMed

    Xu, Dong-Bei; Gao, Shi-Qing; Ma, You-Zhi; Xu, Zhao-Shi; Zhao, Chang-Ping; Tang, Yi-Miao; Li, Xue-Yin; Li, Lian-Cheng; Chen, Yao-Feng; Chen, Ming

    2014-12-01

    The phytohormone abscisic acid (ABA) plays crucial roles in adaptive responses of plants to abiotic stresses. ABA-responsive element binding proteins (AREBs) are basic leucine zipper transcription factors that regulate the expression of downstream genes containing ABA-responsive elements (ABREs) in promoter regions. A novel ABI-like (ABA-insensitive) transcription factor gene, named TaABL1, containing a conserved basic leucine zipper (bZIP) domain was cloned from wheat. Southern blotting showed that three copies were present in the wheat genome. Phylogenetic analyses indicated that TaABL1 belonged to the AREB subfamily of the bZIP transcription factor family and was most closely related to ZmABI5 in maize and OsAREB2 in rice. Expression of TaABL1 was highly induced in wheat roots, stems, and leaves by ABA, drought, high salt, and low temperature stresses. TaABL1 was localized inside the nuclei of transformed wheat mesophyll protoplast. Overexpression of TaABL1 enhanced responses of transgenic plants to ABA and hastened stomatal closure under stress, thereby improving tolerance to multiple abiotic stresses. Furthermore, overexpression of TaABL1 upregulated or downregulated the expression of some stress-related genes controlling stomatal closure in transgenic plants under ABA and drought stress conditions, suggesting that TaABL1 might be a valuable genetic resource for transgenic molecular breeding. PMID:25344442

  9. Deregulation of Sucrose-Controlled Translation of a bZIP-Type Transcription Factor Results in Sucrose Accumulation in Leaves

    PubMed Central

    Lee, Sung Shin; Yang, Seung Hwan; Zhu, XuJun; Imai, Ryozo; Takahashi, Yoshihiro; Kusano, Tomonobu

    2012-01-01

    Sucrose is known to repress the translation of Arabidopsis thaliana AtbZIP11 transcript which encodes a protein belonging to the group of S (S - stands for small) basic region-leucine zipper (bZIP)-type transcription factor. This repression is called sucrose-induced repression of translation (SIRT). It is mediated through the sucrose-controlled upstream open reading frame (SC-uORF) found in the AtbZIP11 transcript. The SIRT is reported for 4 other genes belonging to the group of S bZIP in Arabidopsis. Tobacco tbz17 is phylogenetically closely related to AtbZIP11 and carries a putative SC-uORF in its 5′-leader region. Here we demonstrate that tbz17 exhibits SIRT mediated by its SC-uORF in a manner similar to genes belonging to the S bZIP group of the Arabidopsis genus. Furthermore, constitutive transgenic expression of tbz17 lacking its 5′-leader region containing the SC-uORF leads to production of tobacco plants with thicker leaves composed of enlarged cells with 3–4 times higher sucrose content compared to wild type plants. Our finding provides a novel strategy to generate plants with high sucrose content. PMID:22457737

  10. Virus diseases of peppers (Capsicum spp.) and their control.

    PubMed

    Kenyon, Lawrence; Kumar, Sanjeet; Tsai, Wen-Shi; Hughes, Jacqueline d'A

    2014-01-01

    The number of virus species infecting pepper (Capsicum spp.) crops and their incidences has increased considerably over the past 30 years, particularly in tropical and subtropical pepper production systems. This is probably due to a combination of factors, including the expansion and intensification of pepper cultivation in these regions, the increased volume and speed of global trade of fresh produce (including peppers) carrying viruses and vectors to new locations, and perhaps climate change expanding the geographic range suitable for the viruses and vectors. With the increased incidences of diverse virus species comes increased incidences of coinfection with two or more virus species in the same plant. There is then greater chance of synergistic interactions between virus species, increasing symptom severity and weakening host resistance, as well as the opportunity for genetic recombination and component exchange and a possible increase in aggressiveness, virulence, and transmissibility. The main virus groups infecting peppers are transmitted by aphids, whiteflies, or thrips, and a feature of many populations of these vector groups is that they can develop resistance to some of the commonly used insecticides relatively quickly. This, coupled with the increasing concern over the impact of over- or misuse of insecticides on the environment, growers, and consumers, means that there should be less reliance on insecticides to control the vectors of viruses infecting pepper crops. To improve the durability of pepper crop protection measures, there should be a shift away from the broadscale use of insecticides and the use of single, major gene resistance to viruses. Instead, integrated and pragmatic virus control measures should be sought that combine (1) cultural practices that reduce sources of virus inoculum and decrease the rate of spread of viruliferous vectors into the pepper crop, (2) synthetic insecticides, which should be used judiciously and only when the

  11. Microarray analyses for identifying genes conferring resistance to pepper leaf curl virus in chilli pepper (Capsicum spp.).

    PubMed

    Rai, Ved Prakash; Rai, Ashutosh; Kumar, Rajesh; Kumar, Sanjay; Kumar, Sanjeet; Singh, Major; Singh, Sheo Pratap

    2016-09-01

    Pepper leaf curl virus (PepLCV) is a serious threat to pepper (Capsicum spp.) production worldwide. Molecular mechanism underlying pepper plants response to PepLCV infection is key to develop PepLCV resistant varieties. In this study, we generated transcriptome profiles of PepLCV resistant genotype (BS-35) and susceptible genotype (IVPBC-535) after artificial viral inoculation using microarray technology and detail experimental procedures and analyses are described. A total of 319 genes differentially expressed between resistant and susceptible genotypes were identified, out of that 234 unique genes were found to be up-regulated > 2-fold in resistant line BS-35 when compared to susceptible, IVPBC-535. The data set we generated has been analyzed to identify genes that are involved in the regulation of resistance against PepLCV. The raw data have been deposited in the Gene Expression Omnibus (GEO) database under accession number GSE41131. PMID:27556012

  12. Pepper Weevil (Coleoptera: Curculionidae) Preferences for Specific Pepper Cultivars, Plant Parts, Fruit Colors, Fruit Sizes, and Timing.

