Science.gov

Sample records for peptide venom components

  1. Inhibition of ClC-2 chloride channels by a peptide component or components of scorpion venom.

    PubMed

    Thompson, C H; Fields, D M; Olivetti, P R; Fuller, M D; Zhang, Z R; Kubanek, J; McCarty, N A

    2005-11-01

    ClC chloride channels play essential roles in membrane excitability and maintenance of osmotic balance. Despite the recent crystallization of two bacterial ClC-like proteins, the gating mechanism for these channels remains unclear. In this study we tested scorpion venom for the presence of novel peptide inhibitors of ClC channels, which might be useful tools for dissecting the mechanisms underlying ClC channel gating. Recently, it has been shown that a peptide component of venom from the scorpion L. quinquestriatus hebraeus inhibits the CFTR chloride channel from the intracellular side. Using two-electrode voltage clamp we studied the effect of scorpion venom on ClC-0, -1, and -2, and found both dose- and voltage-dependent inhibition only of ClC-2. Comparison of voltage-dependence of inhibition by venom to that of known pore blockers revealed opposite voltage dependencies, suggesting different mechanisms of inhibition. Kinetic data show that venom induced slower activation kinetics compared to pre-venom records, suggesting that the active component(s) of venom may function as a gating modifier at ClC-2. Trypsinization abolished the inhibitory activity of venom, suggesting that the component(s) of scorpion venom that inhibits ClC-2 is a peptide. PMID:16596447

  2. [Peptide components of Geolycosa spider venom modulate P2X receptor activity of rat sensory neurons].

    PubMed

    Savchenko, H A; Vasylevs'kyĭ, A A; Pluzhnykov, K A; Korol'kova, Iu V; Mamenko, M V; Volkova, T M; Maksymiuk, O P; Boĭchuk, Ia A; Hrishyn, Ie V; Kryshtal', O O

    2009-01-01

    Almost each natural venom comprises a considerable combinatorial library of bioactive substances that have been optimized during evolution. Particular attention is devoted currently on a search for new modulators of ion channels from the venoms of arthropods. We have studied the effect of peptidous compounds of the Lycosa spider venom on the activity of P2X receptors in DRG neurons of rats. As a result, at least 7 proteins modulating various P2X receptor-operated ionic currents in the sensory neurons of rats have been found. PMID:19526843

  3. Peptide Toxins in Solitary Wasp Venoms.

    PubMed

    Konno, Katsuhiro; Kazuma, Kohei; Nihei, Ken-ichi

    2016-04-01

    Solitary wasps paralyze insects or spiders with stinging venom and feed the paralyzed preys to their larva. Accordingly, the venoms should contain a variety of constituents acting on nervous systems. However, only a few solitary wasp venoms have been chemically studied despite thousands of species inhabiting the planet. We have surveyed bioactive substances in solitary wasp venoms found in Japan and discovered a variety of novel bioactive peptides. Pompilidotoxins (PMTXs), in the venoms of the pompilid wasps Anoplius samariensis and Batozonellus maculifrons, are small peptides consisting of 13 amino acids without a disulfide bond. PMTXs slowed Na⁺ channel inactivation, in particular against neuronal type Na⁺ channels, and were rather selective to the Nav1.6 channel. Mastoparan-like cytolytic and antimicrobial peptides are the major components of eumenine wasp venoms. They are rich in hydrophobic and basic amino acids, adopting a α-helical secondary structure, and showing mast cell degranulating, antimicrobial and hemolytic activities. The venom of the spider wasp Cyphononyx fulvognathus contained four bradykinin-related peptides. They are hyperalgesic and, dependent on the structure, differently associated with B₁ or B₂ receptors. Further survey led to the isolation of leucomyosuppressin-like FMRFamide peptides from the venoms of the digger wasps Sphex argentatus and Isodontia harmandi. These results of peptide toxins in solitary wasp venoms from our studies are summarized. PMID:27096870

  4. Peptide Toxins in Solitary Wasp Venoms

    PubMed Central

    Konno, Katsuhiro; Kazuma, Kohei; Nihei, Ken-ichi

    2016-01-01

    Solitary wasps paralyze insects or spiders with stinging venom and feed the paralyzed preys to their larva. Accordingly, the venoms should contain a variety of constituents acting on nervous systems. However, only a few solitary wasp venoms have been chemically studied despite thousands of species inhabiting the planet. We have surveyed bioactive substances in solitary wasp venoms found in Japan and discovered a variety of novel bioactive peptides. Pompilidotoxins (PMTXs), in the venoms of the pompilid wasps Anoplius samariensis and Batozonellus maculifrons, are small peptides consisting of 13 amino acids without a disulfide bond. PMTXs slowed Na+ channel inactivation, in particular against neuronal type Na+ channels, and were rather selective to the Nav1.6 channel. Mastoparan-like cytolytic and antimicrobial peptides are the major components of eumenine wasp venoms. They are rich in hydrophobic and basic amino acids, adopting a α-helical secondary structure, and showing mast cell degranulating, antimicrobial and hemolytic activities. The venom of the spider wasp Cyphononyx fulvognathus contained four bradykinin-related peptides. They are hyperalgesic and, dependent on the structure, differently associated with B1 or B2 receptors. Further survey led to the isolation of leucomyosuppressin-like FMRFamide peptides from the venoms of the digger wasps Sphex argentatus and Isodontia harmandi. These results of peptide toxins in solitary wasp venoms from our studies are summarized. PMID:27096870

  5. Bioactive Components in Fish Venoms

    PubMed Central

    Ziegman, Rebekah; Alewood, Paul

    2015-01-01

    Animal venoms are widely recognized excellent resources for the discovery of novel drug leads and physiological tools. Most are comprised of a large number of components, of which the enzymes, small peptides, and proteins are studied for their important bioactivities. However, in spite of there being over 2000 venomous fish species, piscine venoms have been relatively underrepresented in the literature thus far. Most studies have explored whole or partially fractioned venom, revealing broad pharmacology, which includes cardiovascular, neuromuscular, cytotoxic, inflammatory, and nociceptive activities. Several large proteinaceous toxins, such as stonustoxin, verrucotoxin, and Sp-CTx, have been isolated from scorpaenoid fish. These form pores in cell membranes, resulting in cell death and creating a cascade of reactions that result in many, but not all, of the physiological symptoms observed from envenomation. Additionally, Natterins, a novel family of toxins possessing kininogenase activity have been found in toadfish venom. A variety of smaller protein toxins, as well as a small number of peptides, enzymes, and non-proteinaceous molecules have also been isolated from a range of fish venoms, but most remain poorly characterized. Many other bioactive fish venom components remain to be discovered and investigated. These represent an untapped treasure of potentially useful molecules. PMID:25941767

  6. Bioactive components in fish venoms.

    PubMed

    Ziegman, Rebekah; Alewood, Paul

    2015-05-01

    Animal venoms are widely recognized excellent resources for the discovery of novel drug leads and physiological tools. Most are comprised of a large number of components, of which the enzymes, small peptides, and proteins are studied for their important bioactivities. However, in spite of there being over 2000 venomous fish species, piscine venoms have been relatively underrepresented in the literature thus far. Most studies have explored whole or partially fractioned venom, revealing broad pharmacology, which includes cardiovascular, neuromuscular, cytotoxic, inflammatory, and nociceptive activities. Several large proteinaceous toxins, such as stonustoxin, verrucotoxin, and Sp-CTx, have been isolated from scorpaenoid fish. These form pores in cell membranes, resulting in cell death and creating a cascade of reactions that result in many, but not all, of the physiological symptoms observed from envenomation. Additionally, Natterins, a novel family of toxins possessing kininogenase activity have been found in toadfish venom. A variety of smaller protein toxins, as well as a small number of peptides, enzymes, and non-proteinaceous molecules have also been isolated from a range of fish venoms, but most remain poorly characterized. Many other bioactive fish venom components remain to be discovered and investigated. These represent an untapped treasure of potentially useful molecules. PMID:25941767

  7. Conus venom peptide pharmacology.

    PubMed

    Lewis, Richard J; Dutertre, Sébastien; Vetter, Irina; Christie, MacDonald J

    2012-04-01

    Conopeptides are a diverse group of recently evolved venom peptides used for prey capture and/or defense. Each species of cone snails produces in excess of 1000 conopeptides, with those pharmacologically characterized (≈ 0.1%) targeting a diverse range of membrane proteins typically with high potency and specificity. The majority of conopeptides inhibit voltage- or ligand-gated ion channels, providing valuable research tools for the dissection of the role played by specific ion channels in excitable cells. It is noteworthy that many of these targets are found to be expressed in pain pathways, with several conopeptides having entered the clinic as potential treatments for pain [e.g., pyroglutamate1-MrIA (Xen2174)] and one now marketed for intrathecal treatment of severe pain [ziconotide (Prialt)]. This review discusses the diversity, pharmacology, structure-activity relationships, and therapeutic potential of cone snail venom peptide families acting at voltage-gated ion channels (ω-, μ-, μO-, δ-, ι-, and κ-conotoxins), ligand-gated ion channels (α-conotoxins, σ-conotoxin, ikot-ikot, and conantokins), G-protein-coupled receptors (ρ-conopeptides, conopressins, and contulakins), and neurotransmitter transporters (χ-conopeptides), with expanded discussion on the clinical potential of sodium and calcium channel inhibitors and α-conotoxins. Expanding the discovery of new bioactives using proteomic/transcriptomic approaches combined with high-throughput platforms and better defining conopeptide structure-activity relationships using relevant membrane protein crystal structures are expected to grow the already significant impact conopeptides have had as both research probes and leads to new therapies. PMID:22407615

  8. Latarcins: versatile spider venom peptides.

    PubMed

    Dubovskii, Peter V; Vassilevski, Alexander A; Kozlov, Sergey A; Feofanov, Alexey V; Grishin, Eugene V; Efremov, Roman G

    2015-12-01

    Arthropod venoms feature the presence of cytolytic peptides believed to act synergetically with neurotoxins to paralyze prey or deter aggressors. Many of them are linear, i.e., lack disulfide bonds. When isolated from the venom, or obtained by other means, these peptides exhibit common properties. They are cationic; being mostly disordered in aqueous solution, assume amphiphilic α-helical structure in contact with lipid membranes; and exhibit general cytotoxicity, including antifungal, antimicrobial, hemolytic, and anticancer activities. To suit the pharmacological needs, the activity spectrum of these peptides should be modified by rational engineering. As an example, we provide a detailed review on latarcins (Ltc), linear cytolytic peptides from Lachesana tarabaevi spider venom. Diverse experimental and computational techniques were used to investigate the spatial structure of Ltc in membrane-mimicking environments and their effects on model lipid bilayers. The antibacterial activity of Ltc was studied against a panel of Gram-negative and Gram-positive bacteria. In addition, the action of Ltc on erythrocytes and cancer cells was investigated in detail with confocal laser scanning microscopy. In the present review, we give a critical account of the progress in the research of Ltc. We explore the relationship between Ltc structure and their biological activity and derive molecular characteristics, which can be used for optimization of other linear peptides. Current applications of Ltc and prospective use of similar membrane-active peptides are outlined. PMID:26286896

  9. Centipede Venoms and Their Components: Resources for Potential Therapeutic Applications

    PubMed Central

    Hakim, Md Abdul; Yang, Shilong; Lai, Ren

    2015-01-01

    Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signifying pharmacological importance, very little is known about the active components of centipede venoms. More than 500 peptide sequences have been reported in centipede venomous glands by transcriptome analysis, but only a small number of peptide toxins from centipede has been functionally described. Like other venomous animals such as snakes, scorpions, and spiders, the venom of centipedes could be an excellent source of peptides for developing drugs for treatments as well as bio-insecticides for agrochemical applications. Although centipede venoms are yet to be adequately studied, the venom of centipedes as well as their components described to date, should be compiled to help further research. Therefore, based on previous reports, this review focusses on findings and possible therapeutic applications of centipede venoms as well as their components. PMID:26593947

  10. Centipede venoms and their components: resources for potential therapeutic applications.

    PubMed

    Hakim, Md Abdul; Yang, Shilong; Lai, Ren

    2015-11-01

    Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signifying pharmacological importance, very little is known about the active components of centipede venoms. More than 500 peptide sequences have been reported in centipede venomous glands by transcriptome analysis, but only a small number of peptide toxins from centipede has been functionally described. Like other venomous animals such as snakes, scorpions, and spiders, the venom of centipedes could be an excellent source of peptides for developing drugs for treatments as well as bio-insecticides for agrochemical applications. Although centipede venoms are yet to be adequately studied, the venom of centipedes as well as their components described to date, should be compiled to help further research. Therefore, based on previous reports, this review focusses on findings and possible therapeutic applications of centipede venoms as well as their components. PMID:26593947

  11. Tityus serrulatus venom peptidomics: assessing venom peptide diversity.

    PubMed

    Rates, Breno; Ferraz, Karla K F; Borges, Márcia H; Richardson, Michael; De Lima, Maria Elena; Pimenta, Adriano M C

    2008-10-01

    MALDI-TOF-TOF and de novo sequencing were employed to assess the Tityus serrulatus venom peptide diversity. Previous works has shown the cornucopia of molecular masses, ranging from 800 to 3000Da, present in the venom from this and other scorpions species. This work reports the identification/sequencing of several of these peptides. The majority of the peptides found were fragments of larger venom toxins. For instance, 28 peptides could be identified as fragments from Pape proteins, 10 peptides corresponded to N-terminal fragments of the TsK beta (scorpine-like) toxin and fragments of potassium channel toxins (other than the k-beta) were sequenced as well. N-terminal fragments from the T. serrulatus hypotensins-I and II and a novel hypotensin-like peptide could also be found. This work also reports the sequencing of novel peptides without sequence similarities to other known molecules. PMID:18718845

  12. Characterization of a Venom Peptide from a Crassispirid Gastropod

    PubMed Central

    Cabang, April B.; Imperial, Julita S.; Gajewiak, Joanna; Watkins, Maren; Corneli, Patrice Showers; Olivera, Baldomero M.; Concepcion, Gisela P.

    2011-01-01

    The crassispirids are a large branch of venomous marine gastropods whose venoms have not been investigated previously. We demonstrate that crassispirids comprise a major group of toxoglossate snails in a clade distinct from all turrids whose venoms have been analyzed. The isolation and biochemical definition of the first venom component from any crassispirid is described. Crassipeptide cce9a from Crassispira cerithina (Anton, 1838) was purified from crude venom by following biological activity elicited in young mice, lethargy and a lack of responsiveness to external stimuli. Using Edman sequencing and mass spectrometry, the purified peptide was shown to be 29 amino acid residues long, with the sequence: GSCGLPCHENRRCGWACYCDDGICKPLRV. The sequence assignment was verified through the analysis of a cDNA clone encoding the peptide. The peptide was chemically synthesized and folded; the synthetic peptide was biologically active and coelution with the native venom peptide was demonstrated. When injected into mice of various ages, the peptide elicited a striking shift in behavioral phenotype between 14 and 16 days, from lethargy to hyperactivity. PMID:21939682

  13. Spider-Venom Peptides as Therapeutics

    PubMed Central

    Saez, Natalie J.; Senff, Sebastian; Jensen, Jonas E.; Er, Sing Yan; Herzig, Volker; Rash, Lachlan D.; King, Glenn F.

    2010-01-01

    Spiders are the most successful venomous animals and the most abundant terrestrial predators. Their remarkable success is due in large part to their ingenious exploitation of silk and the evolution of pharmacologically complex venoms that ensure rapid subjugation of prey. Most spider venoms are dominated by disulfide-rich peptides that typically have high affinity and specificity for particular subtypes of ion channels and receptors. Spider venoms are conservatively predicted to contain more than 10 million bioactive peptides, making them a valuable resource for drug discovery. Here we review the structure and pharmacology of spider-venom peptides that are being used as leads for the development of therapeutics against a wide range of pathophysiological conditions including cardiovascular disorders, chronic pain, inflammation, and erectile dysfunction. PMID:22069579

  14. Comparative venom gland transcriptome analysis of the scorpion Lychas mucronatus reveals intraspecific toxic gene diversity and new venomous components

    PubMed Central

    2010-01-01

    Background Lychas mucronatus is one scorpion species widely distributed in Southeast Asia and southern China. Anything is hardly known about its venom components, despite the fact that it can often cause human accidents. In this work, we performed a venomous gland transcriptome analysis by constructing and screening the venom gland cDNA library of the scorpion Lychas mucronatus from Yunnan province and compared it with the previous results of Hainan-sourced Lychas mucronatus. Results A total of sixteen known types of venom peptides and proteins are obtained from the venom gland cDNA library of Yunnan-sourced Lychas mucronatus, which greatly increase the number of currently reported scorpion venom peptides. Interestingly, we also identified nineteen atypical types of venom molecules seldom reported in scorpion species. Surprisingly, the comparative transcriptome analysis of Yunnan-sourced Lychas mucronatus and Hainan-sourced Lychas mucronatus indicated that enormous diversity and vastly abundant difference could be found in venom peptides and proteins between populations of the scorpion Lychas mucronatus from different geographical regions. Conclusions This work characterizes a large number of venom molecules never identified in scorpion species. This result provides a comparative analysis of venom transcriptomes of the scorpion Lychas mucronatus from different geographical regions, which thoroughly reveals the fact that the venom peptides and proteins of the same scorpion species from different geographical regions are highly diversified and scorpion evolves to adapt a new environment by altering the primary structure and abundance of venom peptides and proteins. PMID:20663230

  15. Comparisons of Protein and Peptide Complexity in Poneroid and Formicoid Ant Venoms.

    PubMed

    Aili, Samira R; Touchard, Axel; Koh, Jennifer M S; Dejean, Alain; Orivel, Jérôme; Padula, Matthew P; Escoubas, Pierre; Nicholson, Graham M

    2016-09-01

    Animal venom peptides are currently being developed as novel drugs and bioinsecticides. Because ants use venoms for defense and predation, venomous ants represent an untapped source of potential bioactive toxins. This study compared the protein and peptide components of the poneroid ants Neoponera commutata, Neoponera apicalis, and Odontomachus hastatus and the formicoid ants Ectatomma tuberculatum, Ectatomma brunneum, and Myrmecia gulosa. 1D and 2D PAGE revealed venom proteins in the mass range <10 to >250 kDa. NanoLC-ESI-QTOF MS/MS analysis of tryptic peptides revealed the presence of common venom proteins and also many undescribed proteins. RP-HPLC separation followed by MALDI-TOF MS of the venom peptides also revealed considerable heterogeneity. It was found that the venoms contained between 144 and 1032 peptides with 5-95% of peptides in the ranges 1-4 and 1-8 kDa for poneroid and formicoid ants, respectively. By employing the reducing MALDI matrix 1,5-diaminonapthalene, up to 28 disulfide-bonded peptides were also identified in each of the venoms. In particular, the mass range of peptides from poneroid ants is lower than peptides from other venoms, indicating possible novel structures and pharmacologies. These results indicate that ant venoms represent an enormous, untapped source of novel therapeutic and bioinsecticide leads. PMID:27436154

  16. Differential Properties of Venom Peptides and Proteins in Solitary vs. Social Hunting Wasps.

    PubMed

    Lee, Si Hyeock; Baek, Ji Hyeong; Yoon, Kyungjae Andrew

    2016-02-01

    The primary functions of venoms from solitary and social wasps are different. Whereas most solitary wasps sting their prey to paralyze and preserve it, without killing, as the provisions for their progeny, social wasps usually sting to defend their colonies from vertebrate predators. Such distinctive venom properties of solitary and social wasps suggest that the main venom components are likely to be different depending on the wasps' sociality. The present paper reviews venom components and properties of the Aculeata hunting wasps, with a particular emphasis on the comparative aspects of venom compositions and properties between solitary and social wasps. Common components in both solitary and social wasp venoms include hyaluronidase, phospholipase A2, metalloendopeptidase, etc. Although it has been expected that more diverse bioactive components with the functions of prey inactivation and physiology manipulation are present in solitary wasps, available studies on venom compositions of solitary wasps are simply too scarce to generalize this notion. Nevertheless, some neurotoxic peptides (e.g., pompilidotoxin and dendrotoxin-like peptide) and proteins (e.g., insulin-like peptide binding protein) appear to be specific to solitary wasp venom. In contrast, several proteins, such as venom allergen 5 protein, venom acid phosphatase, and various phospholipases, appear to be relatively more specific to social wasp venom. Finally, putative functions of main venom components and their application are also discussed. PMID:26805885

  17. Differential Properties of Venom Peptides and Proteins in Solitary vs. Social Hunting Wasps

    PubMed Central

    Lee, Si Hyeock; Baek, Ji Hyeong; Yoon, Kyungjae Andrew

    2016-01-01

    The primary functions of venoms from solitary and social wasps are different. Whereas most solitary wasps sting their prey to paralyze and preserve it, without killing, as the provisions for their progeny, social wasps usually sting to defend their colonies from vertebrate predators. Such distinctive venom properties of solitary and social wasps suggest that the main venom components are likely to be different depending on the wasps’ sociality. The present paper reviews venom components and properties of the Aculeata hunting wasps, with a particular emphasis on the comparative aspects of venom compositions and properties between solitary and social wasps. Common components in both solitary and social wasp venoms include hyaluronidase, phospholipase A2, metalloendopeptidase, etc. Although it has been expected that more diverse bioactive components with the functions of prey inactivation and physiology manipulation are present in solitary wasps, available studies on venom compositions of solitary wasps are simply too scarce to generalize this notion. Nevertheless, some neurotoxic peptides (e.g., pompilidotoxin and dendrotoxin-like peptide) and proteins (e.g., insulin-like peptide binding protein) appear to be specific to solitary wasp venom. In contrast, several proteins, such as venom allergen 5 protein, venom acid phosphatase, and various phospholipases, appear to be relatively more specific to social wasp venom. Finally, putative functions of main venom components and their application are also discussed. PMID:26805885

  18. Scorpion venom components that affect ion-channels function

    PubMed Central

    Quintero-Hernández, V.; Jiménez-Vargas, J.M.; Gurrola, G.B.; Valdivia, H.H.F.; Possani, L.D.

    2014-01-01

    SUMMARY The number and types of venom components that affect ion-channel function are reviewed. These are the most important venom components responsible for human intoxication, deserving medical attention, often requiring the use of specific anti-venoms. Special emphasis is given to peptides that recognize Na+-, K+- and Ca++-channels of excitable cells. Knowledge generated by direct isolation of peptides from venom and components deduced from cloned genes, whose amino acid sequences are deposited into databanks are now adays in the order of 1.5 thousands, out of an estimate biodiversity closed to 300,000. Here the diversity of components is briefly reviewed with mention to specific references. Structural characteristic are discussed with examples taken from published work. The principal mechanisms of action of the three different types of peptides are also reviewed. Na+-channel specific venom components usually are modifier of the open and closing kinetic mechanisms of the ion-channels, whereas peptides affecting K+-channels are normally pore blocking agents. The Ryanodine Ca++-channel specific peptides are known for causing sub-conducting stages of the channels conductance and some were shown to be able to internalize penetrating inside the muscle cells. PMID:23891887

  19. Quantitative Proteomic Analysis of Venoms from Russian Vipers of Pelias Group: Phospholipases A2 are the Main Venom Components

    PubMed Central

    Kovalchuk, Sergey I.; Ziganshin, Rustam H.; Starkov, Vladislav G.; Tsetlin, Victor I.; Utkin, Yuri N.

    2016-01-01

    Venoms of most Russian viper species are poorly characterized. Here, by quantitative chromato-mass-spectrometry, we analyzed protein and peptide compositions of venoms from four Vipera species (V. kaznakovi, V. renardi, V. orlovi and V. nikolskii) inhabiting different regions of Russia. In all these species, the main components were phospholipases A2, their content ranging from 24% in V. orlovi to 65% in V. nikolskii. Altogether, enzyme content in venom of V. nikolskii reached ~85%. Among the non-enzymatic proteins, the most abundant were disintegrins (14%) in the V. renardi venom, C-type lectin like (12.5%) in V. kaznakovi, cysteine-rich venom proteins (12%) in V. orlovi and venom endothelial growth factors (8%) in V. nikolskii. In total, 210 proteins and 512 endogenous peptides were identified in the four viper venoms. They represented 14 snake venom protein families, most of which were found in the venoms of Vipera snakes previously. However, phospholipase B and nucleotide degrading enzymes were reported here for the first time. Compositions of V. kaznakovi and V. orlovi venoms were described for the first time and showed the greatest similarity among the four venoms studied, which probably reflected close relationship between these species within the “kaznakovi” complex. PMID:27077884

  20. Solution Structures of Two Homologous Venom Peptides from Sicarius dolichocephalus

    PubMed Central

    Loening, Nikolaus M.; Wilson, Zachary N.; Zobel-Thropp, Pamela A.; Binford, Greta J.

    2013-01-01

    We present solution-state NMR structures for two putative venom peptides from Sicarius dolichocephalus. These peptides were identified from cDNA libraries created from venom gland mRNA and then recombinantly expressed. They are the first structures from any species of Sicarius spiders, and the first peptide structures for any haplogyne spiders. These peptides are homologous to one another, and while they have at most only 20% sequence identity with known venom peptides their structures follow the inhibitor cystine knot motif that has been found in a broad range of venom peptides. PMID:23342149

  1. Deciphering the main venom components of the ectoparasitic ant-like bethylid wasp, Scleroderma guani.

    PubMed

    Zhu, Jia-Ying

    2016-04-01

    Similar to venom found in most venomous animals, parasitoid venoms contain a complex cocktail of proteins with potential agrichemical and pharmaceutical use. Even though parasitoids are one of the largest group of venomous animals, little is known about their venom composition. Recent few studies revealed high variated venom composition existing not only in different species but also between closely related strains, impling that increasing information on the venom proteins from more greater diversity of species of different taxa is key to comprehensively uncover the complete picture of parasitoid venom. Here, we explored the major protein components of the venom of ectoparasitic ant-like bethylid wasp, Scleroderma guani by an integrative transcriptomic-proteomic approach. Illumina deep sequencing of venom apparatus cDNA produced 49,873 transcripts. By mapping the peptide spectral data derived from venom reservoir against these transcripts, mass spectrometry analysis revealed ten main venom proteins, including serine proteinase, metalloprotease, dipeptidyl peptidase IV, esterase, antithrombin-III, acid phosphatase, neural/ectodermal development factor IMP-L2 like protein, venom allergen 3, and unknown protein. Interestingly, one serine proteinase was firstly identified with rarely high molecular weight about 200 kDa in parasitoid venom. The occurrence of abundant acid phosphatase, antithrombin-III and venom allergen 3 demonstrated that S. guani venom composition is similar to that of social wasp venoms. All identified venom genes showed abundantly biased expression in venom apparatus, indicating their virulent functions involved in parasitization. This study shed light on the more better understanding of parasitoid venom evolution across species and will facilitate the further elucidation of function and toxicity of these venom proteins. PMID:26853496

  2. Characterization of the venom from the Australian scorpion Urodacus yaschenkoi: Molecular mass analysis of components, cDNA sequences and peptides with antimicrobial activity.

    PubMed

    Luna-Ramírez, Karen; Quintero-Hernández, Veronica; Vargas-Jaimes, Leonel; Batista, Cesar V F; Winkel, Kenneth D; Possani, Lourival D

    2013-03-01

    The Urodacidae scorpions are the most widely distributed of the four families in Australia and represent half of the species in the continent, yet their venoms remain largely unstudied. This communication reports the first results of a proteome analysis of the venom of the scorpion Urodacus yaschenkoi performed by mass fingerprinting, after high performance liquid chromatography (HPLC) separation. A total of 74 fractions were obtained by HPLC separation allowing the identification of approximately 274 different molecular masses with molecular weights varying from 287 to 43,437 Da. The most abundant peptides were those from 1 K Da and 4-5 K Da representing antimicrobial peptides and putative potassium channel toxins, respectively. Three such peptides were chemically synthesized and tested against Gram-positive and Gram-negative bacteria showing minimum inhibitory concentration in the low micromolar range, but with moderate hemolytic activity. It also reports a transcriptome analysis of the venom glands of the same scorpion species, undertaken by constructing a cDNA library and conducting random sequencing screening of the transcripts. From the resultant cDNA library 172 expressed sequence tags (ESTs) were analyzed. These transcripts were further clustered into 120 unique sequences (23 contigs and 97 singlets). The identified putative proteins can be assorted in several groups, such as those implicated in common cellular processes, putative neurotoxins and antimicrobial peptides. The scorpion U. yaschenkoi is not known to be dangerous to humans and its venom contains peptides similar to those of Opisthacanthus cayaporum (antibacterial), Scorpio maurus palmatus (maurocalcin), Opistophthalmus carinatus (opistoporines) and Hadrurus gerstchi (scorpine-like molecules), amongst others. PMID:23182832

  3. Unique diversity of the venom peptides from the scorpion Androctonus bicolor revealed by transcriptomic and proteomic analysis.

    PubMed

    Zhang, Lei; Shi, Wanxia; Zeng, Xian-Chun; Ge, Feng; Yang, Mingkun; Nie, Yao; Bao, Aorigele; Wu, Shifen; E, Guoji

    2015-10-14

    Androctonus bicolor is one of the most poisonous scorpion species in the world. However, little has been known about the venom composition of the scorpion. To better understand the molecular diversity and medical significance of the venom from the scorpion, we systematically analyzed the venom components by combining transcriptomic and proteomic surveys. Random sequencing of 1000 clones from a cDNA library prepared from the venom glands of the scorpion revealed that 70% of the total transcripts code for venom peptide precursors. Our efforts led to a discovery of 103 novel putative venom peptides. These peptides include NaTx-like, KTx-like and CaTx-like peptides, putative antimicrobial peptides, defensin-like peptides, BPP-like peptides, BmKa2-like peptides, Kunitz-type toxins and some new-type venom peptides without disulfide bridges, as well as many new-type venom peptides that are cross-linked with one, two, three, five or six disulfide bridges, respectively. We also identified three peptides that are identical to known toxins from scorpions. The venom was also analyzed using a proteomic technique. The presence of a total of 16 different venom peptides was confirmed by LC-MS/MS analysis. The discovery of a wide range of new and new-type venom peptides highlights the unique diversity of the venom peptides from A. bicolor. These data also provide a series of novel templates for the development of therapeutic drugs for treating ion channel-associated diseases and infections caused by antibiotic-resistant pathogens, and offer molecular probes for the exploration of structures and functions of various ion channels. PMID:26254009

  4. Synergistically acting PLA₂: peptide hemorrhagic complex from Daboia russelii venom.

    PubMed

    Venkatesh, Madhukumar; Gowda, Veerabasappa

    2013-10-01

    Snake venoms are complex mixture of enzymatic and non-enzymatic proteins. Non-covalent protein-protein interaction leads to protein complexes, which bring about enhanced pharmacological injuries by their synergistic action. Here we report identification and characterization of a new Daboia russelii hemorrhagic complex I (DR-HC-I) containing phospholipase A₂ (PLA₂) and non-enzymatic peptide. DR-HC-I was isolated from the venom of D. russelii by CM-Shepadex-C25 and gel permeation chromatography. Individual components were purified and identified by RP-HPL chromatography, mass spectrometry and N-terminal amino acid sequencing. DR-HC-I complex was lethal to mice with the LD₅₀ dose of 0.7 mg/kg body weight with hemorrhagic and neurotoxic properties. DR-HC-I complex consists of non-hemorrhagic PLA₂ and neurotoxic non-enzymatic peptide. The non-enzymatic peptide quenched the intrinsic fluorescence of PLA₂ in a dose dependent manner, signifying the synergistic interaction between two proteins. PLA₂ and peptide toxin in a 5:2 M ratio induced skin hemorrhage in mice with MHD 20 μg. However, addition of ANS (1-Anilino-8-naphthalene sulfonate) to DR-HC-I complex inhibited skin hemorrhagic effect and also synergic interaction. But there was no impact on PLA₂ due to this synergistic interaction, and indirect hemolytic or plasma re-calcification activity. However, the synergistic interaction of PLA₂ and non-enzymatic peptide contributes to the enhanced venom-induced hemorrhage and toxicity of Daboia russellii venom. PMID:23872188

  5. Diversity of peptide toxins from stinging ant venoms.

    PubMed

    Aili, Samira R; Touchard, Axel; Escoubas, Pierre; Padula, Matthew P; Orivel, Jérôme; Dejean, Alain; Nicholson, Graham M

    2014-12-15

    Ants (Hymenoptera: Formicidae) represent a taxonomically diverse group of arthropods comprising nearly 13,000 extant species. Sixteen ant subfamilies have individuals that possess a stinger and use their venom for purposes such as a defence against predators, competitors and microbial pathogens, for predation, as well as for social communication. They exhibit a range of activities including antimicrobial, haemolytic, cytolytic, paralytic, insecticidal and pain-producing pharmacologies. While ant venoms are known to be rich in alkaloids and hydrocarbons, ant venoms rich in peptides are becoming more common, yet remain understudied. Recent advances in mass spectrometry techniques have begun to reveal the true complexity of ant venom peptide composition. In the few venoms explored thus far, most peptide toxins appear to occur as small polycationic linear toxins, with antibacterial properties and insecticidal activity. Unlike other venomous animals, a number of ant venoms also contain a range of homodimeric and heterodimeric peptides with one or two interchain disulfide bonds possessing pore-forming, allergenic and paralytic actions. However, ant venoms seem to have only a small number of monomeric disulfide-linked peptides. The present review details the structure and pharmacology of known ant venom peptide toxins and their potential as a source of novel bioinsecticides and therapeutic agents. PMID:25448389

  6. The insecticidal potential of venom peptides.

    PubMed

    Smith, Jennifer J; Herzig, Volker; King, Glenn F; Alewood, Paul F

    2013-10-01

    Pest insect species are a burden to humans as they destroy crops and serve as vectors for a wide range of diseases including malaria and dengue. Chemical insecticides are currently the dominant approach for combating these pests. However, the de-registration of key classes of chemical insecticides due to their perceived ecological and human health risks in combination with the development of insecticide resistance in many pest insect populations has created an urgent need for improved methods of insect pest control. The venoms of arthropod predators such as spiders and scorpions are a promising source of novel insecticidal peptides that often have different modes of action to extant chemical insecticides. These peptides have been optimized via a prey-predator arms race spanning hundreds of millions of years to target specific types of insect ion channels and receptors. Here we review the current literature on insecticidal venom peptides, with a particular focus on their structural and pharmacological diversity, and discuss their potential for deployment as insecticides. PMID:23525661

  7. Spider-Venom Peptides as Bioinsecticides

    PubMed Central

    Windley, Monique J.; Herzig, Volker; Dziemborowicz, Sławomir A.; Hardy, Margaret C.; King, Glenn F.; Nicholson, Graham M.

    2012-01-01

    Over 10,000 arthropod species are currently considered to be pest organisms. They are estimated to contribute to the destruction of ~14% of the world’s annual crop production and transmit many pathogens. Presently, arthropod pests of agricultural and health significance are controlled predominantly through the use of chemical insecticides. Unfortunately, the widespread use of these agrochemicals has resulted in genetic selection pressure that has led to the development of insecticide-resistant arthropods, as well as concerns over human health and the environment. Bioinsecticides represent a new generation of insecticides that utilise organisms or their derivatives (e.g., transgenic plants, recombinant baculoviruses, toxin-fusion proteins and peptidomimetics) and show promise as environmentally-friendly alternatives to conventional agrochemicals. Spider-venom peptides are now being investigated as potential sources of bioinsecticides. With an estimated 100,000 species, spiders are one of the most successful arthropod predators. Their venom has proven to be a rich source of hyperstable insecticidal mini-proteins that cause insect paralysis or lethality through the modulation of ion channels, receptors and enzymes. Many newly characterized insecticidal spider toxins target novel sites in insects. Here we review the structure and pharmacology of these toxins and discuss the potential of this vast peptide library for the discovery of novel bioinsecticides. PMID:22741062

  8. Duck-billed platypus venom peptides induce Ca2+ influx in neuroblastoma cells.

    PubMed

    Kita, Masaki; Black, David StC; Ohno, Osamu; Yamada, Kaoru; Kigoshi, Hideo; Uemura, Daisuke

    2009-12-23

    The duck-billed platypus (Ornithorhynchus anatinus) is one of the few venomous Australian mammals. We previously found that its crude venom potently induces Ca(2+) influx in human neuroblastoma IMR-32 cells. Guided by this bioassay, we identified 11 novel peptides, including the heptapeptide H-His-Asp-His-Pro-Asn-Pro-Arg-OH (1). Compounds 1-4 and 5-11 coincided with the 6-9 N-terminal residues of Ornithorhynchus venom C-type natriuretic peptide (OvCNP) and the 132-150 part of OvCNP precursor peptide, respectively. Heptapeptide 1, which is one of the primary components of the venom fluid (approximately 200 ng/microL), induced a significant increase in [Ca(2+)](i) in IMR-32 cells at 75 microM. To the best of our knowledge, this is the first example of the isolation of the N-terminal linear fragments of CNPs in any mammal. PMID:19928958

  9. Non-disulfide-bridged peptides from Tityus serrulatus venom: Evidence for proline-free ACE-inhibitors.

    PubMed

    Pucca, Manuela Berto; Cerni, Felipe Augusto; Pinheiro-Junior, Ernesto Lopes; Zoccal, Karina Furlani; Bordon, Karla de Castro Figueiredo; Amorim, Fernanda Gobbi; Peigneur, Steve; Vriens, Kim; Thevissen, Karin; Cammue, Bruno Philippe Angelo; Júnior, Ronaldo Bragança Martins; Arruda, Eurico; Faccioli, Lúcia Helena; Tytgat, Jan; Arantes, Eliane Candiani

    2016-08-01

    The present study purifies two T. serrulatus non-disulfide-bridged peptides (NDBPs), named venom peptides 7.2 (RLRSKG) and 8 (KIWRS) and details their synthesis and biological activity, comparing to the synthetic venom peptide 7.1 (RLRSKGKK), previously identified. The synthetic replicate peptides were subjected to a range of biological assays: hemolytic, antifungal, antiviral, electrophysiological, immunological and angiotensin-converting enzyme (ACE) inhibition activities. All venom peptides neither showed to be cytolytic nor demonstrated significant antifungal or antiviral activities. Interestingly, peptides were able to modulate macrophages' responses, increasing IL-6 production. The three venom peptides also demonstrated potential to inhibit ACE in the following order: 7.2>7.1>8. The ACE inhibition activity was unexpected, since peptides that display this function are usually proline-rich peptides. In attempt to understand the origin of such small peptides, we discovered that the isolated peptides 7.2 and 8 are fragments of the same molecule, named Pape peptide precursor. Furthermore, the study discusses that Pape fragments could be originated from a post-splitting mechanism resulting from metalloserrulases and other proteinases cleavage, which can be seen as a clever mechanism used by the scorpion to enlarge its repertoire of venom components. Scorpion venom remains as an interesting source of bioactive proteins and this study advances our knowledge about three NDBPs and their biological activities. PMID:27221550

  10. Use of Venom Peptides to Probe Ion Channel Structure and Function*

    PubMed Central

    Dutertre, Sébastien; Lewis, Richard J.

    2010-01-01

    Venoms of snakes, scorpions, spiders, insects, sea anemones, and cone snails are complex mixtures of mostly peptides and small proteins that have evolved for prey capture and/or defense. These deadly animals have long fascinated scientists and the public. Early studies isolated lethal components in the search for cures and understanding of their mechanisms of action. Ion channels have emerged as targets for many venom peptides, providing researchers highly selective and potent molecular probes that have proved invaluable in unraveling ion channel structure and function. This minireview highlights molecular details of their toxin-receptor interactions and opportunities for development of peptide therapeutics. PMID:20189991

  11. Inhibition of Hemorragic Snake Venom Components: Old and New Approaches

    PubMed Central

    Panfoli, Isabella; Calzia, Daniela; Ravera, Silvia; Morelli, Alessandro

    2010-01-01

    Snake venoms are complex toxin mixtures. Viperidae and Crotalidae venoms, which are hemotoxic, are responsible for most of the envenomations around the world. Administration of antivenins aimed at the neutralization of toxins in humans is prone to potential risks. Neutralization of snake venom toxins has been achieved through different approaches: plant extracts have been utilized in etnomedicine. Direct electric current from low voltage showed neutralizing properties against venom phospholipase A2 and metalloproteases. This mini-review summarizes new achievements in venom key component inhibition. A deeper knowledge of alternative ways to inhibit venom toxins may provide supplemental treatments to serum therapy. PMID:22069593

  12. Bioactive Mimetics of Conotoxins and other Venom Peptides

    PubMed Central

    Duggan, Peter J.; Tuck, Kellie L.

    2015-01-01

    Ziconotide (Prialt®), a synthetic version of the peptide ω-conotoxin MVIIA found in the venom of a fish-hunting marine cone snail Conus magnus, is one of very few drugs effective in the treatment of intractable chronic pain. However, its intrathecal mode of delivery and narrow therapeutic window cause complications for patients. This review will summarize progress in the development of small molecule, non-peptidic mimics of Conotoxins and a small number of other venom peptides. This will include a description of how some of the initially designed mimics have been modified to improve their drug-like properties. PMID:26501323

  13. Bioactive Mimetics of Conotoxins and other Venom Peptides.

    PubMed

    Duggan, Peter J; Tuck, Kellie L

    2015-10-01

    Ziconotide (Prialt®), a synthetic version of the peptide ω-conotoxin MVIIA found in the venom of a fish-hunting marine cone snail Conus magnus, is one of very few drugs effective in the treatment of intractable chronic pain. However, its intrathecal mode of delivery and narrow therapeutic window cause complications for patients. This review will summarize progress in the development of small molecule, non-peptidic mimics of Conotoxins and a small number of other venom peptides. This will include a description of how some of the initially designed mimics have been modified to improve their drug-like properties. PMID:26501323

  14. A perspective on toxicology of Conus venom peptides.

    PubMed

    Kumar, Palanisamy Satheesh; Kumar, Dhanabalan Senthil; Umamaheswari, Sundaresan

    2015-05-01

    The evolutionarily unique and ecologically diverse family Conidae presents fundamental opportunities for marine pharmacology research and drug discovery. The focus of this investigation is to summarize the worldwide distribution of Conus and their species diversity with special reference to the Indian coast. In addition, this study will contribute to understanding the structural properties of conotoxin and therapeutic application of Conus venom peptides. Cone snails can inject a mix of various conotoxins and these venoms are their major weapon for prey capture, and may also have other biological purposes, and some of these conotoxins fatal to humans. Conus venoms contain a remarkable diversity of pharmacologically active small peptides; their targets are an iron channel and receptors in the neuromuscular system. Interspecific divergence is pronounced in venom peptide genes, which is generally attributed to their species specific biotic interactions. There is a notable interspecific divergence observed in venom peptide genes, which can be justified as of biotic interactions that stipulate species peculiar habitat and ecology of cone snails. There are several conopeptides used in clinical trials and one peptide (Ziconotide) has received FDA approval for treatment of pain. This perspective provides a comprehensive overview of the distribution of cone shells and focus on the molecular approach in documenting their taxonomy and diversity with special reference to geographic distribution of Indian cone snails, structure and properties of conopeptide and their pharmacological targets and future directions. PMID:26003592

  15. Venom regeneration in the centipede Scolopendra polymorpha: evidence for asynchronous venom component synthesis.

    PubMed

    Cooper, Allen M; Kelln, Wayne J; Hayes, William K

    2014-12-01

    Venom regeneration comprises a vital process in animals that rely on venom for prey capture and defense. Venom regeneration in scolopendromorph centipedes likely influences their ability to subdue prey and defend themselves, and may influence the quantity and quality of venom extracted by researchers investigating the venom's biochemistry. We investigated venom volume and total protein regeneration during the 14-day period subsequent to venom extraction in the North American centipede Scolopendra polymorpha. We further tested the hypothesis that venom protein components, separated by reversed-phase fast protein liquid chromatography (RP-FPLC), undergo asynchronous (non-parallel) synthesis. During the first 48 h, volume and protein mass increased linearly. Protein regeneration lagged behind volume regeneration, with 65–86% of venom volume and 29–47% of protein mass regenerated during the first 2 days. No additional regeneration occurred over the subsequent 12 days, and neither volume nor protein mass reached initial levels 7 months later (93% and 76%, respectively). Centipede body length was negatively associated with rate of venom regeneration. Analysis of chromatograms of individual venom samples revealed that 5 of 10 chromatographic regions and 12 of 28 peaks demonstrated changes in percent of total peak area (i.e., percent of total protein) among milking intervals, indicating that venom proteins are regenerated asynchronously. Moreover, specimens from Arizona and California differed in relative amounts of some venom components. The considerable regeneration of venom occurring within the first 48 h, despite the reduced protein content, suggests that predatory and defensive capacities are minimally constrained by the timing of venom replacement. PMID:25456977

  16. Computational Studies of Venom Peptides Targeting Potassium Channels.

    PubMed

    Chen, Rong; Chung, Shin-Ho

    2015-12-01

    Small peptides isolated from the venom of animals are potential scaffolds for ion channel drug discovery. This review article mainly focuses on the computational studies that have advanced our understanding of how various toxins interfere with the function of K⁺ channels. We introduce the computational tools available for the study of toxin-channel interactions. We then discuss how these computational tools have been fruitfully applied to elucidate the mechanisms of action of a wide range of venom peptides from scorpions, spiders, and sea anemone. PMID:26633507

  17. Computational Studies of Venom Peptides Targeting Potassium Channels

    PubMed Central

    Chen, Rong; Chung, Shin-Ho

    2015-01-01

    Small peptides isolated from the venom of animals are potential scaffolds for ion channel drug discovery. This review article mainly focuses on the computational studies that have advanced our understanding of how various toxins interfere with the function of K+ channels. We introduce the computational tools available for the study of toxin-channel interactions. We then discuss how these computational tools have been fruitfully applied to elucidate the mechanisms of action of a wide range of venom peptides from scorpions, spiders, and sea anemone. PMID:26633507

  18. Linear antimicrobial peptides from Ectatomma quadridens ant venom.

    PubMed

    Pluzhnikov, Kirill A; Kozlov, Sergey A; Vassilevski, Alexander A; Vorontsova, Olga V; Feofanov, Alexei V; Grishin, Eugene V

    2014-12-01

    Venoms from three poneromorph ant species (Paraponera clavata, Ectatomma quadridens and Ectatomma tuberculatum) were investigated for the growth inhibition of Gram-positive and Gram-negative bacteria. It was shown that the venom of E. quadridens and its peptide fraction in particular possess marked antibacterial action. Three linear antimicrobial peptides sharing low similarity to the well-known ponericin peptides were isolated from this ant venom by means of size-exclusion and reversed-phase chromatography. The peptides showed antimicrobial activity at low micromolar concentrations. Their primary structure was established by direct Edman sequencing in combination with mass spectrometry. The most active peptide designated ponericin-Q42 was chemically synthesized. Its secondary structure was investigated in aqueous and membrane-mimicking environment, and the peptide was shown to be partially helical already in water, which is unusual for short linear peptides. Analysis of its activity on different bacterial strains, human erythrocytes and chronic myelogenous leukemia K562 cells revealed that the peptide shows broad spectrum cytolytic activity at micromolar and submicromolar concentrations. Ponericin-Q42 also possesses weak toxic activity on flesh fly larvae with LD50 of ∼105 μg/g. PMID:25220871

  19. Characterization of Three Venom Peptides from the Spitting Spider Scytodes thoracica

    PubMed Central

    Ariki, Nathanial K.; Muñoz, Lisa E.; Armitage, Elizabeth L.; Goodstein, Francesca R.; George, Kathryn G.; Smith, Vanessa L.; Vetter, Irina; Herzig, Volker; King, Glenn F.; Loening, Nikolaus M.

    2016-01-01

    We present the solution-state NMR structures and preliminary functional characterizations of three venom peptides identified from the spitting spider Scytodes thoracica. Despite little sequence identity to other venom peptides, structural characterization reveals that these peptides contain an inhibitor cystine knot motif common to many venom peptides. These are the first structures for any peptide or protein from spiders of the Scytodidae family. Many venom peptides target neuronal ion channels or receptors. However, we have not been able to determine the target of these Scytodes peptides so we can only state with certainty the channels and receptors that they do not target. PMID:27227898

  20. Characterization of Three Venom Peptides from the Spitting Spider Scytodes thoracica.

    PubMed

    Ariki, Nathanial K; Muñoz, Lisa E; Armitage, Elizabeth L; Goodstein, Francesca R; George, Kathryn G; Smith, Vanessa L; Vetter, Irina; Herzig, Volker; King, Glenn F; Loening, Nikolaus M

    2016-01-01

    We present the solution-state NMR structures and preliminary functional characterizations of three venom peptides identified from the spitting spider Scytodes thoracica. Despite little sequence identity to other venom peptides, structural characterization reveals that these peptides contain an inhibitor cystine knot motif common to many venom peptides. These are the first structures for any peptide or protein from spiders of the Scytodidae family. Many venom peptides target neuronal ion channels or receptors. However, we have not been able to determine the target of these Scytodes peptides so we can only state with certainty the channels and receptors that they do not target. PMID:27227898

  1. Deep Venomics Reveals the Mechanism for Expanded Peptide Diversity in Cone Snail Venom*

    PubMed Central

    Dutertre, Sébastien; Jin, Ai-hua; Kaas, Quentin; Jones, Alun; Alewood, Paul F.; Lewis, Richard J.

    2013-01-01

    Cone snails produce highly complex venom comprising mostly small biologically active peptides known as conotoxins or conopeptides. Early estimates that suggested 50–200 venom peptides are produced per species have been recently increased at least 10-fold using advanced mass spectrometry. To uncover the mechanism(s) responsible for generating this impressive diversity, we used an integrated approach combining second-generation transcriptome sequencing with high sensitivity proteomics. From the venom gland transcriptome of Conus marmoreus, a total of 105 conopeptide precursor sequences from 13 gene superfamilies were identified. Over 60% of these precursors belonged to the three gene superfamilies O1, T, and M, consistent with their high levels of expression, which suggests these conotoxins play an important role in prey capture and/or defense. Seven gene superfamilies not previously identified in C. marmoreus, including five novel superfamilies, were also discovered. To confirm the expression of toxins identified at the transcript level, the injected venom of C. marmoreus was comprehensively analyzed by mass spectrometry, revealing 2710 and 3172 peptides using MALDI and ESI-MS, respectively, and 6254 peptides using an ESI-MS TripleTOF 5600 instrument. All conopeptides derived from transcriptomic sequences could be matched to masses obtained on the TripleTOF within 100 ppm accuracy, with 66 (63%) providing MS/MS coverage that unambiguously confirmed these matches. Comprehensive integration of transcriptomic and proteomic data revealed for the first time that the vast majority of the conopeptide diversity arises from a more limited set of genes through a process of variable peptide processing, which generates conopeptides with alternative cleavage sites, heterogeneous post-translational modifications, and highly variable N- and C-terminal truncations. Variable peptide processing is expected to contribute to the evolution of venoms, and explains how a limited set of

  2. New polypeptide components purified from mamba venom.

    PubMed

    Tytgat, J; Vandenberghe, I; Ulens, C; Van Beeumen, J

    2001-03-01

    New polypeptide components have been isolated from Dendroaspis angusticeps venom using chromatography. Two polypeptides containing 59 and 57 amino acids, called 'DaE1' and 'DaE2' respectively, have been purified to homogeneity and fully sequenced. Spectrometric analysis yielded masses of 6631.5 and 6389.0 Da, respectively. The polypeptides share 98 and 95% identity, respectively, with trypsin inhibitor E (DpE) of Dendroaspis polylepis polylepis. 'DaE' polypeptides inhibit Kv1.1 channels with an IC(50) value in the range of 300 nM. They can be considered as new dendrotoxins, albeit with fairly low affinity as compared to alpha-DTX. 'DaE' polypeptides do not affect Kir2.1 channels. PMID:11240130

  3. The Cuban scorpion Rhopalurus junceus (Scorpiones, Buthidae): component variations in venom samples collected in different geographical areas

    PubMed Central

    2013-01-01

    Backgound The venom of the Cuban scorpion Rhopalurus junceus is poorly study from the point of view of their components at molecular level and the functions associated. The purpose of this article was to conduct a proteomic analysis of venom components from scorpions collected in different geographical areas of the country. Results Venom from the blue scorpion, as it is called, was collected separately from specimens of five distinct Cuban towns (Moa, La Poa, Limonar, El Chote and Farallones) of the Nipe-Sagua-Baracoa mountain massif and fractionated by high performance liquid chromatography (HPLC); the molecular masses of each fraction were ascertained by mass spectrometry analysis. At least 153 different molecular mass components were identified among the five samples analyzed. Molecular masses varied from 466 to 19755 Da. Scorpion HPLC profiles differed among these different geographical locations and the predominant molecular masses of their components. The most evident differences are in the relative concentration of the venom components. The most abundant components presented molecular weights around 4 kDa, known to be K+-channel specific peptides, and 7 kDa, known to be Na+-channel specific peptides, but with small molecular weight differences. Approximately 30 peptides found in venom samples from the different geographical areas are identical, supporting the idea that they all probably belong to the same species, with some interpopulational variations. Differences were also found in the presence of phospholipase, found in venoms from the Poa area (molecular weights on the order of 14 to 19 kDa). The only ubiquitous enzyme identified in the venoms from all five localities studied (hyaluronidase) presented the same 45 kD molecular mass, identified by gel electrophoresis analysis. Conclusions The venom of these scorpions from different geographical areas seem to be similar, and are rich in peptides that have of the same molecular masses of the peptides

  4. A Novel Factor Xa-Inhibiting Peptide from Centipedes Venom.

    PubMed

    Kong, Yi; Shao, Yu; Chen, Hao; Ming, Xin; Wang, Jin-Bin; Li, Zhi-Yu; Wei, Ji-Fu

    2013-01-01

    Centipedes have been used as traditional medicine for thousands of years in China. Centipede venoms consist of many biochemical peptides and proteins. Factor Xa (FXa) is a serine endopeptidase that plays the key role in blood coagulation, and has been used as a new target for anti-thrombotic drug development. A novel FXa inhibitor, a natural peptide with the sequence of Thr-Asn-Gly-Tyr-Thr (TNGYT), was isolated from the venom of Scolopendra subspinipes mutilans using a combination of size-exclusion and reverse-phase chromatography. The molecular weight of the TNGYT peptide was 554.3 Da measured by electrospray ionization mass spectrometry. The amino acid sequence of TNGYT was determined by Edman degradation. TNGYT inhibited the activity of FXa in a dose-dependent manner with an IC50 value of 41.14 mg/ml. It prolonged the partial thromboplastin time and prothrombin time in both in vitro and ex vivo assays. It also significantly prolonged whole blood clotting time and bleeding time in mice. This is the first report that an FXa inhibiting peptide was isolated from centipedes venom. PMID:24273471

  5. Scorpion Venom Heat-Resistant Peptide Protects Transgenic Caenorhabditis elegans from β-Amyloid Toxicity

    PubMed Central

    Zhang, Xiao-Gang; Wang, Xi; Zhou, Ting-Ting; Wu, Xue-Fei; Peng, Yan; Zhang, Wan-Qin; Li, Shao; Zhao, Jie

    2016-01-01

    Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Our previous studies found SVHRP could enhance neurogenesis and inhibit microglia-mediated neuroinflammation in vivo. Here, we use the transgenic CL4176, CL2006, and CL2355 strains of Caenorhabditis elegans which express the human Aβ1-42 to investigate the effects and the possible mechanisms of SVHRP mediated protection against Aβ toxicity in vivo. The results showed that SVHRP-fed worms displayed remarkably decreased paralysis, less abundant toxic Aβ oligomers, reduced Aβ plaque deposition with respect to untreated animals. SVHRP also suppressed neuronal Aβ expression-induced defects in chemotaxis behavior and attenuated levels of ROS in the transgenic C. elegans. Taken together, these results suggest SVHRP could protect against Aβ-induced toxicity in C. elegans. Further studies need to be conducted in murine models and humans to analyze the effectiveness of the peptide. PMID:27507947

  6. Scorpion Venom Heat-Resistant Peptide Protects Transgenic Caenorhabditis elegans from β-Amyloid Toxicity.

    PubMed

    Zhang, Xiao-Gang; Wang, Xi; Zhou, Ting-Ting; Wu, Xue-Fei; Peng, Yan; Zhang, Wan-Qin; Li, Shao; Zhao, Jie

    2016-01-01

    Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Our previous studies found SVHRP could enhance neurogenesis and inhibit microglia-mediated neuroinflammation in vivo. Here, we use the transgenic CL4176, CL2006, and CL2355 strains of Caenorhabditis elegans which express the human Aβ1-42 to investigate the effects and the possible mechanisms of SVHRP mediated protection against Aβ toxicity in vivo. The results showed that SVHRP-fed worms displayed remarkably decreased paralysis, less abundant toxic Aβ oligomers, reduced Aβ plaque deposition with respect to untreated animals. SVHRP also suppressed neuronal Aβ expression-induced defects in chemotaxis behavior and attenuated levels of ROS in the transgenic C. elegans. Taken together, these results suggest SVHRP could protect against Aβ-induced toxicity in C. elegans. Further studies need to be conducted in murine models and humans to analyze the effectiveness of the peptide. PMID:27507947

  7. Activities of Venom Proteins and Peptides with Possible Therapeutic Applications from Bees and WASPS.

    PubMed

    Ye, Xiujuan; Guan, Suzhen; Liu, Jiwen; Ng, Charlene C W; Chan, Gabriel H H; Sze, Stephen C W; Zhang, Kalin Y; Naude, Ryno; Rolka, Krzysztof; Wong, Jack Ho; Ng, Tzi Bun

    2016-01-01

    The variety of proteins and peptides isolated from honey bee venom and wasp venom includes melittin, adiapin, apamine, bradykinin, cardiopep, mast cell degranulating peptide, mastoparan, phospholipase A2 and secapin. Some of the activities they demonstrate may find therapeutic applications. PMID:27323949

  8. Venom gland components of the ectoparasitoid wasp, Anisopteromalus calandrae

    PubMed Central

    Perkin, Lindsey C; Friesen, Kenlee S; Flinn, Paul W; Oppert, Brenda

    2015-01-01

    The wasp Anisopteromalus calandrae is a small ectoparasitoid that attacks stored product pest beetle larvae that develop inside grain kernels, and is thus a potential insect control tool. The components of A. calandrae venom have not been studied, but venom from other organisms contains proteins with potential applications, such as pest management tools and treatments for human diseases. We dissected female A. calandrae and collected venom and associated glands. Using high throughput sequencing, a venom gland transcriptome was assembled that contained 45,432 contigs, 25,726 of which had BLASTx hits. The majority of hits were to Nasonia vitripennis, an ectoparasitoid from the same taxonomic family, as well as other bees, wasps, and ants. Gene ontology grouped sequences into eleven molecular functions, among which binding and catalytic activity had the most representatives. In this study, we highlighted the most abundant sequences, including those that are likely the functional components of the venom. Specifically, we focused on genes encoding proteins potentially involved in host developmental arrest, disrupting the host immune system, host paralysis, and transcripts that support these functions. Our report is the first to characterize components of the A. calandrae venom gland that may be useful as control tools for insect pests and other applications. PMID:26998218

  9. Molecular Cloning and Sequence Analysis of the cDNAs Encoding Toxin-Like Peptides from the Venom Glands of Tarantula Grammostola rosea

    PubMed Central

    Kimura, Tadashi; Ono, Seigo; Kubo, Tai

    2012-01-01

    Tarantula venom glands produce a large variety of bioactive peptides. Here we present the identification of venom components obtained by sequencing clones isolated from a cDNA library prepared from the venom glands of the Chilean common tarantula, Grammostola rosea. The cDNA sequences of about 1500 clones out of 4000 clones were analyzed after selection using several criteria. Forty-eight novel toxin-like peptides (GTx1 to GTx7, and GTx-TCTP and GTx-CRISP) were predicted from the nucleotide sequences. Among these peptides, twenty-four toxins are ICK motif peptides, eleven peptides are MIT1-like peptides, and seven are ESTX-like peptides. Peptides similar to JZTX-64, aptotoxin, CRISP, or TCTP are also obtained. GTx3 series possess a cysteine framework that is conserved among vertebrate MIT1, Bv8, prokineticins, and invertebrate astakines. GTx-CRISP is the first CRISP-like protein identified from the arthropod venom. Real-time PCR revealed that the transcripts for TCTP-like peptide are expressed in both the pereopodal muscle and the venom gland. Furthermore, a unique peptide GTx7-1, whose signal and prepro sequences are essentially identical to those of HaTx1, was obtained. PMID:22500178

  10. Using a Novel Ontology to Inform the Discovery of Therapeutic Peptides from Animal Venoms.

    PubMed

    Romano, Joseph D; Tatonetti, Nicholas P

    2016-01-01

    Venoms and venom-derived compounds constitute a rich and largely unexplored source of potentially therapeutic compounds. To facilitate biomedical research, it is necessary to design a robust informatics infrastructure that will allow semantic computation of venom concepts in a standardized, consistent manner. We have designed an ontology of venom-related concepts - named Venom Ontology - that reuses an existing public data source: UniProt's Tox-Prot database. In addition to describing the ontology and its construction, we have performed three separate case studies demonstrating its utility: (1) An exploration of venom peptide similarity networks within specific genera; (2) A broad overview of the distribution of available data among common taxonomic groups spanning the known tree of life; and (3) An analysis of the distribution of venom complexity across those same taxonomic groups. Venom Ontology is publicly available on BioPortal at http://bioportal.bioontology.org/ontologies/CU-VO. PMID:27570672

  11. Structural and Functional Diversity of Peptide Toxins from Tarantula Haplopelma hainanum (Ornithoctonus hainana) Venom Revealed by Transcriptomic, Peptidomic, and Patch Clamp Approaches.

    PubMed

    Zhang, Yi-Ya; Huang, Yong; He, Quan-Ze; Luo, Ji; Zhu, Li; Lu, Shan-Shan; Liu, Jin-Yan; Huang, Peng-Fei; Zeng, Xiong-Zhi; Liang, Song-Ping

    2015-05-29

    Spider venom is a complex mixture of bioactive peptides to subdue their prey. Early estimates suggested that over 400 venom peptides are produced per species. In order to investigate the mechanisms responsible for this impressive diversity, transcriptomics based on second generation high throughput sequencing was combined with peptidomic assays to characterize the venom of the tarantula Haplopelma hainanum. The genes expressed in the venom glands were identified, and the bioactivity of their protein products was analyzed using the patch clamp technique. A total of 1,136 potential toxin precursors were identified that clustered into 90 toxin groups, of which 72 were novel. The toxin peptides clustered into 20 cysteine scaffolds that included between 4 and 12 cysteines, and 14 of these groups were newly identified in this spider. Highly abundant toxin peptide transcripts were present and resulted from hypermutation and/or fragment insertion/deletion. In combination with variable post-translational modifications, this genetic variability explained how a limited set of genes can generate hundreds of toxin peptides in venom glands. Furthermore, the intraspecies venom variability illustrated the dynamic nature of spider venom and revealed how complex components work together to generate diverse bioactivities that facilitate adaptation to changing environments, types of prey, and milking regimes in captivity. PMID:25770214

  12. Structural and Functional Diversity of Peptide Toxins from Tarantula Haplopelma hainanum (Ornithoctonus hainana) Venom Revealed by Transcriptomic, Peptidomic, and Patch Clamp Approaches*

    PubMed Central

    Zhang, Yi-Ya; Huang, Yong; He, Quan-Ze; Luo, Ji; Zhu, Li; Lu, Shan-Shan; Liu, Jin-Yan; Huang, Peng-Fei; Zeng, Xiong-Zhi; Liang, Song-Ping

    2015-01-01

    Spider venom is a complex mixture of bioactive peptides to subdue their prey. Early estimates suggested that over 400 venom peptides are produced per species. In order to investigate the mechanisms responsible for this impressive diversity, transcriptomics based on second generation high throughput sequencing was combined with peptidomic assays to characterize the venom of the tarantula Haplopelma hainanum. The genes expressed in the venom glands were identified, and the bioactivity of their protein products was analyzed using the patch clamp technique. A total of 1,136 potential toxin precursors were identified that clustered into 90 toxin groups, of which 72 were novel. The toxin peptides clustered into 20 cysteine scaffolds that included between 4 and 12 cysteines, and 14 of these groups were newly identified in this spider. Highly abundant toxin peptide transcripts were present and resulted from hypermutation and/or fragment insertion/deletion. In combination with variable post-translational modifications, this genetic variability explained how a limited set of genes can generate hundreds of toxin peptides in venom glands. Furthermore, the intraspecies venom variability illustrated the dynamic nature of spider venom and revealed how complex components work together to generate diverse bioactivities that facilitate adaptation to changing environments, types of prey, and milking regimes in captivity. PMID:25770214

  13. Proteomics and Deep Sequencing Comparison of Seasonally Active Venom Glands in the Platypus Reveals Novel Venom Peptides and Distinct Expression Profiles*

    PubMed Central

    Wong, Emily S. W.; Morgenstern, David; Mofiz, Ehtesham; Gombert, Sara; Morris, Katrina M.; Temple-Smith, Peter; Renfree, Marilyn B.; Whittington, Camilla M.; King, Glenn F.; Warren, Wesley C.; Papenfuss, Anthony T.; Belov, Katherine

    2012-01-01

    The platypus is a venomous monotreme. Male platypuses possess a spur on their hind legs that is connected to glands in the pelvic region. They produce venom only during the breeding season, presumably to fight off conspecifics. We have taken advantage of this unique seasonal production of venom to compare the transcriptomes of in- and out-of-season venom glands, in conjunction with proteomic analysis, to identify previously undiscovered venom genes. Comparison of the venom glands revealed distinct gene expression profiles that are consistent with changes in venom gland morphology and venom volumes in and out of the breeding season. Venom proteins were identified through shot-gun sequenced venom proteomes of three animals using RNA-seq-derived transcripts for peptide-spectral matching. 5,157 genes were expressed in the venom glands, 1,821 genes were up-regulated in the in-season gland, and 10 proteins were identified in the venom. New classes of platypus-venom proteins identified included antimicrobials, amide oxidase, serpin protease inhibitor, proteins associated with the mammalian stress response pathway, cytokines, and other immune molecules. Five putative toxins have only been identified in platypus venom: growth differentiation factor 15, nucleobindin-2, CD55, a CXC-chemokine, and corticotropin-releasing factor-binding protein. These novel venom proteins have potential biomedical and therapeutic applications and provide insights into venom evolution. PMID:22899769

  14. Inhibition of CFTR channels by a peptide toxin of scorpion venom.

    PubMed

    Fuller, Matthew D; Zhang, Zhi-Ren; Cui, Guiying; Kubanek, Julia; McCarty, Nael A

    2004-11-01

    Peptide toxins have been valuable probes in efforts to identify amino acid residues that line the permeation pathway of cation-selective channels. However, no peptide toxins have been identified that interact with known anion-selective channels such as the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR channels are expressed in epithelial cells and are associated with several genetic disorders, including cystic fibrosis and polycystic kidney disease. Several organic inhibitors have been used to investigate the structure of the Cl- permeation pathway in CFTR. However, investigations of the wider cytoplasmic vestibule have been hindered by the lack of a high-affinity blocker that interacts with residues in this area. In this study we show that venom of the scorpion Leiurus quinquestriatus hebraeus reversibly inhibits CFTR, in a voltage-independent manner, by decreasing single-channel mean burst duration and open probability only when applied to the cytoplasmic surface of phosphorylated channels. Venom was able to decrease burst duration and open probability even when CFTR channels were locked open by treatment with either vanadate or adenosine 5'-(beta,gamma-imido)triphosphate, and block was strengthened on reduction of extracellular Cl- concentration, suggesting inhibition by a pore-block mechanism. Venom had no effect on ATP-dependent macroscopic opening rate in channels studied by inside-out macropatches. Interestingly, the inhibitory activity was abolished by proteinase treatment. We conclude that a peptide toxin contained in the scorpion venom inhibits CFTR channels by a pore-block mechanism; these experiments provide the first step toward isolation of the active component, which would be highly valuable as a probe for CFTR structure and function. PMID:15240343

  15. Venom peptides cathelicidin and lycotoxin cause strong inhibition of Escherichia coli ATP synthase.

    PubMed

    Azim, Sofiya; McDowell, Derek; Cartagena, Alec; Rodriguez, Ricky; Laughlin, Thomas F; Ahmad, Zulfiqar

    2016-06-01

    Venom peptides are known to have strong antimicrobial activity and anticancer properties. King cobra cathelicidin or OH-CATH (KF-34), banded krait cathelicidin (BF-30), wolf spider lycotoxin I (IL-25), and wolf spider lycotoxin II (KE-27) venom peptides were found to strongly inhibit Escherichia coli membrane bound F1Fo ATP synthase. The potent inhibition of wild-type E. coli in comparison to the partial inhibition of null E. coli by KF-34, BF-30, Il-25, or KE-27 clearly links the bactericidal properties of these venom peptides to the binding and inhibition of ATP synthase along with the possibility of other inhibitory targets. The four venom peptides KF-34, BF-30, IL-25, and KE-27, caused ≥85% inhibition of wild-type membrane bound E.coli ATP synthase. Venom peptide induced inhibition of ATP synthase and the strong abrogation of wild-type E. coli cell growth in the presence of venom peptides demonstrates that ATP synthase is a potent membrane bound molecular target for venom peptides. Furthermore, the process of inhibition was found to be fully reversible. PMID:26930579

  16. Autocrine-Based Selection of Drugs That Target Ion Channels from Combinatorial Venom Peptide Libraries.

    PubMed

    Zhang, Hongkai; Du, Mingjuan; Xie, Jia; Liu, Xiao; Sun, Jingying; Wang, Wei; Xin, Xiu; Possani, Lourival D; Yea, Kyungmoo; Lerner, Richard A

    2016-08-01

    Animal venoms represent a rich source of pharmacologically active peptides that interact with ion channels. However, a challenge to discovering drugs remains because of the slow pace at which venom peptides are discovered and refined. An efficient autocrine-based high-throughput selection system was developed to discover and refine venom peptides that target ion channels. The utility of this system was demonstrated by the discovery of novel Kv1.3 channel blockers from a natural venom peptide library that was formatted for autocrine-based selection. We also engineered a Kv1.3 blocker peptide (ShK) derived from sea anemone to generate a subtype-selective Kv1.3 blocker with a long half-life in vivo. PMID:27197631

  17. Proteome and allergenome of Asian wasp, Vespa affinis, venom and IgE reactivity of the venom components.

    PubMed

    Sookrung, Nitat; Wong-din-Dam, Siriporn; Tungtrongchitr, Anchalee; Reamtong, Onrapak; Indrawattana, Nitaya; Sakolvaree, Yuwaporn; Visitsunthorn, Nualanong; Manuyakorn, Wiparat; Chaicumpa, Wanpen

    2014-03-01

    Vespa affinis (Asian wasp, Thai banded tiger wasp, or local name: Tor Hua Seua) causes the most frequent incidence of medically important Hymenoptera sting in South and Southeast Asia. However, data on the venom components attributable to the sting derived-clinical manifestations (local reactions, IgE mediated-anaphylaxis, or systemic envenomation) are lacking. This study provides the first set information on V. affinis venom proteome, allergenome, and IgE reactivity of individual venom components. From 2DE-gel based-proteomics, the venom revealed 93 protein spots, of which proteins in 51 spots could be identified and classified into three groups: typical venom components and structural and housekeeping proteins. Venom proteins in 32 spots reacted with serum IgE of wasp allergic patients. Major allergenic proteins that reacted to IgE of >50% of the wasp allergic patients included PLA1 (100%), arginine kinase (73%), heat shock 70 kDa protein (73.3%), venom allergen-5 (66.7%), enolase (66.7%), PLA1 magnifin (60%), glyceraldehyde-3-phosphate dehydrogenase (60%), hyaluronidase (53.3%), and fructose-bisphosphate aldolase (53.3%). The venom minor allergens were GB17876 transcript (40%), GB17291 transcript (20%), malic enzyme (13.3%), aconitate hydratase (6.7%), and phosphoglucomutase (6.7%). The information has diagnostic and clinical implications for future improvement of case diagnostic sensitivity and specificity, component-resolve diagnosis, and design of specific Hymenoptera venom immunotherapy. PMID:24437991

  18. Novel structural class of four disulfide-bridged peptides from Tityus serrulatus venom.

    PubMed

    Pimenta, Adriano M C; Legros, Christian; Almeida, Flávia de Marco; Mansuelle, Pascal; De Lima, Maria Elena; Bougis, Pierre E; Martin-Eauclaire, Marie France

    2003-02-21

    A new structural class of short peptides folded by four disulfide-bridges was found in the venom of the Brazilian scorpion Tityus serrulatus. Peptides were put on evidence independently by means of two different approaches of structurally guided prospection. First, a cDNA sequence was obtained using a degenerate primer constructed according to the C-terminal sequence of kaliotoxin (KTx2), from the Androctonus australis venom. Second, MALDI-TOF mass spectrometry analyses of toxic fraction FIII from T. serrulatus venom revealed a family of molecules ranging approximately from 2900 to 3000 Da. Three new peptides were isolated and named TsPep1, TsPep2, and TsPep3. Biochemical characterization showed that they are 29 amino acids long, constrained by a new pattern of four disulfide-bridges. These results enable us to classify these new molecules as part of a novel structural class of short peptides from scorpion venoms. PMID:12589824

  19. Functional characterization on invertebrate and vertebrate tissues of tachykinin peptides from octopus venoms.

    PubMed

    Ruder, Tim; Ali, Syed Abid; Ormerod, Kiel; Brust, Andreas; Roymanchadi, Mary-Louise; Ventura, Sabatino; Undheim, Eivind A B; Jackson, Timothy N W; Mercier, A Joffre; King, Glenn F; Alewood, Paul F; Fry, Bryan G

    2013-09-01

    It has been previously shown that octopus venoms contain novel tachykinin peptides that despite being isolated from an invertebrate, contain the motifs characteristic of vertebrate tachykinin peptides rather than being more like conventional invertebrate tachykinin peptides. Therefore, in this study we examined the effect of three variants of octopus venom tachykinin peptides on invertebrate and vertebrate tissues. While there were differential potencies between the three peptides, their relative effects were uniquely consistent between invertebrate and vertebrae tissue assays. The most potent form (OCT-TK-III) was not only the most anionically charged but also was the most structurally stable. These results not only reveal that the interaction of tachykinin peptides is more complex than previous structure-function theories envisioned, but also reinforce the fundamental premise that animal venoms are rich resources of novel bioactive molecules, which are useful investigational ligands and some of which may be useful as lead compounds for drug design and development. PMID:23850991

  20. Scorpion Venom Heat-Resistant Peptide Attenuates Glial Fibrillary Acidic Protein Expression via c-Jun/AP-1.

    PubMed

    Cao, Zhen; Wu, Xue-Fei; Peng, Yan; Zhang, Rui; Li, Na; Yang, Jin-Yi; Zhang, Shu-Qin; Zhang, Wan-Qin; Zhao, Jie; Li, Shao

    2015-11-01

    Scorpion venom has been used in the Orient to treat central nervous system diseases for many years, and the protein/peptide toxins in Buthus martensii Karsch (BmK) venom are believed to be the effective components. Scorpion venom heat-resistant peptide (SVHRP) is an active component of the scorpion venom extracted from BmK. In a previous study, we found that SVHRP could inhibit the formation of a glial scar, which is characterized by enhanced glial fibrillary acidic protein (GFAP) expression, in the epileptic hippocampus. However, the cellular and molecular mechanisms underlying this process remain to be clarified. The results of the present study indicate that endogenous GFAP expression in primary rat astrocytes was attenuated by SVHRP. We further demonstrate that the suppression of GFAP was primarily mediated by inhibiting both c-Jun expression and its binding with AP-1 DNA binding site and other factors at the GFAP promoter. These results support that SVHRP contributes to reducing GFAP at least in part by decreasing the activity of the transcription factor AP-1. In conclusion, the effects of SVHRP on astrocytes with respect to the c-Jun/AP-1 signaling pathway in vitro provide a practical basis for studying astrocyte activation and inhibition and a scientific basis for further studies of traditional medicine. PMID:26134308

  1. From Mollusks to Medicine: A Venomics Approach for the Discovery and Characterization of Therapeutics from Terebridae Peptide Toxins.

