Science.gov

Sample records for peptide-1 functionalized peg

  1. PEG functionalized luminescent lipid particles for cellular imaging

    NASA Astrophysics Data System (ADS)

    Rana, Suman; Barick, K. C.; Shetake, Neena G.; Verma, Gunjan; Aswal, V. K.; Panicker, Lata; Pandey, B. N.; Hassan, P. A.

    2016-08-01

    We report here the synthesis, characterization and cellular uptake of luminescent micelle-like particles with phospholipid core and non-ionic PEG based surfactant polysorbate 80 shell. The adsorption of polysorbate 80 at the interface of lipid containing microemulsion droplets and its solidification upon removal of solvent leads to anchoring of PEG chain to the lipid particles. Hydrophobic partitioning of luminescent molecules, sodium 3-hydroxynaphthalene-2-carboxylic acid to the phospholipid core offers additional functionality to these particles. Thus, the cooperative assembly of lipid, non-ionic amphiphile and organic luminescent probe leads to the formation of multifunctional biocompatible particles which are useful for simultaneous imaging and therapy.

  2. High fat diet impairs the function of glucagon-like peptide-1 producing L-cells

    PubMed Central

    Richards, Paul; Pais, Ramona; Habib, Abdella M.; Brighton, Cheryl A.; Yeo, Giles S.H.; Reimann, Frank; Gribble, Fiona M.

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) acts as a satiety signal and enhances insulin release. This study examined how GLP-1 production from intestinal L-cells is modified by dietary changes. Methods Transgenic mouse models were utilized in which L-cells could be purified by cell specific expression of a yellow fluorescent protein, Venus. Mice were fed on chow or 60% high fat diet (HFD) for 2 or 16 weeks. L-cells were purified by flow cytometry and analysed by microarray and quantitative RT-PCR. Enteroendocrine cell populations were examined by FACS analysis, and GLP-1 secretion was assessed in primary intestinal cultures. Results Two weeks HFD reduced the numbers of GLP-1 positive cells in the colon, and of GIP positive cells in the small intestine. Purified small intestinal L-cells showed major shifts in their gene expression profiles. In mice on HFD for 16 weeks, significant reductions were observed in the expression of L-cell specific genes, including those encoding gut hormones (Gip, Cck, Sct, Nts), prohormone processing enzymes (Pcsk1, Cpe), granins (Chgb, Scg2), nutrient sensing machinery (Slc5a1, Slc15a1, Abcc8, Gpr120) and enteroendocrine-specific transcription factors (Etv1, Isl1, Mlxipl, Nkx2.2 and Rfx6). A corresponding reduction in the GLP-1 secretory responsiveness to nutrient stimuli was observed in primary small intestinal cultures. Conclusion Mice fed on HFD exhibited reduced expression in L-cells of many L-cell specific genes, suggesting an impairment of enteroendocrine cell function. Our results suggest that a western style diet may detrimentally affect the secretion of gut hormones and normal post-prandial signaling, which could impact on insulin secretion and satiety. PMID:26145551

  3. Quantitative analysis of PEG-functionalized colloidal gold nanoparticles using charged aerosol detection.

    PubMed

    Smith, Mackensie C; Crist, Rachael M; Clogston, Jeffrey D; McNeil, Scott E

    2015-05-01

    Surface characteristics of a nanoparticle, such as functionalization with polyethylene glycol (PEG), are critical to understand and achieve optimal biocompatibility. Routine physicochemical characterization such as UV-vis spectroscopy (for gold nanoparticles), dynamic light scattering, and zeta potential are commonly used to assess the presence of PEG. However, these techniques are merely qualitative and are not sensitive enough to distinguish differences in PEG quantity, density, or presentation. As an alternative, two methods are described here which allow for quantitative measurement of PEG on PEGylated gold nanoparticles. The first, a displacement method, utilizes dithiothreitol to displace PEG from the gold surface. The dithiothreitol-coated gold nanoparticles are separated from the mixture via centrifugation, and the excess dithiothreitol and dissociated PEG are separated through reversed-phase high-performance liquid chromatography (RP-HPLC). The second, a dissolution method, utilizes potassium cyanide to dissolve the gold nanoparticles and liberate PEG. Excess CN(-), Au(CN)2 (-), and free PEG are separated using RP-HPLC. In both techniques, the free PEG can be quantified against a standard curve using charged aerosol detection. The displacement and dissolution methods are validated here using 2-, 5-, 10-, and 20-kDa PEGylated 30-nm colloidal gold nanoparticles. Further value in these techniques is demonstrated not only by quantitating the total PEG fraction but also by being able to be adapted to quantitate the free unbound PEG and the bound PEG fractions. This is an important distinction, as differences in the bound and unbound PEG fractions can affect biocompatibility, which would not be detected in techniques that only quantitate the total PEG fraction. PMID:25749798

  4. Enhanced bioactivity of internally functionalized cationic dendrimers with PEG cores

    PubMed Central

    Albertazzi, Lorenzo; Mickler, Frauke M.; Pavan, Giovanni M.; Salomone, Fabrizio; Bardi, Giuseppe; Panniello, Mariangela; Amir, Elizabeth; Kang, Taegon; Killops, Kato L.; Bräuchle, Christoph; Amir, Roey J.; Hawker, Craig J.

    2012-01-01

    Hybrid dendritic-linear block copolymers based on a 4-arm polyethylene glycol (PEG) core were synthesized using an accelerated AB2/CD2 dendritic growth approach through orthogonal amine/epoxy and thiol-yne chemistries. The biological activity of these 4-arm and the corresponding 2-arm hybrid dendrimers revealed an enhanced, dendritic effect with an exponential increase in cell internalization concomitant with increasing amine end-groups and low cytotoxicity. Furthermore, the ability of these hybrid dendrimers to induce endosomal escape combined with their facile and efficient synthesis makes them attractive platforms for gene transfection. The 4-arm-based dendrimer showed significantly improved DNA binding and gene transfection capabilities in comparison with the 2-arm derivative. These results combined with the MD simulation indicate a significant effect of both the topology of the PEG core and the multivalency of these hybrid macromolecules, on their DNA binding and delivery capablities. PMID:23140570

  5. Improving function and survival of pancreatic islets by endogenous production of glucagon-like peptide 1 (GLP-1).

    PubMed

    Wideman, Rhonda D; Yu, Irene L Y; Webber, Travis D; Verchere, C Bruce; Johnson, James D; Cheung, Anthony T; Kieffer, Timothy J

    2006-09-01

    Glucagon-like peptide 1 (GLP-1) is a hormone that has received significant attention as a therapy for diabetes because of its ability to stimulate insulin biosynthesis and release and to promote growth and survival of insulin-producing beta cells. While GLP-1 is produced from the proglucagon precursor by means of prohormone convertase (PC) 1/3 activity in enteroendocrine L cells, the same precursor is differentially processed by PC2 in pancreatic islet alpha cells to release glucagon, leaving GLP-1 trapped within a larger fragment with no known function. We hypothesized that we could induce GLP-1 production directly within pancreatic islets by means of delivery of PC1/3 and, further, that this intervention would improve the viability and function of islets. Here, we show that adenovirus-mediated expression of PC1/3 in alpha cells increases islet GLP-1 secretion, resulting in improved glucose-stimulated insulin secretion and enhanced survival in response to cytokine treatment. PC1/3 expression in alpha cells also improved performance after islet transplantation in a mouse model of type 1 diabetes, possibly by enhancing nuclear Pdx1 and insulin content of islet beta cells. These results demonstrate a unique strategy for liberating GLP-1 from directly within the target organ and highlight the potential for up-regulating islet GLP-1 production as a means of treating diabetes. PMID:16938896

  6. Nanobody-functionalized PEG-b-PCL polymersomes and their targeting study.

    PubMed

    Zou, Tao; Dembele, Fatimata; Beugnet, Anne; Sengmanivong, Lucie; Trepout, Sylvain; Marco, Sergio; de Marco, Ario; Li, Min-Hui

    2015-11-20

    We prepared and characterized polymersomes functionalized with nanobodies (VHHs) on the basis of biocompatible, biodegradable and FDA-approved poly(ethylene glycol)-block-poly(ϵ-caprolactone) (PEG-b-PCL). Fluorescein isothiocyanate (FITC) and N-beta-maleimidopropyl-oxysuccinimide ester were allowed reacting with H2N-PEG-b-PCL to produce FITC and maleimide (Mal) functionalized copolymers, Mal-PEG-b-PCL and FITC-PEG-b-PCL. A mixture of MeO-PEG-b-PCL, Mal-PEG-b-PCL and FITC-PEG-b-PCL was used to prepare polymersomes by thin film hydration and nanoprecipitation methods. Morphological studies by cryogenic transmission electron microscopy (Cryo-TEM) showed that the nanoparticles exhibited predominantly vesicular structures (polymersomes). Their mean diameters measured by dynamic light scattering were around 150 nm and the zeta-potentials around -1 mV at pH 7.4. The nanoparticles were functionalized with either anti-HER2 (VHH1) or anti-GFP (VHH2) nanobodies using maleimide-cysteine chemistry. Their particle size and zeta-potential increased slightly after nanobody-functionalization. The specific binding of VHH-functionalized polymersomes and control nanoparticles towards HER2 positive breast cancer cells was analyzed by flow cytometry and confocal microscopy. The collected results represent the first report which experimentally demonstrates that VHH1-functionalized PEO-b-PCL polymersomes can target specifically breast cancer cells expressing HER2 receptors. The detailed morphological and cell-binding studies described herein pave the way for future in vivo studies to evaluate the feasibility to use such nanoparticles for targeted drug delivery. PMID:26433047

  7. REVIEW: Role of cyclic AMP signaling in the production and function of the incretin hormone glucagon-like peptide-1

    NASA Astrophysics Data System (ADS)

    Yu, Zhiwen; Jin, Tianru

    2008-01-01

    Pancreatic cells express the proglucagon gene (gcg) and thereby produce the peptide hormone glucagon, which stimulates hepatic glucose production and thereby increases blood glucose levels. The same gcg gene is also expressed in the intestinal endocrine L cells and certain neural cells in the brain. In the gut, gcg expression leads to the production of glucagon-like peptide-1 (GLP-1). This incretin hormone stimulates insulin secretion when blood glucose level is high. In addition, GLP-1 stimulates pancreatic cell proliferation, inhibits cell apoptosis, and has been utilized in the trans-differentiation of insulin producing cells. Today, a long-term effective GLP-1 receptor agonist has been developed as a drug in treating diabetes and potentially other metabolic disorders. Extensive investigations have shown that the expression of gcg and the production of GLP-1 can be activated by the elevation of the second messenger cyclic AMP (cAMP). Recent studies suggest that in addition to protein kinase A (PKA), exchange protein activated by cAMP (Epac), another effector of cAMP signaling, and the crosstalk between PKA and Wnt signaling pathway, are also involved in cAMP-stimulated gcg expression and GLP-1 production. Furthermore, functions of GLP-1 in pancreatic cells are mainly mediated by cAMP-PKA, cAMP-Epac and Wnt signaling pathways as well.

  8. Obesity alters molecular and functional cardiac responses to ischemia/reperfusion and glucagon-like peptide-1 receptor agonism.

    PubMed

    Sassoon, Daniel J; Goodwill, Adam G; Noblet, Jillian N; Conteh, Abass M; Herring, B Paul; McClintick, Jeanette N; Tune, Johnathan D; Mather, Kieren J

    2016-07-01

    This study tested the hypothesis that obesity alters the cardiac response to ischemia/reperfusion and/or glucagon like peptide-1 (GLP-1) receptor activation, and that these differences are associated with alterations in the obese cardiac proteome and microRNA (miRNA) transcriptome. Ossabaw swine were fed normal chow or obesogenic diet for 6 months. Cardiac function was assessed at baseline, during a 30-minutes coronary occlusion, and during 2 hours of reperfusion in anesthetized swine treated with saline or exendin-4 for 24 hours. Cardiac biopsies were obtained from normal and ischemia/reperfusion territories. Fat-fed animals were heavier, and exhibited hyperinsulinemia, hyperglycemia, and hypertriglyceridemia. Plasma troponin-I concentration (index of myocardial injury) was increased following ischemia/reperfusion and decreased by exendin-4 treatment in both groups. Ischemia/reperfusion produced reductions in systolic pressure and stroke volume in lean swine. These indices were higher in obese hearts at baseline and relatively maintained throughout ischemia/reperfusion. Exendin-4 administration increased systolic pressure in lean swine but did not affect the blood pressure in obese swine. End-diastolic volume was reduced by exendin-4 following ischemia/reperfusion in obese swine. These divergent physiologic responses were associated with obesity-related differences in proteins related to myocardial structure/function (e.g. titin) and calcium handling (e.g. SERCA2a, histidine-rich Ca(2+) binding protein). Alterations in expression of cardiac miRs in obese hearts included miR-15, miR-27, miR-130, miR-181, and let-7. Taken together, these observations validate this discovery approach and reveal novel associations that suggest previously undiscovered mechanisms contributing to the effects of obesity on the heart and contributing to the actions of GLP-1 following ischemia/reperfusion. PMID:27234258

  9. Bio-functionalized star PEG-coated PVDF surfaces for cytocompatibility-improved implant components.

    PubMed

    Heuts, Jean; Salber, Jochen; Goldyn, Alexandra M; Janser, Romy; Möller, Martin; Klee, Doris

    2010-03-15

    Unmodified and GRGDS peptide-modified six arm PEG star based hydrogels (Star PEG) have been applied as a multifunctional, easy to handle coating system for textile polyvinylidene fluoride (PVDF) structures, which prevent unspecific protein and cell adsorption and control-specific cell adhesion. The reactive isocyanate-terminated Star PEG has been successfully applied to ammonia-plasma treated two- and three-dimensional PVDF surfaces. Easy modification of the surface hydrogel by mixing in of GRGDS peptide during the coating step or subsequent coupling of GRGDS was determined by TOF-SIMS. Unmodified and GRGDS-functionalized hydrogel surfaces show distinct protein repellency, as demonstrated by fluorescence microscopy after incubation with fluorescent labeled proteins and Surface MALDI-TOF-Mass Spectroscopy. Cell culture experiments with primary human dermal fibroblasts, primary fetal rat fibroblasts, and human osteoblasts on GRGDS and/or KRSR Star PEG-modified two- and three-dimensional substrates show advancement in cell adhesion and proliferation compared with untreated PVDF surfaces, whereas pure star PEG-coated surfaces show no cell adhesion. The combination of protein and cell repellent properties with specific biofunctionality and easy application of the coatings will enable their application for 3D-scaffolds. PMID:19431207

  10. Chondrocyte spheroids on microfabricated PEG hydrogel surface and their noninvasive functional monitoring

    NASA Astrophysics Data System (ADS)

    Otsuka, Hidenori; Nagamura, Masako; Kaneko, Akie; Kutsuzawa, Koichi; Sakata, Toshiya; Miyahara, Yuji

    2012-12-01

    A two-dimensional microarray of 10 000 (100 × 100) chondrocyte spheroids was constructed with a 100 μm spacing on a micropatterned gold electrode that was coated with poly(ethylene glycol) (PEG) hydrogels. The PEGylated surface as a cytophobic region was regulated by controlling the gel structure through photolithography. In this way, a PEG hydrogel was modulated enough to inhibit outgrowth of chondrocytes from a cell adhering region in the horizontal direction, which is critical for inducing formation of three-dimensional chondrocyte aggregations (spheroids) within 24 h. We further report noninvasive monitoring of the cellular functional change at the cell membrane using a chondrocyte-based field effect transistor. This measurement is based on detection of extracellular potential change induced as a result of the interaction between extracellular matrix protein secreted from spheroid and substrate at the cell membrane. The interface potential change at the cell membrane/gate interface can be monitored during the differentiation of spheroids without any labeling materials. Our measurements of the time evolution of the interface potential provide important information for understanding the uptake kinetics for cellular differentiation.

  11. Towards potential nanoparticle contrast agents: Synthesis of new functionalized PEG bisphosphonates

    PubMed Central

    Kachbi-Khelfallah, Souad; Monteil, Maelle; Cortes-Clerget, Margery; Migianu-Griffoni, Evelyne; Pirat, Jean-Luc; Gager, Olivier; Deschamp, Julia

    2016-01-01

    Summary The use of nanotechnologies for biomedical applications took a real development during these last years. To allow an effective targeting for biomedical imaging applications, the adsorption of plasmatic proteins on the surface of nanoparticles must be prevented to reduce the hepatic capture and increase the plasmatic time life. In biologic media, metal oxide nanoparticles are not stable and must be coated by biocompatible organic ligands. The use of phosphonate ligands to modify the nanoparticle surface drew a lot of attention in the last years for the design of highly functional hybrid materials. Here, we report a methodology to synthesize bisphosphonates having functionalized PEG side chains with different lengths. The key step is a procedure developed in our laboratory to introduce the bisphosphonate from acyl chloride and tris(trimethylsilyl)phosphite in one step. PMID:27559386

  12. The properties of mesoporous silica nanoparticles functionalized with different PEG-chain length via the disulfide bond linker and drug release in glutathione medium.

    PubMed

    Xie, Zhifei; Gong, Huameng; Liu, Mingxing; Zhu, Hongda; Sun, Honghao

    2016-01-01

    In this paper, a novel drug-loaded material (MSNs-SS-PEG) was obtained by grafting the thiol-linked methoxy polyethylene glycol (MeOPEG-SH) onto the thiol-functionalized mesoporous silica nanoparticles (MSNs-SH) via the disulfide bond linker. In our designed experiment, three different chain lengths of PEG (PEG(1000), PEG(5000), and PEG(1000)-PEG(5000)) were used. The silica materials were characterized by Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering, field emission scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption measurements, and X-ray diffraction. The morphology of the MSNs-SS-PEG was spherical with an average diameter of about 150 nm. Due to the covalent modification of hydrophilic MeOPEG, the MSNs-SS-PEG was coated by a thin polymer shell, showing stable and inerratic MCM-41 type mesoporous structure as well as high specific surface areas and large pore volumes. Moreover, the releases of doxorubicin hydrochloride (DOX) from these materials at 10 mM of glutathione were investigated. The PEG functionalization could effectively cap drugs in the mesoporous channels. The release of DOX from the MSNs-SS-PEG(n) revealed redox-responsive characteristic. The obtained results showed that the MSNs-SS-PEG might be promising drug delivery carrier materials, which could play an important role in the development of drug delivery. PMID:26540096

  13. PEG-PDLLA Micelle Treatment Improves Axonal Function of the Corpus Callosum following Traumatic Brain Injury

    PubMed Central

    Ping, Xingjie; Jiang, Kewen; Lee, Seung-Young; Cheng, Ji-Xing

    2014-01-01

    Abstract The initial pathological changes of diffuse axonal injury following traumatic brain injury (TBI) include membrane disruption and loss of ionic homeostasis, which further lead to dysfunction of axonal conduction and axon disconnection. Resealing the axolemma is therefore a potential therapeutic strategy for the early treatment of TBI. Monomethoxy poly (ethylene glycol)-poly (D, L–lactic acid) di-block copolymer micelles (mPEG-PDLLA) have been shown to restore depressed compound action potentials (CAPs) of spinal axons and promote functional recovery after spinal cord injury. Here, we evaluate the effect of the micelles on repairing the injured cortical axons following TBI. Adult mice subjected to controlled cortical impact (CCI) were treated with intravenous injection of the micelles at 0 h or 4 h after injury. Evoked CAPs were recorded from the corpus callosum of coronal cortical slices at 2 days after injury. The CCI caused significant decreases in the amplitudes of two CAP peaks that were respectively generated by the faster myelinated axons and slower unmyelinated axons. Micelle treatment at both 0 h and 4 h after CCI resulted in significant increases in both CAP peak amplitudes. Injection of fluorescent dye-labeled micelles revealed high fluorescent staining in cortical gray and white matters underneath the impact site. Labeling membrane-perforated neurons by injecting a membrane impermeable dye Texas Red-labeled dextran into lateral ventricles at 2 h post-CCI revealed that immediate micelle injection after CCI did not reduce the number of dye-stained cortical neurons and dentate granule cells of the hippocampus, indicating its ineffectiveness in repairing plasma membrane of neuronal somata. We conclude that intravenous administration of mPEG-PDLLA micelles immediately or at 4 h after TBI allows brain penetration via the compromised blood brain–barrier, and thereby improves the function of both myelinated and unmyelinated axons of the

  14. PEG-IFN Alpha but Not Ribavirin Alters NK Cell Phenotype and Function in Patients with Chronic Hepatitis C

    PubMed Central

    Markova, Antoaneta A.; Mihm, Ulrike; Schlaphoff, Verena; Lunemann, Sebastian; Filmann, Natalie; Bremer, Birgit; Berg, Thomas; Sarrazin, Christoph; Zeuzem, Stefan; Manns, Michael P.; Cornberg, Markus; Herrmann, Eva; Wedemeyer, Heiner

    2014-01-01

    Background Ribavirin (RBV) remains part of several interferon-free treatment strategies even though its mechanisms of action are still not fully understood. One hypothesis is that RBV increases responsiveness to type I interferons. Pegylated Interferon alpha (PEG-IFNa) has recently been shown to alter natural killer (NK) cell function possibly contributing to control of hepatitis C virus (HCV) infection. However, the effects of ribavirin alone or in combination with IFNa on NK cells are unknown. Methods Extensive ex vivo phenotyping and functional analysis of NK cells from hepatitis C patients was performed during antiviral therapy. Patients were treated for 6 weeks with RBV monotherapy (n = 11), placebo (n = 13) or PEG-IFNa-2a alone (n = 6) followed by PEG-IFNa/RBV combination therapy. The effects of RBV and PEG-IFNa-2a on NK cells were also studied in vitro after co-culture with K562 or Huh7.5 cells. Results Ribavirin monotherapy had no obvious effects on NK cell phenotype or function, neither ex vivo in patients nor in vitro. In contrast, PEG-IFNa-2a therapy was associated with an increase of CD56bright cells and distinct changes in expression profiles leading to an activated NK cell phenotype, increased functionality and decline of terminally differentiated NK cells. Ribavirin combination therapy reduced some of the IFN effects. An activated NK cell phenotype during therapy was inversely correlated with HCV viral load. Conclusions PEG-IFNa activates NK cells possibly contributing to virological responses independently of RBV. The role of NK cells during future IFN-free combination therapies including RBV remains to be determined. PMID:24751903

  15. Effects of Roux-en-Y gastric bypass on energy and glucose homeostasis are preserved in two mouse models of functional glucagon-like peptide-1 deficiency.

    PubMed

    Mokadem, Mohamad; Zechner, Juliet F; Margolskee, Robert F; Drucker, Daniel J; Aguirre, Vincent

    2014-04-01

    Glucagon-like peptide-1 (GLP-1) secretion is greatly enhanced after Roux-en-Y gastric bypass (RYGB). While intact GLP-1exerts its metabolic effects via the classical GLP-1 receptor (GLP-1R), proteolytic processing of circulating GLP-1 yields metabolites such as GLP-1(9-36)amide/GLP-1(28-36)amide, that exert similar effects independent of the classical GLP-1R. We investigated the hypothesis that GLP-1, acting via these metabolites or through its known receptor, is required for the beneficial effects of RYGB using two models of functional GLP-1 deficiency - α-gustducin-deficient (α-Gust (-/-)) mice, which exhibit attenuated nutrient-stimulated GLP-1 secretion, and GLP-1R-deficient mice. We show that the effect of RYGB to enhance glucose-stimulated GLP-1 secretion was greatly attenuated in α-Gust (-/-) mice. In both genetic models, RYGB reduced body weight and improved glucose homeostasis to levels observed in lean control mice. Therefore, GLP-1, acting through its classical GLP-1R or its bioactive metabolites, does not seem to be involved in the effects of RYGB on body weight and glucose homeostasis. PMID:24634822

  16. New insight into the mechanisms underlying the function of the incretin hormone glucagon-like peptide-1 in pancreatic β-cells

    PubMed Central

    Xiong, Xiaoquan; Shao, Weijuan; Jin, Tianru

    2012-01-01

    During the past two decades, the exploration of function of two incretin hormones, namely glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), has led to the development of two categories of novel therapeutic agents for diabetes and its complications, known as GLP-1 receptor (GLP-1R) agonists and DPP-IV inhibitors. Mechanisms underlying the function of GLP-1, however, still need to be further explored. GLP-1 not only functions as an incretin hormone in stimulating insulin secretion in response to nutritional, hormonal and neuronal stimulations, but also acts as an “insulin-like” factor in β-cell and extra-pancreatic organs. In addition to these insulinotropic and insulinomimetic effects, GLP-1 was shown to exert its protective effect in β-cell by repressing the expression of TxNIP, a mediator of glucolipotoxicity. A number of recent studies have shown that the Wnt signaling pathway effector, the bipartite transcription factor β-catenin/TCF, controls not only the production of GLP-1, but also the function of GLP-1. Furthermore, previously assumed “degradation” products of GLP-1(7–36)amide, including GLP-1(9–36)amide and GLP-1(28–36)amide, have been shown to exert beneficial effect in pancreas and extra-pancreatic tissues or cell lineages. Here we summarized our current knowledge on the metabolic, proliferative and protective effects of GLP-1(7–36)amide and its cleavage fragments, mainly focusing on pancreatic β-cells and the involvement of the Wnt signaling pathway effector β-catenin. PMID:23314611

  17. Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure

    PubMed Central

    2010-01-01

    Background Accumulating evidence suggests glucagon-like peptide-1 (GLP-1) exerts cardioprotective effects in animal models of myocardial infarction (MI). We hypothesized that chronic treatment with GLP-1 or the exenatide analog AC3174 would improve cardiac function, cardiac remodeling, insulin sensitivity, and exercise capacity (EC) in rats with MI-induced chronic heart failure (CHF) caused by coronary artery ligation. Methods Two weeks post-MI, male Sprague-Dawley rats were treated with GLP-1 (2.5 or 25 pmol/kg/min), AC3174 (1.7 or 5 pmol/kg/min) or vehicle via subcutaneous infusion for 11 weeks. Cardiac function and morphology were assessed by echocardiography during treatment. Metabolic, hemodynamic, exercise-capacity, and body composition measurements were made at study end. Results Compared with vehicle-treated rats with CHF, GLP-1 or AC3174 significantly improved cardiac function, including left ventricular (LV) ejection fraction, and end diastolic pressure. Cardiac dimensions also improved as evidenced by reduced LV end diastolic and systolic volumes and reduced left atrial volume. Vehicle-treated CHF rats exhibited fasting hyperglycemia and hyperinsulinemia. In contrast, GLP-1 or AC3174 normalized fasting plasma insulin and glucose levels. GLP-1 or AC3174 also significantly reduced body fat and fluid mass and improved exercise capacity and respiratory efficiency. Four of 16 vehicle control CHF rats died during the study compared with 1 of 44 rats treated with GLP-1 or AC3174. The cellular mechanism by which GLP-1 or AC3174 exert cardioprotective effects appears unrelated to changes in GLUT1 or GLUT4 translocation or expression. Conclusions Chronic treatment with either GLP-1 or AC3174 showed promising cardioprotective effects in a rat model of CHF. Hence, GLP-1 receptor agonists may represent a novel approach for the treatment of patients with CHF or cardiovascular disease associated with type 2 diabetes. PMID:21080957

  18. Non-Covalently Functionalized of Single-Walled Carbon Nanotubes by DSPE-PEG-PEI for SiRNA Delivery.

    PubMed

    Siu, King Sun; Zhang, Yujuan; Zheng, Xiufen; Koropatnick, James; Min, Wei-Ping

    2016-01-01

    The expression of a gene can be specifically downregulated by small interfering RNA (SiRNA). Modified carbon nanotubes (CNT) can be used to protect SiRNA and facilitate its entry into cells. Regardless of that, simple and efficient functionalization of CNT is lacking. Effective SiRNA delivery can be carried out using non-covalently functionalized CNT, where non-covalent (versus covalent) functionalization is simpler and more expeditious. Non-covalently functionalized single walled carbon nanotubes (SWCNT) that include a lipopolymer are described here. Polyethylenimine (PEI) conjugated to 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG) was generated and the products used to disperse CNT to form DSPE-PEG-PEI/CNT (DGI/C), an agent capable of facilitating SiRNA delivery to cells in vitro and organs and cells in vivo. PMID:26472449

  19. Progesterone Receptor Membrane Component 1 Is a Functional Part of the Glucagon-like Peptide-1 (GLP-1) Receptor Complex in Pancreatic β Cells*

    PubMed Central

    Zhang, Ming; Robitaille, Mélanie; Showalter, Aaron D.; Huang, Xinyi; Liu, Ying; Bhattacharjee, Alpana; Willard, Francis S.; Han, Junfeng; Froese, Sean; Wei, Li; Gaisano, Herbert Y.; Angers, Stéphane; Sloop, Kyle W.; Dai, Feihan F.; Wheeler, Michael B.

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that regulates glucose homeostasis. Because of their direct stimulation of insulin secretion from pancreatic β cells, GLP-1 receptor (GLP-1R) agonists are now important therapeutic options for the treatment of type 2 diabetes. To better understand the mechanisms that control the insulinotropic actions of GLP-1, affinity purification and mass spectrometry (AP-MS) were employed to uncover potential proteins that functionally interact with the GLP-1R. AP-MS performed on Chinese hamster ovary cells or MIN6 β cells, both expressing the human GLP-1R, revealed 99 proteins potentially associated with the GLP-1R. Three novel GLP-1R interactors (PGRMC1, Rab5b, and Rab5c) were further validated through co-immunoprecipitation/immunoblotting, fluorescence resonance energy transfer, and immunofluorescence. Functional studies revealed that overexpression of PGRMC1, a novel cell surface receptor that associated with liganded GLP-1R, enhanced GLP-1-induced insulin secretion (GIIS) with the most robust effect. Knockdown of PGRMC1 in β cells decreased GIIS, indicative of positive interaction with GLP-1R. To gain insight mechanistically, we demonstrated that the cell surface PGRMC1 ligand P4-BSA increased GIIS, whereas its antagonist AG-205 decreased GIIS. It was then found that PGRMC1 increased GLP-1-induced cAMP accumulation. PGRMC1 activation and GIIS induced by P4-BSA could be blocked by inhibition of adenylyl cyclase/EPAC signaling or the EGF receptor–PI3K signal transduction pathway. These data reveal a dual mechanism for PGRMC1-increased GIIS mediated through cAMP and EGF receptor signaling. In conclusion, we identified several novel GLP-1R interacting proteins. PGRMC1 expressed on the cell surface of β cells was shown to interact with the activated GLP-1R to enhance the insulinotropic actions of GLP-1. PMID:25044020

  20. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery.

    PubMed

    Guo, Jianwei; Gao, Xiaoling; Su, Lina; Xia, Huimin; Gu, Guangzhi; Pang, Zhiqing; Jiang, Xinguo; Yao, Lei; Chen, Jun; Chen, Hongzhuan

    2011-11-01

    Targeted delivery of therapeutic nanoparticles in a disease-specific manner represents a potentially powerful technology especially when treating infiltrative brain tumors such as gliomas. We developed a nanoparticulate drug delivery system decorated with AS1411 (Ap), a DNA aptamer specifically binding to nucleolin which was highly expressed in the plasma membrane of both cancer cells and endothelial cells in angiogenic blood vessels, as the targeting ligand to facilitate anti-glioma delivery of paclitaxel (PTX). Ap was conjugated to the surface of PEG-PLGA nanoparticles (NP) via an EDC/NHS technique. With the conjugation confirmed by Urea PAGE and XPS, the resulting Ap-PTX-NP was uniformly round with particle size at 156.0 ± 54.8 nm and zeta potential at -32.93 ± 3.1 mV. Ap-nucleolin interaction significantly enhanced cellular association of nanoparticles in C6 glioma cells, and increased the cytotoxicity of its payload. Prolonged circulation and enhanced PTX accumulation at the tumor site was achieved for Ap-PTX-NP, which eventually obtained significantly higher tumor inhibition on mice bearing C6 glioma xenografts and prolonged animal survival on rats bearing intracranial C6 gliomas when compared with PTX-NP and Taxol(®). The results of this contribution demonstrated the potential utility of AS1411-functionalized nanoparticles for a therapeutic application in the treatment of gliomas. PMID:21788069

  1. Functionalization of Cellulose Nanocrystals with PEG-Metal-Chelating Diblock Copolymers via Controlled Conjugation in Aqueous Medium

    NASA Astrophysics Data System (ADS)

    Guo, Melinda

    The surface of cellulose nanocrystals (CNCs) was successfully functionalized with metal chelating diblock copolymers via HyNic-4FB conjugation. Two types of PEG-metal-chelating block polymers with hydrazinonicotinate acetone hydrazine (HyNic) end groups were synthesized: mPEG-PGlu(DTPA) 18-HyNic and mPEG-PGlu(DTPA)25-HyNic. These two polymers both had a methoxy PEG (M ˜ 2000 Da) block that differed in the mean degree of polymerization of the metal-chelating block. They were characterized by 1H NMR spectroscopy and gel-permeation chromatography (GPC). 4-Formylbenzamide (4FB) groups were introduced onto the surface of CNCs and quantified through their reaction with 2-hydrazinopyridine. The polymers were grafted onto the surface of CNCs via bis-aryl hydrazone bond formation, and the kinetics of this reaction was explored by UV/Vis spectroscopy. The CNCs were also labeled with rhodamine and Alexa FluorRTM 488 dyes. Students in our collaborator's group in Pharmacy are examining applications of these materials as radiotherapeutic agents for cancer treatment.

  2. Pronunciation Pegs

    ERIC Educational Resources Information Center

    Samuel, Carolyn

    2010-01-01

    An ESL instructor describes her experience of using pronunciation pegs, a method to foster the self-monitoring and self-correction of pronunciation mistakes with a view to helping university-level students deal with the ongoing challenge of producing target-like pronunciation. The appeal of pegs to students led the instructor to reflect on what…

  3. Targeting hepatocellular carcinoma with aptamer-functionalized PLGA/PLA-PEG nanoparticles

    NASA Astrophysics Data System (ADS)

    Weigum, Shannon E.; Sutton, Melissa; Barnes, Eugenia; Miller, Sarah; Betancourt, Tania

    2014-08-01

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide, particularly in regions where chronic Hepatitis B and C infections are common. Nanoparticle assemblies that incorporate high-affinity aptamers which specifically bind malignant hepatocellular carcinoma cells could be useful for targeted drug delivery or enhancing contrast with existing ablation therapies. The in vitro interactions of a tumor-specific aptamer, TLS11a, were characterized in a hepatoma cell line via live-cell fluorescence imaging, SDS-PAGE and Western Blotting techniques. Cell surface binding of the aptamer-AlexaFluor®546 conjugate was found to occur within 20 minutes of initial exposure, followed by internalization and localization to late endosomes or lysosomes using a pH-sensitive LysoSensor™ Green dye and confocal microscopy. Aptamer-functionalized polymer nanoparticles containing poly(lactic-co-glycolic acid) (PLGA) and poly(lactide)-b-poly(ethylene glycol) (PLA-PEG) were then prepared by nanoprecipitation and passively loaded with the chemotherapeutic agent, doxorubicin, yielding spherical nanoparticles approximately 50 nm in diameter. Targeted drug delivery and cytotoxicity was assessed using live/dead fluorescent dyes and a MTT colorimetric viability assay with elevated levels of cell death found in cultures treated with either the aptamer-coated and uncoated polymer nanoparticles. Identification and characterization of the cell surface protein epitope(s) recognized by the TLS11a aptamer are ongoing along with nanoparticle optimization, but these preliminary studies support continued investigation of this aptamer and functionalized nanoparticle conjugates for targeted labeling and drug delivery within malignant hepatocellular carcinomas.

  4. HIV-1 and Human PEG10 Frameshift Elements Are Functionally Distinct and Distinguished by Novel Small Molecule Modulators

    PubMed Central

    Sleebs, Brad E.; Lackovic, Kurt; Parisot, John P.; Moss, Rebecca M.; Crowe-McAuliffe, Caillan; Mathew, Suneeth F.; Edgar, Christina D.; Kleffmann, Torsten; Tate, Warren P.

    2015-01-01

    Frameshifting during translation of viral or in rare cases cellular mRNA results in the synthesis of proteins from two overlapping reading frames within the same mRNA. In HIV-1 the protease, reverse transcriptase, and integrase enzymes are in a second reading frame relative to the structural group-specific antigen (gag), and their synthesis is dependent upon frameshifting. This ensures that a strictly regulated ratio of structural proteins and enzymes, which is critical for HIV-1 replication and viral infectivity, is maintained during protein synthesis. The frameshift element in HIV-1 RNA is an attractive target for the development of a new class of anti HIV-1 drugs. However, a number of examples are now emerging of human genes using −1 frameshifting, such as PEG10 and CCR5. In this study we have compared the HIV-1 and PEG10 frameshift elements and shown they have distinct functional characteristics. Frameshifting occurs at several points within each element. Moreover, frameshift modulators that were isolated by high-throughput screening of a library of 114,000 lead-like compounds behaved differently with the PEG10 frameshift element. The most effective compounds affecting the HIV-1 element enhanced frameshifting by 2.5-fold at 10 μM in two different frameshift reporter assay systems. HIV-1 protease:gag protein ratio was affected by a similar amount in a specific assay of virally-infected cultured cell, but the modulation of frameshifting of the first-iteration compounds was not sufficient to show significant effects on viral infectivity. Importantly, two compounds did not affect frameshifting with the human PEG10 element, while one modestly inhibited rather than enhanced frameshifting at the human element. These studies indicate that frameshift elements have unique characteristics that may allow targeting of HIV-1 and of other viruses specifically for development of antiviral therapeutic molecules without effect on human genes like PEG10 that use the same

  5. Microelectrode Arrays and the Use of PEG-Functionalized Diblock Copolymer Coatings

    PubMed Central

    Uppal, Sakshi; Graaf, Matthew D.; Moeller, Kevin D.

    2014-01-01

    PEG-modified diblock copolymer surfaces have been examined for their compatibility with microelectrode array based analytical methods. The use of PEG-modified polymer surfaces on the arrays was initially problematic because the redox couples used in the experiments were adsorbed by the polymer. This led the current measured by cyclic voltammetry for the redox couple to be unstable and increase with time. However, two key findings allow the experiments to be successful. First, after multiple cyclic voltammograms the current associated with the redox couple does stabilize so that a good baseline current can be established. Second, the rate at which the current stabilizes is consistent every time a particular coated array is used. Hence, multiple analytical experiments can be conducted on an array coated with a PEG-modified diblock copolymer and the data obtained is comparable as long as the data for each experiment is collected at a consistent time point. PMID:25587425

  6. PEG-mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and function in vivo.

    PubMed

    Sun, Conroy; Du, Kim; Fang, Chen; Bhattarai, Narayan; Veiseh, Omid; Kievit, Forrest; Stephen, Zachary; Lee, Donghoon; Ellenbogen, Richard G; Ratner, Buddy; Zhang, Miqin

    2010-04-27

    Multifunctional superparamagnetic nanoparticles have been developed for a wide range of applications in nanomedicine, such as serving as tumor-targeted drug carriers and molecular imaging agents. To function in vivo, the development of these novel materials must overcome several challenging requirements including biocompatibility, stability in physiological solutions, nontoxicity, and the ability to traverse biological barriers. Here we report a PEG-mediated synthesis process to produce well-dispersed, ultrafine, and highly stable iron oxide nanoparticles for in vivo applications. Utilizing a biocompatible PEG coating bearing amine functional groups, the produced nanoparticles serve as an effective platform with the ability to incorporate a variety of targeting, therapeutic, or imaging ligands. In this study, we demonstrated tumor-specific accumulation of these nanoparticles through both magnetic resonance and optical imaging after conjugation with chlorotoxin, a peptide with high affinity toward tumors of the neuroectodermal origin, and Cy5.5, a near-infrared fluorescent dye. Furthermore, we performed preliminary biodistribution and toxicity assessments of these nanoparticles in wild-type mice through histological analysis of clearance organs and hematology assay, and the results demonstrated the relative biocompatibility of these nanoparticles. PMID:20232826

  7. Nontoxic impact of PEG-coated gold nanospheres on functional pulmonary surfactant-secreting alveolar type II cells.

    PubMed

    Bouzas, Virginia; Haller, Thomas; Hobi, Nina; Felder, Edward; Pastoriza-Santos, Isabel; Pérez-Gil, Jesús

    2014-12-01

    The outstanding properties of gold nanoparticles (NPs) make them very attractive for biomedical applications. In particular, the inhalation route has gained considerable interest as an innovative strategy for diagnosis and treatment of pulmonary diseases. It is, therefore, important to scrutinise the potentially deleterious or side effects of NPs on lung epithelium. The present study investigates, for the first time, the impact of polyethylene glycol (PEG)-coated NPs on freshly purified primary cultures of rat alveolar type II (ATII) cells. These cells play a central role in the respiratory function of the lungs. They are responsible for synthesizing and secreting pulmonary surfactant (PS), which is required to stabilise the respiratory surface during breathing dynamics. Cytotoxicity and cellular uptake of NPs was evaluated by analysing morphology, viability and exocytotic activity of ATII cells (PS secretion). The impact of ATII cells' exposure to NPs was studied in a wide range of gold concentration with particles sizes of 15 and 100 nm. The results show that PEG-coated NPs are very modestly internalised by ATII cells and it neither leads to detectable morphological changes nor to decreased cell viability nor to alterations in basic functional parameters such as PS secretion, even on exposure to high gold concentration (~0.2 mM) during relatively long periods of time (24-48 h). PMID:23914786

  8. Cytotoxicity, intracellular localization and exocytosis of citrate capped and PEG functionalized gold nanoparticles in human hepatocyte and kidney cells.

    PubMed

    Tlotleng, Nonhlanhla; Vetten, Melissa A; Keter, Frankline K; Skepu, Amanda; Tshikhudo, Robert; Gulumian, Mary

    2016-08-01

    Surface-modified gold nanoparticles (AuNPs) are nanomaterials that hold promise in drug delivery applications. In this study, the cytotoxicity, uptake, intracellular localization, and the exocytosis of citrate-stabilized (Cit-AuNP) and polyethylene glycol (PEG)-modified gold nanoparticles with the carboxyl (COOH) terminal functional group were assessed in human embryonic kidney (HEK 293) and the human caucasian hepatocytes carcinoma (Hep G2) cell systems, representing two major accumulation sites for AuNPs. The zeta (ζ)-potential measurements confirmed the negative surface charge of the AuNPs in water and in cell growth medium. The transmission electron microscopy confirmed the size and morphology of the AuNPs. Both types of AuNPs were shown to induce cytotoxic effects in cells. The Hep G2 cells were more sensitive cell type, with the COOH-PEG-AuNPs inducing the highest toxicity at higher concentrations. Dark field microscopy and TEM images revealed that the AuNPs were internalized in cells, mostly as agglomerates. TEM micrographs further revealed that the AuNPs were confined as agglomerates inside vesicle-like compartments, likely to be endosomal and lysosomal structures as well as in the cytosol, mostly as individual particles. The AuNPs were shown to remain in cellular compartments for up to 3 weeks, but thereafter, clearance of the gold nanoparticles from the cells by exocytosis was evident. The results presented in this study may therefore give an indication on the fate of AuNPs on long-term exposure to cells and may also assist in safety evaluation of AuNPs. PMID:27184667

  9. Functionalization of the PEG Corona of Nanoparticles by Clip Photochemistry in Water: Application to the Grafting of RGD Ligands on PEGylated USPIO Imaging Agent.

    PubMed

    Pourcelle, Vincent; Laurent, Sophie; Welle, Alexandre; Vriamont, Nicolas; Stanicki, Dimitri; Vander Elst, Luce; Muller, Robert N; Marchand-Brynaert, Jacqueline

    2015-05-20

    The fast development of nanomedicines requires more and more reliable chemical tools in order to accurately design materials and control the surface properties of the nano-objects used in biomedical applications. In this study we describe a smooth and simple photografting technique, i.e., the clip photochemistry, that allows the introduction of molecules of interest in inert polymers or on stealth nanoparticles directly in aqueous solution. First we developed the methodology on polyethylene glycol (PEG) and looked for critical parameters of the process (irradiation times, concentrations, washings) by using several molecular probes and adapted analytical techniques ((19)F qNMR, EA, LSC). We found that the clip photochemistry in water is a robust and efficient method to functionalize PEG. Second we applied it on PEGylated USPIO (USPIO-PEG) magnetic resonance imaging agent and succeeded in introducing RGD peptide and homemade peptidomimetics on their PEG segments. The magnetic abilities of the conjugated nanoparticles were unchanged by the derivatization process as evidenced by their relaxometric properties and their NMRD profile. When tested on Jurkat lymphocyte T Cells, which express αvβ3 integrins, the USPIO conjugated with RGD ligands leads to an increase of the transverse relaxation rate (R2) by a factor 10 to 14 as compared to USPIO-PEG. Consequently, it makes them good candidates for targeted imaging technology in cancer therapy. PMID:25853330

  10. [Degradable performance and bio-mineralization function of PLA-PEG-PLA/PLA tissue engineering scaffold in vitro and in vivo].

    PubMed

    Ge, Jianhua; Wang, Yingjun; Min, Shaoxiong

    2010-10-01

    The degradable performance and bio-mineralization function of PLA-PEG-PLA/PLA tissue engineering scaffolds in vitro and in vivo were systematically studied. The X-ray diffraction and Fourier transform infrared spectra showed that there was the deposition of bone-like carbonate hydroxyapatite on the surface of scaffolds. We found that the weight of scaffolds did not always decrease with the prolongation of time in vitro. At the same time, we found that after the PLA-PEG-PLA/PLA tissue engineering scaffolds were embedded in skulls of rhesus monkeys, the new bone area reached 75% at the 12th week. Histological observation showed that the new bones were rebuilt and knitted bones were formed at the 12th week. These findings meant that the PLA-PEG-PLA/PLA tissue engineering scaffolds were potential in clinical use. PMID:21089673

  11. Nanotoxic profiling of novel iron oxide nanoparticles functionalized with perchloric acid and SiPEG as a radiographic contrast medium.

    PubMed

    Mohamed, Muhamad Idham; Mohammad, Mohd Khairul Amran; Abdul Razak, Hairil Rashmizal; Abdul Razak, Khairunisak; Saad, Wan Mazlina Md

    2015-01-01

    Emerging syntheses and findings of new metallic nanoparticles (MNPs) have become an important aspect in various fields including diagnostic imaging. To date, iodine has been utilized as a radiographic contrast medium. However, the raise concern of iodine threats on iodine-intolerance patient has led to search of new contrast media with lower toxic level. In this animal modeling study, 14 nm iron oxide nanoparticles (IONPs) with silane-polyethylene glycol (SiPEG) and perchloric acid have been assessed for toxicity level as compared to conventional iodine. The nanotoxicity of IONPs was evaluated in liver biochemistry, reactive oxygen species production (ROS), lipid peroxidation mechanism, and ultrastructural evaluation using transmission electron microscope (TEM). The hematological analysis and liver function test (LFT) revealed that most of the liver enzymes were significantly higher in iodine-administered group as compared to those in normal and IONPs groups (P < 0.05). ROS production assay and lipid peroxidation indicator, malondialdehyde (MDA), also showed significant reductions in comparison with iodine group (P < 0.05). TEM evaluation yielded the aberration of nucleus structure of iodine-administered group as compared to those in control and IONPs groups. This study has demonstrated the less toxic properties of IONPs and it may postulate that IONPs are safe to be applied as radiographic contrast medium. PMID:26075217

  12. Nanotoxic Profiling of Novel Iron Oxide Nanoparticles Functionalized with Perchloric Acid and SiPEG as a Radiographic Contrast Medium

    PubMed Central

    Mohamed, Muhamad Idham; Mohammad, Mohd Khairul Amran; Abdul Razak, Hairil Rashmizal; Abdul Razak, Khairunisak; Md Saad, Wan Mazlina

    2015-01-01

    Emerging syntheses and findings of new metallic nanoparticles (MNPs) have become an important aspect in various fields including diagnostic imaging. To date, iodine has been utilized as a radiographic contrast medium. However, the raise concern of iodine threats on iodine-intolerance patient has led to search of new contrast media with lower toxic level. In this animal modeling study, 14 nm iron oxide nanoparticles (IONPs) with silane-polyethylene glycol (SiPEG) and perchloric acid have been assessed for toxicity level as compared to conventional iodine. The nanotoxicity of IONPs was evaluated in liver biochemistry, reactive oxygen species production (ROS), lipid peroxidation mechanism, and ultrastructural evaluation using transmission electron microscope (TEM). The hematological analysis and liver function test (LFT) revealed that most of the liver enzymes were significantly higher in iodine-administered group as compared to those in normal and IONPs groups (P < 0.05). ROS production assay and lipid peroxidation indicator, malondialdehyde (MDA), also showed significant reductions in comparison with iodine group (P < 0.05). TEM evaluation yielded the aberration of nucleus structure of iodine-administered group as compared to those in control and IONPs groups. This study has demonstrated the less toxic properties of IONPs and it may postulate that IONPs are safe to be applied as radiographic contrast medium. PMID:26075217

  13. PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation

    PubMed Central

    Prencipe, Giuseppe; Tabakman, Scott M.; Welsher, Kevin; Liu, Zhuang; Goodwin, Andrew P.; Zhang, Li; Henry, Joy; Dai, Hongjie

    2010-01-01

    Nanomaterials have been actively pursued for biological and medical applications in recent years. Here, we report the synthesis of several new poly(ethylene glycol) grafted branched polymers for functionalization of various nanomaterials including carbon nanotubes, gold nanoparticles (NPs), and gold nanorods (NRs), affording high aqueous solubility and stability for these materials. We synthesize different surfactant polymers based upon poly(γ-glutamic acid) (γPGA) and poly(maleic anhydride-alt-1-octadecene) (PMHC18). We use the abundant free carboxylic acid groups of γPGA for attaching lipophilic species such as pyrene or phospholipid, which bind to nanomaterials via robust physisorption. Additionally, the remaining carboxylic acids on γPGA or the amine-reactive anhydrides of PMHC18 are then PEGylated, providing extended hydrophilic groups, affording polymeric amphiphiles. We show that single-walled carbon nanotubes (SWNTs), Au NPs, and NRs functionalized by the polymers exhibit high stability in aqueous solutions at different pH values, at elevated temperatures, and in serum. Morever, the polymer-coated SWNTs exhibit remarkably long blood circulation (t1/2 = 22.1 h) upon intravenous injection into mice, far exceeding the previous record of 5.4 h. The ultralong blood circulation time suggests greatly delayed clearance of nanomaterials by the reticuloendothelial system (RES) of mice, a highly desired property for in vivo applications of nanomaterials, including imaging and drug delivery. PMID:19173646

  14. Modulation of Huh7.5 Spheroid Formation and Functionality Using Modified PEG-Based Hydrogels of Different Stiffness

    PubMed Central

    Lee, Bae Hoon; Kim, Myung Hee; Lee, Jae Ho; Seliktar, Dror; Cho, Nam-Joon; Tan, Lay Poh

    2015-01-01

    Physical cues, such as cell microenvironment stiffness, are known to be important factors in modulating cellular behaviors such as differentiation, viability, and proliferation. Apart from being able to trigger these effects, mechanical stiffness tuning is a very convenient approach that could be implemented readily into smart scaffold designs. In this study, fibrinogen-modified poly(ethylene glycol)-diacrylate (PEG-DA) based hydrogels with tunable mechanical properties were synthesized and applied to control the spheroid formation and liver-like function of encapsulated Huh7.5 cells in an engineered, three-dimensional liver tissue model. By controlling hydrogel stiffness (0.1–6 kPa) as a cue for mechanotransduction representing different stiffness of a normal liver and a diseased cirrhotic liver, spheroids ranging from 50 to 200 μm were formed over a three week time-span. Hydrogels with better compliance (i.e. lower stiffness) promoted formation of larger spheroids. The highest rates of cell proliferation, albumin secretion, and CYP450 expression were all observed for spheroids in less stiff hydrogels like a normal liver in a healthy state. We also identified that the hydrogel modification by incorporation of PEGylated-fibrinogen within the hydrogel matrix enhanced cell survival and functionality possibly owing to more binding of autocrine fibronectin. Taken together, our findings establish guidelines to control the formation of Huh7.5 cell spheroids in modified PEGDA based hydrogels. These spheroids may serve as models for applications such as screening of pharmacological drug candidates. PMID:25692976

  15. Glucagon-Like Peptide-1 Gene Therapy

    PubMed Central

    Rowzee, Anne M.; Cawley, Niamh X.; Chiorini, John A.; Di Pasquale, Giovanni

    2011-01-01

    Glucagon-like peptide 1 (GLP-1) is a small peptide component of the prohormone, proglucagon, that is produced in the gut. Exendin-4, a GLP-1 receptor agonist originally isolated from the saliva of H. suspectum or Gila monster, is a peptide that shares sequence and functional homology with GLP-1. Both peptides have been demonstrated to stimulate insulin secretion, inhibit glucagon secretion, promote satiety and slow gastric emptying. As such, GLP-1 and Exendin-4 have become attractive pharmaceutical targets as an adjunctive therapy for individuals with type II diabetes mellitus, with several products currently available clinically. Herein we summarize the cell biology leading to GLP-1 production and secretion from intestinal L-cells and the endocrine functions of this peptide and Exendin-4 in humans. Additionally, gene therapeutic applications of GLP-1 and Exendin-4 are discussed with a focus on recent work using the salivary gland as a gene therapy target organ for the treatment of diabetes mellitus. PMID:21747830

  16. Long-term insulinotropic activity of glucagon-like peptide-1/polymer conjugate on islet microcapsules.

    PubMed

    Kim, Sungwon; Bae, You Han

    2004-01-01

    The biohybrid artificial pancreas (BAP), a promising therapy for type 1 diabetes, faces several obstacles such as the need for a large implantation volume of encapsulated islets because of low functionality. To address such problems, in this study we examined long-term insulinotropic activity of glucagon-like peptide-1 (GLP-1)/polymer conjugate [VAPG: poly(N-vinylpyrrolidone-co-acrylic acid-g-PEG) (VAP)-GLP-1] as well as GLP-1/Zn(2+) crystal by coencapsulation with islets. Microcapsules with VAPG or crystal produced round-shaped beads whereas free GLP-1 showed poor capsule morphology. A perfusion experiment suggested that VAPG showed higher bioactivity than did microcapsules with GLP-1/Zn(2+). In long-term culture (200 mg of glucose/dL [G]), VAPG also enhanced insulinotropic activity over 5 weeks compared with the crystal form of GLP-1. However, maintenance of the high bioactivity of VAPG suddenly declined after week 5, possibly because of degradation, metabolism, and overstimulation. Basal (50 G) and glucose-stimulated (300 G) levels of insulin secretion confirmed a see-saw pattern in which the VAPG gradually decreased insulin secretion from encapsulated islets and then fell below the insulin level secreted from microcapsules containing GLP-1/Zn(2+) crystal. Viability of the microcapsulated islets of each group was not significantly different. Consequently, the coencapsulation of VAPG or GLP-1/Zn(2+) crystal can be a potential approach to reducing BAP volume with further optimization of activity duration. PMID:15684669

  17. Functional coupling of Cys-226 and Cys-296 in the glucagon-like peptide-1 (GLP-1) receptor indicates a disulfide bond that is close to the activation pocket.

    PubMed

    Mann, Rosalind J; Al-Sabah, Suleiman; de Maturana, Rakel López; Sinfield, John K; Donnelly, Dan

    2010-12-01

    G protein-coupled receptors (GPCRs) are seven transmembrane α-helical (7TM) integral membrane proteins that play a central role in both cell signaling and in the action of many pharmaceuticals. The crystal structures of several Family A GPCRs have shown the presence of a disulfide bond linking transmembrane helix 3 (TM3) to the second extracellular loop (ECL2), enabling ECL2 to stabilize and contribute to the ligand binding pocket. Family B GPCRs share no significant sequence identity with those in Family A but nevertheless share two conserved cysteines in topologically equivalent positions. Since there are no available crystal structures for the 7TM domain of any Family B GPCR, we used mutagenesis alongside pharmacological analysis to investigate the role of ECL2 and the conserved cysteine residues. We mutated Cys-226, at the extracellular end of TM3 of the glucagon-like peptide-1 (GLP-1) receptor, to alanine and observed a 38-fold reduction in GLP-1 potency. Interestingly, this potency loss was restored by the additional substitution of Cys-296 in ECL2 to alanine. Alongside the complete conservation of these cysteine residues in Family B GPCRs, this functional coupling suggested the presence of a disulfide bond. Further mutagenesis demonstrated that the low potency observed at the C226A mutant, compared with the C226A-C296A double mutant, was the result of the bulky nature of the released Cys-296 side chain. Since this suggested that ECL2 was in close proximity to the agonist activation pocket, an alanine scan of ECL2 was carried out which confirmed the important role of this loop in agonist-induced receptor activation. PMID:20869417

  18. Targeted modulation of cell differentiation in distinct regions of the gastrointestinal tract via oral administration of differently PEG-PEI functionalized mesoporous silica nanoparticles

    PubMed Central

    Desai, Diti; Prabhakar, Neeraj; Mamaeva, Veronika; Karaman, Didem Şen; Lähdeniemi, Iris AK; Sahlgren, Cecilia; Rosenholm, Jessica M; Toivola, Diana M

    2016-01-01

    Targeted delivery of drugs is required to efficiently treat intestinal diseases such as colon cancer and inflammation. Nanoparticles could overcome challenges in oral administration caused by drug degradation at low pH and poor permeability through mucus layers, and offer targeted delivery to diseased cells in order to avoid adverse effects. Here, we demonstrate that functionalization of mesoporous silica nanoparticles (MSNs) by polymeric surface grafts facilitates transport through the mucosal barrier and enhances cellular internalization. MSNs functionalized with poly(ethylene glycol) (PEG), poly(ethylene imine) (PEI), and the targeting ligand folic acid in different combinations are internalized by epithelial cells in vitro and in vivo after oral gavage. Functionalized MSNs loaded with γ-secretase inhibitors of the Notch pathway, a key regulator of intestinal progenitor cells, colon cancer, and inflammation, demonstrated enhanced intestinal goblet cell differentiation as compared to free drug. Drug-loaded MSNs thus remained intact in vivo, further confirmed by exposure to simulated gastric and intestinal fluids in vitro. Drug targeting and efficacy in different parts of the intestine could be tuned by MSN surface modifications, with PEI coating exhibiting higher affinity for the small intestine and PEI–PEG coating for the colon. The data highlight the potential of nanomedicines for targeted delivery to distinct regions of the tissue for strict therapeutic control. PMID:26855569

  19. Effect of PEG pairing on the efficiency of cancer-targeting liposomes.

    PubMed

    Saw, Phei Er; Park, Jinho; Lee, Eunbeol; Ahn, Sukyung; Lee, Jinju; Kim, Hyungjun; Kim, Jinjoo; Choi, Minsuk; Farokhzad, Omid C; Jon, Sangyong

    2015-01-01

    Standardized poly(ethylene glycol)-modified (PEGylated) liposomes, which have been widely used in research as well as in pre-clinical and clinical studies, are typically constructed using PEG with a molecular weight of 2000 Da (PEG(2000)). Targeting ligands are also generally conjugated using various functionalized PEG(2000)). However, although standardized protocols have routinely used PEG(2000), it is not because this molecular weight PEG has been optimized to enhance tumor uptake of nanoparticles. Herein, we investigated the effect of various PEG lipid pairings--that is, PEG lipids for targeting-ligand conjugation and PEG lipids for achieving 'stealth' function--on in vitro cancer cell- and in vivo tumor-targeting efficacy. A class of high-affinity peptides (aptides) specific to extra domain B of fibronectin (APT(EDB)) was used as a representative model for a cancer-targeting ligand. We synthesized a set of aptide-conjugated PEGylated phospholipids (APT(EDB)‑PEG(2000))‑DSPE and APT(EDB)‑PEG(2000))‑DSPE) and then paired them with methoxy-capped PEGylated phospholipids with diverse molecular weights (PEG(2000)), PEG(2000)), PEG(2000)), and PEG(2000))) to construct various aptide-conjugated PEGylated liposomes. The liposomes with APT(EDB)‑PEG(2000))/PEG(2000)) and APT(EDB)‑PEG(2000))/PEG(2000)) pairings had the highest uptake in EDB-positive cancer cells. Furthermore, in a U87MG xenograft model, APT(EDB)‑PEG(2000))/PEG(2000)) liposomes retarded tumor growth to the greatest extent, followed closely by APT(EDB)‑PEG(2000))/PEG(2000)) liposomes. Among the PEGylated liposomes tested, pairs in which the methoxy-capped PEG length was about half that of the targeting ligand-displaying PEG exhibited the best performance, suggesting that PEG pairing is a key consideration in the design of drug-delivery vehicles. PMID:25897339

  20. A facile synthesis of luminescent YVO4:Eu3+ hollow microspheres in virtue of template function of the SDS-PEG soft clusters

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Yan, Yinglin; Hojamberdiev, Mirabbos; Ruan, Xiaoguang; Cai, Anjiang; Xu, Yunhua

    2012-08-01

    Hollow europium-doped yttrium orthovanadate (YVO4:Eu3+) microspheres were fabricated via a sodium dodecyl sulfate (SDS)-polyethylene glycol (PEG)-assisted hydrothermal technique. The as-synthesized hollow YVO4:Eu3+ microspheres were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL). The obtained results showed that the morphology and size of the hollow microspheres have a strong dependence on the hydrothermal reaction time of the YVO4:Eu3+ powders. It is believed that the SDS-PEG clusters perform a function of dual soft-template that results in a unique template-induced secondary assembly in the one-pot synthesis of hollow YVO4:Eu3+ microspheres. The photoluminescence measurement revealed that the YVO4:Eu3+ powders with a spherical hollow shape have better red luminescence compared to the YVO4:Eu3+ solid microspheres. As a result, the controlled synthesis of hollow YVO4:Eu3+ microspheres not only has a great theoretical significance in studying the three-dimensional control and selective synthesis of inorganic materials but also benefits the potential applications based on hollow YVO4:Eu3+ microspheres owing to reducing the usage of expensive rare-earth elements.

  1. PEG Functionalization of Whispering Gallery Mode Optical Microresonator Biosensors to Minimize Non-Specific Adsorption during Targeted, Label-Free Sensing.

    PubMed

    Wang, Fanyongjing; Anderson, Mark; Bernards, Matthew T; Hunt, Heather K

    2015-01-01

    Whispering Gallery Mode (WGM) optical microresonator biosensors are a powerful tool for targeted detection of analytes at extremely low concentrations. However, in complex environments, non-specific adsorption can significantly reduce their signal to noise ratio, limiting their accuracy. To overcome this, poly(ethylene glycol) (PEG) can be employed in conjunction with appropriate recognition elements to create a nonfouling surface capable of detecting targeted analytes. This paper investigates a general route for the addition of nonfouling elements to WGM optical biosensors to reduce non-specific adsorption, while also retaining high sensitivity. We use the avidin-biotin analyte-recognition element system, in conjunction with PEG nonfouling elements, as a proof-of-concept, and explore the extent of non-specific adsorption of lysozyme and fibrinogen at multiple concentrations, as well as the ability to detect avidin in a concentration-dependent fashion. Ellipsometry, contact angle measurement, fluorescence microscopy, and optical resonator characterization methods were used to study non-specific adsorption, the quality of the functionalized surface, and the biosensor's performance. Using a recognition element ratio to nonfouling element ratio of 1:1, we showed that non-specific adsorption could be significantly reduced over the controls, and that high sensitivity could be maintained. Due to the frequent use of biotin-avidin-biotin sandwich complexes in functionalizing sensor surfaces with biotin-labeled recognition elements, this chemistry could provide a common basis for creating a non-fouling surface capable of targeted detection. This should improve the ability of WGM optical biosensors to operate in complex environments, extending their application towards real-world detection. PMID:26213937

  2. PEG Functionalization of Whispering Gallery Mode Optical Microresonator Biosensors to Minimize Non-Specific Adsorption during Targeted, Label-Free Sensing

    PubMed Central

    Wang, Fanyongjing; Anderson, Mark; Bernards, Matthew T.; Hunt, Heather K.