    PubMed

    Seal, Dakshina R; Martin, Cliff G

    2016-01-01

    Peppers (Capsicum spp.) are an important crop in the USA, with about 32,000 ha cultivated in 2007, which resulted in $588 million in farm revenue. The pepper weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae), is the most troublesome insect pest of peppers in the southern United States. It is therefore urgent to find different vulnerabilities of pepper cultivars, fruit and plants parts, fruit colors and sizes, and timing to infestation by A. eugenii. Also relevant is testing whether fruit length and infestation state affect fruit numbers, weights, and proportions of fruit that are infested. Counts of A. eugenii adults and marks from oviposition and feeding suggested that C. chinense Jacquin "Habanero" was least susceptible, and C. annuum L. cultivars "SY" and "SR" were most susceptible. Comparison of plant parts and fruit sizes revealed that A. eugenii preferred the peduncle, calyx, and top of pepper fruits over the middle, bottom, leaves, or remainder of flowers. Anthonomus eugenii does not discriminate between green or yellow fruit color nor vary diurnally in numbers. Based on adult counts, medium to extra-large fruits (≥1.5 cm long) attracted more weevils than small fruits (<1.5 cm). However based on proportions of fruit numbers or fruit weights that were infested, there were no differences between large and small fruits. Choice of pepper cultivar can thus be an important part of an IPM cultural control program designed to combat A. eugenii by reduced susceptibility or by synchronous fruit drop of infested fruits. Our results are potentially helpful in developing scouting programs including paying particular attention to the preferred locations of adults and their sites of feeding and oviposition on the fruit. The results also suggested the potential value of spraying when the fruits are still immature to prevent and control infestation. PMID:26959066

  13. Pepper Weevil (Coleoptera: Curculionidae) Preferences for Specific Pepper Cultivars, Plant Parts, Fruit Colors, Fruit Sizes, and Timing

    PubMed Central

    Seal, Dakshina R.; Martin, Cliff G.

    2016-01-01

    Peppers (Capsicum spp.) are an important crop in the USA, with about 32,000 ha cultivated in 2007, which resulted in $588 million in farm revenue. The pepper weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae), is the most troublesome insect pest of peppers in the southern United States. It is therefore urgent to find different vulnerabilities of pepper cultivars, fruit and plants parts, fruit colors and sizes, and timing to infestation by A. eugenii. Also relevant is testing whether fruit length and infestation state affect fruit numbers, weights, and proportions of fruit that are infested. Counts of A. eugenii adults and marks from oviposition and feeding suggested that C. chinense Jacquin “Habanero” was least susceptible, and C. annuum L. cultivars “SY” and “SR” were most susceptible. Comparison of plant parts and fruit sizes revealed that A. eugenii preferred the peduncle, calyx, and top of pepper fruits over the middle, bottom, leaves, or remainder of flowers. Anthonomus eugenii does not discriminate between green or yellow fruit color nor vary diurnally in numbers. Based on adult counts, medium to extra-large fruits (≥1.5 cm long) attracted more weevils than small fruits (<1.5 cm). However based on proportions of fruit numbers or fruit weights that were infested, there were no differences between large and small fruits. Choice of pepper cultivar can thus be an important part of an IPM cultural control program designed to combat A. eugenii by reduced susceptibility or by synchronous fruit drop of infested fruits. Our results are potentially helpful in developing scouting programs including paying particular attention to the preferred locations of adults and their sites of feeding and oviposition on the fruit. The results also suggested the potential value of spraying when the fruits are still immature to prevent and control infestation. PMID:26959066

  14. Ab initio prediction of transcription factor binding sites.

    PubMed

    Liu, L Angela; Bader, Joel S

    2007-01-01

    Transcription factors are DNA-binding proteins that control gene transcription by binding specific short DNA sequences. Experiments that identify transcription factor binding sites are often laborious and expensive, and the binding sites of many transcription factors remain unknown. We present a computational scheme to predict the binding sites directly from transcription factor sequence using all-atom molecular simulations. This method is a computational counterpart to recent high-throughput experimental technologies that identify transcription factor binding sites (ChIP-chip and protein-dsDNA binding microarrays). The only requirement of our method is an accurate 3D structural model of a transcription factor-DNA complex. We apply free energy calculations by thermodynamic integration to compute the change in binding energy of the complex due to a single base pair mutation. By calculating the binding free energy differences for all possible single mutations, we construct a position weight matrix for the predicted binding sites that can be directly compared with experimental data. As water-bridged hydrogen bonds between the transcription factor and DNA often contribute to the binding specificity, we include explicit solvent in our simulations. We present successful predictions for the yeast MAT-alpha2 homeodomain and GCN4 bZIP proteins. Water-bridged hydrogen bonds are found to be more prevalent than direct protein-DNA hydrogen bonds at the binding interfaces, indicating why empirical potentials with implicit water may be less successful in predicting binding. Our methodology can be applied to a variety of DNA-binding proteins. PMID:17990512

  15. Temporal kinetics of the transcriptional response to carbon depletion and sucrose readdition in Arabidopsis seedlings.

    PubMed

    Cookson, Sarah Jane; Yadav, Umesh Prasad; Klie, Sebastian; Morcuende, Rosa; Usadel, Björn; Lunn, John Edward; Stitt, Mark

    2016-04-01

    To investigate whether the transcriptional response to carbon (C) depletion and sucrose resupply depends on the duration and severity of the C depletion, Arabidopsis seedlings were grown in liquid culture and harvested 3, 6, 12, 24, 48 and 72 h after removing sucrose from the medium and 30 min after resupplying sucrose at each time. Expression profiling revealed early transcriptional inhibition of cell wall synthesis and remodelling of signalling, followed by induction of C recycling and photosynthesis and general inhibition of growth. The temporal sequence differed from the published response to progressive exhaustion of C during a night and extended night in vegetatively growing plants. The response to sucrose readdition was conserved across the C-depletion time course. Intriguingly, the vast majority of rapidly responding transcripts decreased rather than increased. The majority of transcripts that respond rapidly to sucrose and many transcripts that respond during C depletion also decrease after treating seedlings with the transcriptional inhibitor cordycepin A. Comparison with published responses to overexpression of otsA, AKIN10 and bZIP11 revealed that many genes that respond to C depletion, and especially sucrose resupply, respond to one or more of these C-signalling components. Thus, multiple factors contribute to C responsiveness, including many signalling components, transcriptional regulation and transcript turnover. PMID:26386165

  16. Hexokinase 1 is required for glucose-induced repression of bZIP63, At5g22920, and BT2 in Arabidopsis

    PubMed Central

    Kunz, Sabine; Gardeström, Per; Pesquet, Edouard; Kleczkowski, Leszek A.

