Science.gov

Sample records for peptide alignment approach

  1. A graph kernel approach for alignment-free domain–peptide interaction prediction with an application to human SH3 domains

    PubMed Central

    Kundu, Kousik; Costa, Fabrizio; Backofen, Rolf

    2013-01-01

    Motivation: State-of-the-art experimental data for determining binding specificities of peptide recognition modules (PRMs) is obtained by high-throughput approaches like peptide arrays. Most prediction tools applicable to this kind of data are based on an initial multiple alignment of the peptide ligands. Building an initial alignment can be error-prone, especially in the case of the proline-rich peptides bound by the SH3 domains. Results: Here, we present a machine-learning approach based on an efficient graph-kernel technique to predict the specificity of a large set of 70 human SH3 domains, which are an important class of PRMs. The graph-kernel strategy allows us to (i) integrate several types of physico-chemical information for each amino acid, (ii) consider high-order correlations between these features and (iii) eliminate the need for an initial peptide alignment. We build specialized models for each human SH3 domain and achieve competitive predictive performance of 0.73 area under precision-recall curve, compared with 0.27 area under precision-recall curve for state-of-the-art methods based on position weight matrices. We show that better models can be obtained when we use information on the noninteracting peptides (negative examples), which is currently not used by the state-of-the art approaches based on position weight matrices. To this end, we analyze two strategies to identify subsets of high confidence negative data. The techniques introduced here are more general and hence can also be used for any other protein domains, which interact with short peptides (i.e. other PRMs). Availability: The program with the predictive models can be found at http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/SH3PepInt.tar.gz. We also provide a genome-wide prediction for all 70 human SH3 domains, which can be found under http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/Genome-Wide-Predictions.tar.gz. Contact: backofen@informatik.uni-freiburg.de Supplementary

  2. Peptide nanotube aligning side chains onto one side.

    PubMed

    Tabata, Yuki; Mitani, Shota; Kimura, Shunsaku

    2016-06-01

    A novel pseudo cyclic penta-β-peptide composed of a β-naphthylalanine, two β-alanines, and a sequence of ethylenediamine-succinic acid (CP5ES) is synthesized and investigated on peptide nanotube (PNT) formation. When the PNT is formed with the maximum number of intermolecular hydrogen bonds between the cyclic peptides, the sequence enables the alignment of the side chains, naphthyl groups, on one side of the PNT. Microscopic and spectroscopic observations of CP5ES crystals reveal that CP5ES forms rod- or needle-shaped molecular assemblies showing exciton coupling of the Cotton effect and predominant monomer emission, which are different from a reference cyclic tri-β-peptide composed of a β-naphthylalanine and two β-alanines. Insertion of a sequence of ethylenediamine-succinic acid into β-amino acids in the cyclic skeleton is therefore suggested to be effective to make the side chains aligning on one side of the PNT. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27282135

  3. Detecting small plant peptides using SPADA (Small Peptide Alignment Discovery Application)

    PubMed Central

    2013-01-01

    Background Small peptides encoded as one- or two-exon genes in plants have recently been shown to affect multiple aspects of plant development, reproduction and defense responses. However, popular similarity search tools and gene prediction techniques generally fail to identify most members belonging to this class of genes. This is largely due to the high sequence divergence among family members and the limited availability of experimentally verified small peptides to use as training sets for homology search and ab initio prediction. Consequently, there is an urgent need for both experimental and computational studies in order to further advance the accurate prediction of small peptides. Results We present here a homology-based gene prediction program to accurately predict small peptides at the genome level. Given a high-quality profile alignment, SPADA identifies and annotates nearly all family members in tested genomes with better performance than all general-purpose gene prediction programs surveyed. We find numerous mis-annotations in the current Arabidopsis thaliana and Medicago truncatula genome databases using SPADA, most of which have RNA-Seq expression support. We also show that SPADA works well on other classes of small secreted peptides in plants (e.g., self-incompatibility protein homologues) as well as non-secreted peptides outside the plant kingdom (e.g., the alpha-amanitin toxin gene family in the mushroom, Amanita bisporigera). Conclusions SPADA is a free software tool that accurately identifies and predicts the gene structure for short peptides with one or two exons. SPADA is able to incorporate information from profile alignments into the model prediction process and makes use of it to score different candidate models. SPADA achieves high sensitivity and specificity in predicting small plant peptides such as the cysteine-rich peptide families. A systematic application of SPADA to other classes of small peptides by research communities will greatly

  4. Biomimetic alignment of zinc oxide nanoparticles along a peptide nanofiber.

    PubMed

    Tomizaki, Kin-ya; Kubo, Seiya; Ahn, Soo-Ang; Satake, Masahiko; Imai, Takahito

    2012-09-18

    Zinc oxide (ZnO) has potential applications in solar cells, chemical sensors, and piezoelectronic and optoelectronic devices due to its attractive physical and chemical properties. Recently, a solution-phase method has been used to synthesize ZnO crystals with diverse (from simple to hierarchical) nanostructures that is simple, of low cost, and scalable. This method requires template molecules to control the morphology of the ZnO crystals. In this paper, we describe the design and synthesis of two short peptides (RU-003,Ac-AIEKAXEIA-NH(2); RU-027, EAHVMHKVAPRPGGGAIEKAXEIA-NH(2); X = l-2-naphthylalanine) and the characterization of their self-assembled nanostructures. We also report their potential for ZnO mineralization and the alignment of ZnO nanoparticles along peptide nanostructures at room temperature. Interestingly, nonapeptide RU-003 predominantly formed a straight fibrous structure and induced the nucleation of ZnO at its surface, leading to an alignment of ZnO nanoparticles along a peptide nanofiber. This novel method holds promise for the room-temperature fabrication of ZnO catalysts with increased specific surface area, ZnO-gated transistors, and ZnO-based nanomaterials for optical applications. PMID:22954381

  5. A bioengineered peripheral nerve construct using aligned peptide amphiphile nanofibers

    PubMed Central

    Yalom, Anisa; Berns, Eric J.; Stephanopoulos, Nicholas; McClendon, Mark T.; Segovia, Luis A.; Spigelman, Igor; Stupp, Samuel I.; Jarrahy, Reza

    2014-01-01

    Peripheral nerve injuries can result in lifelong disability. Primary coaptation is the treatment of choice when the gap between transected nerve ends is short. Long nerve gaps seen in more complex injuries often require autologous nerve grafts or nerve conduits implemented into the repair. Nerve grafts, however, cause morbidity and functional loss at donor sites, which are limited in number. Nerve conduits, in turn, lack an internal scaffold to support and guide axonal regeneration, resulting in decreased efficacy over longer nerve gap lengths. By comparison, peptide amphiphiles (PAs) are molecules that can self-assemble into nanofibers, which can be aligned to mimic the native architecture of peripheral nerve. As such, they represent a potential substrate for use in a bioengineered nerve graft substitute. To examine this, we cultured Schwann cells with bioactive PAs (RGDS-PA, IKVAV-PA) to determine their ability to attach to and proliferate within the biomaterial. Next, we devised a PA construct for use in a peripheral nerve critical sized defect model. Rat sciatic nerve defects were created and reconstructed with autologous nerve, PLGA conduits filled with various forms of aligned PAs, or left unrepaired. Motor and sensory recovery were determined and compared among groups. Our results demonstrate that Schwann cells are able to adhere to and proliferate in aligned PA gels, with greater efficacy in bioactive PAs compared to the backbone-PA alone. In vivo testing revealed recovery of motor and sensory function in animals treated with conduit/PA constructs comparable to animals treated with autologous nerve grafts. Functional recovery in conduit/PA and autologous graft groups was significantly faster than in animals treated with empty PLGA conduits. Histological examinations also demonstrated increased axonal and Schwann cell regeneration within the reconstructed nerve gap in animals treated with conduit/PA constructs. These results indicate that PA nanofibers may

  6. Partial face recognition: alignment-free approach.

    PubMed

    Liao, Shengcai; Jain, Anil K; Li, Stan Z

    2013-05-01

    Numerous methods have been developed for holistic face recognition with impressive performance. However, few studies have tackled how to recognize an arbitrary patch of a face image. Partial faces frequently appear in unconstrained scenarios, with images captured by surveillance cameras or handheld devices (e.g., mobile phones) in particular. In this paper, we propose a general partial face recognition approach that does not require face alignment by eye coordinates or any other fiducial points. We develop an alignment-free face representation method based on Multi-Keypoint Descriptors (MKD), where the descriptor size of a face is determined by the actual content of the image. In this way, any probe face image, holistic or partial, can be sparsely represented by a large dictionary of gallery descriptors. A new keypoint descriptor called Gabor Ternary Pattern (GTP) is also developed for robust and discriminative face recognition. Experimental results are reported on four public domain face databases (FRGCv2.0, AR, LFW, and PubFig) under both the open-set identification and verification scenarios. Comparisons with two leading commercial face recognition SDKs (PittPatt and FaceVACS) and two baseline algorithms (PCA+LDA and LBP) show that the proposed method, overall, is superior in recognizing both holistic and partial faces without requiring alignment. PMID:23520259

  7. Triangular Alignment (TAME). A Tensor-based Approach for Higher-order Network Alignment

    SciTech Connect

    Mohammadi, Shahin; Gleich, David F.; Kolda, Tamara G.; Grama, Ananth

    2015-11-01

    Network alignment is an important tool with extensive applications in comparative interactomics. Traditional approaches aim to simultaneously maximize the number of conserved edges and the underlying similarity of aligned entities. We propose a novel formulation of the network alignment problem that extends topological similarity to higher-order structures and provide a new objective function that maximizes the number of aligned substructures. This objective function corresponds to an integer programming problem, which is NP-hard. Consequently, we approximate this objective function as a surrogate function whose maximization results in a tensor eigenvalue problem. Based on this formulation, we present an algorithm called Triangular AlignMEnt (TAME), which attempts to maximize the number of aligned triangles across networks. We focus on alignment of triangles because of their enrichment in complex networks; however, our formulation and resulting algorithms can be applied to general motifs. Using a case study on the NAPABench dataset, we show that TAME is capable of producing alignments with up to 99% accuracy in terms of aligned nodes. We further evaluate our method by aligning yeast and human interactomes. Our results indicate that TAME outperforms the state-of-art alignment methods both in terms of biological and topological quality of the alignments.

  8. ARYANA: Aligning Reads by Yet Another Approach

    PubMed Central

    2014-01-01

    Motivation Although there are many different algorithms and software tools for aligning sequencing reads, fast gapped sequence search is far from solved. Strong interest in fast alignment is best reflected in the $106 prize for the Innocentive competition on aligning a collection of reads to a given database of reference genomes. In addition, de novo assembly of next-generation sequencing long reads requires fast overlap-layout-concensus algorithms which depend on fast and accurate alignment. Contribution We introduce ARYANA, a fast gapped read aligner, developed on the base of BWA indexing infrastructure with a completely new alignment engine that makes it significantly faster than three other aligners: Bowtie2, BWA and SeqAlto, with comparable generality and accuracy. Instead of the time-consuming backtracking procedures for handling mismatches, ARYANA comes with the seed-and-extend algorithmic framework and a significantly improved efficiency by integrating novel algorithmic techniques including dynamic seed selection, bidirectional seed extension, reset-free hash tables, and gap-filling dynamic programming. As the read length increases ARYANA's superiority in terms of speed and alignment rate becomes more evident. This is in perfect harmony with the read length trend as the sequencing technologies evolve. The algorithmic platform of ARYANA makes it easy to develop mission-specific aligners for other applications using ARYANA engine. Availability ARYANA with complete source code can be obtained from http://github.com/aryana-aligner PMID:25252881

  9. Alignment of a model amyloid Peptide fragment in bulk and at a solid surface.

    PubMed

    Hamley, Ian W; Castelletto, Valeria; Moulton, Claire M; Rodríguez-Pérez, José; Squires, Adam M; Eralp, Tugce; Held, Georg; Hicks, Matthew R; Rodger, Alison

    2010-06-24

    The alignment of model amyloid peptide YYKLVFFC is investigated in bulk and at a solid surface using a range of spectroscopic methods employing polarized radiation. The peptide is based on a core sequence of the amyloid beta (Abeta) peptide, KLVFF. The attached tyrosine and cysteine units are exploited to yield information on alignment and possible formation of disulfide or dityrosine links. Polarized Raman spectroscopy on aligned stalks provides information on tyrosine orientation, which complements data from linear dichroism (LD) on aqueous solutions subjected to shear in a Couette cell. LD provides a detailed picture of alignment of peptide strands and aromatic residues and was also used to probe the kinetics of self-assembly. This suggests initial association of phenylalanine residues, followed by subsequent registry of strands and orientation of tyrosine residues. X-ray diffraction (XRD) data from aligned stalks is used to extract orientational order parameters from the 0.48 nm reflection in the cross-beta pattern, from which an orientational distribution function is obtained. X-ray diffraction on solutions subject to capillary flow confirmed orientation in situ at the level of the cross-beta pattern. The information on fibril and tyrosine orientation from polarized Raman spectroscopy is compared with results from NEXAFS experiments on samples prepared as films on silicon. This indicates fibrils are aligned parallel to the surface, with phenyl ring normals perpendicular to the surface. Possible disulfide bridging leading to peptide dimer formation was excluded by Raman spectroscopy, whereas dityrosine formation was probed by fluorescence experiments and was found not to occur except under alkaline conditions. Congo red binding was found not to influence the cross-beta XRD pattern. PMID:20509614

  10. Alignment and Use of Self-Assembled Peptide Nanotubes as Dry-Etching Mask

    NASA Astrophysics Data System (ADS)

    Andersen, Karsten B.; Castillo-León, Jaime; Bakmand, Tanya; Svendsen, Winnie E.

    2012-06-01

    Self-assembled diphenylalanine peptide nanotubes provide a means of achieving nanostructured materials in a very simple and fast way. Recent discoveries have shown that this unique material, in addition to remaining stable under dry conditions, rapidly dissolves in water making it a promising candidate for controlled nanofabrication without organic solvents. The present work demonstrates how this unique structure can be aligned, manipulated and used as both an etching mask in a dry etching procedure and as a lift-off material. As a further demonstration of the potential of this technique, the peptide nanotubes were utilized to fabricate silicon nanowire devices and gold nanoslits in a rapid manner.

  11. Peptide Based Radiopharmaceuticals: Specific Construct Approach

    SciTech Connect

    Som, P; Rhodes, B A; Sharma, S S

    1997-10-21

    The objective of this project was to develop receptor based peptides for diagnostic imaging and therapy. A series of peptides related to cell adhesion molecules (CAM) and immune regulation were designed for radiolabeling with 99mTc and evaluated in animal models as potential diagnostic imaging agents for various disease conditions such as thrombus (clot), acute kidney failure, and inflection/inflammation imaging. The peptides for this project were designed by the industrial partner, Palatin Technologies, (formerly Rhomed, Inc.) using various peptide design approaches including a newly developed rational computer assisted drug design (CADD) approach termed MIDAS (Metal ion Induced Distinctive Array of Structures). In this approach, the biological function domain and the 99mTc complexing domain are fused together so that structurally these domains are indistinguishable. This approach allows construction of conformationally rigid metallo-peptide molecules (similar to cyclic peptides) that are metabolically stable in-vivo. All the newly designed peptides were screened in various in vitro receptor binding and functional assays to identify a lead compound. The lead compounds were formulated in a one-step 99mTc labeling kit form which were studied by BNL for detailed in-vivo imaging using various animals models of human disease. Two main peptides usingMIDAS approach evolved and were investigated: RGD peptide for acute renal failure and an immunomodulatory peptide derived from tuftsin (RMT-1) for infection/inflammation imaging. Various RGD based metallopeptides were designed, synthesized and assayed for their efficacy in inhibiting ADP-induced human platelet aggregation. Most of these peptides displayed biological activity in the 1-100 µM range. Based on previous work by others, RGD-I and RGD-II were evaluated in animal models of acute renal failure. These earlier studies showed that after acute ischemic injury the renal cortex displays

  12. Classroom EFL Writing: The Alignment-Oriented Approach

    ERIC Educational Resources Information Center

    Haiyan, Miao; Rilong, Liu

    2016-01-01

    This paper outlines the alignment-oriented approach in classroom EFL writing. Based on a review of the characteristics of the written language and comparison between the product-focused approach and the process-focused approach, the paper proposes a practical classroom procedure as to how to teach EFL writing. A follow-up empirical study is…

  13. Connectivity independent protein-structure alignment: a hierarchical approach

    PubMed Central

    Kolbeck, Bjoern; May, Patrick; Schmidt-Goenner, Tobias; Steinke, Thomas; Knapp, Ernst-Walter

    2006-01-01

    Background Protein-structure alignment is a fundamental tool to study protein function, evolution and model building. In the last decade several methods for structure alignment were introduced, but most of them ignore that structurally similar proteins can share the same spatial arrangement of secondary structure elements (SSE) but differ in the underlying polypeptide chain connectivity (non-sequential SSE connectivity). Results We perform protein-structure alignment using a two-level hierarchical approach implemented in the program GANGSTA. On the first level, pair contacts and relative orientations between SSEs (i.e. α-helices and β-strands) are maximized with a genetic algorithm (GA). On the second level residue pair contacts from the best SSE alignments are optimized. We have tested the method on visually optimized structure alignments of protein pairs (pairwise mode) and for database scans. For a given protein structure, our method is able to detect significant structural similarity of functionally important folds with non-sequential SSE connectivity. The performance for structure alignments with strictly sequential SSE connectivity is comparable to that of other structure alignment methods. Conclusion As demonstrated for several applications, GANGSTA finds meaningful protein-structure alignments independent of the SSE connectivity. GANGSTA is able to detect structural similarity of protein folds that are assigned to different superfamilies but nevertheless possess similar structures and perform related functions, even if these proteins differ in SSE connectivity. PMID:17118190

  14. Vertically aligned peptide nanostructures using plasma-enhanced chemical vapor deposition.

    PubMed

    Vasudev, Milana C; Koerner, Hilmar; Singh, Kristi M; Partlow, Benjamin P; Kaplan, David L; Gazit, Ehud; Bunning, Timothy J; Naik, Rajesh R

    2014-02-10

    In this study, we utilize plasma-enhanced chemical vapor deposition (PECVD) for the deposition of nanostructures composed of diphenylalanine. PECVD is a solvent-free approach and allows sublimation of the peptide to form dense, uniform arrays of peptide nanostructures on a variety of substrates. The PECVD deposited d-diphenylalanine nanostructures have a range of chemical and physical properties depending on the specific discharge parameters used during the deposition process. PMID:24400716

  15. Aligning Collaborative and Culturally Responsive Evaluation Approaches

    ERIC Educational Resources Information Center

    Askew, Karyl; Beverly, Monifa Green; Jay, Michelle L.

    2012-01-01

    The authors, three African-American women trained as collaborative evaluators, offer a comparative analysis of collaborative evaluation (O'Sullivan, 2004) and culturally responsive evaluation approaches (Frierson, Hood, & Hughes, 2002; Kirkhart & Hopson, 2010). Collaborative evaluation techniques immerse evaluators in the cultural milieu of the…

  16. A two-stage approach to automatic face alignment

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Ai, Haizhou; Huang, Gaofeng

    2003-09-01

    Face alignment is very important in face recognition, modeling and synthesis. Many approaches have been developed for this purpose, such as ASM, AAM, DAM and TC-ASM. After a brief review of all those methods, it is pointed out that these approaches all require a manual initialization to the positions of the landmarks and are very sensitive to it, and despite of all those devoted works the outline of a human face remains a difficult task to be localized precisely. In this paper, a two-stage method to achieve frontal face alignment fully automatically is introduced. The first stage is landmarks' initialization called coarse face alignment. In this stage, after a face is detected by an Adaboost cascade face detector, we use Simple Direct Appearance Model (SDAM) to locate a few key points of human face from the texture according which all the initial landmarks are setup as the coarse alignment. The second stage is fine face alignment that uses a variant of AAM method in which shape variation is predicted from texture reconstruction error together with an embedded ASM refinement for the outline landmarks of the face to achieve the fine alignment. Experiments on a face database of 500 people show that this method is very effective for practical applications.

  17. Protein and Peptide Drug Delivery: Oral Approaches

    PubMed Central

    Shaji, Jessy; Patole, V.

    2008-01-01

    Till recent, injections remained the most common means for administering therapeutic proteins and peptides because of their poor oral bioavailability. However, oral route would be preferred to any other route because of its high levels of patient acceptance and long term compliance, which increases the therapeutic value of the drug. Designing and formulating a polypeptide drug delivery through the gastro intestinal tract has been a persistent challenge because of their unfavorable physicochemical properties, which includes enzymatic degradation, poor membrane permeability and large molecular size. The main challenge is to improve the oral bioavailability from less than 1% to at least 30-50%. Consequently, efforts have intensified over the past few decades, where every oral dosage form used for the conventional small molecule drugs has been used to explore oral protein and peptide delivery. Various strategies currently under investigation include chemical modification, formulation vehicles and use of enzyme inhibitors, absorption enhancers and mucoadhesive polymers. This review summarizes different pharmaceutical approaches which overcome various physiological barriers that help to improve oral bioavailability that ultimately achieve formulation goals for oral delivery. PMID:20046732

  18. Strategic approaches to optimizing peptide ADME properties.

    PubMed

    Di, Li

    2015-01-01

    Development of peptide drugs is challenging but also quite rewarding. Five blockbuster peptide drugs are currently on the market, and six new peptides received first marketing approval as new molecular entities in 2012. Although peptides only represent 2% of the drug market, the market is growing twice as quickly and might soon occupy a larger niche. Natural peptides typically have poor absorption, distribution, metabolism, and excretion (ADME) properties with rapid clearance, short half-life, low permeability, and sometimes low solubility. Strategies have been developed to improve peptide drugability through enhancing permeability, reducing proteolysis and renal clearance, and prolonging half-life. In vivo, in vitro, and in silico tools are available to evaluate ADME properties of peptides, and structural modification strategies are in place to improve peptide developability. PMID:25366889

  19. Phylo: A Citizen Science Approach for Improving Multiple Sequence Alignment

    PubMed Central

    Kam, Alfred; Kwak, Daniel; Leung, Clarence; Wu, Chu; Zarour, Eleyine; Sarmenta, Luis; Blanchette, Mathieu; Waldispühl, Jérôme

    2012-01-01

    Background Comparative genomics, or the study of the relationships of genome structure and function across different species, offers a powerful tool for studying evolution, annotating genomes, and understanding the causes of various genetic disorders. However, aligning multiple sequences of DNA, an essential intermediate step for most types of analyses, is a difficult computational task. In parallel, citizen science, an approach that takes advantage of the fact that the human brain is exquisitely tuned to solving specific types of problems, is becoming increasingly popular. There, instances of hard computational problems are dispatched to a crowd of non-expert human game players and solutions are sent back to a central server. Methodology/Principal Findings We introduce Phylo, a human-based computing framework applying “crowd sourcing” techniques to solve the Multiple Sequence Alignment (MSA) problem. The key idea of Phylo is to convert the MSA problem into a casual game that can be played by ordinary web users with a minimal prior knowledge of the biological context. We applied this strategy to improve the alignment of the promoters of disease-related genes from up to 44 vertebrate species. Since the launch in November 2010, we received more than 350,000 solutions submitted from more than 12,000 registered users. Our results show that solutions submitted contributed to improving the accuracy of up to 70% of the alignment blocks considered. Conclusions/Significance We demonstrate that, combined with classical algorithms, crowd computing techniques can be successfully used to help improving the accuracy of MSA. More importantly, we show that an NP-hard computational problem can be embedded in casual game that can be easily played by people without significant scientific training. This suggests that citizen science approaches can be used to exploit the billions of “human-brain peta-flops” of computation that are spent every day playing games. Phylo is

  20. A novel approach to multiple sequence alignment using hadoop data grids.

    PubMed

    Sudha Sadasivam, G; Baktavatchalam, G

    2010-01-01

    Multiple alignment of protein sequences helps to determine evolutionary linkage and to predict molecular structures. The factors to be considered while aligning multiple sequences are speed and accuracy of alignment. Although dynamic programming algorithms produce accurate alignments, they are computation intensive. In this paper we propose a time efficient approach to sequence alignment that also produces quality alignment. The dynamic nature of the algorithm coupled with data and computational parallelism of hadoop data grids improves the accuracy and speed of sequence alignment. The principle of block splitting in hadoop coupled with its scalability facilitates alignment of very large sequences. PMID:21224205

  1. A statistical approach to determining responses to individual peptides from pooled-peptide ELISpot data.

    PubMed

    Ström, Peter; Støer, Nathalie; Borthwick, Nicola; Dong, Tao; Hanke, Tomáš; Reilly, Marie

    2016-08-01

    To investigate in detail the effect of infection or vaccination on the human immune system, ELISpot assays are used to simultaneously test the immune response to a large number of peptides of interest. Scientists commonly use "peptide pools", where, instead of an individual peptide, a test well contains a group of peptides. Since the response from a well may be due to any or many of the peptides in the pool, pooled assays usually need to be followed by confirmatory assays of a number of individual peptides. We present a statistical method that enables estimation of individual peptide responses from pool responses using the Expectation Maximization (EM) algorithm for "incomplete data". We demonstrate the accuracy and precision of these estimates in simulation studies of ELISpot plates with 90 pools of 6 or 7 peptides arranged in three dimensions and three Mock wells for the estimation of background. In analysis of real pooled data from 6 subjects in a HIV-1 vaccine trial, where 199 peptides were arranged in 80 pools if size 9 or 10, our estimates were in very good agreement with the results from individual-peptide confirmatory assays. Compared to the classical approach, we could identify almost all the same peptides with high or moderate response, with less than half the number of confirmatory tests. Our method facilitates efficient use of the information available in pooled ELISpot data to avoid or reduce the need for confirmatory testing. We provide an easy-to-use free online application for implementing the method, where on uploading two spreadsheets with the pool design and pool responses, the user obtains the estimates of the individual peptide responses. PMID:27196788

  2. Recent developments in protein and peptide parenteral delivery approaches

    PubMed Central

    Patel, Ashaben; Cholkar, Kishore; Mitra, Ashim K

    2014-01-01

    Discovery of insulin in the early 1900s initiated the research and development to improve the means of therapeutic protein delivery in patients. In the past decade, great emphasis has been placed on bringing protein and peptide therapeutics to market. Despite tremendous efforts, parenteral delivery still remains the major mode of administration for protein and peptide therapeutics. Other routes such as oral, nasal, pulmonary and buccal are considered more opportunistic rather than routine application. Improving biological half-life, stability and therapeutic efficacy is central to protein and peptide delivery. Several approaches have been tried in the past to improve protein and peptide in vitro/in vivo stability and performance. Approaches may be broadly categorized as chemical modification and colloidal delivery systems. In this review we have discussed various chemical approaches such as PEGylation, hyperglycosylation, mannosylation, and colloidal carriers including microparticles, nanoparticles, liposomes, carbon nanotubes and micelles for improving protein and peptide delivery. Recent developments on in situ thermosensitive gel-based protein and peptide delivery have also been described. This review summarizes recent developments on some currently existing approaches to improve stability, bioavailability and bioactivity of peptide and protein therapeutics following parenteral administration. PMID:24592957

  3. Two-dimensional replica exchange approach for peptide-peptide interactions

    NASA Astrophysics Data System (ADS)

    Gee, Jason; Shell, M. Scott

    2011-02-01

    The replica exchange molecular dynamics (REMD) method has emerged as a standard approach for simulating proteins and peptides with rugged underlying free energy landscapes. We describe an extension to the original methodology—here termed umbrella-sampling REMD (UREMD)—that offers specific advantages in simulating peptide-peptide interactions. This method is based on the use of two dimensions in the replica cascade, one in temperature as in conventional REMD, and one in an umbrella sampling coordinate between the center of mass of the two peptides that aids explicit exploration of the complete association-dissociation reaction coordinate. To mitigate the increased number of replicas required, we pursue an approach in which the temperature and umbrella dimensions are linked at only fully associated and dissociated states. Coupled with the reweighting equations, the UREMD method aids accurate calculations of normalized free energy profiles and structural or energetic measures as a function of interpeptide separation distance. We test the approach on two families of peptides: a series of designed tetrapeptides that serve as minimal models for amyloid fibril formation, and a fragment of a classic leucine zipper peptide and its mutant. The results for these systems are compared to those from conventional REMD simulations, and demonstrate good convergence properties, low statistical errors, and, for the leucine zippers, an ability to sample near-native structures.

  4. Insights into the molecular architecture of a peptide nanotube using FTIR and solid-state NMR spectroscopic measurements on an aligned sample.

    PubMed

    Middleton, David A; Madine, Jillian; Castelletto, Valeria; Hamley, Ian W

    2013-09-27

    Queuing up: Molecular orientation within macroscopically aligned nanotubes of the peptide AAAAAAK can be studied by solid-state NMR and IR spectroscopy. Line shape analysis of the NMR spectra indicates that the peptide N-H bonds are tilted 65-70° relative to the nanotube long axis. Re-evaluation of earlier X-ray fiber diffraction data suggests that the peptide molecules are hydrogen-bonded in a helical arrangement along the nanotube axis. PMID:23955926

  5. Projection approach to complexity reduction in tomographic alignment of extremely large telescopes.

    PubMed

    Piatrou, Piotr; Chanan, Gary

    2012-02-20

    We describe a complexity reduction approach intended to solve the tomographic alignment problem for the Thirty Meter Telescope by means of its alignment and phasing system (APS) with little loss of information. This approach is computationally efficient enough to perform detailed Monte-Carlo simulations of the APS on a standard PC. We present sample simulations to model error propagation through the system and to build a preliminary APS alignment error budget. PMID:22358159

  6. An information theoretic approach to macromolecular modeling: I. Sequence alignments.

    PubMed

    Aynechi, Tiba; Kuntz, Irwin D

    2005-11-01

    We are interested in applying the principles of information theory to structural biology calculations. In this article, we explore the information content of an important computational procedure: sequence alignment. Using a reference state developed from exhaustive sequences, we measure alignment statistics and evaluate gap penalties based on first-principle considerations and gap distributions. We show that there are different gap penalties for different alphabet sizes and that the gap penalties can depend on the length of the sequences being aligned. In a companion article, we examine the information content of molecular force fields. PMID:16254389

  7. Aligning graphs and finding substructures by a cavity approach

    NASA Astrophysics Data System (ADS)

    Bradde, S.; Braunstein, A.; Mahmoudi, H.; Tria, F.; Weigt, M.; Zecchina, R.

    2010-02-01

    We introduce a new distributed algorithm for aligning graphs or finding substructures within a given graph. It is based on the cavity method and is used to study the maximum-clique and the graph-alignment problems in random graphs. The algorithm allows to analyze large graphs and may find applications in fields such as computational biology. As a proof of concept we use our algorithm to align the similarity graphs of two interacting protein families involved in bacterial signal transduction, and to predict actually interacting protein partners between these families.

  8. Selection of peptide ligands for piezoelectric peptide based gas sensors arrays using a virtual screening approach.

    PubMed

    Pizzoni, Daniel; Mascini, Marcello; Lanzone, Valentina; Del Carlo, Michele; Di Natale, Corrado; Compagnone, Dario

    2014-02-15

    Virtual and experimental affinity binding properties of 5 different peptides (cysteinylglycine, glutathione, Cys-Ile-His-Asn-Pro, Cys-Ile-Gln-Pro-Val, Cys-Arg-Gln-Val-Phe) vs. 14 volatile compounds belonging to relevant chemical classes were evaluated. The peptides were selected in order to have a large variability in physicochemical characteristics (including length). In virtual screening a rapid and cost-effective computational methodology for predicting binding scores of small peptide receptors vs. volatile compounds is proposed. Flexibility was considered for both ligands and peptides and each peptide conformer was treated as a possible receptor, generating a dedicated box and then running a docking process vs. all possible conformers of the 14 volatile compounds. The 5 peptides were covalently bound to gold nanoparticles and deposited onto 20 MHz quartz crystal microbalances to realize gas sensors. Gas sensing confirmed that each of the peptide conferred to the gold nanoparticles a particular selectivity pattern able to discriminate the 14 volatile compounds. The largest response was obtained for the pentapeptides Cys-Ile-His-Asn-Pro and Cys-Ile-Gln-Pro-Val while low response was achieved for the dipeptide. The comparative study, carried using a two-tailed T test, demonstrated that virtual screening was able to predict reliably the sensing ability of the pentapeptides. The dipeptide receptor exhibited 29% of virtual-experimental matching vs. 71% of glutathione and up to 93% for the pentapeptides. This virtual screening approach was proved to be a promising tool in predicting the behaviour of sensors array for gas detection. PMID:24060973

  9. The generating function approach for Peptide identification in spectral networks.

    PubMed

    Guthals, Adrian; Boucher, Christina; Bandeira, Nuno

    2015-05-01

    Tandem mass (MS/MS) spectrometry has become the method of choice for protein identification and has launched a quest for the identification of every translated protein and peptide. However, computational developments have lagged behind the pace of modern data acquisition protocols and have become a major bottleneck in proteomics analysis of complex samples. As it stands today, attempts to identify MS/MS spectra against large databases (e.g., the human microbiome or 6-frame translation of the human genome) face a search space that is 10-100 times larger than the human proteome, where it becomes increasingly challenging to separate between true and false peptide matches. As a result, the sensitivity of current state-of-the-art database search methods drops by nearly 38% to such low identification rates that almost 90% of all MS/MS spectra are left as unidentified. We address this problem by extending the generating function approach to rigorously compute the joint spectral probability of multiple spectra being matched to peptides with overlapping sequences, thus enabling the confident assignment of higher significance to overlapping peptide-spectrum matches (PSMs). We find that these joint spectral probabilities can be several orders of magnitude more significant than individual PSMs, even in the ideal case when perfect separation between signal and noise peaks could be achieved per individual MS/MS spectrum. After benchmarking this approach on a typical lysate MS/MS dataset, we show that the proposed intersecting spectral probabilities for spectra from overlapping peptides improve peptide identification by 30-62%. PMID:25423621

  10. Electrospun nanofiber reinforcement of dental composites with electromagnetic alignment approach.

    PubMed

    Uyar, Tansel; Çökeliler, Dilek; Doğan, Mustafa; Koçum, Ismail Cengiz; Karatay, Okan; Denkbaş, Emir Baki

    2016-05-01

    Polymethylmethacrylate (PMMA) is commonly used as a base acrylic denture material with benefits of rapid and easy handling, however, when it is used in prosthetic dentistry, fracturing or cracking problems can be seen due to the relatively low strength issues. Besides, acrylic resin is the still prominent material for denture fabrication due to its handy and low cost features. Numerous proposed fillers that are used to produce PMMA composites, however electrospun polyvinylalcohol (PVA) nanofiber fillers for production of PMMA composite resins are not studied as much as the others. The other focus of the practice is to compare both mechanical properties and efficiency of aligned fibers versus non-aligned PVA nanofibers in PMMA based dental composites. Field-controlled electrospinning system is manufactured and provided good alignment in lab scale as one of contributions. Some novel auxiliary electrodes in controlled structure are augmented to obtain different patterns of alignment with a certain range of fiber diameters. Scanning electron microscopy is used for physical characterization to determine the range of fiber diameters. Non-woven fiber has no unique pattern due to chaotic nature of electrospinning process, but aligned fibers have round pattern or crossed lines. These produced fibers are structured as layer-by-layer form with different features, and these features are used in producing PMMA dental composites with different volume ratios. The maximum flexural strength figure shows that fiber load by weight of 0.25% w/w and above improves in the maximum level. As a result, mechanical properties of PMMA dental composites are improved by using PVA nanofibers as a filler, however the improvement was higher when aligned PVA nanofibers are used. The maximum values were 5.1 MPa (flexural strength), 0.8 GPa (elastic modulus), and 170 kJ/m(3) (toughness) in three-point bending test. In addition to the positive results of aligned and non-aligned nanofibers it was found

  11. CW dipolar broadening EPR spectroscopy and mechanically aligned bilayers used to measure distance and relative orientation between two TOAC spin labels on an antimicrobial peptide

    NASA Astrophysics Data System (ADS)

    Sahu, Indra D.; Hustedt, Eric J.; Ghimire, Harishchandra; Inbaraj, Johnson J.; McCarrick, Robert M.; Lorigan, Gary A.

    2014-12-01

    An EPR membrane alignment technique was applied to measure distance and relative orientations between two spin labels on a protein oriented along the surface of the membrane. Previously we demonstrated an EPR membrane alignment technique for measuring distances and relative orientations between two spin labels using a dual TOAC-labeled integral transmembrane peptide (M2δ segment of Acetylcholine receptor) as a test system. In this study we further utilized this technique and successfully measured the distance and relative orientations between two spin labels on a membrane peripheral peptide (antimicrobial peptide magainin-2). The TOAC-labeled magainin-2 peptides were mechanically aligned using DMPC lipids on a planar quartz support, and CW-EPR spectra were recorded at specific orientations. Global analysis in combination with rigorous spectral simulation was used to simultaneously analyze data from two different sample orientations for both single- and double-labeled peptides. We measured an internitroxide distance of 15.3 Å from a dual TOAC-labeled magainin-2 peptide at positions 8 and 14 that closely matches with the 13.3 Å distance obtained from a model of the labeled magainin peptide. In addition, the angles determining the relative orientations of the two nitroxides have been determined, and the results compare favorably with molecular modeling. This study demonstrates the utility of the technique for proteins oriented along the surface of the membrane in addition to the previous results for proteins situated within the membrane bilayer.

  12. CW Dipolar Broadening EPR Spectroscopy and Mechanically Aligned Bilayers Used to Measure Distance and Relative Orientation between Two TOAC Spin Labels on an Antimicrobial Peptide

    PubMed Central

    Sahu, Indra D.; Hustedt, Eric J.; Ghimire, Harishchandra; Inbaraj, Johnson J.; McCarrick, Robert M.; Lorigan, Gary A.

    2014-01-01

    An EPR membrane alignment technique was applied to measure distance and relative orientations between two spin labels on a protein oriented along the surface of the membrane. Previously we demonstrated an EPR membrane alignment technique for measuring distances and relative orientations between two spin labels using a dual TOAC-labeled integral transmembrane peptide (M2δ segment of Acetylcholine receptor) as a test system. In this study we further utilized this technique and successfully measured the distance and relative orientations between two spin labels on a membrane peripheral peptide (antimicrobial peptide magainin-2). The TOAC-labeled magainin-2 peptides were mechanically aligned using DMPC lipids on a planar quartz support, and CW-EPR spectra were recorded at specific orientations. Global analysis in combination with rigorous spectral simulation was used to simultaneously analyze data from two different sample orientations for both single-and double-labeled peptides. We measured an internitroxide distance of 15.3 Å from a dual TOAC-labeled magainin-2 peptide at positions 8 and 14 that closely matches with the 13.3 Å distance obtained from a model of the labeled magainin peptide. In addition, the angles determining the relative orientations of the two nitroxides have been determined, and the results compare favorably with molecular modeling. This study demonstrates the utility of the technique for proteins oriented along the surface of the membrane in addition to the previous results for proteins situated within the membrane bilayer. PMID:25462949

  13. Optimizing parameters on alignment of PCL/PGA nanofibrous scaffold: An artificial neural networks approach.

    PubMed

    Paskiabi, Farnoush Asghari; Mirzaei, Esmaeil; Amani, Amir; Shokrgozar, Mohammad Ali; Saber, Reza; Faridi-Majidi, Reza

    2015-11-01

    This paper proposes an artificial neural networks approach to finding the effects of electrospinning parameters on alignment of poly(ɛ-caprolactone)/poly(glycolic acid) blend nanofibers. Four electrospinning parameters, namely total polymer concentration, working distance, drum speed and applied voltage were considered as input and the standard deviation of the angles of nanofibers, introducing fibers alignments, as the output of the model. The results demonstrated that drum speed and applied voltage are two critical factors influencing nanofibers alignment, however their effect are entirely interdependent. Their effects also are not independent of other electrospinning parameters. In obtaining aligned electrospun nanofibers, the concentration and working distance can also be effective. In vitro cell culture study on random and aligned nanofibers showed directional growth of cells on aligned fibers. PMID:25450538

  14. The Generating Function Approach for Peptide Identification in Spectral Networks

    PubMed Central

    Guthals, Adrian; Boucher, Christina

    2015-01-01

    Abstract Tandem mass (MS/MS) spectrometry has become the method of choice for protein identification and has launched a quest for the identification of every translated protein and peptide. However, computational developments have lagged behind the pace of modern data acquisition protocols and have become a major bottleneck in proteomics analysis of complex samples. As it stands today, attempts to identify MS/MS spectra against large databases (e.g., the human microbiome or 6-frame translation of the human genome) face a search space that is 10–100 times larger than the human proteome, where it becomes increasingly challenging to separate between true and false peptide matches. As a result, the sensitivity of current state-of-the-art database search methods drops by nearly 38% to such low identification rates that almost 90% of all MS/MS spectra are left as unidentified. We address this problem by extending the generating function approach to rigorously compute the joint spectral probability of multiple spectra being matched to peptides with overlapping sequences, thus enabling the confident assignment of higher significance to overlapping peptide–spectrum matches (PSMs). We find that these joint spectral probabilities can be several orders of magnitude more significant than individual PSMs, even in the ideal case when perfect separation between signal and noise peaks could be achieved per individual MS/MS spectrum. After benchmarking this approach on a typical lysate MS/MS dataset, we show that the proposed intersecting spectral probabilities for spectra from overlapping peptides improve peptide identification by 30–62%. PMID:25423621

  15. Conditions affecting the re-alignment of the antimicrobial peptide PGLa in membranes as monitored by solid state 2H-NMR.

    PubMed

    Tremouilhac, Pierre; Strandberg, Erik; Wadhwani, Parvesh; Ulrich, Anne S

    2006-09-01

    The cationic antimicrobial peptide PGLa is electrostatically attracted to bacterial membranes, binds as an amphiphilic alpha-helix, and is thus able to permeabilize the lipid bilayer. Using solid state (2)H-NMR of non-perturbing Ala-d(3) labels on the peptide, we have characterized the helix alignment under a range of different conditions. Even at a very high peptide-to-lipid ratio (1:20) and in the presence of negatively charged lipids, there was no indication of a toroidal wormhole structure. Instead, PGLa re-aligns from a surface-bound S-state to an obliquely tilted T-state, which is presumably dimeric. An intermediate structure half-way between the S- and T-state was observed in fully hydrated multilamellar DMPC vesicles at 1:50, suggesting a fast exchange between the two states on the time scale of >50 kHz. We demonstrate that this equilibrium is shifted from the S- towards the T-state either upon (i) increasing the peptide concentration, (ii) adding negatively charged DMPG, or (iii) decreasing the level of hydration. The threshold concentration for re-alignment in DMPC is found to be between 1:200 and 1:100 in oriented samples at 96% humidity. In fully hydrated multilamellar DMPC vesicles, it shifts to an effective peptide-to-lipid ratio of 1:50 as some peptides are able to escape into the bulk water phase. PMID:16716250

  16. Prediction of Antimicrobial Peptides Based on Sequence Alignment and Support Vector Machine-Pairwise Algorithm Utilizing LZ-Complexity

    PubMed Central

    Shahrudin, Shahriza

    2015-01-01

    This study concerns an attempt to establish a new method for predicting antimicrobial peptides (AMPs) which are important to the immune system. Recently, researchers are interested in designing alternative drugs based on AMPs because they have found that a large number of bacterial strains have become resistant to available antibiotics. However, researchers have encountered obstacles in the AMPs designing process as experiments to extract AMPs from protein sequences are costly and require a long set-up time. Therefore, a computational tool for AMPs prediction is needed to resolve this problem. In this study, an integrated algorithm is newly introduced to predict AMPs by integrating sequence alignment and support vector machine- (SVM-) LZ complexity pairwise algorithm. It was observed that, when all sequences in the training set are used, the sensitivity of the proposed algorithm is 95.28% in jackknife test and 87.59% in independent test, while the sensitivity obtained for jackknife test and independent test is 88.74% and 78.70%, respectively, when only the sequences that has less than 70% similarity are used. Applying the proposed algorithm may allow researchers to effectively predict AMPs from unknown protein peptide sequences with higher sensitivity. PMID:25802839

  17. A convenient alignment approach for x-ray imaging experiments based on laser positioning devices

    SciTech Connect

    Zhang Da; Donovan, Molly; Wu Xizeng; Liu Hong

    2008-11-15

    This study presents a two-laser alignment approach for facilitating the precise alignment of various imaging and measuring components with respect to the x-ray beam. The first laser constantly pointed to the output window of the source, in a direction parallel to the path along which the components are placed. The second laser beam, originating from the opposite direction, was calibrated to coincide with the first laser beam. Thus, a visible indicator of the direction of the incident x-ray beam was established, and the various components could then be aligned conveniently and accurately with its help.

  18. An Overview of DNA Microarray Grid Alignment and Foreground Separation Approaches

    NASA Astrophysics Data System (ADS)

    Bajcsy, Peter

    2006-12-01

    This paper overviews DNA microarray grid alignment and foreground separation approaches. Microarray grid alignment and foreground separation are the basic processing steps of DNA microarray images that affect the quality of gene expression information, and hence impact our confidence in any data-derived biological conclusions. Thus, understanding microarray data processing steps becomes critical for performing optimal microarray data analysis. In the past, the grid alignment and foreground separation steps have not been covered extensively in the survey literature. We present several classifications of existing algorithms, and describe the fundamental principles of these algorithms. Challenges related to automation and reliability of processed image data are outlined at the end of this overview paper.

  19. RV-Typer: A Web Server for Typing of Rhinoviruses Using Alignment-Free Approach.

    PubMed

    Kolekar, Pandurang S; Waman, Vaishali P; Kale, Mohan M; Kulkarni-Kale, Urmila

    2016-01-01

    Rhinoviruses (RV) are increasingly being reported to cause mild to severe infections of respiratory tract in humans. RV are antigenically the most diverse species of the genus Enterovirus and family Picornaviridae. There are three species of RV (RV-A, -B and -C), with 80, 32 and 55 serotypes/types, respectively. Antigenic variation is the main limiting factor for development of a cross-protective vaccine against RV.Serotyping of Rhinoviruses is carried out using cross-neutralization assays in cell culture. However, these assays become laborious and time-consuming for the large number of strains. Alternatively, serotyping of RV is carried out by alignment-based phylogeny of both protein and nucleotide sequences of VP1. However, serotyping of RV based on alignment-based phylogeny is a multi-step process, which needs to be repeated every time a new isolate is sequenced. In view of the growing need for serotyping of RV, an alignment-free method based on "return time distribution" (RTD) of amino acid residues in VP1 protein has been developed and implemented in the form of a web server titled RV-Typer. RV-Typer accepts nucleotide or protein sequences as an input and computes return times of di-peptides (k = 2) to assign serotypes. The RV-Typer performs with 100% sensitivity and specificity. It is significantly faster than alignment-based methods. The web server is available at http://bioinfo.net.in/RV-Typer/home.html. PMID:26870949

  20. RV-Typer: A Web Server for Typing of Rhinoviruses Using Alignment-Free Approach

    PubMed Central

    Kolekar, Pandurang S.; Waman, Vaishali P.; Kale, Mohan M.; Kulkarni-Kale, Urmila

    2016-01-01

    Rhinoviruses (RV) are increasingly being reported to cause mild to severe infections of respiratory tract in humans. RV are antigenically the most diverse species of the genus Enterovirus and family Picornaviridae. There are three species of RV (RV-A, -B and -C), with 80, 32 and 55 serotypes/types, respectively. Antigenic variation is the main limiting factor for development of a cross-protective vaccine against RV.Serotyping of Rhinoviruses is carried out using cross-neutralization assays in cell culture. However, these assays become laborious and time-consuming for the large number of strains. Alternatively, serotyping of RV is carried out by alignment-based phylogeny of both protein and nucleotide sequences of VP1. However, serotyping of RV based on alignment-based phylogeny is a multi-step process, which needs to be repeated every time a new isolate is sequenced. In view of the growing need for serotyping of RV, an alignment-free method based on “return time distribution” (RTD) of amino acid residues in VP1 protein has been developed and implemented in the form of a web server titled RV-Typer. RV-Typer accepts nucleotide or protein sequences as an input and computes return times of di-peptides (k = 2) to assign serotypes. The RV-Typer performs with 100% sensitivity and specificity. It is significantly faster than alignment-based methods. The web server is available at http://bioinfo.net.in/RV-Typer/home.html. PMID:26870949

  1. Design of Catalytic Peptides and Proteins Through Rational and Combinatorial Approaches.

    PubMed

    Maeda, Yoshiaki; Makhlynets, Olga V; Matsui, Hiroshi; Korendovych, Ivan V

    2016-07-11

    This review focuses on recent progress in noncomputational methods to introduce catalytic function into proteins, peptides, and peptide assemblies. We discuss various approaches to creating catalytic activity and classification of noncomputational methods into rational and combinatorial classes. The section on rational design covers recent progress in the development of short peptides and oligomeric peptide assemblies for various natural and unnatural reactions. The section on combinatorial design describes recent advances in the discovery of catalytic peptides. We present the future prospects of these and other new approaches in a broader context, including implications for functional material design. PMID:27022702

  2. A parallel approach of COFFEE objective function to multiple sequence alignment

    NASA Astrophysics Data System (ADS)

    Zafalon, G. F. D.; Visotaky, J. M. V.; Amorim, A. R.; Valêncio, C. R.; Neves, L. A.; de Souza, R. C. G.; Machado, J. M.

    2015-09-01

    The computational tools to assist genomic analyzes show even more necessary due to fast increasing of data amount available. With high computational costs of deterministic algorithms for sequence alignments, many works concentrate their efforts in the development of heuristic approaches to multiple sequence alignments. However, the selection of an approach, which offers solutions with good biological significance and feasible execution time, is a great challenge. Thus, this work aims to show the parallelization of the processing steps of MSA-GA tool using multithread paradigm in the execution of COFFEE objective function. The standard objective function implemented in the tool is the Weighted Sum of Pairs (WSP), which produces some distortions in the final alignments when sequences sets with low similarity are aligned. Then, in studies previously performed we implemented the COFFEE objective function in the tool to smooth these distortions. Although the nature of COFFEE objective function implies in the increasing of execution time, this approach presents points, which can be executed in parallel. With the improvements implemented in this work, we can verify the execution time of new approach is 24% faster than the sequential approach with COFFEE. Moreover, the COFFEE multithreaded approach is more efficient than WSP, because besides it is slightly fast, its biological results are better.

  3. Approaches for Enhancing Oral Bioavailability of Peptides and Proteins

    PubMed Central

    Renukuntla, Jwala; Vadlapudi, Aswani Dutt; Patel, Ashaben; Boddu, Sai HS.; Mitra, Ashim K

    2013-01-01

    Oral delivery of peptide and protein drugs faces immense challenge partially due to the gastrointestinal (GI) environment. In spite of considerable efforts by industrial and academic laboratories, no major breakthrough in the effective oral delivery of polypeptides and proteins has been accomplished. Upon oral administration, gastrointestinal epithelium acts as a physical and biochemical barrier for absorption of proteins resulting in low bioavailability (typically less than 1–2%). An ideal oral drug delivery system should be capable of a) maintaining the integrity of protein molecules until it reaches the site of absorption, b) releasing the drug at the target absorption site, where the delivery system appends to that site by virtue of specific interaction, and c) retaining inside the gastrointestinal tract irrespective of its transitory constraints. Various technologies have been explored to overcome the problems associated with the oral delivery of macromolecules such as insulin, gonadotropin-releasing hormones, calcitonin, human growth factor, vaccines, enkephalins, and interferons, all of which met with limited success. This review article intends to summarize the physiological barriers to oral delivery of peptides and proteins and novel pharmaceutical approaches to circumvent these barriers and enhance oral bioavailability of these macromolecules. PMID:23428883

  4. Novel non-invasive protein and peptide drug delivery approaches.

    PubMed

    Wallis, L; Kleynhans, E; Toit, T Du; Gouws, C; Steyn, D; Steenekamp, J; Viljoen, J; Hamman, J

    2014-01-01

    Protein and peptide based therapeutics are typically administered by injection due to their poor uptake when administered via enteral routes of drug administration. Unfortunately, chronic administration of these drugs through multiple injections presents certain patient related problems and it is difficult to mimic the normal physiological release patterns via this mode of drug administration. A need therefore exists to non-invasively deliver these drugs by means of alternative ways such as via the oral, pulmonary, nasal, transdermal and buccal administration routes. Although some attempts of needle free peptide and protein drug delivery have progressed to the clinical stage, relatively limited success has been achieved in terms of commercially available products. Despite the low frequency of clinical breakthroughs with noninvasive protein drug delivery this far, it remains an active research area with renewed interest not only due to its improved therapeutic potential, but also due to the attractive commercial outcomes it offers. It is the aim of this review article to reflect on the main strategies investigated to overcome the barriers against effective systemic protein drug delivery in different routes of drug administration. Approaches based on chemical modifications and pharmaceutical technologies are discussed with reference to examples of drugs and devices that have shown potential, while attempts that have failed are also briefly outlined. PMID:25106909

  5. An Alignment-Free Approach for Eukaryotic ITS2 Annotation and Phylogenetic Inference

    PubMed Central

    Hidalgo-Yanes, Pedro I.; Pérez-Castillo, Yunierkis; Molina-Ruiz, Reinaldo; Marchal, Kathleen; Vasconcelos, Vítor; Antunes, Agostinho

    2011-01-01

    The ITS2 gene class shows a high sequence divergence among its members that have complicated its annotation and its use for reconstructing phylogenies at a higher taxonomical level (beyond species and genus). Several alignment strategies have been implemented to improve the ITS2 annotation quality and its use for phylogenetic inferences. Although, alignment based methods have been exploited to the top of its complexity to tackle both issues, no alignment-free approaches have been able to successfully address both topics. By contrast, the use of simple alignment-free classifiers, like the topological indices (TIs) containing information about the sequence and structure of ITS2, may reveal to be a useful approach for the gene prediction and for assessing the phylogenetic relationships of the ITS2 class in eukaryotes. Thus, we used the TI2BioP (Topological Indices to BioPolymers) methodology [1], [2], freely available at http://ti2biop.sourceforge.net/ to calculate two different TIs. One class was derived from the ITS2 artificial 2D structures generated from DNA strings and the other from the secondary structure inferred from RNA folding algorithms. Two alignment-free models based on Artificial Neural Networks were developed for the ITS2 class prediction using the two classes of TIs referred above. Both models showed similar performances on the training and the test sets reaching values above 95% in the overall classification. Due to the importance of the ITS2 region for fungi identification, a novel ITS2 genomic sequence was isolated from Petrakia sp. This sequence and the test set were used to comparatively evaluate the conventional classification models based on multiple sequence alignments like Hidden Markov based approaches, revealing the success of our models to identify novel ITS2 members. The isolated sequence was assessed using traditional and alignment-free based techniques applied to phylogenetic inference to complement the taxonomy of the Petrakia sp

  6. Electrode alignment of transverse tripoles using a percutaneous triple-lead approach in spinal cord stimulation.

    PubMed

    Sankarasubramanian, V; Buitenweg, J R; Holsheimer, J; Veltink, P

    2011-02-01

    The aim of this modeling study is to determine the influence of electrode alignment of transverse tripoles on the paresthesia coverage of the pain area in spinal cord stimulation, using a percutaneous triple-lead approach. Transverse tripoles, comprising a central cathode and two lateral anodes, were modeled on the low-thoracic vertebral region (T10-T12) using percutaneous triple-lead configurations, with the center lead on the spinal cord midline. The triple leads were oriented both aligned and staggered. In the staggered configuration, the anodes were offset either caudally (caudally staggered) or rostrally (rostrally staggered) with respect to the midline cathode. The transverse tripolar field steering with the aligned and staggered configurations enabled the estimation of dorsal column fiber thresholds (I(DC)) and dorsal root fiber thresholds (I(DR)) at various anodal current ratios. I(DC) and I(DR) were considerably higher for the aligned transverse tripoles as compared to the staggered transverse tripoles. The aligned transverse tripoles facilitated deeper penetration into the medial dorsal columns (DCs). The staggered transverse tripoles always enabled broad and bilateral DC activation, at the expense of mediolateral steerability. The largest DC recruited area was obtained with the rostrally staggered transverse tripole. Transverse tripolar geometries, using percutaneous leads, allow for selective targeting of either medial or lateral DC fibers, if and only if the transverse tripole is aligned. Steering of anodal currents between the lateral leads of the staggered transverse tripoles cannot target medially confined populations of DC fibers in the spinal cord. An aligned transverse tripolar configuration is strongly recommended, because of its ability to provide more post-operative flexibility than other configurations. PMID:21248383

  7. Electrode alignment of transverse tripoles using a percutaneous triple-lead approach in spinal cord stimulation

    NASA Astrophysics Data System (ADS)

    Sankarasubramanian, V.; Buitenweg, J. R.; Holsheimer, J.; Veltink, P.

    2011-02-01

    The aim of this modeling study is to determine the influence of electrode alignment of transverse tripoles on the paresthesia coverage of the pain area in spinal cord stimulation, using a percutaneous triple-lead approach. Transverse tripoles, comprising a central cathode and two lateral anodes, were modeled on the low-thoracic vertebral region (T10-T12) using percutaneous triple-lead configurations, with the center lead on the spinal cord midline. The triple leads were oriented both aligned and staggered. In the staggered configuration, the anodes were offset either caudally (caudally staggered) or rostrally (rostrally staggered) with respect to the midline cathode. The transverse tripolar field steering with the aligned and staggered configurations enabled the estimation of dorsal column fiber thresholds (IDC) and dorsal root fiber thresholds (IDR) at various anodal current ratios. IDC and IDR were considerably higher for the aligned transverse tripoles as compared to the staggered transverse tripoles. The aligned transverse tripoles facilitated deeper penetration into the medial dorsal columns (DCs). The staggered transverse tripoles always enabled broad and bilateral DC activation, at the expense of mediolateral steerability. The largest DC recruited area was obtained with the rostrally staggered transverse tripole. Transverse tripolar geometries, using percutaneous leads, allow for selective targeting of either medial or lateral DC fibers, if and only if the transverse tripole is aligned. Steering of anodal currents between the lateral leads of the staggered transverse tripoles cannot target medially confined populations of DC fibers in the spinal cord. An aligned transverse tripolar configuration is strongly recommended, because of its ability to provide more post-operative flexibility than other configurations.

  8. Particle alignment reliability in single particle electron cryomicroscopy: a general approach

    PubMed Central

    Vargas, J.; Otón, J.; Marabini, R.; Carazo, J. M.; Sorzano, C. O. S.

    2016-01-01

    Electron Microscopy is reaching new capabilities thanks to the combined effect of new technologies and new image processing methods. However, the reconstruction process is still complex, requiring many steps and elaborated optimization procedures. Therefore, the possibility to reach a wrong structure exists, justifying the need of robust statistical tests. In this work, we present a conceptually simple alignment test, which does not require tilt-pair images, to evaluate the alignment consistency between a set of projection images with respect to a given 3D density map. We test the approach on a number of problems in 3DEM, especially the ranking and evaluation of initial 3D volumes and high resolution 3D maps, where we show its usefulness in providing an objective evaluation for maps that have recently been subject to a strong controversy in the field. Additionally, this alignment statistical test can be linked to the early stages of structure solving of new complexes, streamlining the whole process. PMID:26899789

  9. A Convex Atomic-Norm Approach to Multiple Sequence Alignment and Motif Discovery

    PubMed Central

    Yen, Ian E. H.; Lin, Xin; Zhang, Jiong; Ravikumar, Pradeep; Dhillon, Inderjit S.

    2016-01-01

    Multiple Sequence Alignment and Motif Discovery, known as NP-hard problems, are two fundamental tasks in Bioinformatics. Existing approaches to these two problems are based on either local search methods such as Expectation Maximization (EM), Gibbs Sampling or greedy heuristic methods. In this work, we develop a convex relaxation approach to both problems based on the recent concept of atomic norm and develop a new algorithm, termed Greedy Direction Method of Multiplier, for solving the convex relaxation with two convex atomic constraints. Experiments show that our convex relaxation approach produces solutions of higher quality than those standard tools widely-used in Bioinformatics community on the Multiple Sequence Alignment and Motif Discovery problems. PMID:27559428

  10. CVTree: a Whole-Genome and Alignment-Free Approach to Microbial Phylogeny

    NASA Astrophysics Data System (ADS)

    Hao, Bailin

    The number of sequenced genomes of Archaea, Bacteria, and Fungi accumulates rapidly. Several thousands genomes of these unicellular organisms will be available in a few years. Due to the extremely large difference in genome size and gene content it is difficult to use the traditional alignment-based method to infer phylogeny from the genomes. An alignment-free and whole-genome-based approach called CVTree has been developed and successfully applied to these organisms. As CVTree has been successfully applied to genomes of viruses, chloroplasts, Bacteria, Archaea and fungi, in this brief review we will mainly touch on some mathematical problems related to the foundation of the new approach, including a few yet unsolved problems, such as the violation of the triangular inequalities of the dissimilarity measure used in the CVTree method.

  11. A data-mining approach for multiple structural alignment of proteins.

    PubMed

    Siu, Wing-Yan; Mamoulis, Nikos; Yiu, Siu-Ming; Chan, Ho-Leung

    2010-01-01

    Comparing the 3D structures of proteins is an important but computationally hard problem in bioinformatics. In this paper, we propose studying the problem when much less information or assumptions are available. We model the structural alignment of proteins as a combinatorial problem. In the problem, each protein is simply a set of points in the 3D space, without sequence order information, and the objective is to discover all large enough alignments for any subset of the input. We propose a data-mining approach for this problem. We first perform geometric hashing of the structures such that points with similar locations in the 3D space are hashed into the same bin in the hash table. The novelty is that we consider each bin as a coincidence group and mine for frequent patterns, which is a well-studied technique in data mining. We observe that these frequent patterns are already potentially large alignments. Then a simple heuristic is used to extend the alignments if possible. We implemented the algorithm and tested it using real protein structures. The results were compared with existing tools. They showed that the algorithm is capable of finding conserved substructures that do not preserve sequence order, especially those existing in protein interfaces. The algorithm can also identify conserved substructures of functionally similar structures within a mixture with dissimilar ones. The running time of the program was smaller or comparable to that of the existing tools. PMID:21079664

  12. Prediction of Biofilm Inhibiting Peptides: An In silico Approach

    PubMed Central

    Gupta, Sudheer; Sharma, Ashok K.; Jaiswal, Shubham K.; Sharma, Vineet K.

    2016-01-01

    Approximately 75% of microbial infections found in humans are caused by microbial biofilms. These biofilms are resistant to host immune system and most of the currently available antibiotics. Small peptides are extensively studied for their role as anti-microbial peptides, however, only a limited studies have shown their potential as inhibitors of biofilm. Therefore, to develop a unique computational method aimed at the prediction of biofilm inhibiting peptides, the experimentally validated biofilm inhibiting peptides sequences were used to extract sequence based features and to identify unique sequence motifs. Biofilm inhibiting peptides were observed to be abundant in positively charged and aromatic amino acids, and also showed selective abundance of some dipeptides and sequence motifs. These individual sequence based features were utilized to construct Support Vector Machine-based prediction models and additionally by including sequence motifs information, the hybrid models were constructed. Using 10-fold cross validation, the hybrid model displayed the accuracy and Matthews Correlation Coefficient (MCC) of 97.83% and 0.87, respectively. On the validation dataset, the hybrid model showed the accuracy and MCC value of 97.19% and 0.84, respectively. The validated model and other tools developed for the prediction of biofilm inhibiting peptides are available freely as web server at http://metagenomics.iiserb.ac.in/biofin/ and http://metabiosys.iiserb.ac.in/biofin/. PMID:27379078

  13. A flux-coordinate independent field-aligned approach to plasma turbulence simulations

    NASA Astrophysics Data System (ADS)

    Hariri, F.; Ottaviani, M.

    2013-11-01

    This work illustrates a new approach to field-aligned coordinates for plasma turbulence simulations which is not based on flux variables. The method employs standard Cartesian or polar coordinates to discretize the fields. Parallel derivatives are computed directly along a coordinate that follows the local field, and poloidal derivatives are computed in the original Cartesian frame. Several advantages of this approach are presented. The tests on a drift-wave model demonstrate that the method is well suited to exploit the flute property of small parallel gradients by minimizing the number of degrees of freedom needed to treat a given problem in an accurate and efficient manner.

  14. First-Principles Approach to Energy Level Alignment at Aqueous Semiconductor Interfaces

    NASA Astrophysics Data System (ADS)

    Hybertsen, Mark

    2015-03-01

    We have developed a first principles method to calculate the energy level alignment between semiconductor band edges and reference energy levels at aqueous interfaces. This alignment is fundamental to understand the electrochemical characteristics of any semiconductor electrode in general and the potential for photocatalytic activity in particular. For example, in the search for new photo-catalytic materials, viable candidates must demonstrate both efficient absorption of the solar spectrum and an appropriate alignment of the band edge levels in the semiconductor to the redox levels for the target reactions. In our approach, the interface-specific contribution to the electrostatic step across the interface is evaluated using density functional theory (DFT) based molecular dynamics to sample the physical interface structure and the corresponding change in the electrostatic potential at the interface. The reference electronic levels in the semiconductor and in the water are calculated using the GW approach, which naturally corrects for errors inherent in the use of Kohn-Sham energy eigenvalues to approximate the electronic excitation energies in each material. Taken together, our calculations provide the alignment of the semiconductor valence band edge to the centroid of the highest occupied 1b1 level in water. The known relationship of the 1b1 level to the normal hydrogen electrode completes the connection to electrochemical levels. We discuss specific results for GaN, ZnO, and TiO2. The effect of interface structural motifs, such as different degrees of water dissociation, and of dynamical characteristics, will be presented together with available experimental data. Work supported by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-98CH10886.

  15. Peptide library approach to uncover phosphomimetic inhibitors of the BRCA1 C-terminal domain.

    PubMed

    White, E Railey; Sun, Luxin; Ma, Zhong; Beckta, Jason M; Danzig, Brittany A; Hacker, David E; Huie, Melissa; Williams, David C; Edwards, Ross A; Valerie, Kristoffer; Glover, J N Mark; Hartman, Matthew C T

    2015-05-15

    Many intracellular protein-protein interactions are mediated by the phosphorylation of serine, and phosphoserine-containing peptides can inhibit these interactions. However, hydrolysis of the phosphate by phosphatases, and the poor cell permeability associated with phosphorylated peptides has limited their utility in cellular and in vivo contexts. Compounding the problem, strategies to replace phosphoserine in peptide inhibitors with easily accessible mimetics (such as Glu or Asp) routinely fail. Here, we present an in vitro selection strategy for replacement of phosphoserine. Using mRNA display, we created a 10 trillion member structurally diverse unnatural peptide library. From this library, we found a peptide that specifically binds to the C-terminal domain (BRCT)2 of breast cancer associated protein 1 (BRCA1) with an affinity comparable to phosphorylated peptides. A crystal structure of the peptide bound reveals that the pSer-x-x-Phe motif normally found in BRCA1 (BRCT)2 binding partners is replaced by a Glu-x-x-4-fluoroPhe and that the peptide picks up additional contacts on the protein surface not observed in cognate phosphopeptide binding. Expression of the peptide in human cells led to defects in DNA repair by homologous recombination, a process BRCA1 is known to coordinate. Overall, this work validates a new in vitro selection approach for the development of inhibitors of protein-protein interactions mediated by serine phosphorylation. PMID:25654734

  16. Peptide Library Approach to Uncover Phosphomimetic Inhibitors of the BRCA1 C-Terminal Domain

    PubMed Central

    White, E. Railey; Sun, Luxin; Ma, Zhong; Beckta, Jason M.; Danzig, Brittany A.; Hacker, David E.; Huie, Melissa; Williams, David C.; Edwards, Ross A.; Valerie, Kristoffer; Mark Glover, J. N.; Hartman, Matthew C. T.