    2015-01-01

    Whispering Gallery Mode (WGM) optical microresonator biosensors are a powerful tool for targeted detection of analytes at extremely low concentrations. However, in complex environments, non-specific adsorption can significantly reduce their signal to noise ratio, limiting their accuracy. To overcome this, poly(ethylene glycol) (PEG) can be employed in conjunction with appropriate recognition elements to create a nonfouling surface capable of detecting targeted analytes. This paper investigates a general route for the addition of nonfouling elements to WGM optical biosensors to reduce non-specific adsorption, while also retaining high sensitivity. We use the avidin-biotin analyte-recognition element system, in conjunction with PEG nonfouling elements, as a proof-of-concept, and explore the extent of non-specific adsorption of lysozyme and fibrinogen at multiple concentrations, as well as the ability to detect avidin in a concentration-dependent fashion. Ellipsometry, contact angle measurement, fluorescence microscopy, and optical resonator characterization methods were used to study non-specific adsorption, the quality of the functionalized surface, and the biosensor’s performance. Using a recognition element ratio to nonfouling element ratio of 1:1, we showed that non-specific adsorption could be significantly reduced over the controls, and that high sensitivity could be maintained. Due to the frequent use of biotin-avidin-biotin sandwich complexes in functionalizing sensor surfaces with biotin-labeled recognition elements, this chemistry could provide a common basis for creating a non-fouling surface capable of targeted detection. This should improve the ability of WGM optical biosensors to operate in complex environments, extending their application towards real-world detection. PMID:26213937

  3. PEG tube insertion -- discharge

    MedlinePlus

    ... Search Search MedlinePlus GO GO About MedlinePlus Site ... To use the sharing features on this page, please enable JavaScript. A PEG (percutaneous endoscopic gastrostomy) feeding tube insertion is the placement of ...

  4. Final report on the safety assessment of PEG-25 propylene glycol stearate, PEG-75 propylene glycol stearate, PEG-120 propylene glycol stearate, PEG-10 propylene glycol, PEG-8 propylene glycol cocoate, and PEG-55 propylene glycol oleate.

    PubMed

    Johnson, W

    2001-01-01

    The ingredients considered in this safety assessment are polyethylene glycol ethers of either propylene glycol itself, propylene glycol stearate, propylene glycol oleate, or propylene glycol cocoate. They function in cosmetic formulations as surfactant--cleansing agents; surfactant-solubilizing agents; surfactant--emulsifying agents; skin conditioning agents--humectant; skin-conditioning agents--emollient; and solvents. Those in current use are used in only a small number of cosmetic formulations. Some are not currently used. Polyethylene Glycol (PEG) Propylene Glycol Cocoates and PEG Propylene Glycol Oleates are produced by the esterification of polyoxyalkyl alcohols with lauric acid and oleic acid, respectively. Although there is no information available on the method of manufacture of the other polymers, information was available describing impurities, including ethylene oxide (maximum 1 ppm), 1,4-dioxane (maximum 5 ppm), polycyclic aromatic compounds (maximum 1 ppm), and heavy metals-lead, iron, cobalt, nickel, cadmium, and arsenic included (maximum 10 ppm combined). In an acute oral toxicity study, PEG-25 Propylene Glycol Stearate was not toxic. An antiperspirant product containing 2.0% PEG-25 Propylene Glycol Stearate was nonirritating to mildly irritating to the eyes of rabbits. This product was also practically nonirritating to the skin of rabbits in single-insult occlusive patch tests. In a guinea pig sensitization test, PEG-25 Propylene Glycol Stearate was classified as nonallergenic at challenge concentrations of 25% and 50% in petrolatum. PEG-25 Propylene Glycol Stearate and PEG-55 Propylene Glycol Oleate were negative in clinical patch tests. Based on the available data, it was concluded that these ingredients are safe as used (concentrations no greater than 10%) in cosmetic formulations. Based on evidence of sensitization and nephrotoxicity in burn patients treated with a PEG-based antimicrobial preparation, the ingredients included in this review

  5. Safety Evaluation of Polyethylene Glycol (PEG) Compounds for Cosmetic Use

    PubMed Central

    Shin, Chan Young; Kim, Kyu-Bong

    2015-01-01

    Polyethylene glycols (PEGs) are products of condensed ethylene oxide and water that can have various derivatives and functions. Since many PEG types are hydrophilic, they are favorably used as penetration enhancers, especially in topical dermatological preparations. PEGs, together with their typically nonionic derivatives, are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners. The compounds studied in this review include PEG/PPG-17/6 copolymer, PEG-20 glyceryl triisostearate, PEG-40 hydrogenated castor oil, and PEG-60 hydrogenated castor oil. Overall, much of the data available in this review are on PEGylated oils (PEG-40 and PEG-60 hydrogenated castor oils), which were recommended as safe for use in cosmetics up to 100% concentration. Currently, PEG-20 glyceryl triisostearate and PEGylated oils are considered safe for cosmetic use according to the results of relevant studies. Additionally, PEG/PPG-17/6 copolymer should be further studied to ensure its safety as a cosmetic ingredient. PMID:26191379

  6. Hand Function in Children with an Upper Brachial Plexus Birth Injury: Results of the Nine-Hole Peg Test

    ERIC Educational Resources Information Center

    Immerman, Igor; Alfonso, Daniel T.; Ramos, Lorna E.; Grossman, Leslie A.; Alfonso, Israel; Ditaranto, Patricia; Grossman, John A. I.

    2012-01-01

    Aim: The aim of this study was to evaluate hand function in children with Erb upper brachial plexus palsy. Method: Hand function was evaluated in 25 children (eight males; 17 females) with a diagnosed upper (C5/C6) brachial plexus birth injury. Of these children, 22 had undergone primary nerve reconstruction and 13 of the 25 had undergone…

  7. Tumor-Homing and Penetrating Peptide-Functionalized Photosensitizer-Conjugated PEG-PLA Nanoparticles for Chemo-Photodynamic Combination Therapy of Drug-Resistant Cancer.

    PubMed

    Feng, Xingye; Jiang, Di; Kang, Ting; Yao, Jianhui; Jing, Yixian; Jiang, Tianze; Feng, Jingxian; Zhu, Qianqian; Song, Qingxiang; Dong, Nan; Gao, Xiaoling; Chen, Jun

    2016-07-20

    The combination of photodynamic therapy (PDT) and chemotherapy holds great potential in combating drug-resistant cancers. However, the major challenge that lies ahead is how to achieve high coloading capacity for both photosensitizer and chemo-drugs and how to gain efficient delivery of drugs to the drug-resistant tumors. In this study, we prepared a nanovehicle for codelivery of photosensitizer (pyropheophorbide-a, PPa) and chemo-drugs (paclitaxel, PTX) based on the synthesis of PPa-conjugated amphiphilic copolymer PPa-PLA-PEG-PLA-PPa. The obtained nanoparticles (PP NP) exhibited a satisfactory high drug-loading capacity for both drugs. To achieve effective tumor-targeting therapy, the surface of PP NP was decorated with a tumor-homing and penetrating peptide F3. In vitro cellular experiments showed that F3-functionalized PP NP (F3-PP NP) exhibited higher cellular association than PP NP and resulted in the strongest antiproliferation effect. In addition, compared with the unmodified nanoparticles, F3-PP NP exhibited a more preferential enrichment at the tumor site. Pharmacodynamics evaluation in vivo demonstrated that a longer survival time was achieved by the tumor-bearing mice treated with PP NP (+laser) than those treated with chemotherapy only or PDT only. Such antitumor efficacy of combination therapy was further improved following the F3 peptide functionalization. Collectively, these results suggested that targeted combination therapy may pave a promising way for the therapy of drug-resistant tumor. PMID:27332148

  8. Agarose functionalization: Synthesis of PEG-agarose amino acid nano-conjugate - its structural ramifications and interactions with BSA in a varying pH regime.

    PubMed

    Chudasama, Nishith A; Prasad, Kamalesh; Siddhanta, Arup Kumar

    2016-10-20

    In a rapid one-step method protein-mimicking large agarose amino acid framework (AAE; GPC 156.7kDa) was conjugated with polyethylene glycol (PEG 9kDa) affording nano-sized PEGylated amphoteric agarose (PEG-AAE; <10nm; DLS) containing amino, carboxyl and ester groups [overall degree of substitution (DS) 0.91]. The PEG groups were at the residual free carboxylic acid groups of succinate half-ester moiety at C-6 positions of the 1, 3 β-d-galactopyranose moieties of AAE. This new nano-sized PEG-AAE performed like a giant protein conjugate (GPC 331.2kDa) and exhibited pH-responsive interconversion between the triple helix and single-stranded random structures (optical rotatory dispersion) presenting a mixed solubility pattern like random coil (soluble), helical (soluble) and aggregate (precipitation) formations. Circular dichroism studies showed its pH-dependent complexation and decomplexation with bovine serum albumin (BSA). Such pH-responsive PEG-conjugate may be of pronounced therapeutic potential in the area of pharmacology as well as in sensing applications. PMID:27474620

  9. Functionalized thermoresponsive micelles self-assembled from biotin-PEG-b-P(NIPAAm-co-HMAAm)-b-PMMA for tumor cell target.

    PubMed

    Cheng, Cheng; Wei, Hua; Zhu, Jing-Ling; Chang, Cong; Cheng, Han; Li, Cao; Cheng, Si-Xue; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2008-06-01

    Novel micelles, comprising hydrophilic PEG shells, hydrophobic PMMA cores, and thermosensitive P(NIPAAm-co-HMAAm) segments were self-assembled from the biotin-PEG-b-P(NIPAAm-co-HMAAm)-b-PMMA triblock copolymer. The thermosensitive micelles exhibited superior stability and showed thermotriggered drug release behavior upon temperature alterations. The fluorescence spectroscopy and confocal microscopy studies confirmed that the self-assembled biotinylated micelles can be specifically and efficiently bonded to cancer cells with the administration of biotin-transferrin, suggesting that the multifunctional micelles have great potential as drug carriers for tumor targeting chemotherapy. PMID:18476730

  10. Alternative promoters of Peg3 with maternal specificity

    PubMed Central

    Perera, Bambarendage P. U.; Kim, Joomyeong

    2016-01-01

    Peg3 (paternally expressed gene 3) is an imprinted gene localized within an evolutionarily conserved 500-kb domain in human chromosome 19q13.4 and mouse proximal chromosome 7. In the current study, we have identified three alternative promoters for mouse Peg3 and one alternative promoter for human PEG3. These alternative promoters are localized within the 200-kb upstream region of human and mouse PEG3, which is well conserved and thus predicted to harbor several cis-regulatory elements for the PEG3 domain. In the mouse, two of these alternative promoters drive maternal-specific expression of Peg3 specifically in the hypothalamus of the adult brain, while the remaining third promoter drives bi-allelic expression of Peg3 with a paternal bias only in the neonatal-stage brain. In human, an alternative transcript is also detected at relatively very low levels in adult brain and placenta. Overall, the identification of alternative promoters in both mouse and human models suggests that these alternative promoters may be functionally selected features for the PEG3 imprinted domain during mammalian evolution. PMID:27075691

  11. Alternative promoters of Peg3 with maternal specificity.

    PubMed

    Perera, Bambarendage P U; Kim, Joomyeong

    2016-01-01

    Peg3 (paternally expressed gene 3) is an imprinted gene localized within an evolutionarily conserved 500-kb domain in human chromosome 19q13.4 and mouse proximal chromosome 7. In the current study, we have identified three alternative promoters for mouse Peg3 and one alternative promoter for human PEG3. These alternative promoters are localized within the 200-kb upstream region of human and mouse PEG3, which is well conserved and thus predicted to harbor several cis-regulatory elements for the PEG3 domain. In the mouse, two of these alternative promoters drive maternal-specific expression of Peg3 specifically in the hypothalamus of the adult brain, while the remaining third promoter drives bi-allelic expression of Peg3 with a paternal bias only in the neonatal-stage brain. In human, an alternative transcript is also detected at relatively very low levels in adult brain and placenta. Overall, the identification of alternative promoters in both mouse and human models suggests that these alternative promoters may be functionally selected features for the PEG3 imprinted domain during mammalian evolution. PMID:27075691

  12. The Cardiovascular Biology of Glucagon-like Peptide-1.

    PubMed

    Drucker, Daniel J

    2016-07-12

    Glucagon-like peptide-1, produced predominantly in enteroendocrine cells, controls glucose metabolism and energy homeostasis through regulation of islet hormone secretion, gastrointestinal motility, and food intake, enabling development of GLP-1 receptor (GLP-1R) agonists for the treatment of diabetes and obesity. GLP-1 also acts on the immune system to suppress inflammation, and GLP-1R signaling in multiple tissues impacts cardiovascular function in health and disease. Here we review how GLP-1 and clinically approved GLP-1R agonists engage mechanisms that influence the risk of developing cardiovascular disease. We discuss how GLP-1R agonists modify inflammation, cardiovascular physiology, and pathophysiology in normal and diabetic animals through direct and indirect mechanisms and review human studies illustrating mechanisms linking GLP-1R signaling to modification of the cardiovascular complications of diabetes. The risks and benefits of GLP-1R agonists are updated in light of recent data suggesting that GLP-1R agonists favorably modify outcomes in diabetic subjects at high risk for cardiovascular events. PMID:27345422

  13. Highly emissive PEG-encapsulated conjugated polymer nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Yuqiong; Liu, Jie; Liu, Bin; Tomczak, Nikodem

    2012-08-01

    A novel bioimaging probe based on a conjugated polymer, poly(9,9-dihexylfluorene-alt-2,1,3-benzoxadiazole) (PFBD), is demonstrated. Transfer of the hydrophobic polymer into water using a short chain poly(ethylene glycol) (PEG) resulted in conjugated polymer nanoparticles (PEG-PFBD) with a fluorescence quantum yield of 46%. The PEG-PFBD nanoparticles possessed several desirable structural and photophysical properties, such as colloidal stability in a broad range of pH values, sub-20 nm particle size, the presence of surface chemical functionality, as well as desirable excitation and emission spectra, for bioimaging applications. PEG-PFBD nanoparticles were conjugated with cyclic RGDfK targeting peptide for labeling of membrane αVβ3 integrin receptors on live HT-29 adenocarcinoma cells. Single nanoparticle microscopy revealed that the PEG-capped PFBD nanoparticles exhibit at least ten times higher emitted photon counts than single quantum dots (QD655) of comparable size. In addition, Fluorescence Lifetime Imaging Microscopy (FLIM) of single PEG-PFBD nanoparticles revealed that the nanoparticles display a clearly resolvable single nanoparticle fluorescence lifetime.A novel bioimaging probe based on a conjugated polymer, poly(9,9-dihexylfluorene-alt-2,1,3-benzoxadiazole) (PFBD), is demonstrated. Transfer of the hydrophobic polymer into water using a short chain poly(ethylene glycol) (PEG) resulted in conjugated polymer nanoparticles (PEG-PFBD) with a fluorescence quantum yield of 46%. The PEG-PFBD nanoparticles possessed several desirable structural and photophysical properties, such as colloidal stability in a broad range of pH values, sub-20 nm particle size, the presence of surface chemical functionality, as well as desirable excitation and emission spectra, for bioimaging applications. PEG-PFBD nanoparticles were conjugated with cyclic RGDfK targeting peptide for labeling of membrane αVβ3 integrin receptors on live HT-29 adenocarcinoma cells. Single

  14. PEG-Farnesyl Thiosalicylic Acid Telodendrimer Micelles as an Improved Formulation for Targeted Delivery of Paclitaxel

    PubMed Central

    2015-01-01

    We have recently designed and developed a dual-functional drug carrier that is based on poly(ethylene glycol) (PEG)-derivatized farnesylthiosalicylate (FTS, a nontoxic Ras antagonist). PEG5K-FTS2 readily form micelles (20–30 nm) and hydrophobic drugs such as paclitaxel (PTX) could be effectively loaded into these micelles. PTX formulated in PEG5K-FTS2 micelles showed an antitumor activity that was more efficacious than Taxol in a syngeneic mouse model of breast cancer (4T1.2). In order to further improve our PEG-FTS micellar system, four PEG-FTS conjugates were developed that vary in the molecular weight of PEG (PEG2K vs PEG5K) and the molar ratio of PEG/FTS (1/2 vs 1/4) in the conjugates. These conjugates were characterized including CMC, drug loading capacity, stability, and their efficacy in delivery of anticancer drug PTX to tumor cells in vitro and in vivo. Our data showed that the conjugates with four FTS molecules were more effective than the conjugates with two molecules of FTS and that FTS conjugates with PEG5K were more effective than the counterparts with PEG2K in forming stable mixed micelles. PTX formulated in PEG5K-FTS4 micelles was the most effective formulation in inhibiting the tumor growth in vivo. PMID:24987803

  15. Injector having multiple fuel pegs

    DOEpatents

    Hadley, Mark Allan; Felling, David Kenton

    2013-04-30

    A fuel injector is provided, including a fuel injector body, a plurality of fuel vanes, and a plurality of fuel pegs. The injector body includes a manifold and an inlet. The manifold is configured for receiving fuel, and the inlet is configured for receiving air. The fuel vanes are located within the injector body and are positioned in a direction that is generally parallel with a longitudinal axis of the injector body to orient the air flowing from the inlet. The plurality of fuel pegs are fluidly connected to the manifold and are arranged within the plurality of fuel vanes. The plurality of fuel pegs are each spaced at a distance that is about equal between each of the plurality of fuel pegs.

  16. Analysis of peg formation in cucumber seedlings grown on clinostats and in a microgravity (space) environment

    NASA Technical Reports Server (NTRS)

    Link, B. M.; Cosgrove, D. J.

    1999-01-01

    In young cucumber seedlings, the peg is a polar out-growth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. Previous studies have indicated that peg formation is gravity dependent. In this study we analyzed peg formation in cucumber seedlings (Cucumis sativus L. cv Burpee Hybrid II) grown under conditions of normal gravity, microgravity, and simulated microgravity (clinostat rotation). Seeds were germinated on the ground, in clinostats and on board the space shuttle (STS 95) for 1-2 days, frozen and subsequently examined for their stage of development, degree of hook formation, number of pegs formed, and peg morphology. The frequency of peg formation in space grown seedlings was found to be nearly identical to that of clinostat grown seedlings and to differ from that of seedlings germinated under normal gravity only in a minority of cases; approximately 6% of the seedlings formed two pegs and nearly 2% of the seedlings lacked pegs, whereas such abnormalities did not occur in ground controls. The degree of hook formation was found to be less pronounced for space grown seedlings, compared to clinostat grown seedlings, indicating a greater degree of decoupling between peg formation and hook formation in space. Nonetheless, in all seedlings having single pegs and a hook, the peg was found to be positioned correctly on the inside of the hook, showing that there is coordinate development even in microgravity environments. Peg morphologies were altered in space grown samples, with the pegs having a blunt appearance and many pegs showing alterations in expansion, with the peg extending out over the edges of the seed coat and downwards. These phenotypes were not observed in clinostat or ground grown seedlings.

  17. Enzymatic mono-pegylation of glucagon-like peptide 1 towards long lasting treatment of type 2 diabetes

    PubMed Central

    Selis, Fabio; Schrepfer, Rodolfo; Sanna, Riccardo; Scaramuzza, Silvia; Tonon, Giancarlo; Dedoni, Simona; Onali, Pierluigi; Orsini, Gaetano; Genovese, Stefano

    2012-01-01

    Human glucagon-like peptide-1 (GLP-1) is a physiological gastrointestinal peptide with glucose-dependent insulinotropic effects which is therefore considered an interesting antidiabetic agent. However, after in vivo administration, exogenous GLP-1 does not exert its physiological action due to the combination of rapid proteolytic degradation by ubiquitous dipeptidyldipeptidase IV (DPP IV) enzyme and renal clearance resulting in an extremely short circulating half-life. In this work we describe the conjugation of GLP-1-(7-36)-amide derivatives with polyethylene glycol (PEG) by enzymatic site-specific transglutamination reaction as an approach to reduce both the proteolysis and the renal clearance rates. The compound GLP-1-(7-36)-amide-Q23-PEG 20 kDa monopegylated on the single glutamine residue naturally present in position 23 maintained the ability to activate the GLP-1 receptor expressed in the rat β-cell line RIN-m5F with nanomolar potency along with an increased in vitro resistance to DDP IV and a circulating half-life of about 12 h after subcutaneous administration in rats. These properties enabled GLP-(7-36)-amide-Q23-PEG 20 kDa to exert a glucose-stabilizing effect for a period as long as 8 h, as demonstrated by a single subcutaneous injection to diabetic mice concomitantly challenged with an oral glucose load. The results reported in this work indicate that GLP-(7-36)-amide-Q23-PEG 20 kDa could be a lead compound for the development of long-lasting anti-diabetic agents useful in the treatment of type 2 diabetes affected patients. PMID:25755995

  18. Safety Assessment of Alkyl PEG Sulfosuccinates as Used in Cosmetics.

    PubMed

    Johnson, Wilbur; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-09-01

    The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed the safety of alkyl polyethylene glycol (PEG) sulfosuccinates, which function in cosmetics mostly as surfactants/cleansing agents. Although these ingredients may cause ocular and skin irritation, dermal penetration is unlikely because of the substantial polarity and molecular size of these ingredients. The Panel considered the negative oral carcinogenicity and reproductive and developmental toxicity data on chemically related laureths (PEG lauryl ethers) and negative repeated dose toxicity and skin sensitization data on disodium laureth sulfosuccinate supported the safety of these alkyl PEG sulfosuccinates in cosmetic products, but. The CIR Expert Panel concluded that the alkyl PEG sulfosuccinates are safe in the present practices of use and concentration when formulated to be nonirritating. PMID:26362121

  19. Responsive organogels formed by supramolecular self assembly of PEG-block-allyl-functionalized racemic polypeptides into β-sheet-driven polymeric ribbons†

    PubMed Central

    Zou, Jiong; Zhang, Fuwu; Chen, Yingchao; Raymond, Jeffery E.; Zhang, Shiyi; Fan, Jingwei; Zhu, Jiahua; Li, Ang; Seetho, Kellie; He, Xun; Pochan, Darrin J.

    2014-01-01

    A chemically reactive hybrid diblock polypeptide gelator poly(ethylene glycol)-block-poly(dl-allylglycine) (PEG-b-PDLAG) is an exceptional material, due to the characteristics of thermo-reversible organogel formation driven by the combination of a hydrophilic polymer chain linked to a racemic oligomeric homopeptide segment in a range of organic solvents. One-dimensional stacking of the block copolymers is demonstrated by ATR-FTIR spectroscopy, wide-angle X-ray scattering to be driven by the supramolecular assembly of β-sheets in peptide blocks to afford well-defined fiber-like structures, resulting in gelation. These supramolecular interactions are sufficiently strong to achieve ultra low critical gelation concentrations (ca. 0.1 wt%) in N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO) and methanol. The critical gel transition temperature was directly proportional to the polymer concentration, so that at low concentrations, thermoreversibility of gelation was observed. Dynamic mechanical analysis studies were employed to determine the organogel mechanical properties, having storage moduli of ca. 15.1 kPa at room temperature. PMID:25788968

  20. PEG tubes: dealing with complications.

    PubMed

    Malhi, Hardip; Thompson, Rosie

    A percutaneous endoscopic gastronomy tube can be used to deliver nutrition, hydration and medicines directly into the patient's stomach. Patients will require a tube if they are unable to swallow safely, putting them at risk of aspiration of food, drink and medicines into their lungs. It is vital that nurses are aware of the complications that may arise when caring for a patient with a PEG tube. It is equally important that nurses know how to deal with these complications or from where tc seek advice. This article provides a quick troubleshooting guide to help nurses deal with complications that can arise with PEG feeding. PMID:26016095

  1. Peg supported thermal insulation panel

    DOEpatents

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  2. Peg supported thermal insulation panel

    DOEpatents

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  3. High density load bearing insulation peg

    DOEpatents

    Nowobilski, J.J.; Owens, W.J.

    1985-01-29

    A high density peg is disclosed which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure. 4 figs.

  4. High density load bearing insulation peg

    DOEpatents

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A high density peg which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure.

  5. Automated real time peg and tool detection for the FLS trainer box.

    PubMed

    Nemani, Arun; Sankaranarayanan, Ganesh

    2012-01-01

    This study proposes a method that effectively tracks trocar tool and peg positions in real time to allow real time assessment of the peg transfer task of the Fundamentals of Laparoscopic Surgery (FLS). By utilizing custom code along with OpenCV libraries, tool and peg positions can be accurately tracked without altering the original setup conditions of the FLS trainer box. This is achieved via a series of image filtration sequences, thresholding functions, and Haar training methods. PMID:22357006

  6. Safety Assessment of Alkyl PEG/PPG Ethers as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-07-01

    The Cosmetic Ingredient Review (CIR) Expert Panel assessed the safety of 131 alkyl polyethylene glycol (PEG)/polypropylene glycol ethers as used in cosmetics, concluding that these ingredients are safe in the present practices of use and concentration described in this safety assessment when formulated to be nonirritating. Most of the alkyl PEG/PPG ethers included in this review are reported to function in cosmetics as surfactants, skin-conditioning agents, and/or emulsifying agents. The alkyl PEG/PPG ethers share very similar physiochemical properties as the alkyl PEG ethers, which were reviewed previously by the CIR Expert Panel and found safe when formulated to be nonirritating. The alkyl PEG ethers differ by the inclusion of PPG repeat units, which are used to fine-tune the surfactant properties of this group. The Panel relied heavily on data on analogous ingredients, extracted from the alkyl PEG ethers and PPG reports, when making its determination of safety. PMID:27383199

  7. Microfluidic Synthesis of PEG- and Folate-Conjugated Liposomes for One-Step Formation of Targeted Stealth Nanocarriers

    PubMed Central

    Hood, Renee R.; Shao, Chenren; Omiatek, Donna M.; Vreeland, Wyatt N.; DeVoe, Don L.

    2013-01-01

    Purpose A microfluidic hydrodynamic flow focusing technique enabling the formation of small and nearly monodisperse liposomes is investigated for continuous-flow synthesis of poly(ethylene glycol) (PEG)-modified and PEG-folate-functionalized liposomes for targeted drug delivery. Methods Controlled laminar flow in thermoplastic microfluidic devices facilitated liposome self-assembly from initial lipid compositions including lipid/cholesterol mixtures containing PEG-lipid and folate-PEG-lipid conjugates. The relationships between flow conditions, lipid composition, and liposome size were evaluated, and the impact of these parameters on PEG and folate incorporation were determined through a combination of UV-vis absorbance measurements and characterization of liposome zeta potential. Results Both PEG and folate were successfully incorporated into microfluidic-synthesized liposomes over the full range of liposome sizes studied. The efficiency of PEG-lipid incorporation was found to be inversely correlated with liposome diameter. Folate-lipid was also effectively integrated into liposomes at various flow conditions. Conclusions Liposomes incorporating relatively large PEG-modified and folate-PEG-modified lipids were successfully synthesized using the microfluidic flow focusing platform, providing a simple, low cost, rapid method for preparing functionalized liposomes. Relationships between preparation conditions and PEG or folate-PEG functionalization have been elucidated, providing insight into the process and defining paths for optimization of the microfluidic method toward the formation of functionalized liposomes for pharmaceutical applications. PMID:23386106

  8. Separating chemical and excluded volume interactions of polyethylene glycols with native proteins: Comparison with PEG effects on DNA helix formation.

    PubMed

    Shkel, Irina A; Knowles, D B; Record, M Thomas

    2015-09-01

    Small and large PEGs greatly increase chemical potentials of globular proteins (μ2), thereby favoring precipitation, crystallization, and protein-protein interactions that reduce water-accessible protein surface and/or protein-PEG excluded volume. To determine individual contributions of PEG-protein chemical and excluded volume interactions to μ2 as functions of PEG molality m3 , we analyze published chemical potential increments μ23  = dμ2/dm3 quantifying unfavorable interactions of PEG (PEG200-PEG6000) with BSA and lysozyme. For both proteins, μ23 increases approximately linearly with the number of PEG residues (N3). A 1 molal increase in concentration of PEG -CH2 OCH2 - groups, for any chain-length PEG, increases μBSA by ∼2.7 kcal/mol and μlysozyme by ∼1.0 kcal/mol. These values are similar to predicted chemical interactions of PEG -CH2 OCH2 - groups with these protein components (BSA ∼3.3 kcal/mol, lysozyme ∼0.7 kcal/mol), dominated by unfavorable interactions with amide and carboxylate oxygens and counterions. While these chemical effects should be dominant for small PEGs, larger PEGS are expected to exhibit unfavorable excluded volume interactions and reduced chemical interactions because of shielding of PEG residues in PEG flexible coils. We deduce that these excluded volume and chemical shielding contributions largely compensate, explaining why the dependence of μ23 on N3 is similar for both small and large PEGs. PMID:25924886

  9. Sensitive and rapid detection of anti-PEG in blood using surface plasmon resonance sensor (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sun, Fang; Jiang, Shaoyi; Yu, Qiuming

    2016-03-01

    Polyethylene glycol (PEG) is widely used to modify many therapeutic proteins and nanoparticles to reduce their immunogenicity and to improve their pharmacokinetic and therapeutic properties. It is generally accepted that PEG is non-immunogenic and non-antigenic. However, an emerging of literature and studies shows that the immune system can generate specific antibodies binding PEG. These anti-PEG antibodies not only correlate with adverse reactions appeared after patient infusions, but are also found to be the reason for therapeutic efficacy loss during chronical administrations. In addition, because of constant exposure to PEG in daily consumer products including detergents, processed food and cosmetics, a substantial proportion of the population has likely developed anti-PEG immunity. Thus a method to quickly and accurately measure the anti-PEG antibody level is desired. Nevertheless, the gold standard to detect anti-PEG antibodies is ELISA, which is costly and time-consuming especially for quantification. Herein, we demonstrated the anti-PEG measurement in blood serum using surface plasmon resonance (SPR) sensor. Several PEG-based surface functionalization on SPR sensor chip were studied in terms of protein resistance and the limit of detection (LOD) of anti-PEG. The quantitative detection can be achieved in less than 30 min with LOD comparable to ELISA. Furthermore, the IgG and IgM of anti-PEG can be differentiated by following the secondary antibody.

  10. Hybrid Atomistic and Coarse-Grained Molecular Dynamics Simulations of Polyethylene Glycol (PEG) in Explicit Water.

    PubMed

    Stanzione, Francesca; Jayaraman, Arthi

    2016-05-01

    In-silico design of polymeric biomaterials requires molecular dynamics (MD) simulations that retain essential atomistic/molecular details (e.g., explicit water around the biofunctional macromolecule) while simultaneously achieving large length and time scales pertinent to macroscale function. Such large-scale atomistically detailed macromolecular MD simulations with explicit solvent representation are computationally expensive. One way to overcome this limitation is to use an adaptive resolution scheme (AdResS) in which the explicit solvent molecules dynamically adopt either atomistic or coarse-grained resolution depending on their location (e.g., near or far from the macromolecule) in the system. In this study we present the feasibility and the limitations of AdResS methodology for studying polyethylene glycol (PEG) in adaptive resolution water, for varying PEG length and architecture. We first validate the AdResS methodology for such systems, by comparing PEG and solvent structure with that from all-atom simulations. We elucidate the role of the atomistic zone size and the need for calculating thermodynamic force correction within this AdResS approach to correctly reproduce the structure of PEG and water. Lastly, by varying the PEG length and architecture, we study the hydration of PEG, and the effect of PEG architectures on the structural properties of water. Changing the architecture of PEG from linear to multiarm star, we observe reduction in the solvent accessible surface area of the PEG, and an increase in the order of water molecules in the hydration shells. PMID:27108869

  11. Tissue oxidative metabolism after extreme hemodilution with PEG-conjugated hemoglobin.

    PubMed

    Cabrales, Pedro; Meng, Fantao; Acharya, Seetharama A

    2010-12-01

    NADH-localized fluorometry was used as a noninvasive technique to monitor changes in the energy state of intact tissue (muscle and connective tissue), without anesthesia, as a function of blood plasma O(2)-carrying capacity in the hamster window chamber model. Acute moderate isovolemic hemodilution was induced by two isovolemic hemodilution steps: in the first step, 6% 70-kDa dextran (Dex70) was used to induce an acute anemic state (18% Hct); in the second step, exchange transfusion of polyethylene glycol (PEG) maleimide-conjugated Hb (4 g/dl, PEG-Hb) or Dex70 (6 g/dl) was used to reduce erythrocytes to 75% of baseline (11% Hct). PEG-Hb had six copies of PEG (5 kDa) conjugated to each human Hb (0.48 g PEG/g Hb) through extension arm-facilitated chemistry. Systemic parameters, microvascular perfusion, functional capillary density, intravascular and interstitial Po(2), and intracellular NADH fluorescence were monitored. Mean arterial blood pressure after extreme hemodilution was statistically significantly reduced for Dex70 compared with PEG-Hb. The presence of PEG-Hb in the circulation maintained positive acid-base balance. While microvascular blood flows were not different, functional capillary density was significantly higher for PEG-Hb than Dex70. Arteriolar Po(2) was higher in the presence of PEG-Hb than Dex70, but tissue and venular Po(2) were not different. Cellular energy metabolism (intracellular O(2)) in the tissues was improved with PEG-Hb. Moderate hemodilution to 18% Hct (6.4 g Hb/dl) brings tissue O(2) delivery to the verge of inadequacy. Extreme hemodilution to 11% Hct (3.7 g Hb/dl) produces tissue anoxia, and high-O(2)-affinity PEG-Hb (Po(2) at which blood is 50% saturated with O(2) = 4 Torr, 1.1 g Hb/dl) only partially decreases anaerobic metabolism without increasing tissue Po(2). PMID:20813980

  12. Glucagon-like peptide-1: glucose homeostasis and beyond.

    PubMed

    Cho, Young Min; Fujita, Yukihiro; Kieffer, Timothy J

    2014-01-01

    Glucagon-like peptide-1 (GLP-1), an incretin hormone secreted primarily from the intestinal L-cells in response to meals, modulates nutrient homeostasis via actions exerted in multiple tissues and cell types. GLP-1 and its analogs, as well as compounds that inhibit endogenous GLP-1 breakdown, have become an effective therapeutic strategy for many subjects with type 2 diabetes. Here we review the discovery of GLP-1; its synthesis, secretion, and elimination from the circulation; and its multiple pancreatic and extrapancreatic effects. Finally, we review current options for GLP-1-based diabetes therapy, including GLP-1 receptor agonism and inhibition of GLP-1 breakdown, as well as the benefits and drawbacks of different modes of therapy and the potential for new therapeutic avenues. PMID:24245943

  13. Morphology of PEG-Stabilized Carbon Nanofibers in Water

    SciTech Connect

    Zhao, Jian; Schaefer, Dale W.

    2009-09-02

    Small-angle light scattering is used to assess the dispersion of poly(ethylene glycol) (PEG)-functionalized carbon nanofibers suspended in water. Analysis of these data elucidates the mechanism by which the functionalized nanofibers are solubilized in water. Linear, tube-like morphology is observed for the PEG-functionalized nanofibers dispersed in water. However, dispersion is not down to the individual tube level as determined by analysis of the light scattering data in conjunction with transmission electron micrographs. Rather, scattering entities are polydisperse side-by-side fiber aggregates (bundles). Because of the presence of water-soluble PEG oligomers on the surfaces of the nanofibers these small-scale aggregates do not agglomerate to form the large-scale clusters that are observed for untreated and acid-treated nanofibers. Acid-treated nanofibers, by contrast, do agglomerate, but in an unusual fashion, showing a 10-h induction period of followed by linear growth of large-scale agglomerates. PEG-functionalization of the acid-treated fibers leads to stabilization by inhibiting formation of the large-scale agglomerates, not by disrupting the side-by-side bundles.

  14. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells

    PubMed Central

    Li, Lei; Xiang, Dongxi; Shigdar, Sarah; Yang, Wenrong; Li, Qiong; Lin, Jia; Liu, Kexin; Duan, Wei

    2014-01-01

    To improve the efficacy of drug delivery, active targeted nanotechnology-based drug delivery systems are gaining considerable attention as they have the potential to reduce side effects, minimize toxicity, and improve efficacy of anticancer treatment. In this work CUR-NPs (curcumin-loaded lipid-polymer-lecithin hybrid nanoparticles) were synthesized and functionalized with ribonucleic acid (RNA) Aptamers (Apts) against epithelial cell adhesion molecule (EpCAM) for targeted delivery to colorectal adenocarcinoma cells. These CUR-encapsulated bioconjugates (Apt-CUR-NPs) were characterized for particle size, zeta potential, drug encapsulation, stability, and release. The in vitro specific cell binding, cellular uptake, and cytotoxicity of Apt-CUR-NPs were also studied. The Apt-CUR-NP bioconjugates exhibited increased binding to HT29 colon cancer cells and enhancement in cellular uptake when compared to CUR-NPs functionalized with a control Apt (P<0.01). Furthermore, a substantial improvement in cytotoxicity was achieved toward HT29 cells with Apt-CUR-NP bioconjugates. The encapsulation of CUR in Apt-CUR-NPs resulted in the increased bioavailability of delivered CUR over a period of 24 hours compared to that of free CUR in vivo. These results show that the EpCAM Apt-functionalized CUR-NPs enhance the targeting and drug delivery of CUR to colorectal cancer cells. Further development of CUR-encapsulated, nanosized carriers will lead to improved targeted delivery of novel chemotherapeutic agents to colorectal cancer cells. PMID:24591829

  15. Effect of DSPE-PEG on compound action potential, injury potential and ion concentration following compression in ex vivo spinal cord.

    PubMed

    Wang, Aihua; Huo, Xiaolin; Zhang, Guanghao; Wang, Xiaochen; Zhang, Cheng; Wu, Changzhe; Rong, Wei; Xu, Jing; Song, Tao

    2016-05-01

    It has been shown that polyethylene glycol (PEG) can reseal membrane disruption on the spinal cord, but only high concentrations of PEG have been shown to have this effect. Therefore, the effect of PEG is somewhat limited, and it is necessary to investigate a new approach to repair spinal cord injury. This study assesses the ability of 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly (ethylene glycol)) 2000] (DSPE-PEG) to recover physiological function and attenuate the injury-induced influx of extracellular ions in ex vivo spinal cord injury. Isolated spinal cords were subjected to compression injury and treated with PEG or DSPE-PEG immediately after injury. The compound action potential (CAP) was recorded before and after injury to assess the functional recovery. Furthermore, injury potential, the difference in gap potentials before and after compression, and the concentration of intracellular ions were used to evaluate the effect of DSPE-PEG on reducing ion influx. Data showed that the injury potential and ion concentration of the untreated, PEG and DSPE-PEG group, without significant difference among them, are remarkably higher than those of the intact group. Moreover, the CAP recovery of the DSPE-PEG and PEG treated spinal cords was significantly greater than that of the untreated spinal cords. The level of CAP recovery in the DSPE-PEG and PEG treated groups was the same, but the concentration of DSPE-PEG used was much lower than the concentration of PEG. These results suggest that instant application of DSPE-PEG could effectively repair functional disturbance in SCI at a much lower concentration than PEG. PMID:27021025

  16. Multiple Factors Related to the Secretion of Glucagon-Like Peptide-1

    PubMed Central

    Wang, XingChun; Liu, Huan; Chen, Jiaqi; Li, Yan; Qu, Shen

    2015-01-01

    The glucagon-like peptide-1 is secreted by intestinal L cells in response to nutrient ingestion. It regulates the secretion and sensitivity of insulin while suppressing glucagon secretion and decreasing postprandial glucose levels. It also improves beta-cell proliferation and prevents beta-cell apoptosis induced by cytotoxic agents. Additionally, glucagon-like peptide-1 delays gastric emptying and suppresses appetite. The impaired secretion of glucagon-like peptide-1 has negative influence on diabetes, hyperlipidemia, and insulin resistance related diseases. Thus, glucagon-like peptide-1-based therapies (glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors) are now well accepted in the management of type 2 diabetes. The levels of glucagon-like peptide-1 are influenced by multiple factors including a variety of nutrients. The component of a meal acts as potent stimulants of glucagon-like peptide-1 secretion. The levels of its secretion change with the intake of different nutrients. Some drugs also have influence on GLP-1 secretion. Bariatric surgery may improve metabolism through the action on GLP-1 levels. In recent years, there has been a great interest in developing effective methods to regulate glucagon-like peptide-1 secretion. This review summarizes the literature on glucagon-like peptide-1 and related factors affecting its levels. PMID:26366173

  17. PEG-400 Partitioning in the HCCD/PEG Process for Cs and Sr Recovery

    SciTech Connect

    R. S. Herbst; T. A. Robinson; D. R. Peterman

    2008-07-01

    The properties of the chloro-protected cobalt bis(dicarbollide) anion in the protonated or acid form (HCCD), in the presence of polyethylene glycol with an average molecular weight of 400 (PEG-400), are well known for the recovery of Cs and Sr from acidic radioactive streams. In the early development of HCCD/PEG based extraction process, questions were raised regarding the ability to control the concentration of PEG-400 in the organic phase since it has the greatest solubility in the aqueous process solutions relative to the HCCD or diluent. The purpose of this study was to determine the distribution ratio of PEG-400 under a wide variety of relevant process conditions and represents a precursory examination of the PEG-400 losses from the HCCD/PEG extraction system. PEG distribution ratios (DPEG = [PEG]org / [PEG]aq) were measured by equilibrium batch contacts between the organic and aqueous phases over a wide range of experimental conditions using radiometric techniques with 14C labeled PEG-400 to monitor the behavior of the bulk material. The results vary dramatically from 0.1 > DPEG > 50. The data generated to date indicate that the concentration of HNO3 in the aqueous phase has a minimal impact on PEG solubility and the PEG phase transfer kinetics are rapid. Of the variables studied, the organic phase concentration ratio of [HCCD]:[PEG] has the greatest impact on PEG solubility. The initial ratio in the organic phase should be maintained at [HCCD]:[PEG] ~ 6 to 10 to minimize PEG losses from the organic phase.

  18. Three-dimensional hMSC Motility within Peptide-Functionalized PEG-Based Hydrogel of Varying Adhesivity and Crosslinking Density

    PubMed Central

    Kyburz, Kyle A; Anseth, Kristi S

    2013-01-01

    Human mesenchymal stem cell (hMSC) migration and recruitment play a critical role during bone fracture healing. Within the complex 3D in vivo microenvironment, hMSC migration is regulated through a myriad of extracellular cues. Here, we use a thiol-ene photopolymerized hydrogel to recapitulate structural and bioactive inputs in a tunable manner to understand their role in regulating 3D hMSC migration. Specifically, peptide-functionalized poly(ethylene glycol) hydrogels were used to encapsulate hMSC while varying the crosslinking density, 0.18 ± 0.02 - 1.60 ± 0.04 mM, and the adhesive ligand density, 0.001 to 1.0 mM. Using live cell videomicroscopy migratory cell paths were tracked and fit to a persistent random walk model. It was shown that hMSC migrating through the lowest crosslinking density and highest adhesivity had more sustained polarization, higher migrating speeds (17.6 ± 0.9 μm/hr), and higher cell spreading (Elliptical Form Factor = 3.9 ± 0.2). However, manipulation of these material properties did not significantly affect migration persistence. Further, there was a monotonic increase in cell speed and spreading with increasing adhesivity showing a lack of the biphasic trend seen in two dimensional cell migration. Immunohistochemistry showed well-formed actin fibers and β1 integrin staining at the ends of stress fibers. This thiol-ene platform provides a highly tunable substrate to characterize 3D hMSC migration with application as an implantable cell carrier platform or for the recruitment of endogenous hMSC in vivo. PMID:23376239

  19. Glucagon-like peptide-1 binding to rat skeletal muscle.

    PubMed

    Delgado, E; Luque, M A; Alcántara, A; Trapote, M A; Clemente, F; Galera, C; Valverde, I; Villanueva-Peñacarrillo, M L

    1995-01-01

    We have found [125I]glucagon-like peptide-1(7-36)-amide-specific binding activity in rat skeletal muscle plasma membranes, with an estimated M(r) of 63,000 by cross-linking and SDS-PAGE. The specific binding was time and membrane protein concentration dependent, and displaceable by unlabeled GLP-1(7-36)-amide with an ID50 of 3 x 10(-9) M of the peptide; GLP-1(1-36)-amide also competed, whereas glucagon and insulin did not. GLP-1(7-36)-amide did not modify the basal adenylate cyclase activity in skeletal muscle plasma membranes. These data, together with our previous finding of a potent glycogenic effect of GLP-1(7-36)-amide in rat soleus muscle, and also in isolated hepatocytes, which was not accompanied by a rise in the cell cyclic AMP content, lead use to believe that the insulin-like effects of this peptide on glucose metabolism in the muscle could be mediated by a type of receptor somehow different to that described for GLP-1 in pancreatic B cells, where GLP-1 action is mediated by the cyclic AMP-adenylate cyclase system. PMID:7784253

  20. Fluorescent nanogel based on four-arm PEG-PCL copolymer with porphyrin core for bioimaging.

    PubMed

    Dong, Xia; Wei, Chang; Lu, Li; Liu, Tianjun; Lv, Feng

    2016-04-01

    Four-arm PEG-PCL copolymer with porphyrin core (POR-PEG-PCL) exhibits beneficial fluorescence ability in vivo. To further develop an application of thermosensitive porphyrin hydrogel based on four-arm PEG-PCL copolymer as a drug carrier, a POR-PEG-PCL nanogel was tracked and located to tumor tissue with porphyrin as a fluorescence tag via intravenous injection. The structure and function of the nanogel were evaluated by TEM, DLS, H-NMR, UV-vis and fluorescence spectra. The fluorescent nanogel was monitored by an in vivo imaging system with hepatoma tumor-bearing mice. Good biocompatibility and safety in vitro and in vivo show that the POR-PEG-PCL nanogel is a potential drug carrier that targets tumor tissues with fluorescence bioimaging. PMID:26838843

  1. Preparation of monodisperse PEG hydrogel composite microspheres via microfluidic chip with rounded channels

    NASA Astrophysics Data System (ADS)

    Yu, Bing; Cong, Hailin; Liu, Xuesong; Ren, Yumin; Wang, Jilei; Zhang, Lixin; Tang, Jianguo; Ma, Yurong; Akasaka, Takeshi

    2013-09-01

    An effective microfluidic method to fabricate monodisperse polyethylene glycol (PEG) hydrogel composite microspheres with tunable dimensions and properties is reported in this paper. A T-junction microfluidic chip equipped with rounded channels and online photopolymerization system is applied for the microsphere microfabrication. The shape and size of the microspheres are well controlled by the rounded channels and PEG prepolymer/silicon oil flow rate ratios. The obtained PEG/aspirin composite microspheres exhibit a sustained release of aspirin for a wide time range; the obtained PEG/Fe3O4 nanocomposite microspheres exhibit excellent magnetic properties; and the obtained binary PEG/dye composite microspheres show the ability to synchronously load two functional components in the same peanut-shaped or Janus hydrogel particles.

  2. Cardiovascular Effects of Glucagon-Like Peptide-1 Receptor Agonists.

    PubMed

    Kang, Yu Mi; Jung, Chang Hee

    2016-06-01

    Glucagon-like peptide-1 (GLP-1) is a member of the proglucagon incretin family, and GLP-1 receptor agonists (RAs) have been introduced as a new class of antidiabetic medications in the past decade. The benefits of GLP-1 RAs are derived from their pleiotropic effects, which include glucose-dependent insulin secretion, suppressed glucagon secretion, and reduced appetite. Moreover, GLP-1 RAs also exert beneficial roles on multiple organ systems in which the GLP-1 receptors exist, including the cardiovascular system. Cardiovascular effects of GLP-1 RAs have been of great interest since the burden from cardiovascular diseases (CVD) has been unbearably increasing in a diabetic population worldwide, despite strict glycemic control and advanced therapeutic techniques to treat CVD. Preclinical studies have already demonstrated the beneficial effects of GLP-1 on myocardium and vascular endothelium, and many clinical studies evaluating changes in surrogate markers of CVD have suggested potential benefits from the use of GLP-1 RAs. Data from numerous clinical trials primarily evaluating the antihyperglycemic effects of multiple GLP-1 RAs have also revealed that changes in most CVD risk markers reported as secondary outcomes have been in favor of GLP-1 RAs treatment. However, to date, there is only one randomized clinical trial of GLP-1 RAs (the ELIXA study) evaluating major cardiovascular events as their primary outcomes, and in this study, a neutral cardiovascular effect of lixisenatide was observed in high-risk diabetic subjects. Therefore, the results of ongoing CVD outcome trials with the use of GLP-1 RAs should be awaited to elucidate the translation of benefits previously seen in CVD risk marker studies into large clinical trials with primary cardiovascular outcomes. PMID:27118277

  3. Cardiovascular Effects of Glucagon-Like Peptide-1 Receptor Agonists

    PubMed Central

    Kang, Yu Mi

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a member of the proglucagon incretin family, and GLP-1 receptor agonists (RAs) have been introduced as a new class of antidiabetic medications in the past decade. The benefits of GLP-1 RAs are derived from their pleiotropic effects, which include glucose-dependent insulin secretion, suppressed glucagon secretion, and reduced appetite. Moreover, GLP-1 RAs also exert beneficial roles on multiple organ systems in which the GLP-1 receptors exist, including the cardiovascular system. Cardiovascular effects of GLP-1 RAs have been of great interest since the burden from cardiovascular diseases (CVD) has been unbearably increasing in a diabetic population worldwide, despite strict glycemic control and advanced therapeutic techniques to treat CVD. Preclinical studies have already demonstrated the beneficial effects of GLP-1 on myocardium and vascular endothelium, and many clinical studies evaluating changes in surrogate markers of CVD have suggested potential benefits from the use of GLP-1 RAs. Data from numerous clinical trials primarily evaluating the antihyperglycemic effects of multiple GLP-1 RAs have also revealed that changes in most CVD risk markers reported as secondary outcomes have been in favor of GLP-1 RAs treatment. However, to date, there is only one randomized clinical trial of GLP-1 RAs (the ELIXA study) evaluating major cardiovascular events as their primary outcomes, and in this study, a neutral cardiovascular effect of lixisenatide was observed in high-risk diabetic subjects. Therefore, the results of ongoing CVD outcome trials with the use of GLP-1 RAs should be awaited to elucidate the translation of benefits previously seen in CVD risk marker studies into large clinical trials with primary cardiovascular outcomes. PMID:27118277

  4. Split-dose menthol-enhanced PEG vs PEG-ascorbic acid for colonoscopy preparation

    PubMed Central

    Sharara, Ala I; Harb, Ali H; Sarkis, Fayez S; Chalhoub, Jean M; Badreddine, Rami; Mourad, Fadi H; Othman, Mahmoud; Masri, Omar

    2015-01-01

    AIM: To compare the efficacy and palatability of 4 L polyethylene glycol electrolyte (PEG) plus sugar-free menthol candy (PEG + M) vs reduced-volume 2 L ascorbic acid-supplemented PEG (AscPEG). METHODS: In a randomized controlled trial setting, ambulatory patients scheduled for elective colonoscopy were prospectively enrolled. Patients were randomized to receive either PEG + M or AscPEG, both split-dosed with minimal dietary restriction. Palatability was assessed on a linear scale of 1 to 5 (1 = disgusting; 5 = tasty). Quality of preparation was scored by assignment-blinded endoscopists using the modified Aronchick and Ottawa scales. The main outcomes were the palatability and efficacy of the preparation. Secondary outcomes included patient willingness to retake the same preparation again in the future and completion of the prescribed preparation. RESULTS: Overall, 200 patients were enrolled (100 patients per arm). PEG + M was more palatable than AscPEG (76% vs 62%, P = 0.03). Completing the preparation was not different between study groups (91% PEG + M vs 86% AscPEG, P = 0.38) but more patients were willing to retake PEG + M (54% vs 40% respectively, P = 0.047). There was no significant difference between PEG + M vs AscPEG in adequate cleansing on both the modified Aronchick (82% vs 77%, P = 0.31) and the Ottawa scale (85% vs 74%, P = 0.054). However, PEG + M was superior in the left colon on the Ottawa subsegmental score (score 0-2: 94% for PEG + M vs 81% for AscPEG, P = 0.005) and received significantly more excellent ratings than AscPEG on the modified Aronchick scale (61% vs 43%, P = 0.009). Both preparations performed less well in afternoon vs morning examinations (inadequate: 29% vs 15.2%, P = 0.02). CONCLUSION: 4 L PEG plus menthol has better palatability and acceptability than 2 L ascorbic acid- PEG and is associated with a higher rate of excellent preparations; Clinicaltrial.gov identifier: NCT01788709. PMID:25684963

  5. Absorption of polyethylene glycol (PEG) polymers: the effect of PEG size on permeability.

    PubMed

    Gursahani, Hema; Riggs-Sauthier, Jennifer; Pfeiffer, Juergen; Lechuga-Ballesteros, David; Fishburn, C Simone

    2009-08-01

    Polyethylene glycol (PEG) polymers are large amphiphilic molecules that are highly hydrated in solution. To explore the permeability properties of different sized PEG polymers across epithelial membranes in vivo, we examined the absorption of fluorescently labeled PEG conjugates sized 0.55-20 kDa from the lung, since this system provides a reservoir that limits rapid diffusion of molecules away from the site of delivery and enables permeability over longer times to be examined. Following intratracheal delivery in rats, the PEG polymers underwent absorption with first-order kinetics described by single exponential decay curves. PEG size produced a marked influence on the rate of uptake from the lung, with half-lives ranging from 2.4 to 13 h, although above a size of 5 kDa, no further change in rate was observed. PEG size likewise affected retention in alveolar macrophages and in lung tissue; whereas smaller PEG sizes (<2 kDa) were effectively cleared within 48 h, larger PEG sizes (>5 kDa) remained in lung cells and tissue for up to 7 days. These data demonstrate that PEG polymers can be absorbed across epithelial membranes and that PEG size plays a dominant role in controlling the rate and mechanism of absorption. PMID:19408293

  6. PEG based hyperbranched polymeric hollow nanospheres

    NASA Astrophysics Data System (ADS)

    Cao, Hongliang; Dong, Yixiao; O'Rorke, Suzanne; Wang, Wenxin; Pandit, Abhay

    2011-02-01

    The synthesis of a new PEG based hyperbranched copolymer of poly(ethylene glycol) methyl ether methacrylate-co-ethylene glycol dimethacrylate (PEGMEMA-co-EGDMA) was achieved via a one-step in situ deactivation enhanced atom transfer radical polymerization (DE-ATRP). Then, hollow PEG based nanospheres were fabricated from this polymer using a solvent evaporation method and post-stabilisation strategy. Furthermore, the analysis using a cellular metabolic activity assay proved that the copolymer did not affect cellular metabolism, indicating that this PEG based polymeric nanosphere has potential for use in drug delivery applications.

  7. Radiographic comparison of mobile-bearing partial knee single-peg versus twin-peg design.

    PubMed

    Hurst, Jason M; Berend, Keith R; Adams, Joanne B; Lombardi, Adolph V

    2015-03-01

    The femoral component and proprietary instrumentation of a mobile-bearing unicompartmental knee arthroplasty (UKA) was redesigned with an additional peg for enhanced fixation, 15° of extra femoral surface for contact in deep flexion, more rounded profile, better fit into the milled surface, and redesigned intramedullary based instrumentation. To assess the benefit of these changes, we compared postoperative radiographs of 219 single-peg and 186 twin-peg UKAs done in 2008-2011. All surviving knees demonstrated satisfactory position and alignment with no radiolucencies observed. Radiographic analysis showed improved and consistent component positioning with the twin-peg design implanted with updated instrumentation compared with the single-peg. The radiographic benefits of improved implant positioning using the twin-peg component and updated instrumentation are clear and carry tremendous potential. More robust follow-up is imperative. PMID:25453627

  8. Fabrication of PEG-carboxymethylcellulose hydrogel by thiol-norbornene photo-click chemistry.

    PubMed

    Lee, Sora; Park, Young Hwan; Ki, Chang Seok

    2016-02-01

    Both poly(ethylene glycol) (PEG) and carboxymethylcellulose (CMC) are biocompatible polymers, which have been widely utilized in biomedical fields. In this study, we demonstrated the fabrication of pH-sensitive PEG-CMC hydrogels based on thiol-norbornene photo-click reaction and characterized their properties, such as swelling ratio, stiffness, degradation, and protein drug release. For the hydrogel fabrication, tetra-arm PEG and CMC were functionalized with norbornene groups and thiol groups, respectively. The hydrogels fabricated with varying concentration (0-3%) of CMCSH and a fixed concentration (4%) of PEG4NB by orthogonal step-growth photopolymerization showed high gel fractions (∼0.85). The presence of CMCSH in hydrogel did not affected gel point (∼4 s) but significantly prolonged completion time of gelation. Swelling ratios of PEG-CMC increased from ∼32 to ∼60 and the shear elastic modulus decreased from ∼3000 to ∼600 Pa with an increase of CMCSH content (0-3%). PEG-CMC hydrogel containing more CMCSH not only underwent slower hydrolytic bulk degradation but also showed a slower BSA release in acidic condition. These results indicate thiol-norbornene PEG-CMC hydrogel has potential as pH-sensitive protein drug carrier. PMID:26616448

  9. Glutathione-mediated release of Bodipy® from PEG cofunctionalized gold nanoparticles

    PubMed Central

    Kumar, Dhiraj; Meenan, Brian J; Dixon, Dorian

    2012-01-01

    Gold nanoparticles synthesized via sodium citrate reduction of chloroauric acid (HAuCl4) were functionalized with either various concentrations of thiol-terminated Bodipy® FL L-cystine (0.5, 1.0, 1.5, and 2.0 μg/mL) or Bodipy-poly(ethylene glycol) at concentrations of 0.5–18.75, 1.0–12.50, and 1.5–6.25 μg/mL to form a mixed monolayer of BODIPY-PEG. Thiol-terminated Bodipy, a fluorescing molecule, was used as the model drug, while PEG is widely used in drug-delivery applications to shield nanoparticles from unwanted immune responses. Understanding the influence of PEG-capping on payload release is critical because it is the most widely used type of nanoparticle functionalization in drug delivery studies. It has been previously reported that glutathione can trigger release of thiol-bound payloads from gold nanoparticles. Bodipy release from Bodipy capped and from Bodipy-PEG functionalized gold nanoparticles was studied at typical intracellular glutathione levels. It was observed that the addition of PEG capping inhibits the initial burst release observed in gold nanoparticles functionalized only with Bodipy and inhibits nanoparticle aggregation. Efficient and controlled payload release was observed in gold nanoparticles cofunctionalized with only a limited amount of PEG, thus enabling the coattachment of large amounts of drug, targeting groups or other payloads. PMID:22915847

  10. Loss of PEG chain in routine SDS-PAGE analysis of PEG-maleimide modified protein.

    PubMed

    Zhang, Chun; Liu, Yongdong; Feng, Cui; Wang, Qi; Shi, Hong; Zhao, Dawei; Yu, Rong; Su, Zhiguo

    2015-01-01

    SDS-PAGE represents a quick and simple method for qualitative and quantitative analysis of protein and protein-containing conjugates, mostly pegylated proteins. PEG-maleimide (MAL) is frequently used to site-specifically pegylate therapeutic proteins via free cysteine residue by forming a thiosuccinimide structure for pursuing homogeneous products. The C-S linkage between protein and PEG-MAL is generally thought to be relatively stable. However, loss of intact PEG chain in routine SDS-PAGE analysis of PEG-maleimide modified protein was observed. It is a thiol-independent thioether cleavage and the shedding of PEG chain exclusively happens to PEG-MAL modified conjugates although PEG-vinylsulfone conjugates to thiol-containing proteins also through a C-S linkage. Cleavage kinetics of PEG40k-MAL modified ciliary neurotrophic factor showed this kind of degradation could immediately happen even in 1 min incubation at high temperature and could be detected at physiological temperature and pH, although the rate was relatively slow. This may provide another degradation route for maleimide-thiol conjugate irrespective of reactive thiol, although the specific mechanism is still not very clear for us. It would also offer a basis for accurate characterization of PEG-MAL modified protein/peptide by SDS-PAGE analysis. PMID:25265901

  11. Competition of PEG coverage density and con-A recognition in mannose/PEG bearing nanoparticles.

    PubMed

    Fukuda, Ichiki; Mochizuki, Shinichi; Sakurai, Kazuo

    2016-10-01

    Cell specific ligand molecules are attached to polyethylene glycol (PEG) modified nanoparticles to enhance the drug delivery efficiency. The tethered PEG would interfere in ligand recognition as well as providing biocompatibility to the nanoparticles. The denser PEG can give the greater biocompatibility, while should more hamper the ligand recognition. Therefor it is important to tune PEG density at an appropriate amount to compensate these two factors. In this study, we prepared a series of nanoparticles composed of α-mannose-bearing lipid, dioleoyltrimethyl ammoniumpropane (DOTAP) and 1,2-distearoyl-sn-glycero -3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000). The nanoparticles were characterized with dynamic light scattering (DLS), field flow fractionation (FFF), small angle X-ray scattering (SAXS), and quartz-crystal microbalance (QCM). Based on the structural parameter obtained from DLS, SAXS, and FFF, we determined the PEG crowding parameter (σ) quantitatively; when σ=1.0, the PEG chain occupies the same value on the surface as when the chain is present in the unperturbed state, and at σ=1.0, the PEG chains start to contact each other. We found that the recognition ability had the maximum around σ∼0.75 and there was the critical composition at σ=1.0 for which the recognition was drastically reduced. The present results demonstrated that quantitative characterization and controlling the PEG density are key to designing effective targeting delivery system. PMID:27429298

  12. In situ nanofabrication of hybrid PEG-dendritic-inorganic nanoparticles and preliminary evaluation of their biocompatibility.