    2015-01-01

    Simple sugars, like glucose (Glc) and sucrose (Suc), act as signals to modulate the expression of hundreds of genes in plants. Frequently, however, it remains unclear whether this regulation is induced by the sugars themselves or by their derivatives generated in the course of carbohydrate (CH) metabolism. In the present study, we tested the relevance of different CH metabolism and allocation pathways affecting expression patterns of five selected sugar-responsive genes (bZIP63, At5g22920, BT2, MGD2, and TPS9) in Arabidopsis thaliana. In general, the expression followed diurnal changes in the overall sugar availability. However, under steady growth conditions, this response was hardly impaired in the mutants for CH metabolizing/ transporting proteins (adg1, sex1, sus1-4, sus5/6, and tpt2), including also hexokinase1 (HXK1) loss- and gain-of-function plants—gin2.1 and oe3.2, respectively. In addition, transgenic plants carrying pbZIP63::GUS showed no changes in reporter-gene-expression when grown on sugar under steady-state conditions. In contrast, short-term treatments of agar-grown seedlings with 1% Glc or Suc induced pbZIP63::GUS repression, which became even more apparent in seedlings grown in liquid media. Subsequent analyses of liquid-grown gin2.1 and oe3.2 seedlings revealed that Glc -dependent regulation of the five selected genes was not affected in gin2.1, whereas it was enhanced in oe3.2 plants for bZIP63, At5g22920, and BT2. The sugar treatments had no effect on ATP/ADP ratio, suggesting that changes in gene expression were not linked to cellular energy status. Overall, the data suggest that HXK1 does not act as Glc sensor controlling bZIP63, At5g22920, and BT2 expression, but it is nevertheless required for the production of a downstream metabolic signal regulating their expression. PMID:26236323

  17. Genetic and geographic diversity of Moroccan pepper virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Moroccan pepper virus (MPV) is one of two tombusviruses responsible for the disease, lettuce dieback, which is responsible for severe losses in western U.S. lettuce production. MPV also affects vegetable and ornamental production, and is being found with increased frequency throughout the world. In...

  18. Photooxidation Tolerance Characters of a New Purple Pepper

    PubMed Central

    Ou, Li-jun; Zhang, Zhu-qing; Dai, Xiong-ze; Zou, Xue-xiao

    2013-01-01

    Huai Zi (HZ) is a new purple mutant of green pepper (PI 631133) that is obtained from the United States Department of Agriculture. The net photosynthetic rate (PN), chlorophyll fluorescence parameters, antioxidant substances, antioxidant enzymes, photosystem 1 (PS1) and PS2 activities were studied through methyl viologen (MV) treatment. The results showed that the PN, actual photochemical efficiency of PS2 (ΦPS2), photochemical quenching coefficient (qP), PS1 and PS2 activities in HZ were lower than those in green pepper. HZ had a stronger ability to eliminate reactive oxygen species(O2•−) and accumulated less malondialdehyde (MDA) (a membrane lipid peroxidation product) than did green pepper, and had a higher content of antioxidants and antioxidant enzyme activity. This suggests that the lower light energy absorption and higher thermal dissipation and antioxidant activity of HZ contributed to a more stable PS2 photosynthetic capacity, which resulted in photooxidation tolerance. Hence, our study strongly suggests that pepper hybrids can achieve a modest ratio of chlorophyll and anthocyanin content, high PN and resistance to photooxidation, improving yield and resistance to adverse environments. PMID:23704924

  19. The Drought-Stress Transcriptome of Chile Pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chile pepper is an economically important crop in semi-arid subtropical regions of Mexico and the Southwestern United States. Because these areas are often water limited and high thermal stress environments, significant decreases in yield are routine. The identification of genetic factors controllin...

  20. 7 CFR 319.56-31 - Peppers from Spain.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... October 1, and continuing through April 30, MAFF must set and maintain Mediterranean fruit fly (Ceratitis... transit other fruit fly-supporting areas unless shipping containers are sealed by MAFF with an official... from Spain. Peppers (fruit) (Capsicum spp.) may be imported into the United States from Spain...

  1. 7 CFR 319.56-31 - Peppers from Spain.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... October 1, and continuing through April 30, MAFF must set and maintain Mediterranean fruit fly (Ceratitis... transit other fruit fly-supporting areas unless shipping containers are sealed by MAFF with an official... from Spain. Peppers (fruit) (Capsicum spp.) may be imported into the United States from Spain...

  2. 7 CFR 319.56-31 - Peppers from Spain.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... October 1, and continuing through April 30, MAFF must set and maintain Mediterranean fruit fly (Ceratitis... transit other fruit fly-supporting areas unless shipping containers are sealed by MAFF with an official... from Spain. Peppers (fruit) (Capsicum spp.) may be imported into the United States from Spain...

  3. High-throughput sequencing of black pepper root transcriptome

    PubMed Central

    2012-01-01

    Background Black pepper (Piper nigrum L.) is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host’s root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper. Results The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant’s root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology. Conclusions This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms. PMID:22984782

  4. I'm Not a Chili Pepper: Are You?

    ERIC Educational Resources Information Center

    Franciosi, Rob

    2006-01-01

    RateMyProfessors.com helps students rank their professors using a five-point rating scale in three areas, namely, helpfulness, clarity, and easiness. A college professor finds himself addicted to the site, which is rather low on substance and rates professors with a smiley face to indicate "good quality" and a red hot chili pepper to indicate the…

  5. Analysis of the January 2006 Pepper-Pot Experiments

    SciTech Connect

    Westenskow, G; Chambers, F; Bieniosek, F; Henestroza, E

    2006-03-22

    Between January 9-12, 2006 a series of experiments were performed on the DARHT-II injector to measure the beam's emittance. Part of these experiments were pepper-pot measurements. This note describes the analysis of the data, and our conclusions from the experiments.

  6. Post-directed weed control in bell peppers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic pepper (Capsicum annuum L.) producers need appropriate herbicides that can effectively provide post-emergent weed control. Research was conducted in southeast Oklahoma (Atoka County, Lane, OK) to determine the impact of a potential organic herbicide on weed control efficacy, crop injury, an...

  7. Localization, growth, and inactivation of Salmonella Saintpaul on jalapeno peppers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of Salmonella-contaminated jalapeño peppers has been implicated in one of the largest foodborne illness outbreaks in the summer of 2008. The objective of this study was to investigate representative groups of native microflora and the distribution, growth, and inactivation of experiment...