    PubMed

    Verdes, Aida; Anand, Prachi; Gorson, Juliette; Jannetti, Stephen; Kelly, Patrick; Leffler, Abba; Simpson, Danny; Ramrattan, Girish; Holford, Mandë

    2016-01-01

    Animal venoms comprise a diversity of peptide toxins that manipulate molecular targets such as ion channels and receptors, making venom peptides attractive candidates for the development of therapeutics to benefit human health. However, identifying bioactive venom peptides remains a significant challenge. In this review we describe our particular venomics strategy for the discovery, characterization, and optimization of Terebridae venom peptides, teretoxins. Our strategy reflects the scientific path from mollusks to medicine in an integrative sequential approach with the following steps: (1) delimitation of venomous Terebridae lineages through taxonomic and phylogenetic analyses; (2) identification and classification of putative teretoxins through omics methodologies, including genomics, transcriptomics, and proteomics; (3) chemical and recombinant synthesis of promising peptide toxins; (4) structural characterization through experimental and computational methods; (5) determination of teretoxin bioactivity and molecular function through biological assays and computational modeling; (6) optimization of peptide toxin affinity and selectivity to molecular target; and (7) development of strategies for effective delivery of venom peptide therapeutics. While our research focuses on terebrids, the venomics approach outlined here can be applied to the discovery and characterization of peptide toxins from any venomous taxa. PMID:27104567

  2. From Mollusks to Medicine: A Venomics Approach for the Discovery and Characterization of Therapeutics from Terebridae Peptide Toxins

    PubMed Central

    Verdes, Aida; Anand, Prachi; Gorson, Juliette; Jannetti, Stephen; Kelly, Patrick; Leffler, Abba; Simpson, Danny; Ramrattan, Girish; Holford, Mandë

    2016-01-01

    Animal venoms comprise a diversity of peptide toxins that manipulate molecular targets such as ion channels and receptors, making venom peptides attractive candidates for the development of therapeutics to benefit human health. However, identifying bioactive venom peptides remains a significant challenge. In this review we describe our particular venomics strategy for the discovery, characterization, and optimization of Terebridae venom peptides, teretoxins. Our strategy reflects the scientific path from mollusks to medicine in an integrative sequential approach with the following steps: (1) delimitation of venomous Terebridae lineages through taxonomic and phylogenetic analyses; (2) identification and classification of putative teretoxins through omics methodologies, including genomics, transcriptomics, and proteomics; (3) chemical and recombinant synthesis of promising peptide toxins; (4) structural characterization through experimental and computational methods; (5) determination of teretoxin bioactivity and molecular function through biological assays and computational modeling; (6) optimization of peptide toxin affinity and selectivity to molecular target; and (7) development of strategies for effective delivery of venom peptide therapeutics. While our research focuses on terebrids, the venomics approach outlined here can be applied to the discovery and characterization of peptide toxins from any venomous taxa. PMID:27104567

  3. Elapid snake venom analyses show the specificity of the peptide composition at the level of genera Naja and Notechis.

    PubMed

    Munawar, Aisha; Trusch, Maria; Georgieva, Dessislava; Hildebrand, Diana; Kwiatkowski, Marcel; Behnken, Henning; Harder, Sönke; Arni, Raghuvir; Spencer, Patrick; Schlüter, Hartmut; Betzel, Christian

    2014-03-01

    Elapid snake venom is a highly valuable, but till now mainly unexplored, source of pharmacologically important peptides. We analyzed the peptide fractions with molecular masses up to 10 kDa of two elapid snake venoms-that of the African cobra, N. m. mossambica (genus Naja), and the Peninsula tiger snake, N. scutatus, from Kangaroo Island (genus Notechis). A combination of chromatographic methods was used to isolate the peptides, which were characterized by combining complimentary mass spectrometric techniques. Comparative analysis of the peptide compositions of two venoms showed specificity at the genus level. Three-finger (3-F) cytotoxins, bradykinin-potentiating peptides (BPPs) and a bradykinin inhibitor were isolated from the Naja venom. 3-F neurotoxins, Kunitz/basic pancreatic trypsin inhibitor (BPTI)-type inhibitors and a natriuretic peptide were identified in the N. venom. The inhibiting activity of the peptides was confirmed in vitro with a selected array of proteases. Cytotoxin 1 (P01467) from the Naja venom might be involved in the disturbance of cellular processes by inhibiting the cell 20S-proteasome. A high degree of similarity between BPPs from elapid and viperid snake venoms was observed, suggesting that these molecules play a key role in snake venoms and also indicating that these peptides were recruited into the snake venom prior to the evolutionary divergence of the snakes. PMID:24590383

  4. Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator.

    PubMed Central

    Corzo, G; Escoubas, P; Villegas, E; Barnham, K J; He, W; Norton, R S; Nakajima, T

    2001-01-01

    Two novel antimicrobial peptides have been identified and characterized from venom of the African scorpion Pandinus imperator. The peptides, designated pandinin 1 and 2, are alpha-helical polycationic peptides, with pandinin 1 belonging to the group of antibacterial peptides previously described from scorpions, frogs and insects, and pandinin 2 to the group of short magainin-type helical peptides from frogs. Both peptides demonstrated high antimicrobial activity against a range of Gram-positive bacteria (2.4-5.2 microM), but were less active against Gram-negative bacteria (2.4-38.2 microM), and only pandinin 2 affected the yeast Candida albicans. Pandinin 2 also demonstrated strong haemolytic activity (11.1-44.5 microM) against sheep erythrocytes, in contrast with pandinin 1, which was not haemolytic. CD studies and a high-resolution structure of pandinin 2 determined by NMR, showed that the two peptides are both essentially helical, but differ in their overall structure. Pandinin 2 is composed of a single alpha-helix with a predominantly hydrophobic N-terminal sequence, whereas pandinin 1 consists of two distinct alpha-helices separated by a coil region of higher flexibility. This is the first report of magainin-type polycationic antimicrobial peptides in scorpion venom. Their presence brings new insights into the mode of action of scorpion venom and also opens new avenues for the discovery of novel antibiotic molecules from arthropod venoms. PMID:11563967

  5. Sample Limited Characterization of a Novel Disulfide-Rich Venom Peptide Toxin from Terebrid Marine Snail Terebra variegata

    PubMed Central

    Anand, Prachi; Grigoryan, Alexandre; Bhuiyan, Mohammed H.; Ueberheide, Beatrix; Russell, Victoria; Quinoñez, Jose; Moy, Patrick; Chait, Brian T.; Poget, Sébastien F.; Holford, Mandë

    2014-01-01

    Disulfide-rich peptide toxins found in the secretions of venomous organisms such as snakes, spiders, scorpions, leeches, and marine snails are highly efficient and effective tools for novel therapeutic drug development. Venom peptide toxins have been used extensively to characterize ion channels in the nervous system and platelet aggregation in haemostatic systems. A significant hurdle in characterizing disulfide-rich peptide toxins from venomous animals is obtaining significant quantities needed for sequence and structural analyses. Presented here is a strategy for the structural characterization of venom peptide toxins from sample limited (4 ng) specimens via direct mass spectrometry sequencing, chemical synthesis and NMR structure elucidation. Using this integrated approach, venom peptide Tv1 from Terebra variegata was discovered. Tv1 displays a unique fold not witnessed in prior snail neuropeptides. The novel structural features found for Tv1 suggest that the terebrid pool of peptide toxins may target different neuronal agents with varying specificities compared to previously characterized snail neuropeptides. PMID:24713808

  6. Using a Novel Ontology to Inform the Discovery of Therapeutic Peptides from Animal Venoms

    PubMed Central

    Romano, Joseph D.; Tatonetti, Nicholas P.

    2016-01-01

    Venoms and venom-derived compounds constitute a rich and largely unexplored source of potentially therapeutic compounds. To facilitate biomedical research, it is necessary to design a robust informatics infrastructure that will allow semantic computation of venom concepts in a standardized, consistent manner. We have designed an ontology of venom-related concepts — named Venom Ontology — that reuses an existing public data source: UniProt’s Tox-Prot database. In addition to describing the ontology and its construction, we have performed three separate case studies demonstrating its utility: (1) An exploration of venom peptide similarity networks within specific genera; (2) A broad overview of the distribution of available data among common taxonomic groups spanning the known tree of life; and (3) An analysis of the distribution of venom complexity across those same taxonomic groups. Venom Ontology is publicly available on BioPortal at http://bioportal.bioontology.org/ontologies/CU-VO. PMID:27570672

  7. Elapid Snake Venom Analyses Show the Specificity of the Peptide Composition at the Level of Genera Naja and Notechis

    PubMed Central

    Munawar, Aisha; Trusch, Maria; Georgieva, Dessislava; Hildebrand, Diana; Kwiatkowski, Marcel; Behnken, Henning; Harder, Sönke; Arni, Raghuvir; Spencer, Patrick; Schlüter, Hartmut; Betzel, Christian

    2014-01-01

    Elapid snake venom is a highly valuable, but till now mainly unexplored, source of pharmacologically important peptides. We analyzed the peptide fractions with molecular masses up to 10 kDa of two elapid snake venoms—that of the African cobra, N. m. mossambica (genus Naja), and the Peninsula tiger snake, N. scutatus, from Kangaroo Island (genus Notechis). A combination of chromatographic methods was used to isolate the peptides, which were characterized by combining complimentary mass spectrometric techniques. Comparative analysis of the peptide compositions of two venoms showed specificity at the genus level. Three-finger (3-F) cytotoxins, bradykinin-potentiating peptides (BPPs) and a bradykinin inhibitor were isolated from the Naja venom. 3-F neurotoxins, Kunitz/basic pancreatic trypsin inhibitor (BPTI)-type inhibitors and a natriuretic peptide were identified in the N. venom. The inhibiting activity of the peptides was confirmed in vitro with a selected array of proteases. Cytotoxin 1 (P01467) from the Naja venom might be involved in the disturbance of cellular processes by inhibiting the cell 20S-proteasome. A high degree of similarity between BPPs from elapid and viperid snake venoms was observed, suggesting that these molecules play a key role in snake venoms and also indicating that these peptides were recruited into the snake venom prior to the evolutionary divergence of the snakes. PMID:24590383

  8. Identification and characterization of a novel antimicrobial peptide from the venom of the ant Tetramorium bicarinatum.

    PubMed

    Rifflet, Aline; Gavalda, Sabine; Téné, Nathan; Orivel, Jérôme; Leprince, Jérôme; Guilhaudis, Laure; Génin, Eric; Vétillard, Angélique; Treilhou, Michel

    2012-12-01

    A novel antimicrobial peptide, named Bicarinalin, has been isolated from the venom of the ant Tetramorium bicarinatum. Its amino acid sequence has been determined by de novo sequencing using mass spectrometry and by Edman degradation. Bicarinalin contained 20 amino acid residues and was C-terminally amidated as the majority of antimicrobial peptides isolated to date from insect venoms. Interestingly, this peptide had a linear structure and exhibited no meaningful similarity with any known peptides. Antibacterial activities against Staphylococcus aureus and S. xylosus strains were evaluated using a synthetic replicate. Bicarinalin had a potent and broad antibacterial activity of the same magnitude as Melittin and other hymenopteran antimicrobial peptides such as Pilosulin or Defensin. Moreover, this antimicrobial peptide has a weak hemolytic activity compared to Melittin on erythrocytes, suggesting potential for development into an anti-infective agent for use against emerging antibiotic-resistant pathogens. PMID:22960382

  9. Extraction of Venom and Venom Gland Microdissections from Spiders for Proteomic and Transcriptomic Analyses

    PubMed Central

    Garb, Jessica E.

    2014-01-01

    Venoms are chemically complex secretions typically comprising numerous proteins and peptides with varied physiological activities. Functional characterization of venom proteins has important biomedical applications, including the identification of drug leads or probes for cellular receptors. Spiders are the most species rich clade of venomous organisms, but the venoms of only a few species are well-understood, in part due to the difficulty associated with collecting minute quantities of venom from small animals. This paper presents a protocol for the collection of venom from spiders using electrical stimulation, demonstrating the procedure on the Western black widow (Latrodectus hesperus). The collected venom is useful for varied downstream analyses including direct protein identification via mass spectrometry, functional assays, and stimulation of venom gene expression for transcriptomic studies. This technique has the advantage over protocols that isolate venom from whole gland homogenates, which do not separate genuine venom components from cellular proteins that are not secreted as part of the venom. Representative results demonstrate the detection of known venom peptides from the collected sample using mass spectrometry. The venom collection procedure is followed by a protocol for dissecting spider venom glands, with results demonstrating that this leads to the characterization of venom-expressed proteins and peptides at the sequence level. PMID:25407635

  10. A bradykinin-potentiating peptide (peptide K12) isolated from the venom of Egyptian scorpion Buthus occitanus.

    PubMed

    Meki, A R; Nassar, A Y; Rochat, H

    1995-01-01

    A nontoxic peptide with bradykinin-potentiating activity was isolated from the dialyzed venom of the scorpion Buthus occitanus by reverse-phase high performance liquid chromatography (RP-HPLC). The pharmacological activity of the peptide was bioassayed by its ability to potentiate added bradykinin (BK) on the isolated guinea pig ileum as well as the isolated rat uterus for contraction. Moreover, the peptide potentiates in vivo the depressor effect of BK on arterial blood pressure in the normotensive anesthetized rat. Chemical characterization of the peptide was also performed. The amino acid composition of the peptide showed 21 amino acid residues per molecule including three proline residues. The amino acid sequence of the purified peptide was confirmed by mass spectrometry. Either N- or C-terminal ends were free. The sequence does not show a homology with bradykinin-potentiating peptides isolated from either scorpion or snake venoms. Furthermore, we did not find a significant sequence homology between the sequence of the isolated peptide and any of proteins or peptides in GenPro or NBRF data banks. The peptide also inhibited angiotensin-converting enzyme (ACE), and could not serve as substrate for the enzyme. It could be concluded that the mechanism of bradykinin-potentiating peptide (BPP) activity may be due to ACE inhibition. PMID:8745044

  11. LyeTx I, a potent antimicrobial peptide from the venom of the spider Lycosa erythrognatha.

    PubMed

    Santos, D M; Verly, R M; Piló-Veloso, D; de Maria, M; de Carvalho, M A R; Cisalpino, P S; Soares, B M; Diniz, C G; Farias, L M; Moreira, D F F; Frézard, F; Bemquerer, M P; Pimenta, A M C; de Lima, M E

    2010-06-01

    LyeTx I, an antimicrobial peptide isolated from the venom of Lycosa erythrognatha, known as wolf spider, has been synthesised and its structural profile studied by using the CD and NMR techniques. LyeTx I has shown to be active against bacteria (Escherichia coli and Staphylococcus aureus) and fungi (Candida krusei and Cryptococcus neoformans) and able to alter the permeabilisation of L: -alpha-phosphatidylcholine-liposomes (POPC) in a dose-dependent manner. In POPC containing cholesterol or ergosterol, permeabilisation has either decreased about five times or remained unchanged, respectively. These results, along with the observed low haemolytic activity, indicated that antimicrobial membranes, rather than vertebrate membranes seem to be the preferential targets. However, the complexity of biological membranes compared to liposomes must be taken in account. Besides, other membrane components, such as proteins and even specific lipids, cannot be discarded to be important to the preferential action of the LyeTx I to the tested microorganisms. The secondary structure of LyeTx I shows a small random-coil region at the N-terminus followed by an alpha-helix that reached the amidated C-terminus, which might favour the peptide-membrane interaction. The high activity against bacteria together with the moderate activity against fungi and the low haemolytic activity have indicated LyeTx I as a good prototype for developing new antibiotic peptides. PMID:19946788

  12. Purification and pharmacological characterization of peptide toxins from the black mamba (Dendroaspis polylepis) venom.

    PubMed

    Schweitz, H; Bidard, J N; Lazdunski, M

    1990-01-01

    This paper reports the purification of 28 different peptides from the venom of the snake Dendroaspis polylepis. These peptides represent 99% of the total peptide fraction in the venom. The 14 most cationic peptides form a structurally and functionally homogeneous group of analogs of the most abundant dendrotoxin toxin I (DTXI). They recognize antibodies raised against DTXI as well as brain membrane binding sites corresponding to K+ channels that are sensitive to DTXI and the bee venom peptide MCD. Similarly to DTXI these 14 peptides induce convulsions after intracerebroventricular injections in mice and induce GABA release from synaptosomes. However, members in this iso-DTXI family differ widely in their affinity for the DTXI/MCD receptors and in their contractility promoting action on intestinal smooth muscle. The 14 other less cationic peptides do not interact with the DTXI receptor or with DTXI antibodies and they do not evoke GABA release. Their targets seem to be essentially of a peripheral nature. Half of them contract guinea pig ileum. In this group of toxins there might be new tools to study membrane excitability. PMID:1977212

  13. Venom Peptides From Cone Snails: Pharmacological Probes for Voltage-Gated Sodium Channels.

    PubMed

    Green, B R; Olivera, B M

    2016-01-01

    The venoms of cone snails provide a rich source of neuroactive peptides (conotoxins). Several venom peptide families have been identified that are either agonists (ι- and δ-conotoxins) or antagonists (μ- and μO-conotoxins) of voltage-gated sodium channels (VGSCs). Members of these conotoxin classes have been integral in identifying and characterizing specific neurotoxin binding sites on the channel. Furthermore, given the specificity of some of these peptides for one sodium channel subtype over another, conotoxins have also proven useful in exploring differences between VGSC subtypes. This chapter summarizes the current knowledge of the structure and function based on the results of conotoxin interactions with VGSCs and correlates the peptides with the phylogeny of the Conus species from which they were derived. PMID:27586281

  14. Characterization of Venom and Oviduct Components of Parasitoid Wasp Asobara japonica.

    PubMed

    Furihata, Shunsuke; Matsumura, Takashi; Hirata, Makiko; Mizutani, Tetsuya; Nagata, Noriyo; Kataoka, Michiyo; Katayama, Yukie; Omatsu, Tsutomu; Matsumoto, Hitoshi; Hayakawa, Yoichi

    2016-01-01

    During natural parasitization, Asobara japonica wasps introduce lateral oviduct (LO) components into their Drosophila hosts soon after the venom injection to neutralize its strong toxicity; otherwise, the host will die. Although the orchestrated relationship between the venom and LO components necessary for successful parasitism has attracted the attention of many researchers in this field, the molecular natures of both factors remain ambiguous. We here showed that precipitation of the venom components by ultracentrifugation yielded a toxic fraction that was inactivated by ultraviolet light irradiation, boiling, and sonication, suggesting that it is a virus-like entity. Morphological observation of the precipitate after ultracentrifugation showed small spherical heterogeneous virus-like particles 20-40 nm in diameter. The venom's detrimental effect on D. melanogaster larvae was not directly neutralized by the LO components but blocked by a hemolymphal neutralizing factor activated by the LO factor. Furthermore, we found that A. japonica venom and LO components acted similarly on the larvae of the common cutworm Spodoptera litura: the venom injection caused mortality but coinjection of the LO factor protected S. litura larvae from the venom's toxicity. In contrast, D. ficusphila and D. bipectinata, which are closely related to D. melanogaster but non-habitual host species of A. japonica, were not negatively affected by A. japonica venom due to an intrinsic neutralizing activity in their hemolymph, indicating that these species must have acquired a neutralizer of A. japonica venom during evolution. These results give new insights into the characteristics of both the venom and LO components: A. japonica females have utilized the virus-like toxic venom factor to exploit a wider range of host species after the evolutionary process enabled them to use the LO factor for activation of the host hemolymph neutralizer precursor, although the non-habitual host Drosophila

  15. Peptide T, a novel bradykinin potentiator isolated from Tityus serrulatus scorpion venom.

    PubMed

    Ferreira, L A; Alves, E W; Henriques, O B

    1993-08-01

    A bradykinin-potentiating peptide was isolated and characterized from venom of the scorpion Tityus serrulatus by chromatographic techniques followed by biological assays. The complete amino acid sequence (13 residues) of peptide is presented. The peptide potentiated the contractile activity of bradykinin on the isolated guinea-pig ileum, and inhibited the hydrolysis of bradykinin by angiotensin-converting enzyme from B. jararaca plasma and the conversion of angiotensin I to angiotensin II by kininase II from guinea-pig ileum tissue. The peptide also increased the depressor effect of bradykinin on arterial blood pressure in the anaesthetized rat. PMID:8212046

  16. Neutralization of the haemorrhagic activities of viperine snake venoms and venom metalloproteinases using synthetic peptide inhibitors and chelators.

    PubMed

    Howes, J-M; Theakston, R D G; Laing, G D

    2007-04-01

    Envenoming by the West African saw-scaled viper, Echis ocellatus resembles that of most vipers, in that it results in local blistering, necrosis and sometimes life-threatening systemic haemorrhage. While effective against systemic envenoming, current antivenoms have little or no effect against local tissue damage. The major mediators of local venom pathology are the zinc-dependant snake venom metalloproteinases (SVMPs). The high degree of structural and functional homology between SVMPs and their mammalian relatives the matrix metalloproteinases (MMPs) suggests that substrate/inhibitor interactions between these subfamilies are likely to be analogous. In this study, four recently developed MMP inhibitors (MMPIs) (Marimastat, AG-3340, CGS-270 23A and Bay-12 9566) are evaluated in addition to three metal ion chelators (EDTA, TPEN and BAPTA) for their ability to inhibit the haemorrhagic activities of the medically important E. ocellatus venom and one of its haemorrhagic SVMPs, EoVMP2. As expected, the metal ion chelators significantly inhibited the haemorrhagic activities of both whole E. ocellatus venom and EoVMP2, while the synthetic MMPIs show more variation in their efficacies. These variations suggest that individual MMPIs show specificity towards SVMPs and that their application to the neutralization of local haemorrhage may require a synthetic MMPI mixture, ensuring that a close structural component for each SVMP is represented. PMID:17196631

  17. Production of Recombinant Disulfide-Rich Venom Peptides for Structural and Functional Analysis via Expression in the Periplasm of E. coli

    PubMed Central

    Saez, Natalie J.; Seshadri, Radha; Lau, Ho Yee; Bende, Niraj S.; Undheim, Eivind A. B.; Rash, Lachlan D.; Mobli, Mehdi; King, Glenn F.

    2013-01-01

    Disulfide-rich peptides are the dominant component of most animal venoms. These peptides have received much attention as leads for the development of novel therapeutic agents and bioinsecticides because they target a wide range of neuronal receptors and ion channels with a high degree of potency and selectivity. In addition, their rigid disulfide framework makes them particularly well suited for addressing the crucial issue of in vivo stability. Structural and functional characterization of these peptides necessitates the development of a robust, reliable expression system that maintains their native disulfide framework. The bacterium Escherichia coli has long been used for economical production of recombinant proteins. However, the expression of functional disulfide-rich proteins in the reducing environment of the E. coli cytoplasm presents a significant challenge. Thus, we present here an optimised protocol for the expression of disulfide-rich venom peptides in the periplasm of E. coli, which is where the endogenous machinery for production of disulfide-bonds is located. The parameters that have been investigated include choice of media, induction conditions, lysis methods, methods of fusion protein and peptide purification, and sample preparation for NMR studies. After each section a recommendation is made for conditions to use. We demonstrate the use of this method for the production of venom peptides ranging in size from 2 to 8 kDa and containing 2–6 disulfide bonds. PMID:23667680

  18. Therapeutic potential of peptides with neutralizing ability towards the venom and toxin (CaTx-I) of crotalus adamanteus.

    PubMed

    Samy, Ramar Perumal; Thwin, Maung Maung; Stiles, Bradley G; Bow, Ho; Chow, Vincent T K; Gopalakrishnakone, Ponnampalam

    2011-01-01

    The CaTx-I (PLA2) toxin of Crotalus adamanteus venom is responsible for most of the symptoms observed during envenomation. Synthetic peptides were designed and screened for venom (0.8 μg/ml) and CaTx-I (0.1 μM) inhibition at varying doses of the peptide (10000- 0.0001 μM) using a Cayman chemical human secretory phospholipase A2 (sPLA2, Type II) assay kit. Further, in vitro neutralization studies were evaluated by a fixed dose of peptide (1 μM) against venom (0.8 μg/ml) and toxin (0.1 μM). Among the linear peptides (PIP-18, cyclic C and PIP59-67) that showed potent neutralizing effects against the venom/toxin of C. adamanteus. PIP-18 [IC50, 1.23 μM] and cyclic C [IC50, 1.27 μM] peptides possessed the strongest inhibitory effect against CaTx-I. A fixed dose of CaTx-I (75 μg/kg) was administered intraperitoneally (i.p.) into mice followed by an i.p. injection of peptides PIP-18 and cyclic C at (6 μg/mouse), venom (150 μg/kg) and toxin CaTx-I alone served as references. Mice treated with PIP-18 and cyclic C showed a very strong neutralizing effect and markedly reduced mortality compared to the control after 24 h. The CA venom and CaTx-I injected mice showed severe toxicity after 24 h. Peptides PIP-18 and cyclic C were non-hemolytic at 100 μM. They produced a significant decrease in lipid peroxidase (LPx) and enhancement of superoxide dismutase (SOD), catalase (CAT) and Glutathione-s-transferase (GST) levels indicating their antioxidant property against venom-induced changes in mice. This study confirmed the potent snake venom neutralizing properties of peptides. PMID:21682682

  19. BmKn-2 scorpion venom peptide for killing oral cancer cells by apoptosis.

    PubMed

    Tong-ngam, Pirut; Roytrakul, Sittiruk; Sritanaudomchai, Hathaitip

    2015-01-01

    Scorpion venom peptides recently have attracted attention as alternative chemotherapeutic agents that may overcome the limitations of current drugs, providing specific cytotoxicity for cancer cells with an ability to bypass multidrug-resistance mechanisms, additive effects in combination therapy and safety. In the present study, BmKn-2 scorpion venom peptide and its derivatives were chosen for assessment of anticancer activities. BmKn-2 was identified as the most effective against human oral squamous cells carcinoma cell line (HSC-4) by screening assays with an IC50 value of 29 μg/ml. The BmKn-2 peptide killed HSC-4 cells through induction of apoptosis, as confirmed by phase contrast microscopy and RT-PCR techniques. Typical morphological features of apoptosis including cell shrinkage and rounding characteristics were observed in treated HSC-4 cells. The results were further confirmed by increased expression of pro-apoptotic genes such as caspase-3, -7, and -9 but decrease mRNA level of anti-apoptotic BCL-2 in BmKn-2 treated cells, as determined by RT-PCR assay. In summary, the BmKn-2 scorpion venom peptide demonstrates specific membrane binding, growth inhibition and apoptogenic activity against human oral cancer cells. PMID:25854366

  20. Characterization of Venom and Oviduct Components of Parasitoid Wasp Asobara japonica

    PubMed Central

    Furihata, Shunsuke; Matsumura, Takashi; Hirata, Makiko; Mizutani, Tetsuya; Nagata, Noriyo; Kataoka, Michiyo; Katayama, Yukie; Omatsu, Tsutomu; Matsumoto, Hitoshi; Hayakawa, Yoichi

    2016-01-01

    During natural parasitization, Asobara japonica wasps introduce lateral oviduct (LO) components into their Drosophila hosts soon after the venom injection to neutralize its strong toxicity; otherwise, the host will die. Although the orchestrated relationship between the venom and LO components necessary for successful parasitism has attracted the attention of many researchers in this field, the molecular natures of both factors remain ambiguous. We here showed that precipitation of the venom components by ultracentrifugation yielded a toxic fraction that was inactivated by ultraviolet light irradiation, boiling, and sonication, suggesting that it is a virus-like entity. Morphological observation of the precipitate after ultracentrifugation showed small spherical heterogeneous virus-like particles 20–40 nm in diameter. The venom’s detrimental effect on D. melanogaster larvae was not directly neutralized by the LO components but blocked by a hemolymphal neutralizing factor activated by the LO factor. Furthermore, we found that A. japonica venom and LO components acted similarly on the larvae of the common cutworm Spodoptera litura: the venom injection caused mortality but coinjection of the LO factor protected S. litura larvae from the venom’s toxicity. In contrast, D. ficusphila and D. bipectinata, which are closely related to D. melanogaster but non-habitual host species of A. japonica, were not negatively affected by A. japonica venom due to an intrinsic neutralizing activity in their hemolymph, indicating that these species must have acquired a neutralizer of A. japonica venom during evolution. These results give new insights into the characteristics of both the venom and LO components: A. japonica females have utilized the virus-like toxic venom factor to exploit a wider range of host species after the evolutionary process enabled them to use the LO factor for activation of the host hemolymph neutralizer precursor, although the non-habitual host Drosophila

  1. Identification and functional analysis of a novel bradykinin inhibitory peptide in the venoms of New World Crotalinae pit vipers

    SciTech Connect

    James Graham, Robert Leslie . E-mail: rl.graham@ulster.ac.uk; Graham, Ciaren; McClean, Stephen; Chen, Tianbao; O'Rourke, Martin; Hirst, David; Theakston, David; Shaw, Chris

    2005-12-23

    A novel undecapeptide has been isolated and structurally characterized from the venoms of three species of New World pit vipers from the subfamily, Crotalinae. These include the Mexican moccasin (Agkistrodon bilineatus), the prairie rattlesnake (Crotalus viridis viridis), and the South American bushmaster (Lachesis muta). The peptide was purified from all three venoms using a combination of gel permeation chromatography and reverse-phase HPLC. Automated Edman degradation sequencing and MALDI-TOF mass spectrometry established its peptide primary structure as: Thr-Pro-Pro-Ala-Gly-Pro-Asp-Val-Gly-Pro-Arg-OH, with a non-protonated molecular mass of 1063.18 Da. A synthetic replicate of the peptide was found to be an antagonist of bradykinin action at the rat vascular B2 receptor. This is the first bradykinin inhibitory peptide isolated from snake venom. Database searching revealed the peptide to be highly structurally related (10/11 residues) with a domain residing between the bradykinin-potentiating peptide and C-type natriuretic peptide domains of a recently cloned precursor from tropical rattlesnake (Crotalus durissus terrificus) venom gland. BIP thus represents a novel biological entity from snake venom.

  2. Production of antibacterial peptide from bee venom via a new strategy for heterologous expression.

    PubMed

    Hou, Chunsheng; Guo, Liqiong; Lin, Junfang; You, Linfeng; Wu, Wuhua

    2014-12-01

    Honey bee is important economic insect that not only pollinates fruits and crops but also provides products with various physiological activities. Bee venom is a functional agent that is widely applied in clinical treatment and pharmacy. Secapin is one of these agents that have a significant role in therapy. The functions of secapin from the bee venom have been documented, but little information is known about its heterologous expression under natural condition. Moreover, few scholars verified experimentally the functions of secapin from bee venom in vitro. In this study, we successfully constructed a heterologous expression vector, which is different from conventional expression system. A transgenic approach was established for transformation of secapin gene from the venom of Apis mellifera carnica (Ac-sec) into the edible fungi, Coprinus cinereus. Ac-sec was encoded by a 234 bp nucleotide that contained a signal peptide domain and two potential phosphorylation sites. The sequence exhibited highly homology with various secapins characterized from honey bee and related species. Southern blot data indicated that Ac-sec was present as single or multiple copy loci in the C. cinereus genome. By co-transformation and double-layer active assay, Ac-sec was expressed successfully in C. cinereus and the antibacterial activity of the recombinants was identified, showing notable antibacterial activities on different bacteria. Although Ac-sec is from the venom of Apidae, phylogenetic analysis demonstrated that Ac-sec was more closely related to that of Vespid than to bee species from Apidae. The molecular characteristics of Ac-sec and the potential roles of small peptides in biology were discussed. PMID:25189650

  3. Characterization and Recombinant Expression of Terebrid Venom Peptide from Terebra guttata

    PubMed Central

    Moon, John; Gorson, Juliette; Wright, Mary Elizabeth; Yee, Laurel; Khawaja, Samer; Shin, Hye Young; Karma, Yasmine; Musunri, Rajeeva Lochan; Yun, Michelle; Holford, Mande

    2016-01-01

    Venom peptides found in terebrid snails expand the toolbox of active compounds that can be applied to investigate cellular physiology and can be further developed as future therapeutics. However, unlike other predatory organisms, such as snakes, terebrids produce very small quantities of venom, making it difficult to obtain sufficient amounts for biochemical characterization. Here, we describe the first recombinant expression and characterization of terebrid peptide, teretoxin Tgu6.1, from Terebra guttata. Tgu6.1 is a novel forty-four amino acid teretoxin peptide with a VI/VII cysteine framework (C–C–CC–C–C) similar to O, M and I conotoxin superfamilies. A ligation-independent cloning strategy with an ompT protease deficient strain of E. coli was employed to recombinantly produce Tgu6.1. Thioredoxin was introduced in the plasmid to combat disulfide folding and solubility issues. Specifically Histidine-6 tag and Ni-NTA affinity chromatography were applied as a purification method, and enterokinase was used as a specific cleavage protease to effectively produce high yields of folded Tgu6.1 without extra residues to the primary sequence. The recombinantly-expressed Tgu6.1 peptide was bioactive, displaying a paralytic effect when injected into a Nereis virens polychaete bioassay. The recombinant strategy described to express Tgu6.1 can be applied to produce high yields of other disulfide-rich peptides. PMID:26950153

  4. Characterization and Recombinant Expression of Terebrid Venom Peptide from Terebra guttata.

    PubMed

    Moon, John; Gorson, Juliette; Wright, Mary Elizabeth; Yee, Laurel; Khawaja, Samer; Shin, Hye Young; Karma, Yasmine; Musunri, Rajeeva Lochan; Yun, Michelle; Holford, Mande

    2016-03-01

    Venom peptides found in terebrid snails expand the toolbox of active compounds that can be applied to investigate cellular physiology and can be further developed as future therapeutics. However, unlike other predatory organisms, such as snakes, terebrids produce very small quantities of venom, making it difficult to obtain sufficient amounts for biochemical characterization. Here, we describe the first recombinant expression and characterization of terebrid peptide, teretoxin Tgu6.1, from Terebra guttata. Tgu6.1 is a novel forty-four amino acid teretoxin peptide with a VI/VII cysteine framework (C-C-CC-C-C) similar to O, M and I conotoxin superfamilies. A ligation-independent cloning strategy with an ompT protease deficient strain of E. coli was employed to recombinantly produce Tgu6.1. Thioredoxin was introduced in the plasmid to combat disulfide folding and solubility issues. Specifically Histidine-6 tag and Ni-NTA affinity chromatography were applied as a purification method, and enterokinase was used as a specific cleavage protease to effectively produce high yields of folded Tgu6.1 without extra residues to the primary sequence. The recombinantly-expressed Tgu6.1 peptide was bioactive, displaying a paralytic effect when injected into a Nereis virens polychaete bioassay. The recombinant strategy described to express Tgu6.1 can be applied to produce high yields of other disulfide-rich peptides. PMID:26950153

  5. Spider venomics: implications for drug discovery.

    PubMed

    Pineda, Sandy S; Undheim, Eivind A B; Rupasinghe, Darshani B; Ikonomopoulou, Maria P; King, Glenn F

    2014-10-01

    Over a period of more than 300 million years, spiders have evolved complex venoms containing an extraordinary array of toxins for prey capture and defense against predators. The major components of most spider venoms are small disulfide-bridged peptides that are highly stable and resistant to proteolytic degradation. Moreover, many of these peptides have high specificity and potency toward molecular targets of therapeutic importance. This unique combination of bioactivity and stability has made spider-venom peptides valuable both as pharmacological tools and as leads for drug development. This review describes recent advances in spider-venom-based drug discovery pipelines. We discuss spider-venom-derived peptides that are currently under investigation for treatment of a diverse range of pathologies including pain, stroke and cancer. PMID:25406008

  6. Melittin, a honeybee venom-derived antimicrobial peptide, may target methicillin-resistant Staphylococcus aureus

    PubMed Central

    CHOI, JI HAE; JANG, A YEUNG; LIN, SHUNMEI; LIM, SANGYONG; KIM, DONGHO; PARK, KYUNGHO; HAN, SANG-MI; YEO, JOO-HONG; SEO, HO SEONG

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is difficult to treat using available antibiotic agents. Honeybee venom has been widely used as an oriental treatment for several inflammatory diseases and bacterial infections. The venom contains predominantly biologically active compounds, however, the therapeutic effects of such materials when used to treat MRSA infections have not been investigated extensively. The present study evaluated bee venom and its principal active component, melittin, in terms of their antibacterial activities and in vivo protection against MRSA infections. In vitro, bee venom and melittin exhibited comparable levels of antibacterial activity, which was more marked against MRSA strains, compared with other Gram-positive bacteria. When MRSA-infected mice were treated with bee venom or melittin, only the latter animals were successfully rescued from MRSA- induced bacteraemia or exhibited recovery from MRSA-infected skin wounds. Together, the data of the present study demonstrated for the first time, to the best of our knowledge, that melittin may be used as a promising antimicrobial agent to enhance the healing of MRSA-induced wounds. PMID:26330195

  7. Extending the honey bee venome with the antimicrobial peptide apidaecin and a protein resembling wasp antigen 5.

    PubMed

    Van Vaerenbergh, M; Cardoen, D; Formesyn, E M; Brunain, M; Van Driessche, G; Blank, S; Spillner, E; Verleyen, P; Wenseleers, T; Schoofs, L; Devreese, B; de Graaf, D C

    2013-04-01

    Honey bee venom is a complex mixture of toxic proteins and peptides. In the present study we tried to extend our knowledge of the venom composition using two different approaches. First, worker venom was analysed by liquid chromatography-mass spectrometry and this revealed the antimicrobial peptide apidaecin for the first time in such samples. Its expression in the venom gland was confirmed by reverse transcription PCR and by a peptidomic analysis of the venom apparatus tissue. Second, genome mining revealed a list of proteins with resemblance to known insect allergens or venom toxins, one of which showed homology to proteins of the antigen 5 (Ag5)/Sol i 3 cluster. It was demonstrated that the honey bee Ag5-like gene is expressed by venom gland tissue of winter bees but not of summer bees. Besides this seasonal variation, it shows an interesting spatial expression pattern with additional production in the hypopharyngeal glands, the brains and the midgut. Finally, our immunoblot study revealed that both synthetic apidaecin and the Ag5-like recombinant from bacteria evoke no humoral activity in beekeepers. Also, no IgG4-based cross-reactivity was detected between the honey bee Ag5-like protein and its yellow jacket paralogue Ves v 5. PMID:23350689

  8. Characterization of a novel snake venom component: Kazal-type inhibitor-like protein from the arboreal pitviper Bothriechis schlegelii.

    PubMed

    Fernández, Julián; Gutiérrez, José María; Calvete, Juan J; Sanz, Libia; Lomonte, Bruno

    2016-06-01

    Snake venoms are composed mainly of a mixture of proteins and peptides. Notably, all snake venom toxins have been assigned to a small number of protein families. Proteomic studies on snake venoms have recently identified the presence of Kazal-type inhibitor-like proteins in the neotropical arboreal snakes Bothriechis schlegelii and Bothriechis supraciliaris. In the present study, a Kazal-type component from B. schlegelii, named Kazal-type inhibitor-like protein (KTIL), has been completely sequenced and characterized for the first time. This protein, which contains 54 amino acid residues, shows sequence similarity to the third domain of the ovomucoid from avian species, which is a Kazal-like domain. KTIL did not inhibit the enzymatic activity of various serine proteinases at pH = 7.2 or pH = 8.0, but partially inhibited the activity of trypsin at pH = 5.4, and the only toxic effect in mice observed after different in vivo tests was the induction of footpad edema. KTIL was not lethal when injected in mice or chickens. The presence of Kazal-type proteins and mRNA only in species of the genus Bothriechis suggests a genus recruitment event in the early-Middle Miocene, the estimated time of emergence of this clade. PMID:26973135

  9. Identification of new snake venom metalloproteinase inhibitors using compound screening and rational Peptide design.

    PubMed

    Villalta-Romero, Fabián; Gortat, Anna; Herrera, Andrés E; Arguedas, Rebeca; Quesada, Javier; de Melo, Robson Lopes; Calvete, Juan J; Montero, Mavis; Murillo, Renato; Rucavado, Alexandra; Gutiérrez, José María; Pérez-Payá, Enrique

    2012-07-12

    The majority of snakebite envenomations in Central America are caused by the viperid species Bothrops asper, whose venom contains a high proportion of zinc-dependent metalloproteinases that play a relevant role in the pathogenesis of hemorrhage characteristic of these envenomations. Broad metalloproteinase inhibitors, such as the peptidomimetic hydroxamate Batimastat, have been shown to inhibit snake venom metalloproteinases (SVMP). However, the difficulty in having open public access to Batimastat and similar molecules highlights the need to design new inhibitors of SVMPs that could be applied in the treatment of snakebite envenomations. We have chosen the SVMP BaP1 as a model to search for new inhibitors using different strategies, that is, screening of the Prestwick Chemical Library and rational peptide design. Results from these approaches provide clues on the structural requirements for efficient BaP1 inhibition and pave the way for the design of new inhibitors of SVMP. PMID:24900507

  10. Rapid expansion of the protein disulfide isomerase gene family facilitates the folding of venom peptides.

    PubMed

    Safavi-Hemami, Helena; Li, Qing; Jackson, Ronneshia L; Song, Albert S; Boomsma, Wouter; Bandyopadhyay, Pradip K; Gruber, Christian W; Purcell, Anthony W; Yandell, Mark; Olivera, Baldomero M; Ellgaard, Lars

    2016-03-22

    Formation of correct disulfide bonds in the endoplasmic reticulum is a crucial step for folding proteins destined for secretion. Protein disulfide isomerases (PDIs) play a central role in this process. We report a previously unidentified, hypervariable family of PDIs that represents the most diverse gene family of oxidoreductases described in a single genus to date. These enzymes are highly expressed specifically in the venom glands of predatory cone snails, animals that synthesize a remarkably diverse set of cysteine-rich peptide toxins (conotoxins). Enzymes in this PDI family, termed conotoxin-specific PDIs, significantly and differentially accelerate the kinetics of disulfide-bond formation of several conotoxins. Our results are consistent with a unique biological scenario associated with protein folding: The diversification of a family of foldases can be correlated with the rapid evolution of an unprecedented diversity of disulfide-rich structural domains expressed by venomous marine snails in the superfamily Conoidea. PMID:26957604

  11. Identification of New Snake Venom Metalloproteinase Inhibitors Using Compound Screening and Rational Peptide Design

    PubMed Central

    2012-01-01

    The majority of snakebite envenomations in Central America are caused by the viperid species Bothrops asper, whose venom contains a high proportion of zinc-dependent metalloproteinases that play a relevant role in the pathogenesis of hemorrhage characteristic of these envenomations. Broad metalloproteinase inhibitors, such as the peptidomimetic hydroxamate Batimastat, have been shown to inhibit snake venom metalloproteinases (SVMP). However, the difficulty in having open public access to Batimastat and similar molecules highlights the need to design new inhibitors of SVMPs that could be applied in the treatment of snakebite envenomations. We have chosen the SVMP BaP1 as a model to search for new inhibitors using different strategies, that is, screening of the Prestwick Chemical Library and rational peptide design. Results from these approaches provide clues on the structural requirements for efficient BaP1 inhibition and pave the way for the design of new inhibitors of SVMP. PMID:24900507

  12. [Chlorotoxin and related peptides are short insect toxins from scorpion venom].

    PubMed

    Arzamasov, A A; Vasilevskiĭ, A A; Grishin, E V

    2014-01-01

    Scorpion venom is a complex multicomponent mixture of biologically active substances, some of which possess very interesting properties and are used in quite unexpected fields. The family of chlorotoxin (CTX)-like peptides serves a good example. These toxins exhibit insecticidal activity, however, their molecular mechanism of action on insect organism remains elusive. Nevertheless, CTX-like peptides attracted considerable research effort due to their ability to specifically interact with cells of brain tumors, i.e. gliomas. In the future these compounds may considerably aid anticancer therapy. This review summarizes the results obtained during the past 40 years of CTX-like peptides investigation. Both biological function aspects and the applied field related to gliomas are considered. PMID:25898748

  13. Target Promiscuity and Heterogeneous Effects of Tarantula Venom Peptides Affecting Na+ and K+ Ion Channels*

    PubMed Central

    Redaelli, Elisa; Cassulini, Rita Restano; Silva, Deyanira Fuentes; Clement, Herlinda; Schiavon, Emanuele; Zamudio, Fernando Z.; Odell, George; Arcangeli, Annarosa; Clare, Jeffrey J.; Alagón, Alejandro; de la Vega, Ricardo C. Rodríguez; Possani, Lourival D.; Wanke, Enzo

    2010-01-01

    Venom-derived peptide modulators of ion channel gating are regarded as essential tools for understanding the molecular motions that occur during the opening and closing of ion channels. In this study, we present the characterization of five spider toxins on 12 human voltage-gated ion channels, following observations about the target promiscuity of some spider toxins and the ongoing revision of their “canonical” gating-modifying mode of action. The peptides were purified de novo from the venom of Grammostola rosea tarantulas, and their sequences were confirmed by Edman degradation and mass spectrometry analysis. Their effects on seven tetrodotoxin-sensitive Na+ channels, the three human ether-à-go-go (hERG)-related K+ channels, and two human Shaker-related K+ channels were extensively characterized by electrophysiological techniques. All the peptides inhibited ion conduction through all the Na+ channels tested, although with distinctive patterns. The peptides also affected the three pharmaceutically relevant hERG isoforms differently. At higher concentrations, all peptides also modified the gating of the Na+ channels by shifting the activation to more positive potentials, whereas more complex effects were recorded on hERG channels. No effects were evident on the two Shaker-related K+ channels at concentrations well above the IC50 value for the affected channels. Given the sequence diversity of the tested peptides, we propose that tarantula toxins should be considered both as multimode and target-promiscuous ion channel modulators; both features should not be ignored when extracting mechanistic interpretations about ion channel gating. Our observations could also aid in future structure-function studies and might help the development of novel ion channel-specific drugs. PMID:19955179

  14. Novel venom gene discovery in the platypus

    PubMed Central

    2010-01-01

    Background To date, few peptides in the complex mixture of platypus venom have been identified and sequenced, in part due to the limited amounts of platypus venom available to study. We have constructed and sequenced a cDNA library from an active platypus venom gland to identify the remaining components. Results We identified 83 novel putative platypus venom genes from 13 toxin families, which are homologous to known toxins from a wide range of vertebrates (fish, reptiles, insectivores) and invertebrates (spiders, sea anemones, starfish). A number of these are expressed in tissues other than the venom gland, and at least three of these families (those with homology to toxins from distant invertebrates) may play non-toxin roles. Thus, further functional testing is required to confirm venom activity. However, the presence of similar putative toxins in such widely divergent species provides further evidence for the hypothesis that there are certain protein families that are selected preferentially during evolution to become venom peptides. We have also used homology with known proteins to speculate on the contributions of each venom component to the symptoms of platypus envenomation. Conclusions This study represents a step towards fully characterizing the first mammal venom transcriptome. We have found similarities between putative platypus toxins and those of a number of unrelated species, providing insight into the evolution of mammalian venom. PMID:20920228

  15. Lycotoxins, antimicrobial peptides from venom of the wolf spider Lycosa carolinensis.

    PubMed

    Yan, L; Adams, M E

    1998-01-23

    Two peptide toxins with antimicrobial activity, lycotoxins I and II, were identified from venom of the wolf spider Lycosa carolinensis (Araneae: Lycosidae) by virtue of their abilities to reduce ion and voltage gradients across membranes. Both peptides were purified to homogeneity by reversed-phase liquid chromatography and determined to have the following primary structures by Edman microsequencing: IWLTALKFLGKHAAKHLAKQQLSKL-NH2 for lycotoxin I and KIKWFKTMKSIAKFIAKEQMKKHLGGE-OH for lycotoxin II. The predicted secondary structures of the lycotoxins display amphipathic alpha-helix character typical of antimicrobial pore-forming peptides. Antimicrobial assays showed that both lycotoxins potently inhibit the growth of bacteria (Escherichia coli) and yeast (Candida glabrata) at micromolar concentrations. To verify its hypothesized pore-forming activity, lycotoxin I was synthesized and shown to promote efflux of Ca2+ from synaptosomes, to cause hemolysis of erythrocytes, and to dissipate voltage gradients across muscle membrane. The lycotoxins may play a dual role in spider-prey interaction, functioning both in the prey capture strategy as well as to protect the spider from potentially infectious organisms arising from prey ingestion. Spider venoms may represent a potentially new source of novel antimicrobial agents with important medical implications. PMID:9442044

  16. The Spider Venom Peptide Lycosin-II Has Potent Antimicrobial Activity against Clinically Isolated Bacteria.

    PubMed

    Wang, Yongjun; Wang, Ling; Yang, Huali; Xiao, Haoliang; Farooq, Athar; Liu, Zhonghua; Hu, Min; Shi, Xiaoliu

    2016-01-01

    Antimicrobial peptides have been accepted as excellent candidates for developing novel antibiotics against drug-resistant bacteria. Recent studies indicate that spider venoms are the source for the identification of novel antimicrobial peptides. In the present study, we isolated and characterized an antibacterial peptide named lycosin-II from the venom of the spider Lycosa singoriensis. It contains 21 amino acid residue lacking cysteine residues and forms a typical linear amphipathic and cationic α-helical conformation. Lycosin-II displays potent bacteriostatic effect on the tested drug-resistant bacterial strains isolated from hospital patients, including multidrug-resistant A. baumannii, which has presented a huge challenge for the infection therapy. The inhibitory ability of lycosin-II might derive from its binding to cell membrane, because Mg(2+) could compete with the binding sites to reduce the bacteriostatic potency of lycosin-II. Our data suggest that lycosin-II might be a lead in the development of novel antibiotics for curing drug-resistant bacterial infections. PMID:27128941

  17. The Spider Venom Peptide Lycosin-II Has Potent Antimicrobial Activity against Clinically Isolated Bacteria

    PubMed Central

    Wang, Yongjun; Wang, Ling; Yang, Huali; Xiao, Haoliang; Farooq, Athar; Liu, Zhonghua; Hu, Min; Shi, Xiaoliu

    2016-01-01

    Antimicrobial peptides have been accepted as excellent candidates for developing novel antibiotics against drug-resistant bacteria. Recent studies indicate that spider venoms are the source for the identification of novel antimicrobial peptides. In the present study, we isolated and characterized an antibacterial peptide named lycosin-II from the venom of the spider Lycosa singoriensis. It contains 21 amino acid residue lacking cysteine residues and forms a typical linear amphipathic and cationic α-helical conformation. Lycosin-II displays potent bacteriostatic effect on the tested drug-resistant bacterial strains isolated from hospital patients, including multidrug-resistant A. baumannii, which has presented a huge challenge for the infection therapy. The inhibitory ability of lycosin-II might derive from its binding to cell membrane, because Mg2+ could compete with the binding sites to reduce the bacteriostatic potency of lycosin-II. Our data suggest that lycosin-II might be a lead in the development of novel antibiotics for curing drug-resistant bacterial infections. PMID:27128941

  18. Structural identification by mass spectrometry of a novel antimicrobial peptide from the venom of the solitary bee Osmia rufa (Hymenoptera: Megachilidae).

    PubMed

    Stöcklin, Reto; Favreau, Philippe; Thai, Robert; Pflugfelder, Jochen; Bulet, Philippe; Mebs, Dietrich

    2010-01-01

    The venom from the solitary bee Osmia rufa (Hymenoptera: Megachilidae) was analyzed using mass spectrometry (MS)-based techniques. Sensitive proteomic methods such as on-line LC-ESI-MS and nanoESI-MS analyses revealed more than 50 different compounds with molecular masses ranging from 400 to 4000Da. The major component has a monoisotopic molecular mass of 1924.20Da and its amino acid sequence was elucidated by de novo sequencing using tandem mass spectrometry and Edman degradation. This 17-residue cysteine-free peptide, named osmin, shows some similarities with the mast cell degranulation (MCD) peptide family. Free acid and C-terminally amidated osmins were chemically synthesized and tested for antimicrobial and haemolytic activities. The synthetic C-amidated peptide (native osmin) was found to be about three times more haemolytic than its free acid counterpart, but both peptides are much less lytic than melittin from social bee venom. Preliminary antimicrobial and antifungal tests indicate that both peptides are able to inhibit bacterial and fungal growth at micromolar concentrations. PMID:19109988

  19. Biochemical and biophysical combined study of bicarinalin, an ant venom antimicrobial peptide.

    PubMed

    Téné, Nathan; Bonnafé, Elsa; Berger, Fanny; Rifflet, Aline; Guilhaudis, Laure; Ségalas-Milazzo, Isabelle; Pipy, Bernard; Coste, Agnès; Leprince, Jérôme; Treilhou, Michel

    2016-05-01

    We have recently characterized bicarinalin as the most abundant peptide from the venom of the ant Tetramorium bicarinatum. This antimicrobial peptide is active against Staphylococcus and Enterobacteriaceae. To further investigate the antimicrobial properties of this cationic and cysteine-free peptide, we have studied its antibacterial, antifungal and antiparasitic activities on a large array of microorganisms. Bicarinalin was active against fifteen microorganisms with minimal inhibitory concentrations ranging from 2 and 25μmolL(-1). Cronobacter sakazakii, Salmonella enterica, Candida albicans, Aspergilus niger and Saccharomyces cerevisiae were particularly susceptible to this novel antimicrobial peptide. Resistant strains of Staphylococcus aureus, Pseudomonas aeruginosa and C. albicans were as susceptible as the canonical strains. Interestingly, bicarinalin was also active against the parasite Leishmania infantum with a minimal inhibitory concentrations of 2μmolL(-1). The bicarinalin pre-propeptide cDNA sequence has been determined using a combination of degenerated primers with RACE PCR strategy. Interestingly, the N-terminal domain of bicarinalin pre-propeptide exhibited sequence similarity with the pilosulin antimicrobial peptide family previously described in the Myrmecia venoms. Moreover, using SYTOX green uptake assay, we showed that, for all the tested microorganisms, bicarinalin acted through a membrane permeabilization mechanism. Two dimensional-NMR experiments showed that bicarinalin displayed a 10 residue-long α-helical structure flanked by two N- and C-terminal disordered regions. This partially amphipathic helix may explain the membrane permeabilization mechanism of bicarinalin observed in this study. Finally, therapeutic value of bicarinalin was highlighted by its low cytotoxicity against human lymphocytes at bactericidal concentrations and its long half-life in human serum which was around 15h. PMID:27058430

  20. Secapin, a bee venom peptide, exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities.

    PubMed

    Lee, Kwang Sik; Kim, Bo Yeon; Yoon, Hyung Joo; Choi, Yong Soo; Jin, Byung Rae

    2016-10-01

    Bee venom contains a variety of peptide constituents that have various biological, toxicological, and pharmacological actions. However, the biological actions of secapin, a venom peptide in bee venom, remain largely unknown. Here, we provide the evidence that Asiatic honeybee (Apis cerana) secapin (AcSecapin-1) exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities. The recombinant mature AcSecapin-1 peptide was expressed in baculovirus-infected insect cells. AcSecapin-1 functions as a serine protease inhibitor-like peptide that has inhibitory effects against plasmin, elastases, microbial serine proteases, trypsin, and chymotrypsin. Consistent with these functions, AcSecapin-1 inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products, thus indicating the role of AcSecapin-1 as an anti-fibrinolytic agent. AcSecapin-1 also inhibited both human neutrophil and porcine pancreatic elastases. Furthermore, AcSecapin-1 bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi and gram-positive and gram-negative bacteria. Taken together, our data demonstrated that the bee venom peptide secapin has multifunctional roles as an anti-fibrinolytic agent during fibrinolysis and an anti-microbial agent in the innate immune response. PMID:27208884

  1. Plectreurys tristis venome: A proteomic and transcriptomic analysis

    PubMed Central

    Zobel-Thropp, Pamela A; Thomas, Emily Z; David, Cynthia L; Breci, Linda A; Binford, Greta J

    2014-01-01

    Spider venoms are complex cocktails rich in peptides, proteins and organic molecules that collectively act to immobilize prey. Venoms of the primitive hunting spider, Plectreurys tristis, have numerous neurotoxic peptides called “plectoxins” (PLTX), a unique acylpolyamine called bis(agmatine)oxalamide, and larger unidentified protein components. These spiders also have unconventional multi-lobed venom glands. Inspired by these unusual characteristics and their phylogenetic position as Haplogynes, we have partially characterized the venome of P. tristis using combined transcriptomic and proteomic methods. With these analyses we found known venom neurotoxins U1-PLTX-Pt1a, U3-PLTX-Pt1a, and we discovered new groups of potential neurotoxins, expanding the U1- and ω-PLTX families and adding U4-through U9-PLTX as six new groups. The venom also contains proteins that are homologs of astacin metalloproteases that, combined with venom peptides, make up 94% of components detected in crude venom, while the remaining 6% is a single undescribed protein with unknown function. Other proteins detected in the transcriptome were found to be members of conserved gene families and make up 20% of the transcripts. These include cDNA sequences that match venom proteins from Mesobuthus and Hottentotta scorpions, Loxosceles and Dysdera spiders, and also salivary and secreted peptide sequences from Ixodes, Amblyomma and Rhipicephalus ticks. Finally, we show that crude venom has neurotoxic effects and an effective paralytic dose on crickets of 3.3µg/gm. PMID:25400903

  2. Apoptogenic peptides from Tityus discrepans scorpion venom acting against the SKBR3 breast cancer cell line.

    PubMed

    D'Suze, Gina; Rosales, Arnaldo; Salazar, Víctor; Sevcik, Carlos

    2010-12-01

    Two novel peptides named neopladine 1 and neopladine 2 were purified from Tityus discrepans scorpion venom and found to be active on human breast carcinoma SKBR3 cells. Mass spectrometry molecular masses of neopladine 1 and 2 were 29918 and 30388 Da, respectively. Their N-terminal sequences were determined by Edman degradation. The peptides induced apoptosis of SKBR3 cells but had a negligible effect on non-malignant MA104 monkey kidney cells. Neopladine 1 and 2 induced 6.3 and 4.1% of SKBR3 apoptosis, respectively, in 5 h of exposure; the effect was larger with more prolonged exposures. Inmunohistochemistry showed that neopladines bind to SKBR3 cell surface inducing FasL and BcL-2 expression. PMID:20888852

  3. Vascular effects and electrolyte homeostasis of the natriuretic peptide isolated from Crotalus oreganus abyssus (North American Grand Canyon rattlesnake) venom.

    PubMed

    Da Silva, S L; Dias-Junior, C A; Baldasso, P A; Damico, D C S; Carvalho, B M A; Garanto, A; Acosta, G; Oliveira, E; Albericio, F; Soares, A M; Marangoni, S; Resende, R R

    2012-08-01

    Crotalus oreganus abyssus is a rattlesnake that is usually found in the Grand Canyon, United States of America. Knowledge regarding the composition of C. o. abyssus venom is scarce. New natriuretic peptides (NPs) have been isolated and characterized from the venoms of members of the Crotalinae family. The NP family comprises three members, ANP (atrial natriuretic peptide), BNP (b-type natriuretic peptide) and CNP (c-type natriuretic peptide), and has an important role in blood pressure regulation and electrolyte homeostasis. The aim of the present study was to characterize a novel natriuretic-like peptide (Coa_NP2), isolated from C. o. abyssus venom. The Coa_NP2 presents an average molecular mass of 3419.88Da (theoretical average molecular mass 3418.94Da, monoisotopic molecular mass 3416.66Da and theoretical PI 7.78) and its amino acid sequence presents the loop region that is characteristic of natriuretic peptides. The peptide has 32 amino acids and its complete sequence is SYGISSGCFGLKLDRIGTMSGLGCWRLLQDSP. Coa_NP2 is a natriuretic peptide of the ANP/BNP-like family, since the carboxyterminal region of CNP has its own NP domain. We demonstrate, herein, that Coa_NP2 produces a dose-dependent decrease in mean arterial pressure in rats, followed by significant increases in concentrations of markers of nitric oxide formation measured in the plasma and vasorelaxation in a thoracic aortic ring bath. The structural and biological aspects confirm Coa_NP2 as a new natriuretic peptide, isolated from snake venom. PMID:22617223

  4. Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal

    PubMed Central

    Ma, Yibao; Zhao, Ruiming; He, Yawen; Li, Songryong; Liu, Jun; Wu, Yingliang; Cao, Zhijian; Li, Wenxin

    2009-01-01

    Background The family Euscorpiidae, which covers Europe, Asia, Africa, and America, is one of the most widely distributed scorpion groups. However, no studies have been conducted on the venom of a Euscorpiidae species yet. In this work, we performed a transcriptomic approach for characterizing the venom components from a Euscorpiidae scorpion, Scorpiops jendeki. Results There are ten known types of venom peptides and proteins obtained from Scorpiops jendeki. Great diversity is observed in primary sequences of most highly expressed types. The most highly expressed types are cytolytic peptides and serine proteases. Neurotoxins specific for sodium channels, which are major groups of venom components from Buthidae scorpions, are not detected in this study. In addition to those known types of venom peptides and proteins, we also obtain nine atypical types of venom molecules which haven't been observed in any other scorpion species studied to date. Conclusion This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few transcriptomic analyses from a scorpion. This allows the characterization of a large number of venom molecules, belonging to either known or atypical types of scorpion venom peptides and proteins. Besides, our work could provide some clues to the evolution of the scorpion venom arsenal by comparison with venom data from other scorpion lineages. PMID:19570192

  5. Characterisation of three alpha-helical antimicrobial peptides from the venom of Scorpio maurus palmatus.

    PubMed

    Harrison, Patrick L; Abdel-Rahman, Mohamed A; Strong, Peter N; Tawfik, Mohamed M; Miller, Keith

    2016-07-01

    Scorpion venoms provide a rich source of anti-microbial peptides. Here we characterise three from the venom of Scorpion maurus palmatus. Smp13 is biologically inactive, despite sharing homology with other antimicrobial peptides, probably because it lacks a typically charged structure. Both Smp-24 and Smp-43 have broad spectrum antimicrobial activity, disrupting bacterial membranes. In addition, there is evidence that Smp24 may inhibit DNA synthesis in Bacillus subtilis. Smp24 haemolysed red blood cells but in contrast, Smp43 was non-haemolytic. The introduction of a flexible Gly-Val-Gly hinge into the middle of Smp24 did not alter the haemolytic activity of Smp24 (as might have been predicted from earlier studies with Pandinin2 (Pin2), although C-terminal truncation of Smp-24 reduced its haemolytic activity, in agreement with earlier Pin 2 studies. Smp24 and its derivatives, as well as Smp-43, were all cytotoxic (ATP release assay) toward mammalian HepG2 liver cells. Our results highlight the beneficial effect of helical-hinge-helical conformation on promoting prokaryotic selectivity of long chain scorpion AMPs, as well as the importance of examining a wide range of mammalian cell types in cytotoxicity testing. PMID:27019370

  6. BmK-YA, an Enkephalin-Like Peptide in Scorpion Venom

    PubMed Central

    Wang, Zhiwei; Zhang, Xiuli; Liang, Xinmiao; Civelli, Olivier

    2012-01-01

    By screening extracts of venom from the Asian scorpion Buthus martensii Karsch (BmK) for their abilities to activate opioid receptors, we have identified BmK-YA, an amidated peptide containing an enkephalin-like sequence. BmK-YA is encoded by a precursor that displays a signal sequence and contains four copies of BmK-YA sequences and four of His4-BmK-YA, all flanked by single amino acid residues. BmK-YA and His4-BmK-YA are amidated and thus fulfill the characteristics expected of bioactive peptides. BmK-YA can activate mammalian opioid receptors with selectivity for the δ subtype while His4-BmK-YA is inactive at opioid receptors. The discovery of BmK-YA suggests that scorpion venom may represent a novel source of bioactive molecules targeting G protein-coupled receptors (GPCRs) and reveal additional insights on the evolution of the opioid precursors. PMID:22792309

  7. Protease inhibitor in scorpion (Mesobuthus eupeus) venom prolongs the biological activities of the crude venom.

    PubMed

    Ma, Hakim; Xiao-Peng, Tang; Yang, Shi-Long; Lu, Qiu-Min; Lai, Ren

    2016-08-01

    It is hypothesized that protease inhibitors play an essential role in survival of venomous animals through protecting peptide/protein toxins from degradation by proteases in their prey or predators. However, the biological function of protease inhibitors in scorpion venoms remains unknown. In the present study, a trypsin inhibitor was purified and characterized from the venom of scorpion Mesobuthus eupeus, which enhanced the biological activities of crude venom components in mice when injected in combination with crude venom. This protease inhibitor, named MeKTT-1, belonged to Kunitz-type toxins subfamily. Native MeKTT-1 selectively inhibited trypsin with a Kivalue of 130 nmol·L(-1). Furthermore, MeKTT-1 was shown to be a thermo-stable peptide. In animal behavioral tests, MeKTT-1 prolonged the pain behavior induced by scorpion crude venom, suggesting that protease inhibitors in scorpion venom inhibited proteases and protect the functionally important peptide/protein toxins from degradation, consequently keeping them active longer. In conclusion, this was the first experimental evidence about the natural existence of serine protease inhibitor in the venom of scorpion Mesobuthus eupeus, which preserved the activity of venom components, suggests that scorpions may use protease inhibitors for survival. PMID:27608950

  8. Two novel antimicrobial peptides from skin venoms of spadefoot toad Megophrys minor.

    PubMed

    Yang, Hong-Ling; Shen, Zhi-Qiang; Liu, Xuan; Kong, Yi

    2016-04-01

    Amphibian skin contains rich bioactive peptides. Especially, a large amount of antimicrobial peptides have been identified from amphibian skin secretions. Antimicrobial peptides display potent cytolytic activities against a range of pathogenic bacteria and fungi and play important defense roles. No antimicrobial peptides have been reported from toads belonging to the family of Pelobatidae. In this work, two novel antimicrobial peptides (Megin 1 and Megin 2) were purified and characterized from the skin venoms of spadefoot toad Megophrys minor (Pelobatidae, Anura, Amphibia). Megin 1 had an amino acid sequence of FLKGCWTKWYSLKPKCPF-NH2, which was composed of 18 amino acid residues and contained an intra-molecular disulfide bridge and an amidated C-terminus. Megin 2 had an amino acid sequence of FFVLKFLLKWAGKVGLEHLACKFKNWC, which was composed of 27 amino acid residues and contained an intra-molecular disulfide bridge. Both Megin 1 and Megin 2 showed potential antimicrobial abilities against bacteria and fungi. The MICs of Megin 1 against Escherichia coli, Bacillus dysenteriae, Staphylococcus aureus, Bacillus subtilis, and Candida albicans were 25, 3, 6.25, 3, and 50 μg·mL(-1), respectively. The corresponding MICs for Megin 2 were 6.25, 1.5, 12.5, 1.5, and 12.5 μg·mL(-1), respectively. They also exerted strong hemolytic activity against human and rabbit red cells. The results suggested that megin peptides in the toad skin of M. minor displayed toxic effects on both eukaryotes and prokaryotes. This was the first report of antimicrobial peptides from amphibians belonging to the family of Pelobatidae. PMID:27114317

  9. Scorpion venom heat-resistant peptide (SVHRP) enhances neurogenesis and neurite outgrowth of immature neurons in adult mice by up-regulating brain-derived neurotrophic factor (BDNF).

    PubMed

    Wang, Tao; Wang, Shi-Wei; Zhang, Yue; Wu, Xue-Fei; Peng, Yan; Cao, Zhen; Ge, Bi-Ying; Wang, Xi; Wu, Qiong; Lin, Jin-Tao; Zhang, Wan-Qin; Li, Shao; Zhao, Jie

    2014-01-01

    Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Although scorpions and their venom have been used in Traditional Chinese Medicine (TCM) to treat chronic neurological disorders, the underlying mechanisms of these treatments remain unknown. We applied SVHRP in vitro and in vivo to understand its effects on the neurogenesis and maturation of adult immature neurons and explore associated molecular mechanisms. SVHRP administration increased the number of 5-bromo-2'-dexoxyuridine (BrdU)-positive cells, BrdU-positive/neuron-specific nuclear protein (NeuN)-positive neurons, and polysialylated-neural cell adhesion molecule (PSA-NCAM)-positive immature neurons in the subventricular zone (SVZ) and subgranular zone (SGZ) of hippocampus. Furthermore immature neurons incubated with SVHRP-pretreated astrocyte-conditioned medium exhibited significantly increased neurite length compared with those incubated with normal astrocyte-conditioned medium. This neurotrophic effect was further confirmed in vivo by detecting an increased average single area and whole area of immature neurons in the SGZ, SVZ and olfactory bulb (OB) in the adult mouse brain. In contrast to normal astrocyte-conditioned medium, higher concentrations of brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) was detected in the conditioned medium of SVHRP-pretreated astrocytes, and blocking BDNF using anti-BDNF antibodies eliminated these SVHRP-dependent neurotrophic effects. In SVHRP treated mouse brain, more glial fibrillary acidic protein (GFAP)-positive cells were detected. Furthermore, immunohistochemistry revealed increased numbers of GFAP/BDNF double-positive cells, which agrees with the observed changes in the culture system. This paper describes novel effects of scorpion venom-originated peptide on the stem cells and suggests the potential therapeutic values of SVHRP

  10. Scorpion Venom Heat-Resistant Peptide (SVHRP) Enhances Neurogenesis and Neurite Outgrowth of Immature Neurons in Adult Mice by Up-Regulating Brain-Derived Neurotrophic Factor (BDNF)

    PubMed Central

    Zhang, Yue; Wu, Xue-Fei; Peng, Yan; Cao, Zhen; Ge, Bi-Ying; Wang, Xi; Wu, Qiong; Lin, Jin-Tao; Zhang, Wan-Qin; Li, Shao; Zhao, Jie

    2014-01-01

    Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Although scorpions and their venom have been used in Traditional Chinese Medicine (TCM) to treat chronic neurological disorders, the underlying mechanisms of these treatments remain unknown. We applied SVHRP in vitro and in vivo to understand its effects on the neurogenesis and maturation of adult immature neurons and explore associated molecular mechanisms. SVHRP administration increased the number of 5-bromo-2’-dexoxyuridine (BrdU)-positive cells, BrdU- positive/neuron-specific nuclear protein (NeuN)-positive neurons, and polysialylated-neural cell adhesion molecule (PSA-NCAM)-positive immature neurons in the subventricular zone (SVZ) and subgranular zone (SGZ) of hippocampus. Furthermore immature neurons incubated with SVHRP-pretreated astrocyte-conditioned medium exhibited significantly increased neurite length compared with those incubated with normal astrocyte-conditioned medium. This neurotrophic effect was further confirmed in vivo by detecting an increased average single area and whole area of immature neurons in the SGZ, SVZ and olfactory bulb (OB) in the adult mouse brain. In contrast to normal astrocyte-conditioned medium, higher concentrations of brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) was detected in the conditioned medium of SVHRP-pretreated astrocytes, and blocking BDNF using anti-BDNF antibodies eliminated these SVHRP-dependent neurotrophic effects. In SVHRP treated mouse brain, more glial fibrillary acidic protein (GFAP)-positive cells were detected. Furthermore, immunohistochemistry revealed increased numbers of GFAP/BDNF double-positive cells, which agrees with the observed changes in the culture system. This paper describes novel effects of scorpion venom-originated peptide on the stem cells and suggests the potential therapeutic values of

  11. α-RgIB: A Novel Antagonist Peptide of Neuronal Acetylcholine Receptor Isolated from Conus regius Venom

    PubMed Central

    Braga, Maria Cristina Vianna; Nery, Arthur Andrade; Ulrich, Henning; Konno, Katsuhiro; Sciani, Juliana Mozer; Pimenta, Daniel Carvalho

    2013-01-01

    Conus venoms are rich sources of biologically active peptides that act specifically on ionic channels and metabotropic receptors present at the neuromuscular junction, efficiently paralyzing the prey. Each species of Conus may have 50 to 200 uncharacterized bioactive peptides with pharmacological interest. Conus regius is a vermivorous species that inhabits Northeastern Brazilian tropical waters. In this work, we characterized one peptide with activity on neuronal acetylcholine receptor (nAChR). Crude venom was purified by reverse-phase HPLC and selected fractions were screened and sequenced by mass spectrometry, MALDI-ToF, and ESI-Q-ToF, respectively. A new peptide was identified, bearing two disulfide bridges. The novel 2,701 Da peptide belongs to the cysteine framework I, corresponding to the cysteine pattern CC-C-C. The biological activity of the purified peptide was tested by intracranial injection in mice, and it was observed that high concentrations induced hyperactivity in the animals, whereas lower doses caused breathing difficulty. The activity of this peptide was assayed in patch-clamp experiments, on nAChR-rich cells, in whole-cell configuration. The peptide blocked slow rise-time neuronal receptors, probably α3β4 and/or α3β4α5 subtype. According to the nomenclature, the new peptide was designated as α-RgIB. PMID:23533449

  12. Venom proteomic and venomous glands transcriptomic analysis of the Egyptian scorpion Scorpio maurus palmatus (Arachnida: Scorpionidae).

    PubMed

    Abdel-Rahman, Mohamed A; Quintero-Hernandez, Veronica; Possani, Lourival D

    2013-11-01

    Proteomic analysis of the scorpion venom Scorpio maurus palmatus was performed using reverse-phase HPLC separation followed by mass spectrometry determination. Sixty five components were identified with molecular masses varying from 413 to 14,009 Da. The high percentage of peptides (41.5%) was from 3 to 5 KDa which may represent linear antimicrobial peptides and KScTxs. Also, 155 expressed sequence tags (ESTs) were analyzed through construction the cDNA library prepared from a pair of venomous gland. About 77% of the ESTs correspond to toxin-like peptides and proteins with definite open reading frames. The cDNA sequencing results also show the presence of sequences whose putative products have sequence similarity with antimicrobial peptides (24%), insecticidal toxins, β-NaScTxs, κ-KScTxs, α-KScTxs, calcines and La1-like peptides. Also, we have obtained 23 atypical types of venom molecules not recorded in other scorpion species. Moreover, 9% of the total ESTs revealed significant similarities with proteins involved in the cellular processes of these scorpion venomous glands. This is the first set of molecular masses and transcripts described from this species, in which various venom molecules have been identified. They belong to either known or unassigned types of scorpion venom peptides and proteins, and provide valuable information for evolutionary analysis and venomics. PMID:23998939

  13. D-amino acid residue in a defensin-like peptide from platypus venom: effect on structure and chromatographic properties.

    PubMed

    Torres, Allan M; Tsampazi, Chryssanthi; Geraghty, Dominic P; Bansal, Paramjit S; Alewood, Paul F; Kuchel, Philip W

    2005-10-15

    The recent discovery that the natriuretic peptide OvCNPb (Ornithorhynchus venom C-type natriuretic peptide B) from platypus (Ornithorynchus anatinus) venom contains a D-amino acid residue suggested that other D-amino-acid-containing peptides might be present in the venom. In the present study, we show that DLP-2 (defensin-like peptide-2), a 42-amino-acid residue polypeptide in the platypus venom, also contains a D-amino acid residue, D-methionine, at position 2, while DLP-4, which has an identical amino acid sequence, has all amino acids in the L-form. These findings were supported further by the detection of isomerase activity in the platypus gland venom extract that converts DLP-4 into DLP-2. In the light of this new information, the tertiary structure of DLP-2 was recalculated using a new structural template with D-Met2. The structure of DLP-4 was also determined in order to evaluate the effect of a D-amino acid at position 2 on the structure and possibly to explain the large retention time difference observed for the two molecules in reverse-phase HPLC. The solution structures of the DLP-2 and DLP-4 are very similar to each other and to the earlier reported structure of DLP-2, which assumed that all amino acids were in the L-form. Our results suggest that the incorporation of the D-amino acid at position 2 has minimal effect on the overall fold in solution. PMID:16033333

  14. Characterization of a pro-angiogenic, novel peptide from Russell's viper (Daboia russelii russelii) venom.

    PubMed

    Mukherjee, Ashis K; Chatterjee, Suvro; Majumder, Syamantak; Saikia, Debashree; Thakur, Rupamoni; Chatterjee, Anupam

    2014-01-01

    Present report shows for the first time on the induction of in vitro angiogenesis by a 3.9 kDa novel peptide (RVVAP) purified from Russell's viper venom. Secondary structure of RVVAP is made up of 36.8% α-helix, 33.3% β pleated sheets and 29.9% turns. Optimum angiogenesis and significant elevation in endothelial migration were observed at 50 ng/ml of RVVAP treatment; above this concentration, progressive decrease in wound healing was noted. RVVAP (1.0 μg/ml) was non-cytotoxic to U87-MG, HeLa and HT-29 cells; however, increasing the RVVAP concentration above 500 ng/ml resulted in induction of chromosomal aberrations and delay in cell cycle kinetics of Chinese hamster ovary cells. PMID:24184153

  15. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan.

    PubMed

    Moreno, Miguel; Giralt, Ernest

    2015-04-01

    While knowledge of the composition and mode of action of bee and wasp venoms dates back 50 years, the therapeutic value of these toxins remains relatively unexploded. The properties of these venoms are now being studied with the aim to design and develop new therapeutic drugs. Far from evaluating the extensive number of monographs, journals and books related to bee and wasp venoms and the therapeutic effect of these toxins in numerous diseases, the following review focuses on the three most characterized peptides, namely melittin, apamin, and mastoparan. Here, we update information related to these compounds from the perspective of applied science and discuss their potential therapeutic and biotechnological applications in biomedicine. PMID:25835385

  16. Three Valuable Peptides from Bee and Wasp Venoms for Therapeutic and Biotechnological Use: Melittin, Apamin and Mastoparan

    PubMed Central

    Moreno, Miguel; Giralt, Ernest

    2015-01-01

    While knowledge of the composition and mode of action of bee and wasp venoms dates back 50 years, the therapeutic value of these toxins remains relatively unexploded. The properties of these venoms are now being studied with the aim to design and develop new therapeutic drugs. Far from evaluating the extensive number of monographs, journals and books related to bee and wasp venoms and the therapeutic effect of these toxins in numerous diseases, the following review focuses on the three most characterized peptides, namely melittin, apamin, and mastoparan. Here, we update information related to these compounds from the perspective of applied science and discuss their potential therapeutic and biotechnological applications in biomedicine. PMID:25835385

  17. Effective Tityus serrulatus anti-venom produced using the Ts1 component.

    PubMed

    Mendes, T M; Dias, F; Horta, C C R; Pena, I F; Arantes, E C; Kalapothakis, E

    2008-12-01

    Scorpion stings are a public health problem in Brazil, with most incidents involving the species Tityus serrulatus. Some T. serrulatus toxins may act as immunogens for the production of a specific anti-venom, but many of the component toxins remain poorly characterized. Here, we describe the immunological characteristics of the toxin Ts1 (also known as TsVII and Ts-gamma) and evaluate production of neutralizing antibodies against the crude venom of T. serrulatus. Recombinant Ts1 with one copy (Ts1(1)) or two copies in tandem (Ts1(2)) was expressed in BL21 (DE3) cells. Rabbits and mice were immunized with the recombinant proteins (inclusion bodies) and then tested for production of neutralizing antibodies. Neutralization assays showed that anti-Ts1(1) and anti-Ts1(2) protected animals challenged with T. serrulatus crude venom and native Ts1. Thus, Ts1 could be used in a mixed "cocktail" of immunogens for T. serrulatus anti-venom production. PMID:18775739

  18. [Determination of peptide and protein diversity in venom of the spider Selenocosmia jiafu by high performance liquid chromatography and mass spectrometry].

    PubMed

    Hu, Zhaotun; Xiao, Zhen; Zhou, Xi; Chen, Jia; Chen, Bo; Liu, Zhonghua

    2015-06-01

    Selenocosmia jiafu (S. jiafu) is recently identified as a new species of spider in P. R. China. These medium bodied venomous spiders are distributed mainly in the hilly areas of southwest of China, mostly at Yunnan and Guangxi Provinces. In order to understand the composition of the S. jiafu venom, we performed a preliminary analysis of this venom using reversed-phase high performance liquid chromatography (RP-HPLC), matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The S. jiafu venom was separated by RP-HPLC in an analytical C18 column (phenomenex 100 A, 250 mm x 4.6 mm, 5 µm) equilibrated with solution A (distilled water with 0.1% trifluoroacetic acid), using a gradient from 0% to 50% of solution B (acetonitrile with 0.1% trifluoroacetic acid) over 50 min with a flow rate of 1 mL/min. The isolated venom proteins were treated with in-gel digestion separated by SDS- PAGE and then identified by liquid chromatography-electrospray ionization quadrupole-time of flight mass spectrometry (LC-ESI-QTOF-MS) techniques. The results show that more than 40 fractions eluted were monitored at 215 nm in the RP-HPLC chromatogram of the venom of the spider S. jiafu. Most of the fractions were eluted with retention times of 5-15 min and 25-40 min, corresponding to 5%-15% and 25%-40% acetonitrile, respectively. The venom contains 238 peptides that follow a bimodal distribution, with about 62.5% of the peptides having a relative molecular mass of 3,000-4,500 and about 33.2% of the peptides having a relative molecular mass of 1,000-3,000. This distribution model is rather different from those of peptides from other tarantula spider venoms analyzed. To explore the relative molecular mass distribution of the venom proteins, the venom was analyzed by SDS-PAGE using standard protocols. Except for peptides with relative molecular mass lower than 10,000, the SDS

  19. Characterization of venom (Duvernoy's secretion) from twelve species of colubrid snakes and partial sequence of four venom proteins.