    2015-01-01

    Many intracellular protein–protein interactions are mediated by the phosphorylation of serine, and phosphoserine-containing peptides can inhibit these interactions. However, hydrolysis of the phosphate by phosphatases, and the poor cell permeability associated with phosphorylated peptides has limited their utility in cellular and in vivo contexts. Compounding the problem, strategies to replace phosphoserine in peptide inhibitors with easily accessible mimetics (such as Glu or Asp) routinely fail. Here, we present an in vitro selection strategy for replacement of phosphoserine. Using mRNA display, we created a 10 trillion member structurally diverse unnatural peptide library. From this library, we found a peptide that specifically binds to the C-terminal domain (BRCT)2 of breast cancer associated protein 1 (BRCA1) with an affinity comparable to phosphorylated peptides. A crystal structure of the peptide bound reveals that the pSer-x-x-Phe motif normally found in BRCA1 (BRCT)2 binding partners is replaced by a Glu-x-x-4-fluoroPhe and that the peptide picks up additional contacts on the protein surface not observed in cognate phosphopeptide binding. Expression of the peptide in human cells led to defects in DNA repair by homologous recombination, a process BRCA1 is known to coordinate. Overall, this work validates a new in vitro selection approach for the development of inhibitors of protein–protein interactions mediated by serine phosphorylation. PMID:25654734

  17. Combinatorial approach for large-scale identification of linked peptides from tandem mass spectrometry spectra.

    PubMed

    Wang, Jian; Anania, Veronica G; Knott, Jeff; Rush, John; Lill, Jennie R; Bourne, Philip E; Bandeira, Nuno

    2014-04-01

    The combination of chemical cross-linking and mass spectrometry has recently been shown to constitute a powerful tool for studying protein-protein interactions and elucidating the structure of large protein complexes. However, computational methods for interpreting the complex MS/MS spectra from linked peptides are still in their infancy, making the high-throughput application of this approach largely impractical. Because of the lack of large annotated datasets, most current approaches do not capture the specific fragmentation patterns of linked peptides and therefore are not optimal for the identification of cross-linked peptides. Here we propose a generic approach to address this problem and demonstrate it using disulfide-bridged peptide libraries to (i) efficiently generate large mass spectral reference data for linked peptides at a low cost and (ii) automatically train an algorithm that can efficiently and accurately identify linked peptides from MS/MS spectra. We show that using this approach we were able to identify thousands of MS/MS spectra from disulfide-bridged peptides through comparison with proteome-scale sequence databases and significantly improve the sensitivity of cross-linked peptide identification. This allowed us to identify 60% more direct pairwise interactions between the protein subunits in the 20S proteasome complex than existing tools on cross-linking studies of the proteasome complexes. The basic framework of this approach and the MS/MS reference dataset generated should be valuable resources for the future development of new tools for the identification of linked peptides. PMID:24493012

  18. Alignment-free genetic sequence comparisons: a review of recent approaches by word analysis.

    PubMed

    Bonham-Carter, Oliver; Steele, Joe; Bastola, Dhundy

    2014-11-01

    Modern sequencing and genome assembly technologies have provided a wealth of data, which will soon require an analysis by comparison for discovery. Sequence alignment, a fundamental task in bioinformatics research, may be used but with some caveats. Seminal techniques and methods from dynamic programming are proving ineffective for this work owing to their inherent computational expense when processing large amounts of sequence data. These methods are prone to giving misleading information because of genetic recombination, genetic shuffling and other inherent biological events. New approaches from information theory, frequency analysis and data compression are available and provide powerful alternatives to dynamic programming. These new methods are often preferred, as their algorithms are simpler and are not affected by synteny-related problems. In this review, we provide a detailed discussion of computational tools, which stem from alignment-free methods based on statistical analysis from word frequencies. We provide several clear examples to demonstrate applications and the interpretations over several different areas of alignment-free analysis such as base-base correlations, feature frequency profiles, compositional vectors, an improved string composition and the D2 statistic metric. Additionally, we provide detailed discussion and an example of analysis by Lempel-Ziv techniques from data compression. PMID:23904502

  19. Electrospinning of peptide and protein fibres: approaching the molecular scale.

    PubMed

    Nuansing, Wiwat; Frauchiger, Daniela; Huth, Florian; Rebollo, Amaia; Hillenbrand, Rainer; Bittner, Alexander M

    2013-01-01

    For the example of peptides and proteins, we contrast "natural" self-assembly, i.e. aggregation in solutions, with "forced" assembly by electrospinning, i.e. by application of strong electrical fields to concentrated solutions. We were able to spin fibres that contain short stretches of diameters down to 5 nm; the ultimate aim is a fibre of the size of a single molecule. Besides their wide biochemical relevance, small peptides can assemble to defined supramolecular structures such as fibres and tubes. While the main driving mechanism in electrospinning is certainly based on electrostatics, aromatic groups in peptides might play a directing role. We used fluorenyl and phenyl, whose i-stacking is not manifested in vibrational spectra, but is clearly visible in their crystal structures. The main differences between solid phases and single molecules are found for O-H and N-H stretching and bending vibrations, due to extensive hydrogen bonding in solids. However, we found that only proteins, but not peptides, can be spun into ultrathin fibres. Therefore, nanoscale analysis by SEM and AFM, and by infrared near-field microscopy are especially useful. The comparison of the amide bands from the infrared and Raman spectra, combined with circular dichroism spectroscopy, allowed us to assign secondary structures. Our results are not only useful for interpreting and refining current theories of self-assembly and electrospinning, but also for creating new scaffolds for the growth of sensitive cells. PMID:24611278

  20. Physician clinical alignment and integration: a community-academic hospital approach.

    PubMed

    Salas-Lopez, Debbie; Weiss, Sandra Jarva; Nester, Brian; Whalen, Thomas

    2014-01-01

    An overwhelming need for change in the U.S. healthcare delivery system, coupled with the need to improve clinical and financial outcomes, has prompted hospitals to direct renewed efforts toward achieving high quality and cost-effectiveness. Additionally, with the dawn of accountable care organizations and increasing focus on patient expectations, hospitals have begun to seek physician partners through clinical alignment. Contrary to the unsuccessful alignment strategies of the 1990s, today's efforts are more mutually beneficial, driven by the need to achieve better care coordination, increased access to infrastructure, improved quality, and lower costs. In this article, we describe a large, academic, tertiary care hospital's approach to developing and implementing alignment and integration models with its collaboration-ready physicians and physician groups. We developed four models--short of physicians' employment with the organization--tailored to meet the needs of both the physician group and the hospital: (1) medical directorship (group physicians are appointed to serve as medical directors of a clinical area), (2) professional services agreement (specific clinical services, such as overnight admissions help, are contracted), (3) co-management services agreement (one specialty group co-manages all services within the specialty service lines), and (4) lease arrangement (closest in scope to employment, in which the hospital pays all expenses and receives all revenue). Successful hospital-physician alignment requires careful planning and the early engagement of legal counsel to ensure compliance with federal statutes. Establishing an integrated system with mutually identified goals better positions hospitals to deliver cost-effective and high-quality care under the new paradigm of healthcare reform. PMID:24988674

  1. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces

    DOE PAGESBeta

    Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.

    2014-10-21

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b₁ energy level in water. The application to the specific cases of nonpolar (101¯0 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and themore » dynamical fluctuations in the interface Zn-O and O-H bond orientations. As a result, these effects contribute up to 0.5 eV.« less

  2. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces

    SciTech Connect

    Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.

    2014-10-21

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b₁ energy level in water. The application to the specific cases of nonpolar (101¯0 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and the dynamical fluctuations in the interface Zn-O and O-H bond orientations. As a result, these effects contribute up to 0.5 eV.

  3. A Fast Alignment-Free Approach for De Novo Detection of Protein Conserved Regions

    PubMed Central

    Abnousi, Armen; Broschat, Shira L.; Kalyanaraman, Ananth

    2016-01-01

    Background Identifying conserved regions in protein sequences is a fundamental operation, occurring in numerous sequence-driven analysis pipelines. It is used as a way to decode domain-rich regions within proteins, to compute protein clusters, to annotate sequence function, and to compute evolutionary relationships among protein sequences. A number of approaches exist for identifying and characterizing protein families based on their domains, and because domains represent conserved portions of a protein sequence, the primary computation involved in protein family characterization is identification of such conserved regions. However, identifying conserved regions from large collections (millions) of protein sequences presents significant challenges. Methods In this paper we present a new, alignment-free method for detecting conserved regions in protein sequences called NADDA (No-Alignment Domain Detection Algorithm). Our method exploits the abundance of exact matching short subsequences (k-mers) to quickly detect conserved regions, and the power of machine learning is used to improve the prediction accuracy of detection. We present a parallel implementation of NADDA using the MapReduce framework and show that our method is highly scalable. Results We have compared NADDA with Pfam and InterPro databases. For known domains annotated by Pfam, accuracy is 83%, sensitivity 96%, and specificity 44%. For sequences with new domains not present in the training set an average accuracy of 63% is achieved when compared to Pfam. A boost in results in comparison with InterPro demonstrates the ability of NADDA to capture conserved regions beyond those present in Pfam. We have also compared NADDA with ADDA and MKDOM2, assuming Pfam as ground-truth. On average NADDA shows comparable accuracy, more balanced sensitivity and specificity, and being alignment-free, is significantly faster. Excluding the one-time cost of training, runtimes on a single processor were 49s, 10,566s, and 456s

  4. A New Approach to the Oral Administration of Insulin and Other Peptide Drugs

    NASA Astrophysics Data System (ADS)

    Saffran, Murray; Sudesh Kumar, G.; Savariar, Celin; Burnham, Jeffrey C.; Williams, Frederick; Neckers, Douglas C.

    1986-09-01

    The oral administration of peptide drugs is well known to be precluded by their digestion in the stomach and small intestine. As a new approach to oral delivery, peptide drugs were coated with polymers cross-linked with azoaromatic groups to form an impervious film to protect orally administered drugs from digestion in the stomach and small intestine. When the azopolymer-coated drug reached the large intestine, the indigenous microflora reduced the azo bonds, broke the cross-links, and degraded the polymer film, thereby releasing the drug into the lumen of the colon for local action or for absorption. The ability of the azopolymer coating to protect and deliver orally administered peptide drugs was demonstrated in rats with the peptide hormones vasopressin and insulin.

  5. Coupling in silico and in vitro analysis of peptide-MHC binding: a bioinformatic approach enabling prediction of superbinding peptides and anchorless epitopes.

    PubMed

    Doytchinova, Irini A; Walshe, Valerie A; Jones, Nicola A; Gloster, Simone E; Borrow, Persephone; Flower, Darren R

    2004-06-15

    The ability to define and manipulate the interaction of peptides with MHC molecules has immense immunological utility, with applications in epitope identification, vaccine design, and immunomodulation. However, the methods currently available for prediction of peptide-MHC binding are far from ideal. We recently described the application of a bioinformatic prediction method based on quantitative structure-affinity relationship methods to peptide-MHC binding. In this study we demonstrate the predictivity and utility of this approach. We determined the binding affinities of a set of 90 nonamer peptides for the MHC class I allele HLA-A*0201 using an in-house, FACS-based, MHC stabilization assay, and from these data we derived an additive quantitative structure-affinity relationship model for peptide interaction with the HLA-A*0201 molecule. Using this model we then designed a series of high affinity HLA-A2-binding peptides. Experimental analysis revealed that all these peptides showed high binding affinities to the HLA-A*0201 molecule, significantly higher than the highest previously recorded. In addition, by the use of systematic substitution at principal anchor positions 2 and 9, we showed that high binding peptides are tolerant to a wide range of nonpreferred amino acids. Our results support a model in which the affinity of peptide binding to MHC is determined by the interactions of amino acids at multiple positions with the MHC molecule and may be enhanced by enthalpic cooperativity between these component interactions. PMID:15187128

  6. Approach for Identifying Human Leukocyte Antigen (HLA)-DR Bound Peptides from Scarce Clinical Samples.

    PubMed

    Heyder, Tina; Kohler, Maxie; Tarasova, Nataliya K; Haag, Sabrina; Rutishauser, Dorothea; Rivera, Natalia V; Sandin, Charlotta; Mia, Sohel; Malmström, Vivianne; Wheelock, Åsa M; Wahlström, Jan; Holmdahl, Rikard; Eklund, Anders; Zubarev, Roman A; Grunewald, Johan; Ytterberg, A Jimmy

    2016-09-01

    Immune-mediated diseases strongly associating with human leukocyte antigen (HLA) alleles are likely linked to specific antigens. These antigens are presented to T cells in the form of peptides bound to HLA molecules on antigen presenting cells, e.g. dendritic cells, macrophages or B cells. The identification of HLA-DR-bound peptides presents a valuable tool to investigate the human immunopeptidome. The lung is likely a key player in the activation of potentially auto-aggressive T cells prior to entering target tissues and inducing autoimmune disease. This makes the lung of exceptional interest and presents an ideal paradigm to study the human immunopeptidome and to identify antigenic peptides.Our previous investigation of HLA-DR peptide presentation in the lung required high numbers of cells (800 × 10(6) bronchoalveolar lavage (BAL) cells). Because BAL from healthy nonsmokers typically contains 10-15 × 10(6) cells, there is a need for a highly sensitive approach to study immunopeptides in the lungs of individual patients and controls.In this work, we analyzed the HLA-DR immunopeptidome in the lung by an optimized methodology to identify HLA-DR-bound peptides from low cell numbers. We used an Epstein-Barr Virus (EBV) immortalized B cell line and bronchoalveolar lavage (BAL) cells obtained from patients with sarcoidosis, an inflammatory T cell driven disease mainly occurring in the lung. Specifically, membrane complexes were isolated prior to immunoprecipitation, eluted peptides were identified by nanoLC-MS/MS and processed using the in-house developed ClusterMHCII software. With the optimized procedure we were able to identify peptides from 10 × 10(6) cells, which on average correspond to 10.9 peptides/million cells in EBV-B cells and 9.4 peptides/million cells in BAL cells. This work presents an optimized approach designed to identify HLA-DR-bound peptides from low numbers of cells, enabling the investigation of the BAL immunopeptidome from individual patients

  7. Analysis of the proteolysis of bioactive peptides using a peptidomics approach

    PubMed Central

    Kim, Yun-Gon; Lone, Anna Mari; Saghatelian, Alan

    2014-01-01

    Identifying the peptidases that inactivate bioactive peptides (e.g. peptide hormones and neuropeptides) in mammals is an important unmet challenge. This protocol describes a recent approach that combines liquid chromatography-mass spectrometry peptidomics to identify endogenous cleavage sites of a bioactive peptide, the subsequent biochemical purification of a candidate peptidase based on these cleavage sites, and validation of the candidate peptidase’s role in the physiological regulation of the bioactive peptide by examining a peptidase knockout mouse. We highlight successful application of this protocol to discover that insulin-degrading enzyme (IDE) regulates physiological calcitonin gene-related peptide (CGRP) levels and detail the key stages and steps in this approach. This protocol requires 7 days of work; however, the total time for this protocol is highly variable because of its dependence on the availability of biological reagents, namely purified enzymes and knockout mice. The protocol is valuable because it expedites the characterization of mammalian peptidases, such as IDE, which in certain instances can be used to develop novel therapeutics. PMID:23949379

  8. A new approach to implant alignment and ligament balancing in total knee arthroplasty focussing on joint loads.

    PubMed

    Zimmermann, Frauke; Schwenninger, Christoph; Nolten, Ulrich; Firmbach, Franz Peter; Elfring, Robert; Radermacher, Klaus

    2012-08-01

    Preservation and recovery of the mechanical leg axis as well as good rotational alignment of the prosthesis components and well-balanced ligaments are essential for the longevity of total knee arthroplasty (TKA). In the framework of the OrthoMIT project, the genALIGN system, a new navigated implantation approach based on intra-operative force-torque measurements, has been developed. With this system, optical or magnetic position tracking as well as any fixation of invasive rigid bodies are no longer necessary. For the alignment of the femoral component along the mechanical axis, a sensor-integrated instrument measures the torques resulting from the deviation between the instrument's axis and the mechanical axis under manually applied axial compression load. When both axes are coaxial, the resulting torques equal zero, and the tool axis can be fixed with respect to the bone. For ligament balancing and rotational alignment of the femoral component, the genALIGN system comprises a sensor-integrated tibial trial inlay measuring the amplitude and application points of the forces transferred between femur and tibia. Hereby, the impact of ligament tensions on knee joint loads can be determined over the whole range of motion. First studies with the genALIGN system, including a comparison with an imageless navigation system, show the feasibility of the concept. PMID:22868781

  9. Quantification of chemical peptide reactivity for screening contact allergens: a classification tree model approach.

    PubMed

    Gerberick, G Frank; Vassallo, Jeffrey D; Foertsch, Leslie M; Price, Brad B; Chaney, Joel G; Lepoittevin, Jean-Pierre

    2007-06-01

    In the interest of reducing animal use, in vitro alternatives for skin sensitization testing are under development. One unifying characteristic of chemical allergens is the requirement that they react with proteins for the effective induction of skin sensitization. The majority of chemical allergens are electrophilic and react with nucleophilic amino acids. To determine whether and to what extent reactivity correlates with skin sensitization potential, 82 chemicals comprising allergens of different potencies and nonallergenic chemicals were evaluated for their ability to react with reduced glutathione (GSH) or with two synthetic peptides containing either a single cysteine or lysine. Following a 15-min reaction time with GSH, or a 24-h reaction time with the two synthetic peptides, the samples were analyzed by high-performance liquid chromatography. UV detection was used to monitor the depletion of GSH or the peptides. The peptide reactivity data were compared with existing local lymph node assay data using recursive partitioning methodology to build a classification tree that allowed a ranking of reactivity as minimal, low, moderate, and high. Generally, nonallergens and weak allergens demonstrated minimal to low peptide reactivity, whereas moderate to extremely potent allergens displayed moderate to high peptide reactivity. Classifying minimal reactivity as nonsensitizers and low, moderate, and high reactivity as sensitizers, it was determined that a model based on cysteine and lysine gave a prediction accuracy of 89%. The results of these investigations reveal that measurement of peptide reactivity has considerable potential utility as a screening approach for skin sensitization testing, and thereby for reducing reliance on animal-based test methods. PMID:17400584

  10. Developing a New Teaching Approach for the Chemical Bonding Concept Aligned with Current Scientific and Pedagogical Knowledge

    ERIC Educational Resources Information Center

    Nahum, Tami Levy; Mamlok-Naaman, Rachel; Hofstein, Avi; Krajcik, Joseph

    2007-01-01

    The traditional pedagogical approach for teaching chemical bonding is often overly simplistic and not aligned with the most up-to-date scientific models. As a result, high-school students around the world lack fundamental understanding of chemical bonding. In order to improve students' understanding of this concept, it was essential to propose a…

  11. Biofunctionalization of Surfaces with Peptides, Proteins, or Subcellular Organelles: Single-Molecule Studies and Nanomedical Approach

    NASA Astrophysics Data System (ADS)

    Katranidis, A.; Choli-Papadopoulou, T.

    Immobilization of biologically active proteins and enzymes on surfaces is very important for the production of biofunctionalized surfaces for applications in medicine such as biosensors and in the diagnostics field. There are various approaches to immobilize and control the release of peptides/proteins from different surfaces. The identification of successful techniques to functionalize a particular material is a challenge. On the other hand, biomaterials are at the moment of great benefit for medicinal purposes and a lot of knowledge from different fields is required in order to design biomimetic scaffolds or biomimetic materials. The used methodologies are different for different materials and are mainly based on the special chemistry of the surfaces. Peptides with distinct properties are desired instead of entire proteins. However, in some cases, proteins cannot be replaced by peptide segments and therefore biochemical knowledge, such as in protein and/or genetic engineering is required.

  12. A targeted proteomics approach to the identification of peptides modified by reactive metabolites.

    PubMed

    Tzouros, Manuel; Pähler, Axel

    2009-05-01

    Covalent binding of reactive metabolites is generally accepted as one underlying mechanism of drug-induced toxicity. However, identification of protein targets by reactive metabolites still remains a challenge due to their low abundance. Here, we report the development of a highly selective proteomics workflow for the targeted identification of peptides modified by reactive metabolites. An equimolar mixture of non- and radiolabeled furan containing 2-amino-pyrimidine drug candidate (1 and 14C(1)-1) along with rat liver microsomes were used for the in vitro generation of reactive metabolites. Liver microsomal proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, modified protein bands were highlighted by autoradiography and in-gel digested, and peptides were fractionated by strong cation exchange chromatography. Fractions enriched in modified peptides, as determined by radioactivity levels, were subjected to nanoLC-MS/MS and unambiguously detected based on their unique 12C/14C MS isotope pattern fingerprint. The peptide detection step could be automated using isotope pattern recognition software. Peptide sequencing, identification of the site of modification, and reactive metabolite characterization were achieved by MS2 and MS3 experiments using high-resolution and accurate mass detection. This approach led to the identification of four modified peptides originating from three drug-metabolizing enzymes, MGST1, FMO1, and P450 2C11. These revealed modifications by five different metabolite structures. This approach is generally suitable for the identification and characterization of modified proteins and metabolite structures involved in covalent binding and may serve as a valuable tool to link protein targets with clinically relevant toxicities. PMID:19317514

  13. Signal-3L: A 3-layer approach for predicting signal peptides.

    PubMed

    Shen, Hong-Bin; Chou, Kuo-Chen

    2007-11-16

    Functioning as an "address tag" that directs nascent proteins to their proper cellular and extracellular locations, signal peptides have become a crucial tool in finding new drugs or reprogramming cells for gene therapy. To effectively and timely use such a tool, however, the first important thing is to develop an automated method for rapidly and accurately identifying the signal peptide for a given nascent protein. With the avalanche of new protein sequences generated in the post-genomic era, the challenge has become even more urgent and critical. In this paper, we have developed a novel method for predicting signal peptide sequences and their cleavage sites in human, plant, animal, eukaryotic, Gram-positive, and Gram-negative protein sequences, respectively. The new predictor is called Signal-3L that consists of three prediction engines working, respectively, for the following three progressively deepening layers: (1) identifying a query protein as secretory or non-secretory by an ensemble classifier formed by fusing many individual OET-KNN (optimized evidence-theoretic K nearest neighbor) classifiers operated in various dimensions of PseAA (pseudo amino acid) composition spaces; (2) selecting a set of candidates for the possible signal peptide cleavage sites of a query secretory protein by a subsite-coupled discrimination algorithm; (3) determining the final cleavage site by fusing the global sequence alignment outcome for each of the aforementioned candidates through a voting system. Signal-3L is featured by high success prediction rates with short computational time, and hence is particularly useful for the analysis of large-scale datasets. Signal-3L is freely available as a web-server at http://chou.med.harvard.edu/bioinf/Signal-3L/ or http://202.120.37.186/bioinf/Signal-3L, where, to further support the demand of the related areas, the signal peptides identified by Signal-3L for all the protein entries in Swiss-Prot databank that do not have signal peptide

  14. One-Pot Photochemical Ring-Opening/Cleavage Approach for the Synthesis and Decoding of Cyclic Peptide Libraries.

    PubMed

    Liang, Xinxia; Vézina-Dawod, Simon; Bédard, François; Porte, Karine; Biron, Eric

    2016-03-01

    A novel dual ring-opening/cleavage strategy to determine the sequence of cyclic peptides from one bead, one compound libraries is described. The approach uses a photolabile residue within the macrocycle and as a linker to allow a simultaneous ring opening and cleavage from the beads upon UV irradiation and provide linearized molecules. Cyclic peptides of five to nine residues were synthesized and the generated linear peptides successfully sequenced by tandem mass spectrometry. PMID:26914725

  15. A biomimetic approach for enhancing the in vivo half-life of peptides

    PubMed Central

    Penchala, Sravan C; Miller, Mark R; Pal, Arindom; Dong, Jin; Madadi, Nikhil R.; Xie, Jinghang; Joo, Hyun; Tsai, Jerry; Batoon, Patrick; Samoshin, Vyacheslav; Franz, Andreas; Cox, Trever; Miles, Jesse; Chan, William K; Park, Miki S; Alhamadsheh, Mamoun M

    2015-01-01

    The tremendous therapeutic potential of peptides has not yet been realized, mainly due to their short in vivo half-life. While conjugation to macromolecules has been a mainstay approach for enhancing the half-life of proteins, the steric hindrance of macromolecules often harms the binding of peptides to target receptors, compromising the in vivo efficacy. Here we report a new strategy for enhancing the in vivo half-life of peptides without compromising their potency. Our approach involves endowing peptides with a small-molecule that binds reversibly to the serum protein, transthyretin. Although there are few reversible albumin-binding molecules, we are unaware of designed small molecules that bind reversibly to other serum proteins and are used for half-life extension in vivo. We show here that our strategy was indeed effective in enhancing the half-life of an agonist for GnRH receptor while maintaining its binding affinity, which was translated into superior in vivo efficacy. PMID:26344696

  16. A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials.

    PubMed

    Liang, Qizhen; Yao, Xuxia; Wang, Wei; Liu, Yan; Wong, Ching Ping

    2011-03-22

    Thermally conductive functionalized multilayer graphene sheets (fMGs) are efficiently aligned in large-scale by a vacuum filtration method at room temperature, as evidenced by SEM images and polarized Raman spectroscopy. A remarkably strong anisotropy in properties of aligned fMGs is observed. High electrical (∼386 S cm(-1)) and thermal conductivity (∼112 W m(-1) K(-1) at 25 °C) and ultralow coefficient of thermal expansion (∼-0.71 ppm K(-1)) in the in-plane direction of A-fMGs are obtained without any reduction process. Aligned fMGs are vertically assembled between contacted silicon/silicon surfaces with pure indium as a metallic medium. Thus-constructed three-dimensional vertically aligned fMG thermal interfacial material (VA-fMG TIM) architecture has significantly higher equivalent thermal conductivity (75.5 W m(-1) K(-1)) and lower contact thermal resistance (5.1 mm2 K W(-1)), compared with their counterpart from A-fMGs that are recumbent between silicon surfaces. This finding provides a throughout approach for a graphene-based TIM assembly as well as knowledge of vertically aligned graphene architectures, which may not only facilitate graphene's application in current demanding thermal management but also promote its widespread applications in electrodes of energy storage devices, conductive polymeric composites, etc. PMID:21384860

  17. Advances in peptidic and peptidomimetic-based approaches to inhibit STAT signaling in human diseases.

    PubMed

    Szelag, Malgorzata; Wesoly, Joanna; Bluyssen, Hans A R

    2016-01-01

    STATs promote fundamental cellular processes, marking them as convergence points of many oncogenic and inflammatory pathways. Therefore, aberrant activation of STAT signaling is implicated in a plethora of human diseases, like cancer, inflammation and auto-immunity. Identification of STAT-specific inhibitors is the topic of great practical importance, and various inhibitory strategies are being pursued. An interesting approach includes peptides and peptide-like biopolymers, because they allow the manipulation of STAT signaling without the transfer of genetic material. Phosphopeptides and peptidomimetics directly target STATs by inhibiting dimerization. Despite that a large number of efficient peptide- based STAT3-specific inhibitors have been reported to date, none of them was able to meet the pharmacological requirements to serve as a potent anti-cancer drug. The existing limitations, like metabolic instability and poor cell permeability during in vivo tests, excluded these macromolecules from further clinical development. To overcome these liabilities, in the last five years many advances have been made to develop next generation STAT-specific inhibitors. Here we discuss the pitfalls of current STAT inhibitory strategies and review the progress on the development of peptide-like prodrugs directly targeting STATs. Novel strategies involve screening of high-complexity libraries of random peptides, as specific STAT3 or STAT5 DNA-binding inhibitors, to construct cell permeable peptide aptamers and aptides for cancer therapy. Another new direction is synthesis of negative dominant α-helical mimetics of the STAT3 N-domain, preventing oligomerization on DNA. Moreover, construction of phosphopeptide conjugates with molecules mediating cellular uptake offers new therapeutic possibilities in treatment of cancer, asthma and allergy. PMID:26521960

  18. A combined NMR and computational approach to investigate peptide binding to a designed Armadillo repeat protein.

    PubMed

    Ewald, Christina; Christen, Martin T; Watson, Randall P; Mihajlovic, Maja; Zhou, Ting; Honegger, Annemarie; Plückthun, Andreas; Caflisch, Amedeo; Zerbe, Oliver

    2015-05-22

    The specific recognition of peptide sequences by proteins plays an important role both in biology and in diagnostic applications. Here we characterize the relatively weak binding of the peptide neurotensin (NT) to the previously developed Armadillo repeat protein VG_328 by a multidisciplinary approach based on solution NMR spectroscopy, mutational studies, and molecular dynamics (MD) simulations, totaling 20μs for all MD runs. We describe assignment challenges arising from the repetitive nature of the protein sequence, and we present novel approaches to address them. Partial assignments obtained for VG_328 in combination with chemical shift perturbations allowed us to identify the repeats not involved in binding. Their subsequent elimination resulted in a reduced-size binder with very similar affinity for NT, for which near-complete backbone assignments were achieved. A binding mode suggested by automatic docking and further validated by explicit solvent MD simulations is consistent with paramagnetic relaxation enhancement data collected using spin-labeled NT. Favorable intermolecular interactions are observed in the MD simulations for the residues that were previously shown to contribute to binding in an Ala scan of NT. We further characterized the role of residues within the N-cap for protein stability and peptide binding. Our multidisciplinary approach demonstrates that an initial low-resolution picture for a low-micromolar-peptide binder can be refined through the combination of NMR, protein design, docking, and MD simulations to establish its binding mode, even in the absence of crystallographic data, thereby providing valuable information for further design. PMID:25816772

  19. A Simple Approach to Reproducing IMAGE/RPI-Derived Field-Aligned Electron Density Profiles During Plasmaspheric Refilling

    NASA Astrophysics Data System (ADS)

    Webb, P. A.; Reinisch, B. W.; Huang, X.; Reynolds, M. A.; Benson, R. F.; Green, J. L.

    2002-12-01

    Magnetic field-aligned electron-density (Ne) profiles can be calculated from active soundings using the Radio Plasma Imager (RPI) on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite. By observing these profiles under different geomagnetic conditions, the underlying physics that control the Ne distribution can be investigated. In this presentation RPI observations will be used to show that a magnetic field line depleted of plasma has an Ne distribution approximating a collisionless (CL) profile, while a saturated field line has a diffusive equilibrium (DE) profile. Furthermore, by using the RPI-derived profiles it is possible to observe the transition from the depleted CL profile to the saturated DE profile. Using computationally simple CL and DE models as upper and lower boundaries respectively, methods to vary the distribution between these two extremes that reproduces the refilling of the field-aligned Ne profiles observed by RPI will be presented. Furthermore, the results of this approach will be compared with the Multi-Species Kinetic Plasmasphere Model (MSKPM), a kinetic field-aligned model that simulates the plasmaspheric refilling by single particles from the underlying exosphere. Comparisons of the Global Plasmasphere Ionosphere Density (GPID) model with IMAGE Ne observations from passive and active RPI operations will demonstrate the increased accuracy of GPID when the improved CL-DE field-aligned Ne distribution is included in the model.

  20. Computational Amide I Spectroscopy for Refinement of Disordered Peptide Ensembles: Maximum Entropy and Related Approaches

    NASA Astrophysics Data System (ADS)

    Reppert, Michael; Tokmakoff, Andrei

    The structural characterization of intrinsically disordered peptides (IDPs) presents a challenging biophysical problem. Extreme heterogeneity and rapid conformational interconversion make traditional methods difficult to interpret. Due to its ultrafast (ps) shutter speed, Amide I vibrational spectroscopy has received considerable interest as a novel technique to probe IDP structure and dynamics. Historically, Amide I spectroscopy has been limited to delivering global secondary structural information. More recently, however, the method has been adapted to study structure at the local level through incorporation of isotope labels into the protein backbone at specific amide bonds. Thanks to the acute sensitivity of Amide I frequencies to local electrostatic interactions-particularly hydrogen bonds-spectroscopic data on isotope labeled residues directly reports on local peptide conformation. Quantitative information can be extracted using electrostatic frequency maps which translate molecular dynamics trajectories into Amide I spectra for comparison with experiment. Here we present our recent efforts in the development of a rigorous approach to incorporating Amide I spectroscopic restraints into refined molecular dynamics structural ensembles using maximum entropy and related approaches. By combining force field predictions with experimental spectroscopic data, we construct refined structural ensembles for a family of short, strongly disordered, elastin-like peptides in aqueous solution.

  1. Variant fatty acid-like molecules Conjugation, novel approaches for extending the stability of therapeutic peptides

    PubMed Central

    Li, Ying; Wang, Yuli; Wei, Qunchao; Zheng, Xuemin; Tang, Lida; Kong, Dexin; Gong, Min

    2015-01-01

    The multiple physiological properties of glucagon-like peptide-1 (GLP-1) make it a promising drug candidate for the treatment of type 2 diabetes. However, the in vivo half-life of GLP-1 is short due to rapid degradation by dipeptidyl peptidase-IV (DPP-IV) and renal clearance. The poor stability of GLP-1 has significantly limited its clinical utility; however, many studies are focused on extending its stability. Fatty acid conjugation is a traditional approach for extending the stability of therapeutic peptides because of the high binding affinity of human serum albumin for fatty acids. However, the conjugate requires a complex synthetic approach, usually involving Lys and occasionally involving a linker. In the current study, we conjugated the GLP-1 molecule with fatty acid derivatives to simplify the synthesis steps. Human serum albumin binding assays indicated that the retained carboxyl groups of the fatty acids helped maintain a tight affinity to HSA. The conjugation of fatty acid-like molecules improved the stability and increased the binding affinity of GLP-1 to HSA. The use of fatty acid-like molecules as conjugating components allowed variant conjugation positions and freed carboxyl groups for other potential uses. This may be a novel, long-acting strategy for the development of therapeutic peptides. PMID:26658631

  2. Variant fatty acid-like molecules Conjugation, novel approaches for extending the stability of therapeutic peptides.

    PubMed

    Li, Ying; Wang, Yuli; Wei, Qunchao; Zheng, Xuemin; Tang, Lida; Kong, Dexin; Gong, Min

    2015-01-01

    The multiple physiological properties of glucagon-like peptide-1 (GLP-1) make it a promising drug candidate for the treatment of type 2 diabetes. However, the in vivo half-life of GLP-1 is short due to rapid degradation by dipeptidyl peptidase-IV (DPP-IV) and renal clearance. The poor stability of GLP-1 has significantly limited its clinical utility; however, many studies are focused on extending its stability. Fatty acid conjugation is a traditional approach for extending the stability of therapeutic peptides because of the high binding affinity of human serum albumin for fatty acids. However, the conjugate requires a complex synthetic approach, usually involving Lys and occasionally involving a linker. In the current study, we conjugated the GLP-1 molecule with fatty acid derivatives to simplify the synthesis steps. Human serum albumin binding assays indicated that the retained carboxyl groups of the fatty acids helped maintain a tight affinity to HSA. The conjugation of fatty acid-like molecules improved the stability and increased the binding affinity of GLP-1 to HSA. The use of fatty acid-like molecules as conjugating components allowed variant conjugation positions and freed carboxyl groups for other potential uses. This may be a novel, long-acting strategy for the development of therapeutic peptides. PMID:26658631

  3. Modeling of the Binding of Peptide Blockers to Voltage-Gated Potassium Channels: Approaches and Evidence

    PubMed Central

    Novoseletsky, V. N.; Volyntseva, A. D.; Shaitan, K. V.; Kirpichnikov, M. P.; Feofanov, A. V.

    2016-01-01

    Modeling of the structure of voltage-gated potassium (KV) channels bound to peptide blockers aims to identify the key amino acid residues dictating affinity and provide insights into the toxin-channel interface. Computational approaches open up possibilities for in silico rational design of selective blockers, new molecular tools to study the cellular distribution and functional roles of potassium channels. It is anticipated that optimized blockers will advance the development of drugs that reduce over activation of potassium channels and attenuate the associated malfunction. Starting with an overview of the recent advances in computational simulation strategies to predict the bound state orientations of peptide pore blockers relative to KV-channels, we go on to review algorithms for the analysis of intermolecular interactions, and then take a look at the results of their application. PMID:27437138

  4. Combined Systems Approaches Reveal Highly Plastic Responses to Antimicrobial Peptide Challenge in Escherichia coli

    PubMed Central

    Kozlowska, Justyna; Vermeer, Louic S.; Rogers, Geraint B.; Rehnnuma, Nabila; Amos, Sarah-Beth T. A.; Koller, Garrit; McArthur, Michael; Bruce, Kenneth D.; Mason, A. James

    2014-01-01

    Obtaining an in-depth understanding of the arms races between peptides comprising the innate immune response and bacterial pathogens is of fundamental interest and will inform the development of new antibacterial therapeutics. We investigated whether a whole organism view of antimicrobial peptide (AMP) challenge on Escherichia coli would provide a suitably sophisticated bacterial perspective on AMP mechanism of action. Selecting structurally and physically related AMPs but with expected differences in bactericidal strategy, we monitored changes in bacterial metabolomes, morphological features and gene expression following AMP challenge at sub-lethal concentrations. For each technique, the vast majority of changes were specific to each AMP, with such a plastic response indicating E. coli is highly capable of discriminating between specific antibiotic challenges. Analysis of the ontological profiles generated from the transcriptomic analyses suggests this approach can accurately predict the antibacterial mode of action, providing a fresh, novel perspective for previous functional and biophysical studies. PMID:24789011

  5. Aligning Game Activity with Educational Goals: Following a Constrained Design Approach to Instructional Computer Games

    ERIC Educational Resources Information Center

    Shelton, Brett E.; Scoresby, Jon

    2011-01-01

    We discuss the design, creation and implementation of an instructional game for use in a high school poetry class following a commitment to an educational game design principle of "alignment". We studied groups of instructional designers and an interactive fiction computer game they built. The game was implemented in a 9th grade English classroom…

  6. An Approach to Enhance Alignment and Myelination of Dorsal Root Ganglion Neurons.

    PubMed

    Liu, Chun; Chan, Christina

    2016-01-01

    Axon regeneration is a chaotic process due largely to unorganized axon alignment. Therefore, in order for a sufficient number of regenerated axons to bridge the lesion site, properly organized axonal alignment is required. Since demyelination after nerve injury strongly impairs the conductive capacity of surviving axons, remyelination is critical for successful functioning of regenerated nerves. Previously, we demonstrated that mesenchymal stem cells (MSCs) aligned on a pre-stretch induced anisotropic surface because the cells can sense a larger effective stiffness in the stretched direction than in the perpendicular direction. We also showed that an anisotropic surface arising from a mechanical pre-stretched surface similarly affects alignment, as well as growth and myelination of axons. Here, we provide a detailed protocol for preparing a pre-stretched anisotropic surface, the isolation and culture of dorsal root ganglion (DRG) neurons on a pre-stretched surface, and show the myelination behavior of a co-culture of DRG neurons with Schwann cells (SCs) on a pre-stretched surface. PMID:27585118

  7. Identification and characterization of Aβ peptide interactors in Alzheimer’s disease by structural approaches

    PubMed Central

    Philibert, Keith D.; Marr, Robert A.; Norstrom, Eric M.; Glucksman, Marc J.

    2014-01-01

    Currently, there are very limited pharmaceutical interventions for Alzheimer’s disease (AD) to alleviate the amyloid burden implicated in the pathophysiology of the disease. Alzheimer’s disease is characterized immunohistologically by the accumulation of senile plaques in the brain with afflicted patients progressively losing short-term memory and, ultimately, cognition. Although significant improvements in clinical diagnosis and care for AD patients have been made, effective treatments for this devastating disease remain elusive. A key component of the amyloid burden of AD comes from accumulation of the amyloid-beta (Aβ) peptide which comes from processing of the amyloid precursor protein (APP) by enzymes termed secretases, leading to production of these toxic Aβ peptides of 40–42 amino acids. New therapeutic approaches for reducing Aβ are warranted after the most logical avenues of inhibiting secretase activity appear less than optimal in ameliorating the progression of AD.Novel therapeutics may be gleaned from proteomics biomarker initiatives to yield detailed molecular interactions of enzymes and their potential substrates. Explicating the APPome by deciphering protein complexes forming in cells is a complementary approach to unveil novel molecular interactions with the amyloidogenic peptide precursor to both understand the biology and develop potential upstream drug targets. Utilizing these strategies we have identified EC 3.4.24.15 (EP24.15), a zinc metalloprotease related to neprilysin (NEP), with the ability to catabolize Aβ 1–42 by examining first potential in silico docking and then verification by mass spectrometry. In addition, a hormone carrier protein, transthyreitin (TTR), was identified and with its abundance in cerebrospinal fluid (CSF), found to clear Aβ by inhibiting formation of oligomeric forms of Aβ peptide. The confluence of complementary strategies may allow new therapeutic avenues as well as biomarkers for AD that will aid in

  8. From Mollusks to Medicine: A Venomics Approach for the Discovery and Characterization of Therapeutics from Terebridae Peptide Toxins.

    PubMed

    Verdes, Aida; Anand, Prachi; Gorson, Juliette; Jannetti, Stephen; Kelly, Patrick; Leffler, Abba; Simpson, Danny; Ramrattan, Girish; Holford, Mandë

    2016-01-01

    Animal venoms comprise a diversity of peptide toxins that manipulate molecular targets such as ion channels and receptors, making venom peptides attractive candidates for the development of therapeutics to benefit human health. However, identifying bioactive venom peptides remains a significant challenge. In this review we describe our particular venomics strategy for the discovery, characterization, and optimization of Terebridae venom peptides, teretoxins. Our strategy reflects the scientific path from mollusks to medicine in an integrative sequential approach with the following steps: (1) delimitation of venomous Terebridae lineages through taxonomic and phylogenetic analyses; (2) identification and classification of putative teretoxins through omics methodologies, including genomics, transcriptomics, and proteomics; (3) chemical and recombinant synthesis of promising peptide toxins; (4) structural characterization through experimental and computational methods; (5) determination of teretoxin bioactivity and molecular function through biological assays and computational modeling; (6) optimization of peptide toxin affinity and selectivity to molecular target; and (7) development of strategies for effective delivery of venom peptide therapeutics. While our research focuses on terebrids, the venomics approach outlined here can be applied to the discovery and characterization of peptide toxins from any venomous taxa. PMID:27104567

  9. From Mollusks to Medicine: A Venomics Approach for the Discovery and Characterization of Therapeutics from Terebridae Peptide Toxins

    PubMed Central

    Verdes, Aida; Anand, Prachi; Gorson, Juliette; Jannetti, Stephen; Kelly, Patrick; Leffler, Abba; Simpson, Danny; Ramrattan, Girish; Holford, Mandë

    2016-01-01

    Animal venoms comprise a diversity of peptide toxins that manipulate molecular targets such as ion channels and receptors, making venom peptides attractive candidates for the development of therapeutics to benefit human health. However, identifying bioactive venom peptides remains a significant challenge. In this review we describe our particular venomics strategy for the discovery, characterization, and optimization of Terebridae venom peptides, teretoxins. Our strategy reflects the scientific path from mollusks to medicine in an integrative sequential approach with the following steps: (1) delimitation of venomous Terebridae lineages through taxonomic and phylogenetic analyses; (2) identification and classification of putative teretoxins through omics methodologies, including genomics, transcriptomics, and proteomics; (3) chemical and recombinant synthesis of promising peptide toxins; (4) structural characterization through experimental and computational methods; (5) determination of teretoxin bioactivity and molecular function through biological assays and computational modeling; (6) optimization of peptide toxin affinity and selectivity to molecular target; and (7) development of strategies for effective delivery of venom peptide therapeutics. While our research focuses on terebrids, the venomics approach outlined here can be applied to the discovery and characterization of peptide toxins from any venomous taxa. PMID:27104567

  10. Simple, Inexpensive, and Rapid Approach to Fabricate Cross-Shaped Memristors Using an Inorganic-Nanowire-Digital-Alignment Technique and a One-Step Reduction Process.

    PubMed

    Xu, Wentao; Lee, Yeongjun; Min, Sung-Yong; Park, Cheolmin; Lee, Tae-Woo

    2016-01-20

    A rapid, scalable, and designable approach to produce a cross-shaped memristor array is demonstrated using an inorganic-nanowire digital-alignment technique and a one-step reduction process. Two-dimensional arrays of perpendicularly aligned, individually conductive Cu-nanowires with a nanometer-scale Cux O layer sandwiched at each cross point are produced. PMID:26585580

  11. Curve aligning approach for gait authentication based on a wearable accelerometer.

    PubMed

    Sun, Hu; Yuao, Tao

    2012-06-01

    Gait authentication based on a wearable accelerometer is a novel biometric which can be used for identity identification, medical rehabilitation and early detection of neurological disorders. The method for matching gait patterns tells heavily on authentication performances. In this paper, curve aligning is introduced as a new method for matching gait patterns and it is compared with correlation and dynamic time warping (DTW). A support vector machine (SVM) is proposed to fuse pattern-matching methods in a decision level. Accelerations collected from ankles of 22 walking subjects are processed for authentications in our experiments. The fusion of curve aligning with backward-forward accelerations and DTW with vertical accelerations promotes authentication performances substantially and consistently. This fusion algorithm is tested repeatedly. Its mean and standard deviation of equal error rates are 0.794% and 0.696%, respectively, whereas among all presented non-fusion algorithms, the best one shows an EER of 3.03%. PMID:22621972

  12. A Brief Review of Computer-Assisted Approaches to Rational Design of Peptide Vaccines.

    PubMed

    Nandy, Ashesh; Basak, Subhash C

    2016-01-01

    The growing incidences of new viral diseases and increasingly frequent viral epidemics have strained therapeutic and preventive measures; the high mutability of viral genes puts additional strains on developmental efforts. Given the high cost and time requirements for new drugs development, vaccines remain as a viable alternative, but there too traditional techniques of live-attenuated or inactivated vaccines have the danger of allergenic reactions and others. Peptide vaccines have, over the last several years, begun to be looked on as more appropriate alternatives, which are economically affordable, require less time for development and hold the promise of multi-valent dosages. The developments in bioinformatics, proteomics, immunogenomics, structural biology and other sciences have spurred the growth of vaccinomics where computer assisted approaches serve to identify suitable peptide targets for eventual development of vaccines. In this mini-review we give a brief overview of some of the recent trends in computer assisted vaccine development with emphasis on the primary selection procedures of probable peptide candidates for vaccine development. PMID:27153063

  13. Novel Approach to Prepare {sup 99m}Tc-Based Multivalent RGD Peptides

    SciTech Connect

    Shuang Liu

    2012-10-24

    This project presents a novel approach to prepare the {sup 99m}Tc-bridged multivalent RGD (arginine-glycine-aspartate) peptides. This project will focus on fundamentals of {sup 99m}Tc radiochemistry. The main objective of this project is to demonstrate the proof-of-principle for the proposed radiotracers. Once a kit formulation is developed for preparation of the {sup 99m}Tc-bridged multivalent RGD peptides, various tumor-bearing animal models will be used to evaluate their potential for SPECT (single photon-emission computed tomography) imaging of cancer. We have demonstrated that (1) multimerization of cyclic RGD peptides enhances the integrin {alpha}{sub v}{beta}{sub 3} bonding affinity and radiotracer tumor uptake; (2) addition of G{sub 3} or PEG{sub 4} linkers makes it possible for two RGD motifs in 3P-RGD{sub 2} and 3G-RGD{sub 2} to achieve simultaneous integrin {alpha}{sub v}{beta}{sub 3} binding; and (3) multimers are actually bivalent (not multivalent), the presence of extra RGD motifs can enhance the tumor retention time of the radiotracer.

  14. A Brief Review of Computer-Assisted Approaches to Rational Design of Peptide Vaccines

    PubMed Central

    Nandy, Ashesh; Basak, Subhash C.

    2016-01-01

    The growing incidences of new viral diseases and increasingly frequent viral epidemics have strained therapeutic and preventive measures; the high mutability of viral genes puts additional strains on developmental efforts. Given the high cost and time requirements for new drugs development, vaccines remain as a viable alternative, but there too traditional techniques of live-attenuated or inactivated vaccines have the danger of allergenic reactions and others. Peptide vaccines have, over the last several years, begun to be looked on as more appropriate alternatives, which are economically affordable, require less time for development and hold the promise of multi-valent dosages. The developments in bioinformatics, proteomics, immunogenomics, structural biology and other sciences have spurred the growth of vaccinomics where computer assisted approaches serve to identify suitable peptide targets for eventual development of vaccines. In this mini-review we give a brief overview of some of the recent trends in computer assisted vaccine development with emphasis on the primary selection procedures of probable peptide candidates for vaccine development. PMID:27153063

  15. Processing of chromatographic data for chemometric analysis of peptide profiles from cheese extracts: a novel approach.

    PubMed

    Piraino, Paolo; Parente, Eugenio; McSweeney, Paul L H

    2004-11-17

    Chemometric analysis of chromatograms plays a fundamental role in characterization of foods or in detection of adulteration. Data for multivariate analysis of chromatographic profiles are usually obtained by visual matching (VM) of peaks, the identities of which, as for peptide profiles from cheese extracts, are often unknown. To avoid the main disadvantages of VM, which is subjective and time-consuming, a novel approach was developed. Fuzzy logic was employed to handle in a systematic way uncertainty in the position of peptide peaks, and chromatograms were processed by a rule-based membership function. Processed data consisted of classes of retention time wherein peak heights were accumulated by using the distance from the center of the class as a weight. The novel approach (fuzzy approach, FA) was compared with VM by using a real data set and by performing multivariate descriptive statistical techniques (principal component analysis, multidimensional scaling, and nonhierarchical cluster analysis). FA provided a fast, reliable, and objective alternative to VM and could be successfully applied for chemometric analysis of chromatographic profiles whenever knowledge of the identity of peaks is lacking or unnecessary. PMID:15537294

  16. Production of angiotensin-I-converting enzyme inhibitory peptides from β-lactoglobulin- and casein-derived peptides: an integrative approach.

    PubMed

    Welderufael, Fisseha T; Gibson, Trevor; Jauregi, Paula

    2012-01-01

    Angiotensin I-converting enzyme (ACE) inhibition is one of the mechanisms by which reduction in blood pressure is exerted. Whey proteins are a rich source of ACE inhibitory peptides and have shown a blood pressure reduction effect i.e. antihypertensive activity. The aim of this work was to develop a simplified process using a combination of adsorption and microfiltration steps for the production of hydrolysates from whey with high ACE inhibitory activity and potency; the latter was measured as the IC50, which is the peptide concentration required to reduce ACE activity by half. This process integrates the selective separation of β-lactoglobulin- and casein-derived peptides (CDP) from rennet whey and their hydrolysis, which results in partially pure, less complex hydrolysates with high bioactive potency. Hydrolysis was carried out with protease N "Amano" in a thermostatically controlled membrane reactor operated in a batch mode. By applying the integrative approach it was possible to produce from the same feedstock two different hydrolysates that exhibited high ACE inhibition. One hydrolysate was mainly composed of casein-derived peptides with IC50=285 μg/mL. In this hydrolysate we identified the well-known potent ACE-inhibitor and antihypertensive tripeptide Ile-Pro-Pro (IPP) and another novel octapeptide Gln-Asp-Lys-Thr-Glu-Ile-Pro-Thr (QDKTEIPT). The second hydrolysate was mainly composed of β-lactoglobulin derived peptides with IC50=28 μg/mL. This hydrolysate contained a tetrapeptide (Ile-Ile-Ala-Glu) IIAE as one of the two major peptides. A further advantage to this process is that enzyme activity was substantially increased as enzyme product inhibition was reduced. PMID:22467199

  17. Transparent aligners: An invisible approach to correct mild skeletal class III malocclusion.

    PubMed

    Yezdani, A Arif

    2015-04-01

    This case report highlights the treatment of a mild skeletal class III malocclusion with an invisible thermoplastic retainer. A 15-year-old female patient presented with a mild skeletal class III malocclusion with a retrognathic maxilla, orthognathic mandible, a low mandibular plane angle with Angle's class III malocclusion with maxillary lateral incisors in anterior cross-bite with crowding of maxillary anteriors, imbricated and rotated mandibular incisors and deep bite. Accurate upper and lower impressions and a bite registration were taken with polyvinyl siloxane rubber base impression material. This was then sent to the lab for the processing of a series of ClearPath aligners. The ClearPath virtual set-up sent from the lab provided the treatment plan and interproximal reduction estimation complete with posttreatment results. This enabled the clinician to actively participate in the treatment plan and provide the necessary suggestions. The ClearPath three-dimensional aligner was found to have effectively corrected the anterior cross-bite and crowding of the maxillary anteriors. PMID:26015738

  18. MetaMHCpan, A Meta Approach for Pan-Specific MHC Peptide Binding Prediction.

    PubMed

    Xu, Yichang; Luo, Cheng; Mamitsuka, Hiroshi; Zhu, Shanfeng

    2016-01-01

    Recent computational approaches in bioinformatics can achieve high performance, by which they can be a powerful support for performing real biological experiments, making biologists pay more attention to bioinformatics than before. In immunology, predicting peptides which can bind to MHC alleles is an important task, being tackled by many computational approaches. However, this situation causes a serious problem for immunologists to select the appropriate method to be used in bioinformatics. To overcome this problem, we develop an ensemble prediction-based Web server, which we call MetaMHCpan, consisting of two parts: MetaMHCIpan and MetaMHCIIpan, for predicting peptides which can bind MHC-I and MHC-II, respectively. MetaMHCIpan and MetaMHCIIpan use two (MHC2SKpan and LApan) and four (TEPITOPEpan, MHC2SKpan, LApan, and MHC2MIL) existing predictors, respectively. MetaMHCpan is available at http://datamining-iip.fudan.edu.cn/MetaMHCpan/index.php/pages/view/info . PMID:27076335

  19. A Parallel Non-Alignment Based Approach to Efficient Sequence Comparison using Longest Common Subsequences

    NASA Astrophysics Data System (ADS)

    Bhowmick, S.; Shafiullah, M.; Rai, H.; Bastola, D.

    2010-11-01

    Biological sequence comparison programs have revolutionized the practice of biochemistry, and molecular and evolutionary biology. Pairwise comparison of genomic sequences is a popular method of choice for analyzing genetic sequence data. However the quality of results from most sequence comparison methods are significantly affected by small perturbations in the data and furthermore, there is a dearth of computational tools to compare sequences beyond a certain length. In this paper, we describe a parallel algorithm for comparing genetic sequences using an alignment free-method based on computing the Longest Common Subsequence (LCS) between genetic sequences. We validate the quality of our results by comparing the phylogenetic tress obtained from ClustalW and LCS. We also show through complexity analysis of the isoefficiency and by empirical measurement of the running time that our algorithm is very scalable.

  20. Fast statistical alignment.

    PubMed

    Bradley, Robert K; Roberts, Adam; Smoot, Michael; Juvekar, Sudeep; Do, Jaeyoung; Dewey, Colin; Holmes, Ian; Pachter, Lior

    2009-05-01

    We describe a new program for the alignment of multiple biological sequences that is both statistically motivated and fast enough for problem sizes that arise in practice. Our Fast Statistical Alignment program is based on pair hidden Markov models which approximate an insertion/deletion process on a tree and uses a sequence annealing algorithm to combine the posterior probabilities estimated from these models into a multiple alignment. FSA uses its explicit statistical model to produce multiple alignments which are accompanied by estimates of the alignment accuracy and uncertainty for every column and character of the alignment--previously available only with alignment programs which use computationally-expensive Markov Chain Monte Carlo approaches--yet can align thousands of long sequences. Moreover, FSA utilizes an unsupervised query-specific learning procedure for parameter estimation which leads to improved accuracy on benchmark reference alignments in comparison to existing programs. The centroid alignment approach taken by FSA, in combination with its learning procedure, drastically reduces the amount of false-positive alignment on biological data in comparison to that given by other methods. The FSA program and a companion visualization tool for exploring uncertainty in alignments can be used via a web interface at http://orangutan.math.berkeley.edu/fsa/, and the source code is available at http://fsa.sourceforge.net/. PMID:19478997

  1. Multi-Beam Approach for Accelerating Alignment and Calibration of HyspIRI-Like Imaging Spectrometers

    NASA Technical Reports Server (NTRS)

    Eastwood, Michael L.; Green, Robert O.; Mouroulis, Pantazis; Hochberg, Eric B.; Hein, Randall C.; Kroll, Linley A.; Geier, Sven; Coles, James B.; Meehan, Riley

    2012-01-01

    A paper describes an optical stimulus that produces more consistent results, and can be automated for unattended, routine generation of data analysis products needed by the integration and testing team assembling a high-fidelity imaging spectrometer system. One key attribute of the system is an arrangement of pick-off mirrors that provides multiple input beams (five in this implementation) to simultaneously provide stimulus light to several field angles along the field of view of the sensor under test, allowing one data set to contain all the information that previously required five data sets to be separately collected. This stimulus can also be fed by quickly reconfigured sources that ultimately provide three data set types that would previously be collected separately using three different setups: Spectral Response Function (SRF), Cross-track Response Function (CRF), and Along-track Response Function (ARF), respectively. This method also lends itself to expansion of the number of field points if less interpolation across the field of view is desirable. An absolute minimum of three is required at the beginning stages of imaging spectrometer alignment.

  2. Aligning Goals, Assessments, and Activities: An Approach to Teaching PCR and Gel Electrophoresis

    PubMed Central

    Robertson, Amber L.; Batzli, Janet; Harris, Michelle; Miller, Sarah

    2008-01-01

    Polymerase chain reaction (PCR) and gel electrophoresis have become common techniques used in undergraduate molecular and cell biology labs. Although students enjoy learning these techniques, they often cannot fully comprehend and analyze the outcomes of their experiments because of a disconnect between concepts taught in lecture and experiments done in lab. Here we report the development and implementation of novel exercises that integrate the biological concepts of DNA structure and replication with the techniques of PCR and gel electrophoresis. Learning goals were defined based on concepts taught throughout the cell biology lab course and learning objectives specific to the PCR and gel electrophoresis lab. Exercises developed to promote critical thinking and target the underlying concepts of PCR, primer design, gel analysis, and troubleshooting were incorporated into an existing lab unit based on the detection of genetically modified organisms. Evaluative assessments for each exercise were aligned with the learning goals and used to measure student learning achievements. Our analysis found that the exercises were effective in enhancing student understanding of these concepts as shown by student performance across all learning goals. The new materials were particularly helpful in acquiring relevant knowledge, fostering critical-thinking skills, and uncovering prevalent misconceptions. PMID:18316813

  3. A computational design approach for virtual screening of peptide interactions across K+ channel families☆

    PubMed Central

    Doupnik, Craig A.; Parra, Katherine C.; Guida, Wayne C.

    2014-01-01

    Ion channels represent a large family of membrane proteins with many being well established targets in pharmacotherapy. The ‘druggability’ of heteromeric channels comprised of different subunits remains obscure, due largely to a lack of channel-specific probes necessary to delineate their therapeutic potential in vivo. Our initial studies reported here, investigated the family of inwardly rectifying potassium (Kir) channels given the availability of high resolution crystal structures for the eukaryotic constitutively active Kir2.2 channel. We describe a ‘limited’ homology modeling approach that can yield chimeric Kir channels having an outer vestibule structure representing nearly any known vertebrate or invertebrate channel. These computationally-derived channel structures were tested ""in silico for ‘docking’ to NMR structures of tertiapin (TPN), a 21 amino acid peptide found in bee venom. TPN is a highly selective and potent blocker for the epithelial rat Kir1.1 channel, but does not block human or zebrafish Kir1.1 channel isoforms. Our Kir1.1 channel-TPN docking experiments recapitulated published in vitro ""findings for TPN-sensitive and TPN-insensitive channels. Additionally, in silico site-directed mutagenesis identified ‘hot spots’ within the channel outer vestibule that mediate energetically favorable docking scores and correlate with sites previously identified with in vitro thermodynamic mutant-cycle analysis. These ‘proof-of-principle’ results establish a framework for virtual screening of re-engineered peptide toxins for interactions with computationally derived Kir channels that currently lack channel-specific blockers. When coupled with electrophysiological validation, this virtual screening approach may accelerate the drug discovery process, and can be readily applied to other ion channels families where high resolution structures are available. PMID:25709757

  4. Peptide-Based Anti-PCSK9 Vaccines - An Approach for Long-Term LDLc Management

    PubMed Central

    Galabova, Gergana; Brunner, Sylvia; Winsauer, Gabriele; Juno, Claudia; Wanko, Bettina; Mairhofer, Andreas; Lührs, Petra; Schneeberger, Achim; von Bonin, Arne; Mattner, Frank; Schmidt, Walter; Staffler, Guenther

    2014-01-01

    Background Low Density Lipoprotein (LDL) hypercholesterolemia, and its associated cardiovascular diseases, are some of the leading causes of death worldwide. The ability of proprotein convertase subtilisin/kexin 9 (PCSK9) to modulate circulating LDL cholesterol (LDLc) concentrations made it a very attractive target for LDLc management. To date, the most advanced approaches for PCSK9 inhibition are monoclonal antibody (mAb) therapies. Although shown to lower LDLc significantly, mAbs face functional limitations because of their relatively short in vivo half-lives necessitating frequent administration. Here, we evaluated the long-term efficacy and safety of PCSK9-specific active vaccines in different preclinical models. Methods and Finding PCSK9 peptide-based vaccines were successfully selected by our proprietary technology. To test their efficacy, wild-type (wt) mice, Ldlr+/− mice, and rats were immunized with highly immunogenic vaccine candidates. Vaccines induced generation of high-affine PCSK9-specific antibodies in all species. Group mean total cholesterol (TC) concentration was reduced by up to 30%, and LDLc up to 50% in treated animals. Moreover, the PCSK9 vaccine-induced humoral immune response persisted for up to one year in mice, and reduced cholesterol levels significantly throughout the study. Finally, the vaccines were well tolerated in all species tested. Conclusions Peptide-based anti-PCSK9 vaccines induce the generation of antibodies that are persistent, high-affine, and functional for up to one year. They are powerful and safe tools for long-term LDLc management, and thus may represent a novel therapeutic approach for the prevention and/or treatment of LDL hypercholesterolemia-related cardiovascular diseases in humans. PMID:25474576

  5. Innovative scatterometry approach for self-aligned quadruple patterning (SAQP) process control

    NASA Astrophysics Data System (ADS)

    Gunay-Demirkol, Anil; Altamirano Sanchez, Efrain; Heraud, Stephane; Godny, Stephane; Charley, Anne-Laure; Leray, Philippe; Urenski, Ronen; Cohen, Oded; Turovets, Igor; Wolfling, Shay

    2016-03-01

    In this work, capabilities of scatterometry at various steps of the self-aligned quadruple patterning (SAQP) process flow for 7nm (N7) technology node are demonstrated including the pitch walk measurement on the final fin etch step. The scatterometry solutions for each step are verified using reference metrology and the capability to follow the planned process design-of-experiment (DOE) and the sensitivity to catch the small process variations are demonstrated. Pitch walk, which is pitch variation in the four line/space (L/S) populations, is one of the main process challenges for SAQP. Scatterometry, which is a versatile optical technique for critical dimensions (CD) and shape metrology, can find the direct measurement of pitch walk challenging because it is a very weak parameter. In this work, the pitch walk measurement is managed via scatterometry using an advanced technique of parallel interpretation of scatterometry pads with varying pitches. The three populations of trenches could be clearly distinguished with the scatterometry and the consistency with the reference data and with the process DOE are presented. In addition, the root cause of the within-wafer non-uniformity of fin CD is determined. The measurements were done on-site at IMEC as a part of the process development and control of the IMEC SAQP processes [1]. All in all, in this work it is demonstrated that scatterometry is capable of monitoring each process step of FEOL SAQP and it can measure three different space populations separately and extract pitch walk information at the final fin etch step.

  6. Toward automated chromatographic fingerprinting: A non-alignment approach to gas chromatography mass spectrometry data.

    PubMed

    Vestner, Jochen; de Revel, Gilles; Krieger-Weber, Sibylle; Rauhut, Doris; du Toit, Maret; de Villiers, André

    2016-03-10

    In contrast to targeted analysis of volatile compounds, non-targeted approaches take information of known and unknown compounds into account, are inherently more comprehensive and give a more holistic representation of the sample composition. Although several non-targeted approaches have been developed, there's still a demand for automated data processing tools, especially for complex multi-way data such as chromatographic data obtained from multichannel detectors. This work was therefore aimed at developing a data processing procedure for gas chromatography mass spectrometry (GC-MS) data obtained from non-targeted analysis of volatile compounds. The developed approach uses basic matrix manipulation of segmented GC-MS chromatograms and PARAFAC multi-way modelling. The approach takes retention time shifts and peak shape deformations between samples into account and can be done with the freely available N-way toolbox for MATLAB. A demonstration of the new fingerprinting approach is presented using an artificial GC-MS data set and an experimental full-scan GC-MS data set obtained for a set of experimental wines. PMID:26893085

  7. Radiolabeled heterobivalent peptidic ligands: an approach with high future potential for in vivo imaging and therapy of malignant diseases.

    PubMed

    Fischer, Gabriel; Schirrmacher, Ralf; Wängler, Björn; Wängler, Carmen

    2013-06-01

    Two-pronged synergism: We review the recently developed approach of using heterobivalent peptide ligands that interact concomitantly with different receptors on tumor cells. These ligands exhibit highly favorable tumor-targeting properties and pave the way for the development of drugs for specific, sensitive, and noninvasive tumor imaging and therapy. PMID:23564566

  8. Overcoming synthetic Abeta peptide aging: a new approach to an age-old problem.

    PubMed

    Manzoni, Claudia; Colombo, Laura; Messa, Massimo; Cagnotto, Alfredo; Cantù, Laura; Del Favero, Elena; Salmona, Mario

    2009-01-01

    Investigations of amyloidogenic diseases use synthetic peptides for cell-free and in vitro studies. However, amyloidogenic peptides often show intrinsic variability that markedly affects the reproducibility of experiments. Proof of physicochemical and biological variability with different batches of amyloidogenic peptides have been reported in literature. Here, we show that differences can be observed even within the same batch of Abeta1-42 peptide after storing lyophilised samples at -20 degrees C. This change (referred to as 'peptide aging') was reproduced with Abeta1-40 peptide samples by using a series of lyophilisation cycles, showing that lyophilisation, rather than preserving the physicochemical and biological features of Abeta peptides, introduces wide variability. To counteract synthetic peptide aging, we set up a procedure involving the sequential use of trifluoroacetic acid, formic acid and sodium hydroxide solutions that disaggregate preformed seeds and enriched Abeta peptide solutions into monomers and low-molecular-weight oligomers. This procedure enabled us to obtain reproducible physicochemical and biological features of Abeta peptides, irrespective of their age. PMID:20536398

  9. Structural re-alignment in an immunologic surface region of ricin A chain

    SciTech Connect

    Zemla, A T; Zhou, C E

    2007-07-24

    We compared structure alignments generated by several protein structure comparison programs to determine whether existing methods would satisfactorily align residues at a highly conserved position within an immunogenic loop in ribosome inactivating proteins (RIPs). Using default settings, structure alignments generated by several programs (CE, DaliLite, FATCAT, LGA, MAMMOTH, MATRAS, SHEBA, SSM) failed to align the respective conserved residues, although LGA reported correct residue-residue (R-R) correspondences when the beta-carbon (Cb) position was used as the point of reference in the alignment calculations. Further tests using variable points of reference indicated that points distal from the beta carbon along a vector connecting the alpha and beta carbons yielded rigid structural alignments in which residues known to be highly conserved in RIPs were reported as corresponding residues in structural comparisons between ricin A chain, abrin-A, and other RIPs. Results suggest that approaches to structure alignment employing alternate point representations corresponding to side chain position may yield structure alignments that are more consistent with observed conservation of functional surface residues than do standard alignment programs, which apply uniform criteria for alignment (i.e., alpha carbon (Ca) as point of reference) along the entirety of the peptide chain. We present the results of tests that suggest the utility of allowing user-specified points of reference in generating alternate structural alignments, and we present a web server for automatically generating such alignments.

  10. A self-assembly pathway to aligned monodomain gels

    SciTech Connect

    Zhang, Shuming; Greenfield, Megan A.; Mata, Alvaro; Palmer, Liam C.; Bitton, Ronit; Mantei, Jason R.; Aparicio, Conrado; Olvera de la Cruz, Monica; Stupp, Samuel I.

    2010-09-27

    Aggregates of charged amphiphilic molecules have been found to access a structure at elevated temperature that templates alignment of supramolecular fibrils over macroscopic scales. The thermal pathway leads to a lamellar plaque structure with fibrous texture that breaks on cooling into large arrays of aligned nanoscale fibres and forms a strongly birefringent liquid. By manually dragging this liquid crystal from a pipette onto salty media, it is possible to extend this alignment over centimetres in noodle-shaped viscoelastic strings. Using this approach, the solution of supramolecular filaments can be mixed with cells at physiological temperatures to form monodomain gels of aligned cells and filaments. The nature of the self-assembly process and its biocompatibility would allow formation of cellular wires in situ that have any length and customized peptide compositions for use in biological applications.

  11. A self-assembly pathway to aligned monodomain gels

    SciTech Connect

    Zhang, Shuming; Greenfield, Megan A.; Mata, Alvaro; Palmer, Liam C.; Bitton, Ronit; Mantei, Jason R.; Aparicio, Conrado; Olvera de la Cruz, Monica; Stupp, Samuel I.

    2010-06-13

    Aggregates of charged amphiphilic molecules have been found to access a structure at elevated temperature that templates alignment of supramolecular fibrils over macroscopic scales. The thermal pathway leads to a lamellar plaque structure with fibrous texture that breaks on cooling into large arrays of aligned nanoscale fibres and forms a strongly birefringent liquid. By manually dragging this liquid crystal from a pipette onto salty media, it is possible to extend this alignment over centimetres in noodle-shaped viscoelastic strings. Using this approach, the solution of supramolecular filaments can be mixed with cells at physiological temperatures to form monodomain gels of aligned cells and filaments. The nature of the self-assembly process and its biocompatibility would allow formation of cellular wires in situ that have any length and customized peptide compositions for use in biological applications.

  12. Aligning physical elements with persons' attitude: an approach using Rasch measurement theory

    NASA Astrophysics Data System (ADS)

    Camargo, F. R.; Henson, B.

    2013-09-01

    Affective engineering uses mathematical models to convert the information obtained from persons' attitude to physical elements into an ergonomic design. However, applications in the domain have not in many cases met measurement assumptions. This paper proposes a novel approach based on Rasch measurement theory to overcome the problem. The research demonstrates that if data fit the model, further variables can be added to a scale. An empirical study was designed to determine the range of compliance where consumers could obtain an impression of a moisturizer cream when touching some product containers. Persons, variables and stimulus objects were parameterised independently on a linear continuum. The results showed that a calibrated scale preserves comparability although incorporating further variables.

  13. On the co-alignment of solar telescopes. A new approach to solar pointing

    NASA Astrophysics Data System (ADS)

    Staiger, J.

    2013-06-01

    Helioseismological measurements require long observing times and thus may be adversely affected by lateral image drifts as caused by pointing instabilities. At the Vacuum Tower Telescope VTT, Tenerife we have recorded drift values of up to 5" per hour under unstable thermal conditions (dome opening, strong day-to-day thermal gradients). Typically drifts of 0.5" - 1.0" per hour may be encountered under more favorable conditions. Past experience has shown that most high-resolution solar telescopes may be affected by this problem to some degree. This inherent shortcoming of solar pointing is caused by the fact that the guiding loop can be closed only within the guiding beam but not within the telescope's main beam. We have developed a new approach to this problem. We correlate continuum brightness patterns observed from within the telescope main beam with patterns originating from a full disk telescope. We show that brightness patterns of sufficient size are unique with respect to solar location at any instant of time and may serve as a location identifier. We make use of the fact that averaged location information of solar structures is invariant with respect to telescope resolution. We have carried out tests at the VTT together with SDO. We have used SDO as a full disk reference. We were able to reduce lateral image drifts by an order of magnitude.