  8. Characterisation of Phytophthora capsici isolates from black pepper in Vietnam.

    PubMed

    Truong, Nguyen V; Liew, Edward C Y; Burgess, Lester W

    2010-01-01

    Phytophthora foot rot of black pepper caused by Phytophthora capsici is a major disease of black pepper (Piper nigrum) throughout Vietnam. To understand the population structure of P. capsici, a large collection of P. capsici isolates from black pepper was studied on the basis of mating type, random amplified microsatellites (RAMS) and repetitive extragenic palindromic (REP) fingerprinting. Two mating types A1 and A2 were detected in four provinces in two climatic regions, with A1:A2 ratios ranging from 1:3 to 1:5. In several instances A1 and A2 mating types were found to co-exist in the same farm or black pepper pole, suggesting the potential for sexual reproduction of P. capsici in the field in Vietnam although its contribution to disease epidemics is uncertain. RAMS and REP DNA fingerprinting analysis of 118 isolates of P. capsici from black pepper showed that the population was genetically more diverse where two mating types were found, although the overall genetic diversity was low with most of the isolates belonging to one clonal group. The implication of these findings is discussed. The low diversity among isolates suggests that the P. capsici population may have originated from a single source. There was no genetic differentiation of isolates from different climatic regions. In addition to the large clonal group, several isolates with unique RAMS/REP phenotypes were also detected. Most of these unique phenotypes belonged to the minority A1 mating type. This may have significant implications for a gradual increase in overall genetic diversity. PMID:20960972

  9. Managing the pepper maggot (Diptera: Tephritidae) using perimeter trap cropping.

    PubMed

    Boucher, T Jude; Ashley, Richard; Durgy, Robert; Sciabarrasi, Michael; Calderwood, William

    2003-04-01

    A perimeter trap crop barrier of hot cherry peppers, border-row insecticide applications, and a combination of the two management strategies were evaluated to see if they could protect a centrally located main crop of bell peppers from oviposition and infestation by the pepper maggot, Zonosemata electa (Say). In large plots, the main cash crop of bell peppers was protected from the majority of the oviposition and infestation by all three barriers. The combination sprayed/trap crop barrier provided the best protection against both oviposition and infestation and resulted in over 98% pest-free fruit at harvest. Maggots infested only 1.7% of the main crop fruit when protected by a sprayed or unsprayed trap crop barrier, compared with 15.4% in control plots. The perimeter sprayed/trap crop strategy was employed in three commercial fields in 2000 and 2001. The combination barrier resulted in superior insect control and reduced insecticide use at all commercial locations, compared with the same farms' past history or to farms using conventional and integrated pest management (IPM) methods. Economic analysis showed that the technique is more cost effective and profitable than relying on whole-field insecticide applications to control the pepper maggot. Farmer users were surveyed and found the perimeter trap crop technique simple to use, with many hard-to-measure benefits associated with worker protection issues, marketing, personnel/management relations, pest control and the environment. Use of the perimeter trap crop technique as part of an IPM or organic program can help improve crop quality and overall farm profitability, while reducing pesticide use and the possibility of secondary pest outbreaks. PMID:14994810

  10. Toxic carriers in pepper sprays may cause corneal erosion.

    PubMed

    Holopainen, Juha M; Moilanen, Jukka A O; Hack, Tapani; Tervo, Timo M T

    2003-02-01

    We describe four patients who developed corneal erosion after an exposure to a pepper spray containing toxic carriers. Two of these patients were exposed to a pepper gas containing 5% oleoresin capsicum (OC) as an irritant and 92% trichlorethylene or unknown amount of dichloromethane as a carrier. One patient was exposed to a mock (containing 92% trichlorethylene as a carrier) training pepper gas without OC. The fourth patient was exposed to an unidentified Russian pepper gas spray. Two of the patients were examined by in vivo confocal microscopy to demonstrate the depth and quality of the stromal damage. To test the toxicity of the commercial tear spray, it was analyzed and test sprayed on a soft contact lens and into a plastic cup. Visual acuity was measured and the eyes were examined with a slit-lamp up to 5 months. Physical damage to a soft contact lens was visually acquired. All patients showed a long-lasting, deep corneal and conjuctival erosion, which resolved partly with medical therapy during the following weeks/months. Confocal microscopy revealed corneal nerve damage, and keratocyte activation reaching two-thirds of stroma for one patient. The spray caused serious damage to both the soft contact lens and the plastic cup. The safety of the commercially available pepper sprays should be assessed before marketing, and a list of acceptable ingredients created. The sprays should also have instructions on the use of the compound as well as on the first aid measures after the exposure. Solvents known to be toxic should not be used. PMID:12620368

  11. Effects of red pepper powder on microbial communities and metabolites during kimchi fermentation.

    PubMed

    Jeong, Sang Hyeon; Lee, Hyo Jung; Jung, Ji Young; Lee, Se Hee; Seo, Hye-Young; Park, Wan-Soo; Jeon, Che Ok

    2013-01-01

    To investigate the effects of red pepper powder on kimchi fermentation, Baechu (Chinese cabbage) and Mu (radish) kimchi, with and without red pepper powder, were prepared and their characteristics, including pH, colony-forming units (CFU), microbial communities, and metabolites, were periodically monitored for 40days. Measurements of pH and CFU showed that the lag phases of kimchi fermentation were clearly extended by the addition of red pepper powder. Microbial community analysis using a barcoded pyrosequencing analysis showed that the bacterial diversities in kimchi with red pepper powder decreased more slowly than kimchi without red pepper powder as kimchi fermentation progressed. The kimchi microbial communities were represented mainly by the genera Leuconostoc and Lactobacillus in all kimchi, and the abundance of Weissella was negligible in kimchi without red pepper powder. However, interestingly, kimchi with red pepper powder contained much higher proportions of Weissella than kimchi without red pepper powder, while the proportions of Leuconostoc and Lactobacillus were evidently lower in kimchi with red pepper powder compared to kimchi without red pepper powder. Metabolite analysis using a (1)H NMR technique also showed that the fermentation of kimchi with red pepper powder progressed a little more slowly than that of kimchi without red pepper powder. Principle component analysis using microbial communities and metabolites supported the finding that the addition of red pepper powder into kimchi resulted in the slowing of the kimchi fermentation process, especially during the early fermentation period and influenced the microbial succession and metabolite production during the kimchi fermentation processes. PMID:23290232

  12. Identification and characterization a novel transcription factor activator protein-1 in the sea cucumber Apostichopus japonicus.