    PubMed

    Sousa-Herves, Ana; Sánchez Espinel, Christian; Fahmi, Amir; González-Fernández, África; Fernandez-Megia, Eduardo

    2015-03-01

    An in situ template fabrication of inorganic nanoparticles using carboxylated PEG-dendritic block copolymers of the GATG family is described as a function of the dendritic block generation, the metal (Au, CdSe) and metal molar ratio. The biocompatibility of the generated nanoparticles analysed in terms of their aggregation in physiological media, cytotoxicity and uptake by macrophages relates to the PEG density of the surface of the hybrids. PMID:25530028

  13. Both FA- and mPEG-conjugated chitosan nanoparticles for targeted cellular uptake and enhanced tumor tissue distribution

    PubMed Central

    2011-01-01

    Both folic acid (FA)- and methoxypoly(ethylene glycol) (mPEG)-conjugated chitosan nanoparticles (NPs) had been designed for targeted and prolong anticancer drug delivery system. The chitosan NPs were prepared with combination of ionic gelation and chemical cross-linking method, followed by conjugation with both FA and mPEG, respectively. FA-mPEG-NPs were compared with either NPs or mPEG-/FA-NPs in terms of their size, targeting cellular efficiency and tumor tissue distribution. The specificity of the mPEG-FA-NPs targeting cancerous cells was demonstrated by comparative intracellular uptake of NPs and mPEG-/FA-NPs by human adenocarcinoma HeLa cells. Mitomycin C (MMC), as a model drug, was loaded to the mPEG-FA-NPs. Results show that the chitosan NPs presented a narrow-size distribution with an average diameter about 200 nm regardless of the type of functional group. In addition, MMC was easily loaded to the mPEG-FA-NPs with drug-loading content of 9.1%, and the drug releases were biphasic with an initial burst release, followed by a subsequent slower release. Laser confocal scanning imaging proved that both mPEG-FA-NPs and FA-NPs could greatly enhance uptake by HeLa cells. In vivo animal experiments, using a nude mice xenograft model, demonstrated that an increased amount of mPEG-FA-NPs or FA-NPs were accumulated in the tumor tissue relative to the mPEG-NPs or NPs alone. These results suggest that both FA- and mPEG-conjugated chitosan NPs are potentially prolonged drug delivery system for tumor cell-selective targeting treatments. PMID:22027239

  14. Engineered redox-responsive PEG detachment mechanism in PEGylated nano-graphene oxide for intracellular drug delivery.

    PubMed

    Wen, Huiyun; Dong, Chunyan; Dong, Haiqing; Shen, Aijun; Xia, Wenjuan; Cai, Xiaojun; Song, Yanyan; Li, Xuequan; Li, Yongyong; Shi, Donglu

    2012-03-12

    In biomedical applications, polyethylene glycol (PEG) functionalization has been a major approach to modify nanocarriers such as nano-graphene oxide for particular biological requirements. However, incorporation of a PEG shell poses a significant diffusion barrier that adversely affects the release of the loaded drugs. This study addresses this critical issue by employing a redox-responsive PEG detachment mechanism. A PEGylated nano-graphene oxide (NGO-SS-mPEG) with redox-responsive detachable PEG shell is developed that can rapidly release an encapsulated payload at tumor-relevant glutathione (GSH) levels. The PEG shell grafted onto NGO sheets gives the nanocomposite high physiological solubility and stability in circulation. It can selectively detach from NGO upon intracellular GSH stimulation. The surface-engineered structures are shown to accelerate the release of doxorubicin hydrochloride (DXR) from NGO-SS-mPEG 1.55 times faster than in the absence of GSH. Confocal microscopy shows clear evidence of NGO-SS-mPEG endocytosis in HeLa cells, mainly accumulated in cytoplasm. Furthermore, upon internalization of DXR-loaded NGO with a disulfide-linked PEG shell into HeLa cells, DXR is effectively released in the presence of an elevated GSH reducing environment, as observed in confocal microscopy and flow cytometric experiments. Importantly, inhibition of cell proliferation is directly correlated with increased intracellular GSH concentrations due to rapid DXR release. PMID:22228696

  15. Relaxations of light scattering in mixture of PEG-PDMS-PEG triblock polymer with water in oil nano-droplets

    NASA Astrophysics Data System (ADS)

    Sharifi, Soheil

    2015-05-01

    The effect of a triblock oil soluble polymer (PEG-PDMS-PEG) on the properties of water-in-oil (W/O) droplet microemulsion ( R ˜ 7.5 nm) has been studied as a function of the amount of added polymer. Macroscopically one observes a substantial increase of viscosity with increase of polymer concentration that it is surpassed and effective cross-linking of the droplets takes place. SAXS measurements show that the size of the droplets is not changed by the polymer addition but it induces repulsive interactions ones at high polymer content. One fast (alpha relaxation) and two slow relaxations (beta and gamma relaxations) were observed in mixture system by Quasielastic light scattering (QLS). At high polymer content the network formation leads to slowdown of beta and gamma relaxations in QLS and increase in the motion of alpha. Moreover, the increasing of midblock length of polymer in mixture systems can increasing the different between slow and fast relaxation.

  16. Glucagon-like peptide-1 is specifically involved in sweet taste transmission.

    PubMed

    Takai, Shingo; Yasumatsu, Keiko; Inoue, Mayuko; Iwata, Shusuke; Yoshida, Ryusuke; Shigemura, Noriatsu; Yanagawa, Yuchio; Drucker, Daniel J; Margolskee, Robert F; Ninomiya, Yuzo

    2015-06-01

    Five fundamental taste qualities (sweet, bitter, salty, sour, umami) are sensed by dedicated taste cells (TCs) that relay quality information to gustatory nerve fibers. In peripheral taste signaling pathways, ATP has been identified as a functional neurotransmitter, but it remains to be determined how specificity of different taste qualities is maintained across synapses. Recent studies demonstrated that some gut peptides are released from taste buds by prolonged application of particular taste stimuli, suggesting their potential involvement in taste information coding. In this study, we focused on the function of glucagon-like peptide-1 (GLP-1) in initial responses to taste stimulation. GLP-1 receptor (GLP-1R) null mice had reduced neural and behavioral responses specifically to sweet compounds compared to wild-type (WT) mice. Some sweet responsive TCs expressed GLP-1 and its receptors were expressed in gustatory neurons. GLP-1 was released immediately from taste bud cells in response to sweet compounds but not to other taste stimuli. Intravenous administration of GLP-1 elicited transient responses in a subset of sweet-sensitive gustatory nerve fibers but did not affect other types of fibers, and this response was suppressed by pre-administration of the GLP-1R antagonist Exendin-4(3-39). Thus GLP-1 may be involved in normal sweet taste signal transmission in mice. PMID:25678625

  17. Glucagon-Like Peptide 1 Receptor Activation Attenuates Platelet Aggregation and Thrombosis.

    PubMed

    Cameron-Vendrig, Alison; Reheman, Adili; Siraj, M Ahsan; Xu, Xiaohong Ruby; Wang, Yiming; Lei, Xi; Afroze, Talat; Shikatani, Eric; El-Mounayri, Omar; Noyan, Hossein; Weissleder, Ralph; Ni, Heyu; Husain, Mansoor

    2016-06-01

    Short-term studies in subjects with diabetes receiving glucagon-like peptide 1 (GLP-1)-targeted therapies have suggested a reduced number of cardiovascular events. The mechanisms underlying this unexpectedly rapid effect are not known. We cloned full-length GLP-1 receptor (GLP-1R) mRNA from a human megakaryocyte cell line (MEG-01), and found expression levels of GLP-1Rs in MEG-01 cells to be higher than those in the human lung but lower than in the human pancreas. Incubation with GLP-1 and the GLP-1R agonist exenatide elicited a cAMP response in MEG-01 cells, and exenatide significantly inhibited thrombin-, ADP-, and collagen-induced platelet aggregation. Incubation with exenatide also inhibited thrombus formation under flow conditions in ex vivo perfusion chambers using human and mouse whole blood. In a mouse cremaster artery laser injury model, a single intravenous injection of exenatide inhibited thrombus formation in normoglycemic and hyperglycemic mice in vivo. Thrombus formation was greater in mice transplanted with bone marrow lacking a functional GLP-1R (Glp1r(-/-)), compared with those receiving wild-type bone marrow. Although antithrombotic effects of exenatide were partly lost in mice transplanted with bone marrow from Glp1r(-/-) mice, they were undetectable in mice with a genetic deficiency of endothelial nitric oxide synthase. The inhibition of platelet function and the prevention of thrombus formation by GLP-1R agonists represent potential mechanisms for reduced atherothrombotic events. PMID:26936963

  18. Superior fixation of pegged trabecular metal over screw-fixed pegged porous titanium fiber mesh

    PubMed Central

    2011-01-01

    Background and purpose Lasting stability of cementless implants depends on osseointegration into the implant surface, and long-term implant fixation can be predicted using radiostereometric analysis (RSA) with short-term follow-up. We hypothesized that there would be improved fixation of high-porosity trabecular metal (TM) tibial components compared to low-porosity titanium pegged porous fiber-metal (Ti) polyethylene metal backings. Methods In a prospective, parallel-group, randomized unblinded clinical trial, we compared cementless tibial components in patients aged 70 years and younger with osteoarthritis. The pre-study sample size calculation was 22 patients per group. 25 TM tibial components were fixed press-fit by 2 hexagonal pegs (TM group) and 25 Ti tibial components were fixed press-fit and by 4 supplemental screws (Ti group). Stereo radiographs for evaluation of absolute component migration (primary effect size) and single-direction absolute component migration (secondary effect size) were obtained within the first postoperative week and at 6 weeks, 6 months, 1 year, and 2 years. American Knee Society score was used for clinical assessment preoperatively, and at 1 and 2 years. Results There were no intraoperative complications, and no postoperative infections or revisions. All patients had improved function and regained full extension. All tibial components migrated initially. Most migration of the TM components (n = 24) occurred within the first 3 months after surgery whereas migration of the Ti components (n = 22) appeared to stabilize first after 1 year. The TM components migrated less than the Ti components at 1 year (p = 0.01) and 2 years (p = 0.004). Interpretation We conclude that the mechanical fixation of TM tibial components is superior to that of screw-fixed Ti tibial components. We expect long-term implant survival to be better with the TM tibial component. PMID:21434781

  19. In situ nanofabrication of hybrid PEG-dendritic-inorganic nanoparticles and preliminary evaluation of their biocompatibility

    NASA Astrophysics Data System (ADS)

    Sousa-Herves, Ana; Sánchez Espinel, Christian; Fahmi, Amir; González-Fernández, África; Fernandez-Megia, Eduardo

    2015-02-01

    An in situ template fabrication of inorganic nanoparticles using carboxylated PEG-dendritic block copolymers of the GATG family is described as a function of the dendritic block generation, the metal (Au, CdSe) and metal molar ratio. The biocompatibility of the generated nanoparticles analysed in terms of their aggregation in physiological media, cytotoxicity and uptake by macrophages relates to the PEG density of the surface of the hybrids.An in situ template fabrication of inorganic nanoparticles using carboxylated PEG-dendritic block copolymers of the GATG family is described as a function of the dendritic block generation, the metal (Au, CdSe) and metal molar ratio. The biocompatibility of the generated nanoparticles analysed in terms of their aggregation in physiological media, cytotoxicity and uptake by macrophages relates to the PEG density of the surface of the hybrids. Electronic supplementary information (ESI) available: Structure of carboxylated PEG-GATG copolymers, aggregation of CdSe NPs in serum, and cytotoxicity of PEG-GATG copolymers. See DOI: 10.1039/c4nr06155a

  20. A porphyrin-PEG polymer with rapid renal clearance.

    PubMed

    Huang, Haoyuan; Hernandez, Reinier; Geng, Jumin; Sun, Haotian; Song, Wentao; Chen, Feng; Graves, Stephen A; Nickles, Robert J; Cheng, Chong; Cai, Weibo; Lovell, Jonathan F

    2016-01-01

    Tetracarboxylic porphyrins and polyethylene glycol (PEG) diamines were crosslinked in conditions that gave rise to a water-soluble porphyrin polyamide. Using PEG linkers 2 kDa or larger prevented fluorescence self-quenching. This networked porphyrin mesh was retained during dialysis with membranes with a 100 kDa pore size, yet passed through the membrane when centrifugal filtration was applied. Following intravenous administration, the porphyrin mesh, but not the free porphyrin, was rapidly cleared via renal excretion. The process could be monitored by fluorescence analysis of collected urine, with minimal background due to the large Stokes shift of the porphyrin (230 nm separating excitation and emission peaks). In a rhabdomyolysis mouse model of renal failure, porphyrin mesh urinary clearance was significantly impaired. This led to slower accumulation in the bladder, which could be visualized non-invasively via fluorescence imaging. Without further modification, the porphyrin mesh was chelated with (64)Cu for dynamic whole body positron emission tomography imaging of renal clearance. Together, these data show that small porphyrin-PEG polymers can serve as effective multimodal markers of renal function. PMID:26517562

  1. Two evolutionarily conserved sequence elements for Peg3/Usp29 transcription

    PubMed Central

    Kim, Jeong Do; Yu, Sungryul; Choo, Jung Ha; Kim, Joomyeong

    2008-01-01

    Background Two evolutionarily Conserved Sequence Elements, CSE1 and CSE2 (YY1 binding sites), are found within the 3.8-kb CpG island surrounding the bidirectional promoter of two imprinted genes, Peg3 (Paternally expressed gene 3) and Usp29 (Ubiquitin-specific protease 29). This CpG island is a likely ICR (Imprinting Control Region) that controls transcription of the 500-kb genomic region of the Peg3 imprinted domain. Results The current study investigated the functional roles of CSE1 and CSE2 in the transcriptional control of the two genes, Peg3 and Usp29, using cell line-based promoter assays. The mutation of 6 YY1 binding sites (CSE2) reduced the transcriptional activity of the bidirectional promoter in the Peg3 direction in an orientation-dependent manner, suggesting an activator role for CSE2 (YY1 binding sites). However, the activity in the Usp29 direction was not detectable regardless of the presence/absence of YY1 binding sites. In contrast, mutation of CSE1 increased the transcriptional activity of the promoter in both the Peg3 and Usp29 directions, suggesting a potential repressor role for CSE1. The observed repression by CSE1 was also orientation-dependent. Serial mutational analyses further narrowed down two separate 6-bp-long regions within the 42-bp-long CSE1 which are individually responsible for the repression of Peg3 and Usp29. Conclusion CSE2 (YY1 binding sites) functions as an activator for Peg3 transcription, while CSE1 acts as a repressor for the transcription of both Peg3 and Usp29. PMID:19068137

  2. Structural insight into antibody-mediated antagonism of the Glucagon-like peptide-1 Receptor

    PubMed Central

    Hennen, Stephanie; Kodra, János T.; Soroka, Vladyslav; Krogh, Berit O.; Wu, Xiaoai; Kaastrup, Peter; Ørskov, Cathrine; Rønn, Sif G.; Schluckebier, Gerd; Barbateskovic, Silvia; Gandhi, Prafull S.; Reedtz-Runge, Steffen

    2016-01-01

    The Glucagon-like peptide-1 receptor (GLP-1R) is a member of the class B G protein-coupled receptor (GPCR) family and a well-established target for the treatment of type 2 diabetes. The N-terminal extracellular domain (ECD) of GLP-1R is important for GLP-1 binding and the crystal structure of the GLP-1/ECD complex was reported previously. The first structure of a class B GPCR transmembrane (TM) domain was solved recently, but the full length receptor structure is still not well understood. Here we describe the molecular details of antibody-mediated antagonism of the GLP-1R using both in vitro pharmacology and x-ray crystallography. We showed that the antibody Fab fragment (Fab 3F52) blocked the GLP-1 binding site of the ECD directly and thereby acts as a competitive antagonist of native GLP-1. Interestingly, Fab 3F52 also blocked a short peptide agonist believed to engage primarily the transmembrane and extracellular loop region of GLP-1R, whereas functionality of an allosteric small-molecule agonist was not inhibited. This study has implications for the structural understanding of the GLP-1R and related class B GPCRs, which is important for the development of new and improved therapeutics targeting these receptors. PMID:27196125

  3. Male fertility and obesity: are ghrelin, leptin and glucagon-like peptide-1 pharmacologically relevant?

    PubMed

    Alves, Marco G; Jesus, Tito T; Sousa, Mário; Goldberg, Erwin; Silva, Branca M; Oliveira, Pedro F

    2016-01-01

    Obesity is rising to unprecedented numbers, affecting a growing number of children, adolescents and young adult men. These individuals face innumerous health problems, including subfertility or even infertility. Overweight and obese men present severe alterations in their body composition and hormonal profile, particularly in ghrelin, leptin and glucagon-like peptide-1 (GLP-1) levels. It is well known that male reproductive health is under the control of the individual's nutritional status and also of a tight network of regulatory signals, particularly hormonal signaling. However, few studies have been focused on the effects of ghrelin, leptin and GLP-1 in male reproduction and how energy homeostasis and male reproductive function are linked. These hormones regulate body glucose homeostasis and several studies suggest that they can serve as targets for anti-obesity drugs. In recent years, our understanding of the mechanisms of action of these hormones has grown significantly. Curiously, their effect on male reproductive potential, that is highly dependent of the metabolic cooperation established between testicular cells, remains a matter of debate. Herein, we review general concepts of male fertility and obesity, with a special focus on the effects of ghrelin, leptin and GLP-1 on male reproductive health. We also discuss the possible pharmacological relevance of these hormones to counteract the fertility problems that overweight and obese men face. PMID:26648473

  4. Structural insight into antibody-mediated antagonism of the Glucagon-like peptide-1 Receptor.

    PubMed

    Hennen, Stephanie; Kodra, János T; Soroka, Vladyslav; Krogh, Berit O; Wu, Xiaoai; Kaastrup, Peter; Ørskov, Cathrine; Rønn, Sif G; Schluckebier, Gerd; Barbateskovic, Silvia; Gandhi, Prafull S; Reedtz-Runge, Steffen

    2016-01-01

    The Glucagon-like peptide-1 receptor (GLP-1R) is a member of the class B G protein-coupled receptor (GPCR) family and a well-established target for the treatment of type 2 diabetes. The N-terminal extracellular domain (ECD) of GLP-1R is important for GLP-1 binding and the crystal structure of the GLP-1/ECD complex was reported previously. The first structure of a class B GPCR transmembrane (TM) domain was solved recently, but the full length receptor structure is still not well understood. Here we describe the molecular details of antibody-mediated antagonism of the GLP-1R using both in vitro pharmacology and x-ray crystallography. We showed that the antibody Fab fragment (Fab 3F52) blocked the GLP-1 binding site of the ECD directly and thereby acts as a competitive antagonist of native GLP-1. Interestingly, Fab 3F52 also blocked a short peptide agonist believed to engage primarily the transmembrane and extracellular loop region of GLP-1R, whereas functionality of an allosteric small-molecule agonist was not inhibited. This study has implications for the structural understanding of the GLP-1R and related class B GPCRs, which is important for the development of new and improved therapeutics targeting these receptors. PMID:27196125

  5. Ballistic energy transport in PEG oligomers

    NASA Astrophysics Data System (ADS)

    Lin, Zhiwei; Rubtsova, Natalia I.; Kireev, Victor V.; Rubtsov, Igor V.

    2013-03-01

    Energy transport between the terminal groups of the azido-PEG-succinimide ester compounds with a number of repeating PEG units of 0, 4, 8, and 12 was studied using relaxation-assisted two-dimensional infrared spectroscopy. The through-bond energy transport time, evaluated as the waiting time at which the cross peak maximum is reached, Tmax, was found to be linearly dependent on the chain length for chain lengths up to 60 Å suggesting a ballistic energy transport regime. The through-bond energy transport speed is found to be ca. 500 m/s. The cross-peak amplitude at the maximum decays exponentially with the chain length with a characteristic decay distance of 15.7 ± 1 Å. Substantial mode delocalization across the PEG bridge is found, which can support the energy propagation as a wavepacket.

  6. Injectable in situ forming depot systems: PEG-DAE as novel solvent for improved PLGA storage stability.

    PubMed

    Schoenhammer, K; Petersen, H; Guethlein, F; Goepferich, A

    2009-04-17

    Injectable in situ forming depots (ISFD) that contain a peptide or a protein within a polymeric solution comprise an attractive, but challenging application system. Beyond chemical compatibility, local tolerability and acute toxicity, an important factor for an ISFD is its storage stability as a liquid. In this study, poly(D,L-lactide-co-glycolide) (PLGA) degradation in the presence of poly(ethyleneglycol) (PEG) as biocompatible solvent was investigated as a function of storage temperature and water content. The PLGA molecular weight (Mw) was determined by gel permeation chromatography (GPC), and monitored by NMR during degradation. Rapid PLGA degradation of 75% at 25 degrees C storage temperature was shown to be the result of a transesterification using conventional PEG as solvent. A significant improvement with only 3% Mw loss was obtained by capping the PEG hydroxy- with an alkyl- endgroup to have poly(ethyleneglycol) dialkylether (PEG-DAE). The formation of PEG-PLGA block co-polymers was confirmed by NMR, only for PEG300. Reaction rate constants were used to compare PLGA degradation dissolved in conventional and alkylated PEGs. The degradation kinetics in PEG-DAE were almost completely insensitive to 1% additional water in the solution. The transesterification of the hydroxy endgroups of PEG with PLGA was the major degradation mechanism, even under hydrous conditions. The use of PEG-DAE for injectable polymeric solutions, showed PLGA stability under the chosen conditions for at least 2 months. Based on the results obtained here, PEG-DAE appears to be a promising excipient for PLGA-based, parenteral ISFD. PMID:19135512

  7. Anti-PEG immunity: emergence, characteristics, and unaddressed questions

    PubMed Central

    Yang, Qi; Lai, Samuel K.

    2015-01-01

    The modification of protein and nanoparticle therapeutics with polyethylene glycol (PEG), a flexible, uncharged and highly hydrophilic polymer, is a widely adopted approach to reduce RES clearance, extend circulation time, and improve drug efficacy. Nevertheless, an emerging body of literature, generated by numerous research groups, demonstrates that the immune system can produce antibodies that specifically bind PEG, which can lead to the “accelerated blood clearance” of PEGylated therapeutics. In animals, anti-PEG immunity is typically robust but short-lived and consists of a predominantly anti-PEG IgM response. Rodent studies suggest that the induction of anti-PEG antibodies (α-PEG Abs) primarily occurs through a type 2 T-cell independent mechanism. Although anti-PEG immunity is less well-studied in humans, the presence of α-PEG Abs has been correlated with reduced efficacy of PEGylated therapeutics in clinical trials. The prevalence of anti-PEG IgG and reports of memory immune responses, as well as the existence of α-PEG Abs in healthy untreated individuals, suggests that the mechanism(s) and features of human anti-PEG immune responses may differ from those of animal models. Many questions, including the incidence rate of pre-existing α-PEG Abs and immunological mechanism(s) of α-PEG Ab formation in humans, must be answered in order to fully address the potential complications of anti-PEG immunity. PMID:25707913

  8. PEG-modified carbon nanotubes in biomedicine: current status and challenges ahead.

    PubMed

    Bottini, Massimo; Rosato, Nicola; Bottini, Nunzio

    2011-10-10

    Since their discovery at the end of the previous millennium, carbon nanotubes (CNTs) have been the object of thousands of papers describing their applications in fields ranging from physics to electronics, photonics, chemistry, biology, and medicine. The development of chemical approaches to modify their graphitic sidewalls enabled the generation of poly(ethylene glycol) (PEG)-modified CNTs and their exploration in multiple biomedical applications. Studies at the cellular and organism level revealed that PEG-modified CNTs have favorable pharmacokinetic and toxicology profiles. Recently, PEG-modified CNTs have been successfully tested in preclinical studies in the fields of oncology, neurology, vaccination, and imaging, suggesting that they are well suited for the generation of novel multifunctional nanodrugs. Here we will review published data about the application of PEG-modified CNTs as in vitro and in vivo therapeutic and imaging tools and describe what is known about the interaction between PEG-modified CNTs and biological systems. Although several pieces of the puzzle are still missing, we will also attempt to formulate a preliminary structure-function model for PEG-modified CNT cellular trafficking, disposition, and side effects. PMID:21916410

  9. Fractional crystallization and homogeneous nucleation of confined PEG microdomains in PBS-PEG multiblock copolymers.

    PubMed

    Huang, Cai-Li; Jiao, Ling; Zeng, Jian-Bing; Zhang, Jing-Jing; Yang, Ke-Ke; Wang, Yu-Zhong

    2013-09-12

    Fractional crystallization, homogeneous nucleation of poly(ethylene glycol) (PEG) segment, and self-nucleation behavior of PEG segment within miscible double crystalline poly(butylene succinate)-poly(ethylene glycol) (PBSEG) multiblock copolymers with different composition and segment chain length were studied by differential scanning calorimetry (DSC). Surface morphology of PBSEG10K with different PEG content was investigated by atomic force microscope (AFM). Different from di- or triblock copolymers, the microstructure and confinement of PEG dispersed phase in PBS matrix phase highly depends on chain length and sequence as well as segment content. The transition point of the PEG segment content from heterogeneous to homogeneous nucleation mechanism decreased from 50 to 39 wt % with PEG segment chain length increasing from 1000 to 2000 g/mol. When PEG segment chain length increased further to 6000 and 10000 g/mol, homogeneous nucleation phenomenon took place at much lower PEG content and fractional crystallization was observed at 29 and 24 wt %, respectively. Homogeneous nucleation mechanism of PBSEG(1K-36), PBSEG(2K-26), PBSEG(6K-19), and PBSEG(10K-12) was evidenced by the large supercoolings needed for crystallization, as well as first-order crystallization kinetics obtained. Self-nucleation behaviors of PEG segment still rely on the composition of PBSEGs. In the case of heterogeneous nucleation crystallization, self-nucleation behaviors of PEG segment showed standard self-nucleation behavior with classical three self-nucleation domains. When the crystallizable chains were confined into isolated microdomains, however, self-nucleation domain (domain II) disappeared. The absence of III(A) was observed in PBSEG(2K-39), while PBSEG(6K-29) had both III(A) and III(SA). Furthermore, AFM morphology studies still indicated the confined degree of PEG segment by previous PBS crystals was profoundly influenced by segment fraction. The confinement of the PEG segment by

  10. Effects of glucagon-like peptide-1 receptor agonists on non-alcoholic fatty liver disease and inflammation.

    PubMed

    Wang, Xing-Chun; Gusdon, Aaron M; Liu, Huan; Qu, Shen

    2014-10-28

    Glucagon-like peptide1 (GLP-1) is secreted from Langerhans cells in response to oral nutrient intake. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are a new class of incretin-based anti-diabetic drugs. They function to stimulate insulin secretion while suppressing glucagon secretion. GLP-1-based therapies are now well established in the management of type 2 diabetes mellitus (T2DM), and recent literature has suggested potential applications of these drugs in the treatment of obesity and for protection against cardiovascular and neurological diseases. As we know, along with change in lifestyles, the prevalence of non-alcoholic fatty liver disease (NAFLD) in China is rising more than that of viral hepatitis and alcoholic fatty liver disease, and NAFLD has become the most common chronic liver disease in recent years. Recent studies further suggest that GLP-1RAs can reduce transaminase levels to improve NAFLD by improving blood lipid levels, cutting down the fat content to promote fat redistribution, directly decreasing fatty degeneration of the liver, reducing the degree of liver fibrosis and improving inflammation. This review shows the NAFLD-associated effects of GLP-1RAs in animal models and in patients with T2DM or obesity who are participants in clinical trials. PMID:25356042

  11. Characterization of Thiol-Ene Crosslinked PEG Hydrogels

    PubMed Central

    Toepke, Michael W.; Impellitteri, Nicholas A.; Theisen, Jeffrey M.

    2014-01-01

    The properties of synthetic hydrogels can be tuned to address the needs of many tissue-culture applications. This work characterizes the swelling and mechanical properties of thiol-ene crosslinked PEG hydrogels made with varying prepolymer formulations, demonstrating that hydrogels with a compressive modulus exceeding 600 kPa can be formed. The amount of peptide incorporated into the hydrogel is shown to be proportional to the amount of peptide in the prepolymer solution. Cell attachment and spreading on the surface of the peptide-functionalized hydrogels is demonstrated. Additionally, a method for bonding distinct layers of cured hydrogels is used to create a microfluidic channel. PMID:24883041

  12. Polyethylene glycol-electrolyte solution (PEG-ES)

    MedlinePlus

    Polyethylene glycol-electrolyte solution (PEG-ES) is used to empty the colon (large intestine, bowel) before a ... Polyethylene glycol-electrolyte solution (PEG-ES) comes as a powder to mix with water and take by ...

  13. The mechanism of glucagon-like peptide-1 participation in the osmotic homeostasis.

    PubMed

    Natochin, Yu V; Marina, A S; Kutina, A V; Balbotkina, E V; Karavashkina, T A

    2016-07-01

    We have found the physiological mechanism of intensification of the excessive fluid removal from the body under the action of glucagon-like peptide-1 and its analog exenatide. Under the water load in rats, exenatide significantly increased the clearance of lithium, reduced fluid reabsorption in the proximal tubule of the nephron and intensified reabsorption of sodium ions in the distal parts, which contributed to the formation of sodium-free water and faster recovery of osmotic homeostasis. Blocking this pathway with a selective antagonist of glucagon-like peptide-1 receptors slowed down the elimination of excessive water from the body. PMID:27595820

  14. Internal Nanoparticle Structure of Temperature-Responsive Self-Assembled PNIPAM-b-PEG-b-PNIPAM Triblock Copolymers in Aqueous Solutions: NMR, SANS, and Light Scattering Studies.

    PubMed

    Filippov, Sergey K; Bogomolova, Anna; Kaberov, Leonid; Velychkivska, Nadiia; Starovoytova, Larisa; Cernochova, Zulfiya; Rogers, Sarah E; Lau, Wing Man; Khutoryanskiy, Vitaliy V; Cook, Michael T

    2016-05-31

    In this study, we report detailed information on the internal structure of PNIPAM-b-PEG-b-PNIPAM nanoparticles formed from self-assembly in aqueous solutions upon increase in temperature. NMR spectroscopy, light scattering, and small-angle neutron scattering (SANS) were used to monitor different stages of nanoparticle formation as a function of temperature, providing insight into the fundamental processes involved. The presence of PEG in a copolymer structure significantly affects the formation of nanoparticles, making their transition to occur over a broader temperature range. The crucial parameter that controls the transition is the ratio of PEG/PNIPAM. For pure PNIPAM, the transition is sharp; the higher the PEG/PNIPAM ratio results in a broader transition. This behavior is explained by different mechanisms of PNIPAM block incorporation during nanoparticle formation at different PEG/PNIPAM ratios. Contrast variation experiments using SANS show that the structure of nanoparticles above cloud point temperatures for PNIPAM-b-PEG-b-PNIPAM copolymers is drastically different from the structure of PNIPAM mesoglobules. In contrast with pure PNIPAM mesoglobules, where solidlike particles and chain network with a mesh size of 1-3 nm are present, nanoparticles formed from PNIPAM-b-PEG-b-PNIPAM copolymers have nonuniform structure with "frozen" areas interconnected by single chains in Gaussian conformation. SANS data with deuterated "invisible" PEG blocks imply that PEG is uniformly distributed inside of a nanoparticle. It is kinetically flexible PEG blocks which affect the nanoparticle formation by prevention of PNIPAM microphase separation. PMID:27159129

  15. Evaluation of PEG and mPEG-co-(PGA-co-PDL) microparticles loaded with sodium diclofenac

    PubMed Central

    Tawfeek, Hesham M.

    2013-01-01

    The aim of this study was to synthesize and evaluate novel biodegradable polyesters namely; poly(ethylene glycol)-Poly(glycerol adipate-co-ω-pentadecalactone), PEG-PGA-co-PDL-PEG, and poly(ethylene glycol methyl ether)-Poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL-PEGme as an alternative sustained release carrier for lung delivery compared with non-PEG containing polymer PGA-co-PDL. The co-polymers were synthesized through lipase catalysis ring opening polymerization reaction and characterized using GPC, FT-IR, 1H-NMR and surface contact angle. Furthermore, microparticles containing a model hydrophilic drug, sodium diclofenac, were prepared via spray drying from a modified single emulsion and characterized for their encapsulation efficiency, geometrical particle size, zeta potential, tapped density, primary aerodynamic diameter, amorphous nature, morphology, in vitro release and the aerosolization performance. Microparticles fabricated from mPEG-co-polymer can be targeted to the lung periphery with an optimum in vitro deposition. Furthermore, a significantly higher in vitro release (p > 0.05, ANOVA/Dunnett’s) was observed with the PEG and mPEG-co-polymers compared to PGA-co-PDL. In addition, these co-polymers have a good safety profile upon testing on human bronchial epithelial, 16HBE14o- cell lines. PMID:24227959

  16. Glucagon-Like Peptide-1 Regulates Cholecystokinin Production in β-Cells to Protect From Apoptosis

    PubMed Central

    Linnemann, Amelia K.; Neuman, Joshua C.; Battiola, Therese J.; Wisinski, Jaclyn A.; Kimple, Michelle E.

    2015-01-01

    Cholecystokinin (CCK) is a classic gut hormone that is also expressed in the pancreatic islet, where it is highly up-regulated with obesity. Loss of CCK results in increased β-cell apoptosis in obese mice. Similarly, islet α-cells produce increased amounts of another gut peptide, glucagon-like peptide 1 (GLP-1), in response to cytokine and nutrient stimulation. GLP-1 also protects β-cells from apoptosis via cAMP-mediated mechanisms. Therefore, we hypothesized that the activation of islet-derived CCK and GLP-1 may be linked. We show here that both human and mouse islets secrete active GLP-1 as a function of body mass index/obesity. Furthermore, GLP-1 can rapidly stimulate β-cell CCK production and secretion through direct targeting by the cAMP-modulated transcription factor, cAMP response element binding protein (CREB). We find that cAMP-mediated signaling is required for Cck expression, but CCK regulation by cAMP does not require stimulatory levels of glucose or insulin secretion. We also show that CREB directly targets the Cck promoter in islets from obese (Leptinob/ob) mice. Finally, we demonstrate that the ability of GLP-1 to protect β-cells from cytokine-induced apoptosis is partially dependent on CCK receptor signaling. Taken together, our work suggests that in obesity, active GLP-1 produced in the islet stimulates CCK production and secretion in a paracrine manner via cAMP and CREB. This intraislet incretin loop may be one mechanism whereby GLP-1 protects β-cells from apoptosis. PMID:25984632

  17. Glucagon-Like Peptide-1 Regulates Cholecystokinin Production in β-Cells to Protect From Apoptosis.

    PubMed

    Linnemann, Amelia K; Neuman, Joshua C; Battiola, Therese J; Wisinski, Jaclyn A; Kimple, Michelle E; Davis, Dawn Belt

    2015-07-01

    Cholecystokinin (CCK) is a classic gut hormone that is also expressed in the pancreatic islet, where it is highly up-regulated with obesity. Loss of CCK results in increased β-cell apoptosis in obese mice. Similarly, islet α-cells produce increased amounts of another gut peptide, glucagon-like peptide 1 (GLP-1), in response to cytokine and nutrient stimulation. GLP-1 also protects β-cells from apoptosis via cAMP-mediated mechanisms. Therefore, we hypothesized that the activation of islet-derived CCK and GLP-1 may be linked. We show here that both human and mouse islets secrete active GLP-1 as a function of body mass index/obesity. Furthermore, GLP-1 can rapidly stimulate β-cell CCK production and secretion through direct targeting by the cAMP-modulated transcription factor, cAMP response element binding protein (CREB). We find that cAMP-mediated signaling is required for Cck expression, but CCK regulation by cAMP does not require stimulatory levels of glucose or insulin secretion. We also show that CREB directly targets the Cck promoter in islets from obese (Leptin(ob/ob)) mice. Finally, we demonstrate that the ability of GLP-1 to protect β-cells from cytokine-induced apoptosis is partially dependent on CCK receptor signaling. Taken together, our work suggests that in obesity, active GLP-1 produced in the islet stimulates CCK production and secretion in a paracrine manner via cAMP and CREB. This intraislet incretin loop may be one mechanism whereby GLP-1 protects β-cells from apoptosis. PMID:25984632

  18. Role of Central Glucagon-like Peptide-1 in Stress Regulation

    PubMed Central

    Ghosal, Sriparna; Myers, Brent; Herman, James P.

    2013-01-01

    Glucagon-like peptide 1 (GLP-1) is best known as an incretin hormone, secreted from L cells in the intestine in response to nutrient ingestion to stimulate glucose-dependent insulin secretion. However, GLP-1 is also expressed in neurons, and plays a major role in regulation of homeostatic function within the central nervous system (CNS). This review summarizes our current state of knowledge on the role GLP-1 plays in neural coordination of the organismal stress response. In brain, the primary locus of GLP-1 production is in the caudal nucleus of the solitary tract (NTS) and the ventrolateral medulla of the hindbrain. GLP-1 immunoreactive fibers directly innervate hypophysiotrophic corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus (PVN), placing GLP-1 in prime position to integrate hypothalamo-pituitary-adrenocortical responses. Exogenous central GLP-1 activates HPA axis stress responses, and responses to a variety of stressors can be blocked by a GLP-1 receptor (GLP-1R) antagonist, confirming an excitatory role in glucocorticoid secretion. In addition, central infusion of GLP-1R agonist increases heart rate and blood pressure, and activates hypothalamic and brainstem neurons innervating sympathetic preganglionic neurons, suggesting a sympathoexcitatory role of GLP-1 in the CNS. Bioavailability of preproglucagon (PPG) mRNA and GLP-1 peptide is reduced by exogenous or endogenous glucocorticoid secretion, perhaps as a mechanism to reduce GLP-1-mediated stress excitation. Altogether, the data suggest that GLP-1 plays a key role in activation of stress responses, which may be connected with its role in central regulation of energy homeostasis. PMID:23623992

  19. Glucagon-like peptide-1 gastrointestinal regulatory role in metabolism and motility.

    PubMed

    Hellström, Per M

    2010-01-01

    Gastrointestinal (GI) motility, primarily gastric emptying, balances the hormonal output that takes place after food intake in order to maintain stable blood sugar. The incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), work together to reduce postprandial hyperglycemia by glucose-dependent insulin secretion and inhibition of glucagon release, as well as inhibition of GI motility and gastric emptying. GLP-1 is considered the more effective of the two incretins due to its additional inhibitory effects on GI motility. It is observed that patients on treatment with GLP-1 analogues or exenatide achieve a considerable weight loss during treatment. This is of benefit to improve insulin resistance in type 2 diabetes. Furthermore, weight loss per se is of considerable benefit in an even longer health perspective. The weight loss is considered to be due to the inhibition of GI motility. This effect has been studied in animal experimentation, and from there taken to involve studies on GI motility in healthy volunteers and patients with irritable bowel syndrome (IBS). Evolving to a phase II study in IBS, the GLP-1 analogue (ROSE-010) was recently shown to be effective for treatment of acute pain attacks in IBS. Taken together, data speak in favor of GI motility as a central component not only in metabolic disorders but also in IBS, be it due to a direct relaxing effect on GI smooth muscle or a slow emptying of gastric contents resulting in a less outspoken nutritional demand on hormonal regulatory functions in the GI tract. PMID:21094906

  20. Probing adsorption of DSPE-PEG2000 and DSPE-PEG5000 to the surface of felodipine and griseofulvin nanocrystals.

    PubMed

    Rydberg, Hanna A; Yanez Arteta, Marianna; Berg, Staffan; Lindfors, Lennart; Sigfridsson, Kalle

    2016-08-20

    Nanosized formulations of poorly water-soluble drugs show great potential due to improved bioavailability. In order to retain colloidal stability, the nanocrystals need to be stabilized. Here we explore the use of the poly(ethylene glycol) (PEG) conjugated phospholipids DSPE-PEG2000 and DSPE-PEG5000 as stabilizers of felodipine and griseofulvin nanocrystals. Nanocrystal stability and physicochemical properties were examined and the interaction between the PEGylated lipids and the nanocrystal surface as well as a macroscopic model surface was investigated. Using quartz crystal microbalance with dissipation monitoring both mass adsorption and the thickness of the adsorbed layer were estimated. The results indicate that the PEGylated lipids are adsorbed as flat layers of around 1-3nm, and that DSPE-PEG5000 forms a thicker layer compared with DSPE-PEG2000. In addition, the mass adsorption to the drug crystals and the model surface are seemingly comparable. Furthermore, both DSPE-PEG2000 and DSPE-PEG5000 rendered stable drug nanocrystals, with a somewhat higher surface binding and stability seen for DSPE-PEG2000. These results suggest DSPE-PEG2000 and DSPE-PEG5000 as efficient nanocrystal stabilizers, with DSPE-PEG2000 giving a somewhat higher surface coverage and superior colloidal stability, whereas DSPE-PEG5000 shows a more extended structure that may have advantages for prolongation of circulation time in vivo and facilitation for targeting modifications. PMID:27329674

  1. The labeling of stem cells by superparamagnetic iron oxide nanoparticles modified with PEG/PVP or PEG/PEI.

    PubMed

    Yang, Gao; Ma, Weiqiong; Zhang, Baolin; Xie, Qi

    2016-05-01

    Poly(ethylene glycol) (PEG) and poly(vinyl pyrrolidone) (PVP) co-modified superparamagnetic iron oxide nanoparticles (SPIONs) (PEG/PVP-SPIONs), and PEG and poly(ethylene imine) (PEI) co-modified SPIONs (PEG/PEI-SPIONs) synthesized by thermal decomposition have been used as magnetic resonance imaging (MRI) contrast agents to label adipose-derived stem cells (ADSCs). Efficient cell labeling was achieved after incubation with PEG/PVP-SPIONs and PEG/PEI-SPIONs for 12h, and the MRI of labeled cells was evaluated. The cell viability tests showed the low cytotoxicity of PEG/PVP-SPIONs and PEG/PEI-SPIONs. The cellular iron content incubated with PEG/PVP-SPIONs at a concentration of 25 μg/ml was 6.96 pg/cell, the cellular iron contents incubated with PEG/PEI-SPIONs at concentrations of 12 and 25 μg/ml were 20.16, 35.4 pg/cell, respectively. The SPIONs were located predominantly in the intracellular vesicles. The cellular iron oxide uptake was significantly high after incubation with PEG/PEI-SPIONs as compared with the commercial iron oxide agents (Feridex, Feridex@PLL, Resovist and Resovist@PLL) reported. This work demonstrates that PEG/PEI-SPIONs are the competent agents for the labeling of ADSCs. PMID:26952437

  2. Preparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA

    NASA Astrophysics Data System (ADS)

    Zou, Weiwei; Liu, Chunxi; Chen, Zhijin; Zhang, Na

    2009-09-01

    The purpose of the present work was to formulate and evaluate cationic poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) nanoparticles as novel non-viral gene delivery nano-device. Cationic PLA-PEG nanoparticles were prepared by nanoprecipitation method. The gene loaded nanoparticles were obtained by incubating the report gene pEGFP with cationic PLA-PEG nanoparticles. The physicochemical properties (e.g., morphology, particle size, surface charge, DNA binding efficiency) and biological properties (e.g., integrity of the released DNA, protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in Hela cells) of the gene loaded PLA-PEG nanoparticles were evaluated, respectively. The obtained cationic PLA-PEG nanoparticles and gene loaded nanoparticles were both spherical in shape with average particle size of 89.7 and 128.9 nm, polydispersity index of 0.185 and 0.161, zeta potentials of +28.9 and +16.8 mV, respectively. The obtained cationic PLA-PEG nanoparticles with high binding efficiency (>95%) could protect the loaded DNA from the degradation by nuclease and plasma. The nanoparticles displayed sustained-release properties in vitro and the released DNA maintained its structural and functional integrity. It also showed lower cytotoxicity than Lipofectamine 2000 and could successfully transfect gene into Hela cells even in presence of serum. It could be concluded that the established gene loaded cationic PLA-PEG nanoparticles with excellent properties were promising non-viral nano-device, which had potential to make cancer gene therapy achievable.

  3. PEG closure in the second attempt

    PubMed Central

    Schiffmann, Leif; Roth, Marin; Kuehn, Florian

    2016-01-01

    Background and study aims: This case report demonstrates successful endoscopic treatment of a persistent gastrocutaneous fistula after removal of a percutaneous endoscopic gastrostomy (PEG) in a 21-year-old patient with mucoviscidosis after lung transplantation. Because the initial OTSC clip (gastric) did not close the fistula sufficiently, we had to remove it and replace it with a larger OTSC clip (colon) in a second intervention. That clip finally sufficiently closed the fistula. PMID:27556092

  4. [The physiology of glucagon-like peptide-1 and its role in the pathophysiology of type 2 diabetes mellitus].

    PubMed

    Escalada, Francisco Javier

    2014-01-01

    The hormone glucagon-like peptide-1 (GLP-1) is synthesized and secreted by L cells in the small intestine in response to food ingestion. After reaching the general circulation it has a half-life of 2-3 minutes due to degradation by the enzyme dipeptidyl peptidase-4. Its physiological role is directed to control plasma glucose concentration, though GLP-1 also plays other different metabolic functions following nutrient absorption. Biological activities of GLP-1 include stimulation of insulin biosynthesis and glucose-dependent insulin secretion by pancreatic beta cell, inhibition of glucagon secretion, delay of gastric emptying and inhibition of food intake. GLP-1 is able to reduce plasma glucose levels in patients with type 2 diabetes and also can restore beta cell sensitivity to exogenous secretagogues, suggesting that the increasing GLP-1 concentration may be an useful therapeutic strategy for the treatment of patients with type 2 diabetes. PMID:25326836

  5. [The physiology of glucagon-like peptide-1 and its role in the pathophysiology of type 2 diabetes mellitus].

    PubMed

    Escalada, Francisco Javier

    2014-09-01

    The hormone glucagon-like peptide-1 (GLP-1) is synthesized and secreted by L cells in the small intestine in response to food ingestion. After reaching the general circulation it has a half-life of 2-3 minutes due to degradation by the enzyme dipeptidyl peptidase-4. Its physiological role is directed to control plasma glucose concentration, though GLP-1 also plays other different metabolic functions following nutrient absorption. Biological activities of GLP-1 include stimulation of insulin biosynthesis and glucose-dependent insulin secretion by pancreatic beta cell, inhibition of glucagon secretion, delay of gastric emptying and inhibition of food intake. GLP-1 is able to reduce plasma glucose levels in patients with type 2 diabetes and also can restore beta cell sensitivity to exogenous secretagogues, suggesting that the increasing GLP-1 concentration may be an useful therapeutic strategy for the treatment of patients with type 2 diabetes. PMID:25437458

  6. Generation and Recovery of β-cell Spheroids From Step-growth PEG-peptide Hydrogels

    PubMed Central

    Raza, Asad; Lin, Chien-Chi

    2012-01-01

    Hydrogels are hydrophilic crosslinked polymers that provide a three-dimensional microenvironment with tissue-like elasticity and high permeability for culturing therapeutically relevant cells or tissues. Hydrogels prepared from poly(ethylene glycol) (PEG) derivatives are increasingly used for a variety of tissue engineering applications, in part due to their tunable and cytocompatible properties. In this protocol, we utilized thiol-ene step-growth photopolymerizations to fabricate PEG-peptide hydrogels for encapsulating pancreatic MIN6 b-cells. The gels were formed by 4-arm PEG-norbornene (PEG4NB) macromer and a chymotrypsin-sensitive peptide crosslinker (CGGYC). The hydrophilic and non-fouling nature of PEG offers a cytocompatible microenvironment for cell survival and proliferation in 3D, while the use of chymotrypsin-sensitive peptide sequence (CGGY↓C, arrow indicates enzyme cleavage site, while terminal cysteine residues were added for thiol-ene crosslinking) permits rapid recovery of cell constructs forming within the hydrogel. The following protocol elaborates techniques for: (1) Encapsulation of MIN6 β-cells in thiol-ene hydrogels; (2) Qualitative and quantitative cell viability assays to determine cell survival and proliferation; (3) Recovery of cell spheroids using chymotrypsin-mediated gel erosion; and (4) Structural and functional analysis of the recovered spheroids. PMID:23241531

  7. Modeling and self-assembly behavior of PEG-PLA-PEG triblock copolymers in aqueous solution

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohan; Li, Suming; Coumes, Fanny; Darcos, Vincent; Lai Kee Him, Joséphine; Bron, Patrick

    2013-09-01

    A series of poly(ethylene glycol)-polylactide-poly(ethylene glycol) (PEG-PLA-PEG) triblock copolymers with symmetric or asymmetric chain structures were synthesized by combination of ring-opening polymerization and copper-catalyzed click chemistry. The resulting copolymers were used to prepare self-assembled aggregates by dialysis. Various architectures such as nanotubes, polymersomes and spherical micelles were observed from transmission electron microscopy (TEM), cryo-TEM and atomic force microscopy (AFM) measurements. The formation of diverse aggregates is explained by modeling from the angle of both geometry and thermodynamics. From the angle of geometry, a ``blob'' model based on the Daoud-Cotton model for star polymers is proposed to describe the aggregate structures and structural changes with copolymer composition and molar mass. In fact, the copolymer chains extend in aqueous medium to form single layer polymersomes to minimize the system's free energy if one of the two PEG blocks is short enough. The curvature of polymersomes is dependent on the chain structure of copolymers, especially on the length of PLA blocks. A constant branch number of aggregates (f) is thus required to preserve the morphology of polymersomes. Meanwhile, the aggregation number (Nagg) determined from the thermodynamics of self-assembly is roughly proportional to the total length of polymer chains. Comparing f to Nagg, the aggregates take the form of polymersomes if Nagg ~ f, and change to nanotubes if Nagg > f to conform to the limits from both curvature and aggregation number. The length of nanotubes is mainly determined by the difference between Nagg and f. However, the hollow structure becomes unstable when both PEG segments are too long, and the aggregates eventually collapse to yield spherical micelles. Therefore, this work gives new insights into the self-assembly behavior of PEG-PLA-PEG triblock copolymers in aqueous solution which present great interest for biomedical and

  8. Characterizing the physical properties of solidified PEG, an analog for basaltic lava crust

    NASA Astrophysics Data System (ADS)

    Soule, S. A.; Cashman, K.; Rust, A.

    2001-12-01

    The crust of a basaltic lava flow provides significant resistance to flow and is an important indicator of lava flow dynamics. Analog studies using polyethylene glycol (PEG), such as those by Fink and Griffiths (1990) and Griffiths and Fink (1992), are a useful means to determine the conditions under which different crustal morphologies are produced. To accurately apply the results of these studies to natural systems, we must understand how to scale between basaltic lava and its analog, PEG. The long-term goal of our study is to characterize the physical properties of both materials for the purpose of developing scaling relationships. We have designed a set of experiments to determine the strength and viscosity of solidified PEG. We measure the ductile deformation and failure of PEG under tension and in simple shear. Experiments are conducted with either constant stress or constant strain rate and at a range of temperatures (5 to 25 \\deg C). Tension experiments are conducted on hourglass-shaped PEG casts with failure occurring at the midpoint of the hourglass. Tension is produced by hanging weight (constant stress) or by pulling with a DC servo motor (constant strain rate). Simple shear experiments are conducted by turning a gear frozen into a sheet of PEG. A thinned ring of crust centered around the gear controls the failure location. From constant stress experiments, we measure pre-failure ductile deformation of the PEG to determine its viscosity. Constant strain rate experiments allow us to determine the dependence of PEG strength on strain rate. To determine the physical properties of basaltic crust we are building a furnace capable of melting large quantities of basalt and conducting experiments at high temperature. The experiments conducted on PEG will aid in the design of similar experiments on lava. The results of this study will have applications beyond scaling between analog models and natural systems. The presence or absence of a continuous flow crust

  9. Fluorescent carbon dots capped with PEG200 and mercaptosuccinic acid.

    PubMed

    Gonçalves, Helena; Esteves da Silva, Joaquim C G

    2010-09-01

    The synthesis and functionalization of carbon nanoparticles with PEG(200) and mercaptosuccinic acid, rendering fluorescent carbon dots, is described. Fluorescent carbon dots (maximum excitation and emission at 320 and 430 nm, respectively) with average dimension 267 nm were obtained. The lifetime decay of the functionalized carbon dots is complex and a three component decay time model originated a good fit with the following lifetimes: τ(1) = 2.71 ns; τ(2) = 7.36 ns; τ(3) = 0.38 ns. The fluorescence intensity of the carbon dots is affected by the solvent, pH (apparent pK(a) of 7.4 ± 0.2) and iodide (Stern-Volmer constant of 78 ± 2 M(-1)). PMID:20352303

  10. Oral PEG 15-20 protects the intestine against radiation : role of lipid rafts.

    SciTech Connect

    Valuckaite, V.; Zaborina, O.; Long, J.; Hauer-Jensen, M.; Wang, J.; Holbrook, C.; Zaborin, A.; Drabik, K.; Katdare, M.; Mauceri, H.; Weichselbaum, R.; Firestone, M. A.; Lee, K. Y.; Chang, E. B.; Matthews, J.; Alverdy, J. C.; Materials Science Division; Univ. of Chicago; Univ. of Arkansas

    2009-12-01

    Intestinal injury following abdominal radiation therapy or accidental exposure remains a significant clinical problem that can result in varying degrees of mucosal destruction such as ulceration, vascular sclerosis, intestinal wall fibrosis, loss of barrier function, and even lethal gut-derived sepsis. We determined the ability of a high-molecular-weight polyethylene glycol-based copolymer, PEG 15-20, to protect the intestine against the early and late effects of radiation in mice and rats and to determine its mechanism of action by examining cultured rat intestinal epithelia. Rats were exposed to fractionated radiation in an established model of intestinal injury, whereby an intestinal segment is surgically placed into the scrotum and radiated daily. Radiation injury score was decreased in a dose-dependent manner in rats gavaged with 0.5 or 2.0 g/kg per day of PEG 15-20 (n = 9-13/group, P < 0.005). Complementary studies were performed in a novel mouse model of abdominal radiation followed by intestinal inoculation with Pseudomonas aeruginosa (P. aeruginosa), a common pathogen that causes lethal gut-derived sepsis following radiation. Mice mortality was decreased by 40% in mice drinking 1% PEG 15-20 (n = 10/group, P < 0.001). Parallel studies were performed in cultured rat intestinal epithelial cells treated with PEG 15-20 before radiation. Results demonstrated that PEG 15-20 prevented radiation-induced intestinal injury in rats, prevented apoptosis and lethal sepsis attributable to P. aeruginosa in mice, and protected cultured intestinal epithelial cells from apoptosis and microbial adherence and possible invasion. PEG 15-20 appeared to exert its protective effect via its binding to lipid rafts by preventing their coalescence, a hallmark feature in intestinal epithelial cells exposed to radiation.

  11. Synthesis and in vitro cytotoxicity of mPEG-SH modified gold nanorods

    NASA Astrophysics Data System (ADS)

    Didychuk, Candice L.; Ephrat, Pinhas; Belton, Michelle; Carson, Jeffrey J. L.

    2008-02-01

    Plasmon-resonant gold nanorods show great potential as an agent for contrast-enhanced biomedical imaging or for phototherapeutics. This is primarily due to the high molar extinction coefficient at the absorption maximum and the dependence of the wavelength of the absorption maximum on the aspect ratio, which is tunable in the near-infrared (NIR) during synthesis. Although gold nanorods can be produced in high-yield through the seed-mediated growth technique, the presence of residual cetyltrimethylammonium bromide (CTAB), a stabilizing surfactant required for nanorod growth, interferes with cell function and causes cytotoxicity. To overcome this potential obstacle to in vivo use, we synthesized gold nanorods and conjugated them to a methoxy (polyethylene glycol)-thiol (mPEG (5000)-SH). This approach yielded mPEG-SH modified gold nanorods with optical and morphometric properties that were similar to raw (CTAB) nanorods. Both the CTAB and mPEG-SH nanorods were tested for cytotoxicity against the HL-60 human leukemia cell line by trypan blue exclusion, and the mPEG-SH modified gold nanorods were also tested against a rat insulinoma (RIN-38) and squamous cell carcinoma (SCCVII) cell line. Cells incubated for 24 h with the mPEG-SH modified nanorods had little change in cell viability compared to cells incubated with vehicle alone. This was in contrast to cytotoxicity of CTAB nanorods on HL-60 cells. These results suggest that mPEG-SH modified gold nanorods are better suited for cell loading protocols and injection into animals and facilitate their use for imaging and phototherapeutic purposes.

  12. Effect of PEG-200 and Tween-20 on photoisomerization of 1-alkyl-2-(arylazo)imidazoles in toluene

    NASA Astrophysics Data System (ADS)

    Gayen, Pallab; Sinha, Chittaranjan

    2012-12-01

    The photoisomerization of 1-alkyl-2-(arylazo)imidazole, trans-to-cis, has been studied in the matrix of PEG-200 and Tween-20 in toluene medium by UV light irradiation. The trans and cis-isomers have different absorption spectra. The cis-to-trans isomerization proceeds slowly in visible light irradiation while it is appreciably fast in thermal process. The rate of trans-to-cis isomerization is decreased by 30-60% in presence of PEG-200 and Tween-20. The quantum yield of the photoisomerization is also decreased by 35-55% and follows the rate sequence: free state > PEG-200-phase > Tween-20 phase. The activation energy (Ea) of cis → trans, thermal backward isomerization, is reduced in PEG-200 and Tween-20 phase following free state > PEG-200-phase > Tween-20-phase. The branched polyhydroxo structure of Tween-20 may help to wrap the polar photochrome more efficiently than major ether functionalized PEG-200 and stabilizes trans-isomer.

  13. Improvement of solid material for affinity resins by application of long PEG spacers to capture the whole target complex of FK506.

    PubMed

    Mabuchi, Miyuki; Shimizu, Tadashi; Ueda, Masahiro; Mitamura, Kuniko; Ikegawa, Shigeo; Tanaka, Akito

    2015-07-15

    Solid materials for affinity resins bearing long PEG spacers between a functional group used for immobilization of a bio-active compound and the solid surface were synthesized to capture not only small target proteins but also large and/or complex target proteins. Solid materials with PEG1000 or PEG2000 as spacers, which bear a benzenesulfonamide derivative, exhibited excellent selectivity between the specific binding protein carbonic anhydrase type II (CAII) and non-specific ones. These materials also exhibited efficacy in capturing a particular target at a maximal amount. Affinity resins using solid materials with PEG1000 or PEG2000 spacers, bear a FK506 derivative, successfully captured the whole target complex of specific binding proteins at the silver staining level, while all previously known affinity resins with solid materials failed to achieve this objective. These novel affinity resins captured other specific binding proteins such as dynamin and neurocalcin δ as well. PMID:26025877

  14. Polymeric micelles with α-glutamyl-terminated PEG shells show low non-specific protein adsorption and a prolonged in vivo circulation time.

    PubMed

    Wang, Xiaoju; Yang, Cuiping; Wang, Chenhong; Guo, Leijia; Zhang, Tianhong; Zhang, Zhenqing; Yan, Husheng; Liu, Keliang

    2016-02-01

    Although PEG remains the gold standard for stealth functionalization in drug delivery field up to date, complete inhibition of protein corona formation on PEG-coated nanoparticles remains a challenge. To improve the stealth property of PEG, herein an α-glutamyl group was conjugated to the end of PEG and polymeric micelles with α-glutamyl-terminated PEG shells were prepared. After incubation with bovine serum albumin or in fetal calf serum, the size of the micelles changed slightly, while the size of the micelles of similar diblock copolymer but without α-glutamyl group increased markedly. These results indicated that the micelles with α-glutamyl-terminated PEG shells showed low non-specific protein adsorption. In vivo blood clearance kinetics assay showed that the micelles with α-glutamyl-terminated PEG shells exhibited a longer in vivo blood circulation time compared with similar micelles but without α-glutamyl groups. The better stealth property of the micelles with α-glutamyl-terminated PEG shells was presumably attributed to the zwitterionic property of the α-glutamyl groups. PMID:26652431

  15. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces intimal thickening after vascular injury

    SciTech Connect

    Goto, Hiromasa; Nomiyama, Takashi; Mita, Tomoya; Yasunari, Eisuke; Azuma, Kosuke; Komiya, Koji; Arakawa, Masayuki; Jin, Wen Long; Kanazawa, Akio; Kawamori, Ryuzo; Fujitani, Yoshio; Hirose, Takahisa; Watada, Hirotaka

    2011-02-04

    Research highlights: {yields} Exendin-4 reduces neointimal formation after vascular injury in a mouse model. {yields} Exendin-4 dose not alter metabolic parameters in non-diabetic, non-obese mouse model. {yields} Exendin-4 reduces PDGF-induced cell proliferation in cultured SMCs. {yields} Exendin-4 may reduces neointimal formation after vascular injury at least in part through its direct action on SMCs. -- Abstract: Glucagon-like peptide-1 is a hormone secreted by L cells of the small intestine and stimulates glucose-dependent insulin response. Glucagon-like peptide-1 receptor agonists such as exendin-4 are currently used in type 2 diabetes, and considered to have beneficial effects on the cardiovascular system. To further elucidate the effect of glucagon-like peptide-1 receptor agonists on cardiovascular diseases, we investigated the effects of exendin-4 on intimal thickening after endothelial injury. Under continuous infusion of exendin-4 at 24 nmol/kg/day, C57BL/6 mice were subjected to endothelial denudation injury of the femoral artery. Treatment of mice with exendin-4 reduced neointimal formation at 4 weeks after arterial injury without altering body weight or various metabolic parameters. In addition, in vitro studies of isolated murine, rat and human aortic vascular smooth muscle cells showed the expression of GLP-1 receptor. The addition of 10 nM exendin-4 to cultured smooth muscle cells significantly reduced their proliferation induced by platelet-derived growth factor. Our results suggested that exendin-4 reduced intimal thickening after vascular injury at least in part by the suppression of platelet-derived growth factor-induced smooth muscle cells proliferation.

  16. Spergularia marina Induces Glucagon-Like Peptide-1 Secretion in NCI-H716 Cells Through Bile Acid Receptor Activation

    PubMed Central

    Kim, Kyong; Lee, Yu Mi; Rhyu, Mee-Ra

    2014-01-01

    Abstract Spergularia marina Griseb. (SM) is a halophyte that grows in mud flats. The aerial portions of SM have been eaten as vegetables and traditionally used to prevent chronic diseases in Korea. However, there has been no scientific report that demonstrates the pharmacological effects of SM. Glucagon-like peptide-1 (GLP-1) is important for the maintenance of glucose and energy homeostasis through acting as a signal in peripheral and neural systems. To discover a functional food for regulating glucose and energy homeostasis, we evaluated the effect of an aqueous ethanolic extract (AEE) of SM on GLP-1 release from enteroendocrine NCI-H716 cells. In addition, we explored the Takeda G-protein-coupled receptor 5 (TGR5) agonist activity of AEE-SM in Chinese hamster ovary (CHO)-K1 cells transiently transfected with human TGR5. As a result, treatment of NCI-H716 cells with AEE-SM increased GLP-1 secretion and intracellular Ca2+ and cyclic AMP (cAMP) levels in a dose-dependent manner. Transfection of NCI-H716 cells with TGR5-specific small interference RNA inhibited AEE-SM-induced GLP-1 secretion and the increase in Ca2+ and cAMP levels. Moreover, AEE-SM showed that the TGR5 agonist activity in CHO-K1 cells transiently transfected with TGR5. The results suggest that AEE-SM might be a candidate for a functional food to regulate glucose and energy homeostasis. PMID:25260089

  17. The glucagon-like peptide-1 analog exendin-4 antagonizes the effect of acyl ghrelin on the respiratory exchange ratio.