  14. New Milk Protein-Derived Peptides with Potential Antimicrobial Activity: An Approach Based on Bioinformatic Studies

    PubMed Central

    Dziuba, Bartłomiej; Dziuba, Marta

    2014-01-01

    New peptides with potential antimicrobial activity, encrypted in milk protein sequences, were searched for with the use of bioinformatic tools. The major milk proteins were hydrolyzed in silico by 28 enzymes. The obtained peptides were characterized by the following parameters: molecular weight, isoelectric point, composition and number of amino acid residues, net charge at pH 7.0, aliphatic index, instability index, Boman index, and GRAVY index, and compared with those calculated for known 416 antimicrobial peptides including 59 antimicrobial peptides (AMPs) from milk proteins listed in the BIOPEP database. A simple analysis of physico-chemical properties and the values of biological activity indicators were insufficient to select potentially antimicrobial peptides released in silico from milk proteins by proteolytic enzymes. The final selection was made based on the results of multidimensional statistical analysis such as support vector machines (SVM), random forest (RF), artificial neural networks (ANN) and discriminant analysis (DA) available in the Collection of Anti-Microbial Peptides (CAMP database). Eleven new peptides with potential antimicrobial activity were selected from all peptides released during in silico proteolysis of milk proteins. PMID:25141106

  15. Graphene oxide-peptide nanoassembly as a general approach for monitoring the activity of histone deacetylases.

    PubMed

    Liang, Ping; Li, Qing; Wu, Zhan; Jiang, Jian-Hui; Yu, Ru-Qin

    2016-06-20

    A novel fluorescent sensor using graphene oxide (GO)-peptide nanoassembly is developed for histone deacetylases (HDACs) based on deacetylation mediated cleavage of substrate peptides, which provides a simple, cost-effective platform for monitoring the activity of HDACs. PMID:27194207

  16. Horizontal carbon nanotube alignment.

    PubMed

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies. PMID:27546174

  17. Carcinogenesis of renal cell carcinoma reflected in HLA ligands: A novel approach for synergistic peptide vaccination design.

    PubMed

    Klatt, Martin G; Kowalewski, Daniel J; Schuster, Heiko; Di Marco, Moreno; Hennenlotter, Jörg; Stenzl, Arnulf; Rammensee, Hans-Georg; Stevanović, Stefan

    2016-08-01

    Despite recent advances in immunotherapy of renal cell carcinoma (RCC), peptide vaccination strategies still lack an approach for personalized peptide vaccination that takes intra- and inter-tumoral heterogeneity and biological characteristics into account. In this study, we use an immunoprecipitation and mass spectrometry-based approach supplemented by network analysis of HLA ligands to target this goal. By analyzing HLA-presented peptides for HLA class I and II of 11 malignant and 6 non-malignant kidney tissue samples, more than 2,700 peptides and 1,600 corresponding source proteins were identified. A high overlap with HLA ligands derived from peripheral blood mononuclear cells (PBMCs) was detected most likely due to tumor-infiltrating inflammatory cells and therefore excluded from network analysis. Subsequent biological function analysis of HLA ligands by the GeneMANIA online platform showed enrichment for well established, but also novel, pathways and biological processes involved in carcinogenesis of RCC almost exclusively in malignant tissue samples. By exploring source proteins involved in these overrepresented pathways, we verified various known tumor-associated antigens (TAAs) for RCC (e.g., CA9, EGLN3, IGFBP3, MMP7, PAX2, VEGFA, or EGFR) but could also detect novel TAAs for RCC (e.g., PLOD2, LOX, ENPEP, or TGFBI). Some of these new TAAs had already been shown to elicit a T cell response in cancer patients. Thus, network analysis of HLA ligands provided a new platform for implementing personalized, multipeptide vaccines with potentially synergistic antitumor effects. PMID:27622074

  18. Identification of novel serum peptide biomarkers for high-altitude adaptation: a comparative approach

    PubMed Central

    Yang, Juan; Li, Wenhua; Liu, Siyuan; Yuan, Dongya; Guo, Yijiao; Jia, Cheng; Song, Tusheng; Huang, Chen

    2016-01-01

    We aimed to identify serum biomarkers for screening individuals who could adapt to high-altitude hypoxia at sea level. HHA (high-altitude hypoxia acclimated; n = 48) and HHI (high-altitude hypoxia illness; n = 48) groups were distinguished at high altitude, routine blood tests were performed for both groups at high altitude and at sea level. Serum biomarkers were identified by comparing serum peptidome profiling between HHI and HHA groups collected at sea level. Routine blood tests revealed the concentration of hemoglobin and red blood cells were significantly higher in HHI than in HHA at high altitude. Serum peptidome profiling showed that ten significantly differentially expressed peaks between HHA and HHI at sea level. Three potential serum peptide peaks (m/z values: 1061.91, 1088.33, 4057.63) were further sequence identified as regions of the inter-α trypsin inhibitor heavy chain H4 fragment (ITIH4 347–356), regions of the inter-α trypsin inhibitor heavy chain H1 fragment (ITIH1 205–214), and isoform 1 of fibrinogen α chain precursor (FGA 588–624). Expression of their full proteins was also tested by ELISA in HHA and HHI samples collected at sea level. Our study provided a novel approach for identifying potential biomarkers for screening people at sea level who can adapt to high altitudes. PMID:27150491

  19. Identification of novel serum peptide biomarkers for high-altitude adaptation: a comparative approach.

    PubMed

    Yang, Juan; Li, Wenhua; Liu, Siyuan; Yuan, Dongya; Guo, Yijiao; Jia, Cheng; Song, Tusheng; Huang, Chen

    2016-01-01

    We aimed to identify serum biomarkers for screening individuals who could adapt to high-altitude hypoxia at sea level. HHA (high-altitude hypoxia acclimated; n = 48) and HHI (high-altitude hypoxia illness; n = 48) groups were distinguished at high altitude, routine blood tests were performed for both groups at high altitude and at sea level. Serum biomarkers were identified by comparing serum peptidome profiling between HHI and HHA groups collected at sea level. Routine blood tests revealed the concentration of hemoglobin and red blood cells were significantly higher in HHI than in HHA at high altitude. Serum peptidome profiling showed that ten significantly differentially expressed peaks between HHA and HHI at sea level. Three potential serum peptide peaks (m/z values: 1061.91, 1088.33, 4057.63) were further sequence identified as regions of the inter-α trypsin inhibitor heavy chain H4 fragment (ITIH4 347-356), regions of the inter-α trypsin inhibitor heavy chain H1 fragment (ITIH1 205-214), and isoform 1 of fibrinogen α chain precursor (FGA 588-624). Expression of their full proteins was also tested by ELISA in HHA and HHI samples collected at sea level. Our study provided a novel approach for identifying potential biomarkers for screening people at sea level who can adapt to high altitudes. PMID:27150491

  20. Identification of novel serum peptide biomarkers for high-altitude adaptation: a comparative approach

    NASA Astrophysics Data System (ADS)

    Yang, Juan; Li, Wenhua; Liu, Siyuan; Yuan, Dongya; Guo, Yijiao; Jia, Cheng; Song, Tusheng; Huang, Chen

    2016-05-01

    We aimed to identify serum biomarkers for screening individuals who could adapt to high-altitude hypoxia at sea level. HHA (high-altitude hypoxia acclimated; n = 48) and HHI (high-altitude hypoxia illness; n = 48) groups were distinguished at high altitude, routine blood tests were performed for both groups at high altitude and at sea level. Serum biomarkers were identified by comparing serum peptidome profiling between HHI and HHA groups collected at sea level. Routine blood tests revealed the concentration of hemoglobin and red blood cells were significantly higher in HHI than in HHA at high altitude. Serum peptidome profiling showed that ten significantly differentially expressed peaks between HHA and HHI at sea level. Three potential serum peptide peaks (m/z values: 1061.91, 1088.33, 4057.63) were further sequence identified as regions of the inter-α trypsin inhibitor heavy chain H4 fragment (ITIH4 347–356), regions of the inter-α trypsin inhibitor heavy chain H1 fragment (ITIH1 205–214), and isoform 1 of fibrinogen α chain precursor (FGA 588–624). Expression of their full proteins was also tested by ELISA in HHA and HHI samples collected at sea level. Our study provided a novel approach for identifying potential biomarkers for screening people at sea level who can adapt to high altitudes.

  1. Binding of solvated peptide (EPLQLKM) with a graphene sheet via simulated coarse-grained approach.

    PubMed

    Sheikholeslami, Somayyeh; Pandey, R B; Dragneva, Nadiya; Floriano, Wely; Rubel, Oleg; Barr, Stephen A; Kuang, Zhifeng; Berry, Rajiv; Naik, Rajesh; Farmer, Barry

    2014-05-28

    Binding of a solvated peptide A1 ((1)E (2)P (3)L (4)Q (5)L (6)K (7)M) with a graphene sheet is studied by a coarse-grained computer simulation involving input from three independent simulated interaction potentials in hierarchy. A number of local and global physical quantities such as energy, mobility, and binding profiles and radius of gyration of peptides are examined as a function of temperature (T). Quantitative differences (e.g., the extent of binding within a temperature range) and qualitative similarities are observed in results from three simulated potentials. Differences in variations of both local and global physical quantities suggest a need for such analysis with multiple inputs in assessing the reliability of both quantitative and qualitative observations. While all three potentials indicate binding at low T and unbinding at high T, the extent of binding of peptide with the temperature differs. Unlike un-solvated peptides (with little variation in binding among residues), solvation accentuates the differences in residue binding. As a result the binding of solvated peptide at low temperatures is found to be anchored by three residues, (1)E, (4)Q, and (6)K (different from that with the un-solvated peptide). Binding to unbinding transition can be described by the variation of the transverse (with respect to graphene sheet) component of the radius of gyration of the peptide (a potential order parameter) as a function of temperature. PMID:24880319

  2. Cancer therapeutic approach based on conformational stabilization of mutant p53 protein by small peptides

    PubMed Central

    Tal, Perry; Eizenberger, Shay; Cohen, Elad; Goldfinger, Naomi; Pietrokovski, Shmuel; Oren, Moshe; Rotter, Varda

    2016-01-01

    The p53 tumor suppressor serves as a major barrier against malignant transformation. Over 50% of tumors inactivate p53 by point mutations in its DNA binding domain. Most mutations destabilize p53 protein folding, causing its partial denaturation at physiological temperature. Thus a high proportion of human tumors overexpress a potential potent tumor suppressor in a non-functional, misfolded form. The equilibrium between the properly folded and misfolded states of p53 may be affected by molecules that interact with p53, stabilizing its native folding and restoring wild type p53 activity to cancer cells. To select for mutant p53 (mutp53) reactivating peptides, we adopted the phage display technology, allowing interactions between mutp53 and random peptide libraries presented on phages and enriching for phage that favor the correctly folded p53 conformation. We obtained a large database of potential reactivating peptides. Lead peptides were synthesized and analyzed for their ability to restore proper p53 folding and activity. Remarkably, many enriched peptides corresponded to known p53-binding proteins, including RAD9. Importantly, lead peptides elicited dramatic regression of aggressive tumors in mouse xenograft models. Such peptides might serve as novel agents for human cancer therapy. PMID:26943582

  3. Cancer therapeutic approach based on conformational stabilization of mutant p53 protein by small peptides.

    PubMed

    Tal, Perry; Eizenberger, Shay; Cohen, Elad; Goldfinger, Naomi; Pietrokovski, Shmuel; Oren, Moshe; Rotter, Varda

    2016-03-15

    The p53 tumor suppressor serves as a major barrier against malignant transformation. Over 50% of tumors inactivate p53 by point mutations in its DNA binding domain. Most mutations destabilize p53 protein folding, causing its partial denaturation at physiological temperature. Thus a high proportion of human tumors overexpress a potential potent tumor suppressor in a non-functional, misfolded form. The equilibrium between the properly folded and misfolded states of p53 may be affected by molecules that interact with p53, stabilizing its native folding and restoring wild type p53 activity to cancer cells. To select for mutant p53 (mutp53) reactivating peptides, we adopted the phage display technology, allowing interactions between mutp53 and random peptide libraries presented on phages and enriching for phage that favor the correctly folded p53 conformation. We obtained a large database of potential reactivating peptides. Lead peptides were synthesized and analyzed for their ability to restore proper p53 folding and activity. Remarkably, many enriched peptides corresponded to known p53-binding proteins, including RAD9. Importantly, lead peptides elicited dramatic regression of aggressive tumors in mouse xenograft models. Such peptides might serve as novel agents for human cancer therapy. PMID:26943582

  4. Conformational flexibility in designing peptides for immunology: the molecular dynamics approach.

    PubMed

    Stavrakoudis, Athanassios

    2010-09-01

    Computational modeling techniques and computer simulations have become a routine in biological sciences and have gained great attention from researchers. Molecular dynamics simulation is a valuable tool towards an understanding of the complex structure of biological systems, especially in the study of the flexibility of the biological molecules such as peptides or proteins. Peptides play a very important role in human physiology and control many of the processes involved in the immune system response. Designing new and optimal peptide vaccines is one of the hottest challenges of the 21(st) century science and it brings together researchers from different fields. Molecular dynamics simulations have proven to be a helpful tool assisting laboratory work, saving financial sources and opening possibilities for exploring properties of the molecular systems that are hardly accessible by conventional experimental methods. Present review is dedicated to the recent contributions in applications of molecular dynamics simulations in peptide design for immunological purposes, such as B or T cell epitopes. PMID:20412039

  5. A Postgenomic Approach to Identification of Mycobacterium leprae-Specific Peptides as T-Cell Reagents

    PubMed Central

    Dockrell, Hazel M.; Brahmbhatt, Shweta; Robertson, Brian D.; Britton, Sven; Fruth, Uli; Gebre, Negussie; Hunegnaw, Mesfin; Hussain, Rabia; Manandhar, Rakesh; Murillo, Luis; Pessolani, Maria Cristina V.; Roche, Paul; Salgado, Jorge L.; Sampaio, Elizabeth; Shahid, Firdaus; Thole, Jelle E. R.; Young, Douglas B.

    2000-01-01

    To identify Mycobacterium leprae-specific human T-cell epitopes, which could be used to distinguish exposure to M. leprae from exposure to Mycobacterium tuberculosis or to environmental mycobacteria or from immune responses following Mycobacterium bovis BCG vaccination, 15-mer synthetic peptides were synthesized based on data from the M. leprae genome, each peptide containing three or more predicted HLA-DR binding motifs. Eighty-one peptides from 33 genes were tested for their ability to induce T-cell responses, using peripheral blood mononuclear cells (PBMC) from tuberculoid leprosy patients (n = 59) and healthy leprosy contacts (n = 53) from Brazil, Ethiopia, Nepal, and Pakistan and 20 United Kingdom blood bank donors. Gamma interferon (IFN-γ) secretion proved more sensitive for detection of PBMC responses to peptides than did lymphocyte proliferation. Many of the peptides giving the strongest responses in leprosy donors compared to subjects from the United Kingdom, where leprosy is not endemic, have identical, or almost identical, sequences in M. leprae and M. tuberculosis and would not be suitable as diagnostic tools. Most of the peptides recognized by United Kingdom donors showed promiscuous recognition by subjects expressing differing HLA-DR types. The majority of the novel T-cell epitopes identified came from proteins not previously recognized as immune targets, many of which are cytosolic enzymes. Fifteen of the tested peptides had ≥5 of 15 amino acid mismatches between the equivalent M. leprae and M. tuberculosis sequences; of these, eight gave specificities of ≥90% (percentage of United Kingdom donors who were nonresponders for IFN-γ secretion), with sensitivities (percentage of responders) ranging from 19 to 47% for tuberculoid leprosy patients and 21 to 64% for healthy leprosy contacts. A pool of such peptides, formulated as a skin test reagent, could be used to monitor exposure to leprosy or as an aid to early diagnosis. PMID:10992494

  6. dPABBs: A Novel in silico Approach for Predicting and Designing Anti-biofilm Peptides

    PubMed Central

    Sharma, Arun; Gupta, Pooja; Kumar, Rakesh; Bhardwaj, Anshu

    2016-01-01

    Increasingly, biofilms are being recognised for their causative role in persistent infections (like cystic fibrosis, otitis media, diabetic foot ulcers) and nosocomial diseases (biofilm-infected vascular catheters, implants and prosthetics). Given the clinical relevance of biofilms and their recalcitrance to conventional antibiotics, it is imperative that alternative therapeutics are proactively sought. We have developed dPABBs, a web server that facilitates the prediction and design of anti-biofilm peptides. The six SVM and Weka models implemented on dPABBs were observed to identify anti-biofilm peptides on the basis of their whole amino acid composition, selected residue features and the positional preference of the residues (maximum accuracy, sensitivity, specificity and MCC of 95.24%, 92.50%, 97.73% and 0.91, respectively, on the training datasets). On the N-terminus, it was seen that either of the cationic polar residues, R and K, is present at all five positions in case of the anti-biofilm peptides, whereas in the QS peptides, the uncharged polar residue S is preponderant at the first (also anionic polar residues D, E), third and fifth positions. Positive predictions were also obtained for 29 FDA-approved peptide drugs and ten antimicrobial peptides in clinical development, indicating at their possible repurposing for anti-biofilm therapy. dPABBs is freely accessible on: http://ab-openlab.csir.res.in/abp/antibiofilm/. PMID:26912180

  7. dPABBs: A Novel in silico Approach for Predicting and Designing Anti-biofilm Peptides.

    PubMed

    Sharma, Arun; Gupta, Pooja; Kumar, Rakesh; Bhardwaj, Anshu

    2016-01-01

    Increasingly, biofilms are being recognised for their causative role in persistent infections (like cystic fibrosis, otitis media, diabetic foot ulcers) and nosocomial diseases (biofilm-infected vascular catheters, implants and prosthetics). Given the clinical relevance of biofilms and their recalcitrance to conventional antibiotics, it is imperative that alternative therapeutics are proactively sought. We have developed dPABBs, a web server that facilitates the prediction and design of anti-biofilm peptides. The six SVM and Weka models implemented on dPABBs were observed to identify anti-biofilm peptides on the basis of their whole amino acid composition, selected residue features and the positional preference of the residues (maximum accuracy, sensitivity, specificity and MCC of 95.24%, 92.50%, 97.73% and 0.91, respectively, on the training datasets). On the N-terminus, it was seen that either of the cationic polar residues, R and K, is present at all five positions in case of the anti-biofilm peptides, whereas in the QS peptides, the uncharged polar residue S is preponderant at the first (also anionic polar residues D, E), third and fifth positions. Positive predictions were also obtained for 29 FDA-approved peptide drugs and ten antimicrobial peptides in clinical development, indicating at their possible repurposing for anti-biofilm therapy. dPABBs is freely accessible on: http://ab-openlab.csir.res.in/abp/antibiofilm/. PMID:26912180

  8. Peptidyl Molecular Imaging Contrast Agents Using a New Solid Phase Peptide Synthesis Approach

    PubMed Central

    Yoo, Byunghee; Pagel, Mark D.

    2008-01-01

    A versatile method is disclosed for solid phase peptide synthesis (SPPS) of molecular imaging contrast agents. A DO3A moiety was derivatized to introduce a CBZ-protected amino group and then coupled to a polymeric support. CBZ cleavage with Et2AlCl/thioanisole was optimized for SPPS. Amino acids were then coupled to the aminoDOTA loaded resin using conventional step-wise Fmoc SPPS to create a product with DOTA coupled to the C-terminus of the peptide. In a second study, the DO3A moiety was coupled to a glycine-loaded polymeric support, and amino acids were then coupled to the amino-DOTA-peptide loaded resin using SPPS, to incorporate DOTA within the peptide sequence. The peptide-(Tm3+-DOTA) amide showed a PARAmagnetic Chemical Exchange Saturation Transfer (PARACEST) effect, which demonstrated the utility of this contrast agent for molecular imaging. These results demonstrate the advantages of exploiting SPPS methodologies through the development of unique DOTA derivatives to create peptide-based molecular imaging contrast agents. PMID:17330953

  9. Design of an epitope-based peptide vaccine against spike protein of human coronavirus: an in silico approach

    PubMed Central

    Oany, Arafat Rahman; Emran, Abdullah-Al; Jyoti, Tahmina Pervin

    2014-01-01

    Human coronavirus (HCoV), a member of Coronaviridae family, is the causative agent of upper respiratory tract infections and “atypical pneumonia”. Despite severe epidemic outbreaks on several occasions and lack of antiviral drug, not much progress has been made with regard to an epitope-based vaccine designed for HCoV. In this study, a computational approach was adopted to identify a multiepitope vaccine candidate against this virus that could be suitable to trigger a significant immune response. Sequences of the spike proteins were collected from a protein database and analyzed with an in silico tool, to identify the most immunogenic protein. Both T cell immunity and B cell immunity were checked for the peptides to ensure that they had the capacity to induce both humoral and cell-mediated immunity. The peptide sequence from 88–94 amino acids and the sequence KSSTGFVYF were found as the most potential B cell and T cell epitopes, respectively. Furthermore, conservancy analysis was also done using in silico tools and showed a conservancy of 64.29% for all epitopes. The peptide sequence could interact with as many as 16 human leukocyte antigens (HLAs) and showed high cumulative population coverage, ranging from 75.68% to 90.73%. The epitope was further tested for binding against the HLA molecules, using in silico docking techniques, to verify the binding cleft epitope interaction. The allergenicity of the epitopes was also evaluated. This computational study of design of an epitope-based peptide vaccine against HCoVs allows us to determine novel peptide antigen targets in spike proteins on intuitive grounds, albeit the preliminary results thereof require validation by in vitro and in vivo experiments. PMID:25187696

  10. Binding of a C-end rule peptide to neuropilin-1 receptor: A molecular modeling approach

    PubMed Central

    Haspel, Nurit; Zanuy, David; Nussinov, Ruth; Teesalu, Tambet; Ruoslahti, Erkki; Aleman, Carlos

    2011-01-01

    Neuropilin-1 (NRP-1) is a receptor that plays an essential role in angiogenesis, vascular permeability and nervous system development. Previous studies have shown that peptides with an N-terminal Arg, especially peptides with the four residue consensus sequence R/K/XXR/K bind to NRP-1 cell surfaces. Peptides containing such consensus sequences promote binding and internalization into cells, while blocking the C-terminal Arg (or Lys) prevents the internalization. In this study we use molecular dynamics simulations to model the structural properties of the NRP-1 complex with a prototypic CendR peptide, RPAR. Our simulations show that RPAR binds NRP-1 through specific interactions of the RPAR C-terminus: three hydrogen bonds and a salt bridge anchor the ligand in the receptor pocket. The modeling results were used as the starting point for a systematic computational study of new RPAR analogs based on chemical modifications of its natural amino acids. Comparison of the structural properties of the new peptide - receptor complexes with the original organization suggest that some of the analogs can increase the binding affinity while reducing the natural sensitivity of RXXR to endogenous proteases. PMID:21247217

  11. Combined Bioinformatic and Rational Design Approach To Develop Antimicrobial Peptides against Mycobacterium tuberculosis.

    PubMed

    Pearson, C Seth; Kloos, Zachary; Murray, Brian; Tabe, Ebot; Gupta, Monica; Kwak, Jun Ha; Karande, Pankaj; McDonough, Kathleen A; Belfort, Georges

    2016-05-01

    Drug-resistant pathogens are a growing problem, and novel strategies are needed to combat this threat. Among the most significant of these resistant pathogens is Mycobacterium tuberculosis, which is an unusually difficult microbial target due to its complex membrane. Here, we design peptides for specific activity against M. tuberculosis using a combination of "database filtering" bioinformatics, protein engineering, and de novo design. Several variants of these peptides are structurally characterized to validate the design process. The designed peptides exhibit potent activity (MIC values as low as 4 μM) against M. tuberculosis and also exhibit broad activity against a host of other clinically relevant pathogenic bacteria such as Gram-positive bacteria (Streptococcus) and Gram-negative bacteria (Escherichia coli). They also display excellent selectivity, with low cytotoxicity against cultured macrophages and lung epithelial cells. These first-generation antimicrobial peptides serve as a platform for the design of antibiotics and for investigating structure-activity relationships in the context of the M. tuberculosis membrane. The antimicrobial peptide design strategy is expected to be generalizable for any pathogen for which an activity database can be created. PMID:26902758

  12. Generation of Small 32P-Labeled Peptides as a Potential Approach to Colorectal Cancer Therapy

    PubMed Central

    Abraham, John M.; Cheng, Yulan; Hamilton, James P.; Paun, Bogdan; Jin, Zhe; Agarwal, Rachana; Kan, Takatsugu; David, Stefan; Olaru, Alexandru; Yang, Jian; Ito, Tetsuo; Selaru, Florin M.; Mori, Yuriko; Meltzer, Stephen J.

    2008-01-01

    Cancers have been revealed to be extremely heterogenous in terms of the frequency and types of mutations present in cells from different malignant tumors. Thus, it is likely that uniform clinical treatment is not optimal for all patients, and that the development of individualized therapeutic regimens may be beneficial. We describe the generation of multiple, unique small peptides nine to thirty-four amino acids in length which, when labeled with the radioisotope 32P, bind with vastly differing efficiencies to cell lines derived from different colon adenocarcinomas. In addition, the most effective of these peptides permanently transfers the 32P radioisotope to colorectal cancer cellular proteins within two hours at a rate that is more than 150 times higher than in cell lines derived from other cancers or from the normal tissues tested. Currently, the only two FDA-approved radioimmunotherapeutic agents in use both employ antibodies directed against the B cell marker CD20 for the treatment of non-Hodgkin's lymphoma. By using the method described herein, large numbers of different 32P-labeled peptides can be readily produced and assayed against a broad spectrum of cancer types. This report proposes the development and use of 32P-labeled peptides as potential individualized peptide-binding therapies for the treatment of colon adenocarcinoma patients. PMID:18575578

  13. Continuum Approaches to Understanding Ion and Peptide Interactions with the Membrane

    PubMed Central

    Latorraca, Naomi R.; Callenberg, Keith M.; Boyle, Jon P.; Grabe, Michael

    2014-01-01

    Experimental and computational studies have shown that cellular membranes deform to stabilize the inclusion of transmembrane (TM) proteins harboring charge. Recent analysis suggests that membrane bending helps to expose charged and polar residues to the aqueous environment and polar head groups. We previously used elasticity theory to identify membrane distortions that minimize the insertion of charged TM peptides into the membrane. Here, we extend our work by showing that it also provides a novel, computationally efficient method for exploring the energetics of ion and small peptide penetration into membranes. First, we show that the continuum method accurately reproduces energy profiles and membrane shapes generated from molecular simulations of bare ion permeation at a fraction of the computational cost. Next, we demonstrate that the dependence of the ion insertion energy on the membrane thickness arises primarily from the elastic properties of the membrane. Moreover, the continuum model readily provides a free energy decomposition into components not easily determined from molecular dynamics. Finally, we show that the energetics of membrane deformation strongly depend on membrane patch size both for ions and peptides. This dependence is particularly strong for peptides based on simulations of a known amphipathic, membrane binding peptide from the human pathogen Toxoplasma gondii. In total, we address shortcomings and advantages that arise from using a variety of computational methods in distinct biological contexts. PMID:24652510

  14. A continuous peptide epitope reacting with pandemic influenza AH1N1 predicted by bioinformatic approaches.

    PubMed

    Carrillo-Vazquez, Jonathan P; Correa-Basurto, José; García-Machorro, Jazmin; Campos-Rodríguez, Rafael; Moreau, Violaine; Rosas-Trigueros, Jorge L; Reyes-López, Cesar A; Rojas-López, Marlon; Zamorano-Carrillo, Absalom

    2015-09-01

    Computational identification of potential epitopes with an immunogenic capacity challenges immunological research. Several methods show considerable success, and together with experimental studies, the efficiency of the algorithms to identify potential peptides with biological activity has improved. Herein, an epitope was designed by combining bioinformatics, docking, and molecular dynamics simulations. The hemagglutinin protein of the H1N1 influenza pandemic strain served as a template, owing to the interest of obtaining a scheme of immunization. Afterward, we performed enzyme-linked immunosorbent assay (ELISA) using the epitope to analyze if any antibodies in human sera before and after the influenza outbreak in 2009 recognize this peptide. Also, a plaque reduction neutralization test induced by virus-neutralizing antibodies and the IgG determination showed the biological activity of this computationally designed peptide. The results of the ELISAs demonstrated that the serum of both prepandemic and pandemic recognized the epitope. Moreover, the plaque reduction neutralization test evidenced the capacity of the designed peptide to neutralize influenza virus in Madin-Darby canine cells. PMID:25788327

  15. A Discovery-Oriented Approach to Solid-Phase Peptide Synthesis

    ERIC Educational Resources Information Center

    Bockman, Matthew R.; Miedema, Christopher J.; Brennan, Brian B.

    2012-01-01

    In this discovery-oriented laboratory experiment, students use solid-phase synthesis techniques to construct a dipeptide containing an unknown amino acid. Following synthesis and cleavage from the polymeric support, electrospray ionization-mass spectrometry is employed to identify the unknown amino acid that was used in the peptide coupling. This…

  16. MSblender: a probabilistic approach for integrating peptide identifications from multiple database search engines

    PubMed Central

    Kwon, Taejoon; Choi, Hyungwon; Vogel, Christine; Nesvizhskii, Alexey I.; Marcotte, Edward M.

    2011-01-01

    Shotgun proteomics using mass spectrometry is a powerful method for protein identification but suffers limited sensitivity in complex samples. Integrating peptide identifications from multiple database search engines is a promising strategy to increase the number of peptide identifications and reduce the volume of unassigned tandem mass spectra. Existing methods pool statistical significance scores such as p-values or posterior probabilities of peptide-spectrum matches (PSMs) from multiple search engines after high scoring peptides have been assigned to spectra, but these methods lack reliable control of identification error rates as data are integrated from different search engines. We developed a statistically coherent method for integrative analysis, termed MSblender. MSblender converts raw search scores from search engines into a probability score for all possible PSMs and properly accounts for the correlation between search scores. The method reliably estimates false discovery rates and identifies more PSMs than any single search engine at the same false discovery rate. Increased identifications increment spectral counts for all detected proteins and allow quantification of proteins that would not have been quantified by individual search engines. We also demonstrate that enhanced quantification contributes to improve sensitivity in differential expression analyses. PMID:21488652

  17. MSblender: A probabilistic approach for integrating peptide identifications from multiple database search engines.

    PubMed

    Kwon, Taejoon; Choi, Hyungwon; Vogel, Christine; Nesvizhskii, Alexey I; Marcotte, Edward M

    2011-07-01

    Shotgun proteomics using mass spectrometry is a powerful method for protein identification but suffers limited sensitivity in complex samples. Integrating peptide identifications from multiple database search engines is a promising strategy to increase the number of peptide identifications and reduce the volume of unassigned tandem mass spectra. Existing methods pool statistical significance scores such as p-values or posterior probabilities of peptide-spectrum matches (PSMs) from multiple search engines after high scoring peptides have been assigned to spectra, but these methods lack reliable control of identification error rates as data are integrated from different search engines. We developed a statistically coherent method for integrative analysis, termed MSblender. MSblender converts raw search scores from search engines into a probability score for every possible PSM and properly accounts for the correlation between search scores. The method reliably estimates false discovery rates and identifies more PSMs than any single search engine at the same false discovery rate. Increased identifications increment spectral counts for most proteins and allow quantification of proteins that would not have been quantified by individual search engines. We also demonstrate that enhanced quantification contributes to improve sensitivity in differential expression analyses. PMID:21488652

  18. The rational search for selective anticancer derivatives of the peptide Trichogin GA IV: a multi-technique biophysical approach

    PubMed Central

    Dalzini, Annalisa; Bergamini, Christian; Biondi, Barbara; De Zotti, Marta; Panighel, Giacomo; Fato, Romana; Peggion, Cristina; Bortolus, Marco; Maniero, Anna Lisa

    2016-01-01

    Peptaibols are peculiar peptides produced by fungi as weapons against other microorganisms. Previous studies showed that peptaibols are promising peptide-based drugs because they act against cell membranes rather than a specific target, thus lowering the possibility of the onset of multi-drug resistance, and they possess non-coded α-amino acid residues that confer proteolytic resistance. Trichogin GA IV (TG) is a short peptaibol displaying antimicrobial and cytotoxic activity. In the present work, we studied thirteen TG analogues, adopting a multidisciplinary approach. We showed that the cytotoxicity is tuneable by single amino-acids substitutions. Many analogues maintain the same level of non-selective cytotoxicity of TG and three analogues are completely non-toxic. Two promising lead compounds, characterized by the introduction of a positively charged unnatural amino-acid in the hydrophobic face of the helix, selectively kill T67 cancer cells without affecting healthy cells. To explain the determinants of the cytotoxicity, we investigated the structural parameters of the peptides, their cell-binding properties, cell localization, and dynamics in the membrane, as well as the cell membrane composition. We show that, while cytotoxicity is governed by the fine balance between the amphipathicity and hydrophobicity, the selectivity depends also on the expression of negatively charged phospholipids on the cell surface. PMID:27039838

  19. The rational search for selective anticancer derivatives of the peptide Trichogin GA IV: a multi-technique biophysical approach.

    PubMed

    Dalzini, Annalisa; Bergamini, Christian; Biondi, Barbara; De Zotti, Marta; Panighel, Giacomo; Fato, Romana; Peggion, Cristina; Bortolus, Marco; Maniero, Anna Lisa

    2016-01-01

    Peptaibols are peculiar peptides produced by fungi as weapons against other microorganisms. Previous studies showed that peptaibols are promising peptide-based drugs because they act against cell membranes rather than a specific target, thus lowering the possibility of the onset of multi-drug resistance, and they possess non-coded α-amino acid residues that confer proteolytic resistance. Trichogin GA IV (TG) is a short peptaibol displaying antimicrobial and cytotoxic activity. In the present work, we studied thirteen TG analogues, adopting a multidisciplinary approach. We showed that the cytotoxicity is tuneable by single amino-acids substitutions. Many analogues maintain the same level of non-selective cytotoxicity of TG and three analogues are completely non-toxic. Two promising lead compounds, characterized by the introduction of a positively charged unnatural amino-acid in the hydrophobic face of the helix, selectively kill T67 cancer cells without affecting healthy cells. To explain the determinants of the cytotoxicity, we investigated the structural parameters of the peptides, their cell-binding properties, cell localization, and dynamics in the membrane, as well as the cell membrane composition. We show that, while cytotoxicity is governed by the fine balance between the amphipathicity and hydrophobicity, the selectivity depends also on the expression of negatively charged phospholipids on the cell surface. PMID:27039838

  20. Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy.

    PubMed

    Berlin, C; Kowalewski, D J; Schuster, H; Mirza, N; Walz, S; Handel, M; Schmid-Horch, B; Salih, H R; Kanz, L; Rammensee, H-G; Stevanović, S; Stickel, J S

    2015-03-01

    Identification of physiologically relevant peptide vaccine targets calls for the direct analysis of the entirety of naturally presented human leukocyte antigen (HLA) ligands, termed the HLA ligandome. In this study, we implemented this direct approach using immunoprecipitation and mass spectrometry to define acute myeloid leukemia (AML)-associated peptide vaccine targets. Mapping the HLA class I ligandomes of 15 AML patients and 35 healthy controls, more than 25 000 different naturally presented HLA ligands were identified. Target prioritization based on AML exclusivity and high presentation frequency in the AML cohort identified a panel of 132 LiTAAs (ligandome-derived tumor-associated antigens), and 341 corresponding HLA ligands (LiTAPs (ligandome-derived tumor-associated peptides)) represented subset independently in >20% of AML patients. Functional characterization of LiTAPs by interferon-γ ELISPOT (Enzyme-Linked ImmunoSpot) and intracellular cytokine staining confirmed AML-specific CD8(+) T-cell recognition. Of note, our platform identified HLA ligands representing several established AML-associated antigens (e.g. NPM1, MAGED1, PRTN3, MPO, WT1), but found 80% of them to be also represented in healthy control samples. Mapping of HLA class II ligandomes provided additional CD4(+) T-cell epitopes and potentially synergistic embedded HLA ligands, allowing for complementation of a multipeptide vaccine for the immunotherapy of AML. PMID:25092142

  1. Alignment validation

    SciTech Connect

    ALICE; ATLAS; CMS; LHCb; Golling, Tobias

    2008-09-06

    The four experiments, ALICE, ATLAS, CMS and LHCb are currently under constructionat CERN. They will study the products of proton-proton collisions at the Large Hadron Collider. All experiments are equipped with sophisticated tracking systems, unprecedented in size and complexity. Full exploitation of both the inner detector andthe muon system requires an accurate alignment of all detector elements. Alignmentinformation is deduced from dedicated hardware alignment systems and the reconstruction of charged particles. However, the system is degenerate which means the data is insufficient to constrain all alignment degrees of freedom, so the techniques are prone to converging on wrong geometries. This deficiency necessitates validation and monitoring of the alignment. An exhaustive discussion of means to validate is subject to this document, including examples and plans from all four LHC experiments, as well as other high energy experiments.

  2. A Cell-Based Approach for the Biosynthesis/Screening of Cyclic Peptide Libraries against Bacterial Toxins

    SciTech Connect

    Camarero, J A; Kimura, R; Woo, Y; Cantor, J; Steenblock, E

    2007-10-24

    Available methods for developing and screening small drug-like molecules able to knockout toxins or pathogenic microorganisms have some limitations. In order to be useful, these new methods must provide high-throughput analysis and identify specific binders in a short period of time. To meet this need, we are developing an approach that uses living cells to generate libraries of small biomolecules, which are then screened inside the cell for activity. Our group is using this new, combined approach to find highly specific ligands capable of disabling anthrax Lethal Factor (LF) as proof of principle. Key to our approach is the development of a method for the biosynthesis of libraries of cyclic peptides, and an efficient screening process that can be carried out inside the cell.

  3. Computational approaches for designing potent and selective analogs of peptide toxins as novel therapeutics

    PubMed Central

    Kuyucak, Serdar; Norton, Raymond S

    2015-01-01

    Peptide toxins provide valuable therapeutic leads for many diseases. As they bind to their targets with high affinity, potency is usually ensured. However, toxins also bind to off-target receptors, causing potential side effects. Thus, a major challenge in generating drugs from peptide toxins is ensuring their specificity for their intended targets. Computational methods can play an important role in solving such design problems through construction of accurate models of receptor–toxin complexes and calculation of binding free energies. Here we review the computational methods used for this purpose and their application to toxins targeting ion channels. We describe ShK and HsTX1 toxins, high-affinity blockers of the voltage-gated potassium channel Kv1.3, which could be developed as therapeutic agents for autoimmune diseases. PMID:25406005

  4. Peptides and proteins used to enhance gold nanoparticle delivery to the brain: preclinical approaches

    PubMed Central

    Velasco-Aguirre, Carolina; Morales, Francisco; Gallardo-Toledo, Eduardo; Guerrero, Simon; Giralt, Ernest; Araya, Eyleen; Kogan, Marcelo J

    2015-01-01

    An exciting and emerging field in nanomedicine involves the use of gold nanoparticles (AuNPs) in the preclinical development of new strategies for the treatment and diagnosis of brain-related diseases such as neurodegeneration and cerebral tumors. The treatment of many brain-related disorders with AuNPs, which possess useful physical properties, is limited by the blood–brain barrier (BBB). The BBB highly regulates the substances that can permeate into the brain. Peptides and proteins may represent promising tools to improve the delivery of AuNPs to the central nervous system (CNS). In this review, we summarize the potential applications of AuNPs to CNS disorders, discuss different strategies based on the use of peptides or proteins to improve the delivery of AuNPs to the brain, and examine the intranasal administration route, which bypasses the BBB. We also analyze the potential neurotoxicity of AuNPs and the perspectives and new challenges concerning the use of peptides and proteins to enhance the delivery of AuNPs to the brain. The majority of the work described in this review is in a preclinical stage of experimentation, or in select cases, in clinical trials in humans. We note that the use of AuNPs still requires substantial study before being translated into human applications. However, for further clinical research, the issues related to the potential use of AuNPs must be analyzed. PMID:26300639

  5. Aligned Nanofibers for Regenerating Arteries, Nerves, and Muscles

    NASA Astrophysics Data System (ADS)

    McClendon, Mark Trosper

    annular gap containing PA solution with a rotating rod. Using the shear aligning properties of PA solutions this rotating surface in contact with the PA solution induced a high degree of alignment in the nanofibers which was subsequently locked in place by introducing gelating calcium ions. again say something about what this fabrication procedure entails Cells encapsulated within these tubes responded to the alignment by extending in the circumferential direction mimicking the same cellular alignment observed in native arteries. A similar design strategy was also used to align nanofibers within the core of biopolymer nerve conduits, and these scaffolds were implanted in a rat sciatic nerve model. Histological and behavioral observations confirmed that PA implants sustained regeneration rates comparable to autologous grafts and significantly better than empty biopolymer grafts. Furthermore, these nanofiber gels were used as a vehicle to deliver stem cells into muscle tissue. A specialized injector was designed to introduce aligned PA gels into mouse leg muscles in a 1cm long channel. Bioluminescence and histology showed that stem cell engraftment into myofibers was greatly enhanced when delivered by PA gels compared to saline solution. The final section of this thesis describes a new series of PA molecules designed to degrade upon exposure to UV lightstate here why is this of interest in the context of the work described in the thesis. This was done to understand the degradation behavior of PA nanofibers and provide a controlled approach to changing the rheological properties post gelation.The three PA molecules in this series contained the same peptide sequence V3A3E3, while varying the location of a nitrobenzyl UV-reactive group along the backbone of the molecule. This system allowed for a quick reaction that cleaves the molecule at the reactive nitrobenzyl site without introducing any other reactive molecules. While all three molecules produced nanofibers that remained

  6. Segmentation of precursor mass range using "tiling" approach increases peptide identifications for MS1-based label-free quantification.

    PubMed

    Vincent, Catherine E; Potts, Gregory K; Ulbrich, Arne; Westphall, Michael S; Atwood, James A; Coon, Joshua J; Weatherly, D Brent

    2013-03-01

    Label-free quantification is a powerful tool for the measurement of protein abundances by mass spectrometric methods. To maximize quantifiable identifications, MS(1)-based methods must balance the collection of survey scans and fragmentation spectra while maintaining reproducible extracted ion chromatograms (XIC). Here we present a method which increases the depth of proteome coverage over replicate data-dependent experiments without the requirement of additional instrument time or sample prefractionation. Sampling depth is increased by restricting precursor selection to a fraction of the full MS(1) mass range for each replicate; collectively, the m/z segments of all replicates encompass the full MS(1) range. Although selection windows are narrowed, full MS(1) spectra are obtained throughout the method, enabling the collection of full mass range MS(1) chromatograms such that label-free quantitation can be performed for any peptide in any experiment. We term this approach "binning" or "tiling" depending on the type of m/z window utilized. By combining the data obtained from each segment, we find that this approach increases the number of quantifiable yeast peptides and proteins by 31% and 52%, respectively, when compared to normal data-dependent experiments performed in replicate. PMID:23350991

  7. Atrial natriuretic peptide and circadian blood pressure regulation: clues from a chronobiological approach.

    PubMed

    Portaluppi, F; Vergnani, L; degli Uberti, E C

    1993-06-01

    A critical review of the data available in the literature today permits a better understanding of the multiple actions of atrial natriuretic peptide (ANP) on the cardiovascular system. Moreover, the results of chronobiological studies suggest a role for this peptide in the determination of the circadian rhythm of blood pressure (BP). ANP can affect BP by several mechanisms, including modification of renal function and vascular tone, counteraction of the renin-angiotensin-aldosterone system, and action on brain regulatory sites. A series of interrelated events may follow from very small changes in the plasma levels of ANP. The endpoints are blood volume and BP reduction, but they are rapidly offset (mainly by reactive sympathetic activation) as soon as blood volume or pressure is threatened. The circadian rhythms of BP and ANP are antiphasic under normal conditions and in essential hypertension. The loss in the nocturnal decrease of BP is accompanied by a comparable loss in the nocturnal surge of ANP in hypertensive renal failure and hypotensive heart failure. In the latter condition, BP and ANP variabilities correlate significantly both before and after therapy-induced functional recovery, independently of the mean BP levels. Autonomic function modulates the secretion of ANP, which seems more apt to determine only transient changes in BP levels, as suggested by the short half-life of the peptide and the buffering role of its clearance receptors. There is now sufficient evidence that ANP contributes to short-term control over BP and electrolyte balance, in contrast and in opposition to the renin-angiotensin-aldosterone system, which is involved primarily in long-term BP control. By interfering with other well-established neurohormonal factors, ANP appears to be an additional modulator of the circadian rhythm of BP. PMID:8391398

  8. A novel multi-epitope peptide vaccine against cancer: an in silico approach.

    PubMed

    Nezafat, Navid; Ghasemi, Younes; Javadi, Gholamreza; Khoshnoud, Mohammad Javad; Omidinia, Eskandar

    2014-05-21

    Cancer immunotherapy has an outstanding position in cancer prevention and treatment. In this kind of therapy, the immune system is activated to eliminate cancerous cells. Multi-epitope peptide cancer vaccines are manifesting as the next generation of cancer immunotherapy. In the present study, we have implemented various strategies to design an efficient multi-epitope vaccine. CD8+ cytolytic T lymphocytes (CTLs) epitopes, which have a pivotal role in cellular immune responses, helper epitopes and adjuvant, are three crucial components of peptide vaccine. CTL epitopes were determined from two high immunogenic protein Wilms tumor-1 (WT1) and human papillomavirus (HPV) E7 by various servers, which apply different algorithms. CTL epitopes were linked together by AAY and HEYGAEALERAG motifs to enhance epitope presentation. Pan HLA DR-binding epitope (PADRE) peptide sequence and helper epitopes, which have defined from Tetanus toxin fragment C (TTFrC) by various servers, were used to induce CD4+ helper T lymphocytes (HTLs) responses. Additionally, helper epitopes were conjugated together via GPGPG motifs that stimulate HTL immunity. Heparin-Binding Hemagglutinin (HBHA), a novel TLR4 agonist was employed as an adjuvant to polarize CD4+ T cells toward T-helper 1 to induce strong CTL responses. Moreover, the EAAAK linker was introduced to N and C terminals of HBHA for efficient separation. 3D model of protein was generated and predicted B cell epitopes were determined from the surface of built structure. Our protein contains several linear and conformational B cell epitopes, which suggests the antibody triggering property of this novel vaccine. Hence, our final protein can be used for prophylactic or therapeutic usages, because it can potentially stimulate both cellular and humoral immune responses. PMID:24512916

  9. A Novel Peptide Thrombopoietin Mimetic Designing and Optimization Using Computational Approach

    PubMed Central

    Singh, Vimal Kishor; Kumar, Neeraj; Kalsan, Manisha; Saini, Abhishek; Chandra, Ramesh

    2016-01-01

    Thrombopoietin receptor (TPOR) is a cytokine receptor protein present on the cell surface. The activation of TPOR by thrombopoietin (TPO) (a glycoprotein hormone) triggers an intracellular cascade of megakaryocytopoiesis for the formation of platelets. Recent studies on ex vivo megakaryocytopoiesis have evolved the possibilities of therapeutics uses. These findings have paved the way for the development of various TPO alternatives (recombinant TPO, peptide, and non-peptide TPO mimetics), which are useful in regenerative medicine. However, these alternatives possess various limitations such as induction of autoimmune effects, high production cost, low specificity, and hence activity. In the present study, a novel peptidic TPO mimetic was designed through computational studies by studying the binding sites of TPO and TMP to TPOR and analogs of known mimetics. Screening of combinatorial library was done through molecular docking using ClusPro. These studies indicated mimetic-9 as a significant molecule since it was found to have better binding score of −938.8 kcal/mol with seven hydrogen bonds and a high number of hydrophobic interactions, than known mimetic TMP with docking score of −798.4 kcal/mol and TMP dimer with docking score of −811.9 kcal/mol for TPOR. Mimetic9-TPOR complex was further assessed by the molecular dynamics simulation, and their complex was found to be stable with an RMSD value of 0.091 Å. While studying the parameters, mimetic-9 was found to have overall good physiochemical properties with positive grand average hydropathy (GRAVY) score and high instability index score and was found to be localized in the extracellular region. The designed mimetic-9 might prove to be a useful lead molecule for mimicking the role of TPO for in vitro platelet production with higher efficiency.

  10. Photodissociation of TEMPO-modified peptides: new approaches to radical-directed dissociation of biomolecules.

    PubMed

    Marshall, David L; Hansen, Christopher S; Trevitt, Adam J; Oh, Han Bin; Blanksby, Stephen J

    2014-03-14

    Radical-directed dissociation of gas phase ions is emerging as a powerful and complementary alternative to traditional tandem mass spectrometric techniques for biomolecular structural analysis. Previous studies have identified that coupling of 2-[(2,2,6,6-tetramethylpiperidin-1-oxyl)methyl]benzoic acid (TEMPO-Bz) to the N-terminus of a peptide introduces a labile oxygen-carbon bond that can be selectively activated upon collisional activation to produce a radical ion. Here we demonstrate that structurally-defined peptide radical ions can also be generated upon UV laser photodissociation of the same TEMPO-Bz derivatives in a linear ion-trap mass spectrometer. When subjected to further mass spectrometric analyses, the radical ions formed by a single laser pulse undergo identical dissociations as those formed by collisional activation of the same precursor ion, and can thus be used to derive molecular structure. Mapping the initial radical formation process as a function of photon energy by photodissociation action spectroscopy reveals that photoproduct formation is selective but occurs only in modest yield across the wavelength range (300-220 nm), with the photoproduct yield maximised between 235 and 225 nm. Based on the analysis of a set of model compounds, structural modifications to the TEMPO-Bz derivative are suggested to optimise radical photoproduct yield. Future development of such probes offers the advantage of increased sensitivity and selectivity for radical-directed dissociation. PMID:24473158

  11. Inspiration from the mirror: D-amino acid containing peptides in biomedical approaches.

    PubMed

    Feng, Zhaoqianqi; Xu, Bing

    2016-06-01

    D-amino acids, the enantiomers of naturally abundant L-amino acids, bear unique stereochemistry properties that lead to the resistance towards most of the endogenous enzymes. Previous works have demonstrated applications of D-amino acids in therapeutic development with the aid of mirror-image phage display and retro-inverso peptide synthesis. In this review, we highlight the recent progress and challenges in the exploration of D-amino acids at the interface of chemistry and life science. First, we will introduce some progress made in traditional application of D-amino acids to enhance biostability of peptide therapeutics. Then, we discuss some works that explore the relatively underexplored interactions between the enzyme and D-amino acids and enzymatic reactions of D-amino acids. To highlight the enzymatic reactions of D-amino acids, we will describe several emerging works on the enzyme-instructed self-assembly (EISA) and their potential application in selective anti-inflammatory or anticancer therapies. At the end, we briefly mention the challenges and possible future directions. PMID:27159920

  12. Proline Editing: A General and Practical Approach to the Synthesis of Functionally and Structurally Diverse Peptides. Analysis of Steric versus Stereoelectronic Effects of 4-Substituted Prolines on Conformation within Peptides

    PubMed Central

    Pandey, Anil K.; Naduthambi, Devan; Thomas, Krista M.; Zondlo, Neal J.

    2013-01-01

    Functionalized proline residues have diverse applications. Herein we describe a practical approach, proline editing, for the synthesis of peptides with stereospecifically modified proline residues. Peptides are synthesized by standard solid-phase-peptide-synthesis to incorporate Fmoc-Hydroxyproline (4R-Hyp). In an automated manner, the Hyp hydroxyl is protected and the remainder of the peptide synthesized. After peptide synthesis, the Hyp protecting group is orthogonally removed and Hyp selectively modified to generate substituted proline amino acids, with the peptide main chain functioning to “protect” the proline amino and carboxyl groups. In a model tetrapeptide (Ac-TYPN-NH2), 4R-Hyp was stereospecifically converted to 122 different 4-substituted prolyl amino acids, with 4R or 4S stereochemistry, via Mitsunobu, oxidation, reduction, acylation, and substitution reactions. 4-Substituted prolines synthesized via proline editing include incorporated structured amino acid mimetics (Cys, Asp/Glu, Phe, Lys, Arg, pSer/pThr), recognition motifs (biotin, RGD), electron-withdrawing groups to induce stereoelectronic effects (fluoro, nitrobenzoate), handles for heteronuclear NMR (19F:fluoro; pentafluorophenyl or perfluoro-tert-butyl ether; 4,4-difluoro; 77SePh) and other spectroscopies (fluorescence, IR: cyanophenyl ether), leaving groups (sulfonate, halide, NHS, bromoacetate), and other reactive handles (amine, thiol, thioester, ketone, hydroxylamine, maleimide, acrylate, azide, alkene, alkyne, aryl halide, tetrazine, 1,2-aminothiol). Proline editing provides access to these proline derivatives with no solution phase synthesis. All peptides were analyzed by NMR to identify stereoelectronic and steric effects on conformation. Proline derivatives were synthesized to permit bioorthogonal conjugation reactions, including azide-alkyne, tetrazinetrans-cyclooctene, oxime, reductive amination, native chemical ligation, Suzuki, Sonogashira, cross-metathesis, and Diels

  13. Pairwise Sequence Alignment Library

    Energy Science and Technology Software Center (ESTSC)

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprintmore » that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, a novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.« less

  14. Pairwise Sequence Alignment Library

    SciTech Connect

    Jeff Daily, PNNL

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, a novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.

  15. An Approach to Identifying the Effect of Technique Asymmetries on Body Alignment in Swimming Exemplified by a Case Study of a Breaststroke Swimmer

    PubMed Central

    Sanders, Ross H.; Fairweather, Malcolm M.; Alcock, Alison; McCabe, Carla B.

    2015-01-01

    Despite the importance of maintaining good alignment to minimize resistive drag in swimming there is a paucity of literature relating to the effect of technique asymmetries on rotations of the body about a vertical axis (yaw). The purpose of this paper was to present an approach to analyzing the effect of technique asymmetries on rotations in swimming, exemplifying the process with a case study of a breaststroke swimmer. The kinematics and angular kinetics of an elite female international breaststroke swimmer performing a ‘fatigue set’ of four 100m swims were derived from digitized three-dimensional video data using a 13 segment body model. Personalised anthropometric data required to quantify accurately segment and whole body centres of mass and segmental angular momentum were obtained by the elliptical zone method. Five episodes of torques producing yaw occurred in the stroke cycle sampled for each 100m swim of this swimmer. These torques were linked to bilateral differences in upper limb kinematics during 1) out-sweep; 2) in-sweep; 3) upper limb recovery; and lower limb kinematics during 4) Lower limb recovery and 5) the kick. It has been shown that by quantifying whole body torques, in conjunction with the kinematic movement patterns, the effect of technique asymmetries on body alignment can be assessed. Assessment of individual swimmers in this manner provides a solid foundation for planning interventions in strength, flexibility, and technique to improve alignment and performance. Key points A unique (not been attempted previously) study of yaw in breaststroke swimming that yields new knowledge of how technique and strength asymmetries affects body alignment. Establishes an approach to investigation of yaw in swimming using 3D videography and inverse dynamics. Exemplifies the approach with a case study. The case study illustrated the potential of the approach to enable detailed assessment of yaw and to explain how the yaw is produced in terms of the

  16. Alignment fixture

    DOEpatents

    Bell, Grover C.; Gibson, O. Theodore

    1980-01-01

    A part alignment fixture is provided which may be used for precise variable lateral and tilt alignment relative to the fixture base of various shaped parts. The fixture may be used as a part holder for machining or inspection of parts or alignment of parts during assembly and the like. The fixture includes a precisely machined diameter disc-shaped hub adapted to receive the part to be aligned. The hub is nested in a guide plate which is adapted to carry two oppositely disposed pairs of positioning wedges so that the wedges may be reciprocatively positioned by means of respective micrometer screws. The sloping faces of the wedges contact the hub at respective quadrants of the hub periphery. The lateral position of the hub relative to the guide plate is adjusted by positioning the wedges with the associated micrometer screws. The tilt of the part is adjusted relative to a base plate, to which the guide plate is pivotally connected by means of a holding plate. Two pairs of oppositely disposed wedges are mounted for reciprocative lateral positioning by means of separate micrometer screws between flanges of the guide plate and the base plate. Once the wedges are positioned to achieve the proper tilt of the part or hub on which the part is mounted relative to the base plate, the fixture may be bolted to a machining, inspection, or assembly device.

  17. PINALOG: a novel approach to align protein interaction networks—implications for complex detection and function prediction

    PubMed Central

    Phan, Hang T. T.; Sternberg, Michael J. E.

    2012-01-01

    Motivation: Analysis of protein–protein interaction networks (PPINs) at the system level has become increasingly important in understanding biological processes. Comparison of the interactomes of different species not only provides a better understanding of species evolution but also helps with detecting conserved functional components and in function prediction. Method and Results: Here we report a PPIN alignment method, called PINALOG, which combines information from protein sequence, function and network topology. Alignment of human and yeast PPINs reveals several conserved subnetworks between them that participate in similar biological processes, notably the proteasome and transcription related processes. PINALOG has been tested for its power in protein complex prediction as well as function prediction. Comparison with PSI-BLAST in predicting protein function in the twilight zone also shows that PINALOG is valuable in predicting protein function. Availability and implementation: The PINALOG web-server is freely available from http://www.sbg.bio.ic.ac.uk/~pinalog. The PINALOG program and associated data are available from the Download section of the web-server. Contact: m.sternberg@imperial.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22419782

  18. Optimization of Search Engines and Postprocessing Approaches to Maximize Peptide and Protein Identification for High-Resolution Mass Data.

    PubMed

    Tu, Chengjian; Sheng, Quanhu; Li, Jun; Ma, Danjun; Shen, Xiaomeng; Wang, Xue; Shyr, Yu; Yi, Zhengping; Qu, Jun

    2015-11-01

    The two key steps for analyzing proteomic data generated by high-resolution MS are database searching and postprocessing. While the two steps are interrelated, studies on their combinatory effects and the optimization of these procedures have not been adequately conducted. Here, we investigated the performance of three popular search engines (SEQUEST, Mascot, and MS Amanda) in conjunction with five filtering approaches, including respective score-based filtering, a group-based approach, local false discovery rate (LFDR), PeptideProphet, and Percolator. A total of eight data sets from various proteomes (e.g., E. coli, yeast, and human) produced by various instruments with high-accuracy survey scan (MS1) and high- or low-accuracy fragment ion scan (MS2) (LTQ-Orbitrap, Orbitrap-Velos, Orbitrap-Elite, Q-Exactive, Orbitrap-Fusion, and Q-TOF) were analyzed. It was found combinations involving Percolator achieved markedly more peptide and protein identifications at the same FDR level than the other 12 combinations for all data sets. Among these, combinations of SEQUEST-Percolator and MS Amanda-Percolator provided slightly better performances for data sets with low-accuracy MS2 (ion trap or IT) and high accuracy MS2 (Orbitrap or TOF), respectively, than did other methods. For approaches without Percolator, SEQUEST-group performs the best for data sets with MS2 produced by collision-induced dissociation (CID) and IT analysis; Mascot-LFDR gives more identifications for data sets generated by higher-energy collisional dissociation (HCD) and analyzed in Orbitrap (HCD-OT) and in Orbitrap Fusion (HCD-IT); MS Amanda-Group excels for the Q-TOF data set and the Orbitrap Velos HCD-OT data set. Therefore, if Percolator was not used, a specific combination should be applied for each type of data set. Moreover, a higher percentage of multiple-peptide proteins and lower variation of protein spectral counts were observed when analyzing technical replicates using Percolator

  19. LPXRFa peptide system in the European sea bass: A molecular and immunohistochemical approach.

    PubMed

    Paullada-Salmerón, José A; Cowan, Mairi; Aliaga-Guerrero, María; Gómez, Ana; Zanuy, Silvia; Mañanos, Evaristo; Muñoz-Cueto, José A

    2016-01-01

    Gonadotropin-inhibitory hormone (GnIH) is a neuropeptide that suppresses reproduction in birds and mammals by inhibiting GnRH and gonadotropin secretion. GnIH orthologs with a C-terminal LPXRFamide (LPXRFa) motif have been identified in teleost fish. Although recent work also suggests its role in fish reproduction, studies are scarce and controversial, and have mainly focused on cyprinids. In this work we cloned a full-length cDNA encoding an LPXRFa precursor in the European sea bass, Dicentrarchus labrax. In contrast to other teleosts, the sea bass LPXRFa precursor contains only two putative RFamide peptides, termed sbLPXRFa1 and sbLPXRFa2. sblpxrfa transcripts were expressed predominantly in the olfactory bulbs/telencephalon, diencephalon, midbrain tegmentum, retina, and gonads. We also developed a specific antiserum against sbLPXRFa2, which revealed sbLPXRFa-immunoreactive (ir) perikarya in the olfactory bulbs-terminal nerve, ventral telencephalon, caudal preoptic area, dorsal mesencephalic tegmentum, and rostral rhombencephalon. These sbLPXRFa-ir cells profusely innervated the preoptic area, hypothalamus, optic tectum, semicircular torus, and caudal midbrain tegmentum, but conspicuous projections also reached the olfactory bulbs, ventral/dorsal telencephalon, habenula, ventral thalamus, pretectum, rostral midbrain tegmentum, posterior tuberculum, reticular formation, and viscerosensory lobe. The retina, pineal, vascular sac, and pituitary were also targets of sbLPXRFa-ir cells. In the pituitary, this innervation was observed close to follicle-stimulating hormone (FSH), luteinizing hormone (LH) and growth hormone (GH) cells. Tract-tracing retrograde labeling suggests that telencephalic and preoptic sbLPXRFa cells might represent the source of pituitary innervation. The immunohistochemical distribution of sbLPXRFa cells and fibers suggest that LPXRFa peptides might be involved in some functions as well as reproduction, such as feeding, growth, and behavior. PMID

  20. Lutetium-177-labeled gastrin releasing peptide receptor binding analogs: a novel approach to radionuclide therapy.

    PubMed

    Panigone, S; Nunn, A D

    2006-12-01

    Optimization of therapy for individual patients remains a goal of clinical practice. Radionuclide imaging can identify those patients who may benefit from subsequent targeted therapy by providing regional information on the distribution of the target. An ideal situation may be when the imaging and the therapeutic compounds are the same agent. Two antibodies ([ [90Y]ibritumomab, [131I]tositumomab) are now approved for the systemic radiotherapy of non-Hodgkin's lymphoma. The main hurdle is to deliver higher absorbed doses to the more refractory solid tumors paying particular regard to the bone marrow toxicity. The low dose is thought to be a result of the large size of antibodies slowing delivery to the target. Peptides having high affinity to receptors expressed on cancer cells are a promising alternative. They are usually rapidly excreted from the body through renal and/or hepatobiliary excretion thus creating a prolonged accumulation of the radioactivity in the kidneys, which represents a recognized issue for systemic radiotherapy. The first radiopeptide developed was a somatostatin analogue, which led to a major breakthrough in the field. Beside the kidney issue, somatostatin use remains limited to few cancers that express receptors in sufficiently large quantities, mainly neuroendocrine tumors. The gastrin releasing peptide (GRP) receptor is an attractive target for development of new radiopeptides with diagnostic and therapeutic potential. This is based upon the functional expression of GRP receptors in several of the more prevalent cancers including prostate, breast, and small cell lung cancer. This review covers the efforts currently underway to develop new and clinically promising GRP-receptor specific molecules labeled with imageable and therapeutic radionuclides. PMID:17043628

  1. A peptide immunization approach to counteract a Staphylococcus aureus protease defense against host immunity.

    PubMed

    Jordan, Robert E; Fernandez, Jeffrey; Brezski, Randall J; Greenplate, Allison R; Knight, David M; Raju, T Shantha; Lynch, A Simon

    2016-04-01

    Pathogens that induce acute and chronic infections, as well as certain cancers, employ numerous strategies to thwart host cellular and humoral immune defenses. One proposed evasion mechanism against humoral immunity is a localized expression of extracellular proteases that cleave the IgG hinge and disable host IgG functions. Host immunity appears to be prepared to counter such a proteolytic tactic by providing a group of autoantibodies, denoted anti-hinge antibodies that specifically bind to cleaved IgGs and provide compensating functional restoration in vitro. These respective counter-measures highlight the complex interrelationships among pathogens and host immunity and suggested to us a possible means for therapeutic intervention. In this study, we combined an investigation of pathogen-mediated proteolysis of host IgGs with an immunization strategy to boost host anti-hinge antibodies. In a Staphylococcus aureus infection model using an artificial tissue cage (wiffle ball) implanted into rabbits, cleaved rabbit IgGs were detected in abundance in the abscesses of untreated animals early after infection. However, in animals previously immunized with peptide analogs of the cleaved IgG hinge to generate substantial anti-hinge antibody titers, S. aureus colony formation was markedly reduced compared to control animals or those similarly immunized with a scrambled peptide sequence. The results of this study demonstrate that extensive local proteolysis of IgGs occurs in a test abscess setting and that immunization to increase host anti-hinge antibodies provided substantial acute protection against bacterial growth. PMID:26905931

  2. Conditional alignment random fields for multiple motion sequence alignment.

    PubMed

    Kim, Minyoung

    2013-11-01

    We consider the multiple time-series alignment problem, typically focusing on the task of synchronizing multiple motion videos of the same kind of human activity. Finding an optimal global alignment of multiple sequences is infeasible, while there have been several approximate solutions, including iterative pairwise warping algorithms and variants of hidden Markov models. In this paper, we propose a novel probabilistic model that represents the conditional densities of the latent target sequences which are aligned with the given observed sequences through the hidden alignment variables. By imposing certain constraints on the target sequences at the learning stage, we have a sensible model for multiple alignments that can be learned very efficiently by the EM algorithm. Compared to existing methods, our approach yields more accurate alignment while being more robust to local optima and initial configurations. We demonstrate its efficacy on both synthetic and real-world motion videos including facial emotions and human activities. PMID:24051737

  3. A Comprehensive Approach to Clustering of Expressed Human Gene Sequence: The Sequence Tag Alignment and Consensus Knowledge Base

    PubMed Central

    Miller, Robert T.; Christoffels, Alan G.; Gopalakrishnan, Chella; Burke, John; Ptitsyn, Andrey A.; Broveak, Tania R.; Hide, Winston A.

    1999-01-01

    The expressed human genome is being sequenced and analyzed by disparate groups producing disparate data. The majority of the identified coding portion is in the form of expressed sequence tags (ESTs). The need to discover exonic representation and expression forms of full-length cDNAs for each human gene is frustrated by the partial and variable quality nature of this data delivery. A highly redundant human EST data set has been processed into integrated and unified expressed transcript indices that consist of hierarchically organized human transcript consensi reflecting gene expression forms and genetic polymorphism within an index class. The expression index and its intermediate outputs include cleaned transcript sequence, expression, and alignment information and a higher fidelity subset, SANIGENE. The STACK_PACK clustering system has been applied to dbEST release 121598 (GenBank version 110). Sixty-four percent of 1,313,103 Homo sapiens ESTs are condensed into 143,885 tissue level multiple sequence clusters; linking through clone-ID annotations produces 68,701 total assemblies, such that 81% of the original input set is captured in a STACK multiple sequence or linked cluster. Indexing of alignments by substituent EST accession allows browsing of the data structure and its cross-links to UniGene. STACK metaclusters consolidate a greater number of ESTs by a factor of 1.86 with respect to the corresponding UniGene build. Fidelity comparison with genome reference sequence AC004106 demonstrates consensus expression clusters that reflect significantly lower spurious repeat sequence content and capture alternate splicing within a whole body index cluster and three STACK v.2.3 tissue-level clusters. Statistics of a staggered release whole body index build of STACK v.2.0 are presented. PMID:10568754

  4. Mass balance approaches for estimating the intestinal absorption and metabolism of peptides and analogues: theoretical development and applications

    NASA Technical Reports Server (NTRS)

    Sinko, P. J.; Leesman, G. D.; Amidon, G. L.

    1993-01-01

    A theoretical analysis for estimating the extent of intestinal peptide and peptide analogue absorption was developed on the basis of a mass balance approach that incorporates convection, permeability, and reaction. The macroscopic mass balance analysis (MMBA) was extended to include chemical and enzymatic degradation. A microscopic mass balance analysis, a numerical approach, was also developed and the results compared to the MMBA. The mass balance equations for the fraction of a drug absorbed and reacted in the tube were derived from the general steady state mass balance in a tube: [formula: see text] where M is mass, z is the length of the tube, R is the tube radius, Pw is the intestinal wall permeability, kr is the reaction rate constant, C is the concentration of drug in the volume element over which the mass balance is taken, VL is the volume of the tube, and vz is the axial velocity of drug. The theory was first applied to the oral absorption of two tripeptide analogues, cefaclor (CCL) and cefatrizine (CZN), which degrade and dimerize in the intestine. Simulations using the mass balance equations, the experimental absorption parameters, and the literature stability rate constants yielded a mean estimated extent of CCL (250-mg dose) and CZN (1000-mg dose) absorption of 89 and 51%, respectively, which was similar to the mean extent of absorption reported in humans (90 and 50%). It was proposed previously that 15% of the CCL dose spontaneously degraded systematically; however, our simulations suggest that significant CCL degradation occurs (8 to 17%) presystemically in the intestinal lumen.(ABSTRACT TRUNCATED AT 250 WORDS).

  5. ALIGNING JIG

    DOEpatents

    Culver, J.S.; Tunnell, W.C.

    1958-08-01

    A jig or device is described for setting or aligning an opening in one member relative to another member or structure, with a predetermined offset, or it may be used for measuring the amount of offset with which the parts have previously been sct. This jig comprises two blocks rabbeted to each other, with means for securing thc upper block to the lower block. The upper block has fingers for contacting one of the members to be a1igmed, the lower block is designed to ride in grooves within the reference member, and calibration marks are provided to determine the amount of offset. This jig is specially designed to align the collimating slits of a mass spectrometer.

  6. Phage display allows identification of zona pellucida-binding peptides with species-specific properties: novel approach for development of contraceptive vaccines for wildlife.