    PubMed

    Yang, Limeng; Li, Chenghua; Chang, Yaqing; Gao, Yinxue; Wang, Yi; Wei, Jing; Song, Jian; Sun, Ping

    2015-08-01

    The transcription factor activator protein-1 (AP-1) is an important gene expression regulator with typical Jun and region-leucine zipper (bZIP) domains and can respond to a plethora of physiological and pathological stimulus. In this study, we identified a novel AP-1 gene in Apostichopus japonicus by transcriptome sequencing and RACE approaches (designated as AjAP-1). The full-length of AjAP-1 was of 2944 bp including a 5' untranslated region (UTR) of 201 bp, a 3' UTR of 1753 bp and a putative open reading frame of 990 bp encoding a polypeptide of 329 amino acid residues. Two representative domains of Jun and bZIP as well as two nuclear localization signals (NLSs) were also detected in deduced amino acid of AjAP-1. Spatial distribution expression indicated that AjAP-1 was ubiquitously expressed in all examined tissues with predominant expression in the body wall, moderate in the tube feet, respiratory tree and colemocytes and slightly weak in the intestine and longitudinal muscle. Time-course expression analysis in intestine and coelomocytes revealed that AjAP-1 both reached its peak expression at 4 h after Vibrio splendidus challenge with a 2.6 and 8.2-fold increase compared to their control groups, respectively. Taken together, all these results suggested that AjAP-1 was a novel immune factor and might be involved in the processes of anti-bacteria response in sea cucumber. PMID:26093208

  13. Transcriptional cross talk between orphan nuclear receptor ERRγ and transmembrane transcription factor ATF6α coordinates endoplasmic reticulum stress response

    PubMed Central

    Misra, Jagannath; Kim, Don-Kyu; Choi, Woogyun; Koo, Seung-Hoi; Lee, Chul-Ho; Back, Sung-Hoon; Kaufman, Randal J.; Choi, Hueng-Sik

    2013-01-01

    Orphan nuclear receptor ERRγ is a member of nuclear receptor superfamily that regulates several important cellular processes including hepatic glucose and alcohol metabolism. However, mechanistic understanding of transcriptional regulation of the ERRγ gene remains to be elucidated. Here, we report that activating transcription factor 6α (ATF6α), an endoplasmic reticulum (ER)-membrane–bound basic leucine zipper (bZip) transcription factor, directly regulates ERRγ gene expression in response to ER stress. ATF6α binds to ATF6α responsive element in the ERRγ promoter. The transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) is required for this transactivation. Chromatin immunoprecipitation (ChIP) assay confirmed the binding of both ATF6α and PGC1α on the ERRγ promoter. ChIP assay demonstrated histone H3 and H4 acetylation occurs at the ATF6α and PGC1α binding site. Of interest, ERRγ along with PGC1α induce ATF6α gene transcription upon ER stress. ERRγ binds to an ERRγ responsive element in the ATF6α promoter. ChIP assay confirmed that both ERRγ and PGC1α bind to a site in the ATF6α promoter that exhibits histone H3 and H4 acetylation. Overall, for the first time our data show a novel pathway of cross talk between nuclear receptors and ER-membrane–bound transcription factors and suggest a positive feed-forward loop regulates ERRγ and ATF6α gene transcription. PMID:23716639

  14. Transcriptional cross talk between orphan nuclear receptor ERRγ and transmembrane transcription factor ATF6α coordinates endoplasmic reticulum stress response.

    PubMed

    Misra, Jagannath; Kim, Don-Kyu; Choi, Woogyun; Koo, Seung-Hoi; Lee, Chul-Ho; Back, Sung-Hoon; Kaufman, Randal J; Choi, Hueng-Sik

    2013-08-01

    Orphan nuclear receptor ERRγ is a member of nuclear receptor superfamily that regulates several important cellular processes including hepatic glucose and alcohol metabolism. However, mechanistic understanding of transcriptional regulation of the ERRγ gene remains to be elucidated. Here, we report that activating transcription factor 6α (ATF6α), an endoplasmic reticulum (ER)-membrane-bound basic leucine zipper (bZip) transcription factor, directly regulates ERRγ gene expression in response to ER stress. ATF6α binds to ATF6α responsive element in the ERRγ promoter. The transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) is required for this transactivation. Chromatin immunoprecipitation (ChIP) assay confirmed the binding of both ATF6α and PGC1α on the ERRγ promoter. ChIP assay demonstrated histone H3 and H4 acetylation occurs at the ATF6α and PGC1α binding site. Of interest, ERRγ along with PGC1α induce ATF6α gene transcription upon ER stress. ERRγ binds to an ERRγ responsive element in the ATF6α promoter. ChIP assay confirmed that both ERRγ and PGC1α bind to a site in the ATF6α promoter that exhibits histone H3 and H4 acetylation. Overall, for the first time our data show a novel pathway of cross talk between nuclear receptors and ER-membrane-bound transcription factors and suggest a positive feed-forward loop regulates ERRγ and ATF6α gene transcription. PMID:23716639

  15. Antioxidant activity of fresh and processed Jalapeño and Serrano peppers.

    PubMed

    Alvarez-Parrilla, Emilio; de la Rosa, Laura A; Amarowicz, Ryszard; Shahidi, Fereidoon

    2011-01-12

    In this research, total phenols, flavonoids, capsaicinoids, ascorbic acid, and antioxidant activity (ORAC, hydroxyl radical, DPPH, and TEAC assays) of fresh and processed (pickled and chipotle canned) Jalapeño and Serrano peppers were determined. All fresh and processed peppers contained capsaicin, dihydrocapsaicin, and nordihydrocapsaicin, even though the latter could be quantified only in fresh peppers. Processed peppers contained lower amounts of phytochemicals and had lower antioxidant activity, compared to fresh peppers. Good correlations between total phenols and ascorbic acid with antioxidant activity were observed. Elimination of chlorophylls by silicic acid chromatography reduced the DPPH scavenging activity of the extracts, compared to crude extracts, confirming the antioxidant activity of chlorophylls present in Jalapeño and Serrano peppers. PMID:21126003

  16. Antioxidant, Antinociceptive, and Anti-Inflammatory Effects of Carotenoids Extracted from Dried Pepper (Capsicum annuum L.)