    PubMed

    Abtahi, Shayan; VanderJagt, Hayley L; Currie, Paul J

    2016-09-01

    The present study investigated the interaction of hypothalamic arcuate nucleus (ArcN) ghrelin and glucagon-like peptide-1 (GLP-1) signaling on metabolic function. Using indirect calorimetry, we first showed that acylated ghrelin, administered into the ArcN, significantly increased the respiratory exchange ratio (RER) in male Sprague-Dawley rats, representing a shift in fuel utilization toward enhanced carbohydrate oxidation and reduced lipid utilization. In contrast, treatment with similar doses of des-acyl ghrelin failed to induce reliable changes in RER. We then examined the ability of exendin-4 (Ex4) to alter acyl ghrelin's energetic effects. Ex4 is a GLP-1 agonist and has been reported previously to suppress food intake in rodent models. Rats were treated with either systemic or direct ArcN Ex4, followed by acyl ghrelin. Our results indicated that both systemic and central injections of Ex4 alone significantly reduced RER and, importantly, Ex4 pretreatment reliably attenuated the impact of ghrelin on RER. Overall, these findings provide compelling evidence that ghrelin and GLP-1 signaling interact in the hypothalamic control of metabolic function. PMID:27454242

  18. Modification of titanium surfaces by adding antibiotic-loaded PHB spheres and PEG for biomedical applications.

    PubMed

    Rodríguez-Contreras, Alejandra; Marqués-Calvo, María Soledad; Gil, Francisco Javier; Manero, José María

    2016-08-01

    Novel researches are focused on the prevention and management of post-operative infections. To avoid this common complication of implant surgery, it is preferable to use new biomaterials with antibacterial properties. Therefore, the aim of this work is to develop a method of combining the antibacterial properties of antibiotic-loaded poly(3-hydroxybutyrate) (PHB) nano- and micro-spheres and poly(ethylene glycol) (PEG) as an antifouling agent, with titanium (Ti), as the base material for implants, in order to obtain surfaces with antibacterial activity. The Ti surfaces were linked to both PHB particles and PEG by a covalent bond. This attachment was carried out by firstly activating the surfaces with either Oxygen plasma or Sodium hydroxide. Further functionalization of the activated surfaces with different alkoxysilanes allows the reaction with PHB particles and PEG. The study confirms that the Ti surfaces achieved the antibacterial properties by combining the antibiotic-loaded PHB spheres, and PEG as an antifouling agent. PMID:27318469

  19. Enfuvirtide-PEG conjugate: A potent HIV fusion inhibitor with improved pharmacokinetic properties.

    PubMed

    Cheng, Shuihong; Wang, Yan; Zhang, Zhenxing; Lv, Xun; Gao, George F; Shao, Yiming; Ma, Liying; Li, Xuebing

    2016-10-01

    Enfuvirtide (ENF) is a clinically used peptide drug for the treatment of HIV infections, but its poor pharmacokinetic profile (T1/2 = 1.5 h in rats) and low aqueous solubility make the therapy expensive and inconvenience. In this study, we present a simple and practical strategy to address these problems by conjugating ENF with polyethylene glycol (PEG). Site-specific attachment of a 2 kDa PEG at the N-terminus of ENF resulted in an ENF-PEG (EP) conjugate with high solubility (≥3 mg/mL) and long half-life in rats (T1/2 = 16.1 h). This conjugate showed similar antiviral activity to ENF against various primary HIV-1 isolates (EC50 = 6-91 nM). Mechanistic studies suggested the sources of the antiviral potency. The conjugate bound to a functional domain of the HIV gp41 protein in a helical conformation with high affinity (Kd = 307 nM), thereby inhibiting the gp41-mediated fusion of viral and host-cell membranes. As PEG conjugation has advanced many bioactive proteins and peptides into clinical applications, the EP conjugate described here represents a potential new treatment for HIV infections that may address the unmet medical needs associated with the current ENF therapy. PMID:27240277

  20. Macroporous interpenetrating network of polyethylene glycol (PEG) and gelatin for cartilage regeneration.

    PubMed

    Zhang, Jingjing; Wang, Justin; Zhang, Hui; Lin, Jianhao; Ge, Zigang; Zou, Xuenong

    2016-01-01

    Poor mechanical properties hinder the application of hydrogels in cartilage tissue engineering. In this study, macroporous interpenetrating network (IPN) hydrogels of gelatin and polyethylene glycol (PEG) were fabricated for use as a functional biomaterial to support chondrocyte culture. The IPN structure enhanced mechanical properties, while the macroporous structure facilitated cell-cell interactions. The hydrogels had pore sizes around 80 μm with favorable interconnectivity, reduced volume swelling ratios, and nearly unchanged weight swelling ratios with increasing gelatin ratios. More significantly, the Young's modulus increased with increasing gelatin ratio, reaching a 5.3-fold increase (p  <  0.01) in IPN-10% over that of the PEG group. Chondrocytes developed elongated and fibroblast morphologies with extensive cell-cell interaction throughout IPN hydrogels, compared with round, isolated aggregates in PEG hydrogels. The glycosaminoglycan (GAG) accumulation was significantly higher in IPN hydrogels than in PEG hydrogels at day 21 and day 28. Additionally, significantly higher gene expressions of collagen II (p  <  0.01) and sox-9 (p  <  0.01) were found in IPN-10% when compared with other groups. Overall, the macroporous IPN hydrogels showed strong tissue formation abilities and enhanced mechanical properties, demonstrating high potential as scaffolds for cartilage regeneration. PMID:27305040

  1. Thermosensitive PEG-PCL-PEG (PECE) hydrogel as an in situ gelling system for ocular drug delivery of diclofenac sodium.

    PubMed

    Luo, Zichao; Jin, Ling; Xu, Lu; Zhang, Zhao Liang; Yu, Jing; Shi, Shuai; Li, Xingyi; Chen, Hao

    2016-01-01

    Development of efficient ocular drug delivery systems was still a challenging task. The objective of this article was to develop a thermosensitive PEG-PCL-PEG (PECE) hydrogel and investigate its potential application for ocular drug delivery of diclofenac sodium (DIC). PECE block polymers were synthesized by coupling MPEG-PCL co-polymer using IPDI reagent, and then its sol-gel transition as a function with temperature was investigated by a rheometer. The results showed that 30% (w/v) PECE aqueous solution exhibited sol-gel transition at approximately 35 °C. In vitro release profiles showed the entrapped DIC was sustained release from PECE hydrogels up to 7 days and the initial drug loading greatly effect on release behavior of DIC from PECE hydrogels. MTT assay results indicated that no matter PECE or 0.1% (w/v) DIC-loaded PECE hydrogels were nontoxic to HCEC and L929 cells after 24 h culturing. In vivo eye irritation test showed that the instillation of either 30% (w/v) PECE hydrogels or 0.1% (w/v) DIC-loaded PECE hydrogels to rabbit eye did not result in eye irritation within 72 h. In vivo results showed that the AUC0-48 h of 0.1% (w/v) DIC-loaded PECE hydrogels exhibited 1.6-fold increment as compared with that of commercial 0.1% (w/v) DIC eye drops, suggesting the better ophthalmic bioavailability could be obtained by the instillation of 0.1% (w/v) DIC-loaded PECE hydrogels. PMID:24758189

  2. Shuttling protein nucleolin is a microglia receptor for amyloid beta peptide 1-42.

    PubMed

    Ozawa, Daisuke; Nakamura, Takashi; Koike, Masanori; Hirano, Kazuya; Miki, Yuichi; Beppu, Masatoshi

    2013-01-01

    Amyloid-beta peptide 1-42 (Aβ42) plays a key role in the neurotoxicity found in Alzheimer's disease. Mononuclear phagocytes in the brain (microglia), can potentially clear Aβ via phagocytosis. Recently, the shuttling-protein nucleolin has been shown to possess scavenger receptor-activity. Here, we investigated whether this receptor interacts specifically with Aβ type 1-42 and mediates its phagocytosis by microglia. While monomeric and fibril Aβ42 were phagocytosed by mouse microglial EOC2 cells, amyloid β peptide 1-40 (Aβ40) was only weakly phagocytosed. Surface plasmon-resonance analysis revealed that nucleolin strongly associates with Aβ42, but only weakly associates with Aβ40. Immunofluorescence staining of anti-nucleolin antibody revealed that EOC2 cells and rat primary microglia express nucleolin on their cell surfaces. Further, pretreating EOC2 cells with anti-nucleolin antibody, but not immunoglobulin G (IgG), inhibited phagocytosis of monomeric Aβ42 by microglia. Additionally, nucleolin-transfected HEK293 cells phagocytosed monomeric and fibril Aβ42 but not monomeric and fibril Aβ40. Moreover, AGRO, a nucleolin-specific oligonucleotide aptamer, inhibited phagocytosis of monomeric and fibril Aβ42, but not monomeric and fibril Aβ40. These results indicate that nucleolin is a receptor that allows microglia to recognize monomeric and fibril Aβ42. PMID:23912744

  3. Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds.

    PubMed

    Jiang, Cho-Pei; Chen, Yo-Yu; Hsieh, Ming-Fa; Lee, Hung-Maan

    2013-04-01

    Bone tissue engineering is an emerging approach to provide viable substitutes for bone regeneration. Poly(ethylene glycol) (PEG) is a good candidate of bone scaffold because of several advantages such as hydrophilicity, biocompatibility, and intrinsic resistance to protein adsorption and cell adhesion. However, its low compressive strength limits application for bone regeneration. Poly(ε-caprolactone) (PCL), a hydrophobic nonionic polymer, is adopted to enhance the compressive strength of PEG alone.We aimed to investigate the in-vitro response of osteoblast-like cells cultured with porous scaffolds of triblock PEG-PCL-PEG copolymer fabricated by an air pressure-aided deposition system. A desktop air pressure-aided deposition system that involves melting and plotting PEG-PCL-PEG was used to fabricate three-dimensional scaffolds having rectangular pores. The experimental results showed that PEG-PCL-PEG with a molecular weight of 25,000 can be melted and stably deposited through a heating nozzle at an air pressure of 0.3 MPa and no crack occurs after it solidifies. The scaffolds with pre-determined pore size of 400× 420 μm and a porosity of 79 % were fabricated, and their average compressive strength was found to be 18.2 MPa. Osteoblast-like cells, MC3T3-E1, were seeded on fabricated scaffolds to investigate the in-vitro response of cells including toxicity and cellular locomotion. In a culture period of 28 days, the neutral-red stained osteoblasts were found to well distributed in the interior of the scaffold. Furthermore, the cellular attachment and movement in the first 10 h of cell culture were observed with time-lapse microscopy indicating that the porous PEG-PCL-PEG scaffolds fabricated by air pressure-aided deposition system is non-toxicity for osteoblast-like cells. PMID:23324877

  4. Molecular Complexation and Phase Diagrams of Urea/PEG Mixtures

    NASA Astrophysics Data System (ADS)

    Fu, Guoepeng; Kyu, Thein

    2014-03-01

    Polyethylene glycol (PEG) and urea complexation has been known to form a stable crystal due to molecular complexation. The effect of molecular weight of PEG on the phase diagrams of its blends with urea has been explored. In the case of high molecular weight PEG8k/urea, the observed phase diagram is azeotrope, accompanied by eutectoid reactions in the submerged phases such as induced stable ``alpha'' phase crystals and metastable ``beta'' phase crystals. The metastable crystal can transform to stable crystal under a certain thermal annealing condition. However, the phase diagram of PEG1k/urea is of coexistence loop, whereas PEG400/urea exhibits eutectic character. Subsequently, the change of azeotrope to eutectic behavior with PEG molecular weight is analyzed in the context of the combined Flory-Huggins theory of liquid-liquid demixing and phase field theory of crystal solidification. Of particular interest is that only a very small urea amount (2 wt%) is needed to form a stable inclusion crystal via complexation with PEG. Potential application in lithium battery is discussed based on AC impedance spectroscopy and cyclic voltammetry. Supported by NSF-DMR 1161070.

  5. Stimulation of glucagon-like peptide-1 secretion downstream of the ligand-gated ion channel TRPA1

    PubMed Central

    Emery, Edward C.; Diakogiannaki, Eleftheria; Gentry, Clive; Psichas, Arianna; Habib, Abdella M.; Bevan, Stuart; Fischer, Michael J. M.; Reimann, Frank; Gribble, Fiona M.

    2015-01-01

    Stimulus-coupled incretin secretion from enteroendocrine cells plays a fundamental role in glucose homeostasis, and could be targeted for the treatment of type-2 diabetes. Here, we investigated the expression and function of transient receptor potential (TRP) ion channels in enteroendocrine L-cells producing glucagon-like peptide-1 (GLP-1). By microarray and qPCR analysis we identified trpa1 as an L-cell enriched transcript in the small intestine. Calcium imaging of primary L-cells and the model cell line GLUTag revealed responses triggered by the TRPA1 agonists allyl-isothiocyanate (AITC, mustard oil), carvacrol and polyunsaturated fatty acids, that were blocked by TRPA1 antagonists. Electrophysiology in GLUTag cells showed that carvacrol induced a current with characteristics typical of TRPA1 and triggered the firing of action potentials. TRPA1 activation caused an increase in GLP-1 secretion from primary murine intestinal cultures and GLUTag cells; an effect that was abolished in cultures from trpa1−/− mice or by pharmacological TRPA1 inhibition. These findings present TRPA1 as a novel sensory mechanism in enteroendocrine L-cells, coupled to the facilitation of GLP-1 release, which may be exploitable as a target for treating diabetes. PMID:25325736

  6. Glucagon-like peptide-1 receptor is present in pancreatic acinar cells and regulates amylase secretion through cAMP.

    PubMed

    Hou, Yanan; Ernst, Stephen A; Heidenreich, Kaeli; Williams, John A

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a glucoincretin hormone that can act through its receptor (GLP-1R) on pancreatic β-cells and increase insulin secretion and production. GLP-1R agonists are used clinically to treat type 2 diabetes. GLP-1 may also regulate the exocrine pancreas at multiple levels, including inhibition through the central nervous system, stimulation indirectly through insulin, and stimulation directly on acinar cells. However, it has been unclear whether GLP-1R is present in pancreatic acini and what physiological functions these receptors regulate. In the current study we utilized GLP-1R knockout (KO) mice to study the role of GLP-1R in acinar cells. RNA expression of GLP-1R was detected in acutely isolated pancreatic acini. Acinar cell morphology and expression of digestive enzymes were not affected by loss of GLP-1R. GLP-1 induced amylase secretion in wild-type (WT) acini. In GLP-1R KO mice, this effect was abolished, whereas vasoactive intestinal peptide-induced amylase release in KO acini showed a pattern similar to that in WT acini. GLP-1 stimulated cAMP production and increased protein kinase A-mediated protein phosphorylation in WT acini, and these effects were absent in KO acini. These data show that GLP-1R is present in pancreatic acinar cells and that GLP-1 can regulate secretion through its receptor and cAMP signaling pathway. PMID:26542397

  7. Glucagon-Like Peptide-1 Triggers Protective Pathways in Pancreatic Beta-Cells Exposed to Glycated Serum

    PubMed Central

    Puddu, Alessandra; Sanguineti, Roberta; Durante, Arianna; Nencioni, Alessio; Mach, François; Montecucco, Fabrizio; Viviani, Giorgio L.

    2013-01-01

    Advanced glycation end products (AGEs) might play a pathophysiological role in the development of diabetes and its complications. AGEs negatively affect pancreatic beta-cell function and the expression of transcriptional factors regulating insulin gene. Glucagon-like peptide-1 (GLP-1), an incretin hormone that regulates glucose homeostasis, might counteract the harmful effects of AGEs on the beta cells in culture. The aim of this study was to identify the intracellular mechanisms underlying GLP-1-mediated protection from AGE-induced detrimental activities in pancreatic beta cells. HIT-T15 cells were cultured for 5 days with glycated serum (GS, consisting in a pool of AGEs), in the presence or absence of 10 nmol/L GLP-1. After evaluation of oxidative stress, we determined the expression and subcellular localization of proteins involved in maintaining redox balance and insulin gene expression, such as nuclear factor erythroid-derived 2 (Nrf2), glutathione reductase, PDX-1, and MafA. Then, we investigated proinsulin production. The results showed that GS increased oxidative stress, reduced protein expression of all investigated factors through proteasome activation, and decreased proinsulin content. Furthermore, GS reduced ability of PDX-1 and MafA to bind DNA. Coincubation with GLP-1 reversed these GS-mediated detrimental effects. In conclusion, GLP-1, protecting cells against oxidants, triggers protective intercellular pathways in HIT-T15 cells exposed to GS. PMID:23737644

  8. Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants.

    PubMed

    Wagner, Olaf; Thiele, Julian; Weinhart, Marie; Mazutis, Linas; Weitz, David A; Huck, Wilhelm T S; Haag, Rainer

    2016-01-01

    In droplet-based microfluidics, non-ionic, high-molecular weight surfactants are required to stabilize droplet interfaces. One of the most common structures that imparts stability as well as biocompatibility to water-in-oil droplets is a triblock copolymer surfactant composed of perfluoropolyether (PFPE) and polyethylene glycol (PEG) blocks. However, the fast growing applications of microdroplets in biology would benefit from a larger choice of specialized surfactants. PEG as a hydrophilic moiety, however, is a very limited tool in surfactant modification as one can only vary the molecular weight and chain-end functionalization. In contrast, linear polyglycerol offers further side-chain functionalization to create custom-tailored, biocompatible droplet interfaces. Herein, we describe the synthesis and characterization of polyglycerol-based triblock surfactants with tailored side-chain composition, and exemplify their application in cell encapsulation and in vitro gene expression studies in droplet-based microfluidics. PMID:26626826

  9. Neural effects of gut- and brain-derived glucagon-like peptide-1 and its receptor agonist.

    PubMed

    Katsurada, Kenichi; Yada, Toshihiko

    2016-04-01

    Glucagon-like peptide-1 (GLP-1) is derived from both the enteroendocrine L cells and preproglucagon-expressing neurons in the nucleus tractus solitarius (NTS) of the brain stem. As GLP-1 is cleaved by dipeptidyl peptidase-4 yielding a half-life of less than 2 min, it is plausible that the gut-derived GLP-1, released postprandially, exerts its effects on the brain mainly by interacting with vagal afferent neurons located at the intestinal or hepatic portal area. GLP-1 neurons in the NTS widely project in the central nervous system and act as a neurotransmitter. One of the physiological roles of brain-derived GLP-1 is restriction of feeding. GLP-1 receptor agonists have recently been used to treat type 2 diabetic patients, and have been shown to exhibit pleiotropic effects beyond incretin action, which involve brain functions. GLP-1 receptor agonist administered in the periphery is stable because of its resistance to dipeptidyl peptidase-4, and is highly likely to act on the brain by passing through the blood-brain barrier (BBB), as well as interacting with vagal afferent nerves. Central actions of GLP-1 have various roles including regulation of feeding, weight, glucose and lipid metabolism, cardiovascular functions, cognitive functions, and stress and emotional responses. In the present review, we focus on the source of GLP-1 and the pathway by which peripheral GLP-1 informs the brain, and then discuss recent findings on the central effects of GLP-1 and GLP-1 receptor agonists. PMID:27186358

  10. Human neutrophil peptide-1 decreases during ageing in selected Mexican population.

    PubMed

    Rivas-Santiago, Bruno; Castañeda-Delgado, Julio E; de Haro-Acosta, Jeny; Torres-Juarez, Flor; Frausto-Lujan, Isabel; Marin-Luevano, Paulina; González-Amaro, Roberto; Enciso-Moreno, Jose A

    2016-04-01

    Antimicrobial peptide innate immunity plays a central role in the susceptibility to infectious diseases, as has been described extensively in different settings. However, the role that these molecules play in the immunity mediated by polymorphonuclear phagocytes as part of the innate immunity of ageing individuals has not been described. In the present study, we addressed the question whether antimicrobial activity in polymorphonuclear cells from elderly individuals was altered in comparison with young adults. We compared phagocytosis index, bacterial killing efficiency, myeloperoxidase activity and cathelicidin expression. Results showed that there were no statistical differences among groups. However, human neutrophil peptide-1 (HNP-1) was decreased in the elderly individuals group. Results suggest that the decreased HNP-1 production in the polymorphonuclear phagocytes form elderly individuals might have an important participation in the increased susceptibility to infectious diseases. PMID:26323500

  11. Glucagon-like Peptide-1 (GLP-1) Analogs: Recent Advances, New Possibilities, and Therapeutic Implications

    PubMed Central

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin that plays important physiological roles in glucose homeostasis. Produced from intestine upon food intake, it stimulates insulin secretion and keeps pancreatic β-cells healthy and proliferating. Because of these beneficial effects, it has attracted a great deal of attention in the past decade, and an entirely new line of diabetic therapeutics has emerged based on the peptide. In addition to the therapeutic applications, GLP-1 analogs have demonstrated a potential in molecular imaging of pancreatic β-cells; this may be useful in early detection of the disease and evaluation of therapeutic interventions, including islet transplantation. In this Perspective, we focus on GLP-1 analogs for their studies on improvement of biological activities, enhancement of metabolic stability, investigation of receptor interaction, and visualization of the pancreatic islets. PMID:25349901

  12. Pharmacological Actions of Glucagon-Like Peptide-1, Gastric Inhibitory Polypeptide, and Glucagon.

    PubMed

    Sekar, R; Singh, K; Arokiaraj, A W R; Chow, B K C

    2016-01-01

    Glucagon family of peptide hormones is a group of structurally related brain-gut peptides that exert their pleiotropic actions through interactions with unique members of class B1 G protein-coupled receptors (GPCRs). They are key regulators of hormonal homeostasis and are important drug targets for metabolic disorders such as type-2 diabetes mellitus (T2DM), obesity, and dysregulations of the nervous systems such as migraine, anxiety, depression, neurodegeneration, psychiatric disorders, and cardiovascular diseases. The current review aims to provide a detailed overview of the current understanding of the pharmacological actions and therapeutic advances of three members within this family including glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide (GIP), and glucagon. PMID:27572131

  13. Optimising cardioprotection during myocardial ischaemia: targeting potential intracellular pathways with glucagon-like peptide-1.

    PubMed

    Clarke, Sophie J; McCormick, Liam M; Dutka, David P

    2014-01-01

    Coronary heart disease and type-2 diabetes are both major global health burdens associated with an increased risk of myocardial infarction (MI). Following MI, ischaemia-reperfusion injury (IRI) remains a significant contributor to myocardial injury at the cellular level. Research has focussed on identifying a strategy or intervention to minimise IRI to optimise reperfusion therapy, with the aim of delivering a superior clinical outcome. The incretin hormone glucagon-like peptide-1, already an established basis for the treatment of type-2 diabetes, also has the potential to protect against IRI. We explain the physiology and cellular processes involved in IRI, and the intracellular pathways activated by GLP-1, which could intercept IRI and deliver cardioprotection. The review also examines the current preclinical and clinical evidence for GLP-1 in cardioprotection and future directions for research as we look for an effective adjunctive treatment to minimise IRI. PMID:24410815

  14. Optimising cardioprotection during myocardial ischaemia: targeting potential intracellular pathways with glucagon-like peptide-1

    PubMed Central

    2014-01-01

    Coronary heart disease and type-2 diabetes are both major global health burdens associated with an increased risk of myocardial infarction (MI). Following MI, ischaemia-reperfusion injury (IRI) remains a significant contributor to myocardial injury at the cellular level. Research has focussed on identifying a strategy or intervention to minimise IRI to optimise reperfusion therapy, with the aim of delivering a superior clinical outcome. The incretin hormone glucagon-like peptide-1, already an established basis for the treatment of type-2 diabetes, also has the potential to protect against IRI. We explain the physiology and cellular processes involved in IRI, and the intracellular pathways activated by GLP-1, which could intercept IRI and deliver cardioprotection. The review also examines the current preclinical and clinical evidence for GLP-1 in cardioprotection and future directions for research as we look for an effective adjunctive treatment to minimise IRI. PMID:24410815

  15. Glucagon like peptide-1 receptor agonists may ameliorate the metabolic adverse effect associated with antiretroviral therapy.

    PubMed

    Culha, Mehmet Gokhan; Inkaya, Ahmet Cagkan; Yildirim, Emre; Unal, Serhat; Serefoglu, Ege Can

    2016-09-01

    The number of people living with HIV and AIDS (PLWHA) reached to almost 40 million, half of which are under antiretroviral treatment (ART). Although the introduction of this therapy significantly improved the life span and quality of PLWHA, metabolic complications of these people remains to be an important issue. These metabolic complications include hyperlipidemia, abnormal fat redistribution and diabetes mellitus, which are defined as lipodystrophy syndrome. Glucagon-like peptide-1 (GLP-1) is a neuropeptide secreted from intestinal L cells and recently developed GLP-1 receptor agonists (GLP-1RAs) stimulate insulin secretion, improve weight control and reduce cardiovascular outcomes. This class of drugs may be a valuable medication in the treatment of HIV-associated metabolic adverse effects and extend the life expectancy of patients infected with HIV. PMID:27515222

  16. Murine nonvolatile pheromones: isolation of exocrine-gland secreting Peptide 1.

    PubMed

    Kimoto, Hiroko; Touhara, Kazushige

    2013-01-01

    Our search for a substance recognized by the vomeronasal neurons revealed that the extra-orbital lacrimal gland (ELG) isolated from adult male mice produced the male-specific peptide pheromone exocrine gland-secreting peptide 1 (ESP1). The following protocol reveals how ESP1 may be extracted from the ELG, purified using anion-exchange and reverse-phase high-performance liquid chromatography (HPLC), and analyzed by mass spectrometry. This protocol has been specifically designed for the purification of ESP1, but may be modified to isolate a variety of peptides from the exocrine glands. Peptides purified in this manner may help further define the molecular mechanisms underlying pheromone communication in the vomeronasal system. PMID:24014353

  17. Glucagon-Like Peptide 1 Analogs and their Effects on Pancreatic Islets.

    PubMed

    Tudurí, Eva; López, Miguel; Diéguez, Carlos; Nadal, Angel; Nogueiras, Rubén

    2016-05-01

    Glucagon-like peptide 1 (GLP-1) exerts many actions that improve glycemic control. GLP-1 stimulates glucose-stimulated insulin secretion and protects β cells, while its extrapancreatic effects include cardioprotection, reduction of hepatic glucose production, and regulation of satiety. Although an appealing antidiabetic drug candidate, the rapid degradation of GLP-1 by dipeptidyl peptidase 4 (DPP-4) means that its therapeutic use is unfeasible, and this prompted the development of two main GLP-1 therapies: long-acting GLP-1 analogs and DPP-4 inhibitors. In this review, we focus on the pancreatic effects exerted by current GLP-1 derivatives used to treat diabetes. Based on the results from in vitro and in vivo studies in humans and animal models, we describe the specific actions of GLP-1 analogs on the synthesis, processing, and secretion of insulin, islet morphology, and β cell proliferation and apoptosis. PMID:27062006

  18. APeg3: regulation of Peg3 through an evolutionarily conserved ncRNA

    PubMed Central

    Frey, Wesley D.

    2014-01-01

    Mammalian APeg3 is an antisense gene that is localized within the 3′-untranslated region of the imprinted gene, Peg3. APeg3 is expressed only in the vasopressinergic neurons of the hypothalamus, thus is predicted to play significant roles in this specific area of the brain. In the current study, we investigate the functions of APeg3 with comparative genomics and cell line-based functional approaches. The transcribed region of APeg3 displays high levels of sequence conservation among placental mammals, but without any obvious open reading frame, suggesting that APeg3 may have been selected as a ncRNA gene during eutherian evolution. This has been further supported by the detection of a conserved local RNA secondary structure within APeg3. RNA secondary structure analyses indicate a single conserved hairpin-loop structure towards the 5′ end of the transcript. The results from cell line-based transfection experiments demonstrate that APeg3 has the potential to down-regulate the transcription and protein levels of Peg3. The observed down-regulation by APeg3 is also somewhat orientation-independent. Overall, these results suggest that APeg3 has evolved as a ncRNA gene and controls the function of its sense gene Peg3 within specific neuronal cells. PMID:24582979

  19. Polyethylene Glycol (PEG)-Induced Anaphylactic Reaction During Bowel Preparation

    PubMed Central

    2015-01-01

    Barium enema is used to screen patients with gastrointestinal bleeding who do not want to undergo colonoscopy. Polyethylene glycol (PEG) is usually the bowel preparation of choice. Few allergic reactions from this product have been reported; these include urticaria, angioedema, and anaphylaxis. Reactions are thought to result from a small amount of PEG crossing the intestinal mucosa, which, in some patients, is sufficient to provoke an anaphylactic reaction. PMID:26203443

  20. New Low Volume Resuscitation Solutions Containing PEG-20k

    PubMed Central

    Parrish, Dan; Plant, Valerie; Lindell, Susanne L.; Limkemann, Ashley; Reichstetter, Heather; Aboutanos, Michel; Mangino, Martin J.

    2015-01-01

    Background Hypovolemic shock reduces oxygen delivery and compromises energy dependent cell volume control. Consequent cell swelling compromises microcirculatory flow, which reducing oxygen exchange further. The importance of this mechanism is highlighted by the effectiveness of cell impermeants in low volume resuscitation (LVR) solutions in acute studies. The objective of this study was to assess impermeants in survival models and compare them to commonly used crystalloid solutions. Methods Adult rats were hemorrhaged to a pressure of 30–35 mm Hg, held there until the plasma lactate reached 10 mM, and given an LVR solution (5–10% blood volume) with saline alone (control), saline with various concentrations of Polyethylene glycol-20k (PEG-20k), hextend or albumin. When lactate again reached 10 mM following LVR, full resuscitation was started with crystalloid and red cells. Rats were either euthanized (acute) or allowed to recover (survival). The LVR time, which is the time from the start of the LVR solution until the start of full resuscitation was measured as was survival and diagnostic labs. In some studies, the capillary oncotic reflection coefficient was determined for PEG-20k to determine its relative impermeant and oncotic effects. Results PEG-20k (10%) significantly increased LVR times relative to saline (8 fold), hextend, and albumin. Lower amounts of PEG-20k (5%) were also effective but less so than 10% doses. PEG-20k maintained normal arterial pressure during the low volume state. Survival of a 180 minute LVR time challenge was 0% in saline controls and 100% in rats given PEG-20k as the LVR solution. Surviving rats had normal labs 24 hours later. PEG-20k had an oncotic reflection coefficient of 0.65, which indicates that the molecule is a hybrid cell impermeant with significant oncotic properties. Conclusions PEG-20k based LVR solutions are highly effective for inducing tolerance to the low volume state and for improving survival. PMID:26091310

  1. Micelles: Rod-to-Globule Transition of pDNA/PEG-Poly(l-Lysine) Polyplex Micelles Induced by a Collapsed Balance Between DNA Rigidity and PEG Crowdedness (Small 9/2016).

    PubMed

    Tockary, Theofilus A; Osada, Kensuke; Motoda, Yusuke; Hiki, Shigehiro; Chen, Qixian; Takeda, Kaori M; Dirisala, Anjaneyulu; Osawa, Shigehito; Kataoka, Kazunori

    2016-03-01

    Upon PEG removal, the change of rod shapes into globule shapes is observed for packaged DNA in polyplex micelles that are prepared from block copolymers with acid-labile linkage between the PEG and poly(L-lysine) (PLys). On page 1193, K. Osada, K. Kataoka, and co-workers use the details of this transition behavior to elucidate the essential regulating factors of polyplex micelle structures, in order to find their structure-function relationship and promote their utilization as a gene delivery system. PMID:26928997

  2. Preventing postoperative abdominal adhesions in a rat model with PEG-PCL-PEG hydrogel

    PubMed Central

    Yang, Bing; Gong, ChangYang; Zhao, Xia; Zhou, ShengTao; Li, ZhengYu; Qi, XiaoRong; Zhong, Qian; Luo, Feng; Qian, ZhiYong

    2012-01-01

    Background Poly (ethylene glycol)-poly (ɛ-caprolactone)-poly (ethylene glycol) (PEG-PCL-PEG, PECE) hydrogel has been demonstrated to be biocompatible and thermosensitive. In this study, its potential efficacy and mechanisms of preventing postsurgical abdominal adhesions were investigated. Results PECE hydrogel was transformed into gel state from sol state in less than 20 seconds at 37°C. None of the animals treated with the hydrogel (n = 15) developed adhesions. In contrast, all untreated animals (n = 15) had adhesions that could only be separated by sharp dissection (P < 0.001). The hydrogel adhered to the peritoneal wounds, gradually disappeared from the wounds within 7 days, and transformed into viscous fluid, being completely absorbed within 12 days. The parietal and visceral peritoneum were remesothelialized in about 5 and 9 days, respectively. The hydrogel prevented the formation of fibrinous adhesion and the invasion of fibroblasts. Also, along with the hydrogel degradation, a temporary inflammatory cell barrier was formed which could effectively delay the invasion of fibroblasts during the critical period of mesothelial regeneration. Conclusion The results suggested that PECE hydrogel could effectively prevent postsurgical intra-abdominal adhesions, which possibly result from the prevention of the fibrinous adhesion formation and the fibroblast invasion, the promotion of the remesothelialization, and the hydroflotation effect. PMID:22346350

  3. Environmentally friendly surface modification of PDMS using PEG polymer brush.

    PubMed

    Zhang, Zhaowei; Feng, Xiaojun; Luo, Qingming; Liu, Bi-Feng

    2009-09-01

    A PEG-NH2-based environmentally friendly surface modification strategy was developed for PDMS microchips to prevent protein adsorption and to enhance separation performance. PEG-NH2 was synthesized using a modified synthesis procedure. A two-step grafting method was used for PDMS modification. FTIR absorption by attenuated total reflection and contact angle measurements verified the successful grafting of PEG-NH2 onto the PDMS surface. Subsequent EOF Measurements and protein adsorption studies of PEG-modified PDMS microchips revealed noticeable EOF suppression and resistance to nonspecific protein adsorption for more than 30 days. Separation of four FITC-labeled amino acids was further demonstrated with high repeatability and reproducibility. Comparison of electrophoresis of 3-(2-furoyl)quinoline-2-carboxaldehyde-labeled BSA using PDMS microchips before and after surface modification resulted in significantly improved electrophoretic performance of the PEG-modified PDMS microchips, suggesting that our PEG grafting method successfully modified PDMS surface property and prevented adsorption of proteins. We expect that this environmentally friendly surface modification method will be useful for future protein separations with long-term surface stability. PMID:19722209

  4. Studies on Phase Separation in a-PMMA/PEG Gels

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoliang

    2005-03-01

    Stereo-irregular atactic poly(methyl methacrylate) (a-PMMA) is known incapable of forming gels in common solvents, irrespective of the solvent quality. However, we recently found a rigid opaque thermal-reversible a-PMMA gel in the solvent of the polyethyl glycol oligomer (PEG) (the PEG molecule mass differ from 400 to 4000 were used). FT-IR, dynamic mechanical temperature analysis and Solid state NMR measurements were used to study the gel properties and gelation mechanism. The in situ IR studies in a-PMMA/PEG gel suggested that some a-PMMA segments were in the aggregated state in solution, which became a node in the solution. With decreasing temperature, the fraction of aggregated a-PMMA in solution increases, resulting in the formation of physical network finally. Spin diffusion was used to determine the size (ξ) of domains in the gels. We found that, a-PMMA/PEG4000 was miscible (ξ ˜ 9nm), while a-PMMA/PEG1000 was micro phase separated (ξ ˜ 57nm) and a-PMMA/PEG400 was macro phase separated (ξ > 300nm). The a-PMMA self-aggregation was attributed to the depletion interaction that becomes important in the case of middle-sized solvents.

  5. Fermentation kinetics of sainfoin hay with and without PEG.

    PubMed

    Calabrò, S; Guglielmelli, A; Iannaccone, F; Danieli, P P; Tudisco, R; Ruggiero, C; Piccolo, G; Cutrignelli, M I; Infascelli, F

    2012-10-01

    The in vitro gas production technique was applied to evaluate the biological activity of tannins in sainfoin (Onobrychis viciifolia Scop.) hay cut at four progressive phenological stages. The buffalo (Bubalus bubalis) rumen fluid was used as inoculum, polyethylene glycol (PEG) was added as specific binding agent and an alfalfa hay (AH) was used as control. All samples were analysed for chemical composition and condensed tannin (CTs). According to the phenological stage of sainfoin, crude protein gradually decreased [from 219 to 122 g/kg dry matter (DM)] and neutral detergent fibre (NDF) increased (from 391 to 514 g/kg DM). Condensed tannins showed the highest value at the first phenological stage [31.5 mg catechin equivalents (CE)/g DM], and their level significantly decreased at the subsequent growth stages. Gas production and fermentation rate were significantly affected by substrate type and PEG addition. The first stage of sainfoin showed the lowest value of gas and volatile fatty acids production and the slowest fermentation kinetics compared with the other samples, when incubated without PEG, because of the CTs effect. The incubation with PEG improved the fermentation process of the first stage of sainfoin, but no effect was registered on AH, where CTs were not detected. Among the sainfoin samples, the slowest kinetics with PEG was observed in the hay harvested at the fourth stage, probably due to its chemical composition. The use of PEG allowed to verify the effect of tannins on the in vitro fermentation characteristics of sainfoin hay. PMID:22168179

  6. ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance.

    PubMed

    Huffaker, Alisa; Dafoe, Nicole J; Schmelz, Eric A

    2011-03-01

    ZmPep1 is a bioactive peptide encoded by a previously uncharacterized maize (Zea mays) gene, ZmPROPEP1. ZmPROPEP1 was identified by sequence similarity as an ortholog of the Arabidopsis (Arabidopsis thaliana) AtPROPEP1 gene, which encodes the precursor protein of elicitor peptide 1 (AtPep1). Together with its receptors, AtPEPR1 and AtPEPR2, AtPep1 functions to activate and amplify innate immune responses in Arabidopsis and enhances resistance to both Pythium irregulare and Pseudomonas syringae. Candidate orthologs to the AtPROPEP1 gene have been identified from a variety of crop species; however, prior to this study, activities of the respective peptides encoded by these orthologs were unknown. Expression of the ZmPROPEP1 gene is induced by fungal infection and treatment with jasmonic acid or ZmPep1. ZmPep1 activates de novo synthesis of the hormones jasmonic acid and ethylene and induces the expression of genes encoding the defense proteins endochitinase A, PR-4, PRms, and SerPIN. ZmPep1 also stimulates the expression of Benzoxazineless1, a gene required for the biosynthesis of benzoxazinoid defenses, and the accumulation of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside in leaves. To ascertain whether ZmPep1-induced defenses affect resistance, maize plants were pretreated with the peptide prior to infection with fungal pathogens. Based on cell death and lesion severity, ZmPep1 pretreatment was found to enhance resistance to both southern leaf blight and anthracnose stalk rot caused by Cochliobolis heterostrophus and Colletotrichum graminicola, respectively. We present evidence that peptides belonging to the Pep family have a conserved function across plant species as endogenous regulators of innate immunity and may have potential for enhancing disease resistance in crops. PMID:21205619

  7. Protease-sensitive PEG hydrogels regulate vascularization in vitro and in vivo.

    PubMed

    Vigen, Marina; Ceccarelli, Jacob; Putnam, Andrew J

    2014-10-01

    Forming functional blood vessel networks in engineered or ischemic tissues is a significant scientific and clinical hurdle. Poly(ethylene glycol) (PEG)-based hydrogels are adapted to investigate the role of mechanical properties and proteolytic susceptibility on vascularization. Four arm PEG vinyl sulfone is polymerized by Michael-type addition with cysteine groups on a slowly degraded matrix metalloprotease (MMP) susceptible peptide, GPQG↓IWGQ, or a more rapidly cleaved peptide, VPMS↓MRGG. Co-encapsulation of endothelial cells and supportive fibroblasts within the gels lead to vascular morphogenesis in vitro that is robust to changes in crosslinking peptide identity, but is significantly attenuated by increased crosslinking and MMP inhibition. Perfused vasculature forms from transplanted cells in vivo in all gel types; however, in contrast to the in vitro results, vascularization in vivo is not decreased in the more crosslinked gels. Collectively, these findings demonstrate the utility of this platform to support vascularization both in vitro and in vivo. PMID:24943402

  8. The effect of a microgravity (space) environment on the expression of expansins from the peg and root tissues of Cucumis sativus

    NASA Technical Reports Server (NTRS)

    Link, B. M.; Wagner, E. R.; Cosgrove, D. J.

    2001-01-01

    In young cucumber seedlings, the peg is a polar outgrowth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. The development of the peg is thought to be gravity-dependent and has become a model system for plant-gravity response. Peg development requires rapid cell expansion, a process thought to be catalyzed by alpha-expansins, and thus was a good system to identify expansins that were regulated by gravity. This study identified 7 new alpha-expansin cDNAs from cucumber seedlings (Cucumis sativus L. cv Burpee Hybrid II) and examined their expression patterns. Two alpha-expansins (CsExp3 and CsExp4) were more highly expressed in the peg and the root. Earlier reports stated that pegs tend not to form in the absence of gravity, so the expression levels were compared in the pegs of seedlings grown in space (STS-95), on a clinostat, and on earth (1 g). Pegs were observed to form at high frequency on clinostat and space-grown seedlings, yet on clinostats there was more than a 4-fold reduction in the expression of CsExp3 in the pegs of seedlings grown on clinostats vs. those grown at 1 g, while the CsExp4 gene appeared to be turned off (below detection limits). There were no detectable differences in expansin gene expression levels for the pegs of seedlings grown in space or in the orbiter environmental simulator (OES) (1 g) at NASA. The microgravity environment did not affect the expression of CsExp3 or CsExp4, and the clinostat did not simulate the microgravity environment well.

  9. Degradable hydrogels derived from PEG-diacrylamide for hepatic tissue engineering.

    PubMed

    Stevens, Kelly R; Miller, Jordan S; Blakely, Brandon L; Chen, Christopher S; Bhatia, Sangeeta N

    2015-10-01

    Engineered tissue constructs have the potential to augment or replace whole organ transplantation for the treatment of liver failure. Poly(ethylene glycol) (PEG)-based systems are particularly promising for the construction of engineered liver tissue due to their biocompatibility and amenability to modular addition of bioactive factors. To date, primary hepatocytes have been successfully encapsulated in non-degradable hydrogels based on PEG-diacrylate (PEGDA). In this study, we describe a hydrogel system based on PEG-diacrylamide (PEGDAAm) containing matrix-metalloproteinase sensitive (MMP-sensitive) peptide in the hydrogel backbone that is suitable for hepatocyte culture both in vitro and after implantation. By replacing hydrolytically unstable esters in PEGDA with amides in PEGDAAm, resultant hydrogels resisted non-specific hydrolysis, while still allowing for MMP-mediated hydrogel degradation. Optimization of polymerization conditions, hepatocellular density, and multicellular tissue composition modulated both the magnitude and longevity of hepatic function in vitro. Importantly, hepatic PEGDAAm-based tissues survived and functioned for over 3 weeks after implantation ectopically in the intraperitoneal (IP) space of nude mice. Together, these studies suggest that MMP-sensitive PEGDAAm-based hydrogels may be a useful material system for applications in tissue engineering and regenerative medicine. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3331-3338, 2015. PMID:25851120

  10. Degradable hydrogels derived from PEG-diacrylamide for hepatic tissue engineering

    PubMed Central

    Stevens, Kelly R.; Miller, Jordan S.; Blakely, Brandon L.; Chen, Christopher S.; Bhatia, Sangeeta N.

    2016-01-01

    Engineered tissue constructs have the potential to augment or replace whole organ transplantation for the treatment of liver failure. Poly(ethylene glycol) (PEG)-based systems are particularly promising for the construction of engineered liver tissue due to their biocompatibility and amenability to modular addition of bioactive factors. To date, primary hepatocytes have been successfully encapsulated in non-degradable hydrogels based on PEG-diacrylate (PEGDA). In this study, we describe a hydrogel system based on PEG-diacrylamide (PEGDAAm) containing matrix-metalloproteinase sensitive (MMP-sensitive) peptide in the hydrogel backbone that is suitable for hepatocyte culture both in vitro and after implantation. By replacing hydrolytically unstable esters in PEGDA with amides in PEGDAAm, resultant hydrogels resisted non-specific hydrolysis, while still allowing for MMP-mediated hydrogel degradation. Optimization of polymerization conditions, hepatocellular density, and multicellular tissue composition modulated both the magnitude and longevity of hepatic function in vitro. Importantly, hepatic PEGDAAm-based tissues survived and functioned for over three weeks after implantation ectopically in the intraperitoneal (IP) space of nude mice. Together, these studies suggest that MMP-sensitive PEGDAAm-based hydrogels may be a useful material system for applications in tissue engineering and regenerative medicine. PMID:25851120

  11. The effect of PEG molecular weights on the thermal stability and dissolution behaviors of griseofulvin-PEG crystalline inclusion complexes.

    PubMed

    Yang, Xiaotong; Zhong, Zhi; Huang, Yanbin

    2016-07-11

    Co-crystals formed between small molecular drugs and hydrophilic co-formers have shown great potential to optimize the dissolution profiles of drug substances. So far most of the co-formers used are small molecules. However, linear polymers are also able to form drug-polymer crystalline inclusion complexes (ICs). In contrast to the small molecular co-formers, molecular weight of the polymer co-formers can be easily changed without disrupting the IC crystal structure, and hence represents an interesting approach to tune the IC properties. In this study, we investigated the effect of PEG molecular weights on the thermal stability and dissolution behavior of Gris-PEG ICs. It was found that the thermal stability of Gris-PEG IC crystals first increased with PEG molecular weight, and then reached a plateau value, while an optimized PEG molecular weight existed for the dissolution profile. The experimental results were explained by the formation of two types of crystal defects during the IC growth in PEG melt: the void defects and the grain boundary defects. This is the first study on the pharmaceutical profiles of drug-polymer crystalline inclusion complexes. PMID:27173824

  12. PEG-g-poly(GdDTPA-co-L-cystine): effect of PEG chain length on in vivo contrast enhancement in MRI.

    PubMed

    Mohs, Aaron M; Zong, Yuda; Guo, Junyu; Parker, Dennis L; Lu, Zheng-Rong

    2005-01-01

    Biodegradable macromolecular Gd(III) complexes, Gd-DTPA cystine copolymers (GDCP), were grafted with PEG of different sizes to modify the physicochemical properties and in vivo MRI contrast enhancement of the agents and to study the effect of PEG chain length on these properties. Three new PEG-grafted biodegradable macromolecular gadolinium(III) complexes were synthesized and characterized as blood pool MRI contrast agents. One of three different lengths of MPEG-NH(2) (MW = 550, 1000, and 2000) was grafted to the backbone of GDCP to yield PEG(n)()-g-poly(GdDTPA-co-l-cystine), PEG(n)()-GDCP. The PEG chain length did not dramatically alter the T(1) relaxivity, r(1), of the modified agents. The MRI enhancement profile of PEG(n)()-GDCP with different PEG sizes was significantly different in mice with respect to both signal intensity and clearance profiles. PEG(2000)-GDCP showed more prominent enhancement in the blood pool for a longer period of time than either PEG(1000)-GDCP or PEG(550)-GDCP. In the kidney, PEG(2000)-GDCP had less enhancement at 2 min than PEG(1000)-GDCP, but both PEG(550)-GDCP and PEG(1000)-GDCP showed a more pronounced signal decay thereafter. The three agents behaved similarly in the liver, as compared to that in the heart. All three agents showed little enhancement in the muscle. Chemical grafting with PEG of different chain lengths is an effective approach to modify the physiochemistry and in vivo contrast enhancement dynamics of the biodegradable macromolecular contrast agents. The novel agents are promising for further clinical development for cardiovascular and cancer MR imaging. PMID:16004476

  13. Glucagon-like peptide-1 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro.

    PubMed

    Baldassano, Sara; Wang, Guo-Du; Mulè, Flavia; Wood, Jackie D

    2012-02-01

    Glucagon-like peptide-1 (GLP-1) acts at the G protein-coupled receptor, GLP-1R, to stimulate secretion of insulin and to inhibit secretion of glucagon and gastric acid. Involvement in mucosal secretory physiology has received negligible attention. We aimed to study involvement of GLP-1 in mucosal chloride secretion in the small intestine. Ussing chamber methods, in concert with transmural electrical field stimulation (EFS), were used to study actions on neurogenic chloride secretion. ELISA was used to study GLP-1R effects on neural release of acetylcholine (ACh). Intramural localization of GLP-1R was assessed with immunohistochemistry. Application of GLP-1 to serosal or mucosal sides of flat-sheet preparations in Ussing chambers did not change baseline short-circuit current (I(sc)), which served as a marker for chloride secretion. Transmural EFS evoked neurally mediated biphasic increases in I(sc) that had an initial spike-like rising phase followed by a sustained plateau-like phase. Blockade of the EFS-evoked responses by tetrodotoxin indicated that the responses were neurally mediated. Application of GLP-1 reduced the EFS-evoked biphasic responses in a concentration-dependent manner. The GLP-1 receptor antagonist exendin-(9-39) suppressed this action of GLP-1. The GLP-1 inhibitory action on EFS-evoked responses persisted in the presence of nicotinic or vasoactive intestinal peptide receptor antagonists but not in the presence of a muscarinic receptor antagonist. GLP-1 significantly reduced EFS-evoked ACh release. In the submucosal plexus, GLP-1R immunoreactivity (IR) was expressed by choline acetyltransferase-IR neurons, neuropeptide Y-IR neurons, somatostatin-IR neurons, and vasoactive intestinal peptide-IR neurons. Our results suggest that GLP-1R is expressed in guinea pig submucosal neurons and that its activation leads to a decrease in neurally evoked chloride secretion by suppressing release of ACh at neuroepithelial junctions in the enteric neural networks

  14. Simultaneous quantification of intracellular and secreted active and inactive glucagon-like peptide-1 from cultured cells.

    PubMed

    Amao, Michiko; Kitahara, Yoshiro; Tokunaga, Ayaka; Shimbo, Kazutaka; Eto, Yuzuru; Yamada, Naoyuki

    2015-03-01

    Glucagon-like peptide-1 (GLP-1) is an incretin peptide that regulates islet hormone secretion. During recent years, incretin-based therapies have been widely used for patients with type 2 diabetes. GLP-1 peptides undergo N- and C-terminal processing for gain or loss of functions. We developed a method to quantify picomolar quantities of intact GLP-1 peptides using liquid chromatography-tandem mass spectrometry (LC-MS/MS). By employing this label-free selected reaction monitoring (SRM) method, we were able to analyze secreted GLP-1(1-37), GLP-1(7-37), and GLP-1(7-36 amid from human enteroendocrine NCI-H716 cells after stimulation with nateglinide, glucose, and sucralose. The absolute total concentrations of secreted GLP-1 peptides at baseline and after stimulation with nateglinide, glucose, and sucralose were 167.3, 498.9, 238.3, and 143.1 pM, respectively. Meanwhile, the ratios of GLP-1(1-37), GLP-1(7-37), and GLP-1(7-36 amide) to total GLP-1 peptides were similar (6 ± 3, 26 ± 3, and 78 ± 5%, respectively). The SRM assay can analyze the concentrations of individual GLP-1 peptides and, therefore, is a tool to investigate the physiological roles of GLP-1 peptides. Furthermore, the molecular species secreted from NCI-H716 cells were unknown. Therefore, we performed a secretopeptidome analysis of supernatants collected from cultured NCI-H716 cells. Together with GLP-1 peptides, we detected neuroendocrine convertase 1, which regulates peptide hormones released from intestinal endocrine L-cells. PMID:25461479

  15. Evidence for glucagon-like peptide-1 receptor signaling to activate ATP-sensitive potassium channels in pancreatic beta cells.

    PubMed

    Kwon, Hye-Jung; Park, Hyun-Sun; Park, Sung-Hee; Park, Jae-Hyung; Shin, Su-Kyung; Song, Seung Eun; Hwang, Meeyul; Cho, Ho-Chan; Song, Dae-Kyu

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a gut peptide that promotes insulin release from pancreatic beta cells. GLP-1 has been shown to confer glucose-insensitive beta cells with glucose sensitivity by modulation of the activity of the ATP-sensitive potassium (KATP) channel. The channel closing effect of GLP-1, interacting with corresponding G-protein-coupled receptors, has been well established; however, to our knowledge, no study has shown whether GLP-1 directly induces activation of beta-cell KATP channels. Here, we aimed to evaluate whether the activation of beta-cell KATP channels by GLP-1 exists and affects intracellular Ca(2+) levels ([Ca(2+)]i). KATP channel activity was measured in isolated rat pancreatic beta cells by whole-cell perforated patch-clamp recordings with a diazoxide-containing pipette solution. Changes in [Ca(2+)]i and the subcellular localization of KATP channels were observed using the calcium-sensitive dye fura-4/AM and anti-Kir6.2 antibodies in INS-1 beta cells, respectively. To eliminate the well-known inhibitory effects of GLP-1 on KATP channel activity, channels were fully inhibited by pretreatment with methyl pyruvate and epigallocatechin-3-gallate. In the pretreated beta cells, GLP-1 and exendin-4 promptly activated the channels, reducing [Ca(2+)]i. The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 blocked the effects of GLP-1 on channel activity. Moreover, phosphatidylinositol-3,4,5-trisphosphate mimicked the effects of GLP-1. These results suggested that beta-cell GLP-1 receptor signaling involved activation of KATP channels via a PI3K-dependent pathway. This alternative mechanism of GLP-1 function may act as a negative feedback pathway, modulating the glucose-dependent GLP-1 inhibition on KATP channel activity. PMID:26655814

  16. Isolation of Positive Modulator of Glucagon-like Peptide-1 Signaling from Trigonella foenum-graecum (Fenugreek) Seed.

    PubMed

    King, Klim; Lin, Nai-Pin; Cheng, Yu-Hong; Chen, Gao-Hui; Chein, Rong-Jie

    2015-10-23

    The glucagon-like peptide-1 receptor (GLP-1R) is expressed in many tissues and has been implicated in diverse physiological functions, such as energy homeostasis and cognition. GLP-1 analogs are approved for treatment of type 2 diabetes and are undergoing clinical trials for other disorders, including neurodegenerative diseases. GLP-1 analog therapies maintain chronically high plasma levels of the analog and can lead to loss of spatiotemporal control of GLP-1R activation. To avoid adverse effects associated with current therapies, we characterized positive modulators of GLP-1R signaling. We screened extracts from edible plants using an intracellular cAMP biosensor and GLP-1R endocytosis assays. Ethanol extracts from fenugreek seeds enhanced GLP-1 signaling. These seeds have previously been found to reduce glucose and glycated hemoglobin levels in humans. An active compound (N55) with a new N-linoleoyl-2-amino-γ-butyrolactone structure was purified from fenugreek seeds. N55 promoted GLP-1-dependent cAMP production and GLP-1R endocytosis in a dose-dependent and saturable manner. N55 specifically enhanced GLP-1 potency more than 40-fold, but not that of exendin 4, to stimulate cAMP production. In contrast to the current allosteric modulators that bind to GLP-1R, N55 binds to GLP-1 peptide and facilitates trypsin-mediated GLP-1 inactivation. These findings identify a new class of modulators of GLP-1R signaling and suggest that GLP-1 might be a viable target for drug discovery. Our results also highlight a feasible approach for screening bioactive activity of plant extracts. PMID:26336108

  17. ZmPep1, an ortholog of Arabidopsis elicitor Peptide 1, regulates maize innate immunity and enhances disease resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ZmPep1 is a bioactive peptide encoded by a previously uncharacterized maize gene termed ZmPROPEP1. The gene was identified by sequence similarity as an ortholog of the Arabidopsis AtPROPEP1 gene, which encodes the precursor protein of elicitor peptide 1 (AtPep1). Together with its receptors, AtPEPR1...

  18. Rod-to-Globule Transition of pDNA/PEG-Poly(l-Lysine) Polyplex Micelles Induced by a Collapsed Balance Between DNA Rigidity and PEG Crowdedness.

    PubMed

    Tockary, Theofilus A; Osada, Kensuke; Motoda, Yusuke; Hiki, Shigehiro; Chen, Qixian; Takeda, Kaori M; Dirisala, Anjaneyulu; Osawa, Shigehito; Kataoka, Kazunori

    2016-03-01

    The role of poly(ethylene-glycol) (PEG) in rod-shaped polyplex micelle structures, having a characteristic core of folded plasmid DNA (pDNA) and a shell of tethered PEG chains, is investigated using PEG-detachable polyplex micelles. Rod shapes undergo change to compacted globule shapes by removal of PEG from polyplex micelles prepared from block copolymer with acid-labile linkage between PEG and poly(l-lysine) (PLys) through exposure to acidic milieu. This structural change supports the previous investigation on the rod shapes that PEG shell prevents the DNA structure from being globule shaped as the most favored structure in minimizing surface area. Noteworthy, despite the PEG is continuously depleted, the structural change does not occur in gradual shortening manner but the rod shapes keep their length unchanged and abruptly transform into globule shapes. Analysis of PEG density reveals the transition occurred when tethered PEG of rod shapes has decreased to a critical crowdedness, i.e., discontacted with neighboring PEG, which eventually illuminates another contribution, rigidity of DNA packaged as bundle in the rod shapes, in addition to the steric repulsion of PEG, in sustaining rod shapes. This investigation affirms significant role of PEG and also DNA rigidity as bundle in the formation of rod-shaped structures enduring the quest of compaction of charge-neutralized DNA in the polyplex micelles. PMID:26426541

  19. Preparation, stability and cytocompatibility of magnetic/PLA-PEG hybrids

    NASA Astrophysics Data System (ADS)

    Bakandritsos, Aristides; Mattheolabakis, George; Zboril, Radek; Bouropoulos, Nikolaos; Tucek, Jiri; Fatouros, Dimitrios G.; Avgoustakis, Konstantinos

    2010-04-01

    Hybrid nanocolloids based on biodegradable polymers of poly(lactide) (PLA) or poly(lactide)-block-poly(ethylene glycol) (PLA-PEG) and hydrophobic iron oxide magnetic nanoparticles (MNPs) of ca. 5 nm are prepared via a self-assembly route. The magnetic nanoparticles are organized in superclusters inside the hydrophobic core of PLA-PEG micelles or cholate-stabilized PLA nanospheres. The hydrodynamic diameter of MNPs-loaded PLA nanospheres is ~250 nm, whereas that of MNPs-loaded PLA-PEG micelles is much lower (~100 nm) and thus compatible with applications where prolonged blood circulation is required. The PLA-PEG micelles exhibit high encapsulation efficiency for the MNPs, imparting a saturation magnetization value to the hybrid of 8.4 emu g-1. Both hybrid colloids display magnetic properties of a non-interacting assembly of superparamagnetic particles and a low blocking temperature, both of which are key attributes for colloidally stable ferrofluids. Furthermore, the PLA-PEG magnetic hybrids display remarkable colloidal stability at high ionic strength, temperature and in human blood plasma, while the estimated critical micelle concentration of ca. 2 × 10-5 mM (0.3 mg L-1) indicates the low probability of the colloids dissociation in the blood compartment. They were also found to be non-toxic to human cells in vitro. The results underline the potential of the magnetic/PLA-PEG hybrids and encourage further research for their in vivo biomedical applications.Hybrid nanocolloids based on biodegradable polymers of poly(lactide) (PLA) or poly(lactide)-block-poly(ethylene glycol) (PLA-PEG) and hydrophobic iron oxide magnetic nanoparticles (MNPs) of ca. 5 nm are prepared via a self-assembly route. The magnetic nanoparticles are organized in superclusters inside the hydrophobic core of PLA-PEG micelles or cholate-stabilized PLA nanospheres. The hydrodynamic diameter of MNPs-loaded PLA nanospheres is ~250 nm, whereas that of MNPs-loaded PLA-PEG micelles is much lower (~100

  20. Particles without a Box: Brush-first Synthesis of Photodegradable PEG Star Polymers under Ambient Conditions

    PubMed Central

    Liu, Jenny; Gao, Angela Xiaodi; Johnson, Jeremiah A.

    2013-01-01

    Convenient methods for the rapid, parallel synthesis of diversely functionalized nanoparticles will enable discovery of novel formulations for drug delivery, biological imaging, and supported catalysis. In this report, we demonstrate parallel synthesis of brush-arm star polymer (BASP) nanoparticles by the "brush-first" method. In this method, a norbornene-terminated poly(ethylene glycol) (PEG) macromonomer (PEG-MM) is first polymerized via ring-opening metathesis polymerization (ROMP) to generate a living brush macroinitiator. Aliquots of this initiator stock solution are added to vials that contain varied amounts of a photodegradable bis-norbornene crosslinker. Exposure to crosslinker initiates a series of kinetically-controlled brush+brush and star+star coupling reactions that ultimately yields BASPs with cores comprised of the crosslinker and coronas comprised of PEG. The final BASP size depends on the amount of crosslinker added. We carry out the synthesis of three BASPs on the benchtop with no special precautions to remove air and moisture. The samples are characterized by gel permeation chromatography (GPC); results agreed closely with our previous report that utilized inert (glovebox) conditions. Key practical features, advantages, and potential disadvantages of the brush-first method are discussed. PMID:24145552

  1. Two peg spade plate for distal radius fractures: A novel technique

    PubMed Central

    Hardikar, Sharad M; Prakash, Sreenivas; Hardikar, Madan S; Kumar, Rohit

    2015-01-01

    Background: The management of distal radius fractures raises considerable debate among orthopedic surgeons. The amount of axial shortening of the radius correlates with the functional disability after the fracture. Furthermore, articular incongruity has been correlated with the development of arthritis at the radiocarpal joint. We used two peg volar spade plate to provide a fixed angle subchondral support in comminuted distal radius fractures with early mobilization of the joint. Materials and Methods: Forty patients (26 males and 14 females) from a period between January 2009 and December 2011 were treated with two peg volar spade plate fixation for distal radius fracture after obtaining reduction using a mini external fixator. Patients were evaluated using the demerit point system of Gartland and Werley and Sarmiento modification of Lindstrom criteria at final followup of 24 months. Results: The average age was 43.55 years (range 23-57 years). Excellent to good results were seen in 85% (n = 34) and in all patients when rated according to the demerit point system of Gartland and Werley and Sarmiento modification of Lindstrom criteria, respectively. Complications observed were wrist stiffness in 5% (n = 2) and reflex sympathetic dystrophy in 2.5% (n = 1). Conclusions: The two peg volar spade plate provides a stable subchondral support in comminuted intraarticular fractures and maintains reduction in osteoporotic fractures of the distal radius. Early mobilization with this implant helps in restoring wrist motion and to prevent development of wrist stiffness. PMID:26538760

  2. A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel.

    PubMed

    Strehin, Iossif; Nahas, Zayna; Arora, Karun; Nguyen, Thao; Elisseeff, Jennifer

    2010-04-01

    We developed a chondroitin sulfate-polyethylene glycol (CS-PEG) adhesive hydrogel with numerous potential biomedical applications. The carboxyl groups on chondroitin sulfate (CS) chains were functionalized with N-hydroxysuccinimide (NHS) to yield chondroitin sulfate succinimidyl succinate (CS-NHS). Following purification, the CS-NHS molecule can react with primary amines to form amide bonds. Hence, using six arm polyethylene glycol amine PEG-(NH2)6 as a crosslinker we formed a hydrogel which was covalently bound to proteins in tissue via amide bonds. By varying the initial pH of the precursor solutions, the hydrogel stiffness, swelling properties, and kinetics of gelation could be controlled. The sealing/adhesive strength could also be modified by varying the damping and storage modulus properties of the material. The adhesive strength of the material with cartilage tissue was shown to be ten times higher than that of fibrin glue. Cells encapsulated or in direct contact with the material remained viable and metabolically active. Furthermore, CS-PEG material produced minimal inflammatory response when implanted subcutaneously in a rat model and enzymatic degradation was demonstrated in vitro. This work establishes an adhesive hydrogel derived from biological and synthetic components with potential application in wound healing and regenerative medicine. PMID:20047758

  3. Characterization of PEG-Like Macromolecular Coatings on Plasma Modified NiTi Alloy

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Gao, Jiacheng; Chang, Peng; Wang, Jianhua

    2008-04-01

    A poly (ethylene glycol) (PEG-like) coating was developed to improve the biocompatibility of Nickel-Titanium (NiTi) alloy implants. The PEG-like macromolecular coatings were deposited on NiTi substrates at a room temperature of 298 K through a ECR (electron-cyclotron resonance) cold-plasma enhanced chemical vapor deposition method using tetraglyme (CH3-O-(CH2-CH2-O)4-CH3) as a precursor. A power supply with a frequency of 2.45 GHz was applied to ignite the plasma with Ar(argon) used as the carrier gas. Based on the atomic force microscopy (AFM) studies, a thin smooth coating on NiTi substrates with highly amorphous functional groups on the modified NiTi surfaces were mainly the same accumulated stoichiometric ratio of C and O with PEG. The vitro studies showed that platelet-rich plasma (PRP) adsorption on the modified NiTi alloy surface was significantly reduced. This study indicated that plasma surface modification changes the surface components of NiTi alloy and subsequently improves its biocompatibility.