    PubMed

    Samoylova, Tatiana I; Cochran, Anna M; Samoylov, Alexandre M; Schemera, Bettina; Breiteneicher, Adam H; Ditchkoff, Stephen S; Petrenko, Valery A; Cox, Nancy R

    2012-12-31

    Multiple phage-peptide constructs, where the peptides mimic sperm epitopes that bind to zona pellucida (ZP) proteins, were generated via selection from a phage display library using a novel approach. Selections were designed to allow for identification of ZP-binding phage clones with potential species-specific properties, an important feature for wildlife oral vaccines as the goal is to control overpopulation of a target species while not affecting non-target species' reproduction. Six phage-peptide antigens were injected intramuscularly into pigs and corresponding immune responses evaluated. Administration of the antigens into pigs stimulated production of anti-peptide antibodies, which were shown to act as anti-sperm antibodies. Potentially, such anti-sperm antibodies could interfere with sperm delivery or function in the male or female genital tract, leading to contraceptive effects. Staining of semen samples collected from different mammalian species, including pig, cat, dog, bull, and mouse, with anti-sera from pigs immunized with ZP-binding phage allowed identification of phage-peptide constructs with different levels of species specificity. Based on the intensity of the immune responses and specificity of these responses in different species, two of the antigens with fusion peptide sequences GEGGYGSHD and GQQGLNGDS were recognized as the most promising candidates for development of contraceptive vaccines for wild pigs. PMID:23079080

  7. Image alignment

    DOEpatents

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  8. Ligand and Structure-Based Approaches for the Identification of Peptide Deformylase Inhibitors as Antibacterial Drugs.

    PubMed

    Gao, Jian; Liang, Li; Zhu, Yasheng; Qiu, Shengzhi; Wang, Tao; Zhang, Ling

    2016-01-01

    Peptide deformylase (PDF) is a metalloprotease catalyzing the removal of a formyl group from newly synthesized proteins, which makes it an important antibacterial drug target. Given the importance of PDF inhibitors like actinonin in antibacterial drug discovery, several reported potent PDF inhibitors were used to develop pharmacophore models using the Galahad module of Sybyl 7.1 software. Generated pharmacophore models were composed of two donor atom centers, four acceptor atom centers and two hydrophobic groups. Model-1 was screened against the Zinc database and several compounds were retrieved as hits. Compounds with Qfit values of more than 60 were employed to perform a molecular docking study with the receptor Escherichia coli PDF, then compounds with docking score values of more than 6 were used to predict the in silico pharmacokinetic and toxicity risk via OSIRIS property explorer. Two known PDF inhibitors were also used to perform a molecular docking study with E. coli PDF as reference molecules. The results of the molecular docking study were validated by reproducing the crystal structure of actinonin. Molecular docking and in silico pharmacokinetic and toxicity prediction studies suggested that ZINC08740166 has a relatively high docking score of 7.44 and a drug score of 0.78. PMID:27428963

  9. Ligand and Structure-Based Approaches for the Identification of Peptide Deformylase Inhibitors as Antibacterial Drugs

    PubMed Central

    Gao, Jian; Liang, Li; Zhu, Yasheng; Qiu, Shengzhi; Wang, Tao; Zhang, Ling

    2016-01-01

    Peptide deformylase (PDF) is a metalloprotease catalyzing the removal of a formyl group from newly synthesized proteins, which makes it an important antibacterial drug target. Given the importance of PDF inhibitors like actinonin in antibacterial drug discovery, several reported potent PDF inhibitors were used to develop pharmacophore models using the Galahad module of Sybyl 7.1 software. Generated pharmacophore models were composed of two donor atom centers, four acceptor atom centers and two hydrophobic groups. Model-1 was screened against the Zinc database and several compounds were retrieved as hits. Compounds with Qfit values of more than 60 were employed to perform a molecular docking study with the receptor Escherichia coli PDF, then compounds with docking score values of more than 6 were used to predict the in silico pharmacokinetic and toxicity risk via OSIRIS property explorer. Two known PDF inhibitors were also used to perform a molecular docking study with E. coli PDF as reference molecules. The results of the molecular docking study were validated by reproducing the crystal structure of actinonin. Molecular docking and in silico pharmacokinetic and toxicity prediction studies suggested that ZINC08740166 has a relatively high docking score of 7.44 and a drug score of 0.78. PMID:27428963

  10. Gold Alignment and Internal Dissipation

    NASA Astrophysics Data System (ADS)

    Lazarian, A.

    1997-07-01

    The measures of mechanical alignment are obtained for both prolate and oblate grains whose temperatures are comparable to the grain kinetic energy divided by k, the Boltzmann constant. For such grains, the alignment of angular momentum, J, with the axis of maximal inertia, a, is only partial, which substantially alters the mechanical alignment as compared with the results obtained by Lazarian and Roberge, Hanany, & Messinger under the assumption of perfect alignment. We also describe Gold alignment when the Barnett dissipation is suppressed and derive an analytical expression that relates the measure of alignment to the parameters of grain nonsphericity and the direction of the gas-grain drift. This solution provides the lower limit for the measure of alignment, while the upper limit is given by the method derived by Lazarian. Using the results of a recent study of incomplete internal relaxation by Lazarian & Roberge, we find measures of alignment for the whole range of ratios of grain rotational energy to kTs, where Ts is the grain temperature. To describe alignment for mildly supersonic drifts, we suggest an analytical approach that provides good correspondence with the results of direct numerical simulations by Roberge, Hanany, & Messinger. We also extend our approach to account for simultaneous action of the Gold and Davis-Greenstein mechanisms.

  11. A genomic approach highlights common and diverse effects and determinants of susceptibility on the yeast Saccharomyces cerevisiae exposed to distinct antimicrobial peptides

    PubMed Central

    2010-01-01

    Background The mechanism of action of antimicrobial peptides (AMP) was initially correlated with peptide membrane permeation properties. However, recent evidences indicate that action of a number of AMP is more complex and involves specific interactions at cell envelopes or with intracellular targets. In this study, a genomic approach was undertaken on the model yeast Saccharomyces cerevisiae to characterize the antifungal effect of two unrelated AMP. Results Two differentiated peptides were used: the synthetic cell-penetrating PAF26 and the natural cytolytic melittin. Transcriptomic analyses demonstrated distinctive gene expression changes for each peptide. Quantitative RT-PCR confirmed differential expression of selected genes. Gene Ontology (GO) annotation of differential gene lists showed that the unique significant terms shared by treatment with both peptides were related to the cell wall (CW). Assays with mutants lacking CW-related genes including those of MAPK signaling pathways revealed genes having influence on sensitivity to peptides. Fluorescence microscopy and flow cytometry demonstrated PAF26 interaction with cells and internalization that correlated with cell killing in sensitive CW-defective mutants such as Δecm33 or Δssd1. GO annotation also showed differential responses between peptides, which included ribosomal biogenesis, ARG genes from the metabolism of amino groups (specifically induced by PAF26), or the reaction to unfolded protein stress. Susceptibility of deletion mutants confirmed the involvement of these processes. Specifically, mutants lacking ARG genes from the metabolism of arginine pathway were markedly more resistant to PAF26 and had a functional CW. In the deletant in the arginosuccinate synthetase (ARG1) gene, PAF26 interaction occurred normally, thus uncoupling peptide interaction from cell killing. The previously described involvement of the glycosphingolipid gene IPT1 was extended to the peptides studied here. Conclusions

  12. MUSE optical alignment procedure

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Renault, Edgard; Loupias, Magali; Kosmalski, Johan; Anwand, Heiko; Bacon, Roland; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dubois, Jean-Pierre; Dupuy, Christophe; Kelz, Andreas; Lizon, Jean-Louis; Nicklas, Harald; Parès, Laurent; Remillieux, Alban; Seifert, Walter; Valentin, Hervé; Xu, Wenli

    2012-09-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation VLT integral field spectrograph (1x1arcmin² Field of View) developed for the European Southern Observatory (ESO), operating in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently assembling and testing MUSE in the Integration Hall of the Observatoire de Lyon for the Preliminary Acceptance in Europe, scheduled for 2013. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2011, all MUSE subsystems were integrated, aligned and tested independently in each institute. After validations, the systems were shipped to the P.I. institute at Lyon and were assembled in the Integration Hall This paper describes the end-to-end optical alignment procedure of the MUSE instrument. The design strategy, mixing an optical alignment by manufacturing (plug and play approach) and few adjustments on key components, is presented. We depict the alignment method for identifying the optical axis using several references located in pupil and image planes. All tools required to perform the global alignment between each subsystem are described. The success of this alignment approach is demonstrated by the good results for the MUSE image quality. MUSE commissioning at the VLT (Very Large Telescope) is planned for 2013.

  13. A Comparative Analysis of Computational Approaches to Relative Protein Quantification Using Peptide Peak Intensities in Label-free LC-MS Proteomics Experiments

    SciTech Connect

    Matzke, Melissa M.; Brown, Joseph N.; Gritsenko, Marina A.; Metz, Thomas O.; Pounds, Joel G.; Rodland, Karin D.; Shukla, Anil K.; Smith, Richard D.; Waters, Katrina M.; McDermott, Jason E.; Webb-Robertson, Bobbie-Jo M.

    2013-02-01

    Liquid chromatography coupled with mass spectrometry (LC-MS) is widely used to identify and quantify peptides in complex biological samples. In particular, label-free shotgun proteomics is highly effective for the identification of peptides and subsequently obtaining a global protein profile of a sample. As a result, this approach is widely used for discovery studies. Typically, the objective of these discovery studies is to identify proteins that are affected by some condition of interest (e.g. disease, exposure). However, for complex biological samples, label-free LC-MS proteomics experiments measure peptides and do not directly yield protein quantities. Thus, protein quantification must be inferred from one or more measured peptides. In recent years, many computational approaches to relative protein quantification of label-free LC-MS data have been published. In this review, we examine the most commonly employed quantification approaches to relative protein abundance from peak intensity values, evaluate their individual merits, and discuss challenges in the use of the various computational approaches.

  14. The use of a neutral peptide aptamer scaffold to anchor BH3 peptides constitutes a viable approach to studying their function

    PubMed Central

    Stadler, L K J; Tomlinson, D C; Lee, T; Knowles, M A; Ko Ferrigno, P

    2014-01-01

    The B-cell CLL/lymphoma-2 (Bcl-2) family of proteins are important regulators of the intrinsic pathway of apoptosis, and their interactions, driven by Bcl-2 homology (BH) domains, are of great interest in cancer research. Particularly, the BH3 domain is of clinical relevance, as it promotes apoptosis through activation of Bcl-2-associated x protein (Bax) and Bcl-2 antagonist killer (Bak), as well as by antagonising the anti-apoptotic Bcl-2 family members. Although investigated extensively in vitro, the study of the BH3 domain alone inside cells is more problematic because of diminished secondary structure of the unconstrained peptide and a lack of stability. In this study, we report the successful use of a novel peptide aptamer scaffold – Stefin A quadruple mutant – to anchor and present the BH3 domains from Bcl-2-interacting mediator of cell death (Bim), p53 upregulated modulator of apoptosis (Puma), Bcl-2-associated death promoter (Bad) and Noxa, and demonstrate its usefulness in the study of the BH3 domains in vivo. When expressed intracellularly, anchored BH3 peptides exhibit much the same binding specificities previously established in vitro, however, we find that, at endogenous expression levels, Bcl-2 does not bind to any of the anchored BH3 domains tested. Nonetheless, when expressed inside cells the anchored PUMA and Bim BH3 α-helices powerfully induce cell death in the absence of efficient targeting to the mitochondrial membrane, whereas the Noxa helix requires a membrane insertion domain in order to kill Mcl-1-dependent myeloma cells. Finally, the binding of the Bim BH3 peptide to Bax was the only interaction with a pro-apoptotic effector protein observed in this study. PMID:24481451

  15. Development of an anti-microbial peptide-mediated liposomal delivery system: a novel approach towards pH-responsive anti-microbial peptides.

    PubMed

    Zhang, Qianyu; Tang, Jie; Ran, Rui; Liu, Yayuan; Zhang, Zhirong; Gao, Huile; He, Qin

    2016-05-01

    On one hand, the application of anti-microbial peptides (AMPs) in the construction of AMPs-mediated drug delivery system has not yet been fully exploited; on the other hand, its non-selectivity in vivo has also limited its clinical application. In this work, we chose one pH-responsive peptide, [D]-H6L9, and functionalized it onto the surface of liposomes (D-Lip). The protonation of histidines in the sequence of [D]-H6L9 under pH 6.3 could switch the surface charge of D-Lip from negative (under pH 7.4) to positive (under pH 6.3), and the cellular uptake and tumor spheroids uptake were increased accordingly. Lysosome co-localization assay suggested that there was only little overlap of D-Lip with lysosomes in 12 h, which indicated that D-Lip could escape lysosomes effectively. In vivo biodistribution assay on C26 tumor-bearing BALB/C mice showed that DiR-labeled D-Lip could reach tumors as much as PEG-Lip, and both tumor slices and quantitative measurement of dispersed cells of in vivo tumors by flow cytometry demonstrated that D-Lip could be taken up by tumors more efficiently. Therefore, we have established an anti-microbial peptide-mediated liposomal delivery system for tumor delivery. PMID:25693639

  16. Evaluation of two approaches for aligning data obtained from a motion capture system and an in-shoe pressure measurement system.

    PubMed

    Kim, Sunwook; Nussbaum, Maury A

    2014-01-01

    An in-shoe pressure measurement (IPM) system can be used to measure center of pressure (COP) locations, and has fewer restrictions compared to the more conventional approach using a force platform. The insole of an IPM system, however, has its own coordinate system. To use an IPM system along with a motion capture system, there is thus a need to align the coordinate systems of the two measurement systems. To address this need, the current study examined two different approaches-rigid body transformation and nonlinear mapping (i.e., multilayer feed-forward neural network (MFNN))-to express COP measurements from an IPM system in the coordinate system of a motion capture system. Ten participants (five male and five female) completed several simulated manual material handling (MMH) activities, and during these activities the performance of the two approaches was assessed. Results indicated that: (1) performance varied between MMH activity types; and (2) a MFNN performed better than or comparable to the rigid body transformation, depending on the specific input variable sets used. Further, based on the results obtained, it was argued that a nonlinear mapping vs. rigid body transformation approach may be more effective to account for shoe deformation during MMH or potentially other types of physical activity. PMID:25222032

  17. A peptidomic approach to study the contribution of added casein proteins to the peptide profile in Spanish dry-fermented sausages.

    PubMed

    Mora, Leticia; Escudero, Elizabeth; Aristoy, M-Concepción; Toldrá, Fidel

    2015-11-01

    Peptidomics is a necessary alternative in the analysis of naturally generated peptides in dry-fermented processing. The intense proteolysis occurred during the processing of dry-fermented sausages is due to the action of endopeptidases and exopeptidases from both, endogenous muscle origin and lactic acid bacteria (LAB) added in the starter. Sodium caseinate is frequently used as an additive in this type of products because of its emulsifying properties, and consequently influences the protein profile available during the proteolysis. In this study, a mass spectrometry approach has been used to determine the impact of added sodium caseinate in the final peptide profile as well as to analyse its possible influence in the presence of certain previously described casein-derived bioactive peptides. PMID:26116420

  18. IUS prerelease alignment

    NASA Technical Reports Server (NTRS)

    Evans, F. A.

    1978-01-01

    Space shuttle orbiter/IUS alignment transfer was evaluated. Although the orbiter alignment accuracy was originally believed to be the major contributor to the overall alignment transfer error, it was shown that orbiter alignment accuracy is not a factor affecting IUS alignment accuracy, if certain procedures are followed. Results are reported of alignment transfer accuracy analysis.

  19. Peptides (P1, P2 and its mutations) binding with a graphene sheet: an all-atom to all-residue hierarchical coarse-grained approach

    NASA Astrophysics Data System (ADS)

    Kuang, Zhifeng; Farmer, Barry; Pandey, Ras

    2013-03-01

    Binding of peptide P2 (EPLQLKM) [1] and its mutations (P2G, P2Q) to a graphene sheet are studied by a coarse-grained computer simulation. Our hierarchical coarse-grained approach involves all-atom MD simulation to assess the binding interaction of each residue with the graphene sheet. Data from all-atom simulations are then used as input to phenomenological interaction in a coarse-grained MC simulation [2]. Binding of each peptide and its residue in corresponding sequence (P2, P2G, P2Q) are evaluated by analyzing the adsorption of each residue, its mobility, and structural profiles. Although it is difficult to identify overall morphological differences in adsorbed peptides by visual inspections, quantitative analysis of the conformational changes of adsorbed peptides shows variations in size among P2E and its mutations. Results on binding of peptide P1 (HSSYWYAFNNKT) may also be presented if data become available. This work is supported by the Air Force Research Laboratory.

  20. Novel isotopic N, N-dimethyl leucine (iDiLeu) reagents enable absolute quantification of peptides and proteins using a standard curve approach

    PubMed Central

    Greer, Tyler; Lietz, Christopher B.; Xiang, Feng; Li, Lingjun

    2014-01-01

    Absolute quantification of protein targets using liquid chromatography-mass spectrometry (LC-MS) is a key component of candidate biomarker validation. One popular method combines multiple reaction monitoring (MRM) using a triple quadrupole instrument with stable isotope-labeled standards (SIS) for absolute quantification (AQUA). LC-MRM AQUA assays are sensitive and specific, but they are also expensive due to the cost of synthesizing stable isotope peptide standards. While the chemical modification approach using Mass Differential Tags for Relative and Absolute Quantification (mTRAQ) represents a more economical approach when quantifying large numbers of peptides, these reagents are costly and still suffer from lower throughput because only two concentration values per peptide can be obtained in a single LC-MS run. Here, we have developed and applied a set of five novel mass difference reagents, isotopic N,N-dimethyl leucine (iDiLeu). These labels contain an amine reactive group, triazine ester, are cost effective due to their synthetic simplicity, and have increased throughput compared to previous LC-MS quantification methods by allowing construction of a four-point standard curve in one run. iDiLeu-labeled peptides show remarkably similar retention time shifts, slightly lower energy thresholds for higher-energy collisional dissociation (HCD) fragmentation, and high quantification accuracy for trypsin-digested protein samples (median errors <15%). By spiking in an iDiLeu-labeled neuropeptide, allatostatin, into mouse urine matrix, two quantification methods are validated. The first uses one labeled peptide as an internal standard to normalize labeled peptide peak areas across runs (<19% error) while the second enables standard curve creation and analyte quantification in one run (<8% error). PMID:25377360

  1. Novel isotopic N, N-Dimethyl Leucine (iDiLeu) Reagents Enable Absolute Quantification of Peptides and Proteins Using a Standard Curve Approach

    NASA Astrophysics Data System (ADS)

    Greer, Tyler; Lietz, Christopher B.; Xiang, Feng; Li, Lingjun

    2015-01-01

    Absolute quantification of protein targets using liquid chromatography-mass spectrometry (LC-MS) is a key component of candidate biomarker validation. One popular method combines multiple reaction monitoring (MRM) using a triple quadrupole instrument with stable isotope-labeled standards (SIS) for absolute quantification (AQUA). LC-MRM AQUA assays are sensitive and specific, but they are also expensive because of the cost of synthesizing stable isotope peptide standards. While the chemical modification approach using mass differential tags for relative and absolute quantification (mTRAQ) represents a more economical approach when quantifying large numbers of peptides, these reagents are costly and still suffer from lower throughput because only two concentration values per peptide can be obtained in a single LC-MS run. Here, we have developed and applied a set of five novel mass difference reagents, isotopic N, N-dimethyl leucine (iDiLeu). These labels contain an amine reactive group, triazine ester, are cost effective because of their synthetic simplicity, and have increased throughput compared with previous LC-MS quantification methods by allowing construction of a four-point standard curve in one run. iDiLeu-labeled peptides show remarkably similar retention time shifts, slightly lower energy thresholds for higher-energy collisional dissociation (HCD) fragmentation, and high quantification accuracy for trypsin-digested protein samples (median errors <15%). By spiking in an iDiLeu-labeled neuropeptide, allatostatin, into mouse urine matrix, two quantification methods are validated. The first uses one labeled peptide as an internal standard to normalize labeled peptide peak areas across runs (<19% error), whereas the second enables standard curve creation and analyte quantification in one run (<8% error).

  2. An effective and effecient peptide binding prediction approach for a broad set of HLA-DR molecules based on ordered weighted averaging of binding pocket profiles

    PubMed Central

    2013-01-01

    Background The immune system must detect a wide variety of microbial pathogens, such as viruses, bacteria, fungi and parasitic worms, to protect the host against disease. Antigenic peptides displayed by MHC II (class II Major Histocompatibility Complex) molecules is a pivotal process to activate CD4+ TH cells (Helper T cells). The activated TH cells can differentiate into effector cells which assist various cells in activating against pathogen invasion. Each MHC locus encodes a great number of allele variants. Yet this limited number of MHC molecules are required to display enormous number of antigenic peptides. Since the peptide binding measurements of MHC molecules by biochemical experiments are expensive, only a few of the MHC molecules have suffecient measured peptides. To perform accurate binding prediction for those MHC alleles without suffecient measured peptides, a number of computational algorithms were proposed in the last decades. Results Here, we propose a new MHC II binding prediction approach, OWA-PSSM, which is a significantly extended version of a well known method called TEPITOPE. The TEPITOPE method is able to perform prediction for only 50 MHC alleles, while OWA-PSSM is able to perform prediction for much more, up to 879 HLA-DR molecules. We evaluate the method on five benchmark datasets. The method is demonstrated to be the best one in identifying binding cores compared with several other popular state-of-the-art approaches. Meanwhile, the method performs comparably to the TEPITOPE and NetMHCIIpan2.0 approaches in identifying HLA-DR epitopes and ligands, and it performs significantly better than TEPITOPEpan in the identification of HLA-DR ligands and MultiRTA in identifying HLA-DR T cell epitopes. Conclusions The proposed approach OWA-PSSM is fast and robust in identifying ligands, epitopes and binding cores for up to 879 MHC II molecules. PMID:24565049

  3. A room temperature approach for the fabrication of aligned TiO₂ nanotube arrays on transparent conductive substrates.

    PubMed

    Zeng, Ruosha; Li, Ke; Sheng, Xia; Chen, Liping; Zhang, Haijiao; Feng, Xinjian

    2016-03-14

    A novel solution approach is reported for the fabrication of TiO₂ nanotube arrays on transparent conductive substrates via in situ conversion from nanowires. The as-prepared nanotube arrays not only demonstrate a larger surface area in comparison with the primary NWs, but also longer charge carrier lifetime than that of randomly packed nanoparticle films. PMID:26892268

  4. A rational approach to select immunogenic peptides that induce IFN-γ response against Toxoplasma gondii in human leukocytes.

    PubMed

    Cardona, Néstor I; Moncada, Diego M; Gómez-Marin, Jorge E

    2015-12-01

    The ideal vaccine to prevent toxoplasmosis in humans would comprise antigens that elicit a protective T cell type 1 response with high IFN-γ production. Here, we report the use of a bioinformatics pipeline to discover peptides based on biochemical characteristics that predict strong IFN-γ response by human leukocytes. We selected peptide sequences that previously were reported to induce IFN-γ to identify the biophysical characteristics that will predict HLA-A*02 high-affinity epitopes. We found that the protein motif pattern FL...L..[VL] was common in previously reported highly immunogenic sequences. We have selected new peptides with a length of 9 residues with affinities from 2 to 21 nM with peptide signal and transmembrane domains and predicted to be cleaved at the proteasome to perform ELISPOT assays with human leukocytes. Within 9 peptides with the highest scores for IFN-γ production, four peptides elicited IFN-γ levels in a range from 252 to 1763 SFC/1e6. Our pipeline uncovered Toxoplasma proteins with peptides that are processed by MHC class 1 in humans. Our results suggest that our rational strategy for the selection of immunogenic epitopes could be used to select peptides as candidates for inclusion in epitope-based vaccines. PMID:26210043

  5. An approach to the construction of tailor-made amphiphilic peptides that strongly and selectively bind to hairpin RNA targets.

    PubMed

    Lee, Su Jin; Hyun, Soonsil; Kieft, Jeffrey S; Yu, Jaehoon

    2009-02-18

    The hairpin RNA motif is one of the most frequently observed secondary structures and is often targeted by therapeutic agents. An amphiphilic peptide with seven lysine and eight leucine residues and its derivatives were designed for use as ligands against RNA hairpin motifs. We hypothesized that variations in both the hydrophobic leucine-rich and hydrophilic lysine-rich spheres of these amphiphilic peptides would create extra attractive interactions with hairpin RNA targets. A series of alanine-scanned peptides were probed to identify the most influential lysine residues in the hydrophilic sphere. The binding affinities of these modified peptides with several hairpins, such as RRE, TAR from HIV, a short hairpin from IRES of HCV, and a hairpin from the 16S A-site stem from rRNA, were determined. Since the hairpin from IRES of HCV was the most susceptible to the initial series of alanine-scanned peptides, studies investigating how further variations in the peptides effect binding employed the IRES hairpin. Next, the important Lys residues were substituted by shorter chain amines, such as ornithine, to place the peptide deeper into the hairpin groove. In a few cases, a 70-fold improved binding was observed for peptides that contained the specifically located shorter amine side chains. To further explore changes in binding affinities brought about by alterations in the hydrophobic sphere, tryptophan residues were introduced in place of leucine. A few peptides with tryptophan in specific positions also displayed 70-fold improved binding affinities. Finally, double mutant peptides incorporating both specifically located shorter amine side chains in the hydrophilic region and tryptophan residues in the hydrophobic region were synthesized. The binding affinities of peptides containing the simple double modification were observed to be 80 times lower, and their binding specificities were increased 40-fold. The results of this effort provide important information about

  6. Effect of graded hydration on the dynamics of an ion channel peptide: a fluorescence approach.

    PubMed

    Kelkar, Devaki A; Chattopadhyay, Amitabha

    2005-02-01

    Water plays an important role in determining the folding, structure, dynamics, and, in turn, the function of proteins. We have utilized a combination of fluorescence approaches such as the wavelength-selective fluorescence approach to monitor the effect of varying degrees of hydration on the organization and dynamics of the functionally important tryptophan residues of gramicidin in reverse micelles formed by sodium bis(2-ethylhexyl) sulfosuccinate. Our results show that tryptophans in gramicidin, present in the single-stranded beta6.3 conformation, experience slow solvent relaxation giving rise to red-edge excitation shift (REES). In addition, changes in fluorescence polarization with increasing excitation or emission wavelength reinforce that the gramicidin tryptophans are localized in motionally restricted regions of the reverse micelle. Interestingly, the extent of REES is found to be independent of the [water]/[surfactant] molar ratio (w(o)). We attribute this to heterogeneity in gramicidin tryptophan localization. Fluorescence intensity and mean fluorescence lifetime of the gramicidin tryptophans show significant reductions with increasing w(o) indicating sensitivity to increased polarity. Since the dynamics of hydration is related to folding, structure, and eventually function of proteins, we conclude that REES could prove to be a potentially sensitive tool to explore the dynamics of proteins under conditions of changing hydration. PMID:15542551

  7. Effect of Graded Hydration on the Dynamics of an Ion Channel Peptide: A Fluorescence Approach

    PubMed Central

    Kelkar, Devaki A.; Chattopadhyay, Amitabha

    2005-01-01

    Water plays an important role in determining the folding, structure, dynamics, and, in turn, the function of proteins. We have utilized a combination of fluorescence approaches such as the wavelength-selective fluorescence approach to monitor the effect of varying degrees of hydration on the organization and dynamics of the functionally important tryptophan residues of gramicidin in reverse micelles formed by sodium bis(2-ethylhexyl) sulfosuccinate. Our results show that tryptophans in gramicidin, present in the single-stranded β6.3 conformation, experience slow solvent relaxation giving rise to red-edge excitation shift (REES). In addition, changes in fluorescence polarization with increasing excitation or emission wavelength reinforce that the gramicidin tryptophans are localized in motionally restricted regions of the reverse micelle. Interestingly, the extent of REES is found to be independent of the [water]/[surfactant] molar ratio (wo). We attribute this to heterogeneity in gramicidin tryptophan localization. Fluorescence intensity and mean fluorescence lifetime of the gramicidin tryptophans show significant reductions with increasing wo indicating sensitivity to increased polarity. Since the dynamics of hydration is related to folding, structure, and eventually function of proteins, we conclude that REES could prove to be a potentially sensitive tool to explore the dynamics of proteins under conditions of changing hydration. PMID:15542551

  8. A Stochastic Hill Climbing Approach for Simultaneous 2D Alignment and Clustering of Cryogenic Electron Microscopy Images.

    PubMed

    Reboul, Cyril F; Bonnet, Frederic; Elmlund, Dominika; Elmlund, Hans

    2016-06-01

    A critical step in the analysis of novel cryogenic electron microscopy (cryo-EM) single-particle datasets is the identification of homogeneous subsets of images. Methods for solving this problem are important for data quality assessment, ab initio 3D reconstruction, and analysis of population diversity due to the heterogeneous nature of macromolecules. Here we formulate a stochastic algorithm for identification of homogeneous subsets of images. The purpose of the method is to generate improved 2D class averages that can be used to produce a reliable 3D starting model in a rapid and unbiased fashion. We show that our method overcomes inherent limitations of widely used clustering approaches and proceed to test the approach on six publicly available experimental cryo-EM datasets. We conclude that, in each instance, ab initio 3D reconstructions of quality suitable for initialization of high-resolution refinement are produced from the cluster centers. PMID:27184214

  9. Analysis of endogenous peptides bound by soluble MHC class I molecules: a novel approach for identifying tumor-specific antigens.

    PubMed

    Barnea, Eilon; Beer, Ilan; Patoka, Renana; Ziv, Tamar; Kessler, Ofra; Tzehoval, Esther; Eisenbach, Lea; Zavazava, Nicholas; Admon, Arie

    2002-01-01

    The Human MHC Project aims at comprehensive cataloging of peptides presented within the context of different human leukocyte antigens (HLA) expressed by cells of various tissue origins, both in health and in disease. Of major interest are peptides presented on cancer cells, which include peptides derived from tumor antigens that are of interest for immunotherapy. Here, HLA-restricted tumor-specific antigens were identified by transfecting human breast, ovarian and prostate tumor cell lines with truncated genes of HLA-A2 and HLA-B7. Soluble HLA secreted by these cell lines were purified by affinity chromatography and analyzed by nano-capillary electrospray ionization-tandem mass spectrometry. Typically, a large peptide pool was recovered and sequenced including peptides derived from MAGE-B2 and mucin and other new tumor-derived antigens that may serve as potential candidates for immunotherapy. PMID:11782012

  10. State strategies of governance in biomedical innovation: aligning conceptual approaches for understanding 'Rising Powers' in the global context

    PubMed Central

    2011-01-01

    Background 'Innovation' has become a policy focus in its own right in many states as they compete to position themselves in the emerging knowledge economies. Innovation in biomedicine is a global enterprise in which 'Rising Power' states figure prominently, and which undoubtedly will re-shape health systems and health economies globally. Scientific and technological innovation processes and policies raise difficult issues in the domains of science/technology, civil society, and the economic and healthcare marketplace. The production of knowledge in these fields is complex, uncertain, inter-disciplinary and inter-institutional, and subject to a continuing political struggle for advantage. As part of this struggle, a wide variety of issues - regulation, intellectual property, ethics, scientific boundaries, healthcare market formation - are raised and policy agendas negotiated. Methods A range of social science disciplines and approaches have conceptualised such innovation processes. Against a background of concepts such as the competition state and the developmental state, and national innovation systems, we give an overview of a range of approaches that have potential for advancing understanding of governance of global life science and biomedical innovation, with special reference to the 'Rising Powers', in order to examine convergences and divergences between them. Conceptual approaches that we focus on include those drawn from political science/political economy, sociology of technology; Innovation Studies and Science & Technology Studies. The paper is part of a project supported by the UK ESRC's Rising Powers programme. Results We show convergences and complementarities between the approaches discussed, and argue that the role of the national state itself has become relatively neglected in much of the relevant theorising. Conclusions We conclude that an approach is required that enables innovation and governance to be seen as 'co-producing' each other in a multi

  11. A Novel Peptide-Binding Motifs Inference Approach to Understand Deoxynivalenol Molecular Toxicity

    PubMed Central

    Hassan, Yousef I.; Watts, Christena; Li, Xiu-Zhen; Zhou, Ting

    2015-01-01

    Deoxynivalenol (DON) is a type B trichothecene mycotoxin that is commonly detected in cereals and grains world-wide. The low-tolerated levels of this mycotoxin, especially in mono-gastric animals, reflect its bio-potency. The toxicity of DON is conventionally attributed to its ability to inhibit ribosomal protein biosynthesis, but recent advances in molecular tools have elucidated novel mechanisms that further explain DON’s toxicological profile, complementing the diverse symptoms associated with its exposure. This article summarizes the recent findings related to novel mechanisms of DON toxicity as well as how structural modifications to DON alter its potency. In addition, it explores feasible ways of expanding our understating of DON-cellular targets and their roles in DON toxicity, clearance, and detoxification through the utilization of computational biology approaches. PMID:26043274

  12. A Novel Two-Stage Tandem Mass Spectrometry Approach and Scoring Scheme for the Identification of O-GlcNAc Modified Peptides

    NASA Astrophysics Data System (ADS)

    Hahne, Hannes; Kuster, Bernhard

    2011-05-01

    The modification of serine and threonine residues in proteins by a single N-acetylglucosamine (O-GlcNAc) residue is an emerging post-translational modification (PTM) with broad biological implications. However, the systematic or large-scale analysis of this PTM is hampered by several factors, including low stoichiometry and the lability of the O-glycosidic bond during tandem mass spectrometry. Using a library of 72 synthetic glycopeptides, we developed a two-stage tandem MS approach consisting of pulsed Q dissociation (PQD) for O-GlcNAc peptide detection and electron transfer dissociation (ETD) for identification and site localization. Based on a set of O-GlcNAc specific fragment ions, we further developed a score (OScore) that discriminates O-GlcNAc peptide spectra from spectra of unmodified peptides with 95% sensitivity and >99% specificity. Integrating the OScore into the two-stage LC-MS/MS approach detected O-GlcNAc peptides in the low fmol range and at 10-fold better sensitivity than a single data-dependent ETD tandem MS experiment.

  13. Glucagon-like peptide-1 (GLP-1) and protective effects in cardiovascular disease: a new therapeutic approach for myocardial protection

    PubMed Central

    2013-01-01

    Glucagon-like peptide-1 (GLP-1) is a member of the proglucagon incretin family implicated in the control of appetite and satiety. GLP-1 has insulinotropic, insulinomimetic, and glucagonostatic effects, thereby exerting multiple complementary actions to lower blood glucose in subjects with type 2 diabetes mellitus. A major advantage over conventional insulin is the fact that the insulinotropic actions of GLP-1 are dependent upon ambient glucose concentration, mitigating the risks of hypoglycemia. Recently, the crucial role of GLP-1 in cardiovascular disease has been suggested in both preclinical and clinical studies. The experimental data indicate GLP-1 and its analogs to have direct effects on the cardiovascular system, in addition to their classic glucoregulatory actions. Clinically, beneficial effects of GLP-1 have also been demonstrated in patients with myocardial ischemia and heart failure. GLP-1 has recently been demonstrated to be a more effective alternative in treating myocardial injury. This paper provides a review on the current evidence supporting the use of GLP-1 in experimental animal models and human trials with the ischemic and non-ischemic heart and discusses their molecular mechanisms and potential as a new therapeutic approach. PMID:23777457

  14. A combined cheminformatic and bioinformatic approach to address the proteolytic stability challenge in peptide-based drug discovery.

    PubMed

    Bayden, Alexander S; Gomez, Edwin F; Audie, Joseph; Chakravorty, Dhruva K; Diller, David J

    2015-11-01

    We have created models to predict cleavage sites for several human proteases including caspase-1, caspase-3, caspase-6, caspase-7, cathepsin B, cathepsin D, cathepsin G, cathepsin K, cathepsin L, elastase-2, granzyme A, granzyme B, matrix metallopeptidase-2 (MMP2), MMP7, MMP9, thrombin, and trypsin-1. Rather than representing the sequence pattern around the potential cleavage site through a series of flags with each flag representing one of the 20 standard amino acids, we first represent each amino acid by its calculated properties. For these calculated properties, we use validated cheminformatic descriptors, such as molecular weight, logP, and polar surface area, of the individual amino acids. Finally, the cleavage site-specific descriptors are calculated through various combinations of the individual amino acid descriptors for the residues surrounding the cleavage site. Some of these combinations do not take into account the location of the residue, as long as it is in a prescribed neighborhood of the potential cleavage site, whereas others are sensitive to the precise order of the residues in the sequence. The key advantage of this approach is that it allows one to perform meaningful calculations with nonstandard amino acids for which little or no data exists. Finally, using both docking and molecular dynamics simulations, we examine the potential for and limitations of protease crystal structures to impact the design of proteolytically stable peptides. PMID:26270398

  15. Increase of anti-HIV activity of C-peptide fusion inhibitors using a bivalent drug design approach.

    PubMed

    Ling, Yanbo; Xue, Huifang; Jiang, Xifeng; Cai, Lifeng; Liu, Keliang

    2013-09-01

    We reported the design of fusion inhibitors with improved activity using a multivalent inhibitor design strategy. First, we chose C29 as the template sequence, which is a 29-mer peptide derived from HIV-1 gp41 CHR domain and has anti-HIV activity of IC50 118 nM in a cell-cell fusion assay. We optimized the crosslink sites and linkers of the template peptide. We found that N-terminal crosslink caused activity improvement based on the multivalent co-operative effect. Especially, the IC50 of peptide (CAcaC29)2 was improved from 49.02 (monomeric form) to 5.71 nM. Compared with long peptides, short peptides may be more suitable to analyze the co-operative effect. So we selected a shorter peptide C22 to synthesize the bivalent inhibitors. Due its weak helicity, no co-operative effect appeared. Therefore, we chose SC22EK, which were introduced salt bridges to consolidate the helicity based on the natural sequence C22. The cross-linked (CAcaSC22EK)2 was four times more potent than the monomer SC22EK in anti-HIV activity, with an IC50 value of 4.92 nM close to the high active peptide fusion inhibitor C34. The strategy used in this study may be used to design new fusion inhibitors to interfere similar processes. PMID:23906421

  16. Moving beyond Rules: The Development of a Central Nervous System Multiparameter Optimization (CNS MPO) Approach To Enable Alignment of Druglike Properties

    PubMed Central

    2010-01-01

    The interplay among commonly used physicochemical properties in drug design was examined and utilized to create a prospective design tool focused on the alignment of key druglike attributes. Using a set of six physicochemical parameters ((a) lipophilicity, calculated partition coefficient (ClogP); (b) calculated distribution coefficient at pH = 7.4 (ClogD); (c) molecular weight (MW); (d) topological polar surface area (TPSA); (e) number of hydrogen bond donors (HBD); (f) most basic center (pKa)), a druglikeness central nervous system multiparameter optimization (CNS MPO) algorithm was built and applied to a set of marketed CNS drugs (N = 119) and Pfizer CNS candidates (N = 108), as well as to a large diversity set of Pfizer proprietary compounds (N = 11 303). The novel CNS MPO algorithm showed that 74% of marketed CNS drugs displayed a high CNS MPO score (MPO desirability score ≥ 4, using a scale of 0−6), in comparison to 60% of the Pfizer CNS candidates. This analysis suggests that this algorithm could potentially be used to identify compounds with a higher probability of successfully testing hypotheses in the clinic. In addition, a relationship between an increasing CNS MPO score and alignment of key in vitro attributes of drug discovery (favorable permeability, P-glycoprotein (P-gp) efflux, metabolic stability, and safety) was seen in the marketed CNS drug set, the Pfizer candidate set, and the Pfizer proprietary diversity set. The CNS MPO scoring function offers advantages over hard cutoffs or utilization of single parameters to optimize structure−activity relationships (SAR) by expanding medicinal chemistry design space through a holistic assessment approach. Based on six physicochemical properties commonly used by medicinal chemists, the CNS MPO function may be used prospectively at the design stage to accelerate the identification of compounds with increased probability of success. PMID:22778837

  17. Predicting protein-ligand and protein-peptide interfaces

    NASA Astrophysics Data System (ADS)

    Bertolazzi, Paola; Guerra, Concettina; Liuzzi, Giampaolo

    2014-06-01

    The paper deals with the identification of binding sites and concentrates on interactions involving small interfaces. In particular we focus our attention on two major interface types, namely protein-ligand and protein-peptide interfaces. As concerns protein-ligand binding site prediction, we classify the most interesting methods and approaches into four main categories: (a) shape-based methods, (b) alignment-based methods, (c) graph-theoretic approaches and (d) machine learning methods. Class (a) encompasses those methods which employ, in some way, geometric information about the protein surface. Methods falling into class (b) address the prediction problem as an alignment problem, i.e. finding protein-ligand atom pairs that occupy spatially equivalent positions. Graph theoretic approaches, class (c), are mainly based on the definition of a particular graph, known as the protein contact graph, and then apply some sophisticated methods from graph theory to discover subgraphs or score similarities for uncovering functional sites. The last class (d) contains those methods that are based on the learn-from-examples paradigm and that are able to take advantage of the large amount of data available on known protein-ligand pairs. As for protein-peptide interfaces, due to the often disordered nature of the regions involved in binding, shape similarity is no longer a determining factor. Then, in geometry-based methods, geometry is accounted for by providing the relative position of the atoms surrounding the peptide residues in known structures. Finally, also for protein-peptide interfaces, we present a classification of some successful machine learning methods. Indeed, they can be categorized in the way adopted to construct the learning examples. In particular, we envisage three main methods: distance functions, structure and potentials and structure alignment.

  18. Moving Away from the Reference Genome: Evaluating a Peptide Sequencing Tagging Approach for Single Amino Acid Polymorphism Identifications in the Genus Populus

    SciTech Connect

    Abraham, Paul E; Adams, Rachel M; Tuskan, Gerald A; Hettich, Robert {Bob} L

    2013-01-01

    The genetic diversity across natural populations of the model organism, Populus, is extensive, containing a single nucleotide polymorphism roughly every 200 base pairs. When deviations from the reference genome occur in coding regions, they can impact protein sequences. Rather than relying on a static reference database to profile protein expression, we employed a peptide sequence tagging (PST) approach capable of decoding the plasticity of the Populus proteome. Using shotgun proteomics data from two genotypes of P. trichocarpa, a tag-based approach enabled the detection of 6,653 unexpected sequence variants. Through manual validation, our study investigated how the most abundant chemical modification (methionine oxidation) could masquerade as a sequence variant (AlaSer) when few site-determining ions existed. In fact, precise localization of an oxidation site for peptides with more than one potential placement was indeterminate for 70% of the MS/MS spectra. We demonstrate that additional fragment ions made available by high energy collisional dissociation enhances the robustness of the peptide sequence tagging approach (81% of oxidation events could be exclusively localized to a methionine). We are confident that augmenting fragmentation processes for a PST approach will further improve the identification of single amino acid polymorphism in Populus and potentially other species as well.

  19. Communication About Sexuality in Advanced Illness Aligns With a Palliative Care Approach to Patient-Centered Care.

    PubMed

    Leung, Margaret W; Goldfarb, Shari; Dizon, Don S

    2016-02-01

    Treatment-related sexual complications are common in cancer patients although rarely discussed in the palliative care setting. Sexuality is an important survivorship issue and remains relevant even in the terminal setting. There are multiple barriers in dialoguing about intimacy and sexual functioning from the patient and provider perspectives. Palliative care providers, while not expected to be sexual health experts, can provide comprehensive patient-centered care by including sexual health as part of their evaluation. They can explore how sexual dysfunction can impair functioning and utilize an interdisciplinary approach to manage symptoms. Palliative care providers can help patients identify their goals of care and explore what anticipated sexual changes and treat-related side effects are tolerable and intolerable to the patient's quality of life. Principles on addressing sexuality in the palliative setting and practical ways of incorporating sexual history into the palliative care assessment are provided. PMID:26769116

  20. Probabilistic Mixture Regression Models for Alignment of LC-MS Data

    PubMed Central

    Befekadu, Getachew K.; Tadesse, Mahlet G.; Tsai, Tsung-Heng; Ressom, Habtom W.

    2010-01-01

    A novel framework of a probabilistic mixture regression model (PMRM) is presented for alignment of liquid chromatography-mass spectrometry (LC-MS) data with respect to both retention time (RT) and mass-to-charge ratio (m/z). The expectation maximization algorithm is used to estimate the joint parameters of spline-based mixture regression models and prior transformation density models. The latter accounts for the variability in RT points, m/z values, and peak intensities. The applicability of PMRM for alignment of LC-MS data is demonstrated through three datasets. The performance of PMRM is compared with other alignment approaches including dynamic time warping, correlation optimized warping, and continuous profile model in terms of coefficient variation of replicate LC-MS runs and accuracy in detecting differentially abundant peptides/proteins. PMID:20837998

  1. A gynecologic oncology group phase II trial of two p53 peptide vaccine approaches: subcutaneous injection and intravenous pulsed dendritic cells in high recurrence risk ovarian cancer patients

    PubMed Central

    Rahma, Osama E.; Ashtar, Ed; Czystowska, Malgorzata; Szajnik, Marta E.; Wieckowski, Eva; Bernstein, Sarah; Herrin, Vincent E.; Shams, Mortada A.; Steinberg, Seth M.; Merino, Maria; Gooding, William; Visus, Carmen; DeLeo, Albert B.; Wolf, Judith K.; Bell, Jeffrey G.; Berzofsky, Jay A.; Whiteside, Theresa L.; Khleif, Samir N.

    2013-01-01

    Purpose Peptide antigens have been administered by different approaches as cancer vaccine therapy, including direct injection or pulsed onto dendritic cells; however, the optimal delivery method is still debatable. In this study, we describe the immune response elicited by two vaccine approaches using the wild-type (wt) p53 vaccine. Experimental design Twenty-one HLA-A2.1 patients with stage III, IV, or recurrent ovarian cancer over-expressing the p53 protein with no evidence of disease were treated in two cohorts. Arm A received SC wt p53:264-272 peptide admixed with Montanide and GM-CSF. Arm B received wt p53:264-272 peptide-pulsed dendritic cells IV. Interleukin-2 (IL-2) was administered to both cohorts in alternative cycles. Results Nine of 13 patients (69%) in arm A and 5 of 6 patients (83%) in arm B developed an immunologic response as determined by ELISPOT and tetramer assays. The vaccine caused no serious systemic side effects. IL-2 administration resulted in grade 3 and 4 toxicities in both arms and directly induced the expansion of T regulatory cells. The median overall survival was 40.8 and 29.6 months for arm A and B, respectively; the median progression-free survival was 4.2 and. 8.7 months, respectively. Conclusion We found that using either vaccination approach generates comparable specific immune responses against the p53 peptide with minimal toxicity. Accordingly, our findings suggest that the use of less demanding SC approach may be as effective. Furthermore, the use of low-dose SC IL-2 as an adjuvant might have interfered with the immune response. Therefore, it may not be needed in future trials. PMID:21927947

  2. QSBR study of bitter taste of peptides: application of GA-PLS in combination with MLR, SVM, and ANN approaches.

    PubMed

    Soltani, Somaieh; Haghaei, Hossein; Shayanfar, Ali; Vallipour, Javad; Asadpour Zeynali, Karim; Jouyban, Abolghasem

    2013-01-01

    Detailed information about the relationships between structures and properties/activities of peptides as drugs and nutrients is useful in the development of drugs and functional foods containing peptides as active compounds. The bitterness of the peptides is an undesirable property which should be reduced during drug/nutrient production, and quantitative structure bitter taste relationship (QSBR) studies can help researchers to design less bitter peptides with higher target efficiency. Calculated structural parameters were used to develop three different QSBR models (i.e., multiple linear regression, support vector machine, and artificial neural network) to predict the bitterness of 229 peptides (containing 2-12 amino acids, obtained from the literature). The developed models were validated using internal and external validation methods, and the prediction errors were checked using mean percentage deviation and absolute average error values. All developed models predicted the activities successfully (with prediction errors less than experimental error values), whereas the prediction errors for nonlinear methods were less than those for linear methods. The selected structural descriptors successfully differentiated between bitter and nonbitter peptides. PMID:24371826

  3. N-terminal sequence tagging using reliably determined b2 ions: a useful approach to deconvolute tandem mass spectra of co-fragmented peptides in proteomics.

    PubMed

    Kryuchkov, Fedor; Verano-Braga, Thiago; Kjeldsen, Frank

    2014-05-30

    With the recent introduction of higher-energy collisional dissociation (HCD) in Orbitrap mass spectrometry, the popularity of that technique has grown tremendously in the proteomics society. HCD spectra, however, are characterized by a limited distribution of bn-type ions, which permit the generation of reliable sequence tags based on complementary b,y pairs both for de novo sequencing and sequence tagging strategies. Instead, most peptide HCD spectra (~95%) are dominated with b2 ions. In this work, we analyzed positive predictive values of b2 ions in HCD, and found that b2 ions can be determined with >97% certainty in the presence of a2 and its complementary yn-2 ions. Analytically, b2 ions provide information on the composition of the first two N-terminal amino acids in peptides. Their utilization in N-terminal sequence tagging leads to a significant decrease in false discovery rate by filtering out false positives while retaining true positive identifications. As a consequence, the number of peptide spectrum matches (PSMs) increased by 4.8% at fixed FDR (1%). This approach allows for deconvolution of mixture spectra and increased the number of PSM to 9.2% in a complex human sample and to 24% in a complex sample of synthetic peptides at 1% FDR. PMID:24726481

  4. Chemical cross-linking with thiol-cleavable reagents combined with differential mass spectrometric peptide mapping--a novel approach to assess intermolecular protein contacts.

    PubMed Central

    Bennett, K. L.; Kussmann, M.; Björk, P.; Godzwon, M.; Mikkelsen, M.; Sørensen, P.; Roepstorff, P.

    2000-01-01

    The intermolecular contact regions between monomers of the homodimeric DNA binding protein ParR and the interaction between the glycoproteins CD28 and CD80 were investigated using a strategy that combined chemical cross-linking with differential MALDI-MS analyses. ParR dimers were modified in vitro with the thiol-cleavable cross-linker 3,3'-dithio-bis(succinimidylproprionate) (DTSSP), proteolytically digested with trypsin and analyzed by MALDI-MS peptide mapping. Comparison of the peptide maps obtained from digested cross-linked ParR dimers in the presence and absence of a thiol reagent strongly supported a "head-to-tail" arrangement of the monomers in the dimeric complex. Glycoprotein fusion constructs CD28-IgG and CD80-Fab were cross-linked in vitro by DTSSP, characterized by nonreducing SDS-PAGE, digested in situ with trypsin and analyzed by MALDI-MS peptide mapping (+/- thiol reagent). The data revealed the presence of an intermolecular cross-link between the receptor regions of the glycoprotein constructs, as well as a number of unexpected but nonetheless specific interactions between the fusion domains of CD28-IgG and the receptor domain of CD80-Fab. The strategy of chemical cross-linking combined with differential MALDI-MS peptide mapping (+ thiol reagent) enabled localization of the interface region(s) of the complexes studied and clearly demonstrates the utility of such an approach to obtain structural information on interacting noncovalent complexes. PMID:10975572

  5. Development and optimization of on-line 2-dimensional chromatographic approaches for eliminating matrix effects and improving bioanalysis of peptides in human plasma using UHPLC-MS/MS.

    PubMed

    Ismaiel, Omnia A; Jenkins, Rand G

    2014-05-01

    Online 2-dimensional chromatographic approaches for eliminating matrix effects and optimizing bioanalysis of peptides using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) were studied. Three therapeutic peptides (octreotide, desmopressin, and vasopressin) were selected as model analytes. Human plasma was precipitated with acetonitrile; peptides were analyzed on C(8), C(18), Phenyl and HILIC ACQUITY UPLC columns. For simpler online clean-up applications, a C(18) pre-column was coupled to the analytical column via a switching valve. For more complex heart-cutting applications, two analytical columns were used with optional online dilution to refocus the analyte peaks prior to the second dimension separation. This allows the use of MS incompatible mobile phases, such as TFA, in the first dimension separation. Online clean-up effectiveness was investigated by monitoring phospholipids. Flushing direction, mobile phase composition, flow rate and transfer window were evaluated. Phospholipids were readily retained on reversed-phase columns, and the peptides were reproducibly transferred, individually or as a group, to the second column using appropriate transfer windows. The best peak shapes were obtained when the second dimension column was more retentive (e.g. C(18) vs. C(8)). However, C(8) to HILIC gave broad unresolved peaks due to mobile phase mismatch. Trapped phospholipids were efficiently removed from either guard columns or first dimensional columns by forward- or back-flushing at high flows; however, back-flushing was more efficient with lower flow rates on larger columns. PMID:23918459

  6. Development of surface modified biodegradable polymeric nanoparticles to deliver GSE24.2 peptide to cells: a promising approach for the treatment of defective telomerase disorders.

    PubMed

    Egusquiaguirre, Susana P; Manguán-García, Cristina; Pintado-Berninches, Laura; Iarriccio, Laura; Carbajo, Daniel; Albericio, Fernando; Royo, Miriam; Pedraz, José Luís; Hernández, Rosa M; Perona, Rosario; Igartua, Manuela

    2015-04-01

    The aim of the present study was to develop a novel strategy to deliver intracellularly the peptide GSE24.2 for the treatment of Dyskeratosis congenita (DC) and other defective telomerase disorders. For this purpose, biodegradable polymeric nanoparticles using poly(lactic-co-glycolic acid) (PLGA NPs) or poly(lactic-co-glycolic acid)-poly ethylene glycol (PLGA-PEG NPs) attached to either polycations or cell-penetrating peptides (CPPs) were prepared in order to increase their cellular uptake. The particles exhibited an adequate size and zeta potential, with good peptide loading and a biphasic pattern obtained in the in vitro release assay, showing an initial burst release and a later sustained release. GSE24.2 structural integrity after encapsulation was assessed using SDS-PAGE, revealing an unaltered peptide after the NPs elaboration. According to the cytotoxicity results, cell viability was not affected by uncoated polymeric NPs, but the incorporation of surface modifiers slightly decreased the viability of cells. The intracellular uptake exhibited a remarkable improvement of the internalization, when the NPs were conjugated to the CPPs. Finally, the bioactivity, addressed by measuring DNA damage rescue and telomerase reactivation, showed that some formulations had the lowest cytotoxicity and highest biological activity. These results proved that GSE24.2-loaded NPs could be delivered to cells, and therefore, become an effective approach for the treatment of DC and other defective telomerase syndromes. PMID:25660910

  7. DNA Align Editor: DNA Alignment Editor Tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The SNPAlignEditor is a DNA sequence alignment editor that runs on Windows platforms. The purpose of the program is to provide an intuitive, user-friendly tool for manual editing of multiple sequence alignments by providing functions for input, editing, and output of nucleotide sequence alignments....

  8. Polycyclic peptide therapeutics.

    PubMed

    Baeriswyl, Vanessa; Heinis, Christian

    2013-03-01

    Owing to their excellent binding properties, high stability, and low off-target toxicity, polycyclic peptides are an attractive molecule format for the development of therapeutics. Currently, only a handful of polycyclic peptides are used in the clinic; examples include the antibiotic vancomycin, the anticancer drugs actinomycin D and romidepsin, and the analgesic agent ziconotide. All clinically used polycyclic peptide drugs are derived from natural sources, such as soil bacteria in the case of vancomycin, actinomycin D and romidepsin, or the venom of a fish-hunting coil snail in the case of ziconotide. Unfortunately, nature provides peptide macrocyclic ligands for only a small fraction of therapeutic targets. For the generation of ligands of targets of choice, researchers have inserted artificial binding sites into natural polycyclic peptide scaffolds, such as cystine knot proteins, using rational design or directed evolution approaches. More recently, large combinatorial libraries of genetically encoded bicyclic peptides have been generated de novo and screened by phage display. In this Minireview, the properties of existing polycyclic peptide drugs are discussed and related to their interesting molecular architectures. Furthermore, technologies that allow the development of unnatural polycyclic peptide ligands are discussed. Recent application of these technologies has generated promising results, suggesting that polycyclic peptide therapeutics could potentially be developed for a broad range of diseases. PMID:23355488

  9. Mapping protein-protein interactions with phage-displayed combinatorial peptide libraries and alanine scanning.

    PubMed

    Kokoszka, Malgorzata E; Kay, Brian K

    2015-01-01

    One avenue for inferring the function of a protein is to learn what proteins it may bind to in the cell. Among the various methodologies, one way for doing so is to affinity select peptide ligands from a phage-displayed combinatorial peptide library and then to examine if the proteins that carry such peptide sequences interact with the target protein in the cell. With the protocols described in this chapter, a laboratory with skills in microbiology, molecular biology, and protein biochemistry can readily identify peptides in the library that bind selectively, and with micromolar affinity, to a given target protein on the time scale of 2 months. To illustrate this approach, we use a library of bacteriophage M13 particles, which display 12-mer combinatorial peptides, to affinity select different peptide ligands for two different targets, the SH3 domain of the human Lyn protein tyrosine kinase and a segment of the yeast serine/threonine protein kinase Cbk1. The binding properties of the selected peptide ligands are then dissected by sequence alignment, Kunkel mutagenesis, and alanine scanning. Finally, the peptide ligands can be used to predict cellular interacting proteins and serve as the starting point for drug discovery. PMID:25616333

  10. Aligning for Innovation - Alignment Strategy to Drive Innovation

    NASA Technical Reports Server (NTRS)

    Johnson, Hurel; Teltschik, David; Bussey, Horace, Jr.; Moy, James

    2010-01-01

    With the sudden need for innovation that will help the country achieve its long-term space exploration objectives, the question of whether NASA is aligned effectively to drive the innovation that it so desperately needs to take space exploration to the next level should be entertained. Authors such as Robert Kaplan and David North have noted that companies that use a formal system for implementing strategy consistently outperform their peers. They have outlined a six-stage management systems model for implementing strategy, which includes the aligning of the organization towards its objectives. This involves the alignment of the organization from the top down. This presentation will explore the impacts of existing U.S. industrial policy on technological innovation; assess the current NASA organizational alignment and its impacts on driving technological innovation; and finally suggest an alternative approach that may drive the innovation needed to take the world to the next level of space exploration, with NASA truly leading the way.

  11. Peptides of presenilin-1 bind the amyloid precursor protein ectodomain and offer a novel and specific therapeutic approach to reduce ß-amyloid in Alzheimer's disease.

    PubMed

    Dewji, Nazneen N; Singer, S Jonathan; Masliah, Eliezer; Rockenstein, Edward; Kim, Mihyun; Harber, Martha; Horwood, Taylor

    2015-01-01

    β-Amyloid (Aβ) accumulation in the brain is widely accepted to be critical to the development of Alzheimer's disease (AD). Current efforts at reducing toxic Aβ40 or 42 have largely focused on modulating γ-secretase activity to produce shorter, less toxic Aβ, while attempting to spare other secretase functions. In this paper we provide data that offer the potential for a new approach for the treatment of AD. The method is based on our previous findings that the production of Aβ from the interaction between the β-amyloid precursor protein (APP) and Presenilin (PS), as part of the γ-secretase complex, in cell culture is largely inhibited if the entire water-soluble NH2-terminal domain of PS is first added to the culture. Here we demonstrate that two small, non-overlapping water-soluble peptides from the PS-1 NH2-terminal domain can substantially and specifically inhibit the production of total Aβ as well as Aβ40 and 42 in vitro and in vivo in the brains of APP transgenic mice. These results suggest that the inhibitory activity of the entire amino terminal domain of PS-1 on Aβ production is largely focused in a few smaller sequences within that domain. Using biolayer interferometry and confocal microscopy we provide evidence that peptides effective in reducing Aβ give a strong, specific and biologically relevant binding with the purified ectodomain of APP 695. Finally, we demonstrate that the reduction of Aβ by the peptides does not affect the catalytic activities of β- or γ-secretase, or the level of APP. P4 and P8 are the first reported protein site-specific small peptides to reduce Aβ production in model systems of AD. These peptides and their derivatives offer new potential drug candidates for the treatment of AD. PMID:25923432

  12. Accelerator and transport line survey and alignment

    SciTech Connect

    Ruland, R.E.

    1991-10-01

    This paper summarizes the survey and alignment processes of accelerators and transport lines and discusses the propagation of errors associated with these processes. The major geodetic principles governing the survey and alignment measurement space are introduced and their relationship to a lattice coordinate system shown. The paper continues with a broad overview about the activities involved in the step sequence from initial absolute alignment to final smoothing. Emphasis is given to the relative alignment of components, in particular to the importance of incorporating methods to remove residual systematic effects in surveying and alignment operations. Various approaches to smoothing used at major laboratories are discussed. 47 refs., 19 figs., 1 tab.

  13. Strategy-aligned fuzzy approach for market segment evaluation and selection: a modular decision support system by dynamic network process (DNP)

    NASA Astrophysics Data System (ADS)

    Mohammadi Nasrabadi, Ali; Hosseinpour, Mohammad Hossein; Ebrahimnejad, Sadoullah

    2013-05-01

    In competitive markets, market segmentation is a critical point of business, and it can be used as a generic strategy. In each segment, strategies lead companies to their targets; thus, segment selection and the application of the appropriate strategies over time are very important to achieve successful business. This paper aims to model a strategy-aligned fuzzy approach to market segment evaluation and selection. A modular decision support system (DSS) is developed to select an optimum segment with its appropriate strategies. The suggested DSS has two main modules. The first one is SPACE matrix which indicates the risk of each segment. Also, it determines the long-term strategies. The second module finds the most preferred segment-strategies over time. Dynamic network process is applied to prioritize segment-strategies according to five competitive force factors. There is vagueness in pairwise comparisons, and this vagueness has been modeled using fuzzy concepts. To clarify, an example is illustrated by a case study in Iran's coffee market. The results show that success possibility of segments could be different, and choosing the best ones could help companies to be sure in developing their business. Moreover, changing the priority of strategies over time indicates the importance of long-term planning. This fact has been supported by a case study on strategic priority difference in short- and long-term consideration.

  14. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    NASA Astrophysics Data System (ADS)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  15. Biochemical functionalization of peptide nanotubes with phage displayed peptides.

    PubMed

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering. PMID:27479451

  16. Antagonistic peptide technology for functional dissection of CLE peptides revisited

    PubMed Central

    Czyzewicz, Nathan; Wildhagen, Mari; Cattaneo, Pietro; Stahl, Yvonne; Pinto, Karine Gustavo; Aalen, Reidunn B.; Butenko, Melinka A.; Simon, Rüdiger; Hardtke, Christian S.; De Smet, Ive

    2015-01-01

    In the Arabidopsis thaliana genome, over 1000 putative genes encoding small, presumably secreted, signalling peptides can be recognized. However, a major obstacle in identifying the function of genes encoding small signalling peptides is the limited number of available loss-of-function mutants. To overcome this, a promising new tool, antagonistic peptide technology, was recently developed. Here, this antagonistic peptide technology was tested on selected CLE peptides and the related IDA peptide and its usefulness in the context of studies of peptide function discussed. Based on the analyses, it was concluded that the antagonistic peptide approach is not the ultimate means to overcome redundancy or lack of loss-of-function lines. However, information collected using antagonistic peptide approaches (in the broad sense) can be very useful, but these approaches do not work in all cases and require a deep insight on the interaction between the ligand and its receptor to be successful. This, as well as peptide ligand structure considerations, should be taken into account before ordering a wide range of synthetic peptide variants and/or generating transgenic plants. PMID:26136270

  17. Antagonistic peptide technology for functional dissection of CLE peptides revisited.

    PubMed

    Czyzewicz, Nathan; Wildhagen, Mari; Cattaneo, Pietro; Stahl, Yvonne; Pinto, Karine Gustavo; Aalen, Reidunn B; Butenko, Melinka A; Simon, Rüdiger; Hardtke, Christian S; De Smet, Ive

    2015-08-01

    In the Arabidopsis thaliana genome, over 1000 putative genes encoding small, presumably secreted, signalling peptides can be recognized. However, a major obstacle in identifying the function of genes encoding small signalling peptides is the limited number of available loss-of-function mutants. To overcome this, a promising new tool, antagonistic peptide technology, was recently developed. Here, this antagonistic peptide technology was tested on selected CLE peptides and the related IDA peptide and its usefulness in the context of studies of peptide function discussed. Based on the analyses, it was concluded that the antagonistic peptide approach is not the ultimate means to overcome redundancy or lack of loss-of-function lines. However, information collected using antagonistic peptide approaches (in the broad sense) can be very useful, but these approaches do not work in all cases and require a deep insight on the interaction between the ligand and its receptor to be successful. This, as well as peptide ligand structure considerations, should be taken into account before ordering a wide range of synthetic peptide variants and/or generating transgenic plants. PMID:26136270

  18. Antimicrobial peptides

    PubMed Central

    2014-01-01

    With increasing antibiotics resistance, there is an urgent need for novel infection therapeutics. Since antimicrobial peptides provide opportunities for this, identification and optimization of such peptides have attracted much interest during recent years. Here, a brief overview of antimicrobial peptides is provided, with focus placed on how selected hydrophobic modifications of antimicrobial peptides can be employed to combat also more demanding pathogens, including multi-resistant strains, without conferring unacceptable toxicity. PMID:24758244

  19. A bottom-up approach to build the hyperpolarizability of peptides and proteins from their amino acids.

    PubMed

    Duboisset, Julien; Deniset-Besseau, Ariane; Benichou, Emmanuel; Russier-Antoine, Isabelle; Lascoux, Noelle; Jonin, Christian; Hache, François; Schanne-Klein, Marie-Claire; Brevet, Pierre-François

    2013-08-29

    We experimentally demonstrate that some peptides and proteins lend themselves to an elementary analysis where their first hyperpolarizability can be decomposed into the coherent superposition of the first hyperpolarizability of their elementary units. We then show that those elementary units can be associated with the amino acids themselves in the case of nonaromatic amino acids and nonresonant second harmonic generation. As a case study, this work investigates the experimentally determined first hyperpolarizability of rat tail Type I collagen and compares it to that of the shorter peptide [(PPG)10]3, where P and G are the one-letter code for Proline and Glycine, respectively, and that of the triamino acid peptides PPG and GGG. An absolute value of (0.16 ± 0.01) × 10(-30) esu for the first hyperpolarizability of nonaromatic amino acids is then obtained by using the newly defined 0.087 × 10(-30) esu reference value for water. By using a collagen like model, the microscopic hyperpolarizability along the peptide bond can be evaluated at (0.7 ± 0.1) × 10(-30) esu. PMID:23879840

  20. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    SciTech Connect

    Economou, Nicoleta J.; Zentner, Isaac J.; Lazo, Edwin; Jakoncic, Jean; Stojanoff, Vivian; Weeks, Stephen D.; Grasty, Kimberly C.; Cocklin, Simon; Loll, Patrick J.

    2013-04-01

    Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance.

  1. MALDI TOF/TOF-Based Approach for the Identification of d- Amino Acids in Biologically Active Peptides and Proteins.

    PubMed

    Koehbach, Johannes; Gruber, Christian W; Becker, Christian; Kreil, David P; Jilek, Alexander

    2016-05-01

    Several biologically active peptides contain a d- amino acid in a well-defined position, which is position 2 in all peptide epimers isolated to date from vertebrates and also some from invertebrates. The detection of such D- residues by standard analytical techniques is challenging. In tandem mass spectrometric (MS) analysis, although fragment masses are the same for all stereoisomers, peak intensities are known to depend on chirality. Here, we observe that the effect of a d- amino acid in the second N-terminal position on the fragmentation pattern in matrix assisted laser desorption time-of-flight spectrometry (MALDI-TOF/TOF MS) strongly depends on the peptide sequence. Stereosensitive fragmentation (SF) is correlated to a neighborhood effect, but the d- residue also exerts an overall effect influencing distant bonds. In a fingerprint analysis, multiple peaks can thus serve to identify the chirality of a sample in short time and potentially high throughput. Problematic variations between individual spots could be successfully suppressed by cospotting deuterated analogues of the epimers. By identifying the [d-Leu2] isomer of the predicted peptide GH-2 (gene derived bombininH) in skin secretions of the toad Bombina orientalis, we demonstrated the analytical power of SF-MALDI-TOF/TOF measurements. In conclusion, SF-MALDI-TOF/TOF MS combines high sensitivity, versatility, and the ability to complement other methods. PMID:26985971

  2. MALDI TOF/TOF-Based Approach for the Identification of d- Amino Acids in Biologically Active Peptides and Proteins

    PubMed Central

    2016-01-01

    Several biologically active peptides contain a d- amino acid in a well-defined position, which is position 2 in all peptide epimers isolated to date from vertebrates and also some from invertebrates. The detection of such D- residues by standard analytical techniques is challenging. In tandem mass spectrometric (MS) analysis, although fragment masses are the same for all stereoisomers, peak intensities are known to depend on chirality. Here, we observe that the effect of a d- amino acid in the second N-terminal position on the fragmentation pattern in matrix assisted laser desorption time-of-flight spectrometry (MALDI-TOF/TOF MS) strongly depends on the peptide sequence. Stereosensitive fragmentation (SF) is correlated to a neighborhood effect, but the d- residue also exerts an overall effect influencing distant bonds. In a fingerprint analysis, multiple peaks can thus serve to identify the chirality of a sample in short time and potentially high throughput. Problematic variations between individual spots could be successfully suppressed by cospotting deuterated analogues of the epimers. By identifying the [d-Leu2] isomer of the predicted peptide GH-2 (gene derived bombininH) in skin secretions of the toad Bombina orientalis, we demonstrated the analytical power of SF-MALDI-TOF/TOF measurements. In conclusion, SF-MALDI-TOF/TOF MS combines high sensitivity, versatility, and the ability to complement other methods. PMID:26985971

  3. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    PubMed Central

    Economou, Nicoleta J.; Zentner, Isaac J.; Lazo, Edwin; Jakoncic, Jean; Stojanoff, Vivian; Weeks, Stephen D.; Grasty, Kimberly C.; Cocklin, Simon; Loll, Patrick J.

    2013-01-01

    Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance. PMID:23519660

  4. Target alignment in the National Ignition Facility

    SciTech Connect

    Vann, C.S.; Bliss, E.S.; Murray, J.E.

    1994-06-06

    Accurate placement of hundreds of focused laser beams on target is necessary to achieve success in the National Ignition Facility (NIF). The current system requirement is {le}7 {mu}rad error in output pointing and {le}1 mm error in focusing. To accommodate several system shots per day, a target alignment system must be able to align the target to chamber center, inject an alignment beam to represent each shot beam, and point and focus the alignment beams onto the target in about one hour. At Lawrence Livermore National Laboratory, we have developed a target alignment concept and built a prototype to validate the approach. The concept comprises three systems: the chamber center reference, target alignment sensor, and target alignment beams.