    PubMed Central

    Hernández-Ortega, Marcela; Ortiz-Moreno, Alicia; Hernández-Navarro, María Dolores; Chamorro-Cevallos, Germán; Dorantes-Alvarez, Lidia; Necoechea-Mondragón, Hugo

    2012-01-01

    Carotenoids extracted from dried peppers were evaluated for their antioxidant, analgesic, and anti-inflammatory activities. Peppers had a substantial carotenoid content: guajillo 3406 ± 4 μg/g, pasilla 2933 ± 1 μg/g, and ancho 1437 ± 6 μg/g of sample in dry weight basis. A complex mixture of carotenoids was discovered in each pepper extract. The TLC analysis revealed the presence of chlorophylls in the pigment extract from pasilla and ancho peppers. Guajillo pepper carotenoid extracts exhibited good antioxidant activity and had the best scavenging capacity for the DPPH+ cation (24.2%). They also exhibited significant peripheral analgesic activity at 5, 20, and 80 mg/kg and induced central analgesia at 80 mg/kg. The results suggest that the carotenoids in dried guajillo peppers have significant analgesic and anti-inflammatory benefits and could be useful for pain and inflammation relief. PMID:23091348

  17. Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance

    PubMed Central

    An, Soo Hyun; Sohn, Kee Hoon; Choi, Hyong Woo; Hwang, In Sun; Lee, Sung Chul

    2008-01-01

    Pectin is one of the main components of the plant cell wall that functions as the primary barrier against pathogens. Among the extracellular pectinolytic enzymes, pectin methylesterase (PME) demethylesterifies pectin, which is secreted into the cell wall in a highly methylesterified form. Here, we isolated and functionally characterized the pepper (Capsicum annuum L.) gene CaPMEI1, which encodes a pectin methylesterase inhibitor protein (PMEI), in pepper leaves infected by Xanthomonascampestris pv. vesicatoria (Xcv). CaPMEI1 transcripts are localized in the xylem of vascular bundles in leaf tissues, and pathogens and abiotic stresses can induce differential expression of this gene. Purified recombinant CaPMEI1 protein not only inhibits PME, but also exhibits antifungal activity against some plant pathogenic fungi. Virus-induced gene silencing of CaPMEI1 in pepper confers enhanced susceptibility to Xcv, accompanied by suppressed expression of some defense-related genes. Transgenic ArabidopsisCaPMEI1-overexpression lines exhibit enhanced resistance to Pseudomonas syringae pv. tomato, mannitol and methyl viologen, but not to the biotrophic pathogen Hyaloperonospora parasitica. Together, these results suggest that CaPMEI1, an antifungal protein, may be involved in basal disease resistance, as well as in drought and oxidative stress tolerance in plants. Electronic supplementary material The online version of this article (doi:10.1007/s00425-008-0719-z) contains supplementary material, which is available to authorized users. PMID:18327607

  18. Contributions of transcription and mRNA decay to gene expression dynamics of fission yeast in response to oxidative stress

    PubMed Central

    Marguerat, Samuel; Lawler, Katherine; Brazma, Alvis; Bähler, Jürg

    2014-01-01

    The cooperation of transcriptional and post-transcriptional levels of control to shape gene regulation is only partially understood. Here we show that a combination of two simple and non-invasive genomic techniques, coupled with kinetic mathematical modeling, affords insight into the intricate dynamics of RNA regulation in response to oxidative stress in the fission yeast Schizosaccharomyces pombe. This study reveals a dominant role of transcriptional regulation in response to stress, but also points to the first minutes after stress induction as a critical time when the coordinated control of mRNA turnover can support the control of transcription for rapid gene regulation. In addition, we uncover specialized gene expression strategies associated with distinct functional gene groups, such as simultaneous transcriptional repression and mRNA destabilization for genes encoding ribosomal proteins, delayed mRNA destabilization with varying contribution of transcription for ribosome biogenesis genes, dominant roles of mRNA stabilization for genes functioning in protein degradation, and adjustment of both transcription and mRNA turnover during the adaptation to stress. We also show that genes regulated independently of the bZIP transcription factor Atf1p are predominantly controlled by mRNA turnover, and identify putative cis-regulatory sequences that are associated with different gene expression strategies during the stress response. This study highlights the intricate and multi-faceted interplay between transcription and RNA turnover during the dynamic regulatory response to stress. PMID:25007214

  19. VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves.

    PubMed

    Zhang, Zhen; Li, Da-Wei; Jin, Jing-Hao; Yin, Yan-Xu; Zhang, Huai-Xia; Chai, Wei-Guo; Gong, Zhen-Hui

    2015-01-01

    The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3'5'H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H, and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens. PMID:26217354

  20. VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves

    PubMed Central

    Zhang, Zhen; Li, Da-Wei; Jin, Jing-Hao; Yin, Yan-Xu; Zhang, Huai-Xia; Chai, Wei-Guo; Gong, Zhen-Hui

    2015-01-01

    The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3′5′H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H, and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens. PMID:26217354

  1. Mixed noble gas effect on cut green peppers

    NASA Astrophysics Data System (ADS)

    Raymond, L. V.; Zhang, M.; Karangwa, E.; Chesereka, M. J.

    2013-01-01

    Increasing attempts at using gas which leads to hydrate formation as a preservative tool in fresh-cut fruits and vegetables have been reported. In this study, changes in some physical and biochemical properties of fresh-cut green peppers under compressed noble gas treatments were examined. Mixed argonkrypton and argon treatments were performed before cold storage at 5°C for 15 days. Mass loss and cell membrane permeability were found to be the lowest in mixed argon-krypton samples. Besides, a lower CO2 concentration and vitamin C loss were detected in gastreated samples compared to untreated samples (control). While the total phenol degradation was moderately reduced, the effect of the treatment on polyphenoloxidase activity was better at the beginning of the storage period. The minimum changes in quality observed in cut peppers resulted from both mixed and gas treatment alone.