    PubMed

    Hill, R E; Mackessy, S P

    2000-12-01

    R.E. Hill and S.P. Mackessy. Characterization of venom (Duvernoy's secretion) from twelve species of colubrid snakes and partial sequence of four venom proteins. Toxicon XX, xx-yy, 2000. - Venomous colubrids, which include more than 700 snake species worldwide, represent a vast potential source of novel biological compounds. The present study characterized venom (Duvernoy's gland secretion) collected from twelve species of opisthoglyphous (rear-fanged) colubrid snakes, an extremely diverse assemblage of non-venomous to highly venomous snakes. Most venoms displayed proteolytic activity (casein), though activity levels varied considerably. Low phosphodiesterase activity was detected in several venoms (Amphiesma stolata, Diadophis punctatus, Heterodon nasicus kennerlyi, H. n. nasicus and Thamnophis elegans vagrans), and acetylcholinesterase was found in Boiga irregularis saliva and venom, but no venoms displayed hyaluronidase, thrombin-like or kallikrein-like activities. High phospholipase A(2) (PLA(2)) activity was found in Trimorphodon biscutatus lambda venom, and moderate levels were detected in Boiga dendrophila and D. p. regalis venoms as well as B. dendrophila and H. n. nasicus salivas. Non-reducing SDS-PAGE revealed 7-20 protein bands (3.5 to over 200 kD, depending on species) for all venoms analyzed, and electrophoretic profiles of venoms were typically quite distinct from saliva profiles. Components from A. stolata, Hydrodynastes gigas, Tantilla nigriceps and T. e. vagrans venoms showed protease activity when run on gelatin zymogram gels. N-terminal protein sequences for three 26 kD venom components of three species (H. gigas, H. torquata, T. biscutatus) and one 3.5 kD component (T. nigriceps) were also obtained, and the 3.5 kD peptide showed apparent sequence homology with human vascular endothelial growth factor; these data represent the first sequences of colubrid venom components. Protease, phosphodiesterase and PLA(2) activities are also common to elapid

  20. StCT2, a new antibacterial peptide characterized from the venom of the scorpion Scorpiops tibetanus.

    PubMed

    Cao, Luyang; Li, Zhongjie; Zhang, Ruhong; Wu, Yingliang; Li, Wenxin; Cao, Zhijian

    2012-08-01

    Bacterial infection poses an increasing threat to global public health and new types of antibacterial agents are urgently needed to respond to the threat. Scorpion venom contains series of bioactive peptides, among which antibacterial peptide is an important part. Herein, a new antimicrobial peptide StCT2 was characterized from the venomous gland cDNA library of the Scorpiops tibetanus. The full-length cDNA of StCT2 is 369 nucleotides encoding the precursor that contains a putative 24 residues signal peptide, a presumed 14 residues mature peptide, and a putative 37 residues acidic propeptide at the C-terminus. The minimal inhibition concentrations (MICs) of StCT2 for Staphylococcus aureus were 6.25-25μg/ml, including antibiotic-resistant strains such as methicillin resistant S. aureus (MRSA). StCT2 was further found to show high in vivo antimicrobial activity by an S. aureus infection mouse model. StCT2 exerted its antimicrobial activity via a rapid bactericidal mechanism. Taken together, these results demonstrate the efficacy and general mechanism of StCT2 antimicrobial action and the therapeutic potential of StCT2 as a new antimicrobial peptide. PMID:22542475

  1. De novo sequencing of antimicrobial peptides isolated from the venom glands of the wolf spider Lycosa singoriensis.

    PubMed

    Budnik, B A; Olsen, J V; Egorov, T A; Anisimova, V E; Galkina, T G; Musolyamov, A K; Grishin, E V; Zubarev, R A

    2004-02-01

    Antimicrobial peptides (AMPs), named lycocitin 1, 2 and 3, and a peptide with a monoisotopic molecular mass of 3038.70 Da were detected in the venom glands of the wolf spider Lycosa singoriensis. Two of the peptides, lycocitin 1 and 2, are new AMPs whereas lycocitin 3 is highly homologous to lycotoxin II isolated from the venom of spider Lycosa carolinensis. In addition, two other peptides with monoisotopic masses of 2034.20 and 2340.28 Da showing the motif typical for antimicrobial peptides were also identified. These peptides and lycocitin 1, 2 and 3 were de novo sequenced using electron capture dissociation and low-energy collisional tandem mass spectrometry. The amino acid sequence of lycocitin 1 was determined as GKLQAFLAKMKEIAAQTL-NH(2). Lycocitin 2 differs from lycocitin 1 by a replacement of a lysine residue for an arginine residue at the second position. Lycocitin 3 differs from the known lycotoxin II consisting of 27 amino acid residues by a deletion of Gly-26. Both lycocitin 1 and 2 inhibit growth of Gram-positive (Staphylococcus aureus, Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria and fungi (Candida albicans, Pseudomonas aeruginosa) at micromolar concentrations. PMID:14991689

  2. Antimicrobial/cytolytic peptides from the venom of the North African scorpion, Androctonus amoreuxi: biochemical and functional characterization of natural peptides and a single site-substituted analog.

    PubMed

    Almaaytah, Ammar; Zhou, Mei; Wang, Lei; Chen, Tianbao; Walker, Brian; Shaw, Chris

    2012-06-01

    The venoms of scorpions are complex cocktails of polypeptide toxins that fall into two structural categories: those that contain cysteinyl residues with associated disulfide bridges and those that do not. As the majority of lethal toxins acting upon ion channels fall into the first category, most research has been focused there. Here we report the identification and structural characterization of two novel 18-mer antimicrobial peptides from the venom of the North African scorpion, Androctonus amoreuxi. Named AamAP1 and AamAP2, both peptides are C-terminally amidated and differ in primary structure at just two sites: Leu-->Pro at position 2 and Phe-->Ile at position 17. Synthetic replicates of both peptides exhibited a broad-spectrum of antimicrobial activity against a Gram-positive bacterium (Staphylococcus aureus), a Gram-negative bacterium (Escherichia coli) and a yeast (Candida albicans), at concentrations ranging between 20 μM and 150 μM. In this concentration range, both peptides produced significant degrees of hemolysis. A synthetic replicate of AamAP1 containing a single substitution (His-->Lys) at position 8, generated a peptide (AamAP-S1) with enhanced antimicrobial potency (3-5 μM) against the three test organisms and within this concentration range, hemolytic effects were negligible. In addition, this His-->Lys variant exhibited potent growth inhibitory activity (ID(50) 25-40 μm) against several human cancer cell lines and endothelial cells that was absent in both natural peptides. Natural bioactive peptide libraries, such as those that occur in scorpion venoms, thus constitute a unique source of novel lead compounds with drug development potential whose biological properties can be readily manipulated by simple synthetic chemical means. PMID:22484288

  3. Targeting the Ion Channel Kv1.3 with Scorpion Venom Peptides Engineered for Potency, Selectivity, and Half-life

    PubMed Central

    Edwards, Wilson; Fung-Leung, Wai-Ping; Huang, Chichi; Chi, Ellen; Wu, Nancy; Liu, Yi; Maher, Michael P.; Bonesteel, Rachelle; Connor, Judith; Fellows, Ross; Garcia, Elena; Lee, Jerry; Lu, Lu; Ngo, Karen; Scott, Brian; Zhou, Hong; Swanson, Ronald V.; Wickenden, Alan D.

    2014-01-01

    Ion channels are an attractive class of drug targets, but progress in developing inhibitors for therapeutic use has been limited largely due to challenges in identifying subtype selective small molecules. Animal venoms provide an alternative source of ion channel modulators, and the venoms of several species, such as scorpions, spiders and snails, are known to be rich sources of ion channel modulating peptides. Importantly, these peptides often bind to hyper-variable extracellular loops, creating the potential for subtype selectivity rarely achieved with small molecules. We have engineered scorpion venom peptides and incorporated them in fusion proteins to generate highly potent and selective Kv1.3 inhibitors with long in vivo half-lives. Kv1.3 has been reported to play a role in human T cell activation, and therefore, these Kv1.3 inhibitor fusion proteins may have potential for the treatment of autoimmune diseases. Our results support an emerging approach to generating subtype selective therapeutic ion channel inhibitors. PMID:24939846

  4. Cardiovascular-Active Venom Toxins: An Overview.

    PubMed

    Rebello Horta, Carolina Campolina; Chatzaki, Maria; Rezende, Bruno Almeida; Magalhães, Bárbara de Freitas; Duarte, Clara Guerra; Felicori, Liza Figueiredo; Ribeiro Oliveira-Mendes, Bárbara Bruna; do Carmo, Anderson Oliveira; Chávez-Olórtegui, Carlos; Kalapothakis, Evanguedes

    2016-01-01

    Animal venoms are a mixture of bioactive compounds produced as weapons and used primarily to immobilize and kill preys. As a result of the high potency and specificity for various physiological targets, many toxins from animal venoms have emerged as possible drugs for the medication of diverse disorders, including cardiovascular diseases. Captopril, which inhibits the angiotensin-converting enzyme (ACE), was the first successful venom-based drug and a notable example of rational drug design. Since captopril was developed, many studies have discovered novel bradykinin-potentiating peptides (BPPs) with actions on the cardiovascular system. Natriuretic peptides (NPs) have also been found in animal venoms and used as template to design new drugs with applications in cardiovascular diseases. Among the anti-arrhythmic peptides, GsMTx-4 was discovered to be a toxin that selectively inhibits the stretch-activated cation channels (SACs), which are involved in atrial fibrillation. The present review describes the main components isolated from animal venoms that act on the cardiovascular system and presents a brief summary of venomous animals and their venom apparatuses. PMID:26812904

  5. Chemical Punch Packed in Venoms Makes Centipedes Excellent Predators*

    PubMed Central

    Yang, Shilong; Liu, Zhonghua; Xiao, Yao; Li, Yuan; Rong, Mingqiang; Liang, Songping; Zhang, Zhiye; Yu, Haining; King, Glenn F.; Lai, Ren

    2012-01-01

    Centipedes are excellent predatory arthropods that inject venom to kill or immobilize their prey. Although centipedes have long been known to be venomous, their venoms remain largely unexplored. The chemical components responsible for centipede predation and the functional mechanisms are unknown. Twenty-six neurotoxin-like peptides belonging to ten groups were identified from the centipede venoms, Scolopendra subspinipes mutilans L. Koch by peptidomics combined with transcriptome analysis, revealing the diversity of neurotoxins. These neurotoxins each contain two to four intramolecular disulfide bridges, and in most cases the disulfide framework is different from that found in neurotoxins from the venoms of spiders, scorpions, marine cone snails, sea anemones, and snakes (5S animals). Several neurotoxins contain potential insecticidal abilities, and they are found to act on voltage-gated sodium, potassium, and calcium channels, respectively. Although these neurotoxins are functionally similar to the disulfide-rich neurotoxins found in the venoms of 5S animals in that they modulate the activity of voltage-gated ion channels, in almost all cases the primary structures of the centipede venom peptides are unique. This represents an interesting case of convergent evolution in which different venomous animals have evolved different molecular strategies for targeting the same ion channels in prey and predators. Moreover, the high level of biochemical diversity revealed in this study suggests that centipede venoms might be attractive subjects for prospecting and screening for peptide candidates with potential pharmaceutical or agrochemical applications. PMID:22595790

  6. Paulistine—The Functional Duality of a Wasp Venom Peptide Toxin

    PubMed Central

    Arcuri, Helen Andrade; Gomes, Paulo Cesar; de Souza, Bibiana Monson; Dias, Nathalia Baptista; Brigatte, Patrícia; Stabeli, Rodrigo Guerino; Palma, Mario Sergio

    2016-01-01

    It has been reported that Paulistine in the venom of the wasp Polybia paulista co-exists as two different forms: an oxidized form presenting a compact structure due to the presence of a disulfide bridge, which causes inflammation through an apparent interaction with receptors in the 5-lipoxygenase pathway, and a naturally reduced form (without the disulfide bridge) that exists in a linear conformation and which also causes hyperalgesia and acts in the cyclooxygenase type II pathway. The reduced peptide was acetamidomethylated (Acm-Paulistine) to stabilize this form, and it still maintained its typical inflammatory activity. Oxidized Paulistine docks onto PGHS2 (COX-2) molecules, blocking the access of oxygen to the heme group and inhibiting the inflammatory activity of Acm-Paulistine in the cyclooxygenase type II pathway. Docking simulations revealed that the site of the docking of Paulistine within the PGHS2 molecule is unusual among commercial inhibitors of the enzyme, with an affinity potentially much higher than those observed for traditional anti-inflammatory drugs. Therefore, Paulistine causes inflammatory activity at the level of the 5-lipooxygenase pathway and, in parallel, it competes with its reduced form in relation to the activation of the cyclooxygenase pathway. Thus, while the reduced Paulistine causes inflammation, its oxidized form is a potent inhibitor of this activity. PMID:26938560

  7. A Novel Direct Factor Xa Inhibitory Peptide with Anti-Platelet Aggregation Activity from Agkistrodon acutus Venom Hydrolysates

    PubMed Central

    Chen, Meimei; Ye, Xiaohui; Ming, Xin; Chen, Yahui; Wang, Ying; Su, Xingli; Su, Wen; Kong, Yi

    2015-01-01

    Snake venom is a natural substance that contains numerous bioactive proteins and peptides, nearly all of which have been identified over the last several decades. In this study, we subjected snake venom to enzymatic hydrolysis to identify previously unreported bioactive peptides. The novel peptide ACH-11 with the sequence LTFPRIVFVLG was identified with both FXa inhibition and anti-platelet aggregation activities. ACH-11 inhibited the catalytic function of FXa towards its substrate S-2222 via a mixed model with a Ki value of 9.02 μM and inhibited platelet aggregation induced by ADP and U46619 in a dose-dependent manner. Furthermore, ACH-11 exhibited potent antithrombotic activity in vivo. It reduced paralysis and death in an acute pulmonary thrombosis model by 90% and attenuated thrombosis weight in an arterio-venous shunt thrombosis model by 57.91%, both at a dose of 3 mg/kg. Additionally, a tail cutting bleeding time assay revealed that ACH-11 did not prolong bleeding time in mice at a dose of 3 mg/kg. Together, our results reveal that ACH-11 is a novel antithrombotic peptide exhibiting both FXa inhibition and anti-platelet aggregation activities, with a low bleeding risk. We believe that it could be a candidate or lead compound for new antithrombotic drug development. PMID:26035670

  8. Sequence Characterization of cDNA Sequence of Encoding of an Antimicrobial Peptide With No Disulfide Bridge from the Iranian Mesobuthus Eupeus Venomous Glands

    PubMed Central

    Farajzadeh-Sheikh, Ahmad; Jolodar, Abbas; Ghaemmaghami, Shamsedin

    2013-01-01

    Background Scorpion venom glands produce some antimicrobial peptides (AMP) that can rapidly kill a broad range of microbes and have additional activities that impact on the quality and effectiveness of innate responses and inflammation. Objectives In this study, we reported the identification of a cDNA sequence encoding cysteine-free antimicrobial peptides isolated from venomous glands of this species. Materials and Methods Total RNA was extracted from the Iranian mesobuthus eupeus venom glands, and cDNA was synthesized by using the modified oligo (dT). The cDNA was used as the template for applying Semi-nested RT- PCR technique. PCR Products were used for direct nucleotide sequencing and the results were compared with Gen Bank database. Results A 213 BP cDNA fragment encoding the entire coding region of an antimicrobial toxin from the Iranian scorpion M. Eupeus venom glands were isolated. The full-length sequence of the coding region was 210 BP contained an open reading frame of 70 amino with a predicted molecular mass of 7970.48 Da and theoretical Pi of 9.10. The open reading frame consists of 210 BP encoding a precursor of 70 amino acid residues, including a signal peptide of 23 residues a propertied of 7 residues, and a mature peptide of 34 residues with no disulfide bridge. The peptide has detectable sequence identity to the Lesser Asian mesobuthus eupeus MeVAMP-2 (98%), MeVAMP-9 (60%) and several previously described AMPs from other scorpion venoms including mesobuthus martensii (94%) and buthus occitanus Israelis (82%). Conclusions The secondary structure of the peptide mainly consisted of α-helical structure which was generally conserved by previously reported scorpion counterparts. The phylogenetic analysis showed that the Iranian MeAMP-like toxin was similar but not identical with that of venom antimicrobial peptides from lesser Asian scorpion mesobuthus eupeus. PMID:23486842

  9. Quantitative proteomic analysis of Vietnamese krait venoms: Neurotoxins are the major components in Bungarus multicinctus and phospholipases A2 in Bungarus fasciatus.

    PubMed

    Ziganshin, Rustam H; Kovalchuk, Sergey I; Arapidi, Georgij P; Starkov, Vladislav G; Hoang, Anh Ngoc; Thi Nguyen, Thao Thanh; Nguyen, Khoa Cuu; Shoibonov, Batozhab B; Tsetlin, Victor I; Utkin, Yuri N

    2015-12-01

    Kraits are venomous snakes of genus Bungarus from family Elapidae. Krait venoms are generally neurotoxic, but toxicity strongly depends on the particular species and regional origin of snakes. We analyzed the proteomes of Vietnamese Bungarus multicinctus and Bungarus fasciatus venoms both qualitatively and quantitatively. It should be noted that no proteomic data for B. multicinctus venom existed so far. We have found that in this venom, almost half (45%) of the proteins by weight was represented by β-bungarotoxins, followed by three finger toxins (28%) and phospholipases A2 (16%), other proteins being present at the level of 1-3%. In B. fasciatus venom, phospholipase A2 was the main component (71%), followed by oxidase of l-amino acids (8%), acetylcholinesterase (5%) and metalloproteinases (4%). Unexpectedly, extremely low amount of three finger toxins (1%) was found in this venom. Interestingly, the presence of complement depleting factor was observed in both venoms. Although our data showed the presence of the same toxin families in Vietnamese krait venoms as those found earlier in the venoms of kraits from other geographic regions, their relative ratio is completely different. This concerns especially B. fasciatus venom with predominant content of phospholipases A2 and very low amount of three finger toxins. PMID:26341420

  10. Structural characterization of a novel peptide with antimicrobial activity from the venom gland of the scorpion Tityus stigmurus: Stigmurin.

    PubMed

    de Melo, Edinara Targino; Estrela, Andréia Bergamo; Santos, Elizabeth Cristina Gomes; Machado, Paula Renata Lima; Farias, Kleber Juvenal Silva; Torres, Taffarel Melo; Carvalho, Enéas; Lima, João Paulo Matos Santos; Silva-Júnior, Arnóbio Antonio; Barbosa, Euzébio Guimarães; Fernandes-Pedrosa, Matheus de Freitas

    2015-06-01

    A new antimicrobial peptide, herein named Stigmurin, was selected based on a transcriptomic analysis of the Brazilian yellow scorpion Tityus stigmurus venom gland, an underexplored source for toxic peptides with possible biotechnological applications. Stigmurin was investigated in silico, by circular dichroism (CD) spectroscopy, and in vitro. The CD spectra suggested that this peptide interacts with membranes, changing its conformation in the presence of an amphipathic environment, with predominance of random coil and beta-sheet structures. Stigmurin exhibited antibacterial and antifungal activity, with minimal inhibitory concentrations ranging from 8.7 to 69.5μM. It was also showed that Stigmurin is toxic against SiHa and Vero E6 cell lines. The results suggest that Stigmurin can be considered a potential anti-infective drug. PMID:25805002

  11. Functional and Structural Diversification of the Anguimorpha Lizard Venom System*

    PubMed Central

    Fry, Bryan G.; Winter, Kelly; Norman, Janette A.; Roelants, Kim; Nabuurs, Rob J. A.; van Osch, Matthias J. P.; Teeuwisse, Wouter M.; van der Weerd, Louise; Mcnaughtan, Judith E.; Kwok, Hang Fai; Scheib, Holger; Greisman, Laura; Kochva, Elazar; Miller, Laurence J.; Gao, Fan; Karas, John; Scanlon, Denis; Lin, Feng; Kuruppu, Sanjaya; Shaw, Chris; Wong, Lily; Hodgson, Wayne C.

    2010-01-01

    Venom has only been recently discovered to be a basal trait of the Anguimorpha lizards. Consequently, very little is known about the timings of toxin recruitment events, venom protein molecular evolution, or even the relative physical diversifications of the venom system itself. A multidisciplinary approach was used to examine the evolution across the full taxonomical range of this ∼130 million-year-old clade. Analysis of cDNA libraries revealed complex venom transcriptomes. Most notably, three new cardioactive peptide toxin types were discovered (celestoxin, cholecystokinin, and YY peptides). The latter two represent additional examples of convergent use of genes in toxic arsenals, both having previously been documented as components of frog skin defensive chemical secretions. Two other novel venom gland-overexpressed modified versions of other protein frameworks were also recovered from the libraries (epididymal secretory protein and ribonuclease). Lectin, hyaluronidase, and veficolin toxin types were sequenced for the first time from lizard venoms and shown to be homologous to the snake venom forms. In contrast, phylogenetic analyses demonstrated that the lizard natriuretic peptide toxins were recruited independently of the form in snake venoms. The de novo evolution of helokinestatin peptide toxin encoding domains within the lizard venom natriuretic gene was revealed to be exclusive to the helodermatid/anguid subclade. New isoforms were sequenced for cysteine-rich secretory protein, kallikrein, and phospholipase A2 toxins. Venom gland morphological analysis revealed extensive evolutionary tinkering. Anguid glands are characterized by thin capsules and mixed glands, serous at the bottom of the lobule and mucous toward the apex. Twice, independently this arrangement was segregated into specialized serous protein-secreting glands with thick capsules with the mucous lobules now distinct (Heloderma and the Lanthanotus/Varanus clade). The results obtained highlight

  12. Whole Transcriptome of the Venom Gland from Urodacus yaschenkoi Scorpion

    PubMed Central

    Juárez-González, Víctor Rivelino; Possani, Lourival D.

    2015-01-01

    Australian scorpion venoms have been poorly studied, probably because they do not pose an evident threat to humans. In addition, the continent has other medically important venomous animals capable of causing serious health problems. Urodacus yaschenkoi belongs to the most widely distributed family of Australian scorpions (Urodacidae) and it is found all over the continent, making it a useful model system for studying venom composition and evolution. This communication reports the whole set of mRNA transcripts produced by the venom gland. U. yaschenkoi venom is as complex as its overseas counterparts. These transcripts certainly code for several components similar to known scorpion venom components, such as: alpha-KTxs, beta-KTxs, calcins, protease inhibitors, antimicrobial peptides, sodium-channel toxins, toxin-like peptides, allergens, La1-like, hyaluronidases, ribosomal proteins, proteasome components and proteins related to cellular processes. A comparison with the venom gland transcriptome of Centruroides noxius (Buthidae) showed that these two scorpions have similar components related to biological processes, although important differences occur among the venom toxins. In contrast, a comparison with sequences reported for Urodacus manicatus revealed that these two Urodacidae species possess the same subfamily of scorpion toxins. A comparison with sequences of an U. yaschenkoi cDNA library previously reported by our group showed that both techniques are reliable for the description of the venom components, but the whole transcriptome generated with Next Generation Sequencing platform provides sequences of all transcripts expressed. Several of which were identified in the proteome, but many more transcripts were identified including uncommon transcripts. The information reported here constitutes a reference for non-Buthidae scorpion venoms, providing a comprehensive view of genes that are involved in venom production. Further, this work identifies new putative

  13. Novel biopesticide based on a spider venom peptide shows no adverse effects on honeybees

    PubMed Central

    Nakasu, Erich Y. T.; Williamson, Sally M.; Edwards, Martin G.; Fitches, Elaine C.; Gatehouse, John A.; Wright, Geraldine A.; Gatehouse, Angharad M. R.

    2014-01-01

    Evidence is accumulating that commonly used pesticides are linked to decline of pollinator populations; adverse effects of three neonicotinoids on bees have led to bans on their use across the European Union. Developing insecticides that pose negligible risks to beneficial organisms such as honeybees is desirable and timely. One strategy is to use recombinant fusion proteins containing neuroactive peptides/proteins linked to a ‘carrier’ protein that confers oral toxicity. Hv1a/GNA (Galanthus nivalis agglutinin), containing an insect-specific spider venom calcium channel blocker (ω-hexatoxin-Hv1a) linked to snowdrop lectin (GNA) as a ‘carrier’, is an effective oral biopesticide towards various insect pests. Effects of Hv1a/GNA towards a non-target species, Apis mellifera, were assessed through a thorough early-tier risk assessment. Following feeding, honeybees internalized Hv1a/GNA, which reached the brain within 1 h after exposure. However, survival was only slightly affected by ingestion (LD50 > 100 µg bee−1) or injection of fusion protein. Bees fed acute (100 µg bee−1) or chronic (0.35 mg ml−1) doses of Hv1a/GNA and trained in an olfactory learning task had similar rates of learning and memory to no-pesticide controls. Larvae were unaffected, being able to degrade Hv1a/GNA. These tests suggest that Hv1a/GNA is unlikely to cause detrimental effects on honeybees, indicating that atracotoxins targeting calcium channels are potential alternatives to conventional pesticides. PMID:24898372

  14. Pharmacological Alternatives for the Treatment of Neurodegenerative Disorders: Wasp and Bee Venoms and Their Components as New Neuroactive Tools.

    PubMed

    Silva, Juliana; Monge-Fuentes, Victoria; Gomes, Flávia; Lopes, Kamila; dos Anjos, Lilian; Campos, Gabriel; Arenas, Claudia; Biolchi, Andréia; Gonçalves, Jacqueline; Galante, Priscilla; Campos, Leandro; Mortari, Márcia

    2015-08-01

    Neurodegenerative diseases are relentlessly progressive, severely impacting affected patients, families and society as a whole. Increased life expectancy has made these diseases more common worldwide. Unfortunately, available drugs have insufficient therapeutic effects on many subtypes of these intractable diseases, and adverse effects hamper continued treatment. Wasp and bee venoms and their components are potential means of managing or reducing these effects and provide new alternatives for the control of neurodegenerative diseases. These venoms and their components are well-known and irrefutable sources of neuroprotectors or neuromodulators. In this respect, the present study reviews our current understanding of the mechanisms of action and future prospects regarding the use of new drugs derived from wasp and bee venom in the treatment of major neurodegenerative disorders, including Alzheimer's Disease, Parkinson's Disease, Epilepsy, Multiple Sclerosis and Amyotrophic Lateral Sclerosis. PMID:26295258

  15. Pharmacological Alternatives for the Treatment of Neurodegenerative Disorders: Wasp and Bee Venoms and Their Components as New Neuroactive Tools

    PubMed Central

    Silva, Juliana; Monge-Fuentes, Victoria; Gomes, Flávia; Lopes, Kamila; dos Anjos, Lilian; Campos, Gabriel; Arenas, Claudia; Biolchi, Andréia; Gonçalves, Jacqueline; Galante, Priscilla; Campos, Leandro; Mortari, Márcia

    2015-01-01

    Neurodegenerative diseases are relentlessly progressive, severely impacting affected patients, families and society as a whole. Increased life expectancy has made these diseases more common worldwide. Unfortunately, available drugs have insufficient therapeutic effects on many subtypes of these intractable diseases, and adverse effects hamper continued treatment. Wasp and bee venoms and their components are potential means of managing or reducing these effects and provide new alternatives for the control of neurodegenerative diseases. These venoms and their components are well-known and irrefutable sources of neuroprotectors or neuromodulators. In this respect, the present study reviews our current understanding of the mechanisms of action and future prospects regarding the use of new drugs derived from wasp and bee venom in the treatment of major neurodegenerative disorders, including Alzheimer’s Disease, Parkinson’s Disease, Epilepsy, Multiple Sclerosis and Amyotrophic Lateral Sclerosis. PMID:26295258

  16. Antigenic Cross-Reactivity Anti-Birtoxin Antibody against Androctonus crassicauda Venom

    PubMed Central

    Van Zoelen, Suhandan Adigüzel; Ozkan, Ozcan; Inceoglu, Bora

    2015-01-01

    Background: Antivenom is still widely used in the treatment of envenomation as there are no vaccines or other effective agents available against animal venoms. Recently, neurotoxins named birtoxin family have been described from Parabuthus transvaalicus and Androctonus crassicauda. The aim of the present study was to test the anti-birtoxin antibodies for their ability to neutralize the lethal effects of A. crassicauda scorpion venom. Methods: SDS-PAGE and Western blotting used the presence of components from A. crassicauda and P. transvaalicus scorpion venoms and to determine the degree of cross-reactivity. The Minimum Lethal Dose (MLD) of venom was assessed by subcutaneously (sc) injections in mice. Results: The MLD of the A. crassicauda venom was 35 μg/ 20g mouse by sc injection route. Western blotting showed the presence of components from A. crassicauda and P. transvaalicus scorpion venoms strongly cross react with the A. crassicauda antivenom. However, Western blotting of the A. crassicauda scorpion venom using the Refik Saydam Public Health Agency (RSPHA) generated antibody showed that not all the venom components cross reacted with the anti-birtoxin antibody. The antibodies only cross reacted with components falling under the 19 kDa protein size of A. crassicauda venom. Conclusion: The bioassays and Western blotting of A. crassicauda venom with the anti-birtoxin antibodies produced against a synthetic peptide showed that these antibodies cross reacted but did not neutralize the venom of A. crassicauda. PMID:26623429

  17. Are ticks venomous animals?

    PubMed Central

    2014-01-01

    Introduction As an ecological adaptation venoms have evolved independently in several species of Metazoa. As haematophagous arthropods ticks are mainly considered as ectoparasites due to directly feeding on the skin of animal hosts. Ticks are of major importance since they serve as vectors for several diseases affecting humans and livestock animals. Ticks are rarely considered as venomous animals despite that tick saliva contains several protein families present in venomous taxa and that many Ixodida genera can induce paralysis and other types of toxicoses. Tick saliva was previously proposed as a special kind of venom since tick venom is used for blood feeding that counteracts host defense mechanisms. As a result, the present study provides evidence to reconsider the venomous properties of tick saliva. Results Based on our extensive literature mining and in silico research, we demonstrate that ticks share several similarities with other venomous taxa. Many tick salivary protein families and their previously described functions are homologous to proteins found in scorpion, spider, snake, platypus and bee venoms. This infers that there is a structural and functional convergence between several molecular components in tick saliva and the venoms from other recognized venomous taxa. We also highlight the fact that the immune response against tick saliva and venoms (from recognized venomous taxa) are both dominated by an allergic immunity background. Furthermore, by comparing the major molecular components of human saliva, as an example of a non-venomous animal, with that of ticks we find evidence that ticks resemble more venomous than non-venomous animals. Finally, we introduce our considerations regarding the evolution of venoms in Arachnida. Conclusions Taking into account the composition of tick saliva, the venomous functions that ticks have while interacting with their hosts, and the distinguishable differences between human (non-venomous) and tick salivary

  18. Defensins and the convergent evolution of platypus and reptile venom genes.

    PubMed

    Whittington, Camilla M; Papenfuss, Anthony T; Bansal, Paramjit; Torres, Allan M; Wong, Emily S W; Deakin, Janine E; Graves, Tina; Alsop, Amber; Schatzkamer, Kyriena; Kremitzki, Colin; Ponting, Chris P; Temple-Smith, Peter; Warren, Wesley C; Kuchel, Philip W; Belov, Katherine

    2008-06-01

    When the platypus (Ornithorhynchus anatinus) was first discovered, it was thought to be a taxidermist's hoax, as it has a blend of mammalian and reptilian features. It is a most remarkable mammal, not only because it lays eggs but also because it is venomous. Rather than delivering venom through a bite, as do snakes and shrews, male platypuses have venomous spurs on each hind leg. The platypus genome sequence provides a unique opportunity to unravel the evolutionary history of many of these interesting features. While searching the platypus genome for the sequences of antimicrobial defensin genes, we identified three Ornithorhynchus venom defensin-like peptide (OvDLP) genes, which produce the major components of platypus venom. We show that gene duplication and subsequent functional diversification of beta-defensins gave rise to these platypus OvDLPs. The OvDLP genes are located adjacent to the beta-defensins and share similar gene organization and peptide structures. Intriguingly, some species of snakes and lizards also produce venoms containing similar molecules called crotamines and crotamine-like peptides. This led us to trace the evolutionary origins of other components of platypus and reptile venom. Here we show that several venom components have evolved separately in the platypus and reptiles. Convergent evolution has repeatedly selected genes coding for proteins containing specific structural motifs as templates for venom molecules. PMID:18463304

  19. Calciseptine, a peptide isolated from black mamba venom, is a specific blocker of the L-type calcium channel.

    PubMed Central

    de Weille, J R; Schweitz, H; Maes, P; Tartar, A; Lazdunski, M

    1991-01-01

    The venom of the black mamba contains a 60-amino acid peptide called calciseptine. The peptide has been fully sequenced. It is a smooth muscle relaxant and an inhibitor of cardiac contractions. Its physiological action resembles that of drugs, such as the 1,4-dihydropyridines, which are important in the treatment of cardiovascular diseases. Calciseptine, like the 1,4-dihydropyridines, selectively blocks L-type Ca2+ channels and is totally inactive on other voltage-dependent Ca2+ channels such as N-type and T-type channels. To our knowledge, it is the only natural polypeptide that has been shown to be a specific inhibitor of L-type Ca2+ channels. Images PMID:1848702

  20. The central nervous system as target for antihypertensive actions of a proline-rich peptide from Bothrops jararaca venom.

    PubMed

    Lameu, Claudiana; Hayashi, Mirian A F; Guerreiro, Juliano R; Oliveira, Eduardo F; Lebrun, Ivo; Pontieri, Vera; Morais, Kátia L P; Camargo, Antonio C M; Ulrich, Henning

    2010-03-01

    Pyroglutamyl proline-rich oligopeptides, present in the venom of the pit viper Bothrops jararaca (Bj-PROs), are the first described naturally occurring inhibitors of the angiotensin I-converting enzyme (ACE). The inhibition of ACE by the decapeptide Bj-PRO-10c (venom peptides in mammals resulting in a decrease of blood pressure. Recent studies, however, suggest that ACE inhibition alone is not sufficient for explaining the antihypertensive actions exerted by these peptides. In this study, we show that intracerebroventricular injection of Bj-PRO-10c induced a significant reduction of mean arterial pressure (MAP) together with a decrease of heart rate (HR) in spontaneously hypertensive rats, indicating that Bj-PRO-10c may act on the central nervous system. In agreement with its supposed neuronal action, this peptide dose-dependently evoked elevations of intracellular calcium concentration ([Ca(2+)](i)) in primary culture from postnatal rat brain. The N-terminal sequence of the peptide was not essential for induction of calcium fluxes, while any changes of C-terminal Pro or Ile residues affected Bj-PRO-10c's activity. Using calcium imaging by confocal microscopy and fluorescence imaging plate reader analysis, we have characterized Bj-PRO-10c-induced [Ca(2+)](i) transients in rat brain cells as being independent from bradykinin-mediated effects and ACE inhibition. Bj-PRO-10c induced pertussis toxin-sensitive G(i/o)-protein activity mediated through a yet unknown receptor, influx and liberation ofcalcium from intracellular stores, as well as reduction of intracellular cAMP levels. Bj-PRO-10c promoted glutamate and GABA release that may be responsible for its antihypertensive activity and its effect on HR. PMID:20099250

  1. NMR-spectroscopic screening of spider venom reveals sulfated nucleosides as major components for the brown recluse and related species.

    PubMed

    Schroeder, Frank C; Taggi, Andrew E; Gronquist, Matthew; Malik, Rabia U; Grant, Jacqualine B; Eisner, Thomas; Meinwald, Jerrold

    2008-09-23

    Extensive chemical analyses of spider venoms from many species have revealed complex mixtures of biologically active compounds, of which several have provided important leads for drug development. We have recently shown that NMR spectroscopy can be used advantageously for a direct structural characterization of the small-molecule content of such complex mixtures. Here, we report the application of this strategy to a larger-scale analysis of a collection of spider venoms representing >70 species, which, in combination with mass spectrometric analyses, allowed the identification of a wide range of known, and several previously undescribed, small molecules. These include polyamines, common neurotransmitters, and amino acid derivatives as well as two additional members of a recently discovered family of natural products, the sulfated nucleosides. In the case of the well studied brown recluse spider, Loxosceles reclusa, sulfated guanosine derivatives were found to comprise the major small-molecule components of the venom. PMID:18794518

  2. NMR-spectroscopic screening of spider venom reveals sulfated nucleosides as major components for the brown recluse and related species

    PubMed Central

    Schroeder, Frank C.; Taggi, Andrew E.; Gronquist, Matthew; Malik, Rabia U.; Grant, Jacqualine B.; Eisner, Thomas; Meinwald, Jerrold

    2008-01-01

    Extensive chemical analyses of spider venoms from many species have revealed complex mixtures of biologically active compounds, of which several have provided important leads for drug development. We have recently shown that NMR spectroscopy can be used advantageously for a direct structural characterization of the small-molecule content of such complex mixtures. Here, we report the application of this strategy to a larger-scale analysis of a collection of spider venoms representing >70 species, which, in combination with mass spectrometric analyses, allowed the identification of a wide range of known, and several previously undescribed, small molecules. These include polyamines, common neurotransmitters, and amino acid derivatives as well as two additional members of a recently discovered family of natural products, the sulfated nucleosides. In the case of the well studied brown recluse spider, Loxosceles reclusa, sulfated guanosine derivatives were found to comprise the major small-molecule components of the venom. PMID:18794518

  3. Elucidation of the molecular envenomation strategy of the cone snail Conus geographus through transcriptome sequencing of its venom duct

    PubMed Central

    2012-01-01

    Background The fish-hunting cone snail, Conus geographus, is the deadliest snail on earth. In the absence of medical intervention, 70% of human stinging cases are fatal. Although, its venom is known to consist of a cocktail of small peptides targeting different ion-channels and receptors, the bulk of its venom constituents, their sites of manufacture, relative abundances and how they function collectively in envenomation has remained unknown. Results We have used transcriptome sequencing to systematically elucidate the contents the C. geographus venom duct, dividing it into four segments in order to investigate each segment’s mRNA contents. Three different types of calcium channel (each targeted by unrelated, entirely distinct venom peptides) and at least two different nicotinic receptors appear to be targeted by the venom. Moreover, the most highly expressed venom component is not paralytic, but causes sensory disorientation and is expressed in a different segment of the venom duct from venoms believed to cause sensory disruption. We have also identified several new toxins of interest for pharmaceutical and neuroscience research. Conclusions Conus geographus is believed to prey on fish hiding in reef crevices at night. Our data suggest that disorientation of prey is central to its envenomation strategy. Furthermore, venom expression profiles also suggest a sophisticated layering of venom-expression patterns within the venom duct, with disorientating and paralytic venoms expressed in different regions. Thus, our transcriptome analysis provides a new physiological framework for understanding the molecular envenomation strategy of this deadly snail. PMID:22742208

  4. Animal venom studies: Current benefits and future developments.

    PubMed

    Utkin, Yuri N

    2015-05-26

    Poisonous organisms are represented in many taxa, including kingdom Animalia. During evolution, animals have developed special organs for production and injection of venoms. Animal venoms are complex mixtures, compositions of which depend on species producing venom. The most known and studied poisonous terrestrial animals are snakes, scorpions and spiders. Among marine animals, these are jellyfishes, anemones and cone snails. The toxic substances in the venom of these animals are mainly of protein and peptide origin. Recent studies have indicated that the single venom may contain up to several hundred different components producing diverse physiological effects. Bites or stings by certain poisonous species result in severe envenomations leading in some cases to death. This raises the problem of bite treatment. The most effective treatment so far is the application of antivenoms. To enhance the effectiveness of such treatments, the knowledge of venom composition is needed. On the other hand, venoms contain substances with unique biological properties, which can be used both in basic science and in clinical applications. The best example of toxin application in basic science is α-bungarotoxin the discovery of which made a big impact on the studies of nicotinic acetylcholine receptor. Today compositions of venom from many species have already been examined. Based on these data, one can conclude that venoms contain a large number of individual components belonging to a limited number of structural types. Often minor changes in the amino acid sequence give rise to new biological properties. Change in the living conditions of poisonous animals lead to alterations in the composition of venoms resulting in appearance of new toxins. At the same time introduction of new methods of proteomics and genomics lead to discoveries of new compounds, which may serve as research tools or as templates for the development of novel drugs. The application of these sensitive and

  5. Animal venom studies: Current benefits and future developments

    PubMed Central

    Utkin, Yuri N

    2015-01-01

    Poisonous organisms are represented in many taxa, including kingdom Animalia. During evolution, animals have developed special organs for production and injection of venoms. Animal venoms are complex mixtures, compositions of which depend on species producing venom. The most known and studied poisonous terrestrial animals are snakes, scorpions and spiders. Among marine animals, these are jellyfishes, anemones and cone snails. The toxic substances in the venom of these animals are mainly of protein and peptide origin. Recent studies have indicated that the single venom may contain up to several hundred different components producing diverse physiological effects. Bites or stings by certain poisonous species result in severe envenomations leading in some cases to death. This raises the problem of bite treatment. The most effective treatment so far is the application of antivenoms. To enhance the effectiveness of such treatments, the knowledge of venom composition is needed. On the other hand, venoms contain substances with unique biological properties, which can be used both in basic science and in clinical applications. The best example of toxin application in basic science is α-bungarotoxin the discovery of which made a big impact on the studies of nicotinic acetylcholine receptor. Today compositions of venom from many species have already been examined. Based on these data, one can conclude that venoms contain a large number of individual components belonging to a limited number of structural types. Often minor changes in the amino acid sequence give rise to new biological properties. Change in the living conditions of poisonous animals lead to alterations in the composition of venoms resulting in appearance of new toxins. At the same time introduction of new methods of proteomics and genomics lead to discoveries of new compounds, which may serve as research tools or as templates for the development of novel drugs. The application of these sensitive and

  6. Echidna venom gland transcriptome provides insights into the evolution of monotreme venom.

    PubMed

    Wong, Emily S W; Nicol, Stewart; Warren, Wesley C; Belov, Katherine

    2013-01-01

    Monotremes (echidna and platypus) are egg-laying mammals. One of their most unique characteristic is that males have venom/crural glands that are seasonally active. Male platypuses produce venom during the breeding season, delivered via spurs, to aid in competition against other males. Echidnas are not able to erect their spurs, but a milky secretion is produced by the gland during the breeding season. The function and molecular composition of echidna venom is as yet unknown. Hence, we compared the deeply sequenced transcriptome of an in-season echidna crural gland to that of a platypus and searched for putative venom genes to provide clues into the function of echidna venom and the evolutionary history of monotreme venom. We found that the echidna venom gland transcriptome was markedly different from the platypus with no correlation between the top 50 most highly expressed genes. Four peptides found in the venom of the platypus were detected in the echidna transcriptome. However, these genes were not highly expressed in echidna, suggesting that they are the remnants of the evolutionary history of the ancestral venom gland. Gene ontology terms associated with the top 100 most highly expressed genes in echidna, showed functional terms associated with steroidal and fatty acid production, suggesting that echidna "venom" may play a role in scent communication during the breeding season. The loss of the ability to erect the spur and other unknown evolutionary forces acting in the echidna lineage resulted in the gradual decay of venom components and the evolution of a new role for the crural gland. PMID:24265746

  7. Venom-based biotoxins as potential analgesics.

    PubMed

    Gazerani, Parisa; Cairns, Brian Edwin

    2014-11-01

    Chronic pain is a common debilitating condition with negative social and economic consequences. Management of chronic pain is challenging and the currently available medications do not yet yield satisfactory outcomes for many patients. Venom-derived biotoxins from various venomous species consist of several substances with different structures and compositions that include peptides. A unique characteristic of some venom-based biotoxins is the ability to block essential components of the pain signaling system, notably ion channels. This property is leading to the evaluation of the potential of biotoxins as analgesics to manage chronic pain. In addition to their therapeutic potential, biotoxins have also been essential tools to probe mechanisms underlying pain signaling, channelopathies and receptor expression. This review discusses venom-derived peptidergic biotoxins that are in preclinical stages or already in clinical trials. Some promising results from preliminary in vitro studies, ongoing challenges and unmet needs will also be discussed. PMID:25234848

  8. Biochemical and pharmacological characterization of a toxic fraction and its cytotoxin-like component isolated from Russell's viper (Daboia russelii russelii) venom.

    PubMed

    Thakur, Rupamoni; Chattopadhyay, Pronobesh; Mukherjee, Ashis K

    2015-02-01

    The pathophysiological significance of a toxic fraction (GF-VI DEAE-II) isolated from Russell's viper venom (RVV) is characterized. GF-VI DEAE-II represents 1.6% of the total RVV protein and it comprises of a 27.6kDa minor component (RP-I) (0.04%, w/w) and a major 6.6kDa non-enzymatic peptide (1.11%, w/w), named Rusvitoxin. The LC-MS/MS analysis of RP-I showed its identity to snake venom serine proteases, whereas Rusvitoxin demonstrated its close identity with snake venom three finger toxins, cytotoxins and cardiotoxins particularly from Naja sp. GF-VI DEAE-II was found to be non-cytotoxic to the tested mammalian cancer cells and non-hemolytic; nevertheless, it demonstrated α-fibrin(ogen)ase activity and in vivo toxicity in BALB/c mice with an LD50 (i.p.) of 2.3mg/kg. GF-VI DEAE-II induced lethargy and hind-leg paralysis in mice within 10min of i.p. injection. GF-VI DEAE-II induced hyperfibrinogenomia, and significantly altered (p<0.05) the plasma levels of factor X, pro- and anti-inflammatory cytokines viz. TNF-α, IL-6 and IL-10 in treated mice. Histological observations of tissues and biochemical properties of serum from GF-VI DEAE-II-treated mice suggested multiple organ dysfunctions. Conversely, Rusvitoxin at a dose of 5mg/kg did not induce toxicity in BALB/c mice. At 1:15 (antigen: antivenom, w/w) ratio, commercially polyvalent and monovalent antivenoms neutralized more than 80% of the fibrinolytic and anticoagulant activities of GF-VI DEAE-II. The present study suggests the significant role of GF-VI DEAE-II in RVV-induced pathogenesis in victim/prey. PMID:25500420

  9. Identification of a Peptide Toxin from Grammostola spatulata Spider Venom That Blocks Cation-Selective Stretch-Activated Channels

    PubMed Central

    Suchyna, Thomas M.; Johnson, Janice H.; Hamer, Katherine; Leykam, Joseph F.; Gage, Douglas A.; Clemo, Henry F.; Baumgarten, Clive M.; Sachs, Frederick

    2000-01-01

    We have identified a 35 amino acid peptide toxin of the inhibitor cysteine knot family that blocks cationic stretch-activated ion channels. The toxin, denoted GsMTx-4, was isolated from the venom of the spider Grammostola spatulata and has <50% homology to other neuroactive peptides. It was isolated by fractionating whole venom using reverse phase HPLC, and then assaying fractions on stretch-activated channels (SACs) in outside-out patches from adult rat astrocytes. Although the channel gating kinetics were different between cell-attached and outside-out patches, the properties associated with the channel pore, such as selectivity for alkali cations, conductance (∼45 pS at −100 mV) and a mild rectification were unaffected by outside-out formation. GsMTx-4 produced a complete block of SACs in outside-out patches and appeared specific since it had no effect on whole-cell voltage-sensitive currents. The equilibrium dissociation constant of ∼630 nM was calculated from the ratio of association and dissociation rate constants. In hypotonically swollen astrocytes, GsMTx-4 produces ∼40% reduction in swelling-activated whole-cell current. Similarly, in isolated ventricular cells from a rabbit dilated cardiomyopathy model, GsMTx-4 produced a near complete block of the volume-sensitive cation-selective current, but did not affect the anion current. In the myopathic heart cells, where the swell-induced current is tonically active, GsMTx-4 also reduced the cell size. This is the first report of a peptide toxin that specifically blocks stretch-activated currents. The toxin affect on swelling-activated whole-cell currents implicates SACs in volume regulation. PMID:10779316

  10. Overview of the Knottin scorpion toxin-like peptides in scorpion venoms: Insights on their classification and evolution.

    PubMed

    Santibáñez-López, Carlos E; Possani, Lourival D

    2015-12-01

    Scorpion venoms include several compounds with different pharmacological activities. Within these compounds, toxins affecting ion channels are among the most studied. They are all peptides that have been classified based on their 3D structure, chain size and function. Usually, they show a spatial arrangement characterized by the presence of a cysteine-stabilized alpha beta motif; most of them affect Na(+) and K(+) ion-channels. These features have been revised in several occasions before, but a complete phylogenetic analysis of the disulfide containing peptides is not been done. In the present contribution, two databases (Pfam and InterPro) including more than 800 toxins from different scorpions were analyzed. Pfam database included toxins from several organisms other than scorpions such as insects and plants, while InterPro included only scorpion toxins. Our results suggest that Na(+) toxins have evolved independently from those of K(+) toxins no matter the length of the peptidic chains. These preliminary results suggest that current classification needs a more detailed revision, in order to have better characterized toxin families, so the new peptides obtained from transcriptomic analyses would be properly classified. PMID:26187850

  11. Hymenoptera allergens: from venom to "venome".

    PubMed

    Spillner, Edzard; Blank, Simon; Jakob, Thilo

    2014-01-01

    In Western Europe, Hymenoptera venom allergy (HVA) primarily relates to venoms of the honeybee and the common yellow jacket. In contrast to other allergen sources, only a few major components of Hymenoptera venoms had been characterized until recently. Improved expression systems and proteomic detection strategies have allowed the identification and characterization of a wide range of additional allergens. The field of HVA research has moved rapidly from focusing on venom extract and single major allergens to a molecular understanding of the entire "venome" as a system of unique and characteristic components. An increasing number of such components has been identified, characterized regarding function, and assessed for allergenic potential. Moreover, advanced expression strategies for recombinant production of venom allergens allow selective modification of molecules and provide insight into different types of immunoglobulin E reactivities and sensitization patterns. The obtained information contributes to an increased diagnostic precision in HVA and may serve for monitoring, re-evaluation, and improvement of current therapeutic strategies. PMID:24616722

  12. Cardiotoxicity of Jamesoni's mamba (Dendroaspis jamesoni) venom and its fractionated components in primary cultures of rat myocardial cells.

    PubMed

    Mbugua, P M; Welder, A A; Acosta, D

    1988-08-01

    Primary cultures of spontaneously beating myocardial cells isolated from neonatal rat hearts were used to screen the cardiotoxic effects of Jamesoni's mamba (Dendroaspis jamesoni) venom and components isolated from the venom by gel filtration and ion exchange chromatography. Cardiotoxicity was evaluated on the basis of leakage of lactate dehydrogenase (LDH), changes in morphology, cell membrane lysis, cellular viability, and alterations in spontaneous beating activity. The whole venom caused dose- and time-dependent leakage of LDH, disruption of the cell monolayer, decreases in viability, and inhibition of beating activity. Gel filtration of the venom yielded eight fractions (DjI to DjVIII). DjI (30 micrograms/ml), DjII (20 micrograms/ml), and DjV (20 micrograms/ml) caused significant (P less than 0.001) leakage of LDH, extensive morphologic damage, and decreases in viability. At lower concentrations DjI to DjVIII caused progressive inhibition of spontaneous beating activity. The main fraction (DjV), which was the most toxic, was further separated into 14 polypeptides (Dj1 to Dj14) by ion-exchange chromatography using Bio-Rex 70. Based on the ability to induce LDH leakage, produce morphologic damage, lyse cell membranes, and arrest beating activity, four categories of polypeptides were identified: cardiotoxins, Dj1 and Dj2; cardiotoxinlike polypeptides, Dj3 to Dj8; less active membrane lytic polypeptides, Dj9 to Dj13; and membrane lytic polypeptide, Dj14. PMID:3410805

  13. Evaluation of cytotoxic activities of snake venoms toward breast (MCF-7) and skin cancer (A-375) cell lines.

    PubMed

    Bradshaw, Michael J; Saviola, Anthony J; Fesler, Elizabeth; Mackessy, Stephen P

    2014-11-19

    Snake venoms are mixtures of bioactive proteins and peptides that exhibit diverse biochemical activities. This wide array of pharmacologies associated with snake venoms has made them attractive sources for research into potentially novel therapeutics, and several venom-derived drugs are now in use. In the current study we performed a broad screen of a variety of venoms (61 taxa) from the major venomous snake families (Viperidae, Elapidae and "Colubridae") in order to examine cytotoxic effects toward MCF-7 breast cancer cells and A-375 melanoma cells. MTT cell viability assays of cancer cells incubated with crude venoms revealed that most venoms showed significant cytotoxicity. We further investigated venom from the Red-bellied Blacksnake (Pseudechis porphyriacus); venom was fractionated by ion exchange fast protein liquid chromatography and several cytotoxic components were isolated. SDS-PAGE and MALDI-TOF mass spectrometry were used to identify the compounds in this venom responsible for the cytotoxic effects. In general, viper venoms were potently cytotoxic, with MCF-7 cells showing greater sensitivity, while elapid and colubrid venoms were much less toxic; notable exceptions included the elapid genera Micrurus, Naja and Pseudechis, which were quite cytotoxic to both cell lines. However, venoms with the most potent cytotoxicity were often not those with low mouse LD50s, including some dangerously venomous viperids and Australian elapids. This study confirmed that many venoms contain cytotoxic compounds, including catalytic PLA2s, and several venoms also showed significant differential toxicity toward the two cancer cell lines. Our results indicate that several previously uncharacterized venoms could contain promising lead compounds for drug development. PMID:25407733

  14. Studies on Bee Venom and Its Medical Uses

    NASA Astrophysics Data System (ADS)

    Ali, Mahmoud Abdu Al-Samie Mohamed

    2012-07-01

    Use of honey and other bee products in human treatments traced back thousands of years and healing properties are included in many religious texts including the Veda, Bible and Quran. Apitherapy is the use of honey bee products for medical purposes, this include bee venom, raw honey, royal jelly, pollen, propolis, and beeswax. Whereas bee venom therapy is the use of live bee stings (or injectable venom) to treat various diseases such as arthritis, rheumatoid arthritis, multiple sclerosis (MS), lupus, sciatica, low back pain, and tennis elbow to name a few. It refers to any use of venom to assist the body in healing itself. Bee venom contains at least 18 pharmacologically active components including various enzymes, peptides and amines. Sulfur is believed to be the main element in inducing the release of cortisol from the adrenal glands and in protecting the body from infections. Contact with bee venom produces a complex cascade of reactions in the human body. The bee venom is safe for human treatments, the median lethal dose (LD50) for an adult human is 2.8 mg of venom per kg of body weight, i.e. a person weighing 60 kg has a 50% chance of surviving injections totaling 168 mg of bee venom. Assuming each bee injects all its venom and no stings are quickly removed at a maximum of 0.3 mg venom per sting, 560 stings could well be lethal for such a person. For a child weighing 10 kg, as little as 93.33 stings could be fatal. However, most human deaths result from one or few bee stings due to allergic reactions, heart failure or suffocation from swelling around the neck or the mouth. As compare with other human diseases, accidents and other unusual cases, the bee venom is very safe for human treatments.

  15. Echidna Venom Gland Transcriptome Provides Insights into the Evolution of Monotreme Venom

    PubMed Central

    Wong, Emily S. W.; Nicol, Stewart; Warren, Wesley C.; Belov, Katherine

    2013-01-01

    Monotremes (echidna and platypus) are egg-laying mammals. One of their most unique characteristic is that males have venom/crural glands that are seasonally active. Male platypuses produce venom during the breeding season, delivered via spurs, to aid in competition against other males. Echidnas are not able to erect their spurs, but a milky secretion is produced by the gland during the breeding season. The function and molecular composition of echidna venom is as yet unknown. Hence, we compared the deeply sequenced transcriptome of an in-season echidna crural gland to that of a platypus and searched for putative venom genes to provide clues into the function of echidna venom and the evolutionary history of monotreme venom. We found that the echidna venom gland transcriptome was markedly different from the platypus with no correlation between the top 50 most highly expressed genes. Four peptides found in the venom of the platypus were detected in the echidna transcriptome. However, these genes were not highly expressed in echidna, suggesting that they are the remnants of the evolutionary history of the ancestral venom gland. Gene ontology terms associated with the top 100 most highly expressed genes in echidna, showed functional terms associated with steroidal and fatty acid production, suggesting that echidna “venom” may play a role in scent communication during the breeding season. The loss of the ability to erect the spur and other unknown evolutionary forces acting in the echidna lineage resulted in the gradual decay of venom components and the evolution of a new role for the crural gland. PMID:24265746

  16. Ophiophagus hannah venom: proteome, components bound by Naja kaouthia antivenin and neutralization by N. kaouthia neurotoxin-specific human ScFv.

    PubMed

    Danpaiboon, Witchuda; Reamtong, Onrapak; Sookrung, Nitat; Seesuay, Watee; Sakolvaree, Yuwaporn; Thanongsaksrikul, Jeeraphong; Dong-din-on, Fonthip; Srimanote, Potjanee; Thueng-in, Kanyarat; Chaicumpa, Wanpen

    2014-05-01

    Venomous snakebites are an important health problem in tropical and subtropical countries. King cobra (Ophiophagus hannah) is the largest venomous snake found in South and Southeast Asia. In this study, the O. hannah venom proteome and the venom components cross-reactive to N. kaouthia monospecific antivenin were studied. O. hannah venom consisted of 14 different protein families, including three finger toxins, phospholipases, cysteine-rich secretory proteins, cobra venom factor, muscarinic toxin, L-amino acid oxidase, hypothetical proteins, low cysteine protein, phosphodiesterase, proteases, vespryn toxin, Kunitz, growth factor activators and others (coagulation factor, endonuclease, 5'-nucleotidase). N. kaouthia antivenin recognized several functionally different O. hannah venom proteins and mediated paratherapeutic efficacy by rescuing the O. hannah envenomed mice from lethality. An engineered human ScFv specific to N. kaouthia long neurotoxin (NkLN-HuScFv) cross-neutralized the O. hannah venom and extricated the O. hannah envenomed mice from death in a dose escalation manner. Homology modeling and molecular docking revealed that NkLN-HuScFv interacted with residues in loops 2 and 3 of the neurotoxins of both snake species, which are important for neuronal acetylcholine receptor binding. The data of this study are useful for snakebite treatment when and where the polyspecific antivenin is not available. Because the supply of horse-derived antivenin is limited and the preparation may cause some adverse effects in recipients, a cocktail of recombinant human ScFvs for various toxic venom components shared by different venomous snakes, exemplified by the in vitro produced NkLN-HuScFv in this study, should contribute to a possible future route for an improved alternative to the antivenins. PMID:24828754

  17. Ophiophagus hannah Venom: Proteome, Components Bound by Naja kaouthia Antivenin and Neutralization by N. kaouthia Neurotoxin-Specific Human ScFv

    PubMed Central

    Danpaiboon, Witchuda; Reamtong, Onrapak; Sookrung, Nitat; Seesuay, Watee; Sakolvaree, Yuwaporn; Thanongsaksrikul, Jeeraphong; Dong-din-on, Fonthip; Srimanote, Potjanee; Thueng-in, Kanyarat; Chaicumpa, Wanpen

    2014-01-01

    Venomous snakebites are an important health problem in tropical and subtropical countries. King cobra (Ophiophagus hannah) is the largest venomous snake found in South and Southeast Asia. In this study, the O. hannah venom proteome and the venom components cross-reactive to N. kaouthia monospecific antivenin were studied. O. hannah venom consisted of 14 different protein families, including three finger toxins, phospholipases, cysteine-rich secretory proteins, cobra venom factor, muscarinic toxin, L-amino acid oxidase, hypothetical proteins, low cysteine protein, phosphodiesterase, proteases, vespryn toxin, Kunitz, growth factor activators and others (coagulation factor, endonuclease, 5’-nucleotidase). N. kaouthia antivenin recognized several functionally different O. hannah venom proteins and mediated paratherapeutic efficacy by rescuing the O. hannah envenomed mice from lethality. An engineered human ScFv specific to N. kaouthia long neurotoxin (NkLN-HuScFv) cross-neutralized the O. hannah venom and extricated the O. hannah envenomed mice from death in a dose escalation manner. Homology modeling and molecular docking revealed that NkLN-HuScFv interacted with residues in loops 2 and 3 of the neurotoxins of both snake species, which are important for neuronal acetylcholine receptor binding. The data of this study are useful for snakebite treatment when and where the polyspecific antivenin is not available. Because the supply of horse-derived antivenin is limited and the preparation may cause some adverse effects in recipients, a cocktail of recombinant human ScFvs for various toxic venom components shared by different venomous snakes, exemplified by the in vitro produced NkLN-HuScFv in this study, should contribute to a possible future route for an improved alternative to the antivenins. PMID:24828754

  18. Venom peptides as a rich source of cav2.2 channel blockers.

    PubMed

    Sousa, Silmara R; Vetter, Irina; Lewis, Richard J

    2013-02-01

    Ca(v)2.2 is a calcium channel subtype localized at nerve terminals, including nociceptive fibers, where it initiates neurotransmitter release. Ca(v)2.2 is an important contributor to synaptic transmission in ascending pain pathways, and is up-regulated in the spinal cord in chronic pain states along with the auxiliary α2δ1 subunit. It is therefore not surprising that toxins that inhibit Ca(v)2.2 are analgesic. Venomous animals, such as cone snails, spiders, snakes, assassin bugs, centipedes and scorpions are rich sources of remarkably potent and selective Ca(v)2.2 inhibitors. However, side effects in humans currently limit their clinical use. Here we review Ca(v)2.2 inhibitors from venoms and their potential as drug leads. PMID:23381143

  19. An efficient transcriptome analysis pipeline to accelerate venom peptide discovery and characterisation.

    PubMed

    Prashanth, Jutty Rajan; Lewis, Richard J

    2015-12-01

    Transcriptome sequencing is now widely adopted as an efficient means to study the chemical diversity of venoms. To improve the efficiency of analysis of these large datasets, we have optimised an analysis pipeline for cone snail venom gland transcriptomes. The pipeline combines ConoSorter with sequence architecture-based elimination and similarity searching using BLAST to improve the accuracy of sequence identification and classification, while reducing requirements for manual intervention. As a proof-of-concept, we used this approach reanalysed three previously published cone snail transcriptomes from diverse dietary groups. Our pipeline method generated similar results to the published studies with significantly less manual intervention. We additionally found undiscovered sequences in the piscovorous Conus geographus and vermivorous Conus miles and identified sequences in incorrect superfamilies in the molluscivorus Conus marmoreus and C. geographus transcriptomes. Our results indicate that this method can improve toxin detection without extending analysis time. While this method was evaluated on cone snail transcriptomes it can be easily optimised to retrieve toxins from other venomous animals. PMID:26376071

  20. Comparison of the Venom Peptides and Their Expression in Closely Related Conus Species: Insights into Adaptive Post-speciation Evolution of Conus Exogenomes

    PubMed Central

    Barghi, Neda; Concepcion, Gisela P.; Olivera, Baldomero M.; Lluisma, Arturo O.

    2015-01-01

    Genes that encode products with exogenous targets, which comprise an organism's “exogenome,” typically exhibit high rates of evolution. The genes encoding the venom peptides (conotoxins or conopeptides) in Conus sensu lato exemplify this class of genes. Their rapid diversification has been established and is believed to be linked to the high speciation rate in this genus. However, the molecular mechanisms that underlie venom peptide diversification and ultimately emergence of new species remain poorly understood. In this study, the sequences and expression levels of conotoxins from several specimens of two closely related worm-hunting species, Conus tribblei and Conus lenavati, were compared through transcriptome analysis. Majority of the identified putative conopeptides were novel, and their diversity, even in each specimen, was remarkably high suggesting a wide range of prey targets for these species. Comparison of the interspecific expression patterns of conopeptides at the superfamily level resulted in the discovery of both conserved as well as species-specific expression patterns, indicating divergence in the regulatory network affecting conotoxin gene expression. Comparison of the transcriptomes of the individual snails revealed that each specimen produces a distinct set of highly expressed conopeptides, reflecting the capability of individual snails to fine-tune the composition of their venoms. These observations reflect the role of sequence divergence and divergence in the control of expression for specific conopeptides in the evolution of the exogenome and hence venom composition in Conus. PMID:26047846

  1. Tarantula (Eurypelma californicum) venom, a multicomponent system.

    PubMed

    Savel-Niemann, A

    1989-05-01

    The venom of the tarantula Eurypelma californicum was analysed biochemically, the components were isolated and characterized. The pH value of the crude venom is 5.3 +/- 0.3. After dilution with distilled water, UV-absorption spectra showed a single maximum at 258 nm (pH ca. 7.0). A second maximum at 328 nm emerged above pH 8.0. Protein concentration of the venom is ca. 65 mg/ml. After Coomassie staining SDS-PAGE patterns show three major bands with apparent molecular masses around 40 kDa, 4.3 kDa and 1.3 kDa besides some weak high molecular protein bands. The following low-molecular mass constituents were determined in the crude venom: ATP, ADP, AMP, glutamic acid, aspartic acid, gamma-aminobutyric acid, glucose and the ions potassium, sodium, calcium, magnesium and chloride; the osmolality was 361 micro0smol/ml. The LD50 value for female cockroaches was 0.15 microliters venom per g body weight and for male cockroaches 0.4 microliters venom per g body weight. Separation of the crude venom by gel chromatography yielded four elution peaks. Peak I contains the enzyme hyaluronidase. The activity is 200-900 U/microliters. Peak II contains a mixture of toxic peptides. Peak III contains the 1.3-kDa components of SDS-PAGE and peak IV mainly contains ATP. Venom proteins including the enzyme hyaluronidase were precipitated by 5% trichloroacetic acid. The supernatant was separated by HPLC into 13 fractions. Fraction 1 contains glutamic acid, aspartic acid, gamma-aminobutyric acid and ATP; fraction 2 contains ATP, ADP and AMP as well as a component 2' visible in SDS-PAGE as 1.3-kDa band and consisting of spermine and tryptophan; fraction 3 contains ATP and an unknown component 3'; fractions 4-6 also show a 1.3-kDa band in SDS-PAGE, fraction 4 being tyrosylspermine and fractions 5 and 6 containing compounds of spermine and aromatic molecules; fraction 7 contains a peptide which lacks aromatic amino acids, it was sequenced from the N-terminus; fractions 8-13 contain very similar

  2. Isolation, homology modeling and renal effects of a C-type natriuretic peptide from the venom of the Brazilian yellow scorpion (Tityus serrulatus).

    PubMed

    Alves, Renata S; Ximenes, Rafael M; Jorge, Antonio R C; Nascimento, Nilberto R F; Martins, René D; Rabello, Marcelo M; Hernandes, Marcelo Z; Toyama, Daniela O; Toyama, Marcos H; Martins, Alice M C; Havt, Alexandre; Monteiro, Helena S A

    2013-11-01

    Mammalian natriuretic peptides (NPs) have been extensively investigated for use as therapeutic agents in the treatment of cardiovascular diseases. Here, we describe the isolation, sequencing and tridimensional homology modeling of the first C-type natriuretic peptide isolated from scorpion venom. In addition, its effects on the renal function of rats and on the mRNA expression of natriuretic peptide receptors in the kidneys are delineated. Fractionation of Tityus serrulatus venom using chromatographic techniques yielded a peptide with a molecular mass of 2190.64 Da, which exhibited the pattern of disulfide bridges that is characteristic of a C-type NP (TsNP, T. serrulatus Natriuretic Peptide). In the isolated perfused rat kidney assay, treatment with two concentrations of TsNP (0.03 and 0.1 μg/mL) increased the perfusion pressure, glomerular filtration rate and urinary flow. After 60 min of treatment at both concentrations, the percentages of sodium, potassium and chloride transport were decreased, and the urinary cGMP concentration was elevated. Natriuretic peptide receptor-A (NPR-A) mRNA expression was down regulated in the kidneys treated with both concentrations of TsNP, whereas NPR-B, NPR-C and CG-C mRNAs were up regulated at the 0.1 μg/mL concentration. In conclusion, this work describes the isolation and modeling of the first natriuretic peptide isolated from scorpion venom. In addition, examinations of the renal actions of TsNP indicate that its effects may be related to the activation of NPR-B, NPR-C and GC-C. PMID:23911732

  3. Snake Venomics and Antivenomics of Bothrops diporus, a Medically Important Pitviper in Northeastern Argentina

    PubMed Central

    Gay, Carolina; Sanz, Libia; Calvete, Juan J.; Pla, Davinia

    2015-01-01

    Snake species within genus Bothrops are responsible for more than 80% of the snakebites occurring in South America. The species that cause most envenomings in Argentina, B. diporus, is widely distributed throughout the country, but principally found in the Northeast, the region with the highest rates of snakebites. The venom proteome of this medically relevant snake was unveiled using a venomic approach. It comprises toxins belonging to fourteen protein families, being dominated by PI- and PIII-SVMPs, PLA2 molecules, BPP-like peptides, L-amino acid oxidase and serine proteinases. This toxin profile largely explains the characteristic pathophysiological effects of bothropic snakebites observed in patients envenomed by B. diporus. Antivenomic analysis of the SAB antivenom (Instituto Vital Brazil) against the venom of B. diporus showed that this pentabothropic antivenom efficiently recognized all the venom proteins and exhibited poor affinity towards the small peptide (BPPs and tripeptide inhibitors of PIII-SVMPs) components of the venom. PMID:26712790

  4. The anti-proliferative effects and mechanisms of low molecular weight scorpion BmK venom peptides on human hepatoma and cervical carcinoma cells in vitro.

    PubMed

    Li, Weiling; Xin, Yi; Chen, Yang; Li, Xinli; Zhang, Cuili; Bai, Jing; Yuan, Jieli

    2014-10-01

    Peptides from scorpion venom have been previously studied for use in the prevention and treatment of various types of cancer in folk medicine. The present study investigated the anti-proliferative effects and mechanisms of the low molecular weight (~3 kDa) BmK scorpion venom peptides (LMWSVP) on human hepatoma (SMMC 7721) and cervical carcinoma (HeLa) cells. The data indicated that LMWSVP inhibited the growth of SMMC 7721 cells, but had no effect on the growth of HeLa cells. SMMC 7721 cells were more sensitive, with a higher affinity, to LMWSVP as compared with HeLa cells. In addition, LMWSVP induced apoptosis of SMMC 7721 cells by upregulating the expression of caspase-3 and downregulating the expression of Bcl-2. These data provide an experimental basis for further purification and application of LMWSVP for use as an anti-tumor drug in clinical trials. PMID:25202371

  5. Membrane-Active Action Mode of Polybia-CP, a Novel Antimicrobial Peptide Isolated from the Venom of Polybia paulista

    PubMed Central

    Wang, Kairong; Yan, Jiexi; Chen, Ru; Dang, Wen; Zhang, Bangzhi; Zhang, Wei; Song, Jingjing

    2012-01-01

    The extensive use of antibiotics in medicine, the food industry, and agriculture has resulted in the frequent emergence of multidrug-resistant bacteria, which creates an urgent need for new antibiotics. It is now widely recognized that antimicrobial peptides (AMPs) could play a promising role in fighting multidrug-resistant bacteria. Antimicrobial peptide polybia-CP was purified from the venom of the social wasp Polybia paulista. In this study, we synthesized polybia-CP and studied its action mode of antibacterial activity. Our results revealed that polybia-CP has potent antibacterial activity against both Gram-positive and Gram-negative bacteria. The results from both the real bacterial membrane and the in vitro model membrane showed that polybia-CP is membrane active and that its action target is the membrane of bacteria. It is difficult for bacteria to develop resistance to polybia-CP, which may thus offer a new strategy for defending against resistant bacteria in medicine and the food and farming industries. PMID:22450985

  6. Uncovering intense protein diversification in a cone snail venom gland using an integrative venomics approach.

    PubMed

    Biass, Daniel; Violette, Aude; Hulo, Nicolas; Lisacek, Frédérique; Favreau, Philippe; Stöcklin, Reto

    2015-02-01

    Marine cone snail venoms are highly complex mixtures of peptides and proteins. They have been studied in-depth over the past 3 decades, but the modus operandi of the venomous apparatus still remains unclear. Using the fish-hunting Conus consors as a model, we present an integrative venomics approach, based on new proteomic results from the venom gland and data previously obtained from the transcriptome and the injectable venom. We describe here the complete peptide content of the dissected venom by the identification of numerous new peptides using nanospray tandem mass spectrometry in combination with transcriptomic data. Results reveal extensive mature peptide diversification mechanisms at work in the venom gland. In addition, by integrating data from three different venom stages, transcriptome, dissected, and injectable venoms, from a single species, we obtain a global overview of the venom processing that occurs from the venom gland tissue to the venom delivery step. In the light of the successive steps in this venom production system, we demonstrate that each venom compartment is highly specific in terms of peptide and protein content. Moreover, the integrated investigative approach discussed here could become an essential part of pharmaceutical development, as it provides new potential drug candidates and opens the door to numerous analogues generated by the very mechanisms used by nature to diversify its peptide and protein arsenal. PMID:25536169

  7. Cationicity-enhanced analogues of the antimicrobial peptides, AcrAP1 and AcrAP2, from the venom of the scorpion, Androctonus crassicauda, display potent growth modulation effects on human cancer cell lines.

    PubMed

    Du, Qiang; Hou, Xiaojuan; Ge, Lilin; Li, Renjie; Zhou, Mei; Wang, Hui; Wang, Lei; Wei, Minjie; Chen, Tianbao; Shaw, Chris

    2014-01-01

    The non disulphide-bridged peptides (NDBPs) of scorpion venoms are attracting increased interest due to their structural heterogeneity and broad spectrum of biological activities. Here, two novel peptides, named AcrAP1 and AcrAP2, have been identified in the lyophilised venom of the Arabian scorpion, Androctonus crassicauda, through "shotgun" molecular cloning of their biosynthetic precursor-encoding cDNAs. The respective mature peptides, predicted from these cloned cDNAs, were subsequently isolated from the same venom sample using reverse phase HPLC and their identities were confirmed by use of mass spectrometric techniques. Both were found to belong to a family of highly-conserved scorpion venom antimicrobial peptides - a finding confirmed through the biological investigation of synthetic replicates. Analogues of both peptides designed for enhanced cationicity, displayed enhanced potency and spectra of antimicrobial activity but, unlike the native peptides, these also displayed potent growth modulation effects on a range of human cancer cell lines. Thus natural peptide templates from venom peptidomes can provide the basis for rational analogue design to improve both biological potency and spectrum of action. The diversity of such templates from such natural sources undoubtedly provides the pharmaceutical industry with unique lead compounds for drug discovery. PMID:25332684

  8. Neuroprotection by scorpion venom heat resistant peptide in 6-hydroxydopamine rat model of early-stage Parkinson's disease.