  5. MHC2SKpan: a novel kernel based approach for pan-specific MHC class II peptide binding prediction

    PubMed Central

    2013-01-01

    Background Computational methods for the prediction of Major Histocompatibility Complex (MHC) class II binding peptides play an important role in facilitating the understanding of immune recognition and the process of epitope discovery. To develop an effective computational method, we need to consider two important characteristics of the problem: (1) the length of binding peptides is highly flexible; and (2) MHC molecules are extremely polymorphic and for the vast majority of them there are no sufficient training data. Methods We develop a novel string kernel MHC2SK (MHC-II String Kernel) method to measure the similarities among peptides with variable lengths. By considering the distinct features of MHC-II peptide binding prediction problem, MHC2SK differs significantly from the recently developed kernel based method, GS (Generic String) kernel, in the way of computing similarities. Furthermore, we extend MHC2SK to MHC2SKpan for pan-specific MHC-II peptide binding prediction by leveraging the binding data of various MHC molecules. Results MHC2SK outperformed GS in allele specific prediction using a benchmark dataset, which demonstrates the effectiveness of MHC2SK. Furthermore, we evaluated the performance of MHC2SKpan using various benckmark data sets from several different perspectives: Leave-one-allele-out (LOO), 5-fold cross validation as well as independent data testing. MHC2SKpan has achieved comparable performance with NetMHCIIpan-2.0 and outperformed NetMHCIIpan-1.0, TEPITOPEpan and MultiRTA, being statistically significant. MHC2SKpan can be freely accessed at http://datamining-iip.fudan.edu.cn/service/MHC2SKpan/index.html. PMID:24564280

  6. Exploiting non-linear relationships between retention time and molecular structure of peptides originating from proteomes and comparing three multivariate approaches.

    PubMed

    Žuvela, Petar; Macur, Katarzyna; Jay Liu, J; Bączek, Tomasz

    2016-08-01

    Peptides' retention time prediction is gaining increasing popularity in liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics. This is a promising approach for improving successful proteome mapping, useful both in identification and quantification workflows. In this work, a quantitative structure-retention relationships (QSRR) model for its direct prediction from the molecular structure of 185 peptides originating from 8 well-characterized proteins and two Bacillus subtilis proteomes has been developed. Genetic Algorithm (GA) was used for selection of a subset of molecular descriptors coupled with three machine learning methods: Support Vector Regression (SVR), Artificial Neural Networks (ANN), and kernel Partial Least Squares (kPLS) for regression. Final GA-SVR, GA-ANN, and GA-kPLS models were validated through an external validation set of 95 peptides originating from the human epithelial HeLa cells proteomes. Robustness and stability was ensured by defining their applicability domain. The descriptors of the developed models were interpreted confirming a causal relationship between parameters of molecular structure and retention time. GA-SVR model has shown to be superior over the others in terms of both predictive ability, and interpretation of the selected descriptors. PMID:26856456

  7. Shuttle-cargo fusion molecules of transport peptides and the hD2/3 receptor antagonist fallypride: a feasible approach to preserve ligand-receptor binding?

    PubMed

    Wängler, Carmen; Chowdhury, Shafinaz; Höfner, Georg; Djurova, Petia; Purisima, Enrico O; Bartenstein, Peter; Wängler, Björn; Fricker, Gert; Wanner, Klaus T; Schirrmacher, Ralf

    2014-05-22

    To determine if the conjugation of a small receptor ligand to a peptidic carrier to potentially facilitate transport across the blood-brain barrier (BBB) by "molecular Trojan horse" transcytosis is feasible, we synthesized several transport peptide-fallypride fusion molecules as model systems and determined their binding affinities to the hD2 receptor. Although they were affected by conjugation, the binding affinities were found to be still in the nanomolar range (between 1.5 and 64.2 nM). In addition, homology modeling of the receptor and docking studies for the most potent compounds were performed, elucidating the binding modes of the fusion molecules and the structure elements contributing to the observed high receptor binding. Furthermore, no interaction between the hybrid compounds and P-gp, the main excretory transporter of the BBB, was found. From these results, it can be inferred that the approach to deliver small neuroreceptor ligands across the BBB by transport peptide carriers is feasible. PMID:24779610

  8. Aligned Nanofibers for Regenerating Arteries, Nerves, and Muscles

    NASA Astrophysics Data System (ADS)

    McClendon, Mark Trosper

    annular gap containing PA solution with a rotating rod. Using the shear aligning properties of PA solutions this rotating surface in contact with the PA solution induced a high degree of alignment in the nanofibers which was subsequently locked in place by introducing gelating calcium ions. again say something about what this fabrication procedure entails Cells encapsulated within these tubes responded to the alignment by extending in the circumferential direction mimicking the same cellular alignment observed in native arteries. A similar design strategy was also used to align nanofibers within the core of biopolymer nerve conduits, and these scaffolds were implanted in a rat sciatic nerve model. Histological and behavioral observations confirmed that PA implants sustained regeneration rates comparable to autologous grafts and significantly better than empty biopolymer grafts. Furthermore, these nanofiber gels were used as a vehicle to deliver stem cells into muscle tissue. A specialized injector was designed to introduce aligned PA gels into mouse leg muscles in a 1cm long channel. Bioluminescence and histology showed that stem cell engraftment into myofibers was greatly enhanced when delivered by PA gels compared to saline solution. The final section of this thesis describes a new series of PA molecules designed to degrade upon exposure to UV lightstate here why is this of interest in the context of the work described in the thesis. This was done to understand the degradation behavior of PA nanofibers and provide a controlled approach to changing the rheological properties post gelation.The three PA molecules in this series contained the same peptide sequence V3A3E3, while varying the location of a nitrobenzyl UV-reactive group along the backbone of the molecule. This system allowed for a quick reaction that cleaves the molecule at the reactive nitrobenzyl site without introducing any other reactive molecules. While all three molecules produced nanofibers that remained

  9. Adipokinetic hormone-immunoreactive peptide in the endocrine and central nervous system of several insect species: a comparative immunocytochemical approach.

    PubMed

    Schooneveld, H; Romberg-Privee, H M; Veenstra, J A

    1985-02-01

    The distribution of intrinsic glandular cells containing adipokinetic hormone (AKH)-like material in the corpora cardiaca (CC) and the occurrence of immunoreactive neurons in the nervous system in 19 species belonging to nine insect orders was studied by means of an immunocytochemical method (peroxidase-antiperoxidase), with antisera raised against an AKH analogue [( Tyr1]-AKH). The CC gland cells in Locusta migratoria migratorioides and Schistocerca americana gregaria were strongly immunoreactive. Those in other orders showed less or no immunoreactivity indicating that AKH has a very restricted distribution. Neurons containing immunoreactive material were found in the brain and ventral ganglia in all species investigated. As the specificity of the antiserum has not been determined, it is not known whether this peptide is identical to AKH. Considering the distribution of their axons, these neurons may be involved with one or more of the following functions: (1) nervous communication within the central nervous system; (2) communication with the stomatogastric nervous system; (3) possible release of peptide from the CC; (4) release of neuropeptide in or from the corpus allatum. A combination of these features has been found in only a few of the species investigated. The immunocytochemical study demonstrated significant differences among species belonging to Apterygota, Hemi-, and Holometabola in the number of neurons, the length and degree of branching of their axon, and the amount of immunoreactive peptide stored therein. PMID:3979801

  10. A Novel Peptide Binding Prediction Approach for HLA-DR Molecule Based on Sequence and Structural Information

    PubMed Central

    Li, Zhao; Zhao, Yilei; Pan, Gaofeng; Tang, Jijun; Guo, Fei

    2016-01-01

    MHC molecule plays a key role in immunology, and the molecule binding reaction with peptide is an important prerequisite for T cell immunity induced. MHC II molecules do not have conserved residues, so they appear as open grooves. As a consequence, this will increase the difficulty in predicting MHC II molecules binding peptides. In this paper, we aim to propose a novel prediction method for MHC II molecules binding peptides. First, we calculate sequence similarity and structural similarity between different MHC II molecules. Then, we reorder pseudosequences according to descending similarity values and use a weight calculation formula to calculate new pocket profiles. Finally, we use three scoring functions to predict binding cores and evaluate the accuracy of prediction to judge performance of each scoring function. In the experiment, we set a parameter α in the weight formula. By changing α value, we can observe different performances of each scoring function. We compare our method with the best function to some popular prediction methods and ultimately find that our method outperforms them in identifying binding cores of HLA-DR molecules. PMID:27340658

  11. PSAR: measuring multiple sequence alignment reliability by probabilistic sampling

    PubMed Central

    Kim, Jaebum; Ma, Jian

    2011-01-01

    Multiple sequence alignment, which is of fundamental importance for comparative genomics, is a difficult problem and error-prone. Therefore, it is essential to measure the reliability of the alignments and incorporate it into downstream analyses. We propose a new probabilistic sampling-based alignment reliability (PSAR) score. Instead of relying on heuristic assumptions, such as the correlation between alignment quality and guide tree uncertainty in progressive alignment methods, we directly generate suboptimal alignments from an input multiple sequence alignment by a probabilistic sampling method, and compute the agreement of the input alignment with the suboptimal alignments as the alignment reliability score. We construct the suboptimal alignments by an approximate method that is based on pairwise comparisons between each single sequence and the sub-alignment of the input alignment where the chosen sequence is left out. By using simulation-based benchmarks, we find that our approach is superior to existing ones, supporting that the suboptimal alignments are highly informative source for assessing alignment reliability. We apply the PSAR method to the alignments in the UCSC Genome Browser to measure the reliability of alignments in different types of regions, such as coding exons and conserved non-coding regions, and use it to guide cross-species conservation study. PMID:21576232

  12. Strategies for active alignment of lenses

    NASA Astrophysics Data System (ADS)

    Langehanenberg, Patrik; Heinisch, Josef; Wilde, Chrisitan; Hahne, Felix; Lüerß, Bernd

    2015-10-01

    Today's optical systems require up-to-date assembly and joining technology. The trend of keeping dimensions as small as possible while maintaining or increasing optical imaging performance leaves little to no room for mechanical lens adjustment equipment that may remain in the final product. In this context active alignment of optical elements opens up possibilities for the fast and cost-economic manufacturing of lenses and lens assemblies with highest optical performance. Active alignment for lens manufacturing is the precise alignment of the optical axis of a lens with respect to an optical or mechanical reference axis (e.g. housing) including subsequent fixation by glue. In this contribution we will describe different approaches for active alignment and outline strengths and limitations of the different methods. Using the SmartAlign principle, highest quality cemented lenses can be manufactured without the need for high precision prealignment, while the reduction to a single alignment step greatly reduces the cycle time. The same strategies can also be applied to bonding processes. Lenses and lens groups can be aligned to both mechanical and optical axes to maximize the optical performance of a given assembly. In hybrid assemblies using both mechanical tolerances and active alignment, SmartAlign can be used to align critical lens elements anywhere inside the system for optimized total performance. Since all geometrical parameters are re-measured before each alignment, this process is especially suited for complex and time-consuming production processes where the stability of the reference axis would otherwise be critical. For highest performance, lenses can be actively aligned using up to five degrees of freedom. In this way, SmartAlign enables the production of ultra-precise mounted lenses with an alignment precision below 1 μm.

  13. Targeted Peptide Measurements in Biology and Medicine: Best Practices for Mass Spectrometry-based Assay Development Using a Fit-for-Purpose Approach

    SciTech Connect

    Carr, Steven A.; Abbateillo, Susan E.; Ackermann, Bradley L.; Borchers, Christoph H.; Domon, Bruno; Deutsch, Eric W.; Grant, Russel; Hoofnagle, Andrew N.; Huttenhain, Ruth; Koomen, John M.; Liebler, Daniel; Liu, Tao; MacLean, Brendan; Mani, DR; Mansfield, Elizabeth; Neubert, Hendrik; Paulovich, Amanda G.; Reiter, Lukas; Vitek, Olga; Aebersold, Ruedi; Anderson, Leigh N.; Bethem, Robert; Blonder, Josip; Boja, Emily; Botelho, Julianne; Boyne, Michael; Bradshaw, Ralph A.; Burlingame, Alma S.; Chan, Daniel W.; Keshishian, Hasmik; Kuhn, Eric; Kingsinger, Christopher R.; Lee, Jerry S.; Lee, Sang-Won; Moritz, Robert L.; Oses-Prieto, Juan; Rifai, Nader; Ritchie, James E.; Rodriguez, Henry; Srinivas, Pothur R.; Townsend, Reid; Van Eyk , Jennifer; Whiteley, Gordon; Wiita, Arun; Weintraub, Susan

    2014-01-14

    Adoption of targeted mass spectrometry (MS) approaches such as multiple reaction monitoring (MRM) to study biological and biomedical questions is well underway in the proteomics community. Successful application depends on the ability to generate reliable assays that uniquely and confidently identify target peptides in a sample. Unfortunately, there is a wide range of criteria being applied to say that an assay has been successfully developed. There is no consensus on what criteria are acceptable and little understanding of the impact of variable criteria on the quality of the results generated. Publications describing targeted MS assays for peptides frequently do not contain sufficient information for readers to establish confidence that the tests work as intended or to be able to apply the tests described in their own labs. Guidance must be developed so that targeted MS assays with established performance can be made widely distributed and applied by many labs worldwide. To begin to address the problems and their solutions, a workshop was held at the National Institutes of Health with representatives from the multiple communities developing and employing targeted MS assays. Participants discussed the analytical goals of their experiments and the experimental evidence needed to establish that the assays they develop work as intended and are achieving the required levels of performance. Using this “fit-for-purpose” approach, the group defined three tiers of assays distinguished by their performance and extent of analytical characterization. Computational and statistical tools useful for the analysis of targeted MS results were described. Participants also detailed the information that authors need to provide in their manuscripts to enable reviewers and readers to clearly understand what procedures were performed and to evaluate the reliability of the peptide or protein quantification measurements reported. This paper presents a summary of the meeting and

  14. Targeted Peptide Measurements in Biology and Medicine: Best Practices for Mass Spectrometry-based Assay Development Using a Fit-for-Purpose Approach*

    PubMed Central

    Carr, Steven A.; Abbatiello, Susan E.; Ackermann, Bradley L.; Borchers, Christoph; Domon, Bruno; Deutsch, Eric W.; Grant, Russell P.; Hoofnagle, Andrew N.; Hüttenhain, Ruth; Koomen, John M.; Liebler, Daniel C.; Liu, Tao; MacLean, Brendan; Mani, DR; Mansfield, Elizabeth; Neubert, Hendrik; Paulovich, Amanda G.; Reiter, Lukas; Vitek, Olga; Aebersold, Ruedi; Anderson, Leigh; Bethem, Robert; Blonder, Josip; Boja, Emily; Botelho, Julianne; Boyne, Michael; Bradshaw, Ralph A.; Burlingame, Alma L.; Chan, Daniel; Keshishian, Hasmik; Kuhn, Eric; Kinsinger, Christopher; Lee, Jerry S.H.; Lee, Sang-Won; Moritz, Robert; Oses-Prieto, Juan; Rifai, Nader; Ritchie, James; Rodriguez, Henry; Srinivas, Pothur R.; Townsend, R. Reid; Van Eyk, Jennifer; Whiteley, Gordon; Wiita, Arun; Weintraub, Susan

    2014-01-01

    Adoption of targeted mass spectrometry (MS) approaches such as multiple reaction monitoring (MRM) to study biological and biomedical questions is well underway in the proteomics community. Successful application depends on the ability to generate reliable assays that uniquely and confidently identify target peptides in a sample. Unfortunately, there is a wide range of criteria being applied to say that an assay has been successfully developed. There is no consensus on what criteria are acceptable and little understanding of the impact of variable criteria on the quality of the results generated. Publications describing targeted MS assays for peptides frequently do not contain sufficient information for readers to establish confidence that the tests work as intended or to be able to apply the tests described in their own labs. Guidance must be developed so that targeted MS assays with established performance can be made widely distributed and applied by many labs worldwide. To begin to address the problems and their solutions, a workshop was held at the National Institutes of Health with representatives from the multiple communities developing and employing targeted MS assays. Participants discussed the analytical goals of their experiments and the experimental evidence needed to establish that the assays they develop work as intended and are achieving the required levels of performance. Using this “fit-for-purpose” approach, the group defined three tiers of assays distinguished by their performance and extent of analytical characterization. Computational and statistical tools useful for the analysis of targeted MS results were described. Participants also detailed the information that authors need to provide in their manuscripts to enable reviewers and readers to clearly understand what procedures were performed and to evaluate the reliability of the peptide or protein quantification measurements reported. This paper presents a summary of the meeting and

  15. Achieving Organisational Change through Values Alignment

    ERIC Educational Resources Information Center

    Branson, Christopher M.

    2008-01-01

    Purpose: The purpose of this paper is to, first, establish the interdependency between the successful achievement of organisational change and the attainment of values alignment within an organisation's culture and then, second, to describe an effective means for attaining such values alignment. Design/methodology/approach: Literature from the…

  16. Directed peptide amphiphile assembly using aqueous liquid crystal templates in magnetic fields.

    PubMed

    van der Asdonk, Pim; Keshavarz, Masoumeh; Christianen, Peter C M; Kouwer, Paul H J

    2016-08-21

    An alignment technique based on the combination of magnetic fields and a liquid crystal (LC) template uses the advantages of both approaches: the magnetic fields offer non-contact methods that apply to all sample sizes and shapes, whilst the LC templates offer high susceptibilities. The combination introduces a route to control the spatial organization of materials with low intrinsic susceptibilities. We demonstrate that we can unidirectionally align one such material, peptide amphiphiles in water, on a centimeter scale at a tenfold lower magnetic field by using a lyotropic chromonic liquid crystal as a template. We can transform the aligned supramolecular assemblies into optically active π-conjugated polymers after photopolymerization. Lastly, by reducing the magnetic field strength needed for addressing these assemblies, we are able to create more complex structures by initiating self-assembly of our supramolecular materials under competing alignment forces between the magnetically induced alignment of the assemblies (with a positive diamagnetic anisotropy) and the elastic force dominated alignment of the template (with a negative diamagnetic anisotropy), which is directed orthogonally. Although the approach is still in its infancy and many critical parameters need optimization, we believe that it is a very promising technique to create tailor-made complex structures of (aqueous) functional soft matter. PMID:27320385

  17. Nearest Alignment Space Termination

    Energy Science and Technology Software Center (ESTSC)

    2006-07-13

    Near Alignment Space Termination (NAST) is the Greengenes algorithm that matches up submitted sequences with the Greengenes database to look for similarities and align the submitted sequences based on those similarities.

  18. Segmentation of precursor mass range using ‘tiling’ approach increases peptide identifications for MS1-based label-free quantification

    PubMed Central

    Vincent, Catherine E.; Potts, Gregory K.; Ulbrich, Arne; Westphall, Michael S.; Atwood, James A.; Coon, Joshua J.; Weatherly, D. Brent

    2013-01-01

    Label-free quantification is a powerful tool for the measurement of protein abundances by mass spectrometric methods. To maximize quantifiable identifications, MS1-based methods must balance the collection of survey scans and fragmentation spectra while maintaining reproducible extracted ion chromatograms (XIC). Here we present a method which increases the depth of proteome coverage over replicate data-dependent experiments without the requirement of additional instrument time or sample pre-fractionation. Sampling depth is increased by restricting precursor selection to a fraction of the full MS1 mass range for each replicate; collectively, the m/z segments of all replicates encompass the full MS1 range. Although selection windows are narrowed, full MS1 spectra are obtained throughout the method, enabling the collection of full mass range MS1 chromatograms such that label-free quantitation can be performed for any peptide in any experiment. We term this approach “binning” or “tiling” depending on the type of m/z window utilized. By combining the data obtained from each segment, we find that this approach increases the number of quantifiable yeast peptides and proteins by 31% and 52%, respectively, when compared to normal data-dependent experiments performed in replicate. PMID:23350991

  19. Neutral endopeptidase-resistant C-type natriuretic peptide variant represents a new therapeutic approach for treatment of fibroblast growth factor receptor 3-related dwarfism.

    PubMed

    Wendt, Daniel J; Dvorak-Ewell, Melita; Bullens, Sherry; Lorget, Florence; Bell, Sean M; Peng, Jeff; Castillo, Sianna; Aoyagi-Scharber, Mika; O'Neill, Charles A; Krejci, Pavel; Wilcox, William R; Rimoin, David L; Bunting, Stuart

    2015-04-01

    Achondroplasia (ACH), the most common form of human dwarfism, is caused by an activating autosomal dominant mutation in the fibroblast growth factor receptor-3 gene. Genetic overexpression of C-type natriuretic peptide (CNP), a positive regulator of endochondral bone growth, prevents dwarfism in mouse models of ACH. However, administration of exogenous CNP is compromised by its rapid clearance in vivo through receptor-mediated and proteolytic pathways. Using in vitro approaches, we developed modified variants of human CNP, resistant to proteolytic degradation by neutral endopeptidase, that retain the ability to stimulate signaling downstream of the CNP receptor, natriuretic peptide receptor B. The variants tested in vivo demonstrated significantly longer serum half-lives than native CNP. Subcutaneous administration of one of these CNP variants (BMN 111) resulted in correction of the dwarfism phenotype in a mouse model of ACH and overgrowth of the axial and appendicular skeletons in wild-type mice without observable changes in trabecular and cortical bone architecture. Moreover, significant growth plate widening that translated into accelerated bone growth, at hemodynamically tolerable doses, was observed in juvenile cynomolgus monkeys that had received daily subcutaneous administrations of BMN 111. BMN 111 was well tolerated and represents a promising new approach for treatment of patients with ACH. PMID:25650377

  20. Comparison of marmoset and human FSH using synthetic peptides of the β-subunit L2 loop region and anti-peptide antibodies.

    PubMed

    Kutteyil, Susha S; Kulkarni, Bhalchandra J; Mojidra, Rahul; Joseph, Shaini; Pathak, Bhakti R; Mahale, Smita D

    2016-06-01

    Follicle stimulating hormone (FSH) is a glycoprotein hormone required for female and male gametogenesis in vertebrates. Common marmoset (Callithrix jacchus) is a New World primate monkey, used as animal model in biomedical research. Observations like, requirement of extremely high dose of human FSH in marmosets for superovulation compared to other primates and generation of antibodies in marmoset against human FSH after repeated superovulation cycles, point towards the possibility that FSH-FSH receptor (FSHR) interaction in marmosets might be different than in the humans. In this study we attempted to understand some of these structural differences using FSH peptides and anti-peptide antibody approach. Based on sequence alignment, in silico modeling and docking studies, L2 loop of FSH β-subunit (L2β) was found to be different between marmoset and human. Hence, peptides corresponding to region 32-50 of marmoset and human L2β loop were synthesized, purified and characterized. The peptides displayed dissimilarity in terms of molecular mass, predicted isoelectric point, predicted charge and in the ability to inhibit hormone-receptor interaction. Polyclonal antibodies generated against both the peptides were found to exhibit specific binding for the corresponding peptide and parent FSH in ELISA and Western blotting respectively and exhibited negligible reactivity to cross-species peptide and FSH in ELISA. The anti-peptide antibody against marmoset FSH was also able to detect native FSH in marmoset plasma samples and pituitary sections. In summary, the L2β loop of marmoset and human FSH has distinct receptor interaction ability and immunoreactivity indicating possibility of subtle conformational and biochemical differences between the two regions which may affect the FSH-FSHR interaction in these two primates. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27282136

  1. Liquid crystal alignment in cylindrical microcapillaries

    NASA Astrophysics Data System (ADS)

    Chychłowski, M.; Yaroshchuk, O.; Kravchuk, R.; Woliński, T.

    2011-09-01

    A variety of alignment configurations of liquid crystals (LCs) inside the glassy cylindrical capillaries is realized by using alignment materials providing different anchoring. The radial configuration with central disclination line is obtained for homeotropic boundary conditions. In turn, the axial, transversal and tilted alignment structures are realized by using materials for planar anchoring. The uniformity and controlling of the latter structures were provided by photoalignment method. This approach can be further used to control LC alignment in the photonic crystal fibers recognized as advanced elements for different optical devices.

  2. Liquid crystal alignment in cylindrical microcapillaries

    NASA Astrophysics Data System (ADS)

    Chychłowski, M.; Yaroshchuk, O.; Kravchuk, R.; Woliński, T.

    2012-03-01

    A variety of alignment configurations of liquid crystals (LCs) inside the glassy cylindrical capillaries is realized by using alignment materials providing different anchoring. The radial configuration with central disclination line is obtained for homeotropic boundary conditions. In turn, the axial, transversal and tilted alignment structures are realized by using materials for planar anchoring. The uniformity and controlling of the latter structures were provided by photoalignment method. This approach can be further used to control LC alignment in the photonic crystal fibers recognized as advanced elements for different optical devices.

  3. Innovative optical alignment technique for CMP wafers

    NASA Astrophysics Data System (ADS)

    Sugaya, Ayako; Kanaya, Yuho; Nakajima, Shinichi; Nagayama, Tadashi; Shiraishi, Naomasa

    2002-07-01

    Detecting position of the wafers such as after CMP process is critical theme of current and forthcoming IC manufacturing. The alignment system must be with high accuracy for any process. To satisfy such requirements, we have studied and analyzed factors that have made alignment difficult. From the result of the studies, we have developed new optical alignment techniques which improve the accuracy of FIA (alignment sensor of Nikon's NSR series) and examined them. The approaches are optimizing the focus position, developing an advanced algorithm for position detection, and selecting a suitable mark design. For experiment, we have developed the special wafers that make it possible to evaluate the influence of CMP processes. The experimental results show that the overlay errors decrease dramatically with the new alignment techniques. FIA with these new techniques will be much accurate and suitable alignment sensor for CMP and other processes of future generation ULSI production.

  4. Multiple alignment using hidden Markov models

    SciTech Connect

    Eddy, S.R.

    1995-12-31

    A simulated annealing method is described for training hidden Markov models and producing multiple sequence alignments from initially unaligned protein or DNA sequences. Simulated annealing in turn uses a dynamic programming algorithm for correctly sampling suboptimal multiple alignments according to their probability and a Boltzmann temperature factor. The quality of simulated annealing alignments is evaluated on structural alignments of ten different protein families, and compared to the performance of other HMM training methods and the ClustalW program. Simulated annealing is better able to find near-global optima in the multiple alignment probability landscape than the other tested HMM training methods. Neither ClustalW nor simulated annealing produce consistently better alignments compared to each other. Examination of the specific cases in which ClustalW outperforms simulated annealing, and vice versa, provides insight into the strengths and weaknesses of current hidden Maxkov model approaches.

  5. Shiva automatic pinhole alignment

    SciTech Connect

    Suski, G.J.

    1980-09-05

    This paper describes a computer controlled closed loop alignment subsystem for Shiva, which represents the first use of video sensors for large laser alignment at LLNL. The techniques used on this now operational subsystem are serving as the basis for all closed loop alignment on Nova, the 200 terawatt successor to Shiva.

  6. A proteomic approach for studying insect phylogeny: CAPA peptides of ancient insect taxa (Dictyoptera, Blattoptera) as a test case

    PubMed Central

    Roth, Steffen; Fromm, Bastian; Gäde, Gerd; Predel, Reinhard

    2009-01-01

    Background Neuropeptide ligands have to fit exactly into their respective receptors and thus the evolution of the coding regions of their genes is constrained and may be strongly conserved. As such, they may be suitable for the reconstruction of phylogenetic relationships within higher taxa. CAPA peptides of major lineages of cockroaches (Blaberidae, Blattellidae, Blattidae, Polyphagidae, Cryptocercidae) and of the termite Mastotermes darwiniensis were chosen to test the above hypothesis. The phylogenetic relationships within various groups of the taxon Dictyoptera (praying mantids, termites and cockroaches) are still highly disputed. Results Tandem mass spectrometry of neuropeptides from perisympathetic organs was used to obtain sequence data of CAPA peptides from single specimens; the data were analysed by Maximum Parsimony and Bayesian Interference. The resulting cladograms, taking 61 species into account, show a topology which is in general agreement with recent molecular and morphological phylogenetic analyses, including the recent phylogenetic arrangement placing termites within the cockroaches. When sequence data sets from other neuropeptides, viz. adipokinetic hormones and sulfakinins, were included, the general topology of the cladogram did not change but bootstrap values increased considerably. Conclusion This study represents the first comprehensive survey of neuropeptides of insects for solely phylogenetic purposes and concludes that sequences of short neuropeptides are suitable to complement molecular biological and morphological data for the reconstruction of phylogenetic relationships. PMID:19257902

  7. An integrated, peptide-based approach to site-specific protein immobilization for detection of biomolecular interactions.

    PubMed

    Kruis, Ilmar C; Löwik, Dennis W P M; Boelens, Wilbert C; van Hest, Jan C M; Pruijn, Ger J M

    2016-09-21

    We have developed an integrated solution for the site-specific immobilization of proteins on a biosensor surface, which may be widely applicable for high throughput analytical purposes. The gold surface of a biosensor was coated with an anti-fouling layer of zwitterionic peptide molecules from which leucine zipper peptides protrude. Proteins of interest, the autoantigenic proteins La and U1A, were immobilized via a simple incubation procedure by using the complementary leucine zipper sequence as a genetically fused binding tag. This tag forms a strong coiled-coil interaction that is stable during multiple consecutive measurements and under common regeneration conditions. Visualization of the immobilized proteins of interest via antibody binding with multiplex surface plasmon resonance imaging demonstrated 2.5 times higher binding responses than when these proteins were randomly attached to the surface via the commonly applied activated ester-mediated coupling. The proteins could also be immobilized in a leucine zipper-dependent manner directly from complex mixtures like bacterial lysates, eliminating the need for laborious purification steps. This method allows the production of uniform functional protein arrays by control over immobilized protein orientation and geometry and is compatible with high-throughput procedures. PMID:27328408

  8. CARNA--alignment of RNA structure ensembles.

    PubMed

    Sorescu, Dragos Alexandru; Möhl, Mathias; Mann, Martin; Backofen, Rolf; Will, Sebastian

    2012-07-01

    Due to recent algorithmic progress, tools for the gold standard of comparative RNA analysis, namely Sankoff-style simultaneous alignment and folding, are now readily applicable. Such approaches, however, compare RNAs with respect to a simultaneously predicted, single, nested consensus structure. To make multiple alignment of RNAs available in cases, where this limitation of the standard approach is critical, we introduce a web server that provides a complete and convenient interface to the RNA structure alignment tool 'CARNA'. This tool uniquely supports RNAs with multiple conserved structures per RNA and aligns pseudoknots intrinsically; these features are highly desirable for aligning riboswitches, RNAs with conserved folding pathways, or pseudoknots. We represent structural input and output information as base pair probability dot plots; this provides large flexibility in the input, ranging from fixed structures to structure ensembles, and enables immediate visual analysis of the results. In contrast to conventional Sankoff-style approaches, 'CARNA' optimizes all structural similarities in the input simultaneously, for example across an entire RNA structure ensemble. Even compared with already costly Sankoff-style alignment, 'CARNA' solves an intrinsically much harder problem by applying advanced, constraint-based, algorithmic techniques. Although 'CARNA' is specialized to the alignment of RNAs with several conserved structures, its performance on RNAs in general is on par with state-of-the-art general-purpose RNA alignment tools, as we show in a Bralibase 2.1 benchmark. The web server is freely available at http://rna.informatik.uni-freiburg.de/CARNA. PMID:22689637

  9. Girder Alignment Plan

    SciTech Connect

    Wolf, Zackary; Ruland, Robert; LeCocq, Catherine; Lundahl, Eric; Levashov, Yurii; Reese, Ed; Rago, Carl; Poling, Ben; Schafer, Donald; Nuhn, Heinz-Dieter; Wienands, Uli; /SLAC

    2010-11-18

    The girders for the LCLS undulator system contain components which must be aligned with high accuracy relative to each other. The alignment is one of the last steps before the girders go into the tunnel, so the alignment must be done efficiently, on a tight schedule. This note documents the alignment plan which includes efficiency and high accuracy. The motivation for girder alignment involves the following considerations. Using beam based alignment, the girder position will be adjusted until the beam goes through the center of the quadrupole and beam finder wire. For the machine to work properly, the undulator axis must be on this line and the center of the undulator beam pipe must be on this line. The physics reasons for the undulator axis and undulator beam pipe axis to be centered on the beam are different, but the alignment tolerance for both are similar. In addition, the beam position monitor must be centered on the beam to preserve its calibration. Thus, the undulator, undulator beam pipe, quadrupole, beam finder wire, and beam position monitor axes must all be aligned to a common line. All relative alignments are equally important, not just, for example, between quadrupole and undulator. We begin by making the common axis the nominal beam axis in the girder coordinate system. All components will be initially aligned to this axis. A more accurate alignment will then position the components relative to each other, without incorporating the girder itself.

  10. Concepts for Biologically Active Peptides

    PubMed Central

    Kastin, Abba J.; Pan, Weihong

    2012-01-01

    Here we review a unique aspect of CNS research on biologically active peptides that started against a background of prevalent dogmas but ended by exerting considerable influence on the field. During the course of refuting some doctrines, we introduced several concepts that were unconventional and paradigm-shifting at the time. We showed that (1) hypothalamic peptides can act ‘up’ on the brain as well as ‘down’ on the pituitary, (2) peripheral peptides can affect the brain, (3) peptides can cross the blood-brain barrier, (4) the actions of peptides can persist longer than their half-lives in blood, (5) perinatal administration of peptides can exert actions persisting into adulthood, (6) a single peptide can have more than one action, (7) dose-response relationships of peptides need not be linear, (8) the brain produces antiopiate as well as opiate peptides, (9) there is a selective high affinity endogenous peptide ligand for the mu-opiate receptor, (10) a peptide’s name does not restrict its effects, and (11) astrocytes assume an active role in response to metabolic disturbance and hyperleptinemia. The evolving questions in our laboratories reflect the diligent effort of the neuropeptide community to identify the roles of peptides in the CNS. The next decade is expected to see greater progress in the following areas: (a) interactions of peptides with other molecules in the CNS; (b) peptide involvement in cell-cell interactions; and (c) peptides in neuropsychiatric, autoimmune, and neurodegenerative diseases. The development of peptidomics and gene silencing approaches will expedite the formation of many new concepts in a new era. PMID:20726835

  11. LPS inmobilization on porous and non-porous supports as an approach for the isolation of anti-LPS host-defense peptides

    PubMed Central

    López-Abarrategui, Carlos; del Monte-Martínez, Alberto; Reyes-Acosta, Osvaldo; Franco, Octavio L.; Otero-González, Anselmo J.

    2013-01-01

    Lipopolysaccharides (LPSs) are the major molecular component of the outer membrane of Gram-negative bacteria. This molecule is recognized as a sign of bacterial infection, responsible for the development of local inflammatory response and, in extreme cases, septic shock. Unfortunately, despite substantial advances in the pathophysiology of sepsis, there is no efficacious therapy against this syndrome yet. As a consequence, septic shock syndrome continues to increase, reaching mortality rates over 50% in some cases. Even though many preclinical studies and clinical trials have been conducted, there is no Food and Drug Administration-approved drug yet that interacts directly against LPS. Cationic host-defense peptides (HDPs) could be an alternative solution since they possess both antimicrobial and antiseptic properties. HDPs are small, positively charged peptides which are evolutionarily conserved components of the innate immune response. In fact, binding to diverse chemotypes of LPS and inhibition of LPS-induced pro-inflammatory cytokines from macrophages have been demonstrated for different HDPs. Curiously, none of them have been isolated by their affinity to LPS. A diversity of supports could be useful for such biological interaction and suitable for isolating HDPs that recognize LPS. This approach could expand the rational search for anti-LPS HDPs. PMID:24409171

  12. LPS inmobilization on porous and non-porous supports as an approach for the isolation of anti-LPS host-defense peptides.

    PubMed

    López-Abarrategui, Carlos; Del Monte-Martínez, Alberto; Reyes-Acosta, Osvaldo; Franco, Octavio L; Otero-González, Anselmo J

    2013-01-01

    Lipopolysaccharides (LPSs) are the major molecular component of the outer membrane of Gram-negative bacteria. This molecule is recognized as a sign of bacterial infection, responsible for the development of local inflammatory response and, in extreme cases, septic shock. Unfortunately, despite substantial advances in the pathophysiology of sepsis, there is no efficacious therapy against this syndrome yet. As a consequence, septic shock syndrome continues to increase, reaching mortality rates over 50% in some cases. Even though many preclinical studies and clinical trials have been conducted, there is no Food and Drug Administration-approved drug yet that interacts directly against LPS. Cationic host-defense peptides (HDPs) could be an alternative solution since they possess both antimicrobial and antiseptic properties. HDPs are small, positively charged peptides which are evolutionarily conserved components of the innate immune response. In fact, binding to diverse chemotypes of LPS and inhibition of LPS-induced pro-inflammatory cytokines from macrophages have been demonstrated for different HDPs. Curiously, none of them have been isolated by their affinity to LPS. A diversity of supports could be useful for such biological interaction and suitable for isolating HDPs that recognize LPS. This approach could expand the rational search for anti-LPS HDPs. PMID:24409171

  13. Peptides that influence membrane topology

    NASA Astrophysics Data System (ADS)

    Wong, Gerard C. L.

    2014-03-01

    We examine the mechanism of a range of polypeptides that influence membrane topology, including antimicrobial peptides, cell penetrating peptides, viral fusion peptides, and apoptosis proteins, and show how a combination of geometry, coordination chemistry, and soft matter physics can be used to approach a unified understanding. We will also show how such peptides can impact biomedical problems such as auto-immune diseases (psoriasis, lupus), infectious diseases (viral and bacterial infections), and mitochondrial pathologies (under-regulated apoptosis leads to neurodegenerative diseases whereas over-regulated apoptosis leads to cancer.)

  14. Novel Thiosemicarbazide Hybrids with Amino Acids and Peptides Against Hepatocellular Carcinoma: A Molecular Designing Approach Towards Multikinase Inhibitor.

    PubMed

    Chacko, Shinu; Samanta, Subir

    2015-01-01

    Hepatocellular Carcinoma is the most common primary malignant tumor of the liver. Development of multidrug resistance is the main obstacle to the success of anticancer drugs. In this study, designing and docking study of thiosemicarbazide hybrids with amino acids or peptides against hepatocellular carcinoma was performed since hybrids of biologically active compounds with amino acids or peptides may show target specificity and lower toxicity. All the structures were drawn in 2D platform and converted to the 3D platform using ChemDraw 10.0. Evaluations of ADME properties were done by using QikProp 3.0 to check for the possibility of oral delivery. In silico prediction of LD50 values were performed using Pro-Tox webserver. Interestingly, it was found that conjugation with amino acids decreases toxicity and increases the therapeutic index of thiosemicarbazide. Finally, all the compounds were docked to the crystal structure of the Vascular Endothelial Growth Factor Receptor-2 and Checkpoint kinase-1 utilizing Glide 5.0, Schrödinger 8.5, to understand the interaction of ligands with the receptor. A significant number of derivatives have been found active in both the receptors and also displayed multikinase inhibitory activity similar to Sorafenib, against hepatocellular carcinoma. Further, wet lab synthesis, in vitro ADMET and biological screening studies need to be performed to prove that designed compounds are effective against hepatocellular carcinoma as predicted by molecular modeling. However, as predicted by molecular modeling, the efficacy of designed compounds against hepatocellular carcinoma, needs to be confirmed by wet lab synthesis, in vitro ADMET and biological screening studies. PMID:26526710

  15. Total overlay analysis for designing future aligner

    NASA Astrophysics Data System (ADS)

    Magome, Nobutaka; Kawai, Hidemi

    1995-05-01

    We found total overlay with respect to optical lithography using an approach similar to quality control technique employed at a semiconductor factory. This approach involves an aligner performance, process quality, reticle error and overlay measurement. This paper further describes new ides for the number of machines to be used for matching and data collection period. Lastly, improvement on total overlay and a prospective view for a future aligner and its usage are also described.

  16. Robust Algorithm for Alignment of Liquid Chromatography-Mass Spectrometry Analyses in an Accurate Mass and Time Tag Data Analysis Pipeline

    SciTech Connect

    Jaitly, Navdeep; Monroe, Matthew E.; Petyuk, Vladislav A.; Clauss, Therese RW; Adkins, Joshua N.; Smith, Richard D.

    2006-11-01

    Liquid chromatography coupled to mass spectrometry (LC-MS) and tandem mass spectrometry (LC-MS/MS) has become a standard technique for analyzing complex peptide mixtures to determine composition and relative quantity. Several high-throughput proteomics techniques attempt to combine complementary results from multiple LC-MS and LC-MS/MS analyses to provide more comprehensive and accurate results. To effectively collate results from these techniques, variations in mass and elution time measurements between related analyses are corrected by using algorithms designed to align the various types of results: LC-MS/MS vs. LC-MS/MS, LC-MS vs. LC-MS/MS, and LC-MS vs. LC-MS. Described herein are new algorithms referred to collectively as Liquid Chromatography based Mass Spectrometric Warping and Alignment of Retention times of Peptides (LCMSWARP) which use a dynamic elution time warping approach similar to traditional algorithms that correct variation in elution time using piecewise linear functions. LCMSWARP is compared to a linear alignment algorithm that assumes a linear transformation of elution time between analyses. LCMSWARP also corrects for drift in mass measurement accuracies that are often seen in an LC-MS analysis due to factors such as analyzer drift. We also describe the alignment of LC-MS results and provide examples of alignment of analyses from different chromatographic systems to demonstrate more complex transformation functions.

  17. DNAAlignEditor: DNA alignment editor tool

    PubMed Central

    Sanchez-Villeda, Hector; Schroeder, Steven; Flint-Garcia, Sherry; Guill, Katherine E; Yamasaki, Masanori; McMullen, Michael D

    2008-01-01

    Background With advances in DNA re-sequencing methods and Next-Generation parallel sequencing approaches, there has been a large increase in genomic efforts to define and analyze the sequence variability present among individuals within a species. For very polymorphic species such as maize, this has lead to a need for intuitive, user-friendly software that aids the biologist, often with naïve programming capability, in tracking, editing, displaying, and exporting multiple individual sequence alignments. To fill this need we have developed a novel DNA alignment editor. Results We have generated a nucleotide sequence alignment editor (DNAAlignEditor) that provides an intuitive, user-friendly interface for manual editing of multiple sequence alignments with functions for input, editing, and output of sequence alignments. The color-coding of nucleotide identity and the display of associated quality score aids in the manual alignment editing process. DNAAlignEditor works as a client/server tool having two main components: a relational database that collects the processed alignments and a user interface connected to database through universal data access connectivity drivers. DNAAlignEditor can be used either as a stand-alone application or as a network application with multiple users concurrently connected. Conclusion We anticipate that this software will be of general interest to biologists and population genetics in editing DNA sequence alignments and analyzing natural sequence variation regardless of species, and will be particularly useful for manual alignment editing of sequences in species with high levels of polymorphism. PMID:18366684

  18. A modern approach for epitope prediction: identification of foot-and-mouth disease virus peptides binding bovine leukocyte antigen (BoLA) class I molecules

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Major histocompatibility complex (MHC) class I molecules regulate adaptive immune responses through the presentation of antigenic peptides to CD8positive T-cells. Polymorphisms in the peptide binding region of class I molecules determine peptide binding affinity and stability during antigen presenta...

  19. Structure diversification of vancomycin through peptide-catalyzed, site-selective lipidation: A catalysis-based approach to combat glycopeptide-resistant pathogens

    PubMed Central

    Yoganathan, Sabesan; Miller, Scott J.

    2015-01-01

    Emergence of antibiotic-resistant infections highlights the need for novel antibiotic leads, perhaps with a broader spectrum of activity. Herein, we disclose a semisynthetic, catalytic approach for structure diversification of vancomycin. We have identified three unique peptide catalysts that exhibit site-selectivity for the lipidation of the aliphatic hydroxyls on vancomycin, generating three new derivatives 9a, 9b and 9c. Incorporation of lipid chains into vancomycin scaffold provides promising improvement of its bioactivity against vancomycin-resistant enterococci (Van A and Van B phenotypes of VRE). The MICs for 9a, 9b, and 9c against MRSA and VRE (Van B phenotype) range from 0.12 to 0.25 μg/mL. We have also performed a structure activity relationship (SAR) study to investigate the effect of lipid chain length at the newly accessible G4-OH derivatization site. PMID:25671771

  20. Sensitive Technique For Detecting Alignment Of Seed Laser

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    1994-01-01

    Frequency response near resonance measured. Improved technique for detection and quantification of alignment of injection-seeding laser with associated power-oscillator laser proposed. Particularly useful in indicating alignment at spectral purity greater than 98 percent because it becomes more sensitive as perfect alignment approached. In addition, implemented relatively easily, without turning on power-oscillator laser.

  1. Orthodontics and Aligners

    MedlinePlus

    ... Repairing Chipped Teeth Teeth Whitening Tooth-Colored Fillings Orthodontics and Aligners Straighten teeth for a healthier smile. Orthodontics When consumers think about orthodontics, braces are the ...

  2. Alignability of Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Beech, Russell Scott

    With the continuing drive towards higher speed, density, and functionality in electronics, electrical interconnects become inadequate. Due to optics' high speed and bandwidth, freedom from capacitive loading effects, and freedom from crosstalk, optical interconnects can meet more stringent interconnect requirements. But, an optical interconnect requires additional components, such as an optical source and detector, lenses, holographic elements, etc. Fabrication and assembly of an optical interconnect requires precise alignment of these components. The successful development and deployment of optical interconnects depend on how easily the interconnect components can be aligned and/or how tolerant the interconnect is to misalignments. In this thesis, a method of quantitatively specifying the relative difficulty of properly aligning an optical interconnect is described. Ways of using this theory of alignment to obtain design and packaging guidelines for optical interconnects are examined. The measure of the ease with which an optical interconnect can be aligned, called the alignability, uses the efficiency of power transfer as a measure of alignment quality. The alignability is related to interconnect package design through the overall cost measure, which depends upon various physical parameters of the interconnect, such as the cost of the components and the time required for fabrication and alignment. Through a mutual dependence on detector size, the relationship between an interconnect's alignability and its bandwidth, signal-to-noise ratio, and bit-error -rate is examined. The results indicate that a range of device sizes exists for which given performance threshold values are satisfied. Next, the alignability of integrated planar-optic backplanes is analyzed in detail. The resulting data show that the alignability can be optimized by varying the substrate thickness or the angle of reflection. By including the effects of crosstalk, in a multi-channel backplane, the

  3. Tidal alignment of galaxies

    NASA Astrophysics Data System (ADS)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  4. Peptide identification

    DOEpatents

    Jarman, Kristin H [Richland, WA; Cannon, William R [Richland, WA; Jarman, Kenneth D [Richland, WA; Heredia-Langner, Alejandro [Richland, WA

    2011-07-12

    Peptides are identified from a list of candidates using collision-induced dissociation tandem mass spectrometry data. A probabilistic model for the occurrence of spectral peaks corresponding to frequently observed partial peptide fragment ions is applied. As part of the identification procedure, a probability score is produced that indicates the likelihood of any given candidate being the correct match. The statistical significance of the score is known without necessarily having reference to the actual identity of the peptide. In one form of the invention, a genetic algorithm is applied to candidate peptides using an objective function that takes into account the number of shifted peaks appearing in the candidate spectrum relative to the test spectrum.

  5. Role of calcitonin gene-related peptide in cerebral vasospasm, and as a therapeutic approach to subarachnoid hemorrhage

    PubMed Central

    Kokkoris, Stelios; Andrews, Peter; Webb, David J.

    2012-01-01

    Calcitonin gene-related peptide (CGRP) is one of the most potent microvascular vasodilators identified to date. Vascular relaxation and vasodilation is mediated via activation of the CGRP receptor. This atypical receptor is made up of a G protein-coupled receptor called calcitonin receptor-like receptor (CLR), a single transmembrane protein called receptor activity-modifying protein (RAMP), and an additional protein that is required for Gas coupling, known as receptor component protein (RCP). Several mechanisms involved in CGRP-mediated relaxation have been identified. These include nitric oxide (NO)-dependent endothelium-dependent mechanisms or cAMP-mediated endothelium-independent pathways; the latter being more common. Subarachnoid hemorrhage (SAH) is associated with cerebral vasoconstriction that occurs several days after the hemorrhage and is often fatal. The vasospasm occurs in 30–40% of patients and is the major cause of death from this condition. The vasoconstriction is associated with a decrease in CGRP levels in nerves and an increase in CGRP levels in draining blood, suggesting that CGRP is released from nerves to oppose the vasoconstriction. This evidence has led to the concept that exogenous CGRP may be beneficial in a condition that has proven hard to treat. The present article reviews: (a) the pathophysiology of delayed ischemic neurologic deficit after SAH (b) the basics of the CGRP receptor structure, signal transduction, and vasodilatation mechanisms and (c) the studies that have been conducted so far using CGRP in both animals and humans with SAH. PMID:23162536

  6. Selective targeting of glucagon-like peptide-1 signalling as a novel therapeutic approach for cardiovascular disease in diabetes

    PubMed Central

    Tate, Mitchel; Chong, Aaron; Robinson, Emma; Green, Brian D; Grieve, David J

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone whose glucose-dependent insulinotropic actions have been harnessed as a novel therapy for glycaemic control in type 2 diabetes. Although it has been known for some time that the GLP-1 receptor is expressed in the CVS where it mediates important physiological actions, it is only recently that specific cardiovascular effects of GLP-1 in the setting of diabetes have been described. GLP-1 confers indirect benefits in cardiovascular disease (CVD) under both normal and hyperglycaemic conditions via reducing established risk factors, such as hypertension, dyslipidaemia and obesity, which are markedly increased in diabetes. Emerging evidence indicates that GLP-1 also exerts direct effects on specific aspects of diabetic CVD, such as endothelial dysfunction, inflammation, angiogenesis and adverse cardiac remodelling. However, the majority of studies have employed experimental models of diabetic CVD and information on the effects of GLP-1 in the clinical setting is limited, although several large-scale trials are ongoing. It is clearly important to gain a detailed knowledge of the cardiovascular actions of GLP-1 in diabetes given the large number of patients currently receiving GLP-1-based therapies. This review will therefore discuss current understanding of the effects of GLP-1 on both cardiovascular risk factors in diabetes and direct actions on the heart and vasculature in this setting and the evidence implicating specific targeting of GLP-1 as a novel therapy for CVD in diabetes. PMID:25231355

  7. Algorithms for Automatic Alignment of Arrays

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Oliker, Leonid; Schreiber, Robert; Sheffler, Thomas J.

    1996-01-01

    Aggregate data objects (such as arrays) are distributed across the processor memories when compiling a data-parallel language for a distributed-memory machine. The mapping determines the amount of communication needed to bring operands of parallel operations into alignment with each other. A common approach is to break the mapping into two stages: an alignment that maps all the objects to an abstract template, followed by a distribution that maps the template to the processors. This paper describes algorithms for solving the various facets of the alignment problem: axis and stride alignment, static and mobile offset alignment, and replication labeling. We show that optimal axis and stride alignment is NP-complete for general program graphs, and give a heuristic method that can explore the space of possible solutions in a number of ways. We show that some of these strategies can give better solutions than a simple greedy approach proposed earlier. We also show how local graph contractions can reduce the size of the problem significantly without changing the best solution. This allows more complex and effective heuristics to be used. We show how to model the static offset alignment problem using linear programming, and we show that loop-dependent mobile offset alignment is sometimes necessary for optimum performance. We describe an algorithm with for determining mobile alignments for objects within do loops. We also identify situations in which replicated alignment is either required by the program itself or can be used to improve performance. We describe an algorithm based on network flow that replicates objects so as to minimize the total amount of broadcast communication in replication.

  8. Multiple Whole Genome Alignments Without a Reference Organism

    SciTech Connect

    Dubchak, Inna; Poliakov, Alexander; Kislyuk, Andrey; Brudno, Michael

    2009-01-16

    Multiple sequence alignments have become one of the most commonly used resources in genomics research. Most algorithms for multiple alignment of whole genomes rely either on a reference genome, against which all of the other sequences are laid out, or require a one-to-one mapping between the nucleotides of the genomes, preventing the alignment of recently duplicated regions. Both approaches have drawbacks for whole-genome comparisons. In this paper we present a novel symmetric alignment algorithm. The resulting alignments not only represent all of the genomes equally well, but also include all relevant duplications that occurred since the divergence from the last common ancestor. Our algorithm, implemented as a part of the VISTA Genome Pipeline (VGP), was used to align seven vertebrate and sixDrosophila genomes. The resulting whole-genome alignments demonstrate a higher sensitivity and specificity than the pairwise alignments previously available through the VGP and have higher exon alignment accuracy than comparable public whole-genome alignments. Of the multiple alignment methods tested, ours performed the best at aligning genes from multigene families?perhaps the most challenging test for whole-genome alignments. Our whole-genome multiple alignments are available through the VISTA Browser at http://genome.lbl.gov/vista/index.shtml.

  9. PLGA Nanoparticles for Peptide Receptor Radionuclide Therapy of Neuroendocrine Tumors: A Novel Approach towards Reduction of Renal Radiation Dose

    PubMed Central

    Arora, Geetanjali; Shukla, Jaya; Ghosh, Sourabh; Maulik, Subir Kumar; Malhotra, Arun; Bandopadhyaya, Gurupad

    2012-01-01

    Background Peptide receptor radionuclide therapy (PRRT), employed for treatment of neuroendocrine tumors (NETs) is based on over-expression of Somatostatin Receptors (SSTRs) on NETs. It is, however, limited by high uptake and retention of radiolabeled peptide in kidneys resulting in unnecessary radiation exposure thus causing nephrotoxicity. Employing a nanocarrier to deliver PRRT drugs specifically to the tumor can reduce the associated nephrotoxicity. Based on this, 177Lu-DOTATATE loaded PLGA nanoparticles (NPs) were formulated in the present study, as a potential therapeutic model for NETs. Methodology and Findings DOTATATE was labeled with Lutetium-177 (177Lu) (labeling efficiency 98%; Rf∼0.8). Polyethylene Glycol (PEG) coated 177Lu-DOTATATE-PLGA NPs (50∶50 and 75∶25) formulated, were spherical with mean size of 304.5±80.8 and 733.4±101.3 nm (uncoated) and 303.8±67.2 and 494.3±71.8 nm (coated) for PLGA(50∶50) and PLGA(75∶25) respectively. Encapsulation efficiency (EE) and In-vitro release kinetics for uncoated and coated NPs of PLGA (50∶50 & 75∶25) were assessed and compared. Mean EE was 77.375±4.98% & 67.885±5.12% (uncoated) and 65.385±5.67% & 58.495±5.35% (coated). NPs showed initial burst release between 16.64–21.65% with total 42.83–44.79% over 21days. The release increased with coating to 20.4–23.95% initially and 60.97–69.12% over 21days. In-vivo studies were done in rats injected with 177Lu-DOTATATE and 177Lu-DOTATATE-NP (uncoated and PEG-coated) by imaging and organ counting after sacrificing rats at different time points over 24 hr post-injection. With 177Lu-DOTATATE, renal uptake of 37.89±10.2%ID/g was observed, which reduced to 4.6±1.97% and 5.27±1.66%ID/g with uncoated and coated 177Lu-DOTATATE-NP. The high liver uptake with uncoated 177Lu-DOTATATE-NP (13.68±3.08% ID/g), reduced to 7.20±2.04%ID/g (p = 0.02) with PEG coating. Conclusion PLGA NPs were easily formulated and modified for desired release properties

  10. Combination Approach of YSA Peptide Anchored Docetaxel Stealth Liposomes with Oral Antifibrotic Agent for the Treatment of Lung Cancer.

    PubMed

    Patel, Ketan; Doddapaneni, Ravi; Sekar, Vasanthakumar; Chowdhury, Nusrat; Singh, Mandip

    2016-06-01

    Therapeutic efficacy of nanocarriers can be amplified by active targeting and overcoming the extracellular matrix associated barriers of tumors. The aim of the present study was to investigate the effect of oral antifibrotic agent (telmisartan) on tumor uptake and anticancer efficacy of EphA2 receptor targeted liposomes. Docetaxel loaded PEGylated liposomes (DPL) functionalized with nickel chelated phospholipid were prepared using a modified hydration method. DPL were incubated with various concentrations of histidine tagged EphA2 receptor specific peptide (YSA) to optimize particle size, zeta potential, and percentage YSA binding. Cellular uptake studies using various endocytosis blockers revealed that a caveolae dependent pathway was the major route for internalization of YSA anchored liposomes of docetaxel (YDPL) in A549 lung cancer cell line. Hydrodynamic diameter and zeta potential of optimized YDPL were 157.3 ± 11.8 nm and -3.64 mV, respectively. Orthotopic lung tumor xenograft (A549) bearing athymic nude mice treated with oral telmisartan (5 mg/kg) for 2 days showed significantly (p < 0.05) higher uptake of YDPL in tumor tissues compared to healthy tissue. Average lung tumor weight of the YDPL + telmisartan treated group was 4.8- and 3.8-fold lower than that of the DPL and YDPL treated groups (p < 0.05). Substantially lower expression (p < 0.05) of EphA2 receptor protein, proliferating cell nuclear antigen (PCNA), MMP-9, and collagen 1A level with increased E-cadherin and TIMP-1 levels in immunohistochemistry and Western blot analysis of lung tumor samples of the combination group confirmed antifibrotic effect with enhanced anticancer activity. Active targeting and ECM remodeling synergistically contributed to anticancer efficacy of YDPL in orthotopic lung cancer. PMID:27070720

  11. Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells.

    PubMed

    Bettinger, T; Carlisle, R C; Read, M L; Ogris, M; Seymour, L W

    2001-09-15

    Synthetic vectors were evaluated for their ability to mediate efficient mRNA transfection. Initial results indicated that lipoplexes, but not polyplexes based on polyethylenimine (PEI, 25 and 22 kDa), poly(L-lysine) (PLL, 54 kDa) or dendrimers, mediated efficient translation of mRNA in B16-F10 cells. Significant mRNA transfection was achieved by lipoplex delivery in quiescent (passage 0) human umbilical vein endothelial cells (HUVEC), and by passage 4, 10.7% of HUVEC were transfected compared to 0.84% with DNA. Lack of expression with PEI 25 kDa/mRNA or PLL 54 kDa/mRNA in a cell-free translation assay and following cytoplasmic injection into Rat1 cells indicated that these polyplexes were too stable to release mRNA. In contrast, polyplexes formed using smaller PEI 2 kDa and PLL 3.4 kDa gave 5-fold greater expression in B16-F10 cells compared to DOTAP, but were dependent on chloroquine for transfection activity. Endosomolytic activity was incorporated by conjugating PEI 2 kDa to melittin and resulting PEI 2 kDa-melittin/mRNA polyplexes mediated high transfection levels in HeLa cells (31.1 +/- 4.1%) and HUVEC (58.5 +/- 2.9%) in the absence of chloroquine, that was potentiated to 52.2 +/- 2.7 and 71.6 +/- 1.7%, respectively, in the presence of chloroquine. These results demonstrate that mRNA polyplexes based on peptide-modified low molecular weight polycations can possess versatile properties including endosomolysis that should enable efficient non-viral mRNA transfection of quiescent and post-mitotic cells. PMID:11557821

  12. Protein interactions between the C-terminus of Aβ-peptide and phospholipase A2--a structure biology based approach to identify novel Alzheimer's therapeutics.

    PubMed

    Mirza, Zeenat; Pillai, Vikram G; Kamal, Mohammad A

    2014-01-01

    Amyloid β (Aβ) polypeptide plays a key role in determining the state of protein aggregation in Alzheimer's disease. The hydrophobic C-terminal part of the Aβ peptide is critical in triggering the transformation from α-helical to β- sheet structure. We hypothesized that phospholipase A2 (PLA2) may inhibit the aggregation of Aβ peptide by interacting with the peptide and keeping the two peptide chains apart. In order to examine the nature of interactions between PLA2 and Aβ peptide, we prepared and crystallized complex of Naja naja sagittifera PLA2 with the C-terminal hepta-peptide Val-Gly-Gly-Val-Val-Ile-Ala. The X-ray intensity data were collected to 2.04 A resolution and the structure was determined by molecular replacement and refined to the crystallographic R factor of 0.186. The structural analysis revealed that the peptide binds to PLA2 at the hydrophobic substrate binding cavity forming at least eight hydrogen bonds and approximately a two dozen Van der Waals interactions. The number and nature of interactions indicate that the affinity between PLA2 and the hepta-peptide is greater than the affinity between two Aβ peptide chains. Therefore, PLA2 is proposed as a probable ligand to prevent the aggregation of Aβ peptides. PMID:25230229

  13. Synthetic antibiofilm peptides.

    PubMed

    de la Fuente-Núñez, César; Cardoso, Marlon Henrique; de Souza Cândido, Elizabete; Franco, Octavio Luiz; Hancock, Robert E W

    2016-05-01

    Bacteria predominantly exist as multicellular aggregates known as biofilms that are associated with at least two thirds of all infections and exhibit increased adaptive resistance to conventional antibiotic therapies. Therefore, biofilms are major contributors to the global health problem of antibiotic resistance, and novel approaches to counter them are urgently needed. Small molecules of the innate immune system called host defense peptides (HDPs) have emerged as promising templates for the design of potent, broad-spectrum antibiofilm agents. Here, we review recent developments in the new field of synthetic antibiofilm peptides, including mechanistic insights, synergistic interactions with available antibiotics, and their potential as novel antimicrobials against persistent infections caused by biofilms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26724202

  14. SPEAR3 Construction Alignment

    SciTech Connect

    LeCocq, Catherine; Banuelos, Cristobal; Fuss, Brian; Gaudreault, Francis; Gaydosh, Michael; Griffin, Levirt; Imfeld, Hans; McDougal, John; Perry, Michael; Rogers, Michael; /SLAC

    2005-08-17

    An ambitious seven month shutdown of the existing SPEAR2 synchrotron radiation facility was successfully completed in March 2004 when the first synchrotron light was observed in the new SPEAR3 ring, SPEAR3 completely replaced SPEAR2 with new components aligned on a new highly-flat concrete floor. Devices such as magnets and vacuum chambers had to be fiducialized and later aligned on girder rafts that were then placed into the ring over pre-aligned support plates. Key to the success of aligning this new ring was to ensure that the new beam orbit matched the old SPEAR2 orbit so that existing experimental beamlines would not have to be reoriented. In this presentation a pictorial summary of the Alignment Engineering Group's surveying tasks for the construction of the SPEAR3 ring is provided. Details on the networking and analysis of various surveys throughout the project can be found in the accompanying paper.

  15. A Unique Approach to Generate Self-Aligned SiO2/Ge/SiO2/SiGe Gate-Stacking Heterostructures in a Single Fabrication Step.

    PubMed

    Lai, Wei-Ting; Yang, Kuo-Ching; Hsu, Ting-Chia; Liao, Po-Hsiang; George, Thomas; Li, Pei-Wen

    2015-01-01

    We report a first-of-its-kind, unique approach for generating a self-aligned, gate-stacking heterostructure of Ge quantum dot (QD)/SiO2/SiGe shell on Si in a single fabrication step. The 4-nm-thick SiO2 layer between the Ge QD and SiGe shell fabricated during the single-step process is the result of an exquisitely controlled dynamic balance between the fluxes of oxygen and silicon interstitials. The high-quality interface properties of our "designer" heterostructure are evidenced by the low interface trap density of as low as 2-4 × 10(11) cm(-2) eV(-1) and superior transfer characteristics measured for Ge-based metal-oxide-semiconductor field-effect transistors (MOSFETs). Thanks to the very thin interfacial SiO2 layer, carrier storage within the Ge QDs with good memory endurance was established under relatively low-voltage programming/erasing conditions. We hope that our unique self-aligned, gate-stacking heterostructure provides an effective approach for the production of next-generation, high-performance Ge gate/SiO2/SiGe channel MOSFETs. PMID:26019699

  16. Blasting and Zipping: Sequence Alignment and Mutual Information

    NASA Astrophysics Data System (ADS)

    Penner, Orion; Grassberger, Peter; Paczuski, Maya

    2009-03-01

    Alignment of biological sequences such as DNA, RNA or proteins is one of the most widely used tools in computational bioscience. While the accomplishments of sequence alignment algorithms are undeniable the fact remains that these algorithms are based upon heuristic scoring schemes. Therefore, these algorithms do not provide model independent and objective measures for how similar two (or more) sequences actually are. Although information theory provides such a similarity measure - the mutual information (MI) - numerous previous attempts to connect sequence alignment and information have not produced realistic estimates for the MI from a given alignment. We report on a simple and flexible approach to get robust estimates of MI from global alignments. The presented results may help establish MI as a reliable tool for evaluating the quality of global alignments, judging the relative merits of different alignment algorithms, and estimating the significance of specific alignments.

  17. Determining the Topology of Integral Membrane Peptides Using EPR Spectroscopy

    PubMed Central

    Inbaraj, Johnson J.; Cardon, Thomas B.; Laryukhin, Mikhail; Grosser, Stuart M.

    2008-01-01

    This paper reports on the development of a new structural biology technique for determining the membrane topology of an integral membrane protein inserted into magnetically aligned phospholipid bilayers (bicelles) using EPR spectroscopy. The nitroxide spin probe, 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) was attached to the pore-lining transmembrane domain (M2δ) of the nicotinic acetylcholine receptor (AChR) and incorporated into a bicelle. The corresponding EPR spectra revealed hyperfine splittings that were highly dependent on the macroscopic orientation of the bicelles with respect to the static magnetic field. The helical tilt of the peptide can be easily calculated using the hyperfine splittings gleaned from the orientational dependent EPR spectra. A helical tilt of 14° was calculated for the M2δ peptide with respect to the bilayer normal of the membrane, which agrees well with previous 15N solid-state NMR studies. The helical tilt of the peptide was verified by simulating the corresponding EPR spectra using the standardized MOMD approach. This new method is advantageous because: (1) bicelle samples are easy to prepare, (2) the helical tilt can be directly calculated from the orientational-dependent hyperfine splitting in the EPR spectra, and (3) EPR spectroscopy is approximately 1000 fold more sensitive than 15N solid-state NMR spectroscopy; thus, the helical tilt of an integral membrane peptide can be determined with only 100 μg of peptide. The helical tilt can be determined more accurately by placing TOAC spin labels at several positions with this technique. PMID:16848493

  18. Precision alignment device

    DOEpatents

    Jones, N.E.

    1988-03-10

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam. 5 figs.

  19. Precision alignment device

    DOEpatents

    Jones, Nelson E.

    1990-01-01

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam.

  20. Hybrid vehicle motor alignment

    DOEpatents

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  1. Algorithms, applications, and challenges of protein structure alignment.

    PubMed

    Ma, Jianzhu; Wang, Sheng

    2014-01-01

    As a fundamental problem in computational structure biology, protein structure alignment has attracted the focus of the community for more than 20 years. While the pairwise structure alignment could be applied to measure the similarity between two proteins, which is a first step for homology search and fold space construction, the multiple structure alignment could be used to understand evolutionary conservation and divergence from a family of protein structures. Structure alignment is an NP-hard problem, which is only computationally tractable by using heuristics. Three levels of heuristics for pairwise structure alignment have been proposed, from the representations of protein structure, the perspectives of viewing protein as a rigid-body or flexible, to the scoring functions as well as the search algorithms for the alignment. For multiple structure alignment, the fourth level of heuristics is applied on how to merge all input structures to a multiple structure alignment. In this review, we first present a small survey of current methods for protein pairwise and multiple alignment, focusing on those that are publicly available as web servers. In more detail, we also discuss the advancements on the development of the new approaches to increase the pairwise alignment accuracy, to efficiently and reliably merge input structures to the multiple structure alignment. Finally, besides broadening the spectrum of the applications of structure alignment for protein template-based prediction, we also list several open problems that need to be solved in the future, such as the large complex alignment and the fast database search. PMID:24629187

  2. Alignment of University Information Technology Resources with the Malcolm Baldrige Results Criteria for Performance Excellence in Education: A Balanced Scorecard Approach

    ERIC Educational Resources Information Center

    Beard, Deborah F.; Humphrey, Roberta L.

    2014-01-01

    The authors suggest using a balanced scorecard (BSC) approach to evaluate information technology (IT) resources in higher education institutions. The BSC approach illustrated is based on the performance criteria of the Malcolm Baldrige National Quality Award in Education. This article suggests areas of potential impact of IT on BSC measures in…

  3. Investigating Conversational Dynamics: Interactive Alignment, Interpersonal Synergy, and Collective Task Performance

    ERIC Educational Resources Information Center

    Fusaroli, Riccardo; Tylén, Kristian

    2016-01-01

    This study investigates interpersonal processes underlying dialog by comparing two approaches, "interactive alignment" and "interpersonal synergy", and assesses how they predict collective performance in a joint task. While the interactive alignment approach highlights imitative patterns between interlocutors, the synergy…

  4. Membrane Interactions of Phylloseptin-1, -2, and -3 Peptides by Oriented Solid-State NMR Spectroscopy

    PubMed Central

    Resende, Jarbas M.; Verly, Rodrigo M.; Aisenbrey, Christopher; Cesar, Amary; Bertani, Philippe; Piló-Veloso, Dorila; Bechinger, Burkhard

    2014-01-01

    Phylloseptin-1, -2, and -3 are three members of the family of linear cationic antimicrobial peptides found in tree frogs. The highly homologous peptides encompass 19 amino acids, and only differ in the amino acid composition and charge at the six most carboxy-terminal residues. Here, we investigated how such subtle changes are reflected in their membrane interactions and how these can be correlated to their biological activities. To this end, the three peptides were labeled with stable isotopes, reconstituted into oriented phospholipid bilayers, and their detailed topology determined by a combined approach using 2H and 15N solid-state NMR spectroscopy. Although phylloseptin-2 and -3 adopt perfect in-plane alignments, the tilt angle of phylloseptin-1 deviates by 8° probably to assure a more water exposed localization of the lysine-17 side chain. Furthermore, different azimuthal angles are observed, positioning the amphipathic helices of all three peptides with the charged residues well exposed to the water phase. Interestingly, our studies also reveal that two orientation-dependent 2H quadrupolar splittings from methyl-deuterated alanines and one 15N amide chemical shift are sufficient to unambiguously determine the topology of phylloseptin-1, where quadrupolar splittings close to the maximum impose the most stringent angular restraints. As a result of these studies, a strategy is proposed where the topology of a peptide structure can be determined accurately from the labeling with 15N and 2H isotopes of only a few amino acid residues. PMID:25140425

  5. Antares alignment gimbal positioner

    SciTech Connect

    Day, R.D.; Viswanathan, V.K.; Saxman, A.C.; Lujan, R.E.; Woodfin, G.L.; Sweatt, W.C.