  2. Antibacterial mechanism and activities of black pepper chloroform extract.

    PubMed

    Zou, Lan; Hu, Yue-Ying; Chen, Wen-Xue

    2015-12-01

    Black pepper extracts reportedly inhibit food spoilage and food pathogenic bacteria. This study explored the antimicrobial activity of black pepper chloroform extract (BPCE) against Escherichia coli and Staphylococcus aureus. The antibacterial mechanism of BPCE was elucidated by analyzing the cell morphology, respiratory metabolism, pyruvic acid content, and ATP levels of the target bacteria. Scanning electron micrographs showed that the bacterial cells were destroyed and that plasmolysis was induced. BPCE inhibited the tricarboxylic acid pathway of the bacteria. The extract significantly increased pyruvic acid concentration in bacterial solutions and reduced ATP level in bacterial cells. BPCE destroyed the permeability of the cell membrane, which consequently caused metabolic dysfunction, inhibited energy synthesis, and triggered cell death. PMID:26604394

  3. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants.

    PubMed

    Gao, Shi-Qing; Chen, Ming; Xu, Zhao-Shi; Zhao, Chang-Ping; Li, Liancheng; Xu, Hui-jun; Tang, Yi-miao; Zhao, Xin; Ma, You-Zhi

    2011-04-01

    Abscisic acid (ABA)-responsive element binding proteins (AREBs) are basic domain/leucine zipper transcription factors that bind to the ABA-responsive element (ABRE) in the promoter regions of ABA-inducible genes in plants. A novel bZIP transcription factor gene, GmbZIP1, encoding 438 amino acids with a conserved bZIP domain composed of 60 amino acids was isolated from salt-tolerant soybean cv. Tiefeng 8. Southern blotting showed that only one copy was present in the soybean genome. Phylogenetic analyses showed that GmbZIP1 belonged to the AREB subfamily of the bZIP family and was most closely related to AtABF2 and OsTRAB1. The expression of GmbZIP1 was highly induced by ABA, drought, high salt and low temperature; and GmbZIP1 was expressed in soybean roots, stems and leaves under different stress conditions. GmbZIP1 was localized inside the nuclei of transformed onion epidermal cells. Overexpression of GmbZIP1 enhanced the responses of transgenic plants to ABA and triggered stomatal closure under stresses, potentially leading to improved tolerances to several abiotic stresses such as high salt, low temperature and drought in transgenic plants. Furthermore, overexpression of GmbZIP1 affected the expression of some ABA or stress-related genes involved in regulating stomatal closure in Arabidopsis under ABA, drought and high salt stress conditions. A few AREB elements were detected in the promoter region of those ABA or stress-related genes, suggesting that GmbZIP1 regulates the ABA response or stomatal closure mediated by those downstream genes in transgenic Arabidopsis. Moreover, GmbZIP1 was used to improve the drought tolerance trait of Chinese wheat varieties BS93. Functional analysis showed that overexpression of GmbZIP1 enhanced the drought tolerance of transgenic wheat, and transcripts of GmbZIP1 were detected in transgenic wheat using RT-PCR. In addition, GmbZIP1 overexpression did not result in growth retardation in all transgenic plants, suggesting that Gmb

  4. Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress.

    PubMed

    Guo, Meng; Liu, Jin-Hong; Lu, Jin-Ping; Zhai, Yu-Fei; Wang, Hu; Gong, Zhen-Hui; Wang, Shu-Bin; Lu, Ming-Hui

    2015-01-01

    The Hsp20 genes are present in all plant species and play important roles in alleviating heat stress and enhancing plant thermotolerance by preventing the irreversible aggregation of denaturing proteins. However, very little is known about the CaHsp20 gene family in pepper (Capsicum annuum L.), an important vegetable crop with character of temperate but thermosensitive. In this study, a total of 35 putative pepper Hsp20 genes (CaHsp20s) were identified and renamed on the basis of their molecular weight, and then their gene structure, genome location, gene duplication, phylogenetic relationship, and interaction network were also analyzed. The expression patterns of CaHsp20 genes in four different tissues (root, stem, leaf, and flower) from the thermotolerant line R9 under heat stress condition were measured using semi-quantitative RT-PCR. The transcripts of most CaHsp20 genes maintained a low level in all of the four tissues under normal temperature condition, but were highly induced by heat stress, while the expression of CaHsp16.6b, 16.7, and 23.8 were only detected in specific tissues and were not so sensitive to heat stress like other CaHsp20 genes. In addition, compared to those in thermotolerant line R9, the expression peak of most CaHsp20 genes in thermosensitive line B6 under heat stress was hysteretic, and several CaHsp20 genes (CaHsp16.4, 18.2a, 18.7, 21.2, 22.0, 25.8, and 25.9) showed higher expression levels in both line B6 and R9. These data suggest that the CaHsp20 genes may be involved in heat stress and defense responses in pepper, which provides the basis for further functional analyses of CaHsp20s in the formation of pepper acquired thermotoleance. PMID:26483820

  5. Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress

    PubMed Central

    Guo, Meng; Liu, Jin-Hong; Lu, Jin-Ping; Zhai, Yu-Fei; Wang, Hu; Gong, Zhen-Hui; Wang, Shu-Bin; Lu, Ming-Hui

    2015-01-01

    The Hsp20 genes are present in all plant species and play important roles in alleviating heat stress and enhancing plant thermotolerance by preventing the irreversible aggregation of denaturing proteins. However, very little is known about the CaHsp20 gene family in pepper (Capsicum annuum L.), an important vegetable crop with character of temperate but thermosensitive. In this study, a total of 35 putative pepper Hsp20 genes (CaHsp20s) were identified and renamed on the basis of their molecular weight, and then their gene structure, genome location, gene duplication, phylogenetic relationship, and interaction network were also analyzed. The expression patterns of CaHsp20 genes in four different tissues (root, stem, leaf, and flower) from the thermotolerant line R9 under heat stress condition were measured using semi-quantitative RT-PCR. The transcripts of most CaHsp20 genes maintained a low level in all of the four tissues under normal temperature condition, but were highly induced by heat stress, while the expression of CaHsp16.6b, 16.7, and 23.8 were only detected in specific tissues and were not so sensitive to heat stress like other CaHsp20 genes. In addition, compared to those in thermotolerant line R9, the expression peak of most CaHsp20 genes in thermosensitive line B6 under heat stress was hysteretic, and several CaHsp20 genes (CaHsp16.4, 18.2a, 18.7, 21.2, 22.0, 25.8, and 25.9) showed higher expression levels in both line B6 and R9. These data suggest that the CaHsp20 genes may be involved in heat stress and defense responses in pepper, which provides the basis for further functional analyses of CaHsp20s in the formation of pepper acquired thermotoleance. PMID:26483820