    PubMed

    Yin, Sheng-Ming; Zhao, Dan; Yu, De-Qin; Li, Sheng-Long; An, Dong; Peng, Yan; Xu, Hong; Sun, Yi-Ping; Wang, Dong-Mei; Zhao, Jie; Zhang, Wan-Qin

    2014-12-25

    Neuroprotective effect of scorpion venom on Parkinson's disease (PD) has already been reported. The present study was aimed to investigate whether scorpion venom heat resistant peptide (SVHRP) could attenuate ultrastructural abnormalities in mitochondria and oxidative stress in midbrain neurons of early-stage PD model. The early-stage PD model was established by injecting 6-hydroxydopamine (6-OHDA) (20 μg/3 μL normal saline with 0.1% ascorbic acid) into the striatum of Sprague Dawley (SD) rats unilaterally. The rats were intraperitoneally administered with SVHRP (0.05 mg/kg per day) or vehicle (saline) for 1 week. Two weeks after 6-OHDA treatment, the rats received behavior tests for validation of model. Three weeks after 6-OHDA injection, the immunoreactivity of dopaminergic neurons were detected by immunohistochemistry staining, and the ultrastructure of neuronal mitochondria in midbrain was observed by electron microscope. In the meantime, the activities of monoamine oxidase-B (MAO-B), superoxide dismutase (SOD) and content of malondialdehyde (MDA) in the mitochondria of the midbrain neurons, as well as the inhibitory ability of hydroxyl free radical and the antioxidant ability in the serum, were measured by corresponding kits. The results showed that 6-OHDA reduced the optical density of dopaminergic neurons, induced damage of mitochondrial ultrastructure of midbrain neurons, decreased SOD activity, increased MAO-B activity and MDA content, and reduced the antioxidant ability of the serum. SVHRP significantly reversed the previous harmful effects of 6-OHDA in early-stage PD model. These findings indicate that SVHRP may contribute to neuroprotection by preventing biochemical and ultrastructure damage changes which occur during early-stage PD. PMID:25516514

  9. Effects of Animal Venoms and Toxins on Hallmarks of Cancer

    PubMed Central

    Chaisakul, Janeyuth; Hodgson, Wayne C.; Kuruppu, Sanjaya; Prasongsook, Naiyarat

    2016-01-01

    Animal venoms are a cocktail of proteins and peptides, targeting vital physiological processes. Venoms have evolved to assist in the capture and digestion of prey. Key venom components often include neurotoxins, myotoxins, cardiotoxins, hematoxins and catalytic enzymes. The pharmacological activities of venom components have been investigated as a source of potential therapeutic agents. Interestingly, a number of animal toxins display profound anticancer effects. These include toxins purified from snake, bee and scorpion venoms effecting cancer cell proliferation, migration, invasion, apoptotic activity and neovascularization. Indeed, the mechanism behind the anticancer effect of certain toxins is similar to that of agents currently used in chemotherapy. For example, Lebein is a snake venom disintegrin which generates anti-angiogenic effects by inhibiting vascular endothelial growth factors (VEGF). In this review article, we highlight the biological activities of animal toxins on the multiple steps of tumour formation or hallmarks of cancer. We also discuss recent progress in the discovery of lead compounds for anticancer drug development from venom components. PMID:27471574

  10. Effects of Animal Venoms and Toxins on Hallmarks of Cancer.

    PubMed

    Chaisakul, Janeyuth; Hodgson, Wayne C; Kuruppu, Sanjaya; Prasongsook, Naiyarat

    2016-01-01

    Animal venoms are a cocktail of proteins and peptides, targeting vital physiological processes. Venoms have evolved to assist in the capture and digestion of prey. Key venom components often include neurotoxins, myotoxins, cardiotoxins, hematoxins and catalytic enzymes. The pharmacological activities of venom components have been investigated as a source of potential therapeutic agents. Interestingly, a number of animal toxins display profound anticancer effects. These include toxins purified from snake, bee and scorpion venoms effecting cancer cell proliferation, migration, invasion, apoptotic activity and neovascularization. Indeed, the mechanism behind the anticancer effect of certain toxins is similar to that of agents currently used in chemotherapy. For example, Lebein is a snake venom disintegrin which generates anti-angiogenic effects by inhibiting vascular endothelial growth factors (VEGF). In this review article, we highlight the biological activities of animal toxins on the multiple steps of tumour formation or hallmarks of cancer. We also discuss recent progress in the discovery of lead compounds for anticancer drug development from venom components. PMID:27471574

  11. Comparative proteomic analysis of male and female venoms from the Cuban scorpion Rhopalurus junceus.

    PubMed

    Rodríguez-Ravelo, Rodolfo; Batista, Cesar V F; Coronas, Fredy I V; Zamudio, Fernando Z; Hernández-Orihuela, Lorena; Espinosa-López, Georgina; Ruiz-Urquiola, Ariel; Possani, Lourival D

    2015-12-01

    A complete mass spectrometry analysis of venom components from male and female scorpions of the species Rhophalurus junceus of Cuba is reported. In the order of 200 individual molecular masses were identified in both venoms, from which 63 are identical in male and females genders. It means that a significant difference of venom components exists between individuals of different sexes, but the most abundant components are present in both sexes. The relative abundance of identical components is different among the genders. Three well defined groups of different peptides were separated and identified. The first group corresponds to peptides with molecular masses of 1000-2000 Da; the second to peptides with 3500-4500 Da molecular weight, and the third with 6500-8000 Da molecular weights. A total of 86 peptides rich in disulfide bridges were found in the venoms, 27 with three disulfide bridges and 59 with four disulfide bridges. LC-MS/MS analysis allowed the identification and amino acid sequence determination of 31 novel peptides in male venom. Two new putative K(+)-channel peptides were sequences by Edman degradation. They contain 37 amino acid residues, packed by three disulfide bridges and were assigned the systematic numbers: α-KTx 1.18 and α-KTx 2.15. PMID:26169670

  12. Multicomponent venom of the spider Cupiennius salei: a bioanalytical investigation applying different strategies.

    PubMed

    Trachsel, Christian; Siegemund, Doreen; Kämpfer, Urs; Kopp, Lukas S; Bühr, Claudia; Grossmann, Jonas; Lüthi, Christoph; Cunningham, Monica; Nentwig, Wolfgang; Kuhn-Nentwig, Lucia; Schürch, Stefan; Schaller, Johann

    2012-08-01

    The multicomponent venom of the spider Cupiennius salei was separated by three different chromatographic strategies to facilitate subsequent analysis of peptidic venom components by tandem mass spectrometry (MALDI-TOF-MS and ESI-MS), Edman degradation and amino acid analysis: (a) desalting of the crude venom by RP-HPLC only, (b) chromatographic separation of the crude venom into 42 fractions by RP-HPLC, and (c) multidimensional purification of the crude venom by size exclusion and cation exchange chromatography and RP-HPLC. A total of 286 components were identified in the venom of C. salei by mass spectrometry and the sequence of 49 new peptides was determined de novo by Edman degradation and tandem mass spectrometry; 30 were C-terminally amidated. The novel peptides were assigned to two main groups: (a) short cationic peptides and (b) Cys-containing peptides with the inhibitor cystine knot motif. Bioinformatics revealed a limited number of substantial similarities, namely with the peptides CpTx1 from the spider Cheiracantium punctorium and U3-ctenitoxin-Asp1a from the South American fishing spider (Ancylometes sp.) and with sequences from a Lycosa singoriensis venom gland transcriptome analysis. The results clearly indicate that the quality of the data is strongly dependent on the chosen separation strategy. The combination of orthogonal analytical methods efficiently excludes alkali ion and matrix adducts, provides indispensable information for an unambiguous identification of isomasses, and results in the most comprehensive repertoire of peptides identified in the venom of C. salei so far. PMID:22672445

  13. Scorpion venom component III inhibits cell proliferation by modulating NF-κB activation in human leukemia cells

    PubMed Central

    SONG, XIANGFENG; ZHANG, GUOJUN; SUN, AIPING; GUO, JIQIANG; TIAN, ZHONGWEI; WANG, HUI; LIU, YUFENG

    2012-01-01

    Scorpion venom contains various groups of compounds that exhibit anticancer activity against a variety of malignancies through a poorly understood mechanism. While the aberrant activation of nuclear factor κB (NF-κB) has been linked with hematopoietic malignancies, we hypothesized that scorpion venom mediates its effects by modulating the NF-κB signaling pathway. In the present study, we examined the effects of scorpion venom component III (SVCIII) on the human leukemia cell lines THP-1 and Jurkat and focused on the NF-κB signaling pathway. Our results showed that SVCIII inhibited cell proliferation, caused cell cycle arrest at G1 phase and inhibited the expression of cell cycle regulatory protein cyclin D1 in a dose-dependent manner in THP-1 and Jurkat cells. SVCIII also suppressed the constitutive NF-κB activation through inhibition of the phosphorylation and degradation of IκBα. NF-κB luciferase reporter activity was also inhibited by SVCIII. Our data suggest that SVCIII, a natural compound, may exert its antiproliferative effects by inhibiting the activation of NF-κB and, thus, has potential use in the treatment of hematopoietic malignancies, alone or in combination with other agents. PMID:23060939

  14. Engineering Agatoxin, a Cystine-Knot Peptide from Spider Venom, as a Molecular Probe for In Vivo Tumor Imaging

    PubMed Central

    Norton, Heidi K.; Cochran, Jennifer R.

    2013-01-01

    Background Cystine-knot miniproteins, also known as knottins, have shown great potential as molecular scaffolds for the development of targeted therapeutics and diagnostic agents. For this purpose, previous protein engineering efforts have focused on knottins based on the Ecballium elaterium trypsin inhibitor (EETI) from squash seeds, the Agouti-related protein (AgRP) neuropeptide from mammals, or the Kalata B1 uterotonic peptide from plants. Here, we demonstrate that Agatoxin (AgTx), an ion channel inhibitor found in spider venom, can be used as a molecular scaffold to engineer knottins that bind with high-affinity to a tumor-associated integrin receptor. Methodology/Principal Findings We used a rational loop-grafting approach to engineer AgTx variants that bound to αvβ3 integrin with affinities in the low nM range. We showed that a disulfide-constrained loop from AgRP, a structurally-related knottin, can be substituted into AgTx to confer its high affinity binding properties. In parallel, we identified amino acid mutations required for efficient in vitro folding of engineered integrin-binding AgTx variants. Molecular imaging was used to evaluate in vivo tumor targeting and biodistribution of an engineered AgTx knottin compared to integrin-binding knottins based on AgRP and EETI. Knottin peptides were chemically synthesized and conjugated to a near-infrared fluorescent dye. Integrin-binding AgTx, AgRP, and EETI knottins all generated high tumor imaging contrast in U87MG glioblastoma xenograft models. Interestingly, EETI-based knottins generated significantly lower non-specific kidney imaging signals compared to AgTx and AgRP-based knottins. Conclusions/Significance In this study, we demonstrate that AgTx, a knottin from spider venom, can be engineered to bind with high affinity to a tumor-associated receptor target. This work validates AgTx as a viable molecular scaffold for protein engineering, and further demonstrates the promise of using tumor

  15. Mass fingerprinting of the venom and transcriptome of venom gland of scorpion Centruroides tecomanus.

    PubMed

    Valdez-Velázquez, Laura L; Quintero-Hernández, Verónica; Romero-Gutiérrez, Maria Teresa; Coronas, Fredy I V; Possani, Lourival D

    2013-01-01

    Centruroides tecomanus is a Mexican scorpion endemic of the State of Colima, that causes human fatalities. This communication describes a proteome analysis obtained from milked venom and a transcriptome analysis from a cDNA library constructed from two pairs of venom glands of this scorpion. High perfomance liquid chromatography separation of soluble venom produced 80 fractions, from which at least 104 individual components were identified by mass spectrometry analysis, showing to contain molecular masses from 259 to 44,392 Da. Most of these components are within the expected molecular masses for Na(+)- and K(+)-channel specific toxic peptides, supporting the clinical findings of intoxication, when humans are stung by this scorpion. From the cDNA library 162 clones were randomly chosen, from which 130 sequences of good quality were identified and were clustered in 28 contigs containing, each, two or more expressed sequence tags (EST) and 49 singlets with only one EST. Deduced amino acid sequence analysis from 53% of the total ESTs showed that 81% (24 sequences) are similar to known toxic peptides that affect Na(+)-channel activity, and 19% (7 unique sequences) are similar to K(+)-channel especific toxins. Out of the 31 sequences, at least 8 peptides were confirmed by direct Edman degradation, using components isolated directly from the venom. The remaining 19%, 4%, 4%, 15% and 5% of the ESTs correspond respectively to proteins involved in cellular processes, antimicrobial peptides, venom components, proteins without defined function and sequences without similarity in databases. Among the cloned genes are those similar to metalloproteinases. PMID:23840487

  16. Mass Fingerprinting of the Venom and Transcriptome of Venom Gland of Scorpion Centruroides tecomanus

    PubMed Central

    Valdez-Velázquez, Laura L.; Quintero-Hernández, Verónica; Romero-Gutiérrez, Maria Teresa; Coronas, Fredy I. V.; Possani, Lourival D.

    2013-01-01

    Centruroides tecomanus is a Mexican scorpion endemic of the State of Colima, that causes human fatalities. This communication describes a proteome analysis obtained from milked venom and a transcriptome analysis from a cDNA library constructed from two pairs of venom glands of this scorpion. High perfomance liquid chromatography separation of soluble venom produced 80 fractions, from which at least 104 individual components were identified by mass spectrometry analysis, showing to contain molecular masses from 259 to 44,392 Da. Most of these components are within the expected molecular masses for Na+- and K+-channel specific toxic peptides, supporting the clinical findings of intoxication, when humans are stung by this scorpion. From the cDNA library 162 clones were randomly chosen, from which 130 sequences of good quality were identified and were clustered in 28 contigs containing, each, two or more expressed sequence tags (EST) and 49 singlets with only one EST. Deduced amino acid sequence analysis from 53% of the total ESTs showed that 81% (24 sequences) are similar to known toxic peptides that affect Na+-channel activity, and 19% (7 unique sequences) are similar to K+-channel especific toxins. Out of the 31 sequences, at least 8 peptides were confirmed by direct Edman degradation, using components isolated directly from the venom. The remaining 19%, 4%, 4%, 15% and 5% of the ESTs correspond respectively to proteins involved in cellular processes, antimicrobial peptides, venom components, proteins without defined function and sequences without similarity in databases. Among the cloned genes are those similar to metalloproteinases. PMID:23840487

  17. A mammalian epididymal protein with remarkable sequence similarity to snake venom haemorrhagic peptides.

    PubMed Central

    Perry, A C; Jones, R; Barker, P J; Hall, L

    1992-01-01

    Following spermatogenesis in the testis, mammalian spermatozoa pass into the epididymis, where they undergo changes which confer on them forward motility and the ability to recognize and penetrate the egg. Many of these maturation events involve androgen-regulated epididymal proteins which become associated with the sperm membrane, and/or effect changes to integral sperm membrane proteins. Here we report the sequence of an 89 kDa androgen-regulated protein from rat (Rattus norvegicus) and monkey (Macaca fascicularis) epididymis that is synthesized exclusively in the caput region and is localized on the apical surface of its principal epithelial cells. This protein shows remarkable similarity to a variety of proteases and disintegrins found in snake venoms and is similar to, but distinct from, the guinea-pig sperm surface PH-30 alpha/beta complex recently implicated in sperm-egg recognition and fusion. Images Fig. 2. Fig. 3. PMID:1417724

  18. Construction and expression of an antimicrobial peptide scolopin 1 from the centipede venoms of Scolopendra subspinipes mutilans in Escherichia coli using SUMO fusion partner.

    PubMed

    Hou, Huanhuan; Yan, Weili; Du, Kexing; Ye, Yangjing; Cao, Qianqian; Ren, Wenhua

    2013-12-01

    Antimicrobial peptide scolopin 1 (AMP-scolopin 1) is a small cationic peptide identified from centipede venoms of Scolopendra subspinipes mutilans. It has broad-spectrum activities against bacteria, fungi, and tumor cells, which may possibly be used as an antimicrobial agent. We first report here the application of small ubiquitin-related modifier (SUMO) fusion technology to the expression and purification of cationic antimicrobial peptide AMP-scolopin 1. The fusion protein expressed in a soluble form was purified to a purity of 95% by Ni-IDA chromatography. After the SUMO-scolopin 1 fusion protein was cleaved by the SUMO protease at 30°C for 1 h, the cleaved sample was reapplied to a Ni-IDA. The recombinant scolopin1 had similar antimicrobial properties to the synthetic scolopin 1. Thus, we successfully established a system for purifying peptide of centipede, which could be used for further research. PMID:24145284

  19. An unusual family of glycosylated peptides isolated from Dendroaspis angusticeps venom and characterized by combination of collision induced and electron transfer dissociation.

    PubMed

    Quinton, Loïc; Gilles, Nicolas; Smargiasso, Nicolas; Kiehne, Andrea; De Pauw, Edwin

    2011-11-01

    This study describes the structural characterization of a totally new family of peptides from the venom of the snake green mamba (Dendroaspis angusticeps). Interestingly, these peptides differ in several points from other already known mamba toxins. First of all, they exhibit very small molecular masses, ranging from 1.3 to 2.4 kDa. The molecular mass of classical mamba toxins is in the range of 7 to 25 kDa. Second, the new peptides do not contain disulfide bonds, a post-translational modification commonly encountered in animal toxins. The third difference is the very high proportion of proline residues in the sequence accounting for about one-third of the sequence. Finally, these new peptides reveal a carbohydrate moiety, indicating a glycosylation in the sequence. The last two features have made the structural characterization of the new peptides by mass spectrometry a real analytical challenge. Peptides were characterized by a combined use of MALDI- TOF/TOF and nanoESI-IT-ETD experiments to determine not only the peptide sequence but also the composition and the position of the carbohydrate moiety. Anyway, such small glycosylated and proline-rich toxins are totally different from any other known snake peptide and form, as a consequence, a new family of peptides. PMID:21952754

  20. Investigating the chemical profile of regenerated scorpion (Parabuthus transvaalicus) venom in relation to metabolic cost and toxicity.

    PubMed

    Nisani, Zia; Boskovic, Danilo S; Dunbar, Stephen G; Kelln, Wayne; Hayes, William K

    2012-09-01

    We investigated the biochemical profile of regenerated venom of the scorpion Parabuthus transvaalicus in relation to its metabolic cost and toxicity. Using a closed-system respirometer, we compared oxygen consumption between milked and unmilked scorpions to determine the metabolic costs associated with the first 192 h of subsequent venom synthesis. Milked scorpions had a substantially (21%) higher mean metabolic rate than unmilked scorpions, with the largest increases in oxygen consumption occurring at approximately 120 h, 162 h, and 186 h post-milking. Lethality tests in crickets indicated that toxicity of the regenerated venom returned to normal levels within 4 d after milking. However, the chemical profile of the regenerated venom, as evaluated by FPLC and MALDI-TOF mass spectrometry, suggested that regeneration of different venom components was asynchronous. Some peptides regenerated quickly, particularly those associated with the scorpion's "prevenom," whereas others required much or all of this time period for regeneration. This asynchrony could explain the different spikes detected in oxygen consumption of milked scorpions as various peptides and other venom components were resynthesized. These observations confirm the relatively high metabolic cost of venom regeneration and suggest that greater venom complexity can be associated with higher costs of venom production. PMID:22564718

  1. Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits

    PubMed Central

    Walker, Andrew A.; Weirauch, Christiane; Fry, Bryan G.; King, Glenn F.

    2016-01-01

    The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera) have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insecticidal, and may cause paralysis or death when injected into vertebrates. Disulfide-rich peptides, bioactive phospholipids, small molecules such as N,N-dimethylaniline and 1,2,5-trithiepane, and toxic enzymes such as phospholipase A2, have been reported in predatory venoms. However, the detailed composition and molecular targets of predatory venoms are largely unknown. In contrast, recent research into blood-feeding heteropterans has revealed the structure and function of many protein and non-protein components that facilitate acquisition of blood meals. Blood-feeding venoms lack paralytic or liquefying activity but instead are cocktails of pharmacological modulators that disable the host haemostatic systems simultaneously at multiple points. The multiple ways venom is used by heteropterans suggests that further study will reveal heteropteran venom components with a wide range of bioactivities that may be recruited for use as bioinsecticides, human therapeutics, and pharmacological tools. PMID:26907342

  2. Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits.

    PubMed

    Walker, Andrew A; Weirauch, Christiane; Fry, Bryan G; King, Glenn F

    2016-02-01

    The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera) have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insecticidal, and may cause paralysis or death when injected into vertebrates. Disulfide-rich peptides, bioactive phospholipids, small molecules such as N,N-dimethylaniline and 1,2,5-trithiepane, and toxic enzymes such as phospholipase A2, have been reported in predatory venoms. However, the detailed composition and molecular targets of predatory venoms are largely unknown. In contrast, recent research into blood-feeding heteropterans has revealed the structure and function of many protein and non-protein components that facilitate acquisition of blood meals. Blood-feeding venoms lack paralytic or liquefying activity but instead are cocktails of pharmacological modulators that disable the host haemostatic systems simultaneously at multiple points. The multiple ways venom is used by heteropterans suggests that further study will reveal heteropteran venom components with a wide range of bioactivities that may be recruited for use as bioinsecticides, human therapeutics, and pharmacological tools. PMID:26907342

  3. Effects of Scorpion venom peptide B5 on hematopoietic recovery in irradiated mice and the primary mechanisms.

    PubMed

    Wang, Caixia; Zhou, Meixun; Li, Ting; Wang, Yan; Xing, Baiqian; Kong, Tianhan; Dong, Weihua

    2015-01-01

    Scorpion venom peptide B5 (SVP-B5) stimulates recovery of hematopoiesis after exposure to radiation. However, its radioprotective effects and mechanisms are still unclear. The aim of this study was to investigate the effects of SVP-B5 on hematopoietic recovery in mice after total body irradiation (TBI) at a dose of 7.5 Gy and 6 Gy and to explore the possible primary mechanisms. SVP-B5 at a dose of 2.63 μg/kg significantly reduced the mortality rate of mice after TBI (p < 0.05). It showed markedly protective effects against radiation injury. SVP-B5 also significantly increased the number of bone marrow nucleated cells (BMNCs) and increased the colony forming unit (CFU) number in irradiated mice, accelerated the post-irradiation recovery of peripheral blood leukocytes and platelets in mice. SVP-B5 treatment markedly reduced the Reactive Oxygen Species (ROS) levels in BMNCs after TBI, reduced γH2AX levels, and decreased the relative expression levels of p16 and p21 mRNA at day 14 (d14) after irradiation. Our study indicated that SVP-B5 could partially mitigate radiation-induced DNA damage, enhance the post-radiation hematopoietic recovery, and improve the survival rate probably through the ROS-p16/p21 pathway. PMID:26482294

  4. Effects of Scorpion venom peptide B5 on hematopoietic recovery in irradiated mice and the primary mechanisms

    PubMed Central

    Wang, Caixia; Zhou, Meixun; Li, Ting; Wang, Yan; Xing, Baiqian; Kong, Tianhan; Dong, Weihua

    2015-01-01

    Scorpion venom peptide B5 (SVP-B5) stimulates recovery of hematopoiesis after exposure to radiation. However, its radioprotective effects and mechanisms are still unclear. The aim of this study was to investigate the effects of SVP-B5 on hematopoietic recovery in mice after total body irradiation (TBI) at a dose of 7.5Gy and 6Gy and to explore the possible primary mechanisms. SVP-B5 at a dose of 2.63 μg/kg significantly reduced the mortality rate of mice after TBI (p < 0.05). It showed markedly protective effects against radiation injury. SVP-B5 also significantly increased the number of bone marrow nucleated cells (BMNCs) and increased the colony forming unit (CFU) number in irradiated mice, accelerated the post-irradiation recovery of peripheral blood leukocytes and platelets in mice. SVP-B5 treatment markedly reduced the Reactive Oxygen Species (ROS) levels in BMNCs after TBI, reduced γH2AX levels, and decreased the relative expression levels of p16 and p21 mRNA at day14 (d14) after irradiation. Our study indicated that SVP-B5 could partially mitigate radiation-induced DNA damage, enhance the post-radiation hematopoietic recovery, and improve the survival rate probably through the ROS-p16/p21 pathway. PMID:26482294

  5. Induction of Apoptosis in Human Leukemia Cell Line (HL60) by Animal’s Venom Derived Peptides (ICD-85)

    PubMed Central

    Zare Mirakabadi, Abbas; Shahramyar, Zahra; Morovvati, Hasan; Lotfi, Mohsen; Nouri, Ali

    2012-01-01

    Our previous studies revealed an inhibitory effect of ICD-85 (Venom derived peptides) on breast cancer cell line MDA-MB231. ICD-85 was also confirmed by in-vivo studies to suppress the breast tumor in mice. However, the exact mechanism of ICD-85 was unknown. Hence, the present study was undertaken to assess the mechanism of ICD-85 effect as an anti-proliferative agent of cancer cells. The effect of ICD-85 on proliferation of HL-60 cancer cells was determined by using the MTT assay. The morphological changes of ICD-85 treated HL-60 cells were observed under transmission electron microscope (TEM). DNA fragmentation analysis was also carried out using gel electrophoresis. ICD-85 induced the marked inhibition of HL60 cell proliferation with an IC50-value of 0.04 μg/mL following 24 h of incubation. ICD-85 treated cells when compared with untreated cells, showed nuclear material condensation, endoplasmic reticulum dilation, mitochondria swelling or degradation, increased cytoplasmic vacuoles, reduction or disappearance in cytoplasmic process and decreased nuclear/cytoplasmic ratio was observed. The characteristic DNA ladder formation of ICD-85-treated cells in agarose gel electrophoresis confirmed the results obtained through the electron microscopy. The results of the present study indicated that ICD-85 inhibited the cancer cell proliferation by inducing cell apoptosis. PMID:24250521

  6. Apoptosis Activation in Human Lung Cancer Cell Lines by a Novel Synthetic Peptide Derived from Conus californicus Venom

    PubMed Central

    Oroz-Parra, Irasema; Navarro, Mario; Cervantes-Luevano, Karla E.; Álvarez-Delgado, Carolina; Salvesen, Guy; Sanchez-Campos, Liliana N.; Licea-Navarro, Alexei F.

    2016-01-01

    Lung cancer is one of the most common types of cancer in men and women and a leading cause of death worldwide resulting in more than one million deaths per year. The venom of marine snails Conus contains up to 200 pharmacologically active compounds that target several receptors in the cell membrane. Due to their diversity and specific binding properties, Conus toxins hold great potential as source of new drugs against cancer. We analyzed the cytotoxic effect of a 17-amino acid synthetic peptide (s-cal14.1a) that is based on a native toxin (cal14.1a) isolated from the sea snail Conus californicus. Cytotoxicity studies in four lung cancer cell lines were complemented with measurement of gene expression of apoptosis-related proteins Bcl-2, BAX and the pro-survival proteins NFκB-1 and COX-2, as well as quantification of caspase activity. Our results showed that H1299 and H1437 cell lines treated with s-call4.1a had decreased cell viability, activated caspases, and reduced expression of the pro-survival protein NFκB-1. To our knowledge, this is the first report describing activation of apoptosis in human lung cancer cell lines by s-cal14.1a and we offer insight into the possible mechanism of action. PMID:26861394

  7. Apoptosis Activation in Human Lung Cancer Cell Lines by a Novel Synthetic Peptide Derived from Conus californicus Venom.

    PubMed

    Oroz-Parra, Irasema; Navarro, Mario; Cervantes-Luevano, Karla E; Álvarez-Delgado, Carolina; Salvesen, Guy; Sanchez-Campos, Liliana N; Licea-Navarro, Alexei F

    2016-02-01

    Lung cancer is one of the most common types of cancer in men and women and a leading cause of death worldwide resulting in more than one million deaths per year. The venom of marine snails Conus contains up to 200 pharmacologically active compounds that target several receptors in the cell membrane. Due to their diversity and specific binding properties, Conus toxins hold great potential as source of new drugs against cancer. We analyzed the cytotoxic effect of a 17-amino acid synthetic peptide (s-cal14.1a) that is based on a native toxin (cal14.1a) isolated from the sea snail Conus californicus. Cytotoxicity studies in four lung cancer cell lines were complemented with measurement of gene expression of apoptosis-related proteins Bcl-2, BAX and the pro-survival proteins NFκB-1 and COX-2, as well as quantification of caspase activity. Our results showed that H1299 and H1437 cell lines treated with s-call4.1a had decreased cell viability, activated caspases, and reduced expression of the pro-survival protein NFκB-1. To our knowledge, this is the first report describing activation of apoptosis in human lung cancer cell lines by s-cal14.1a and we offer insight into the possible mechanism of action. PMID:26861394

  8. A scorpion venom peptide fraction induced prostaglandin biosynthesis in guinea pig kidneys: incorporation of 14C-linoleic acid.

    PubMed

    el-Saadani, Muhammad A

    2004-01-01

    A peptide fraction isolated from the venom of the Egyptian scorpion Buthus occitanus was proved to have a bradykinin- potentiating activity. In vivo and in vitro modes of action of the isolated bradykinin-potentiating peptide (BPP) on kidneys of guinea pigs were investigated. Animals received five successive i.p. doses of the scorpion BPP (1 microg/g body weight) at one-week intervals. The control animals were i.p. injected with saline solution only. In vivo experiments showed a significant increase in renal tissue PGE(2) content and lipid peroxides of the treated guinea pigs compared to the control animals (p < 0.05). Nonsignificant changes were detected in the levels of tissue c-AMP and 5-nucleotidase activity (p > 0.05) of the treated animals, while the changes in c-GMP and c-AMP/c-GMP ratio were both significant (p < 0.05). In vitro experiments demonstrated enhanced capacity of guinea pig-renal tissue to convert (14)C-linoleic acid to its metabolites, 6-keto-PGF(1)alpha, PGF(2)alpha, PGE(2), TxB(2), PGD(2), and arachidonic acid, in response to the added PBP (1 microg/ml) and bradykinin (1 microg/ml). This enhanced response was abolished upon the addition of 1 microg/ml of BK-inhibitor (D-Arg- [Hyp(3), Thi(5,6), Phe(7)]). The capacity for labeled metabolites recovery in BPP treated renal tissue was 19.78%, while it was 13.00% in the basal control. The total increase that evoked by BPP was 62.78%. The results clearly indicate that the isolated BPP induced prostaglandin biosynthesis, which may trigger enhanced glomerular filtration in guinea pigs. PMID:14999016

  9. Antiplatelet Aggregation and Antithrombosis Efficiency of Peptides in the Snake Venom of Deinagkistrodon acutus: Isolation, Identification, and Evaluation

    PubMed Central

    Ding, Bin; Xu, Zhenghong; Qian, Chaodong; Jiang, Fusheng; Ding, Xinghong; Ruan, Yeping; Ding, Zhishan; Fan, Yongsheng

    2015-01-01

    Two peptides of Pt-A (Glu-Asn-Trp 429 Da) and Pt-B (Glu-Gln-Trp 443 Da) were isolated from venom liquor of Deinagkistrodon acutus. Their antiplatelet aggregation effects were evaluated with platelet-rich human plasma in vitro; the respective IC50 of Pt-A and Pt-B was 66 μM and 203 μM. Both peptides exhibited protection effects on ADP-induced paralysis in mice. After ADP administration, the paralysis time of different concentration of Pt-A and Pt-B lasted as the following: 80 mg/kg Pt-B (152.8 ± 57.8 s) < 40 mg/kg Pt-A (163.5 ± 59.8 s) < 20 mg/kg Pt-A (253.5 ± 74.5 s) < 4 mg/kg clopidogrel (a positive control, 254.5 ± 41.97 s) < 40 mg/kg Pt-B (400.8 ± 35.9 s) < 10 mg/kg Pt-A (422.8 ± 55.4 s), all of which were statistically shorter than the saline treatment (666 ± 28 s). Pulmonary tissue biopsy confirmed that Pt-A and Pt-B prevented the formation of thrombi in the lung. Unlike ADP injection alone, which caused significant reduction of peripheral platelet count, Pt-A treatment prevented the drop of peripheral platelet counts; interestingly, Pt-B could not, even though the same amount of Pt-B also showed protection effects on ADP-induced paralysis and thrombosis. More importantly, intravenous injection of Pt-A and Pt-B did not significantly increase the hemorrhage risks as clopidogrel. PMID:26483843

  10. Antimicrobial Peptide from the Wild Bee Hylaeus signatus Venom and Its Analogues: Structure-Activity Study and Synergistic Effect with Antibiotics.

    PubMed

    Nešuta, Ondřej; Hexnerová, Rozálie; Buděšínský, Miloš; Slaninová, Jiřina; Bednárová, Lucie; Hadravová, Romana; Straka, Jakub; Veverka, Václav; Čeřovský, Václav

    2016-04-22

    Venoms of hymenopteran insects have attracted considerable interest as a source of cationic antimicrobial peptides (AMPs). In the venom of the solitary bee Hylaeus signatus (Hymenoptera: Colletidae), we identified a new hexadecapeptide of sequence Gly-Ile-Met-Ser-Ser-Leu-Met-Lys-Lys-Leu-Ala-Ala-His-Ile-Ala-Lys-NH2. Named HYL, it belongs to the category of α-helical amphipathic AMPs. HYL exhibited weak antimicrobial activity against several strains of pathogenic bacteria and moderate activity against Candida albicans, but its hemolytic activity against human red blood cells was low. We prepared a set of HYL analogues to evaluate the effects of structural modifications on its biological activity and to increase its potency against pathogenic bacteria. This produced several analogues exhibiting significantly greater activity compared to HYL against strains of both Staphylococcus aureus and Pseudomonas aeruginosa even as their hemolytic activity remained low. Studying synergism of HYL peptides and conventional antibiotics showed the peptides act synergistically and preferentially in combination with rifampicin. Fluorescent dye propidium iodide uptake showed the tested peptides were able to facilitate entrance of antibiotics into the cytoplasm by permeabilization of the outer and inner bacterial cell membrane of P. aeruginosa. Transmission electron microscopy revealed that treatment of P. aeruginosa with one of the HYL analogues caused total disintegration of bacterial cells. NMR spectroscopy was used to elucidate the structure-activity relationship for the effect of amino acid residue substitution in HYL. PMID:26998557

  11. Analgesic effect of Persian Gulf Conus textile venom

    PubMed Central

    Tabaraki, Nasim; Shahbazzadeh, Delavar; Moradi, Ali Mashinchian; Vosughi, Gholamhossein; Mostafavi, Pargol Ghavam

    2014-01-01

    Objective(s): Cone snails are estimated to consist of up to 700 species. The venom of these snails has yielded a rich source of novel peptides. This study was aimed to study the analgesic effect of Persian Gulf Conus textile and its comparison with morphine in mouse model. Materials and Methods: Samples were collected in Larak Island. The venom ducts were Isolated and kept on ice then homogenized. The mixture centrifuged at 10000 × g for 20 min. Supernatant was considered as extracted venom. The protein profile of venom determined using 15% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Venom was administered intraperitoneally (IP) to evaluate the LD50 in Swiss albino mice. Different concentrations of Conus textile venom were injected intrathecally to mice to evaluate their analgesic effect in comparison to morphine. Injection was carried out between the L5 and L6 vertebrae. Differences between groups in the first and second phase were tested with Two-Way analysis of variance (ANOVA). Results: SDS-PAGE indicated 12 bands ranged between 6 and 180 KDa. Finally, ten ng of Conus crude venom showed the best analgesic activity in formalin test. No death observed up to 100 mg/kg. Analgesic activity of crude venom was more significant (P<0.05) in acute pain than inflammatory pain. The analgesic effect of 10 ng Conus venom was the same as morphine for reduction of inflammatory pain (P=0.27). Conclusion: The venom of Persian Gulf Conus textile contains an analgesic component for reliving of acute pain which can lead to find an analgesic drug. PMID:25729549

  12. Two tarantula venom peptides as potent and differential Na(V) channels blockers.

    PubMed

    Cherki, Ronit S; Kolb, Ela; Langut, Yael; Tsveyer, Lior; Bajayo, Nissim; Meir, Alon

    2014-01-01

    Voltage dependent sodium (Na(V)) channels are large membrane spanning proteins which lie in the basis of action potential generation and propagation in excitable cells and hence are essential mediators of neuronal signaling. Inhibition of Na(V) channel activity is one of the core mechanisms to treat conditions related to neuronal hyperexcitability, such as epilepsy in the clinic. Na(V) channel blockers are also extensively used to locally inhibit action potential generation and related pain perceptions in the form of local anesthetics. Here we describe the isolation, biochemical characterization, synthesis and in vitro characterization of two potent Na(V) channel blockers from the venom of the Paraphysa scrofa (Phrixotrichus auratus) tarantula spider. Both Voltage sensor toxin 3 (VSTx-3, κ-theraphotoxin-Gr4a) and GTx1-15 (Toxin Gtx1-15), were originally isolated from the venom of the related tarantula Grammostola rosea and described as K(V) and Ca(V) channel blockers, respectively. In our hands, GTx1-15 was shown to be a potent inhibitor of tetrodotoxin (TTX)-sensitive channels (IC₅₀ 0.007 μM for hNa(V)1.7 and 0.12 μM for hNa(V)1.3 channels), with very little effect on TTX-resistant (Na(V)1.5 and NaV1.8) channels. VSTx-3 was demonstrated to be a potent, TTX-sensitive sodium channel blocker and especially, potent blocker of Na(V)1.8 channels (IC₅₀ 0.19 μM for hNa(V)1.3, 0.43 μM for hNa(V)1.7 and 0.77 μM for hNa(V)1.8 channels). Such potent inhibitors with differential selectivity among Na(V) channel isoforms may be used as tools to study the roles of the different channels in processes related to hyperexcitability and as lead compounds to treat pathological pain conditions. PMID:24211312

  13. Snake venom toxins. The amino acid sequence of toxin Vi2, a homologue of pancreatic trypsin inhibitor, from Dendroaspis polylepis polylepis (black mamba) venom.

    PubMed

    Strydom, D J

    1977-04-25

    The amino acid sequence of venom component Vi2, a protein of low toxicity from Dendroaspis polylepis polylepis venom was determined by automatic sequence analysis in combination with sequence studies on tryptic peptides. This protein, the most retarded fraction of this venom on a cation-exchange resin, is a homologue of bovine pancreatic trypsin inhibitor consisting of a single chain of 57 amino acid residues containing six half-cystine residues. The active site lysyl residue of bovine trypsin inhibitor is conserved in Vi2 although large differences are found in the rest of the molecule. PMID:857902

  14. A new structurally atypical bradykinin-potentiating peptide isolated from Crotalus durissus cascavella venom (South American rattlesnake).

    PubMed

    Lopes, Denise M; Junior, Norberto E G; Costa, Paula P C; Martins, Patrícia L; Santos, Cláudia F; Carvalho, Ellaine D F; Carvalho, Maria D F; Pimenta, Daniel C; Cardi, Bruno A; Fonteles, Manassés C; Nascimento, Nilberto R F; Carvalho, Krishnamurti M

    2014-11-01

    Venom glands of some snakes synthesize bradykinin-potentiating peptides (BPP's) which increase bradykinin-induced hypotensive effect and decrease angiotensin I vasopressor effect by angiotensin-converting enzyme (ACE) inhibition. The present study shows a new BPP (BPP-Cdc) isolated from Crotalus durissus cascavella venom: Pro-Asn-Leu-Pro-Asn-Tyr-Leu-Gly-Ile-Pro-Pro. Although BPP-Cdc presents the classical sequence IPP in the C-terminus, it has a completely atypical N-terminal sequence, which shows very low homology with all other BPPs isolated to date. The pharmacological effects of BPP-Cdc were compared to BBP9a from Bothrops jararaca and captopril. BPP-Cdc (1 μM) significantly increased BK-induced contractions (BK; 1 μM) on the guinea pig ileum by 267.8% and decreased angiotensin I-induced contractions (AngI; 10 nM) by 62.4% and these effects were not significantly different from those of BPP9a (1 μM) or captopril (200 nM). Experiments with 4-week hypertensive 2K-1C rats show that the vasopressor effect of AngI (10 ng) was decreased by 50 μg BPP-Cdc (69.7%), and this result was similar to that obtained with 50 μg BPP9a (69.8%). However, the action duration of BPP-Cdc (60 min) was 2 times greater than that of BPP-9a (30 min). On the other hand, the hypotensive effect of BK (250 ng) was significantly increased by 176.6% after BPP-Cdc (50 μg) administration, value 2.5 times greater than that obtained with BPP9a administered at the same doses (71.4%). In addition, the duration of the action of BPP-Cdc (120 min) was also at least 4 times greater than that of BPP-9a (30 min). Taken together, these results suggest that BPP-Cdc presents more selective action on arterial blood system than BPP9a. Besides the inhibition of ACE, it may present other mechanisms of action yet to be elucidated. PMID:25091347

  15. Vipera lebetina venom nucleases.

    PubMed

    Trummal, Katrin; Tõnismägi, Külli; Aaspõllu, Anu; Siigur, Jüri; Siigur, Ene

    2016-09-01

    Nucleases, in particular ribo- and deoxyribonucleases, are among the least-studied snake venom enzymes. In the present study we have partially purified different nucleases from Vipera lebetina venom. The DNase activity has been proved by DNA degradation both in solution as well as in-gel (zymogram-method). In DNA-containing SDS-PAGE V. lebetina venom exhibits DNA-degrading activity in bands with molecular masses of ∼120, 30-35 and 22-25 kDa. The 120 kDa band corresponds to phosphodiesterase, a 3', 5'-exonuclease. The endonucleolytic activity of the lower-molecular-mass protein has been confirmed by plasmid degradation and the visualization of the results in agarose gel (with ethidium bromide) electrophoresis. A partial DNA sequence of putative RNase H1 has been determined from the V. lebetina venom gland cDNA library. The translated sequence is similar to the assumed RNase H1 from Crotalus adamanteus (AFJ51163). The RNA/DNA hybrid is hydrolysed by V. lebetina venom and venom fractions. The masses of tryptic peptides from the SDS-PAGE 30-35 kDa band are in concordance with the theoretical peptide masses from the respective translated sequence. For the first time RNase H1-like enzyme activity has been ascertained in snake venom, and sequencing a relevant partial transcript confirmed the identification of this enzyme. PMID:27179419

  16. [Toxic components of the venom of the cellar spider Segestria florentina].

    PubMed

    Sagdiev, N Zh; Valieva, L A; Korneev, A S; Sadykov, A A; Salikhov, Sh I

    1987-08-01

    Two neurotoxins and one insectotoxin have been isolated from venom of the cellar spider Segestria florentina, their homogeneity being proved by disk electrophoresis, isoelectric focusing, and analysis of N-terminal amino acid residues. The neurotoxins are polypeptides with molecular mass about 5000 D. For the insectotoxin, containing 35 amino acid residues with molecular mass 3988 D, the total primary structure is established. PMID:3675645

  17. Venomics of the Australian eastern brown snake (Pseudonaja textilis): Detection of new venom proteins and splicing variants.

    PubMed

    Viala, Vincent Louis; Hildebrand, Diana; Trusch, Maria; Fucase, Tamara Mieco; Sciani, Juliana Mozer; Pimenta, Daniel Carvalho; Arni, Raghuvir K; Schlüter, Hartmut; Betzel, Christian; Mirtschin, Peter; Dunstan, Nathan; Spencer, Patrick Jack

    2015-12-01

    The eastern brown snake is the predominant cause of snakebites in mainland Australia. Its venom induces defibrination coagulopathy, renal failure and microangiopathic hemolytic anemia. Cardiovascular collapse has been described as an early cause of death in patients, but, so far, the mechanisms involved have not been fully identified. In the present work, we analysed the venome of Pseudonaja textilis by combining high throughput proteomics and transcriptomics, aiming to further characterize the components of this venom. The combination of these techniques in the analysis and identification of toxins, venom proteins and putative toxins allowed the sequence description and the identification of the following: prothrombinase coagulation factors, neurotoxic textilotoxin phospholipase A2 (PLA2) subunits and "acidic PLA2", three-finger toxins (3FTx) and the Kunitz-type protease inhibitor textilinin, venom metalloproteinase, C-type lectins, cysteine rich secretory proteins, calreticulin, dipeptidase 2, as well as evidences of Heloderma lizard peptides. Deep data-mining analysis revealed the secretion of a new transcript variant of venom coagulation factor 5a and the existence of a splicing variant of PLA2 modifying the UTR and signal peptide from a same mature protein. The transcriptome revealed the diversity of transcripts and mutations, and also indicates that splicing variants can be an important source of toxin variation. PMID:26079951

  18. D-Amino acid residue in the C-type natriuretic peptide from the venom of the mammal, Ornithorhynchus anatinus, the Australian platypus.

    PubMed

    Torres, Allan M; Menz, Ian; Alewood, Paul F; Bansal, Paramjit; Lahnstein, Jelle; Gallagher, Clifford H; Kuchel, Philip W

    2002-07-31

    The C-type natriuretic peptide from the platypus venom (OvCNP) exists in two forms, OvCNPa and OvCNPb, whose amino acid sequences are identical. Through the use of nuclear magnetic resonance, mass spectrometry, and peptidase digestion studies, we discovered that OvCNPb incorporates a D-amino acid at position 2 in the primary structure. Peptides containing a D-amino acid have been found in lower forms of organism, but this report is the first for a D-amino acid in a biologically active peptide from a mammal. The result implies the existence of a specific isomerase in the platypus that converts an L-amino acid residue in the protein to the D-configuration. PMID:12135762

  19. Characterization of honeybee venom by MALDI-TOF and nanoESI-QqTOF mass spectrometry.

    PubMed

    Matysiak, Jan; Schmelzer, Christian E H; Neubert, Reinhard H H; Kokot, Zenon J

    2011-01-25

    The aim of the study was to comprehensively characterize different honeybee venom samples applying two complementary mass spectrometry methods. 41 honeybee venom samples of different bee strains, country of origin (Poland, Georgia, and Estonia), year and season of the venom collection were analyzed using MALDI-TOF and nanoESI-QqTOF-MS. It was possible to obtain semi-quantitative data for 12 different components in selected honeybee venom samples using MALDI-TOF method without further sophisticated and time consuming sample pretreatment. Statistical analysis (ANOVA) has shown that there are qualitative and quantitative differences in the composition between honeybee venom samples collected over different years. It has also been demonstrated that MALDI-TOF spectra can be used as a "protein fingerprint" of honeybee venom in order to confirm the identity of the product. NanoESI-QqTOF-MS was applied especially for identification purposes. Using this technique 16 peptide sequences were identified, including melittin (12 different breakdown products and precursors), apamine, mast cell degranulating peptide and secapin. Moreover, the significant achievement of this study is the fact that the new peptide (HTGAVLAGV+Amidated (C-term), M(r)=822.53Da) has been discovered in bee venom for the first time. PMID:20850943

  20. A novel post-translational modification involving bromination of tryptophan. Identification of the residue, L-6-bromotryptophan, in peptides from Conus imperialis and Conus radiatus venom.

    PubMed

    Craig, A G; Jimenez, E C; Dykert, J; Nielsen, D B; Gulyas, J; Abogadie, F C; Porter, J; Rivier, J E; Cruz, L J; Olivera, B M; McIntosh, J M

    1997-02-21

    We report a novel post-translational modification involving halogenation of tryptophan in peptides recovered from the venom of carnivorous marine cone snails (Conus). The residue, L-6-bromotryptophan, was identified in the sequence of a heptapeptide, isolated from Conus imperialis, a worm-hunting cone. This peptide does not elicit gross behavioral symptoms when injected centrally or peripherally in mice. L-6-Bromotryptophan was also identified in a 33-amino acid peptide from Conus radiatus; this peptide has been shown to induce a sleep-like state in mice of all ages and is referred to as bromosleeper peptide. The sequences of the two peptides and were determined using a combination of mass spectrometry, amino acid, and chemical sequence analyses, where Pca = pyroglutamic acid, Hyp = hydroxyproline, Gla = gamma-carboxyglutamate, and Trp* = L-6-bromotryptophan. The precise structure and stereochemistry of the modified residue were determined as L-6-bromotryptophan by synthesis, co-elution, and enzymatic hydrolysis experiments. To our knowledge this is the first documentation of tryptophan residues in peptides/proteins being modified in a eukaryotic system and the first report of halogenation of tryptophan in vivo. PMID:9030520

  1. Three Peptide Modulators of the Human Voltage-Gated Sodium Channel 1.7, an Important Analgesic Target, from the Venom of an Australian Tarantula.

    PubMed

    Chow, Chun Yuen; Cristofori-Armstrong, Ben; Undheim, Eivind A B; King, Glenn F; Rash, Lachlan D

    2015-07-01

    Voltage-gated sodium (NaV) channels are responsible for propagating action potentials in excitable cells. NaV1.7 plays a crucial role in the human pain signalling pathway and it is an important therapeutic target for treatment of chronic pain. Numerous spider venom peptides have been shown to modulate the activity of NaV channels and these peptides represent a rich source of research tools and therapeutic lead molecules. The aim of this study was to determine the diversity of NaV1.7-active peptides in the venom of an Australian Phlogius sp. tarantula and to characterise their potency and subtype selectivity. We isolated three novel peptides, μ-TRTX-Phlo1a, -Phlo1b and -Phlo2a, that inhibit human NaV1.7 (hNaV1.7). Phlo1a and Phlo1b are 35-residue peptides that differ by one amino acid and belong in NaSpTx family 2. The partial sequence of Phlo2a revealed extensive similarity with ProTx-II from NaSpTx family 3. Phlo1a and Phlo1b inhibit hNaV1.7 with IC50 values of 459 and 360 nM, respectively, with only minor inhibitory activity on rat NaV1.2 and hNaV1.5. Although similarly potent at hNaV1.7 (IC50 333 nM), Phlo2a was less selective, as it also potently inhibited rNaV1.2 and hNaV1.5. All three peptides cause a depolarising shift in the voltage-dependence of hNaV1.7 activation. PMID:26134258

  2. Molecular cloning and in silico characterization of knottin peptide, U2-SCRTX-Lit2, from brown spider (Loxosceles intermedia) venom glands.

    PubMed

    Meissner, Gabriel Otto; de Resende Lara, Pedro Túlio; Scott, Luis Paulo Barbour; Braz, Antônio Sérgio Kimus; Chaves-Moreira, Daniele; Matsubara, Fernando Hitomi; Soares, Eduardo Mendonça; Trevisan-Silva, Dilza; Gremski, Luiza Helena; Veiga, Silvio Sanches; Chaim, Olga Meiri

    2016-09-01

    Inhibitor cystine knots (ICKs) are a family of structural peptides with a large number of cysteine residues that form intramolecular disulfide bonds, resulting in a knot. These peptides are involved in a variety of biological functions including predation and defense, and are found in various species, such as spiders, scorpions, sea anemones, and plants. The Loxosceles intermedia venom gland transcriptome identified five groups of ICK peptides that represent more than 50 % of toxin-coding transcripts. Here, we describe the molecular cloning of U2-Sicaritoxin-Lit2 (U2-SCRTX-Lit2), bioinformatic characterization, structure prediction, and molecular dynamic analysis. The sequence of U2-SCRTX-Lit2 obtained from the transcriptome is similar to that of μ-Hexatoxin-Mg2, a peptide that inhibits the insect Nav channel. Bioinformatic analysis of sequences classified as ICK family members also showed a conservation of cysteine residues among ICKs from different spiders, with the three dimensional molecular model of U2-SCRTX-Lit2 similar in structure to the hexatoxin from μ-hexatoxin-Mg2a. Molecular docking experiments showed the interaction of U2-SCRTX-Lit2 to its predictable target-the Spodoptera litura voltage-gated sodium channel (SlNaVSC). After 200 ns of molecular dynamic simulation, the final structure of the complex showed stability in agreement with the experimental data. The above analysis corroborates the existence of a peptide toxin with insecticidal activity from a novel ICK family in L. intermedia venom and demonstrates that this peptide targets Nav channels. PMID:27488102

  3. Black mamba venom peptides target acid-sensing ion channels to abolish pain.

    PubMed

    Diochot, Sylvie; Baron, Anne; Salinas, Miguel; Douguet, Dominique; Scarzello, Sabine; Dabert-Gay, Anne-Sophie; Debayle, Delphine; Friend, Valérie; Alloui, Abdelkrim; Lazdunski, Michel; Lingueglia, Eric

    2012-10-25

    Polypeptide toxins have played a central part in understanding physiological and physiopathological functions of ion channels. In the field of pain, they led to important advances in basic research and even to clinical applications. Acid-sensing ion channels (ASICs) are generally considered principal players in the pain pathway, including in humans. A snake toxin activating peripheral ASICs in nociceptive neurons has been recently shown to evoke pain. Here we show that a new class of three-finger peptides from another snake, the black mamba, is able to abolish pain through inhibition of ASICs expressed either in central or peripheral neurons. These peptides, which we call mambalgins, are not toxic in mice but show a potent analgesic effect upon central and peripheral injection that can be as strong as morphine. This effect is, however, resistant to naloxone, and mambalgins cause much less tolerance than morphine and no respiratory distress. Pharmacological inhibition by mambalgins combined with the use of knockdown and knockout animals indicates that blockade of heteromeric channels made of ASIC1a and ASIC2a subunits in central neurons and of ASIC1b-containing channels in nociceptors is involved in the analgesic effect of mambalgins. These findings identify new potential therapeutic targets for pain and introduce natural peptides that block them to produce a potent analgesia. PMID:23034652

  4. Juruin: an antifungal peptide from the venom of the Amazonian Pink Toe spider, Avicularia juruensis, which contains the inhibitory cystine knot motif.

    PubMed

    Ayroza, Gabriela; Ferreira, Ivan L C; Sayegh, Raphael S R; Tashima, Alexandre K; da Silva Junior, Pedro I

    2012-01-01

    The aim of this study was to screen the venom of the theraposid spider Avicularia juruensis for the identification of antimicrobial peptides (AMPs) which could be further used as prototypes for drug development. Eleven AMPs, named juruentoxins, with molecular weight ranging from 3.5 to 4.5 kDa, were identified by mass spectrometry after the soluble venom was separated by high performance liquid chromatography. Juruentoxins have a putative inhibitory cystine knot (ICK) motif, generally found in neurotoxins, which are also resistant to proteolysis. One juruentoxin that has 38 amino acid residues and three disulfide bonds were characterized, to which we proposed the name Juruin. Based on liquid growth inhibition assays, it has potent antifungal activity in the micromolar range. Importantly, Juruin lacks haemolytic activity on human erythrocytes at the antimicrobial concentrations. Based on the amino acid sequence, it is highly identical to the insecticidal peptides from the theraposid spiders Selenocosmia huwena, Chilobrachys jingzhao, and Haplopelma schmidti from China, indicating they belong to a group of conserved toxins which are likely to inhibit voltage-gated ion channels. Juruin is a cationic AMP, and Lys22 and Lys23 show maximum positive charge localization that might be important for receptor recognition. Although it shows marked sequence similarity to neurotoxic peptides, Juruin is a novel exciting molecule with potent antifungal activity, which could be used as a novel template for development of drugs against clinical resistant fungi strains. PMID:22973266

  5. Juruin: an antifungal peptide from the venom of the Amazonian Pink Toe spider, Avicularia juruensis, which contains the inhibitory cystine knot motif

    PubMed Central

    Ayroza, Gabriela; Ferreira, Ivan L. C.; Sayegh, Raphael S. R.; Tashima, Alexandre K.; da Silva, Pedro I.

    2012-01-01

    The aim of this study was to screen the venom of the theraposid spider Avicularia juruensis for the identification of antimicrobial peptides (AMPs) which could be further used as prototypes for drug development. Eleven AMPs, named juruentoxins, with molecular weight ranging from 3.5 to 4.5 kDa, were identified by mass spectrometry after the soluble venom was separated by high performance liquid chromatography. Juruentoxins have a putative inhibitory cystine knot (ICK) motif, generally found in neurotoxins, which are also resistant to proteolysis. One juruentoxin that has 38 amino acid residues and three disulfide bonds were characterized, to which we proposed the name Juruin. Based on liquid growth inhibition assays, it has potent antifungal activity in the micromolar range. Importantly, Juruin lacks haemolytic activity on human erythrocytes at the antimicrobial concentrations. Based on the amino acid sequence, it is highly identical to the insecticidal peptides from the theraposid spiders Selenocosmia huwena, Chilobrachys jingzhao, and Haplopelma schmidti from China, indicating they belong to a group of conserved toxins which are likely to inhibit voltage-gated ion channels. Juruin is a cationic AMP, and Lys22 and Lys23 show maximum positive charge localization that might be important for receptor recognition. Although it shows marked sequence similarity to neurotoxic peptides, Juruin is a novel exciting molecule with potent antifungal activity, which could be used as a novel template for development of drugs against clinical resistant fungi strains. PMID:22973266

  6. Complement system and immunological mediators: Their involvements in the induced inflammatory process by Androctonus australis hector venom and its toxic components.

    PubMed

    Bekkari, Nadjia; Martin-Eauclaire, Marie-France; Laraba-Djebari, Fatima

    2015-01-01

    Androctonus australis hector scorpion venom is well known by its high toxicity, it induces massive release of neurotransmitters that lead to pathophysiological disorders in cardiovascular, neuro-hormonal and immune systems. Previous studies have shown the relationship between the severity of scorpion envenoming and immune system activation. This study was assessed to investigate the involvement of complement system and inflammatory mediators after sublethal injection of Aah venom, its toxic fraction (FtoxG50) and its main toxins (AahI and AahII) into NMRI mice. The Activation complement system by the venom is also compared to that induced of lipopolysaccharides (LPS). Obtained results showed that seric complement system (CS) is activated by the venom and by its toxic components; this activation is more pronounced into liver tissue when toxic components (FtoxG50, AahI or AahII) are used. Increase of cytokine levels (IL1β, TNFα and ICAM) into hepatic tissue induced by AahI or AahII neurotoxins is correlated with tissue alterations. Aprotinin, a non specific inhibitor of complement system seems to be able to reduce CS consumption and to restore partially the induced tissue damage by venom. The mechanisms by which toxic fraction or LPS induced the activation of complement system seem to be different. Sensitivity of hepatic tissue is more pronounced after FtoxG50 injection; however lung tissue is more sensible to LPS than FoxG50. PMID:25921955

  7. Antimicrobial potential of lycosin-I, a cationic and amphiphilic peptide from the venom of the spider Lycosa singorensis.

    PubMed

    Tan, H; Ding, X; Meng, S; Liu, C; Wang, H; Xia, L; Liu, Z; Liang, S

    2013-07-01

    Antimicrobial peptides (AMPs) are significant components of the innate immune system and play indispensable roles in the resistance to bacterial infection. Here, we investigated the antimicrobial activity of lycosin-I, a 24-residue cationic anticancer peptide derived from Lycosa singorensis with high structural similarity to several cationic and amphiphilic antimicrobial peptides. The antimicrobial activity of lycosin-I against 27 strains of microbes including bacteria and fungi was examined and compared with that of the Xenopus-derived AMP magainin 2 using a microdilution assay. Lycosin-I inhibited the growth of most microorganisms at low micromolar concentrations, and was a more potent inhibitor than magainin 2. Lycosin-I showed rapid, selective and broad-spectrum bactericidal activity and a synergistic effect with traditional antibiotics. In vivo, it showed potent bactericidal activity in a mouse thigh infection model. High Mg2+ concentrations reduced the antibacterial effect of lycosin-I, implying that the peptide might directly interact with the bacterial cell membrane. Uptake of the fluorogenic dye SYTOX and changes in the surface of lycosin-Itreated bacterial cells observed by scanning electron microscopy confirmed that lycosin-I permeabilized the cell membrane, resulting in the rapid bactericidal effect. Taken together, our findings indicate that lycosin-I is a promising peptide with the potential for the development of novel antibacterial agents. PMID:23638903

  8. Anti-Inflammatory Applications of Melittin, a Major Component of Bee Venom: Detailed Mechanism of Action and Adverse Effects.

    PubMed

    Lee, Gihyun; Bae, Hyunsu

    2016-01-01

    Inflammation is a pervasive phenomenon triggered by the innate and adaptive immune systems to maintain homeostasis. The phenomenon normally leads to recovery from infection and healing, but when not properly phased, inflammation may cause immune disorders. Bee venom is a toxin that bees use for their protection from enemies. However, for centuries it has been used in the Orient as an anti-inflammatory medicine for the treatment of chronic inflammatory diseases. Bee venom and its major component, melittin, are potential means of reducing excessive immune responses and provide new alternatives for the control of inflammatory diseases. Recent experimental studies show that the biological functions of melittin could be applied for therapeutic use in vitro and in vivo. Reports verifying the therapeutic effects of melittin are accumulating in the literature, but the cellular mechanism(s) of the anti-inflammatory effects of melittin are not fully elucidated. In the present study, we review the current knowledge on the therapeutic effects of melittin and its detailed mechanisms of action against several inflammatory diseases including skin inflammation, neuroinflammation, atherosclerosis, arthritis and liver inflammation, its adverse effects as well as future prospects regarding the use of melittin. PMID:27187328

  9. Lemnitoxin, the major component of Micrurus lemniscatus coral snake venom, is a myotoxic and pro-inflammatory phospholipase A2.

    PubMed

    Casais-E-Silva, Luciana L; Teixeira, Catarina F P; Lebrun, Ivo; Lomonte, Bruno; Alape-Girón, Alberto; Gutiérrez, José María

    2016-08-22

    The venom of Micrurus lemniscatus, a coral snake of wide geographical distribution in South America, was fractionated by reverse-phase HPLC and the fractions screened for phospholipase A2 (PLA2) activity. The major component of the venom, a PLA2, here referred to as 'Lemnitoxin', was isolated and characterized biochemically and toxicologically. It induces myotoxicity upon intramuscular or intravenous injection into mice. The amino acid residues Arg15, Ala100, Asn108, and a hydrophobic residue at position 109, which are characteristic of myotoxic class I phospholipases A2, are present in Lemnitoxin. This PLA2 is antigenically related to M. nigrocinctus nigroxin, Notechis scutatus notexin, Pseudechis australis mulgotoxin, and Pseudonaja textilis textilotoxin, as demonstrated with monoclonal and polyclonal antibodies. Lemnitoxin is highly selective in its targeting of cells, being cytotoxic for differentiated myotubes in vitro and muscle fibers in vivo, but not for undifferentiated myoblasts or endothelial cells. Lemnitoxin is not lethal after intravenous injection at doses up to 2μg/g in mice, evidencing its lack of significant neurotoxicity. Lemnitoxin displays anticoagulant effect on human plasma and proinflammatory activity also, as it induces paw edema and mast cell degranulation. Thus, the results of this work demonstrate that Lemnitoxin is a potent myotoxic and proinflammatory class I PLA2. PMID:27282409

  10. Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: evaluation of their antimicrobial and anticancer activities.

    PubMed

    Guo, Xiaoxiao; Ma, Chengbang; Du, Qiang; Wei, Ran; Wang, Lei; Zhou, Mei; Chen, Tianbao; Shaw, Chris

    2013-09-01

    Here we report two novel 17-mer amidated linear peptides (TsAP-1 and TsAP-2) whose structures were deduced from cDNAs cloned from a venom-derived cDNA library of the Brazilian yellow scorpion, Tityus serrulatus. Both mature peptides were structurally-characterised following their location in chromatographic fractions of venom and synthetic replicates of each were subjected to a range of biological assays. The peptides were each active against model test micro-organisms but with different potencies. TsAP-1 was of low potency against all three test organisms (MICs 120-160 μM), whereas TsAP-2 was of high potency against the Gram-positive bacterium, Staphylococcus aureus (MIC 5 μM) and the yeast, Candida albicans (10 μM). Haemolytic activity of TsAP-1 was low (4% at 160 μM) and in contrast, that of TsAP-2 was considerably higher (18% at 20 μM). Substitution of four neutral amino acid residues with Lys residues in each peptide had dramatic effects on their antimicrobial potencies and haemolytic activities, particularly those of TsAP-1. The MICs of the enhanced cationic analogue (TsAP-S1) were 2.5 μM for S. aureus/C. albicans and 5 μM for E. coli but with an associated large increase in haemolytic activity (30% at 5 μM). The same Lys residue substitutions in TsAP-2 produced a dramatic effect on its MIC for E. coli lowering this from >320 μM to 5 μM. TsAP-1 was ineffective against three of the five human cancer cell lines tested while TsAP-2 inhibited the growth of all five. Lys residue substitution of both peptides enhanced their potency against all five cell lines with TsAp-S2 being the most potent with IC50 values ranging between 0.83 and 2.0 μM. TsAP-1 and TsAP-2 are novel scorpion venom peptides with broad spectrum antimicrobial and anticancer cell activities the potencies of which can be significantly enhanced by increasing their cationicity. PMID:23770440

  11. Isolation, chemical and functional characterization of several new K(+)-channel blocking peptides from the venom of the scorpion Centruroides tecomanus.

    PubMed

    Olamendi-Portugal, Timoteo; Bartok, Adam; Zamudio-Zuñiga, Fernando; Balajthy, Andras; Becerril, Baltazar; Panyi, Gyorgy; Possani, Lourival D

    2016-06-01

    Six new peptides were isolated from the venom of the Mexican scorpion Centruroides tecomanus; their primary structures were determined and the effects on ion channels were verified by patch-clamp experiments. Four are K(+)-channel blockers of the α-KTx family, containing 32 to 39 amino acid residues, cross-linked by three disulfide bonds. They all block Kv1.2 in nanomolar concentrations and show various degree of selectivity over Kv1.1, Kv1.3, Shaker and KCa3.1 channels. One peptide has 42 amino acids cross-linked by four disulfides; it blocks ERG-channels and belongs to the γ-KTx family. The sixth peptide has only 32 amino acid residues, three disulfide bonds and has no effect on the ion-channels assayed. It also does not have antimicrobial activity. Systematic numbers were assigned (time of elution on HPLC): α-KTx 10.4 (time 24.1); α-KTx 2.15 (time 26.2); α-KTx 2.16 (time 23.8); α-KTx 2.17 (time 26.7) and γ-KTx 1.9 (elution time 29.6). A partial proteomic analysis of the short chain basic peptides of this venom, which elutes on carboxy-methyl-cellulose column fractionation, is included. The pharmacological properties of the peptides described in this study may provide valuable tools for understanding the structure-function relationship of K(+) channel blocking scorpion toxins. PMID:26921461

  12. Firing the Sting: Chemically Induced Discharge of Cnidae Reveals Novel Proteins and Peptides from Box Jellyfish (Chironex fleckeri) Venom

    PubMed Central

    Jouiaei, Mahdokht; Casewell, Nicholas R.; Yanagihara, Angel A.; Nouwens, Amanda; Cribb, Bronwen W.; Whitehead, Darryl; Jackson, Timothy N. W.; Ali, Syed A.; Wagstaff, Simon C.; Koludarov, Ivan; Alewood, Paul; Hansen, Jay; Fry, Bryan G.

    2015-01-01

    Cnidarian venom research has lagged behind other toxinological fields due to technical difficulties in recovery of the complex venom from the microscopic nematocysts. Here we report a newly developed rapid, repeatable and cost effective technique of venom preparation, using ethanol to induce nematocyst discharge and to recover venom contents in one step. Our model species was the Australian box jellyfish (Chironex fleckeri), which has a notable impact on public health. By utilizing scanning electron microscopy and light microscopy, we examined nematocyst external morphology before and after ethanol treatment and verified nematocyst discharge. Further, to investigate nematocyst content or “venom” recovery, we utilized both top-down and bottom-up transcriptomics–proteomics approaches and compared the proteome profile of this new ethanol recovery based method to a previously reported high activity and recovery protocol, based upon density purified intact cnidae and pressure induced disruption. In addition to recovering previously characterized box jellyfish toxins, including CfTX-A/B and CfTX-1, we recovered putative metalloproteases and novel expression of a small serine protease inhibitor. This study not only reveals a much more complex toxin profile of Australian box jellyfish venom but also suggests that ethanol extraction method could augment future cnidarian venom proteomics research efforts. PMID:25793725

  13. Venom from the platypus, Ornithorhynchus anatinus, induces a calcium-dependent current in cultured dorsal root ganglion cells.

    PubMed

    de Plater, G M; Milburn, P J; Martin, R L

    2001-03-01

    The platypus (Ornithorhynchus anatinus), a uniquely Australian species, is one of the few living venomous mammals. Although envenomation of humans by many vertebrate and invertebrate species results in pain, this is often not the principal symptom of envenomation. However, platypus envenomation results in an immediate excruciating pain that develops into a very long-lasting hyperalgesia. We have previously shown that the venom contains a C-type natriuretic peptide that causes mast cell degranulation, and this probably contributes to the development of the painful response. Now we demonstrate that platypus venom has a potent action on putative nociceptors. Application of the venom to small to medium diameter dorsal root ganglion cells for 10 s resulted in an inward current lasting several minutes when the venom was diluted in buffer at pH 6.1 but not at pH 7.4. The venom itself has a pH of 6.3. The venom activated a current with a linear current-voltage relationship between -100 and -25 mV and with a reversal potential of -11 mV. Ion substitution experiments indicate that the current is a nonspecific cationic current. The response to the venom was blocked by the membrane-permeant Ca(2+)-ATPase inhibitor, thapsigargin, and by the tyrosine- and serine-kinase inhibitor, k252a. Thus the response appears to be dependent on calcium release from intracellular stores. The identity of the venom component(s) that is responsible for the responses we have described is yet to be determined but is probably not the C-type natriuretic peptide or the defensin-like peptides that are present in the venom. PMID:11248005

  14. PID15, a novel 6 kDa secreted peptide, mediates Naja naja venom phospholipase A2 induced apoptosis in isolated human peripheral lymphocytes

    PubMed Central

    2014-01-01

    Background Snake venoms are a complex mixture of active principles mainly peptides and proteins also including amino acids, nucleotides, free lipids, carbohydrates and metallic elements bound to proteins that interfere in several biological systems. In this study, we aimed to understand the mode of action of the apoptosis inducing ability of Naja naja venom phospholipase A2 (NV-PLA2) using isolated human peripheral lymphocytes. Results Human peripheral lymphocytes when incubated with Naja naja venom phospholipase A2 (NV-PLA2) induced up to 68% DNA fragmentation. The dialysed conditioned media obtained by incubating lymphocytes with NV-PLA2 at 15th min induced 44% DNA fragmentation, referred to as cmlp-active. Cmlp-active showed 20.5% increased protein concentration than the corresponding control condition media cmlp-c-15. Test for creatine kinase activity in cmlp-active proved negative and negligible amount of lactate dehydrogenase did not show significant DNA fragmentation. Fractionation of cmlp-active on Sephadex G-25 showed two peaks, major peak induced 38% DNA fragmentation, which was further rechromatographed on Sephadex G-25. The single peak obtained was named PID15 (Phospholipase A 2 Induced DNA fragmentation factor secreted at 15 th min). Q-Tof MS/MS analysis of PID-15 showed it is a 6 kDa peptide. PID15 sequence analysis gave 40 amino acids in the following order, msilpcknvs iwvikdtaas dkevvlgsdr aikflylatg. The homology search for the sequence revealed it to be an Apoptosis Inducing Factor (AIF). Conclusion Results indicate that the secretion of PID15 is dependent on concentration of NV-PLA2 treatment, incubation time and also on temperature and the probable membrane origin of PID15 and not of cytosolic origin with apoptosis inducing ability. PMID:25030355

  15. Evaluation of separation properties of a modified strong cation exchange material named MEX and its application in 2D-MEX × C18 system to separate peptides from scorpion venom.

    PubMed

    Chen, Bo; Xu, Junyan; Fu, Qing; Dong, Xuefang; Guo, Zhimou; Jin, Yu; Liang, Xinmiao

    2015-07-01

    Peptides from scorpion venom represent one of the most promising drug sources for drug discovery for some specific diseases. Current challenges in their separation include high complexity, high homologies and the huge range of peptides. In this paper, a modified strong cation exchange material, named MEX, was utilised for the two-dimensional separation of peptides from complex scorpion venom. The silica-based MEX column was bonded with two functional groups; benzenesulfonic acid and cyanopropyl. To better understand its separation mechanisms, seven standard peptides with different properties were employed in an evaluation study, the results of which showed that two interactions were involved in the MEX column: electrostatic interactions based on benzenesulfonic acid groups dominated the separation of peptides; weak hydrophobic interactions introduced by cyanopropyl groups increased the column's selectivity for peptides with the same charge. This characteristic allowed the MEX column to overcome some of the drawbacks of traditional strong cation exchange (SCX) columns. Furthermore, the study showed the great effects of the acetonitrile (ACN) content, the sodium perchlorate (NaClO4) concentration and the buffer pH in the mobile phase on the peptides' retention and separation selectivity on the MEX column. Subsequently, the MEX column was combined with a C18 column to establish an off-line 2D-MEX × C18 system to separate peptides from scorpion Buthus martensi Karsch (BmK) venom. Due to complementary separation mechanisms in each dimension, a high orthogonality of 47.62% was achieved. Moreover, a good loading capacity, excellent stability and repeatability were exhibited by the MEX column, which are beneficial for its use in future preparation experiments. Therefore, the MEX column could be an alternative to the traditional SCX columns for the separation of peptides from scorpion venom. PMID:25996445

  16. In vitro angiotensin I converting enzyme inhibition by a peptide isolated from Chiropsalmus quadrigatus Haeckel (box jellyfish) venom hydrolysate.

    PubMed

    So, Pamela Berilyn T; Rubio, Peter; Lirio, Stephen; Macabeo, Allan Patrick; Huang, Hsi-Ya; Corpuz, Mary Jho-Anne T; Villaflores, Oliver B

    2016-09-01

    The anti-angiotensin I converting enzyme activity of box jellyfish, Chiropsalmus quadrigatus Haeckel venom hydrolysate was studied. The venom extract was obtained by centrifugation and ultrasonication. Protein concentration of 12.99 μg/mL was determined using Bradford assay. The pepsin and papain hydrolysate was tested for its toxicity by Limit test following the OECD Guideline 425 using 5 female Sprague-Dawley rats. Results showed that the hydrolysate is nontoxic with an LD50 above 2000 mg/kg. In vitro angiotensin I converting enzyme (ACE) inhibitory activity was determined using ACE kit-WST. Isolation of ACE inhibitory peptides using column chromatography with SP-Sephadex G-25 yielded 8 pooled fractions with fraction 3 (86.5%) exhibiting the highest activity. This was followed by reverse phase - high performance liquid chromatography (RP-HPLC) with an octadecyl silica column (Inertsil ODS-3) using methanol:water 15:85 at a flow rate of 1.0 mL/min. Among the 13 fractions separated with the RP-HPLC, fraction 3.5 exhibited the highest ACE inhibitory activity (84.1%). The peptide sequence ACPGPNPGRP (IC50 2.03 μM) from fraction 3.5 was identified using Matrix-assisted laser desorption/ionization with time-of-flight tandem mass spectroscopy analysis (MALDI-TOF/MS). PMID:27163886

  17. Combined venomics, venom gland transcriptomics, bioactivities, and antivenomics of two Bothrops jararaca populations from geographic isolated regions within the Brazilian Atlantic rainforest.

    PubMed

    Gonçalves-Machado, Larissa; Pla, Davinia; Sanz, Libia; Jorge, Roberta Jeane B; Leitão-De-Araújo, Moema; Alves, Maria Lúcia M; Alvares, Diego Janisch; De Miranda, Joari; Nowatzki, Jenifer; de Morais-Zani, Karen; Fernandes, Wilson; Tanaka-Azevedo, Anita Mitico; Fernández, Julián; Zingali, Russolina B; Gutiérrez, José María; Corrêa-Netto, Carlos; Calvete, Juan J

    2016-03-01

    Institute neutralized the lethal effect of both venoms to a similar extent. In addition, immobilized SAB antivenom immunocaptured most of the venom components of the venoms of both B. jararaca populations, but did not show immunoreactivity against vasoactive peptides. The Costa Rican bothropic-crotalic-lachesic (BCL) antivenom showed the same lack of reactivity against vasoactive peptides but, in addition, was less efficient immunocapturing PI- and PIII-SVMPs from the SE venom, and bothropstoxin-I, a CRISP molecule, and a D49-PLA2 from the venom of the southern B. jararaca phylogroup. The remarkable paraspecificity exhibited by the Brazilian and the Costa Rican antivenoms indicates large immunoreactive epitope conservation across the natural history of Bothrops, a genus that has its roots in the middle Miocene. This article is part of a Special Issue entitled: Omics Evolutionary Ecolog. PMID:25968638

  18. Reduction of venom alkaloids in Solenopsis richteri×Solenopsis invicta hybrid: an attempt to identify new alkaloidal components.

    PubMed

    Chen, Li; Hu, Qiong-Bo; Fadamiro, Henry Y

    2010-11-24

    The alkaloid chemistry of the venom of hybrid fire ant, Solenopsis richteri × Solenopsis invicta, was investigated using silica gel chromatography and GC-MS techniques. In addition to most cis alkaloids of parental species, S. richteri Forel and S. invicta Buren, the cis alkaloid fraction of the body extract of hybrid fire ants also contains five significant new alkaloids. Hydrogenation of the cis alkaloid fraction yielded only five piperidines, 4', 12', 12, 20', and 20. Sodium borohydride and lithium aluminum hydride selectively reduced C═N double bond in piperideine alkaloids to give a mixture of cis and trans piperidines. However, reduction of the five new components yielded several new peaks with much longer retention times and increasing molecular weights over 30. It is evident that the chemical identities of the five new peaks are quite different from those known piperidines or piperideines found in Solenopsis fire ants. PMID:20964344

  19. Peptidomics of Three Bothrops Snake Venoms: Insights Into the Molecular Diversification of Proteomes and Peptidomes*

    PubMed Central

    Tashima, Alexandre K.; Zelanis, André; Kitano, Eduardo S.; Ianzer, Danielle; Melo, Robson L.; Rioli, Vanessa; Sant'anna, Sávio S.; Schenberg, Ana C. G.; Camargo, Antônio C. M.; Serrano, Solange M. T.

    2012-01-01

    Snake venom proteomes/peptidomes are highly complex and maintenance of their integrity within the gland lumen is crucial for the expression of toxin activities. There has been considerable progress in the field of venom proteomics, however, peptidomics does not progress as fast, because of the lack of comprehensive venom sequence databases for analysis of MS data. Therefore, in many cases venom peptides have to be sequenced manually by MS/MS analysis or Edman degradation. This is critical for rare snake species, as is the case of Bothrops cotiara (BC) and B. fonsecai (BF), which are regarded as near threatened with extinction. In this study we conducted a comprehensive analysis of the venom peptidomes of BC, BF, and B. jararaca (BJ) using a combination of solid-phase extraction and reversed-phase HPLC to fractionate the peptides, followed by nano-liquid chromatography-tandem MS (LC-MS/MS) or direct infusion electrospray ionization-(ESI)-MS/MS or MALDI-MS/MS analyses. We detected marked differences in the venom peptidomes and identified peptides ranging from 7 to 39 residues in length by de novo sequencing. Forty-four unique sequences were manually identified, out of which 30 are new peptides, including 17 bradykinin-potentiating peptides, three poly-histidine-poly-glycine peptides and interestingly, 10 l-amino acid oxidase fragments. Some of the new bradykinin-potentiating peptides display significant bradykinin potentiating activity. Automated database search revealed fragments from several toxins in the peptidomes, mainly from l-amino acid oxidase, and allowed the determination of the peptide bond specificity of proteinases and amino acid occurrences for the P4-P4′ sites. We also demonstrate that the venom lyophilization/resolubilization process greatly increases the complexity of the peptidome because of the imbalance caused to the venom proteome and the consequent activity of proteinases on venom components. The use of proteinase inhibitors clearly showed

  20. Isolation, synthesis and characterization of ω-TRTX-Cc1a, a novel tarantula venom peptide that selectively targets L-type Cav channels.

    PubMed

    Klint, Julie K; Berecki, Géza; Durek, Thomas; Mobli, Mehdi; Knapp, Oliver; King, Glenn F; Adams, David J; Alewood, Paul F; Rash, Lachlan D

    2014-05-15

    Spider venoms are replete with peptidic ion channel modulators, often with novel subtype selectivity, making them a rich source of pharmacological tools and drug leads. In a search for subtype-selective blockers of voltage-gated calcium (CaV) channels, we isolated and characterized a novel 39-residue peptide, ω-TRTX-Cc1a (Cc1a), from the venom of the tarantula Citharischius crawshayi (now Pelinobius muticus). Cc1a is 67% identical to the spider toxin ω-TRTX-Hg1a, an inhibitor of CaV2.3 channels. We assembled Cc1a using a combination of Boc solid-phase peptide synthesis and native chemical ligation. Oxidative folding yielded two stable, slowly interconverting isomers. Cc1a preferentially inhibited Ba(2+) currents (IBa) mediated by L-type (CaV1.2 and CaV1.3) CaV channels heterologously expressed in Xenopus oocytes, with half-maximal inhibitory concentration (IC50) values of 825nM and 2.24μM, respectively. In rat dorsal root ganglion neurons, Cc1a inhibited IBa mediated by high voltage-activated CaV channels but did not affect low voltage-activated T-type CaV channels. Cc1a exhibited weak activity at NaV1.5 and NaV1.7 voltage-gated sodium (NaV) channels stably expressed in mammalian HEK or CHO cells, respectively. Experiments with modified Cc1a peptides, truncated at the N-terminus (ΔG1-E5) or C-terminus (ΔW35-V39), demonstrated that the N- and C-termini are important for voltage-gated ion channel modulation. We conclude that Cc1a represents a novel pharmacological tool for probing the structure and function of L-type CaV channels. PMID:24561180

  1. Potent and rapid antigonococcal activity of the venom peptide BmKn2 and its derivatives against different Maldi biotype of multidrug-resistant Neisseria gonorrhoeae.