    1981-01-01

    Antares is a 24-beam 40-TW carbon-dioxide (CO/sub 2/) laser fusion system currently under construction at the Los Alamos National Laboratory. The Antares alignment gimbal positioner (AGP) is an optomechanical instrument that will be used for target alignment and alignment of the 24 laser beams, as well as beam quality assessments. The AGP will be capable of providing pointing, focusing, and wavefront optical path difference, as well as aberration information at both helium-neon (He-Ne) and CO/sub 2/ wavelengths. It is designed to allow the laser beams to be aligned to any position within a 1-cm cube to a tolerance of 10 ..mu..m.

  6. EINSTEIN Cluster Alignments Revisited

    NASA Astrophysics Data System (ADS)

    Chambers, S. W.; Melott, A. L.; Miller, C. J.

    2000-12-01

    We have examined whether the major axes of rich galaxy clusters tend to point (in projection) toward their nearest neighboring cluster. We used the data of Ulmer, McMillan and Kowalski, who used x-ray morphology to define position angles. Our cluster samples, with well measured redshifts and updated positions, were taken from the MX Northern Abell Cluster Survey. The usual Kolmogorov-Smirnov test shows no significant alignment signal for nonrandom angles for all separations less than 100 Mpc/h. Refining the null hypothesis, however, with the Wilcoxon rank-sum test, reveals a high confidence signal for alignment. This confidence is highest when we restrict our sample to small nearest neighbor separations. We conclude that we have identified a more powerful tool for testing cluster-cluster alignments. Moreover, there is a strong signal in the data for alignment, consistent with a picture of hierarchical cluster formation in which matter falls into clusters along large scale filamentary structures.

  7. Phage display identification of functional binding peptides against 4-acetamidophenol (Paracetamol): an exemplified approach to target low molecular weight organic molecules.

    PubMed

    Smith, Mathew W; Smith, Jonathan W; Harris, Charlotte; Brancale, Andrea; Allender, Christopher J; Gumbleton, Mark

    2007-06-22

    Peptide-phage display has been widely used to explore protein-protein interactions, however, despite the potential range of applications the use of this technology to identify peptides that bind low molecular weight organic molecules has not been explored. In this current study, we identified a phage clone (PARA-061) displaying the cyclic 7-mer peptide sequence N' AC-NPNNLSH-CGGGS C' that binds the low molecular weight organic molecule 4-acetamidophenol (4-AAP; paracetamol). To avoid occupancy of key functional groups on the target 4-AAP molecule our panning strategy was directed against insoluble complexes of 4-AAP rather than against the target linked to a stationary support or bearing an affinity tag. To augment the panning procedure we deleted phage that also bound the 4-AAP isomers, 2-AAP and 3-AAP. The identified PARA-061 peptide-phage clone displayed functional binding properties against 4-AAP in solution, able in a peptide sequence-dependant manner to prevent the in vitro hepatotoxicity of 4-AAP and reduce ( approximately 20%) the permeability of 4-AAP across a semi-permeable membrane. Molecular dynamic simulations generated a stable binding conformation between the PARA-061 peptide sequence and 4-AAP. In conclusion, we show that a phage display library can be used to identify peptide sequence-specific clones able to modulate the functional binding of a low molecular weight organic molecule. Such peptides may be expected to find utility in the next generation of hybrid polymer-based biosensing devices. PMID:17482566

  8. CARNA—alignment of RNA structure ensembles

    PubMed Central

    Sorescu, Dragoş Alexandru; Möhl, Mathias; Mann, Martin; Backofen, Rolf; Will, Sebastian

    2012-01-01

    Due to recent algorithmic progress, tools for the gold standard of comparative RNA analysis, namely Sankoff-style simultaneous alignment and folding, are now readily applicable. Such approaches, however, compare RNAs with respect to a simultaneously predicted, single, nested consensus structure. To make multiple alignment of RNAs available in cases, where this limitation of the standard approach is critical, we introduce a web server that provides a complete and convenient interface to the RNA structure alignment tool ‘CARNA’. This tool uniquely supports RNAs with multiple conserved structures per RNA and aligns pseudoknots intrinsically; these features are highly desirable for aligning riboswitches, RNAs with conserved folding pathways, or pseudoknots. We represent structural input and output information as base pair probability dot plots; this provides large flexibility in the input, ranging from fixed structures to structure ensembles, and enables immediate visual analysis of the results. In contrast to conventional Sankoff-style approaches, ‘CARNA’ optimizes all structural similarities in the input simultaneously, for example across an entire RNA structure ensemble. Even compared with already costly Sankoff-style alignment, ‘CARNA’ solves an intrinsically much harder problem by applying advanced, constraint-based, algorithmic techniques. Although ‘CARNA’ is specialized to the alignment of RNAs with several conserved structures, its performance on RNAs in general is on par with state-of-the-art general-purpose RNA alignment tools, as we show in a Bralibase 2.1 benchmark. The web server is freely available at http://rna.informatik.uni-freiburg.de/CARNA. PMID:22689637

  9. BigFoot: Bayesian alignment and phylogenetic footprinting with MCMC

    PubMed Central

    Satija, Rahul; Novák, Ádám; Miklós, István; Lyngsø, Rune; Hein, Jotun

    2009-01-01

    Background We have previously combined statistical alignment and phylogenetic footprinting to detect conserved functional elements without assuming a fixed alignment. Considering a probability-weighted distribution of alignments removes sensitivity to alignment errors, properly accommodates regions of alignment uncertainty, and increases the accuracy of functional element prediction. Our method utilized standard dynamic programming hidden markov model algorithms to analyze up to four sequences. Results We present a novel approach, implemented in the software package BigFoot, for performing phylogenetic footprinting on greater numbers of sequences. We have developed a Markov chain Monte Carlo (MCMC) approach which samples both sequence alignments and locations of slowly evolving regions. We implement our method as an extension of the existing StatAlign software package and test it on well-annotated regions controlling the expression of the even-skipped gene in Drosophila and the α-globin gene in vertebrates. The results exhibit how adding additional sequences to the analysis has the potential to improve the accuracy of functional predictions, and demonstrate how BigFoot outperforms existing alignment-based phylogenetic footprinting techniques. Conclusion BigFoot extends a combined alignment and phylogenetic footprinting approach to analyze larger amounts of sequence data using MCMC. Our approach is robust to alignment error and uncertainty and can be applied to a variety of biological datasets. The source code and documentation are publicly available for download from PMID:19715598

  10. Structural analysis of aligned RNAs.

    PubMed

    Voss, Björn

    2006-01-01

    The knowledge about classes of non-coding RNAs (ncRNAs) is growing very fast and it is mainly the structure which is the common characteristic property shared by members of the same class. For correct characterization of such classes it is therefore of great importance to analyse the structural features in great detail. In this manuscript I present RNAlishapes which combines various secondary structure analysis methods, such as suboptimal folding and shape abstraction, with a comparative approach known as RNA alignment folding. RNAlishapes makes use of an extended thermodynamic model and covariance scoring, which allows to reward covariation of paired bases. Applying the algorithm to a set of bacterial trp-operon leaders using shape abstraction it was able to identify the two alternating conformations of this attenuator. Besides providing in-depth analysis methods for aligned RNAs, the tool also shows a fairly well prediction accuracy. Therefore, RNAlishapes provides the community with a powerful tool for structural analysis of classes of RNAs and is also a reasonable method for consensus structure prediction based on sequence alignments. RNAlishapes is available for online use and download at http://rna.cyanolab.de. PMID:17020924

  11. Feature-matching Pattern-based Support Vector Machines for Robust Peptide Mass Fingerprinting*

    PubMed Central

    Li, Youyuan; Hao, Pei; Zhang, Siliang; Li, Yixue

    2011-01-01

    Peptide mass fingerprinting, regardless of becoming complementary to tandem mass spectrometry for protein identification, is still the subject of in-depth study because of its higher sample throughput, higher level of specificity for single peptides and lower level of sensitivity to unexpected post-translational modifications compared with tandem mass spectrometry. In this study, we propose, implement and evaluate a uniform approach using support vector machines to incorporate individual concepts and conclusions for accurate PMF. We focus on the inherent attributes and critical issues of the theoretical spectrum (peptides), the experimental spectrum (peaks) and spectrum (masses) alignment. Eighty-one feature-matching patterns derived from cleavage type, uniqueness and variable masses of theoretical peptides together with the intensity rank of experimental peaks were proposed to characterize the matching profile of the peptide mass fingerprinting procedure. We developed a new strategy including the participation of matched peak intensity redistribution to handle shared peak intensities and 440 parameters were generated to digitalize each feature-matching pattern. A high performance for an evaluation data set of 137 items was finally achieved by the optimal multi-criteria support vector machines approach, with 491 final features out of a feature vector of 35,640 normalized features through cross training and validating a publicly available “gold standard” peptide mass fingerprinting data set of 1733 items. Compared with the Mascot, MS-Fit, ProFound and Aldente algorithms commonly used for MS-based protein identification, the feature-matching patterns algorithm has a greater ability to clearly separate correct identifications and random matches with the highest values for sensitivity (82%), precision (97%) and F1-measure (89%) of protein identification. Several conclusions reached via this research make general contributions to MS-based protein identification

  12. PDV Probe Alignment Technique

    SciTech Connect

    Whitworth, T L; May, C M; Strand, O T

    2007-10-26

    This alignment technique was developed while performing heterodyne velocimetry measurements at LLNL. There are a few minor items needed, such as a white card with aperture in center, visible alignment laser, IR back reflection meter, and a microscope to view the bridge surface. The work was performed on KCP flyers that were 6 and 8 mils wide. The probes used were Oz Optics manufactured with focal distances of 42mm and 26mm. Both probes provide a spot size of approximately 80?m at 1550nm. The 42mm probes were specified to provide an internal back reflection of -35 to -40dB, and the probe back reflections were measured to be -37dB and -33dB. The 26mm probes were specified as -30dB and both measured -30.5dB. The probe is initially aligned normal to the flyer/bridge surface. This provides a very high return signal, up to -2dB, due to the bridge reflectivity. A white card with a hole in the center as an aperture can be used to check the reflected beam position relative to the probe and launch beam, and the alignment laser spot centered on the bridge, see Figure 1 and Figure 2. The IR back reflection meter is used to measure the dB return from the probe and surface, and a white card or similar object is inserted between the probe and surface to block surface reflection. It may take several iterations between the visible alignment laser and the IR back reflection meter to complete this alignment procedure. Once aligned normal to the surface, the probe should be tilted to position the visible alignment beam as shown in Figure 3, and the flyer should be translated in the X and Y axis to reposition the alignment beam onto the flyer as shown in Figure 4. This tilting of the probe minimizes the amount of light from the bridge reflection into the fiber within the probe while maintaining the alignment as near normal to the flyer surface as possible. When the back reflection is measured after the tilt adjustment, the level should be about -3dB to -6dB higher than the probes

  13. Aligning parallel arrays to reduce communication

    NASA Technical Reports Server (NTRS)

    Sheffler, Thomas J.; Schreiber, Robert; Gilbert, John R.; Chatterjee, Siddhartha

    1994-01-01

    Axis and stride alignment is an important optimization in compiling data-parallel programs for distributed-memory machines. We previously developed an optimal algorithm for aligning array expressions. Here, we examine alignment for more general program graphs. We show that optimal alignment is NP-complete in this setting, so we study heuristic methods. This paper makes two contributions. First, we show how local graph transformations can reduce the size of the problem significantly without changing the best solution. This allows more complex and effective heuristics to be used. Second, we give a heuristic that can explore the space of possible solutions in a number of ways. We show that some of these strategies can give better solutions than a simple greedy approach proposed earlier. Our algorithms have been implemented; we present experimental results showing their effect on the performance of some example programs running on the CM-5.

  14. Curriculum Alignment Research Suggests that Alignment Can Improve Student Achievement

    ERIC Educational Resources Information Center

    Squires, David

    2012-01-01

    Curriculum alignment research has developed showing the relationship among three alignment categories: the taught curriculum, the tested curriculum and the written curriculum. Each pair (for example, the taught and the written curriculum) shows a positive impact for aligning those results. Following this, alignment results from the Third…

  15. Identification of multifunctional peptides from human milk.

    PubMed

    Mandal, Santi M; Bharti, Rashmi; Porto, William F; Gauri, Samiran S; Mandal, Mahitosh; Franco, Octavio L; Ghosh, Ananta K

    2014-06-01

    Pharmaceutical industries have renewed interest in screening multifunctional bioactive peptides as a marketable product in health care applications. In this context, several animal and plant peptides with potential bioactivity have been reported. Milk proteins and peptides have received much attention as a source of health-enhancing components to be incorporated into nutraceuticals and functional foods. By using this source, 24 peptides have been fractionated and purified from human milk using RP-HPLC. Multifunctional roles including antimicrobial, antioxidant and growth stimulating activity have been evaluated in all 24 fractions. Nevertheless, only four fractions show multiple combined activities among them. Using a proteomic approach, two of these four peptides have been identified as lactoferrin derived peptide and kappa casein short chain peptide. Lactoferrin derived peptide (f8) is arginine-rich and kappa casein derived (f12) peptide is proline-rich. Both peptides (f8 and f12) showed antimicrobial activities against both Gram-positive and Gram-negative bacteria. Fraction 8 (f8) exhibits growth stimulating activity in 3T3 cell line and f12 shows higher free radical scavenging activity in comparison to other fractions. Finally, both peptides were in silico evaluated and some insights into their mechanism of action were provided. Thus, results indicate that these identified peptides have multiple biological activities which are valuable for the quick development of the neonate and may be considered as potential biotechnological products for nutraceutical industry. PMID:24703967

  16. Technology of alignment mark in electron beam lithography

    NASA Astrophysics Data System (ADS)

    Zhao, Min; Xu, Tang; Chen, Baoqin; Niu, Jiebin

    2014-08-01

    Electron beam direct wring lithography has been an indispensable approach by which all sorts of novel nano-scale devices include many kinds optical devices can be fabricated. Alignment accuracy is a key factor especially to those devices which need multi-level lithography. In addition to electron beam lithography system itself the quality of alignment mark directly influences alignment accuracy. This paper introduces fundamental of alignment mark detection and discusses some techniques of alignment mark fabrication along with considerations for obtaining highly accurate alignment taking JBX5000LS and JBX6300FS e-beam lithography systems for example. The fundamental of alignment mark detection is expounded first. Many kinds of factors which can impact on the quality of alignment mark are analyzed including mark materials, depth of mark groove and influence of multi-channel process. It has been proved from experiments that material used as metal mark with higher average atomic number is better beneficial for getting high alignment accuracy. Depth of mark groove is required to 1.5~5 μm on our experience. The more process steps alignment mark must pass through, the more probability of being damaged there will be. So the compatibility of alignment mark fabrication with the whole device process and the protection of alignment mark are both need to be considered in advance.

  17. Antimicrobial peptides.

    PubMed

    Zhang, Ling-Juan; Gallo, Richard L

    2016-01-11

    Antimicrobial peptides and proteins (AMPs) are a diverse class of naturally occurring molecules that are produced as a first line of defense by all multicellular organisms. These proteins can have broad activity to directly kill bacteria, yeasts, fungi, viruses and even cancer cells. Insects and plants primarily deploy AMPs as an antibiotic to protect against potential pathogenic microbes, but microbes also produce AMPs to defend their environmental niche. In higher eukaryotic organisms, AMPs can also be referred to as 'host defense peptides', emphasizing their additional immunomodulatory activities. These activities are diverse, specific to the type of AMP, and include a variety of cytokine and growth factor-like effects that are relevant to normal immune homeostasis. In some instances, the inappropriate expression of AMPs can also induce autoimmune diseases, thus further highlighting the importance of understanding these molecules and their complex activities. This Primer will provide an update of our current understanding of AMPs. PMID:26766224

  18. A simple method to control over-alignment in the MAFFT multiple sequence alignment program

    PubMed Central

    Katoh, Kazutaka; Standley, Daron M.

    2016-01-01

    Motivation: We present a new feature of the MAFFT multiple alignment program for suppressing over-alignment (aligning unrelated segments). Conventional MAFFT is highly sensitive in aligning conserved regions in remote homologs, but the risk of over-alignment is recently becoming greater, as low-quality or noisy sequences are increasing in protein sequence databases, due, for example, to sequencing errors and difficulty in gene prediction. Results: The proposed method utilizes a variable scoring matrix for different pairs of sequences (or groups) in a single multiple sequence alignment, based on the global similarity of each pair. This method significantly increases the correctly gapped sites in real examples and in simulations under various conditions. Regarding sensitivity, the effect of the proposed method is slightly negative in real protein-based benchmarks, and mostly neutral in simulation-based benchmarks. This approach is based on natural biological reasoning and should be compatible with many methods based on dynamic programming for multiple sequence alignment. Availability and implementation: The new feature is available in MAFFT versions 7.263 and higher. http://mafft.cbrc.jp/alignment/software/ Contact: katoh@ifrec.osaka-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153688

  19. Homonuclear decoupling for enhancing resolution and sensitivity in NOE and RDC measurements of peptides and proteins.

    PubMed

    Ying, Jinfa; Roche, Julien; Bax, Ad

    2014-04-01

    Application of band-selective homonuclear (BASH) (1)H decoupling pulses during acquisition of the (1)H free induction decay is shown to be an efficient procedure for removal of scalar and residual dipolar couplings between amide and aliphatic protons. BASH decoupling can be applied in both dimensions of a homonuclear 2D NMR experiment and is particularly useful for enhancing spectral resolution in the H(N)-H(α) region of NOESY spectra of peptides and proteins, which contain important information on the backbone torsion angles. The method then also prevents generation of zero quantum and Hz(N)-Hz(α) terms, thereby facilitating analysis of intraresidue interactions. Application to the NOESY spectrum of a hexapeptide fragment of the intrinsically disordered protein α-synuclein highlights the considerable diffusion anisotropy present in linear peptides. Removal of residual dipolar couplings between H(N) and aliphatic protons in weakly aligned proteins increases resolution in the (1)H-(15)N HSQC region of the spectrum and allows measurement of RDCs in samples that are relatively strongly aligned. The approach is demonstrated for measurement of RDCs in protonated (15)N/(13)C-enriched ubiquitin, aligned in Pf1, yielding improved fitting to the ubiquitin structure. PMID:24360766

  20. Homonuclear decoupling for enhancing resolution and sensitivity in NOE and RDC measurements of peptides and proteins

    NASA Astrophysics Data System (ADS)

    Ying, Jinfa; Roche, Julien; Bax, Ad

    2014-04-01

    Application of band-selective homonuclear (BASH) 1H decoupling pulses during acquisition of the 1H free induction decay is shown to be an efficient procedure for removal of scalar and residual dipolar couplings between amide and aliphatic protons. BASH decoupling can be applied in both dimensions of a homonuclear 2D NMR experiment and is particularly useful for enhancing spectral resolution in the HN-Hα region of NOESY spectra of peptides and proteins, which contain important information on the backbone torsion angles. The method then also prevents generation of zero quantum and HzN-Hzα terms, thereby facilitating analysis of intraresidue interactions. Application to the NOESY spectrum of a hexapeptide fragment of the intrinsically disordered protein α-synuclein highlights the considerable diffusion anisotropy present in linear peptides. Removal of residual dipolar couplings between HN and aliphatic protons in weakly aligned proteins increases resolution in the 1H-15N HSQC region of the spectrum and allows measurement of RDCs in samples that are relatively strongly aligned. The approach is demonstrated for measurement of RDCs in protonated 15N/13C-enriched ubiquitin, aligned in Pf1, yielding improved fitting to the ubiquitin structure.

  1. Natural and synthetic peptides with antifungal activity.

    PubMed

    Ciociola, Tecla; Giovati, Laura; Conti, Stefania; Magliani, Walter; Santinoli, Claudia; Polonelli, Luciano

    2016-08-01

    In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections. PMID:27502155

  2. FMIT alignment cart

    SciTech Connect

    Potter, R.C.; Dauelsberg, L.B.; Clark, D.C.; Grieggs, R.J.

    1981-01-01

    The Fusion Materials Irradiation Test (FMIT) Facility alignment cart must perform several functions. It must serve as a fixture to receive the drift-tube girder assembly when it is removed from the linac tank. It must transport the girder assembly from the linac vault to the area where alignment or disassembly is to take place. It must serve as a disassembly fixture to hold the girder while individual drift tubes are removed for repair. It must align the drift tube bores in a straight line parallel to the girder, using an optical system. These functions must be performed without violating any clearances found within the building. The bore tubes of the drift tubes will be irradiated, and shielding will be included in the system for easier maintenance.

  3. Barrel alignment fixture

    NASA Astrophysics Data System (ADS)

    Sheeley, J. D.

    1981-04-01

    Fabrication of slapper type detonator cables requires bonding of a thin barrel over a bridge. Location of the barrel hole with respect to the bridge is critical: the barrel hole must be centered over the bridge uniform spacing on each side. An alignment fixture which permits rapid adjustment of the barrel position with respect to the bridge is described. The barrel is manipulated by pincer-type fingers which are mounted on a small x-y table equipped with micrometer adjustments. Barrel positioning, performed under a binocular microscopy, is rapid and accurate. After alignment, the microscope is moved out of position and an infrared (IR) heat source is aimed at the barrel. A 5-second pulse of infrared heat flows the adhesive under the barrel and bonds it to the cable. Sapphire and Fotoform glass barrels were bonded successfully with the alignment fixture.

  4. Improved docking alignment system

    NASA Technical Reports Server (NTRS)

    Monford, Leo G. (Inventor)

    1988-01-01

    Improved techniques are provided for the alignment of two objects. The present invention is particularly suited for 3-D translation and 3-D rotational alignment of objects in outer space. A camera is affixed to one object, such as a remote manipulator arm of the spacecraft, while the planar reflective surface is affixed to the other object, such as a grapple fixture. A monitor displays in real-time images from the camera such that the monitor displays both the reflected image of the camera and visible marking on the planar reflective surface when the objects are in proper alignment. The monitor may thus be viewed by the operator and the arm manipulated so that the reflective surface is perpendicular to the optical axis of the camera, the roll of the reflective surface is at a selected angle with respect to the camera, and the camera is spaced a pre-selected distance from the reflective surface.

  5. Optics Alignment Panel

    NASA Technical Reports Server (NTRS)

    Schroeder, Daniel J.

    1992-01-01

    The Optics Alignment Panel (OAP) was commissioned by the HST Science Working Group to determine the optimum alignment of the OTA optics. The goal was to find the position of the secondary mirror (SM) for which there is no coma or astigmatism in the camera images due to misaligned optics, either tilt or decenter. The despace position was reviewed of the SM and the optimum focus was sought. The results of these efforts are as follows: (1) the best estimate of the aligned position of the SM in the notation of HDOS is (DZ,DY,TZ,TY) = (+248 microns, +8 microns, +53 arcsec, -79 arcsec), and (2) the best focus, defined to be that despace which maximizes the fractional energy at 486 nm in a 0.1 arcsec radius of a stellar image, is 12.2 mm beyond paraxial focus. The data leading to these conclusions, and the estimated uncertainties in the final results, are presented.

  6. Peptide arrays for screening cancer specific peptides.

    PubMed

    Ahmed, Sahar; Mathews, Anu Stella; Byeon, Nara; Lavasanifar, Afsaneh; Kaur, Kamaljit

    2010-09-15

    In this paper, we describe a novel method to screen peptides for specific recognition by cancer cells. Seventy peptides were synthesized on a cellulose membrane in an array format, and a direct method to study the peptide-whole cell interaction was developed. The relative binding affinity of the cells for different peptides with respect to a lead 12-mer p160 peptide, identified by phage display, was evaluated using the CyQUANT fluorescence of the bound cells. Screening allowed identification of at least five new peptides that displayed higher affinity (up to 3-fold) for MDA-MB-435 and MCF-7 human cancer cells compared to the p160 peptide. These peptides showed very little binding to the control (noncancerous) human umbilical vein endothelial cells (HUVECs). Three of these peptides were synthesized separately and labeled with fluorescein isothiocyanate (FITC) to study their uptake and interaction with the cancer and control cells using confocal laser scanning microscopy and flow cytometry. The results confirmed the high and specific affinity of an 11-mer peptide 11 (RGDPAYQGRFL) and a 10-mer peptide 18 (WXEAAYQRFL) for the cancer cells versus HUVECs. Peptide 11 binds different receptors on target cancer cells as its sequence contains multiple recognition motifs, whereas peptide 18 binds mainly to the putative p160 receptor. The peptide array-whole cell binding assay reported here is a complementary method to phage display for further screening and optimization of cancer targeting peptides for cancer therapy and diagnosis. PMID:20799711

  7. Orientation and Alignment Echoes

    NASA Astrophysics Data System (ADS)

    Karras, G.; Hertz, E.; Billard, F.; Lavorel, B.; Hartmann, J.-M.; Faucher, O.; Gershnabel, Erez; Prior, Yehiam; Averbukh, Ilya Sh.

    2015-04-01

    We present one of the simplest classical systems featuring the echo phenomenon—a collection of randomly oriented free rotors with dispersed rotational velocities. Following excitation by a pair of time-delayed impulsive kicks, the mean orientation or alignment of the ensemble exhibits multiple echoes and fractional echoes. We elucidate the mechanism of the echo formation by the kick-induced filamentation of phase space, and provide the first experimental demonstration of classical alignment echoes in a thermal gas of CO2 molecules excited by a pair of femtosecond laser pulses.

  8. Segment alignment control system

    NASA Technical Reports Server (NTRS)

    Aubrun, JEAN-N.; Lorell, Ken R.

    1988-01-01

    The segmented primary mirror for the LDR will require a special segment alignment control system to precisely control the orientation of each of the segments so that the resulting composite reflector behaves like a monolith. The W.M. Keck Ten Meter Telescope will utilize a primary mirror made up of 36 actively controlled segments. Thus the primary mirror and its segment alignment control system are directly analogous to the LDR. The problems of controlling the segments in the face of disturbances and control/structures interaction, as analyzed for the TMT, are virtually identical to those for the LDR. The two systems are briefly compared.

  9. Aligning Biomolecular Networks Using Modular Graph Kernels

    NASA Astrophysics Data System (ADS)

    Towfic, Fadi; Greenlee, M. Heather West; Honavar, Vasant

    Comparative analysis of biomolecular networks constructed using measurements from different conditions, tissues, and organisms offer a powerful approach to understanding the structure, function, dynamics, and evolution of complex biological systems. We explore a class of algorithms for aligning large biomolecular networks by breaking down such networks into subgraphs and computing the alignment of the networks based on the alignment of their subgraphs. The resulting subnetworks are compared using graph kernels as scoring functions. We provide implementations of the resulting algorithms as part of BiNA, an open source biomolecular network alignment toolkit. Our experiments using Drosophila melanogaster, Saccharomyces cerevisiae, Mus musculus and Homo sapiens protein-protein interaction networks extracted from the DIP repository of protein-protein interaction data demonstrate that the performance of the proposed algorithms (as measured by % GO term enrichment of subnetworks identified by the alignment) is competitive with some of the state-of-the-art algorithms for pair-wise alignment of large protein-protein interaction networks. Our results also show that the inter-species similarity scores computed based on graph kernels can be used to cluster the species into a species tree that is consistent with the known phylogenetic relationships among the species.

  10. Oriented Circular Dichroism: A Method to Characterize Membrane-Active Peptides in Oriented Lipid Bilayers.

    PubMed

    Bürck, Jochen; Wadhwani, Parvesh; Fanghänel, Susanne; Ulrich, Anne S

    2016-02-16

    The structures of membrane-bound polypeptides are intimately related to their functions and may change dramatically with the lipid environment. Circular dichroism (CD) is a rapid analytical method that requires relatively low amounts of material and no labeling. Conventional CD is routinely used to monitor the secondary structure of peptides and proteins in solution, for example, in the presence of ligands and other binding partners. In the case of membrane-active peptides and transmembrane proteins, these measurements can be applied to, and remain limited to, samples containing detergent micelles or small sonicated lipid vesicles. Such traditional CD analysis reveals only secondary structures. With the help of an oriented circular dichroism (OCD) setup, however, based on the preparation of macroscopically oriented lipid bilayers, it is possible to address the membrane alignment of a peptide in addition to its conformation. This approach has been mostly used for α-helical peptides so far, but other structural elements are conceivable as well. OCD analysis relies on Moffitt's theory, which predicts that the electronic transition dipole moments of the backbone amide bonds in helical polypeptides are polarized either parallel or perpendicular to the helix axis. The interaction of the electric field vector of the circularly polarized light with these transitions results in an OCD spectrum of a membrane-bound α-helical peptide, which exhibits a characteristic line shape and reflects the angle between the helix axis and the bilayer normal. For parallel alignment of a peptide helix with respect to the membrane surface (S-state), the corresponding "fingerprint" CD band around 208 nm will exhibit maximum negative amplitude. If the helix changes its alignment via an obliquely tilted (T-state) to a fully inserted transmembrane orientation (I-state), the ellipticity at 208 nm decreases and the value approaches zero due to the decreased interactions between the field and the

  11. Peptide modulators of alpha-glucosidase

    PubMed Central

    Roskar, Irena; Molek, Peter; Vodnik, Miha; Stempelj, Mateja; Strukelj, Borut; Lunder, Mojca

    2015-01-01

    Aims/Introduction Acute glucose fluctuations during the postprandial period pose great risk for cardiovascular complications and thus represent an important therapeutic approach in type 2 diabetes. In the present study, screening of peptide libraries was used to select peptides with an affinity towards mammalian intestinal alpha-glucosidase as potential leads in antidiabetic agent development. Materials and Methods Three phage-displayed peptide libraries were used in independent selections with different elution strategies to isolate target-binding peptides. Selected peptides displayed on phage were tested to compete for an enzyme-binding site with known competitive inhibitors, acarbose and voglibose. The four best performing peptides were synthesized. Their binding to the mammalian alpha-glucosidase and their effect on enzyme activity were evaluated. Results Two linear and two cyclic heptapeptides with high affinity towards intestinal alpha-glucosidase were selected. Phage-displayed as well as synthetic peptides bind into or to the vicinity of the active site on the enzyme. Both cyclic peptides inhibited enzyme activity, whereas both linear peptides increased enzyme activity. Conclusions Although natural substrates of glycosidase are polysaccharides, in the present study we successfully isolated novel peptide modulators of alpha-glucosidase. Modulatory activity of selected peptides could be further optimized through peptidomimetic design. They represent promising leads for development of efficient alpha-glucosidase inhibitors. PMID:26543535

  12. Vertical Alignment and Collaboration.

    ERIC Educational Resources Information Center

    Bergman, Donna; Calzada, Lucio; LaPointe, Nancy; Lee, Audra; Sullivan, Lynn

    This study investigated whether vertical (grade level sequence) alignment of the curriculum in conjunction with teacher collaboration would enhance student performance on the Texas Assessment of Academic Skills (TAAS) test in south Texas school districts of various sizes. Surveys were mailed to the office of the superintendent of 47 school…

  13. Curriculum Alignment: Establishing Coherence

    ERIC Educational Resources Information Center

    Gagné, Philippe; Dumont, Laurence; Brunet, Sabine; Boucher, Geneviève

    2013-01-01

    In this paper, we present a step-by-step guide to implement a curricular alignment project, directed at professional development and student support, and developed in a higher education French as a second language department. We outline best practices and preliminary results from our experience and provide ways to adapt our experience to other…

  14. Aligning brains and minds

    PubMed Central

    Tong, Frank

    2012-01-01

    In this issue of Neuron, Haxby and colleagues describe a new method for aligning functional brain activity patterns across participants. Their study demonstrates that objects are similarly represented across different brains, allowing for reliable classification of one person’s brain activity based on another’s. PMID:22017984

  15. Aligned-or Not?

    ERIC Educational Resources Information Center

    Roseman, Jo Ellen; Koppal, Mary

    2015-01-01

    When state leaders and national partners in the development of the Next Generation Science Standards met to consider implementation strategies, states and school districts wanted to know which materials were aligned to the new standards. The answer from the developers was short but not sweet: You won't find much now, and it's going to…

  16. Optically Aligned Drill Press

    NASA Technical Reports Server (NTRS)

    Adderholdt, Bruce M.

    1994-01-01

    Precise drill press equipped with rotary-indexing microscope. Microscope and drill exchange places when turret rotated. Microscope axis first aligned over future hole, then rotated out of way so drill axis assumes its precise position. New procedure takes less time to locate drilling positions and produces more accurate results. Apparatus adapted to such other machine tools as milling and measuring machines.

  17. Simultaneous alignment of short reads against multiple genomes

    PubMed Central

    Schneeberger, Korbinian; Hagmann, Jörg; Ossowski, Stephan; Warthmann, Norman; Gesing, Sandra; Kohlbacher, Oliver; Weigel, Detlef

    2009-01-01

    Genome resequencing with short reads generally relies on alignments against a single reference. GenomeMapper supports simultaneous mapping of short reads against multiple genomes by integrating related genomes (e.g., individuals of the same species) into a single graph structure. It constitutes the first approach for handling multiple references and introduces representations for alignments against complex structures. Demonstrated benefits include access to polymorphisms that cannot be identified by alignments against the reference alone. Download GenomeMapper at . PMID:19761611

  18. A peptidomic approach for monitoring and characterising peptide cyanotoxins produced in Italian lakes by matrix-assisted laser desorption/ionisation and quadrupole time-of-flight mass spectrometry.

    PubMed

    Ferranti, Pasquale; Nasi, Antonella; Bruno, Milena; Basile, Adriana; Serpe, Luigi; Gallo, Pasquale

    2011-05-15

    In recent years, the occurrence of cyanobacterial blooms in eutrophic freshwaters has been described all over the world, including most European countries. Blooms of cyanobacteria may produce mixtures of toxic secondary metabolites, called cyanotoxins. Among these, the most studied are microcystins, a group of cyclic heptapeptides, because of their potent hepatotoxicity and activity as tumour promoters. Other peptide cyanotoxins have been described whose structure and toxicity have not been thoroughly studied. Herein we present a peptidomic approach aimed to characterise and quantify the peptide cyanotoxins produced in two Italian lakes, Averno and Albano. The procedure was based on matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry mass spectrometry (MALDI-TOF-MS) analysis for rapid detection and profiling of the peptide mixture complexity, combined with liquid chromatography/electrospray ionisation quadrupole time-of- flight tandem mass spectrometry (LC/ESI-Q-TOF-MS/MS) which provided unambiguous structural identification of the main compounds, as well as accurate quantitative analysis of microcystins. In the case of Lake Averno, a novel variant of microcystin-RR and two novel anabaenopeptin variants (Anabaenopeptins B(1) and Anabaenopeptin F(1)), presenting homoarginine in place of the commonly found arginine, were detected and characterised. In Lake Albano, the peculiar peptide patterns in different years were compared, as an example of the potentiality of the peptidomic approach for fast screening analysis, prior to fine structural analysis and determination of cyanotoxins, which included six novel aeruginosin variants. This approach allows for wide range monitoring of cyanobacteria blooms, and to collect data for evaluating possible health risks to consumers, through the panel of the compounds produced along different years. PMID:21488115

  19. Graph-based molecular alignment (GMA).

    PubMed

    Marialke, J; Körner, R; Tietze, S; Apostolakis, Joannis

    2007-01-01

    We describe a combined 2D/3D approach for the superposition of flexible chemical structures, which is based on recent progress in the efficient identification of common subgraphs and a gradient-based torsion space optimization algorithm. The simplicity of the approach is reflected in its generality and computational efficiency: the suggested approach neither requires precalculated statistics on the conformations of the molecules nor does it make simplifying assumptions on the topology of the molecules being compared. Furthermore, graph-based molecular alignment produces alignments that are consistent with the chemistry of the molecules as well as their general structure, as it depends on both the local connectivities between atoms and the overall topology of the molecules. We validate this approach on benchmark sets taken from the literature and show that it leads to good results compared to computationally and algorithmically more involved methods. The results suggest that, for most practical purposes, graph-based molecular alignment is a viable alternative to molecular field alignment with respect to structural superposition and leads to structures of comparable quality in a fraction of the time. PMID:17381175

  20. C-Peptide Test

    MedlinePlus

    ... C-peptide is a useful marker of insulin production. The following are some purposes of C-peptide ... it nearly impossible to directly evaluate endogenous insulin production. In these cases, C-peptide measurement is a ...

  1. Structural and Functional Diversity of Peptide Toxins from Tarantula Haplopelma hainanum (Ornithoctonus hainana) Venom Revealed by Transcriptomic, Peptidomic, and Patch Clamp Approaches.

    PubMed

    Zhang, Yi-Ya; Huang, Yong; He, Quan-Ze; Luo, Ji; Zhu, Li; Lu, Shan-Shan; Liu, Jin-Yan; Huang, Peng-Fei; Zeng, Xiong-Zhi; Liang, Song-Ping

    2015-05-29

    Spider venom is a complex mixture of bioactive peptides to subdue their prey. Early estimates suggested that over 400 venom peptides are produced per species. In order to investigate the mechanisms responsible for this impressive diversity, transcriptomics based on second generation high throughput sequencing was combined with peptidomic assays to characterize the venom of the tarantula Haplopelma hainanum. The genes expressed in the venom glands were identified, and the bioactivity of their protein products was analyzed using the patch clamp technique. A total of 1,136 potential toxin precursors were identified that clustered into 90 toxin groups, of which 72 were novel. The toxin peptides clustered into 20 cysteine scaffolds that included between 4 and 12 cysteines, and 14 of these groups were newly identified in this spider. Highly abundant toxin peptide transcripts were present and resulted from hypermutation and/or fragment insertion/deletion. In combination with variable post-translational modifications, this genetic variability explained how a limited set of genes can generate hundreds of toxin peptides in venom glands. Furthermore, the intraspecies venom variability illustrated the dynamic nature of spider venom and revealed how complex components work together to generate diverse bioactivities that facilitate adaptation to changing environments, types of prey, and milking regimes in captivity. PMID:25770214

  2. BuildSummary: using a group-based approach to improve the sensitivity of peptide/protein identification in shotgun proteomics.

    PubMed

    Sheng, Quanhu; Dai, Jie; Wu, Yibo; Tang, Haixu; Zeng, Rong

    2012-03-01

    The target-decoy database search strategy is widely accepted as a standard method for estimating the false discovery rate (FDR) of peptide identification, based on which peptide-spectrum matches (PSMs) from the target database are filtered. To improve the sensitivity of protein identification given a fixed accuracy (frequently defined by a protein FDR threshold), a postprocessing procedure is often used that integrates results from different peptide search engines that had assayed the same data set. In this work, we show that PSMs that are grouped by the precursor charge, the number of missed internal cleavage sites, the modification state, and the numbers of protease termini and that the proteins grouped by their unique peptide count should be filtered separately according to the given FDR. We also develop an iterative procedure to filter the PSMs and proteins simultaneously, according to the given FDR. Finally, we present a general framework to integrate the results from different peptide search engines using the same FDR threshold. Our method was tested with several shotgun proteomics data sets that were acquired by multiple LC/MS instruments from two different biological samples. The results showed a satisfactory performance. We implemented the method in a user-friendly software package called BuildSummary, which can be downloaded for free from http://www.proteomics.ac.cn/software/proteomicstools/index.htm as part of the software suite ProteomicsTools. PMID:22217156

  3. Structural and Functional Diversity of Peptide Toxins from Tarantula Haplopelma hainanum (Ornithoctonus hainana) Venom Revealed by Transcriptomic, Peptidomic, and Patch Clamp Approaches*

    PubMed Central

    Zhang, Yi-Ya; Huang, Yong; He, Quan-Ze; Luo, Ji; Zhu, Li; Lu, Shan-Shan; Liu, Jin-Yan; Huang, Peng-Fei; Zeng, Xiong-Zhi; Liang, Song-Ping

    2015-01-01

    Spider venom is a complex mixture of bioactive peptides to subdue their prey. Early estimates suggested that over 400 venom peptides are produced per species. In order to investigate the mechanisms responsible for this impressive diversity, transcriptomics based on second generation high throughput sequencing was combined with peptidomic assays to characterize the venom of the tarantula Haplopelma hainanum. The genes expressed in the venom glands were identified, and the bioactivity of their protein products was analyzed using the patch clamp technique. A total of 1,136 potential toxin precursors were identified that clustered into 90 toxin groups, of which 72 were novel. The toxin peptides clustered into 20 cysteine scaffolds that included between 4 and 12 cysteines, and 14 of these groups were newly identified in this spider. Highly abundant toxin peptide transcripts were present and resulted from hypermutation and/or fragment insertion/deletion. In combination with variable post-translational modifications, this genetic variability explained how a limited set of genes can generate hundreds of toxin peptides in venom glands. Furthermore, the intraspecies venom variability illustrated the dynamic nature of spider venom and revealed how complex components work together to generate diverse bioactivities that facilitate adaptation to changing environments, types of prey, and milking regimes in captivity. PMID:25770214

  4. Alignment of multiple proteins with an ensemble of Hidden Markov Models

    PubMed Central

    Song, Yinglei; Qu, Junfeng; Hura, Gurdeep S.

    2011-01-01

    In this paper, we developed a new method that progressively construct and update a set of alignments by adding sequences in certain order to each of the existing alignments. Each of the existing alignments is modelled with a profile Hidden Markov Model (HMM) and an added sequence is aligned to each of these profile HMMs. We introduced an integer parameter for the number of profile HMMs. The profile HMMs are then updated based on the alignments with leading scores. Our experiments on BaliBASE showed that our approach could efficiently explore the alignment space and significantly improve the alignment accuracy. PMID:20376922

  5. An in-situ hard mask block copolymer approach for the fabrication of ordered, large scale, horizontally aligned, Si nanowire arrays on Si substrate

    NASA Astrophysics Data System (ADS)

    Ghoshal, Tandra; Senthamaraikannan, Ramsankar; Shaw, Matthew T.; Holmes, Justin D.; Morris, Michael A.

    2014-03-01

    We report a simple technique to fabricate horizontal, uniform Si nanowire arrays with controlled orientation and density at spatially well defined locations on substrate based on insitu hard mask pattern formation approach by microphase separated polystyrene-b-poly(ethylene oxide) (PS-b-PEO) block copolymer (BCP) thin films. The methodology may be applicable to large scale production. Ordered microphase separated patterns of the BCP were defined by solvent annealing and the orientation was controlled by film thickness and annealing time. Films of PEO cylinders with parallel orientation (to the surface plane) were applied to create `frames' for the generation of inorganic oxide nanowire arrays. These PEO cylinders were subject to selective metal ion inclusion and subsequent processing was used to create iron oxide nanowire arrays. The oxide nanowires were isolated, of uniform diameter and their structure a mimic of the original BCP nanopatterns. The phase purity, crystallinity and thermal stability of the nanowires coupled to the ease of large scale production may make them useful in technological applications. Here, we demonstrate that the oxide nanowire arrays could be used as a resist mask to fabricate densely packed, identical ordered, good fidelity silicon nanowire arrays on the substrate. The techniques may have significant application in the manufacture of transistor circuitry.

  6. MUSE alignment onto VLT

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Renault, Edgard; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dupuy, Christophe; Jarno, Aurélien; Lizon, Jean-Louis; Migniau, Jean-Emmanuel; Nicklas, Harald; Piqueras, Laure

    2014-07-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph developed for the European Southern Observatory (ESO). It combines a 1' x 1' field of view sampled at 0.2 arcsec for its Wide Field Mode (WFM) and a 7.5"x7.5" field of view for its Narrow Field Mode (NFM). Both modes will operate with the improved spatial resolution provided by GALACSI (Ground Atmospheric Layer Adaptive Optics for Spectroscopic Imaging), that will use the VLT deformable secondary mirror and 4 Laser Guide Stars (LGS) foreseen in 2015. MUSE operates in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where that was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transported, fully aligned and without any optomechanical dismounting, onto VLT telescope where the first light was overcame the 7th of February, 2014. This paper describes the alignment procedure of the whole MUSE instrument with respect to the Very Large Telescope (VLT). It describes how 6 tons could be move with accuracy better than 0.025mm and less than 0.25 arcmin in order to reach alignment requirements. The success

  7. Enhancement of initial equivalency for protein structure alignment based on encoded local structures.

    PubMed

    Hung, Kenneth; Wang, Jui-Chih; Chen, Cheng-Wei; Chuang, Cheng-Long; Tsai, Kun-Nan; Chen, Chung-Ming

    2012-11-01

    Most alignment algorithms find an initial equivalent residue pair followed by an iterative optimization process to explore better near-optimal alignments in the surrounding solution space of the initial alignment. It plays a decisive role in determining the alignment quality since a poor initial alignment may make the final alignment trapped in an undesirable local optimum even with an iterative optimization. We proposed a vector-based alignment algorithm with a new initial alignment approach accounting for local structure features called MIRAGE-align. The new idea is to enhance the quality of the initial alignment based on encoded local structural alphabets to identify the protein structure pair whose sequence identity falls in or below twilight zone. The statistical analysis of alignment quality based on Match Index (MI) and computation time demonstrated that MIRAGE-align algorithm outperformed four previously published algorithms, i.e., the residue-based algorithm (CE), the vector-based algorithm (SSM), TM-align, and Fr-TM-align. MIRAGE-align yields a better estimate of initial solution to enhance the quality of initial alignment and enable the employment of a non-iterative optimization process to achieve a better alignment. PMID:22717522

  8. Large current difference in Au-coated vertical silicon nanowire electrode array with functionalization of peptides

    PubMed Central

    2013-01-01

    Au-coated vertical silicon nanowire electrode array (VSNEA) was fabricated using a combination of bottom-up and top-down approaches by chemical vapor deposition and complementary metal-oxide-semiconductor process for biomolecule sensing. To verify the feasibility for the detection of biomolecules, Au-coated VSNEA was functionalized using peptides having a fluorescent probe. Cyclic voltammograms of the peptide-functionalized Au-coated VSNEA show a steady-state electrochemical current behavior. Because of the critically small dimension and vertically aligned nature of VSNEA, the current density of Au-coated VSNEA was dramatically higher than that of Au film electrodes. Au-coated VSNEA further showed a large current difference with and without peptides that was nine times more than that of Au film electrodes. These results indicate that Au-coated VSENA is highly effective device to detect peptides compared to conventional thin-film electrodes. Au-coated VSNEA can also be used as a divergent biosensor platform in many applications. PMID:24279451

  9. Large current difference in Au-coated vertical silicon nanowire electrode array with functionalization of peptides

    NASA Astrophysics Data System (ADS)

    Kim, Ilsoo; Kim, So-Eun; Han, Sanghun; Kim, Hyungsuk; Lee, Jaehyung; Jeong, Du-Won; Kim, Ju-Jin; Lim, Yong-beom; Choi, Heon-Jin

    2013-11-01

    Au-coated vertical silicon nanowire electrode array (VSNEA) was fabricated using a combination of bottom-up and top-down approaches by chemical vapor deposition and complementary metal-oxide-semiconductor process for biomolecule sensing. To verify the feasibility for the detection of biomolecules, Au-coated VSNEA was functionalized using peptides having a fluorescent probe. Cyclic voltammograms of the peptide-functionalized Au-coated VSNEA show a steady-state electrochemical current behavior. Because of the critically small dimension and vertically aligned nature of VSNEA, the current density of Au-coated VSNEA was dramatically higher than that of Au film electrodes. Au-coated VSNEA further showed a large current difference with and without peptides that was nine times more than that of Au film electrodes. These results indicate that Au-coated VSENA is highly effective device to detect peptides compared to conventional thin-film electrodes. Au-coated VSNEA can also be used as a divergent biosensor platform in many applications.

  10. Liquid Crystal Based Sensor to Detect Beta-Sheet Formation of Peptides

    NASA Astrophysics Data System (ADS)

    Sadati, Monirosadat; Izmitli Apik, Aslin; Abbott, Nicholas L.; de Pablo, Juan J.

    2015-03-01

    Protein aggregation into amyloid fibrils is involved in the progression of Alzheimer's, typeII diabetes and Huntington's diseases. Although larger aggregates remain important for clinical determination, small oligomers are of great interest due to their potentially toxic nature. It is therefore crucial to develop methods that probe the aggregation process at early stages and in the vicinity of biological membranes. Here, we present a simple method that relies on liquid crystalline materials and a Langmuir monolayer at the aqueous-liquid crystal (LC) interface. The approach is based on the LC's specific response to β-sheet structures, which abound in amyloid fibrils. When the system is observed under polarized light, the fibrils formed by amyloidogenic peptides give rise to the formation of elongated and branched structures in the LCs. Moreover, the PolScope measurements prove that the LCs are predominantly aligned along the fibrils when exposed to a β-sheet forming peptide. In contrast, non-amyloidogenic peptides form ellipsoidal domains of irregularly tilted LCs. This method is capable of reporting aggregation at lipid-aqueous interfaces at nanomolar concentrations of the peptide, and much earlier than commonly used fluorescence-based techniques. We thank Prof. Oleg D. Levrentovich and Young-Ki Kim from the Liquid Crystal Institute of Kent State University for the use of their PolScope instrument. This work was partially supported by the Swiss National Science Foundation (P300P2_151342).

  11. α-Azido Acids in Solid-Phase Peptide Synthesis: Compatibility with Fmoc Chemistry and an Alternative Approach to the Solid Phase Synthesis of Daptomycin Analogs.

    PubMed

    Lohani, Chuda Raj; Rasera, Benjamin; Scott, Bradley; Palmer, Michael; Taylor, Scott D

    2016-03-18

    α-Azido acids have been used in solid phase peptide synthesis (SPPS) for almost 20 years. Here we report that peptides bearing an N-terminal α-azidoaspartate residue undergo elimination of an azide ion when treated with reagents that are commonly used for removing the Fmoc group during SPPS. We also report an alternative solid-phase route to the synthesis of an analog of daptomycin that uses a reduced number of α-azido amino acids and without elimination of an azide ion. PMID:26938305

  12. Inflation by alignment

    SciTech Connect

    Burgess, C.P.; Roest, Diederik

    2015-06-08

    Pseudo-Goldstone bosons (pGBs) can provide technically natural inflatons, as has been comparatively well-explored in the simplest axion examples. Although inflationary success requires trans-Planckian decay constants, f≳M{sub p}, several mechanisms have been proposed to obtain this, relying on (mis-)alignments between potential and kinetic energies in multiple-field models. We extend these mechanisms to a broader class of inflationary models, including in particular the exponential potentials that arise for pGB potentials based on noncompact groups (and so which might apply to moduli in an extra-dimensional setting). The resulting potentials provide natural large-field inflationary models and can predict a larger primordial tensor signal than is true for simpler single-field versions of these models. In so doing we provide a unified treatment of several alignment mechanisms, showing how each emerges as a limit of the more general setup.

  13. Alignments of RNA structures.

    PubMed

    Blin, Guillaume; Denise, Alain; Dulucq, Serge; Herrbach, Claire; Touzet, Hélène

    2010-01-01

    We describe a theoretical unifying framework to express the comparison of RNA structures, which we call alignment hierarchy. This framework relies on the definition of common supersequences for arc-annotated sequences and encompasses the main existing models for RNA structure comparison based on trees and arc-annotated sequences with a variety of edit operations. It also gives rise to edit models that have not been studied yet. We provide a thorough analysis of the alignment hierarchy, including a new polynomial-time algorithm and an NP-completeness proof. The polynomial-time algorithm involves biologically relevant edit operations such as pairing or unpairing nucleotides. It has been implemented in a software, called gardenia, which is available at the Web server http://bioinfo.lifl.fr/RNA/gardenia. PMID:20431150

  14. On the alignment space.

    PubMed

    Shen, Shi-Yi; Wang, Kui; Hu, Gang; Chen, Lu-Sheng; Zhang, Hua; Xia, Shu-Tao

    2005-01-01

    Sequences with generalized errors which are called mutations in bioinformatics and generalized error-correcting codes are studied in this paper. In the areas of bioinformatics, computer science and information theory, sequences with generalized errors are discussed respectively for different aims. Firstly, we give the definitions of alignment distance and Levenshtein distance by expansion sequences and discuss their properties and relations. Then the modular structure theory is introduced for strictly describe the expansion sequences. We show that the expansion modular structures of sequences form a Boolean algebra. As applications of the modular structure theory, we give a new and more strict proof of triangle inequality for alignment distance. At last, the definition and construction of generalized error-correcting codes are studied, and some optimal codes with small length are listed. PMID:17282158

  15. Alignment reference device

    DOEpatents

    Patton, Gail Y.; Torgerson, Darrel D.

    1987-01-01

    An alignment reference device provides a collimated laser beam that minimizes angular deviations therein. A laser beam source outputs the beam into a single mode optical fiber. The output end of the optical fiber acts as a source of radiant energy and is positioned at the focal point of a lens system where the focal point is positioned within the lens. The output beam reflects off a mirror back to the lens that produces a collimated beam.

  16. Nuclear reactor alignment plate configuration

    DOEpatents

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  17. Photo-aligned ferroelectric liquid crystals in microchannels.

    PubMed

    Budaszewski, Daniel; Srivastava, Abhishek K; Tam, Alwin M W; Wolinski, Tomasz R; Chigrinov, Vladimir G; Kwok, Hoi-Sing

    2014-08-15

    In this Letter we disclose a method to realize a good alignment of ferroelectric liquid crystals (FLCs) in microchannels, based on photo-alignment. The sulfonic azo dye used in our research offers variable anchoring energy depending on the irradiation energy and thus provides good control on the FLC alignment in microchannels. The good FLC alignment has been observed only when anchoring energy normalized to the capillary diameter is less than the elastic energy of the FLC helix. The same approach can also be used for the different microstructures viz. photonic crystal fibers, microwaveguides, etc. which gives an opportunity for designing a photonic devices based on FLC. PMID:25121847

  18. Dynamic Alignment at SLS

    SciTech Connect

    Ruland, Robert E.

    2003-04-23

    The relative alignment of components in the storage ring of the Swiss Light Source (SLS) is guaranteed by mechanical means. The magnets are rigidly fixed to 48 girders by means of alignment rails with tolerances of less than {+-}15 {micro}m. The bending magnets, supported by 3 point ball bearings, overlap adjacent girders and thus establish virtual train links between the girders, located near the bending magnet centres. Keeping the distortion of the storage ring geometry within a tolerance of {+-}100 {micro}m in order to guarantee sufficient dynamic apertures, requires continuous monitoring and correction of the girder locations. Two monitoring systems for the horizontal and the vertical direction will be installed to measure displacements of the train link between girders, which are due to ground settings and temperature effects: The hydrostatic levelling system (HLS) gives an absolute vertical reference, while the horizontal positioning system (HPS), which employs low cost linear encoders with sub-micron resolution, measures relative horizontal movements. The girder mover system based on five DC motors per girder allows a dynamic realignment of the storage ring within a working window of more than {+-}1 mm for girder translations and {+-}1 mrad for rotations. We will describe both monitoring systems (HLS and HPS) as well as the applied correction scheme based on the girder movers. We also show simulations indicating that beam based girder alignment takes care of most of the static closed orbit correction.

  19. Docking alignment system

    NASA Technical Reports Server (NTRS)

    Monford, Leo G. (Inventor)

    1990-01-01

    Improved techniques are provided for alignment of two objects. The present invention is particularly suited for three-dimensional translation and three-dimensional rotational alignment of objects in outer space. A camera 18 is fixedly mounted to one object, such as a remote manipulator arm 10 of the spacecraft, while the planar reflective surface 30 is fixed to the other object, such as a grapple fixture 20. A monitor 50 displays in real-time images from the camera, such that the monitor displays both the reflected image of the camera and visible markings on the planar reflective surface when the objects are in proper alignment. The monitor may thus be viewed by the operator and the arm 10 manipulated so that the reflective surface is perpendicular to the optical axis of the camera, the roll of the reflective surface is at a selected angle with respect to the camera, and the camera is spaced a pre-selected distance from the reflective surface.

  20. Predicting protein-peptide interactions from scratch

    NASA Astrophysics Data System (ADS)

    Yan, Chengfei; Xu, Xianjin; Zou, Xiaoqin; Zou lab Team

    Protein-peptide interactions play an important role in many cellular processes. The ability to predict protein-peptide complex structures is valuable for mechanistic investigation and therapeutic development. Due to the high flexibility of peptides and lack of templates for homologous modeling, predicting protein-peptide complex structures is extremely challenging. Recently, we have developed a novel docking framework for protein-peptide structure prediction. Specifically, given the sequence of a peptide and a 3D structure of the protein, initial conformations of the peptide are built through protein threading. Then, the peptide is globally and flexibly docked onto the protein using a novel iterative approach. Finally, the sampled modes are scored and ranked by a statistical potential-based energy scoring function that was derived for protein-peptide interactions from statistical mechanics principles. Our docking methodology has been tested on the Peptidb database and compared with other protein-peptide docking methods. Systematic analysis shows significantly improved results compared to the performances of the existing methods. Our method is computationally efficient and suitable for large-scale applications. Nsf CAREER Award 0953839 (XZ) NIH R01GM109980 (XZ).

  1. A New Analytic Alignment Method for a SINS

    PubMed Central

    Tan, Caiming; Zhu, Xinhua; Su, Yan; Wang, Yu; Wu, Zhiqiang; Gu, Dongbing

    2015-01-01

    Analytic alignment is a type of self-alignment for a Strapdown inertial navigation system (SINS) that is based solely on two non-collinear vectors, which are the gravity and rotational velocity vectors of the Earth at a stationary base on the ground. The attitude of the SINS with respect to the Earth can be obtained directly using the TRIAD algorithm given two vector measurements. For a traditional analytic coarse alignment, all six outputs from the inertial measurement unit (IMU) are used to compute the attitude. In this study, a novel analytic alignment method called selective alignment is presented. This method uses only three outputs of the IMU and a few properties from the remaining outputs such as the sign and the approximate value to calculate the attitude. Simulations and experimental results demonstrate the validity of this method, and the precision of yaw is improved using the selective alignment method compared to the traditional analytic coarse alignment method in the vehicle experiment. The selective alignment principle provides an accurate relationship between the outputs and the attitude of the SINS relative to the Earth for a stationary base, and it is an extension of the TRIAD algorithm. The selective alignment approach has potential uses in applications such as self-alignment, fault detection, and self-calibration. PMID:26556353

  2. Refinement by shifting secondary structure elements improves sequence alignments.

    PubMed

    Tong, Jing; Pei, Jimin; Otwinowski, Zbyszek; Grishin, Nick V

    2015-03-01

    Constructing a model of a query protein based on its alignment to a homolog with experimentally determined spatial structure (the template) is still the most reliable approach to structure prediction. Alignment errors are the main bottleneck for homology modeling when the query is distantly related to the template. Alignment methods often misalign secondary structural elements by a few residues. Therefore, better alignment solutions can be found within a limited set of local shifts of secondary structures. We present a refinement method to improve pairwise sequence alignments by evaluating alignment variants generated by local shifts of template-defined secondary structures. Our method SFESA is based on a novel scoring function that combines the profile-based sequence score and the structure score derived from residue contacts in a template. Such a combined score frequently selects a better alignment variant among a set of candidate alignments generated by local shifts and leads to overall increase in alignment accuracy. Evaluation of several benchmarks shows that our refinement method significantly improves alignments made by automatic methods such as PROMALS, HHpred and CNFpred. The web server is available at http://prodata.swmed.edu/sfesa. PMID:25546158

  3. Refinement by shifting secondary structure elements improves sequence alignments

    PubMed Central

    Tong, Jing; Pei, Jimin; Otwinowski, Zbyszek; Grishin, Nick V.

    2015-01-01

    Constructing a model of a query protein based on its alignment to a homolog with experimentally determined spatial structure (the template) is still the most reliable approach to structure prediction. Alignment errors are the main bottleneck for homology modeling when the query is distantly related to the template. Alignment methods often misalign secondary structural elements by a few residues. Therefore, better alignment solutions can be found within a limited set of local shifts of secondary structures. We present a refinement method to improve pairwise sequence alignments by evaluating alignment variants generated by local shifts of template-defined secondary structures. Our method SFESA is based on a novel scoring function that combines the profile-based sequence score and the structure score derived from residue contacts in a template. Such a combined score frequently selects a better alignment variant among a set of candidate alignments generated by local shifts and leads to overall increase in alignment accuracy. Evaluation of several benchmarks shows that our refinement method significantly improves alignments made by automatic methods such as PROMALS, HHpred and CNFpred. The web server is available at http://prodata.swmed.edu/sfesa. PMID:25546158

  4. A New Analytic Alignment Method for a SINS.

    PubMed

    Tan, Caiming; Zhu, Xinhua; Su, Yan; Wang, Yu; Wu, Zhiqiang; Gu, Dongbing

    2015-01-01

    Analytic alignment is a type of self-alignment for a Strapdown inertial navigation system (SINS) that is based solely on two non-collinear vectors, which are the gravity and rotational velocity vectors of the Earth at a stationary base on the ground. The attitude of the SINS with respect to the Earth can be obtained directly using the TRIAD algorithm given two vector measurements. For a traditional analytic coarse alignment, all six outputs from the inertial measurement unit (IMU) are used to compute the attitude. In this study, a novel analytic alignment method called selective alignment is presented. This method uses only three outputs of the IMU and a few properties from the remaining outputs such as the sign and the approximate value to calculate the attitude. Simulations and experimental results demonstrate the validity of this method, and the precision of yaw is improved using the selective alignment method compared to the traditional analytic coarse alignment method in the vehicle experiment. The selective alignment principle provides an accurate relationship between the outputs and the attitude of the SINS relative to the Earth for a stationary base, and it is an extension of the TRIAD algorithm. The selective alignment approach has potential uses in applications such as self-alignment, fault detection, and self-calibration. PMID:26556353

  5. Polar cap arcs: Sun-aligned or cusp-aligned?

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Paxton, L. J.; Zhang, Qinghe; Xing, Zanyang

    2016-08-01

    Polar cap arcs are often called sun-aligned arcs. Satellite observations reveal that polar cap arcs join together at the cusp and are actually cusp aligned. Strong ionospheric plasma velocity shears, thus field aligned currents, were associated with polar arcs and they were likely caused by Kelvin-Helmholtz waves around the low-latitude magnetopause under a northward IMF Bz. The magnetic field lines around the magnetopause join together in the cusp region so are the field aligned currents and particle precipitation. This explains why polar arcs are cusp aligned.

  6. Alignment and alignment transition of bent core nematics

    NASA Astrophysics Data System (ADS)

    Elamain, Omaima; Hegde, Gurumurthy; Komitov, Lachezar

    2013-07-01

    We report on the alignment of nematics consisting of bimesogen bent core molecules of chlorine substituent of benzene derivative and their binary mixture with rod like nematics. It was found that the alignment layer made from polyimide material, which is usually used for promoting vertical (homeotropic) alignment of rod like nematics, promotes instead a planar alignment of the bent core nematic and its nematic mixtures. At higher concentration of the rod like nematic component in these mixtures, a temperature driven transition from vertical to planar alignment was found near the transition to isotropic phase.

  7. Alignment as a Teacher Variable

    ERIC Educational Resources Information Center

    Porter, Andrew C.; Smithson, John; Blank, Rolf; Zeidner, Timothy

    2007-01-01

    With the exception of the procedures developed by Porter and colleagues (Porter, 2002), other methods of defining and measuring alignment are essentially limited to alignment between tests and standards. Porter's procedures have been generalized to investigating the alignment between content standards, tests, textbooks, and even classroom…

  8. Heat-Treatment-Responsive Proteins in Different Developmental Stages of Tomato Pollen Detected by Targeted Mass Accuracy Precursor Alignment (tMAPA).

    PubMed

    Chaturvedi, Palak; Doerfler, Hannes; Jegadeesan, Sridharan; Ghatak, Arindam; Pressman, Etan; Castillejo, Maria Angeles; Wienkoop, Stefanie; Egelhofer, Volker; Firon, Nurit; Weckwerth, Wolfram

    2015-11-01

    Recently, we have developed a quantitative shotgun proteomics strategy called mass accuracy precursor alignment (MAPA). The MAPA algorithm uses high mass accuracy to bin mass-to-charge (m/z) ratios of precursor ions from LC-MS analyses, determines their intensities, and extracts a quantitative sample versus m/z ratio data alignment matrix from a multitude of samples. Here, we introduce a novel feature of this algorithm that allows the extraction and alignment of proteotypic peptide precursor ions or any other target peptide from complex shotgun proteomics data for accurate quantification of unique proteins. This strategy circumvents the problem of confusing the quantification of proteins due to indistinguishable protein isoforms by a typical shotgun proteomics approach. We applied this strategy to a comparison of control and heat-treated tomato pollen grains at two developmental stages, post-meiotic and mature. Pollen is a temperature-sensitive tissue involved in the reproductive cycle of plants and plays a major role in fruit setting and yield. By LC-MS-based shotgun proteomics, we identified more than 2000 proteins in total for all different tissues. By applying the targeted MAPA data-processing strategy, 51 unique proteins were identified as heat-treatment-responsive protein candidates. The potential function of the identified candidates in a specific developmental stage is discussed. PMID:26419256

  9. Simulation-based Discovery of Cyclic Peptide Nanotubes

    NASA Astrophysics Data System (ADS)

    Ruiz Pestana, Luis A.

    Today, there is a growing need for environmentally friendly synthetic membranes with selective transport capabilities to address some of society's most pressing issues, such as carbon dioxide pollution, or access to clean water. While conventional membranes cannot stand up to the challenge, thin nanocomposite membranes, where vertically aligned subnanometer pores (e.g. nanotubes) are embedded in a thin polymeric film, promise to overcome some of the current limitations, namely, achieving a monodisperse distribution of subnanometer size pores, vertical pore alignment across the membrane thickness, and tunability of the pore surface chemistry. Self-assembled cyclic peptide nanotubes (CPNs), are particularly promising as selective nanopores because the pore size can be controlled at the subnanometer level, exhibit high chemical design flexibility, and display remarkable mechanical stability. In addition, when conjugated with polymer chains, the cyclic peptides can co-assemble in block copolymer domains to form nanoporous thin films. CPNs are thus well positioned to tackle persistent challenges in molecular separation applications. However, our poor understanding of the physics underlying their remarkable properties prevents the rational design and implementation of CPNs in technologically relevant membranes. In this dissertation, we use a simulation-based approach, in particular molecular dynamics (MD) simulations, to investigate the critical knowledge gaps hindering the implementation of CPNs. Computational mechanical tests show that, despite the weak nature of the stabilizing hydrogen bonds and the small cross section, CPNs display a Young's modulus of approximately 20 GPa and a maximum strength of around 1 GPa, placing them among the strongest proteinaceous materials known. Simulations of the self-assembly process reveal that CPNs grow by self-similar coarsening, contrary to other low-dimensional peptide systems, such as amyloids, that are believed to grow through

  10. Mutation in the Pro-Peptide Region of a Cysteine Protease Leads to Altered Activity and Specificity—A Structural and Biochemical Approach

    PubMed Central

    Dutta, Sruti; Choudhury, Debi; Roy, Sumana; Dattagupta, Jiban Kanti; Biswas, Sampa

    2016-01-01

    Papain-like proteases contain an N-terminal pro-peptide in their zymogen form that is important for correct folding and spatio-temporal regulation of the proteolytic activity of these proteases. Catalytic removal of the pro-peptide is required for the protease to become active. In this study, we have generated three different mutants of papain (I86F, I86L and I86A) by replacing the residue I86 in its pro-peptide region, which blocks the specificity determining S2-subsite of the catalytic cleft of the protease in its zymogen form with a view to investigate the effect of mutation on the catalytic activity of the protease. Steady-state enzyme kinetic analyses of the corresponding mutant proteases with specific peptide substrates show significant alteration of substrate specificity—I86F and I86L have 2.7 and 29.1 times higher kcat/Km values compared to the wild-type against substrates having Phe and Leu at P2 position, respectively, while I86A shows lower catalytic activity against majority of the substrates tested. Far-UV CD scan and molecular mass analyses of the mature form of the mutant proteases reveal similar CD spectra and intact masses to that of the wild-type. Crystal structures of zymogens of I86F and I86L mutants suggest that subtle reorganization of active site residues, including water, upon binding of the pro-peptide may allow the enzyme to achieve discriminatory substrate selectivity and catalytic efficiency. However, accurate and reliable predictions on alteration of substrate specificity require atomic resolution structure of the catalytic domain after zymogen activation, which remains a challenging task. In this study we demonstrate that through single amino acid substitution in pro-peptide, it is possible to modify the substrate specificity of papain and hence the pro-peptide of a protease can also be a useful target for altering its catalytic activity/specificity. PMID:27352302

  11. The cisproline(i - 1)-aromatic(i) interaction: folding of the Ala-cisPro-Tyr peptide characterized by NMR and theoretical approaches.

    PubMed

    Nardi, F; Kemmink, J; Sattler, M; Wade, R C

    2000-05-01

    Cisproline(i - 1)-aromatic(i) interactions have been detected in several short peptides in aqueous solution by analysis of anomalous chemical shifts measured by 1H-NMR spectroscopy. This formation of local structure is of importance for protein folding and binding properties. To obtain an atomic-detail characterisation of the cisproline(i - 1)-aromatic(i) interaction in terms of structure, energetics and dynamics, we studied the minimal peptide unit, blocked Ala-cisPro-Tyr, using computational and experimental techniques. Structural database analyses and a systematic search revealed two groups of conformations displaying a cisproline(i - 1)-aromatic(i) interaction. These conformations were taken as seeds for molecular dynamics simulations in explicit solvent at 278 K. During a total of 33.6 ns of simulation, all the 'folded' conformations and some 'unfolded' states were sampled. 1H- and 13C-chemical shifts and 3J-coupling constants were measured for the Ala-Pro-Tyr peptide. Excellent agreement was found between all the measured and computed NMR properties, showing the good quality of the force field. We find that under the experimental and simulation conditions, the Ala-cisPro-Tyr peptide is folded 90% of the time and displays two types of folded conformation which we denote 'a' and 'b'. The type a conformations are twice as populated as the type b conformations. The former have the tyrosine ring interacting with the alanine alpha proton and are enthalpically stabilised. The latter have the aromatic ring interacting with the proline side chain and are entropically stabilised. The combined and complementary use of computational and experimental techniques permitted derivation of a detailed scenario of the 'folding' of this peptide. PMID:10909867

  12. Implied alignment: a synapomorphy-based multiple-sequence alignment method and its use in cladogram search

    NASA Technical Reports Server (NTRS)

    Wheeler, Ward C.