  4. PEG-induced osmotic stress in Mentha x piperita L.: Structural features and metabolic responses.

    PubMed

    Búfalo, Jennifer; Rodrigues, Tatiane Maria; de Almeida, Luiz Fernando Rolim; Tozin, Luiz Ricardo Dos Santos; Marques, Marcia Ortiz Mayo; Boaro, Carmen Silvia Fernandes

    2016-08-01

    The present study investigated whether osmotic stress induced by the exposure of peppermint (Mentha x piperita L.) to moderate and severe stress for short periods of time changes the plant's physiological parameters, leaf anatomy and ultrastructure and essential oil. Plants were exposed to two levels of polyethyleneglycol (50 g L(-1) and 100 g L(-1) of PEG) in a hydroponic experiment. The plants exposed to 50 g L(-1) maintained metabolic functions similar to those of the control group (0 g L(-1)) without changes in gas exchange or structural characteristics. The increase in antioxidant enzyme activity reduced the presence of free radicals and protected membranes, including chloroplasts and mitochondria. In contrast, the osmotic stress caused by 100 g L(-1) of PEG inhibited leaf gas exchange, reduced the essential oil content and changed the oil composition, including a decrease in menthone and an increase in menthofuran. These plants also showed an increase in peroxidase activity, but this increase was not sufficient to decrease the lipid peroxidation level responsible for damaging the membranes of organelles. Morphological changes were correlated with the evaluated physiological features: plants exposed to 100 g L(-1) of PEG showed areas with collapsed cells, increases in mesophyll thickness and the area of the intercellular space, cuticle shrinkage, morphological changes in plastids, and lysis of mitochondria. In summary, our results revealed that PEG-induced osmotic stress in M. x piperita depends on the intensity level of the osmotic stress applied; severe osmotic stress changed the structural characteristics, caused damage at the cellular level, and reduced the essential oil content and quality. PMID:27107175

  5. Self-assembled peptide amphiphile nanofibers and peg composite hydrogels as tunable ECM mimetic microenvironment.

    PubMed

    Goktas, Melis; Cinar, Goksu; Orujalipoor, Ilghar; Ide, Semra; Tekinay, Ayse B; Guler, Mustafa O

    2015-04-13

    Natural extracellular matrix (ECM) consists of complex signals interacting with each other to organize cellular behavior and responses. This sophisticated microenvironment can be mimicked by advanced materials presenting essential biochemical and physical properties in a synergistic manner. In this work, we developed a facile fabrication method for a novel nanofibrous self-assembled peptide amphiphile (PA) and poly(ethylene glycol) (PEG) composite hydrogel system with independently tunable biochemical, mechanical, and physical cues without any chemical modification of polymer backbone or additional polymer processing techniques to create synthetic ECM analogues. This approach allows noninteracting modification of multiple niche properties (e.g., bioactive ligands, stiffness, porosity), since no covalent conjugation method was used to modify PEG monomers for incorporation of bioactivity and porosity. Combining the self-assembled PA nanofibers with a chemically cross-linked polymer network simply by facile mixing followed by photopolymerization resulted in the formation of porous bioactive hydrogel systems. The resulting porous network can be functionalized with desired bioactive signaling epitopes by simply altering the amino acid sequence of the self-assembling PA molecule. In addition, the mechanical properties of the composite system can be precisely controlled by changing the PEG concentration. Therefore, nanofibrous self-assembled PA/PEG composite hydrogels reported in this work can provide new opportunities as versatile synthetic mimics of ECM with independently tunable biological and mechanical properties for tissue engineering and regenerative medicine applications. In addition, such systems could provide useful tools for investigation of how complex niche cues influence cellular behavior and tissue formation both in two-dimensional and three-dimensional platforms. PMID:25751623

  6. NR Peg: A new highly active semi-detached binary

    NASA Astrophysics Data System (ADS)

    Erdem, A.; Sürgit, D.; Kurpińska-Winiarska, M.; Oblak, E.

    2014-11-01

    This paper presents the first analysis of spectroscopic and photometric observations of the eclipsing binary star NR Peg. ELODIE Hα observations indicate that the secondary component is a chromospherically active star; however, the spectral line profiles (especially of neutral metals) of NR Peg are very wide and have a complex structure with asymmetric bubbles on its branches, which could be interpreted as traces of stellar magnetic activity in both components. The 2007 and 2008 BVR light curves are generally those of β Lyrae-type eclipsing binaries, however, there are large asymmetries between maxima. We explained these peculiar asymmetries in terms of large dark spots on the primary component. ELODIE spectroscopic data and 2008 BVR light curves were solved simultaneously using Wilson-Devinney code. The results describe NR Peg as a RS CVn type binary star with a semi-detached configuration. The masses of the components were found to be 1.60 ± 0.03 M⊙ and 0.57 ± 0.02 M⊙ and the radii to be 3.35 ± 0.07 R⊙ and 3.55 ± 0.08 R⊙ for the primary and secondary components, respectively. Both components of NR Peg appear to have evolved behind the terminal age main sequence. However, the less-massive secondary component is significantly oversized and overluminous compared to theoretical evolution models. The distance of NR Peg was calculated as 138 ± 12 pc, taking into account interstellar extinction, in agreement with the HIPPARCOS value.

  7. Carbohydrate-induced secretion of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1.

    PubMed

    Seino, Yusuke; Maekawa, Ryuya; Ogata, Hidetada; Hayashi, Yoshitaka

    2016-04-01

    Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the incretin hormones secreted from enteroendocrine K-cells and L-cells, respectively, by oral ingestion of various nutrients including glucose. K-cells, L-cells and pancreatic β-cells are glucose-responsive cells with similar glucose-sensing machinery including glucokinase and an adenosine triphosphate-sensitive K(+) channel comprising KIR6.2 and sulfonylurea receptor 1. However, the physiological role of the adenosine triphosphate-sensitive K(+) channel in GIP secretion in K-cells and GLP-1 secretion in L-cells is not elucidated. Recently, it was reported that GIP and GLP-1-producing cells are present also in pancreatic islets, and islet-derived GIP and GLP-1 contribute to glucose-induced insulin secretion from pancreatic β-cells. In this short review, we focus on GIP and GLP-1 secretion by monosaccharides, such as glucose or fructose, and the role of the adenosine triphosphate-sensitive K(+) channel in GIP and GLP-1 secretion. PMID:27186352

  8. Glucagon-Like Peptide-1 Formulation--the Present and Future Development in Diabetes Treatment.

    PubMed

    Lee, Chooi Yeng

    2016-03-01

    Type 2 diabetes mellitus is a chronic metabolic disorder that has become the fourth leading cause of death in the developed countries. The disorder is characterized by pancreatic β-cells dysfunction, which causes hyperglycaemia leading to several other complications. Treatment by far, which focuses on insulin administration and glycaemic control, has not been satisfactory. Glucagon-like peptide-1 (GLP1) is an endogenous peptide that stimulates post-prandial insulin secretion. Despite being able to mimic the effect of insulin, GLP1 has not been the target drug in diabetes treatment due to the peptide's metabolic instability. After a decade-long effort to improve the pharmacokinetics of GLP1, a number of GLP1 analogues are currently available on the market. The current Minireview does not discuss these drugs but presents strategies that were undertaken to address the weaknesses of the native GLP1, particularly drug delivery techniques used in developing GLP1 nanoparticles and modified GLP1 molecule. The article highlights how each of the selected preparations has improved the efficacy of GLP1, and more importantly, through an overview of these studies, it will provide an insight into strategies that may be adopted in the future in the development of a more effective oral GLP1 formulation. PMID:26551045

  9. Polymer-Based Delivery of Glucagon-Like Peptide-1 for the Treatment of Diabetes

    PubMed Central

    Kim, Pyung-Hwan; Kim, Sung Wan

    2012-01-01

    The incretin hormones, glucagon-like peptide-1 (GLP-1) and its receptor agonist (exendin-4), are well known for glucose homeostasis, insulinotropic effect, and effects on weight loss and food intake. However, due to the rapid degradation of GLP-1 by dipeptidylpeptidase-IV (DPP-IV) enzyme and renal elimination of exendin-4, their clinical applications have been restricted. Although exendin-4 has longer half-life than GLP-1, it still requires frequent injections to maintain efficacy for the treatment of diabetes. In recent decades, various polymeric delivery systems have been developed for the delivery of GLP-1 and exendin-4 genes or peptides for their long-term action and the extra production in ectopic tissues. Herein, we discuss the modification of the expression cassettes and peptides for long-term production and secretion of the native peptides. In addition, the characteristics of nonviral or viral system used for a delivery of a modified GLP-1 or exendin-4 are described. Furthermore, recent efforts to improve the biological half-life of GLP-1 or exendin-4 peptide via chemical conjugation with various smart polymers via chemical conjugation compared with native peptide are discussed. PMID:22701182

  10. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation.

    PubMed

    Torres, Gloria; Morales, Pablo E; García-Miguel, Marina; Norambuena-Soto, Ignacio; Cartes-Saavedra, Benjamín; Vidal-Peña, Gonzalo; Moncada-Ruff, David; Sanhueza-Olivares, Fernanda; San Martín, Alejandra; Chiong, Mario

    2016-03-15

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone produced by gastrointestinal tract in response to food ingestion. GLP-1 plays a very important role in the glucose homeostasis by stimulating glucose-dependent insulin secretion, inhibiting glucagon secretion, inhibiting gastric emptying, reducing appetite and food intake. Because of these actions, the GLP-1 peptide-mimetic exenatide is one of the most promising new medicines for the treatment of type 2 diabetes. In vivo treatments with GLP-1 or exenatide prevent neo-intima layer formation in response to endothelial damage and atherosclerotic lesion formation in aortic tissue. Whether GLP-1 modulates vascular smooth muscle cell (VSMC) migration and proliferation by controlling mitochondrial dynamics is unknown. In this report, we showed that GLP-1 increased mitochondrial fusion and activity in a PKA-dependent manner in the VSMC cell line A7r5. GLP-1 induced a Ser-637 phosphorylation in the mitochondrial fission protein Drp1, and decreased Drp1 mitochondrial localization. GLP-1 inhibited PDGF-BB-induced VSMC migration and proliferation, actions inhibited by overexpressing wild type Drp1 and mimicked by the Drp1 inhibitor Mdivi-1 and by overexpressing dominant negative Drp1. These results show that GLP-1 stimulates mitochondrial fusion, increases mitochondrial activity and decreases PDGF-BB-induced VSMC dedifferentiation by a PKA/Drp1 signaling pathway. Our data suggest that GLP-1 inhibits vascular remodeling through a mitochondrial dynamics-dependent mechanism. PMID:26807480

  11. Glucagon-like peptide-1 regulates calcium homeostasis and electrophysiological activities of HL-1 cardiomyocytes.

    PubMed

    Huang, Jen-Hung; Chen, Yao-Chang; Lee, Ting-I; Kao, Yu-Hsun; Chazo, Tze-Fan; Chen, Shih-Ann; Chen, Yi-Jen

    2016-04-01

    Glucagon like-peptide-1 (GLP-1) is an incretin hormone with antidiabetic effects through stimulating insulin secretion, β cell neogenesis, satiety sensation, and inhibiting glucagon secretion. Administration of GLP-1 provides cardioprotective effects through attenuating cardiac inflammation and insulin resistance. GLP-1 also modulates the heart rate and systolic pressure, which suggests that GLP-1 may have cardiac electrical effects. Therefore, the purposes of this study were to evaluate whether GLP-1 has direct cardiac effects and identify the underlying mechanisms. Patch clamp, confocal microscopy with Fluo-3 fluorescence, and Western blot analyses were used to evaluate the electrophysiological characteristics, calcium homeostasis, and calcium regulatory proteins in HL-1 atrial myocytes with and without GLP-1 (1 and 10nM) incubation for 24h. GLP-1 (1 and 10nM) and control cells had similar action potential durations. However, GLP-1 at 10nM significantly increased calcium transients and sarcoplasmic reticular Ca(2+) contents. Compared to the control, GLP-1 (10nM)-treated cells significantly decreased phosphorylation of the ryanodine receptor at S2814 and total phospholamban, but there were similar protein levels of sarcoplasmic reticular Ca(2+)-ATPase and the sodium-calcium exchanger. Moreover, exendin (9-39) amide (a GLP-1 receptor antagonist, 10nM) attenuated GLP-1-mediated effects on total SR content and phosphorylated ryanodine receptor S2814. This study demonstrates GLP-1 may regulate HL-1 cell arrhythmogenesis through modulating calcium handling proteins. PMID:26930508

  12. Glucagon-like peptide-1 receptor agonists increase pancreatic mass by induction of protein synthesis.

    PubMed

    Koehler, Jacqueline A; Baggio, Laurie L; Cao, Xiemin; Abdulla, Tahmid; Campbell, Jonathan E; Secher, Thomas; Jelsing, Jacob; Larsen, Brett; Drucker, Daniel J

    2015-03-01

    Glucagon-like peptide-1 (GLP-1) controls glucose homeostasis by regulating secretion of insulin and glucagon through a single GLP-1 receptor (GLP-1R). GLP-1R agonists also increase pancreatic weight in some preclinical studies through poorly understood mechanisms. Here we demonstrate that the increase in pancreatic weight following activation of GLP-1R signaling in mice reflects an increase in acinar cell mass, without changes in ductal compartments or β-cell mass. GLP-1R agonists did not increase pancreatic DNA content or the number of Ki67(+) cells in the exocrine compartment; however, pancreatic protein content was increased in mice treated with exendin-4 or liraglutide. The increased pancreatic mass and protein content was independent of cholecystokinin receptors, associated with a rapid increase in S6 phosphorylation, and mediated through the GLP-1R. Rapamycin abrogated the GLP-1R-dependent increase in pancreatic mass but had no effect on the robust induction of Reg3α and Reg3β gene expression. Mass spectrometry analysis identified GLP-1R-dependent upregulation of Reg family members, as well as proteins important for translation and export, including Fam129a, eIF4a1, Wars, and Dmbt1. Hence, pharmacological GLP-1R activation induces protein synthesis, leading to increased pancreatic mass, independent of changes in DNA content or cell proliferation in mice. PMID:25277394

  13. Combining Basal Insulin Analogs with Glucagon-Like Peptide-1 Mimetics

    PubMed Central

    2011-01-01

    Abstract Basal insulin analogs are recognized as an effective method of achieving and maintaining glycemic control for patients with type 2 diabetes. However, the progressive nature of the disease means that some individuals may require additional ways to maintain their glycemic goals. Intensification in these circumstances has traditionally been achieved by the addition of short-acting insulin to cover postprandial glucose excursions that are not targeted by basal insulin. However, intensive insulin regimens are associated with a higher risk of hypoglycemia and weight gain, which can contribute to a greater burden on patients. The combination of basal insulin with a glucagon-like peptide-1 (GLP-1) mimetic is a potentially attractive solution to this problem for some patients with type 2 diabetes. GLP-1 mimetics target postprandial glucose and should complement the activity of basal insulins; they are also associated with a relatively low risk of associated hypoglycemia and moderate, but significant, weight loss. Although the combination has not been approved by regulatory authorities, preliminary evidence from mostly small-scale studies suggests that basal insulins in combination with GLP-1 mimetics do provide improvements in A1c and postprandial glucose with concomitant weight loss and no marked increase in the risk of hypoglycemia. These results are promising, but further studies are required, including comparisons with basal–bolus therapy, before the complex value of this association can be fully appreciated. PMID:21711120

  14. Glucagon-like peptide-1: effect on pro-atrial natriuretic peptide in healthy males.

    PubMed

    Skov, Jeppe; Holst, Jens Juul; Gøtze, Jens Peter; Frøkiær, Jørgen; Christiansen, Jens Sandahl

    2014-01-01

    The antihypertensive actions of glucagon-like peptide-1 (GLP1) receptor agonists have been linked to the release of atrial natriuretic peptide (ANP) in mice. Whether a GLP1-ANP axis exists in humans is unknown. In this study, we examined 12 healthy young males in a randomized, controlled, double-blinded, single-day, cross-over study to evaluate the effects of a 2-h native GLP1 infusion. Plasma proANP concentrations were measured by an automated mid-region-directed proANP immunoassay and N-terminal pro B-type natriuretic peptide (BNP) on Roche Modular E170. Urine was collected for measurements of sodium excretion. Although GLP1 infusion increased the urinary sodium excretion markedly, there were no significant changes in either proANP or proBNP concentrations. When GLP1 infusion was stopped, sodium excretion declined rapidly. As proANP concentration reflects ANP secretion, our data could not confirm the existence of a GLP1-ANP axis in humans. Especially, the natriuretic effects of GLP1 seem unlikely to be mediated exclusively via ANP. PMID:24327600

  15. Impaired cardiometabolic responses to glucagon-like peptide 1 in obesity and type 2 diabetes mellitus.

    PubMed

    Moberly, Steven P; Mather, Kieren J; Berwick, Zachary C; Owen, Meredith K; Goodwill, Adam G; Casalini, Eli D; Hutchins, Gary D; Green, Mark A; Ng, Yen; Considine, Robert V; Perry, Kevin M; Chisholm, Robin L; Tune, Johnathan D

    2013-07-01

    Glucagon-like peptide 1 (GLP-1) has insulin-like effects on myocardial glucose uptake which may contribute to its beneficial effects in the setting of myocardial ischemia. Whether these effects are different in the setting of obesity or type 2 diabetes (T2DM) requires investigation. We examined the cardiometabolic actions of GLP-1 (7-36) in lean and obese/T2DM humans, and in lean and obese Ossabaw swine. GLP-1 significantly augmented myocardial glucose uptake under resting conditions in lean humans, but this effect was impaired in T2DM. This observation was confirmed and extended in swine, where GLP-1 effects to augment myocardial glucose uptake during exercise were seen in lean but not in obese swine. GLP-1 did not increase myocardial oxygen consumption or blood flow in humans or in swine. Impaired myocardial responsiveness to GLP-1 in obesity was not associated with any apparent alterations in myocardial or coronary GLP1-R expression. No evidence for GLP-1-mediated activation of cAMP/PKA or AMPK signaling in lean or obese hearts was observed. GLP-1 treatment augmented p38-MAPK activity in lean, but not obese cardiac tissue. Taken together, these data provide novel evidence indicating that the cardiometabolic effects of GLP-1 are attenuated in obesity and T2DM, via mechanisms that may involve impaired p38-MAPK signaling. PMID:23764734

  16. Medicinal Plants Qua Glucagon-Like Peptide-1 Secretagogue via Intestinal Nutrient Sensors

    PubMed Central

    Kim, Ki-Suk; Jang, Hyeung-Jin

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) participates in glucose homeostasis and feeding behavior. Because GLP-1 is rapidly inactivated by the enzymatic cleavage of dipeptidyl peptidase-4 (DPP4) long-acting GLP-1 analogues, for example, exenatide and DPP4 inhibitors, for example, liraglutide, have been developed as therapeutics for type 2 diabetes mellitus (T2DM). However, the inefficient clinical performance and the incidence of side effects reported on the existing therapeutics for T2DM have led to the development of a novel therapeutic strategy to stimulate endogenous GLP-1 secretion from enteroendocrine L cells. Since the GLP-1 secretion of enteroendocrine L cells depends on the luminal nutrient constituents, the intestinal nutrient sensors involved in GLP-1 secretion have been investigated. In particular, nutrient sensors for tastants, cannabinoids, and bile acids are able to recognize the nonnutritional chemical compounds, which are abundant in medicinal plants. These GLP-1 secretagogues derived from medicinal plants are easy to find in our surroundings, and their effectiveness has been demonstrated through traditional remedies. The finding of GLP-1 secretagogues is directly linked to understanding of the role of intestinal nutrient sensors and their recognizable nutrients. Concurrently, this study demonstrates the possibility of developing novel therapeutics for metabolic disorders such as T2DM and obesity using nutrients that are readily accessible in our surroundings. PMID:26788106

  17. Glucagon-like peptide 1 (GLP-1) in the gastrointestinal tract of the pheasant (Phasianus colchicus).

    PubMed

    Pirone, Andrea; Ding, Bao An; Giannessi, Elisabetta; Coli, Alessandra; Stornelli, Maria Rita; di Cossato, Margherita Marzoni Fecia; Piano, Ilaria; Lenzi, Carla

    2012-10-01

    The distribution of Glucagon-like peptide 1 (GLP-1) was investigated in the gastrointestinal tract of the pheasant using immunohistochemistry. GLP-1 immunoreactive cells were common in the small intestine, in the proventriculus and in the pancreas. Immunostained cells were not seen in the crop, in the gizzard and in the large intestine. Double labelling demonstrated that GLP-1 and pituitary adenylate cyclase-activating polypeptide (PACAP) were occasionally co-localized only in the duodenal villi. In contrast to what was previously described in the chicken and ostrich, we noted GLP-1 positive cells in the duodenum. These data were consistent with the presence of proglucagon mRNA in the chicken duodenum. Our findings indicate that GLP-1 might have an inhibitory effect on gastric and crop emptying and on acid secretion also in the pheasant. Moreover, the results of the present research regarding the initial region of the small intestine suggest a further direct mechanism of the GLP-1 release during the early digestion phase and an enhancement of its incretin role. PMID:22036174

  18. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells.

    PubMed

    Trabelsi, Mohamed-Sami; Daoudi, Mehdi; Prawitt, Janne; Ducastel, Sarah; Touche, Véronique; Sayin, Sama I; Perino, Alessia; Brighton, Cheryl A; Sebti, Yasmine; Kluza, Jérôme; Briand, Olivier; Dehondt, Hélène; Vallez, Emmanuelle; Dorchies, Emilie; Baud, Grégory; Spinelli, Valeria; Hennuyer, Nathalie; Caron, Sandrine; Bantubungi, Kadiombo; Caiazzo, Robert; Reimann, Frank; Marchetti, Philippe; Lefebvre, Philippe; Bäckhed, Fredrik; Gribble, Fiona M; Schoonjans, Kristina; Pattou, François; Tailleux, Anne; Staels, Bart; Lestavel, Sophie

    2015-01-01

    Bile acids are signalling molecules, which activate the transmembrane receptor TGR5 and the nuclear receptor FXR. BA sequestrants (BAS) complex bile acids in the intestinal lumen and decrease intestinal FXR activity. The BAS-BA complex also induces glucagon-like peptide-1 (GLP-1) production by L cells which potentiates β-cell glucose-induced insulin secretion. Whether FXR is expressed in L cells and controls GLP-1 production is unknown. Here, we show that FXR activation in L cells decreases proglucagon expression by interfering with the glucose-responsive factor Carbohydrate-Responsive Element Binding Protein (ChREBP) and GLP-1 secretion by inhibiting glycolysis. In vivo, FXR deficiency increases GLP-1 gene expression and secretion in response to glucose hence improving glucose metabolism. Moreover, treatment of ob/ob mice with the BAS colesevelam increases intestinal proglucagon gene expression and improves glycaemia in a FXR-dependent manner. These findings identify the FXR/GLP-1 pathway as a new mechanism of BA control of glucose metabolism and a pharmacological target for type 2 diabetes. PMID:26134028

  19. Farnesoid X Receptor Inhibits Glucagon-Like Peptide-1 Production by Enteroendocrine L-cells

    PubMed Central

    TRABELSI, Mohamed-Sami; DAOUDI, Mehdi; PRAWITT, Janne; DUCASTEL, Sarah; TOUCHE, Véronique; SAYIN, Sama I.; PERINO, Alessia; BRIGHTON, Cheryl A.; SEBTI, Yasmine; KLUZA, Jérôme; BRIAND, Olivier; DEHONDT, Hélène; VALLEZ, Emmanuelle; DORCHIES, Emilie; BAUD, Grégory; SPINELLI, Valeria; HENNUYER, Nathalie; CARON, Sandrine; BANTUBUNGI, Kadiombo; CAIAZZO, Robert; REIMANN, Frank; MARCHETTI, Philippe; LEFEBVRE, Philippe; BÄCKHED, Fredrik; GRIBBLE, Fiona M.; SCHOONJANS, Kristina; PATTOU, François; TAILLEUX, Anne; STAELS, Bart; LESTAVEL, Sophie

    2015-01-01

    Bile acids (BA) are signalling molecules which activate the transmembrane receptor TGR5 and the nuclear receptor FXR. BA sequestrants (BAS) complex BA in the intestinal lumen and decrease intestinal FXR activity. The BAS-BA complex also induces Glucagon-Like Peptide-1 (GLP-1) production by L-cells which potentiates β-cell glucose-induced insulin secretion. Whether FXR is expressed in L-cells and controls GLP-1 production is unknown. Here we show that FXR activation in L-cells decreases proglucagon expression by interfering with the glucose-responsive factor Carbohydrate-Responsive Element Binding Protein (ChREBP) and GLP-1 secretion by inhibiting glycolysis. In vivo, FXR-deficiency increases GLP-1 gene expression and secretion in response to glucose hence improving glucose metabolism. Moreover, treatment of ob/ob mice with the BAS colesevelam increases intestinal proglucagon gene expression and improves glycemia in a FXR-dependent manner. These findings identify the FXR/GLP-1 pathway as a new mechanism of BA control of glucose metabolism and a pharmacological target for type 2 diabetes. PMID:26134028

  20. Dietary sweet potato (Ipomoea batatas L.) leaf extract attenuates hyperglycaemia by enhancing the secretion of glucagon-like peptide-1 (GLP-1).

    PubMed

    Nagamine, Rika; Ueno, Shiori; Tsubata, Masahito; Yamaguchi, Kazuya; Takagaki, Kinya; Hira, Tohru; Hara, Hiroshi; Tsuda, Takanori

    2014-09-01

    'Suioh', a sweet potato (Ipomoea batatas L.) cultivar developed in Japan, has edible leaves and stems. The sweet potato leaves contain polyphenols such as caffeoylquinic acid (CQA) derivatives. It has multiple biological functions and may help to regulate the blood glucose concentration. In this study, we first examined whether sweet potato leaf extract powder (SP) attenuated hyperglycaemia in type 2 diabetic mice. Administration of dietary SP for 5 weeks significantly lowered glycaemia in type 2 diabetic mice. Second, we conducted in vitro experiments, and found that SP and CQA derivatives significantly enhanced glucagon-like peptide-1 (GLP-1) secretion. Third, pre-administration of SP significantly stimulated GLP-1 secretion and was accompanied by enhanced insulin secretion in rats, which resulted in a reduced glycaemic response after glucose injection. These results indicate that oral SP attenuates postprandial hyperglycaemia, possibly through enhancement of GLP-1 secretion. PMID:25066255

  1. PEG-Like Nanoprobes: Multimodal, Pharmacokinetically and Optically Tunable Nanomaterials

    PubMed Central

    Guo, Yanyan; Yuan, Hushan; Claudio, Natalie M.; Kura, Sreekanth; Shakerdge, Naomi; Mempel, Thorsten R.; Bacskai, Brian J.; Josephson, Lee

    2014-01-01

    PEG-like Nanoprobes” (PN’s) are pharmacokinetically and optically tunable nanomaterials whose disposition in biological systems can be determined by fluorescence or radioactivity. PN’s feature a unique design where a single PEG polymer surrounds a short fluorochrome and radiometal bearing peptide, and endows the resulting nanoprobe with pharmacokinetic control (based on molecular weight of the PEG selected) and optical tunability (based on the fluorochrome selected), while the chelate provides a radiolabeling option. PN’s were used to image brain capillary angiography (intravital 2-photon microscopy), tumor capillary permeability (intravital fluorescent microscopy), and the tumor enhanced permeability and retention (EPR) effect (111In-PN and SPECT). Clinical applications of PN’s include use as long blood half-life fluorochromes for intraoperative angiography, for measurements of capillary permeability in breast cancer lesions, and to image EPR by SPECT, for stratifying patient candidates for long-circulating nanomedicines that may utilize the EPR mechanism. PMID:24781778

  2. Biodegradation of various molecular weights of linear polyethylene glycol (PEG) in activated sludge

    SciTech Connect

    Hansmann, M.A.; Bookland, E.A.; Keough, T.W.; Larson, R.J.

    1995-12-31

    Linear polyethylene glycols (PEG) of various average molecular weights (PEG 1000, PEG 3400, PEG 8000, PEG 20000) were tested in a semi-continuous activated sludge test (SCAS), followed by a CO{sub 2} production test to determine which MWs are inherently biodegradable. Complete biodegradation was confirmed analytically using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI TOF MS). The SCAS test estimates the removal of the test substance during wastewater treatment in activated sludge. SCAS removal, as measured by soluble organic carbon (SOC) was > 90% for the PEG 1000, PEG 3400, and PEG 8000, while PEG 20000 showed a SCAS removal of 28%. These results indicate that SCAS removal was largely due to degradation. The CO{sub 2} production test measures the mineralization of the test substance using activated sludge from the SCAS units as the inoculum. The CO{sub 2} test results show that PEG 1000, PEG 3400, and PEG 8000 are inherently biodegradable, with an average %TC02 > 80% by day 50 and remaining SOC < 10% as measured at day 50. Complete loss of material was confirmed by MALDI TOF MS. The PEG 20000 showed 40% TCO2 by day 50, with 50% SOC remaining. MALDI TOF MS confirmed the presence of parent material. Based on these results, PEGs of MW 8000 and less appear to be biodegradable.

  3. Improving the sensitivity of immunoassays with PEG-COOH-like film prepared by plasma-based technique.

    PubMed

    O'Mahony, Christy Charlton; Gubala, Vladimir; Gandhiraman, Ram Prasad; Daniels, Stephen; Yuk, Jong Seol; Maccraith, Brian D; Williams, David E

    2012-01-01

    Herein we report on a preparation and performance of stable, hydrophilic and biocompatible polymeric material suitable for functionalization of disposable substrates used in biosensors. This new material features COOH surface groups cross-linked with ethylene glycol molecules and was prepared in situ on disposable, plastic substrate by high-throughput and environmentally friendly technique called plasma-enhanced chemical vapor deposition (PECVD). The film is grafted to the plasma activated plastic by sequential deposition of tetraethylorthosilicate, forming a bonding layer, and mixed vapors of acrylic acid and diethyleneglycol dimethylether (AA/PEG) that provide the desired functional groups forming a sensing, contact layer. A superior performance of the AA/PEG coating as suitable material for substrates in biomedical devices was demonstrated in a model fluorescence linked immunosorbent assay. The results were compared with other commonly used surface materials prepared by wet chemistry methods. The unique characteristic of the AA/PEG film is that the immunoassay can be executed without the need for a blocking step, typically using albumins, without negative consequences on the bioassay results. In fact, the superior quality of the materials modified with AA/PEG film was highlighted by improving the sensitivity of an immunoassay by two orders of magnitude when compared with substrates prepared by standard surface chemistry methods. PMID:22042638

  4. PEG-Biscyanoacrylate Crosslinker for Octyl Cyanoacrylate Bioadhesive.

    PubMed

    Basu, Arijit; Veprinsky-Zuzulia, Ilana; Levinman, Mira; Barkan, Yoav; Golenser, Jacob; Domb, Abraham J

    2016-02-01

    PEG400 (polyethylene glycol, MW 400) biscyanoacrylate is synthesized and copolymerized with 2-octyl cyanoacrylate for potential use as bioadhesive. PEG400 biscyanoacrylate is synthesized from the esterification of anthracenyl cyanoacrylic acid where the anthracene unit serves as vinyl-protecting group. Copolymerization increases the plasticity, mechanical strength, and resilience of the resulted polymer as determined by dynamic mechanical analysis. Peeling test confirms its superior bioadhesive properties. Surface morphology is characterized by SEM imaging. The formulations are cytocompatible and safe. This cyanoacrylate composition may provide improved bioadhesive cyanoacrylates. PMID:26572088

  5. Polysiloxane-graft-PEG/Phosphonium Ionomer Morphology and Ion Transport

    NASA Astrophysics Data System (ADS)

    O'Reilly, Michael; Liang, Siwei; Bartels, Joshua; Runt, James; Colby, Ralph; Winey, Karen

    2013-03-01

    A series of random polysiloxane-based copolymer single ion conductors with phosphonium and polyethylene glycol side chains have been synthesized at various compositions and counterions. Morphology is investigated via X-ray scattering, and reveals microphase separation on extremely small length scales. Despite the low molecular weight of the PEG side chain, polysiloxane and PEG assemble into microdomains with covalently bound phosphonium cations at the interface. Exceptionally low glass transition temperatures in these microphase separated ionomers allow for high ionic mobility for both bulky, charge delocalized counterions as well as small, electronegative counterions. Morphology interpretation is complemented by measurement of ion transport properties via dielectric relaxation spectroscopy.

  6. Does Polyethylene Glycol (PEG) Plus Ascorbic Acid Induce More Mucosal Injuries than Split-Dose 4-L PEG during Bowel Preparation?

    PubMed Central

    Kim, Min Sung; Park, Jongha; Park, Jae hyun; Kim, Hyung Jun; Jang, Hyun Jeong; Joo, Hee Rin; Kim, Ji Yeon; Choi, Joon Hyuk; Heo, Nae Yun; Park, Seung Ha; Kim, Tae Oh; Yang, Sung Yeon

    2016-01-01

    Background/Aims The aims of this study were to compare the bowel-cleansing efficacy, patient affinity for the preparation solution, and mucosal injury between a split dose of poly-ethylene glycol (SD-PEG) and low-volume PEG plus ascorbic acid (LV-PEG+Asc) in outpatient scheduled colonoscopies. Methods Of the 319 patients, 160 were enrolled for SD-PEG, and 159 for LV-PEG+Asc. The bowel-cleansing efficacy was rated according to the Ottawa bowel preparation scale. Patient affinity for the preparation solution was assessed using a questionnaire. All mucosal injuries observed during colonoscopy were biopsied and histopathologically reviewed. Results There was no significant difference in bowel cleansing between the groups. The LV-PEG+Asc group reported better patient acceptance and preference. There were no significant differences in the incidence or characteristics of the mucosal injuries between the two groups. Conclusions Compared with SD-PEG, LV-PEG+Asc exhibited equivalent bowel-cleansing efficacy and resulted in improved patient acceptance and preference. There was no significant difference in mucosal injury between SD-PEG and LV-PEG+Asc. Thus, the LV-PEG+Asc preparation could be used more effectively and easily for routine colonoscopies without risking significant mucosal injury. PMID:26260754

  7. Conformation of the Poly(ethylene Glycol) Chains in DiPEGylated Hemoglobin Specifically Probed by SANS: Correlation with PEG Length and in Vivo Efficiency.

    PubMed

    Le Cœur, Clémence; Combet, Sophie; Carrot, Géraldine; Busch, Peter; Teixeira, José; Longeville, Stéphane

    2015-08-01

    Cell-free hemoglobin (Hb)-based oxygen carriers have long been proposed as blood substitutes but their clinical use remains tricky due to problems of inefficiency and/or toxicity. Conjugation of Hb with the biocompatible polymer poly(ethylene glycol) (PEG) greatly improved their performance. However, physiological data suggested a polymer molecular weight (Mw) threshold of about 10 kDa, beyond which the grafting of two PEG chains no longer improves efficiency and nontoxicity of diPEG/Hb conjugates. We used small-angle neutron scattering and contrast variation, which are the only techniques able to probe separately the conformation of PEG chains and Hb protein within the complex, to investigate the role of PEG chain conformation in diPEGylated Hb conjugates as a function of the polymer Mw. We found out that the structure of Hb tetramer is not modified by the polymer grafting. Similarly, with a constant grafting of two chains per protein, there is no significant change of the Gaussian conformation between free and grafted PEG below ∼10 kDa, the complex being well described by the "dumbbell" model. However, beyond that threshold, the radius of gyration of grafted PEG is significantly smaller than that of the free polymer, showing a compaction of the PEG chains, either in the "dumbbell" model or in the "shroud" one. In the latter model, the polymer may be wrapped on the surface of the protein spreading a protective "shielding" effect over a larger fraction of the protein. Both proposed models are in good agreement with the physiological data reported in the literature. PMID:26153251

  8. Electrical activity-triggered glucagon-like peptide-1 secretion from primary murine L-cells

    PubMed Central

    Rogers, G J; Tolhurst, G; Ramzan, A; Habib, A M; Parker, H E; Gribble, F M; Reimann, F

    2011-01-01

    Glucagon like peptide 1 (GLP-1) based therapies are now widely used for the treatment of type 2 diabetes. Developing our understanding of intestinal GLP-1 release may facilitate the development of new therapeutics aimed at targeting the GLP-1 producing L-cells. This study was undertaken to characterise the electrical activity of primary L-cells and the importance of voltage gated sodium and calcium channels for GLP-1 secretion. Primary murine L-cells were identified and purified using transgenic mice expressing a fluorescent protein driven by the proglucagon promoter. Fluorescent L-cells were identified within primary colonic cultures for patch clamp recordings. GLP-1 secretion was measured from primary colonic cultures. L-cells purified by flow cytometry were used to measure gene expression by microarray and quantitative RT-PCR. Electrical activity in L-cells was due to large voltage gated sodium currents, inhibition of which by tetrodotoxin reduced both basal and glutamine-stimulated GLP-1 secretion. Voltage gated calcium channels were predominantly of the L-type, Q-type and T-type, by expression analysis, consistent with the finding that GLP-1 release was blocked both by nifedipine and ω-conotoxin MVIIC. We observed large voltage-dependent potassium currents, but only a small chromanol sensitive current that might be attributable to KCNQ1. GLP-1 release from primary L-cells is linked to electrical activity and activation of L-type and Q-type calcium currents. The concept of an electrically excitable L-cell provides a basis for understanding how GLP-1 release may be modulated by nutrient, hormonal and pharmaceutical stimuli. PMID:21224236

  9. Apoptotic human neutrophil peptide-1 anti-tumor activity revealed by cellular biomechanics.

    PubMed

    Gaspar, Diana; Freire, João M; Pacheco, Teresa R; Barata, João T; Castanho, Miguel A R B

    2015-02-01

    Cancer remains a major cause of morbidity and mortality worldwide. Although progress has been made regarding chemotherapeutic agents, new therapies that combine increased selectivity and efficacy with low resistance are still needed. In the search for new anticancer agents, therapies based on biologically active peptides, in particular, antimicrobial peptides (AMPs), have attracted attention for their decreased resistance development and low cytotoxicity. Many AMPs have proved to be tumoricidal agents against human cancer cells, but their mode of action is still controversial. The existence of common properties shared by the membranes of bacteria and tumor cells points to similar lipid-targeting mechanisms in both cases. On the other hand, anticancer peptides (ACPs) also induce apoptosis and inhibit angiogenesis. Human neutrophil peptide-1 (HNP-1) is an endogenous AMP that has been implicated in different cellular phenomena such as tumor proliferation. The presence of HNP-1 in the serum/plasma of oncologic patients turns this peptide into a potential tumor biomarker. The present work reveals the different effects of HNP-1 on the biophysical and nanomechanical properties of solid and hematological tumor cells. Studies on cellular morphology, cellular stiffness, and membrane ultrastructure and charge using atomic force microscopy (AFM) and zeta potential measurements show a preferential binding of HNP-1 to solid tumor cells from human prostate adenocarcinoma when compared to human leukemia cells. AFM also reveals induction of apoptosis with cellular membrane defects at very low peptide concentrations. Understanding ACPs mode(s) of action will certainly open innovative pathways for drug development in cancer treatment. PMID:25447543

  10. Expression, purification, and C-terminal amidation of recombinant human glucagon-like peptide-1.

    PubMed

    Zhang, Zhi-Zhen; Yang, Sheng-Sheng; Dou, Hong; Mao, Ji-Fang; Li, Kang-Sheng

    2004-08-01

    Human glucagon-like peptide-1 (hGLP-1) (7-36) amide, a gastrointestinal hormone with a pharmaceutical potential in treating type 2 diabetes mellitus, is composed of 30 amino acid residues as a mature protein. We report here the development of a method for high-level expression and purification of recombinant hGLP-1 (7-36) amide (rhGLP-1) through glutathione S-transferase (GST) fusion expression system. The cDNA of hGLP-1-Leu, the 31st-residue leucine-extended precursor peptide, was prepared by annealing and ligating of artificially synthetic oligonucleotide fragments, inserted into pBluescript SK (+/-) plasmid, and then cloned into pGEX-4T-3 GST fusion vector. The fusion protein GST-hGLP-1-Leu, expressed in Escherichia coli strain BL21 (DE3), was purified by affinity chromatography after high-level culture and sonication of bacteria. Following cleavage of GST-hGLP-1-Leu by cyanogen bromide, the recombinant hGLP-1-Leu was released from fusion protein, and purified using QAE Sepharose ion exchange and RP C(18) chromatography. After purification, the precursor hGLP-1-Leu was transacylated by carboxypeptidase Y, Arg-NH(2) as a nucleophile, to produce rhGLP-1. Electrospray ionization mass spectrometry showed the molecular weight was as expected. The biological activity of rhGLP-1 in a rat model demonstrated that plasma glucose concentrations were significantly lower and insulin concentrations higher after intraperitoneal injection of rhGLP-1 together with glucose compared with glucose alone (P < 0.001). PMID:15249052

  11. Parabrachial Nucleus Contributions to Glucagon-Like Peptide-1 Receptor Agonist-Induced Hypophagia

    PubMed Central

    Swick, Jennifer C; Alhadeff, Amber L; Grill, Harvey J; Urrea, Paula; Lee, Stephanie M; Roh, Hyunsun; Baird, John-Paul

    2015-01-01

    Exendin-4 (Ex4), a glucagon-like peptide-1 receptor (GLP-1R) agonist approved to treat type 2 diabetes mellitus, is well known to induce hypophagia in human and animal models. We evaluated the contributions of the hindbrain parabrachial nucleus (PBN) to systemic Ex4-induced hypophagia, as the PBN receives gustatory and visceral afferent relays and descending input from several brain nuclei associated with feeding. Rats with ibotenic-acid lesions targeted to the lateral PBN (PBNx) and sham controls received Ex4 (1 μg/kg) before 24 h home cage chow or 90 min 0.3 M sucrose access tests, and licking microstructure was analyzed to identify components of feeding behavior affected by Ex4. PBN lesion efficacy was confirmed using conditioned taste aversion (CTA) tests. As expected, sham control but not PBNx rats developed a CTA. In sham-lesioned rats, Ex4 reduced chow intake within 4 h of injection and sucrose intake within 90 min. PBNx rats did not show reduced chow or sucrose intake after Ex4 treatment, indicating that the PBN is necessary for Ex4 effects under the conditions tested. In sham-treated rats, Ex4 affected licking microstructure measures associated with hedonic taste evaluation, appetitive behavior, oromotor coordination, and inhibitory postingestive feedback. Licking microstructure responses in PBNx rats after Ex4 treatment were similar to sham-treated rats with the exception of inhibitory postingestive feedback measures. Together, the results suggest that the PBN critically contributes to the hypophagic effects of systemically delivered GLP-1R agonists by enhancing visceral feedback. PMID:25703200

  12. Revisiting and re-engineering the classical zinc finger peptide: consensus peptide-1 (CP-1).

    PubMed

    Besold, Angelique N; Widger, Leland R; Namuswe, Frances; Michalek, Jamie L; Michel, Sarah L J; Goldberg, David P

    2016-04-22

    Zinc plays key structural and catalytic roles in biology. Structural zinc sites are often referred to as zinc finger (ZF) sites, and the classical ZF contains a Cys2His2 motif that is involved in coordinating Zn(ii). An optimized Cys2His2 ZF, named consensus peptide 1 (CP-1), was identified more than 20 years ago using a limited set of sequenced proteins. We have reexamined the CP-1 sequence, using our current, much larger database of sequenced proteins that have been identified from high-throughput sequencing methods, and found the sequence to be largely unchanged. The CCHH ligand set of CP-1 was then altered to a CAHH motif to impart hydrolytic activity. This ligand set mimics the His2Cys ligand set of peptide deformylase (PDF), a hydrolytically active M(ii)-centered (M = Zn or Fe) protein. The resultant peptide [CP-1(CAHH)] was evaluated for its ability to coordinate Zn(ii) and Co(ii) ions, adopt secondary structure, and promote hydrolysis. CP-1(CAHH) was found to coordinate Co(ii) and Zn(ii) and a pentacoordinate geometry for Co(ii)-CP-1(CAHH) was implicated from UV-vis data. This suggests a His2Cys(H2O)2 environment at the metal center. The Zn(ii)-bound CP-1(CAHH) was shown to adopt partial secondary structure by 1-D (1)H NMR spectroscopy. Both Zn(ii)-CP-1(CAHH) and Co(ii)-CP-1(CAHH) show good hydrolytic activity toward the test substrate 4-nitrophenyl acetate, exhibiting faster rates than most active synthetic Zn(ii) complexes. PMID:26936488

  13. Dosimetry of exendin-4 based radiotracer for glucagonlike peptide-1 receptor imaging: an initial report

    NASA Astrophysics Data System (ADS)

    Tomaszuk, M.; Sowa-Staszczak, A.; Lenda-Tracz, W.; Glowa, B.; Pach, D.; Buziak-Bereza, M.; Stefanska, A.; Janota, B.; Pawlak, D.; Mikolajczak, R.; Hubalewska-Dydejczyk, A. B.

    2011-09-01

    Overexpression of glucagonlike peptide-1 (GLP-1) receptors in human tumours is a potential target for future imaging and therapy. The GLP-1 receptor imaging using [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 could be useful in the localization of unknown insulinoma focus. The aim of this study was to present the first experience of our unit with the new radiopharmaceutical and its dose estimates. Imaging studies and dose assessment, according to the MIRD schema and MIRD Pamphlet No.11, were performed for 3 patients (2 with suspicion of insulinoma, 1 with suspected insulinoma recurrence). In the first case suspicion of insulinoma was not confirmed. In the second case localized accumulation of tracer in the pancreas was removed by surgery and the clinical symptoms of insulinoma receded. In the third case, pathological accumulation of tracer was localized and recurrence of insulinoma was confirmed in fusion with CT images. The biological half-time did not exceed 2.7.h. The effective half-time did not exceed 4.8 h. The total-body radiation dose did not exceed 0.0038 mGy/MBq and is comparable with the radiation dose to patient after somatostatin receptor scintigraphy. The highest radiation dose was calculated for kidneys (~ 0.070 mGy/MBq). [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 is a good candidate for clinical GLP-1 receptor imaging studies and appears safe for the patient from radiological safety point of view.

  14. Oral Delivery of Pentameric Glucagon-Like Peptide-1 by Recombinant Lactobacillus in Diabetic Rats.

    PubMed

    Lin, Yin; Krogh-Andersen, Kasper; Pelletier, Julien; Marcotte, Harold; Östenson, Claes-Göran; Hammarström, Lennart

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone produced by intestinal cells and stimulates insulin secretion from the pancreas in a glucose-dependent manner. Exogenously supplied GLP-1 analogues are used in the treatment of type 2 diabetes. An anti-diabetic effect of Lactobacillus in lowering plasma glucose levels and its use as a vehicle for delivery of protein and antibody fragments has been shown previously. The aim of this study was to employ lactobacilli as a vehicle for in situ production and delivery of GLP-1 analogue to normalize blood glucose level in diabetic GK (Goto-Kakizaki) rats. In this study, we designed pentameric GLP-1 (5×GLP-1) analogues which were both expressed in a secreted form and anchored to the surface of lactobacilli. Intestinal trypsin sites were introduced within 5×GLP-1, leading to digestion of the pentamer into an active monomeric form. The E. coli-produced 5×GLP-1 peptides delivered by intestinal intubation to GK rats resulted in a significant improvement of glycemic control demonstrated by an intraperitoneal glucose tolerance test. Meanwhile, the purified 5×GLP-1 (trypsin-digested) from the Lactobacillus cultures stimulated insulin secretion from HIT-T15 cells, similar to the E. coli-produced 5×GLP-1 peptides. When delivered by gavage to GK rats, non-expressor L. paracasei significantly lowered the blood glucose level but 5×GLP-1 expression did not provide an additional anti-diabetic effect, possibly due to the low levels produced. Our results indicate that lactobacilli themselves might be used as an alternative treatment method for type 2 diabetes, but further work is needed to increase the expression level of GLP-1 by lactobacilli in order to obtain a significant insulinotropic effect in vivo. PMID:27610615

  15. Glucagon-like-peptide-1 receptor expression in normal and diseased human thyroid and pancreas.

    PubMed

    Waser, Beatrice; Blank, Annika; Karamitopoulou, Eva; Perren, Aurel; Reubi, Jean C

    2015-03-01

    Glucagon-like-peptide-1 (GLP1) analogs may induce thyroid or pancreatic diseases in animals, raising questions about their use in diabetic patients. There is, however, controversy regarding expression of GLP1 receptors (GLP1R) in human normal and diseased thyroid and pancreas. Here, 221 human thyroid and pancreas samples were analyzed for GLP1R immunohistochemistry and compared with quantitative in vitro GLP1R autoradiography. Neither normal nor hyperplastic human thyroids containing parafollicular C cells express GLP1R with either method. Papillary thyroid cancer do not, and medullary thyroid carcinomas rarely express GLP1R. Insulin- and somatostatin-producing cells in the normal pancreas express a high density of GLP1R, whereas acinar cells express them in low amounts. Ductal epithelial cells do not express GLP1R. All benign insulinomas express high densities of GLP1R, whereas malignant insulinomas rarely express them. All ductal pancreatic carcinomas are GLP1R negative, whereas 6/20 PanIN 1/2 and 0/12 PanIN 3 express GLP1R. Therefore, normal thyroid, including normal and hyperplastic C cells, or papillary thyroid cancer are not targets for GLP1 analogs in humans. Conversely, all pancreatic insulin- and somatostatin-producing cells are physiological GLP1 targets, as well as most acini. As normal ductal epithelial cells or PanIN 3 or ductal pancreatic carcinomas do not express GLP1R, it seems unlikely that GLP1R is related to neoplastic transformation in pancreas. GLP1R-positive medullary thyroid carcinomas and all benign insulinomas are candidates for in vivo GLP1R targeting. PMID:25216224

  16. Central & peripheral glucagon-like peptide-1 receptor signaling differentially regulate addictive behaviors.

    PubMed

    Sirohi, Sunil; Schurdak, Jennifer D; Seeley, Randy J; Benoit, Stephen C; Davis, Jon F

    2016-07-01

    Recent data implicate glucagon-like peptide-1 (GLP-1), a potent anorexigenic peptide released in response to nutrient intake, as a regulator for the reinforcing properties of food, alcohol and psychostimulants. While, both central and peripheral mechanisms mediate effects of GLP-1R signaling on food intake, the extent to which central or peripheral GLP-1R signaling regulates reinforcing properties of drugs of abuse is unknown. Here, we examined amphetamine reinforcement, alcohol intake and hedonic feeding following peripheral administration of EX-4 (a GLP-1 analog) in FLOX and GLP-1R KD(Nestin) (GLP-1R selectively ablated from the central nervous system) mice (n=13/group). First, the effect of EX-4 pretreatment on the expression of amphetamine-induced conditioned place preference (Amp-CPP) was examined in the FLOX and GLP-1R KD(Nestin) mice. Next, alcohol intake (10% v/v) was evaluated in FLOX and GLP-1R KD(Nestin) mice following saline or EX-4 injections. Finally, we assessed the effects of EX-4 pretreatment on hedonic feeding behavior. Results indicate that Amp-CPP was completely blocked in the FLOX mice, but not in the GLP-1R KD(Nestin) mice following EX-4 pretreatment. Ex-4 pretreatment selectively blocked alcohol consumption in the FLOX mice, but was ineffective in altering alcohol intake in the GLP-1R KD(Nestin) mice. Notably, hedonic feeding was partially blocked in the GLP-1R KD(Nestin) mice, whereas it was abolished in the FLOX mice. The present study provides critical insights regarding the nature by which GLP-1 signaling controls reinforced behaviors and underscores the importance of both peripheral and central GLP-1R signaling for the regulation of addictive disorders. PMID:27072507

  17. Oral administration of osteocalcin improves glucose utilization by stimulating glucagon-like peptide-1 secretion.

    PubMed

    Mizokami, Akiko; Yasutake, Yu; Higashi, Sen; Kawakubo-Yasukochi, Tomoyo; Chishaki, Sakura; Takahashi, Ichiro; Takeuchi, Hiroshi; Hirata, Masato

    2014-12-01

    Uncarboxylated osteocalcin (GluOC), a bone-derived hormone, regulates energy metabolism by stimulating insulin secretion and pancreatic β-cell proliferation. We previously showed that the effect of GluOC on insulin secretion is mediated largely by glucagon-like peptide-1 (GLP-1) secreted from the intestine in response to GluOC exposure. We have now examined the effect of oral administration of GluOC on glucose utilization as well as the fate of such administered GluOC in mice. Long-term intermittent or daily oral administration of GluOC reduced the fasting blood glucose level and improved glucose tolerance in mice without affecting insulin sensitivity. It also increased the fasting serum insulin concentration as well as the β-cell area in the pancreas. A small proportion of orally administered GluOC reached the small intestine and remained there for at least 24h. GluOC also entered the general circulation, and the serum GLP-1 concentration was increased in association with the presence of GluOC in the intestine and systemic circulation. The putative GluOC receptor, GPRC6A was detected in intestinal cells, and was colocalized with GLP-1 in some of these cells. Our results suggest that orally administered GluOC improved glucose handling likely by acting from both the intestinal lumen and the general circulation, with this effect being mediated in part by stimulation of GLP-1 secretion. Oral administration of GluOC warrants further study as a safe and convenient option for the treatment or prevention of metabolic disorders. PMID:25230237

  18. Role of lateral septum glucagon-like peptide 1 receptors in food intake.

    PubMed

    Terrill, Sarah J; Jackson, Christine M; Greene, Hayden E; Lilly, Nicole; Maske, Calyn B; Vallejo, Samantha; Williams, Diana L

    2016-07-01

    Hindbrain glucagon-like peptide 1 (GLP-1) neurons project to numerous forebrain areas, including the lateral septum (LS). Using a fluorescently labeled GLP-1 receptor (GLP-1R) agonist, Exendin 4 (Ex4), we demonstrated GLP-1 receptor binding throughout the rat LS. We examined the feeding effects of Ex4 and the GLP-1R antagonist Exendin (9-39) (Ex9) at doses subthreshold for effect when delivered to the lateral ventricle. Intra-LS Ex4 suppressed overnight chow and high-fat diet (HFD) intake, and Ex9 increased chow and HFD intake relative to vehicle. During 2-h tests, intra-LS Ex9 significantly increased 0.25 M sucrose and 4% corn oil. Ex4 can cause nausea, but intra-LS administration of Ex4 did not induce pica. Furthermore, intra-LS Ex4 had no effect on anxiety-like behavior in the elevated plus maze. We investigated the role of LS GLP-1R in motivation for food by examining operant responding for sucrose on a progressive ratio (PR) schedule, with and without a nutrient preload to maximize GLP-1 neuron activation. The preload strongly suppressed PR responding, but blockade of GLP-1R in the intermediate subdivision of the LS did not affect motivation for sucrose under either load condition. The ability of the nutrient load to suppress subsequent chow intake was significantly attenuated by intermediate LS Ex9 treatment. By contrast, blockade of GLP-1R in the dorsal subdivision of the LS increased both PR responding and overnight chow intake. Together, these studies suggest that endogenous activity of GLP-1R in the LS influence feeding, and dLS GLP-1Rs, in particular, play a role in motivation. PMID:27194565

  19. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin.

    PubMed

    Ripken, Dina; van der Wielen, Nikkie; Wortelboer, Heleen M; Meijerink, Jocelijn; Witkamp, Renger F; Hendriks, Henk F J

    2016-06-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process. PMID:27142747

  20. Parabrachial Nucleus Contributions to Glucagon-Like Peptide-1 Receptor Agonist-Induced Hypophagia.

    PubMed

    Swick, Jennifer C; Alhadeff, Amber L; Grill, Harvey J; Urrea, Paula; Lee, Stephanie M; Roh, Hyunsun; Baird, John-Paul

    2015-07-01

    Exendin-4 (Ex4), a glucagon-like peptide-1 receptor (GLP-1R) agonist approved to treat type 2 diabetes mellitus, is well known to induce hypophagia in human and animal models. We evaluated the contributions of the hindbrain parabrachial nucleus (PBN) to systemic Ex4-induced hypophagia, as the PBN receives gustatory and visceral afferent relays and descending input from several brain nuclei associated with feeding. Rats with ibotenic-acid lesions targeted to the lateral PBN (PBNx) and sham controls received Ex4 (1 μg/kg) before 24 h home cage chow or 90 min 0.3 M sucrose access tests, and licking microstructure was analyzed to identify components of feeding behavior affected by Ex4. PBN lesion efficacy was confirmed using conditioned taste aversion (CTA) tests. As expected, sham control but not PBNx rats developed a CTA. In sham-lesioned rats, Ex4 reduced chow intake within 4 h of injection and sucrose intake within 90 min. PBNx rats did not show reduced chow or sucrose intake after Ex4 treatment, indicating that the PBN is necessary for Ex4 effects under the conditions tested. In sham-treated rats, Ex4 affected licking microstructure measures associated with hedonic taste evaluation, appetitive behavior, oromotor coordination, and inhibitory postingestive feedback. Licking microstructure responses in PBNx rats after Ex4 treatment were similar to sham-treated rats with the exception of inhibitory postingestive feedback measures. Together, the results suggest that the PBN critically contributes to the hypophagic effects of systemically delivered GLP-1R agonists by enhancing visceral feedback. PMID:25703200

  1. Molecular physiology of glucagon-like peptide-1 insulin secretagogue action in pancreatic β cells.

    PubMed

    Leech, Colin A; Dzhura, Igor; Chepurny, Oleg G; Kang, Guoxin; Schwede, Frank; Genieser, Hans-G; Holz, George G

    2011-11-01

    Insulin secretion from pancreatic β cells is stimulated by glucagon-like peptide-1 (GLP-1), a blood glucose-lowering hormone that is released from enteroendocrine L cells of the distal intestine after the ingestion of a meal. GLP-1 mimetics (e.g., Byetta) and GLP-1 analogs (e.g., Victoza) activate the β cell GLP-1 receptor (GLP-1R), and these compounds stimulate insulin secretion while also lowering levels of blood glucose in patients diagnosed with type 2 diabetes mellitus (T2DM). An additional option for the treatment of T2DM involves the administration of dipeptidyl peptidase-IV (DPP-IV) inhibitors (e.g., Januvia, Galvus). These compounds slow metabolic degradation of intestinally released GLP-1, thereby raising post-prandial levels of circulating GLP-1 substantially. Investigational compounds that stimulate GLP-1 secretion also exist, and in this regard a noteworthy advance is the demonstration that small molecule GPR119 agonists (e.g., AR231453) stimulate L cell GLP-1 secretion while also directly stimulating β cell insulin release. In this review, we summarize what is currently known concerning the signal transduction properties of the β cell GLP-1R as they relate to insulin secretion. Emphasized are the cyclic AMP, protein kinase A, and Epac2-mediated actions of GLP-1 to regulate ATP-sensitive K⁺ channels, voltage-dependent K⁺ channels, TRPM2 cation channels, intracellular Ca⁺ release channels, and Ca⁺-dependent exocytosis. We also discuss new evidence that provides a conceptual framework with which to understand why GLP-1R agonists are less likely to induce hypoglycemia when they are administered for the treatment of T2DM. PMID:21782840

  2. Molecular Physiology of Glucagon-Like Peptide-1 Insulin Secretagogue Action in Pancreatic β Cells

    PubMed Central

    Leech, Colin A.; Dzhura, Igor; Chepurny, Oleg G.; Kang, Guoxin; Schwede, Frank; Genieser, Hans-G.; Holz, George G.

    2011-01-01

    Insulin secretion from pancreatic β cells is stimulated by glucagon-like peptide-1 (GLP-1), a blood glucose-lowering hormone that is released from enteroendocrine L cells of the distal intestine after the ingestion of a meal. GLP-1 mimetics (e.g., Byetta) and GLP-1 analogs (e.g., Victoza) activate the β cell GLP-1 receptor (GLP-1R), and these compounds stimulate insulin secretion while also lowering levels of blood glucose in patients diagnosed with type 2 diabetes mellitus (T2DM). An additional therapeutic option for the treatment of T2DM involves the administration of dipeptidyl peptidase-IV (DPP-IV) inhibitors (e.g., Januvia, Galvus). These compounds slow metabolic degradation of intestinally released GLP-1, thereby raising post-prandial levels of circulating GLP-1 substantially. Investigational compounds that stimulate GLP-1 secretion also exist, and in this regard a noteworthy advance is the demonstration that small molecule GPR119 agonists (e.g., AR231453) stimulate L cell GLP-1 secretion while also directly stimulating β cell insulin release. In this review, we summarize what is currently known concerning the signal transduction properties of the β cell GLP-1R as they relate to insulin secretion. Emphasized are the cyclic AMP, protein kinase A, and Epac2 mediated actions of GLP-1 to regulate ATP-sensitive K+ channels, voltage-dependent K+ channels, TRPM2 cation channels, intracellular Ca2+ release channels, and Ca2+-dependent exocytosis. We also discuss new evidence that provides a conceptual framework with which to understand why GLP-1R agonists are less likely to induce hypoglycemia when they are administered for the treatment of T2DM. PMID:21782840

  3. Recombinant expression, in vitro refolding, and biophysical characterization of the human glucagon-like peptide-1 receptor.

    PubMed

    Schröder-Tittmann, Kathrin; Bosse-Doenecke, Eva; Reedtz-Runge, Steffen; Ihling, Christian; Sinz, Andrea; Tittmann, Kai; Rudolph, Rainer

    2010-09-14

    Activation of the glucagon-like peptide-1 receptor (GLP-1R) upon ligand binding leads to the release of insulin from pancreatic cells. This strictly glucose-dependent process renders the receptor and its ligands useful in the treatment of type II diabetes mellitus. To enable a biophysical characterization in vitro, we expressed the human full-length GLP-1R in the cytosol of Escherichia coli as inclusion bodies. After purification, refolding of the SDS-solubilized receptor was achieved by the exchange of SDS against the detergent Brij78 using an artificial chaperone system. Far-UV circular dichroism spectroscopic studies revealed that the receptor adopts a characteristic alpha-helical structure in Brij78 micelles. Ligand binding of the renatured protein was quantified by fluorescence quenching and surface plasmon resonance spectroscopy. In the presence of Brij micelles, the refolded receptor binds the agonist exendin-4 with an apparent dissociation constant of approximately 100 nM in a reversible one-step mechanism. To demonstrate that the detected ligand binding activity is not only due to an autonomously functional N-terminal domain (nGLP-1R) but also due to additional contacts with the juxtamembrane part, we separately expressed and refolded the extracellular domain relying on identical protocols established for the full-length GLP-1R. In support of the suggested multidomain binding mode, the nGLP-1R binds exendin-4 with a lower affinity (K(app) in the micromolar range) and a different kinetic mechanism. The lower ligand affinity of the nGLP-1R results entirely from a decreased kinetic stability of the receptor-ligand complex, dissociation of which is approximately 40-fold faster in the case of the nGLP-1R compared to the full-length GLP-1R. In summary, a framework was developed to produce functional human full-length GLP-1R by recombinant expression in E. coli as a prerequisite for eventual structure determination and a rigorous biophysical characterization

  4. Cardiovascular and metabolic effects of 48-h glucagon-like peptide-1 infusion in compensated chronic patients with heart failure.