    PubMed

    Arpornsuwan, Teerakul; Buasakul, Brisana; Jaresitthikunchai, Janthima; Roytrakul, Sittiruk

    2014-03-01

    The emergence of multidrug-resistant strains of Neisseria gonorrhoeae constitutes a serious threat to public health and necessitates the discovery of new types of antimicrobial agents. Among the 18 clinical isolates of N. gonorrhoeae with susceptible to spectinomycin, ceftriaxone and cefixime, 14 isolates were resistance to penicillin, tetracycline and ciprofloxacin, while 2 isolates were susceptible to tetracycline and another was penicillin intermediate isolate. Significant differences between laboratory strain and multidrug resistant strains were revealed by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling and bioinformatics examination using the MALDI BioTyper software. However, Maldi Biotyper was not successfully separated ciprofloxacin-penicillin resistance and ciprofloxacin-tetracycline resistance from ciprofloxacin-penicillin-tetracycline resistant N. gonorrhoeae isolates. BmKn2 is a basic, alpha-helical peptide with no disulfide-bridge venom peptides that was first isolated from Buthus martensii Kasch. A panel of BmKn2 scorpion venom peptide and its derivatives of varying length and characteristics were synthesized chemically and evaluated for their ability to inhibit the growth of clinical N. gonorrhoeae isolates. Synthetic BmKn2 displayed potent activity against 18 clinical isolates of N. gonorrhoeae with MIC50 values of 6.9-27.6 μM. BmKn2 exerted its antibacterial activity via a bactericidal mechanism. Cyclic BmKn1 did not show antigonococcal activity. Decreasing the cationicity and helix percentage at the C-terminus of BmKn2 reduced the potency against N. gonorrhoeae. Taken together, the BmKn1 peptide can be developed as a topical therapeutic agent for treating multidrug-resistant strains of N. gonorrhoeae infections. PMID:24184420

  2. Identification and characterization of toxins in the venom gland of the Chinese bird spider, Haplopelma hainanum, by transcriptomic analysis.

    PubMed

    Cheng, Ting-Cai; Long, Ren-Wen; Wu, Yu-Qian; Guo, You-Bing; Liu, Duo-Lian; Peng, Li; Li, Dai-Qin; Yang, Dai-Wen; Xu, Xin; Liu, Feng-Xiang; Xia, Qing-You

    2016-06-01

    Tarantula venoms provide a model system for studying toxin selectivity, structure-activity relationships and molecular evolution of peptide toxins. Previous studies have identified a large number of peptide toxins in the venom of the Chinese bird spider Haplopelma hainanum, generally regarded as a highly venomous spider. However, the lack of available RNA-seq transcriptomic and genomic data is an obstacle to understanding its venom at the molecular level. In this study, we investigated the venom gland transcriptome of H. hainanum by RNA-seq, in the absence of an available genomic sequence. We identified 201 potential toxins among 57 181 de novo assembled transcripts, including knottins, Kunitz-type toxins, enzymes and other proteins. We systematically identified most of the knottins and Kunitz-type toxins, some of which showed strongly biased expression in the venom gland, including members of the huwentoxin-1, huwentoxin-2 and magi-1 families. We also discovered several novel potential toxins. These data demonstrate the high molecular and structural diversity in the venom toxins of H. hainanum. This study offers a useful strategy for exploring the complex components of spider venoms. PMID:26678257

  3. Properties of biological and biochemical effects of the Iranian saw-scaled viper (Echis carinatus) venom.

    PubMed

    Babaie, M; Salmanizadeh, H; Zolfagharian, H; Alizadeh, H

    2014-01-01

    The venom of Echis carinatus is rich in proteins and peptides effective on the hemostatic system. This venom is contains metalloproteinase which convert prothrombin to meizothrombin. The prothrombin activator which leads to the formation of small blood clots inside the blood vessels throughout the body. To understand the mechanism of the effects of Iranian Echis carinatus venom, the effects of E. carinatus on human and Wistar rat plasma, plasma proteins (prothrombin and fibrinogen) and blood coagulation were studied. Proteolytic activity of the crude venom on blood coagulation factors such as prothrombin, partial thromboplastin and fibrinogen times were studied. In the present study the PT test for human plasma was reduced from 13.4 s (±0.59) to 8.6 s (±0.64) when human plasma was treated with crude venom (concentration of venom was 1 mg/ml) and for rat plasma PT was reduced from 14.5 s (±0.47) to 8 s (±0.49). Some possible biological and biochemical effects of IEc crude venom were investigated. The blood coagulation in human and in rat were investigated in vivo and in-vitro. In this paper, we show that the procoagulant action of Echis carinatus venom is due in part to a protein component that activates prothrombin and the procoagulant activity on human and rat plasma was evaluated (Tab. 2, Fig. 2, Ref. 31). PMID:25077367

  4. Venom from the spider Araneus ventricosus is lethal to insects but inactive in vertebrates.

    PubMed

    Liu, Kai; Wang, Meichi; Herzig, Volker; Liu, Zhen; Hu, Weijun; Zhou, Guihua; Duan, Zhigui

    2016-06-01

    Araneus ventricosus spider venom, which was collected by electrical stimulation, is abundant in peptides and proteins with molecular weights ranging from 2 kDa to 70 kDa as determined by gel electrophoresis and mass spectrometry. Electrophysiological experiments showed that 50 μg/mL venom could block the voltage-gated sodium channels (VGSCs) currents of the dorsal unpaired median (DUM) neurons of Periplaneta americana cockroaches. However, 500 μg/mL venom could not block the VGSCs currents in rat dorsal root ganglion cells or the neuromuscular transmission in isolated mouse phrenic nerve-hemidiaphragm. Moreover, we also observed that injection of the venom in P. americana gave rise to obvious envenomation symptoms, with a LD50 value of 30.7 μg/g. Enzymatic analysis indicated that the venom possessed activities of several kinds of hydrolases including hyaluronidase and proteases. These results demonstrate that A. ventricosus venom contains bioactive components targeting insects, which are the natural prey of these spiders. Furthermore, the venom was found to be not active in vertebrate. Thus, we suggest that A. ventricosus venom contains novel insect-selective compounds that might be helpful in developing new and safe insecticides. PMID:26995209

  5. A tarantula-venom peptide that antagonises the TRPA1 nociceptor ion channel by binding to the S1-S4 gating domain

    PubMed Central

    Gui, Junhong; Liu, Boyi; Cao, Guan; Lipchik, Andrew M.; Perez, Minervo; Dekan, Zoltan; Mobli, Mehdi; Daly, Norelle L.; Alewood, Paul F.; Parker, Laurie L.; King, Glenn F.; Zhou, Yufeng; Jordt, Sven-Eric; Nitabach, Michael N.

    2014-01-01

    Background The venoms of predators such as spiders, scorpions, cone snails, sea anemones, and snakes, have been an excellent source of pharmacological diversity for drug discovery and as pharmacological tools for elucidating the structure, function, and physiological properties of ion channels. Here we describe the first known peptide antagonist of the nociceptor ion channel transient receptor potential ankyrin 1 (TRPA1). Results We constructed a recombinant cDNA library encoding ∼100 diverse GPI-anchored peptide toxins (t-toxins) derived from spider venoms and screened this library by co-expression in Xenopus oocytes with TRPA1. This screen resulted in identification of protoxin-I (ProTx-I), a 35-residue peptide from the venom of the Peruvian green-velvet tarantula, Thrixopelma pruriens, as the first known high-affinity peptide TRPA1 antagonist. Interestingly, ProTx-I was previously identified as an antagonist of voltage-gated sodium (NaV) channels. To identify the surfaces of ProTx-I by which it binds to these distinct ion channel types, we constructed a t-toxin library of ProTx-I alanine-scanning mutants and screened this library against NaV1.2 and TRPA1. This revealed distinct partially overlapping surfaces of ProTx-I by which it binds to these two ion channels, and whose specific chemical features explain its higher affinity for NaV1.2 than for TRPA1. Importantly, this mutagenesis yielded two novel ProTx-I variants that are only active against either TRPA1or NaV1.2, but not both. By testing its activity against chimeric channels, we identified the extracellular loops of the TRPA1 S1-S4 gating domain as the ProTx-I binding site. Conclusions These studies establish screening of t-toxin libraries of native and mutated toxins, which we term “toxineering”, as a generally applicable method for isolation of novel ion channel modifiers and for design of ion channel modifiers with altered target selectivity. They also suggest that ProTx-I will be a valuable

  6. Sj7170, a unique dual-function peptide with a specific α-chymotrypsin inhibitory activity and a potent tumor-activating effect from scorpion venom.

    PubMed

    Song, Yu; Gong, Ke; Yan, Hong; Hong, Wei; Wang, Le; Wu, Yingliang; Li, Wenhua; Li, Wenxin; Cao, Zhijian

    2014-04-25

    A new peptide precursor, termed Sj7170, was characterized from the venomous gland cDNA library of the scorpion Scorpiops jendeki. Sj7170 was deduced to be a 62-amino acid peptide cross-linked by five disulfide bridges. The recombinant Sj7170 peptide (rSj7170) with chromatographic purity was produced by a prokaryotic expression system. Enzyme inhibition assay in vitro and in vivo showed that rSj7170 specifically inhibited the activity of α-chymotrypsin at micromole concentrations. In addition, Sj7170 not only promoted cell proliferation and colony formation by up-regulating the expression of cyclin D1 in vitro but also enhanced tumor growth in nude mice. Finally, Sj7170 accelerated cellular migration and invasion by increasing the expression of the transcription factor Snail and then inducing the epithelial-mesenchymal transition. Moreover, Sj7170 changed cell morphology and cytoskeleton of U87 cells by the GTPase pathway. Taken together, Sj7170 is a unique dual-function peptide, i.e. a specific α-chymotrypsin inhibitor and a potent tumorigenesis/metastasis activator. Our work not only opens an avenue of developing new modulators of tumorigenesis/metastasis from serine protease inhibitors but also strengthens the functional link between protease inhibitors and tumor activators. PMID:24584937

  7. Sj7170, a Unique Dual-function Peptide with a Specific α-Chymotrypsin Inhibitory Activity and a Potent Tumor-activating Effect from Scorpion Venom*

    PubMed Central

    Song, Yu; Gong, Ke; Yan, Hong; Hong, Wei; Wang, Le; Wu, Yingliang; Li, Wenhua; Li, Wenxin; Cao, Zhijian

    2014-01-01

    A new peptide precursor, termed Sj7170, was characterized from the venomous gland cDNA library of the scorpion Scorpiops jendeki. Sj7170 was deduced to be a 62-amino acid peptide cross-linked by five disulfide bridges. The recombinant Sj7170 peptide (rSj7170) with chromatographic purity was produced by a prokaryotic expression system. Enzyme inhibition assay in vitro and in vivo showed that rSj7170 specifically inhibited the activity of α-chymotrypsin at micromole concentrations. In addition, Sj7170 not only promoted cell proliferation and colony formation by up-regulating the expression of cyclin D1 in vitro but also enhanced tumor growth in nude mice. Finally, Sj7170 accelerated cellular migration and invasion by increasing the expression of the transcription factor Snail and then inducing the epithelial-mesenchymal transition. Moreover, Sj7170 changed cell morphology and cytoskeleton of U87 cells by the GTPase pathway. Taken together, Sj7170 is a unique dual-function peptide, i.e. a specific α-chymotrypsin inhibitor and a potent tumorigenesis/metastasis activator. Our work not only opens an avenue of developing new modulators of tumorigenesis/metastasis from serine protease inhibitors but also strengthens the functional link between protease inhibitors and tumor activators. PMID:24584937

  8. A defined α-helix in the bifunctional O-glycosylated natriuretic peptide TcNPa from the venom of Tropidechis carinatus.

    PubMed

    Reeks, Timothy; Jones, Alun; Brust, Andreas; Sridharan, Sindhuja; Corcilius, Leo; Wilkinson, Brendan L; Thaysen-Andersen, Morten; Payne, Richard J; Kini, R Manjunatha; Daly, Norelle L; Alewood, Paul F

    2015-04-13

    Natriuretic peptides (NP) play important roles in human cardiac physiology through their guanylyl cyclase receptors NPR-A and NPR-B. Described herein is a bifunctional O-glycosylated natriuretic peptide, TcNPa, from Tropidechis carinatus venom and it unusually targets both NPR-A and NPR-B. Characterization using specific glycosidases and ETD-MS identified the glycan as galactosyl-β(1-3)-N-acetylgalactosamine (Gal-GalNAc) and was α-linked to the C-terminal threonine residue. TcNPa contains the characteristic NP 17-membered disulfide ring with conserved phenylalanine and arginine residues. Both glycosylated and nonglycosylated forms were synthesized by Fmoc solid-phase peptide synthesis and NMR analysis identified an α-helix within the disulfide ring containing the putative pharmacophore for NPR-A. Surprisingly, both forms activated NPR-A and NPR-B and were relatively resistant towards proteolytic degradation in plasma. This work will underpin the future development of bifunctional NP peptide mimetics. PMID:25735823

  9. Biochemical and molecular characterization of the venom from the Cuban scorpion Rhopalurus junceus.

    PubMed

    García-Gómez, B I; Coronas, F I V; Restano-Cassulini, R; Rodríguez, R R; Possani, L D

    2011-07-01

    This communication describes the first general biochemical, molecular and functional characterization of the venom from the Cuban blue scorpion Rhopalurus junceus, which is often used as a natural product for anti-cancer therapy in Cuba. The soluble venom of this arachnid is not toxic to mice, injected intraperitoneally at doses up to 200 μg/20 g body weight, but it is deadly to insects at doses of 10 μg per animal. The venom causes typical alpha and beta-effects on Na+ channels, when assayed using patch-clamp techniques in neuroblastoma cells in vitro. It also affects K+ currents conducted by ERG (ether-a-go-go related gene) channels. The soluble venom was shown to display phospholipase, hyaluronidase and anti-microbial activities. High performance liquid chromatography of the soluble venom can separate at least 50 components, among which are peptides lethal to crickets. Four such peptides were isolated to homogeneity and their molecular masses and N-terminal amino acid sequence were determined. The major component (RjAa12f) was fully sequenced by Edman degradation. It contains 64 amino acid residues and four disulfide bridges, similar to other known scorpion toxins. A cDNA library prepared from the venomous glands of one scorpion allowed cloning 18 genes that code for peptides of the venom, including RjA12f and eleven other closely related genes. Sequence analyses and phylogenetic reconstruction of the amino acid sequences deduced from the cloned genes showed that this scorpion contains sodium channel like toxin sequences clearly segregated into two monophyletic clusters. Considering the complex set of effects on Na+ currents verified here, this venom certainly warrant further investigation. PMID:21605585

  10. Specialization of the sting venom and skin mucus of Cathorops spixii reveals functional diversification of the toxins.

    PubMed

    Ramos, Anderson Daniel; Conceição, Katia; Silva, Pedro Ismael; Richardson, Michael; Lima, Carla; Lopes-Ferreira, Mônica

    2012-05-01

    Cathorops spixii is the most common venomous fish on the Brazilian coast. Apart from the involvement with defense against pathogens, the possible contribution of skin mucus components to the development of injuries caused by venomous fish species has not been investigated. Thus, the present study was conducted to gain a better understanding of the peptide and protein components of fish skin mucus and the sting venom from the catfish C. spixii. Our results show that sting venom and skin mucus have distinct constituents that distinguished them like structural proteins, chaperones, ion transport, carbohydrate metabolism, oxidoreductase, cell cycle and protein binding present in sting venom and like tropomyosin 3 isoform 2 and energy metabolim proteins in skin mucus. But in a group of common 13 proteins we identified and isolated a WAP65 protein. The peptide fractions caused more harmful effects, such as venular stasis, hemorrhage and changes in the arteriolar wall diameter, and the protein fractions produced a typical inflammatory process in post-capillary venules. And finally we showed for the first time the presence WAP65 in sting venom and skin mucus of C. spixii using LC/MS/MS and also we purified this protein in the sting venom. Wap65 shows inflammatory action, working at different doses inducing an increase in the number of leukocytes rolling and adhering to the endothelium. PMID:22381657

  11. Lebetin 2, a Snake Venom-Derived Natriuretic Peptide, Attenuates Acute Myocardial Ischemic Injury through the Modulation of Mitochondrial Permeability Transition Pore at the Time of Reperfusion.

    PubMed

    Tourki, Bochra; Matéo, Philippe; Morand, Jessica; Elayeb, Mohamed; Godin-Ribuot, Diane; Marrakchi, Naziha; Belaidi, Elise; Messadi, Erij

    2016-01-01

    Cardiac ischemia is one of the leading causes of death worldwide. It is now well established that natriuretic peptides can attenuate the development of irreversible ischemic injury during myocardial infarction. Lebetin 2 (L2) is a new discovered peptide isolated from Macrovipera lebetina venom with structural similarity to B-type natriuretic peptide (BNP). Our objectives were to define the acute cardioprotective actions of L2 in isolated Langendorff-perfused rat hearts after regional or global ischemia-reperfusion (IR). We studied infarct size, left ventricular contractile recovery, survival protein kinases and mitochondrial permeability transition pore (mPTP) opening in injured myocardium. L2 dosage was determined by preliminary experiments at its ability to induce cyclic guanosine monophosphate (cGMP) release without changing hemodynamic effects in normoxic hearts. L2 was found to be as effective as BNP in reducing infarct size after the induction of either regional or global IR. Both peptides equally improved contractile recovery after regional IR, but only L2 increased coronary flow and reduced severe contractile dysfunction after global ischemia. Cardioprotection afforded by L2 was abolished after isatin or 5-hydroxydecanote pretreatment suggesting the involvement of natriuretic peptide receptors and mitochondrial KATP (mitoKATP) channels in the L2-induced effects. L2 also increased survival protein expression in the reperfused myocardium as evidenced by phosphorylation of signaling pathways PKCε/ERK/GSK3β and PI3K/Akt/eNOS. IR induced mitochondrial pore opening, but this effect was markedly prevented by L2 treatment. These data show that L2 has strong cardioprotective effect in acute ischemia through stimulation of natriuretic peptide receptors. These beneficial effects are mediated, at least in part, by mitoKATP channel opening and downstream activated survival kinases, thus delaying mPTP opening and improving IR-induced mitochondrial dysfunction. PMID

  12. Proteomic Analysis Provides Insights on Venom Processing in Conus textile

    PubMed Central

    Tayo, Lemmuel L.; Lu, Bingwen; Cruz, Lourdes J.; Yates, John R.

    2010-01-01

    Conus species of marine snails deliver a potent collection of toxins from the venom duct via a long proboscis attached to a harpoon tooth. Conotoxins are known to possess powerful neurological effects and some have been developed for therapeutic uses. Using mass-spectrometry based proteomics, qualitative and quantitative differences in conotoxin components were found in the proximal, central and distal sections of the C. textile venom duct suggesting specialization of duct sections for biosynthesis of particular conotoxins. Reversed phase HPLC followed by Orbitrap mass spectrometry and data analysis using SEQUEST and ProLuCID identified 31 conotoxin sequences and 25 post-translational modification (PTM) variants with King-Kong 2 peptide being the most abundant. Several previously unreported variants of known conopeptides and were found and this is the first time that HyVal is reported for a disulfide rich Conus peptide. Differential expression along the venom duct, production of PTM variants, alternative proteolytic cleavage sites, and venom processing enroute to the proboscis all appear to contribute to enriching the combinatorial pool of conopeptides and producing the appropriate formulation for a particular hunting situation. The complimentary tools of mass spectrometry-based proteomics and molecular biology can greatly accelerate the discovery of Conus peptides and provide insights on envenomation and other biological strategies of cone snails. PMID:20334424

  13. Characterization of a Gene Coding for the Complement System Component FB from Loxosceles laeta Spider Venom Glands.

    PubMed

    Myamoto, Daniela Tiemi; Pidde-Queiroz, Giselle; Gonçalves-de-Andrade, Rute Maria; Pedroso, Aurélio; van den Berg, Carmen W; Tambourgi, Denise V

    2016-01-01

    The human complement system is composed of more than 30 proteins and many of these have conserved domains that allow tracing the phylogenetic evolution. The complement system seems to be initiated with the appearance of C3 and factor B (FB), the only components found in some protostomes and cnidarians, suggesting that the alternative pathway is the most ancient. Here, we present the characterization of an arachnid homologue of the human complement component FB from the spider Loxosceles laeta. This homologue, named Lox-FB, was identified from a total RNA L. laeta spider venom gland library and was amplified using RACE-PCR techniques and specific primers. Analysis of the deduced amino acid sequence and the domain structure showed significant similarity to the vertebrate and invertebrate FB/C2 family proteins. Lox-FB has a classical domain organization composed of a control complement protein domain (CCP), a von Willebrand Factor domain (vWFA), and a serine protease domain (SP). The amino acids involved in Mg2+ metal ion dependent adhesion site (MIDAS) found in the vWFA domain in the vertebrate C2/FB proteins are well conserved; however, the classic catalytic triad present in the serine protease domain is not conserved in Lox-FB. Similarity and phylogenetic analyses indicated that Lox-FB shares a major identity (43%) and has a close evolutionary relationship with the third isoform of FB-like protein (FB-3) from the jumping spider Hasarius adansoni belonging to the Family Salcitidae. PMID:26771533

  14. Characterization of a Gene Coding for the Complement System Component FB from Loxosceles laeta Spider Venom Glands

    PubMed Central

    Myamoto, Daniela Tiemi; Pidde-Queiroz, Giselle; Gonçalves-de-Andrade, Rute Maria; Pedroso, Aurélio; van den Berg, Carmen W.; Tambourgi, Denise V.

    2016-01-01

    The human complement system is composed of more than 30 proteins and many of these have conserved domains that allow tracing the phylogenetic evolution. The complement system seems to be initiated with the appearance of C3 and factor B (FB), the only components found in some protostomes and cnidarians, suggesting that the alternative pathway is the most ancient. Here, we present the characterization of an arachnid homologue of the human complement component FB from the spider Loxosceles laeta. This homologue, named Lox-FB, was identified from a total RNA L. laeta spider venom gland library and was amplified using RACE-PCR techniques and specific primers. Analysis of the deduced amino acid sequence and the domain structure showed significant similarity to the vertebrate and invertebrate FB/C2 family proteins. Lox-FB has a classical domain organization composed of a control complement protein domain (CCP), a von Willebrand Factor domain (vWFA), and a serine protease domain (SP). The amino acids involved in Mg2+ metal ion dependent adhesion site (MIDAS) found in the vWFA domain in the vertebrate C2/FB proteins are well conserved; however, the classic catalytic triad present in the serine protease domain is not conserved in Lox-FB. Similarity and phylogenetic analyses indicated that Lox-FB shares a major identity (43%) and has a close evolutionary relationship with the third isoform of FB-like protein (FB-3) from the jumping spider Hasarius adansoni belonging to the Family Salcitidae. PMID:26771533

  15. Profiling the resting venom gland of the scorpion Tityus stigmurus through a transcriptomic survey

    PubMed Central

    2012-01-01

    Background The scorpion Tityus stigmurus is widely distributed in Northeastern Brazil and known to cause severe human envenoming, inducing pain, hyposthesia, edema, erythema, paresthesia, headaches and vomiting. The present study uses a transcriptomic approach to characterize the gene expression profile from the non-stimulated venom gland of Tityus stigmurus scorpion. Results A cDNA library was constructed and 540 clones were sequenced and grouped into 153 clusters, with one or more ESTs (expressed sequence tags). Forty-one percent of ESTs belong to recognized toxin-coding sequences, with transcripts encoding antimicrobial toxins (AMP-like) being the most abundant, followed by alfa KTx- like, beta KTx-like, beta NaTx-like and alfa NaTx-like. Our analysis indicated that 34% of the transcripts encode “other possible venom molecules”, which correspond to anionic peptides, hypothetical secreted peptides, metalloproteinases, cystein-rich peptides and lectins. Fifteen percent of ESTs are similar to cellular transcripts. Sequences without good matches corresponded to 11%. Conclusions This investigation provides the first global view of gene expression of the venom gland from Tityus stigmurus under resting conditions. This approach enables characterization of a large number of venom gland component molecules, which belong either to known or non yet described types of venom peptides and proteins from the Buthidae family. PMID:22853446

  16. Intraspecific variation in the Egyptian scorpion Scorpio maurus palmatus venom collected from different biotopes.

    PubMed

    Abdel-Rahman, Mohamed A; Omran, Mohamed Alaa A; Abdel-Nabi, Ismail M; Ueda, Hitoshi; McVean, Alistair

    2009-03-01

    The present study was conducted to explore the following hypotheses: (i) do scorpions (Scorpio maurus palmatus) from different biotopes exhibit intraspecific diversity in their venom? (ii) if so, is this variation associated with ecological or genetic factors, geographical distance, and/or multiple interrelated parameters? To address these questions, scorpions were collected from four geographically isolated localities in Egypt. Three of these locations are from mutually isolated pockets in the arid biotope of Southern Sinai (Wadi Sahab, El-Agramia and Rahaba plains). The fourth population was sampled from the semiarid biotope of Western Mediterranean Costal Desert (WMCD). Using reducing gel electrophoresis (SDS-PAGE), we have shown biotope-specific variation in the expression of peptides from scorpions collected from these distinct areas. WMCD sourced venom samples contain higher molecular weight protein components (219, 200, 170, 139, 116 kDa) than Southern Sinai scorpion venom samples. The Southern Sinai venom is characterized by the presence of 11 protein bands (93-0.58 kDa) that are not mirrored in the individual venom samples of WMCD. Bands of 33 and 3.4 kDa were characteristics of all individual venom samples of the scorpion populations. Even within Southern Sinai area, Sahab venom contains five fractions that are not detected in both El-Agramia and Rahaba venom samples. Moreover, male and female venom analysis revealed some sex-related proteomic similarities and differences between scorpion populations. Female venom appears to be more complicated than the male venom. Female venom samples showed bands of 219, 200, 77.5, 55.5, 45, 39, 37, 24 and 16 kDa which were absent in the male venom. The random amplified polymorphic DNA (RAPD) technique was used to estimate the genetic distance between the four scorpion populations. The RAPD data confirmed the genetic diversity at molecular level among the sampled populations. More than 77 RAPD bands (ranging in size

  17. A new peptide (Ruviprase) purified from the venom of Daboia russelii russelii shows potent anticoagulant activity via non-enzymatic inhibition of thrombin and factor Xa.

    PubMed

    Thakur, Rupamoni; Kumar, Ashok; Bose, Biplab; Panda, Dulal; Saikia, Debashree; Chattopadhyay, Pronobesh; Mukherjee, Ashis K

    2014-10-01

    Compounds showing dual inhibition of thrombin and factor Xa (FXa) are the subject of great interest owing to their broader specificity for effective anticoagulation therapy against cardiovascular disorders. This is the first report on the functional characterization and assessment of therapeutic potential of a 4423.6 Da inhibitory peptide (Ruviprase) purified from Daboia russelii russelii venom. The secondary structure of Ruviprase is composed of α-helices (61.9%) and random coils (38.1%). The partial N-terminal sequence (E(1)-V(2)-X(3)-W(4)-W(5)-W(6)-A(7)-Q(8)-L(9)-S(10)) of Ruviprase demonstrated significant similarity (80.0%) with an internal sequence of apoptosis-stimulating protein reported from the venom of Ophiophagus hannah and Python bivittatus; albeit Ruviprase did not show sequence similarity with existing thrombin/FXa inhibitors, suggesting its uniqueness. Ruviprase demonstrated a potent in vitro anticoagulant property and inhibited both thrombin and FXa following slow binding kinetics. Ruviprase inhibited thrombin by binding to its active site via an uncompetitive mechanism with a Ki value and dissociation constant (KD) of 0.42 μM and 0.46 μM, respectively. Conversely, Ruviprase demonstrated mixed inhibition (Ki = 0.16 μM) of FXa towards its physiological substrate prothrombin. Furthermore, the biological properties of Ruviprase could not be neutralized by commercial polyvalent or monovalent antivenom. Ruviprase at a dose of 2.0 mg/kg was non-toxic and showed potent in vivo anticoagulant activity after 6 h of intraperitoneal treatment in mice. Because of the potent anticoagulant property as well as non-toxic nature of Ruviprase, the possible application of the peptide as an antithrombotic agent for combating thrombosis-associated ailments appears promising. PMID:25038567

  18. A component of platypus (Ornithorhynchus anatinus) venom forms slow-kinetic cation channels.

    PubMed

    Kourie, J I

    1999-11-01

    The lipid bilayer technique is used to examine the biophysical properties of anion and cation channels frequently formed by platypus (Ornithorhynchus anatinus) venom (OaV). The OaV-formed anion channel in 250/50 mm KCl cis/trans has a maximum conductance of 857 +/- 23 pS (n = 5) in 250/50 mm KCl cis/trans. The current-voltage relationship of this channel shows strong inward rectification. The channel activity undergoes time-dependent inactivation that can be removed by depolarizing voltage steps more positive than the reversal potential for chloride, E(Cl), (+40 mV). The reversal potential of the OaV-formed slow current activity in 250/50 mm KCl cis/trans is close to the potassium equilibrium potential (E(K)) of -40 mV. The conductance values for the slow channel are 22.5 +/- 2.6 pS and 41.38 +/- 4.2 pS in 250/50 and 750/50 mm cis/trans, respectively. The gating kinetics of the slow ion channels are voltage-dependent. The channel open probability (P(o)) is between 0.1 and 0.8 at potentials between 0 and +140 mV. The channel frequency (F(o)) increases with depolarizing voltages between 0 and +140 mV, whereas mean open time (T(o)) and mean closed time (T(c)) decrease. Ion substitution experiments of the cis solution show that the channel has conductance values of 21.47 +/- 2. 3 and 0.53 +/- 0.1 pS in 250 mm KCl and choline Cl, respectively. The amplitude of the single channel current is dependent on [K(+)](cis) and the current reversal potential (E(rev)) responds to increases in [K(+)](cis) by shifting to more negative voltages. The increase in current amplitude as a function of increasing [K(+)](cis) can be best described by a third order polynomial fit. At +140 mV, the values of the maximal single channel conductance (gamma(max)) and the concentration for half maximal gamma (K(s)) are 38.6 pS and 380 mm and decline to 15.76 pS and 250 mm at 0 mV, respectively. The ion selectivity of the channel to K(+), Na(+), Cs(+) and choline(+) was determined in ion substitution

  19. Synthetic RGD peptides derived from the adhesive domains of snake-venom proteins: evaluation as inhibitors of platelet aggregation.

    PubMed Central

    Lu, X; Deadman, J J; Williams, J A; Kakkar, V V; Rahman, S

    1993-01-01

    Synthetic peptides based on the RGD domains of the potent platelet aggregation inhibitors kistrin and dendroaspin were generated. The 13-amino-acid peptides were synthesized as dicysteinyl linear and disulphide cyclic forms. In platelet-aggregation studies, the cyclic peptides showed 3-fold better inhibition than their linear equivalents and approx. 100-fold greater potency than synthetic linear RGDS peptides derived from fibronectin. An amino acid substitution, Asp10-->Ala, in the kistrin-based peptide gave a 4-fold decrease in potency in the linear peptide, but produced a 2-fold elevation in the inhibitory activity of the cyclic form, generating a peptide of potency comparable with that of the parent protein. PMID:8250845

  20. Characterization of a novel peptide toxin from Acanthoscurria paulensis spider venom: a distinct cysteine assignment to the HWTX-II family.

    PubMed

    Mourão, Caroline B F; Heghinian, Mari D; Barbosa, Eder A; Marí, Frank; Bloch, Carlos; Restano-Cassulini, Rita; Possani, Lourival D; Schwartz, Elisabeth F

    2013-04-01

    Spider venom toxins have raised interest in prospecting new drugs and pesticides. Nevertheless, few studies are conducted with tarantula toxins, especially with species found in Brazil. This study aims to characterize chemically and biologically the first toxin isolated from Acanthoscurria paulensis venom. Ap1a consists of 48 amino acid residues and has a molecular mass of 5457.79 Da. The cloned gene encodes a putative sequence of 23 amino acid residues for the signal peptide and 27 for the pro-peptide. The sequence of the mature peptide is 60-84% identical with those of toxins of the HWTX-II family. Different from the structural pattern proposed for these toxins, the disulfide pairing of Ap1a is of the ICK type motif, which is also shared by the U1-TRTX-Bs1a toxin. Ap1a induced a dose-dependent and reversible paralytic effect in Spodoptera frugiperda caterpillars, with an ED50 of 13.0 ± 4.2 μg/g 8 h after injections. In the Drosophila melanogaster Giant Fiber circuit, Ap1a (1.14-22.82 μg/g) reduces both the amplitude and frequency of responses from GF-TTM and GF-DLM pathways, suggesting an action at the neuromuscular junction, which is mediated by glutamatergic receptors. It is also lethal to mice (1.67 μg/g, intracranial route), inducing effects similar to those reported with intracerebroventricular administration of NMDA. Ap1a (1 μM) does not alter the response induced by acetylcholine on the rhabdomyosarcoma cell preparation and shows no significant effects on hNav1.2, hNav1.4, hNav1.5, and hNav1.6 channels. Because of its unique sequence and cysteine assignment to the HWTX-II family, Ap1a is a significant contribution to the structure-function study of this family of toxins. PMID:23496776

  1. Engineering potent and selective analogues of GpTx-1, a tarantula venom peptide antagonist of the Na(V)1.7 sodium channel.

    PubMed

    Murray, Justin K; Ligutti, Joseph; Liu, Dong; Zou, Anruo; Poppe, Leszek; Li, Hongyan; Andrews, Kristin L; Moyer, Bryan D; McDonough, Stefan I; Favreau, Philippe; Stöcklin, Reto; Miranda, Les P

    2015-03-12

    NaV1.7 is a voltage-gated sodium ion channel implicated by human genetic evidence as a therapeutic target for the treatment of pain. Screening fractionated venom from the tarantula Grammostola porteri led to the identification of a 34-residue peptide, termed GpTx-1, with potent activity on NaV1.7 (IC50 = 10 nM) and promising selectivity against key NaV subtypes (20× and 1000× over NaV1.4 and NaV1.5, respectively). NMR structural analysis of the chemically synthesized three disulfide peptide was consistent with an inhibitory cystine knot motif. Alanine scanning of GpTx-1 revealed that residues Trp(29), Lys(31), and Phe(34) near the C-terminus are critical for potent NaV1.7 antagonist activity. Substitution of Ala for Phe at position 5 conferred 300-fold selectivity against NaV1.4. A structure-guided campaign afforded additive improvements in potency and NaV subtype selectivity, culminating in the design of [Ala5,Phe6,Leu26,Arg28]GpTx-1 with a NaV1.7 IC50 value of 1.6 nM and >1000× selectivity against NaV1.4 and NaV1.5. PMID:25658507

  2. Genetically Engineered Yeast Expressing a Lytic Peptide from Bee Venom (Melittin) Kills Symbiotic Protozoa in the Gut of Formosan Subterranean Termites

    PubMed Central

    Husseneder, Claudia; Donaldson, Jennifer R.; Foil, Lane D.

    2016-01-01

    The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival. PMID:26985663

  3. Genetically Engineered Yeast Expressing a Lytic Peptide from Bee Venom (Melittin) Kills Symbiotic Protozoa in the Gut of Formosan Subterranean Termites.

    PubMed

    Husseneder, Claudia; Donaldson, Jennifer R; Foil, Lane D

    2016-01-01

    The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival. PMID:26985663

  4. 9.3 KDa components of the injected venom of Conus purpurascens define a new five-disulfide conotoxin framework.

    PubMed

    Möller, Carolina; Marí, Frank

    2011-01-01

    The 83-residue conopeptide (p21a) and its corresponding nonhydroxylated analog were isolated from the injected venom of Conus purpurascens. The complete conopeptide sequences were derived from Edman degradation sequencing of fragments from tryptic, chymotryptic and cyanogen bromide digestions, p21a has a unique, 10-cystine/5-disulfide 7-loop framework with extended 10-residue N-terminus and a 5-residue C-terminus tails, respectively. p21a has a 48% sequence homology with a recently described 13-cystine conopeptide, con-ikot-ikot, isolated from the dissected venom of the fish-hunting snail Conus striatus. However, unlike con-ikot-ikot, p21a does not form a dimer of dimers. MALDI-TOF mass spectrometry suggests that p21a may form a noncovalent dimer. p21a is an unusually large conotoxin and in so far is the largest isolated from injected venom. p21a provides evidence that the Conus venom arsenal includes larger molecules that are directly injected into the prey. Therefore, cone snails can utilize toxins that are comparable in size to the ones commonly found in other venomous animals. PMID:20564010

  5. Evidence that histamine is the principal pharmacological component of venom from an Australian wolf spider (Lycosa godeffroyi).

    PubMed

    Rash, L D; King, R G; Hodgson, W C

    1998-02-01

    Wolf spiders are common throughout Australia and have been known to cause severe reactions in both animals and humans. However, little work has been done on the pharmacological activity of Australian lycosids. The purpose of this study was to obtain a preliminary pharmacological profile of the venom from an Australian wolf spider (Lycosa godeffroyi). The venom caused dose-dependent contractions of guinea-pig isolated ileum (1-4 microg/ml), endothelium-dependent relaxation in rat isolated aortae (10 microg/ml), a decrease in mean arterial blood pressure in the anaesthetised rat (100 microg/kg, i.v.) and an increase in insufflation pressure in the anaesthetised guinea-pig (50 microg/kg, i.v.). All of these responses were significantly inhibited by the H1-receptor antagonist mepyramine at concentrations that selectively inhibited responses to histamine. Venom (5 microg/ml) caused a decrease in twitch height of the rat stimulated (0.3 msec, 0.2 Hz, 100 V) vas deferens (prostatic segment). A fluorometric assay for histamine detected a concentration of 44.5 ng/microg venom protein. It appears that the in vitro and in vivo activity of L. godeffroyi venom observed in the present study is due to the presence of histamine. PMID:9620584

  6. Variability of Potassium Channel Blockers in Mesobuthus eupeus Scorpion Venom with Focus on Kv1.1

    PubMed Central

    Kuzmenkov, Alexey I.; Vassilevski, Alexander A.; Kudryashova, Kseniya S.; Nekrasova, Oksana V.; Peigneur, Steve; Tytgat, Jan; Feofanov, Alexey V.; Kirpichnikov, Mikhail P.; Grishin, Eugene V.

    2015-01-01

    The lesser Asian scorpion Mesobuthus eupeus (Buthidae) is one of the most widely spread and dispersed species of the Mesobuthus genus, and its venom is actively studied. Nevertheless, a considerable amount of active compounds is still under-investigated due to the high complexity of this venom. Here, we report a comprehensive analysis of putative potassium channel toxins (KTxs) from the cDNA library of M. eupeus venom glands, and we compare the deduced KTx structures with peptides purified from the venom. For the transcriptome analysis, we used conventional tools as well as a search for structural motifs characteristic of scorpion venom components in the form of regular expressions. We found 59 candidate KTxs distributed in 30 subfamilies and presenting the cysteine-stabilized α/β and inhibitor cystine knot types of fold. M. eupeus venom was then separated to individual components by multistage chromatography. A facile fluorescent system based on the expression of the KcsA-Kv1.1 hybrid channels in Escherichia coli and utilization of a labeled scorpion toxin was elaborated and applied to follow Kv1.1 pore binding activity during venom separation. As a result, eight high affinity Kv1.1 channel blockers were identified, including five novel peptides, which extend the panel of potential pharmacologically important Kv1 ligands. Activity of the new peptides against rat Kv1.1 channel was confirmed (IC50 in the range of 1–780 nm) by the two-electrode voltage clamp technique using a standard Xenopus oocyte system. Our integrated approach is of general utility and efficiency to mine natural venoms for KTxs. PMID:25792741

  7. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes.

    PubMed

    Brahma, Rajeev Kungur; McCleary, Ryan J R; Kini, R Manjunatha; Doley, Robin

    2015-01-01

    Snake venoms are cocktails of protein toxins that play important roles in capture and digestion of prey. Significant qualitative and quantitative variation in snake venom composition has been observed among and within species. Understanding these variations in protein components is instrumental in interpreting clinical symptoms during human envenomation and in searching for novel venom proteins with potential therapeutic applications. In the last decade, transcriptomic analyses of venom glands have helped in understanding the composition of various snake venoms in great detail. Here we review transcriptomic analysis as a powerful tool for understanding venom profile, variation and evolution. PMID:25448392

  8. Unraveling the venom proteome of the bumblebee (Bombus terrestris) by integrating a combinatorial peptide ligand library approach with FT-ICR MS.

    PubMed

    Van Vaerenbergh, Matthias; Debyser, Griet; Smagghe, Guy; Devreese, Bart; de Graaf, Dirk C

    2015-08-01

    Within the Apidae, the largest family of bees with over 5600 described species, the honeybee is the sole species with a well studied venom proteome. So far, only little research has focused on bumblebee venom. Recently, the genome sequence of the European large earth bumblebee (Bombus terrestris) became available and this allowed the first in-depth proteomic analysis of its venom composition. We identified 57 compounds, with 52 of them never described in bumblebee venom. Remarkably, 72% of the detected compounds were found to have a honeybee venom homolog, which reflects the similar defensive function of both venoms and the high degree of homology between both genomes. However, both venoms contain a selection of species-specific toxins, revealing distinct damaging effects that may have evolved in response to species-specific attackers. Further, this study extends the list of potential venom allergens. The availability of both the honeybee and bumblebee venom proteome may help to develop a strategy that solves the current issue of false double sensitivity in allergy diagnosis, which is caused by cross-reactivity between both venoms. A correct diagnosis is important as it is recommended to perform an immunotherapy with venom of the culprit species. PMID:26071081

  9. Transcriptomic Messiness in the Venom Duct of Conus miles Contributes to Conotoxin Diversity*

    PubMed Central

    Jin, Ai-hua; Dutertre, Sébastien; Kaas, Quentin; Lavergne, Vincent; Kubala, Petra; Lewis, Richard J.; Alewood, Paul F.

    2013-01-01

    Marine cone snails have developed sophisticated chemical strategies to capture prey and defend themselves against predators. Among the vast array of bioactive molecules in their venom, peptide components called conotoxins or conopeptides dominate, with many binding with high affinity and selectivity to a broad range of cellular targets, including receptors and transporters of the nervous system. Whereas the conopeptide gene precursor organization has a conserved topology, the peptides in the venom duct are highly processed. Indeed, deep sequencing transcriptomics has uncovered on average fewer than 100 toxin gene precursors per species, whereas advanced proteomics has revealed >10-fold greater diversity at the peptide level. In the present study, second-generation sequencing technologies coupled to highly sensitive mass spectrometry methods were applied to rapidly uncover the conopeptide diversity in the venom of a worm-hunting species, Conus miles. A total of 662 putative conopeptide encoded sequences were retrieved from transcriptomic data, comprising 48 validated conotoxin sequences that clustered into 10 gene superfamilies, including 3 novel superfamilies and a novel cysteine framework (C-C-C-CCC-C-C) identified at both transcript and peptide levels. A surprisingly large number of conopeptide gene sequences were expressed at low levels, including a series of single amino acid variants, as well as sequences containing deletions and frame and stop codon shifts. Some of the toxin variants generate alternative cleavage sites, interrupted or elongated cysteine frameworks, and highly variable isoforms within families that could be identified at the peptide level. Together with the variable peptide processing identified previously, background genetic and phenotypic levels of biological messiness in venoms contribute to the hypervariability of venom peptides and their ability to evolve rapidly. PMID:24043424

  10. Diversity, phylogenetic distribution, and origins of venomous catfishes

    PubMed Central

    2009-01-01

    Background The study of venomous fishes is in a state of relative infancy when compared to that of other groups of venomous organisms. Catfishes (Order Siluriformes) are a diverse group of bony fishes that have long been known to include venomous taxa, but the extent and phylogenetic distribution of this venomous species diversity has never been documented, while the nature of the venoms themselves also remains poorly understood. In this study, I used histological preparations from over 100 catfish genera, basic biochemical and toxicological analyses of fin spine extracts from several species, and previous systematic studies of catfishes to examine the distribution of venom glands in this group. These results also offer preliminary insights into the evolutionary history of venom glands in the Siluriformes. Results Histological examinations of 158 catfish species indicate that approximately 1250-1625+ catfish species should be presumed to be venomous, when viewed in conjunction with several hypotheses of siluriform phylogeny. Maximum parsimony character optimization analyses indicate two to three independent derivations of venom glands within the Siluriformes. A number of putative toxic peptides were identified in the venoms of catfish species from many of the families determined to contain venomous representatives. These peptides elicit a wide array of physiological effects in other fishes, though any one species examined produced no more than three distinct putative toxins in its venom. The molecular weights and effects produced by these putative toxic peptides show strong similarities to previously characterized toxins found in catfish epidermal secretions. Conclusion Venom glands have evolved multiple times in catfishes (Order Siluriformes), and venomous catfishes may outnumber the combined diversity of all other venomous vertebrates. The toxic peptides found in catfish venoms may be derived from epidermal secretions that have been demonstrated to accelerate the

  11. Snake venom toxins: toxicity and medicinal applications.

    PubMed

    Chan, Yau Sang; Cheung, Randy Chi Fai; Xia, Lixin; Wong, Jack Ho; Ng, Tzi Bun; Chan, Wai Yee

    2016-07-01

    Snake venoms are complex mixtures of small molecules and peptides/proteins, and most of them display certain kinds of bioactivities. They include neurotoxic, cytotoxic, cardiotoxic, myotoxic, and many different enzymatic activities. Snake envenomation is a significant health issue as millions of snakebites are reported annually. A large number of people are injured and die due to snake venom poisoning. However, several fatal snake venom toxins have found potential uses as diagnostic tools, therapeutic agent, or drug leads. In this review, different non-enzymatically active snake venom toxins which have potential therapeutic properties such as antitumor, antimicrobial, anticoagulating, and analgesic activities will be discussed. PMID:27245678

  12. The pharmacological activity of fish venoms.

    PubMed

    Church, Jarrod E; Hodgson, Wayne C

    2002-08-01

    Venomous creatures have been the source of much recent research in the effort to find novel physiological tools and pharmaceuticals. However, due to the technical difficulties with obtaining and storing venom extracts, the venoms of marine animals, particularly fish, remain a largely untapped source of novel compounds. The most potent effects of piscine venoms are on the cardiovascular system. All piscine venoms produce profound cardiovascular changes, both in vitro and in vivo, including the release of nitric oxide from endothelial cells, smooth muscle contraction, and differing effects on atria. Although there is a complex balance between different components of the venom response, similarities exist between the responses to the venoms of all species of fish. In addition to their cardiovascular effects, piscine venoms possess neuromuscular activity. Once again, the activities of most piscine venoms are very similar, usually consisting of a depolarising action on both nerve and muscle cells. Most piscine venoms have potent cytolytic activity, and it seems likely that this activity is the mechanism behind many of their cardiovascular and neuromuscular effects. Piscine venoms all seem to share similar activity, probably as a result of evolving for a common purpose, and cross-reactivity with stonefish antivenom, both functionally in experimental models and in Western immunoblotting analysis, suggesting that piscine venoms may also possess structural similarities in addition to their functional similarities. PMID:12165309

  13. [Basic peptides from bee venom, IV. Synthesis of the mast cell-degranulating peptide by liquid-phase fragment condensation (author's transl)].

    PubMed

    Hartter, P

    1980-04-01

    The synthesis of the mast cell-degranulating peptide by liquid-phase fragment condensation is described. After the carboxyterminal of the peptide is condensated with polyethylene-glycol (Mr 10000) the following fragments are coupled stepwise on the polymer, a soluble carrier in dichloromethane by the dicyclohexylcarbodiimide/hydroxybenzotriazole-method. Pos. 17-21 Boc-Lys(Z)-Ile-Cys(SiPr)-Gly-Lys(Z) (I) Pos. 12-16 Boc-Pro-His(Trt)-Ile-Cys(Trt)-Arg(Tos) (II) Pos. 8-11 Boc-His(Trt)-Val-Ile-Lys(Z) (III) Pos. 5-7 Boc-Cys(SiPr)-Lys(Z)-Arg(Tos) (IV) Pos. 1-4 Boc-Ile-Lys(Z)-Cys(Trt)-Asn(Mbh) (V) It is practical to crystallize the polyethyleneglycol peptide-coupling products from ethanol after each step. Most of the protecting groups can be removed by treatment of the complete polyethylene-glycol-peptide in trifluoroacetic acid/HBr. In methanol, saturated with ammonia, the peptide is removed in the amid-form from the carrier. The guanidyl-blocking group disappears by solving the peptide in liquid HF. The crude peptide is converted into the tetra-S-sulfonate derivate by oxidative sulfitolysis and purified by ion-exchange and gel chromatography. After reduction by mercaptoethanol a cautious air-reoxidation of the SH- to the SS-peptide followed. Rechromatography on ion-exchange and dextran gels yields a peptide with good biological activity in rat cell histamin-liberation and inflammation inhibition compared with the natural recombinated product. PMID:7380391

  14. A new approach for investigating venom function applied to venom calreticulin in a parasitoid wasp.

    PubMed

    Siebert, Aisha L; Wheeler, David; Werren, John H

    2015-12-01

    A new method is developed to investigate functions of venom components, using venom gene RNA interference knockdown in the venomous animal coupled with RNA sequencing in the envenomated host animal. The vRNAi/eRNA-Seq approach is applied to the venom calreticulin component (v-crc) of the parasitoid wasp Nasonia vitripennis. Parasitoids are common, venomous animals that inject venom proteins into host insects, where they modulate physiology and metabolism to produce a better food resource for the parasitoid larvae. vRNAi/eRNA-Seq indicates that v-crc acts to suppress expression of innate immune cell response, enhance expression of clotting genes in the host, and up-regulate cuticle genes. V-crc KD also results in an increased melanization reaction immediately following envenomation. We propose that v-crc inhibits innate immune response to parasitoid venom and reduces host bleeding during adult and larval parasitoid feeding. Experiments do not support the hypothesis that v-crc is required for the developmental arrest phenotype observed in envenomated hosts. We propose that an important role for some venom components is to reduce (modulate) the exaggerated effects of other venom components on target host gene expression, physiology, and survival, and term this venom mitigation. A model is developed that uses vRNAi/eRNA-Seq to quantify the contribution of individual venom components to total venom phenotypes, and to define different categories of mitigation by individual venoms on host gene expression. Mitigating functions likely contribute to the diversity of venom proteins in parasitoids and other venomous organisms. PMID:26359852

  15. Identification and molecular characterization of five putative toxins from the venom gland of the snake Philodryas chamissonis (Serpentes: Dipsadidae).

    PubMed

    Urra, Félix A; Pulgar, Rodrigo; Gutiérrez, Ricardo; Hodar, Christian; Cambiazo, Verónica; Labra, Antonieta

    2015-12-15

    Philodryas chamissonis is a rear-fanged snake endemic to Chile. Its bite produces mild to moderate symptoms with proteolytic and anti-coagulant effects. Presently, the composition of the venom, as well as, the biochemical and structural characteristics of its toxins, remains unknown. In this study, we cloned and reported the first full-length sequences of five toxin-encoding genes from the venom gland of this species: Type III snake venom metalloprotease (SVMP), snake venom serine protease (SVSP), Cysteine-rich secretory protein (CRISP), α and β subunits of C-type lectin-like protein (CLP) and C-type natriuretic peptide (NP). These genes are highly expressed in the venom gland and their sequences exhibited a putative signal peptide, suggesting that these are components of the venom. These putative toxins had different evolutionary relationships with those reported for some front-fanged snakes, being SVMP, SVSP and CRISP of P. chamissonis closely related to the toxins present in Elapidae species, while NP was more related to those of Viperidae species. In addition, analyses suggest that the α and β subunits of CLP of P. chamissonis might have a α-subunit scaffold in common with Viperidae species, whose highly variable C-terminal region might have allowed the diversification in α and β subunits. Our results provide the first molecular description of the toxins possibly implicated in the envenomation of prey and humans by the bite of P. chamissonis. PMID:26410112

  16. Identification and characterization of B-cell epitopes of 3FTx and PLA(2) toxins from Micrurus corallinus snake venom.

    PubMed

    Castro, K L; Duarte, C G; Ramos, H R; Machado de Avila, R A; Schneider, F S; Oliveira, D; Freitas, C F; Kalapothakis, E; Ho, P L; Chávez-Olortegui, C

    2015-01-01

    The main goal of this work was to develop a strategy to identify B-cell epitopes on four different three finger toxins (3FTX) and one phospholipase A2 (PLA2) from Micrurus corallinus snake venom. 3FTx and PLA2 are highly abundant components in Elapidic venoms and are the major responsibles for the toxicity observed in envenomation by coral snakes. Overlapping peptides from the sequence of each toxin were prepared by SPOT method and three different anti-elapidic sera were used to map the epitopes. After immunogenicity analysis of the spot-reactive peptides by EPITOPIA, a computational method, nine sequences from the five toxins were chemically synthesized and antigenically and immunogenically characterized. All the peptides were used together as immunogens in rabbits, delivered with Freund's adjuvant for a first cycle of immunization and Montanide in the second. A good antibody response against individual synthetic peptides and M. corallinus venom was achieved. Anti-peptide IgGs were also cross-reactive against Micrurus frontalis and Micrurus lemniscatus crude venoms. In addition, anti-peptide IgGs inhibits the lethal and phospholipasic activities of M. corallinus crude venom. Our results provide a rational basis to the identification of neutralizing epitopes on coral snake toxins and show that their corresponding synthetic peptides could improve the generation of immuno-therapeutics. The use of synthetic peptide for immunization is a reasonable approach, since it enables poly-specificity, low risk of toxic effects and large scale production. PMID:25454319

  17. δ-Ctenitoxin-Pn1a, a Peptide from Phoneutria nigriventer Spider Venom, Shows Antinociceptive Effect Involving Opioid and Cannabinoid Systems, in Rats.

    PubMed

    Emerich, Bruna Luiza; Ferreira, Renata C M; Cordeiro, Marta N; Borges, Márcia Helena; Pimenta, Adriano M C; Figueiredo, Suely G; Duarte, Igor Dimitri G; de Lima, Maria Elena

    2016-04-01

    PnTx4(6-1), henceforth renamed δ-Ctenitoxin-Pn1a (δ-CNTX-Pn1a), a peptide from Phoneutria nigriventer spider venom, initially described as an insect toxin, binds to site 3 of sodium channels in nerve cord synaptosomes and slows down sodium current inactivation in isolated axons in cockroaches (Periplaneta americana). δ-CNTX-Pn1a does not cause any apparent toxicity to mice, when intracerebroventricularly injected (30 μg). In this study, we evaluated the antinociceptive effect of δ-CNTX-Pn1a in three animal pain models and investigated its mechanism of action in acute pain. In the inflammatory pain model, induced by carrageenan, δ-CNTX-Pn1a restored the nociceptive threshold of rats, when intraplantarly injected, 2 h and 30 min after carrageenan administration. Concerning the neuropathic pain model, δ-CNTX-Pn1a, when intrathecally administered, reversed the hyperalgesia evoked by sciatic nerve constriction. In the acute pain model, induced by prostaglandin E₂, intrathecal administration of δ-CNTX-Pn1a caused a dose-dependent antinociceptive effect. Using antagonists of the receptors, we showed that the antinociceptive effect of δ-CNTX-Pn1a involves both the cannabinoid system, through CB₁ receptors, and the opioid system, through μ and δ receptors. Our data show, for the first time, that δ-Ctenitoxin-Pn1a is able to induce antinociception in inflammatory, neuropathic and acute pain models. PMID:27077886

  18. δ-Ctenitoxin-Pn1a, a Peptide from Phoneutria nigriventer Spider Venom, Shows Antinociceptive Effect Involving Opioid and Cannabinoid Systems, in Rats

    PubMed Central

    Emerich, Bruna Luiza; Ferreira, Renata C. M.; Cordeiro, Marta N.; Borges, Márcia Helena; Pimenta, Adriano M. C.; Figueiredo, Suely G.; Duarte, Igor Dimitri G.; de Lima, Maria Elena

    2016-01-01

    PnTx4(6-1), henceforth renamed δ-Ctenitoxin-Pn1a (δ-CNTX-Pn1a), a peptide from Phoneutria nigriventer spider venom, initially described as an insect toxin, binds to site 3 of sodium channels in nerve cord synaptosomes and slows down sodium current inactivation in isolated axons in cockroaches (Periplaneta americana). δ-CNTX-Pn1a does not cause any apparent toxicity to mice, when intracerebroventricularly injected (30 μg). In this study, we evaluated the antinociceptive effect of δ-CNTX-Pn1a in three animal pain models and investigated its mechanism of action in acute pain. In the inflammatory pain model, induced by carrageenan, δ-CNTX-Pn1a restored the nociceptive threshold of rats, when intraplantarly injected, 2 h and 30 min after carrageenan administration. Concerning the neuropathic pain model, δ-CNTX-Pn1a, when intrathecally administered, reversed the hyperalgesia evoked by sciatic nerve constriction. In the acute pain model, induced by prostaglandin E2, intrathecal administration of δ-CNTX-Pn1a caused a dose-dependent antinociceptive effect. Using antagonists of the receptors, we showed that the antinociceptive effect of δ-CNTX-Pn1a involves both the cannabinoid system, through CB1 receptors, and the opioid system, through μ and δ receptors. Our data show, for the first time, that δ-Ctenitoxin-Pn1a is able to induce antinociception in inflammatory, neuropathic and acute pain models. PMID:27077886

  19. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution.

    PubMed

    Modahl, Cassandra M; Mackessy, Stephen P

    2016-06-01

    Envenomation of humans by snakes is a complex and continuously evolving medical emergency, and treatment is made that much more difficult by the diverse biochemical composition of many venoms. Venomous snakes and their venoms also provide models for the study of molecular evolutionary processes leading to adaptation and genotype-phenotype relationships. To compare venom complexity and protein sequences, venom gland transcriptomes are assembled, which usually requires the sacrifice of snakes for tissue. However, toxin transcripts are also present in venoms, offering the possibility of obtaining cDNA sequences directly from venom. This study provides evidence that unknown full-length venom protein transcripts can be obtained from the venoms of multiple species from all major venomous snake families. These unknown venom protein cDNAs are obtained by the use of primers designed from conserved signal peptide sequences within each venom protein superfamily. This technique was used to assemble a partial venom gland transcriptome for the Middle American Rattlesnake (Crotalus simus tzabcan) by amplifying sequences for phospholipases A2, serine proteases, C-lectins, and metalloproteinases from within venom. Phospholipase A2 sequences were also recovered from the venoms of several rattlesnakes and an elapid snake (Pseudechis porphyriacus), and three-finger toxin sequences were recovered from multiple rear-fanged snake species, demonstrating that the three major clades of advanced snakes (Elapidae, Viperidae, Colubridae) have stable mRNA present in their venoms. These cDNA sequences from venom were then used to explore potential activities derived from protein sequence similarities and evolutionary histories within these large multigene superfamilies. Venom-derived sequences can also be used to aid in characterizing venoms that lack proteomic profiles and identify sequence characteristics indicating specific envenomation profiles. This approach, requiring only venom, provides

  20. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution

    PubMed Central

    Modahl, Cassandra M.; Mackessy, Stephen P.

    2016-01-01

    Envenomation of humans by snakes is a complex and continuously evolving medical emergency, and treatment is made that much more difficult by the diverse biochemical composition of many venoms. Venomous snakes and their venoms also provide models for the study of molecular evolutionary processes leading to adaptation and genotype-phenotype relationships. To compare venom complexity and protein sequences, venom gland transcriptomes are assembled, which usually requires the sacrifice of snakes for tissue. However, toxin transcripts are also present in venoms, offering the possibility of obtaining cDNA sequences directly from venom. This study provides evidence that unknown full-length venom protein transcripts can be obtained from the venoms of multiple species from all major venomous snake families. These unknown venom protein cDNAs are obtained by the use of primers designed from conserved signal peptide sequences within each venom protein superfamily. This technique was used to assemble a partial venom gland transcriptome for the Middle American Rattlesnake (Crotalus simus tzabcan) by amplifying sequences for phospholipases A2, serine proteases, C-lectins, and metalloproteinases from within venom. Phospholipase A2 sequences were also recovered from the venoms of several rattlesnakes and an elapid snake (Pseudechis porphyriacus), and three-finger toxin sequences were recovered from multiple rear-fanged snake species, demonstrating that the three major clades of advanced snakes (Elapidae, Viperidae, Colubridae) have stable mRNA present in their venoms. These cDNA sequences from venom were then used to explore potential activities derived from protein sequence similarities and evolutionary histories within these large multigene superfamilies. Venom-derived sequences can also be used to aid in characterizing venoms that lack proteomic profiles and identify sequence characteristics indicating specific envenomation profiles. This approach, requiring only venom, provides

  1. Proteomic and Glycoproteomic Profilings Reveal That Post-translational Modifications of Toxins Contribute to Venom Phenotype in Snakes.

    PubMed

    Andrade-Silva, Débora; Zelanis, André; Kitano, Eduardo S; Junqueira-de-Azevedo, Inácio L M; Reis, Marcelo S; Lopes, Aline S; Serrano, Solange M T

    2016-08-01

    Snake venoms are biological weapon systems composed of secreted proteins and peptides that are used for immobilizing or killing prey. Although post-translational modifications are widely investigated because of their importance in many biological phenomena, we currently still have little understanding of how protein glycosylation impacts the variation and stability of venom proteomes. To address these issues, here we characterized the venom proteomes of seven Bothrops snakes using a shotgun proteomics strategy. Moreover, we compared the electrophoretic profiles of native and deglycosylated venoms and, in order to assess their subproteomes of glycoproteins, we identified the proteins with affinity for three lectins with different saccharide specificities and their putative glycosylation sites. As proteinases are abundant glycosylated toxins, we examined the effect of N-deglycosylation on their catalytic activities and show that the proteinases of the seven venoms were similarly affected by removal of N-glycans. Moreover, we prospected putative glycosylation sites of transcripts of a B. jararaca venom gland data set and detected toxin family related patterns of glycosylation. Based on our global analysis, we report that Bothrops venom proteomes and glycoproteomes contain a core of components that markedly define their composition, which is conserved upon evolution in parallel to other molecular markers that determine their phylogenetic classification. PMID:27297130

  2. Venom Proteomics of Indonesian King Cobra, Ophiophagus hannah: Integrating Top-Down and Bottom-Up Approaches.

    PubMed

    Petras, Daniel; Heiss, Paul; Süssmuth, Roderich D; Calvete, Juan J

    2015-06-01

    We report on the first application of top-down mass spectrometry in snake venomics. De novo sequence tags generated by, and ProSight Lite supported analysis of, combined collisional based dissotiations (CID and HCD) recorded in a hybrid LTQ Orbitrap instrument in data-dependent mode identified a number of proteins from different toxin families, namely, 11 three-finger toxins (7-7.9 kDa), a Kunitz-type inhibitor (6.3 kDa), ohanin (11.9 kDa), a novel phospholipase A2 molecule (13.8 kDa), and the cysteine-rich secretory protein (CRISP) ophanin (25 kDa) from Indonesian king cobra venom. Complementary bottom-up MS/MS analyses contributed to the completion of a locus-resolved venom phenotypic map for Ophiophagus hannah, the world's longest venomous snake and a species of medical concern across its wide distribution range in forests from India to Southeast Asia. Its venom composition, comprising 32-35 proteins/peptides from 10 protein families, is dominated by α-neurotoxins and convincingly explains the main neurotoxic effects of human envenoming caused by king cobra bite. The integration of efficient chromatographic separation of the venom's components and locus-resolved toxin identification through top-down and bottom-up MS/MS-based species-specific database searching and de novo sequencing holds promise that the future will be bright for the field of venom research. PMID:25896403

  3. Development of an ELISA to assess the potency of horse therapeutic antivenom against Thai cobra venom.

    PubMed

    Rungsiwongse, J; Ratanabanangkoon, K

    1991-01-24

    An ELISA for the quantitation of antibodies against Naja naja siamensis venom proteins has been developed for use as a possible replacement for the in vivo neutralization assay of antivenom potency. Comparison was made with three preparations of venom proteins as antigens of ELISA: these were the crude venom, a toxin fraction and the purified principle postsynaptic neurotoxin of the Thai cobra. Eight batches of horse monovalent therapeutic anti-cobra antivenom, one of which served as positive reference, were assayed by the ELISAs and also by the in vivo neutralization assay using mice. When crude venom, the toxin fraction and the pure neurotoxin were used as antigens in the ELISAs, the correlation coefficients between the ELISA antibody titers and in vivo neutralization of the antivenoms were 0.82 (P less than 0.005), 0.94 (P less than 0.001) and 0.95 (P less than 0.001), respectively. Thus, the ELISA which measures only the antibody against the principle toxin of the snake venom should be most suitable for use as an in vitro assay of antivenom potency. The ELISA should also be useful for potency assessment and standardization of antivenoms against other elapid snake venoms whose lethal components are small, poorly immunogenic peptides. PMID:1995711

  4. Snake venom toxins. The amino-acid sequence of a short-neurotoxin homologue from Dendroaspis polylepis polylepis (black mamba) venom.

    PubMed

    Strydom, D J

    1977-06-01

    The third most abundant component of black mamba venom, named FS2, was sequenced with the aid of sequenator studies and peptides derived by tryptic and chymotryptic digestion. Cyanogen bromide digests provided extra information to support the proposed structure. This protein is a homologue of the short neurotoxins of snake venom, but is much less toxic. Its structure is quite different from both neurotoxins and the other mamba proteins, called angusticeps types (neurotoxin homologues). Comparison of the known angusticeps-type toxins from mamba venom with mamba neurotoxins and each other leads to proposals that these proteins of low toxicity are inventions of the group of mambas and that three different, as yet unknown, functions will be associated with the three subgroups that are discernable. PMID:880951

  5. Snake venomics of the Lesser Antillean pit vipers Bothrops caribbaeus and Bothrops lanceolatus: correlation with toxicological activities and immunoreactivity of a heterologous antivenom.

    PubMed

    Gutiérrez, José María; Sanz, Libia; Escolano, José; Fernández, Julián; Lomonte, Bruno; Angulo, Yamileth; Rucavado, Alexandra; Warrell, David A; Calvete, Juan J

    2008-10-01

    The venom proteomes of the snakes Bothrops caribbaeus and Bothrops lanceolatus, endemic to the Lesser Antillean islands of Saint Lucia and Martinique, respectively, were characterized by reverse-phase HPLC fractionation, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The venoms contain proteins belonging to seven ( B. caribbaeus) and five ( B. lanceolatus) types of toxins. B. caribbaeus and B. lanceolatus venoms contain phospholipases A 2, serine proteinases, l-amino acid oxidases and zinc-dependent metalloproteinases, whereas a long disintegrin, DC-fragments and a CRISP molecule were present only in the venom of B. caribbaeus, and a C-type lectin-like molecule was characterized in the venom of B. lanceolatus. Compositional differences between venoms among closely related species from different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. The venoms of these two species differed in the composition and the relative abundance of their component toxins, but they exhibited similar toxicological and enzymatic profiles in mice, characterized by lethal, hemorrhagic, edema-forming, phospholipase A 2 and proteolytic activities. The venoms of B. caribbaeus and B. lanceolatus are devoid of coagulant and defibrinogenating effects and induce only mild local myotoxicity in mice. The characteristic thrombotic effect described in human envenomings by these species was not reproduced in the mouse model. The toxicological profile observed is consistent with the abundance of metalloproteinases, PLA 2s and serine proteinases in the venoms. A polyvalent (Crotalinae) antivenom produced in Costa Rica was able to immunodeplete approximately 80% of the proteins from both B. caribbaeus and B. lanceolatus venoms, and was effective in neutralizing the lethal, hemorrhagic, phospholipase

  6. Snake venom derived molecules in tumor angiogenesis and its application in cancer therapy; an overview.

    PubMed

    Dhananjaya, B L; Sivashankari, P R

    2015-01-01

    Snake venom is a complex mixture of biologically and pharmacologically active components, comprising hydrolytic enzymes, non-enzymatic proteins/peptides, and small amounts of organic and inorganic molecules. The venom components are known to vary with geographic location, season, species and age of the snakes. The role of the venom in the snake is not primarily for self-defense, but in prey immobilization and its subsequent digestion. Hence, several digestive enzymes in venoms, in addition to their hydrolytic activity have evolved to interfere in diverse physiological processes that help in the immobilization of prey/victim. As snake components are capable of modulating the physiological response of envenomated prey/victim, they show promise as potential pharmacological tools, as drug leads and in diagnostic applications. This, in a practical sense to be a reality has to be linked to the advances in toxinology that provide investigators with an understanding of the pharmacodynamics of toxins together with improved understanding of the etiology of many human diseases and identification of potential sites for therapeutic intervention. This review aims at providing an overview on snake venom toxins and their derivatives that have potential anti-angiogenic effects for cancer treatment. Some of the anti-angiogenic components of snake venom like Snake venom metalloproteinases (SVMPs), Disintegrins, Phospholipases A2 (PLA2), CType Lectins (CLP), Vascular Apoptosis inducing Proteins (VAP) and L-Amino Acid Oxidases (LAAO) are discussed. This review aims at giving an overall view of these molecules and their mechanism of action as an effective antiangiogenic agent towards the treatment of cancer. PMID:25714377

  7. Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom.

    PubMed

    El Chamy Maluf, S; Dal Mas, C; Oliveira, E B; Melo, P M; Carmona, A K; Gazarini, M L; Hayashi, M A F

    2016-04-01

    We show here that crotamine, a polypeptide from the South American rattlesnake venom with cell penetrating and selective anti-fungal and anti-tumoral properties, presents a potent anti-plasmodial activity in culture. Crotamine inhibits the development of the Plasmodium falciparum parasites in a dose-dependent manner [IC50 value of 1.87 μM], and confocal microscopy analysis showed a selective internalization of fluorescent-labeled crotamine into P. falciparum infected erythrocytes, with no detectable fluorescence in uninfected healthy erythrocytes. In addition, similarly to the crotamine cytotoxic effects, the mechanism underlying the anti-plasmodial activity may involve the disruption of parasite acidic compartments H(+) homeostasis. In fact, crotamine promoted a reduction of parasites organelle fluorescence loaded with the lysosomotropic fluorochrome acridine orange, in the same way as previously observed mammalian tumoral cells. Taken together, we show for the first time crotamine not only compromised the metabolism of the P. falciparum, but this toxin also inhibited the parasite growth. Therefore, we suggest this snake polypeptide as a promising lead molecule for the development of potential new molecules, namely peptidomimetics, with selectivity for infected erythrocytes and ability to inhibit the malaria infection by its natural affinity for acid vesicles. PMID:26806200

  8. Purification and characterization of a metalloproteinase, Porthidin-1, from the venom of Lansberg's hog-nosed pitvipers (Porthidium lansbergii hutmanni).

    PubMed

    Girón, María E; Estrella, Amalid; Sánchez, Elda E; Galán, Jacob; Tao, W Andy; Guerrero, Belsy; Salazar, Ana M; Rodríguez-Acosta, Alexis

    2011-03-15

    Porthidium lansbergii hutmanni is a small pit viper found on Margarita Island, Venezuela. Local tissue damage is one of the most obvious characteristics of P. l. hutmanni envenomation, which can lead to diverse pathological effects, such as hemorrhage, edema, blistering, necrosis, lymphatic vessel damage and degradation of extracellular matrix. Metalloproteinases are one of the major components in venoms responsible for these effects. To date, very little is known or has been reported on P. l. hutmanni venom. Crude P. l. hutmanni venom had a LD(50) of 2.5 mg/kg and was considered very hemorrhagic (minimal hemorrhagic dose [MHD]: 0.98 μg) when compared to other hemorrhagic (Bothrops) venoms in Venezuela. Crude P. l. hutmanni venom also inhibited ADP-induced platelet aggregation. A metalloproteinase, Porthidin-1, from this venom was isolated by three chromatography steps (Sephadex G100, Superose 12 HR10/30 and Bioscale Q2). Porthidin-1 falls in the SVMP P-I class having a molecular weight of 23 kDa, verified by both SDS-PAGE and mass spectrometry. High-resolution mass spectrometry and a database search identified a peptide from Porthidin-1 (YNGDLDK) belonging to the SVMP family of proteins. Porthidin-1 contained hemorrhagic, fibrino(geno)lytic, caseinolytic and gelatinolytic activities, and these activities were capable of being neutralized by metalloproteinase inhibitors but not serine proteinase inhibitors. The peptide YNGDLDK shared similarities with five venom proteins with a BLAST e-value of <1. This work details the biochemical and pathophysiological effects that can result from envenomations, and highlights the importance and significance for characterizing unknown or poorly documented venoms from different geographical regions. PMID:21255600

  9. Transcriptomic analysis of the venom gland of the red-headed krait (Bungarus flaviceps) using expressed sequence tags

    PubMed Central

    2010-01-01

    Background The Red-headed krait (Bungarus flaviceps, Squamata: Serpentes: Elapidae) is a medically important venomous snake that inhabits South-East Asia. Although the venoms of most species of the snake genus Bungarus have been well characterized, a detailed compositional analysis of B. flaviceps is currently lacking. Results Here, we have sequenced 845 expressed sequence tags (ESTs) from the venom gland of a B. flaviceps. Of the transcripts, 74.8% were putative toxins; 20.6% were cellular; and 4.6% were unknown. The main venom protein families identified were three-finger toxins (3FTxs), Kunitz-type serine protease inhibitors (including chain B of β-bungarotoxin), phospholipase A2 (including chain A of β-bungarotoxin), natriuretic peptide (NP), CRISPs, and C-type lectin. Conclusion The 3FTxs were found to be the major component of the venom (39%). We found eight groups of unique 3FTxs and most of them were different from the well-characterized 3FTxs. We found three groups of Kunitz-type serine protease inhibitors (SPIs); one group was comparable to the classical SPIs and the other two groups to chain B of β-bungarotoxins (with or without the extra cysteine) based on sequence identity. The latter group may be functional equivalents of dendrotoxins in Bungarus venoms. The natriuretic peptide (NP) found is the first NP for any Asian elapid, and distantly related to Australian elapid NPs. Our study identifies several unique toxins in B. flaviceps venom, which may help in understanding the evolution of venom toxins and the pathophysiological symptoms induced after envenomation. PMID:20350308

  10. The Biochemical Toxin Arsenal from Ant Venoms

    PubMed Central

    Touchard, Axel; Aili, Samira R.; Fox, Eduardo Gonçalves Paterson; Escoubas, Pierre; Orivel, Jérôme; Nicholson, Graham M.; Dejean, Alain

    2016-01-01

    Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents. PMID:26805882

  11. The Biochemical Toxin Arsenal from Ant Venoms.

    PubMed

    Touchard, Axel; Aili, Samira R; Fox, Eduardo Gonçalves Paterson; Escoubas, Pierre; Orivel, Jérôme; Nicholson, Graham M; Dejean, Alain

    2016-01-01

    Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents. PMID:26805882

  12. Venom proteomes of South and North American opisthoglyphous (Colubridae and Dipsadidae) snake species: a preliminary approach to understanding their biological roles.

    PubMed

    Peichoto, María E; Tavares, Flávio L; Santoro, Marcelo L; Mackessy, Stephen P

    2012-12-01

    Opisthoglyphous snake venoms remain under-explored despite being promising sources for ecological, evolutionary and biomedical/biotechnological research. Herein, we compared the protein composition and enzymatic properties of the venoms of Philodryas baroni (PbV), Philodryas olfersii olfersii (PooV) and Philodryas patagoniensis (PpV) from South America, and Hypsiglena torquata texana (HttV) and Trimorphodon biscutatus lambda (TblV) from North America. All venoms degraded azocasein, and this metalloproteinase activity was significantly inhibited by EDTA. PooV exhibited the highest level of catalytic activity towards synthetic substrates for serine proteinases. All venoms hydrolyzed acetylthiocholine at low levels, and only TblV showed phospholipase A(2) activity. 1D and 2D SDS-PAGE profile comparisons demonstrated species-specific components as well as several shared components. Size exclusion chromatograms from the three Philodryas venoms and HttV were similar, but TblV showed a notably different pattern. MALDI-TOF MS of crude venoms revealed as many as 49 distinct protein masses, assigned to six protein families. MALDI-TOF/TOF MS analysis of tryptic peptides confirmed the presence of cysteine-rich secretory proteins in all venoms, as well as a phospholipase A(2) and a three-finger toxin in TblV. Broad patterns of protein composition appear to follow phylogenetic lines, with finer scale variation likely influenced by ecological factors such as diet and habitat. PMID:22974712

  13. Identification of cDNAs encoding viper venom hyaluronidases: cross-generic sequence conservation of full-length and unusually short variant transcripts.

    PubMed

    Harrison, Robert A; Ibison, Frances; Wilbraham, Davina; Wagstaff, Simon C

    2007-05-01

    The immobilisation of prey by snakes is most efficiently achieved by the rapid dissemination of venom from its site of injection into the blood stream. Hyaluronidase is a common component of snake venoms and has been termed the "venom spreading factor". In the absence of nucleotide or protein sequence data to confirm the functional identity of this venom component, we interrogated a venom gland EST database for the saw-scaled viper, Echis ocellatus (Nigeria), using the gene ontology (GO) term "carbohydrate metabolism". A single hyalurononglucosaminadase-activity matching sequence (EOC00242) was found and used to design PCR primers to acquire the full-length cDNA sequence. Although very different from the bee venom and mammalian hyaluronidase sequences, the E. ocellatus sequence retained all the catalytic, positional and structural residues that characterise this class of carbohydrate metabolising hydrolases. An extraordinarily high level of sequence identity (>95%) was observed in analogous venom gland cDNA sequences isolated (by PCR) from another saw-scaled viper species, E. pyramidum leakeyi (Kenya), and from the sahara horned viper, Cerastes cerastes cerastes (Egypt) and the puff adder, Bitis arietans (Nigeria). Smaller amplicons, lacking hyaluronidase catalytic residues because of 768 bp or 855 bp central deletions, appear to encode either truncated peptides without hyaluronidase activity, or are non-translated transcripts because they lack consensus translation initiating motifs. PMID:17210232

  14. Characterization of the gene encoding component C3 of the complement system from the spider Loxosceles laeta venom glands: Phylogenetic implications.