    2003-01-01

    A method to align sequence data based on parsimonious synapomorphy schemes generated by direct optimization (DO; earlier termed optimization alignment) is proposed. DO directly diagnoses sequence data on cladograms without an intervening multiple-alignment step, thereby creating topology-specific, dynamic homology statements. Hence, no multiple-alignment is required to generate cladograms. Unlike general and globally optimal multiple-alignment procedures, the method described here, implied alignment (IA), takes these dynamic homologies and traces them back through a single cladogram, linking the unaligned sequence positions in the terminal taxa via DO transformation series. These "lines of correspondence" link ancestor-descendent states and, when displayed as linearly arrayed columns without hypothetical ancestors, are largely indistinguishable from standard multiple alignment. Since this method is based on synapomorphy, the treatment of certain classes of insertion-deletion (indel) events may be different from that of other alignment procedures. As with all alignment methods, results are dependent on parameter assumptions such as indel cost and transversion:transition ratios. Such an IA could be used as a basis for phylogenetic search, but this would be questionable since the homologies derived from the implied alignment depend on its natal cladogram and any variance, between DO and IA + Search, due to heuristic approach. The utility of this procedure in heuristic cladogram searches using DO and the improvement of heuristic cladogram cost calculations are discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.

  13. Implied alignment: a synapomorphy-based multiple-sequence alignment method and its use in cladogram search.

    PubMed

    Wheeler, Ward C

    2003-06-01

    A method to align sequence data based on parsimonious synapomorphy schemes generated by direct optimization (DO; earlier termed optimization alignment) is proposed. DO directly diagnoses sequence data on cladograms without an intervening multiple-alignment step, thereby creating topology-specific, dynamic homology statements. Hence, no multiple-alignment is required to generate cladograms. Unlike general and globally optimal multiple-alignment procedures, the method described here, implied alignment (IA), takes these dynamic homologies and traces them back through a single cladogram, linking the unaligned sequence positions in the terminal taxa via DO transformation series. These "lines of correspondence" link ancestor-descendent states and, when displayed as linearly arrayed columns without hypothetical ancestors, are largely indistinguishable from standard multiple alignment. Since this method is based on synapomorphy, the treatment of certain classes of insertion-deletion (indel) events may be different from that of other alignment procedures. As with all alignment methods, results are dependent on parameter assumptions such as indel cost and transversion:transition ratios. Such an IA could be used as a basis for phylogenetic search, but this would be questionable since the homologies derived from the implied alignment depend on its natal cladogram and any variance, between DO and IA + Search, due to heuristic approach. The utility of this procedure in heuristic cladogram searches using DO and the improvement of heuristic cladogram cost calculations are discussed. PMID:12901383

  14. Solar Alignments - Identification and Analysis

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio

    The sun was such an important divinity in antiquity, and even today, that solar alignments should be expected within a large variety of places and cultures. These are probably the most conspicuous kind of astronomical alignments a field researcher can deal with. The need for a correct identification is thus evident. The different kind of solar phenomena susceptible of being determined by astronomical alignments will be scrutinized, following by the way in which such alignments can materialize in space. It will be shown that analyzing solar alignments is not always an easy task.

  15. Sentence alignment using feed forward neural network.

    PubMed

    Fattah, Mohamed Abdel; Ren, Fuji; Kuroiwa, Shingo

    2006-12-01

    Parallel corpora have become an essential resource for work in multi lingual natural language processing. However, sentence aligned parallel corpora are more efficient than non-aligned parallel corpora for cross language information retrieval and machine translation applications. In this paper, we present a new approach to align sentences in bilingual parallel corpora based on feed forward neural network classifier. A feature parameter vector is extracted from the text pair under consideration. This vector contains text features such as length, punctuate score, and cognate score values. A set of manually prepared training data has been assigned to train the feed forward neural network. Another set of data was used for testing. Using this new approach, we could achieve an error reduction of 60% over length based approach when applied on English-Arabic parallel documents. Moreover this new approach is valid for any language pair and it is quite flexible approach since the feature parameter vector may contain more/less or different features than that we used in our system such as lexical match feature. PMID:17285688

  16. α-Peptide-Oligourea Chimeras: Stabilization of Short α-Helices by Non-Peptide Helical Foldamers.

    PubMed

    Fremaux, Juliette; Mauran, Laura; Pulka-Ziach, Karolina; Kauffmann, Brice; Odaert, Benoit; Guichard, Gilles

    2015-08-17

    Short α-peptides with less than 10 residues generally display a low propensity to nucleate stable helical conformations. While various strategies to stabilize peptide helices have been previously reported, the ability of non-peptide helical foldamers to stabilize α-helices when fused to short α-peptide segments has not been investigated. Towards this end, structural investigations into a series of chimeric oligomers obtained by joining aliphatic oligoureas to the C- or N-termini of α-peptides are described. All chimeras were found to be fully helical, with as few as 2 (or 3) urea units sufficient to propagate an α-helical conformation in the fused peptide segment. The remarkable compatibility of α-peptides with oligoureas described here, along with the simplicity of the approach, highlights the potential of interfacing natural and non-peptide backbones as a means to further control the behavior of α-peptides. PMID:26136402

  17. TSGC and JSC Alignment

    NASA Technical Reports Server (NTRS)

    Sanchez, Humberto

    2013-01-01

    NASA and the SGCs are, by design, intended to work closely together and have synergistic Vision, Mission, and Goals. The TSGC affiliates and JSC have been working together, but not always in a concise, coordinated, nor strategic manner. Today we have a couple of simple ideas to present about how TSGC and JSC have started to work together in a more concise, coordinated, and strategic manner, and how JSC and non-TSG Jurisdiction members have started to collaborate: Idea I: TSGC and JSC Technical Alignment Idea II: Concept of Clusters.

  18. The peptide agonist-binding site of the glucagon-like peptide-1 (GLP-1) receptor based on site-directed mutagenesis and knowledge-based modelling

    PubMed Central

    Dods, Rachel L.; Donnelly, Dan

    2015-01-01

    Glucagon-like peptide-1 (7–36)amide (GLP-1) plays a central role in regulating blood sugar levels and its receptor, GLP-1R, is a target for anti-diabetic agents such as the peptide agonist drugs exenatide and liraglutide. In order to understand the molecular nature of the peptide–receptor interaction, we used site-directed mutagenesis and pharmacological profiling to highlight nine sites as being important for peptide agonist binding and/or activation. Using a knowledge-based approach, we constructed a 3D model of agonist-bound GLP-1R, basing the conformation of the N-terminal region on that of the receptor-bound NMR structure of the related peptide pituitary adenylate cyclase-activating protein (PACAP21). The relative position of the extracellular to the transmembrane (TM) domain, as well as the molecular details of the agonist-binding site itself, were found to be different from the model that was published alongside the crystal structure of the TM domain of the glucagon receptor, but were nevertheless more compatible with published mutagenesis data. Furthermore, the NMR-determined structure of a high-potency cyclic conformationally-constrained 11-residue analogue of GLP-1 was also docked into the receptor-binding site. Despite having a different main chain conformation to that seen in the PACAP21 structure, four conserved residues (equivalent to His-7, Glu-9, Ser-14 and Asp-15 in GLP-1) could be structurally aligned and made similar interactions with the receptor as their equivalents in the GLP-1-docked model, suggesting the basis of a pharmacophore for GLP-1R peptide agonists. In this way, the model not only explains current mutagenesis and molecular pharmacological data but also provides a basis for further experimental design. PMID:26598711

  19. Mussel-inspired new approach for polymerization and cross-linking of peptides and proteins containing tyrosines by Fremy's salt oxidation.

    PubMed

    Wilchek, Meir; Miron, Talia

    2015-03-18

    Our objective was to develop a method mimicking the natural process of coherence in marine mollusks, by direct chemical conversion of protein tyrosine residues to DOPA-o-quinones, which consequently generates polymerization and cross-linking. Fremy's salt, (ON(SO3K)2, was used to convert tyrosine residues in peptides and proteins to reactive o-quinones. The conversion of tyrosines to DOPA-o-quinones, and their ability to polymerize or cross-link, was tested on tyramine, peptides, and proteins. The peptides tested were as follows: biotin-PEG4-tyramine (PEG-BT), and two decapeptides (identical to the repeating units comprising the mussel's adhesive protein). The proteins tested were as follows: bovine pancreatic ribonuclease A (RNase), lysozyme, IgG, avidin, and streptavidin. The oxidized peptides and proteins were all shown to incorporate oxygen atoms and undergo polymerization and cross-linking, depending on the availability of nucleophiles, mostly lysine amino groups of proteins. All the peptides and the noninteracting proteins such as RNase and lysozyme underwent homopolymerization upon Fremy's salt oxidation. When Fremy's salt oxidaized PEG-BT was mixed with the above proteins, it did not react with any of these proteins because PEG-BT underwent fast self-polymerization. Conversely, streptavidin or avidin cross-linked with PEG-BT after preincubation, thus showing that biorecognition is a prerequisite for cross-linking. Polymerization and cross-linking also occurred, following Fremy's salt oxidation of interacting proteins such as avidin and strepavidin with biotinyilated lysozyme or biotinylated RNase. This indicates that only proteins in very close proximity readily cross-link and polymerize via tyrosine residues. Attempts to convert DOPA-quinone to DOPA by reduction with sodium dithionite (Na2S2O4), was successful as far as small peptides were used. Fremy's salt oxidation can serve as an easy and useful tool to polymerize and cross-link proteins, for

  20. Matt: local flexibility aids protein multiple structure alignment.

    PubMed

    Menke, Matthew; Berger, Bonnie; Cowen, Lenore

    2008-01-01

    Even when there is agreement on what measure a protein multiple structure alignment should be optimizing, finding the optimal alignment is computationally prohibitive. One approach used by many previous methods is aligned fragment pair chaining, where short structural fragments from all the proteins are aligned against each other optimally, and the final alignment chains these together in geometrically consistent ways. Ye and Godzik have recently suggested that adding geometric flexibility may help better model protein structures in a variety of contexts. We introduce the program Matt (Multiple Alignment with Translations and Twists), an aligned fragment pair chaining algorithm that, in intermediate steps, allows local flexibility between fragments: small translations and rotations are temporarily allowed to bring sets of aligned fragments closer, even if they are physically impossible under rigid body transformations. After a dynamic programming assembly guided by these "bent" alignments, geometric consistency is restored in the final step before the alignment is output. Matt is tested against other recent multiple protein structure alignment programs on the popular Homstrad and SABmark benchmark datasets. Matt's global performance is competitive with the other programs on Homstrad, but outperforms the other programs on SABmark, a benchmark of multiple structure alignments of proteins with more distant homology. On both datasets, Matt demonstrates an ability to better align the ends of alpha-helices and beta-strands, an important characteristic of any structure alignment program intended to help construct a structural template library for threading approaches to the inverse protein-folding problem. The related question of whether Matt alignments can be used to distinguish distantly homologous structure pairs from pairs of proteins that are not homologous is also considered. For this purpose, a p-value score based on the length of the common core and average root

  1. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    PubMed Central

    Mäde, Veronika; Els-Heindl, Sylvia

    2014-01-01

    Summary The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS) offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies. PMID:24991269

  2. Sensitive and Specific Serodiagnosis of Leishmania infantum Infection in Dogs by Using Peptides Selected from Hypothetical Proteins Identified by an Immunoproteomic Approach

    PubMed Central

    Chávez-Fumagalli, Miguel A.; Martins, Vivian T.; Testasicca, Miriam C. S.; Lage, Daniela P.; Costa, Lourena E.; Lage, Paula S.; Duarte, Mariana C.; Ker, Henrique G.; Ribeiro, Tatiana G.; Carvalho, Fernando A. A.; Régis, Wiliam C. B.; dos Reis, Alexandre B.; Tavares, Carlos A. P.; Soto, Manuel; Fernandes, Ana Paula

    2013-01-01

    In Brazil, the percentage of infected dogs living in areas where canine visceral leishmaniasis (CVL) is endemic ranges from 10 to 62%; however, the prevalence of infection in dogs is probably higher than figures reported from serological studies. In addition, problems with the occurrence of false-positive or false-negative results in the serodiagnosis of CVL have been reported. The present work analyzed the potential of synthetic peptides mapped from hypothetical proteins for improvement of the serodiagnosis of Leishmania infantum infection in dogs. From 26 identified leishmanial proteins, eight were selected, considering that no homologies between these proteins and others from trypanosomatide sequence databases were encountered. The sequences of these proteins were mapped to identify linear B-cell epitopes, and 17 peptides were synthesized and tested in enzyme-linked immunosorbent assays (ELISAs) for the serodiagnosis of L. infantum infection in dogs. Of these, three exhibited sensitivity and specificity values higher than 75% and 90%, respectively, to differentiate L. infantum-infected animals from Trypanosoma cruzi-infected animals and healthy animals. Soluble Leishmania antigen (SLA) showed poor sensitivity (4%) and specificity (36%) to differentiate L. infantum-infected dogs from healthy and T. cruzi-infected dogs. Lastly, the three selected peptides were combined in different mixtures and higher sensitivity and specificity values were obtained, even when sera from T. cruzi-infected dogs were used. The study's findings suggest that these three peptides can constitute a potential tool for more sensitive and specific serodiagnosis of L. infantum infection in dogs. PMID:23554466

  3. A Conserved Epitope Mapped with a Monoclonal Antibody against the VP3 Protein of Goose Parvovirus by Using Peptide Screening and Phage Display Approaches

    PubMed Central

    Li, Chenxi; Liu, Hongyu; Li, Jinzhe; Liu, Dafei; Meng, Runze; Zhang, Qingshan; Shaozhou, Wulin; Bai, Xiaofei; Zhang, Tingting; Liu, Ming; Zhang, Yun

    2016-01-01

    Background Waterfowl parvovirus (WPV) infection causes high mortality and morbidity in both geese (Anser anser) and Muscovy ducks (Cairina moschata), resulting in significant losses to the waterfowl industries. The VP3 protein of WPV is a major structural protein that induces neutralizing antibodies in the waterfowl. However, B-cell epitopes on the VP3 protein of WPV have not been characterized. Methods and Results To understand the antigenic determinants of the VP3 protein, we used the monoclonal antibody (mAb) 4A6 to screen a set of eight partially expressed overlapping peptides spanning VP3. Using western blotting and an enzyme-linked immunosorbent assay (ELISA), we localized the VP3 epitope between amino acids (aa) 57 and 112. To identify the essential epitope residues, a phage library displaying 12-mer random peptides was screened with mAb 4A6. Phage clone peptides displayed a consensus sequence of YxRFHxH that mimicked the sequence 82Y/FNRFHCH88, which corresponded to amino acid residues 82 to 88 of VP3 protein of WPVs. mAb 4A6 binding to biotinylated fragments corresponding to amino acid residues 82 to 88 of the VP3 protein verified that the 82FxRFHxH88 was the VP3 epitope and that amino acids 82F is necessary to retain maximal binding to mAb 4A6. Parvovirus-positive goose and duck sera reacted with the epitope peptide by dot blotting assay, revealing the importance of these amino acids of the epitope in antibody-epitope binding reactivity. Conclusions and Significance We identified the motif FxRFHxH as a VP3-specific B-cell epitope that is recognized by the neutralizing mAb 4A6. This finding might be valuable in understanding of the antigenic topology of VP3 of WPV. PMID:27191594

  4. A solid-phase combinatorial approach for indoloquinolizidine-peptides with high affinity at D(1) and D(2) dopamine receptors.

    PubMed

    Molero, Anabel; Vendrell, Marc; Bonaventura, Jordi; Zachmann, Julian; López, Laura; Pardo, Leonardo; Lluis, Carme; Cortés, Antoni; Albericio, Fernando; Casadó, Vicent; Royo, Miriam

    2015-06-01

    Ligands acting at multiple dopamine receptors hold potential as therapeutic agents for a number of neurodegenerative disorders. Specifically, compounds able to bind at D1R and D2R with high affinity could restore the effects of dopamine depletion and enhance motor activation on degenerated nigrostriatal dopaminergic systems. We have directed our research towards the synthesis and characterisation of heterocycle-peptide hybrids based on the indolo[2,3-a]quinolizidine core. This privileged structure is a water-soluble and synthetically accessible scaffold with affinity for diverse GPCRs. Herein we have prepared a solid-phase combinatorial library of 80 indoloquinolizidine-peptides to identify compounds with enhanced binding affinity at D2R, a receptor that is crucial to re-establish activity on dopamine-depleted degenerated GABAergic neurons. We applied computational tools and high-throughput screening assays to identify 9a{1,3,3} as a ligand for dopamine receptors with nanomolar affinity and agonist activity at D2R. Our results validate the application of indoloquinolizidine-peptide combinatorial libraries to fine-tune the pharmacological profiles of multiple ligands at D1 and D2 dopamine receptors. PMID:25969169

  5. HPLC analysis and purification of peptides.

    PubMed

    Mant, Colin T; Chen, Yuxin; Yan, Zhe; Popa, Traian V; Kovacs, James M; Mills, Janine B; Tripet, Brian P; Hodges, Robert S

    2007-01-01

    High-performance liquid chromatography (HPLC) has proved extremely versatile over the past 25 yr for the isolation and purification of peptides varying widely in their sources, quantity and complexity. This article covers the major modes of HPLC utilized for peptides (size-exclusion, ion-exchange, and reversed-phase), as well as demonstrating the potential of a novel mixed-mode hydrophilic interaction/cation-exchange approach developed in this laboratory. In addition to the value of these HPLC modes for peptide separations, the value of various HPLC techniques for structural characterization of peptides and proteins will be addressed, e.g., assessment of oligomerization state of peptides/proteins by size-exclusion chromatography and monitoring the hydrophilicity/hydrophobicity of amphipathic alpha-helical peptides, a vital precursor for the development of novel antimicrobial peptides. The value of capillary electrophoresis for peptide separations is also demonstrated. Preparative reversed-phase chromatography purification protocols for sample loads of up to 200 mg on analytical columns and instrumentation are introduced for both peptides and recombinant proteins. PMID:18604941

  6. Effect of surface modification of nanofibres with glutamic acid peptide on calcium phosphate nucleation and osteogenic differentiation of marrow stromal cells.

    PubMed

    Karaman, Ozan; Kumar, Ankur; Moeinzadeh, Seyedsina; He, Xuezhong; Cui, Tong; Jabbari, Esmaiel

    2016-02-01

    Biomineralization is mediated by extracellular matrix (ECM) proteins with amino acid sequences rich in glutamic acid. The objective of this study was to investigate the effect of calcium phosphate deposition on aligned nanofibres surface-modified with a glutamic acid peptide on osteogenic differentiation of rat marrow stromal cells. Blend of EEGGC peptide (GLU) conjugated low molecular weight polylactide (PLA) and high molecular weight poly(lactide-co-glycolide) (PLGA) was electrospun to form aligned nanofibres (GLU-NF). The GLU-NF microsheets were incubated in a modified simulated body fluid for nucleation of calcium phosphate crystals on the fibre surface. To achieve a high calcium phosphate to fibre ratio, a layer-by-layer approach was used to improve diffusion of calcium and phosphate ions inside the microsheets. Based on dissipative particle dynamics simulation of PLGA/PLA-GLU fibres, > 80% of GLU peptide was localized to the fibre surface. Calcium phosphate to fibre ratios as high as 200%, between those of cancellous (160%) and cortical (310%) bone, was obtained with the layer-by-layer approach. The extent of osteogenic differentiation and mineralization of marrow stromal cells seeded on GLU-NF microsheets was directly related to the amount of calcium phosphate deposition on the fibres prior to cell seeding. Expression of osteogenic markers osteopontin, alkaline phosphatase (ALP), osteocalcin and type 1 collagen increased gradually with calcium phosphate deposition on GLU-NF microsheets. Results demonstrate that surface modification of aligned synthetic nanofibres with EEGGC peptide dramatically affects nucleation and growth of calcium phosphate crystals on the fibres leading to increased osteogenic differentiation of marrow stromal cells and mineralization. PMID:23897753

  7. CSA: An efficient algorithm to improve circular DNA multiple alignment

    PubMed Central

    Fernandes, Francisco; Pereira, Luísa; Freitas, Ana T

    2009-01-01

    Background The comparison of homologous sequences from different species is an essential approach to reconstruct the evolutionary history of species and of the genes they harbour in their genomes. Several complete mitochondrial and nuclear genomes are now available, increasing the importance of using multiple sequence alignment algorithms in comparative genomics. MtDNA has long been used in phylogenetic analysis and errors in the alignments can lead to errors in the interpretation of evolutionary information. Although a large number of multiple sequence alignment algorithms have been proposed to date, they all deal with linear DNA and cannot handle directly circular DNA. Researchers interested in aligning circular DNA sequences must first rotate them to the "right" place using an essentially manual process, before they can use multiple sequence alignment tools. Results In this paper we propose an efficient algorithm that identifies the most interesting region to cut circular genomes in order to improve phylogenetic analysis when using standard multiple sequence alignment algorithms. This algorithm identifies the largest chain of non-repeated longest subsequences common to a set of circular mitochondrial DNA sequences. All the sequences are then rotated and made linear for multiple alignment purposes. To evaluate the effectiveness of this new tool, three different sets of mitochondrial DNA sequences were considered. Other tests considering randomly rotated sequences were also performed. The software package Arlequin was used to evaluate the standard genetic measures of the alignments obtained with and without the use of the CSA algorithm with two well known multiple alignment algorithms, the CLUSTALW and the MAVID tools, and also the visualization tool SinicView. Conclusion The results show that a circularization and rotation pre-processing step significantly improves the efficiency of public available multiple sequence alignment algorithms when used in the

  8. Fourier transform interferometer alignment method.

    PubMed

    Goldberg, Kenneth A; Naulleau, Patrick; Bokor, Jeffrey

    2002-08-01

    A rapid and convenient method has been developed to facilitate the alignment of the image-plane components of point-diffraction interferometers, including the phase-shifting point-diffraction interferometer. In real time, the Fourier transform of the detected image is used to calculate a pseudoimage of the electric field in the image plane of the test optic where thecritical alignment o f variousoptical components is performed. Reconstruction of the pseudoimage is similar to off-axis, Fourier transform holography. Intermediate steps in the alignment procedure are described. Fine alignment is aided by the introduction and optimization of a global-contrast parameter that is easily calculated from the Fourier transform. Additional applications include the alignment of image-plane apertures in general optical systems, the rapid identification of patterned image-plane alignment marks, and the probing of important image-plane field properties. PMID:12153074

  9. Onorbit IMU alignment error budget

    NASA Technical Reports Server (NTRS)

    Corson, R. W.

    1980-01-01

    The Star Tracker, Crew Optical Alignment Sight (COAS), and Inertial Measurement Unit (IMU) from a complex navigation system with a multitude of error sources were combined. A complete list of the system errors is presented. The errors were combined in a rational way to yield an estimate of the IMU alignment accuracy for STS-1. The expected standard deviation in the IMU alignment error for STS-1 type alignments was determined to be 72 arc seconds per axis for star tracker alignments and 188 arc seconds per axis for COAS alignments. These estimates are based on current knowledge of the star tracker, COAS, IMU, and navigation base error specifications, and were partially verified by preliminary Monte Carlo analysis.

  10. Nuclear reactor internals alignment configuration

    DOEpatents

    Gilmore, Charles B.; Singleton, Norman R.

    2009-11-10

    An alignment system that employs jacking block assemblies and alignment posts around the periphery of the top plate of a nuclear reactor lower internals core shroud to align an upper core plate with the lower internals and the core shroud with the core barrel. The distal ends of the alignment posts are chamfered and are closely received within notches machined in the upper core plate at spaced locations around the outer circumference of the upper core plate. The jacking block assemblies are used to center the core shroud in the core barrel and the alignment posts assure the proper orientation of the upper core plate. The alignment posts may alternately be formed in the upper core plate and the notches may be formed in top plate.

  11. Aligned Defrosting Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    17 August 2004 This July 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a group of aligned barchan sand dunes in the martian north polar region. At the time, the dunes were covered with seasonal frost, but the frost had begun to sublime away, leaving dark spots and dark outlines around the dunes. The surrounding plains exhibit small, diffuse spots that are also the result of subliming seasonal frost. This northern spring image, acquired on a descending ground track (as MGS was moving north to south on the 'night' side of Mars) is located near 78.8oN, 34.8oW. The image covers an area about 3 km (1.9 mi) across and sunlight illuminates the scene from the upper left.

  12. Alignment system for encoders

    NASA Technical Reports Server (NTRS)

    Villani, Daniel D. (Inventor)

    1988-01-01

    An improved encoder alignment system is disclosed which provides an indication of the extent of misalignment and a measure of the rate at which the misalignment may be changing. The invention is adapted for use with a conventional encoder which provides a digital coarse word having at least significant bit and a digital fine word having a least significant bit and a most significant bit. The invention generates the exclusive or of the least significant bit of the coarse digital signal and the least significant bit of the fine digital signal to provide a first signal. The invention then generates the exclusive or of the first signal and the complement of the most significant bit of the fine digital signal to provide an output signal which represents the misalignment of the encoder.

  13. Alignment of Mathematics State-Level Standards and Assessments: The Role of Reviewer Agreement

    ERIC Educational Resources Information Center

    Webb, Noreen M.; Herman, Joan L.; Webb, Norman L.

    2007-01-01

    This article examines the role of reviewer agreement in judgments about alignment between tests and standards. We used case data from three state alignment studies to explore how different approaches to incorporating reviewer agreement changes alignment conclusions. The three case studies showed varying degrees of reviewer agreement about…

  14. Dynamic Bayesian Network for Accurate Detection of Peptides from Tandem Mass Spectra.

    PubMed

    Halloran, John T; Bilmes, Jeff A; Noble, William S

    2016-08-01

    A central problem in mass spectrometry analysis involves identifying, for each observed tandem mass spectrum, the corresponding generating peptide. We present a dynamic Bayesian network (DBN) toolkit that addresses this problem by using a machine learning approach. At the heart of this toolkit is a DBN for Rapid Identification (DRIP), which can be trained from collections of high-confidence peptide-spectrum matches (PSMs). DRIP's score function considers fragment ion matches using Gaussians rather than fixed fragment-ion tolerances and also finds the optimal alignment between the theoretical and observed spectrum by considering all possible alignments, up to a threshold that is controlled using a beam-pruning algorithm. This function not only yields state-of-the art database search accuracy but also can be used to generate features that significantly boost the performance of the Percolator postprocessor. The DRIP software is built upon a general purpose DBN toolkit (GMTK), thereby allowing a wide variety of options for user-specific inference tasks as well as facilitating easy modifications to the DRIP model in future work. DRIP is implemented in Python and C++ and is available under Apache license at http://melodi-lab.github.io/dripToolkit . PMID:27397138

  15. Lunar Alignments - Identification and Analysis

    NASA Astrophysics Data System (ADS)

    González-García, A. César

    Lunar alignments are difficult to establish given the apparent lack of written accounts clearly pointing toward lunar alignments for individual temples. While some individual cases are reviewed and highlighted, the weight of the proof must fall on statistical sampling. Some definitions for the lunar alignments are provided in order to clarify the targets, and thus, some new tools are provided to try to test the lunar hypothesis in several cases, especially in megalithic astronomy.

  16. Mounting and Alignment of IXO Mirror Segments

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, William; Evans, Tyler; McClelland, Ryan; Hong, Melinda; Mazzarella, James; Saha, Timo; Jalota, Lalit; Olsen, Lawrence; Byron, Glenn

    2010-01-01

    A suspension-mounting scheme is developed for the IXO (International X-ray Observatory) mirror segments in which the figure of the mirror segment is preserved in each stage of mounting. The mirror, first fixed on a thermally compatible strongback, is subsequently transported, aligned and transferred onto its mirror housing. In this paper, we shall outline the requirement, approaches, and recent progress of the suspension mount processes.

  17. Solid Phase Synthesis and Application of Labeled Peptide Derivatives: Probes of Receptor-Opioid Peptide Interactions

    PubMed Central

    Aldrich, Jane V.; Kumar, Vivek; Dattachowdhury, Bhaswati; Peck, Angela M.; Wang, Xin; Murray, Thomas F.

    2009-01-01

    Solid phase synthetic methodology has been developed in our laboratory to incorporate an affinity label (a reactive functionality such as isothiocyanate or bromoacetamide) into peptides (Leelasvatanakij, L. and Aldrich, J. V. (2000) J. Peptide Res. 56, 80), and we have used this synthetic strategy to prepare affinity label derivatives of a variety of opioid peptides. To date side reactions have been detected only in two cases, both involving intramolecular cyclization. We have identified several peptide-based affinity labels for δ opioid receptors that exhibit wash-resistant inhibition of binding to these receptors and are valuable pharmacological tools to study opioid receptors. Even in cases where the peptide derivatives do not bind covalently to their target receptor, studying their binding has revealed subtle differences in receptor interactions with particular opioid peptide residues, especially Phe residues in the N-terminal “message” sequences. Solid phase synthetic methodology for the incorporation of other labels (e.g. biotin) into the C-terminus of peptides has also been developed in our laboratory (Kumar, V. and Aldrich, J. V. (2003) Org. Lett. 5, 613). These two synthetic approaches have been combined to prepare peptides containing multiple labels that can be used as tools to study peptide ligand-receptor interactions. These solid phase synthetic methodologies are versatile strategies that are applicable to the preparation of labeled peptides for a variety of targets in addition to opioid receptors. PMID:19956785

  18. Multiplex De Novo Sequencing of Peptide Antibiotics

    NASA Astrophysics Data System (ADS)

    Mohimani, Hosein; Liu, Wei-Ting; Yang, Yu-Liang; Gaudêncio, Susana P.; Fenical, William; Dorrestein, Pieter C.; Pevzner, Pavel A.

    Proliferation of drug-resistant diseases raises the challenge of searching for new, more efficient antibiotics. Currently, some of the most effective antibiotics (i.e., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. The isolation and sequencing of cyclic peptide antibiotics, unlike the same activity with linear peptides, is time-consuming and error-prone. The dominant technique for sequencing cyclic peptides is NMR-based and requires large amounts (milligrams) of purified materials that, for most compounds, are not possible to obtain. Given these facts, there is a need for new tools to sequence cyclic NRPs using picograms of material. Since nearly all cyclic NRPs are produced along with related analogs, we develop a mass spectrometry approach for sequencing all related peptides at once (in contrast to the existing approach that analyzes individual peptides). Our results suggest that instead of attempting to isolate and NMR-sequence the most abundant compound, one should acquire spectra of many related compounds and sequence all of them simultaneously using tandem mass spectrometry. We illustrate applications of this approach by sequencing new variants of cyclic peptide antibiotics from Bacillus brevis, as well as sequencing a previously unknown familiy of cyclic NRPs produced by marine bacteria.

  19. Efficient alignment-free DNA barcode analytics

    PubMed Central

    Kuksa, Pavel; Pavlovic, Vladimir

    2009-01-01

    Background In this work we consider barcode DNA analysis problems and address them using alternative, alignment-free methods and representations which model sequences as collections of short sequence fragments (features). The methods use fixed-length representations (spectrum) for barcode sequences to measure similarities or dissimilarities between sequences coming from the same or different species. The spectrum-based representation not only allows for accurate and computationally efficient species classification, but also opens possibility for accurate clustering analysis of putative species barcodes and identification of critical within-barcode loci distinguishing barcodes of different sample groups. Results New alignment-free methods provide highly accurate and fast DNA barcode-based identification and classification of species with substantial improvements in accuracy and speed over state-of-the-art barcode analysis methods. We evaluate our methods on problems of species classification and identification using barcodes, important and relevant analytical tasks in many practical applications (adverse species movement monitoring, sampling surveys for unknown or pathogenic species identification, biodiversity assessment, etc.) On several benchmark barcode datasets, including ACG, Astraptes, Hesperiidae, Fish larvae, and Birds of North America, proposed alignment-free methods considerably improve prediction accuracy compared to prior results. We also observe significant running time improvements over the state-of-the-art methods. Conclusion Our results show that newly developed alignment-free methods for DNA barcoding can efficiently and with high accuracy identify specimens by examining only few barcode features, resulting in increased scalability and interpretability of current computational approaches to barcoding. PMID:19900305

  20. Quasiparticle Level Alignment for Photocatalytic Interfaces.

    PubMed

    Migani, Annapaoala; Mowbray, Duncan J; Zhao, Jin; Petek, Hrvoje; Rubio, Angel

    2014-05-13

    Electronic level alignment at the interface between an adsorbed molecular layer and a semiconducting substrate determines the activity and efficiency of many photocatalytic materials. Standard density functional theory (DFT)-based methods have proven unable to provide a quantitative description of this level alignment. This requires a proper treatment of the anisotropic screening, necessitating the use of quasiparticle (QP) techniques. However, the computational complexity of QP algorithms has meant a quantitative description of interfacial levels has remained elusive. We provide a systematic study of a prototypical interface, bare and methanol-covered rutile TiO2(110) surfaces, to determine the type of many-body theory required to obtain an accurate description of the level alignment. This is accomplished via a direct comparison with metastable impact electron spectroscopy (MIES), ultraviolet photoelectron spectroscopy (UPS), and two-photon photoemission (2PP) spectroscopy. We consider GGA DFT, hybrid DFT, and G0W0, scQPGW1, scQPGW0, and scQPGW QP calculations. Our results demonstrate that G0W0, or our recently introduced scQPGW1 approach, are required to obtain the correct alignment of both the highest occupied and lowest unoccupied interfacial molecular levels (HOMO/LUMO). These calculations set a new standard in the interpretation of electronic structure probe experiments of complex organic molecule/semiconductor interfaces. PMID:26580537

  1. Quasiparticle Level Alignment for Photocatalytic Interfaces

    SciTech Connect

    Migani, Annapaola; Mowbray, Duncan J.; Zhao, Jin; Petek, Hrvoje; Rubio, Angel

    2014-05-13

    Electronic level alignment at the interface between an adsorbed molecular layer and a semiconducting substrate determines the activity and efficiency of many photocatalytic materials. Standard density functional theory (DFT)-based methods have proven unable to provide a quantitative description of this level alignment. This requires a proper treatment of the anisotropic screening, necessitating the use of quasiparticle (QP) techniques. However, the computational complexity of QP algorithms has meant a quantitative description of interfacial levels has remained elusive. We provide a systematic study of a prototypical interface, bare and methanol-covered rutile TiO2(110) surfaces, to determine the type of many-body theory required to obtain an accurate description of the level alignment. This is accomplished via a direct comparison with metastable impact electron spectroscopy (MIES), ultraviolet photoelectron spectroscopy (UPS), and two-photon photoemission (2PP) spectroscopy. We consider GGA DFT, hybrid DFT, and G0W0, scQPGW1, scQPGW0, and scQPGW QP calculations. Our results demonstrate that G0W0, or our recently introduced scQPGW1 approach, are required to obtain the correct alignment of both the highest occupied and lowest unoccupied interfacial molecular levels (HOMO/LUMO). These calculations set a new standard in the interpretation of electronic structure probe experiments of complex organic molecule/semiconductor interfaces.

  2. ASM stepper alignment through thick epitaxial silicon films

    NASA Astrophysics Data System (ADS)

    Black, Iain

    1999-04-01

    High voltage bipolar and BiCMOS processes often use thick epitaxially grown layers of silicon. These films 12-24 micrometers thick offer a considerable challenge to the alignment of subsequent process layers due to the 'wash out' and image distortion, caused to any underlying pattern, which render automatic alignment mark recognition difficult it not impossible. Historically using projection aligner technology these immediately post Epi layers have been manually aligned with future automatic alignment target defined at the first opportunity post Epi. This is not possible using ASM steppers, as these depend upon marks etched into the silicon, before first processing, to create marks, to which all subsequent layers are registered. To allow the stepper to run wafers with these Epi films a new approach was required.

  3. Field-free alignment in repetitively kicked nitrogen gas

    SciTech Connect

    Cryan, James P.; Bucksbaum, Philip H.; Coffee, Ryan N.

    2009-12-15

    We demonstrate a high level of laser-induced transient alignment in room temperature and density N{sub 2} with a technique that avoids laser field ionization. Our measured alignment shows an improvement over previous one-pulse or two-pulse experimental alignment results and approaches the theoretical maximum value. We employ eight equally spaced ultrafast laser pulses with a separation that takes advantage of the periodic revivals for the ensemble of quantum rotors. Each successive pulse increases the transient alignment [(t)] and also moves the rotational population away from thermal equilibrium. These measurements are combined with simulations to determine the value of , the J-state distributions, and the functional dependencies of the alignment features.

  4. Chemical Reactions Directed Peptide Self-Assembly

    PubMed Central

    Rasale, Dnyaneshwar B.; Das, Apurba K.

    2015-01-01

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly. PMID:25984603

  5. Alignment of Iron Nanoparticles in a Magnetic Field Due to Shape Anisotropy

    DOE PAGESBeta

    Radhakrishnan, Balasubramaniam; Nicholson, Don M; Eisenbach, Markus; Ludtka, Gerard Michael; Rios, Orlando; Parish, Chad M

    2015-07-09

    During high magnetic field processing there is evidence for alignment of non-spherical metallic particles above the Curie temperature in alloys with negligible magneto-crystalline anisotropy. The main driving force for alignment is the magnetic shape anisotropy. Current understanding of the phenomenon is not adequate to quantify the effect of particle size, aspect ratio, temperature and the magnetic field on particle alignment. We demonstrate a Monte Carlo approach coupled with size scaling to show the conditions under which alignment is possible.

  6. Brain natriutetic peptide test

    MedlinePlus

    ... medlineplus.gov/ency/article/007509.htm Brain natriuretic peptide test To use the sharing features on this page, please enable JavaScript. Brain natriuretic peptide (BNP) test is a blood test that measures ...

  7. Vasoactive intestinal peptide test

    MedlinePlus

    ... medlineplus.gov/ency/article/003508.htm Vasoactive intestinal peptide test To use the sharing features on this page, please enable JavaScript. Vasoactive intestinal peptide (VIP) is a test that measures the amount ...

  8. Recent advances in peptide-based subunit nanovaccines.

    PubMed

    Skwarczynski, Mariusz; Toth, Istvan

    2014-12-01

    Vaccination is the most efficient way to protect humans against pathogens. Peptide-based vaccines offer several advantages over classical vaccines, which utilized whole organisms or proteins. However, peptides alone are not immunogenic and need a delivery system that can boost their recognition by the immune system. In recent years, nanotechnology-based approaches have become one of the most promising strategies in peptide vaccine delivery. This review summarizes knowledge on peptide vaccines and nanotechnology-based approaches for their delivery. The recently reported nano-sized delivery platforms for peptide antigens are reviewed, including nanoparticles composed of polymers, peptides, lipids, inorganic materials and nanotubes. The future prospects for peptide-based nanovaccines are discussed. PMID:25529569

  9. Natriuretic peptides and their therapeutic potential.

    PubMed

    Cho, Y; Somer, B G; Amatya, A

    1999-01-01

    Natriuretic peptides are a group of naturally occurring substances that act in the body to oppose the activity of the renin-angiotensin system. There are three major natriuretic peptides: atrial natriuretic peptide (ANP), which is synthesized in the atria; brain natriuretic peptide (BNP), which is synthesized in the ventricles; and C-type natriuretic peptide (CNP), which is synthesized in the brain. Both ANP and BNP are released in response to atrial and ventricular stretch, respectively, and will cause vasorelaxation, inhibition of aldosterone secretion in the adrenal cortex, and inhibition of renin secretion in the kidney. Both ANP and BNP will cause natriuresis and a reduction in intravascular volume, effects amplified by antagonism of antidiuretic hormone (ADH). The physiologic effects of CNP are different from those of ANP and BNP. CNP has a hypotensive effect, but no significant diuretic or natriuretic actions. Three natriuretic peptide receptors (NPRs) have been described that have different binding capacities for ANP, BNP, and CNP. Removal of the natriuretic peptides from the circulation is affected mainly by binding to clearance receptors and enzymatic degradation in the circulation. Increased blood levels of natriuretic peptides have been found in certain disease states, suggesting a role in the pathophysiology of those diseases, including congestive heart failure (CHF), systemic hypertension, and acute myocardial infarction. The natriuretic peptides also serve as disease markers and indicators of prognosis in various cardiovascular conditions. The natriuretic peptides have been used in the treatment of disease, with the most experience with intravenous BNP in the treatment of CHF. Another pharmacologic approach being used is the inhibition of natriuretic peptide metabolism by neutral endopeptidase (NEP) inhibitor drugs. The NEP inhibitors are currently being investigated as treatments for CHF and systemic hypertension. PMID:11720638

  10. An Approach to Conformational Analysis of Peptides and Proteins in Solution Based on a Combination of Nuclear Magnetic Resonance Spectroscopy and Conformational Energy Calculations

    PubMed Central

    Gibbons, W. A.; Némethy, George; Stern, Arnold; Craig, Lyman C.

    1970-01-01

    Simple criteria, based on the combined use of nmr spectral parameters and potential energy maps, are proposed for the conformational analysis of polypeptides and proteins. Experimentally determined coupling constants 3JNC for the N-Cα bond are consistent with the Karplus-Bystrov relationship. It is proposed therefore that 3JNC can be used to distinguish (a) between right-and left-handed α-helices, (b) between α-helical, β-pleated sheet, and randomly coiled forms of peptides. The average 3JNC for the random coil is predicted. The criteria proposed are valid for both L- and D-amino acids. Correlation between the Karplus-Bystrov relationship for 3JNC and the peptide conformational potential energy map limits the possible values of the N-Cα dihedral angle ϕ of each amino acid residue in a polypeptide and protein, and therefore presents a method of conformational analysis in solution superior to the use of either nmr or conformational maps alone. Nmr studies of hydrogen bonding or neighboring-group diamagnetic anisotropy reduce the number of possibilities consistent with the above criteria. A suggestion for evaluating the dihedral angle is presented. These criteria are useful provided the coupling constant is not obscured by line broadening. PMID:5272315

  11. The H-Index of `An Approach to Correlate Tandem Mass Spectral Data of Peptides with Amino Acid Sequences in a Protein Database'

    NASA Astrophysics Data System (ADS)

    Washburn, Michael P.

    2015-11-01

    Over 20 years ago a remarkable paper was published in the Journal of American Society for Mass Spectrometry. This paper from Jimmy Eng, Ashley McCormack, and John Yates described the use of protein databases to drive the interpretation of tandem mass spectra of peptides. This paper now has over 3660 citations and continues to average more than 260 per year over the last decade. This is an amazing scientific achievement. The reason for this is the paper was a cutting edge development at the moment in time when genomes of organisms were being sequenced, protein and peptide mass spectrometry was growing into the field of proteomics, and the power of computing was growing quickly in accordance with Moore's law. This work by the Yates lab grew in importance as genomics, proteomics, and computation all advanced and eventually resulted in the widely used SEQUEST algorithm and platform for the analysis of tandem mass spectrometry data. This commentary provides an analysis of the impact of this paper by analyzing the citations it has generated and the impact of these citing papers.

  12. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested. PMID:27145593

  13. Drive alignment pays maintenance dividends

    SciTech Connect

    Fedder, R.

    2008-12-15

    Proper alignment of the motor and gear drive on conveying and processing equipment will result in longer bearing and coupling life, along with lower maintenance costs. Selecting an alignment free drive package instead of a traditional foot mounted drive and motor is a major advancement toward these goals. 4 photos.

  14. Lexical alignment in triadic communication

    PubMed Central

    Foltz, Anouschka; Gaspers, Judith; Thiele, Kristina; Stenneken, Prisca; Cimiano, Philipp

    2015-01-01

    Lexical alignment refers to the adoption of one’s interlocutor’s lexical items. Accounts of the mechanisms underlying such lexical alignment differ (among other aspects) in the role assigned to addressee-centered behavior. In this study, we used a triadic communicative situation to test which factors may modulate the extent to which participants’ lexical alignment reflects addressee-centered behavior. Pairs of naïve participants played a picture matching game and received information about the order in which pictures were to be matched from a voice over headphones. On critical trials, participants did or did not hear a name for the picture to be matched next over headphones. Importantly, when the voice over headphones provided a name, it did not match the name that the interlocutor had previously used to describe the object. Participants overwhelmingly used the word that the voice over headphones provided. This result points to non-addressee-centered behavior and is discussed in terms of disrupting alignment with the interlocutor as well as in terms of establishing alignment with the voice over headphones. In addition, the type of picture (line drawing vs. tangram shape) independently modulated lexical alignment, such that participants showed more lexical alignment to their interlocutor for (more ambiguous) tangram shapes compared to line drawings. Overall, the results point to a rather large role for non-addressee-centered behavior during lexical alignment. PMID:25762955

  15. Semiautomated improvement of RNA alignments

    PubMed Central

    Andersen, Ebbe S.; Lind-Thomsen, Allan; Knudsen, Bjarne; Kristensen, Susie E.; Havgaard, Jakob H.; Torarinsson, Elfar; Larsen, Niels; Zwieb, Christian; Sestoft, Peter; Kjems, Jørgen; Gorodkin, Jan

    2007-01-01

    We have developed a semiautomated RNA sequence editor (SARSE) that integrates tools for analyzing RNA alignments. The editor highlights different properties of the alignment by color, and its integrated analysis tools prevent the introduction of errors when doing alignment editing. SARSE readily connects to external tools to provide a flexible semiautomatic editing environment. A new method, Pcluster, is introduced for dividing the sequences of an RNA alignment into subgroups with secondary structure differences. Pcluster was used to evaluate 574 seed alignments obtained from the Rfam database and we identified 71 alignments with significant prediction of inconsistent base pairs and 102 alignments with significant prediction of novel base pairs. Four RNA families were used to illustrate how SARSE can be used to manually or automatically correct the inconsistent base pairs detected by Pcluster: the mir-399 RNA, vertebrate telomase RNA (vert-TR), bacterial transfer-messenger RNA (tmRNA), and the signal recognition particle (SRP) RNA. The general use of the method is illustrated by the ability to accommodate pseudoknots and handle even large and divergent RNA families. The open architecture of the SARSE editor makes it a flexible tool to improve all RNA alignments with relatively little human intervention. Online documentation and software are available at http://sarse.ku.dk. PMID:17804647

  16. Well-pump alignment system

    DOEpatents

    Drumheller, Douglas S.

    1998-01-01

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

  17. On the alignment of quasars

    NASA Astrophysics Data System (ADS)

    Zhu, X.-F.

    1986-06-01

    Taking the two Savage-Bolton 5 deg x 5 deg regions of optical quasar patrol as samples, a systematic analysis of the number of aligned quasars was made and compared with the random data generated by Monte Carlo method. The statistical result is that, at least for these two samples, there is no clear evidence for alignment.

  18. On the alignment of quasars

    NASA Astrophysics Data System (ADS)

    Zhu, Xing-fen

    1986-06-01

    Taking the two Savage-Bolton 5° × 5° regions of optical quasar patrol as samples, I made a systematic analysis of the number of aligned quasars and compared with the random data generated by Monte Carlo method. The statistical result is that, at least for these two samples, there is no clear evidence for alignment.

  19. CATO: The Clone Alignment Tool.

    PubMed

    Henstock, Peter V; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow. PMID:27459605

  20. CATO: The Clone Alignment Tool

    PubMed Central

    Henstock, Peter V.; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow. PMID:27459605

  1. Heterogeneous Data Fusion via Space Alignment Using Nonmetric Multidimensional Scaling

    SciTech Connect

    Choo, Jaegul; Bohn, Shawn J.; Nakamura, Grant C.; White, Amanda M.; Park, Haesun

    2012-04-26

    Heterogeneous data sets are typically represented in different feature spaces, making it difficult to analyze relationships spanning different data sets even when they are semantically related. Data fusion via space alignment can remedy this task by integrating multiple data sets lying in different spaces into one common space. Given a set of reference correspondence data that share the same semantic meaning across different spaces, space alignment attempts to place the corresponding reference data as close together as possible, and accordingly, the entire data are aligned in a common space. Space alignment involves optimizing two potentially conflicting criteria: minimum deformation of the original relationships and maximum alignment between the different spaces. To solve this problem, we provide a novel graph embedding framework for space alignment, which converts each data set into a graph and assigns zero distance between reference correspondence pairs resulting in a single graph. We propose a graph embedding method for fusion based on nonmetric multidimensional scaling (MDS). Its criteria using the rank order rather than the distance allows nonmetric MDS to effectively handle both deformation and alignment. Experiments using parallel data sets demonstrate that our approach works well in comparison to existing methods such as constrained Laplacian eigenmaps, Procrustes analysis, and tensor decomposition. We also present standard cross-domain information retrieval tests as well as interesting visualization examples using space alignment.

  2. Engineered Adhesion Peptides for Improved Silicon Adsorption.

    PubMed

    Ramakrishnan, Sathish Kumar; Jebors, Said; Martin, Marta; Cloitre, Thierry; Agarwal, Vivechana; Mehdi, Ahmad; Martinez, Jean; Subra, Gilles; Gergely, Csilla

    2015-11-01

    Engineering peptides that present selective recognition and high affinity for a material is a major challenge for assembly-driven elaboration of complex systems with wide applications in the field of biomaterials, hard-tissue regeneration, and functional materials for therapeutics. Peptide-material interactions are of vital importance in natural processes but less exploited for the design of novel systems for practical applications because of our poor understanding of mechanisms underlying these interactions. Here, we present an approach based on the synthesis of several truncated peptides issued from a silicon-specific peptide recovered via phage display technology. We use the photonic response provided by porous silicon microcavities to evaluate the binding efficiency of 14 different peptide derivatives. We identify and engineer a short peptide sequence (SLVSHMQT), revealing the highest affinity for p(+)-Si. The molecular recognition behavior of the obtained peptide fragment can be revealed through mutations allowing identification of the preferential affinity of certain amino acids toward silicon. These results constitute an advance in both the engineering of peptides that reveal recognition properties for silicon and the understanding of biomolecule-material interactions. PMID:26440047

  3. PH dependent adhesive peptides

    DOEpatents

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  4. Antimicrobial Peptides in 2014

    PubMed Central

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  5. Antimicrobial peptides in 2014.

    PubMed

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  6. Space Mirror Alignment System

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; McKinney, Colin; Smythe, Robert F.; Palmer, Dean L.

    2011-01-01

    An optical alignment mirror mechanism (AMM) has been developed with angular positioning accuracy of +/-0.2 arcsec. This requires the mirror s linear positioning actuators to have positioning resolutions of +/-112 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are 0.1 arc-sec angular mirror positioning accuracy, which translates into linear positioning resolutions at the actuator of 50 nm. The mechanism consists of a structure with sets of cross-directional flexures that enable the mirror s tip and tilt motion, a mirror with its kinematic mount, and two linear actuators. An actuator comprises a brushless DC motor, a linear ball screw, and a piezoelectric brake that holds the mirror s position while the unit is unpowered. An interferometric linear position sensor senses the actuator s position. The AMMs were developed for an Astrometric Beam Combiner (ABC) optical bench, which is part of an interferometer development. Custom electronics were also developed to accommodate the presence of multiple AMMs within the ABC and provide a compact, all-in-one solution to power and control the AMMs.

  7. Alignment positioning mechanism

    NASA Technical Reports Server (NTRS)

    Fantasia, Peter M. (Inventor)

    1991-01-01

    An alignment positioning mechanism for correcting and compensating for misalignment of structures to be coupled is disclosed. The mechanism comprises a power screw with a base portion and a threaded shank portion. A mounting fixture is provided for rigidly coupling said base portion to the mounting interface of a supporting structure with the axis of the screw perpendicular thereto. A traveling ball nut threaded on the power screw is formed with an external annular arcuate surface configured in the form of a spherical segment and enclosed by a ball nut housing with a conforming arcuate surface for permitting gimballed motion thereon. The ball nut housing is provided with a mounting surface which is positionable in cooperable engagement with the mounting interface of a primary structure to be coupled to the supporting structure. Cooperative means are provided on the ball nut and ball nut housing, respectively, for positioning the ball nut and ball nut housing in relative gimballed position within a predetermined range of relative angular relationship whereby severe structural stresses due to unequal loadings and undesirable bending moments on the mechanism are avoided.

  8. Alignment-Annotator web server: rendering and annotating sequence alignments

    PubMed Central

    Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas

    2014-01-01

    Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. Availability: http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. PMID:24813445

  9. Robust temporal alignment of multimodal cardiac sequences

    NASA Astrophysics Data System (ADS)

    Perissinotto, Andrea; Queirós, Sandro; Morais, Pedro; Baptista, Maria J.; Monaghan, Mark; Rodrigues, Nuno F.; D'hooge, Jan; Vilaça, João. L.; Barbosa, Daniel

    2015-03-01

    Given the dynamic nature of cardiac function, correct temporal alignment of pre-operative models and intraoperative images is crucial for augmented reality in cardiac image-guided interventions. As such, the current study focuses on the development of an image-based strategy for temporal alignment of multimodal cardiac imaging sequences, such as cine Magnetic Resonance Imaging (MRI) or 3D Ultrasound (US). First, we derive a robust, modality-independent signal from the image sequences, estimated by computing the normalized cross-correlation between each frame in the temporal sequence and the end-diastolic frame. This signal is a resembler for the left-ventricle (LV) volume curve over time, whose variation indicates different temporal landmarks of the cardiac cycle. We then perform the temporal alignment of these surrogate signals derived from MRI and US sequences of the same patient through Dynamic Time Warping (DTW), allowing to synchronize both sequences. The proposed framework was evaluated in 98 patients, which have undergone both 3D+t MRI and US scans. The end-systolic frame could be accurately estimated as the minimum of the image-derived surrogate signal, presenting a relative error of 1.6 +/- 1.9% and 4.0 +/- 4.2% for the MRI and US sequences, respectively, thus supporting its association with key temporal instants of the cardiac cycle. The use of DTW reduces the desynchronization of the cardiac events in MRI and US sequences, allowing to temporally align multimodal cardiac imaging sequences. Overall, a generic, fast and accurate method for temporal synchronization of MRI and US sequences of the same patient was introduced. This approach could be straightforwardly used for the correct temporal alignment of pre-operative MRI information and intra-operative US images.

  10. Image correlation method for DNA sequence alignment.

    PubMed

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment. PMID:22761742

  11. Testing the tidal alignment model of galaxy intrinsic alignment

    SciTech Connect

    Blazek, Jonathan; Seljak, Uroš; McQuinn, Matthew E-mail: mmcquinn@berkeley.edu

    2011-05-01

    Weak gravitational lensing has become a powerful probe of large-scale structure and cosmological parameters. Precision weak lensing measurements require an understanding of the intrinsic alignment of galaxy ellipticities, which can in turn inform models of galaxy formation. It is hypothesized that elliptical galaxies align with the background tidal field and that this alignment mechanism dominates the correlation between ellipticities on cosmological scales (in the absence of lensing). We use recent large-scale structure measurements from the Sloan Digital Sky Survey to test this picture with several statistics: (1) the correlation between ellipticity and galaxy overdensity, w{sub g+}; (2) the intrinsic alignment auto-correlation functions; (3) the correlation functions of curl-free, E, and divergence-free, B, modes, the latter of which is zero in the linear tidal alignment theory; (4) the alignment correlation function, w{sub g}(r{sub p},θ), a recently developed statistic that generalizes the galaxy correlation function to account for the angle between the galaxy separation vector and the principle axis of ellipticity. We show that recent measurements are largely consistent with the tidal alignment model and discuss dependence on galaxy luminosity. In addition, we show that at linear order the tidal alignment model predicts that the angular dependence of w{sub g}(r{sub p},θ) is simply w{sub g+}(r{sub p})cos (2θ) and that this dependence is consistent with recent measurements. We also study how stochastic nonlinear contributions to galaxy ellipticity impact these statistics. We find that a significant fraction of the observed LRG ellipticity can be explained by alignment with the tidal field on scales ∼> 10 \\hMpc. These considerations are relevant to galaxy formation and evolution.

  12. Highly Angiogenic Peptide Nanofibers

    PubMed Central

    Kumar, Vivek A.; Taylor, Nichole L.; Shi, Siyu; Wang, Benjamin K.; Jalan, Abhishek A.; Kang, Marci K.; Wickremasinghe, Navindee C.; Hartgerink, Jeffrey D.

    2015-01-01

    Major limitations of current tissue regeneration approaches using artificial scaffolds are fibrous encapsulation, lack of host cellular infiltration, unwanted immune responses, surface degradation preceding biointegration, and artificial degradation byproducts. Specifically, for scaffolds larger than 200 500 μm, implants must be accompanied by host angiogenesis in order to provide adequate nutrient/waste exchange in the newly forming tissue. In the current work, we design a peptide-based self-assembling nanofibrous hydrogel containing cell-mediated degradation and proangiogenic moieties that specifically address these challenges. This hydrogel can be easily delivered by syringe, is rapidly infiltrated by cells of hematopoietic and mesenchymal origin, and rapidly forms an extremely robust mature vascular network. scaffolds show no signs of fibrous encapsulation and after 3 weeks are resorbed into the native tissue. These supramolecular assemblies may prove a vital paradigm for tissue regeneration and specifically for ischemic tissue disease. PMID:25584521

  13. Structural Alignment Sensor Feasibility Demonstration

    NASA Technical Reports Server (NTRS)

    Anderson, R. H.; Huang, C. C.; Hodor, J. R.

    1978-01-01

    A structural alignment sensor (SAS) was developed for use with large deployable antenna systems for contour measurement and/or active control. The SAS is a laser ranging system using frequency modulation and accurate phase measurement to determine distance. Work was done with a CO2 and HeNe laser. The capability of the SAS to measure antenna rib contours was studied over ranges of 50 meters to a resolution of 100 microns. Initial resolution data was taken with the CO2 system. This data shows that it will indeed meet the SAS requirements. The development of the HeNe system was initiated because it offers substantial improvement in size, weight, and power over the CO2 system. The final demonstration was made with the HeNe system and it too showed that the SAS requirements could be met with this alternate approach. The projection of these results to a conceptual design for a flight system and its application are described.

  14. Aligning transcript of historical documents using dynamic programming

    NASA Astrophysics Data System (ADS)

    Rabaev, Irina; Cohen, Rafi; El-Sana, Jihad; Kedem, Klara

    2015-01-01

    We present a simple and accurate approach for aligning historical documents with their corresponding transcription. First, a representative of each letter in the historical document is cropped. Then, the transcription is transformed to synthetic word images by representing the letters in the transcription by the cropped letters. These synthetic word images are aligned to groups of connected components in the original text, along each line, using dynamic programming. For measuring image similarities we experimented with a variety of feature extraction and matching methods. The presented alignment algorithm was tested on two historical datasets and provided excellent results.

  15. Effects of diatomic reagent alignment on the A + BC reaction

    NASA Technical Reports Server (NTRS)

    Pattengill, M. D.; Zare, R. N.; Jaffe, R. L.

    1987-01-01

    A computational study is reported on the A + BC - AB + C bimolecular exchange reaction in which BC is aligned with respect to the approach direction of atom A so that the initial rotational angular momentum vector of BC is either parallel (or equivalently antiparallel) or perpendicular to the initial velocity vector of A. The calculations employ a modification of the extended LEPS potential, which permits straightforward generation of noncollinear minimum energy reaction paths. The calculations clearly demonstrate that diatomic reagent alignment can markedly affect the nature of reaction product early partitioning; they also demonstrate that diatomic reagent alignment affects reactive cross sections.

  16. Efficient visual grasping alignment for cylinders

    NASA Technical Reports Server (NTRS)

    Nicewarner, Keith E.; Kelley, Robert B.

    1991-01-01

    Monocular information from a gripper-mounted camera is used to servo the robot gripper to grasp a cylinder. The fundamental concept for rapid pose estimation is to reduce the amount of information that needs to be processed during each vision update interval. The grasping procedure is divided into four phases: learn, recognition, alignment, and approach. In the learn phase, a cylinder is placed in the gripper and the pose estimate is stored and later used as the servo target. This is performed once as a calibration step. The recognition phase verifies the presence of a cylinder in the camera field of view. An initial pose estimate is computed and uncluttered scan regions are selected. The radius of the cylinder is estimated by moving the robot a fixed distance toward the cylinder and observing the change in the image. The alignment phase processes only the scan regions obtained previously. Rapid pose estimates are used to align the robot with the cylinder at a fixed distance from it. The relative motion of the cylinder is used to generate an extrapolated pose-based trajectory for the robot controller. The approach phase guides the robot gripper to a grasping position. The cylinder can be grasped with a minimal reaction force and torque when only rough global pose information is initially available.

  17. Processable Cyclic Peptide Nanotubes with Tunable Interiors

    SciTech Connect

    Hourani, Rami; Zhang, Chen; van der Weegen, Rob; Ruiz, Luis; Li, Changyi; Keten, Sinan; Helms, Brett A.; Xu, Ting

    2011-09-06

    A facile route to generate cyclic peptide nanotubes with tunable interiors is presented. By incorporating 3-amino-2-methylbenzoic acid in the d,l-alternating primary sequence of a cyclic peptide, a functional group can be presented in the interior of the nanotubes without compromising the formation of high aspect ratio nanotubes. The new design of such a cyclic peptide also enables one to modulate the nanotube growth process to be compatible with the polymer processing window without compromising the formation of high aspect ratio nanotubes, thus opening a viable approach toward molecularly defined porous membranes.

  18. Dendroaspis natriuretic peptide binds to the natriuretic peptide clearance receptor

    SciTech Connect

    Johns, Douglas G. . E-mail: Douglas.G.Johns@gsk.com; Ao, Zhaohui; Heidrich, Bradley J.; Hunsberger, Gerald E.; Graham, Taylor; Payne, Lisa; Elshourbagy, Nabil; Lu, Quinn; Aiyar, Nambi; Douglas, Stephen A.

    2007-06-22

    Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C. ANP, BNP, CNP, and the NPR-C ligands AP-811 and cANP(4-23) displaced [{sup 125}I]-ANP from NPR-C with pM-to-nM K {sub i} values. DNP displaced [{sup 125}I]-ANP from NPR-C with nM potency, which represents the first direct demonstration of binding of DNP to human NPR-C. DNP showed high pM affinity for the GC-A receptor and no affinity for GC-B (K {sub i} > 1000 nM). DNP was nearly 10-fold more potent than ANP at stimulating cGMP production in GC-A expressing cells. Blockade of NPR-C might represent a novel therapeutic approach in augmenting the known beneficial actions of DNP in cardiovascular diseases such as hypertension and heart failure.

  19. Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples.

    PubMed

    Cron, Andrew; Gouttefangeas, Cécile; Frelinger, Jacob; Lin, Lin; Singh, Satwinder K; Britten, Cedrik M; Welters, Marij J P; van der Burg, Sjoerd H; West, Mike; Chan, Cliburn

    2013-01-01

    Flow cytometry is the prototypical assay for multi-parameter single cell analysis, and is essential in vaccine and biomarker research for the enumeration of antigen-specific lymphocytes that are often found in extremely low frequencies (0.1% or less). Standard analysis of flow cytometry data relies on visual identification of cell subsets by experts, a process that is subjective and often difficult to reproduce. An alternative and more objective approach is the use of statistical models to identify cell subsets of interest in an automated fashion. Two specific challenges for automated analysis are to detect extremely low frequency event subsets without biasing the estimate by pre-processing enrichment, and the ability to align cell subsets across multiple data samples for comparative analysis. In this manuscript, we develop hierarchical modeling extensions to the Dirichlet Process Gaussian Mixture Model (DPGMM) approach we have previously described for cell subset identification, and show that the hierarchical DPGMM (HDPGMM) naturally generates an aligned data model that captures both commonalities and variations across multiple samples. HDPGMM also increases the sensitivity to extremely low frequency events by sharing information across multiple samples analyzed simultaneously. We validate the accuracy and reproducibility of HDPGMM estimates of antigen-specific T cells on clinically relevant reference peripheral blood mononuclear cell (PBMC) samples with known frequencies of antigen-specific T cells. These cell samples take advantage of retrovirally TCR-transduced T cells spiked into autologous PBMC samples to give a defined number of antigen-specific T cells detectable by HLA-peptide multimer binding. We provide open source software that can take advantage of both multiple processors and GPU-acceleration to perform the numerically-demanding computations. We show that hierarchical modeling is a useful probabilistic approach that can provide a consistent labeling

  20. Combined Statistical Analyses of Peptide Intensities and Peptide Occurrences Improves Identification of Significant Peptides from MS-based Proteomics Data

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; McCue, Lee Ann; Waters, Katrina M.; Matzke, Melissa M.; Jacobs, Jon M.; Metz, Thomas O.; Varnum, Susan M.; Pounds, Joel G.

    2010-11-01

    Liquid chromatography-mass spectrometry-based (LC-MS) proteomics uses peak intensities of proteolytic peptides to infer the differential abundance of peptides/proteins. However, substantial run-to-run variability in peptide intensities and observations (presence/absence) of peptides makes data analysis quite challenging. The missing abundance values in LC-MS proteomics data are difficult to address with traditional imputation-based approaches because the mechanisms by which data are missing are unknown a priori. Data can be missing due to random mechanisms such as experimental error, or non-random mechanisms such as a true biological effect. We present a statistical approach that uses a test of independence known as a G-test to test the null hypothesis of independence between the number of missing values and the experimental groups. We pair the G-test results evaluating independence of missing data (IMD) with a standard analysis of variance (ANOVA) that uses only means and variances computed from the observed data. Each peptide is therefore represented by two statistical confidence metrics, one for qualitative differential observation and one for quantitative differential intensity. We use two simulated and two real LC-MS datasets to demonstrate the robustness and sensitivity of the ANOVA-IMD approach for assigning confidence to peptides with significant differential abundance among experimental groups.

  1. Two Influential Primate Classifications Logically Aligned

    PubMed Central

    Franz, Nico M.; Pier, Naomi M.; Reeder, Deeann M.; Chen, Mingmin; Yu, Shizhuo; Kianmajd, Parisa; Bowers, Shawn; Ludäscher, Bertram

    2016-01-01

    Classifications and phylogenies of perceived natural entities change in the light of new evidence. Taxonomic changes, translated into Code-compliant names, frequently lead to name:meaning dissociations across succeeding treatments. Classification standards such as the Mammal Species of the World (MSW) may experience significant levels of taxonomic change from one edition to the next, with potential costs to long-term, large-scale information integration. This circumstance challenges the biodiversity and phylogenetic data communities to express taxonomic congruence and incongruence in ways that both humans and machines can process, that is, to logically represent taxonomic alignments across multiple classifications. We demonstrate that such alignments are feasible for two classifications of primates corresponding to the second and third MSW editions. Our approach has three main components: (i) use of taxonomic concept labels, that is name sec. author (where sec. means according to), to assemble each concept hierarchy separately via parent/child relationships; (ii) articulation of select concepts across the two hierarchies with user-provided Region Connection Calculus (RCC-5) relationships; and (iii) the use of an Answer Set Programming toolkit to infer and visualize logically consistent alignments of these input constraints. Our use case entails the Primates sec. Groves (1993; MSW2–317 taxonomic concepts; 233 at the species level) and Primates sec. Groves (2005; MSW3–483 taxonomic concepts; 376 at the species level). Using 402 RCC-5 input articulations, the reasoning process yields a single, consistent alignment and 153,111 Maximally Informative Relations that constitute a comprehensive meaning resolution map for every concept pair in the Primates sec. MSW2/MSW3. The complete alignment, and various partitions thereof, facilitate quantitative analyses of name:meaning dissociation, revealing that nearly one in three taxonomic names are not reliable across

  2. Two Influential Primate Classifications Logically Aligned.

    PubMed

    Franz, Nico M; Pier, Naomi M; Reeder, Deeann M; Chen, Mingmin; Yu, Shizhuo; Kianmajd, Parisa; Bowers, Shawn; Ludäscher, Bertram

    2016-07-01

    Classifications and phylogenies of perceived natural entities change in the light of new evidence. Taxonomic changes, translated into Code-compliant names, frequently lead to name:meaning dissociations across succeeding treatments. Classification standards such as the Mammal Species of the World (MSW) may experience significant levels of taxonomic change from one edition to the next, with potential costs to long-term, large-scale information integration. This circumstance challenges the biodiversity and phylogenetic data communities to express taxonomic congruence and incongruence in ways that both humans and machines can process, that is, to logically represent taxonomic alignments across multiple classifications. We demonstrate that such alignments are feasible for two classifications of primates corresponding to the second and third MSW editions. Our approach has three main components: (i) use of taxonomic concept labels, that is name sec. author (where sec. means according to), to assemble each concept hierarchy separately via parent/child relationships; (ii) articulation of select concepts across the two hierarchies with user-provided Region Connection Calculus (RCC-5) relationships; and (iii) the use of an Answer Set Programming toolkit to infer and visualize logically consistent alignments of these input constraints. Our use case entails the Primates sec. Groves (1993; MSW2-317 taxonomic concepts; 233 at the species level) and Primates sec. Groves (2005; MSW3-483 taxonomic concepts; 376 at the species level). Using 402 RCC-5 input articulations, the reasoning process yields a single, consistent alignment and 153,111 Maximally Informative Relations that constitute a comprehensive meaning resolution map for every concept pair in the Primates sec. MSW2/MSW3. The complete alignment, and various partitions thereof, facilitate quantitative analyses of name:meaning dissociation, revealing that nearly one in three taxonomic names are not reliable across treatments

  3. Incorporating peak grouping information for alignment of multiple liquid chromatography-mass spectrometry datasets

    PubMed Central

    Wandy, Joe; Daly, Rónán; Breitling, Rainer; Rogers, Simon

    2015-01-01

    Motivation: The combination of liquid chromatography and mass spectrometry (LC/MS) has been widely used for large-scale comparative studies in systems biology, including proteomics, glycomics and metabolomics. In almost all experimental design, it is necessary to compare chromatograms across biological or technical replicates and across sample groups. Central to this is the peak alignment step, which is one of the most important but challenging preprocessing steps. Existing alignment tools do not take into account the structural dependencies between related peaks that coelute and are derived from the same metabolite or peptide. We propose a direct matching peak alignment method for LC/MS data that incorporates related peaks information (within each LC/MS run) and investigate its effect on alignment performance (across runs). The groupings of related peaks necessary for our method can be obtained from any peak clustering method and are built into a pair-wise peak similarity score function. The similarity score matrix produced is used by an approximation algorithm for the weighted matching problem to produce the actual alignment result. Results: We demonstrate that related peak information can improve alignment performance. The performance is evaluated on a set of benchmark datasets, where our method performs competitively compared to other popular alignment tools. Availability: The proposed alignment method has been implemented as a stand-alone application in Python, available for download at http://github.com/joewandy/peak-grouping-alignment. Contact: Simon.Rogers@glasgow.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25649621

  4. Evolution of Antimicrobial Peptides to Self-Assembled Peptides for Biomaterial Applications

    PubMed Central

    McCloskey, Alice P.; Gilmore, Brendan F.; Laverty, Garry

    2014-01-01

    Biomaterial-related infections are a persistent burden on patient health, recovery, mortality and healthcare budgets. Self-assembled antimicrobial peptides have evolved from the area of antimicrobial peptides. Peptides serve as important weapons in nature, and increasingly medicine, for combating microbial infection and biofilms. Self-assembled peptides harness a “bottom-up” approach, whereby the primary peptide sequence may be modified with natural and unnatural amino acids to produce an inherently antimicrobial hydrogel. Gelation may be tailored to occur in the presence of physiological and infective indicators (e.g. pH, enzymes) and therefore allow local, targeted antimicrobial therapy at the site of infection. Peptides demonstrate inherent biocompatibility, antimicrobial activity, biodegradability and numerous functional groups. They are therefore prime candidates for the production of polymeric molecules that have the potential to be conjugated to biomaterials with precision. Non-native chemistries and functional groups are easily incorporated into the peptide backbone allowing peptide hydrogels to be tailored to specific functional requirements. This article reviews an area of increasing interest, namely self-assembled peptides and their potential therapeutic applications as innovative hydrogels and biomaterials in the prevention of biofilm-related infection. PMID:25436505

  5. Advanced Mask Aligner Lithography (AMALITH)

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard; Vogler, Uwe; Bramati, Arianna

    2015-03-01

    Mask aligner lithography is very attractive for less-critical lithography layers and is widely used for LED, display, CMOS image sensor, micro-fluidics and MEMS manufacturing. Mask aligner lithography is also a preferred choice the semiconductor back-end for 3D-IC, TSV interconnects, advanced packaging (AdP) and wafer-level-packaging (WLP). Mask aligner lithography is a mature technique based on shadow printing and has not much changed since the 1980s. In shadow printing lithography a geometric pattern is transferred by free-space propagation from a photomask to a photosensitive layer on a wafer. The inherent simplicity of the pattern transfer offers ease of operation, low maintenance, moderate capital expenditure, high wafers-per-hour (WPH) throughput, and attractive cost-of-ownership (COO). Advanced mask aligner lithography (AMALITH) comprises different measures to improve shadow printing lithography beyond current limits. The key enabling technology for AMALITH is a novel light integrator systems, referred to as MO Exposure Optics® (MOEO). MOEO allows to fully control and shape the properties of the illumination light in a mask aligner. Full control is the base for accurate simulation and optimization of the shadow printing process (computational lithography). Now photolithography enhancement techniques like customized illumination, optical proximity correction (OPC), phase masks (AAPSM), half-tone lithography and Talbot lithography could be used in mask aligner lithography. We summarize the recent progress in advanced mask aligner lithography (AMALITH) and discuss possible measures to further improve shadow printing lithography.