    PubMed

    Halbirk, Mads; Nørrelund, Helene; Møller, Niels; Holst, Jens Juul; Schmitz, Ole; Nielsen, Roni; Nielsen-Kudsk, Jens Erik; Nielsen, Søren Steen; Nielsen, Torsten Toftegaard; Eiskjaer, Hans; Bøtker, Hans Erik; Wiggers, Henrik

    2010-03-01

    The incretin hormone glucagon-like peptide-1 (GLP-1) and its analogs are currently emerging as antidiabetic medications. GLP-1 improves left ventricular ejection fraction (LVEF) in dogs with heart failure (HF) and in patients with acute myocardial infarction. We studied metabolic and cardiovascular effects of 48-h GLP-1 infusions in patients with congestive HF. In a randomized, double-blind crossover design, 20 patients without diabetes and with HF with ischemic heart disease, EF of 30 +/- 2%, New York Heart Association II and III (n = 14 and 6) received 48-h GLP-1 (0.7 pmol.kg(-1).min(-1)) and placebo infusion. At 0 and 48 h, LVEF, diastolic function, tissue Doppler regional myocardial function, exercise testing, noninvasive cardiac output, and brain natriuretic peptide (BNP) were measured. Blood pressure, heart rate, and metabolic parameters were recorded. Fifteen patients completed the protocol. GLP-1 increased insulin (90 +/- 17 pmol/l vs. 69 +/- 12 pmol/l; P = 0.025) and lowered glucose levels (5.2 +/- 0.1 mmol/l vs. 5.6 +/- 0.1 mmol/l; P < 0.01). Heart rate (67 +/- 2 beats/min vs. 65 +/- 2 beats/min; P = 0.016) and diastolic blood pressure (71 +/- 2 mmHg vs. 68 +/- 2 mmHg; P = 0.008) increased during GLP-1 treatment. Cardiac index (1.5 +/- 0.1 l.min(-1).m(-2) vs. 1.7 +/- 0.2 l.min(-1).m(-2); P = 0.54) and LVEF (30 +/- 2% vs. 30 +/- 2%; P = 0.93), tissue Doppler indexes, body weight, and BNP remained unchanged. Hypoglycemic events related to GLP-1 treatment were observed in eight patients. GLP-1 infusion increased circulating insulin levels and reduced plasma glucose concentration but had no major cardiovascular effects in patients without diabetes but with compensated HF. The impact of minor increases in heart rate and diastolic blood pressure during GLP-1 infusion requires further studies. Hypoglycemia was frequent and calls for caution in patients without diabetes but with HF. PMID:20081109

  5. Synthesis of Acid-Labile PEG and PEG-Doxorubicin-Conjugate Nanoparticles via Brush-First ROMP

    PubMed Central

    2015-01-01

    A panel of acid-labile bis-norbornene cross-linkers was synthesized and evaluated for the formation of acid-degradable brush-arm star polymers (BASPs) via the brush-first ring-opening metathesis polymerization (ROMP) method. An acetal-based cross-linker was identified that, when employed in conjunction with a poly(ethylene glycol) (PEG) macromonomer, provided highly controlled BASP formation reactions. A combination of this new cross-linker with a novel doxorubicin (DOX)-branch-PEG macromonomer provided BASPs that simultaneously degrade and release cytotoxic DOX in vitro. PMID:25243099

  6. Evaluation of HPβCD-PEG microparticles for salmon calcitonin administration via pulmonary delivery.

    PubMed

    Tewes, Frederic; Gobbo, Oliviero L; Amaro, Maria I; Tajber, Lidia; Corrigan, Owen I; Ehrhardt, Carsten; Healy, Anne Marie

    2011-10-01

    For therapeutic peptides, the lung represents an attractive, noninvasive route into the bloodstream. To achieve optimal bioavailability and control their fast rate of absorption, peptides can be protected by coprocessing with polymers such as polyethylene glycol (PEG). Here, we formulated and characterized salmon calcitonin (sCT)-loaded microparticles using linear or branched PEG (L-PEG or B-PEG) and hydroxypropyl-beta-cyclodextrin (HPβCD) for pulmonary administration. Mixtures of sCT, L-PEG or B-PEG and HPβCD were co-spray dried. Based on the particle properties, the best PEG:HPβCD ratio was 1:1 w:w for both PEGs. In the sCT-loaded particles, the L-PEG was more crystalline than B-PEG. Thus, L-PEG-based particles had lower surface free energy and better aerodynamic behavior than B-PEG-based particles. However, B-PEG-based particles provided better protection against chemical degradation of sCT. A decrease in sCT permeability, measured across Calu-3 bronchial epithelial monolayers, occurred when the PEG and HPβCD concentrations were both 1.6 wt %. This was attributed to an increase in buffer viscosity, caused by the two excipients. sCT pharmacokinetic profiles in Wistar rats were evaluated using a 2-compartment model after iv injection or lung insufflation. The maximal sCT plasma concentration was reached within 3 min following nebulization of sCT solution. L-PEG and B-PEG-based microparticles were able to increase T(max) to 20 ± 1 min and 18 ± 8 min, respectively. Furthermore, sCT absolute bioavailability after L-PEG-based microparticle aerosolization at 100 μg/kg was 2.3 times greater than for the nebulized sCT solution. PMID:21882837

  7. Linking the foreign body response and protein adsorption to PEG-based hydrogels using proteomics

    PubMed Central

    Swartzlander, Mark D.; Barnes, Christopher A.; Blakney, Anna K.; Kaar, Joel L.; Kyriakides, Themis R.; Bryant, Stephanie J.

    2015-01-01

    Poly(ethylene glycol) (PEG) hydrogels with their highly tunable properties are promising implantable materials, but as with all non-biological materials, they elicit a foreign body response (FBR). Recent studies, however, have shown that incorporating the oligopeptide RGD into PEG hydrogels reduces the FBR. To better understand the mechanisms involved and the role of RGD in mediating the FBR, PEG, PEG-RGD and PEG-RDG hydrogels were investigated. After a 28-day subcutaneous implantation in mice, a thinner and less dense fibrous capsule formed around PEG-RGD hydrogels, while PEG and PEG-RDG hydrogels exhibited stronger, but similar FBRs. Protein adsorption to the hydrogels, which is considered the first step in the FBR, was also characterized. In vitro experiments confirmed that serum proteins adsorbed to PEG-based hydrogels and were necessary to promote macrophage adhesion to PEG and PEG-RDG, but not PEG-RGD hydrogels. Proteins adsorbed to the hydrogels in vivo were identified using liquid chromatography-tandem mass spectrometry. The majority (245) of the total proteins (≥300) that were identified was present on all hydrogels with many proteins being associated with wounding and acute inflammation. These findings suggest that the FBR to PEG hydrogels may be mediated by the presence of inflammatory-related proteins adsorbed to the surface, but that macrophages appear to sense the underlying chemistry, which for RGD improves the FBR. PMID:25522962

  8. Hyaluronidase Embedded in Nanocarrier PEG Shell for Enhanced Tumor Penetration and Highly Efficient Antitumor Efficacy.

    PubMed

    Zhou, Hao; Fan, Zhiyuan; Deng, Junjie; Lemons, Pelin K; Arhontoulis, Dimitrios C; Bowne, Wilbur B; Cheng, Hao

    2016-05-11

    One of the major challenges in applying nanomedicines to cancer therapy is their low interstitial diffusion in solid tumors. Although the modification of nanocarrier surfaces with enzymes that degrade extracellular matrix is a promising strategy to improve nanocarrier diffusion in tumors, it remains challenging to apply this strategy in vivo via systemic administration of nanocarriers due to biological barriers, such as reduced blood circulation time of enzyme-modified nanocarriers, loss of enzyme function in vivo, and life-threatening side effects. Here, we report the conjugation of recombinant human hyaluronidase PH20 (rHuPH20), which degrades hyaluronic acid, on the surfaces of poly(lactic-co-glycolic acid)-b-polyethylene glycol (PLGA-PEG) nanoparticles followed by anchoring a relatively low density layer of PEG, which reduces the exposure of rHuPH20 for circumventing rHuPH20-mediated clearance. Despite the extremely short serum half-life of rHuPH20, our unique design maintains the function of rHuPH20 and avoids its effect on shortening nanocarrier blood circulation. We also show that rHuPH20 conjugated on nanoparticles is more efficient than free rHuPH20 in facilitating nanoparticle diffusion. The facile surface modification quadruples the accumulation of conventional PLGA-PEG nanoparticles in 4T1 syngeneic mouse breast tumors and enable their uniform tumor distribution. The rHuPH20-modified nanoparticles encapsulating doxorubicin efficiently inhibit the growth of aggressive 4T1 tumors under a low drug dose. Thus, our platform technology may be valuable to enhance the clinical efficacy of a broad range of drug nanocarriers. This study also provides a general strategy to modify nanoparticles with enzymes that otherwise may reduce nanoparticle circulation or lose function in the blood. PMID:27057591

  9. Project Execution Game (PEG): Training towards Managing Unexpected Events

    ERIC Educational Resources Information Center

    Zwikael, Ofer; Gonen, Amnon

    2007-01-01

    Purpose: Games are an effective teaching and classroom training tool, since they allow students to practise real-life events. In the area of project management, most games focus on the planning phase of a project. The current paper aims to describe a new game, called PEG--Project Execution Game. The uniqueness of this game is its focus on real…

  10. Square Pegs: Adult Students and Their "Fit" in Postsecondary Institutions

    ERIC Educational Resources Information Center

    Hagedorn, Linda Serra

    2005-01-01

    Like the proverbial "square peg" that meets resistance when forced to go through a round hole, adult students often struggle as they try to progress through systems of higher education that have been shaped to accommodate traditionally aged students. Adult students may have difficulty progressing through the postsecondary system because they are…

  11. Development practices and lessons learned in developing SimPEG

    NASA Astrophysics Data System (ADS)

    Cockett, R.; Heagy, L. J.; Kang, S.; Rosenkjaer, G. K.

    2015-12-01

    Inverse modelling provides a mathematical framework for constructing a model of physical property distributions in the subsurface that are consistent with the data collected in geophysical surveys. The geosciences are increasingly moving towards the integration of geological, geophysical, and hydrological information to better characterize the subsurface. This integration must span disciplines and is not only challenging scientifically, but additionally the inconsistencies between conventions often makes implementations complicated, non­ reproducible, or inefficient. SimPEG is an open-source, multi-university effort aimed at providing a generalized framework for solving forward and inverse problems. SimPEG includes finite volume discretizations on structured and unstructured meshes, interfaces to standard numerical solver packages, convex optimization algorithms, model parameterizations, and visualization routines. The SimPEG package (http://simpeg.xyz) supports an ecosystem of forward and inverse modelling applications, including electromagnetics, vadose zone flow, seismic, and potential­ fields, that are all written with a common interface and toolbox. The goal of SimPEG is to support a community of researchers with well-tested, extensible tools, and encourage transparency and reproducibility both of the SimPEG software and the geoscientific research it is applied to. In this presentation, we will share some of the lessons we have learned in designing the modular infrastructure, testing and development practices of SimPEG. We will discuss our use of version control, extensive unit-testing, continuous integration, documentation, issue tracking, and resources that facilitate communication between existing team members and allows new researchers to get involved. These practices have enabled the use of SimPEG in research, industry, and education as well as the ability to support a growing number of dependent repositories and applications. We hope that sharing our

  12. Lubiprostone plus PEG electrolytes versus placebo plus PEG electrolytes for outpatient colonoscopy preparation: a randomized, double-blind placebo-controlled trial.

    PubMed

    Sofi, Aijaz A; Nawras, Ali T; Pai, Chetan; Samuels, Qiana; Silverman, Ann L

    2015-01-01

    Bowel preparation using large volume of polyethylene glycol (PEG) solutions is often poorly tolerated. Therefore, there are ongoing efforts to develop an alternative bowel cleansing regimen that should be equally effective and better tolerated. The aim of this study was to assess the efficacy of lubiprostone (versus placebo) plus PEG as a bowel cleansing preparation for colonoscopy. Our study was a randomized, double-blind placebo-controlled design. Patients scheduled for screening colonoscopy were randomized 1:1 to lubiprostone (group 1) or placebo (group 2) plus 1 gallon of PEG. The primary endpoints were patient's tolerability and endoscopist's evaluation of the preparation quality. The secondary endpoint was to determine any reduction in the amount of PEG consumed in the lubiprostone group compared with the placebo group. One hundred twenty-three patients completed the study and were included in the analysis. There was no difference in overall cleanliness. The volume of PEG was similar in both the groups. The volume of PEG approached significance as a predictor of improved score for both the groups (P = 0.054). Lubiprostone plus PEG was similar to placebo plus PEG in colon cleansing and volume of PEG consumed. The volume of PEG consumed showed a trend toward improving the quality of the colon cleansing. PMID:23846523

  13. Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes.

    PubMed

    Vila Petroff, M G; Egan, J M; Wang, X; Sollott, S J

    2001-08-31

    The gut hormone, glucagon-like peptide-1 (GLP-1), which is secreted in nanomolar amounts in response to nutrients in the intestinal lumen, exerts cAMP/protein kinase A-mediated insulinotropic actions in target endocrine tissues, but its actions in heart cells are unknown. GLP-1 (10 nmol/L) increased intracellular cAMP (from 5.7+/-0.5 to 13.1+/-0.12 pmol/mg protein) in rat cardiac myocytes. The effects of cAMP-doubling concentrations of both GLP-1 and isoproterenol (ISO, 10 nmol/L) on contraction amplitude, intracellular Ca(2+) transient (CaT), and pH(i) in indo-1 and seminaphthorhodafluor (SNARF)-1 loaded myocytes were compared. Whereas ISO caused a characteristic increase (above baseline) in contraction amplitude (160+/-34%) and CaT (70+/-5%), GLP-1 induced a significant decrease in contraction amplitude (-27+/-5%) with no change in the CaT after 20 minutes. Neither pertussis toxin treatment nor exposure to the cGMP-stimulated phosphodiesterase (PDE2) inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine or the nonselective PDE inhibitor 3-isobutyl-1-methylxanthine nor the phosphatase inhibitors okadaic acid or calyculin A unmasked an ISO-mimicking response of GLP-1. In SNARF-1-loaded myocytes, however, both ISO and GLP-1 caused an intracellular acidosis (DeltapH(i) -0.09+/-0.02 and -0.08+/-0.03, respectively). The specific GLP-1 antagonist exendin 9-39 and the cAMP inhibitory analog Rp-8CPT-cAMPS inhibited both the GLP-1-induced intracellular acidosis and the negative contractile effect. We conclude that in contrast to beta-adrenergic signaling, GLP-1 increases cAMP but fails to augment contraction, suggesting the existence of functionally distinct adenylyl cyclase/cAMP/protein kinase A compartments, possibly determined by unique receptor signaling microdomains that are not controlled by pertussis toxin-sensitive G proteins or by enhanced local PDE or phosphatase activation. Furthermore, GLP-1 elicits a cAMP-dependent modest negative inotropic effect produced by a

  14. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line

    SciTech Connect

    Zhang, Leshuai W.; McMahon Tobin, Grainne A.; Rouse, Rodney L.

    2012-10-15

    The glucagon-like peptide 1 receptor (GLP1R) plays a critical role in glucose metabolism and has become an important target for a growing class of drugs designed to treat type 2 diabetes. In vitro studies were designed to investigate the effect of the GLP1R agonist, exenatide (Ex4), in “on-target” RIN-5mF (islet) cells as well as in “off-target” AR42J (acinar) and DSL-6A/C1 (ductal) cells in a diabetic environment. Ex4 increased islet cell proliferation but did not affect acinar cells or ductal cells at relevant concentrations. A high caloric, high fat diet is a risk factor for impaired glucose tolerance and type-2 diabetes. An in vitro Oleic acid (OA) model was used to investigate the effect of Ex4 in a high calorie, high fat environment. At 0.1 and 0.4 mM, OA mildly decreased the proliferation of all pancreatic cell types. Ex4 did not potentiate the inhibitory effect of OA on cell proliferation. Akt phosphorylation in response to Ex4 was diminished in OA-treated ductal cells. GLP1R protein detected by western blot was time and concentration dependently decreased after glucose stimulation in OA-treated ductal cells. In ductal cells, OA treatment altered the intracellular localization of GLP1R and its co-localization with early endosome and recycling endosomes. Chloroquine (lysosomal inhibitor), N-acetyl-L-cysteine (reactive oxygen species scavenger) and wortmannin (a phosphatidylinositol-3-kinase inhibitor), fully or partially, rescued GLP1R protein in OA-pretreated, glucose-stimulated ductal cells. The impact of altered regulation on phenotype/function is presently unknown. However, these data suggest that GLP1R regulation in ductal cells can be altered by a high fat, high calorie environment. -- Highlights: ► Exenatide did not inhibit islet, acinar or ductal cell proliferation. ► GLP1R protein decreased after glucose stimulation in oleic acid-treated ductal cells. ► Oleic acid treatment altered localization of GLP1R with early and recycling

  15. Preparation of anti-CD40 antibody modified magnetic PCL-PEG-PCL microspheres.

    PubMed

    Gao, Xiang; Kan, Bing; Gou, MaLing; Zhang, Juan; Guo, Gang; Huang, Ning; Zhao, Xia; Qian, ZhiYong

    2011-04-01

    Antibody modified magnetic polymeric microspheres have potential biomedical application. In this paper, anti-CD40 antibody modified magnetic poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL, PCEC) microspheres were prepared. First, PCL-PEG-PCL triblock copolymer was synthesized by ring-opening polymerization, followed by reaction with succinic anhydride, creating carboxylated PCL-PEG-PCL copolymer. Then, magnetite nanoparticles were encapsulated into carboxylated PCL-PEG-PCL microspheres, forming magnetic PCL-PEG-PCL microspheres with carboxyl group on their surface. Catalyzed by EDC/NHS, the anti-CD40 antibody was linked to these magnetic PCL-PEG-PCL microspheres, thus forming anti-CD40 modified PCL-PEG-PCL microspheres. These anti-CD40 antibody modified magnetic PCL-PEG-PCL microspheres may have potential application in cell separation. PMID:21702366

  16. Overnight hypoxic exposure and glucagon-like peptide-1 and leptin levels in humans

    PubMed Central

    Snyder, Eric M.; Carr, Richard D.; Deacon, Carolyn F.; Johnson, Bruce D.

    2009-01-01

    Altitude exposure has been associated with loss of appetite and weight loss in healthy humans; however, the endocrine factors that contribute to these changes remain unclear. Leptin and glucagon-like peptide-1 (GLP-1) are peptide hormones that contribute to the regulation of appetite. Leptin increases with hypoxia; however, the influence of hypoxia on GLP-1 has not been studied in animals or humans to date. We sought to determine the influence of normobaric hypoxia on plasma leptin and GLP-1 levels in 25 healthy humans. Subjects ingested a control meal during normoxia and after 17 h of exposure to normobaric hypoxia (fraction of inspired oxygen of 12.5%, simulating approximately 4100 m). Plasma leptin was assessed before the meal, and GLP-1 was assessed premeal, at 20 min postmeal, and at 40 min postmeal. We found that hypoxia caused a significant elevation in plasma leptin levels (normoxia, 4.9 ± 0.8 pg·mL−1; hypoxia, 7.7 ± 1.5 pg·mL−1; p < 0.05; range, −16% to 190%), no change in the average GLP-1 response to hypoxia, and only a small trend toward an increase in GLP-1 levels 40 min postmeal (fasting, 15.7 ± 0.9 vs 15.9 ± 0.7 pmol·L−1; 20 min postmeal, 21.7 ± 0.9 vs 21.8 ± 1.2 pmol·L−1; 40 min postmeal, 19.5 ± 1.2 vs. 21.0 ± 1.2 pmol·L−1 for normoxia and hypoxia, respectively; p > 0.05 normoxia vs hypoxia). There was a correlation between SaO2 and leptin after the 17 h exposure (r= 0.45; p < 0.05), but no relation between SaO2 and GLP-1. These data confirm that leptin increases with hypoxic exposure in humans. Further study is needed to determine the influence of hypoxia and altitude on GLP-1 levels. PMID:18923568

  17. Glucagon-like peptide-1 analogue prevents nonalcoholic steatohepatitis in non-obese mice

    PubMed Central

    Yamamoto, Takaya; Nakade, Yukiomi; Yamauchi, Taeko; Kobayashi, Yuji; Ishii, Norimitsu; Ohashi, Tomohiko; Ito, Kiyoaki; Sato, Ken; Fukuzawa, Yoshitaka; Yoneda, Masashi

    2016-01-01

    AIM: To investigate whether a glucagon-like peptide-1 (GLP-1) analogue inhibits nonalcoholic steatohepatitis (NASH), which is being increasingly recognized in Asia, in non-obese mice. METHODS: A methionine-choline-deficient diet (MCD) along with exendin-4 (20 μg/kg per day, ip), a GLP-1 analogue, or saline was administered to male db/db mice (non-obese NASH model). Four or eight weeks after commencement of the diet, the mice were sacrificed and their livers were excised. The excised livers were examined by histochemistry for evidence of hepatic steatosis and inflammation. Hepatic triglyceride (TG) and free fatty acid (FFA) content was measured, and the expression of hepatic fat metabolism- and inflammation-related genes was evaluated. Oxidative stress-related parameters and macrophage recruitment were also examined using immunohistochemistry. RESULTS: Four weeks of MCD feeding induced hepatic steatosis and inflammation and increased the hepatic TG and FFA content. The expression of fatty acid transport protein 4 (FATP4), a hepatic FFA influx-related gene; macrophage recruitment; and the level of malondialdehyde (MDA), an oxidative stress marker, were significantly augmented by a 4-wk MCD. The levels of hepatic sterol regulatory element-binding protein-1c (SREBP-1c) mRNA (lipogenesis-related gene) and acyl-coenzyme A oxidase 1 (ACOX1) mRNA (β-oxidation-related gene) had decreased at 4 wk and further decreased at 8 wk. However, the level of microsomal triglyceride transfer protein mRNA (a lipid excretion-related gene) remained unchanged. The administration of exendin-4 significantly attenuated the MCD-induced increase in hepatic steatosis, hepatic TG and FFA content, and FATP4 expression as well as the MCD-induced augmentation of hepatic inflammation, macrophage recruitment, and MDA levels. Additionally, it further decreased the hepatic SREBP-1c level and alleviated the MCD-mediated inhibition of the ACOX1 mRNA level. CONCLUSION: These results suggest that GLP-1

  18. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis

    PubMed Central

    Armstrong, Matthew J.; Hull, Diana; Guo, Kathy; Barton, Darren; Hazlehurst, Jonathan M.; Gathercole, Laura L.; Nasiri, Maryam; Yu, Jinglei; Gough, Stephen C.; Newsome, Philip N.; Tomlinson, Jeremy W.

    2016-01-01

    Background & Aims Insulin resistance and lipotoxicity are pathognomonic in non-alcoholic steatohepatitis (NASH). Glucagon-like peptide-1 (GLP-1) analogues are licensed for type 2 diabetes, but no prospective experimental data exists in NASH. This study determined the effect of a long-acting GLP-1 analogue, liraglutide, on organ-specific insulin sensitivity, hepatic lipid handling and adipose dysfunction in biopsy-proven NASH. Methods Fourteen patients were randomised to 1.8 mg liraglutide or placebo for 12-weeks of the mechanistic component of a double-blind, randomised, placebo-controlled trial (ClinicalTrials.gov-NCT01237119). Patients underwent paired hyperinsulinaemic euglycaemic clamps, stable isotope tracers, adipose microdialysis and serum adipocytokine/metabolic profiling. In vitro isotope experiments on lipid flux were performed on primary human hepatocytes. Results Liraglutide reduced BMI (−1.9 vs. +0.04 kg/m2; p <0.001), HbA1c (−0.3 vs. +0.3%; p <0.01), cholesterol-LDL (−0.7 vs. +0.05 mmol/L; p <0.01), ALT (−54 vs. −4.0 IU/L; p <0.01) and serum leptin, adiponectin, and CCL-2 (all p <0.05). Liraglutide increased hepatic insulin sensitivity (−9.36 vs. −2.54% suppression of hepatic endogenous glucose production with low-dose insulin; p <0.05). Liraglutide increased adipose tissue insulin sensitivity enhancing the ability of insulin to suppress lipolysis both globally (−24.9 vs. +54.8 pmol/L insulin required to ½ maximally suppress serum non-esterified fatty acids; p <0.05), and specifically within subcutaneous adipose tissue (p <0.05). In addition, liraglutide decreased hepatic de novo lipogenesis in vivo (−1.26 vs. +1.30%; p <0.05); a finding endorsed by the effect of GLP-1 receptor agonist on primary human hepatocytes (24.6% decrease in lipogenesis vs. untreated controls; p <0.01). Conclusions Liraglutide reduces metabolic dysfunction, insulin resistance and lipotoxicity in the key metabolic organs in the pathogenesis of

  19. Positive Allosteric Modulation of the Glucagon-like Peptide-1 Receptor by Diverse Electrophiles.

    PubMed

    Bueno, Ana B; Showalter, Aaron D; Wainscott, David B; Stutsman, Cynthia; Marín, Aranzazu; Ficorilli, James; Cabrera, Over; Willard, Francis S; Sloop, Kyle W

    2016-05-13

    Therapeutic intervention to activate the glucagon-like peptide-1 receptor (GLP-1R) enhances glucose-dependent insulin secretion and improves energy balance in patients with type 2 diabetes mellitus. Studies investigating mechanisms whereby peptide ligands activate GLP-1R have utilized mutagenesis, receptor chimeras, photo-affinity labeling, hydrogen-deuterium exchange, and crystallography of the ligand-binding ectodomain to establish receptor homology models. However, this has not enabled the design or discovery of drug-like non-peptide GLP-1R activators. Recently, studies investigating 4-(3-benzyloxyphenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine (BETP), a GLP-1R-positive allosteric modulator, determined that Cys-347 in the GLP-1R is required for positive allosteric modulator activity via covalent modification. To advance small molecule activation of the GLP-1R, we characterized the insulinotropic mechanism of BETP. In guanosine 5'-3-O-(thio)triphosphate binding and INS1 832-3 insulinoma cell cAMP assays, BETP enhanced GLP-1(9-36)-NH2-stimulated cAMP signaling. Using isolated pancreatic islets, BETP potentiated insulin secretion in a glucose-dependent manner that requires both the peptide ligand and GLP-1R. In studies of the covalent mechanism, PAGE fluorography showed labeling of GLP-1R in immunoprecipitation experiments from GLP-1R-expressing cells incubated with [(3)H]BETP. Furthermore, we investigated whether other reported GLP-1R activators and compounds identified from screening campaigns modulate GLP-1R by covalent modification. Similar to BETP, several molecules were found to enhance GLP-1R signaling in a Cys-347-dependent manner. These chemotypes are electrophiles that react with GSH, and LC/MS determined the cysteine adducts formed upon conjugation. Together, our results suggest covalent modification may be used to stabilize the GLP-1R in an active conformation. Moreover, the findings provide pharmacological guidance for the discovery and

  20. Glucagon-like peptide-1 (GLP-1) and glucose metabolism in human myocytes.

    PubMed

    Luque, M A; González, N; Márquez, L; Acitores, A; Redondo, A; Morales, M; Valverde, I; Villanueva-Peñacarrillo, M L

    2002-06-01

    Glucagon-like peptide-1 (GLP-1) has been shown to have insulin-like effects upon the metabolism of glucose in rat liver, muscle and fat, and on that of lipids in rat and human adipocytes. These actions seem to be exerted through specific receptors which, unlike that of the pancreas, are not - at least in liver and muscle - cAMP-associated. Here we have investigated the effect, its characteristics, and possible second messengers of GLP-1 on the glucose metabolism of human skeletal muscle, in tissue strips and primary cultured myocytes. In muscle strips, GLP-1, like insulin, stimulated glycogen synthesis, glycogen synthase a activity, and glucose oxidation and utilization, and inhibited glycogen phosphorylase a activity, all of this at physiological concentrations of the peptide. In cultured myotubes, GLP-1 exerted, from 10(-13) mol/l, a dose-related increase of the D-[U-(14)C]glucose incorporation into glycogen, with the same potency as insulin, together with an activation of glycogen synthase a; the effect of 10(-11) mol/l GLP-1 on both parameters was additive to that induced by the equimolar amount of insulin. Synthase a was still activated in cells after 2 days of exposure to GLP-1, as compared with myotubes maintained in the absence of peptide. In human muscle cells, exendin-4 and its truncated form 9-39 amide (Ex-9) are both agonists of the GLP-1 effect on glycogen synthesis and synthase a activity; but while neither GLP-1 nor exendin-4 affected the cellular cAMP content after 5-min incubation in the absence of 3-isobutyl-1-methylxantine (IBMX), an increase was detected with Ex-9. GLP-1, exendin-4, Ex-9 and insulin all induced the prompt hydrolysis of glycosylphosphatidylinositols (GPIs). This work shows a potent stimulatory effect of GLP-1 on the glucose metabolism of human skeletal muscle, and supports the long-term therapeutic value of the peptide. Further evidence for a GLP-1 receptor in this tissue, different from that of the pancreas, is also illustrated

  1. Positive Allosteric Modulation of the Glucagon-like Peptide-1 Receptor by Diverse Electrophiles*

    PubMed Central

    Showalter, Aaron D.; Wainscott, David B.; Stutsman, Cynthia; Marín, Aranzazu; Ficorilli, James; Cabrera, Over

    2016-01-01

    Therapeutic intervention to activate the glucagon-like peptide-1 receptor (GLP-1R) enhances glucose-dependent insulin secretion and improves energy balance in patients with type 2 diabetes mellitus. Studies investigating mechanisms whereby peptide ligands activate GLP-1R have utilized mutagenesis, receptor chimeras, photo-affinity labeling, hydrogen-deuterium exchange, and crystallography of the ligand-binding ectodomain to establish receptor homology models. However, this has not enabled the design or discovery of drug-like non-peptide GLP-1R activators. Recently, studies investigating 4-(3-benzyloxyphenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine (BETP), a GLP-1R-positive allosteric modulator, determined that Cys-347 in the GLP-1R is required for positive allosteric modulator activity via covalent modification. To advance small molecule activation of the GLP-1R, we characterized the insulinotropic mechanism of BETP. In guanosine 5′-3-O-(thio)triphosphate binding and INS1 832-3 insulinoma cell cAMP assays, BETP enhanced GLP-1(9–36)-NH2-stimulated cAMP signaling. Using isolated pancreatic islets, BETP potentiated insulin secretion in a glucose-dependent manner that requires both the peptide ligand and GLP-1R. In studies of the covalent mechanism, PAGE fluorography showed labeling of GLP-1R in immunoprecipitation experiments from GLP-1R-expressing cells incubated with [3H]BETP. Furthermore, we investigated whether other reported GLP-1R activators and compounds identified from screening campaigns modulate GLP-1R by covalent modification. Similar to BETP, several molecules were found to enhance GLP-1R signaling in a Cys-347-dependent manner. These chemotypes are electrophiles that react with GSH, and LC/MS determined the cysteine adducts formed upon conjugation. Together, our results suggest covalent modification may be used to stabilize the GLP-1R in an active conformation. Moreover, the findings provide pharmacological guidance for the discovery and

  2. Impact of PEG and PEG-b-PAGE modified PLGA on nanoparticle formation, protein loading and release.

    PubMed

    Rietscher, René; Czaplewska, Justyna A; Majdanski, Tobias C; Gottschaldt, Michael; Schubert, Ulrich S; Schneider, Marc; Lehr, Claus-Michael

    2016-03-16

    The effect of modifying the well-established pharmaceutical polymer PLGA by different PEG-containing block-copolymers on the preparation of ovalbumin (OVA) loaded PLGA nanoparticles (NPs) was studied. The used polymers contained poly(d,l-lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG) and poly(allyl glycidyl ether) (PAGE) as building blocks. The double emulsion technique yielded spherical NPs in the size range from 170 to 220 nm (PDI<0.15) for all the differently modified polymers, allowing to directly compare protein loading of and release. PEGylation is usually believed to increase the hydrophilic character of produced particles, favoring encapsulation of hydrophilic substances. However, in this study simple PEGylation of PLGA had only a slight effect on protein release. In contrast, incorporating a PAGE block between the PEG and PLGA units, also eventually enabling active targeting introducing a reactive group, led to a significantly higher loading (+25%) and release rate (+100%), compared to PLGA and PEG-b-PLGA NPs. PMID:26784983

  3. Evaluation of High-Yield Purification Methods on Monodisperse PEG-Grafted Iron Oxide Nanoparticles

    PubMed Central

    2016-01-01

    Fundamental research on nanoparticle (NP) interactions and development of next-generation biomedical NP applications relies on synthesis of monodisperse, functional, core–shell nanoparticles free of residual dispersants with truly homogeneous and controlled physical properties. Still, synthesis and purification of e.g. such superparamagnetic iron oxide NPs remain a challenge. Comparing the success of different methods is marred by the sensitivity of analysis methods to the purity of the product. We synthesize monodisperse, oleic acid (OA)-capped, Fe3O4 NPs in the superparamagnetic size range (3–10 nm). Ligand exchange of OA for poly(ethylene glycol) (PEG) was performed with the PEG irreversibly grafted to the NP surface by a nitrodopamine (NDA) anchor. Four different methods were investigated to remove excess ligands and residual OA: membrane centrifugation, dialysis, size exclusion chromatography, and precipitation combined with magnetic decantation. Infrared spectroscopy and thermogravimetric analysis were used to determine the purity of samples after each purification step. Importantly, only magnetic decantation yielded pure NPs at high yields with sufficient grafting density for biomedical applications (∼1 NDA-PEG(5 kDa)/nm2, irrespective of size). The purified NPs withstand challenging tests such as temperature cycling in serum and long-term storage in biological buffers. Dynamic light scattering, transmission electron microscopy, and small-angle X-ray scattering show stability over at least 4 months also in serum. The successful synthesis and purification route is compatible with any conceivable functionalization for biomedical or biomaterial applications of PEGylated Fe3O4 NPs. PMID:27046133

  4. Evaluation of High-Yield Purification Methods on Monodisperse PEG-Grafted Iron Oxide Nanoparticles.

    PubMed

    Lassenberger, Andrea; Bixner, Oliver; Gruenewald, Tilman; Lichtenegger, Helga; Zirbs, Ronald; Reimhult, Erik

    2016-05-01

    Fundamental research on nanoparticle (NP) interactions and development of next-generation biomedical NP applications relies on synthesis of monodisperse, functional, core-shell nanoparticles free of residual dispersants with truly homogeneous and controlled physical properties. Still, synthesis and purification of e.g. such superparamagnetic iron oxide NPs remain a challenge. Comparing the success of different methods is marred by the sensitivity of analysis methods to the purity of the product. We synthesize monodisperse, oleic acid (OA)-capped, Fe3O4 NPs in the superparamagnetic size range (3-10 nm). Ligand exchange of OA for poly(ethylene glycol) (PEG) was performed with the PEG irreversibly grafted to the NP surface by a nitrodopamine (NDA) anchor. Four different methods were investigated to remove excess ligands and residual OA: membrane centrifugation, dialysis, size exclusion chromatography, and precipitation combined with magnetic decantation. Infrared spectroscopy and thermogravimetric analysis were used to determine the purity of samples after each purification step. Importantly, only magnetic decantation yielded pure NPs at high yields with sufficient grafting density for biomedical applications (∼1 NDA-PEG(5 kDa)/nm(2), irrespective of size). The purified NPs withstand challenging tests such as temperature cycling in serum and long-term storage in biological buffers. Dynamic light scattering, transmission electron microscopy, and small-angle X-ray scattering show stability over at least 4 months also in serum. The successful synthesis and purification route is compatible with any conceivable functionalization for biomedical or biomaterial applications of PEGylated Fe3O4 NPs. PMID:27046133

  5. Rapid detection of polyethylene glycol sonolysis upon functionalization of carbon nanomaterials.

    PubMed

    Murali, Vasanth S; Wang, Ruhung; Mikoryak, Carole A; Pantano, Paul; Draper, Rockford

    2015-09-01

    Polyethylene glycol (PEG) and related polymers are often used in the functionalization of carbon nanomaterials in procedures that involve sonication. However, PEG is very sensitive to sonolytic degradation and PEG degradation products can be toxic to mammalian cells. Thus, it is imperative to assess potential PEG degradation to ensure that the final material does not contain undocumented contaminants that can introduce artifacts into experimental results. Described here is a simple and inexpensive polyacrylamide gel electrophoresis method to detect the sonolytic degradation of PEG. The method was used to monitor the integrity of PEG phospholipid constructs and branched chain PEGs after different sonication times. This approach not only helps detect degraded PEG, but should also facilitate rapid screening of sonication parameters to find optimal conditions that minimize PEG damage. PMID:25662826

  6. Rapid detection of polyethylene glycol sonolysis upon functionalization of carbon nanomaterials

    PubMed Central

    Murali, Vasanth S.; Wang, Ruhung; Mikoryak, Carole A.; Pantano, Paul; Draper, Rockford

    2015-01-01

    Polyethylene glycol (PEG) and related polymers are often used in the functionalization of carbon nanomaterials in procedures that involve sonication. However, PEG is very sensitive to sonolytic degradation and PEG degradation products can be toxic to mammalian cells. Thus, it is imperative to assess potential PEG degradation to ensure that the final material does not contain undocumented contaminants that can introduce artifacts into experimental results. Described here is a simple and inexpensive polyacrylamide gel electrophoresis method to detect the sonolytic degradation of PEG. The method was used to monitor the integrity of PEG phospholipid constructs and branched chain PEGs after different sonication times. This approach not only helps detect degraded PEG, but should also facilitate rapid screening of sonication parameters to find optimal conditions that minimize PEG damage. PMID:25662826

  7. Applying Computerized Text Measurement Strategies from Project Essay Grade (PEG) to Military and Civilian Organizational Needs.

    ERIC Educational Resources Information Center

    Hiller, Jack H.

    Project Essay Grade (PEG), developed by E. Page (1968) uses computerized methodology to grade student writing. PEG can also be used to assess the quality of civilian and military writing products, such as regulations or instructional texts. Application of PEG offers the potential for enhancing government efforts to monitor writing quality and…

  8. Lamellar, micro-phase separated blends of methyl cellulose and dendritic polyethylene glycol, POSS-PEG.

    PubMed

    Chinnam, Parameswara Rao; Mantravadi, Ramya; Jimenez, Jayvic C; Dikin, Dmitriy A; Wunder, Stephanie L

    2016-01-20

    Blends of methyl cellulose (MC) and liquid pegylated polyoctahedralsilsesquioxane (POSS-PEG) were prepared from non-gelled, aqueous solutions at room temperature (RT), which was below their gel temperatures (Tm). Lamellar, fibrillated films (pure MC) and increasingly micro-porous morphologies with increasing POSS-PEG content were formed, which had RT moduli between 1 and 5GPa. Evidence of distinct micro-phase separated MC and POSS-PEG domains was indicated by the persistence of the MC and POSS-PEG (at 77K) crystal structures in the X-ray diffraction data, and scanning transmission electron images. Mixing of MC and POSS-PEG in the interface region was indicated by suppression of crystallinity in the POSS-PEG, and increases/decreases in the glass transition temperatures (Tg) of POSS-PEG/MC in the blends compared with the pure components. These interface interactions may serve as cross-link sites between the micro-phase separated domains that permit incorporation of high amounts of POSS-PEG in the blends, prevent macro-phase separation and result in rubbery material properties (at high POSS-PEG content). Above Tg/Tm of POSS-PEG, the moduli of the blends increase with MC content as expected. However, below Tg/Tm of POSS-PEG, the moduli are greater for blends with high POSS-PEG content, suggesting that it behaves like semi-crystalline polyethylene oxide reinforced with silica (SiO1.5). PMID:26572324

  9. Glucagon-Like Peptide-1 Protects Against Cardiac Microvascular Injury in Diabetes via a cAMP/PKA/Rho-Dependent Mechanism

    PubMed Central

    Wang, Dongjuan; Luo, Peng; Wang, Yabin; Li, Weijie; Wang, Chen; Sun, Dongdong; Zhang, Rongqing; Su, Tao; Ma, Xiaowei; Zeng, Chao; Wang, Haichang; Ren, Jun; Cao, Feng

    2013-01-01

    Impaired cardiac microvascular function contributes to cardiovascular complications in diabetes. Glucagon-like peptide-1 (GLP-1) exhibits potential cardioprotective properties in addition to its glucose-lowering effect. This study was designed to evaluate the impact of GLP-1 on cardiac microvascular injury in diabetes and the underlying mechanism involved. Experimental diabetes was induced using streptozotocin in rats. Cohorts of diabetic rats received a 12-week treatment of vildagliptin (dipeptidyl peptidase-4 inhibitor) or exenatide (GLP-1 analog). Experimental diabetes attenuated cardiac function, glucose uptake, and microvascular barrier function, which were significantly improved by vildagliptin or exenatide treatment. Cardiac microvascular endothelial cells (CMECs) were isolated and cultured in normal or high glucose medium with or without GLP-1. GLP-1 decreased high-glucose–induced reactive oxygen species production and apoptotic index, as well as the levels of NADPH oxidase such as p47phox and gp91phox. Furthermore, cAMP/PKA (cAMP-dependent protein kinase activity) was increased and Rho-expression was decreased in high-glucose–induced CMECs after GLP-1 treatment. In conclusion, GLP-1 could protect the cardiac microvessels against oxidative stress, apoptosis, and the resultant microvascular barrier dysfunction in diabetes, which may contribute to the improvement of cardiac function and cardiac glucose metabolism in diabetes. The protective effects of GLP-1 are dependent on downstream inhibition of Rho through a cAMP/PKA-mediated pathway. PMID:23364453

  10. Synthesis, characterization and cytotoxicity of glutathione- and PEG-glutathione-superparamagnetic iron oxide nanoparticles for nitric oxide delivery

    NASA Astrophysics Data System (ADS)

    Santos, M. C.; Seabra, A. B.; Pelegrino, M. T.; Haddad, P. S.

    2016-03-01

    Superparamagnetic iron oxide nanoparticles (SPIONs), with appropriate surface coatings, are commonly used for biomedical applications, such as drug delivery. For the successful application of SPIONs, it is necessary that the nanoparticles have well-defined morphological, structural and magnetic characteristics, in addition to high stability and biocompatibility in biological environments. The present work is focused on the synthesis and characterization of SPIONs, which were prepared using the co-precipitation method and have great potential for drug delivery. The surfaces of the SPIONs were functionalized with the tripeptide glutathione (GSH) and poly(ethylene glycol) (PEG) to form GSH-SPIONs and PEG-GSH-SPIONs. The structural, morphological, magnetic properties and the cytotoxicity of the obtained nanoparticles were characterized using different techniques. The results showed that the nanoparticles have a mean diameter of 10 nm in the solid state and are superparamagnetic at room temperature. No cytotoxicity was observed for either nanoparticle (up to 500 μg L-1) on mouse normal fibroblasts (3T3 cell line) or acute T cell leukemia (Jurkat cell line) after 24 h of incubation. Free thiol groups (SH) on the surfaces of GSH-SPIONs and PEG-GSH-SPIONs were nitrosated, leading to the formation of S-nitrosated SPIONs, which act as a nitric oxide (NO) donor. The amounts of NO released from GSNO-SPIONs and PEG-GSNO-SPIONs were (124.0 ± 1.0) μmol and (33.2 ± 5.1) μmol of NO per gram, respectively. This study highlights the successful capping of the SPION surfaces with antioxidant GSH and biocompatible PEG, which improved the dispersion and biocompatibility of the NPs in aqueous/biological environments, thereby enhancing the potential uses of SPIONs as drug delivery systems, such as a NO donor vehicle, in biomedical applications.

  11. Characteristics and cytotoxicity of folate-modified curcumin-loaded PLA-PEG micellar nano systems with various PLA:PEG ratios.

    PubMed

    Phan, Quoc Thong; Le, Mai Huong; Le, Thi Thu Huong; Tran, Thi Hong Ha; Xuan, Phuc Nguyen; Ha, Phuong Thu

    2016-06-30

    Targeting delivery system use natural drugs for tumor cells is an appealing platform help to reduce the side effects and enhance the therapeutic effects of the drug. In this study, we synthesized curcumin (Cur) loaded (D, L Poly lactic - Poly ethylenglycol) micelle (Cur/PLA-PEG) with the ratio of PLA/PEG of 3:1 2:1 1:1 1:2 and 1:3 (w/w) and another micelle modified by folate (Cur/PLA-PEG-Fol) for targeting cancer therapy. The PLA-PEG copolymer was synthesized by ring opening polymerization method. After loading onto the micelle, solubility of Cur increased from 0.38 to 0.73mgml(-1). The average size of prepared Cur/PLA-PEG micelles was from 60 to 69nm (corresponding to the ratio difference of PLA/PEG) and the drug encapsulating efficiency was from 48.8 to 91.3%. Compared with the Cur/PLA-PEG micelles, the size of Cur/PLA-PEG-Fol micelles were from 80 to 86nm and showed better in vitro cellular uptake and cytotoxicity towards HepG2 cells. The cytotoxicity of the NPs however depends much on the PEG component. The results demonstrated that Folate-modified micelles could serve as a potential nano carrier to improve solubility, anti-cancer activity of Cur and targeting ability of the system. PMID:27150945

  12. Covalent IR820-PEG-diamine nanoconjugates for theranostic applications in cancer.

    PubMed

    Fernandez-Fernandez, Alicia; Manchanda, Romila; Carvajal, Denny A; Lei, Tingjun; Srinivasan, Supriya; McGoron, Anthony J

    2014-01-01

    Near-infrared dyes can be used as theranostic agents in cancer management, based on their optical imaging and localized hyperthermia capabilities. However, their clinical translatability is limited by issues such as photobleaching, short circulation times, and nonspecific biodistribution. Nanoconjugate formulations of cyanine dyes, such as IR820, may be able to overcome some of these limitations. We covalently conjugated IR820 with 6 kDa polyethylene glycol (PEG)-diamine to create a nanoconjugate (IRPDcov) with potential for in vivo applications. The conjugation process resulted in nearly spherical, uniformly distributed nanoparticles of approximately 150 nm diameter and zeta potential -0.4±0.3 mV. The IRPDcov formulation retained the ability to fluoresce and to cause hyperthermia-mediated cell-growth inhibition, with enhanced internalization and significantly enhanced cytotoxic hyperthermia effects in cancer cells compared with free dye. Additionally, IRPDcov demonstrated a significantly longer (P<0.05) plasma half-life, elimination half-life, and area under the curve (AUC) value compared with IR820, indicating larger overall exposure to the theranostic agent in mice. The IRPDcov conjugate had different organ localization than did free IR820, with potential reduced accumulation in the kidneys and significantly lower (P<0.05) accumulation in the lungs. Some potential advantages of IR820-PEG-diamine nanoconjugates may include passive targeting of tumor tissue through the enhanced permeability and retention effect, prolonged circulation times resulting in increased windows for combined diagnosis and therapy, and further opportunities for functionalization, targeting, and customization. The conjugation of PEG-diamine with a near-infrared dye provides a multifunctional delivery vector whose localization can be monitored with noninvasive techniques and that may also serve for guided hyperthermia cancer treatments. PMID:25336944

  13. Covalent IR820-PEG-diamine nanoconjugates for theranostic applications in cancer

    PubMed Central

    Fernandez-Fernandez, Alicia; Manchanda, Romila; Carvajal, Denny A; Lei, Tingjun; Srinivasan, Supriya; McGoron, Anthony J

    2014-01-01

    Near-infrared dyes can be used as theranostic agents in cancer management, based on their optical imaging and localized hyperthermia capabilities. However, their clinical translatability is limited by issues such as photobleaching, short circulation times, and nonspecific biodistribution. Nanoconjugate formulations of cyanine dyes, such as IR820, may be able to overcome some of these limitations. We covalently conjugated IR820 with 6 kDa polyethylene glycol (PEG)-diamine to create a nanoconjugate (IRPDcov) with potential for in vivo applications. The conjugation process resulted in nearly spherical, uniformly distributed nanoparticles of approximately 150 nm diameter and zeta potential −0.4±0.3 mV. The IRPDcov formulation retained the ability to fluoresce and to cause hyperthermia-mediated cell-growth inhibition, with enhanced internalization and significantly enhanced cytotoxic hyperthermia effects in cancer cells compared with free dye. Additionally, IRPDcov demonstrated a significantly longer (P<0.05) plasma half-life, elimination half-life, and area under the curve (AUC) value compared with IR820, indicating larger overall exposure to the theranostic agent in mice. The IRPDcov conjugate had different organ localization than did free IR820, with potential reduced accumulation in the kidneys and significantly lower (P<0.05) accumulation in the lungs. Some potential advantages of IR820-PEG-diamine nanoconjugates may include passive targeting of tumor tissue through the enhanced permeability and retention effect, prolonged circulation times resulting in increased windows for combined diagnosis and therapy, and further opportunities for functionalization, targeting, and customization. The conjugation of PEG-diamine with a near-infrared dye provides a multifunctional delivery vector whose localization can be monitored with noninvasive techniques and that may also serve for guided hyperthermia cancer treatments. PMID:25336944

  14. Reversible cardiac hypertrophy induced by PEG-coated gold nanoparticles in mice

    PubMed Central

    Yang, Chengzhi; Tian, Aiju; Li, Zijian

    2016-01-01

    Gold nanoparticles (GNPs) are attracting more and more attention for their great potential value in biomedical application. Currently, no study has been reported on the chronic cardiac toxicity of GNPs after repeated administration. Here we carried out a comprehensive evaluation of the chronic cardiac toxicity of GNPs to the heart. Polyethylene glycol (PEG) -coated GNPs at three different sizes (10, 30 and 50 nm) or PBS was administrated to mice via tail vein for 14 consecutive days. Then the mice were euthanized at 2 weeks, 4 weeks or 12 weeks after the first injection. The accumulation of GNPs in the mouse heart and their effects on cardiac function, structure, fibrosis and inflammation were analysized. GNPs with smaller size showed higher accumulation and faster elimination. None of the three sizes of GNPs affected cardiac systolic function. The LVIDd (left ventricular end-diastolicinner-dimension), LVMass (left ventricular mass) and HW/BW (heart weight/body weight) were significantly increased in the mice receiving 10 nm PEG-GNPs for 2 weeks, but not for 4 weeks or 12 weeks. These results indicated that the accumulation of small size GNPs can induce reversible cardiac hypertrophy. Our results provide the basis for the further biomedical applications of GNPs in cardiac diseases. PMID:26830764

  15. Protein composition alters in vivo resorption of PEG-based hydrogels as monitored by contrast-enhanced MRI.

    PubMed

    Berdichevski, Alexandra; Shachaf, Yonatan; Wechsler, Roni; Seliktar, Dror

    2015-02-01

    We report on the use of magnetic resonance imaging (MRI)-based non-invasive monitoring to document the role of protein adjuvants in hydrogel implant integration in vivo. Polyethylene glycol (PEG) hydrogels were formed with different protein constituents, including albumin, fibrinogen and gelatin. The hydrogels were designed to exhibit similar material properties, including modulus, swelling and hydrolytic degradation kinetics. The in vivo resorption properties of these PEG-based hydrogels, which contained a tethered gadolinium contrast agent, were characterized by MRI and histology, and compared to their in vitro characteristics. MRI data revealed that PEG-Albumin implants remained completely intact throughout the experiments, PEG-Fibrinogen implants lost about 10% of their volume and PEG-Gelatin implants underwent prominent swelling and returned to their initial volume by day 25. Fully synthetic PEG-diacrylate (PEG-DA) control hydrogels lost about half of their volume after 25 days in vivo. Transverse MRI cross-sections of the implants revealed distinct mechanisms of the hydrogel's biodegradation: PEG-Fibrinogen and PEG-Albumin underwent surface erosion, whereas PEG-Gelatin and PEG-DA hydrogels mainly underwent bulk degradation. Histological findings substantiated the MRI data and demonstrated significant cellular response towards PEG-DA and PEG-Gelatin scaffolds with relatively low reaction towards PEG-Fibrinogen and PEG-Albumin hydrogels. These findings demonstrate that PEG-protein hydrogels can degrade via a different mechanism than PEG hydrogels, and that this difference can be linked to a reduced foreign body response. PMID:25542788

  16. PEG-based thermogels: applicability in physiological media.

    PubMed

    Badi, Nezha; Lutz, Jean-François

    2009-12-16

    Novel biocompatible thermogels have been synthesized and characterized. The hydrogelators were synthesized by atom transfer radical copolymerization of 2-(2-methoxyethoxy)ethyl methacrylate (MEO(2)MA) and oligo(ethylene glycol) methyl ether methacrylate (OEGMA(475), M(n)=475 g mol(-1) or OEGMA(300), M(n)=300 g mol(-1)) in the presence of a 4-arm star poly(ethylene glycol) (PEG) macroinitiator. The formed macromolecules possess a permanently hydrophilic PEG core and thermoresponsive P(MEO(2)MA-co-OEGMA) outer-blocks. These star-block architectures exhibit an inverse thermogelation behavior in aqueous medium. Typically, above their lower critical solution temperature (LCST), the thermoresponsive P(MEO(2)MA-co-OEGMA) precipitate, thus forming physical crosslinks, which are stabilized in water by hydrophilic PEG bridges. This thermo-induced sol-gel transition can be adjusted within a near-physiological range of temperature by simply varying the composition of the thermoresponsive segments. Moreover, these novel hydrogelators formed free-standing gels in various buffer solutions (e.g., PBS, Tris, MOPS, bicine and HEPES) and in cell culture media. In saline solutions, a weak salting-out effect was observed. However, other components of physiological media (e.g., buffering agents, amino acids, vitamins, proteins) did not hinder the thermogelation process. Hence, these novel thermogels appear as highly attractive candidates for applications in biosciences. PMID:19376170

  17. Cellular Uptake and Antitumor Activity of DOX-hyd-PEG-FA Nanoparticles

    PubMed Central

    Na, Ren; Song, Yan-feng; Mei, Qi-bing; Zhao, Ming-gao; Zhou, Si-yuan

    2014-01-01

    A PEG-based, folate mediated, active tumor targeting drug delivery system using DOX-hyd-PEG-FA nanoparticles (NPs) were prepared. DOX-hyd-PEG-FA NPs showed a significantly faster DOX release in pH 5.0 medium than in pH 7.4 medium. Compared with DOX-hyd-PEG NPs, DOX-hyd-PEG-FA NPs increased the intracellular accumulation of DOX and showed a DOX translocation from lysosomes to nucleus. The cytotoxicity of DOX-hyd-PEG-FA NPs on KB cells was much higher than that of free DOX, DOX-ami-PEG-FA NPs and DOX-hyd-PEG NPs. The cytotoxicity of DOX-hyd-PEG-FA NPs on KB cells was attenuated in the presence of exogenous folic acid. The IC50 of DOX-hyd-PEG-FA NPs and DOX-hyd-PEG NPs on A549 cells showed no significant difference. After DOX-hyd-PEG-FA NPs were intravenously administered, the amount of DOX distributed in tumor tissue was significantly increased, while the amount of DOX distributed in heart was greatly decreased as compared with free DOX. Compared with free DOX, NPs yielded improved survival rate, prolonged life span, delayed tumor growth and reduced the cardiotoxicity in tumor bearing mice model. These results indicated that the acid sensitivity, passive and active tumor targeting abilities were likely to act synergistically to enhance the drug delivery efficiency of DOX-hyd-PEG-FA NPs. Therefore, DOX-hyd-PEG-FA NPs are a promising drug delivery system for targeted cancer therapy. PMID:24828815

  18. Reduction of Non-Specific Protein Adsorption Using Poly(ethylene) Glycol (PEG) Modified Polyacrylate Hydrogels In Immunoassays for Staphylococcal Enterotoxin B Detection

    PubMed Central

    Charles, Paul T.; Stubbs, Veronte R.; Soto, Carissa M.; Martin, Brett D.; White, Brandy J.; Taitt, Chris R.

    2009-01-01

    Three PEG molecules (PEG-methacrylate, -diacrylate and -dimethacrylate) were incorporated into galactose-based polyacrylate hydrogels and their relative abilities to reduce non-specific protein adsorption in immunoassays were determined. Highly crosslinked hydrogels containing amine-terminated functionalities were formed and used to covalently attach antibodies specific for staphylococcal enterotoxin B (SEB). Patterned arrays of immobilized antibodies in the PEG-modified hydrogels were created with a PDMS template containing micro-channels for use in sandwich immunoassays to detect SEB. Different concentrations of the toxin were applied to the hydrogel arrays, followed with a Cy3-labeled tracer antibody specific for the two toxins. Fluorescence laser scanning confocal microscopy of the tracer molecules provided both qualitative and quantitative measurements on the detection sensitivity and the reduction in non-specific binding as a result of PEG incorporation. Results showed the PEG-modified hydrogel significantly reduced non-specific protein binding with a detection limit for SEB of 1 ng/mL. Fluorescence signals showed a 10-fold decrease in the non-specific binding and a 6-fold increase in specific binding of SEB. PMID:22389622

  19. mPEG-PAMAM-G4 Nucleic Acid Nanocomplexes: Enhanced Stability, RNase Protection, and Activity of Splice Switching Oligomer and Poly I:C RNA

    PubMed Central

    Reyes-Reveles, Juan; Sedaghat-Herati, Reza; Gilley, David R.; Schaeffer, Ashley M.; Ghosh, Kartik C.; Greene, Thomas D.; Gann, Hannah E.; Dowler, Wesley A; Kramer, Stephen; Dean, John M.; Delong, Robert K.

    2013-01-01

    Dendrimer chemistries have virtually exploded in recent years with increasing interest in this class of Polymers as gene delivery vehicles. An effective nucleic acid delivery vehicle must efficiently bind its cargo and form physically stable complexes. Most importantly, the nucleic acid must be protected in biological fluids and tissues, as RNA is extremely susceptible to nuclease degradation. Here, we characterized the association of nucleic acids with generation 4 PEGylated Poly(amidoamine)dendrimer (mPEG-PAMAM-G4). We investigated the formation, size, and stability over time of the nanoplexes at various N/P ratios by gel shift and dynamic light scatter spectroscopy (DLS). Further characterization of the mPEG-PAMAM-G4:nucleic acid association was provided by atomic force microscopy (AFM) and by circular dichroism (CD). Importantly, mPEG-PAMAM-G4 complexation protected RNA from treatment with RNase A, degradation in serum and various tissue homogenates. mPEG-PAMAM-G4 complexation also significantly enhanced the functional delivery of RNA in a novel engineered human melanoma cell line with splice-switching oligonucleotides (SSOs) targeting a recombinant luciferase transcript. mPEG-PAMAM-G4 triconjugates formed between gold nanoparticle (GNP) and particularly manganese oxide (MnO) nanorods, Poly IC, an anti-cancer RNA, showed enhanced cancer-killing activity by an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assay. PMID:24164501

  20. Glucagon-Like Peptide-1 Strengthens the Barrier Integrity in Primary Cultures of Rat Brain Endothelial Cells Under Basal and Hyperglycemia Conditions.