    PubMed

    Myamoto, D T; Pidde-Queiroz, G; Pedroso, A; Gonçalves-de-Andrade, R M; van den Berg, C W; Tambourgi, D V

    2016-09-01

    A transcriptome analysis of the venom glands of the spider Loxosceles laeta, performed by our group, in a previous study (Fernandes-Pedrosa et al., 2008), revealed a transcript with a sequence similar to the human complement component C3. Here we present the analysis of this transcript. cDNA fragments encoding the C3 homologue (Lox-C3) were amplified from total RNA isolated from the venom glands of L. laeta by RACE-PCR. Lox-C3 is a 5178 bps cDNA sequence encoding a 190kDa protein, with a domain configuration similar to human C3. Multiple alignments of C3-like proteins revealed two processing sites, suggesting that Lox-C3 is composed of three chains. Furthermore, the amino acids consensus sequences for the thioester was found, in addition to putative sequences responsible for FB binding. The phylogenetic analysis showed that Lox-C3 belongs to the same group as two C3 isoforms from the spider Hasarius adansoni (Family Salcitidae), showing 53% homology with these. This is the first characterization of a Loxosceles cDNA sequence encoding a human C3 homologue, and this finding, together with our previous finding of the expression of a FB-like molecule, suggests that this spider species also has a complement system. This work will help to improve our understanding of the innate immune system in these spiders and the ancestral structure of C3. PMID:27259372

  15. Thrombin enhances the adhesion and migration of human colon adenocarcinoma cells via increased beta 3-integrin expression on the tumour cell surface and their inhibition by the snake venom peptide, rhodostomin.

    PubMed Central

    Chiang, H. S.; Yang, R. S.; Huang, T. F.

    1996-01-01

    The interactions between tumour cells and the microvasculature, including the adhesion of tumour cells to endothelium and extracellular matrix (ECM) as well as their migratory ability, are prerequisites for metastasis to occur. In this study we showed that thrombin is capable of enhancing in vitro tumour cell metastatic potential in terms of adhesive properties and migratory response. Following exposure to subclotting concentrations of thrombin, SW-480 human colon adenocarcinoma cells exhibited increased adhesion to both the endothelium and ECM component (i.e. fibronectin). Likewise, the pretreatment of thrombin enhanced the migratory ability of SW-480 cells. The enhanced adhesion was significantly inhibited by complexing of thrombin with its inhibitor hirudin, or by serine proteinase inhibition with 3,4-DCI, but was unaffected by pretreatment of tumour cells with actinomycin D or cycloheximide. The effect of thrombin resulted in an upregulated cell-surface expression of beta 3 integrins, a group of receptors mediating interactions between tumour cells and endothelial cells, and between tumour cells and ECM. Antibodies against beta 3 integrins effectively blocked both the enhanced adhesion and migration. This thrombin-mediated up-regulation of beta 3 integrins involved the activation of protein kinase C (PKC) as thrombin-enhanced adhesion was diminished by PKC inhibition. Rhodostomin, an Arg-Gly-Asp-containing antiplatelet snake venom peptide that antagonises the binding of ECM toward beta 3 integrins on SW-480 cells, was about 600 and 500 times, more potent that RGDS in inhibiting thrombin-enhanced adhesion and migration respectively. Our data suggest that PKC inhibitors as well as rhodostomin may serve as inhibitory agents in the prevention of thrombin-enhanced metastasis. PMID:8611404

  16. Cloning and sequence analysis of an Ophiophagus hannah cDNA encoding a precursor of two natriuretic peptide domains.

    PubMed

    Lei, Weiwei; Zhang, Yong; Yu, Guoyu; Jiang, Ping; He, Yingying; Lee, Wenhui; Zhang, Yun

    2011-04-01

    The king cobra (Ophiophagus hannah) is the largest venomous snake. Despite the components are mainly neurotoxins, the venom contains several proteins affecting blood system. Natriuretic peptide (NP), one of the important components of snake venoms, could cause local vasodilatation and a promoted capillary permeability facilitating a rapid diffusion of other toxins into the prey tissues. Due to the low abundance, it is hard to purify the snake venom NPs. The cDNA cloning of the NPs become a useful approach. In this study, a 957 bp natriuretic peptide-encoding cDNA clone was isolated from an O. hannah venom gland cDNA library. The open-reading frame of the cDNA encodes a 210-amino acid residues precursor protein named Oh-NP. Oh-NP has a typical signal peptide sequence of 26 amino acid residues. Surprisingly, Oh-NP has two typical NP domains which consist of the typical sequence of 17-residue loop of CFGXXDRIGC, so it is an unusual NP precursor. These two NP domains share high amino acid sequence identity. In addition, there are two homologous peptides of unknown function within the Oh-NP precursor. To our knowledge, Oh-NP is the first protein precursor containing two NP domains. It might belong to another subclass of snake venom NPs. PMID:21334357

  17. Extracellular Caspase-8 Dependent Apoptosis on HeLa Cancer Cells and MRC-5 Normal Cells by ICD-85 (Venom Derived Peptides)

    PubMed Central

    Zare-Mirakabadi, Abbas; Sarzaeem, Ali

    2012-01-01

    Background Our previous studies revealed an inhibitory effect of ICD-85 (venom derived peptides) on MDA-MB231 and HL-60 cell lines, through induction of apoptosis. The purpose of this study was to investigate apoptosis-induced mechanism on HeLa and MRC-5 cells by ICD-85 through activation of caspase-8. Methods Cell viability, cytosolic enzyme Lactate Dehydrogenase (LDH) and cell morphology were assessed under unexposed and ICD-85 exposed conditions.Caspase-8 activity was assayed by caspase-8 colorimetric assay Kit. Results The results show that Inhibitory Concentration 50% (IC50) value of ICD-85 for HeLa cells at 24 h was estimated and found to be 25.32±2.15 µg/mL. Furthermore, treatment of HeLa cells with ICD-85 at concentrations of 1.6×10 and 2.6×10 µg/mL did not significantly increase LDH release. Morphological changes in HeLa cells on treatment with ICD-85 compared with untreated HeLa cells consistent with an apoptotic mechanism of cell death, such as cell shrinkage which finally results in the generation of apoptotic bodies. However, when MRC-5 cells were exposed to ICD-85, no significant changes in cell morphology and LDH were observed at concentrations below 2.6×10µg/ml. Also, the apoptosis-induction mechanism by ICD-85 on HeLa cells was found through activation of caspase-8 and the activity of caspase-8 in HeLa cells was 1.5 folds more than its activity on MRC-5 cells. Conclusion Therefore, the apoptosis-induced mechanisms by ICD-85 are through activation of caspase-8 and concerning the least cytotoxic effect on MRC-5 cells, ICD-85 may be used as anticancer compound to inhibit growth of cancer cells. PMID:25352970

  18. Centipede Venom: Recent Discoveries and Current State of Knowledge

    PubMed Central

    Undheim, Eivind A. B.; Fry, Bryan G.; King, Glenn F.

    2015-01-01

    Centipedes are among the oldest extant venomous predators on the planet. Armed with a pair of modified, venom-bearing limbs, they are an important group of predatory arthropods and are infamous for their ability to deliver painful stings. Despite this, very little is known about centipede venom and its composition. Advances in analytical tools, however, have recently provided the first detailed insights into the composition and evolution of centipede venoms. This has revealed that centipede venom proteins are highly diverse, with 61 phylogenetically distinct venom protein and peptide families. A number of these have been convergently recruited into the venoms of other animals, providing valuable information on potential underlying causes of the occasionally serious complications arising from human centipede envenomations. However, the majority of venom protein and peptide families bear no resemblance to any characterised protein or peptide family, highlighting the novelty of centipede venoms. This review highlights recent discoveries and summarises the current state of knowledge on the fascinating venom system of centipedes. PMID:25723324

  19. Centipede venom: recent discoveries and current state of knowledge.

    PubMed

    Undheim, Eivind A B; Fry, Bryan G; King, Glenn F

    2015-03-01

    Centipedes are among the oldest extant venomous predators on the planet. Armed with a pair of modified, venom-bearing limbs, they are an important group of predatory arthropods and are infamous for their ability to deliver painful stings. Despite this, very little is known about centipede venom and its composition. Advances in analytical tools, however, have recently provided the first detailed insights into the composition and evolution of centipede venoms. This has revealed that centipede venom proteins are highly diverse, with 61 phylogenetically distinct venom protein and peptide families. A number of these have been convergently recruited into the venoms of other animals, providing valuable information on potential underlying causes of the occasionally serious complications arising from human centipede envenomations. However, the majority of venom protein and peptide families bear no resemblance to any characterised protein or peptide family, highlighting the novelty of centipede venoms. This review highlights recent discoveries and summarises the current state of knowledge on the fascinating venom system of centipedes. PMID:25723324

  20. Venom: the sharp end of pain therapeutics

    PubMed Central

    Trim, Carol M

    2013-01-01

    Adequate pain control is still a significant challenge and largely unmet medical need in the 21st century. With many small molecules failing to reach required levels of potency and selectivity, drug discovery is once again turning to nature to replenish pain therapeutic pipelines. Venomous animals are frequently stereotyped as inflictors of pain and distress and have historically been vilified by mankind. Yet, ironically, the very venoms that cause pain when directly injected by the host animal may actually turn out to contain the next generation of analgesics when injected by the clinician. The last 12 months have seen dramatic discoveries of analgesic tools within venoms. Spiders, snakes and even centipedes are yielding peptides with immense therapeutic potential. Significant advances are also taking place in delivery methods that can improve bioavailability and pharmacokinetics of these exciting natural resources. Turning proteinaceous venom into pharmaceutical liquid gold is the goal of venomics and the focus of this article. PMID:26516522

  1. Snake venomics and antivenomics of Bothrops colombiensis, a medically important pitviper of the Bothrops atrox-asper complex endemic to Venezuela: Contributing to its taxonomy and snakebite management.

    PubMed

    Calvete, Juan J; Borges, Adolfo; Segura, Alvaro; Flores-Díaz, Marietta; Alape-Girón, Alberto; Gutiérrez, José María; Diez, Nardy; De Sousa, Leonardo; Kiriakos, Demetrio; Sánchez, Eladio; Faks, José G; Escolano, José; Sanz, Libia

    2009-03-01

    view and suggests the possibility of indistinctly using these antivenoms for the management of snakebites by any of these Bothrops species. However, our analyses also evidenced the limited recognition capability or avidity of these antivenoms towards a number of B. colombiensis and B. asper venom components, most notably medium-size disintegrins, bradykinin-potentiating peptides, PLA(2) proteins, and PI Zn(2+)-metalloproteinases. PMID:19457355

  2. Colubrid Venom Composition: An -Omics Perspective

    PubMed Central

    Junqueira-de-Azevedo, Inácio L. M.; Campos, Pollyanna F.; Ching, Ana T. C.; Mackessy, Stephen P.

    2016-01-01

    Snake venoms have been subjected to increasingly sensitive analyses for well over 100 years, but most research has been restricted to front-fanged snakes, which actually represent a relatively small proportion of extant species of advanced snakes. Because rear-fanged snakes are a diverse and distinct radiation of the advanced snakes, understanding venom composition among “colubrids” is critical to understanding the evolution of venom among snakes. Here we review the state of knowledge concerning rear-fanged snake venom composition, emphasizing those toxins for which protein or transcript sequences are available. We have also added new transcriptome-based data on venoms of three species of rear-fanged snakes. Based on this compilation, it is apparent that several components, including cysteine-rich secretory proteins (CRiSPs), C-type lectins (CTLs), CTLs-like proteins and snake venom metalloproteinases (SVMPs), are broadly distributed among “colubrid” venoms, while others, notably three-finger toxins (3FTxs), appear nearly restricted to the Colubridae (sensu stricto). Some putative new toxins, such as snake venom matrix metalloproteinases, are in fact present in several colubrid venoms, while others are only transcribed, at lower levels. This work provides insights into the evolution of these toxin classes, but because only a small number of species have been explored, generalizations are still rather limited. It is likely that new venom protein families await discovery, particularly among those species with highly specialized diets. PMID:27455326

  3. Colubrid Venom Composition: An -Omics Perspective.

    PubMed

    Junqueira-de-Azevedo, Inácio L M; Campos, Pollyanna F; Ching, Ana T C; Mackessy, Stephen P

    2016-01-01

    Snake venoms have been subjected to increasingly sensitive analyses for well over 100 years, but most research has been restricted to front-fanged snakes, which actually represent a relatively small proportion of extant species of advanced snakes. Because rear-fanged snakes are a diverse and distinct radiation of the advanced snakes, understanding venom composition among "colubrids" is critical to understanding the evolution of venom among snakes. Here we review the state of knowledge concerning rear-fanged snake venom composition, emphasizing those toxins for which protein or transcript sequences are available. We have also added new transcriptome-based data on venoms of three species of rear-fanged snakes. Based on this compilation, it is apparent that several components, including cysteine-rich secretory proteins (CRiSPs), C-type lectins (CTLs), CTLs-like proteins and snake venom metalloproteinases (SVMPs), are broadly distributed among "colubrid" venoms, while others, notably three-finger toxins (3FTxs), appear nearly restricted to the Colubridae (sensu stricto). Some putative new toxins, such as snake venom matrix metalloproteinases, are in fact present in several colubrid venoms, while others are only transcribed, at lower levels. This work provides insights into the evolution of these toxin classes, but because only a small number of species have been explored, generalizations are still rather limited. It is likely that new venom protein families await discovery, particularly among those species with highly specialized diets. PMID:27455326

  4. Factor V Activator from Daboia russelli russelli Venom Destabilizes β-Amyloid Aggregate, the Hallmark of Alzheimer Disease*

    PubMed Central

    Bhattacharjee, Payel; Bhattacharyya, Debasish

    2013-01-01

    Formation of plaque by fibrils of β-amyloid (Aβ) peptide in the brain is the characteristic feature of Alzheimer disease (AD). Inhibition of the process of aggregate formation from Aβ-monomer and destabilization of the aggregate could be useful for prevention and propagation of the disease respectively. Russell's viper venom (RVV) contains protein(s) that destabilize Aβ aggregates as revealed from the thioflavin T assay. The active component was identified as factor V activator (RVV-V). Among the possible mechanisms of destabilization, RVV-V-mediated proteolysis was ruled out from mass spectrometric data and the thioflavin T assay. The alternate hypothesis that small peptides derived from RVV-V destabilize the aggregate is better supported by experimental results. Six small peptides were synthesized using RVV-V as the template, and three unrelated peptides were synthesized to serve as controls. Destabilization of Aβ aggregate by these peptides was studied using spectrofluorometric assays, atomic force microscopy, transmission electron microscopy, and confocal microscopy. Among the peptides, CTNIF and the mixture of the six peptides were most potent in converting the aggregates to the monomeric state and thus, preventing cytotoxicity in SH-SY5Y human neuroblastoma cells. The control peptides failed to show similar effects. Moreover, some of these peptides are stable in blood for 24 h. Therefore, these venom-derived peptides offer an encouraging opportunity to prevent amyloidosis and may provide information to combat AD. PMID:23986449

  5. Venom gland EST analysis of the saw-scaled viper, Echis ocellatus, reveals novel alpha9beta1 integrin-binding motifs in venom metalloproteinases and a new group of putative toxins, renin-like aspartic proteases.

    PubMed

    Wagstaff, Simon C; Harrison, Robert A

    2006-08-01

    Echis ocellatus is the most medically important snake in West Africa. However, the composition of its venom and the differential contribution of these venom components to the severe haemorrhagic and coagulopathic pathology of envenoming are poorly understood. To address this situation we assembled a toxin transcriptome based upon 1000 expressed sequence tags (EST) from a cDNA library constructed from pooled venom glands of 10 individual E. ocellatus. We used a variety of bioinformatic tools to construct a fully annotated venom-toxin transcriptome that was interrogated with a combination of BLAST annotation, gene ontology cataloguing and disintegrin-motif searching. The results of these analyses revealed an unusually abundant and diverse expression of snake venom metalloproteinases (SVMP) and a broad toxin-expression profile including several distinct isoforms of bradykinin-potentiating peptides, phospholipase A(2), C-type lectins, serine proteinases and l-amino oxidases. Most significantly, we identified for the first time a conserved alpha(9)beta(1) integrin-binding motif in several SVMPs, and a new group of putative venom toxins, renin-like aspartic proteases. PMID:16713134

  6. Tityus serrulatus venom--A lethal cocktail.

    PubMed

    Pucca, Manuela Berto; Cerni, Felipe Augusto; Pinheiro Junior, Ernesto Lopes; Bordon, Karla de Castro Figueiredo; Amorim, Fernanda Gobbi; Cordeiro, Francielle Almeida; Longhim, Heloisa Tavoni; Cremonez, Caroline Marroni; Oliveira, Guilherme Honda; Arantes, Eliane Candiani

    2015-12-15

    Tityus serrulatus (Ts) is the main scorpion species of medical importance in Brazil. Ts venom is composed of several compounds such as mucus, inorganic salts, lipids, amines, nucleotides, enzymes, kallikrein inhibitor, natriuretic peptide, proteins with high molecular mass, peptides, free amino acids and neurotoxins. Neurotoxins are considered the most responsible for the envenoming syndrome due to their pharmacological action on ion channels such as voltage-gated sodium (Nav) and potassium (Kv) channels. The major goal of this review is to present important advances in Ts envenoming research, correlating both the crude Ts venom and isolated toxins with alterations observed in all human systems. The most remarkable event lies in the Ts induced massive releasing of neurotransmitters influencing, directly or indirectly, the entire body. Ts venom proved to extremely affect nervous and muscular systems, to modulate the immune system, to induce cardiac disorders, to cause pulmonary edema, to decrease urinary flow and to alter endocrine, exocrine, reproductive, integumentary, skeletal and digestive functions. Therefore, Ts venom possesses toxins affecting all anatomic systems, making it a lethal cocktail. However, its low lethality may be due to the low venom mass injected, to the different venom compositions, the body characteristics and health conditions of the victim and the local of Ts sting. Furthermore, we also described the different treatments employed during envenoming cases. In particular, throughout the review, an effort will be made to provide information from an extensive documented studies concerning Ts venom in vitro, in animals and in humans (a total of 151 references). PMID:26522893

  7. PPIase is associated with the diversity of conotoxins from cone snail venom glands.

    PubMed

    Wang, Lei; Tang, Wei; Wang, Xiaomin; Chen, Yu; Wu, Yun; Qiang, Yuanyuan; Feng, Yuchao; Ren, Zhenghua; Chen, Shangwu; Xu, Anlong

    2015-05-01

    Cone snails are incredibly rich sources of bioactive conopeptides with potential for use in neuroscience research and novel drug development. In order to investigate the synthesis of diversified conopeptides in venom glands, the proteome and peptidome profiles of conus venom were analyzed using HPLC and mass spectrometry. The peptidome profile of the venom components with a molecular weight under 10 kDa showed that the peptides with unique mass values from the venom glands of Conus caracteristicus, Conus lividus and Conus textile are 188, 413 and 265, respectively, and there are 39 overlapping peptides among the three species. Proteome profiling of the components with molecular weights above 10 kDa showed that the most abundant proteins (38.6%) are involved in metabolism and that approximately 6.8% of proteins are involved in protein synthesis, folding and post-translational modification. Among these proteins, PPIase is one protein identified from C. textile based on proteomic analysis. Conus PPIase was successfully expressed as a fusion protein with TRX in an Escherichia coli expression system for further function study. In-vitro enzyme activity assays showed that cone snail PPIase could induce the cis-trans isomerization of the substrate succinyl-Ala-Ala-Pro-Phe-p-nitroanilide. The HPLC mapping analyses of linear lt14a, a conotoxin with 3 prolines, showed that different lt14a isoforms appear after incubation with PPIase. Our results suggest that PPIase may modify conotoxins containing prolines and play an important role in the process of peptide folding and modification in venom glands and contribute to conotoxin diversity. PMID:25769415

  8. SdPI, The First Functionally Characterized Kunitz-Type Trypsin Inhibitor from Scorpion Venom

    PubMed Central

    Li, Tian; He, Yawen; Ma, Yibao; Chen, Zongyun; Wu, Yingliang; Li, Wenxin; Cao, Zhijian

    2011-01-01

    Background Kunitz-type venom peptides have been isolated from a wide variety of venomous animals. They usually have protease inhibitory activity or potassium channel blocking activity, which by virtue of the effects on predator animals are essential for the survival of venomous animals. However, no Kunitz-type peptides from scorpion venom have been functionally characterized. Principal Findings A new Kunitz-type venom peptide gene precursor, SdPI, was cloned and characterized from a venom gland cDNA library of the scorpion Lychas mucronatus. It codes for a signal peptide of 21 residues and a mature peptide of 59 residues. The mature SdPI peptide possesses a unique cysteine framework reticulated by three disulfide bridges, different from all reported Kunitz-type proteins. The recombinant SdPI peptide was functionally expressed. It showed trypsin inhibitory activity with high potency (Ki = 1.6×10−7 M) and thermostability. Conclusions The results illustrated that SdPI is a potent and stable serine protease inhibitor. Further mutagenesis and molecular dynamics simulation revealed that SdPI possesses a serine protease inhibitory active site similar to other Kunitz-type venom peptides. To our knowledge, SdPI is the first functionally characterized Kunitz-type trypsin inhibitor derived from scorpion venom, and it represents a new class of Kunitz-type venom peptides. PMID:22087336

  9. AaeAP1 and AaeAP2: novel antimicrobial peptides from the venom of the scorpion, Androctonus aeneas: structural characterisation, molecular cloning of biosynthetic precursor-encoding cDNAs and engineering of analogues with enhanced antimicrobial and anticancer activities.

    PubMed

    Du, Qiang; Hou, Xiaojuan; Wang, Lei; Zhang, Yingqi; Xi, Xinping; Wang, Hui; Zhou, Mei; Duan, Jinao; Wei, Minjie; Chen, Tianbao; Shaw, Chris

    2015-02-01

    The main functions of the abundant polypeptide toxins present in scorpion venoms are the debilitation of arthropod prey or defence against predators. These effects are achieved mainly through the blocking of an array of ion channel types within the membranes of excitable cells. However, while these ion channel-blocking toxins are tightly-folded by multiple disulphide bridges between cysteine residues, there are additional groups of peptides in the venoms that are devoid of cysteine residues. These non-disulphide bridged peptides are the subject of much research interest, and among these are peptides that exhibit antimicrobial activity. Here, we describe two novel non-disulphide-bridged antimicrobial peptides that are present in the venom of the North African scorpion, Androctonus aeneas. The cDNAs encoding the biosynthetic precursors of both peptides were cloned from a venom-derived cDNA library using 3'- and 5'-RACE strategies. Both translated precursors contained open-reading frames of 74 amino acid residues, each encoding one copy of a putative novel nonadecapeptide, whose primary structures were FLFSLIPSVIAGLVSAIRN and FLFSLIPSAIAGLVSAIRN, respectively. Both peptides were C-terminally amidated. Synthetic versions of each natural peptide displayed broad-spectrum antimicrobial activities, but were devoid of antiproliferative activity against human cancer cell lines. However, synthetic analogues of each peptide, engineered for enhanced cationicity and amphipathicity, exhibited increases in antimicrobial potency and acquired antiproliferative activity against a range of human cancer cell lines. These data clearly illustrate the potential that natural peptide templates provide towards the design of synthetic analogues for therapeutic exploitation. PMID:25626077

  10. AaeAP1 and AaeAP2: Novel Antimicrobial Peptides from the Venom of the Scorpion, Androctonus aeneas: Structural Characterisation, Molecular Cloning of Biosynthetic Precursor-Encoding cDNAs and Engineering of Analogues with Enhanced Antimicrobial and Anticancer Activities

    PubMed Central

    Du, Qiang; Hou, Xiaojuan; Wang, Lei; Zhang, Yingqi; Xi, Xinping; Wang, Hui; Zhou, Mei; Duan, Jinao; Wei, Minjie; Chen, Tianbao; Shaw, Chris

    2015-01-01

    The main functions of the abundant polypeptide toxins present in scorpion venoms are the debilitation of arthropod prey or defence against predators. These effects are achieved mainly through the blocking of an array of ion channel types within the membranes of excitable cells. However, while these ion channel-blocking toxins are tightly-folded by multiple disulphide bridges between cysteine residues, there are additional groups of peptides in the venoms that are devoid of cysteine residues. These non-disulphide bridged peptides are the subject of much research interest, and among these are peptides that exhibit antimicrobial activity. Here, we describe two novel non-disulphide-bridged antimicrobial peptides that are present in the venom of the North African scorpion, Androctonus aeneas. The cDNAs encoding the biosynthetic precursors of both peptides were cloned from a venom-derived cDNA library using 3'- and 5'-RACE strategies. Both translated precursors contained open-reading frames of 74 amino acid residues, each encoding one copy of a putative novel nonadecapeptide, whose primary structures were FLFSLIPSVIAGLVSAIRN and FLFSLIPSAIAGLVSAIRN, respectively. Both peptides were C-terminally amidated. Synthetic versions of each natural peptide displayed broad-spectrum antimicrobial activities, but were devoid of antiproliferative activity against human cancer cell lines. However, synthetic analogues of each peptide, engineered for enhanced cationicity and amphipathicity, exhibited increases in antimicrobial potency and acquired antiproliferative activity against a range of human cancer cell lines. These data clearly illustrate the potential that natural peptide templates provide towards the design of synthetic analogues for therapeutic exploitation. PMID:25626077

  11. Proteomic analysis of the rare Uracoan rattlesnake Crotalus vegrandis venom: Evidence of a broad arsenal of toxins.

    PubMed

    Viala, Vincent Louis; Hildebrand, Diana; Fucase, Tamara Mieco; Sciani, Juliana Mozer; Prezotto-Neto, José Pedro; Riedner, Maria; Sanches, Leonardo; Nishimura, Paula Juliana; Oguiura, Nancy; Pimenta, Daniel Carvalho; Schlüter, Hartmut; Betzel, Christian; Arni, Raghuvir Krishnaswami; Spencer, Patrick Jack

    2015-12-01

    The investigation of venoms has many clinical, pharmacological, ecological and evolutionary outcomes. The Crotalus spp. venom can cause hemorrhage, neurotoxicity, myotoxicity, coagulopathy and hypotension. Although neurotoxicity and hemorrhage usually does not occur for the same species, the rare Venezuelan species Crotalus vegrandis presents both characteristic. Different from the other species it has a restricted ecological niche and geographical distribution. Nevertheless, it has a raising medical importance as this rattlesnake population is increasing. Few works describe its neurotoxic and hemorrhagic features, but other toxins might play an important role in envenomation. We combined proteomic methods to identify for the first time the main components of it venom: 2D SDS-PAGE and gel-filtration chromatography for protein mixture decomplexation; LC-MS(2) of low molecular mass fractions and tryptic peptides; bioinformatic identification of toxin families and specific protein species based on unique peptide analysis and sequence database enriched with species-specific venom gland transcripts; and finally polyclonal anti-crotamine Western-blotting. Our results point to a broad arsenal of toxins in C. vegrandis venom: PIII and PII metalloproteases, crotoxin subunits, other phospholipases, isoforms of serine proteases and lectins, l-amino-acid oxidase, nerve growth factor, as well as other less abundant toxins. PMID:26403864

  12. Allergies to Insect Venom

    MedlinePlus

    ... The smell of food attracts these insects.  Use insect repellents and keep insecticide available. Treatment tips:  Venom immunotherapy (allergy shots to insect venom(s) is highly effective in preventing subsequent sting ...

  13. Toxic peptides and genes encoding toxin gamma of the Brazilian scorpions Tityus bahiensis and Tityus stigmurus.

    PubMed

    Becerril, B; Corona, M; Coronas, F I; Zamudio, F; Calderon-Aranda, E S; Fletcher, P L; Martin, B M; Possani, L D

    1996-02-01

    Seven toxic peptides from the venom of Tityus bahiensis and Tityus stigmurus was isolated and sequenced, five of them to completion. The most abundant peptide from each of these two species of scorpion was 95% identical with that of toxin gamma from the venom of Tityus serrulatus. They were consequently named gamma-b and gamma-st respectively. The genes encoding these new gamma-like peptides were cloned and sequenced by utilizing oligonucleotides synthesized according to known cDNA sequences of toxin gamma, and amplified by PCR on templates of DNA purified from both T. bahiensis and T. stigmurus. They contain an intron of approx. 470 bp. Possible mechanisms of processing and expressing these peptides are discussed, in view of the fact that glycine is the first residue of the N-terminal sequence of T. stigmurus, whereas lysine is the residue at position 1 of toxin gamma from T. serrulatus and T. bahiensis. In addition, chemical characterization of the less abundant toxic peptides showed the presence of at least four distinct families of peptides in all three species of the genus Tityus studied. There is a large degree of similarity among peptides from different venoms of the same family. By using specific horse and rabbit antisera, the venoms of T. bahiensis, T. serrulatus and T. stigmurus were compared. They showed an extended degree of cross-reactivity. Thus these three species of scorpion have similar toxic components, the genes of which are similarly organized, processed and expressed. PMID:8611151

  14. Screening of Bothrops snake venoms for L-amino acid oxidase activity.

    PubMed

    Pessatti, M; Fontana, J D; Furtado, M F; Guimãraes, M F; Zanette, L R; Costa, W T; Baron, M

    1995-01-01

    Toxins, enzymes, and biologically active peptides are the main components of snake venoms from the genus Bothrops. Following the venom inoculation, the local effects are hemorrhage, edema, and myonecrosis. Nineteen different species of Brazilian Bothrops were screened for protein content and L-amino acid oxidase activity. B. cotiara, formerly found in the South of Brazil, is now threatened with extinction. Its venom contains a highly hemorrhagic fraction and, as expected from the deep yellow color of the corresponding lyophilized powder, a high L-amino acid oxidase (LAO) activity was also characterized. Flavin adenine dinucleotide (FAD) is its associate coenzyme. B. cotiara venom LAO catalyzed the oxidative deamination of several L-amino acids, and the best substrates were methionine, leucine, tryptophan, and phenylalanine, hence, its potential application for the use of biosensors for aspartame determination and for the removal of amino acids from plasma. High levels for LAO were also found in other species than B. cotiara. In addition, the technique of isoelectric focusing (IEF) was employed as a powerful tool to study the iso- or multi-enzyme distribution for LAO activity in the B. cotiara snake venom. PMID:7668847

  15. Screening of Bothrops snake venoms for L-amino acid oxidase activity

    SciTech Connect

    Pessati, M.L.; Fontana, J.D.; Guimaraes, M.F.

    1995-12-31

    Toxins, enzymes, and biologically active peptides are the main components of snake venoms from the genus Bothrops. Following the venom inoculation, the local effects are hemorrhage, edema, and myonecrosis. Nineteen different species of Brazilian Bothrops were screened for protein content and L-amino acid oxidase activity. B. cotiara, formerly found in the South of Brazil, is now threatened with extinction. Its venom contains a highly hemorrhagic fraction and, as expected from the deep yellow color of the corresponding lyophilized powder, a high L-amino acid oxidase (LAO) activity was also characterized. Flavin adenine dinucleotide (FAD) is its associate coenzyme. B. cotiara venom LAO catalyzed the oxidative deamination of several L-amino acids, and the best substrates were methionine, leucine, tryptophan, and phenylalanine, hence, its potential application for the use in biosensors for aspartame determination and for the removal of amino acids from plasma. High levels for LAO were also found in other species than B. cotiara. In addition, the technique of isoelectric focusing (IEF) was employed as a powerful tool to study the iso- or multi-enzyme distribution for LAO activity in the B. cotiara snake venom.

  16. Biological assays on the effects of Acra3 peptide from Turkish scorpion Androctonus crassicauda venom on a mouse brain tumor cell line (BC3H1) and production of specific monoclonal antibodies.

    PubMed

    Caliskan, Figen; Ergene, Emel; Sogut, Ibrahim; Hatipoglu, Ibrahim; Basalp, Aynur; Sivas, Hulya; Kanbak, Gungor

    2013-12-15

    Constitutes of the venom scorpion are a rich source of low molecular mass peptides which are toxic to various organisms, including man. Androctonus crassicauda is one of the scorpions from the Southeastern Anatolia of Turkey with public health importance. This work is focused on the investigation of biological effects of Acra3 peptide from Androctonus crassicauda. For this purpose, Acra3 isolated from crude venoms was tested for its cytotoxicity on BC3H1 mouse brain tumor cells using tetrazolium salt cleavage and lactate dehydrogenase activity assays. To determine whether the cytotoxic effects of Acra3 was related to the induction of apoptosis, the morphology of the cells and the nuclear fragmentation was examined by using Acridin Orange staining and DNA fragmentation assay, respectively. Caspase 3 and caspase 9 activities were measured spectrophotometrically and flow cytometric assay was performed using Annexin-V FITC and Propidium Iodide staining. Furthermore toxic peptide Acra3 was used as an antigen for immunological studies. Results showed that Acra3 exerted very strong cytotoxic effect on BC3H1 cells with an IC50 value of 5 μg/ml. Exposure of the cells to 0.1 and 0.5 μg/ml was resulted in very strong appearance of the apoptotic morphology in a dose dependent manner. On the other side, not any DNA fragmentation was observed after treatment of the cells. Caspase 3 and 9 activities were slightly decreased with Acra3. Results from flow cytometry and lactate dehydrogenase activity assays indicate that Acra3 exerts its effects by inducing a stronger necrosis than apoptosis in BC3H1 cells. To evaluate its immunogenicity, monoclonal antibody (MAb) specific for Acra3 antigen (5B9) was developed by hybridoma technology using spleen and lymph nodes of mice and immunoglobulin type of antibody was found to be IgM. We suggest that Acra3 may exert its effects by inducing both necrotic and apoptotic pathway in some way on mouse brain tumor cells. These findings will be

  17. Molecular, Immunological, and Biological Characterization of Tityus serrulatus Venom Hyaluronidase: New Insights into Its Role in Envenomation

    PubMed Central

    Oliveira-Mendes, Bárbara Bruna Ribeiro; do Carmo, Anderson Oliveira; Duarte, Clara Guerra; Felicori, Liza Figueiredo; Machado-de-Ávila, Ricardo Andrez; Chávez-Olórtegui, Carlos; Kalapothakis, Evanguedes

    2014-01-01

    Background Scorpionism is a public health problem in Brazil, and Tityus serrulatus (Ts) is primarily responsible for severe accidents. The main toxic components of Ts venom are low-molecular-weight neurotoxins; however, the venom also contains poorly characterized high-molecular-weight enzymes. Hyaluronidase is one such enzyme that has been poorly characterized. Methods and principal findings We examined clones from a cDNA library of the Ts venom gland and described two novel isoforms of hyaluronidase, TsHyal-1 and TsHyal-2. The isoforms are 83% identical, and alignment of their predicted amino acid sequences with other hyaluronidases showed conserved residues between evolutionarily distant organisms. We performed gel filtration followed by reversed-phase chromatography to purify native hyaluronidase from Ts venom. Purified native Ts hyaluronidase was used to produce anti-hyaluronidase serum in rabbits. As little as 0.94 µl of anti-hyaluronidase serum neutralized 1 LD50 (13.2 µg) of Ts venom hyaluronidase activity in vitro. In vivo neutralization assays showed that 121.6 µl of anti-hyaluronidase serum inhibited mouse death 100%, whereas 60.8 µl and 15.2 µl of serum delayed mouse death. Inhibition of death was also achieved by using the hyaluronidase pharmacological inhibitor aristolochic acid. Addition of native Ts hyaluronidase (0.418 µg) to pre-neutralized Ts venom (13.2 µg venom+0.94 µl anti-hyaluronidase serum) reversed mouse survival. We used the SPOT method to map TsHyal-1 and TsHyal-2 epitopes. More peptides were recognized by anti-hyaluronidase serum in TsHyal-1 than in TsHyal-2. Epitopes common to both isoforms included active site residues. Conclusions Hyaluronidase inhibition and immunoneutralization reduced the toxic effects of Ts venom. Our results have implications in scorpionism therapy and challenge the notion that only neurotoxins are important to the envenoming process. PMID:24551256

  18. Biochemical and physiological characterization of a new Na(+)-channel specific peptide from the venom of the Argentinean scorpion Tityus trivittatus.

    PubMed

    Coronas, Fredy I V; Diego-García, Elia; Restano-Cassulini, Rita; de Roodt, Adolfo R; Possani, Lourival D

    2015-06-01

    A new peptide with 61 amino acids cross-linked by 4 disulfide bridges, with molecular weight of 6938.12Da, and an amidated C-terminal amino acid residue was purified and characterized. The primary structure was obtained by direct Edman degradation and sequencing its gene. The peptide is lethal to mammals and was shown to be similar (95% identity) to toxin Ts1 (gamma toxin) from the Brazilian scorpion Tityus serrulatus; it was named Tt1g (from T. trivittatus toxin 1 gamma-like). Tt1g was assayed on several sub-types of Na(+)-channels showing displacement of the currents to more negative voltages, being the hNav1.3 the most affected channel. This toxin displays characteristics typical to the β-type sodium scorpion toxins. Lethality tests and physiological assays indicate that this peptide is probably the most important toxic component of this species of scorpion, known for causing human fatalities in the South American continent. PMID:24862827

  19. Observations on white and yellow venoms from an individual southern Pacific rattlesnake (Crotalus viridis helleri).

    PubMed

    Johnson, E K; Kardong, K V; Ownby, C L

    1987-01-01

    Biochemical differences in white and yellow venoms produced in the separate venom glands of an individual southern Pacific rattlesnake (Crotalus viridis helleri) were investigated. Compared to the yellow venom, the white venom contained fewer low molecular weight components and was considerably less toxic. Although the exact LD50 was not determined, the white venom did not produce toxic effects in mice when injected i.v. at concentrations up to 10 mg/kg. The i.v. LD50 of the yellow venom was approximately 1.6 mg/kg. Both white and yellow venoms had hemorrhagic activity, but the white venom caused less intradermal hemorrhage in mice. No L-amino acid oxidase activity was measured in the white venom and protease and phospholipase A2 activities of the white venom were much less than in the yellow venom. The white and yellow venoms both produced myonecrosis at 1, 3 and 24 hr after i.m. injection into mice, however, there were some qualitative differences in the myonecrosis produced. When the venom samples were reacted against Wyeth's polyvalent (Crotalidae) antivenom using immunodiffusion, three precipitin bands formed against the yellow venom, whereas only one formed against the white venom. When reacted against an antiserum to myotoxin alpha from C. viridis viridis venom, both the white and yellow venoms produced one precipitin band each. PMID:3124297

  20. Purification and characterization of a metalloproteinase, Porthidin-1, from the venom of Lansberg’s hog-nosed pitvipers (Porthidium lansbergii hutmanni)

    PubMed Central

    Girón, María E.; Estrella, Amalid; Sánchez, Elda E.; Galán, Jacob; Tao, W. Andy; Guerrero, Belsy; Salazar, Ana M.; Rodríguez-Acosta, Alexis

    2012-01-01

    Porthidium lansbergii hutmanni is a small pit viper found on Margarita Island, Venezuela. Local tissue damage is one of the most obvious characteristics of P. l. hutmanni envenomation, which can lead to diverse pathological effects, such as hemorrhage, edema, blistering, necrosis, lymphatic vessel damage and degradation of extracellular matrix. Metalloproteinases are one of the major components in venoms responsible for these effects. To date, very little is known or has been reported on P. l. hutmanni venom. Crude P. l. hutmanni venom had a LD50 of 2.5 mg/kg and was considered very hemorrhagic (minimal hemorrhagic dose [MHD]: 0.98 μg) when compared to other hemorrhagic (Bothrops) venoms in Venezuela. Crude P. l. hutmanni venom also inhibited ADP-induced platelet aggregation. A metalloproteinase, Porthidin-1, from this venom was isolated by three chromatography steps (Sephadex G100, Superose 12 HR10/30 and Bioscale Q2). Porthidin-1 falls in the SVMP P-I class having a molecular weight of 23 kDa, verified by both SDS-PAGE and mass spectrometry. High-resolution mass spectrometry and a database search identified a peptide from Porthidin-1 (YNGDLDK) belonging to the SVMP family of proteins. Porthidin-1 contained hemorrhagic, fibrino(geno)lytic, caseinolytic and gelatinolytic activities, and these activities were capable of being neutralized by metalloproteinase inhibitors but not serine proteinase inhibitors. The peptide YNGDLDK shared similarities with five venom proteins with a BLAST e-value of <1. This work details the biochemical and pathophysiological effects that can result from envenomations, and highlights the importance and significance for characterizing unknown or poorly documented venoms from different geographical regions. PMID:21255600

  1. Proteomic analysis of the venom from the scorpion Tityus stigmurus: biochemical and physiological comparison with other Tityus species.

    PubMed

    Batista, C V F; Román-González, S A; Salas-Castillo, S P; Zamudio, F Z; Gómez-Lagunas, F; Possani, L D

    2007-01-01

    The venom from the Brazilian scorpion Tityus stigmurus was fractionated by high performance liquid chromatography (HPLC) and the corresponding components were used for molecular mass determination using electrospray ion trap mass spectrometry. One hundred distinct components were clearly assigned showing molecular masses from 216.5 to 44,800.0 Da. Fifteen new components were isolated and sequenced, four of them to completion: Tst-3 (similar to Na(+) channel specific scorpion toxins), Tst-17 (a K(+) channel blocking peptide similar to Tc1), Tst beta KTx (a peptide with identical sequence as that of TsTX-K beta toxin earlier described to exist in T. serrulatus venom) and finally a novel proline-rich peptide of unknown function. Among the eleven components partially sequenced were two enzymes: hyaluronidase and lysozyme. The first enzyme has a molecular mass of 44,800.0 Da. This enzyme showed high activity against the substrate hyaluronan in vitro. Amino acid sequence of the second enzyme showed that it is similar to other known lysozymes, with similar molecular mass and sequence to that of bona fide lysozymes reported in public protein data banks. Finally, this communication reports a correlation among HPLC retention times and molecular masses of folded scorpion toxins as well as a comparative structural and physiological analysis of components from the venom of several species of the genus Tityus. PMID:17270501

  2. Moving pieces in a proteomic puzzle: mass fingerprinting of toxic fractions from the venom of Tityus serrulatus (Scorpiones, Buthidae).

    PubMed

    Pimenta, A M; Stöcklin, R; Favreau, P; Bougis, P E; Martin-Eauclaire, M F

    2001-01-01

    Scorpion venoms are very complex mixtures of molecules, most of which are peptides that display different kinds of biological activity. These venoms have been studied in the light of their pharmacological targets and their constituents are able to bind specifically to a variety of ionic channels located in prey tissues, resulting in neurotoxic effects. Toxins that modulate Na(+), K(+), Ca(++) and Cl(-) currents have been described in scorpion venoms. Mass spectrometry was employed to analyze toxic fractions from the venom of the Brazilian scorpion Tityus serrulatus in order to shed light on the molecular composition of this venom and to facilitate the search for novel pharmacologically active compounds. T. serrulatus venom was first subjected to gel filtration to separate its constituents according to their molecular size. The resultant fractions II and III, which account for 90 and 10% respectively of the whole venom toxic effect, were further analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS), on-line liquid chromatography/electrospray mass spectrometry (LC/ESMS) and off-line LC/MALDI-TOFMS in order to establish their mass fingerprints. The molecular masses in fraction II were predominantly between 6500 and 7500 Da. This corresponds to long-chain toxins that mainly act on voltage-gated Na(+) channels. Fraction III is more complex and predominantly contained molecules with masses between 2500 and 5000 Da. This corresponds to the short-chain toxin family, most of which act on K(+) channels, and other unknown peptides. Finally, we were able to measure the molecular masses of 380 different compounds present in the two fractions investigated. To our knowledge, this is the largest number of components ever detected in the venom of a single animal species. Some of the toxins described previously from T. serrulatus venom could be detected by virtue of their molecular masses. The interpretation of this large set of data

  3. Fractionation and proteomic analysis of the Walterinnesia aegyptia snake venom using OFFGEL and MALDI-TOF-MS techniques.

    PubMed

    Abd El Aziz, Tarek Mohamed; Bourgoin-Voillard, Sandrine; Combemale, Stéphanie; Beroud, Rémy; Fadl, Mahmoud; Seve, Michel; De Waard, Michel

    2015-10-01

    Animal venoms are complex mixtures of more than 100 different compounds, including peptides, proteins, and nonprotein compounds such as lipids, carbohydrates, and metal ions. In addition, the existing compounds show a wide range of molecular weights and concentrations within these venoms, making separation and purification procedures quite tedious. Here, we analyzed for the first time by MS the advantages of using the OFFGEL technique in the separation of the venom components of the Egyptian Elapidae Walterinnesia aegyptia snake compared to two classical methods of separation, SEC and RP-HPLC. We demonstrate that OFFGEL separates venom components over a larger scale of fractions, preserve respectable resolution with regard to the presence of a given compound in adjacent fractions and allows the identification of a greater number of ions by MS (102 over 134 total ions). We also conclude that applying several separating techniques (SEC and RP-HPLC in addition to OFFGEL) provides complementary results in terms of ion detection (21 more for SEC and 22 more with RP-HPLC). As a result, we provide a complete list of 134 ions present in the venom of W. aegyptia by using all these techniques combined. PMID:26178575

  4. Combined snake venomics and venom gland transcriptomic analysis of the ocellated carpet viper, Echis ocellatus.

    PubMed

    Wagstaff, Simon C; Sanz, Libia; Juárez, Paula; Harrison, Robert A; Calvete, Juan J

    2009-01-30

    Snakebite in Africa causes thousands of deaths annually and considerable permanent physical disability. The saw-scaled viper, Echis ocellatus, represents the single most medically important snake species in West Africa. To provide a detailed compositional analysis of the venom of E. ocellatus for designing novel toxin-specific immunotherapy and to delineate sequence structure-function relationships of individual toxins, we characterised the venom proteome and the venom gland transcriptome. Whole E. ocellatus venom was fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction using a combination of SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and CID-MS/MS of tryptic peptides. This analysis identified around 35 distinct proteins of molecular masses in the range of 5.5-110 kDa belonging to 8 different toxin families (disintegrin, DC-fragment, phospholipase A(2), cysteine-rich secretory protein, serine proteinase, C-type lectin, l-amino acid oxidase, and Zn(2+)-dependent metalloprotease). Comparison of the toxin composition of E. ocellatus venom determined using a proteomic approach, with the predicted proteome derived from assembly of 1000 EST sequences from a E. ocellatus venom gland cDNA library, shows some differences. Most notably, peptides derived from 26% of the venom proteins could not be ascribed an exact match in the transcriptome. Similarly, 64 (67%) out of the 95 putative toxin clusters reported in the transcriptome did not match to peptides detected in the venom proteome. These data suggest that the final composition of venom is influenced by transcriptional and post-translational mechanisms that may be more complex than previously appreciated. This, in turn, emphasises the value of combining proteomic and transcriptomic approaches to acquire a more complete understanding of the precise composition of snake venom, than would be gleaned from using one analysis alone. From a clinical perspective, the large

  5. Angiotensin converting enzyme of Thalassophryne nattereri venom.

    PubMed

    da Costa Marques, Maria Elizabeth; de Araújo Tenório, Humberto; Dos Santos, Claudio Wilian Victor; Dos Santos, Daniel Moreira; de Lima, Maria Elena; Pereira, Hugo Juarez Vieira

    2016-10-01

    Animal venoms are complex mixtures, including peptides, proteins (i.e., enzymes), and other compounds produced by animals in predation, digestion, and defense. These molecules have been investigated regarding their molecular mechanisms associated with physiological action and possible pharmacological applications. Recently, we have described the presence of a type of angiotensin converting enzyme (ACE) activity in the venom of Thalassophryne nattereri. It is a zinc-dependent peptidase with a wide range of effects. By removing dipeptide His-Leu from terminal C, the ACE converts angiotensinI (AngI) into angiotensin II (AngII) and inactivates bradykinin, there by regulating blood pressure and electrolyte homeostasis. The fractionation of T. nattereri venom in CM-Sepharose indicated a peak (CM2) with angiotensin-converting activity, converting AngI into Ang II. Electrophoresis on polyacrylamide gel (12%) revealed one band with 30kDa for CM2 similar in size to natterins, which are toxins with proteolytic activity found in T. nattereri venom. Mass spectrometry indicated that the protein sequence of the ACE purified from T. nattereri venom corresponds to natterin 1. The isolated protein has also demonstrated inhibition through captopril and EDTA and is characterized as a classic ACE. Thus, the isolated enzyme purified from T. nattereri venom is the first ACE isolated from fish venom. PMID:27327905

  6. Mast Cells Can Enhance Resistance to Snake and Honeybee Venoms

    NASA Astrophysics Data System (ADS)

    Metz, Martin; Piliponsky, Adrian M.; Chen, Ching-Cheng; Lammel, Verena; Åbrink, Magnus; Pejler, Gunnar; Tsai, Mindy; Galli, Stephen J.

    2006-07-01

    Snake or honeybee envenomation can cause substantial morbidity and mortality, and it has been proposed that the activation of mast cells by snake or insect venoms can contribute to these effects. We show, in contrast, that mast cells can significantly reduce snake-venom-induced pathology in mice, at least in part by releasing carboxypeptidase A and possibly other proteases, which can degrade venom components. Mast cells also significantly reduced the morbidity and mortality induced by honeybee venom. These findings identify a new biological function for mast cells in enhancing resistance to the morbidity and mortality induced by animal venoms.

  7. Scorpions from Mexico: From Species Diversity to Venom Complexity

    PubMed Central

    Santibáñez-López, Carlos E.; Francke, Oscar F.; Ureta, Carolina; Possani, Lourival D.

    2015-01-01

    Scorpions are among the oldest terrestrial arthropods, which are distributed worldwide, except for Antarctica and some Pacific islands. Scorpion envenomation represents a public health problem in several parts of the world. Mexico harbors the highest diversity of scorpions in the world, including some of the world’s medically important scorpion species. The systematics and diversity of Mexican scorpion fauna has not been revised in the past decade; and due to recent and exhaustive collection efforts as part of different ongoing major revisionary systematic projects, our understanding of this diversity has changed compared with previous assessments. Given the presence of several medically important scorpion species, the study of their venom in the country is also important. In the present contribution, the diversity of scorpion species in Mexico is revised and updated based on several new systematic contributions; 281 different species are recorded. Commentaries on recent venomic, ecological and behavioral studies of Mexican scorpions are also provided. A list containing the most important peptides identified from 16 different species is included. A graphical representation of the different types of components found in these venoms is also revised. A map with hotspots showing the current knowledge on scorpion distribution and areas explored in Mexico is also provided. PMID:26712787

  8. Scorpions from Mexico: From Species Diversity to Venom Complexity.

    PubMed

    Santibáñez-López, Carlos E; Francke, Oscar F; Ureta, Carolina; Possani, Lourival D

    2016-01-01

    Scorpions are among the oldest terrestrial arthropods, which are distributed worldwide, except for Antarctica and some Pacific islands. Scorpion envenomation represents a public health problem in several parts of the world. Mexico harbors the highest diversity of scorpions in the world, including some of the world's medically important scorpion species. The systematics and diversity of Mexican scorpion fauna has not been revised in the past decade; and due to recent and exhaustive collection efforts as part of different ongoing major revisionary systematic projects, our understanding of this diversity has changed compared with previous assessments. Given the presence of several medically important scorpion species, the study of their venom in the country is also important. In the present contribution, the diversity of scorpion species in Mexico is revised and updated based on several new systematic contributions; 281 different species are recorded. Commentaries on recent venomic, ecological and behavioral studies of Mexican scorpions are also provided. A list containing the most important peptides identified from 16 different species is included. A graphical representation of the different types of components found in these venoms is also revised. A map with hotspots showing the current knowledge on scorpion distribution and areas explored in Mexico is also provided. PMID:26712787

  9. Venomic and pharmacological activity of Acanthoscurria paulensis (Theraphosidae) spider venom.

    PubMed

    Mourão, Caroline Barbosa F; Oliveira, Fagner Neves; e Carvalho, Andréa C; Arenas, Claudia J; Duque, Harry Morales; Gonçalves, Jacqueline C; Macêdo, Jéssica K A; Galante, Priscilla; Schwartz, Carlos A; Mortari, Márcia R; Almeida Santos, Maria de Fátima M; Schwartz, Elisabeth F

    2013-01-01

    In the present study we conducted proteomic and pharmacological characterizations of the venom extracted from the Brazilian tarantula Acanthoscurria paulensis, and evaluated the cardiotoxicity of its two main fractions. The molecular masses of the venom components were identified by mass spectrometry (MALDI-TOF-MS) after chromatographic separation (HPLC). The lethal dose (LD(50)) was determined in mice. Nociceptive behavior was evaluated by intradermal injection in mice and the edematogenic activity by the rat hind-paw assay. Cardiotoxic activity was evaluated on in situ frog heart and on isolated frog ventricle strip. From 60 chromatographic fractions, 97 distinct components were identified, with molecular masses between 601.4 and 21,932.3 Da. A trimodal molecular mass distribution was observed: 30% of the components within 500-1999 Da, 38% within 3500-5999 Da and 21% within 6500-7999 Da. The LD(50) in mice was 25.4 ± 2.4 μg/g and the effects observed were hypoactivity, anuria, constipation, dyspnea and prostration until death, which occurred at higher doses. Despite presenting a dose-dependent edematogenic activity in the rat hind-paw assay, the venom had no nociceptive activity in mice. Additionally, the venom induced a rapid blockage of electrical activity and subsequent diastolic arrest on in situ frog heart preparation, which was inhibited by pretreatment with atropine. In the electrically driven frog ventricle strip, the whole venom and its low molecular mass fraction, but not the proteic one, induced a negative inotropic effect that was also inhibited by atropine. These results suggest that despite low toxicity, A. paulensis venom can induce severe physiological disturbances in mice. PMID:23178240

  10. [des-Arg(1)]-Proctolin: A novel NEP-like enzyme inhibitor identified in Tityus serrulatus venom.

    PubMed

    Duzzi, Bruno; Cajado-Carvalho, Daniela; Kuniyoshi, Alexandre Kazuo; Kodama, Roberto Tadashi; Gozzo, Fabio Cesar; Fioramonte, Mariana; Tambourgi, Denise Vilarinho; Portaro, Fernanda Vieira; Rioli, Vanessa

    2016-06-01

    The scorpion Tityus serrulatus venom comprises a complex mixture of molecules that paralyzes and kills preys, especially insects. However, venom components also interact with molecules in humans, causing clinic envenomation. This cross-interaction may result from homologous molecular targets in mammalians and insects, such as (NEP)-like enzymes. In face of these similarities, we searched for peptides in Tityus serrulatus venom using human NEP as a screening tool. We found a NEP-inhibiting peptide with the primary sequence YLPT, which is very similar to that of the insect neuropeptide proctolin (RYLPT). Thus, we named the new peptide [des-Arg(1)]-proctolin. Comparative NEP activity assays using natural substrates demonstrated that [des-Arg(1)]-proctolin has high specificity for NEP and better inhibitory activity than proctolin. To test the initial hypothesis that molecular homologies allow Tityus serrulatus venom to act on both mammal and insect targets, we investigated the presence of a NEP-like in cockroaches, the main scorpion prey, that could be likewise inhibited by [des-Arg(1)]-proctolin. Indeed, we detected a possible NEP-like in a homogenate of cockroach heads whose activity was blocked by thiorphan and also by [des-Arg(1)]-proctolin. Western blot analysis using a human NEP monoclonal antibody suggested a NEP-like enzyme in the homogenate of cockroach heads. Our study describes for the first time a proctolin-like peptide, named [des-Arg(1)]-proctolin, isolated from Tityus serrulatus venom. The tetrapeptide inhibits human NEP activity and a NEP-like activity in a cockroach head homogenate, thus it may play a role in human envenomation as well as in the paralysis and death of scorpion preys. PMID:26056922

  11. First venom gland transcriptomic analysis of Iranian yellow scorpion "Odonthubuthus doriae" with some new findings.

    PubMed

    NaderiSoorki, Maryam; Galehdari, Hamid; Baradaran, Masomeh; Jalali, Amir

    2016-09-15

    Scorpion venom contains mixture of biologic molecules including selective toxins with medical capability. Odonthubuthus doriae (O. doriae) belonged to Buthidae family of scorpions and gained more interest among Iranian dangerous scorpion since 2005. We constructed the first cDNA library to explore the transcriptomic composition of this Iranian scorpiontelson. Then by used of bioinformatic software each expression sequence taq (EST) from the library analyzed and its quiddity was clear. Analysis showed that toxins (42%) had more venom transcript than other component such as antimicrobial peptides, venom peptides and cell proteins. Over 16% of transcripts didn't have any open reading frames (ORF), however their sequences showed similarity by other scorpion sequences. One EST didn't have any similarity by known scorpion peptides. For the first time; we report a comprehensive study of an Iranian scorpion with interesting and novel findings. We characterized a new putative sodium channel modifier in scorpions by some bioinformatics software, and then predicted its structure and function. PMID:27426055

  12. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    SciTech Connect

    Qiu Yuling; Choo, Young Moo; Yoon, Hyung Joo; Jia Jingming; Cui Zheng; Wang Dong; Kim, Doh Hoon; Sohn, Hung Dae; Jin, Byung Rae

    2011-09-01

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: > Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. > Bt-VSP activates prothrombin. > Bt-VSP directly degrades fibrinogen into fibrin degradation products. > Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  13. Interaction of Tarantula Venom Peptide ProTx-II with Lipid Membranes Is a Prerequisite for Its Inhibition of Human Voltage-gated Sodium Channel NaV1.7.

    PubMed

    Henriques, Sónia Troeira; Deplazes, Evelyne; Lawrence, Nicole; Cheneval, Olivier; Chaousis, Stephanie; Inserra, Marco; Thongyoo, Panumart; King, Glenn F; Mark, Alan E; Vetter, Irina; Craik, David J; Schroeder, Christina I

    2016-08-12

    ProTx-II is a disulfide-rich peptide toxin from tarantula venom able to inhibit the human voltage-gated sodium channel 1.7 (hNaV1.7), a channel reported to be involved in nociception, and thus it might have potential as a pain therapeutic. ProTx-II acts by binding to the membrane-embedded voltage sensor domain of hNaV1.7, but the precise peptide channel-binding site and the importance of membrane binding on the inhibitory activity of ProTx-II remain unknown. In this study, we examined the structure and membrane-binding properties of ProTx-II and several analogues using NMR spectroscopy, surface plasmon resonance, fluorescence spectroscopy, and molecular dynamics simulations. Our results show a direct correlation between ProTx-II membrane binding affinity and its potency as an hNaV1.7 channel inhibitor. The data support a model whereby a hydrophobic patch on the ProTx-II surface anchors the molecule at the cell surface in a position that optimizes interaction of the peptide with the binding site on the voltage sensor domain. This is the first study to demonstrate that binding of ProTx-II to the lipid membrane is directly linked to its potency as an hNaV1.7 channel inhibitor. PMID:27311819

  14. Structure of N-terminal sequence Asp-Ala-Glu-Phe-Arg-His-Asp-Ser of Aβ-peptide with phospholipase A2 from venom of Andaman Cobra sub-species Naja naja sagittifera at 2.0 Å resolution.

    PubMed

    Mirza, Zeenat; Pillai, Vikram Gopalakrishna; Zhong, Wei-Zhu

    2014-01-01

    Alzheimer's disease (AD) is one of the most significant social and health burdens of the present century. Plaques formed by extracellular deposits of amyloid β (Aβ) are the prime player of AD's neuropathology. Studies have implicated the varied role of phospholipase A2 (PLA2) in brain where it contributes to neuronal growth and inflammatory response. Overall contour and chemical nature of the substrate-binding channel in the low molecular weight PLA2s are similar. This study involves the reductionist fragment-based approach to understand the structure adopted by N-terminal fragment of Alzheimer's Aβ peptide in its complex with PLA2. In the current communication, we report the structure determined by X-ray crystallography of N-terminal sequence Asp-Ala-Glu-Phe-Arg-His-Asp-Ser (DAEFRHDS) of Aβ-peptide with a Group I PLA2 purified from venom of Andaman Cobra sub-species Naja naja sagittifera at 2.0 Å resolution (Protein Data Bank (PDB) Code: 3JQ5). This is probably the first attempt to structurally establish interaction between amyloid-β peptide fragment and hydrophobic substrate binding site of PLA2 involving H bond and van der Waals interactions. We speculate that higher affinity between Aβ and PLA2 has the therapeutic potential of decreasing the Aβ-Aβ interaction, thereby reducing the amyloid aggregation and plaque formation in AD. PMID:24619194

  15. Structure of N-Terminal Sequence Asp-Ala-Glu-Phe-Arg-His-Asp-Ser of Aβ-Peptide with Phospholipase A2 from Venom of Andaman Cobra Sub-Species Naja naja sagittifera at 2.0 Å Resolution

    PubMed Central

    Mirza, Zeenat; Pillai, Vikram Gopalakrishna; Zhong, Wei-Zhu

    2014-01-01

    Alzheimer’s disease (AD) is one of the most significant social and health burdens of the present century. Plaques formed by extracellular deposits of amyloid β (Aβ) are the prime player of AD’s neuropathology. Studies have implicated the varied role of phospholipase A2 (PLA2) in brain where it contributes to neuronal growth and inflammatory response. Overall contour and chemical nature of the substrate-binding channel in the low molecular weight PLA2s are similar. This study involves the reductionist fragment-based approach to understand the structure adopted by N-terminal fragment of Alzheimer’s Aβ peptide in its complex with PLA2. In the current communication, we report the structure determined by X-ray crystallography of N-terminal sequence Asp-Ala-Glu-Phe-Arg-His-Asp-Ser (DAEFRHDS) of Aβ-peptide with a Group I PLA2 purified from venom of Andaman Cobra sub-species Naja naja sagittifera at 2.0 Å resolution (Protein Data Bank (PDB) Code: 3JQ5). This is probably the first attempt to structurally establish interaction between amyloid-β peptide fragment and hydrophobic substrate binding site of PLA2 involving H bond and van der Waals interactions. We speculate that higher affinity between Aβ and PLA2 has the therapeutic potential of decreasing the Aβ–Aβ interaction, thereby reducing the amyloid aggregation and plaque formation in AD. PMID:24619194

  16. Binding of leachable components of polymethyl methacrylate (PMMA) and peptide on modified SPR chip

    NASA Astrophysics Data System (ADS)

    Szaloki, M.; Vitalyos, G.; Harfalvi, J.; Hegedus, Cs

    2013-12-01

    Many types of polymers are often used in dentistry, which may cause allergic reaction, mainly methyl methacrylate allergy due to the leachable, degradable components of polymerized dental products. The aim of this study was to investigate the interaction between the leachable components of PMMA and peptides by Fourier-transform Surface Plasmon Resonance (FT SPR). In our previous work binding of oligopeptides (Ph.D.-7 and Ph.D.-12 Peptide Library Kit) was investigated to PMMA surface by phage display technique. It was found that oligopeptides bounded specifically to PMMA surface. The most common amino acids were leucine and proline inside the amino acids sequences of DNA of phages. The binding of haptens, as formaldehyde and methacrylic acid, to frequent amino acids was to investigate on the modified gold SPR chip. Self assembled monolayer (SAM) modified the surface of gold chip and ensured the specific binding between the haptens and amino acids. It was found that amino acids bounded to modified SPR gold and the haptens bounded to amino acids by creating multilayer on the chip surface. By the application of phage display and SPR modern bioanalytical methods the interaction between allergens and peptides can be investigated.

  17. Partial purification and characterisation of the peptide precursors of the cocoa-specific aroma components.

    PubMed

    Voigt, Jürgen; Janek, Katharina; Textoris-Taube, Kathrin; Niewienda, Agathe; Wöstemeyer, Johannes

    2016-02-01

    Essential precursors of the cocoa-specific aroma notes are formed during fermentation of the cocoa beans by acid-induced proteolysis. It has been shown that, in addition to free amino acids, hydrophilic peptides derived from the vicilin-class(7S) globular storage protein are required for the generation of the cocoa-specific aroma notes during the roasting process. To identify those peptides responsible for the generation of the cocoa-specific aroma components, we have developed a procedure for the fractionation of the aroma precursor extract from well-fermented cocoa beans by ligand-exchange and subsequent Sephadex-LH20 chromatography. The cocoa-specific aroma precursor fractions were characterised by matrix-assisted laser-desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF) and the determination of their amino acid sequences by electrospray ionisation mass spectrometry (ESI-MS/MS). PMID:26304401

  18. Angiotensin processing activities in the venom of Thalassophryne nattereri.

    PubMed

    Tenório, Humberto de Araújo; Marques, Maria Elizabeth da Costa; Machado, Sonia Salgueiro; Pereira, Hugo Juarez Vieira

    2015-05-01

    The venom of marine animals is a rich source of compounds with remarkable functional specificity and diversity. Thalassophryne nattereri is a small venomous fish inhabiting the northern and northeastern coast of Brazil, and represents a relatively frequent cause of injuries. Its venom causes severe inflammatory response followed frequently by the necrosis of the affected area. This venom presents characterized components such as proteases (Natterins 1-4) and a lectin (Nattectin) with complex effects on the human organism. A specific inhibitor of tissue kallikrein (TKI) reduces the nociception and the edema caused by the venom in mice. Our study sought to investigate the proteolytic activities against vasopeptides Angiotensin I, Angiotensin II, Angiotensin 1-9 and Bradykinin. The venom indicated angiotensin conversion against angiotensin I, as well as kininase against bradykinin. Captopril conducted the total inhibition of the converting activity, featuring the first report of ACE activity in fish venoms. PMID:25702959

  19. Purification and primary structure determination of Tf4, the first bioactive peptide isolated from the venom of the Brazilian scorpion Tityus fasciolatus.

    PubMed

    Wagner, Simone; Castro, Mariana S; Barbosa, João Alexandre R G; Fontes, Wagner; Schwartz, Elisabeth N F; Sebben, Antonio; Rodrigues Pires, Osmindo; Sousa, Marcelo V; Schwartz, Carlos Alberto

    2003-06-01

    In the present study Tityus fasciolatus crude venom toxicity was evaluated and we also report the purification and characterization of a 6.6 kDa neurotoxin isolated from T. fasciolatus venom. This new toxin, named Tf4, has a molecular mass of 6614Da and its primary structure is homologous to TbIT-I from T. bahiensis and TsTX-VI and TsNTxP from T. serrulatus. Tf4 delays frog sodium channel inactivation reversibly, but it is non-toxic to mammals or crustaceans. An attempt to identify the residues responsible for the partial loss of toxicity in Tf4 was carried out based on homology modeling and sequence comparison. PMID:12782073

  20. Neuropeptide Y family-degrading metallopeptidases in the Tityus serrulatus venom partially blocked by commercial antivenoms.

    PubMed

    Cajado Carvalho, Daniela; Kuniyoshi, Alexandre K; Kodama, Roberto T; Oliveira, Ana K; Serrano, Solange M T; Tambourgi, Denise V; Portaro, Fernanda V

    2014-12-01

    Accidents caused by scorpions represent a relevant public health issue in Brazil, being more recurring than incidents with snakes and spiders. The main species responsible for this situation is the yellow scorpion, Tityus serrulatus, due especially to the great frequency with which accidents occur and the potential of its venom to induce severe clinical manifestations, even death, mainly among children. Although neurotoxins are well characterized, little information is known about other components of scorpion venoms, such as peptidases, and their effect on envenomation. Previous results from our group showed that the metallopeptidases present in this venom are capable of hydrolyzing the neuropeptide dynorphin 1-13 in vitro, releasing Leu-enkephalin, which may interact with ion channels and promote indirect neurotoxicity. Thus, this study aims to get more information about the effect of toxic peptidase activity present in the venom on biologically active peptides, and to evaluate the in vitro neutralizing potential of commercial antivenoms produced by the Butantan Institute. A set of human bioactive peptides were studied as substrates for the peptidases, and the members of the neuropeptide Y family were found to be the most susceptible ones. All new substrate hydrolyses were totally inhibited by ethylenediaminetetracetic and not blocked by phenylmethanesulfonylfluoride, indicating that metallopeptidases were responsible for the peptidase activity. Also, peptidase activities were only partially inhibited by therapeutic Brazilian scorpion antivenom (SAV) and arachnid antivenom (AAV). The dose-response inhibition by both antivenoms indicates that AAV neutralizes better than SAV at the used doses. These characterizations, unpublished until now, can contribute to the improvement of our knowledge about the venom and envenomation processes by T. serrulatus. PMID:25239630

  1. Preformulation Studies of Bee Venom for the Preparation of Bee Venom-Loaded PLGA Particles.

    PubMed

    Park, Min-Ho; Kim, Ju-Heon; Jeon, Jong-Woon; Park, Jin-Kyu; Lee, Bong-Joo; Suh, Guk-Hyun; Cho, Cheong-Weon

    2015-01-01

    It is known that allergic people was potentially vulnerable to bee venom (BV), which can induce an anaphylactic shock, eventually leading to death. Up until recently, this kind of allergy was treated only by venom immunotherapy (VIT) and its efficacy has been recognized worldwide. This treatment is practiced by subcutaneous injections that gradually increase the doses of the allergen. This is inconvenient for patients due to frequent injections. Poly (D,L-lactide-co-glycolide) (PLGA) has been broadly studied as a carrier for drug delivery systems (DDS) of proteins and peptides. PLGA particles usually induce a sustained release. In this study, the physicochemical properties of BV were examined prior to the preparation of BV-loaded PLGA nanoparticles NPs). The content of melittin, the main component of BV, was 53.3%. When protected from the light BV was stable at 4 °C in distilled water, during 8 weeks. BV-loaded PLGA particles were prepared using dichloromethane as the most suitable organic solvent and two min of ultrasonic emulsification time. This study has characterized the physicochemical properties of BV for the preparation BV-loaded PLGA NPs in order to design and optimize a suitable sustained release system in the future. PMID:26295219

  2. In vitro and in vivo antitumor effects of the Egyptian scorpion Androctonus amoreuxi venom in an Ehrlich ascites tumor model.

    PubMed

    Salem, Mohamed L; Shoukry, Nahla M; Teleb, Wafaa K; Abdel-Daim, Mohamed M; Abdel-Rahman, Mohamed A

    2016-01-01

    Scorpion venom is a highly complex mixture of about 100-700 different components, where peptides are the major constituents with various biological and pharmacological properties including anticancer activities. In this study, anticancer efficacy of the venom of the Egyptian scorpion Androctonus amoreuxi has been evaluated. In vitro, the human breast cancer MCF-7 cell line was treated with the venom and the IC50 was estimated. In vivo studies, Ehrlich ascites carcinoma (EAC) cells were inoculated into CD-1 mice intraperitoneally to form liquid tumor or subcutaneously to form solid tumor and then treated with intraperitoneal injection with venom (0.22 mg/kg) every other day. The total tumor cells in the ascitic fluid and the size of the solid tumor were assessed after 14 and 30 days, respectively. In addition, the mean survival time (MST), body weight, tumor volume, PCV, viability of tumor cells, CBC, AST, ALP, creatinine, oxidative stress biomarkers (GSH, MDA, PCC), tumor marker Ki67, growth factor VEGF and caspase-3 were measured in normal control, EAC control and venom-treated groups (n = 6). Treatment with venom induced anti-tumor effects against liquid and in solid tumors as indicated by a significant (P < 0.05) reduction in tumor volume/size, count of viable EAC cells, expression of Ki67 and VEGF as well as by remarkable increases in MST and caspase-3 expression as compared to non-treated group. Interestingly, the venom restored the altered hematological and biochemical parameters of tumor-bearing animals and significantly increased their life span. These data indicate to (1) the cytotoxic potential effects of A. amoreuxi on tumor cells via anti-proliferative, apoptotic and anti-angiogenic activities; (2) opening a new avenue for further studies on the anti-cancer effects of this agent. PMID:27247867

  3. Molecular Diversity and Gene Evolution of the Venom Arsenal of Terebridae Predatory Marine Snails

    PubMed Central

    Gorson, Juliette; Ramrattan, Girish; Verdes, Aida; Wright, Elizabeth M.; Kantor, Yuri; Rajaram Srinivasan, Ramakrishnan; Musunuri, Raj; Packer, Daniel; Albano, Gabriel; Qiu, Wei-Gang; Holford, Mandë

    2015-01-01

    Venom peptides from predatory organisms are a resource for investigating evolutionary processes such as adaptive radiation or diversification, and exemplify promising targets for biomedical drug development. Terebridae are an understudied lineage of conoidean snails, which also includes cone snails and turrids. Characterization of cone snail venom peptides, conotoxins, has revealed a cocktail of bioactive compounds used to investigate physiological cellular function, predator-prey interactions, and to develop novel therapeutics. However, venom diversity of other conoidean snails remains poorly understood. The present research applies a venomics approach to characterize novel terebrid venom peptides, teretoxins, from the venom gland transcriptomes of Triplostephanus anilis and Terebra subulata. Next-generation sequencing and de novo assembly identified 139 putative teretoxins that were analyzed for the presence of canonical peptide features as identified in conotoxins. To meet the challenges of de novo assembly, multiple approaches for cross validation of findings were performed to achieve reliable assemblies of venom duct transcriptomes and to obtain a robust portrait of Terebridae venom. Phylogenetic methodology was used to identify 14 teretoxin gene superfamilies for the first time, 13 of which are unique to the Terebridae. Additionally, basic local algorithm search tool homology-based searches to venom-related genes and posttranslational modification enzymes identified a convergence of certain venom proteins, such as actinoporin, commonly found in venoms. This research provides novel insights into venom evolution and recruitment in Conoidean predatory marine snails and identifies a plethora of terebrid venom peptides that can be used to investigate fundamental questions pertaining to gene evolution. PMID:26025559

  4. [Venomous spiders and their venoms].

    PubMed

    Schmidt, G

    1985-01-01

    The history of araneidism is long and confusing. The superstition seems to be inexterminatable that tropical mygalomorphs and mediterranean tarantulas are dangerous for humans. It can be looked up even in the most recent edition of the widespread clinical dictionary of Pschyrembel. In contrast to this certain ctenids, the most dangerous spiders up to now known, are mentioned not at all in medical publications. Exaggerated spider-fear is out of place because about 0.1% of all species are dangerous for man only and many of the venomous species live as hidden as they scarcely come in contact with humans. PMID:3895572

  5. Comparative study of anticoagulant and procoagulant properties of 28 snake venoms from families Elapidae, Viperidae, and purified Russell's viper venom-factor X activator (RVV-X).

    PubMed

    Suntravat, Montamas; Nuchprayoon, Issarang; Pérez, John C

    2010-09-15

    Snake venoms consist of numerous molecules with diverse biological functions used for capturing prey. Each component of venom has a specific target, and alters the biological function of its target. Once these molecules are identified, characterized, and cloned; they could have medical applications. The activated clotting time (ACT) and clot rate were used for screening procoagulant and anticoagulant properties of 28 snake venoms. Crude venoms from Daboia russellii siamensis, Bothrops asper, Bothrops moojeni, and one Crotalus oreganus helleri from Wrightwood, CA, had procoagulant activity. These venoms induced a significant shortening of the ACT and showed a significant increase in the clot rate when compared to the negative control. Factor X activator activity was also measured in 28 venoms, and D. r. siamensis venom was 5-6 times higher than those of B. asper, B. moojeni, and C. o. helleri from Wrightwood County. Russell's viper venom-factor X activator (RVV-X) was purified from D. r. siamensis venom, and then procoagulant activity was evaluated by the ACT and clot rate. Other venoms, Crotalus atrox and two Naja pallida, had anticoagulant activity. A significant increase in the ACT and a significant decrease in the clot rate were observed after the addition of these venoms; therefore, the venoms were considered to have anticoagulant activity. Venoms from the same species did not always have the same ACT and clot rate profiles, but the profiles were an excellent way to identify procoagulant and anticoagulant activities in snake venoms. PMID:20677373

  6. Unmasking venom gland transcriptomes in reptile venoms.

    PubMed

    Chen, Tianbao; Bjourson, Anthony J; Orr, David F; Kwok, HangFai; Rao, Pingfan; Ivanyi, Craig; Shaw, Chris

    2002-12-15

    While structural studies of reptile venom toxins can be achieved using lyophilized venom samples, until now the cloning of precursor cDNAs required sacrifice of the specimen for dissection of the venom glands. Here we describe a simple and rapid technique that unmasks venom protein mRNAs present in lyophilized venom samples. To illustrate the technique we have RT-PCR-amplified a range of venom protein transcripts from cDNA libraries derived from the venoms of a hemotoxic snake, the Chinese copperhead (Deinagkistrodon acutus), a neurotoxic snake, the black mamba (Dendroaspis polylepis), and a venomous lizard, the Gila monster (Heloderma suspectum). These include a metalloproteinase and phospholipase A2 from D. acutus, a potassium channel blocker, dendrotoxin K, from D. polylepis, and exendin-4 from H. suspectum. These findings imply that the apparent absence and/or lability of mRNA in complex biological matrices is not always real and paves the way for accelerated acquisition of molecular genetic data on venom toxins for scientific and potential therapeutic purposes without sacrifice of endangered herpetofauna. PMID:12470674

  7. Venom Proteins from Parasitoid Wasps and Their Biological Functions

    PubMed Central

    Moreau, Sébastien J. M.; Asgari, Sassan

    2015-01-01

    Parasitoid wasps are valuable biological control agents that suppress their host populations. Factors introduced by the female wasp at parasitization play significant roles in facilitating successful development of the parasitoid larva either inside (endoparasitoid) or outside (ectoparasitoid) the host. Wasp venoms consist of a complex cocktail of proteinacious and non-proteinacious components that may offer agrichemicals as well as pharmaceutical components to improve pest management or health related disorders. Undesirably, the constituents of only a small number of wasp venoms are known. In this article, we review the latest research on venom from parasitoid wasps with an emphasis on their biological function, applications and new approaches used in venom studies. PMID:26131769

  8. Proteolytic activity of Elapid and Viperid Snake venoms and its implication to digestion

    PubMed Central

    Bottrall, Joshua L; Madaras, Frank; Biven, Christopher D; Venning, Michael G; Mirtschin, Peter J

    2010-01-01

    Testing whether venoms may aid in digestion of the prey, eleven snake venoms were compared for the presence of proteases and endopeptidases that function in alkaline pH conditions. In vitro experiments examined the relative protease and endopeptidase activity of the venoms, which involved combining bovine muscle and snake venom in a buffered solution, encased within dialysis tubing. This mixture was then incubated at room temperature (∼20°C) for 24hr, with constant shaking. Bicinchoninic acid (BCA) assay and ninhydrin assay were used to determine peptide and amino acid concentrations. Histological and immunohistochemical investigations using N. kaouthia venom confirmed in vitro findings. Results show that B. arietans venom generated the highest amount of protein/peptides and amino acids in the dialysates, while O. scutellatus, N. ater niger and P. textilis venom did not show any significant protein degradation under alkaline conditions. Histological examination revealed varying degrees of muscle cell damage for each of the venom investigated, and the immunohistochemical study on N. kaouthia venom showed that the venom penetrated the muscle tissue to a significant degree. In vitro assays and histological results indicate that particular venoms may possess the ability to enhance digestion of bovine muscle tissue. PMID:21544178

  9. Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach.