  6. Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning

    PubMed Central

    Barbosa-Santillán, Liliana I.; Sánchez-Escobar, Juan J.; Calixto-Romo, M. Angeles; Barbosa-Santillán, Luis F.

    2016-01-01

    We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides). Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2). ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2. PMID:27366202

  7. Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning.

    PubMed

    Barbosa-Santillán, Liliana I; Sánchez-Escobar, Juan J; Calixto-Romo, M Angeles; Barbosa-Santillán, Luis F

    2016-01-01

    We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides). Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2). ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2. PMID:27366202

  8. Moiré fringe alignment using composite circular-line gratings for proximity lithography.

    PubMed

    Xu, Feng; Zhou, Shaolin; Hu, Song; Jiang, Wenbo; Luo, Liang; Chu, Hongyu

    2015-08-10

    We explore the feasibility of a controllable and easy-to-implement moiré-based composite circular-line gratings imaging scheme for optical alignment in proximity lithography. One circular grating and four line gratings located on both the mask alignment mark and wafer alignment mark are used to realize the coarse alignment and fine alignment respectively. The fundamental derivation of coarse alignment employing circular gratings and fine alignment employing line gratings are given. Any displacement of misalignment that occurs at the surface of two overlapped gratings can be sensed and determined through subsequent fringe phase analysis without the influence of the gap between the mask and the wafer or wafer process. The design and manufacture process of the alignment marks are presented. The experimental results validate and demonstrate the feasibility of the proposed approach. PMID:26367943

  9. On the hydrophobicity of peptides: Comparing empirical predictions of peptide log P values.

    PubMed

    Thompson, Sarah J; Hattotuwagama, Channa K; Holliday, John D; Flower, Darren R

    2006-01-01

    Peptides are of great therapeutic potential as vaccines and drugs. Knowledge of physicochemical descriptors, including the partition coefficient logP, is useful for the development of predictive Quantitative Structure-Activity Relationships (QSARs). We have investigated the accuracy of available programs for the prediction of logP values for peptides with known experimental values obtained from the literature. Eight prediction programs were tested, of which seven programs were fragment-based methods: XLogP, LogKow, PLogP, ACDLogP, AlogP, Interactive Analysis's LogP and MlogP; and one program used a whole molecule approach: QikProp. The predictive accuracy of the programs was assessed using r(2) values, with ALogP being the most effective (r( 2) = 0.822) and MLogP the least (r(2) = 0.090). We also examined three distinct types of peptide structure: blocked, unblocked, and cyclic. For each study (all peptides, blocked, unblocked and cyclic peptides) the performance of programs rated from best to worse is as follows: all peptides - ALogP, QikProp, PLogP, XLogP, IALogP, LogKow, ACDLogP, and MlogP; blocked peptides - PLogP, XLogP, ACDLogP, IALogP, LogKow, QikProp, ALogP, and MLogP; unblocked peptides - QikProp, IALogP, ALogP, ACDLogP, MLogP, XLogP, LogKow and PLogP; cyclic peptides - LogKow, ALogP, XLogP, MLogP, QikProp, ACDLogP, IALogP. In summary, all programs gave better predictions for blocked peptides, while, in general, logP values for cyclic peptides were under-predicted and those of unblocked peptides were over-predicted. PMID:17597897

  10. SAS-Pro: Simultaneous Residue Assignment and Structure Superposition for Protein Structure Alignment

    PubMed Central

    Shah, Shweta B.; Sahinidis, Nikolaos V.

    2012-01-01

    Protein structure alignment is the problem of determining an assignment between the amino-acid residues of two given proteins in a way that maximizes a measure of similarity between the two superimposed protein structures. By identifying geometric similarities, structure alignment algorithms provide critical insights into protein functional similarities. Existing structure alignment tools adopt a two-stage approach to structure alignment by decoupling and iterating between the assignment evaluation and structure superposition problems. We introduce a novel approach, SAS-Pro, which addresses the assignment evaluation and structure superposition simultaneously by formulating the alignment problem as a single bilevel optimization problem. The new formulation does not require the sequentiality constraints, thus generalizing the scope of the alignment methodology to include non-sequential protein alignments. We employ derivative-free optimization methodologies for searching for the global optimum of the highly nonlinear and non-differentiable RMSD function encountered in the proposed model. Alignments obtained with SAS-Pro have better RMSD values and larger lengths than those obtained from other alignment tools. For non-sequential alignment problems, SAS-Pro leads to alignments with high degree of similarity with known reference alignments. The source code of SAS-Pro is available for download at http://eudoxus.cheme.cmu.edu/saspro/SAS-Pro.html. PMID:22662161

  11. Fusion bonding and alignment fixture

    DOEpatents

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2000-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  12. Adaptive control of molecular alignment

    SciTech Connect

    Horn, C.; Wollenhaupt, M.; Krug, M.; Baumert, T.; Nalda, R. de; Banares, L.

    2006-03-15

    We demonstrate control on nonadiabatic molecular alignment by using a spectrally phase-shaped laser pulse. An evolutionary algorithm in a closed feedback loop has been used in order to find pulse shapes that maximize a given effect. In particular, this scheme has been applied to the optimization of total alignment, and to the control of the temporal structure of the alignment transient within a revival. Asymmetric temporal pulse shapes have been found to be very effective for the latter and have been studied separately in a single-parameter control scheme. Our experimental results are supported by numerical simulations.

  13. Towards Alignment Independent Quantitative Assessment of Homology Detection

    PubMed Central

    Kliger, Yossef

    2006-01-01

    Identification of homologous proteins provides a basis for protein annotation. Sequence alignment tools reliably identify homologs sharing high sequence similarity. However, identification of homologs that share low sequence similarity remains a challenge. Lowering the cutoff value could enable the identification of diverged homologs, but also introduces numerous false hits. Methods are being continuously developed to minimize this problem. Estimation of the fraction of homologs in a set of protein alignments can help in the assessment and development of such methods, and provides the users with intuitive quantitative assessment of protein alignment results. Herein, we present a computational approach that estimates the amount of homologs in a set of protein pairs. The method requires a prevalent and detectable protein feature that is conserved between homologs. By analyzing the feature prevalence in a set of pairwise protein alignments, the method can estimate the number of homolog pairs in the set independently of the alignments' quality. Using the HomoloGene database as a standard of truth, we implemented this approach in a proteome-wide analysis. The results revealed that this approach, which is independent of the alignments themselves, works well for estimating the number of homologous proteins in a wide range of homology values. In summary, the presented method can accompany homology searches and method development, provides validation to search results, and allows tuning of tools and methods. PMID:17205117

  14. Modelling water molecules inside cyclic peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Tiangtrong, Prangsai; Thamwattana, Ngamta; Baowan, Duangkamon

    2016-03-01

    Cyclic peptide nanotubes occur during the self-assembly process of cyclic peptides. Due to the ease of synthesis and ability to control the properties of outer surface and inner diameter by manipulating the functional side chains and the number of amino acids, cyclic peptide nanotubes have attracted much interest from many research areas. A potential application of peptide nanotubes is their use as artificial transmembrane channels for transporting ions, biomolecules and waters into cells. Here, we use the Lennard-Jones potential and a continuum approach to study the interaction of a water molecule in a cyclo[(- D-Ala- L-Ala)_4-] peptide nanotube. Assuming that each unit of a nanotube comprises an inner and an outer tube and that a water molecule is made up of a sphere of two hydrogen atoms uniformly distributed over its surface and a single oxygen atom at the centre, we determine analytically the interaction energy of the water molecule and the peptide nanotube. Using this energy, we find that, independent of the number of peptide units, the water molecule will be accepted inside the nanotube. Once inside the nanotube, we show that a water molecule prefers to be off-axis, closer to the surface of the inner nanotube. Furthermore, our study of two water molecules inside the peptide nanotube supports the finding that water molecules form an array of a 1-2-1-2 file inside peptide nanotubes. The theoretical study presented here can facilitate thorough understanding of the behaviour of water molecules inside peptide nanotubes for applications, such as artificial transmembrane channels.

  15. Controlling the alignment of liquid crystals by nanoparticle-doped and UV-treated polyimide alignment films

    NASA Astrophysics Data System (ADS)

    Jeng, Shie-Chang; Hwang, Su-June; Chen, Tai-An; Liu, Han-Shiang; Chen, Mu-Zhe

    2012-03-01

    We have developed two approaches for controlling the pretilt angles of liquid crystal molecules by using conventional polyimide (PI) alignment materials either doping homogeneous PIs with Polyhedral Oligomeric Silsequioxanes (POSS) nanoparticles or treating homeotropic PIs with ultraviolet light. These techniques are very simple and are compatible with current methods familiar in the LCD industry. The characteristics of modified PI alignment films and their applications for photonic devices are demonstrated in this paper.

  16. Slider—maximum use of probability information for alignment of short sequence reads and SNP detection

    PubMed Central

    Malhis, Nawar; Butterfield, Yaron S. N.; Ester, Martin; Jones, Steven J. M.

    2009-01-01

    Motivation: A plethora of alignment tools have been created that are designed to best fit different types of alignment conditions. While some of these are made for aligning Illumina Sequence Analyzer reads, none of these are fully utilizing its probability (prb) output. In this article, we will introduce a new alignment approach (Slider) that reduces the alignment problem space by utilizing each read base's probabilities given in the prb files. Results: Compared with other aligners, Slider has higher alignment accuracy and efficiency. In addition, given that Slider matches bases with probabilities other than the most probable, it significantly reduces the percentage of base mismatches. The result is that its SNP predictions are more accurate than other SNP prediction approaches used today that start from the most probable sequence, including those using base quality. Contact: nmalhis@bcgsc.ca Supplementary information and availability: http://www.bcgsc.ca/platform/bioinfo/software/slider PMID:18974170

  17. [Plant signaling peptides. Cysteine-rich peptides].

    PubMed

    Ostrowski, Maciej; Kowalczyk, Stanisław

    2015-01-01

    Recent bioinformatic and genetic analyses of several model plant genomes have revealed the existence of a highly abundant group of signaling peptides that are defined as cysteine-rich peptides (CRPs). CRPs are usually in size between 50 and 90 amino acid residues, they are positively charged, and they contain 4-16 cysteine residues that are important for the correct conformational folding. Despite the structural differences among CRP classes, members from each class have striking similarities in their molecular properties and function. The present review presents the recent progress in research on signaling peptides from several families including: EPF/EPFL, SP11/SCR, PrsS, RALF, LURE, and some other peptides belonging to CRP group. There is convincing evidence indicating multiple roles for these CRPs as signaling molecules during the plant life cycle, ranging from stomata development and patterning, self-incompatibility, pollen tube growth and guidance, reproductive processes, and nodule formation. PMID:26281357

  18. Cell Penetrating Peptides and Cationic Antibacterial Peptides

    PubMed Central

    Rodriguez Plaza, Jonathan G.; Morales-Nava, Rosmarbel; Diener, Christian; Schreiber, Gabriele; Gonzalez, Zyanya D.; Lara Ortiz, Maria Teresa; Ortega Blake, Ivan; Pantoja, Omar; Volkmer, Rudolf; Klipp, Edda; Herrmann, Andreas; Del Rio, Gabriel

    2014-01-01

    Cell penetrating peptides (CPP) and cationic antibacterial peptides (CAP) have similar physicochemical properties and yet it is not understood how such similar peptides display different activities. To address this question, we used Iztli peptide 1 (IP-1) because it has both CPP and CAP activities. Combining experimental and computational modeling of the internalization of IP-1, we show it is not internalized by receptor-mediated endocytosis, yet it permeates into many different cell types, including fungi and human cells. We also show that IP-1 makes pores in the presence of high electrical potential at the membrane, such as those found in bacteria and mitochondria. These results provide the basis to understand the functional redundancy of CPPs and CAPs. PMID:24706763

  19. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, Charles R.; Hammond, Robert B.

    1981-01-01

    The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  20. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, C.R.; Hammond, R.B.

    The disclosure related to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  1. Theory of grain alignment in molecular clouds

    NASA Technical Reports Server (NTRS)

    Roberge, Wayne G.

    1993-01-01

    Research accomplishments are presented and include the following: (1) mathematical theory of grain alignment; (2) super-paramagnetic alignment of molecular cloud grains; and (3) theory of grain alignment by ambipolar diffusion.

  2. Protein structure alignment beyond spatial proximity

    PubMed Central

    Wang, Sheng; Ma, Jianzhu; Peng, Jian; Xu, Jinbo

    2013-01-01

    Protein structure alignment is a fundamental problem in computational structure biology. Many programs have been developed for automatic protein structure alignment, but most of them align two protein structures purely based upon geometric similarity without considering evolutionary and functional relationship. As such, these programs may generate structure alignments which are not very biologically meaningful from the evolutionary perspective. This paper presents a novel method DeepAlign for automatic pairwise protein structure alignment. DeepAlign aligns two protein structures using not only spatial proximity of equivalent residues (after rigid-body superposition), but also evolutionary relationship and hydrogen-bonding similarity. Experimental results show that DeepAlign can generate structure alignments much more consistent with manually-curated alignments than other automatic tools especially when proteins under consideration are remote homologs. These results imply that in addition to geometric similarity, evolutionary information and hydrogen-bonding similarity are essential to aligning two protein structures. PMID:23486213

  3. Neural nets for aligning optical components in harsh environments: Beam smoothing spatial filter as an example

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Krasowski, Michael J.

    1991-01-01

    The goal is to develop an approach to automating the alignment and adjustment of optical measurement, visualization, inspection, and control systems. Classical controls, expert systems, and neural networks are three approaches to automating the alignment of an optical system. Neural networks were chosen for this project and the judgements that led to this decision are presented. Neural networks were used to automate the alignment of the ubiquitous laser-beam-smoothing spatial filter. The results and future plans of the project are presented.

  4. Fixture for aligning motor assembly

    DOEpatents

    Shervington, Roger M.; Vaghani, Vallabh V.; Vanek, Laurence D.; Christensen, Scott A.

    2009-12-08

    An alignment fixture includes a rotor fixture, a stator fixture and a sensor system which measures a rotational displacement therebetween. The fixture precisely measures rotation of a generator stator assembly away from a NULL position referenced by a unique reference spline on the rotor shaft. By providing an adjustable location of the stator assembly within the housing, the magnetic axes within each generator shall be aligned to a predetermined and controlled tolerance between the generator interface mounting pin and the reference spline on the rotor shaft. Once magnetically aligned, each generator is essentially a line replaceable unit which may be readily mounted to any input of a multi-generator gearbox assembly with the assurance that the magnetic alignment will be within a predetermined tolerance.

  5. Plant peptide hormone signalling.

    PubMed

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions. PMID:26374891

  6. Cyclic Peptides Made by Linking Synthetic and Genetically Encoded Fragments.

    PubMed

    Palei, Shubhendu; Mootz, Henning D

    2016-03-01

    Cyclic peptides can be highly valuable as bioactive molecules, both for biomedical applications and in basic research. We introduce a new fragment-based approach to access cyclic peptide structures in which one fragment is of synthetic origin and the other is genetically encoded. The synthetic peptide, which can contain one or more non-proteinogenic building blocks, is coupled to the recombinantly expressed peptide through two bonds, one formed by protein trans-splicing with a split intein and the other by oxime ligation. Semisynthetic macrocycles were obtained with high efficiency for various sequences and ring sizes; they can be prepared in quantities sufficient for initial bioactivity tests. We also prepared lipidated and d-amino-acid-containing peptides that were inspired by the peptide antibiotic daptomycin. Such structures are not accessible by other methods that harness the power of simple genetic diversification in the DNA-encoded part of the peptide. PMID:26691013

  7. Well-pump alignment system

    DOEpatents

    Drumheller, D.S.

    1998-10-20

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

  8. Pathogen identification using peptide nanotube biosensors and impedance AFM

    NASA Astrophysics Data System (ADS)

    Maccuspie, Robert I.

    Pathogen identification at highly sensitive levels is crucial to meet urgent needs in fighting the spread of disease or detecting bioterrorism events. Toward that end, a new method for biosensing utilizing fluorescent antibody nanotubes is proposed. Fundamental studies on the self-assembly of these peptide nanotubes are performed, as are applications of aligning these nanotubes on surfaces. As biosensors, these nanotubes incorporate recognition units with antibodies at their ends and fluorescent signaling units at their sidewalls. When viral pathogens were mixed with these antibody nanotubes in solution, the nanotubes rapidly aggregated around the viruses. The size of the aggregates increased as the concentration of viruses increased, as detected by flow cytometry on the order of attomolar concentrations by changes in fluorescence and light scattering intensities. This enabled determination of the concentrations of viruses at trace levels (102 to 106 pfu/mL) within 30 minutes from the receipt of samples to the final quantitative data analysis, as demonstrated on Adenovirus, Herpes Simplex Virus, Influenza, and Vaccinia virus. As another separate approach, impedance AFM is used to study the electrical properties of individual viruses and nanoparticles used as model systems. The design, development, and implementation of the impedance AFM for an Asylum Research platform is described, as well as its application towards studying the impedance of individual nanoparticles as a model system for understanding the fundamental science of how the life cycle of a virus affects its electrical properties. In combination, these approaches fill a pressing need to quantify viruses both rapidly and sensitively.

  9. Projection-Based Volume Alignment

    PubMed Central

    Yu, Lingbo; Snapp, Robert R.; Ruiz, Teresa; Radermacher, Michael

    2013-01-01

    When heterogeneous samples of macromolecular assemblies are being examined by 3D electron microscopy (3DEM), often multiple reconstructions are obtained. For example, subtomograms of individual particles can be acquired from tomography, or volumes of multiple 2D classes can be obtained by random conical tilt reconstruction. Of these, similar volumes can be averaged to achieve higher resolution. Volume alignment is an essential step before 3D classification and averaging. Here we present a projection-based volume alignment (PBVA) algorithm. We select a set of projections to represent the reference volume and align them to a second volume. Projection alignment is achieved by maximizing the cross-correlation function with respect to rotation and translation parameters. If data are missing, the cross-correlation functions are normalized accordingly. Accurate alignments are obtained by averaging and quadratic interpolation of the cross-correlation maximum. Comparisons of the computation time between PBVA and traditional 3D cross-correlation methods demonstrate that PBVA outperforms the traditional methods. Performance tests were carried out with different signal-to-noise ratios using modeled noise and with different percentages of missing data using a cryo-EM dataset. All tests show that the algorithm is robust and highly accurate. PBVA was applied to align the reconstructions of a subcomplex of the NADH: ubiquinone oxidoreductase (Complex I) from the yeast Yarrowia lipolytica, followed by classification and averaging. PMID:23410725

  10. Binocular collimation vs conditional alignment

    NASA Astrophysics Data System (ADS)

    Cook, William J.

    2012-10-01

    As binocular enthusiasts share their passion, topics related to collimation abound. Typically, we find how observers, armed only with a jeweler's screwdriver, can "perfectly collimate" his or her binocular, make it "spot on," or other verbiage of similar connotation. Unfortunately, what most are addressing is a form of pseudo-collimation I have referred to since the mid-1970s as "Conditional Alignment." Ignoring the importance of the mechanical axis (hinge) in the alignment process, this "condition," while having the potential to make alignment serviceable, or even outstanding—within a small range of IPD (Interpupillary Distance) settings relative to the user's spatial accommodation (the ability to accept small errors in parallelism of the optical axes)—may take the instrument farther from the 3-axis collimation conscientious manufacturers seek to implement. Becoming more optically savvy—and especially with so many mechanically inferior binoculars entering the marketplace— the consumer contemplating self-repair and alignment has a need to understand the difference between clinical, 3-axis "collimation" (meaning both optical axes are parallel with the axis of the hinge) and "conditional alignment," as differentiated in this paper. Furthermore, I believe there has been a long-standing need for the term "Conditional Alignment," or some equivalent, to be accepted as part of the vernacular of those who use binoculars extensively, whether for professional or recreational activities. Achieving that acceptance is the aim of this paper.

  11. Implant alignment in total elbow arthroplasty: conventional vs. navigated techniques

    NASA Astrophysics Data System (ADS)

    McDonald, Colin P.; Johnson, James A.; King, Graham J. W.; Peters, Terry M.

    2009-02-01

    Incorrect selection of the native flexion-extension axis during implant alignment in elbow replacement surgery is likely a significant contributor to failure of the prosthesis. Computer and image-assisted surgery is emerging as a useful surgical tool in terms of improving the accuracy of orthopaedic procedures. This study evaluated the accuracy of implant alignment using an image-based navigation technique compared against a conventional non-navigated approach. Implant alignment error was 0.8 +/- 0.3 mm in translation and 1.1 +/- 0.4° in rotation for the navigated alignment, compared with 3.1 +/- 1.3 mm and 5.0 +/- 3.8° for the non-navigated alignment. Five (5) of the 11 non-navigated alignments were malaligned greater than 5° while none of the navigated alignments were placed with an error of greater than 2.0°. It is likely that improved implant positioning will lead to reduced implant loading and wear, resulting in fewer implantrelated complications and revision surgeries.

  12. Recursive dynamic programming for adaptive sequence and structure alignment

    SciTech Connect

    Thiele, R.; Zimmer, R.; Lengauer, T.

    1995-12-31

    We propose a new alignment procedure that is capable of aligning protein sequences and structures in a unified manner. Recursive dynamic programming (RDP) is a hierarchical method which, on each level of the hierarchy, identifies locally optimal solutions and assembles them into partial alignments of sequences and/or structures. In contrast to classical dynamic programming, RDP can also handle alignment problems that use objective functions not obeying the principle of prefix optimality, e.g. scoring schemes derived from energy potentials of mean force. For such alignment problems, RDP aims at computing solutions that are near-optimal with respect to the involved cost function and biologically meaningful at the same time. Towards this goal, RDP maintains a dynamic balance between different factors governing alignment fitness such as evolutionary relationships and structural preferences. As in the RDP method gaps are not scored explicitly, the problematic assignment of gap cost parameters is circumvented. In order to evaluate the RDP approach we analyse whether known and accepted multiple alignments based on structural information can be reproduced with the RDP method.

  13. Conus venom peptide pharmacology.

    PubMed

    Lewis, Richard J; Dutertre, Sébastien; Vetter, Irina; Christie, MacDonald J

    2012-04-01

    Conopeptides are a diverse group of recently evolved venom peptides used for prey capture and/or defense. Each species of cone snails produces in excess of 1000 conopeptides, with those pharmacologically characterized (≈ 0.1%) targeting a diverse range of membrane proteins typically with high potency and specificity. The majority of conopeptides inhibit voltage- or ligand-gated ion channels, providing valuable research tools for the dissection of the role played by specific ion channels in excitable cells. It is noteworthy that many of these targets are found to be expressed in pain pathways, with several conopeptides having entered the clinic as potential treatments for pain [e.g., pyroglutamate1-MrIA (Xen2174)] and one now marketed for intrathecal treatment of severe pain [ziconotide (Prialt)]. This review discusses the diversity, pharmacology, structure-activity relationships, and therapeutic potential of cone snail venom peptide families acting at voltage-gated ion channels (ω-, μ-, μO-, δ-, ι-, and κ-conotoxins), ligand-gated ion channels (α-conotoxins, σ-conotoxin, ikot-ikot, and conantokins), G-protein-coupled receptors (ρ-conopeptides, conopressins, and contulakins), and neurotransmitter transporters (χ-conopeptides), with expanded discussion on the clinical potential of sodium and calcium channel inhibitors and α-conotoxins. Expanding the discovery of new bioactives using proteomic/transcriptomic approaches combined with high-throughput platforms and better defining conopeptide structure-activity relationships using relevant membrane protein crystal structures are expected to grow the already significant impact conopeptides have had as both research probes and leads to new therapies. PMID:22407615

  14. BinAligner: a heuristic method to align biological networks.

    PubMed

    Yang, Jialiang; Li, Jun; Grünewald, Stefan; Wan, Xiu-Feng

    2013-01-01

    The advances in high throughput omics technologies have made it possible to characterize molecular interactions within and across various species. Alignments and comparison of molecular networks across species will help detect orthologs and conserved functional modules and provide insights on the evolutionary relationships of the compared species. However, such analyses are not trivial due to the complexity of network and high computational cost. Here we develop a mixture of global and local algorithm, BinAligner, for network alignments. Based on the hypotheses that the similarity between two vertices across networks would be context dependent and that the information from the edges and the structures of subnetworks can be more informative than vertices alone, two scoring schema, 1-neighborhood subnetwork and graphlet, were introduced to derive the scoring matrices between networks, besides the commonly used scoring scheme from vertices. Then the alignment problem is formulated as an assignment problem, which is solved by the combinatorial optimization algorithm, such as the Hungarian method. The proposed algorithm was applied and validated in aligning the protein-protein interaction network of Kaposi's sarcoma associated herpesvirus (KSHV) and that of varicella zoster virus (VZV). Interestingly, we identified several putative functional orthologous proteins with similar functions but very low sequence similarity between the two viruses. For example, KSHV open reading frame 56 (ORF56) and VZV ORF55 are helicase-primase subunits with sequence identity 14.6%, and KSHV ORF75 and VZV ORF44 are tegument proteins with sequence identity 15.3%. These functional pairs can not be identified if one restricts the alignment into orthologous protein pairs. In addition, BinAligner identified a conserved pathway between two viruses, which consists of 7 orthologous protein pairs and these proteins are connected by conserved links. This pathway might be crucial for virus packing and

  15. Synthetic Multivalent Antifungal Peptides Effective against Fungi

    PubMed Central

    Li, Jianguo; Nandhakumar, Muruganantham; Aung, Thet Tun; Goh, Eunice; Chang, Jamie Ya Ting; Saraswathi, Padhmanaban; Tang, Charles; Safie, Siti Radiah Binte; Lin, Lim Yih; Riezman, Howard; Lei, Zhou; Verma, Chandra S.; Beuerman, Roger W.

    2014-01-01

    Taking advantage of the cluster effect observed in multivalent peptides, this work describes antifungal activity and possible mechanism of action of tetravalent peptide (B4010) which carries 4 copies of the sequence RGRKVVRR through a branched lysine core. B4010 displayed better antifungal properties than natamycin and amphotericin B. The peptide retained significant activity in the presence of monovalent/divalent cations, trypsin and serum and tear fluid. Moreover, B4010 is non-haemolytic and non-toxic to mice by intraperitoneal (200 mg/kg) or intravenous (100 mg/kg) routes. S. cerevisiae mutant strains with altered membrane sterol structures and composition showed hyper senstivity to B4010. The peptide had no affinity for cell wall polysaccharides and caused rapid dissipation of membrane potential and release of vital ions and ATP when treated with C. albicans. We demonstrate that additives which alter the membrane potential or membrane rigidity protect C. albicans from B4010-induced lethality. Calcein release assay and molecular dynamics simulations showed that the peptide preferentially binds to mixed bilayer containing ergosterol over phophotidylcholine-cholesterol bilayers. The studies further suggested that the first arginine is important for mediating peptide-bilayer interactions. Replacing the first arginine led to a 2–4 fold decrease in antifungal activities and reduced membrane disruption properties. The combined in silico and in vitro approach should facilitate rational design of new tetravalent antifungal peptides. PMID:24498363

  16. New approach for pseudo-MS(3) analysis of peptides and proteins via MALDI in-source decay using radical recombination with 1,5-diaminonaphthalene.

    PubMed

    Asakawa, Daiki; Smargiasso, Nicolas; De Pauw, Edwin

    2014-03-01

    Matrix-assisted laser desorption ionization in-source decay (MALDI-ISD) is a useful method for top-down sequencing of proteins and preferentially produces the c'/z(•) fragment pair. Subsequently, radical z(•) fragments undergo a variety of radical reactions. This work is focused on the chemical properties of the 1,5-diaminonaphthalene (1,5-DAN) adducts on z fragment ions (zn*), which are abundant in MALDI-ISD spectra. Postsource decay (PSD) of the zn* fragments resulted in specific peptide bond cleavage adjacent to the binding site of 1,5-DAN, leading to the preferential formation of y'n-1 fragments. The dominant loss of an amino acid with 1,5-DAN from zn* can be used in pseudo-MS(3) mode to identify the C-terminal side fragments from a complex MALDI-ISD spectrum or to determine missed cleavage residues using MALDI-ISD. Although the N-Cα bond at the N-terminal side of Pro is not cleaved by MALDI-ISD, pseudo-MS(3) via zn* can confirm the presence of a Pro residue. PMID:24512348

  17. Mycoplasma hyorhinis markedly degrades β-amyloid peptides in vitro and ex vivo: a novel biological approach for treating Alzheimer’s disease?

    PubMed Central

    Habib, Ahsan; Deng, Juan; Hou, Huayan; Zou, Qiang; Giunta, Brian; Wang, Yan-Jiang; Obregon, Demian; Sawmiller, Darrell; Li, Song; Mori, Takashi; Tan, Jun

    2013-01-01

    Accumulation of amyloid-β (Aβ) peptides (predominantly Aβ40, 42) and their aggregation into plaques in the brain are thought to be the one of the major causes of Alzheimer’s disease (AD). Originally discovered in our Chinese hamster ovary (CHO) cell line stably expressing human wild-type amyloid precursor protein (APP) (CHO/APPwt) cultures devoid of Aβ production, we found that Mycoplasma selectively degrades soluble Aβ in a time and dose (colony forming unit) dependent manner. Moreover, we fully characterized the Mycoplasma species as Mycoplasma hyorhinis (M. hyorhinis) by genetic and colony morphological analyses by light microscopy. Most interestingly, we attenuated the pathogenicity of M. hyorhinis by γ irradiation (3.5 Gy), and found that its ability to degrade Aβ was retained. On the other hand, heated and sonicated M. hyorhinis failed to retain this ability to degrade Aβ, suggesting that this degradation requires viable cells and likely a biologically active signaling pathway. In addition, we found that M. hyorhinis can degrade Aβ produced in AD model mice (PSAPP mice) ex vivo. Finally, we found that irradiated (non-pathogenic) M. hyorhinis also can degrade Aβ produced in PSAPP mice in vivo. These studies suggest that irradiated (non-pathogenic) M. hyorhinis can be a novel and alternative biological strategy for AD treatment. PMID:24093060

  18. Elements of the Next Generation Science Standards' (NGSS) New Framework for K-12 Science Education aligned with STEM designed projects created by Kindergarten, 1st and 2nd grade students in a Reggio Emilio project approach setting

    NASA Astrophysics Data System (ADS)

    Facchini, Nicole

    This paper examines how elements of the Next Generation Science Standards' (NGSS) New Framework for K-12 Science Education standards (National Research Council 2011)---specifically the cross-cutting concept "cause and effect" are aligned with early childhood students' creation of projects of their choice. The study took place in a Reggio Emilio-inspired, K-12 school, in a multi-aged kindergarten, first and second grade classroom with 14 students. Students worked on their projects independently with the assistance of their peers and teachers. The students' projects and the alignment with the Next Generation Science Standards' New Framework were analyzed by using pre and post assessments, student interviews, and discourse analysis. Results indicate that elements of the New Framework for K-12 Science Education emerged through students' project presentation, particularly regarding the notion of "cause and effect". More specifically, results show that initially students perceived the relationship between "cause and effect" to be negative.

  19. Regular language constrained sequence alignment revisited.

    PubMed

    Kucherov, Gregory; Pinhas, Tamar; Ziv-Ukelson, Michal

    2011-05-01

    Imposing constraints in the form of a finite automaton or a regular expression is an effective way to incorporate additional a priori knowledge into sequence alignment procedures. With this motivation, the Regular Expression Constrained Sequence Alignment Problem was introduced, which proposed an O(n²t⁴) time and O(n²t²) space algorithm for solving it, where n is the length of the input strings and t is the number of states in the input non-deterministic automaton. A faster O(n²t³) time algorithm for the same problem was subsequently proposed. In this article, we further speed up the algorithms for Regular Language Constrained Sequence Alignment by reducing their worst case time complexity bound to O(n²t³)/log t). This is done by establishing an optimal bound on the size of Straight-Line Programs solving the maxima computation subproblem of the basic dynamic programming algorithm. We also study another solution based on a Steiner Tree computation. While it does not improve the worst case, our simulations show that both approaches are efficient in practice, especially when the input automata are dense. PMID:21554020

  20. Functionalization of vertically aligned carbon nanotubes

    PubMed Central

    Snyders, Rony; Colomer, Jean-François

    2013-01-01

    Summary This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs). The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers) to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs. PMID:23504581

  1. Proper alignment of the microscope.

    PubMed

    Rottenfusser, Rudi

    2013-01-01

    The light microscope is merely the first element of an imaging system in a research facility. Such a system may include high-speed and/or high-resolution image acquisition capabilities, confocal technologies, and super-resolution methods of various types. Yet more than ever, the proverb "garbage in-garbage out" remains a fact. Image manipulations may be used to conceal a suboptimal microscope setup, but an artifact-free image can only be obtained when the microscope is optimally aligned, both mechanically and optically. Something else is often overlooked in the quest to get the best image out of the microscope: Proper sample preparation! The microscope optics can only do its job when its design criteria are matched to the specimen or vice versa. The specimen itself, the mounting medium, the cover slip, and the type of immersion medium (if applicable) are all part of the total optical makeup. To get the best results out of a microscope, understanding the functions of all of its variable components is important. Only then one knows how to optimize these components for the intended application. Different approaches might be chosen to discuss all of the microscope's components. We decided to follow the light path which starts with the light source and ends at the camera or the eyepieces. To add more transparency to this sequence, the section up to the microscope stage was called the "Illuminating Section", to be followed by the "Imaging Section" which starts with the microscope objective. After understanding the various components, we can start "working with the microscope." To get the best resolution and contrast from the microscope, the practice of "Koehler Illumination" should be understood and followed by every serious microscopist. Step-by-step instructions as well as illustrations of the beam path in an upright and inverted microscope are included in this chapter. A few practical considerations are listed in Section 3. PMID:23931502

  2. Spherulitic assembly of peptide nanowires via spontaneous crystallization.

    PubMed

    Han, Tae Hee

    2014-11-01

    In this work, the hierarchal arrangement of peptide nanowires was achieved via the spontaneous crystallization of peptide molecules. Peptide molecules, which are structural motifs associated with Alzheimer's disease, assembled into one-dimensional nanowires and spontaneously formed two-dimensional peptide spherulites during crystallization of the peptide melt. The assembly behavior of the peptides could be directed by physically confining the soft mold. Furthermore, a hybrid assembly of small functional molecules, such as photoluminescent Alq3, was also achieved. Our approach offers a simple method for achieving spontaneous long-range crystalline order of building blocks approaching macroscopic dimensions and also a facile hybridization strategy to conjugate biomolecules and functional small molecules. PMID:25958606

  3. Developing New Tools for the in vivo Generation/Screening of Cyclic Peptide Libraries. A New Combinatorial Approach for the Detection of Bacterial Toxin Inhibitors

    SciTech Connect

    Camarero, J A

    2006-11-28

    A new combinatorial approach for the biosynthesis and screening of small drug-like toxin inhibitors inside living cells is presented. This approach has been initially used as proof of principle for finding inhibitors against the LF factor from Bacillus anthracis. Key to our ''living combinatorial'' approach is the use of a living cell as a micro-chemical factory for both synthesis and screening of potential inhibitors for a given molecular recognition event (see Scheme 1). This powerful technique posses the advantage that both processes synthesis and screening happen inside the cell thus accelerating the whole screening/selection process.

  4. Unsupervised parameter optimization for automated retention time alignment of severely shifted gas chromatographic data using the piecewise alignment algorithm.

    PubMed

    Pierce, Karisa M; Wright, Bob W; Synovec, Robert E

    2007-02-01

    Simulated chromatographic separations were used to study the performance of piecewise retention time alignment and to demonstrate automated unsupervised (without a training set) parameter optimization. The average correlation coefficient between the target chromatogram and all remaining chromatograms in the data set was used to optimize the alignment parameters. This approach frees the user from providing class information and makes the alignment algorithm applicable to classifying completely unknown data sets. The average peak in the raw simulated data set was shifted up to two peak-widths-at-base (average relative shift=2.0) and after alignment the average relative shift was improved to 0.3. Piecewise alignment was applied to severely shifted GC separations of gasolines and reformate distillation fraction samples. The average relative shifts in the raw gasolines and reformates data were 4.7 and 1.5, respectively, but after alignment improved to 0.5 and 0.4, respectively. The effect of piecewise alignment on peak heights and peak areas is also reported. The average relative difference in peak height was -0.20%. The average absolute relative difference in area was 0.15%. PMID:17174960

  5. SWAMP+: multiple subsequence alignment using associative massive parallelism

    SciTech Connect

    Steinfadt, Shannon Irene; Baker, Johnnie W

    2010-10-18

    A new parallel algorithm SWAMP+ incorporates the Smith-Waterman sequence alignment on an associative parallel model known as ASC. It is a highly sensitive parallel approach that expands traditional pairwise sequence alignment. This is the first parallel algorithm to provide multiple non-overlapping, non-intersecting subsequence alignments with the accuracy of Smith-Waterman. The efficient algorithm provides multiple alignments similar to BLAST while creating a better workflow for the end users. The parallel portions of the code run in O(m+n) time using m processors. When m = n, the algorithmic analysis becomes O(n) with a coefficient of two, yielding a linear speedup. Implementation of the algorithm on the SIMD ClearSpeed CSX620 confirms this theoretical linear speedup with real timings.

  6. MultiAlign: a multiple LC-MS analysis tool for targeted omics analysis

    PubMed Central

    2013-01-01

    Background MultiAlign is a free software tool that aligns multiple liquid chromatography-mass spectrometry datasets to one another by clustering mass and chromatographic elution features across datasets. Applicable to both label-free proteomics and metabolomics comparative analyses, the software can be operated in several modes. For example, clustered features can be matched to a reference database to identify analytes, used to generate abundance profiles, linked to tandem mass spectra based on parent precursor masses, and culled for targeted liquid chromatography-tandem mass spectrometric analysis. MultiAlign is also capable of tandem mass spectral clustering to describe proteome structure and find similarity in subsequent sample runs. Results MultiAlign was applied to two large proteomics datasets obtained from liquid chromatography-mass spectrometry analyses of environmental samples. Peptides in the datasets for a microbial community that had a known metagenome were identified by matching mass and elution time features to those in an established reference peptide database. Results compared favorably with those obtained using existing tools such as VIPER, but with the added benefit of being able to trace clusters of peptides across conditions to existing tandem mass spectra. MultiAlign was further applied to detect clusters across experimental samples derived from a reactor biomass community for which no metagenome was available. Several clusters were culled for further analysis to explore changes in the community structure. Lastly, MultiAlign was applied to liquid chromatography-mass spectrometry-based datasets obtained from a previously published study of wild type and mitochondrial fatty acid oxidation enzyme knockdown mutants of human hepatocarcinoma to demonstrate its utility for analyzing metabolomics datasets. Conclusion MultiAlign is an efficient software package for finding similar analytes across multiple liquid chromatography-mass spectrometry feature

  7. Antihypertensive peptides from curd

    PubMed Central

    Dabarera, Melani Chathurika; Athiththan, Lohini V.; Perera, Rasika P.

    2015-01-01

    Introduction: Curd (Dadhi) peptides reduce hypertension by inhibiting angiotensin converting enzyme (ACE) and serum cholesterol. Peptides vary with bacterial species and milk type used during fermentation. Aim: To isolate and assay the antihypertensive peptides, before and after digestion, in two commercially available curd brands in Sri Lanka. Materials and Methods: Whey (Dadhi Mastu) separated by high-speed centrifugation was isolated using reverse-phase-high- performance liquid chromatography (HPLC). Eluted fractions were analyzed for ACE inhibitory activity using modified Cushman and Cheung method. Curd samples were subjected to enzymatic digestion with pepsin, trypsin, and carboxypeptidase-A at their optimum pH and temperature. Peptides isolated using reverse-phase-HPLC was assayed for ACE inhibitory activity. Results: Whey peptides of both brands gave similar patterns (seven major and five minor peaks) in HPLC elution profile. Smaller peptides concentration was higher in brand 1 and penta-octapeptides in brand 2. Pentapeptide had the highest ACE inhibitory activity (brand 2–90% and brand 1–73%). After digestion, di and tri peptides with similar inhibitory patterns were obtained in both which were higher than before digestion. Thirteen fractions were obtained, where nine fractions showed more than 70% inhibition in both brands with 96% ACE inhibition for a di-peptide. Conclusion: Curd has ACE inhibitory peptides and activity increases after digestion. PMID:27011726

  8. Antimicrobial Peptides in Reptiles

    PubMed Central

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  9. Peptide folding simulations.

    PubMed

    Gnanakaran, S; Nymeyer, Hugh; Portman, John; Sanbonmatsu, Kevin Y; García, Angel E

    2003-04-01

    Developments in the design of small peptides that mimic proteins in complexity, recent advances in nanosecond time-resolved spectroscopy methods to study peptides and the development of modern, highly parallel simulation algorithms have come together to give us a detailed picture of peptide folding dynamics. Two newly implemented simulation techniques, parallel replica dynamics and replica exchange molecular dynamics, can now describe directly from simulations the kinetics and thermodynamics of peptide formation, respectively. Given these developments, the simulation community now has the tools to verify and validate simulation protocols and models (forcefields). PMID:12727509

  10. Electrocatalytic monitoring of peptidic proton-wires.

    PubMed

    Dorčák, V; Kabeláč, M; Kroutil, O; Bednářová, K; Vacek, J

    2016-08-01

    The transfer of protons or proton donor/acceptor abilities is an important phenomenon in many biomolecular systems. One example is the recently proposed peptidic proton-wires (H-wires), but the ability of these His-containing peptides to transfer protons has only been studied at the theoretical level so far. Here, for the first time the proton transfer ability of peptidic H-wires is examined experimentally in an adsorbed state using an approach based on a label-free electrocatalytic reaction. The experimental findings are complemented by theoretical calculations at the ab initio level in a vacuum and in an implicit solvent. Experimental and theoretical results indicated Ala3(His-Ala2)6 to be a high proton-affinity peptidic H-wire model. The methodology presented here could be used for the further investigation of the proton-exchange chemistry of other biologically or technologically important macromolecules. PMID:27353221

  11. Peptide mediated cancer targeting of nanoconjugates

    PubMed Central

    Raha, Sumita; Paunesku, Tatjana; Woloschak, Gayle

    2013-01-01

    Targeted use of nanoparticles in vitro, in cells and in vivo requires nanoparticle surface functionalization. Moieties that can be used for such a purpose include small molecules as well as polymers made of different biological and organic materials. Short amino acid polymers--peptides can often rival target binding avidity of much larger molecules. At the same time, peptides are smaller than most nanoparticles and thus allow for multiple nanoparticle modifications and creation of pluripotent nanoparticles. Most nanoparticles provide multiple binding sites for different cargo and targeting peptides which can be used for development of novel approaches for cancer targeting, diagnostics and therapy. In this review, we will focus on peptides which have been used for preparation of different nanoparticles designed for cancer research. PMID:21046660

  12. Synthetic therapeutic peptides: science and market.

    PubMed

    Vlieghe, Patrick; Lisowski, Vincent; Martinez, Jean; Khrestchatisky, Michel

    2010-01-01

    The decreasing number of approved drugs produced by the pharmaceutical industry, which has been accompanied by increasing expenses for R&D, demands alternative approaches to increase pharmaceutical R&D productivity. This situation has contributed to a revival of interest in peptides as potential drug candidates. New synthetic strategies for limiting metabolism and alternative routes of administration have emerged in recent years and resulted in a large number of peptide-based drugs that are now being marketed. This review reports on the unexpected and considerable number of peptides that are currently available as drugs and the chemical strategies that were used to bring them into the market. As demonstrated here, peptide-based drug discovery could be a serious option for addressing new therapeutic challenges. PMID:19879957

  13. Cell-penetrating peptides transport therapeutics into cells.

    PubMed

    Ramsey, Joshua D; Flynn, Nicholas H

    2015-10-01

    Nearly 30years ago, certain small, relatively nontoxic peptides were discovered to be capable of traversing the cell membrane. These cell-penetrating peptides, as they are now called, have been shown to not only be capable of crossing the cell membrane themselves but can also carry many different therapeutic agents into cells, including small molecules, plasmid DNA, siRNA, therapeutic proteins, viruses, imaging agents, and other various nanoparticles. Many cell-penetrating peptides have been derived from natural proteins, but several other cell-penetrating peptides have been developed that are either chimeric or completely synthetic. How cell-penetrating peptides are internalized into cells has been a topic of debate, with some peptides seemingly entering cells through an endocytic mechanism and others by directly penetrating the cell membrane. Although the entry mechanism is still not entirely understood, it seems to be dependent on the peptide type, the peptide concentration, the cargo the peptide transports, and the cell type tested. With new intracellular disease targets being discovered, cell-penetrating peptides offer an exciting approach for delivering drugs to these intracellular targets. There are hundreds of cell-penetrating peptides being studied for drug delivery, and ongoing studies are demonstrating their success both in vitro and in vivo. PMID:26210404

  14. QUADRUPOLE BEAM-BASED ALIGNMENT AT RHIC.

    SciTech Connect

    NIEDZIELA, J.; MONTAG, C.; SATOGATA, T.

    2005-05-16

    Successful implementation of a beam-based alignment algorithm, tailored to different types of quadrupoles at RHIC, provides significant benefits to machine operations for heavy ions and polarized protons. This algorithm was used to calibrate beam position monitor centers relative to interaction region quadrupoles to maximize aperture. This approach was also used to determine the optimal orbit through transition jump quadrupoles to minimize orbit changes during the transition jump for heavy ion acceleration. This paper provides background discussion and results from first measurements during the RHIC 2005 run.

  15. Improving short antimicrobial peptides despite elusive rules for activity.

    PubMed

    Mikut, Ralf; Ruden, Serge; Reischl, Markus; Breitling, Frank; Volkmer, Rudolf; Hilpert, Kai

    2016-05-01

    Antimicrobial peptides (AMPs) can effectively kill a broad range of life threatening multidrug-resistant bacteria, a serious threat to public health worldwide. However, despite great hopes novel drugs based on AMPs are still rare. To accelerate drug development we studied different approaches to improve the antibacterial activity of short antimicrobial peptides. Short antimicrobial peptides seem to be ideal drug candidates since they can be synthesized quickly and easily, modified and optimized. In addition, manufacturing a short peptide drug will be more cost efficient than long and structured ones. In contrast to longer and structured peptides short AMPs seem hard to design and predict. Here, we designed, synthesized and screened five different peptide libraries, each consisting of 600 9-mer peptides, against Pseudomonas aeruginosa. Each library is presenting a different approach to investigate effectiveness of an optimization strategy. The data for the 3000 peptides were analyzed using models based on fuzzy logic bioinformatics and plausible descriptors. The rate of active or superior active peptides was improved from 31.0% in a semi-random library from a previous study to 97.8% in the best new designed library. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26687790

  16. An extensive library of surrogate peptides for all human proteins.

    PubMed

    Mohammed, Yassene; Borchers, Christoph H

    2015-11-01

    Selecting the most appropriate surrogate peptides to represent a target protein is a major component of experimental design in Multiple Reaction Monitoring (MRM). Our software PeptidePicker with its v-score remains distinctive in its approach of integrating information about the proteins, their tryptic peptides, and the suitability of these peptides for MRM that is available online in UniProtKB, NCBI's dbSNP, ExPASy, PeptideAtlas, PRIDE, and GPMDB. The scoring algorithm reflects our "best knowledge" for selecting candidate peptides for MRM, based on the uniqueness of the peptide in the targeted proteome, its physiochemical properties, and whether it has previously been observed. Here we present an updated approach where we have already compiled a list of all possible surrogate peptides of the human proteome. Using our stringent selection criteria, the list includes 165k suitable MRM peptides covering 17k proteins of the human reviewed proteins in UniProtKB. Compared to average of 2-4min per protein for retrieving and integrating the information, the precompiled list includes all peptides available instantly. This allows a more cohesive and faster design of a multiplexed MRM experiment and provides insights into evidence for a protein's existence. We will keep this list up-to-date as proteomics data repositories continue to grow. This article is part of a Special Issue entitled: Computational Proteomics. PMID:26232110

  17. Automated whole-genome multiple alignment of rat, mouse, and human

    SciTech Connect

    Brudno, Michael; Poliakov, Alexander; Salamov, Asaf; Cooper, Gregory M.; Sidow, Arend; Rubin, Edward M.; Solovyev, Victor; Batzoglou, Serafim; Dubchak, Inna

    2004-07-04

    We have built a whole genome multiple alignment of the three currently available mammalian genomes using a fully automated pipeline which combines the local/global approach of the Berkeley Genome Pipeline and the LAGAN program. The strategy is based on progressive alignment, and consists of two main steps: (1) alignment of the mouse and rat genomes; and (2) alignment of human to either the mouse-rat alignments from step 1, or the remaining unaligned mouse and rat sequences. The resulting alignments demonstrate high sensitivity, with 87% of all human gene-coding areas aligned in both mouse and rat. The specificity is also high: <7% of the rat contigs are aligned to multiple places in human and 97% of all alignments with human sequence > 100kb agree with a three-way synteny map built independently using predicted exons in the three genomes. At the nucleotide level <1% of the rat nucleotides are mapped to multiple places in the human sequence in the alignment; and 96.5% of human nucleotides within all alignments agree with the synteny map. The alignments are publicly available online, with visualization through the novel Multi-VISTA browser that we also present.

  18. Prediction of a stable associated liquid of short amyloidogenic peptides.

    PubMed

    Luiken, Jurriaan A; Bolhuis, Peter G

    2015-04-28

    Amyloid fibril formation is believed to be a nucleation-controlled process. Depending on the nature of peptide sequence, fibril nucleation can occur in one step, straight from a dilute solution, or in multiple steps via oligomers or disordered aggregates. What determines this process is poorly understood. Since the fibril formation kinetics is driven by thermodynamic forces, knowledge of the phase behavior is crucial. Here, we investigated the phase behavior of three short peptide sequences of varying side-chain hydrophobicity. Replica exchange molecular dynamics simulations of a mid-resolution model indicate that the weakly hydrophobic peptide forms fibrils directly from solution, whereas the most hydrophobic peptide forms a dense liquid phase before crystallizing into ordered fibrils at low temperatures. For the medium hydrophobic peptide we found evidence of a novel additional transition to a liquid phase consisting of clusters of aligned peptides, implying a three-step nucleation process. We tested the robustness of this prediction by applying Wertheim's theory and statistical associating fluid theory to a hard-sphere model dressed with isotropic and anisotropic attractions. We found that the ratio of interaction strengths strongly affects the phase behavior, and under certain conditions indeed gives rise to a stable polymerized liquid phase. The peptide clusters in the associated liquid tend to be slow and long-lived, which may give the oligomer droplet more time to act as a toxic oligomer, before turning into a fibril. PMID:25804723

  19. Graphene Symmetry Amplified by Designed Peptide Self-Assembly.

    PubMed

    Mustata, Gina-Mirela; Kim, Yong Ho; Zhang, Jian; DeGrado, William F; Grigoryan, Gevorg; Wanunu, Meni

    2016-06-01

    We present a strategy for designed self-assembly of peptides into two-dimensional monolayer crystals on the surface of graphene and graphite. As predicted by computation, designed peptides assemble on the surface of graphene to form very long, parallel, in-register β-sheets, which we call β-tapes. Peptides extend perpendicularly to the long axis of each β-tape, defining its width, with hydrogen bonds running along the axis. Tapes align on the surface to create highly regular microdomains containing 4-nm pitch striations. Moreover, in agreement with calculations, the atomic structure of the underlying graphene dictates the arrangement of the β-tapes, as they orient along one of six directions defined by graphene's sixfold symmetry. A cationic-assembled peptide surface is shown here to strongly adhere to DNA, preferentially orienting the double helix along β-tape axes. This orientational preference is well anticipated from calculations, given the underlying peptide layer structure. These studies illustrate how designed peptides can amplify the Ångstrom-level atomic symmetry of a surface onto the micrometer scale, further imparting long-range directional order onto the next level of assembly. The remarkably stable nature of these assemblies under various environmental conditions suggests applications in enzymelike catalysis, biological interfaces for cellular recognition, and two-dimensional platforms for studying DNA-peptide interactions. PMID:27276268

  20. Morphogenic Peptides in Regeneration of Load Bearing Tissues.

    PubMed

    Moeinzadeh, Seyedsina; Jabbari, Esmaiel

    2015-01-01

    Morphogenic proteins due to their short half-life require high doses of growth factors in regeneration of load bearing tissues which leads to undesirable side effects. These side effects include bone overgrowth, tumor formation and immune reaction. An alternative approach to reduce undesirable side effects of proteins in regenerative medicine is to use morphogenic peptides derived from the active domains of morphogenic proteins or soluble and insoluble components of the extracellular matrix of mineralized load bearing tissues to induce differentiation of progenitor cells, mineralization, maturation and bone formation. In that regard, many peptides with osteogenic activity have been discovered. These include peptides derived from bone morphogenic proteins (BMPs), those based on interaction with integrin and heparin-binding receptors, collagen derived peptides, peptides derived from other soluble ECM proteins such as bone sialoprotein and enamel matrix proteins, and those peptides derived from vasculoinductive and neuro-inductive proteins. Although these peptides show significant osteogenic activity in vitro and increase mineralization and bone formation in animal models, they are not widely used in clinical orthopedic applications as an alternative to morphogenic proteins. This is partly due to the limited availability of data on structure and function of morphogenic peptides in physiological medium, particularly in tissue engineered scaffolds. Due to their amphiphilic nature, peptides spontaneously self-assemble and aggregate into micellar structures in physiological medium. Aggregation alters the sequence of amino acids in morphogenic peptides that interact with cell surface receptors thus affecting osteogenic activity of the peptide. Aggregation and micelle formation can dramatically reduce the active concentration of morphogenic peptides with many-fold increase in peptide concentration in physiological medium. Other factors that affect bioactivity are the non

  1. A Nonlinear Observer for Gyro Alignment Estimation

    NASA Technical Reports Server (NTRS)

    Thienel, J.; Sanner, R. M.

    2003-01-01

    A nonlinear observer for gyro alignment estimation is presented. The observer is composed of two error terms, an attitude error and an alignment error. The observer is globally stable with exponential convergence of the attitude errors. The gyro alignment estimate converges to the true alignment when the system is completely observable.

  2. Global Alignment System for Large Genomic Sequencing

    Energy Science and Technology Software Center (ESTSC)

    2002-03-01

    AVID is a global alignment system tailored for the alignment of large genomic sequences up to megabases in length. Features include the possibility of one sequence being in draft form, fast alignment, robustness and accuracy. The method is an anchor based alignment using maximal matches derived from suffix trees.

  3. Insulin C-peptide test

    MedlinePlus

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin produced by the body and insulin injected ...

  4. Combining Multiple Pairwise Structure-based Alignments

    SciTech Connect

    2014-11-12

    CombAlign is a new Python code that generates a gapped, one-to-many, multiple structure-based sequence alignment(MSSA) given a set of pairwise structure-based alignments. In order to better define regions of similarity among related protein structures, it is useful to detect the residue-residue correspondences among a set of pairwise structure alignments. Few codes exist for constructing a one-to-many, multiple sequence alignment derived from a set of structure alignments, and we perceived a need for creating a new tool for combing pairwise structure alignments that would allow for insertion of gaps in the reference structure.

  5. Alignment method for parabolic trough solar concentrators

    DOEpatents

    Diver, Richard B.

    2010-02-23

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  6. Grain Alignment in Starless Cores

    NASA Astrophysics Data System (ADS)

    Jones, T. J.; Bagley, M.; Krejny, M.; Andersson, B.-G.; Bastien, P.

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to {{A}V}˜ 48. We find that {{P}K}/{{τ }K} continues to decline with increasing AV with a power law slope of roughly -0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by {{A}V}≳ 20 the slope for P versus τ becomes ˜-1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than {{A}V}˜ 20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  7. Alignment of the VISA Undulator

    SciTech Connect

    Ruland, Robert

    1999-04-15

    The Visible-Infrared SASE Amplifier (VISA) undulator consists of four 99cm long segments. Each undulator segment is set up on a pulsed-wire bench, to characterize the magnetic properties and to locate the magnetic axis of the FODO array. Subsequently, the location of the magnetic axis, as defined by the wire, is referenced to tooling balls on each magnet segment by means of a straightness interferometer. After installation in the vacuum chamber, the four magnet segments are aligned with respect to themselves and globally to the beam line reference laser. A specially designed alignment fixture is used to mount one straightness interferometer each in the horizontal and vertical plane of the beam. The goal of these procedures is to keep the combined rms trajectory error, due to magnetic and alignment errors, to 50{micro}m.

  8. Analysis of the Saccharomyces cerevisiae proteome with PeptideAtlas

    PubMed Central

    King, Nichole L; Deutsch, Eric W; Ranish, Jeffrey A; Nesvizhskii, Alexey I; Eddes, James S; Mallick, Parag; Eng, Jimmy; Desiere, Frank; Flory, Mark; Martin, Daniel B; Kim, Bong; Lee, Hookeun; Raught, Brian; Aebersold, Ruedi

    2006-01-01

    We present the Saccharomyces cerevisiae PeptideAtlas composed from 47 diverse experiments and 4.9 million tandem mass spectra. The observed peptides align to 61% of Saccharomyces Genome Database (SGD) open reading frames (ORFs), 49% of the uncharacterized SGD ORFs, 54% of S. cerevisiae ORFs with a Gene Ontology annotation of 'molecular function unknown', and 76% of ORFs with Gene names. We highlight the use of this resource for data mining, construction of high quality lists for targeted proteomics, validation of proteins, and software development. PMID:17101051

  9. Bacteriocin Inducer Peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel peptides produced by bacteriocin-producing bacteria stimulate the production of bacteriocins in vitro. The producer bacteria are cultured in the presence of a novel inducer bacteria and a peptide having a carboxy terminal sequence of VKGLT in order to achieve an increase in bacteriocin produc...

  10. Synergistic transmembrane alignment of the antimicrobial heterodimer PGLa/magainin.

    PubMed

    Tremouilhac, Pierre; Strandberg, Erik; Wadhwani, Parvesh; Ulrich, Anne S

    2006-10-27

    The antimicrobial activity of amphipathic alpha-helical peptides is usually attributed to the formation of pores in bacterial membranes, but direct structural information about such a membrane-bound state is sparse. Solid state (2)H-NMR has previously shown that the antimicrobial peptide PGLa undergoes a concentration-dependent realignment from a surface-bound S-state to a tilted T-state. The corresponding change in helix tilt angle from 98 to 125 degrees was interpreted as the formation of PGLa/magainin heterodimers residing on the bilayer surface. Under no conditions so far, has an upright membrane-inserted I-state been observed in which a transmembrane helix alignment would be expected. Here, we have demonstrated that PGLa is able to assume such an I-state in a 1:1 mixture with magainin 2 at a peptide-to-lipid ratio as low as 1:100 in dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol model membranes. This (2)H-NMR analysis is based on seven orientational constraints from Ala-3,3,3-d(3) substituted in a non-perturbing manner for four native Ala residues as well as two Ile and one Gly. The observed helix tilt of 158 degrees is rationalized by the formation of heterodimers. This structurally synergistic effect between the two related peptides from the skin of Xenopus laevis correlates very well with their known functional synergistic mode of action. To our knowledge, this example of PGLa is the first case where an alpha-helical antimicrobial peptide is directly shown to assume a transmembrane state that is compatible with the postulated toroidal wormhole pore structure. PMID:16877761

  11. Antimicrobial Peptides from Fish

    PubMed Central

    Masso-Silva, Jorge A.; Diamond, Gill

    2014-01-01

    Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the fish peptides exhibit broad-spectrum antimicrobial activity, killing both fish and human pathogens. They are also immunomodulatory, and their genes are highly responsive to microbes and innate immuno-stimulatory molecules. Recent research has demonstrated that some of the unique properties of fish peptides, including their ability to act even in very high salt concentrations, make them good potential targets for development as therapeutic antimicrobials. Further, the stimulation of their gene expression by exogenous factors could be useful in preventing pathogenic microbes in aquaculture. PMID:24594555

  12. Measurements of magnetic field alignment

    SciTech Connect

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  13. XUV ionization of aligned molecules

    SciTech Connect

    Kelkensberg, F.; Siu, W.; Gademann, G.; Rouzee, A.; Vrakking, M. J. J.; Johnsson, P.; Lucchini, M.; Lucchese, R. R.

    2011-11-15

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO{sub 2} molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  14. Alignment Tool For Inertia Welding

    NASA Technical Reports Server (NTRS)

    Snyder, Gary L.

    1991-01-01

    Compact, easy-to-use tool aligns drive bar of inertia welder over hole in stub. Ensures drive bar concentric to hole within 0.002 in. (0.051 mm.). Holds two batteries and light bulb. Electrical circuit completed, providing current to bulb when pin in contact with post. When pin centered in post hole, it does not touch post, and lamp turns off. Built for use in making repair welds on liquid-oxygen-injector posts in Space Shuttle main engine. Version having suitably modified dimensions used to facilitate alignment in other forests of post.

  15. The alignment-distribution graph

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert

    1993-01-01

    Implementing a data-parallel language such as Fortran 90 on a distributed-memory parallel computer requires distributing aggregate data objects (such as arrays) among the memory modules attached to the processors. The mapping of objects to the machine determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. We present a program representation called the alignment distribution graph that makes these communication requirements explicit. We describe the details of the representation, show how to model communication cost in this framework, and outline several algorithms for determining object mappings that approximately minimize residual communication.

  16. The alignment-distribution graph

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert

    1993-01-01

    Implementing a data-parallel language such as Fortran 90 on a distributed-memory parallel computer requires distributing aggregate data objects (such as arrays) among the memory modules attached to the processors. The mapping of objects to the machine determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. We present a program representation called the alignment-distribution graph that makes these communication requirements explicit. We describe the details of the representation, show how to model communication cost in this framework, and outline several algorithms for determining object mappings that approximately minimize residual communication.

  17. SPA: A Probabilistic Algorithm for Spliced Alignment

    PubMed Central

    van Nimwegen, Erik; Paul, Nicodeme; Sheridan, Robert; Zavolan, Mihaela

    2006-01-01

    Recent large-scale cDNA sequencing efforts show that elaborate patterns of splice variation are responsible for much of the proteome diversity in higher eukaryotes. To obtain an accurate account of the repertoire of splice variants, and to gain insight into the mechanisms of alternative splicing, it is essential that cDNAs are very accurately mapped to their respective genomes. Currently available algorithms for cDNA-to-genome alignment do not reach the necessary level of accuracy because they use ad hoc scoring models that cannot correctly trade off the likelihoods of various sequencing errors against the probabilities of different gene structures. Here we develop a Bayesian probabilistic approach to cDNA-to-genome alignment. Gene structures are assigned prior probabilities based on the lengths of their introns and exons, and based on the sequences at their splice boundaries. A likelihood model for sequencing errors takes into account the rates at which misincorporation, as well as insertions and deletions of different lengths, occurs during sequencing. The parameters of both the prior and likelihood model can be automatically estimated from a set of cDNAs, thus enabling our method to adapt itself to different organisms and experimental procedures. We implemented our method in a fast cDNA-to-genome alignment program, SPA, and applied it to the FANTOM3 dataset of over 100,000 full-length mouse cDNAs and a dataset of over 20,000 full-length human cDNAs. Comparison with the results of four other mapping programs shows that SPA produces alignments of significantly higher quality. In particular, the quality of the SPA alignments near splice boundaries and SPA's mapping of the 5′ and 3′ ends of the cDNAs are highly improved, allowing for more accurate identification of transcript starts and ends, and accurate identification of subtle splice variations. Finally, our splice boundary analysis on the human dataset suggests the existence of a novel non-canonical splice

  18. Elucidating the Locking Mechanism of Peptides onto Growing Amyloid Fibrils through Transition Path Sampling

    PubMed Central

    Schor, Marieke; Vreede, Jocelyne; Bolhuis, Peter G.

    2012-01-01

    We investigate the molecular mechanism of monomer addition to a growing amyloid fibril composed of the main amyloidogenic region from the insulin peptide hormone, the LVEALYLLVEALYL heptapeptide. Applying transition path sampling in combination with reaction coordinate analysis reveals that the transition from a docked peptide to a locked, fully incorporated peptide can occur in two ways. Both routes involve the formation of backbone hydrogen bonds between the three central amino acids of the attaching peptide and the fibril, as well as a reorientation of the central Glu side chain of the locking peptide toward the interface between two β-sheets forming the fibril. The mechanisms differ in the sequence of events. We also conclude that proper docking is important for correct alignment of the peptide with the fibril, as alternative pathways result in misfolding. PMID:22995502

  19. Optimizing a global alignment of protein interaction networks

    PubMed Central

    Chindelevitch, Leonid; Ma, Cheng-Yu; Liao, Chung-Shou; Berger, Bonnie

    2013-01-01

    Motivation: The global alignment of protein interaction networks is a widely studied problem. It is an important first step in understanding the relationship between the proteins in different species and identifying functional orthologs. Furthermore, it can provide useful insights into the species’ evolution. Results: We propose a novel algorithm, PISwap, for optimizing global pairwise alignments of protein interaction networks, based on a local optimization heuristic that has previously demonstrated its effectiveness for a variety of other intractable problems. PISwap can begin with different types of network alignment approaches and then iteratively adjust the initial alignments by incorporating network topology information, trading it off for sequence information. In practice, our algorithm efficiently refines other well-studied alignment techniques with almost no additional time cost. We also show the robustness of the algorithm to noise in protein interaction data. In addition, the flexible nature of this algorithm makes it suitable for different applications of network alignment. This algorithm can yield interesting insights into the evolutionary dynamics of related species. Availability: Our software is freely available for non-commercial purposes from our Web site, http://piswap.csail.mit.edu/. Contact: bab@csail.mit.edu or csliao@ie.nthu.edu.tw Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24048352

  20. Sequence Alignment Tools: One Parallel Pattern to Rule Them All?

    PubMed Central

    2014-01-01

    In this paper, we advocate high-level programming methodology for next generation sequencers (NGS) alignment tools for both productivity and absolute performance. We analyse the problem of parallel alignment and review the parallelisation strategies of the most popular alignment tools, which can all be abstracted to a single parallel paradigm. We compare these tools to their porting onto the FastFlow pattern-based programming framework, which provides programmers with high-level parallel patterns. By using a high-level approach, programmers are liberated from all complex aspects of parallel programming, such as synchronisation protocols, and task scheduling, gaining more possibility for seamless performance tuning. In this work, we show some use cases in which, by using a high-level approach for parallelising NGS tools, it is possible to obtain comparable or even better absolute performance for all used datasets. PMID:25147803