    PubMed

    Fukuda, Shuji; Nakagawa, Shinsuke; Tatsumi, Rie; Morofuji, Yoichi; Takeshita, Tomonori; Hayashi, Kentaro; Tanaka, Kunihiko; Matsuo, Takayuki; Niwa, Masami

    2016-06-01

    The objective of the present study was to determine the effects of glucagon-like peptide-1 (GLP-1) on barrier functions and to assess the underlying mechanism using an in vitro blood-brain barrier (BBB) model comprised of a primary culture of rat brain capillary endothelial cells (RBECs). GLP-1 increased transendothelial electrical resistance and decreased the permeability of sodium fluorescein in RBECs in a dose- and time-dependent manner. The effects on these barrier functions were significantly reduced in the presence of the GLP-1 receptor antagonist exendin-3 (9-39) and the protein kinase A (PKA) inhibitor H-89. Western blot analysis showed that GLP-1 increased the amount of occludin and claudin-5. GLP-1 analogs are approved for treatment of type 2 diabetes mellitus, and thus, we examined the effects of GLP-1 on hyperglycemia-induced BBB damage. GLP-1 inhibited the increase in production of reactive oxygen species under hyperglycemia conditions and improved the BBB integrity induced by hyperglycemia. As GLP-1 stabilized the integrity of the BBB, probably via cAMP/PKA signaling, the possibility that GLP-1 acts as a BBB-protective drug should be considered. PMID:26659380

  1. A Randomized Controlled Trial Evaluating a Low-Volume PEG Solution Plus Ascorbic Acid versus Standard PEG Solution in Bowel Preparation for Colonoscopy

    PubMed Central

    Tajika, Masahiro; Tanaka, Tsutomu; Ishihara, Makoto; Mizuno, Nobumasa; Hara, Kazuo; Hijioka, Susumu; Imaoka, Hiroshi; Sato, Takamitsu; Yogi, Tatsuji; Tsutsumi, Hideharu; Fujiyoshi, Toshihisa; Hieda, Nobuhiro; Okuno, Nozomi; Yoshida, Tsukasa; Bhatia, Vikram; Yatabe, Yasushi; Yamao, Kenji; Niwa, Yasumasa

    2015-01-01

    Evaluation of polyethylene glycol electrolyte lavage solution containing ascorbic acid (PEG-ASC) has been controversial in the point of its hyperosmolarity, especially in old population. So we therefore designed the present study to compare the efficacy, acceptability, tolerability, and safety of 1.5 L PEG+ASC and 2 L standard PEG electrolyte solution (PEG-ELS), not only in the general population, but also in patients of advanced age. Randomization was stratified by age (<70 years or 70> years), and hematological and biochemical parameters were compared in each age group, especially with respect to the safety profile of each regimen. As a result, the 1.5-L PEG-ASC regimen had higher patient acceptability than the 2-L PEG-ELS regimen. Tolerability, bowel cleansing, and safety were similar between regimens. However, we demonstrated significant statistical changes in the hematological and biochemical parameters after taking bowel preparation solutions, not only in the PEG+ASC group, but also in the PEG-ELS group. No significant differences in the safety profile were found between subjects aged less than 70 years and those aged 70 years or more; nevertheless, regardless of age, proper hydration is needed throughout the bowel preparation process. PMID:26649036

  2. The effects of mPEG proportion and LA/GA ratio on degradation and drug release behaviors of PLGA-mPEG microparticles.

    PubMed

    Shi, Chen; Liu, Ping; Liu, Xianzhe; Feng, Xiaobo; Fu, Dehao

    2016-05-01

    The purpose of this research was to evaluate the effects of mPEG proportion and LA/GA ratio on degradation and release behavior of PLGA-mPEG microparticles prepared by the emulsion evaporation method. Mometasone furoate was employed as model drug and encapsulated into five types of PLGA-mPEG microparticles in the same molecular weight (Mw), but different in mPEG proportion or LA/GA ratio. All types of PLGA-mPEG microparticles showed similar drug encapsulation efficiency and particle mean size, but PLGA-mPEG microparticles with higher mPEG proportion showed a faster Mw reduction rate, mass loss rate and size decrease rate according to the in vitro degradation experiment, and also, a faster drug release rate according to the in vitro release experiment. On the other hand, higher LA/GA ratio in PLGA chain of PLGA-mPEG causes a slower Mw reduction rate, mass loss rate, size decrease rate, and thus, a slower drug release rate. PMID:27348966

  3. Calcium phosphate-PEG-insulin-casein (CAPIC) particles as oral delivery systems for insulin.

    PubMed

    Morçöl, T; Nagappan, P; Nerenbaum, L; Mitchell, A; Bell, S J D

    2004-06-11

    An oral delivery system for insulin was developed and functional activity was tested in a non-obese diabetic (NOD) mice model. Calcium phosphate particles containing insulin was synthesized in the presence of PEG-3350 and modified by aggregating the particles with caseins to obtain the calcium phosphate-PEG-insulin-casein (CAPIC) oral insulin delivery system. Single doses of CAPIC formulation were tested in NOD mice under fasting or fed conditions to evaluate the glycemic activity. The blood glucose levels were monitored every 1-2h for 12h following the treatments using an ACCU CHECK blood glucose monitoring system. Orally administered and subcutaneously injected free insulin solution served as controls in the study. Based on the results obtained we propose that: (1). the biological activity of insulin is preserved in CAPIC formulation; (2). insulin in CAPIC formulations, but not the free insulin, displays a prolonged hypoglycemic effect after oral administration to diabetic mice; (3). CAPIC formulation protects insulin from degradation while passing through the acidic environment of the GI track until it is released in the less acidic environment of the intestines where it can be absorbed in its biologically active form; (4). CAPIC formulation represents a new and unique oral delivery system for insulin and other macromolecules. PMID:15158972

  4. PEG shielded MMP sensitive CPPs for efficient and tumor specific gene delivery in vivo.

    PubMed

    Veiman, Kadi-Liis; Künnapuu, Kadri; Lehto, Tõnis; Kiisholts, Kristina; Pärn, Kalle; Langel, Ülo; Kurrikoff, Kaido

    2015-07-10

    Gene therapy has great potential to treat a range of different diseases, such as cancer. For that therapeutic gene can be inserted into a plasmid vector and delivered specifically to tumor cells. The most frequently used applications utilize lipoplex and polyplex approaches where DNA is non-covalently condensed into nanoparticles. However, lack of in vivo efficacy is the major concern that hinders translation of such gene therapeutic applications into clinics. In this work we introduce a novel method for in vivo delivery of plasmid DNA (pDNA) and efficient tumor-specific gene induction using intravenous (i.v) administration route. To achieve this, we utilize a cell penetrating peptide (CPP), PepFect14 (PF14), double functionalized with polyethylene glycol (PEG) and a matrix metalloprotease (MMP) substrate. We show that this delivery vector effectively forms nanoparticles, where the condensed CPP and pDNA are shielded by the PEG, in an MMP-reversible manner. Administration of the complexes results in efficient induction of gene expression specifically in tumors, avoiding normal tissues. This strategy is a potent gene delivery platform that can be used for tumor-specific induction of a therapeutic gene. PMID:25935707

  5. Osteoinductive Effects of Free and Immobilized Bone Forming Peptide-1 on Human Adipose-Derived Stem Cells.

    PubMed

    Li, Wenyue; Zheng, Yunfei; Zhao, Xianghui; Ge, Yanjun; Chen, Tong; Liu, Yunsong; Zhou, Yongsheng

    2016-01-01

    Most synthetic polymeric materials currently used for bone tissue engineering lack specific signals through which cells can identify and interact with the surface, resulting in incompatibility and compromised osteogenic activity. Soluble inductive factors also have issues including a short half-live in vivo. Bone forming peptide-1 is a truncated peptide from the immature form of bone morphogenetic protein-7 (BMP-7) that displays higher osteogenic activity than full-length, mature BMP-7. In this study, we used a mussel-inspired immobilization strategy mediated by polymerization of dopamine to introduce recently discovered stimulators of bone forming peptide-1 (BFP-1) onto the surface of poly-lactic-co-glycolic acid (PLGA) substrate to form a biomaterial that overcomes these challenges. Human adipose-derived stem cells (hASCs), being abundant and easy accessible, were used to test the osteogenic activity of BFP-1 and the novel biomaterial. Under osteoinductive conditions, cells treated with both BFP-1 alone and BFP-1-coated biomaterials displayed elevated expression of the osteogenic markers alkaline phosphatase (ALP), osteocalcin (OC), and RUNX2. Furthermore, hASCs associated with poly-dopamine-assisted BFP-1-immobilized PLGA (pDA-BFP-1-PLGA) scaffolds promoted in vivo bone formation in nude mice. Our novel materials may hold great promise for future bone tissue engineering applications. PMID:26930062

  6. Osteoinductive Effects of Free and Immobilized Bone Forming Peptide-1 on Human Adipose-Derived Stem Cells

    PubMed Central

    Zhao, Xianghui; Ge, Yanjun; Chen, Tong; Liu, Yunsong; Zhou, Yongsheng

    2016-01-01

    Most synthetic polymeric materials currently used for bone tissue engineering lack specific signals through which cells can identify and interact with the surface, resulting in incompatibility and compromised osteogenic activity. Soluble inductive factors also have issues including a short half-live in vivo. Bone forming peptide-1 is a truncated peptide from the immature form of bone morphogenetic protein-7 (BMP-7) that displays higher osteogenic activity than full-length, mature BMP-7. In this study, we used a mussel-inspired immobilization strategy mediated by polymerization of dopamine to introduce recently discovered stimulators of bone forming peptide-1 (BFP-1) onto the surface of poly-lactic-co-glycolic acid (PLGA) substrate to form a biomaterial that overcomes these challenges. Human adipose-derived stem cells (hASCs), being abundant and easy accessible, were used to test the osteogenic activity of BFP-1 and the novel biomaterial. Under osteoinductive conditions, cells treated with both BFP-1 alone and BFP-1-coated biomaterials displayed elevated expression of the osteogenic markers alkaline phosphatase (ALP), osteocalcin (OC), and RUNX2. Furthermore, hASCs associated with poly-dopamine-assisted BFP-1-immobilized PLGA (pDA-BFP-1-PLGA) scaffolds promoted in vivo bone formation in nude mice. Our novel materials may hold great promise for future bone tissue engineering applications. PMID:26930062

  7. Inositolphosphoglycans possibly mediate the effects of glucagon-like peptide-1(7-36)amide on rat liver and adipose tissue.

    PubMed

    Márquez, L; Trapote, M A; Luque, M A; Valverde, I; Villanueva-Peñacarrillo, M L

    1998-03-01

    Insulin-like effects of glucagon-like peptide-1(7-36)amide (GLP-1) in rat liver, skeletal muscle and fat, and also the presence of GLP-1 receptors in these extrapancreatic tissues, have been documented. In skeletal muscle and liver, the action of GLP-1 is not associated with an activation of adenylate cyclase, and in cultured murine myocytes and hepatoma cell lines, it was found that GLP-1 provokes the generation of inositolphosphoglycan molecules (IPGs), which are considered second messengers of insulin action. In the present work, we document in isolated normal rat adipocytes and hepatocytes that GLP-1 exerts a rapid decrease of the radiolabelled glycosylphosphatidylinositols (GPIs)--precursors of IPGs--in the same manner as insulin, indicating their hydrolysis and the immediate short-lived generation of IPGs. Thus, IPGs could be mediators in the GLP-1 actions in adipose tissue and liver, as well as in skeletal muscle, through GLP-1 receptors which are, at least functionally, different from that of the pancreatic B-cell. PMID:9580153

  8. Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products.

    PubMed

    Fruijtier-Pölloth, Claudia

    2005-10-15

    This assessment focusses on polyethylene glycols (PEGs) and on anionic or nonionic PEG derivatives, which are currently used in cosmetics in Europe. These compounds are used in a great variety of cosmetic applications because of their solubility and viscosity properties, and because of their low toxicity. The PEGs, their ethers, and their fatty acid esters produce little or no ocular or dermal irritation and have extremely low acute and chronic toxicities. They do not readily penetrate intact skin, and in view of the wide use of preparations containing PEG and PEG derivatives, only few case reports on sensitisation reactions have been published, mainly involving patients with exposure to PEGs in medicines or following exposure to injured or chronically inflamed skin. On healthy skin, the sensitising potential of these compounds appears to be negligible. For some representative substances of this class, information was available on reproductive and developmental toxicity, on genotoxicty and carcinogenic properties. Taking into consideration all available information from related compounds, as well as the mode and mechanism of action, no safety concern with regard to these endpoints could be identified. Based on the available data it is therefore concluded that PEGs of a wide molecular weight range (200 to over 10,000), their ethers (laureths. ceteths, ceteareths, steareths, and oleths), and fatty acid esters (laurates, dilaurates, stearates, distearates) are safe for use in cosmetics. Limited data were available for PEG sorbitan/sorbitol fatty acid esters, PEG sorbitan beeswax and PEG soy sterols. Taking into account all the information available for closely related compounds, it can be assumed that these compounds as presently used in cosmetic preparations will not present a risk for human health. PEG castor oils and PEG hydrogenated castor oils have caused anaphylactic reactions when used in intravenous medicinal products. Their topical use in cosmetics is

  9. Synthesis, characterization, and evaluation of mPEG-SN38 and mPEG-PLA-SN38 micelles for cancer therapy.

    PubMed

    Xie, Jing; Zhang, Xiaomin; Teng, Meiyu; Yu, Bo; Yang, Shuang; Lee, Robert J; Teng, Lesheng

    2016-01-01

    7-Ethyl-10-hydroxy camptothecin (SN38) is a potent topoisomerase inhibitor and a metabolite of irinotecan. Its clinical development has been hampered by its poor solubility. To address this problem, methoxy poly(ethylene glycol)-2000 (mPEG2K)-SN38 and mPEG2K-poly(lactide) (PLA1.5K)-SN38 conjugates were prepared and then dispersed into an aqueous medium to form micelles. Physicochemical characteristics of SN38-polymer conjugate micelles, for example, micelle diameter, zeta potential, morphology, and drug content, were then evaluated. The results showed that the mean diameters of mPEG2K-SN38 and mPEG2K-PLA1.5K-SN38 micelles were ~130 and 20 nm, respectively. These two micelles had similar drug contents. mPEG2K-PLA1.5K-SN38 micelles were more homogeneous than mPEG2K-SN38 micelles. Moreover, in vitro drug release behavior of the micelles was studied by high performance liquid chromatography. SN38 release from mPEG2K-SN38 micelles was much faster than from mPEG2K-PLA1.5K-SN38 micelles. In vitro cytotoxicity, cellular uptake, and apoptosis assays of the SN38-polymer conjugate micelles were carried out on BEL-7402 human liver cancer cells. In vivo biodistribution and antitumor tumor efficacy studies were carried out in a nude mouse xenograft model derived from BEL-7402 cells. The results showed that mPEG2K-PLA1.5K-SN38 micelles were significantly more effective than mPEG2K-SN38 micelles in tumor inhibition, and the inhibitory effect of mPEG2K-PLA1.5K-SN38 micelles on tumor growth was significantly greater than that of mPEG2K-SN38 micelles (1,042 vs 1,837 mm) at 30 days. In conclusion, mPEG-PLA-SN38 is a promising anticancer agent that warrants further investigation. PMID:27217746

  10. Engineered VEGF-releasing PEG-MAL hydrogel for pancreatic islet vascularization

    PubMed Central

    Phelps, Edward A.; Templeman, Kellie L.; Thulé, Peter M.; García, Andrés J.

    2013-01-01

    Biofunctionalized polyethylene glycol maleimide (PEG-MAL) hydrogels were engineered as a platform to deliver pancreatic islets to the small bowel mesentery and promote graft vascularization. VEGF, a potent stimulator of angiogenesis, was incorporated into the hydrogel to be released in an on-demand manner through enzymatic degradation. PEG-MAL hydrogel enabled extended in vivo release of VEGF. Isolated rat islets encapsulated in PEG-MAL hydrogels remained viable in culture and secreted insulin. Islets encapsulated in PEG-MAL matrix and transplanted to the small bowel mesentery of healthy rats grafted to the host tissue and revascularized by 4 weeks. Addition of VEGF release to the PEG-MAL matrix greatly augmented the vascularization response. These results establish PEG-MAL engineered matrices as a vascular-inductive cell delivery vehicle and warrant their further investigation as islet transplantation vehicles in diabetic animal models. PMID:25787738

  11. Cytoplasmic Delivery of Liposomal Contents Mediated by an Acid-Labile Cholesterol-Vinyl Ether-PEG Conjugate

    PubMed Central

    Boomer, Jeremy A.; Qualls, Marquita M.; Inerowicz, H. Dorota; Haynes, Robert H.; Patri, G.V. Srilaksmi; Kim, Jong-Mok; Thompson, David H.

    2009-01-01

    An acid-cleavable PEG lipid, 1′-(4′-cholesteryloxy-3′-butenyl)-ω-methoxy-polyethylene[112] glycolate (CVEP), has been developed that produces stable liposomes when dispersed as a minor component (0.5–5 mol%) in 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Cleavage of CVEP at mildly acidic pH’s results in dePEGylation of the latently fusogenic DOPE liposomes, thereby triggering the onset of contents release. This paper describes the synthesis of CVEP via a six step sequence starting from the readily available precursors 1,4-butanediol, cholesterol, and mPEG acid. The hydrolysis rates and release kinetics from CVEP:DOPE liposome dispersions as a function of CVEP loading, as well as the cryogenic transmission electron microscopy and pH-dependent monolayer properties of 9:91 CVEP:DOPE mixtures, also are reported. When folate-receptor positive KB cells were exposed to calcein-loaded 5:95 CVEP:DOPE liposomes containing 0.1 mol% folate-modified 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-polyethylene[76] glycolamide (folate-PEG-DSPE), efficient delivery of the calcein cargo to the cytoplasm of the cells was observed as determined by fluorescence microscopy and flow cytometry. Fluorescence resonance energy transfer analysis of lipid mixing in these cells was consistent with membrane-membrane fusion between the liposome and endosomal membranes. PMID:19072698

  12. Impact of Large Aggregated Uricases and PEG Diol on Accelerated Blood Clearance of PEGylated Canine Uricase

    PubMed Central

    Zhang, Chun; Fan, Kai; Ma, Xuefeng; Wei, Dongzhi

    2012-01-01

    Background Uricase has proven therapeutic value in treating hyperuricemia but sufficient reduction of its immunogenicity may be the largest obstacle to its chronic use. In this study, canine uricase was modified with 5 kDa mPEG-SPA and the impact of large aggregated uricases and cross-linked conjugates induced by difunctional PEG diol on immunogenicity was investigated. Methods and Findings Recombinant canine uricase was first expressed and purified to homogeneity. Source 15Q anion-exchange chromatography was used to separate tetrameric and aggregated uricase prior to pegylation, while DEAE anion-exchange chromatography was used to remove Di-acid PEG (precursor of PEG diol) from unfractionated 5 kDa mPEG-propionic acid. Tetrameric and aggregated uricases were separately modified with the purified mPEG-SPA. In addition, tetrameric uricases was modified with unfractionated mPEG-SPA, resulting in three types of 5 kDa mPEG-SPA modified uricase. The conjugate size was evaluated by dynamic light scattering and transmission electron microscope. The influence of differently PEGylated uricases on pharmacokinetics and immunogenicity were evaluated in vivo. The accelerated blood clearance (ABC) phenomenon previously identified for PEGylated liposomes occurred in rats injected with PEGylated uricase aggregates. Anti-PEG IgM antibodies, rather than neutralizing antibodies, were found to mediate the ABC. Conclusions The size of conjugates is important for triggering such phenomena and we speculate that 40–60 nm is the lower size limit that can trigger ABC. Removal of the uricase aggregates and the PEG diol contaminant and modifying with small PEG reagents enabled ABC to be successfully avoided and sufficient reduction in the immunogenicity of 5 kDa mPEG-modified tetrameric canine uricase. PMID:22745806

  13. Critical Length of PEG Grafts on lPEI/DNA Nanoparticles for Efficient in Vivo Delivery

    PubMed Central

    2016-01-01

    Nanoparticle-mediated gene delivery is a promising alternative to viral methods; however, its use in vivo, particularly following systemic injection, has suffered from poor delivery efficiency. Although PEGylation of nanoparticles has been successfully demonstrated as a strategy to enhance colloidal stability, its success in improving delivery efficiency has been limited, largely due to reduced cell binding and uptake, leading to poor transfection efficiency. Here we identified an optimized PEGylation scheme for DNA micellar nanoparticles that delivers balanced colloidal stability and transfection activity. Using linear polyethylenimine (lPEI)-g-PEG as a carrier, we characterized the effect of graft length and density of polyethylene glycol (PEG) on nanoparticle assembly, micelle stability, and gene delivery efficiency. Through variation of PEG grafting degree, lPEI with short PEG grafts (molecular weight, MW 500–700 Da) generated micellar nanoparticles with various shapes including spherical, rodlike, and wormlike nanoparticles. DNA micellar nanoparticles prepared with short PEG grafts showed comparable colloidal stability in salt and serum-containing media to those prepared with longer PEG grafts (MW 2 kDa). Corresponding to this trend, nanoparticles prepared with short PEG grafts displayed significantly higher in vitro transfection efficiency compared to those with longer PEG grafts. More importantly, short PEG grafts permitted marked increase in transfection efficiency following ligand conjugation to the PEG terminal in metastatic prostate cancer-bearing mice. This study identifies that lPEI-g-PEG with short PEG grafts (MW 500–700 Da) is the most effective to ensure shape control and deliver high colloidal stability, transfection activity, and ligand effect for DNA nanoparticles in vitro and in vivo following intravenous administration. PMID:27088129

  14. Biomechanical comparison of volar locked plate constructs using smooth and threaded locking pegs.

    PubMed

    Yao, Jeffrey; Park, Min Jung; Patel, Chirag S

    2014-02-01

    The goal of this study was to determine whether there is any biomechanical difference in terms of construct strength with axial loading between volar fixed-angle locking plates with threaded locking vs smooth locking pegs. The control group comprised 7 cadaveric specimens with threaded locking pegs, and the test group comprised 7 cadaveric specimens from the same donor with smooth locking pegs. The DVR plate (Biomet, Warsaw, Indiana) was applied to the volar surface. A 15-mm dorsal wedge osteotomy was created near the level of Lister's tubercle. The radii were potted in polymethylmethacrylate for biomechanical testing. The loading protocol consisted of 3 parts: ramp loading, cyclic loading, and failure loading. The outcome measures of stiffness and failure were used to test the plates fixed with threaded and smooth locking pegs. When comparing each cycle, the difference in mean stiffness between threaded and smooth locking pegs was as follows: 122 N/mm, -9.09 N/mm, -14.7 N/mm, 49.4 N/mm, 57.4 N/mm, 71.9 N/mm, 52.3 N/mm, 35.8 N/mm. The difference in mean failure load between the threaded and smooth locking pegs was -11.3 N. There was no difference in stiffness throughout all cycles. Failure analysis showed no significant difference between the smooth (962 N) and threaded (951 N) locking pegs. The difference in stiffness between the 2 constructs (smooth minus threaded locking pegs) in ramp loading ranged from -122 to 15 N/mm. The results of this study showed no significant differences in stiffness and failure load between constructs consisting of threaded locking pegs or smooth locking pegs in the distal rows of the DVR distal radius volar locking plate. Based on the results of this study, there may be no benefit to using threaded locking pegs vs smooth locking pegs when treating distal radius fractures with a volar locking plate. PMID:24679204

  15. PEGylation of phytantriol-based lyotropic liquid crystalline particles--the effect of lipid composition, PEG chain length, and temperature on the internal nanostructure.

    PubMed

    Nilsson, Christa; Østergaard, Jesper; Larsen, Susan Weng; Larsen, Claus; Urtti, Arto; Yaghmur, Anan

    2014-06-10

    Poly(ethylene glycol)-grafted 1,2-distearoyl-sn-glycero-3-phosphoethanolamines (DSPE-mPEGs) are a family of amphiphilic lipopolymers attractive in formulating injectable long-circulating nanoparticulate drug formulations. In addition to long circulating liposomes, there is an interest in developing injectable long-circulating drug nanocarriers based on cubosomes and hexosomes by shielding and coating the dispersed particles enveloping well-defined internal nonlamellar liquid crystalline nanostructures with hydrophilic PEG segments. The present study attempts to shed light on the possible PEGylation of these lipidic nonlamellar liquid crystalline particles by using DSPE-mPEGs with three different block lengths of the hydrophilic PEG segment. The effects of lipid composition, PEG chain length, and temperature on the morphology and internal nanostructure of these self-assembled lipidic aqueous dispersions based on phytantriol (PHYT) were investigated by means of synchrotron small-angle X-ray scattering and Transmission Electron Cryo-Microscopy. The results suggest that the used lipopolymers are incorporated into the water-PHYT interfacial area and induce a significant effect on the internal nanostructures of the dispersed submicrometer-sized particles. The hydrophilic domains of the internal liquid crystalline nanostructures of these aqueous dispersions are functionalized, i.e., the hydrophilic nanochannels of the internal cubic Pn3m and Im3m phases are significantly enlarged in the presence of relatively small amounts of the used DSPE-mPEGs. It is evident that the partial replacement of PHYT by these PEGylated lipids could be an attractive approach for the surface modification of cubosomal and hexosomal particles. These PEGylated nanocarriers are particularly attractive in designing injectable cubosomal and hexosomal nanocarriers for loading drugs and/or imaging probes. PMID:24833115

  16. PEG-detachable cationic polyaspartamide derivatives bearing stearoyl moieties for systemic siRNA delivery toward subcutaneous BxPC3 pancreatic tumor.

    PubMed

    Kim, Hyun Jin; Oba, Makoto; Pittella, Frederico; Nomoto, Takahiro; Cabral, Horacio; Matsumoto, Yu; Miyata, Kanjiro; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2012-01-01

    For systemic siRNA delivery into tumor tissues, a safe and efficient vehicle is strongly required. Therefore, we designed a block copolymer of detachable poly(ethylene glycol) (PEG) polycation bearing low pKa amines and hydrophobic moieties in the side chain to develop a smart siRNA complex possessing biocompatibility, high complex stability, and endosomal escaping functionality. A disulfide linkage (-SS-) was inserted as a linker between PEG and a cationic polyaspartamide derivative, poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (PAsp(DET)), with a flanking stearoyl moiety, where PAsp(DET) segment provides the excellent ability of endosome destabilization by direct interaction with the membrane. The resulting polymer, stearoyl PEG-SS-PAsp(DET), was confirmed to form the siRNA complex with an environment-responsive PEG palisade, which was detached from the complex surface under reductive conditions mimicking tumor tissues and cytoplasm because of the disulfide cleavage. The smart siRNA complex allowed significant gene silencing against cultured pancreatic cancer cells without considerable cytotoxicity and erythrocyte disruption, whereas such significant gene silencing was not observed in a control siRNA complex without the disulfide linkage. This enhanced gene silencing activity might be because of the enhanced cellular uptake and subsequent translocation of siRNA into cytoplasm facilitated by PEG detachment around and/or in the cancer cells. Further, intravital real-time confocal laser scanning microscopic observation revealed the effect of hydrophobic stearoyl modification on the stabilization of the siRNA complex for longevity in the blood. Significant in vivo gene silencing of the smart siRNA complex was achieved by systemic administration of vascular endothelial growth factor siRNA in a mouse model bearing a subcutaneous pancreatic tumor, leading to 40% regression in tumor growth. These results demonstrate the strong potential of stearoyl PEG

  17. Glucagon-Like Peptide-1 Receptor Agonists: Beta-Cell Protection or Exhaustion?

    PubMed

    van Raalte, Daniël H; Verchere, C Bruce

    2016-07-01

    Glucagon-like peptide (GLP)-1 receptor agonists enhance insulin secretion and may improve pancreatic islet cell function. However, GLP-1 receptor (GLP-1R) agonist treatment may have more complex, and sometimes deleterious, effects on beta cells. We discuss the concepts of beta cell protection versus exhaustion for different GLP-1R agonists based on recent data. PMID:27160799

  18. II Peg: Spectroscopic Evidence for Multiple Starspot Temperatures

    NASA Astrophysics Data System (ADS)

    O'Neal, Douglas; Saar, Steven H.; Neff, James E. Neff

    We present spectroscopic evidence for multiple spot temperatures on the RS CVn star II Pegasi (HD 224085). We fit the strengths of the 7055 AAg and 8860 AAg TiO absorption bands in the spectrum of an active star using weighted sums of comparison spectra: the spectrum of an inactive K star to represent the non-spotted photosphere and the spectrum of an M star to represent the spots. We can thus independently measure starspot filling factor (fspot) and temperature (tspot). During 3/4 of a rotation of II Peg in Sept.-Oct. 1996, we measure fspot approximately constant at 55+/-5%. However, tspot varies from 3350 K to 3500 K. Since our method yields one derived tspot integrated over the visible hemisphere of the star, we present the results of simple models of a star with two distinct spot temperatures and compute the tspot we would derive in those cases. The changing tspot correlates with emission strengths of Hα and the Ca 2 infrared triplet, in the sense that cooler \\tspot accompanies weaker emission. We explore the consequences of these results for the physical properties of the spots on II Peg and for stellar surface structure in general.

  19. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels.

    PubMed

    Reddy, I A; Pino, J A; Weikop, P; Osses, N; Sørensen, G; Bering, T; Valle, C; Bluett, R J; Erreger, K; Wortwein, G; Reyes, J G; Graham, D; Stanwood, G D; Hackett, T A; Patel, S; Fink-Jensen, A; Torres, G E; Galli, A

    2016-01-01

    Agonism of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) has been effective at treating aspects of addictive behavior for a number of abused substances, including cocaine. However, the molecular mechanisms and brain circuits underlying the therapeutic effects of GLP-1R signaling on cocaine actions remain elusive. Recent evidence has revealed that endogenous signaling at the GLP-1R within the forebrain lateral septum (LS) acts to reduce cocaine-induced locomotion and cocaine conditioned place preference, both considered dopamine (DA)-associated behaviors. DA terminals project from the ventral tegmental area to the LS and express the DA transporter (DAT). Cocaine acts by altering DA bioavailability by targeting the DAT. Therefore, GLP-1R signaling might exert effects on DAT to account for its regulation of cocaine-induced behaviors. We show that the GLP-1R is highly expressed within the LS. GLP-1, in LS slices, significantly enhances DAT surface expression and DAT function. Exenatide (Ex-4), a long-lasting synthetic analog of GLP-1 abolished cocaine-induced elevation of DA. Interestingly, acute administration of Ex-4 reduces septal expression of the retrograde messenger 2-arachidonylglycerol (2-AG), as well as a product of its presynaptic degradation, arachidonic acid (AA). Notably, AA reduces septal DAT function pointing to AA as a novel regulator of central DA homeostasis. We further show that AA oxidation product γ-ketoaldehyde (γ-KA) forms adducts with the DAT and reduces DAT plasma membrane expression and function. These results support a mechanism in which postsynaptic septal GLP-1R activation regulates 2-AG levels to alter presynaptic DA homeostasis and cocaine actions through AA. PMID:27187231

  20. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers.

    PubMed

    Hiemstra, Christine; Zhong, Zhiyuan; Li, Liangbin; Dijkstra, Pieter J; Feijen, Jan

    2006-10-01

    Eight-arm poly(ethylene glycol)-poly(L-lactide), PEG-(PLLA)(8), and poly(ethylene glycol)-poly(D-lactide), PEG-(PDLA)(8), star block copolymers were synthesized by ring-opening polymerization of either L-lactide or D-lactide at room temperature in the presence of a single-site ethylzinc complex and 8-arm PEG (M(n) = 21.8 x 10(3) or 43.5 x 10(3)) as a catalyst and initiator, respectively. High lactide conversions (>95%) and well-defined copolymers with PLLA or PDLA blocks of the desired molecular weights were obtained. Star block copolymers were water-soluble when the number of lactyl units per poly(lactide) (PLA) block did not exceed 14 and 17 for PEG21800-(PLA)(8) and PEG43500-(PLA)(8), respectively. PEG-(PLA)(8) stereocomplexed hydrogels were prepared by mixing aqueous solutions with equimolar amounts of PEG-(PLLA)(8) and PEG-(PDLA)(8) in a polymer concentration range of 5-25 w/v % for PEG21800-(PLA)(8) star block copolymers and of 6-8 w/v % for PEG43500-(PLA)(8) star block copolymers. The gelation is driven by stereocomplexation of the PLLA and PDLA blocks, as confirmed by wide-angle X-ray scattering experiments. The stereocomplexed hydrogels were stable in a range from 10 to 70 degrees C, depending on their aqueous concentration and the PLA block length. Stereocomplexed hydrogels at 10 w/v % polymer concentration showed larger hydrophilic and hydrophobic domains as compared to 10 w/v % single enantiomer solutions, as determined by cryo-TEM. Correspondingly, dynamic light scattering showed that 1 w/v % solutions containing both PEG-(PLLA)(8) and PEG-(PDLA)(8) have larger "micelles" as compared to 1 w/v % single enantiomer solutions. With increasing polymer concentration and PLLA and PDLA block length, the storage modulus of the stereocomplexed hydrogels increases and the gelation time decreases. Stereocomplexed hydrogels with high storage moduli (up to 14 kPa) could be obtained at 37 degrees C in PBS. These stereocomplexed hydrogels are promising for use in

  1. Safety and Tolerability of Glucagon-Like Peptide-1 Receptor Agonists Utilizing Data from the Exenatide Clinical Trial Development Program.

    PubMed

    Peng, Hui; Want, Laura L; Aroda, Vanita R

    2016-05-01

    Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have demonstrated benefits for patients with type 2 diabetes including A1C reduction and weight loss with minimal risk of hypoglycemia. This article provides an evidence-based update of safety and tolerability considerations for the clinical use of GLP-1RAs as a class, with a specific detailed review of data from the exenatide clinical trial development program, which has the longest history and availability of safety and tolerability data as the first-approved GLP-1RA. Specific areas covered include comparative risk of hypoglycemia, as well as pancreatic, thyroid, and cardiovascular safety data; clinical guidance regarding current safety and tolerability data is also reviewed. PMID:27037706

  2. Dual-purpose linker for alpha helix stabilization and imaging agent conjugation to glucagon-like peptide-1 receptor ligands.

    PubMed

    Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M

    2015-02-18

    Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel α-helix-stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enable this technique to potentially be used as a general method for labeling α helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents. PMID:25594741

  3. In Vitro and In Vivo Effects of Natural Putative Secretagogues of Glucagon-Like Peptide-1 (GLP-1)

    PubMed Central

    Rafferty, Eamon P.; Wylie, Alastair R.; Elliott, Chris T.; Chevallier, Olivier P.; Grieve, David J.; Green, Brian D.

    2011-01-01

    Glucagon-like peptide-1 (GLP-1) is an intestinal hormone with well-established glucose-lowering activity. The in vitro and in vivo actions of natural putative secretagogues of GLP-1 were investigated. The acute GLP-1 releasing activity of olive leaf extract (OLE), glutamine (GLN), alpha casein (ACAS), beta casein (BCAS) and chlorogenic acid (CGA) were assessed in STC-1 cells and C57BL/6 mice. All compounds except ACAS significantly increased acute in vitro GLP-1 secretion (66–386%; P<0.05–0.001). Oral gavage of OLE and GLN modestly increased plasma GLP-1 concentrations (48% and 41%, respectively), but did not lower glycaemic excursions. OLE and GLN are potent stimulators of GLP-1 secretion both in vitro and in vivo and chronic studies should assess their suitability as nutritional therapies for type 2 diabetes. PMID:21886907

  4. Glucagon-Like Peptide-1 Receptor Ligand Interactions: Structural Cross Talk between Ligands and the Extracellular Domain

    PubMed Central

    West, Graham M.; Willard, Francis S.; Sloop, Kyle W.; Showalter, Aaron D.; Pascal, Bruce D.; Griffin, Patrick R.

    2014-01-01

    Activation of the glucagon-like peptide-1 receptor (GLP-1R) in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM). Like other class B G protein-coupled receptors (GPCRs), the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX) to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R) were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R) peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R). In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands. PMID:25180755

  5. Injectable Hydrogel Composite Based Gelatin-PEG and Biphasic Calcium Phosphate Nanoparticles for Bone Regeneration

    NASA Astrophysics Data System (ADS)

    Van, Thuy Duong; Tran, Ngoc Quyen; Nguyen, Dai Hai; Nguyen, Cuu Khoa; Tran, Dai Lam; Nguyen, Phuong Thi

    2016-05-01

    Gelatin hydrogels have recently attracted much attention for tissue regeneration because of their biocompatibility. In this study, we introduce poly-ethylene glycol (PEG)—grafted gelatin containing tyramine moieties which have been utilized for in situ enzyme-mediated hydrogel preparation. The hydrogel can be used to load nanoparticles of biphasic calcium phosphate, a mixture of hydroxyapatite and β-tricalcium phosphate, and forming injectable bio-composites. Proton nuclear magnetic resonance (1H NMR) spectra indicated that tyramine-functionalized polyethylene glycol-nitrophenyl carbonate ester was conjugated to the gelatin. The hydrogel composite was rapidly formed in situ (within a few seconds) in the presence of horseradish peroxidase and hydrogen peroxide. In vitro experiments with bio-mineralization on the hydrogel composite surfaces was well-observed after 2 weeks soaking in simulated body fluid solution. The obtained results indicated that the hydrogel composite could be a potential injectable material for bone regeneration.

  6. Application of microchip CGE for the analysis of PEG-modified recombinant human granulocyte-colony stimulating factors.

    PubMed

    Park, Eun Ji; Lee, Kyung Soo; Lee, Kang Choon; Na, Dong Hee

    2010-11-01

    The purpose of this study was to evaluate the microchip CGE (MCGE) for the analysis of PEG-modified granulocyte-colony stimulating factor (PEG-G-CSF) prepared with PEG-aldehydes. The unmodified and PEG-modified G-CSFs were analyzed by Protein 80 and 230 Labchips on the Agilent 2100 Bioanalyzer. The MCGE allowed size-based separation and quantitation of PEG-G-CSF. The Protein 80 Labchip was useful for PEG-5K-G-CSF, while the Protein 230 Labchip was more suitable for PEG-20K-G-CSF. The MCGE was also used to monitor a search for optimal PEG-modification (PEGylation) conditions to produce mono-PEG-G-CSF. This study demonstrates the usefulness of MCGE for monitoring and optimizing the PEGylation of G-CSF with the advantages of speed, minimal sample consumption, and automatic quantitation. PMID:20945411

  7. Effect of copolymer composition on the physicochemical characteristics, in vitro stability, and biodistribution of PLGA-mPEG nanoparticles.

    PubMed

    Avgoustakis, K; Beletsi, A; Panagi, Z; Klepetsanis, P; Livaniou, E; Evangelatos, G; Ithakissios, D S

    2003-06-18

    The physicochemical properties, the colloidal stability in vitro and the biodistribution properties in mice of different PLGA-mPEG nanoparticle compositions were investigated. The nanoparticles were prepared by a precipitation-solvent evaporation technique. The physical characteristics and the colloidal stability of the PLGA-mPEG nanoparticles were significantly influenced by the composition of the PLGA-mPEG copolymer used to prepare the nanoparticles. PLGA-mPEG nanoparticles prepared from copolymers having relatively high mPEG/PLGA ratios were smaller and less stable than those prepared from copolymers having relatively low mPEG/PLGA ratios. All PLGA-mPEG nanoparticle compositions exhibited prolonged residence in blood, compared to the conventional PLGA nanoparticles. The composition of the PLGA-mPEG copolymer affected significantly the blood residence time and the biodistribution of the PLGA-mPEG nanoparticles in liver, spleen and bones. The in vivo behavior of the different PLGA-mPEG nanoparticle compositions did not appear to correlate with their in vitro stability. Optimum mPEG/PLGA ratios appeared to exist leading to long blood circulation times of the PLGA-mPEG nanoparticles. This may be associated with the effects of the mPEG/PLGA ratio on the density of PEG on the surface of the nanoparticles and on the size of the nanoparticles. PMID:12787641

  8. Delivery of paclitaxel by physically loading onto poly(ethylene glycol) (PEG)-graftcarbon nanotubes for potent cancer therapeutics

    NASA Astrophysics Data System (ADS)

    Leng Lay, Chee; Liu, Hui Qi; Tan, Hui Ru; Liu, Ye

    2010-02-01

    Physically loading of paclitaxel (PTX) onto carbon nanotubes (CNTs) is achieved through immersion of poly(ethylene glycol) (PEG)-graft-single walled CNTs (PEG-g-SWNTs) or PEG-graft-multi-walled CNTs (PEG-g-MWNTs) in a saturated solution of PTX in methanol. After loading once the loading capacity (LD%) is 26% (w/w) and 36% (w/w) for PEG-g-SWNTs or PEG-g-MWNTs, respectively. With these PTX contents, PTX loaded PEG-g-SWNTs and PTX loaded PEG-g-MWNTs still have good dispersity in aqueous solution and individual CNTs can be observed in TEM images. PTX can be released from PEG-g-CNTs several times faster than from free PTX but still in a sustained profile with less than 40% of PTX being released in 40 days at pH 7 or 5. In vitro cytotoxicity of samples is evaluated in HeLa cells and MCF-7 cells. PEG-g-SWNTs and PEG-g-MWNTs show low cytotoxicity in both cells with insignificant effects on the cell proliferation rates. However, both PTX loaded PEG-g-SWNTs and PTX loaded PEG-g-MWNTs show high efficacy to kill HeLa cells and MCF-7 cells, as reflected by IC50 lower than free PTX. Therefore, PTX loaded PEG-g-CNTs are promising for cancer therapeutics. Keywords: carbon nanotubes, poly(ethylene glycol), drug delivery, cancer therapy, nanomedicine.

  9. Effects of bevacizumab loaded PEG-PCL-PEG hydrogel intracameral application on intraocular pressure after glaucoma filtration surgery.

    PubMed

    Han, Qian; Wang, Yuqi; Li, Xiabin; Peng, Ribo; Li, Ailing; Qian, Zhiyong; Yu, Ling

    2015-08-01

    PEG-PCL-PEG (PECE) hydrogel for intracameral injection as a sustained delivery system can get a stable release of the medication and achieve an effective local concentration. The injectable PECE hydrogel is thermosensitive nano-material which is flowing sol at low temperature and can shift to nonflowing gel at body temperature. This study evaluated the intracameral injection of bevacizumab combined with a PECE hydrogel drug release system on postoperative scarring and bleb survival after experimental glaucoma filtration surgery. The best result was achieved in the bevacizumab loaded PECE hydrogels group, which presented the lowest IOP values after surgery. And the blebs were significantly more persistent in this group. Histology, Massion trichrome staining and immunohistochemistry further demonstrated that glaucoma filtration surgery in combination with bevacizumab loaded PECE hydrogel resulted in good bleb survival due to scar formation inhibition. In conclusions, this study demonstrated that bevacizumab-loaded PECE hydrogel for intracameral injection as a sustained delivery system provide a great opportunity to increase the therapeutic efficacy of glaucoma filtration surgery. PMID:26286760

  10. Preparation and characterization of PEG-PPG-PEG copolymer/pregelatinized starch blends for use as resorbable bone hemostatic wax.

    PubMed

    Suwanprateeb, J; Suvannapruk, W; Thammarakcharoen, F; Chokevivat, W; Rukskul, P

    2013-12-01

    In this study, polymer blends between PEG-PPG-PEG copolymer mixtures and pregelatinized starch at various compositions ranging from 0 to 3 % by weight were prepared and evaluated for potential use as novel resorbable bone hemostatic wax. It was found that the prepared samples had sufficient smearability for use as a bone wax. An addition of pregelatinized starch increased the hardness, smoothness and consistency of the texture while decreasing the adherence to glove. Thermal analysis indicated that the heat of fusion slightly decreased with increasing pregelatinized starch content. Compressive stiffness tended to decrease with increasing starch content for concentrations lower than 20 %, but re-increased at higher starch levels. In contrast, adherence deformation increased initially, but then decreased with increasing starch content. This behavior was related to the dependence of softening or reinforcing effect on the level of starch concentration in the samples. Adherence load and energy decreased with the addition of pregelatinized starch implying the decrease in adhesiveness of the samples. Furthermore, increasing the pregelatized starch amount also increased the liquid sealing duration of the samples at both 23 and 37 °C. Cytotoxicity tests against osteoblasts using a MTT assay revealed that the all the prepared samples and their raw materials did not show any cytotoxic potential. Formulations containing pregelatinized starch content between 20 and 30 % were found to show optimized performance. PMID:23955721

  11. Volumetric Properties, Viscosities, and Refractive Indices of the Binary Systems 1-Butanol + PEG 200, + PEG 400, and + TEGDME

    NASA Astrophysics Data System (ADS)

    Živković, N.; Šerbanović, S.; Kijevčanin, M.; Živković, E.

    2013-06-01

    Densities, viscosities, and refractive indices of three binary systems consisting of 1-butanol with polyethylene glycols of different molecular weights (PEG 200 and PEG 400) or tetraethylene glycol dimethyl ether (TEGDME) were measured at ten temperatures (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, 323.15, 328.15, and 333.15) K and atmospheric pressure. Densities of the selected binary mixtures were measured with an Anton Paar DMA 5000 digital vibrating U-tube densimeter, refractive indices were measured with an automatic Anton Paar RXA-156 refractometer, while for viscosity measurements, a digital Stabinger SVM 3000/G2 viscometer was used. From these data, excess molar volumes were calculated and fitted to the Redlich-Kister equation. The obtained results have been analyzed in terms of specific molecular interactions and mixing behavior between mixture components, as well as the influence of temperature on them. Viscosity data were also correlated by Grunberg-Nissan, Eyring-UNIQUAC, three-body McAlister, and Eyring-NRTL models.

  12. Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration.

    PubMed

    Fu, ShaoZhi; Ni, PeiYan; Wang, BeiYu; Chu, BingYang; Zheng, Lan; Luo, Feng; Luo, JingCong; Qian, ZhiYong

    2012-06-01

    A novel three-component biomimetic hydrogel composite was successfully prepared in this study, which was composed of triblock PEG-PCL-PEG copolymer (PECE), collagen and nano-hydroxyapatite (n-HA). The microstructure and thermo-responsibility of the obtained PECE/Collagen/n-HA hydrogel composite were characterized. Scanning electronic microscopy (SEM) showed that the composite exhibited an interconnected porous structure. The rheological analysis revealed that the composite existed good thermo-sensitivity. In vivo biocompatibility and biodegradability was investigated by implanting the hydrogel composite in muscle pouches of rats for 3, 7, and 14 days. Moreover, the osteogenic capacity was evaluated by means of implanting the composite material in cranial defects of New Zealand White rabbits for 4, 12 and 20 weeks. In vivo performances confirmed that the biodegradable PECE/Collagen/n-HA hydrogel composite had good biocompatibility and better performance in guided bone regeneration than the self-healing process. Thus the thermal-response PECE/Collagen/n-HA hydrogel composite had the great potential in bone tissue engineering. PMID:22463934

  13. Biodegradable self-assembled PEG-PCL-PEG micelles for hydrophobic honokiol delivery: I. Preparation and characterization

    NASA Astrophysics Data System (ADS)

    Gong, ChangYang; Wei, XiaWei; Wang, XiuHong; Wang, YuJun; Guo, Gang; Mao, YongQiu; Luo, Feng; Qian, ZhiYong

    2010-05-01

    This study aims to develop self-assembled poly(ethylene glycol)-poly(ɛ-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) micelles to encapsulate hydrophobic honokiol (HK) in order to overcome its poor water solubility and to meet the requirement of intravenous administration. Honokiol loaded micelles (HK-micelles) were prepared by self-assembly of PECE copolymer in aqueous solution, triggered by its amphiphilic characteristic assisted by ultrasonication without any organic solvents, surfactants and vigorous stirring. The particle size of the prepared HK-micelles measured by Malvern laser particle size analyzer were 58 nm, which is small enough to be a candidate for an intravenous drug delivery system. Furthermore, the HK-micelles could be lyophilized into powder without any adjuvant, and the re-dissolved HK-micelles are stable and homogeneous with particle size about 61 nm. Furthermore, the in vitro release profile showed a significant difference between the rapid release of free HK and the much slower and sustained release of HK-micelles. Moreover, the cytotoxicity results of blank micelles and HK-micelles showed that the PECE micelle was a safe carrier and the encapsulated HK retained its potent antitumor effect. In short, the HK-micelles were successfully prepared by an improved method and might be promising carriers for intravenous delivery of HK in cancer chemotherapy, being effective, stable, safe (organic solvent and surfactant free), and easy to produce and scale up.

  14. Glucagon-Like Peptide 1 Protects against Hyperglycemic-Induced Endothelial-to-Mesenchymal Transition and Improves Myocardial Dysfunction by Suppressing Poly(ADP-Ribose) Polymerase 1 Activity

    PubMed Central

    Yan, Fei; Zhang, Guang-hao; Feng, Min; Zhang, Wei; Zhang, Jia-ning; Dong, Wen-qian; Zhang, Cheng; Zhang, Yun; Chen, Li; Zhang, Ming-Xiang

    2015-01-01

    Under high glucose conditions, endothelial cells respond by acquiring fibroblast characteristics, that is, endothelial-to-mesenchymal transition (EndMT), contributing to diabetic cardiac fibrosis. Glucagon-like peptide-1 (GLP-1) has cardioprotective properties independent of its glucose-lowering effect. However, the potential mechanism has not been fully clarified. Here we investigated whether GLP-1 inhibits myocardial EndMT in diabetic mice and whether this is mediated by suppressing poly(ADP-ribose) polymerase 1 (PARP-1). Streptozotocin diabetic C57BL/6 mice were treated with or without GLP-1 analog (24 nmol/kg daily) for 24 wks. Transthoracic echocardiography was performed to assess cardiac function. Human aortic endothelial cells (HAECs) were cultured in normal glucose (NG) (5.5 mmol/L) or high glucose (HG) (30 mmol/L) medium with or without GLP-1analog. Immunofluorescent staining and Western blot were performed to evaluate EndMT and PARP-1 activity. Diabetes mellitus attenuated cardiac function and increased cardiac fibrosis. Treatment with the GLP-1 analog improved diabetes mellitus–related cardiac dysfunction and cardiac fibrosis. Immunofluorescence staining revealed that hyperglycemia markedly increased the percentage of von Willebrand factor (vWF)+/alpha smooth muscle actin (α-SMA)+ cells in total α-SMA+ cells in diabetic hearts compared with controls, which was attenuated by GLP-1 analog treatment. In cultured HAECs, immunofluorescent staining and Western blot also showed that both GLP-1 analog and PARP-1 gene silencing could inhibit the HG-induced EndMT. In addition, GLP-1 analog could attenuate PARP-1 activation by decreasing the level of reactive oxygen species (ROS). Therefore, GLP-1 treatment could protect against the hyperglycemia-induced EndMT and myocardial dysfunction. This effect is mediated, at least partially, by suppressing PARP-1 activation. PMID:25715248

  15. Self-Assembling Glucagon-Like Peptide 1-Mimetic Peptide Amphiphiles for Enhanced Activity and Proliferation of Insulin-Secreting Cells

    PubMed Central

    Khan, Saahir; Sur, Shantanu; Newcomb, Christina J.; Appelt, Elizabeth A.

    2012-01-01

    Current treatment for type 1 diabetes mellitus requires daily insulin injections that fail to produce physiological glycemic control. Islet cell transplantation has been proposed as a permanent cure but is limited by loss of β-cell viability and function. These limitations could potentially be overcome by relying on the activity of glucagon-like peptide 1 (GLP-1), which acts on β-cells to promote insulin release, proliferation, and survival. We have developed a peptide amphiphile (PA) molecule incorporating a peptide mimetic for GLP-1. This GLP-1-mimetic PA self-assembles into one-dimensional nanofibers that stabilize the active secondary structure of GLP-1 and can be cross-linked by calcium ions to form a macroscopic gel capable of cell encapsulation and 3-dimensional culture. The GLP-1-mimetic PA nanofibers were found to stimulate insulin secretion from rat insulinoma (RINm5f) cells to a significantly greater extent than the mimetic peptide alone and to a level equivalent to that of the clinically used agonist exendin-4. The activity of the GLP-1-mimetic PA is glucose-dependent, lipid-raft dependent, and partially PKA-dependent consistent with native GLP-1. The GLP-1-mimetic PA also completely abrogates inflammatory cytokine-induced cell death to the level of untreated controls. When used as a PA gel to encapsulate RINm5f cells, the GLP-1-mimetic PA stimulates insulin secretion and proliferation in a cytokine-resistant manner that is significantly greater than a non-bioactive PA gel containing exendin-4. Due to its self-assembling property and bioactivity, the GLP-1-mimetic PA can be incorporated into previously developed islet cell transplantation protocols with the potential for significant enhancement of β-cell viability and function. PMID:22342354

  16. Discovery of (S)-2-Cyclopentyl-N-((1-isopropylpyrrolidin2-yl)-9-methyl-1-oxo-2,9-dihydro-1H-pyrrido[3,4-b]indole-4-carboxamide (VU0453379): A Novel, CNS Penetrant Glucagon-Like Peptide 1 Receptor (GLP-1R) Positive Allosteric Modulator (PAM)

    PubMed Central

    2015-01-01

    A duplexed, functional multiaddition high throughput screen and subsequent iterative parallel synthesis effort identified the first highly selective and CNS penetrant glucagon-like peptide-1R (GLP-1R) positive allosteric modulator (PAM). PAM (S)-9b potentiated low-dose exenatide to augment insulin secretion in primary mouse pancreatic islets, and (S)-9b alone was effective in potentiating endogenous GLP-1R to reverse haloperidol-induced catalepsy. PMID:25423411

  17. Resilient Synthetic PEG/PDMS Hydrogels Inspired by Natural Resilin

    NASA Astrophysics Data System (ADS)

    Cui, Jun; Lackey, Melissa; Tew, Gregory; Crosby, Alfred

    2012-02-01

    Novel synthetic hydrogels are developed by incorporating hydrophobic polydimethylsiloxane (PDMS) into hydrophilic poly(ethylene glycol) (PEG)-based network using thiol-norbornene chemistry. The properties of these hydrogel are comparable to natural resilin, which is an elastic protein, existing in many insects, such as the tendons of flea and the wings of dragonfly, with extraordinary ability of mechanical energy storage. The energy storage efficiency (resilience) of the hydrogels is more than 97% even at tensile strains up to 170%. In addition, the Young's modulus of the hydrogels ranges from 3 kPa to 300 kPa by increasing the volume fraction of the PDMS in the network. These unique properties are attributed to the well-defined network and negligible secondary structure, provided by the versatile and efficient chemistry.

  18. New amphiphilic derivatives of poly(ethylene glycol) (PEG) as surface modifiers of colloidal drug carriers. III. Lipoamino acid conjugates with carboxy- and amino-PEG(5000) polymers.

    PubMed

    Pignatello, Rosario; Impallomeni, Giuseppe; Pistarà, Venerando; Cupri, Sarha; Graziano, Adriana C E; Cardile, Venera; Ballistreri, Alberto

    2015-01-01

    Within a research directed to developing new polymeric materials, suitable for decorating the surface of colloidal drug carriers, PEG5000 polymers containing a free carboxyl or amine group at one end were conjugated to an α-lipoamino moiety (LAA). The conjugates were characterized by FT-IR, (1)H-NMR, and MALDI-TOF mass spectrometry. They showed the same profile of solubility as the parent PEGs in water and in some polar and apolar solvents of pharmaceutical use. Representative terms showed to be well tolerated when incubated with Caco-2 or L929 cell cultures. Dedicated differential scanning calorimetry (DSC) studies were performed to prove the interaction of increasing molar fractions of the PEG5000-LAA conjugates with dipalmitoylphosphatidylcholine (DPPC) bilayers, to gain information about their possible incorporation in drug nanocarriers. While the parent PEGs affected only the superficial structure of bilayers, the amphiphilic PEG-LAA conjugates induced a perturbing effect on the thermotropic behavior of DPPC liposomes, according to the structure of the linked LAA residue. A molar concentration of these PEG-LAA between 5 and 10% was individuated as the most suitable to produce stable vesicles. PMID:25492012

  19. Molecular dynamics simulations on aqueous two-phase systems - Single PEG-molecules in solution

    PubMed Central

    2012-01-01

    Background Molecular Dynamics (MD) simulations are a promising tool to generate molecular understanding of processes related to the purification of proteins. Polyethylene glycols (PEG) of various length are commonly used in the production and purification of proteins. The molecular mechanisms behind PEG driven precipitation, aqueous two-phase formation or the effects of PEGylation are however still poorly understood. Results In this paper, we ran MD simulations of single PEG molecules of variable length in explicitly simulated water. The resulting structures are in good agreement with experimentally determined 3D structures of PEG. The increase in surface hydrophobicity of PEG of longer chain length could be explained on an atomic scale. PEG-water interactions as well as aqueous two-phase formation in the presence of PO4 were found to be correlated to PEG surface hydrophobicity. Conclusions We were able to show that the taken MD simulation approach is capable of generating both structural data as well as molecule descriptors in agreement with experimental data. Thus, we are confident of having a good in silico representation of PEG. PMID:22873343

  20. PEG as a spacer arm markedly increases the immunogenicity of meningococcal group Y polysaccharide conjugate vaccine.

    PubMed

    Huang, Qingrui; Li, Dongxia; Kang, Aijun; An, Wenqi; Fan, Bei; Ma, Xiaowei; Ma, Guanghui; Su, Zhiguo; Hu, Tao

    2013-11-28

    Neisseria meningitidis is a life-threatening pathogen that causes meningitis and other clinical manifestations. As a key virulence determinant, meningococcal capsular polysaccharide (PS) can be used to prevent meningococcal diseases. Conjugation of PS to carrier protein can significantly improve the immunogenicity of PS and induce memory response in infants and young children. However, the conjugate vaccine may suffer from steric shielding of antigenic PS epitopes by carrier protein. Here, a heterobifunctional polyethylene glycol (PEG) was used as a spacer arm to conjugate meningococcal group Y capsular PS with tetanus toxoid (TT). PEG can avoid self-crosslink of PS and increase the PS/TT ratio of the vaccine. Significant structural change in TT and PS was not observed upon conjugation. As compared to the vaccine without PEG, immunization with the vaccine using PEG as the spacer arm led to a 3.0-fold increase in the PS-specific IgG titers and a prolonged immune persistence. Paradoxically, PEG, a non-immunogenic hydrophilic polymer has been widely used to couple therapeutic protein for increasing its circulatory time and decreasing its immunogenicity. Presumably, PEG can fully decrease the steric shielding effect of TT on antigenic epitopes of PS and suppress the immunogenicity of TT. In addition, PEG can prolong the immune persistence of the conjugate vaccine and improve its ability to elicit cellular immunity. Thus, PEG can be used as a spacer arm to develop more effective PS conjugate vaccine for prevention of bacterial infection. PMID:23511718

  1. Complete regression of xenograft tumors using biodegradable mPEG-PLA-SN38 block copolymer micelles.

    PubMed

    Lu, Lu; Zheng, Yan; Weng, Shuqiang; Zhu, Wenwei; Chen, Jinhong; Zhang, Xiaomin; Lee, Robert J; Yu, Bo; Jia, Huliang; Qin, Lunxiu

    2016-06-01

    7-Ethyl-10-hydroxy-comptothecin (SN38) is an active metabolite of irinotecan (CPT-11) and the clinical application of SN38 is limited by its hydrophobicity and instability. To address these issues, a series of novel amphiphilic mPEG-PLA-SN38-conjugates were synthesized by linking SN38 to mPEG-PLA-SA, and they could form micelles by self-assembly. The effects of mPEG-PLA composition were studied in vitro and in vivo. The mean diameters of mPEG2K-PLA-SN38 micelles and mPEG4K-PLA-SN38 micelles were 10-20nm and 120nm, respectively, and mPEG2K-PLA-SN38 micelles showed greater antitumor efficacy than mPEG4K-PLA-SN38 micelles both in vitro and in vivo. These data suggest that the lengths of mPEG and PLA chains had a major impact on the physicochemical characteristics and antitumor activity of SN38-conjugate micelles. PMID:26994941

  2. Selective Delivery of PEGylated Compounds to Tumor Cells by Anti-PEG Hybrid Antibodies.

    PubMed

    Tung, Hsin-Yi; Su, Yu-Cheng; Chen, Bing-Mae; Burnouf, Pierre-Alain; Huang, Wei-Chiao; Chuang, Kuo-Hsiang; Yan, Yu-Ting; Cheng, Tian-Lu; Roffler, Steve R

    2015-06-01

    Polyethylene glycol (PEG) is attached to many peptides, proteins, liposomes, and nanoparticles to reduce their immunogenicity and improve their pharmacokinetic and therapeutic properties. Here, we describe hybrid antibodies that can selectively deliver PEGylated medicines, imaging agents, or nanomedicines to target cells. Human IgG1 hybrid antibodies αPEG:αHER2 and αPEG:αCD19 were shown by ELISA, FACS, and plasmon resonance to bind to both PEG and HER2 receptors on SK-BR-3 breast adenocarcinoma and BT-474 breast ductal carcinoma cells or CD19 receptors on Ramos and Raji Burkitt's lymphoma cells. In addition, αPEG:αHER2 specifically targeted PEGylated proteins, liposomes, and nanoparticles to SK-BR-3 cells that overexpressed HER2, but not to HER2-negative MCF-7 breast adenocarcinoma cells. Endocytosis of PEGylated nanoparticles into SK-BR-3 cells was induced specifically by the αPEG:αHER2 hybrid antibody, as observed by confocal imaging of the accumulation of Qdots inside SK-BR-3 cells. Treatment of HER2(+) SK-BR-3 and BT-474 cancer cells with αPEG:αHER2 and the clinically used chemotherapeutic agent PEGylated liposomal doxorubicin for 3 hours enhanced the in vitro effectiveness of PEGylated liposomal doxorubicin by over two orders of magnitude. Hybrid anti-PEG antibodies offer a versatile and simple method to deliver PEGylated compounds to cellular locations and can potentially enhance the therapeutic efficacy of PEGylated medicines. PMID:25852063

  3. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds.

    PubMed

    Serra, Tiziano; Ortiz-Hernandez, Monica; Engel, Elisabeth; Planell, Josep A; Navarro, Melba

    2014-05-01

    Achieving high quality 3D-printed structures requires establishing the right printing conditions. Finding processing conditions that satisfy both the fabrication process and the final required scaffold properties is crucial. This work stresses the importance of studying the outcome of the plasticizing effect of PEG on PLA-based blends used for the fabrication of 3D-direct-printed scaffolds for tissue engineering applications. For this, PLA/PEG blends with 5, 10 and 20% (w/w) of PEG and PLA/PEG/bioactive CaP glass composites were processed in the form of 3D rapid prototyping scaffolds. Surface analysis and differential scanning calorimetry revealed a rearrangement of polymer chains and a topography, wettability and elastic modulus increase of the studied surfaces as PEG was incorporated. Moreover, addition of 10 and 20% PEG led to non-uniform 3D structures with lower mechanical properties. In vitro degradation studies showed that the inclusion of PEG significantly accelerated the degradation rate of the material. Results indicated that the presence of PEG not only improves PLA processing but also leads to relevant surface, geometrical and structural changes including modulation of the degradation rate of PLA-based 3D printed scaffolds. PMID:24656352

  4. A cell-repellent sulfonated PEG comb-like polymer for highly resolved cell micropatterns.

    PubMed

    Jung, Jaeyeon; Na, Kyunga; Shin, Byungcheol; Kim, Okgene; Lee, Jonghwan; Yun, Kyusik; Hyun, Jinho

    2008-01-01

    This paper investigates the chemical modification of a cell-repellent poly(ethylene glycol) (PEG)-based polymer to enhance its hydrophilicity with sulfonate groups, and its application in the fabrication of a cell microarray. First, a polymer comprised of a methyl methacrylate (MMA) backbone with PEG side-chains (PMMA-b-PEG) was synthesized from three monomers by radical polymerization and purified. Despite the hydrophilic side-groups in the amphiphilic polymer, the backbone structure's hydrophobicity allows for local adsorption of biomolecules in incubation media with or without serum. To enhance the hydrophilicity of the polymer, we tethered sulfonate groups to the hydroxyl groups on the PEG side chains (PMMA-b-PEG-SO3). The sulfate groups' physical and mechanical movement competitively repels biomolecules approaching the PMMA-b-PEG surface. Polymers modified with sulfonate were characterized by contact angle measurement, FT-IR, NMR, AFM and GPC. PMMA-b-PEG and PMMA-b-PEG-SO3 were successfully micropatterned on polystyrene and glass surfaces, and cell attachment was performed in either serum-free or serum-containing media, resulting in highly resolved cell micropatterns. PMID:18237490

  5. Can Peg Strength be used as a Predictor for Pod Maturity and Peanut Yield?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mesocarp hull color is the current standard to estimate digging date and peanut maturity. The objective was to determine if peg strength could be used to predict peanut maturity instead of hull color. Peanut peg strength was collected on three peanut cultivars (Ga-O6G, Ga-O9B, and Tifguard), planted...