    PubMed

    Danneels, Ellen L; Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C

    2015-11-01

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings. PMID:26529016

  10. Honeybee Venom Proteome Profile of Queens and Winter Bees as Determined by a Mass Spectrometric Approach

    PubMed Central

    Danneels, Ellen L.; Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C.

    2015-01-01

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings. PMID:26529016

  11. A comparative study of the molecular composition and electrophysiological activity of the venoms from two fishing spiders Dolomedes mizhoanus and Dolomedes sulfurous.

    PubMed

    Li, Jiayan; Li, Dan; Zhang, Fan; Wang, Hengyun; Yu, Hai; Liu, Zhonghua; Liang, Songping

    2014-06-01

    Dolomedes mizhoanus and Dolomedes sulfurous are two venomous spiders found in the same area in southern China and are characterized by living in water plants and feeding on fish. In this study, the chemical compositions and activities of these venoms were compared. Both venoms contain hundreds of peptides as shown by off-line RP-HPLC/MALDI-TOF-MS analysis, but have a different peptide distribution, with D. mizhoanus venom containing fewer high molecular mass (7000-9000 Da) peptides (3%) than D. sulfurous venom (25.6%). Patch-clamp analyses showed that both venoms inhibited voltage-activated Na(+), K(+) and Ca(2+) channels in rat DRG neurons, however, differences in their inhibitory effects were observed. In general, D. mizhoanus venom had lower inhibitory activity than D. sulfurous venom and both venoms had a different inhibitory spectrum against these ion channels, showing that both venoms are useful for identifying antagonists to them. In addition, intrathoracic injection of both venoms caused severe neurotoxic effects in zebrafish and death at higher concentrations, respectively. Considering that both spiders belong to the same genus, live in the same area and have similar habits, elucidation of the differences between the peptide toxins from both venoms would provide new molecular insights into the evolution of spider peptides. PMID:24593962

  12. Immobilizing and lethal effects of spider venoms on the cockroach and the common mealbeetle.

    PubMed

    Friedel, T; Nentwig, W

    1989-01-01

    Immobilizing and lethal effects of the venoms obtained from six spider species (Brachypelma albopilosum, Atrax robustus, Cupiennius salei, Selenops mexicanus, Tegenaria atrica, Argiope bruennichi) were tested on Blatta orientalis (cockroach) and Tenebrio molitor (common mealbeetle). The immobilizing effects were quantified by measuring insect locomotor activity in circle arenas observed over 72 hr after venom injection. Both insect species showed cramps, quivering and jerking of the limbs as well as flaccid paralysis after venom injection. Through relative toxicity of the venoms tested is the same in T. molitor and B. orientalis, T. molitor is absolutely less sensitive to spider venoms. The effects on locomotor activity show time characteristics specific for each venom. A dependence of the venom paralyzing effects on insect locomotor activity, low intensity of the initial excitatory phase of the venom effects and partial recovery of the insects was found with A. bruennichi and T. atrica venom. The maximal venom yields of A. bruennichi and S. mexicanus are not lethal to B. orientalis, indicating that the mere immobilizing effects of spider venoms are far more crucial to prey capture than their lethal effects. The contribution of a variety of differently acting neurotoxic components in spider venoms to the observed venom effects on insects and the significance of the venoms in spider nutrition, hunting behaviour and ecology are discussed. PMID:2728023

  13. Comparison of the effect of Crotalus simus and Crotalus durissus ruruima venoms on the equine antibody response towards Bothrops asper venom: implications for the production of polyspecific snake antivenoms.

    PubMed

    Dos-Santos, Maria Cristina; Arroyo, Cynthia; Solano, Sergio; Herrera, María; Villalta, Mauren; Segura, Alvaro; Estrada, Ricardo; Gutiérrez, José María; León, Guillermo

    2011-02-01

    Antivenoms are preparations of immunoglobulins purified from the plasma of animals immunized with snake venoms. Depending on the number of venoms used during the immunization, antivenoms can be monospecific (if venom from a single species is used) or polyspecific (if venoms from several species are used). In turn, polyspecific antivenoms can be prepared by purifying antibodies from the plasma of animals immunized with a mixture of venoms, or by mixing antibodies purified from the plasma of animals immunized separately with single venom. The suitability of these strategies to produce polyspecific antibothropic-crotalic antivenoms was assessed using as models the venoms of Bothrops asper, Crotalus simus and Crotalus durissus ruruima. It was demonstrated that, when used as co-immunogen, C. simus and C. durissus ruruima venoms exert a deleterious effect on the antibody response towards different components of B. asper venom and in the neutralization of hemorrhagic and coagulant effect of this venom when compared with a monospecific B. asper antivenom. Polyspecific antivenoms produced by purifying immunoglobulins from the plasma of animals immunized with venom mixtures showed higher antibody titers and neutralizing capacity than those produced by mixing antibodies purified from the plasma of animals immunized separately with single venom. Thus, despite the deleterious effect of Crotalus sp venoms on the immune response against B. asper venom, the use of venom mixtures is more effective than the immunization with separate venoms for the preparation of polyspecific bothropic-crotalic antivenoms. PMID:21130107

  14. Brown spider (Loxosceles genus) venom toxins: tools for biological purposes.

    PubMed

    Chaim, Olga Meiri; Trevisan-Silva, Dilza; Chaves-Moreira, Daniele; Wille, Ana Carolina M; Ferrer, Valéria Pereira; Matsubara, Fernando Hitomi; Mangili, Oldemir Carlos; da Silveira, Rafael Bertoni; Gremski, Luiza Helena; Gremski, Waldemiro; Senff-Ribeiro, Andrea; Veiga, Silvio Sanches

    2011-03-01

    Venomous animals use their venoms as tools for defense or predation. These venoms are complex mixtures, mainly enriched of proteic toxins or peptides with several, and different, biological activities. In general, spider venom is rich in biologically active molecules that are useful in experimental protocols for pharmacology, biochemistry, cell biology and immunology, as well as putative tools for biotechnology and industries. Spider venoms have recently garnered much attention from several research groups worldwide. Brown spider (Loxosceles genus) venom is enriched in low molecular mass proteins (5-40 kDa). Although their venom is produced in minute volumes (a few microliters), and contain only tens of micrograms of protein, the use of techniques based on molecular biology and proteomic analysis has afforded rational projects in the area and permitted the discovery and identification of a great number of novel toxins. The brown spider phospholipase-D family is undoubtedly the most investigated and characterized, although other important toxins, such as low molecular mass insecticidal peptides, metalloproteases and hyaluronidases have also been identified and featured in literature. The molecular pathways of the action of these toxins have been reported and brought new insights in the field of biotechnology. Herein, we shall see how recent reports describing discoveries in the area of brown spider venom have expanded biotechnological uses of molecules identified in these venoms, with special emphasis on the construction of a cDNA library for venom glands, transcriptome analysis, proteomic projects, recombinant expression of different proteic toxins, and finally structural descriptions based on crystallography of toxins. PMID:22069711

  15. Brown Spider (Loxosceles genus) Venom Toxins: Tools for Biological Purposes

    PubMed Central

    Chaim, Olga Meiri; Trevisan-Silva, Dilza; Chaves-Moreira, Daniele; Wille, Ana Carolina M.; Ferrer, Valéria Pereira; Matsubara, Fernando Hitomi; Mangili, Oldemir Carlos; da Silveira, Rafael Bertoni; Gremski, Luiza Helena; Gremski, Waldemiro; Senff-Ribeiro, Andrea; Veiga, Silvio Sanches

    2011-01-01

    Venomous animals use their venoms as tools for defense or predation. These venoms are complex mixtures, mainly enriched of proteic toxins or peptides with several, and different, biological activities. In general, spider venom is rich in biologically active molecules that are useful in experimental protocols for pharmacology, biochemistry, cell biology and immunology, as well as putative tools for biotechnology and industries. Spider venoms have recently garnered much attention from several research groups worldwide. Brown spider (Loxosceles genus) venom is enriched in low molecular mass proteins (5–40 kDa). Although their venom is produced in minute volumes (a few microliters), and contain only tens of micrograms of protein, the use of techniques based on molecular biology and proteomic analysis has afforded rational projects in the area and permitted the discovery and identification of a great number of novel toxins. The brown spider phospholipase-D family is undoubtedly the most investigated and characterized, although other important toxins, such as low molecular mass insecticidal peptides, metalloproteases and hyaluronidases have also been identified and featured in literature. The molecular pathways of the action of these toxins have been reported and brought new insights in the field of biotechnology. Herein, we shall see how recent reports describing discoveries in the area of brown spider venom have expanded biotechnological uses of molecules identified in these venoms, with special emphasis on the construction of a cDNA library for venom glands, transcriptome analysis, proteomic projects, recombinant expression of different proteic toxins, and finally structural descriptions based on crystallography of toxins. PMID:22069711

  16. Integrative Approach Reveals Composition of Endoparasitoid Wasp Venoms

    PubMed Central

    Mobley, James A.; Bowersock, Gregory J.; Taylor, James; Schlenke, Todd A.

    2013-01-01

    The fruit fly Drosophila melanogaster and its endoparasitoid wasps are a developing model system for interactions between host immune responses and parasite virulence mechanisms. In this system, wasps use diverse venom cocktails to suppress the conserved fly cellular encapsulation response. Although numerous genetic tools allow detailed characterization of fly immune genes, lack of wasp genomic information has hindered characterization of the parasite side of the interaction. Here, we use high-throughput nucleic acid and amino acid sequencing methods to describe the venoms of two related Drosophila endoparasitoids with distinct infection strategies, Leptopilina boulardi and L. heterotoma. Using RNA-seq, we assembled and quantified libraries of transcript sequences from female wasp abdomens. Next, we used mass spectrometry to sequence peptides derived from dissected venom gland lumens. We then mapped the peptide spectral data against the abdomen transcriptomes to identify a set of putative venom genes for each wasp species. Our approach captured the three venom genes previously characterized in L. boulardi by traditional cDNA cloning methods as well as numerous new venom genes that were subsequently validated by a combination of RT-PCR, blast comparisons, and secretion signal sequence search. Overall, 129 proteins were found to comprise L. boulardi venom and 176 proteins were found to comprise L. heterotoma venom. We found significant overlap in L. boulardi and L. heterotoma venom composition but also distinct differences that may underlie their unique infection strategies. Our joint transcriptomic-proteomic approach for endoparasitoid wasp venoms is generally applicable to identification of functional protein subsets from any non-genome sequenced organism. PMID:23717546

  17. Integrative approach reveals composition of endoparasitoid wasp venoms.

    PubMed

    Goecks, Jeremy; Mortimer, Nathan T; Mobley, James A; Bowersock, Gregory J; Taylor, James; Schlenke, Todd A

    2013-01-01

    The fruit fly Drosophila melanogaster and its endoparasitoid wasps are a developing model system for interactions between host immune responses and parasite virulence mechanisms. In this system, wasps use diverse venom cocktails to suppress the conserved fly cellular encapsulation response. Although numerous genetic tools allow detailed characterization of fly immune genes, lack of wasp genomic information has hindered characterization of the parasite side of the interaction. Here, we use high-throughput nucleic acid and amino acid sequencing methods to describe the venoms of two related Drosophila endoparasitoids with distinct infection strategies, Leptopilina boulardi and L. heterotoma. Using RNA-seq, we assembled and quantified libraries of transcript sequences from female wasp abdomens. Next, we used mass spectrometry to sequence peptides derived from dissected venom gland lumens. We then mapped the peptide spectral data against the abdomen transcriptomes to identify a set of putative venom genes for each wasp species. Our approach captured the three venom genes previously characterized in L. boulardi by traditional cDNA cloning methods as well as numerous new venom genes that were subsequently validated by a combination of RT-PCR, blast comparisons, and secretion signal sequence search. Overall, 129 proteins were found to comprise L. boulardi venom and 176 proteins were found to comprise L. heterotoma venom. We found significant overlap in L. boulardi and L. heterotoma venom composition but also distinct differences that may underlie their unique infection strategies. Our joint transcriptomic-proteomic approach for endoparasitoid wasp venoms is generally applicable to identification of functional protein subsets from any non-genome sequenced organism. PMID:23717546

  18. Nonribosomal Peptides, Key Biocontrol Components for Pseudomonas fluorescens In5, Isolated from a Greenlandic Suppressive Soil

    PubMed Central

    Michelsen, Charlotte F.; Watrous, Jeramie; Glaring, Mikkel A.; Kersten, Roland; Koyama, Nobuhiro

    2015-01-01

    ABSTRACT Potatoes are cultivated in southwest Greenland without the use of pesticides and with limited crop rotation. Despite the fact that plant-pathogenic fungi are present, no severe-disease outbreaks have yet been observed. In this report, we document that a potato soil at Inneruulalik in southern Greenland is suppressive against Rhizoctonia solani Ag3 and uncover the suppressive antifungal mechanism of a highly potent biocontrol bacterium, Pseudomonas fluorescens In5, isolated from the suppressive potato soil. A combination of molecular genetics, genomics, and matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) imaging mass spectrometry (IMS) revealed an antifungal genomic island in P. fluorescens In5 encoding two nonribosomal peptides, nunamycin and nunapeptin, which are key components for the biocontrol activity by strain In5 in vitro and in soil microcosm experiments. Furthermore, complex microbial behaviors were highlighted. Whereas nunamycin was demonstrated to inhibit the mycelial growth of R. solani Ag3, but not that of Pythium aphanidermatum, nunapeptin instead inhibited P. aphanidermatum but not R. solani Ag3. Moreover, the synthesis of nunamycin by P. fluorescens In5 was inhibited in the presence of P. aphanidermatum. Further characterization of the two peptides revealed nunamycin to be a monochlorinated 9-amino-acid cyclic lipopeptide with similarity to members of the syringomycin group, whereas nunapeptin was a 22-amino-acid cyclic lipopeptide with similarity to corpeptin and syringopeptin. PMID:25784695

  19. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes.

    PubMed

    Schmitt, Paulina; Rosa, Rafael D; Destoumieux-Garzón, Delphine

    2016-05-01

    Antimicrobial peptides and proteins (AMPs) are widespread in the living kingdom. They are key effectors of defense reactions and mediators of competitions between organisms. They are often cationic and amphiphilic, which favors their interactions with the anionic membranes of microorganisms. Several AMP families do not directly alter membrane integrity but rather target conserved components of the bacterial membranes in a process that provides them with potent and specific antimicrobial activities. Thus, lipopolysaccharides (LPS), lipoteichoic acids (LTA) and the peptidoglycan precursor Lipid II are targeted by a broad series of AMPs. Studying the functional diversity of immune effectors tells us about the essential residues involved in AMP mechanism of action. Marine invertebrates have been found to produce a remarkable diversity of AMPs. Molluscan defensins and crustacean anti-LPS factors (ALF) are diverse in terms of amino acid sequence and show contrasted phenotypes in terms of antimicrobial activity. Their activity is directed essentially against Gram-positive or Gram-negative bacteria due to their specific interactions with Lipid II or Lipid A, respectively. Through those interesting examples, we discuss here how sequence diversity generated throughout evolution informs us on residues required for essential molecular interaction at the bacterial membranes and subsequent antibacterial activity. Through the analysis of molecular variants having lost antibacterial activity or shaped novel functions, we also discuss the molecular bases of functional divergence in AMPs. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26498397

  20. Antibacterial properties of KwaZulu natal snake venoms.

    PubMed

    Blaylock, R S

    2000-11-01

    The objective was to ascertain whether local snake venoms have antibacterial properties. The venoms of the common night adder (Causus rhombeatus), gaboon adder (Bitis gabonica), puff adder (Bitis arietans), black mamba (Dendroaspis polylepis), eastern green mamba (Dendroaspis augusticeps), forest cobra (Naja melanoleuca), snouted cobra (Naja annulifera) and Mozambique spitting cobra (Naja mossambica) were collected and, by gel diffusion, tested against the bacteria Staphylococcus aureus, Escherichia coli, Pseudomonas aeriginosa, Bacteriodes fragilis, Bacteroides intermedius, Clostridium sordellii and Clostridium perfringens. All snake venoms showed antibacterial activity, with the adders showing most activity against the aerobes while the cobras showed lesser, but equal activity against the aerobes and anaerobes. Black mamba venom only showed activity against C. perfringens. In conclusion, local snake venoms have antibacterial properties which are dependent on the venom and bacterial type; and in the Naja spp., for anaerobic bacteria, diminish in winter. There is liable to be more than one toxin component responsible. PMID:10775753

  1. Comparative analysis of local effects caused by Bothrops alternatus and Bothrops moojeni snake venoms: enzymatic contributions and inflammatory modulations.

    PubMed

    Mamede, Carla Cristine Neves; de Sousa, Bruna Barbosa; Pereira, Déborah Fernanda da Cunha; Matias, Mariana Santos; de Queiroz, Mayara Ribeiro; de Morais, Nadia Cristina Gomes; Vieira, Sâmela Alves Pereira Batista; Stanziola, Leonilda; de Oliveira, Fábio

    2016-07-01

    Bothropic envenomation is characterised by severe local damage caused by the toxic action of venom components and aggravated by induced inflammation. In this comparative study, the local inflammatory effects caused by the venoms of Bothrops alternatus and Bothrops moojeni, two snakes of epidemiological importance in Brazil, were investigated. The toxic action of venom components induced by bothropic venom was also characterised. Herein, the oedema, hyperalgesia and myotoxicity induced by bothropic venom were monitored for various lengths of time after venom injection in experimental animals. The intensity of the local effects caused by B. moojeni venom is considerably more potent than B. alternatus venom. Our results also indicate that metalloproteases and phospholipases A2 have a central role in the local damage induced by bothropic venoms, but serine proteases also contribute to the effects of these venoms. Furthermore, we observed that specific anti-inflammatory drugs were able to considerably reduce the oedema, the pain and the muscle damage caused by both venoms. The inflammatory reaction induced by B. moojeni venom is mediated by eicosanoid action, histamine and nitric oxide, with significant participation of bradykinin on the hyperalgesic and myotoxic effects of this venom. These mediators also participate to inflammation caused by B. alternatus venom. However, the inefficient anti-inflammatory effects of some local modulation suggest that histamine, leukotrienes and nitric oxide have little role in the oedema or myotoxicity caused by B. alternatus venom. PMID:26975252

  2. The leader peptide of mutacin 1140 has distinct structural components compared to related class I lantibiotics

    PubMed Central

    Escano, Jerome; Stauffer, Byron; Brennan, Jacob; Bullock, Monica; Smith, Leif

    2014-01-01

    Lantibiotics are ribosomally synthesized peptide antibiotics composed of an N-terminal leader peptide that promotes the core peptide's interaction with the post translational modification (PTM) enzymes. Following PTMs, mutacin 1140 is transported out of the cell and the leader peptide is cleaved to yield the antibacterial peptide. Mutacin 1140 leader peptide is structurally unique compared to other class I lantibiotic leader peptides. Herein, we further our understanding of the structural differences of mutacin 1140 leader peptide with regard to other class I leader peptides. We have determined that the length of the leader peptide is important for the biosynthesis of mutacin 1140. We have also determined that mutacin 1140 leader peptide contains a novel four amino acid motif compared to related lantibiotics. PTM enzyme recognition of the leader peptide appears to be evolutionarily distinct from related class I lantibiotics. Our study on mutacin 1140 leader peptide provides a basis for future studies aimed at understanding its interaction with the PTM enzymes. PMID:25400246

  3. Transcriptomic basis for an antiserum against Micrurus corallinus (coral snake) venom

    PubMed Central

    Leão, Luciana I; Ho, Paulo L; Junqueira-de-Azevedo, Inacio de LM

    2009-01-01

    Background Micrurus corallinus (coral snake) is a tropical forest snake belonging to the family Elapidae. Its venom shows a high neurotoxicity associated with pre- and post-synaptic toxins, causing diaphragm paralysis, which may result in death. In spite of a relatively small incidence of accidents, serum therapy is crucial for those bitten. However, the adequate production of antiserum is hampered by the difficulty in obtaining sufficient amounts of venom from a small snake with demanding breeding conditions. In order to elucidate the molecular basis of this venom and to uncover possible immunogens for an antiserum, we generated expressed sequences tags (ESTs) from its venom glands and analyzed the transcriptomic profile. In addition, their immunogenicity was tested using DNA immunization. Results A total of 1438 ESTs were generated and grouped into 611 clusters. Toxin transcripts represented 46% of the total ESTs. The two main toxin classes consisted of three-finger toxins (3FTx) (24%) and phospholipases A2 (PLA2s) (15%). However, 8 other classes of toxins were present, including C-type lectins, natriuretic peptide precursors and even high-molecular mass components such as metalloproteases and L-amino acid oxidases. Each class included an assortment of isoforms, some showing evidence of alternative splicing and domain deletions. Five antigenic candidates were selected (four 3FTx and one PLA2) and used for a preliminary study of DNA immunization. The immunological response showed that the sera from the immunized animals were able to recognize the recombinant antigens. Conclusion Besides an improvement in our knowledge of the composition of coral snake venoms, which are very poorly known when compared to Old World elapids, the expression profile suggests abundant and diversified components that may be used in future antiserum formulation. As recombinant production of venom antigens frequently fails due to complex disulfide arrangements, DNA immunization may be a

  4. Small interacting peptides. Part II: Interaction of cyclohexapeptides with immobilised model peptides. Comparison of infrared investigations, principal components analysis and force field calculations

    NASA Astrophysics Data System (ADS)

    Palmer, Frauke; Stingel, Christiane; Tünnemann, Rolf; Mack, Hans-Georg; Jung, Günther; Hoffmann, Volker

    2004-07-01

    The interaction of cyclic peptides with surface-bound model peptides was investigated by ATR-FTIR spectroscopy, principal components analysis and force field calculations. Information about the interacting functional COOH, COO -, and NH 3+ groups and the peptide backbone was gained through a set of cyclohexapeptides (seven of the type c(X 1KX 2KX 3K) (K = L-lysine) and one of the type c(X 1KX 2KX 3k) (k = D-lysine), which are interacting with L-arginine- or tripeptide-coated Si-ATR crystals. All measurements were performed in aqueous solutions. Spectra evaluation in the range 1800-1500 cm -1 was done by band and principal components analysis (PCA). Only adsorbed molecules were present in these spectra. The coatings were investigated by ATR-FTIR spectroscopy too in order to characterise their functional groups. Based on this knowledge, the spectra of the interacting partners could be evaluated in relation to cyclohexapeptides and coatings. As a result, it was possible to identify the distinct differences in the bonding behaviour of the various peptides.

  5. Kininogenase activity of Thalassophryne nattereri fish venom.

    PubMed

    Lopes-Ferreira, Mônica; Emim, José Artur da Silva; Oliveira, Vitor; Puzer, Luciano; Cezari, Maria Helena; Araújo, Mariana da Silva; Juliano, Luiz; Lapa, Antônio José; Souccar, Caden; Moura-da-Silva, Ana Maria

    2004-12-01

    Accidents caused by the venomous fish Thalassophryne nattereri are characterized by edema, intense pain and necrosis at the site of the sting. This study assessed the nociceptive and edematogenic activities of T. nattereri venom after injection into the mouse hindpaw and determination of the paw licking duration and weight. Subplantar injections of the venom (0.1-6 microg) induced a dose-related increase of the paw licking time and paw swelling with maximal values at 3 microg (209.5 +/- 57.5 s and 135.0 +/- 6.8 mg, respectively). Pretreatment of mice with either indomethacin (10 mg/kg, i.p.), a cyclooxygenase inhibitor, dexamethasone (1 mg/kg, s.c.), a steroid anti-inflammatory agent, cyproheptadine (1 mg/kg, i.p.), antagonist of serotonin receptors or L-NAME (100 mg/kg, s.c.), inhibitor of nitric oxide syntase, did not affect the venom-induced nociceptive and edematogenic responses. Injection of the opioid analgesic fentanyl (0.1 mg/kg, s.c.) reduced the paw licking time induced by 1 microg venom by 84% of control, without affecting the paw swelling. Both nociceptive and edematogenic responses were reduced after treatment with a specific tissue kallikrein inhibitor (TKI, 100 mg/kg, i.p.) by 78% and 24% from control values, respectively. Administration of a specific plasma kallikrein inhibitor (PKSI(527,) 100 mg/kg, s.c.) did not affect the venom-induced nociceptive response, but it decreased the paw edema by 15% from control. After injection of the angiotensin-converting enzyme inhibitor captopril (100 mg/kg, i.p.) the venom-induced nociceptive end edematogenic responses were increased by two-fold. The role of kallikreins possibly present in the venom was further assessed by hydrolysis of human kininogen and kininogen-derived synthetic peptides, showing the release of kallidin (Lys-bradykinin). The hydrolysis was inhibited by metal chelating agents but not by serino-, aspartyl- or cysteino-proteinase inhibitors. The data suggest that a protease with tissue

  6. Molecular Characterization of Three Novel Phospholipase A2 Proteins from the Venom of Atheris chlorechis, Atheris nitschei and Atheris squamigera

    PubMed Central

    Wang, He; Chen, Xiaole; Zhou, Mei; Wang, Lei; Chen, Tianbao; Shaw, Chris

    2016-01-01

    Secretory phospholipase A2 (sPLA2) is known as a major component of snake venoms and displays higher-order catalytic hydrolysis functions as well as a wide range of pathological effects. Atheris is not a notoriously dangerous genus of snakes although there are some reports of fatal cases after envenomation due to the effects of coagulation disturbances and hemorrhaging. Molecular characterization of Atheris venom enzymes is incomplete and there are only a few reports in the literature. Here, we report, for the first time, the cloning and characterization of three novel cDNAs encoding phospholipase A2 precursors (one each) from the venoms of the Western bush viper (Atheris chlorechis), the Great Lakes bush viper (Atheris nitschei) and the Variable bush viper (Atheris squamigera), using a “shotgun cloning” strategy. Open-reading frames of respective cloned cDNAs contained putative 16 residue signal peptides and mature proteins composed of 121 to 123 amino acid residues. Alignment of mature protein sequences revealed high degrees of structural conservation and identity with Group II venom PLA2 proteins from other taxa within the Viperidae. Reverse-phase High Performance Liquid Chromatography (HPLC) profiles of these three snake venoms were obtained separately and chromatographic fractions were assessed for phospholipase activity using an egg yolk suspension assay. The molecular masses of mature proteins were all identified as approximately 14 kDa. Mass spectrometric analyses of the fractionated oligopeptides arising from tryptic digestion of intact venom proteins, was performed for further structural characterization. PMID:27258312

  7. A simple non-invasive technique for venom milking from a solitary wasp Delta conoideum Gmelin (Hymenoptera: Vespidae).

    PubMed

    Bhagavathula, Naga Chaitanya; Kumar, Mukesh; Krishnappa, Chandrashekra

    2016-01-01

    Prospecting wasp, ant and bee venom for active bio-molecules has gained considerable interest among researchers in recent years. Collecting sufficient quantity of venom from solitary wasps without sacrificing them is often difficult. Here we describe a non-invasive technique for collecting venom from a solitary wasp Delta conoideum Gmelin (Red-backed potter wasp). Venom was milked by presenting an agar block to a single female wasp for stinging. The venom was extracted from the agar block using ACN: water solvent system. The total protein in venom was estimated quantitatively and the presence of peptides in the venom was confirmed by MALDI-TOF analysis. The proposed technique is non-invasive and pure venom can be repeatedly 'milked' using this method from other wasps and also bees without the need for sacrificing a large number of individuals. PMID:26556656

  8. Recruitment and diversification of an ecdysozoan family of neuropeptide hormones for black widow spider venom expression

    PubMed Central

    McCowan, Caryn; Garb, Jessica E.

    2014-01-01

    Venoms have attracted enormous attention because of their potent physiological effects and dynamic evolution, including the convergent recruitment of homologous genes for venom expression. Here we provide novel evidence for the recruitment of genes from the Crustacean Hyperglycemic Hormone (CHH) and arthropod Ion Transport Peptide (ITP) superfamily for venom expression in black widow spiders. We characterized latrodectin peptides from venom gland cDNAs from the Western black widow spider (Latrodectus hesperus), the brown widow (L. geometricus) and cupboard spider (Steatoda grossa). Phylogenetic analyses of these sequences with homologs from other spider, scorpion and wasp venom cDNAs, as well as CHH/ITP neuropeptides, show latrodectins as derived members of the CHH/ITP superfamily. These analyses suggest that CHH/ITP homologs are more widespread in spider venoms, and were recruited for venom expression in two additional arthropod lineages. We also found that the latrodectin 2 gene and nearly all CHH/ITP genes include a phase 2 intron in the same position, supporting latrodectin’s placement within the CHH/ITP superfamily. Evolutionary analyses of latrodectins suggest episodes of positive selection along some sequence lineages, and positive and purifying selection on specific codons, supporting its functional importance in widow venom. We consider how this improved understanding of latrodectin evolution informs functional hypotheses regarding its role in black widow venom as well as its potential convergent recruitment for venom expression across arthropods. PMID:24316130

  9. Analysis of scorpion venom composition by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Martínez-Zérega, Brenda E.; González-Solís, José L.

    2015-01-01

    In this work we study the venom of two Centruroides scorpion species using Raman spectroscopy. The spectra analysis allows to determine the venoms chemical composition and to establish the main differences and similarities among the species. It is also shown that the use of Principal Component Analysis may help to tell apart between the scorpion species.

  10. Hyphenated LC-MALDI-ToF/ToF and LC-ESI-QToF approach in proteomic characterization of honeybee venom.

    PubMed

    Matysiak, Jan; Hajduk, Joanna; Mayer, Franz; Hebeler, Romano; Kokot, Zenon J

    2016-03-20

    To increase in the depth characterization of venom proteome of Apis mellifera the hyphenated LC-MALDI-ToF/ToF-MS (liquid chromatography-matrix-assisted laser desorption/ionization-time of flight/time of flight tandem mass spectrometry) and LC-ESI-QToF-MS (liquid chromatography-electrospray ionization-quadrupole time of flight tandem mass spectrometry) techniques combined with combinatorial peptide ligand library enrichment method is proposed in this study. The novel approach simplifies pretreatment protocol in venom investigation. By using the protein preparation kit with sequential multi-step elution, the honeybee venom was dispensed into four different fractions. In total 269 proteins were detected, among these 49 honeybee toxins, allergens and components involved in mechanism of envenoming belonging to venom enzyme classes of esterases, proteases/peptidases, protease inhibitors, hydrolases and major royal jelly proteins. Moreover 5 additional putative toxins were identified. Their role in envenoming process was discussed. We concluded that different mass spectrometry techniques increased the detection of the honeybee venom proteins, underscoring the complementary character of analytical methods. The combination of MALDI and ESI ionization has resulted in numerous proteins identifications, not possible to reach with single proteomic technique. The study will contribute to broadening the knowledge about the complexity of honeybee venom. The newly identified proteins may serve not only as toxins and allergens, but also as substances with potential pharmacological activity. Although, the most detected proteins belong to trace elements of honeybee venom without toxic activity or action on vital system of victims, they should be taken into account in characterization of living organism response on Apis mellifera sting. PMID:26780156

  11. In Vitro and In Vivo Evaluation of Polyherbal Formulation against Russell's Viper and Cobra Venom and Screening of Bioactive Components by Docking Studies

    PubMed Central

    Sakthivel, G.; Dey, Amitabha; Nongalleima, Kh.; Chavali, Murthy; Rimal Isaac, R. S.; Singh, N. Surjit; Deb, Lokesh

    2013-01-01

    The present study emphasizes to reveal the antivenom activity of Aristolochia bracteolata Lam., Tylophora indica (Burm.f.) Merrill, and Leucas aspera S. which were evaluated against venoms of Daboia russelli russelli (Russell's viper) and Naja naja (Indian cobra). The aqueous extracts of leaves and roots of the above-mentioned plants and their polyherbal (1 : 1 : 1) formulation at a dose of 200 mg/kg showed protection against envenomed mice with LD50 doses of 0.44 mg/kg and 0.28 mg/kg against Russell's viper and cobra venom, respectively. In in vitro antioxidant activities sample extracts showed free radical scavenging effects in dose dependent manner. Computational drug design and docking studies were carried out to predict the neutralizing principles of type I phospholipase A2 (PLA2) from Indian common krait venom. This confirmed that aristolochic acid and leucasin can neutralize type I PLA2 enzyme. Results suggest that these plants could serve as a source of natural antioxidants and common antidote for snake bite. However, further studies are needed to identify the lead molecule responsible for antidote activity. PMID:23533518

  12. General biochemical and immunological characteristics of the venom from Peruvian scorpion Hadruroides lunatus.

    PubMed

    Costal-Oliveira, F; Duarte, C G; Machado de Avila, R A; Melo, M M; Bordon, K C F; Arantes, E C; Paredes, N C; Tintaya, B; Bonilla, C; Bonilla, R E; Suarez, W S; Yarleque, A; Fernandez, J M; Kalapothakis, E; Chávez-Olórtegui, Carlos

    2012-10-01

    This communication describes the general biochemical properties and some immunological characteristics of the venom from the Peruvian scorpion Hadruroides lunatus, which is the most medically relevant species in Peru. The soluble venom of this scorpion is toxic to mice, the LD₅₀ determined was 0.1 mg/kg and 21.55 mg/kg when the venom was injected intracranial or intraperitoneally, respectively. The soluble venom displayed proteolytic, hyaluronidasic, phospholipasic and cardiotoxic activities. High performance liquid chromatography of the soluble venom resulted in the separation of 20 fractions. Two peptides with phospholipasic activity were isolated to homogeneity and their molecular masses determined by mass spectrometry (MALDI TOF). Anti-H. lunatus venom sera were produced in rabbits. Western blotting analysis showed that most of the protein content of this venom is immunogenic. H. lunatus anti-venom displayed consistent cross-reactivity with venom antigens from the new World-scorpions Tityus serrulatus and Centruroides sculpturatus venoms; however, a weaker reactivity was observed against the venom antigens from the old World-scorpion Androctonus australis Hector. PMID:22750532

  13. Analysis of the intersexual variation in Thalassophryne maculosa fish venoms.

    PubMed

    Lopes-Ferreira, Mônica; Sosa-Rosales, Ines; Bruni, Fernanda M; Ramos, Anderson D; Vieira Portaro, Fernanda Calheta; Conceição, Katia; Lima, Carla

    2016-06-01

    Gender related variation in the molecular composition of venoms and secretions have been described for some animal species, and there are some evidences that the difference in the toxin (s) profile among males and females may be related to different physiopathological effects caused by the envenomation by either gender. In order to investigate whether this same phenomenon occurs to the toadfish Thalassophryne maculosa, we have compared some biological and biochemical properties of female and male venoms. Twenty females and males were collected in deep waters of the La Restinga lagoon (Venezuela) and, after protein concentration assessed, the induction of toxic activities in mice and the biochemical properties were analyzed. Protein content is higher in males than in females, which may be associated to a higher size and weight of the male body. In vivo studies showed that mice injected with male venoms presented higher nociception when compared to those injected with female venoms, and both venoms induced migration of macrophages into the paw of mice. On the other hand, mice injected with female venoms had more paw edema and extravasation of Evans blue in peritoneal cavity than mice injected with male venoms. We observed that the female venoms had more capacity for necrosis induction when compared with male venoms. The female samples present a higher proteolytic activity then the male venom when gelatin, casein and FRETs were used as substrates. Evaluation of the venoms of females and males by SDS-PAGE and chromatographic profile showed that, at least three components (present in two peaks) are only present in males. Although the severity of the lesion, characterized by necrosis development, is related with the poisoning by female specimens, the presence of exclusive toxins in the male venoms could be associated with the largest capacity of nociception induction by this sample. PMID:26988736

  14. [Use of medicinal plants against scorpionic and ophidian venoms].

    PubMed

    Memmi, A; Sansa, G; Rjeibi, I; El Ayeb, M; Srairi-Abid, N; Bellasfer, Z; Fekhih, A

    2007-01-01

    The scorpionic and ophidian envenomations are a serious public health problem in Tunisia especially in Southeastern regions. In these regions Artemisia campestris L is a plant well known which has a very important place in traditional medicine for its effectiveness against alleged venom of scorpions and snakes. In this work, we tested for the first time, the anti-venomous activity of Artemisia campestris L against the scorpion Androctonus australis garzonii and the viper Macrovipera lebetina venoms. Assays were conducted by fixing the dose of extract to3 mg/mouse while doses of venom are variable. The leaves of Artemisia campestris L were extracted by various organic solvents (Ether of oil, ethyl acetate, methanol and ethanol) and each extract was tested for its venom neutralizing capacity. For the ethanolic extract, a significant activity with respect to the venoms of scorpion Androctonus australis garzonii (Aag), was detected. Similarly, a significant neutralizing activity against the venom of a viper Macrovipera lebetina (Ml), was obtained with the dichloromethane extract. These results suggest the presence of two different type of chemical components in this plant: those neutralizing the venom of scorpion are soluble in ethanol whereas those neutralizing the venom of viper are soluble in dichloromethane. PMID:19388583

  15. Pathophysiological effects of Cerastes cerastes and Vipera lebetina venoms: Immunoneutralization using anti-native and anti-(60)Co irradiated venoms.

    PubMed

    Boumaiza, Sabrina; Oussedik-Oumehdi, Habiba; Laraba-Djebari, Fatima

    2016-01-01

    Cerastes cerastes and Vipera lebetina are the most medically important vipers in Algeria. Their bite induces several pathological effects on victims of accidental envenomation. In this study we analyzed the pathogenesis induced after an experimental envenomation. Indeed, we determined, in vitro, venom enzymatic activities and we analyzed, in vivo, pathological effects induced on liver, heart, lung and skin. In addition we investigated the neutralizing potency of four experimental antivenoms elicited against native and irradiated venoms. Results revealed that V. lebetina and Cerastes cerastes venoms presented strong hemorrhagic, oedematic and necrotic activities. Histopathological study showed that both venoms induced deep damage in tissue structures leading to organ dysfunction. They also increased cellular peroxidases activities, indicating an inflammatory process that is known to amplify tissue damage. Western-blot analysis evidenced that anti-irradiated venoms recognized most components of native venoms. Antivenoms were effective in neutralizing all tested activities, with an increased protective effect obtained with anti-irradiated venoms. Anti-irradiated venoms reduced cellular peroxidases activities indicating a reduction of the inflammatory response. These results may improve our understanding of Algerian Viperidae bite pathogenesis and would encourage further studies planning to provide more proofs on the effectiveness of anti-irradiated venoms administration in the treatment of envenomation. PMID:26678662

  16. Fluorometric assay using naphthylamide substrates for assessing novel venom peptidase activities.

    PubMed

    Gasparello-Clemente, Elaine; Silveira, Paulo Flávio

    2002-11-01

    In the present study we examined the feasibility of using the fluorometry of naphthylamine derivatives for revealing peptidase activities in venoms of the snakes Bothrops jararaca, Bothrops alternatus, Bothrops atrox, Bothrops moojeni, Bothrops insularis, Crotalus durissus terrificus and Bitis arietans, of the scorpions Tityus serrulatus and Tityus bahiensis, and of the spiders Phoneutria nigriventer and Loxosceles intermedia. Neutral aminopeptidase (APN) and prolyl-dipeptidyl aminopeptidase IV (DPP IV) activities were presented in all snake venoms, with the highest levels in B. alternatus. Although all examined peptidase activities showed relatively low levels in arthropod venoms, basic aminopeptidase (APB) activity from P. nigriventer venom was the exception. Compared to the other peptidase activities, relatively high levels of acid aminopeptidase (APA) activity were restricted to B. arietans venom. B. arietans also exhibited a prominent content of APB activity which was lower in other venoms. Relatively low prolyl endopeptidase and proline iminopeptidase activities were, respectively, detectable only in T. bahiensis and B. insularis. Pyroglutamate aminopeptidase activity was undetectable in all venoms. All examined peptidase activities were undetectable in T. serrulatus venom. In this study, the specificities of a diverse array of peptidase activities from representative venoms were demonstrated for the first time, with a description of their distribution which may contribute to guiding further investigations. The expressive difference between snake and arthropod venoms was indicated by APN and DPP IV activities while APA and APB activities distinguished the venom of B. arietans from those of Brazilian snakes. The data reflected the relatively uniform qualitative distribution of the peptidase activities investigated, together with their unequal quantitative distribution, indicating the evolutionary divergence in the processing of peptides in these different

  17. Caffeic acid phenethyl ester (CAPE), an active component of propolis, inhibits Helicobacter pylori peptide deformylase activity.

    PubMed

    Cui, Kunqiang; Lu, Weiqiang; Zhu, Lili; Shen, Xu; Huang, Jin

    2013-05-31

    Helicobacter pylori (H. pylori) is a major causative factor for gastrointestinal illnesses, H. pylori peptide deformylase (HpPDF) catalyzes the removal of formyl group from the N-terminus of nascent polypeptide chains, which is essential for H. pylori survival and is considered as a promising drug target for anti-H. pylori therapy. Propolis, a natural antibiotic from honeybees, is reported to have an inhibitory effect on the growth of H. pylori in vitro. In addition, previous studies suggest that the main active constituents in the propolis are phenolic compounds. Therefore, we evaluated a collection of phenolic compounds derived from propolis for enzyme inhibition against HpPDF. Our study results show that Caffeic acid phenethyl ester (CAPE), one of the main medicinal components of propolis, is a competitive inhibitor against HpPDF, with an IC50 value of 4.02 μM. Furthermore, absorption spectra and crystal structural characterization revealed that different from most well known PDF inhibitors, CAPE block the substrate entrance, preventing substrate from approaching the active site, but CAPE does not have chelate interaction with HpPDF and does not disrupt the metal-dependent catalysis. Our study provides valuable information for understanding the potential anti-H. pylori mechanism of propolis, and CAPE could be served as a lead compound for further anti-H. pylori drug discovery. PMID:23611786

  18. Involvement of calcitonin gene-related peptide and receptor component protein in experimental autoimmune encephalomyelitis

    PubMed Central

    Sardi, Claudia; Zambusi, Laura; Finardi, Annamaria; Ruffini, Francesca; Tolun, Adviye A.; Dickerson, Ian M.; Righi, Marco; Zacchetti, Daniele; Grohovaz, Fabio; Provini, Luciano; Furlan, Roberto; Morara, Stefano

    2015-01-01

    Calcitonin Gene-Related Peptide (CGRP) inhibits microglia inflammatory activation in vitro. We here analyzed the involvement of CGRP and Receptor Component Protein (RCP) in experimental autoimmune encephalomyelitis (EAE). Alpha-CGRP deficiency increased EAE scores which followed the scale alpha-CGRP null > heterozygote > wild type. In wild type mice, CGRP delivery into the cerebrospinal fluid (CSF) 1) reduced chronic EAE (C-EAE) signs, 2) inhibited microglia activation (revealed by quantitative shape analysis), and 3) did not alter GFAP expression, cell density, lymphocyte infiltration, and peripheral lymphocyte production of IFN-gamma, TNF-alpha, IL-17, IL-2, and IL-4. RCP (probe for receptor involvement) was expressed in white matter microglia, astrocytes, oligodendrocytes, and vascular-endothelial cells: in EAE, also in infiltrating lymphocytes. In relapsing–remitting EAE (R-EAE) RCP increased during relapse, without correlation with lymphocyte density. RCP nuclear localization (stimulated by CGRP in vitro) was I) increased in microglia and decreased in astrocytes (R-EAE), and II) increased in microglia by CGRP CSF delivery (C-EAE). Calcitonin like receptor was rarely localized in nuclei of control and relapse mice. CGRP increased in motoneurons. In conclusion, CGRP can inhibit microglia activation in vivo in EAE. CGRP and its receptor may represent novel protective factors in EAE, apparently acting through the differential cell-specific intracellular translocationof RCP. PMID:24746422

  19. The venom of the fishing spider Dolomedes sulfurous contains various neurotoxins acting on voltage-activated ion channels in rat dorsal root ganglion neurons.

    PubMed

    Wang, Hengyun; Zhang, Fan; Li, Dan; Xu, Shiyan; He, Juan; Yu, Hai; Li, Jiayan; Liu, Zhonghua; Liang, Songping

    2013-04-01

    Dolomedes sulfurous is a venomous spider distributed in the south of China and characterized with feeding on fish. The venom exhibits great diversity and contains hundreds of peptides as revealed by off-line RP-HPLC/MALDI-TOF-MS analysis. The venom peptides followed a triple-modal distribution, with 40.7% of peptides falling in the mass range of 1000-3000 Da, 25.6% peptides in the 7000-9000 Da range and 23.5% peptides in the 3000-5000 Da range. This distribution modal is rather different from these of peptides from other spider venoms analyzed. The venom could inhibit voltage-activated Na(+), K(+) and Ca(2+) channels in rat DRG neurons as revealed by voltage-clamp analysis. Significantly, the venom exhibited inhibitory effects on TTX-R Na(+) and T-type Ca(2+) currents, suggesting that there exist both channel antagonists which might be valuable tools for investigation of both channels and drug development. Additionally, intrathoracically injection of venom could cause serve neurotoxic effects on zebrafish and death at higher concentrations. The LD50 value was calculated to be 28.8 μg/g body weight. Our results indicated that the venom of D. sulfurous contain diverse neurotoxins which serve to capture prey. Intensive studies will be necessary to investigate the structures and functions of specific peptides of the venom in the future. PMID:23391637

  20. Recent Advances in Research on Widow Spider Venoms and Toxins.

    PubMed

    Yan, Shuai; Wang, Xianchun

    2015-12-01

    Widow spiders have received much attention due to the frequently reported human and animal injures caused by them. Elucidation of the molecular composition and action mechanism of the venoms and toxins has vast implications in the treatment of latrodectism and in the neurobiology and pharmaceutical research. In recent years, the studies of the widow spider venoms and the venom toxins, particularly the α-latrotoxin, have achieved many new advances; however, the mechanism of action of the venom toxins has not been completely clear. The widow spider is different from many other venomous animals in that it has toxic components not only in the venom glands but also in other parts of the adult spider body, newborn spiderlings, and even the eggs. More recently, the molecular basis for the toxicity outside the venom glands has been systematically investigated, with four proteinaceous toxic components being purified and preliminarily characterized, which has expanded our understanding of the widow spider toxins. This review presents a glance at the recent advances in the study on the venoms and toxins from the Latrodectus species. PMID:26633495

  1. Recent Advances in Research on Widow Spider Venoms and Toxins

    PubMed Central

    Yan, Shuai; Wang, Xianchun

    2015-01-01

    Widow spiders have received much attention due to the frequently reported human and animal injures caused by them. Elucidation of the molecular composition and action mechanism of the venoms and toxins has vast implications in the treatment of latrodectism and in the neurobiology and pharmaceutical research. In recent years, the studies of the widow spider venoms and the venom toxins, particularly the α-latrotoxin, have achieved many new advances; however, the mechanism of action of the venom toxins has not been completely clear. The widow spider is different from many other venomous animals in that it has toxic components not only in the venom glands but also in other parts of the adult spider body, newborn spiderlings, and even the eggs. More recently, the molecular basis for the toxicity outside the venom glands has been systematically investigated, with four proteinaceous toxic components being purified and preliminarily characterized, which has expanded our understanding of the widow spider toxins. This review presents a glance at the recent advances in the study on the venoms and toxins from the Latrodectus species. PMID:26633495

  2. The genesis of an exceptionally lethal venom in the timber rattlesnake (Crotalus horridus) revealed through comparative venom-gland transcriptomics

    PubMed Central

    2013-01-01

    Background Snake venoms generally show sequence and quantitative variation within and between species, but some rattlesnakes have undergone exceptionally rapid, dramatic shifts in the composition, lethality, and pharmacological effects of their venoms. Such shifts have occurred within species, most notably in Mojave (Crotalus scutulatus), South American (C. durissus), and timber (C. horridus) rattlesnakes, resulting in some populations with extremely potent, neurotoxic venoms without the hemorrhagic effects typical of rattlesnake bites. Results To better understand the evolutionary changes that resulted in the potent venom of a population of C. horridus from northern Florida, we sequenced the venom-gland transcriptome of an animal from this population for comparison with the previously described transcriptome of the eastern diamondback rattlesnake (C. adamanteus), a congener with a more typical rattlesnake venom. Relative to the toxin transcription of C. adamanteus, which consisted primarily of snake-venom metalloproteinases, C-type lectins, snake-venom serine proteinases, and myotoxin-A, the toxin transcription of C. horridus was far simpler in composition and consisted almost entirely of snake-venom serine proteinases, phospholipases A2, and bradykinin-potentiating and C-type natriuretic peptides. Crotalus horridus lacked significant expression of the hemorrhagic snake-venom metalloproteinases and C-type lectins. Evolution of shared toxin families involved differential expansion and loss of toxin clades within each species and pronounced differences in the highly expressed toxin paralogs. Toxin genes showed significantly higher rates of nonsynonymous substitution than nontoxin genes. The expression patterns of nontoxin genes were conserved between species, despite the vast differences in toxin expression. Conclusions Our results represent the first complete, sequence-based comparison between the venoms of closely related snake species and reveal in unprecedented

  3. Alkaline phosphatase from venom of the endoparasitoid wasp, Pteromalus puparum.

    PubMed

    Zhu, Jia-Ying; Yin Ye, Gong; Fang, Qi; Hu, Cui

    2010-01-01

    Using chromogenic substrates 5-bromo-4-chloro-3'-indolyl phosphate and nitro blue tetrazolium, alkaline phosphatase (ALPase) was histochemically detected in the venom apparatus of an endoparasitoid wasp, Pteromalus puparum L. (Hymenoptera: Pteromalidae). Ultrastructural observations demonstrated its presence in the secretory vesicles and nuclei of the venom gland secretory cells. Using p-nitrophenyl phosphate as substrate to measure enzyme activity, the venom ALPase was found to be temperature dependent with bivalent cation effects. The full-length cDNA sequence of ALPase was amplified from the cDNA library of the venom apparatus of P. puparum, providing the first molecular characterization of ALPase in the venom of a parasitoid wasp. The cDNA consisted of 2645 bp with a 1623 bp open reading frame coding for 541 deduced amino acids with a predicted molecular mass of 59.83 kDa and pI of 6.98. Using multiple sequence alignment, the deduced amino acid sequence shared high identity to its counterparts from other insects. A signal peptide and a long conserved ALPase gene family signature sequence were observed. The amino acid sequence of this venom protein was characterized with different potential glycosylation, myristoylation, phosphorylation sites and metal ligand sites. The transcript of the ALPase gene was detected by RT-PCR in the venom apparatus with development related expression after adult wasp emergence, suggesting a possible correlation with the oviposition process. PMID:20575745

  4. Venom gland transcriptomes of two elapid snakes (Bungarus multicinctus and Naja atra) and evolution of toxin genes

    PubMed Central

    2011-01-01

    Background Kraits (genus Bungarus) and cobras (genus Naja) are two representative toxic genera of elapids in the old world. Although they are closely related genera and both of their venoms are very toxic, the compositions of their venoms are very different. To unveil their detailed venoms and their evolutionary patterns, we constructed venom gland cDNA libraries and genomic bacterial artificial chromosome (BAC) libraries for Bungarus multicinctus and Naja atra, respectively. We sequenced about 1500 cDNA clones for each of the venom cDNA libraries and screened BAC libraries of the two snakes by blot analysis using four kinds of toxin probes; i.e., three-finger toxin (3FTx), phospholipase A2 (PLA2), kunitz-type protease inhibitor (Kunitz), and natriuretic peptide (NP). Results In total, 1092 valid expressed sequences tags (ESTs) for B. multicinctus and 1166 ESTs for N. atra were generated. About 70% of these ESTs can be annotated as snake toxin transcripts. 3FTx (64.5%) and β bungarotoxin (25.1%) comprise the main toxin classes in B. multicinctus, while 3FTx (95.8%) is the dominant toxin in N. atra. We also observed several less abundant venom families in B. multicinctus and N. atra, such as PLA2, C-type lectins, and Kunitz. Peculiarly a cluster of NP precursors with tandem NPs was detected in B. multicinctus. A total of 71 positive toxin BAC clones in B. multicinctus and N. atra were identified using four kinds of toxin probes (3FTx, PLA2, Kunitz, and NP), among which 39 3FTx-postive BACs were sequenced to reveal gene structures of 3FTx toxin genes. Conclusions Based on the toxin ESTs and 3FTx gene sequences, the major components of B. multicinctus venom transcriptome are neurotoxins, including long chain alpha neurotoxins (α-ntx) and the recently originated β bungarotoxin, whereas the N. atra venom transcriptome mainly contains 3FTxs with cytotoxicity and neurotoxicity (short chain α-ntx). The data also revealed that tandem duplications contributed the most to

  5. Comparison of Phylogeny, Venom Composition and Neutralization by Antivenom in Diverse Species of Bothrops Complex

    PubMed Central

    Peixoto, Pedro S.; Bernardoni, Juliana L.; Oliveira, Sâmella S.; Portes-Junior, José Antonio; Mourão, Rosa Helena V.; Lima-dos-Santos, Isa; Sano-Martins, Ida S.; Chalkidis, Hipócrates M.; Valente, Richard H.; Moura-da-Silva, Ana M.

    2013-01-01

    In Latin America, Bothrops snakes account for most snake bites in humans, and the recommended treatment is administration of multispecific Bothrops antivenom (SAB – soro antibotrópico). However, Bothrops snakes are very diverse with regard to their venom composition, which raises the issue of which venoms should be used as immunizing antigens for the production of pan-specific Bothrops antivenoms. In this study, we simultaneously compared the composition and reactivity with SAB of venoms collected from six species of snakes, distributed in pairs from three distinct phylogenetic clades: Bothrops, Bothropoides and Rhinocerophis. We also evaluated the neutralization of Bothrops atrox venom, which is the species responsible for most snake bites in the Amazon region, but not included in the immunization antigen mixture used to produce SAB. Using mass spectrometric and chromatographic approaches, we observed a lack of similarity in protein composition between the venoms from closely related snakes and a high similarity between the venoms of phylogenetically more distant snakes, suggesting little connection between taxonomic position and venom composition. P-III snake venom metalloproteinases (SVMPs) are the most antigenic toxins in the venoms of snakes from the Bothrops complex, whereas class P-I SVMPs, snake venom serine proteinases and phospholipases A2 reacted with antibodies in lower levels. Low molecular size toxins, such as disintegrins and bradykinin-potentiating peptides, were poorly antigenic. Toxins from the same protein family showed antigenic cross-reactivity among venoms from different species; SAB was efficient in neutralizing the B. atrox venom major toxins. Thus, we suggest that it is possible to obtain pan-specific effective antivenoms for Bothrops envenomations through immunization with venoms from only a few species of snakes, if these venoms contain protein classes that are representative of all species to which the antivenom is targeted. PMID

  6. Assessment of immunogenic characteristics of Hemiscorpius lepturus venom and its cross-reactivity with venoms from Androctonus crassicauda and Mesobuthus eupeus.

    PubMed

    Khanbashi, Shahin; Khodadadi, Ali; Assarehzadegan, Mohammad-Ali; Pipelzadeh, Mohammad Hassan; Vazirianzadeh, Babak; Hosseinzadeh, Mohsen; Rahmani, Ali Hassan; Asmar, Akbar

    2015-01-01

    Hemiscorpius lepturus (H. lepturus), one of the most venomous scorpions in tropical and sub-tropical areas, belongs to the Hemiscorpiidae family. Studies of antibodies in sera against the protein component of the venom from this organism can be of great use for the development of engineered variants of proteins for eventual use in the diagnosis/treatment of, and prevention of reactions to, stings. In the present in vitro study, the proteins of H. lepturus venom, which could specifically activate the production of immunoglobulin G (IgG) in victims accidently exposed to the venom from this scorpion, were evaluated and their cross-reactivity with venoms from two other important scorpion species including Androctonus crassicauda and Mesobuthus eupeus assessed. H. lepturus venom was analyzed with respect to its protein composition and its antigenic properties against antibodies found in sera collected from victims exposed to the venom of this scorpion within a previous 2-month period. The cross-reactivity of the H. lepturus venom with those from A. crassicauda and M. eupeus was assessed using ELISA and immunoblotting. Electrophoretic analysis of the venom of H. lepturus revealed several protein bands with weights of 8-116 KDa. The most frequent IgG-reactive bands in the test sera had weights of 34, 50, and 116 kDa. A weak cross-reactivity H. lepturus of venom with venoms from A. crassicauda and M. eupeus was detected. The results of immunoblotting and ELISA experiments revealed that H. lepturus venom activated the host immune response, leading to the production of a high titer of antibodies. Clearly, a determination of the major immunogenic components of H. lepturus venom could be valuable for future studies and ultimately of great importance for the potential production of recombinant or hypo-venom variants of these proteins. PMID:24946724

  7. Comparative Venomics Reveals the Complex Prey Capture Strategy of the Piscivorous Cone Snail Conus catus.

    PubMed

    Himaya, S W A; Jin, Ai-Hua; Dutertre, Sébastien; Giacomotto, Jean; Mohialdeen, Hoshyar; Vetter, Irina; Alewood, Paul F; Lewis, Richard J

    2015-10-01

    Venomous marine cone snails produce a unique and remarkably diverse range of venom peptides (conotoxins and conopeptides) that have proven to be invaluable as pharmacological probes and leads to new therapies. Conus catus is a hook-and-line fish hunter from clade I, with ∼20 conotoxins identified, including the analgesic ω-conotoxin CVID (AM336). The current study unravels the venom composition of C. catus with tandem mass spectrometry and 454 sequencing data. From the venom gland transcriptome, 104 precursors were recovered from 11 superfamilies, with superfamily A (especially κA-) conotoxins dominating (77%) their venom. Proteomic analysis confirmed that κA-conotoxins dominated the predation-evoked milked venom of each of six C. catus analyzed and revealed remarkable intraspecific variation in both the intensity and type of conotoxins. High-throughput FLIPR assays revealed that the predation-evoked venom contained a range of conotoxins targeting the nAChR, Cav, and Nav ion channels, consistent with α- and ω-conotoxins being used for predation by C. catus. However, the κA-conotoxins did not act at these targets but induced potent and rapid immobilization followed by bursts of activity and finally paralysis when injected intramuscularly in zebrafish. Our venomics approach revealed the complexity of the envenomation strategy used by C. catus, which contains a mix of both excitatory and inhibitory venom peptides. PMID:26322961

  8. Evolution Stings: The Origin and Diversification of Scorpion Toxin Peptide Scaffolds

    PubMed Central

    Sunagar, Kartik; Undheim, Eivind A. B.; Chan, Angelo H. C.; Koludarov, Ivan; Muñoz-Gómez, Sergio A.; Antunes, Agostinho; Fry, Bryan G.

    2013-01-01

    The episodic nature of natural selection and the accumulation of extreme sequence divergence in venom-encoding genes over long periods of evolutionary time can obscure the signature of positive Darwinian selection. Recognition of the true biocomplexity is further hampered by the limited taxon selection, with easy to obtain or medically important species typically being the subject of intense venom research, relative to the actual taxonomical diversity in nature. This holds true for scorpions, which are one of the most ancient terrestrial venomous animal lineages. The family Buthidae that includes all the medically significant species has been intensely investigated around the globe, while almost completely ignoring the remaining non-buthid families. Australian scorpion lineages, for instance, have been completely neglected, with only a single scorpion species (Urodacus yaschenkoi) having its venom transcriptome sequenced. Hence, the lack of venom composition and toxin sequence information from an entire continent’s worth of scorpions has impeded our understanding of the molecular evolution of scorpion venom. The molecular origin, phylogenetic relationships and evolutionary histories of most scorpion toxin scaffolds remain enigmatic. In this study, we have sequenced venom gland transcriptomes of a wide taxonomical diversity of scorpions from Australia, including buthid and non-buthid representatives. Using state-of-art molecular evolutionary analyses, we show that a majority of CSα/β toxin scaffolds have experienced episodic influence of positive selection, while most non-CSα/β linear toxins evolve under the extreme influence of negative selection. For the first time, we have unraveled the molecular origin of the major scorpion toxin scaffolds, such as scorpion venom single von Willebrand factor C-domain peptides (SV-SVC), inhibitor cystine knot (ICK), disulphide-directed beta-hairpin (DDH), bradykinin potentiating peptides (BPP), linear non-disulphide bridged

  9. Current advances in ant venom proteins causing hypersensitivity reactions in the Asia-Pacific region.

    PubMed

    Srisong, Hathairat; Daduang, Sakda; Lopata, Andreas L

    2016-01-01

    The main insects causing allergy reactions to stinging insect in humans are Apidae (bees), Vespidae (wasps, yellow jackets and hornets) and Formicidae (ants). Their venom stings are composed of various biologically active peptides and protein components, some of which can cause toxicity or anaphylaxis in humans. The protein venom demonstrate some common allergenic activity such as for fire ants and vespids, which have two common allergens that are phospholipase A1 (enzymatic activity) and antigen 5 with unknown biological activity. The common allergens seem to share some degree of immunological cross-reactivity, particularly when the sequence homology is above 70%. Therefore immunotherapeutic approaches targeting more than one specific species are of interest. Recent widespread increases of various ant species in many countries have resulted in higher number of reported about serious allergic reactions to stings. Most insect-allergy related cases have been reported for species from Solenopsis, Myrmecia and Pachycondyla genera, and their stings can often result in human fatalities. In addition, stinging ants can have serious health effects on livestock, agricultural damage adversely affecting the biodiversity of the region. This review discusses the impact of important ant species on human health in the Asia-Pacific region along with the molecular immunological aspects of the identified venoms and current status of diagnostics and therapeutics. PMID:26641698

  10. The world of beta- and gamma-peptides comprised of homologated proteinogenic amino acids and other components.

    PubMed

    Seebach, Dieter; Beck, Albert K; Bierbaum, Daniel J

    2004-08-01

    helices (10/12-, 12-, and 14-helix) if we include oligomers of trans-2-aminocyclopentanecarboxylic acid, for example - the structures are already observable with chains made up of only four components, and, having now undergone a learning process, we are able to construct them by design. The structures of the shorter beta-peptides can also be reliably determined by molecular-dynamics calculations (in solution; GROMOS program package). Unlike in the case of the natural helices, these compounds' folding into secondary structures is not cooperative. In beta- and gamma-peptides, it is possible to introduce heteroatom substituents (such as halogen or OH) onto the backbones or to incorporate heteroatoms (NH, O) directly into the chain, and, thanks to this, it has been possible to study effects unobservable in the world of the alpha-peptides. Tests with proteolytic enzymes of all types (from mammals, microorganisms, yeasts) and in vivo examination (mice, rats, insects, plants) showed beta- and gamma-peptides to be completely stable towards proteolysis and, as demonstrated for two beta-peptides, extraordinarily stable towards metabolism, even when bearing functionalized side chains (such as those of Thr, Tyr, Trp, Lys, or Arg). The beta-peptides so far examined also normally display no or only very weak cytotoxic, antiproliferative, antimicrobial, hemolytic, immunogenic, or inflammatory properties either in cell cultures or in vivo. Even biological degradation by microbial colonies of the types found in sewage-treatment plants or in soil is very slow. That there are indeed interactions of beta- and gamma-peptides with biological systems, however, can be seen in the following findings: i) organ-specific distribution takes place after intravenous (i.v.) administration in rats, ii) transport through the intestines of rodents has been observed, iii) beta-peptides with positively charged side chains (Arg and Lys) settle on cell surfaces, are able to enter into mammalian cells

  11. Ac2-26 Mimetic Peptide of Annexin A1 Inhibits Local and Systemic Inflammatory Processes Induced by Bothrops moojeni Venom and the Lys-49 Phospholipase A2 in a Rat Model

    PubMed Central

    Carlos, Carla Patrícia; Ullah, Anwar; Arni, Raghuvir Krishnaswamy; Gil, Cristiane Damas; Oliani, Sonia Maria

    2015-01-01

    Annexin A1 (AnxA1) is an endogenous glucocorticoid regulated protein that modulates anti-inflammatory process and its therapeutic potential has recently been recognized in a range of systemic inflammatory disorders. The effect of the N-terminal peptide Ac2-26 of AnxA1 on the toxic activities of Bothrops moojeni crude venom (CV) and its myotoxin II (MjTX-II) were evaluated using a peritonitis rat model. Peritonitis was induced by the intraperitoneal injection of either CV or MjTX-II, a Lys-49 phospholipase A2. Fifteen minutes after the injection, the rats were treated with either Ac2-26 or PBS. Four hours later, the CV and MjTX-II-induced peritonitis were characterized by neutrophilia (in the peritoneal exudate, blood and mesentery) and increased number of mesenteric degranulated mast cells and macrophages. At 24 hours post-injection, the local inflammatory response was attenuated in the CV-induced peritonitis while the MjTX-II group exhibited neutrophilia (peritoneal exudates and blood). Ac2-26 treatment prevented the influx of neutrophils in MjTX-II–induced peritonitis and diminished the proportion of mesenteric degranulated mast cells and macrophages in CV-induced peritonitis. Additionally, CV and MjTX-II promoted increased levels of IL-1β and IL-6 in the peritoneal exudates which were significantly reduced after Ac2-26 treatment. At 4 and 24 hours, the endogenous expression of AnxA1 was upregulated in the mesenteric neutrophils (CV and MjTX-II groups) and mast cells (CV group). In the kidneys, CV and MjTX-II administrations were associated with an increased number of macrophages and morphological alterations in the juxtamedullary nephrons in proximal and distal tubules. Ac2-26 promoted significant recovery of the juxtamedullary structures, decreased the number of macrophages and diminished the AnxA1 in epithelial cells from distal tubules and renal capsules. Our results show that Ac2-26 treatment significantly attenuates local and systemic inflammatory

  12. The venom gland transcriptome of the Desert Massasauga Rattlesnake (Sistrurus catenatus edwardsii): towards an understanding of venom composition among advanced snakes (Superfamily Colubroidea)

    PubMed Central

    Pahari, Susanta; Mackessy, Stephen P; Kini, R Manjunatha

    2007-01-01

    Background Snake venoms are complex mixtures of pharmacologically active proteins and peptides which belong to a small number of superfamilies. Global cataloguing of the venom transcriptome facilitates the identification of new families of toxins as well as helps in understanding the evolution of venom proteomes. Results We have constructed a cDNA library of the venom gland of a threatened rattlesnake (a pitviper), Sistrurus catenatus edwardsii (Desert Massasauga), and sequenced 576 ESTs. Our results demonstrate a high abundance of serine proteinase and metalloproteinase transcripts, indicating that the disruption of hemostasis is a principle mechanism of action of the venom. In addition to the transcripts encoding common venom proteins, we detected two varieties of low abundance unique transcripts in the library; these encode for three-finger toxins and a novel toxin possibly generated from the fusion of two genes. We also observed polyadenylated ribosomal RNAs in the venom gland library, an interesting preliminary obsevation of this unusual phenomenon in a reptilian system. Conclusion The three-finger toxins are characteristic of most elapid venoms but are rare in viperid venoms. We detected several ESTs encoding this group of toxins in this study. We also observed the presence of a transcript encoding a fused protein of two well-characterized toxins (Kunitz/BPTI and Waprins), and this is the first report of this kind of fusion in a snake toxin transcriptome. We propose that these new venom proteins may have ancillary functions for envenomation. The presence of a fused toxin indicates that in addition to gene duplication and accelerated evolution, exon shuffling or transcriptional splicing may also contribute to generating the diversity of toxins and toxin isoforms observed among snake venoms. The detection of low abundance toxins, as observed in this and other studies, indicates a greater compositional similarity of venoms (though potency will differ) among

  13. Recruitment of Glycosyl Hydrolase Proteins in a Cone Snail Venomous Arsenal: Further Insights into Biomolecular Features of Conus Venoms

    PubMed Central

    Violette, Aude; Leonardi, Adrijana; Piquemal, David; Terrat, Yves; Biass, Daniel; Dutertre, Sébastien; Noguier, Florian; Ducancel, Frédéric; Stöcklin, Reto; Križaj, Igor; Favreau, Philippe

    2012-01-01

    Cone snail venoms are considered an untapped reservoir of extremely diverse peptides, named conopeptides, displaying a wide array of pharmacological activities. We report here for the first time, the presence of high molecular weight compounds that participate in the envenomation cocktail used by these marine snails. Using a combination of proteomic and transcriptomic approaches, we identified glycosyl hydrolase proteins, of the hyaluronidase type (Hyal), from the dissected and injectable venoms (“injectable venom” stands for the venom variety obtained by milking of the snails. This is in contrast to the “dissected venom”, which was obtained from dissected snails by extraction of the venom glands) of a fish-hunting cone snail, Conus consors (Pionoconus clade). The major Hyal isoform, Conohyal-Cn1, is expressed as a mixture of numerous glycosylated proteins in the 50 kDa molecular mass range, as observed in 2D gel and mass spectrometry analyses. Further proteomic analysis and venom duct mRNA sequencing allowed full sequence determination. Additionally, unambiguous segment location of at least three glycosylation sites could be determined, with glycans corresponding to multiple hexose (Hex) and N-acetylhexosamine (HexNAc) moieties. With respect to other known Hyals, Conohyal-Cn1 clearly belongs to the hydrolase-type of Hyals, with strictly conserved consensus catalytic donor and positioning residues. Potent biological activity of the native Conohyals could be confirmed in degrading hyaluronic acid. A similar Hyal sequence was also found in the venom duct transcriptome of C. adamsonii (Textilia clade), implying a possible widespread recruitment of this enzyme family in fish-hunting cone snail venoms. These results provide the first detailed Hyal sequence characterized from a cone snail venom, and to a larger extent in the Mollusca phylum, thus extending our knowledge on this protein family and its evolutionary selection in marine snail venoms. PMID:22412800

  14. Spider leg autotomy induced by prey venom injection: An adaptive response to “pain”?*

    PubMed Central

    Eisner, Thomas; Camazine, Scott

    1983-01-01

    Field observations showed orb-weaving spiders (Argiope spp.) to undergo leg autotomy if they are stung in a leg by venomous insect prey (Phymata fasciata). The response occurs within seconds, before the venom can take lethal action by spread to the body of the spiders. Autotomy is induced also by honeybee venom and wasp venom, as well as by several venom components (serotonin, histamine, phospholipase A2, melittin) known to be responsible for the pain characteristically elicited by venom injection in humans. The sensing mechanism by which spiders detect injected harmful chemicals such as venoms therefore may be fundamentally similar to the one in humans that is coupled with the perception of pain. Images PMID:16593325

  15. A novel cysteine-free venom peptide with strong antimicrobial activity against antibiotics-resistant pathogens from the scorpion Opistophthalmus glabrifrons.

    PubMed

    Bao, Aorigele; Zhong, Jie; Zeng, Xian-Chun; Nie, Yao; Zhang, Lei; Peng, Zhao Feng

    2015-10-01

    Antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus, pose serious threat to human health. The outbreak of antibiotic-resistant pathogens in recent years emphasizes once again the urgent need for the development of new antimicrobial agents. Here, we discovered a novel antimicrobial peptide from the scorpion Opistophthalmus glabrifrons, which was referred to as Opisin. Opisin consists of 19 amino acid residues without disulfide bridges. It is a cationic, amphipathic, and α-helical molecule. Protein sequence homology search revealed that Opisin shares 42.1-5.3% sequence identities to the 17/18-mer antimicrobial peptides from scorpions. Antimicrobial assay showed that Opisin is able to potently inhibit the growth of the tested Gram-positive bacteria with the minimal inhibitory concentration (MIC) values of 4.0-10.0 μM; in contrast, it possesses much lower activity against the tested Gram-negative bacteria and a fungus. It is interesting to see that Opisin is able to strongly inhibit the growth of methicillin- and vancomycin-resistant pathogens with the MICs ranging from 2.0 to 4.0 μM and from 4.0 to 6.0 μM, respectively. We found that at a concentration of 5 × MIC, Opisin completely killed all the cultured methicillin-resistant Staphylococcus aureus. These results suggest that Opisin is a promising therapeutic candidate for the treatment of the antibiotic-resistant bacterial infections. PMID:26251012

  16. Sexual dimorphism in venom chemistry in Tetragnatha spiders is not easily explained by adult niche differences.

    PubMed

    Binford, Greta J; Gillespie, Rosemary G; Maddison, Wayne P

    2016-05-01

    Spider venom composition typically differs between sexes. This pattern is anecdotally thought to reflect differences in adult feeding biology. We used a phylogenetic approach to compare intersexual venom dimorphism between species that differ in adult niche dimorphism. Male and female venoms were compared within and between related species of Hawaiian Tetragnatha, a mainland congener, and outgroups. In some species of Hawaiian Tetragnatha adult females spin orb-webs and adult males capture prey while wandering, while in other species both males and females capture prey by wandering. We predicted that, if venom sexual dimorphism is primarily explained by differences in adult feeding biology, species in which both sexes forage by wandering would have monomorphic venoms or venoms with reduced dimorphism relative to species with different adult feeding biology. However, we found striking sexual dimorphism in venoms of both wandering and orb-weaving Tetragnatha species with males having high molecular weight components in their venoms that were absent in females, and a reduced concentration of low molecular weight components relative to females. Intersexual differences in venom composition within Tetragnatha were significantly larger than in non-Tetragnatha species. Diet composition was not different between sexes. This striking venom dimorphism is not easily explained by differences in feeding ecology or behavior. Rather, we hypothesize that the dimorphism reflects male-specific components that play a role in mating biology possibly in sexual stimulation, nuptial gifts and/or mate recognition. PMID:26908290

  17. Quo vadis venomics? A roadmap to neglected venomous invertebrates.

    PubMed

    von Reumont, Bjoern Marcus; Campbell, Lahcen I; Jenner, Ronald A

    2014-01-01

    Venomics research is being revolutionized by the increased use of sensitive -omics techniques to identify venom toxins and their transcripts in both well studied and neglected venomous taxa. The study of neglected venomous taxa is necessary both for understanding the full diversity of venom systems that have evolved in the animal kingdom, and to robustly answer fundamental questions about the biology and evolution of venoms without the distorting effect that can result from the current bias introduced by some heavily studied taxa. In this review we draw the outlines of a roadmap into the diversity of poorly studied and understood venomous and putatively venomous invertebrates, which together represent tens of thousands of unique venoms. The main groups we discuss are crustaceans, flies, centipedes, non-spider and non-scorpion arachnids, annelids, molluscs, platyhelminths, nemerteans, and echinoderms. We review what is known about the morphology of the venom systems in these groups, the composition of their venoms, and the bioactivities of the venoms to provide researchers with an entry into a large and scattered literature. We conclude with a short discussion of some important methodological aspects that have come to light with the recent use of new -omics techniques in the study of venoms. PMID:25533518

  18. Quo Vadis Venomics? A Roadmap to Neglected Venomous Invertebrates

    PubMed Central

    von Reumont, Bjoern Marcus; Campbell, Lahcen I.; Jenner, Ronald A.