  6. Pepper weevil attraction to volatiles from host and nonhost plants.

    PubMed

    Addesso, Karla M; McAuslane, Heather J

    2009-02-01

    The location of wild and cultivated host plants by pepper weevil (Anthonomus eugenii Cano) may be aided by visual cues, the male-produced aggregation pheromone, herbivore-induced, or constitutive host plant volatiles. The attractiveness of constitutive plant volatiles to pioneer weevils is important in understanding, and perhaps controlling, dispersal of this insect between wild and cultivated hosts. Ten-day-old male and 2- and 10-day-old female weevils were tested in short-range Y-tube assays. Ten-day-old male and female weevils were attracted to the volatiles released by whole plants of three known oviposition hosts, 'Jalapeno' pepper, American black nightshade, and eggplant, as well as tomato, a congener, which supports feeding but not oviposition. Two-day-old females were attracted to all plants tested, including lima bean, an unrelated, nonhost plant. Fruit volatiles from all three hosts and flower volatiles from nightshade and eggplant were also attractive. In choice tests, weevils showed different preferences for the oviposition hosts, depending on age and sex. Upwind response of 10-day-old male and female weevils to host plant volatiles was also tested in long-range wind tunnel assays. Weevils responded to pepper, nightshade, and eggplant volatiles by moving upwind. There was no difference in the observed upwind response of the weevils to the three host plants under no-choice conditions. Reproductively mature pepper weevils can detect, orient to, and discriminate between the volatile plumes of host plants in the absence of visual cues, conspecific feeding damage, or the presence of their aggregation pheromone. PMID:19791617

  7. Diverse expression pattern of wheat transcription factors against abiotic stresses in wheat species.

    PubMed

    Baloglu, Mehmet Cengiz; Inal, Behcet; Kavas, Musa; Unver, Turgay

    2014-10-15

    Abiotic stress including drought and salinity affects quality and yield of wheat varieties used for the production of both bread and pasta flour. bZIP, MBF1, WRKY, MYB and NAC transcription factor (TF) genes are the largest transcriptional regulators which are involved in growth, development, physiological processes, and biotic/abiotic stress responses in plants. Identification of expression profiling of these TFs plays a crucial role to understand the response of different wheat species against severe environmental changes. In the current study, expression analysis of TaWLIP19 (wheat version of bZIP), TaMBF1, TaWRKY10, TaMYB33 and TaNAC69 genes was examined under drought and salinity stress conditions in Triticum aestivum cv. (Yuregir-89), Triticum turgidum cv. (Kiziltan-91), and Triticum monococcum (Siyez). After drought stress application, all five selected genes in Kiziltan-91 were induced. However, TaMBF1 and TaWLIP19 were the only downregulated genes in Yuregir-89 and Siyez, respectively. Except TaMYB33 in Siyez, expression level of the remaining genes increased under salt stress condition in all Triticum species. For determination of drought response to selected TF members, publicly available RNA-seq data were also analyzed in this study. TaMBF1, TaWLIP19 and TaNAC69 transcripts were detected through in silico analysis. This comprehensive gene expression analysis provides valuable information for understanding the roles of these TFs under abiotic stresses in modern wheat cultivars and ancient einkorn wheat. In addition, selected TFs might be used for determination of drought or salinity-tolerant and susceptible cultivars for molecular breeding studies. PMID:25130909

  8. Influence of agricultural practices on fruit quality of bell pepper.

    PubMed

    Abu-Zahra, T R

    2011-09-15

    An experiment was carried out under plastic house conditions to compare the effect of four fermented organic matter sources (cattle, poultry and sheep manure in addition to 1:1:1 mixture of the three organic matter sources) in which 4 kg organic matter m(-2) were used, with that of the conventional agriculture (chemical fertilizers) treatments on Marvello red pepper fruit quality, by using a Randomized Complete Block Design (RCBD) with four replicates. Pepper fruits characteristics cultivated in soil supplemented with manure were generally better than those from plants grown in soil only. Addition of animal manure increased bell pepper fruit content of soluble solids, ascorbic acid, total phenols, crude fibre and intensity of red color as compare with conventional agriculture that produced fruits with higher titratable acidity, water content, lycopene and bigger fruit size. In most cases of animal manure treatments, best results were obtained by the sheep manure treatment that produced the highest TSS, while the worst results were obtained by the poultry manure treatment that produced the smallest fruit and lowest fruit lycopene content. PMID:22518928

  9. EPR investigations of gamma-irradiated ground black pepper

    NASA Astrophysics Data System (ADS)

    Polovka, Martin; Brezová, Vlasta; Staško, Andrej; Mazúr, Milan; Suhaj, Milan; Šimko, Peter

    2006-02-01

    The γ-radiation treatment of ground black pepper samples resulted in the production of three paramagnetic species ( GI- GIII) which arise from a different origin and have different thermal behavior and stability. The axially symmetric spectra can be characterized by the spin Hamiltonian parameters: GI ( g⊥=2.0060, g∥=2.0032; A⊥=0.85 mT, A∥=0.70 mT) and GII ( g⊥=2.0060, g∥=2.0050; A⊥=0.50 mT, A∥=0.40 mT) assigned to carbohydrate radical structures. The parameters of EPR signal GIII ( g⊥=2.0029, g∥=2.0014; A⊥=3.00 mT, A∥=1.80 mT) possessed features characteristic of cellulose radical species. The activation energies, evaluated by Arrhenius analysis, are in order Ea( GI)< Ea( GIII)< Ea( GII). The EPR measurements performed 20 weeks after radiation process confirmed that a temperature increase from 298 to 353 K, caused a significant decrease of integral EPR signal intensity for γ-irradiated samples (˜40%), compared to the reference (non-irradiated) ground black pepper, where a decrease of ˜13% was found. The influence of γ-radiation treatment on the radical-scavenging activities of aqueous and ethanol extracts of black pepper were investigated by both an EPR spin trapping technique and DPPH assay. No changes were detected in either the water or ethanol extracts for a γ-irradiation dose of 10 kGy.

  10. 76 FR 65162 - Notice of Request for Extension of Approval of an Information Collection; Importation of Peppers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... Collection; Importation of Peppers From the Republic of Korea AGENCY: Animal and Plant Health Inspection... with regulations for the importation of peppers from the Republic of Korea. DATES: We will consider all...: For information on regulations for the importation of peppers from the Republic of Korea, contact...