    2014-01-01

    Venomics research is being revolutionized by the increased use of sensitive -omics techniques to identify venom toxins and their transcripts in both well studied and neglected venomous taxa. The study of neglected venomous taxa is necessary both for understanding the full diversity of venom systems that have evolved in the animal kingdom, and to robustly answer fundamental questions about the biology and evolution of venoms without the distorting effect that can result from the current bias introduced by some heavily studied taxa. In this review we draw the outlines of a roadmap into the diversity of poorly studied and understood venomous and putatively venomous invertebrates, which together represent tens of thousands of unique venoms. The main groups we discuss are crustaceans, flies, centipedes, non-spider and non-scorpion arachnids, annelids, molluscs, platyhelminths, nemerteans, and echinoderms. We review what is known about the morphology of the venom systems in these groups, the composition of their venoms, and the bioactivities of the venoms to provide researchers with an entry into a large and scattered literature. We conclude with a short discussion of some important methodological aspects that have come to light with the recent use of new -omics techniques in the study of venoms. PMID:25533518

  19. Analysis of Protein Composition and Bioactivity of Neoponera villosa Venom (Hymenoptera: Formicidae).

    PubMed

    Pessoa, Wallace Felipe Blohem; Silva, Ludimilla Carvalho Cerqueira; de Oliveira Dias, Leila; Delabie, Jacques Hubert Charles; Costa, Helena; Romano, Carla Cristina

    2016-01-01

    Ants cause a series of accidents involving humans. Such accidents generate different reactions in the body, ranging from a mild irritation at the bite site to anaphylactic shock, and these reactions depend on the mechanism of action of the venom. The study of animal venom is a science known as venomics. Through venomics, the composition of the venom of several ant species has already been characterized and their biological activities described. Thus, the aim of this study was to evaluate the protein composition and biological activities (hemolytic and immunostimulatory) of the venom of Neoponera villosa (N. villosa), an ant widely distributed in South America. The protein composition was evaluated by proteomic techniques, such as two-dimensional electrophoresis. To assess the biological activity, hemolysis assay was carried out and cytokines were quantified after exposure of macrophages to the venom. The venom of N. villosa has a profile composed of 145 proteins, including structural and metabolic components (e.g., tubulin and ATPase), allergenic and immunomodulatory proteins (arginine kinase and heat shock proteins (HSPs)), protective proteins of venom (superoxide dismutase (SOD) and catalase) and tissue degradation proteins (hyaluronidase and phospholipase A2). The venom was able to induce hemolysis in human erythrocytes and also induced release of both pro-inflammatory cytokines, as the anti-inflammatory cytokine release by murine macrophages. These results allow better understanding of the composition and complexity of N. villosa venom in the human body, as well as the possible mechanisms of action after the bite. PMID:27110765

  20. Analysis of Protein Composition and Bioactivity of Neoponera villosa Venom (Hymenoptera: Formicidae)

    PubMed Central

    Pessoa, Wallace Felipe Blohem; Silva, Ludimilla Carvalho Cerqueira; de Oliveira Dias, Leila; Delabie, Jacques Hubert Charles; Costa, Helena; Romano, Carla Cristina

    2016-01-01

    Ants cause a series of accidents involving humans. Such accidents generate different reactions in the body, ranging from a mild irritation at the bite site to anaphylactic shock, and these reactions depend on the mechanism of action of the venom. The study of animal venom is a science known as venomics. Through venomics, the composition of the venom of several ant species has already been characterized and their biological activities described. Thus, the aim of this study was to evaluate the protein composition and biological activities (hemolytic and immunostimulatory) of the venom of Neoponera villosa (N. villosa), an ant widely distributed in South America. The protein composition was evaluated by proteomic techniques, such as two-dimensional electrophoresis. To assess the biological activity, hemolysis assay was carried out and cytokines were quantified after exposure of macrophages to the venom. The venom of N. villosa has a profile composed of 145 proteins, including structural and metabolic components (e.g., tubulin and ATPase), allergenic and immunomodulatory proteins (arginine kinase and heat shock proteins (HSPs)), protective proteins of venom (superoxide dismutase (SOD) and catalase) and tissue degradation proteins (hyaluronidase and phospholipase A2). The venom was able to induce hemolysis in human erythrocytes and also induced release of both pro-inflammatory cytokines, as the anti-inflammatory cytokine release by murine macrophages. These results allow better understanding of the composition and complexity of N. villosa venom in the human body, as well as the possible mechanisms of action after the bite. PMID:27110765

  1. Effects of snake venom polypeptides on central nervous system.

    PubMed

    Osipov, Alexey; Utkin, Yuri

    2012-12-01

    The nervous system is a primary target for animal venoms as the impairment of its function results in the fast and efficient immobilization or death of a prey. There are numerous evidences about effects of crude snake venoms or isolated toxins on peripheral nervous system. However, the data on their interactions with the central nervous system (CNS) are not abundant, as the blood-brain barrier (BBB) impedes penetration of these compounds into brain. This updated review presents the data about interaction of snake venom polypeptides with CNS. Such data will be described according to three main modes of interactions: - Direct in vivo interaction of CNS with venom polypeptides either capable to penetrate BBB or injected into the brain. - In vitro interactions of cell or sub-cellular fractions of CNS with crude venoms or purified toxins. - Indirect effects of snake venoms or their components on functioning of CNS under different conditions. Although the venom components penetrating BBB are not numerous, they seem to be the most suitable candidates for the leads in drug design. The compounds with other modes of action are more abundant and better studied, but the lack of the data about their ability to penetrate BBB may substantially aggravate the potentials for their medical perspectives. Nevertheless, many such compounds are used for research of CNS in vitro. These investigations may give invaluable information for understanding the molecular basis of CNS diseases and thus lay the basis for targeted drug design. This aspect also will be outlined in the review. PMID:23270323

  2. Comprehensive analysis of venom from the scorpion Centruroides tecomanus reveals compounds with antimicrobial, cytotoxic, and insecticidal activities.

    PubMed

    Valdez-Velazquéz, L L; Romero-Gutierrez, M T; Delgado-Enciso, I; Dobrovinskaya, O; Melnikov, V; Quintero-Hernández, V; Ceballos-Magaña, S G; Gaitan-Hinojosa, M A; Coronas, F I; Puebla-Perez, A M; Zamudio, F; De la Cruz-García, I; Vázquez-Vuelvas, O F; Soriano-Hernandez, A D; Possani, L D

    2016-08-01

    Centruroides tecomanus is a medically important scorpion of the state of Colima (Mexico). This communication reports the identification of venom components of this scorpion with biological activity over insects/crickets (Acheta domestica), crustaceans/fresh water shrimps (Cambarellus montezumae), and mammalians/mice (Mus musculus, strain CD1). It also describes the pharmacological effects on cell lines in culture (L5178Y cells, HeLa cells, HuTu cells and Jurkat E6-1 cells), as well as on several types of bacteria (see below). The soluble venom of this scorpion was fractionated by high-performance liquid chromatography (HPLC) and collected separately in twelve independent fractions collected over 60 min run (5 min time apart each other). The HPLC components of fraction VII were lethal to all three species used for assay. The IVth fraction had a toxic effect on freshwater shrimps. In this species, fractions VI, VII and VIII were all lethal. For crickets, fractions V and VI were toxic and fraction VII was lethal. In mouse, the lethal components were found in fraction VII, whereas fraction VIII was toxic, but not lethal, at the doses assayed. The molecular weight of peptides from the various group of fractions were identified by mass spectrometry determination. Components lethal to mice showed molecular weights from 7013 to 7487 Da. Two peptides were obtained in homogeneous form and shown to be lethal to the three species of animal used for assay. The soluble venom tested on L5178Y cell line survival was shown to be cytotoxic, at 10-100 μg/mL concentration, when compared to control murine splenocytes (p = 0.007). The soluble venom applied to Hela, Hutu and Jurkat cell lines did not show cytotoxic effects at these concentrations. On the contrary, it seems to have a proliferative effect. However the HPLC fractions I, III, VI and XII do have a cytotoxic effect on Jurkat E06-1 cells in culture at 200 μg/mL concentration. The antimicrobial activity of the venom

  3. Venomous bites and stings.

    PubMed

    Warrell, D A; Fenner, P J

    1993-04-01

    Travellers to tropical countries are often extremely concerned about the risk of bites and stings by venomous animals. This fear prompts many enquiries, usually at the last moment before departure, about the possibility of carrying first aid kits and antivenoms. In fact, these accidents are extremely rare because most travellers wear shoes and are far less exposed to venomous animals than indigenous peoples for whom bites and stings may be important causes of death or morbidity. PMID:8101465

  4. Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins.

    PubMed

    Laustsen, Andreas H; Gutiérrez, José María; Lohse, Brian; Rasmussen, Arne R; Fernández, Julián; Milbo, Christina; Lomonte, Bruno

    2015-06-01

    The venom proteome of the monocled cobra, Naja kaouthia, from Thailand, was characterized by RP-HPLC, SDS-PAGE, and MALDI-TOF-TOF analyses, yielding 38 different proteins that were either identified or assigned to families. Estimation of relative protein abundances revealed that venom is dominated by three-finger toxins (77.5%; including 24.3% cytotoxins and 53.2% neurotoxins) and phospholipases A2 (13.5%). It also contains lower proportions of components belonging to nerve growth factor, ohanin/vespryn, cysteine-rich secretory protein, C-type lectin/lectin-like, nucleotidase, phosphodiesterase, metalloproteinase, l-amino acid oxidase, cobra venom factor, and cytidyltransferase protein families. Small amounts of three nucleosides were also evidenced: adenosine, guanosine, and inosine. The most relevant lethal components, categorized by means of a 'toxicity score', were α-neurotoxins, followed by cytotoxins/cardiotoxins. IgGs isolated from a person who had repeatedly self-immunized with a variety of snake venoms were immunoprofiled by ELISA against all venom fractions. Stronger responses against larger toxins, but lower against the most critical α-neurotoxins were obtained. As expected, no neutralization potential against N. kaouthia venom was therefore detected. Combined, our results display a high level of venom complexity, unveil the most relevant toxins to be neutralized, and provide prospects of discovering human IgGs with toxin neutralizing abilities through use of phage display screening. PMID:25771242

  5. Structural and functional characterization of two genetically related meucin peptides highlights evolutionary divergence and convergence in antimicrobial peptides.

    PubMed

    Gao, Bin; Sherman, Patrick; Luo, Lan; Bowie, John; Zhu, Shunyi

    2009-04-01

    Both vertebrates and invertebrates employ alpha-helical antimicrobial peptides (AMPs) as an essential component of their innate immune system. However, evolutionary relation of these immune molecules remains unresolved. Venoms, as key weapons of venomous arthropods for prey and defense, receive increasing recognition as an emerging source of such peptides. From a cDNA library prepared from the venom gland of the scorpion Mesobuthus eupeus, clones encoding precursors of two new AMPs, named meucin-13 (IFGAIAGLLKNIF-NH(2)) and meucin-18 (FFGHLFKLATKIIPSLFQ), have been isolated. The precursor of meucins consists of a signal peptide, a mature peptide, and an acidic propeptide, in which dibasic residues as the typical processing signal are located between the mature and propeptide. Meucin-13 is an ortholog of several previously described AMPs from scorpion venom and has also detectable sequence similarity to temporins, a large family of AMPs from frog skin, whereas meucin-18 displays some similarity to AMPs from diverse origin including arthropod venoms, fish mast cells, and frog skins. These two meucin peptides form alpha-helical structure in the presence of 50% trifluoroethanol (TFE), a membrane-mimicking environment, as identified by circular dichroism (CD) spectroscopy. This finding is further verified by their NMR structures that show a typical alpha-helical amphipathic design, a structural prerequisite for cytolytic activity. Meucins exhibit extensive cytolytic effects on both prokaryotic and eukaryotic cells (gram(+) and gram(-) bacteria, fungi, yeasts, rabbit erythrocytes, and rat dorsal root ganglion cells) at micromolar concentrations. It is remarkable that muecin-18 was 2- to >14-fold more potent than meucin-13 against nearly all the cells tested. Structural differences in hydrophilic/hydrophobic balance and cationic amino acid location between two meucins could account for their differential potency. Despite these differences, commonalities at precursor

  6. Neutralization of Apis mellifera bee venom activities by suramin.

    PubMed

    El-Kik, Camila Z; Fernandes, Fabrício F A; Tomaz, Marcelo Amorim; Gaban, Glauco A; Fonseca, Tatiane F; Calil-Elias, Sabrina; Oliveira, Suellen D S; Silva, Claudia L M; Martinez, Ana Maria Blanco; Melo, Paulo A

    2013-06-01

    In this work we evaluated the ability of suramin, a polysulfonated naphthylurea derivative, to antagonize the cytotoxic and enzymatic effects of the crude venom of Apis mellifera. Suramin was efficient to decrease the lethality in a dose-dependent way. The hemoconcentration caused by lethal dose injection of bee venom was abolished by suramin (30 μg/g). The edematogenic activity of the venom (0.3 μg/g) was antagonized by suramin (10 μg/g) in all treatment protocols. The changes in the vascular permeability caused by A. mellifera (1 μg/g) venom were inhibited by suramin (30 μg/g) in the pre- and posttreatment as well as when the venom was preincubated with suramin. In addition, suramin also inhibited cultured endothelial cell lesion, as well as in vitro myotoxicity, evaluated in mouse extensor digitorum longus muscle, which was inhibited by suramin (10 and 25 μM), decreasing the rate of CK release, showing that suramin protected the sarcolemma against damage induced by components of bee venom (2.5 μg/mL). Moreover, suramin inhibited the in vivo myotoxicity induced by i.m. injection of A. mellifera venom in mice (0.5 μg/g). The analysis of the area under the plasma CK vs. time curve showed that preincubation, pre- and posttreatment with suramin (30 μg/g) inhibited bee venom myotoxic activity in mice by about 89%, 45% and 40%, respectively. Suramin markedly inhibited the PLA2 activity in a concentration-dependent way (1-30 μM). Being suramin a polyanion molecule, the effects observed may be due to the interaction of its charges with the polycation components present in A. mellifera bee venom. PMID:23474269

  7. Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations.

    PubMed

    Alape-Girón, Alberto; Sanz, Libia; Escolano, José; Flores-Díaz, Marietta; Madrigal, Marvin; Sasa, Mahmood; Calvete, Juan J

    2008-08-01

    We report the comparative proteomic characterization of the venoms of adult and newborn specimens of the lancehead pitviper Bothrops asper from two geographically isolated populations from the Caribbean and the Pacific versants of Costa Rica. The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The two B. asper populations, separated since the late Miocene or early Pliocene (8-5 mya) by the Guanacaste Mountain Range, Central Mountain Range, and Talamanca Mountain Range, contain both identical and different (iso)enzymes from the PLA 2, serine proteinase, and SVMP families. Using a similarity coefficient, we estimate that the similarity of venom proteins between the two B. asper populations may be around 52%. Compositional differences between venoms among different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. To investigate venom variability among specimens from the two B. asper populations, the reverse-phase HPLC protein profiles of 15 venoms from Caribbean specimens and 11 venoms from snakes from Pacific regions were compared. Within each B. asper geographic populations, all major venom protein families appeared to be subjected to individual variations. The occurrence of intraspecific individual allopatric variability highlights the concept that a species, B. asper in our case, should be considered as a group of metapopulations. Analysis of pooled venoms of neonate specimens from Caribbean and Pacific regions with those of adult snakes from the same geographical habitat revealed prominent ontogenetic changes in both geographical populations. Major ontogenetic changes appear to be a shift from a PIII-SVMP-rich to a PI-SVMP-rich venom and the secretion in adults of a distinct set of PLA 2 molecules than in

  8. Venom-related transcripts from Bothrops jararaca tissues provide novel molecular insights into the production and evolution of snake venom.

    PubMed

    Junqueira-de-Azevedo, Inácio L M; Bastos, Carolina Mancini Val; Ho, Paulo Lee; Luna, Milene Schmidt; Yamanouye, Norma; Casewell, Nicholas R

    2015-03-01

    Attempts to reconstruct the evolutionary history of snake toxins in the context of their co-option to the venom gland rarely account for nonvenom snake genes that are paralogous to toxins, and which therefore represent important connectors to ancestral genes. In order to reevaluate this process, we conducted a comparative transcriptomic survey on body tissues from a venomous snake. A nonredundant set of 33,000 unigenes (assembled transcripts of reference genes) was independently assembled from six organs of the medically important viperid snake Bothrops jararaca, providing a reference list of 82 full-length toxins from the venom gland and specific products from other tissues, such as pancreatic digestive enzymes. Unigenes were then screened for nontoxin transcripts paralogous to toxins revealing 1) low level coexpression of approximately 20% of toxin genes (e.g., bradykinin-potentiating peptide, C-type lectin, snake venom metalloproteinase, snake venom nerve growth factor) in body tissues, 2) the identity of the closest paralogs to toxin genes in eight classes of toxins, 3) the location and level of paralog expression, indicating that, in general, co-expression occurs in a higher number of tissues and at lower levels than observed for toxin genes, and 4) strong evidence of a toxin gene reverting back to selective expression in a body tissue. In addition, our differential gene expression analyses identify specific cellular processes that make the venom gland a highly specialized secretory tissue. Our results demonstrate that the evolution and production of venom in snakes is a complex process that can only be understood in the context of comparative data from other snake tissues, including the identification of genes paralogous to venom toxins. PMID:25502939

  9. Venom-Related Transcripts from Bothrops jararaca Tissues Provide Novel Molecular Insights into the Production and Evolution of Snake Venom

    PubMed Central

    Junqueira-de-Azevedo, Inácio L.M.; Bastos, Carolina Mancini Val; Ho, Paulo Lee; Luna, Milene Schmidt; Yamanouye, Norma; Casewell, Nicholas R.

    2015-01-01

    Attempts to reconstruct the evolutionary history of snake toxins in the context of their co-option to the venom gland rarely account for nonvenom snake genes that are paralogous to toxins, and which therefore represent important connectors to ancestral genes. In order to reevaluate this process, we conducted a comparative transcriptomic survey on body tissues from a venomous snake. A nonredundant set of 33,000 unigenes (assembled transcripts of reference genes) was independently assembled from six organs of the medically important viperid snake Bothrops jararaca, providing a reference list of 82 full-length toxins from the venom gland and specific products from other tissues, such as pancreatic digestive enzymes. Unigenes were then screened for nontoxin transcripts paralogous to toxins revealing 1) low level coexpression of approximately 20% of toxin genes (e.g., bradykinin-potentiating peptide, C-type lectin, snake venom metalloproteinase, snake venom nerve growth factor) in body tissues, 2) the identity of the closest paralogs to toxin genes in eight classes of toxins, 3) the location and level of paralog expression, indicating that, in general, co-expression occurs in a higher number of tissues and at lower levels than observed for toxin genes, and 4) strong evidence of a toxin gene reverting back to selective expression in a body tissue. In addition, our differential gene expression analyses identify specific cellular processes that make the venom gland a highly specialized secretory tissue. Our results demonstrate that the evolution and production of venom in snakes is a complex process that can only be understood in the context of comparative data from other snake tissues, including the identification of genes paralogous to venom toxins. PMID:25502939

  10. Role of the inflammasome in defense against venoms

    PubMed Central

    Palm, Noah W.; Medzhitov, Ruslan

    2013-01-01

    Venoms consist of a complex mixture of toxic components that are used by a variety of animal species for defense and predation. Envenomation of mammalian species leads to an acute inflammatory response and can lead to the development of IgE-dependent venom allergy. However, the mechanisms by which the innate immune system detects envenomation and initiates inflammatory and allergic responses to venoms remain largely unknown. Here we show that bee venom is detected by the NOD-like receptor family, pyrin domain-containing 3 inflammasome and can trigger activation of caspase-1 and the subsequent processing and unconventional secretion of the leaderless proinflammatory cytokine IL-1β in macrophages. Whereas activation of the inflammasome by bee venom induces a caspase-1–dependent inflammatory response, characterized by recruitment of neutrophils to the site or envenomation, the inflammasome is dispensable for the allergic response to bee venom. Finally, we find that caspase-1–deficient mice are more susceptible to the noxious effects of bee and snake venoms, suggesting that a caspase-1–dependent immune response can protect against the damaging effects of envenomation. PMID:23297192

  11. Scyphozoan jellyfish venom metalloproteinases and their role in the cytotoxicity.

    PubMed

    Lee, Hyunkyoung; Jung, Eun-sun; Kang, Changkeun; Yoon, Won Duk; Kim, Jong-Shu; Kim, Euikyung

    2011-09-01

    The present study, for the first time, comparatively investigated the enzymatic activities (proteases and hyaluronidases) in the venoms of four Scyphozoan jellyfish species, including Nemopilema nomurai, Rhopilema esculenta, Cyanea nozakii, and Aurelia aurita. For this, various zymographic analyses were performed using assay specific substrates. Interestingly, all the four jellyfish venoms showed gelatinolytic, caseinolytic, and fibrinolytic activities, each of which contains a multitude of enzyme components with molecular weights between 17 and 130 kDa. These four jellyfish venoms demonstrated a huge variation in their proteolytic activities in quantitative and qualitative manner depending on the species. Most of these enzymatic activities were disappeared by the treatment of 1,10-phenanthroline, suggesting they might be belonged to metalloproteinases. Toxicological significance of these venom proteases was examined by comparing their proteolytic activity and the cytotoxicity in NIH 3T3 cells. The relative cytotoxic potency was C. nozakii > N. nomurai > A. aurita > R. esculenta. The cytotoxicity of jellyfish venom shows a positive correlation with its overall proteolytic activity. The metalloproteinases appear to play an important role in the induction of jellyfish venom toxicities. In conclusion, the present report proposes a novel finding of Scyphozoan jellyfish venom metalloproteinases and their potential role in the cytotoxicity. PMID:21718715

  12. Ancient Venom Systems: A Review on Cnidaria Toxins.

    PubMed

    Jouiaei, Mahdokht; Yanagihara, Angel A; Madio, Bruno; Nevalainen, Timo J; Alewood, Paul F; Fry, Bryan G

    2015-06-01

    Cnidarians are the oldest extant lineage of venomous animals. Despite their simple anatomy, they are capable of subduing or repelling prey and predator species that are far more complex and recently evolved. Utilizing specialized penetrating nematocysts, cnidarians inject the nematocyst content or "venom" that initiates toxic and immunological reactions in the envenomated organism. These venoms contain enzymes, potent pore forming toxins, and neurotoxins. Enzymes include lipolytic and proteolytic proteins that catabolize prey tissues. Cnidarian pore forming toxins self-assemble to form robust membrane pores that can cause cell death via osmotic lysis. Neurotoxins exhibit rapid ion channel specific activities. In addition, certain cnidarian venoms contain or induce the release of host vasodilatory biogenic amines such as serotonin, histamine, bunodosine and caissarone accelerating the pathogenic effects of other venom enzymes and porins. The cnidarian attacking/defending mechanism is fast and efficient, and massive envenomation of humans may result in death, in some cases within a few minutes to an hour after sting. The complexity of venom components represents a unique therapeutic challenge and probably reflects the ancient evolutionary history of the cnidarian venom system. Thus, they are invaluable as a therapeutic target for sting treatment or as lead compounds for drug design. PMID:26094698

  13. Calcicludine, a venom peptide of the Kunitz-type protease inhibitor family, is a potent blocker of high-threshold Ca2+ channels with a high affinity for L-type channels in cerebellar granule neurons.

    PubMed Central

    Schweitz, H; Heurteaux, C; Bois, P; Moinier, D; Romey, G; Lazdunski, M

    1994-01-01

    Calcicludine (CaC) is a 60-amino acid polypeptide from the venom of Dendroaspis angusticeps. It is structurally homologous to the Kunitz-type protease inhibitor, to dendrotoxins, which block K+ channels, and to the protease inhibitor domain of the amyloid beta protein that accumulates in Alzheimer disease. Voltage-clamp experiments on a variety of excitable cells have shown that CaC specifically blocks most of the high-threshold Ca2+ channels (L-, N-, or P-type) in the 10-100 nM range. Particularly high densities of specific 125I-labeled CaC binding sites were found in the olfactory bulb, in the molecular layer of the dentate gyrus and the stratum oriens of CA3 field in the hippocampal formation, and in the granular layer of the cerebellum. 125I-labeled CaC binds with a high affinity (Kd = 15 pM) to a single class of noninteracting sites in rat olfactory bulb microsomes. The distribution of CaC binding sites in cerebella of three mutant mice (Weaver, Reeler, and Purkinje cell degeneration) clearly shows that the specific high-affinity labeling is associated with granule cells. Electrophysiological experiments on rat cerebellar granule neurons in primary culture have shown that CaC potently blocks the L-type component of the Ca2+ current (K0.5 = 0.2 nM). Then CaC, in the nanomolar range, appears to be a highly potent blocker of an L-subtype of neuronal Ca2+ channels. Images PMID:8302860

  14. Venom Down Under: Dynamic Evolution of Australian Elapid Snake Toxins

    PubMed Central

    Jackson, Timothy N. W.; Sunagar, Kartik; Undheim, Eivind A. B.; Koludarov, Ivan; Chan, Angelo H. C.; Sanders, Kate; Ali, Syed A.; Hendrikx, Iwan; Dunstan, Nathan; Fry, Bryan G.

    2013-01-01

    Despite the unparalleled diversity of venomous snakes in Australia, research has concentrated on a handful of medically significant species and even of these very few toxins have been fully sequenced. In this study, venom gland transcriptomes were sequenced from eleven species of small Australian elapid snakes, from eleven genera, spanning a broad phylogenetic range. The particularly large number of sequences obtained for three-finger toxin (3FTx) peptides allowed for robust reconstructions of their dynamic molecular evolutionary histories. We demonstrated that each species preferentially favoured different types of α-neurotoxic 3FTx, probably as a result of differing feeding ecologies. The three forms of α-neurotoxin [Type I (also known as (aka): short-chain), Type II (aka: long-chain) and Type III] not only adopted differential rates of evolution, but have also conserved a diversity of residues, presumably to potentiate prey-specific toxicity. Despite these differences, the different α-neurotoxin types were shown to accumulate mutations in similar regions of the protein, largely in the loops and structurally unimportant regions, highlighting the significant role of focal mutagenesis. We theorize that this phenomenon not only affects toxin potency or specificity, but also generates necessary variation for preventing/delaying prey animals from acquiring venom-resistance. This study also recovered the first full-length sequences for multimeric phospholipase A2 (PLA2) ‘taipoxin/paradoxin’ subunits from non-Oxyuranus species, confirming the early recruitment of this extremely potent neurotoxin complex to the venom arsenal of Australian elapid snakes. We also recovered the first natriuretic peptides from an elapid that lack the derived C-terminal tail and resemble the plesiotypic form (ancestral character state) found in viper venoms. This provides supporting evidence for a single early recruitment of natriuretic peptides into snake venoms. Novel forms of kunitz

  15. Neuromuscular effects of venoms and crotoxin-like proteins from Crotalus durissus ruruima and Crotalus durissus cumanensis.

    PubMed

    Cavalcante, Walter Luís Garrido; Ponce-Soto, Luis Alberto; Marangoni, Sérgio; Gallacci, Márcia

    2015-03-01

    A myographic study was performed to compare the neuromuscular effects of venoms and crotoxin-like proteins from Crotalus durissus ruruima and Crotalus durissus cumanensis in mice phrenic-diaphragm preparation. It was concluded that both venoms present neurotoxic activity as a consequence of their crotoxin content. Furthermore, crotoxin from C.d. cumanensis is more potent than that from C.d. ruruima venom. At the concentration range in which both venoms express neurotoxic activity, only C.d. cumanensis venom also manifest a direct myotoxic effect that probably involves the synergic participation of other components than crotoxin. PMID:25598498

  16. Some aspects of the venom proteome of the Colubridae snake Philodryas olfersii revealed from a Duvernoy's (venom) gland transcriptome.

    PubMed

    Ching, Ana T C; Rocha, Marisa M T; Paes Leme, Adriana F; Pimenta, Daniel C; de Fátima D Furtado, Maria; Serrano, Solange M T; Ho, Paulo L; Junqueira-de-Azevedo, Inácio L M

    2006-08-01

    We investigated the putative toxins of Philodryas olfersii (Colubridae), a representative of a family of snakes neglected in venom studies despite their growing medical importance. Transcriptomic data of the venom gland complemented by proteomic analysis of the gland secretion revealed the presence of major toxin classes from the Viperidae family, including serine proteases, metalloproteases, C-type lectins, Crisps, and a C-type natriuretic peptide (CNP). Interestingly, the phylogenetic analysis of the CNP precursor showed it as a linker between two related precursors found in Viperidae and Elapidae snakes. We suggest that these precursors constitute a monophyletic group derived from the vertebrate CNPs. PMID:16857193

  17. Coagulant and anticoagulant activities of Bothrops lanceolatus (Fer de lance) venom.

    PubMed

    Lôbo de Araújo, A; Kamiguti, A; Bon, C

    2001-01-01

    Bothrops lanceolatus venom contains caseinolytic, phospholipase, esterase and haemorrhagic activities. We have investigated the coagulant and anticoagulant actions of B. lanceolatus venom on human citrated plasma and on purified plasma components. Although B. lanceolatus venom up to 50 microg/ml was unable to clot citrated plasma, at concentrations > or = 5 microg/ml the venom dose-dependently clotted purified human fibrinogen, indicating the presence of a thrombin-like enzyme. Human plasma (final concentration > or = 12.5%) dose-dependently inhibited the venom-induced fibrinogen clotting. This finding suggested that endogenous plasma protease inhibitors can affect the venom's action on fibrinogen. To investigate this possibility, B. lanceolatus venom was incubated with different plasma protease inhibitors and the activity on fibrinogen tested. alpha(2)-Macroglobulin and alpha(1)-antitrypsin did not interfere with the coagulant activity of the venom whereas the antithrombin-III/heparin complex partially inhibited this activity. A non-toxic, acidic phospholipase A(2) purified from B. lanceolatus venom prolonged the activated partial thromboplastin time in human plasma from 39.7+/-0.5 s (control with saline) to 60.2+/-0.9 s with 50 microg of PLA(2) (p<0.001), suggesting an anticoagulant activity associated with this enzyme. This anticoagulant activity may account for some of the effects of the venom on blood coagulation. PMID:10978756

  18. The analgesic activity of crotamine, a neurotoxin from Crotalus durissus terrificus (South American rattlesnake) venom: a biochemical and pharmacological study.

    PubMed

    Mancin, A C; Soares, A M; Andrião-Escarso, S H; Faça, V M; Greene, L J; Zuccolotto, S; Pelá, I R; Giglio, J R

    1998-12-01

    Crotamine, a 4.88 kDa neurotoxic protein, has been purified to apparent homogeneity from Crotalus durissus venom by gel filtration on Sephadex G-75. When injected (i.p. or s.c.) in adult male Swiss mice (20-25 g), it induced a time-dose dependent analgesic effect which was inhibited by naloxone, thus suggesting an opioid action mechanism. When compared with morphine (4 mg/kg), crotamine, even in extremely low doses (133.4 microg/kg, i.p., about 0.4% of a LD50 is approximately 30-fold more potent than morphine (w/w) as an analgesic. On a molar basis it is more than 500-fold more potent than morphine. It is also much more potent than the lower molecular weight crude fractions of the same venom. The antinociceptive effects of crotamine and morphine were assayed by the hot plate test and by the acetic acid-induced writhing method. Therefore, both central and peripheral mechanisms should be involved. Histopathological analysis of the brain, liver, skeletal muscles, stomach, lungs, spleen, heart, kidneys and small intestine of the crotamine injected mice did not show any visible lesion in any of these organs by light microscopy. Since crotamine accounted for 22% (w/w) of the desiccated venom, it was identified as its major antinociceptive low molecular weight peptide component. PMID:9839677

  19. An Ovarian Carcinoid Tumor With Peptide YY-Positive Insular Component: A Case Report and Review of the Literature.

    PubMed

    Erdenebaatar, Chimeddulam; Yamaguchi, Munekage; Saito, Fumitaka; Motooka, Chisato; Tashiro, Hironori; Katabuchi, Hidetaka

    2016-07-01

    Ovarian carcinoid tumors are uncommon and account for 1% of all carcinoid tumors. The insular type of ovarian carcinoid tumor is common in western countries; in contrast, the strumal and trabecular types seem to be common in Asian countries. Strumal and trabecular types are associated with peptide YY (PYY) production, which may cause constipation. Here, we report the case of a 70-yr-old Japanese woman with chronic constipation who was referred to Kumamoto University Hospital because of a right adnexal mass. Imaging tests suggested that the solid mass might be malignant; therefore, abdominal total hysterectomy, bilateral salpingo-oophorectomy, and omentectomy were performed. A subsequent histopathologic examination confirmed an insular carcinoid tumor with a trabecular component in the right ovary. Both components were positive for PYY but not for serotonin. The patient complained of diarrhea instead of constipation soon after the surgery. Because PYY-positive insular carcinoid tumor in the ovary has not been previously reported, we reviewed 19 reported cases of patients with PYY-positive ovarian carcinoid tumors. The origins, common histologic types and symptoms caused by specific peptides secreted in ovarian carcinoid tumors differ between western and Asian countries. PMID:26630222

  20. Elevated and cross-responsive CD1a-reactive T cells in bee and wasp venom allergic individuals.

    PubMed

    Subramaniam, Sumithra; Aslam, Aamir; Misbah, Siraj A; Salio, Mariolina; Cerundolo, Vincenzo; Moody, D Branch; Ogg, Graham

    2016-01-01

    The role of CD1a-reactive T cells in human allergic disease is unknown. We have previously shown that circulating CD1a-reactive T cells recognize neolipid antigens generated by bee and wasp venom phospholipase, and here tested the hypothesis that venom-responsive CD1a-reactive T cells associate with venom allergy. Circulating T cells from bee and wasp venom allergic individuals, before and during immunotherapy, were exposed to CD1a-transfected K562 cells in the presence of wasp or bee venom. T-cell response was evaluated based on IFNγ, GM-CSF, and IL-13 cytokine production. Venom allergic individuals showed significantly higher frequencies of IFN-γ, GM-CSF, and IL-13 producing CD1a-reactive T cells responsive to venom and venom-derived phospholipase than healthy individuals. Venom-responsive CD1a-reactive T cells were cross-responsive between wasp and bee suggesting shared pathways of allergenicity. Frequencies of CD1a-reactive T cells were initially induced during subcutaneous immunotherapy, peaking by weeks 5, but then reduced despite escalation of antigen dose. Our current understanding of venom allergy and immunotherapy is largely based on peptide and protein-specific T cell and antibody responses. Here, we show that lipid antigens and CD1a-reactive T cells associate with the allergic response. These data have implications for mechanisms of allergy and approaches to immunotherapy. PMID:26518614

  1. Lachesis stenophrys venom reduces the equine antibody response towards Bothrops asper venom used as co-immunogen in the production of polyspecific snake antivenom.

    PubMed

    Arroyo, Cynthia; Solano, Sergio; Herrera, María; Segura, Álvaro; Estrada, Ricardo; Vargas, Mariángela; Villalta, Mauren; Gutiérrez, José María; León, Guillermo

    2015-09-01

    The anti-bothropic activity of an antivenom prepared from the plasma of horses immunized with Bothrops asper venom (anti-B antivenom) was compared with a similar formulation produced from the plasma of horses immunized with a mixture of B. asper and Lachesis stenophrys venoms (anti-BL antivenom). Likewise, a comparison between the anti-lachesic activity of the anti-BL antivenom and a similar formulation prepared from horses immunized only with L. stenophrys venom (anti-L antivenom) was performed. The anti-BL antivenom had lower concentration of anti-bothropic antibodies than the anti-B antivenom. This difference was associated to a lower response towards all components of B. asper venom, but particularly towards some D49-phospholipases A2 (PLA2s) and PIII-metalloproteinases. Consequently, the anti-BL antivenom was less effective neutralizing lethal, coagulant, defibrinogenating, PLA2, and myotoxic activities of B. asper venom. On the other hand, anti-BL and anti-L antivenoms showed similar concentration of anti-lachesic antibodies, and similar capacity to recognize the HPLC fractions of L. stenophrys venom and to neutralize lethal, coagulant, proteolytic, hemorrhagic, PLA2 and myotoxic activities induced by this venom. It is concluded that, when used as co-immunogens, the venom of L. stenophrys reduces the antibody response towards B. asper venom, whereas the latter does not affect the anti-lachesic response. PMID:26100664

  2. Neuromuscular action of venom from the South American colubrid snake Philodryas patagoniensis.

    PubMed

    Carreiro da Costa, Roberta S; Prudêncio, Luiz; Ferrari, Erika Fonseca; Souza, Gustavo H M F; de Mello, Sueli Moreira; Prianti Júnior, Antonio Carlos Guimarães; Ribeiro, Wellington; Zamunér, Stella Regina; Hyslop, Stephen; Cogo, José Carlos

    2008-07-01

    Snakes of the opisthoglyphous genus Philodryas are widespread in South America and cause most bites by colubrids in this region. In this study, we examined the neurotoxic and myotoxic effects of venom from Philodryas patagoniensis in biventer cervicis and phrenic nerve-diaphragm preparations and we compared the biochemical activities of venoms from P. patagoniensis and Philodryas olfersii. Philodryas patagoniensis venom (40 microg/mL) had no effect on mouse phrenic nerve-diaphragm preparations but caused time-dependent neuromuscular blockade of chick biventer cervicis preparations. This blockade was not reversed by washing. The highest concentration of venom tested (40 microg/mL) significantly reduced (p<0.05) the contractures to exogenous acetylcholine (55 microM and 110 microM) and K(+) (13.4 mM) after 120 min; lower concentrations of venom had no consistent or significant effect on these responses. Venom caused a concentration- and time-dependent release of creatine kinase (CK) from biventer cervicis preparations. Histological analysis showed contracted muscle fibers at low venom concentrations and myonecrosis at high concentrations. Philodryas venoms had low esterase and phospholipase A(2) but high proteolytic activities compared to the pitviper Bothrops jararaca. SDS-PAGE showed that the Philodryas venoms had similar electrophoretic profiles, with most proteins having a molecular mass of 25-80 kDa. Both of the Philodryas venoms cross-reacted with bothropic antivenom in ELISA, indicating the presence of proteins immunologically related to Bothrops venoms. RP-HPLC of P. patagoniensis venom yielded four major peaks, each of which contained several proteins, as shown by SDS-PAGE. These results indicate that P. patagoniensis venom has neurotoxic and myotoxic components that may contribute to the effects of envenoming by this species. PMID:18455482

  3. Pro and antiinflammatory properties of toxins from animal venoms.

    PubMed

    Farsky, Sandra H P; Antunes, Edson; Mello, Suzana B V

    2005-06-01

    Accidents evoked by venomous animals are common in tropical regions. In Brazil, envenomation evoked by snakes, spiders and scorpions are an important public health problem. Their venoms are composed of a great number of toxins, which are capable of acting on tissue and plasma components with consequent toxic and pharmacological effects. On the other hand, the diversity of venom composition makes them important source of toxins that can be employed as scientific tools. Here we describe the mechanisms of anti and pro-inflammatory properties of toxins of Bothrops and Crotalus genus snakes and Loxosceles and Phoneutria genus spider venoms. The emphasis was to summarise, both in vivo and in vitro, studies that focused on the action of phospholipases, metalloproteinases and sphingomyelinase D on vascular and cellular aspects of the process as well as the complex network of chemical mediators involved. PMID:16101549

  4. Enzyme-linked immunosorbant assay (ELISA) of size-selected crotalid venom antigens by Wyeth's polyvalent antivenom.

    PubMed

    Schaeffer, R C; Randall, H; Resk, J; Carlson, R W

    1988-01-01

    The binding of Antivenom (Crotalidae) Polyvalent to fractions from crude venoms of eight crotalid and one viperid snake, obtained by high performance size-exclusion chromatography, was determined with an indirect enzyme-linked immunosorbent assay (ELISA). Most of the large (greater than 30,000 mol. wt) molecular mass crotalid venom fractions were associated with high (greater than 0.7 absorbance units) ELISA values. Similarly, the medium (13,000-30,000 mol. wt) and small (less than 14,000 mol. wt) molecular mass crotalid venom fractions were coincident with moderate (0.3-0.7 absorbance units) and low (less than 0.3 absorbance units) ELISA levels. Some variability in this pattern was seen with individual venom fractions. A distinctly different pattern of ELISA values were observed with two rattlesnake venoms: the South American (Crotalus durissus terrificus) and Mojave desert (Crotalus scutulatus scutulatus) rattlesnakes. The elution profile from these venoms showed a progression of low to moderate ELISA values within the large molecular mass fractions. This pattern was followed by a decline to low ELISA values throughout the remainder of the elution profile. When saw scaled viper (Echis carinatus leucogaster) venom fractions were tested, only background ELISA values were detected with antivenom. Similarly, background ELISA values were associated with the small molecular mass fractions of all venoms tested. In addition, the elution position for the basic peptides of southern Pacific (Crotalus viridis helleri) and timber (Crotalus h. horridus) rattlesnake venoms showed minimal ELISA values. These data support the view that except for the venom of C. durissus terrificus and C. s. scutulatus, most antivenom antibodies bind large (greater than 30,000 mol. wt) venom fractions. Thus, antivenom contains minimal levels of antibodies to the basic peptides in these venoms. PMID:3347932

  5. ISOB: A Database of Indigenous Snake Species of Bangladesh with respective known venom composition

    PubMed Central

    Roly, Zahida Yesmin; Hakim, Md Abdul; Zahan, ASM Shahriar; Hossain, M Monzur; Reza, Md Abu

    2015-01-01

    At present there is no well structured database available for the venomous snakes and venom composition of snakes in the world although venom has immense importance in biomedical research. Searching for a specific venom component from NCBI, PDB or public databases is troublesome, because they contain huge amount of data entries. Therefore, we created a database named “ISOB” which is a web accessible unique secondary database that represents the first online available bioinformatics resource showing venom composition of snakes. This database provides a comprehensive overview of seventy-eight indigenous snake species covering description of snakes supplemented with structural information of the relevant individual available venom proteins. We strongly believe that this database will contribute significantly in the field of bioinformatics, environmental research, proteomics, drug development and rationale drug designing. Availability The database is freely available at http://www.snakebd.com/ PMID:25848172

  6. Functional analysis of Cobra Venom Factor/human C3 chimeras transiently expressed in mammalian cells.

    PubMed

    Kölln, Johanna; Matzas, Mark; Jänner, Nathalie; Mix, Thorsten; Klensang, Katrin; Bredehorst, Reinhard; Spillner, Edzard

    2004-05-01

    The complement activating venom component Cobra Venom Factor (CVF), a functional and structural homologue of the human complement component C3, forms a stable CVF-dependent C3 convertase complex, which, in contrast to C3-dependent convertase effects continuous activation of the complement and, thereby, decomplementation. In order to elucidate the mechanism underlying the enhanced activity of CVF compared to human C3, we generated two CVF/C3 chimeras and established different affinity-based assay systems for functional analysis of these constructs. To allow for convenient expression and subsequent functional characterisation, the CVF/C3 chimeras as well as CVF and C3 were transiently expressed in mammalian cells. Problems due to the low concentration of the recombinant proteins in the supernatants of transient expressions were circumvented by fusion to peptide tags enabling their efficient immobilisation onto suitable surfaces and subsequent characterisation. In an alternative approach monoclonal antibody fragments generated from a semisynthetic phage display scFv library were employed for concentrating the recombinant proteins by immunoprecipitation. Utilising both approaches all transiently expressed proteins could be characterised for their complement consumption activity. The data obtained with the CVF/C3 chimeras demonstrate that the increased stability of the CVFBb complex is independent of the domains in CVF corresponding to binding sites of factor B and H and the cleavage sites of factor I in the human C3 molecule. PMID:15140572

  7. A survey of the venom of the spider Lycosa vittata by biochemical, pharmacological and transcriptomic analyses.

    PubMed

    Zhang, Fan; Liu, Changjun; Tan, Huaxin; Wang, Hengyun; Jiang, Yinjie; Liang, Songping; Zhang, Fuping; Liu, Zhonghua

    2015-12-01

    Lycosa vittata, mainly distributed in the southwest of China, is a medium-sized and venomous spider, whose venom remains unexplored so far. This study aims to present an overview of the venom. It mainly consisted of diverse peptides and exhibited inhibitory effects on voltage-gated ion channels in rat dorsal root ganglia neurons, with a strongest inhibition on tetrodotoxin-sensitive and tetrodotoxin-resistant voltage-gated Na(+) channels. Interestingly, it exerted cytotoxicity to cancer cells, with approximately 10-fold selectivity on PC-3 over others, implying the existence of selective anti-PC-3 agents in the venom. Moreover, 51 toxin-like peptides were deduced from the venom gland transcriptome. Bioinformatic analyses suggested their structures might have some distinguished properties and their predicted functions were consistent with the venom activities. This study suggests that the venom is an attractive source of neurotoxins with therapeutic significance, and provides references for the structure and function investigation of specific toxins in the future. PMID:25963839

  8. Intraspecific variation of biological activities in venoms from wild and captive Bothrops jararaca.

    PubMed

    Saad, Eduardo; Curtolo Barros, Luciana; Biscola, Natalia; Pimenta, Daniel C; Barraviera, Silvia R C S; Barraviera, Benedito; Seabra Ferreira, Rui

    2012-01-01

    The venom of Bothrops jararaca is composed of complex mixture of molecules, mainly lectins, metalloproteinases, serinoproteinases, desintegrins, phospholipases, and peptides. This composition may vary according to the snake's age, gender, and region of origin. The aim of the was to determine individual variation in Bothrops jararaca venom in the Botucatu region, Sao Paulo State, Brazil, by means of enzymatic, biochemical, and pharmacological characterization, utilizing in vitro tests and biological assays. The activities were compared with those of Brazilian Reference Venom (BRV). Protein concentration varied between adult and juvenile groups. The electrophoretic profiles were similar, with molecular masses ranging between 25 and 50 kD, but with intraspecific variations. Reverse-phase high-performance liquid chromatography (RP-HPLC) revealed protein concentration differences. Coagulant activity did not differ significantly among adult groups, but there was a large variation between juvenile venom and BRV, which coagulated more extensively. Venoms from adults displayed greater hemorrhagic activity, especially in males recently obtained from the wild. In contrast, juveniles kept in captivity and adult males showed higher values. Edematogenic activity displayed an increase in edema in all groups. At the mean lethal dose (LD₅₀), toxicity varied significantly between groups, with venom from captive females being threefold more toxic than juvenile venom. Data illustrate the intra- and interspecific complexity that occurs in snake venoms, which may be attributed to ontogenetic, sexual, and environmental factors that affect variability in Bothrops jararaca venom. Further, it is proposed that Brazilian public health authorities document the constitution of pooled venom employed in the immunization of serum-producing animals due to this variability in venom properties. Given the large Brazilian territory, this variability requires regional monitoring and evaluation of

  9. A Limited Role for Gene Duplications in the Evolution of Platypus Venom

    PubMed Central

    Wong, Emily S. W.; Papenfuss, Anthony T.; Whittington, Camilla M.; Warren, Wesley C.; Belov, Katherine

    2012-01-01

    Gene duplication followed by adaptive selection is believed to be the primary driver of venom evolution. However, to date, no studies have evaluated the importance of gene duplications for venom evolution using a genomic approach. The availability of a sequenced genome and a venom gland transcriptome for the enigmatic platypus provides a unique opportunity to explore the role that gene duplication plays in venom evolution. Here, we identify gene duplication events and correlate them with expressed transcripts in an in-season venom gland. Gene duplicates (1,508) were identified. These duplicated pairs (421), including genes that have undergone multiple rounds of gene duplications, were expressed in the venom gland. The majority of these genes are involved in metabolism and protein synthesis not toxin functions. Twelve secretory genes including serine proteases, metalloproteinases, and protease inhibitors likely to produce symptoms of envenomation such as vasodilation and pain were detected. Only 16 of 107 platypus genes with high similarity to known toxins evolved through gene duplication. Platypus venom C-type natriuretic peptides and nerve growth factor do not possess lineage-specific gene duplicates. Extensive duplications, believed to increase the potency of toxic content and promote toxin diversification, were not found. This is the first study to take a genome-wide approach in order to examine the impact of gene duplication on venom evolution. Our findings support the idea that adaptive selection acts on gene duplicates to drive the independent evolution and functional diversification of similar venom genes in venomous species. However, gene duplications alone do not explain the “venome” of the platypus. Other mechanisms, such as alternative splicing and mutation, may be important in venom innovation. PMID:21816864

  10. Identification of major Toxoneuron nigriceps venom proteins using an integrated transcriptomic/proteomic approach.

    PubMed

    Laurino, Simona; Grossi, Gerarda; Pucci, Pietro; Flagiello, Angela; Bufo, Sabino Aurelio; Bianco, Giuliana; Salvia, Rosanna; Vinson, S Bradleigh; Vogel, Heiko; Falabella, Patrizia

    2016-09-01

    Endoparasitoids in the order Hymenoptera are natural enemies of several herbivorous insect pest species. During oviposition they inject a mixture of factors, which include venom, into the host, ensuring the successful parasitism and the development of their progeny. Although these parasitoid factors are known to be responsible for host manipulation, such as immune system suppression, little is known about both identity and function of the majority of their venom components. To identify the major proteins of Toxoneuron nigriceps (Hymenoptera: Braconidae) venom, we used an integrated transcriptomic and proteomic approach. The tandem-mass spectrometric (LC-MS/MS) data combined with T. nigriceps venom gland transcriptome used as a reference database resulted in the identification of a total of thirty one different proteins. While some of the identified proteins have been described in venom from several parasitoids, others were identified for the first time. Among the identified proteins, hydrolases constituted the most abundant family followed by transferases, oxidoreductases, ligases, lyases and isomerases. The hydrolases identified in the T. nigriceps venom glands included proteases, peptidases and glycosidases, reported as common components of venom from several parasitoid species. Taken together, the identified proteins included factors that could potentially inhibit the host immune system, manipulate host physiological processes and host development, as well as provide nutrients to the parasitoid progeny, degrading host tissues by specific hydrolytic enzymes. The venom decoding provides us with information about the identity of candidate venom factors which could contribute to the success of parasitism, together with other maternal and embryonic factors. PMID:27388778

  11. Multi-Component Ion Modifiers and Arcing Suppressants to Enhance Differential Mobility Spectrometry for Separation of Peptides and Drug Molecules

    NASA Astrophysics Data System (ADS)

    Blagojevic, Voislav; Koyanagi, Gregory K.; Bohme, Diethard K.

    2014-03-01

    The optimization of ion/molecule chemistry in a differential mobility spectrometer (DMS) is shown to result in improved peak capacity, separation, and sensitivity. We have experimented with a modifier composed of multiple components, where each component accomplishes a specific task on mixtures of peptides and small drug molecules. Use of a higher proton affinity modifier (hexanol) provides increased peak capacity and separation. Analyte ion/modifier proton transfer is suppressed by adding a large excess of low proton affinity modifier (water or methanol), significantly increasing signal intensity and sensitivity for low proton affinity analytes. Finally, addition of an electrical arcing suppressant (chloroform) allows the device to operate reliably at higher separation fields, improving peak capacity and separation. We demonstrate a 20 % increase in the device peak capacity without any loss of sensitivity and estimate that further optimization of the modifier composition can increase this to 50 %. Use of 3-, 4-, or even 5-component modifiers offers the opportunity for the user to fine-tune the modifier performance to maximize the device performance, something not possible with a single component modifier.

  12. Partial Purification and Characterization of Anticoagulant Factor from the Snake (Echis Carinatus) Venom

    PubMed Central

    Amrollahi Byoki, Elham; Zare Mirakabadi, Abbas

    2013-01-01

    Objective(s): Snake venoms contain complex mixture of proteins with biological activities. Some of these proteins affect blood coagulation and platelet function in different ways. Snake venom toxin may serve as a starting material for drug design to combat several pathophysiological problems such as cardiovascular disorders. In the present study, purification of anticoagulation factor from venom of snake (Echis carinatus) was studied. Materials and Methods: Anticoagulation activity of crude venom, fractions and purified peptide were determined by using prothrombin time (PT) and thrombin time (TT). Three fractions were partially purified from the venom of E. Carinatus by gel filtration on sephadex G-75 and final purification was performed by high-performance liquid chromatography (HPLC) with C18 column. A purified anticoagulant factor was derived which showed a single protein band in SDS-PAGE electrophoresis under reducing condition. Results: Results of PT and TT tests for purified peptide (EC217) were found to be 102±4.242 and < 5 min. respectively. Determination of molecular weight revealed that the active purified peptide (EC217) was about 30 KD. Conclusion: The present study showed that the venom of E. carinatus contains at least one anticoagulant factor. PMID:24494065

  13. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms.

    PubMed

    Fry, Bryan G; Roelants, Kim; Champagne, Donald E; Scheib, Holger; Tyndall, Joel D A; King, Glenn F; Nevalainen, Timo J; Norman, Janette A; Lewis, Richard J; Norton, Raymond S; Renjifo, Camila; de la Vega, Ricardo C Rodríguez

    2009-01-01

    Throughout evolution, numerous proteins have been convergently recruited into the venoms of various animals, including centipedes, cephalopods, cone snails, fish, insects (several independent venom systems), platypus, scorpions, shrews, spiders, toxicoferan reptiles (lizards and snakes), and sea anemones. The protein scaffolds utilized convergently have included AVIT/colipase/prokineticin, CAP, chitinase, cystatin, defensins, hyaluronidase, Kunitz, lectin, lipocalin, natriuretic peptide, peptidase S1, phospholipase A(2), sphingomyelinase D, and SPRY. Many of these same venom protein types have also been convergently recruited for use in the hematophagous gland secretions of invertebrates (e.g., fleas, leeches, kissing bugs, mosquitoes, and ticks) and vertebrates (e.g., vampire bats). Here, we discuss a number of overarching structural, functional, and evolutionary generalities of the protein families from which these toxins have been frequently recruited and propose a revised and expanded working definition for venom. Given the large number of striking similarities between the protein compositions of conventional venoms and hematophagous secretions, we argue that the latter should also fall under the same definition. PMID:19640225

  14. An insulin-binding protein from the venom of a solitary wasp Eumenes pomiformis binds to apolipophorin III in lepidopteran hemolymph.

    PubMed

    Baek, Ji Hyeong; Lee, Si Hyeock; Kim, Woe-Yeon; Kim, Min Gab

    2016-03-01

    EpIBP, an insulin-like peptide-binding protein, is a major protein component of the venom of a solitary hunting wasp, Eumenes pomiformis. To evaluate the bioactivity, bacteria-expressed EpIBP was injected into Spodoptera exigua larvae, resulting in a higher survival rate and reduced loss of body weight under starvation conditions than control larvae. EpIBP was found to interact with apolipophorin III (apoLp III), implying that EpIBP might function by altering the apoLp III-mediated metabolism of prey. PMID:26748153

  15. Cloning, characterization and mutagenesis of Russell's viper venom L-amino acid oxidase: Insights into its catalytic mechanism.

    PubMed

    Chen, Hong-Sen; Wang, Ying-Ming; Huang, Wan-Ting; Huang, Kai-Fa; Tsai, Inn-Ho

    2012-02-01

    To investigate the structure-function relationships and geographic variations of L-amino acid oxidase (LAAO) from Daboia venoms, a single LAAO (designated as DrLAO) was purified from eastern Indian Daboia russelii venom and characterized. The purified DrLAO showed subunit molecular mass of 60-64kDa; its N-terminal sequence (1-20) was identical to those of several true viper LAAOs. Its preferred substrates were hydrophobic l-amino acids and the kinetic specificities were ordered as follows: Phe, Tyr, Met, Leu, and Trp. Enzyme assay and Western blotting showed that the venom LAAO contents of D. russelii were higher than those of Daboia siamensis. DrLAO dose-dependently inhibited ADP- and collagen-induced platelet aggregation with IC(50) values of 0.27 and 0.82μM, respectively. Apparently, DrLAO may synergize with other venom components to prolong and enhance bleeding symptoms after Daboia envenoming. The full sequence of DrLAO was deduced from its cDNA sequence and then confirmed by peptide mass fingerprinting. Molecular phylogenetic analysis revealed that SV-LAAO family members could be differentiated not only by snake taxonomy but also by the variations at position 223, and they divided into H223, S223, N223, and D223 subclasses. We have further prepared recombinant DrLAO and mutants by the Pichia expression system. Mutagenic analyses of DrLAO His223 revealed that this residue bound substrates instead of serving as an essential base in the catalytic steps. Our results suggest a direct hydride transfer from substrate to FAD as the mechanism for SV-LAAOs. PMID:21802487

  16. Bioinformatics-Aided Venomics

    PubMed Central

    Kaas, Quentin; Craik, David J.

    2015-01-01

    Venomics is a modern approach that combines transcriptomics and proteomics to explore the toxin content of venoms. This review will give an overview of computational approaches that have been created to classify and consolidate venomics data, as well as algorithms that have helped discovery and analysis of toxin nucleic acid and protein sequences, toxin three-dimensional structures and toxin functions. Bioinformatics is used to tackle specific challenges associated with the identification and annotations of toxins. Recognizing toxin transcript sequences among second generation sequencing data cannot rely only on basic sequence similarity because toxins are highly divergent. Mass spectrometry sequencing of mature toxins is challenging because toxins can display a large number of post-translational modifications. Identifying the mature toxin region in toxin precursor sequences requires the prediction of the cleavage sites of proprotein convertases, most of which are unknown or not well characterized. Tracing the evolutionary relationships between toxins should consider specific mechanisms of rapid evolution as well as interactions between predatory animals and prey. Rapidly determining the activity of toxins is the main bottleneck in venomics discovery, but some recent bioinformatics and molecular modeling approaches give hope that accurate predictions of toxin specificity could be made in the near future. PMID:26110505

  17. The transcriptomic and proteomic basis for the evolution of a novel venom phenotype within the Timber Rattlesnake (Crotalus horridus).

    PubMed

    Rokyta, Darin R; Wray, Kenneth P; McGivern, James J; Margres, Mark J

    2015-05-01

    The genetics underlying adaptive trait evolution describes the intersection between the probability that particular types of mutation are beneficial and the rates they arise. Snake venoms can vary in a directly meaningful manner through coding mutations and regulatory mutations. The amounts of different components determine venom efficacy, but point mutations in coding sequences can also change efficacy and function. The Timber Rattlesnake (Crotalus horridus) has populations that have evolved neurotoxic venom from the typical hemorrhagic rattlesnake venom present throughout most of its range. We identified only a handful of nonsynonymous differences in just five loci between animals with each venom type, and these differences affected lower-abundance toxins. Expression of at least 18 loci encoding hemorrhagic toxins was severely reduced in the production of neurotoxic venom. The entire phospholipase A2 toxin family was completely replaced in the neurotoxic venom, possibly through intergeneric hybridization. Venom paedomorphosis could, at best, explain only some of the loss of expression of hemorrhagic toxins. The number of potential mechanisms for altering venom composition and the patterns observed for C. horridus suggest that rapid venom evolution should occur primarily through changes in venom composition, rather than point mutations affecting coding sequences. PMID:25727380

  18. The two-component system CprRS senses cationic peptides and triggers adaptive resistance in Pseudomonas aeruginosa independently of ParRS.

    PubMed

    Fernández, Lucía; Jenssen, Håvard; Bains, Manjeet; Wiegand, Irith; Gooderham, W James; Hancock, Robert E W

    2012-12-01

    Cationic antimicrobial peptides pass across the outer membrane by interacting with negatively charged lipopolysaccharide (LPS), leading to outer membrane permeabilization in a process termed self-promoted uptake. Resistance can be mediated by the addition of positively charged arabinosamine through the action of the arnBCADTEF operon. We recently described a series of two-component regulators that lead to the activation of the arn operon after recognizing environmental signals, including low-Mg(2+) (PhoPQ, PmrAB) or cationic (ParRS) peptides. However, some peptides did not activate the arn operon through ParRS. Here, we report the identification of a new two-component system, CprRS, which, upon exposure to a wide range of antimicrobial peptides, triggered the expression of the LPS modification operon. Thus, mutations in the cprRS operon blocked the induction of the arn operon in response to several antimicrobial peptides independently of ParRS but did not affect the response to low Mg(2+). Distinct patterns of arn induction were identified. Thus, the responses to polymyxins were abrogated by either parR or cprR mutations, while responses to other peptides, including indolicidin, showed differential dependency on the CprRS and ParRS systems in a concentration-dependent manner. It was further demonstrated that, following exposure to inducing antimicrobial peptides, cprRS mutants did not become adaptively resistant to polymyxins as was observed for wild-type cells. Our microarray studies demonstrated that the CprRS system controlled a quite modest regulon, indicating that it was quite specific to adaptive peptide resistance. These findings provide greater insight into the complex regulation of LPS modification in Pseudomonas aeruginosa, which involves the participation of at least 4 two-component systems. PMID:23006746

  19. Ancient Venom Systems: A Review on Cnidaria Toxins

    PubMed Central

    Jouiaei, Mahdokht; Yanagihara, Angel A.; Madio, Bruno; Nevalainen, Timo J.; Alewood, Paul F.; Fry, Bryan G.

    2015-01-01

    Cnidarians are the oldest extant lineage of venomous animals. Despite their simple anatomy, they are capable of subduing or repelling prey and predator species that are far more complex and recently evolved. Utilizing specialized penetrating nematocysts, cnidarians inject the nematocyst content or “venom” that initiates toxic and immunological reactions in the envenomated organism. These venoms contain enzymes, potent pore forming toxins, and neurotoxins. Enzymes include lipolytic and proteolytic proteins that catabolize prey tissues. Cnidarian pore forming toxins self-assemble to form robust membrane pores that can cause cell death via osmotic lysis. Neurotoxins exhibit rapid ion channel specific activities. In addition, certain cnidarian venoms contain or induce the release of host vasodilatory biogenic amines such as serotonin, histamine, bunodosine and caissarone accelerating the pathogenic effects of other venom enzymes and porins. The cnidarian attacking/defending mechanism is fast and efficient, and massive envenomation of humans may result in death, in some cases within a few minutes to an hour after sting. The complexity of venom components represents a unique therapeutic challenge and probably reflects the ancient evolutionary history of the cnidarian venom system. Thus, they are invaluable as a therapeutic target for sting treatment or as lead compounds for drug design. PMID:26094698

  20. Lonomia obliqua venomous secretion induces human platelet adhesion and aggregation.

    PubMed

    Berger, Markus; Reck, José; Terra, Renata M S; Beys da Silva, Walter O; Santi, Lucélia; Pinto, Antônio F M; Vainstein, Marilene H; Termignoni, Carlos; Guimarães, Jorge A

    2010-10-01

    The caterpillar Lonomia obliqua is a venomous animal that causes numerous accidents, especially in southern Brazil, where it is considered a public health problem. The clinical manifestations include several haemostatic disturbances that lead to a hemorrhagic syndrome. Considering that platelets play a central role in hemostasis, in this work we investigate the effects of L. obliqua venomous secretion upon blood platelets responses in vitro. Results obtained shows that L. obliqua venom directly induces aggregation and ATP secretion in human washed platelets in a dose-dependent manner. Electron microscopy studies clearly showed that the venomous bristle extract was also able to produce direct platelets shape change and adhesion as well as activation and formation of platelet aggregates. Differently from other enzyme inhibitors, the venom-induced platelet aggregation was significatively inhibited by p-bromophenacyl bromide, a specific inhibitor of phospholipases A2. Additional experiments with different pharmacological antagonists indicate that the aggregation response triggered by the venom active components occurs through a calcium-dependent mechanism involving arachidonic acid metabolite(s) of the cyclooxygenase pathway and activation of phosphodiesterase 3A, an enzyme that leads to the consumption of intracellular cAMP content. It was additionally found that L. obliqua-induced platelet aggregation was independent of ADP release. Altogether, these findings are in line with the need for a better understanding of the complex hemorrhagic syndrome resulting from the envenomation caused by L. obliqua caterpillars, and can also give new insights into the management of its clinical profile. PMID:20157842

  1. Bifunctional μ/δ Opioid Peptides: Variation of the Type and Length of the Linker Connecting the Two Components

    PubMed Central

    Ding, Jinguo; Lemieux, Carole; Chung, Nga N.; Schiller, Peter W.

    2011-01-01

    On the basis of evidence that opioid compounds with a mixed μ agonist/δ antagonist profile may produce an antinociceptive effect with low propensity to induce side effects, bifunctional opioid peptides containing the μ agonist [Dmt1]DALDA (H-Dmt-D-Arg-Phe-Lys-NH2; Dmt = 2',6’-dimethyltyrosine) connected tail-to-tail via various α,ω-diaminoalkyl- or diaminocyclohexane linkers to the δ antagonists TICP[Ψ] (H-Tyr-TicΨ[CH2-NH]Cha-Phe-OH; Cha = cyclohexylalanine, Tic = 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid), H-Dmt-Tic-OH or H-Bcp-Tic-OH (Bcp = 4'-[N-((4'-phenyl)phenethyl)carboxamido]phenylalanine) were synthesized and pharmacologically characterized in vitro. Bifunctional [Dmt1]DALDA→NH-(CH2)n-NH←TICP[Ψ] compounds (n = 0–12) showed decreasing μ and δ receptor binding affinities with increasing linker length. As expected, several of the bifunctional peptides were μ agonist/δ antagonists with low nanomolar μ and δ receptor binding affinities. However, compounds with unexpected opioid activity profiles, including a μ partial agonist/δ partial agonist, μ antagonist/δ antagonists and μ agonist/δ agonists, were also identified. These results indicate that the binding affinities and intrinsic efficacies of these bifunctional compounds at both receptors depend on the length and type of the linker connecting the μ and δ components. An important recommendation emerging from this study is that the in vitro activity profiles of bifunctional compounds containing an agonist and an antagonist component connected via a linker need to be determined prior to their pharmacological evaluation in vivo. PMID:22070627

  2. Costs of venom production in the common death adder (Acanthophis antarcticus).

    PubMed

    Pintor, Anna F V; Krockenberger, Andrew K; Seymour, Jamie E

    2010-11-01

    The utilization of venom in predatory and defensive contexts is associated with benefits regarding minimization of energetic expenditure on hunting, maximization of success in prey acquisition and avoidance of injury from dangerous prey and aggressors. Multiple characteristics suggest that venom is quite expensive to produce, thereby creating a tradeoff between advantages and disadvantages associated with its possession. The metabolic costs of venom production have rarely been studied and no information on the detailed metabolic processes during venom replenishment exists. Where costs of venom production have been studied they are often not in context with other components of the energy budget of the study organism. Using flow-through respirometry, we examined changes in metabolic rate in the Australian elapid Acanthophis antarcticus after venom expenditure and feeding as well as during preparation for shedding to establish a comparison of the magnitude of energetic expenditure during venom replenishment and other common physiological processes. We also defined the temporal pattern of metabolic processes during venom replenishment at a higher resolution than has previously been attempted in snakes. Our results suggest that total costs of venom replenishment are relatively small when compared to costs of digestion and shedding. We conclude that, in spite of the manifold factors suggesting a high cost of venom in snakes, its production is less energetically costly than often assumed. Until further research can clarify the reasons for this more caution should therefore be applied when assuming that costs of venom production exert strong selection pressures on the ecology, behavior and evolution of venomous taxa. PMID:20659494

  3. New immunization protocol to produce crotalic antivenom combining Crotalus durissus terrificus venom and its PLA2.

    PubMed

    Fusco, Luciano Sebastián; Rodríguez, Juan Pablo; Teibler, Pamela; Maruñak, Silvana; Acosta, Ofelia; Leiva, Laura

    2015-01-01

    Antivenoms are usually obtained by animal immunization with successive inoculations of increasing sublethal amounts of venom, which may impair the animal health. The high lethality of venom requires prolonged immunization plans with small amounts of venom. Thus, we propose an alternative plan that includes a pre-immunization of the animal with phospholipase A2, the main crotoxin component, which is responsible for the whole venom lethality. For comparison, three different immunization schemes were designed: high dose protocol (HDP; 0.5-27 mg of venom), low dose protocol (LDP; 0.1-7 mg of venom) and Mix protocol (MP; preimmunization 0.1-1.2 mg of crotalic PLA2, and then 4.5-8 mg of venom). Antibody titers were determined by ELISA, in blood plasma obtained from the marginal vein of the ear. The neutralizing ability of the different sera obtained by all protocols (HDS, LDS and MS) was tested against the most important pharmacological activities of whole venom: PLA2 activity, myotoxicity, thrombin like activity and lethality. MS showed the best neutralizing efficacy and at the same time, it was obtained by an immunization protocol that takes account of animal health care, since it requires low quantities of venoms in comparison to traditional protocols. PMID:25453603

  4. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system

    PubMed Central

    Vonk, Freek J.; Casewell, Nicholas R.; Henkel, Christiaan V.; Heimberg, Alysha M.; Jansen, Hans J.; McCleary, Ryan J. R.; Kerkkamp, Harald M. E.; Vos, Rutger A.; Guerreiro, Isabel; Calvete, Juan J.; Wüster, Wolfgang; Woods, Anthony E.; Logan, Jessica M.; Harrison, Robert A.; Castoe, Todd A.; de Koning, A. P. Jason; Pollock, David D.; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B.; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S.; Ribeiro, José M. C.; Arntzen, Jan W.; van den Thillart, Guido E. E. J. M.; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P.; Spaink, Herman P.; Duboule, Denis; McGlinn, Edwina; Kini, R. Manjunatha; Richardson, Michael K.

    2013-01-01

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection. PMID:24297900

  5. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system.

    PubMed

    Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Heimberg, Alysha M; Jansen, Hans J; McCleary, Ryan J R; Kerkkamp, Harald M E; Vos, Rutger A; Guerreiro, Isabel; Calvete, Juan J; Wüster, Wolfgang; Woods, Anthony E; Logan, Jessica M; Harrison, Robert A; Castoe, Todd A; de Koning, A P Jason; Pollock, David D; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S; Ribeiro, José M C; Arntzen, Jan W; van den Thillart, Guido E E J M; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P; Spaink, Herman P; Duboule, Denis; McGlinn, Edwina; Kini, R Manjunatha; Richardson, Michael K

    2013-12-17

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection. PMID:24297900

  6. Exploring the Potential of Venom from Nasonia vitripennis as Therapeutic Agent with High-Throughput Screening Tools

    PubMed Central

    Danneels, Ellen L.; Formesyn, Ellen M.; de Graaf, Dirk C.

    2015-01-01

    The venom from the ectoparasitoid wasp Nasonia vitripennis (Hymenoptera: Pteromalidae) contains at least 80 different proteins and possibly even more peptides or other small chemical compounds, demonstrating its appealing therapeutic application. To better understand the dynamics of the venom in mammalian cells, two high-throughput screening tools were performed. The venom induced pathways related to an early stress response and activated reporters that suggest the involvement of steroids. Whether these steroids reside from the venom itself or show an induced release/production caused by the venom, still remains unsolved. The proinflammatory cytokine IL-1β was found to be down-regulated after venom and LPS co-treatment, confirming the anti-inflammatory action of N. vitripennis venom. When analyzing the expression levels of the NF-κB target genes, potentially not only the canonical but also the alternative NF-κB pathway can be affected, possibly explaining some counterintuitive results. It is proposed that next to an NF-κB binding site, the promoter of the genes tested by the PCR array may also contain binding sites for other transcription factors, resulting in a complex puzzle to connect the induced target gene with its respective transcription factor. Interestingly, Nasonia venom altered the expression of some drug targets, presenting the venom with an exciting therapeutical potential. PMID:26046700

  7. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: A double-edged sword

    PubMed Central

    Chen, Jun; Lariviere, William R.

    2010-01-01

    Bee venom injection as a therapy, like many other complementary and alternative medicine approaches, has been used for thousands of years to attempt to alleviate a range of diseases including arthritis. More recently, additional theraupeutic goals have been added to the list of diseases making this a critical time to evaluate the evidence for the beneficial and adverse effects of bee venom injection. Although reports of pain reduction (analgesic and antinociceptive) and anti-inflammatory effects of bee venom injection are accumulating in the literature, it is common knowledge that bee venom stings are painful and produce inflammation. In addition, a significant number of studies have been performed in the past decade highlighting that injection of bee venom and components of bee venom produce significant signs of pain or nociception, inflammation and many effects at multiple levels of immediate, acute and prolonged pain processes. This report reviews the extensive new data regarding the deleterious effects of bee venom injection in people and animals, our current understanding of the responsible underlying mechanisms and critical venom components, and provides a critical evaluation of reports of the beneficial effects of bee venom injection in people and animals and the proposed underlying mechanisms. Although further studies are required to make firm conclusions, therapeutic bee venom injection may be beneficial for some patients, but may also be harmful. This report highlights key patterns of results, critical shortcomings, and essential areas requiring further study. PMID:20558236

  8. The Protective Effect of Bee Venom on Fibrosis Causing Inflammatory Diseases

    PubMed Central

    Lee, Woo-Ram; Pak, Sok Cheon; Park, Kwan-Kyu

    2015-01-01

    Bee venom therapy is a treatment modality that may be thousands of years old and involves the application of live bee stings to the patient’s skin or, in more recent years, the injection of bee venom into the skin with a hypodermic needle. Studies have proven the effectiveness of bee venom in treating pathological conditions such as arthritis, pain and cancerous tumors. However, there has not been sufficient review to fully elucidate the cellular mechanisms of the anti-inflammatory effects of bee venom and its components. In this respect, the present study reviews current understanding of the mechanisms of the anti-inflammatory properties of bee venom and its components in the treatment of liver fibrosis, atherosclerosis and skin disease. PMID:26580653

  9. Adrenergic and cholinergic activity contributes to the cardiovascular effects of lionfish (Pterois volitans) venom.

    PubMed

    Church, Jarrod E; Hodgson, Wayne C

    2002-06-01

    The aim of the present study was to further investigate the cardiovascular activity of Pterois volitans crude venom. Venom (0.6-18 microg protein/ml) produced dose- and endothelium-dependent relaxation in porcine coronary arteries that was potentiated by atropine (10nM), but significantly attenuated by the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine (NOLA; 0.1mM), by prior exposure of the tissue to stonefish antivenom (SFAV, 3 units/ml, 10 min), or by removal of extracellular Ca(2+). In rat paced left atria, venom (10 microg protein/ml) produced a decrease, followed by an increase, in contractile force. Atropine (0.5 microM) abolished the decrease in force and potentiated the increase. Propranolol (5 microM) did not affect the decrease in force but significantly attenuated the increase. In spontaneously beating right atria, venom (10 microg protein/ml) produced an increase in rate that was significantly attenuated by propranolol (5 microM). Prior incubation with SFAV (0.3 units/microg protein, 10 min) abolished both the inotropic and chronotropic responses to venom. In the anaesthetised rat, venom (100 micro protein/kg, i.v.) produced a pressor response, followed by a sustained depressor response. Atropine (1mg/kg, i.v.) potentiated the pressor response. The further addition of prazosin (50 microg/kg, i.v.) restored the original response to venom. Prior administration of SFAV (100 units/kg, i.v., 10 min) significantly attenuated the in vivo response to venom. It is concluded that P. volitans venom produces its cardiovascular effects primarily by acting on muscarinic cholinergic receptors and adrenoceptors. As SFAV neutralised many of the effects of P. volitans venom, we suggest that the two venoms share a similar component(s). PMID:12175616

  10. A catalog for transcripts in the venom gland of the Agkistrodon acutus: identification of the toxins potentially involved in coagulopathy.

    PubMed

    Qinghua, Liu; Xiaowei, Zhang; Wei, Yin; Chenji, Li; Yijun, Huang; Pengxin, Qiu; Xingwen, Su; Songnian, Hu; Guangmei, Yan

    2006-03-10

    Agkistrodon acutus is a special agkistrodon halys, only distributed in Southern China, with a few exceptions in Vietnam. It is a cherished element used in traditional Chinese medicine. In order to produce a global panorama of gene expression in the Agkistrodon acutus venom gland, a non-normalized cDNA library was constructed, and 8696 high quality 5' end expressed sequenced tags (ESTs) were sequenced and analyzed. The initial sequences were assembled into 2855 clusters. Of these clusters, only 45.60% clusters matched known sequence and 54.40% had no match to any known sequence in GenBank. Except for putative cellular proteins (1184 clusters), the remaining 118 clusters (40.16% of all ESTs) corresponded to sequences associated with diverse toxin function. According to expression abundance, the major toxin components were metalloproteinases (32.08%) and C-type lectin (5.22%), and other components including bradykinin-potentiating peptide (0.90%), serine proteases (0.51%), nucleotidase and nuclease (0.41%), phospholipase A2 (0.30%), disintegrin (0.05%), cytokine-like molecules (0.06%), and other proteins (0.63%). The majority of these components are thought to be responsible for coagulopathy after A. acutus bites. We have therefore generated a comprehensive catalog of the A. acutus venom gland described so far. Gene expression from the very specialized secretory tissue, especially for those involved in coagulopathy, can be surveyed and provide important information in finding novel toxins. PMID:16438937

  11. Accessing Novel Conoidean Venoms: Biodiverse Lumun-lumun Marine Communities, An Untapped Biological and Toxinological Resource

    PubMed Central

    Seronay, Romell A.; Fedosov, Alexander E.; Astilla, Mary Anne; Watkins, Maren; Saguil, Noel; Heralde, Francisco M.; Tagaro, Sheila; Poppe, Guido T.; Aliño, Porfirio M.; Oliverio, Marco; Kantor, Yuri I.; Concepcion, Gisela P.; Olivera, Baldomero M.

    2010-01-01

    Cone snail venoms have yielded pharmacologically-active natural products of exceptional scientific interest. However, cone snails are a small minority of venomous molluscan biodiversity, the vast majority being tiny venomous morphospecies in the family Turridae. A novel method called lumun-lumun opens access to these micromolluscs and their venoms. Old fishing nets are anchored to the sea bottom for a period of 1–6 months and marine biotas rich in small molluscs are established. In a single lumun-lumun community, we found a remarkable gastropod biodiversity (155 morphospecies). Venomous predators belonging to the superfamily Conoidea (36 morphospecies) were the largest group, the majority being micromolluscs in the family Turridae. We carried out an initial analysis of the most abundant of the turrid morphospecies recovered, Clathurella (Lienardia) cincta (Dunker, 1871). In contrast to all cDNA clones characterized from cone snail venom ducts, one of the C. cincta clones identified encoded two different peptide precursors presumably translated from a single mRNA. The prospect of easily accessing so many different morphospecies of venomous marine snails raises intriguing toxinological possibilities: the 36 conoidean morphospecies in this one net alone have the potential to yield thousands of novel pharmacologically-active compounds. PMID:20005243

  12. Peripheral and central effects of intracerebroventricular microinjection of Hottentotta gentili (Pallary, 1924) (Scorpiones, Buthidae) venom.

    PubMed

    El Hidan, Moulay Abdelmonaim; Touloun, Oulaid; El Hiba, Omar; Laadraoui, Jawad; Ferehan, Hind; Boumezzough, Ali

    2016-03-01

    Central effects of scorpion venom toxins have been neglected, due both to the common belief that scorpion venoms act by targeting peripheral organs and also to the misunderstanding that these peptides do not cross the brain-blood barrier (BBB). Determining whether scorpion neurotoxicity is restricted to peripheral actions or whether a central mechanism may be partly responsible for systemic manifestations could be crucial in clinical therapy trends. The present study therefore aims to assess histopathological damages in some organs (heart, kidney, liver, and lungs) and the related biochemical impairments, together with a neurobehavioral investigation following an intracerebroventricular (i.c.v) micro-injection of Hottentotta gentili (Scorpiones, Buthidae) venom (0.47 μg/kg). I.c.v. injection of venom produced focal fragmentation of myocardial fibers, while lungs showed rupture of the alveolar structure. Concurrently, there was a significant rise in the serum enzymes levels of ASAT, ALAT, CPK and LDH. Meanwhile, we observed behavioral alterations such as a hypoactivity, and in addition the venom seems to have a marked anxiogenic-like effect. The present investigation has brought new experimental evidence of a peripheral impact of central administration of H. gentili venom, such impact was manifested by physiological and behavioral disturbances, the last of these appearing to reflect profound neuro-modulatory action of H. gentili venom. PMID:26718260

  13. Three-component synthesis of neoglycopeptides using a Cu(II)-triggered aminolysis of peptide hydrazide resin and an azide-alkyne cycloaddition sequence.

    PubMed

    Ebran, Jean-Philippe; Dendane, Nabil; Melnyk, Oleg

    2011-08-19

    Copper(II)-induced oxidative aminolysis of hydrazides generates Cu(I), the catalyst of the azide-alkyne cycloaddition. This feature was exploited to design a novel solid phase detaching three-component reaction permitting the conversion of supported peptide hydrazides into 1,2,3-triazole linked C-