  6. Reasons of PEG failure to eliminate gastroesophageal reflux in mechanically ventilated patients

    PubMed Central

    Douzinas, Emmanuel E; Andrianakis, Ilias; Livaditi, Olga; Bakos, Dimitrios; Flevari, Katerina; Goutas, Nikos; Vlachodimitropoulos, Dimitrios; Tasoulis, Marios-Konstantinos; Betrosian, Alex P

    2009-01-01

    AIM: To investigate factors predicting failure of percutaneous endoscopic gastrostomy (PEG) to eliminate gastroesophageal reflux (GER). METHODS: Twenty-nine consecutive mechanically ventilated patients were investigated. Patients were evaluated for GER by pH-metry pre-PEG and on the 7th post-PEG day. Endoscopic and histologic evidence of reflux esophagitis was also carried out. A beneficial response to PEG was considered when pH-metry on the 7th post-PEG day showed that GER was below 4%. RESULTS: Seventeen patients responded (RESP group) and 12 did not respond (N-RESP) to PEG. The mean age, sex, weight and APACHE II score were similar in both groups. GER (%) values were similar in both groups at baseline, but were significantly reduced in the RESP group compared with the N-RESP group on the 7th post-PEG day [2.5 (0.6-3.8) vs 8.1 (7.4-9.2, P < 0.001)]. Reflux esophagitis and the gastroesophageal flap valve (GEFV) grading differed significantly between the two groups (P = 0.031 and P = 0.020, respectively). Histology revealed no significant differences between the two groups. CONCLUSION: Endoscopic grading of GEFV and the presence of severe reflux esophagitis are predisposing factors for failure of PEG to reduce GER in mechanically ventilated patients. PMID:19916176

  7. On-Line Grading of Student Essays: PEG Goes on the World Wide Web.

    ERIC Educational Resources Information Center

    Shermis, Mark D.; Mzumara, Howard R.; Olson, Jennifer; Harrington, Susanmarie

    2001-01-01

    Examined Project Essay Grade (PEG) software for evaluating Web-based student essays that serve as placement tests. In the first experiment, a sample of student essays was used to create a statistical model for the PEG software; the second experiment compared computer and human ratings of essays. Found that the software is an efficient means for…

  8. Evaluation of a mPEG-polyester-based hydrogel as cell carrier for chondrocytes.

    PubMed

    Peng, Sydney; Yang, Shu-Rui; Ko, Chao-Yin; Peng, Yu-Shiang; Chu, I-Ming

    2013-11-01

    Temperature-sensitive hydrogels are attractive alternatives to porous cell-seeded scaffolds and is minimally invasive through simple injection and in situ gelling. In this study, we compared the performance of two types of temperature-sensitive hydrogels on chondrocytes encapsulation for the use of tissue engineering of cartilage. The two hydrogels are composed of methoxy poly(ethylene glycol)- poly(lactic-co-valerolactone) (mPEG-PVLA), and methoxy poly(ethylene glycol)-poly(lactic- co-glycolide) (mPEG-PLGA). Osmolarity and pH were optimized through the manipulation of polymer concentration and dispersion medium. Chondrocytes proliferation in mPEG-PVLA hydrogels was observed as well as accumulation of GAGs and collagen. On the other hand, chondrocytes encapsulated in mPEG-PLGA hydrogels showed low viability and chondrogenesis. Also, mPEG-PVLA hydrogel, which is more hydrophobic, retained physical integrity after 14 days while mPEG-PLGA hydrogel underwent full degradation due to faster hydrolysis rate and more pronounced acidic self-catalyzed degradation. The mPEG-PVLA hydrogel can be furthered tuned by manipulation of molecular weights to obtain hydrogels with different swelling and degradation characteristics, which may be useful as producing a selection of hydrogels compatible with different cell types. Taken together, these results demonstrate that mPEG-PVLA hydrogels are promising to serve as three-dimensional cell carriers for chondrocytes and potentially applicable in cartilage tissue engineering. PMID:24039062

  9. A correlation study of protein adsorption and cell behaviors on substrates with different densities of PEG chains.

    PubMed

    Sun, Mingcong; Deng, Jun; Tang, Zengchao; Wu, Jindan; Li, Dan; Chen, Hong; Gao, Changyou

    2014-10-01

    The adsorption of proteins, in particular fibronectin (Fn), was studied on poly(ethylene glycol) (PEG, 5kDa)-grafted surfaces, and was correlated with the adhesion behaviors of smooth muscle cells (SMCs). The PEG molecules were covalently grafted on aldehyde-activated substrates with different densities of amino groups. The thickness of PEG layer increased nearly 10 fold in a hydrated state, reaching to 27nm on the surface of highest PEG chain density with a brush configuration. On the lower PEG-grafted surfaces, however, the PEG molecules adopted a mushroom configuration. The adsorption of Fn without and with the competition of bovine serum albumin (BSA) and serum was studied by using ellipsometry, fluorescence microscopy and radio-labeling techniques. The adsorption amount of Fn in serum decreased initially with increased PEG chain density until 0.12chains/nm(2) PEG, and then slightly increased on the 0.29chains/nm(2) PEG. A series of protein preadsorption experiments were carried out under different conditions before SMCs culture in vitro. Compared with those substrates without Fn preadsorption, the cell adhesion and spreading were significantly enhanced on all the PEG surfaces preadsorbed with Fn and serum, although they overall decreased along with the increase of PEG grafting density. The adhesion force of Fn decreased monotonously with the increase of PEG grafting density, which was in accordance with the cell adhesion force. The correlation between the PEG-grafted surfaces, Fn adsorption, and cellular behaviors is finally suggested. PMID:25033433

  10. The insulinotropic effect of exogenous glucagon-like peptide-1 is not affected by acute vagotomy in anaesthetized pigs.

    PubMed

    Veedfald, Simon; Hansen, Marie; Christensen, Louise Wulff; Larsen, Sara Agnete Hjort; Hjøllund, Karina Rahr; Plamboeck, Astrid; Hartmann, Bolette; Deacon, Carolyn Fiona; Holst, Jens Juul

    2016-07-01

    What is the central question of this study? We investigated whether intestinal vagal afferents are necessary for the insulinotropic effect of glucagon-like peptide-1 (GLP-1) infused into a mesenteric artery or a peripheral vein before and after acute truncal vagotomy. What is the main finding and its importance? We found no effect of truncal vagotomy on the insulinotropic effect of exogenous GLP-1 and speculate that high circulating concentrations of GLP-1 after i.v. and i.a. infusion might have overshadowed any neural signalling component. We propose that further investigations into the possible vagal afferent signalling of GLP-1 would best be pursued using enteral stimuli to provide high subepithelial levels of endogenous GLP-1. Glucagon-like peptide 1 (GLP-1) is secreted from the gut in response to luminal stimuli and stimulates insulin secretion in a glucose-dependent manner. As a result of rapid enzymatic degradation of GLP-1 by dipeptidyl peptidase-4, a signalling pathway involving activation of intestinal vagal afferents has been proposed. We conducted two series of experiments in α-chloralose-anaesthetized pigs. In protocol I, pigs (n = 14) were allocated for either i.v. or i.a. (mesenteric) GLP-1 infusions (1 and 2 pmol kg(-1)  min(-1) , 30 min) while maintaining permissive glucose concentrations at 6 mmol l(-1) by i.v. glucose infusion. The GLP-1 infusions were repeated after acute truncal vagotomy. In protocol II, pigs (n = 27) were allocated into six groups. Glucagon-like peptide 1 was infused i.v. or i.a. (mesenteric) for 1 h at 3 or 30 pmol kg(-1)  min(-1) . During the steady state (21 min into the GLP-1 infusion), glucose (0.2 g kg(-1) , i.v.) was administered over 9 min to stimulate β-cell secretion. Thirty minutes after the glucose infusion, GLP-1 infusions were discontinued. Following a washout period, the vagal trunks were severed in four of six groups (vagal trunks were left intact in two of six groups), whereupon all

  11. Synthesis and characterization of doxorubicin modified ZnO/PEG nanomaterials and its photodynamic action.

    PubMed

    Hariharan, R; Senthilkumar, S; Suganthi, A; Rajarajan, M

    2012-11-01

    The aim of this study is to investigate a new strategy of combined application of ZnO/PEG nanospheres with anticancer drug of doxorubicin (DOX) in photodynamic therapy (PDT). We were able to fabricate ZnO/PEG nanospheres as the drug carrier of DOX in drug delivery system. The combination of DOX-ZnO/PEG nanocomposites induced the remarkable improvement in the anti-tumor activity, which has been demonstrated by antibacterial activity, drug release and DNA cleavage study. Furthermore, the possible mechanism was explored by optical spectroscopic studies and EPR - spin trapping technique. It was noted that the photodynamic activity of the non-cytotoxic DOX loaded ZnO/PEG nanocomposite could considerably increase cancer cell injury mediated by reactive oxygen species (ROS) under UV irradiation. In our observations demonstrated that ZnO/PEG nanosphere could obviously increase the intracellular concentration of DOX and enhance its potential anti-tumor efficiency, indicating that ZnO/PEG nanosphere could act as an efficient drug delivery carrier importing DOX into target cancer cells. Nearly 91% of loaded drug was released within 26 h of incubation of conjugates in vitro in an acidic environment. It suggests that there is an efficient drug release of DOX from DOX-ZnO/PEG nanocomposite. DOX loaded on ZnO/PEG nanomaterials showed antibacterial activity was more pronounced with Gram-positive than Gram-negative bacteria under visible light. DOX-ZnO/PEG nanocomposites were effective against HeLa cell lines under in vitro condition and photocleavage of DNA. This result indicated that ZnO/PEG nanomaterials can be used as a nanocarrier for drug delivery system for PDT. PMID:22982207

  12. Screen and confirmation of PEG-epoetin β in equine plasma.

    PubMed

    Chang, Y; Maylin, G M; Matsumoto, G; Neades, S M; Catlin, D H

    2011-01-01

    Methods have been developed to screen for and confirm darbepoetin alfa, recombinant human EPO, and methoxy polyethylene glycol-epoetin β (PEG-epoetin β) in horse plasma. All three methods screen samples with an enzyme-linked immunosorbent assay (ELISA) and confirm by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This report focuses on PEG-epoetin β. The ELISA assay was able to detect PEG-epoetin β at 0.02 ng/mL in 50 µL of horse plasma. Many samples had high background levels of immunoreactivity; however, introducing polyethylene glycol 6000 (PEG 6000) into the samples before the ELISA assay removed the high background and increased the apparent concentrations of PEG-epoetin β. In samples collected following the administration of 100 µg of PEG-epoetin β by the intravenous (IV), intramuscular (IM) and subcutaneous (SC) routes, PEG-epoetin β was detectable up to 72, 144, and 120 h, respectively. The samples were prepared for LC-MS/MS analysis by extraction with anti-rHuEPO-antibodies-coated Dynabeads followed by digestion with trypsin. The LC-MS/MS confirmation method used the multiple reaction monitoring (MRM) scan mode to monitor four precursor-product ion transitions of the EPO-derived peptide T₆. All four transitions of T₆ were detectable with S/N > 3. The limit of confirmation for PEG-epoetin β was 1.0 ng/mL in 2 mL of horse plasma. The method successfully confirmed the presence of PEG-epoetin β in a sample collected from a Mircera®-treated horse. Compared to PEG-epoetin β, better sensitivity was achieved for darbepoetin alfa and recombinant human EPO. Darbepoetin alfa was detected in horse plasma four days after IM administration of 100 µg. PMID:21254454

  13. Role of Urinary Levels of Endothelin-1, Monocyte Chemotactic Peptide-1, and N-Acetyl Glucosaminidase in Predicting the Severity of Obstruction in Hydronephrotic Neonates

    PubMed Central

    Rafiei, Alireza; Mousavi, Seyed Abdollah; Alaee, Abdulrasool; Yeganeh, Yalda

    2014-01-01

    Purpose Antenatal hydronephrosis (AH) is found in 0.5%-1% of neonates. The aim of the study was to assess the urinary concentrations of 3 biomarkers, endothelin-1 (ET-1), monocyte chemotactic peptide-1 (MCP-1), and N-acetyl-glucosaminidase (NAG) in severely hydronephrotic neonates. Materials and Methods Neonates with a history of prenatal hydronephrosis were enrolled in the prospective study in 2 groups. Group 1 included neonates with severe forms of obstruction requiring surgical intervention and group 2 included neonates with milder forms of obstruction without any functional impairment. Fresh voided urinary levels of ET-1, MCP-1, and NAG were measured and their ratios to urinary Cr were calculated. Results Fourty-two neonates were enrolled into the 2 groups: group 1, 24 patients (21 male, 3 female); group 2, 18 neonates (16 male, 2 female). There were no statistically significant differences between urinary ET-1, NAG, MCP-1 values, and ET-1/Cr and NAG/Cr ratios in groups 1 and 2. The urinary MCP-1/Cr ratio was significantly higher in group 1 than in group 2. For comparison of groups 1 and 2, the cut-off values were measured as 0.5709 ng/mg (sensitivity, 75%; specificity, 67%; positive predictive value [PPV], 71%; negative predictive value [NPV], 71%), 0.927 ng/mg (sensitivity, 77%; specificity, 72%; PPV, 77%; NPV, 72%), and 1.1913 IU/mg (sensitivity, 62%; specificity, 67%; PPV, 68%; NPV, 60%) for ET-1/Cr, MCP-1/Cr, and NAG/Cr ratios, respectively. Conclusions The urinary MCP-1/Cr ratio is significantly elevated in neonates with severe obstruction requiring surgical intervention. Based upon these results, urinary MCP-1/Cr may be useful in identification of severe obstructive hydronephrosis in neonates. PMID:25324951

  14. Characterization of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, in rat partial and full nigral 6-hydroxydopamine lesion models of Parkinson's disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Mikkelsen, Jens D; Jelsing, Jacob; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-09-01

    Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist, have been demonstrated to promote neuroprotection in the rat 6-hydroxydopamine (6-OHDA) neurotoxin model of Parkinson's disease (PD), a neurodegenerative disorder characterized by progressive nigrostriatal dopaminergic neuron loss. In this report, we characterized the effect of a long-acting GLP-1 receptor agonist, liraglutide (500µg/kg/day, s.c.) in the context of a partial or advanced (full) 6-OHDA induced nigral lesion in the rat. Rats received a low (3µg, partial lesion) or high (13.5µg, full lesion) 6-OHDA dose stereotaxically injected into the right medial forebrain bundle (n=17-20 rats per experimental group). Six weeks after induction of a partial nigral dopaminergic lesion, vehicle or liraglutide was administered for four weeks. In the full lesion model, vehicle dosing or liraglutide treatment was applied for a total of six weeks starting three weeks pre-lesion, or administered for three weeks starting on the lesion day. Quantitative stereology was applied to assess the total number of midbrain tyrosine hydroxylase (TH) positive dopaminergic neurons. As compared to vehicle controls, liraglutide had no effect on the rotational responsiveness to d-amphetamine or apomorphine, respectively. In correspondence, while numbers of TH-positive nigral neurons were significantly reduced in the lesion side (partial lesion ≈55%; full lesion ≈90%) liraglutide administration had no influence dopaminergic neuronal loss in either PD model setting. In conclusion, liraglutide showed no neuroprotective effects in the context of moderate or substantial midbrain dopaminergic neuronal loss and associated functional motor deficits in the rat 6-OHDA lesion model of PD. PMID:27233809

  15. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors.

    PubMed

    Nauck, M

    2016-03-01

    Over the last few years, incretin-based therapies have emerged as important agents in the treatment of type 2 diabetes (T2D). These agents exert their effect via the incretin system, specifically targeting the receptor for the incretin hormone glucagon-like peptide 1 (GLP-1), which is partly responsible for augmenting glucose-dependent insulin secretion in response to nutrient intake (the 'incretin effect'). In patients with T2D, pharmacological doses/concentrations of GLP-1 can compensate for the inability of diabetic β cells to respond to the main incretin hormone glucose-dependent insulinotropic polypeptide, and this is therefore a suitable parent compound for incretin-based glucose-lowering medications. Two classes of incretin-based therapies are available: GLP-1 receptor agonists (GLP-1RAs) and dipeptidyl peptidase-4 (DPP-4) inhibitors. GLP-1RAs promote GLP-1 receptor (GLP-1R) signalling by providing GLP-1R stimulation through 'incretin mimetics' circulating at pharmacological concentrations, whereas DPP-4 inhibitors prevent the degradation of endogenously released GLP-1. Both agents produce reductions in plasma glucose and, as a result of their glucose-dependent mode of action, this is associated with low rates of hypoglycaemia; however, there are distinct modes of action resulting in differing efficacy and tolerability profiles. Furthermore, as their actions are not restricted to stimulating insulin secretion, these agents have also been associated with additional non-glycaemic benefits such as weight loss, improvements in β-cell function and cardiovascular risk markers. These attributes have made incretin therapies attractive treatments for the management of T2D and have presented physicians with an opportunity to tailor treatment plans. This review endeavours to outline the commonalities and differences among incretin-based therapies and to provide guidance regarding agents most suitable for treating T2D in individual patients. PMID:26489970

  16. The Anthocyanin Delphinidin 3-Rutinoside Stimulates Glucagon-Like Peptide-1 Secretion in Murine GLUTag Cell Line via the Ca2+/Calmodulin-Dependent Kinase II Pathway

    PubMed Central

    Kato, Masaki; Tani, Tsubasa; Terahara, Norihiko; Tsuda, Takanori

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreted from enteroendocrine L-cells. Although several nutrients induce GLP-1 secretion, there is little evidence to suggest that non-nutritive compounds directly increase GLP-1 secretion. Here, we hypothesized that anthocyanins induce GLP-1 secretion and thereby significantly contribute to the prevention and treatment of diabetes. Delphinidin 3-rutinoside (D3R) was shown to increase GLP-1 secretion in GLUTag L cells. The results suggested that three hydroxyl or two methoxyl moieties on the aromatic ring are essential for the stimulation of GLP-1 secretion. Notably, the rutinose moiety was shown to be a potent enhancer of GLP-1 secretion, but only in conjunction with three hydroxyl moieties on the aromatic ring (D3R). Receptor antagonist studies revealed that D3R-stimulates GLP-1 secretion involving inositol 1,4,5-trisphosphate receptor-mediated intracellular Ca2+ mobilization. Treatment of GLUTag cells with a Ca2+/calmodulin-dependent kinaseII (CaMKII) inhibitor (KN-93) abolished D3R-stimulated GLP-1 secretion. In addition, treatment of GLUTag cells with D3R resulted in activation of CaMKII. Pre-treatment of cells with a G protein-coupled receptor (GPR) 40/120 antagonist (GW1100) also significantly decreased D3R-stimulated GLP-1 secretion. These observations suggest that D3R stimulates GLP-1 secretion in GLUTag cells, and that stimulation of GLP-1 secretion by D3R is mediated via Ca2+-CaMKII pathway, which may possibly be mediated by GPR40/120. These findings provide a possible molecular mechanism of GLP-1 secretion in intestinal L-cells mediated by foods or drugs and demonstrate a novel biological function of anthocyanins in regards to GLP-1 secretion. PMID:25962102

  17. Glucagon-like peptide 1 receptor (GLP1R) haplotypes correlate with altered response to multiple antipsychotics in the CATIE trial.

    PubMed

    Ramsey, Timothy L; Brennan, Mark D

    2014-12-01

    Glucagon-like peptide 1 receptor (GLP1R) signaling has been shown to have antipsychotic properties in animal models and to impact glucose-dependent insulin release, satiety, memory, and learning in man. Previous work has shown that two coding mutations (rs6923761 and rs1042044) are associated with altered insulin release and cortisol levels. We identified four frequently occurring haplotypes in Caucasians, haplotype 1 through haplotype 4, spanning exons 4-7 and containing the two coding variants. We analyzed response to antipsychotics, defined as predicted change in PANSS-Total (dPANSS) at 18 months, in Caucasian subjects from the Clinical Antipsychotic Trial of Intervention Effectiveness treated with olanzapine (n=139), perphenazine (n=78), quetiapine (n=14), risperidone (n=143), and ziprasidone (n=90). Haplotype trend regression analysis revealed significant associations with dPANSS for olanzapine (best p=0.002), perphenazine (best p=0.01), quetiapine (best p=0.008), risperidone (best p=0.02), and ziprasidone (best p=0.007). We also evaluated genetic models for the two most common haplotypes. Haplotype 1 (uniquely including the rs1042044 [Leu(260)] allele) was associated with better response to olanzapine (p=0.002), and risperidone (p=0.006), and worse response to perphenazine (p=.03), and ziprasidone (p=0.003), with a recessive genetic model providing the best fit. Haplotype 2 (uniquely including the rs6923761 [Ser(168)] allele) was associated with better response to perphenazine (p=0.001) and worse response to olanzapine (p=.02), with a dominant genetic model providing the best fit. However, GLP1R haplotypes were not associated with antipsychotic-induced weight gain. These results link functional genetic variants in GLP1R to antipsychotic response. PMID:25449714

  18. Glucagon-like peptide-1 counteracts the detrimental effects of Advanced Glycation End-Products in the pancreatic beta cell line HIT-T 15

    SciTech Connect

    Puddu, A.; Storace, D.; Durante, A.; Odetti, P.; Viviani, G.L.

    2010-07-30

    Research highlights: {yields} GLP-1 prevents AGEs-induced cell death. {yields} GLP-1 prevents AGEs-induced oxidative stress. {yields} GLP-1 ameliorated AGEs-induced cell dysfunction. {yields} GLP-1 attenuates AGEs-induced RAGE increment. {yields} GLP-1 counteracts AGEs-induced pancreatic cell death and dysfunction. -- Abstract: Advanced Glycation End-Products (AGEs), a group of compounds resulting from the non-enzymatic reaction of reducing sugars with the free amino group of proteins, are implicated in diabetic complications. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T 15 to high concentrations of AGEs significantly decreases cell proliferation and insulin secretion, and affects transcription factors regulating insulin gene transcription. The glucagon-like peptide-1 (GLP-1) is an incretin hormone that increases proinsulin biosynthesis, stimulates insulin secretion, and improves pancreatic beta-cell viability. The aim of this work was to investigate the effects of GLP-1 on the function and viability of HIT-T 15 cells cultured with AGEs. HIT-T 15 cells were cultured for 5 days in presence of AGEs alone, or supplemented with 10 nmol/l GLP-1. Cell viability, insulin secretion, redox balance, and expression of the AGEs receptor (RAGE) were then determined. The results showed that GLP-1 protected beta cell against AGEs-induced cell death preventing both apoptosis and necrosis. Moreover, addition of GLP-1 to the AGEs culture medium restored the redox balance, improved the responsiveness to glucose, and attenuated AGEs-induced RAGE expression. These findings provide evidence that GLP-1 protects beta cells from the dangerous effects of AGEs.

  19. Modulation of Glucagon-like Peptide-1 (GLP-1) Potency by Endocannabinoid-like Lipids Represents a Novel Mode of Regulating GLP-1 Receptor Signaling*

    PubMed Central

    Cheng, Yu-Hong; Ho, Mei-Shang; Huang, Wei-Ting; Chou, Ying-Ting; King, Klim

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) analogs are approved for treatment of type 2 diabetes and are in clinical trials for disorders including neurodegenerative diseases. GLP-1 receptor (GLP-1R) is expressed in many peripheral and neuronal tissues and is activated by circulating GLP-1. Other than food intake, little is known about factors regulating GLP-1 secretion. Given a normally basal circulating level of GLP-1, knowledge of mechanisms regulating GLP-1R signaling, which has diverse functions in extrapancreatic tissues, remains elusive. In this study, we found that the potency of GLP-1, not exendin 4, is specifically enhanced by the endocannabinoid-like lipids oleoylethanolamide (OEA) and 2-oleoylglycerol but not by stearoylethanolamide (SEA) or palmitoylethanolamide. 9.2 μm OEA enhances the potency of GLP-1 in stimulating cAMP production by 10-fold but does not affect its receptor binding affinity. OEA and 2-oleoylglycerol, but not SEA, bind to GLP-1 in a dose-dependent and saturable manner. OEA but not SEA promoted GLP-1(7–36) amide to trypsin inactivation in a dose-dependent and saturable manner. Susceptibility of GLP-1(7–36) amide to trypsin inactivation is increased 40-fold upon binding to OEA but not to SEA. Our findings indicate that OEA binds to GLP-1(7–36) amide and enhances the potency that may result from a conformational change of the peptide. In conclusion, modulating potency of GLP-1 by physiologically regulated endocannabinoid-like lipids allows GLP-1R signaling to be regulated spatiotemporally at a constant basal GLP-1 level. PMID:25903129

  20. Glucogon-like Peptide 1 Receptor (GLP1R) haplotypes correlate with altered response to multiple antipsychotics in the CATIE trial

    PubMed Central

    Ramsey, Timothy; Brennan, Mark D.

    2014-01-01

    Glucogon-like peptide 1 receptor (GLP1R) signaling has been shown to have antipsychotic properties in animal models and to impact glucose-dependent insulin release, satiety, memory, and learning in man. Previous work has shown that two coding mutations (rs6923761 and rs1042044) are associated with altered insulin release and cortisol levels. We identified four frequently occurring haplotypes in Caucasians, haplotype 1 through haplotype 4, spanning exons 4-7 and containing the two coding variants. We analyzed response to antiapsychotics, as defined as predicted change in PANSS-Total (dPANSS) at 18 months, in Caucasian subjects from Clinical Antipsychotic Trial of Intervention Effectiveness treated with (olanzapine, n=139; perphenazine, n=78; quetiapine, n=14; risperidone, n=143; and ziprasidone, n=90). Haplotype trend regression analysis revealed significant associations with dPANSS for olanzapine (best p=0.002), perphenazine (best p=0.01), quetiapine (best p=0.008), risperidone (best p=0.02), and ziprasidone (best p=0.007). We also evaluated genetic models for the two most common haplotypes. Haplotype 1 (uniquely including the rs1042044 [Leu260] allele) was associated with better response to olanzapine (p=0.002), and risperidone (p=0.006), and worse response to perphenazine (p=.03), and ziprasidone (p=0.003), with a recessive genetic model providing the best fit. Haplotype 2 (uniquely including the rs6923761 [Ser168] allele) was associated with better response to perphenazine (p=0.001) and worse response to olanzapine (p=.02), with a dominant genetic model providing the best fit. However, GLP1R haplotypes were not associated with antipsychotic-induced weight gain. These results link functional genetic variants in GLP1R to antipsychotic response. PMID:25449714

  1. Modulation of Glucagon-like Peptide-1 (GLP-1) Potency by Endocannabinoid-like Lipids Represents a Novel Mode of Regulating GLP-1 Receptor Signaling.

    PubMed

    Cheng, Yu-Hong; Ho, Mei-Shang; Huang, Wei-Ting; Chou, Ying-Ting; King, Klim

    2015-06-01

    Glucagon-like peptide-1 (GLP-1) analogs are approved for treatment of type 2 diabetes and are in clinical trials for disorders including neurodegenerative diseases. GLP-1 receptor (GLP-1R) is expressed in many peripheral and neuronal tissues and is activated by circulating GLP-1. Other than food intake, little is known about factors regulating GLP-1 secretion. Given a normally basal circulating level of GLP-1, knowledge of mechanisms regulating GLP-1R signaling, which has diverse functions in extrapancreatic tissues, remains elusive. In this study, we found that the potency of GLP-1, not exendin 4, is specifically enhanced by the endocannabinoid-like lipids oleoylethanolamide (OEA) and 2-oleoylglycerol but not by stearoylethanolamide (SEA) or palmitoylethanolamide. 9.2 μM OEA enhances the potency of GLP-1 in stimulating cAMP production by 10-fold but does not affect its receptor binding affinity. OEA and 2-oleoylglycerol, but not SEA, bind to GLP-1 in a dose-dependent and saturable manner. OEA but not SEA promoted GLP-1(7-36) amide to trypsin inactivation in a dose-dependent and saturable manner. Susceptibility of GLP-1(7-36) amide to trypsin inactivation is increased 40-fold upon binding to OEA but not to SEA. Our findings indicate that OEA binds to GLP-1(7-36) amide and enhances the potency that may result from a conformational change of the peptide. In conclusion, modulating potency of GLP-1 by physiologically regulated endocannabinoid-like lipids allows GLP-1R signaling to be regulated spatiotemporally at a constant basal GLP-1 level. PMID:25903129

  2. Effect of PEG-PDLLA polymeric nanovesicles loaded with doxorubicin and hematoporphyrin monomethyl ether on human hepatocellular carcinoma HepG2 cells in vitro

    PubMed Central

    Xiang, Guang-Hua; Hong, Guo-Bin; Wang, Yong; Cheng, Du; Zhou, Jing-Xing; Shuai, Xin-Tao

    2013-01-01

    Objective To evaluate the cytotoxicity of poly(ethylene glycol)-block-poly(D,L-lactic acid) (PEG-PDLLA) nanovesicles loaded with doxorubicin (DOX) and the photosensitizer hematoporphyrin monomethyl ether (HMME) on human hepatocellular carcinoma HepG2 cells and to investigate potential apoptotic mechanisms. Methods PEG-PDLLA nanovesicles were simultaneously loaded with DOX and HMME (PEG-PDLLA-DOX-HMME), and PEG-PDLLA nanovesicles were loaded with DOX (PEG-PDLLA-DOX), HMME (PEG-PDLLA-HMME), or the PEG-PDLLA nanovesicle alone as controls. The cytotoxicity of PEG-PDLLA-DOX-HMME, PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA against HepG2 cells was measured, and the cellular reactive oxygen species, percentage of cells with mitochondrial membrane potential depolarization, and apoptotic rate following treatment were determined. Results Four nanovesicles (PEG-PDLLA-DOX-HMME, PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA) were synthesized, and mean particle sizes were 175±18 nm, 154±3 nm, 196±2 nm, and 147±15 nm, respectively. PEG-PDLLA-DOX-HMME was more cytotoxic than PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA. PEG-PDLLA-HMME-treated cells had the highest mean fluorescence intensity, followed by PEG-PDLLA-DOX-HMME-treated cells, whereas PEG-PDLLA-DOX- and PEG-PDLLA-treated cells had a similar fluorescence intensity. Mitochondrial membrane potential depolarization was observed in 54.2%, 59.4%, 13.8%, and 14.8% of the cells treated with PEG-PDLLA-DOX-HMME, PEG-PDLLA-HMME, PEG-PDLLA-DOX, and PEG-PDLLA, respectively. The apoptotic rate was significantly higher in PEG-PDLLA-DOX-HMME-treated cells compared with PEG-PDLLA-DOX- and PEG-PDLLA-HMME-treated cells. Conclusion The PEG-PDLLA nanovesicle, a drug delivery carrier, can be simultaneously loaded with two anticancer drugs (hydrophilic DOX and hydrophobic HMME). PEG-PDLLA-DOX-HMME cytotoxicity to HepG2 cells is significantly higher than the PEG-PDLLA nanovesicle loaded with DOX or HMME alone, and DOX and HMME have a

  3. Effect of the Polymer Architecture on the Structural and Biophysical Properties of PEG-PLA Nanoparticles.

    PubMed

    Rabanel, Jean-Michel; Faivre, Jimmy; Tehrani, Soudeh F; Lalloz, Augustine; Hildgen, Patrice; Banquy, Xavier

    2015-05-20

    Polymers made of poly(ethylene glycol) chains grafted to poly(lactic acid) chains (PEG-g-PLA) were used to produce stealth drug nanocarriers. A library of comblike PEG-g-PLA polymers with different PEG grafting densities was prepared in order to obtain nanocarriers with dense PEG brushes at their surface, stability in suspension, and resistance to protein adsorption. The structural properties of nanoparticles (NPs) produced from these polymers by a surfactant-free method were assessed by dynamic light scattering, ζ potential, and transmission electron microscopy and found to be controlled by the amount of PEG present in the polymers. A critical transition from a solid NP structure to a soft particle with either a "micellelike" or a "polymer nanoaggregate" structure was observed when the PEG content was between 15 and 25% w/w. This structural transition was found to have a profound impact on the size of the NPs, their surface charge, their stability in suspension in the presence of salts, and the binding of proteins to the surface of the NPs. The arrangement of the PEG-g-PLA chains at the surface of the NPs was investigated by (1)H NMR and X-ray photoelectron spectroscopy (XPS). NMR results confirmed that the PEG chains were mostly segregated at the NP surface. Moreover, XPS and quantitative NMR allowed quantification of the PEG chain coverage density at the surface of the solid NPs. Concordance of the results between the two methods was found to be remarkable. Physical-chemical properties of the NPs such as resistance to aggregation in a saline environment as well as antifouling efficacy were related to the PEG surface density and ultimately to the polymer architecture. Resistance to protein adsorption was assessed by isothermal titration calorimetry using lysozyme. The results indicate a correlation between the PEG surface coverage and level of protein interactions. The results obtained lead us to propose such PEG-g-PLA polymers for nanomedicine development as an

  4. PEG/CaFe2O4 nanocomposite: Structural, morphological, magnetic and thermal analyses

    NASA Astrophysics Data System (ADS)

    Khanna, Lavanya; Verma, Narendra K.

    2013-10-01

    The coating of Polyethylene Glycol (PEG) on calcium ferrite (CaFe2O4) nanoparticles has been reported in the present study. The X-ray diffraction pattern revealed the formation of orthorhombic structure of bare CaFe2O4 nanoparticles, which was also retained after the PEG coating, along with additional characteristic peaks of PEG at 19° and 23°. The rings of CaFe2O4 nanoparticles were identified by the selected area electron diffraction pattern. The characteristic bands of PEG as observed in its Fourier transform infrared spectrum were also present in PEG coated CaFe2O4 nanoparticles, hence confirming its presence. In the thermal gravimetric studies, the complete thermal decomposition of PEG occurred in a one step process, but in case of PEG coated CaFe2O4 nanoparticles, the decomposition took place at a higher temperature owing to the formation of covalent bonds of PEG with CaFe2O4 nanoparticles. The presence of PEG on CaFe2O4 nanoparticles, spherical formation of PEG coated CaFe2O4 nanoparticles and reduced agglomeration in the CaFe2O4 nanoparticles were revealed by high resolution transmission electron microscope, transmission electron microscope and scanning electron microscope studies, respectively. In vibrating sample magnetometer analysis, both bare as well as coated CaFe2O4 nanoparticles exhibited superparamagnetic behavior. However, a drop in the magnetic saturation value was observed from 36.76 emu/g for CaFe2O4 nanoparticles to 6.74 emu/g for PEG coated CaFe2O4 nanoparticles, due to the formation of magnetically dead layer of PEG. In ZFC and FC analyses, superparamagnetic behavior with blocking temperature for bare and coated nanoparticles has been observed at ∼40 K and ∼60 K, respectively. The increase in the blocking temperature is attributed to the increase in the particle size after PEG coating.

  5. Large-scale production of soluble recombinant amyloid-β peptide 1-42 using cold-inducible expression system.

    PubMed

    Kim, Eun-Kyung; Moon, Jeong Chan; Lee, Jeong Mi; Jeong, Min Seop; Oh, Choongseob; Ahn, Sung-Min; Yoo, Yung Joon; Jang, Ho Hee

    2012-11-01

    Amyloid-β peptide 1-42 (Aβ(1-42)), the predominant form in senile plaques, plays important roles in the pathogenesis of Alzheimer's disease. Because Aβ(1-42) has aggregation-prone nature, it has been difficult to produce in a soluble state in bacterial expression systems. In this study, we modified our expression system to increase the soluble fraction of Aβ(1-42) in Escherichia coli (E. coli) cells. The expression level and solubility of recombinant Aβ(1-42) induced at the low temperature (16°C) is highly increased compared to that induced at 37°C. To optimize expression temperature, the coding region of Aβ(1-42) was constructed in a pCold vector, pCold-TF, which has a hexahistidine-tagged trigger factor (TF). Recombinant Aβ(1-42) was expressed primarily as a soluble protein using pCold vector system and purified with a nickel-chelating resin. When the toxic effect of recombinant Aβ(1-42) examined on human neuroblastoma SH-SY5Y cells, the purified Aβ(1-42) induced cell toxicity on SH-SY5Y cells. In conclusion, the system developed in this study will provide a useful method for the production of aggregation prone-peptide such as Aβ(1-42). PMID:22982229

  6. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells

    PubMed Central

    Ellingsgaard, Helga; Hauselmann, Irina; Schuler, Beat; Habib, Abdella M; Baggio, Laurie L; Meier, Daniel T; Eppler, Elisabeth; Bouzakri, Karim; Wueest, Stephan; Muller, Yannick D; Hansen, Ann Maria Kruse; Reinecke, Manfred; Konrad, Daniel; Gassmann, Max; Reimann, Frank; Halban, Philippe A; Gromada, Jesper; Drucker, Daniel J; Gribble, Fiona M; Ehses, Jan A; Donath, Marc Y

    2014-01-01

    Exercise, obesity and type 2 diabetes are associated with elevated plasma concentrations of interleukin-6 (IL-6). Glucagon-like peptide-1 (GLP-1) is a hormone that induces insulin secretion. Here we show that administration of IL-6 or elevated IL-6 concentrations in response to exercise stimulate GLP-1 secretion from intestinal L cells and pancreatic alpha cells, improving insulin secretion and glycemia. IL-6 increased GLP-1 production from alpha cells through increased proglucagon (which is encoded by GCG) and prohormone convertase 1/3 expression. In models of type 2 diabetes, the beneficial effects of IL-6 were maintained, and IL-6 neutralization resulted in further elevation of glycemia and reduced pancreatic GLP-1. Hence, IL-6 mediates crosstalk between insulin-sensitive tissues, intestinal L cells and pancreatic islets to adapt to changes in insulin demand. This previously unidentified endocrine loop implicates IL-6 in the regulation of insulin secretion and suggests that drugs modulating this loop may be useful in type 2 diabetes. PMID:22037645

  7. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells.

    PubMed

    Ellingsgaard, Helga; Hauselmann, Irina; Schuler, Beat; Habib, Abdella M; Baggio, Laurie L; Meier, Daniel T; Eppler, Elisabeth; Bouzakri, Karim; Wueest, Stephan; Muller, Yannick D; Hansen, Ann Maria Kruse; Reinecke, Manfred; Konrad, Daniel; Gassmann, Max; Reimann, Frank; Halban, Philippe A; Gromada, Jesper; Drucker, Daniel J; Gribble, Fiona M; Ehses, Jan A; Donath, Marc Y

    2011-01-01

    Exercise, obesity and type 2 diabetes are associated with elevated plasma concentrations of interleukin-6 (IL-6). Glucagon-like peptide-1 (GLP-1) is a hormone that induces insulin secretion. Here we show that administration of IL-6 or elevated IL-6 concentrations in response to exercise stimulate GLP-1 secretion from intestinal L cells and pancreatic alpha cells, improving insulin secretion and glycemia. IL-6 increased GLP-1 production from alpha cells through increased proglucagon (which is encoded by GCG) and prohormone convertase 1/3 expression. In models of type 2 diabetes, the beneficial effects of IL-6 were maintained, and IL-6 neutralization resulted in further elevation of glycemia and reduced pancreatic GLP-1. Hence, IL-6 mediates crosstalk between insulin-sensitive tissues, intestinal L cells and pancreatic islets to adapt to changes in insulin demand. This previously unidentified endocrine loop implicates IL-6 in the regulation of insulin secretion and suggests that drugs modulating this loop may be useful in type 2 diabetes. PMID:22037645

  8. [Liraglutide (Victoza): human glucagon-like peptide-1 used in once daily injection for the treatment of type 2 diabetes].

    PubMed

    Scheen, A J; Van Gaal, L F

    2010-01-01

    Liraglutide (Victoza) is a peptide produced by DNA recombinant technology, which presents 97% homology with human glucagon-like peptide-1 (GLP-1) but is resistant to dipeptidylpeptidase-4, the enzyme that degrades the natural hormone. It actives the GLP-1 receptor and exerts an incretin mimetic effect during at least 24 hours after a single subcutaneous injection. Besides a glucose-dependent stimulatory effect of insulin secretion, liraglutide inhibits glucagon secretion and retards gastric emptying. In patients with type 2 diabetes, it reduces glycated haemoglobin by at least 1%, without inducing hypoglycaemia. It also induces a moderate weight loss and a mild reduction in blood pressure. Gastrointestinal adverse events (nausea, vomiting) may occur during the initial phase of treatment, but rarely impose the interruption of the medication and usually diminish with time.Although indicated in combination with other glucose-lowering agents, liraglutide is currently reimbursed in Belgium only if administered in patients with type 2 diabetes not sufficiently controlled with a combination of metformin plus sulfonylurea or metformin plus a thiazolidinedione. Victoza is presented in prefilled pens and is injected subcutaneously once a day. Treatment will be initiated with 0.6 mg to improve digestive tolerance and the daily dose will be increased to 1.2 mg (usual dose) after at least one week, and up to 1.8 mg (maximal dose) if necessary. PMID:20857706

  9. The glucagon-like peptide 1 receptor agonist enhances intrinsic peroxisome proliferator-activated receptor γ activity in endothelial cells

    SciTech Connect

    Onuma, Hirohisa; Inukai, Kouichi Kitahara, Atsuko; Moriya, Rie; Nishida, Susumu; Tanaka, Toshiaki; Katsuta, Hidenori; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Ishida, Hitoshi

    2014-08-22

    Highlights: • PPARγ activation was involved in the GLP-1-mediated anti-inflammatory action. • Exendin-4 enhanced endogenous PPARγ transcriptional activity in HUVECs. • H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement. • The anti-inflammatory effects of GLP-1 may be explained by PPARγ activation. - Abstract: Recent studies have suggested glucagon-like peptide-1 (GLP-1) signaling to exert anti-inflammatory effects on endothelial cells, although the precise underlying mechanism remains to be elucidated. In the present study, we investigated whether PPARγ activation is involved in the GLP-1-mediated anti-inflammatory action on endothelial cells. When we treated HUVEC cells with 0.2 ng/ml exendin-4, a GLP-1 receptor agonist, endogenous PPARγ transcriptional activity was significantly elevated, by approximately 20%, as compared with control cells. The maximum PPARγ activity enhancing effect of exendin-4 was observed 12 h after the initiation of incubation with exendin-4. As H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement, the signaling downstream from GLP-1 cross-talk must have been involved in PPARγ activation. In conclusion, our results suggest that GLP-1 has the potential to induce PPARγ activity, partially explaining the anti-inflammatory effects of GLP-1 on endothelial cells. Cross-talk between GLP-1 signaling and PPARγ activation would have major impacts on treatments for patients at high risk for cardiovascular disease.

  10. Glucagon-like peptide 1 recruits muscle microvasculature and improves insulin's metabolic action in the presence of insulin resistance.

    PubMed

    Chai, Weidong; Zhang, Xingxing; Barrett, Eugene J; Liu, Zhenqi

    2014-08-01

    Glucagon-like peptide 1 (GLP-1) acutely recruits muscle microvasculature, increases muscle delivery of insulin, and enhances muscle use of glucose, independent of its effect on insulin secretion. To examine whether GLP-1 modulates muscle microvascular and metabolic insulin responses in the setting of insulin resistance, we assessed muscle microvascular blood volume (MBV), flow velocity, and blood flow in control insulin-sensitive rats and rats made insulin-resistant acutely (systemic lipid infusion) or chronically (high-fat diet [HFD]) before and after a euglycemic-hyperinsulinemic clamp (3 mU/kg/min) with or without superimposed systemic GLP-1 infusion. Insulin significantly recruited muscle microvasculature and addition of GLP-1 further expanded muscle MBV and increased insulin-mediated glucose disposal. GLP-1 infusion potently recruited muscle microvasculature in the presence of either acute or chronic insulin resistance by increasing muscle MBV. This was associated with an increased muscle delivery of insulin and muscle interstitial oxygen saturation. Muscle insulin sensitivity was completely restored in the presence of systemic lipid infusion and significantly improved in rats fed an HFD. We conclude that GLP-1 infusion potently expands muscle microvascular surface area and improves insulin's metabolic action in the insulin-resistant states. This may contribute to improved glycemic control seen in diabetic patients receiving incretin-based therapy. PMID:24658303

  11. Metabolic Syndrome Abolishes Glucagon-Like Peptide 1 Receptor Agonist Stimulation of SERCA in Coronary Smooth Muscle.

    PubMed

    Dineen, Stacey L; McKenney, Mikaela L; Bell, Lauren N; Fullenkamp, Allison M; Schultz, Kyle A; Alloosh, Mouhamad; Chalasani, Naga; Sturek, Michael

    2015-09-01

    Metabolic syndrome (MetS) doubles the risk of adverse cardiovascular events. Glucagon-like peptide 1 (GLP-1) receptor agonists induce weight loss, increase insulin secretion, and improve glucose tolerance. Studies in healthy animals suggest cardioprotective properties of GLP-1 receptor agonists, perhaps partially mediated by improved sarco-endoplasmic reticulum Ca(2+) ATPase (SERCA) activity. We examined the acute effect of GLP-1 receptor agonists on coronary smooth muscle cells (CSM) enzymatically isolated from lean, healthy Ossabaw miniature swine. Intracellular Ca(2+) handling was interrogated with fura-2. The GLP-1 receptor agonist exenatide activated SERCA but did not alter other Ca(2+) transporters. Further, we tested the hypothesis that chronic, in vivo treatment with GLP-1 receptor agonist AC3174 would attenuate coronary artery disease (CAD) in swine with MetS. MetS was induced in 20 swine by 6 months' feeding of a hypercaloric, atherogenic diet. Swine were then randomized (n = 10/group) into placebo or AC3174 treatment groups and continued the diet for an additional 6 months. AC3174 treatment attenuated weight gain, increased insulin secretion, and improved glucose tolerance. Intravascular ultrasound and histology showed no effect of AC3174 on CAD. MetS abolished SERCA activation by GLP-1 receptor agonists. We conclude that MetS confers vascular resistance to GLP-1 receptor agonists, partially through impaired cellular signaling steps involving SERCA. PMID:25845661

  12. Cholecystokinin, glucose dependent insulinotropic peptide and glucagon-like peptide 1 secretion in children with anorexia nervosa and simple obesity.

    PubMed

    Tomasik, Przemyslaw J; Sztefko, Krystyna; Starzyk, Jerzy

    2004-12-01

    Cholecystokinin (CCK), glucose dependent insulinotropic peptide (GIP), and glucagon-like peptide 1 (GLP-1) regulate satiety as enterogastrons and incretins. They also directly affect the satiety centers. Therefore, these peptides may participate in the pathogenesis of eating disorders. CCK, GIP, and GLP-1 secretion were studied in 13 adolescent girls suffering from simple obesity, 13 girls with anorexia nervosa, and 10 healthy girls. Each girl was subjected to an oral glucose tolerance test (OGTT) and standard meal test. Blood was collected before stimulation and at 15, 30, 60, and 120 min. The concentrations of all peptides were determined by RIA commercial kits. Fasting and postprandial levels of these peptides as well as integrated outputs were measured. High postprandial levels of CCK observed in the girls with anorexia may aggravate the course of this disease by intensifying nausea and vomiting. Low postprandial level of GLP-1 in girls with simple obesity may be responsible for excessive ingestion of food and weaker inhibition of gastric emptying, which also leads to obesity. PMID:15645696

  13. Hindbrain nucleus tractus solitarius glucagon-like peptide-1 receptor signaling reduces appetitive and motivational aspects of feeding

    PubMed Central

    Grill, Harvey J.

    2014-01-01

    Central glucagon-like peptide-1 receptor (GLP-1R) signaling reduces food intake by affecting a variety of neural processes, including those mediating satiation, motivation, and reward. While the literature suggests that separable neurons and circuits control these processes, this notion has not been adequately investigated. The intake inhibitory effects of GLP-1R signaling in the hindbrain medial nucleus tractus solitarius (mNTS) have been attributed to interactions with vagally transmitted gastrointestinal satiation signals that are also processed by these neurons. Here, behavioral and pharmacological techniques are used to test the novel hypothesis that the reduction of food intake following mNTS GLP-1R stimulation also results from effects on food-motivated appetitive behaviors. Results show that mNTS GLP-1R activation by microinjection of exendin-4, a long-acting GLP-1R agonist, reduced 1) intake of a palatable high-fat diet, 2) operant responding for sucrose under a progressive ratio schedule of reinforcement and 3) the expression of a conditioned place preference for a palatable food. Together, these data demonstrate that the intake inhibitory effects of mNTS GLP-1R signaling extend beyond satiation and include effects on food reward and motivation that are typically ascribed to midbrain and forebrain neurons. PMID:24944243

  14. Structural Determinants of Binding the Seven-transmembrane Domain of the Glucagon-like Peptide-1 Receptor (GLP-1R).

    PubMed

    Yang, Dehua; de Graaf, Chris; Yang, Linlin; Song, Gaojie; Dai, Antao; Cai, Xiaoqing; Feng, Yang; Reedtz-Runge, Steffen; Hanson, Michael A; Yang, Huaiyu; Jiang, Hualiang; Stevens, Raymond C; Wang, Ming-Wei

    2016-06-17

    The glucagon-like peptide-1 receptor (GLP-1R) belongs to the secretin-like (class B) family of G protein-coupled receptors. Members of the class B family are distinguished by their large extracellular domain, which works cooperatively with the canonical seven-transmembrane (7TM) helical domain to signal in response to binding of various peptide hormones. We have combined structure-based site-specific mutational studies with molecular dynamics simulations of a full-length model of GLP-1R bound to multiple peptide ligand variants. Despite the high sequence similarity between GLP-1R and its closest structural homologue, the glucagon receptor (GCGR), nearly half of the 62 stably expressed mutants affected GLP-1R in a different manner than the corresponding mutants in GCGR. The molecular dynamics simulations of wild-type and mutant GLP-1R·ligand complexes provided molecular insights into GLP-1R-specific recognition mechanisms for the N terminus of GLP-1 by residues in the 7TM pocket and explained how glucagon-mimicking GLP-1 mutants restored binding affinity for (GCGR-mimicking) GLP-1R mutants. Structural analysis of the simulations suggested that peptide ligand binding mode variations in the 7TM binding pocket are facilitated by movement of the extracellular domain relative to the 7TM bundle. These differences in binding modes may account for the pharmacological differences between GLP-1 peptide variants. PMID:27059958

  15. The inactivation of extracellular signal-regulated kinase by glucagon-like peptide-1 contributes to neuroprotection against oxidative stress.

    PubMed

    Nakajima, Shingo; Numakawa, Tadahiro; Adachi, Naoki; Yoon, Hyung Shin; Odaka, Haruki; Ooshima, Yoshiko; Kunugi, Hiroshi

    2016-03-11

    Glucagon-like peptide-1 (GLP-1), an insulinotropic peptide secreted from enteroendocrine cells, has been known to have a neuroprotective effect. However, it is not fully understood the intracellular mediator of GLP-1 signaling in neuronal cells. In the present study, we examined the change in intracellular signaling of cortical neurons after GLP-1 application and luminal glucose stimulation in vitro and in vivo. GLP-1 receptor was highly expressed in cultured cortical neurons and brain tissues including the prefrontal cortex and hippocampus. The activation of GLP-1 receptor (5min) significantly decreased levels of phosphorylated extracellular signal-regulated kinase (pERK), which is involved in neuronal cell survival and death, in cultured cortical neurons. Oral glucose administration also rapidly reduced pERK levels in the prefrontal cortex, while intraperitoneal glucose injection did not show such an effect. Further, GLP-1 attenuated hydrogen peroxide-induced cell death and hyperactivity of ERK in cultured cortical neurons. It is possible that increased GLP-1 by luminal glucose stimulation affects cortical system including the maintenance of neuronal cell survival. PMID:26827720

  16. Glucagon-like peptide-1 receptor agonist therapeutics for total diabetes management: assessment of composite end-points.

    PubMed

    Yabe, Daisuke; Kuwata, Hitoshi; Usui, Ryota; Kurose, Takeshi; Seino, Yutaka

    2015-01-01

    Assessment of the benefits of anti-diabetic drugs for type 2 diabetes requires analysis of composite end-points, taking HbA1c, bodyweight, hypoglycemia and other metabolic parameters into consideration; continuous, optimal glycemic control as well as bodyweight, blood pressure and lipid levels are critical to prevent micro- and macro-vascular complications. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are now established as an important total treatment strategy for type 2 diabetes, exerting glucose-lowering effects with little hypoglycemia risk and also ameliorating bodyweight, blood pressure and lipid levels, which are therapeutic targets for prevention of complications of the disease. The available data strongly suggest only beneficial effects of GLP-1RAs; however, long-term evaluation of the relevant composite end-points including health-related quality of life and cost-effectiveness remain to be investigated in adequately powered, prospective, controlled clinical trials. In the meantime, healthcare professionals need to be scrupulously attentive for potential, rare adverse events in patients using GLP-1RAs. PMID:25916903

  17. The Glucagon-Like Peptide 1 Analogue, Exendin-4, Attenuates the Rewarding Properties of Psychostimulant Drugs in Mice

    PubMed Central

    Egecioglu, Emil; Engel, Jörgen A.; Jerlhag, Elisabet

    2013-01-01

    Glucagon-like peptide 1 (GLP-1) is an incretine hormone that controls consummatory behavior and glucose homeostasis. It is released in response to nutrient ingestion from the intestine and production in the brain has also been identified. Given that GLP-1 receptors are expressed in reward areas, such as the nucleus accumbens and ventral tegmental area, and that common mechanisms regulate food and drug-induced reward we hypothesize that GLP-1 receptors are involved in reward regulation. Herein the effect of the GLP-1 receptor agonist Exendin-4 (Ex4), on amphetamine- and cocaine-induced activation of the mesolimbic dopamine system was investigated in mice. In a series of experiments we show that treatment with Ex4, at a dose with no effect per se, reduce amphetamine- as well as cocaine-induced locomotor stimulation, accumbal dopamine release as well as conditioned place preference in mice. Collectively these data propose a role for GLP-1 receptors in regulating drug reward. Moreover, the GLP-1 signaling system may be involved in the development of drug dependence since the rewarding effects of addictive drugs involves interferences with the mesolimbic dopamine system. Given that GLP-1 analogues, such as exenatide and liraglutide, are clinically available for treatment of type II diabetes, we propose that these should be elucidated as treatments of drug dependence. PMID:23874851

  18. Glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes: Past, present, and future.

    PubMed

    Kalra, Sanjay; Baruah, Manash P; Sahay, Rakesh K; Unnikrishnan, Ambika Gopalakrishnan; Uppal, Shweta; Adetunji, Omolara

    2016-01-01

    Glucagon-like peptide-1 (GLP-1)-based therapy improves glycaemic control through multiple mechanisms, with a low risk of hypoglycaemia and the additional benefit of clinically relevant weight loss. Since Starling and Bayliss first proposed the existence of intestinal secretions that stimulate the pancreas, tremendous progress has been made in the area of incretins. As a number of GLP-1 receptor agonists (GLP-1 RAs) continue to become available, physicians will soon face the challenge of selecting the right option customized to their patient's needs. The following discussion, derived from an extensive literature search using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide, provides a comprehensive review of existing and upcoming molecules in the GLP-1 RA class in terms of their structure, pharmacological profiles, efficacy, safety, and convenience. Search Methodology: A literature search was conducted using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide. Relevant articles were those that discussed structural, pharmacokinetic and pharmacodynamic differences, classification, long-acting and short-acting GLP-1 RAs, phase 3 trials, and expert opinions. Additional targeted searches were conducted on diabetes treatment guidelines and reviews on safety, as well as the American Diabetes Association/European Society for Study of Diabetes (ADA/EASD) statement on pancreatic safety. PMID:27042424

  19. Glucagon Like Peptide-1 Promotes Adipocyte Differentiation via the Wnt4 Mediated Sequestering of Beta-Catenin

    PubMed Central

    Liu, Rui; Li, Na; Lin, Yi; Wang, Mei; Peng, Yongde; Lewi, Keidren; Wang, Qinghua

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) plays a role in the regulation of adipogenesis; however, the precise underlying molecular mechanism has not been fully defined. Wnt was recently identified as an important regulator of adipogenesis. This study aimed to investigate the involvement of the Wnt signaling pathway in the effects of GLP-1 on adipocyte differentiation. 3T3-L1 cells were induced to differentiate. The changes in the expression levels of adipogenic transcription factors and Wnts and the phosphorylation level and subcellular localization of β-catenin were quantified after GLP-1 treatment. GLP-1 stimulated adipocyte differentiation and lipid accumulation, which were accompanied by the expression of adipocyte marker genes. The expression of Wnt4 was upregulated in the process of adipocyte differentiation, which was further enhanced by treatment with GLP-1. β-catenin, an important mediator of the Wnt pathway, was immediately dephosphorylated and translocated from cytoplasm to nucleus when differentiation was induced. In the presence of GLP-1, however, β-catenin was redirected to the cell plasma membrane leading to its decreased accumulation in the nucleus. Knockdown of Wnt4 blocked the effect of GLP-1 on the cellular localization of β-catenin and expression level of adipogenic transcription factors. Our findings showed that GLP-1 promoted adipogenesis through the modulation of the Wnt4/β-catenin signaling pathway, suggesting that the GLP-1-Wntβ-catenin system might be a new target for the treatment of metabolic disease. PMID:27504979

  20. Selective targeting of glucagon-like peptide-1 signalling as a novel therapeutic approach for cardiovascular disease in diabetes

    PubMed Central

    Tate, Mitchel; Chong, Aaron; Robinson, Emma; Green, Brian D; Grieve, David J

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone whose glucose-dependent insulinotropic actions have been harnessed as a novel therapy for glycaemic control in type 2 diabetes. Although it has been known for some time that the GLP-1 receptor is expressed in the CVS where it mediates important physiological actions, it is only recently that specific cardiovascular effects of GLP-1 in the setting of diabetes have been described. GLP-1 confers indirect benefits in cardiovascular disease (CVD) under both normal and hyperglycaemic conditions via reducing established risk factors, such as hypertension, dyslipidaemia and obesity, which are markedly increased in diabetes. Emerging evidence indicates that GLP-1 also exerts direct effects on specific aspects of diabetic CVD, such as endothelial dysfunction, inflammation, angiogenesis and adverse cardiac remodelling. However, the majority of studies have employed experimental models of diabetic CVD and information on the effects of GLP-1 in the clinical setting is limited, although several large-scale trials are ongoing. It is clearly important to gain a detailed knowledge of the cardiovascular actions of GLP-1 in diabetes given the large number of patients currently receiving GLP-1-based therapies. This review will therefore discuss current understanding of the effects of GLP-1 on both cardiovascular risk factors in diabetes and direct actions on the heart and vasculature in this setting and the evidence implicating specific targeting of GLP-1 as a novel therapy for CVD in diabetes. PMID:25231355

  1. Comparative Effects of Prolonged and Intermittent Stimulation of the Glucagon-Like Peptide 1 Receptor on Gastric Emptying and Glycemia

    PubMed Central

    Umapathysivam, Mahesh M.; Lee, Michael Y.; Jones, Karen L.; Annink, Christopher E.; Cousins, Caroline E.; Trahair, Laurence G.; Rayner, Chris K.; Chapman, Marianne J.; Nauck, Michael A.; Horowitz, Michael; Deane, Adam M.

    2014-01-01

    Acute administration of glucagon-like peptide 1 (GLP-1) and its agonists slows gastric emptying, which represents the major mechanism underlying their attenuation of postprandial glycemic excursions. However, this effect may diminish during prolonged use. We compared the effects of prolonged and intermittent stimulation of the GLP-1 receptor on gastric emptying and glycemia. Ten healthy men received intravenous saline (placebo) or GLP-1 (0.8 pmol/kg ⋅ min), as a continuous 24-h infusion (“prolonged”), two 4.5-h infusions separated by 20 h (“intermittent”), and a 4.5-h infusion (“acute”) in a randomized, double-blind, crossover fashion. Gastric emptying of a radiolabeled mashed potato meal was measured using scintigraphy. Acute GLP-1 markedly slowed gastric emptying. The magnitude of the slowing was attenuated with prolonged but maintained with intermittent infusions. GLP-1 potently diminished postprandial glycemia during acute and intermittent regimens. These observations suggest that short-acting GLP-1 agonists may be superior to long-acting agonists when aiming specifically to reduce postprandial glycemic excursions in the treatment of type 2 diabetes. PMID:24089511

  2. Glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes: Past, present, and future

    PubMed Central

    Kalra, Sanjay; Baruah, Manash P.; Sahay, Rakesh K.; Unnikrishnan, Ambika Gopalakrishnan; Uppal, Shweta; Adetunji, Omolara

    2016-01-01

    Glucagon-like peptide-1 (GLP-1)–based therapy improves glycaemic control through multiple mechanisms, with a low risk of hypoglycaemia and the additional benefit of clinically relevant weight loss. Since Starling and Bayliss first proposed the existence of intestinal secretions that stimulate the pancreas, tremendous progress has been made in the area of incretins. As a number of GLP-1 receptor agonists (GLP-1 RAs) continue to become available, physicians will soon face the challenge of selecting the right option customized to their patient's needs. The following discussion, derived from an extensive literature search using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide, provides a comprehensive review of existing and upcoming molecules in the GLP-1 RA class in terms of their structure, pharmacological profiles, efficacy, safety, and convenience. Search Methodology: A literature search was conducted using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide. Relevant articles were those that discussed structural, pharmacokinetic and pharmacodynamic differences, classification, long-acting and short-acting GLP-1 RAs, phase 3 trials, and expert opinions. Additional targeted searches were conducted on diabetes treatment guidelines and reviews on safety, as well as the American Diabetes Association/European Society for Study of Diabetes (ADA/EASD) statement on pancreatic safety. PMID:27042424

  3. Glucagon-like peptide-1 (GLP-1) and protective effects in cardiovascular disease: a new therapeutic approach for myocardial protection

    PubMed Central

    2013-01-01

    Glucagon-like peptide-1 (GLP-1) is a member of the proglucagon incretin family implicated in the control of appetite and satiety. GLP-1 has insulinotropic, insulinomimetic, and glucagonostatic effects, thereby exerting multiple complementary actions to lower blood glucose in subjects with type 2 diabetes mellitus. A major advantage over conventional insulin is the fact that the insulinotropic actions of GLP-1 are dependent upon ambient glucose concentration, mitigating the risks of hypoglycemia. Recently, the crucial role of GLP-1 in cardiovascular disease has been suggested in both preclinical and clinical studies. The experimental data indicate GLP-1 and its analogs to have direct effects on the cardiovascular system, in addition to their classic glucoregulatory actions. Clinically, beneficial effects of GLP-1 have also been demonstrated in patients with myocardial ischemia and heart failure. GLP-1 has recently been demonstrated to be a more effective alternative in treating myocardial injury. This paper provides a review on the current evidence supporting the use of GLP-1 in experimental animal models and human trials with the ischemic and non-ischemic heart and discusses their molecular mechanisms and potential as a new therapeutic approach. PMID:23777457

  4. The glucagon-like peptide 1 receptor agonist liraglutide attenuates the reinforcing properties of alcohol in rodents.

    PubMed

    Vallöf, Daniel; Maccioni, Paola; Colombo, Giancarlo; Mandrapa, Minja; Jörnulf, Julia Winsa; Egecioglu, Emil; Engel, Jörgen A; Jerlhag, Elisabet

    2016-03-01

    The incretin hormone, glucagon-like peptide 1 (GLP-1), regulates gastric emptying, glucose-dependent stimulation of insulin secretion and glucagon release, and GLP-1 analogs are therefore approved for treatment of type II diabetes. GLP-1 receptors are expressed in reward-related areas such as the ventral tegmental area and nucleus accumbens, and GLP-1 was recently shown to regulate several alcohol-mediated behaviors as well as amphetamine-induced, cocaine-induced and nicotine-induced reward. The present series of experiments were undertaken to investigate the effect of the GLP-1 receptor agonist, liraglutide, on several alcohol-related behaviors in rats that model different aspects of alcohol use disorder in humans. Acute liraglutide treatment suppressed the well-documented effects of alcohol on the mesolimbic dopamine system, namely alcohol-induced accumbal dopamine release and conditioned place preference in mice. In addition, acute administration of liraglutide prevented the alcohol deprivation effect and reduced alcohol intake in outbred rats, while repeated treatment of liraglutide decreased alcohol intake in outbred rats as well as reduced operant self-administration of alcohol in selectively bred Sardinian alcohol-preferring rats. Collectively, these data suggest that GLP-1 receptor agonists could be tested for treatment of alcohol dependence in humans. PMID:26303264

  5. Protein Engineering Strategies for Sustained Glucagon-Like Peptide-1 Receptor–Dependent Control of Glucose Homeostasis

    PubMed Central

    Picha, Kristen M.; Cunningham, Mark R.; Drucker, Daniel J.; Mathur, Ashok; Ort, Tatiana; Scully, Michael; Soderman, Avery; Spinka-Doms, Tracy; Stojanovic-Susulic, Vedrana; Ann Thomas, Beth; O'Neil, Karyn T.

    2008-01-01

    OBJECTIVE—We have developed a novel platform for display and delivery of bioactive peptides that links the biological properties of the peptide to the pharmacokinetic properties of an antibody. Peptides engineered in the MIMETIBODY platform have improved biochemical and biophysical properties that are quite distinct from those of Fc-fusion proteins. CNTO736 is a glucagon-like peptide 1 (GLP-1) receptor agonist engineered in our MIMETIBODY platform. It retains many activities of native GLP-1 yet has a significantly enhanced pharmacokinetic profile. Our goal was to develop a long-acting GLP-1 receptor agonist with sustained efficacy. RESEARCH DESIGN AND METHODS—In vitro and in vivo activity of CNTO736 was evaluated using a variety of rodent cell lines and diabetic animal models. RESULTS—Acute pharmacodynamic studies in diabetic rodents demonstrate that CNTO736 reduces fasting and postprandial glucose, decreases gastric emptying, and inhibits food intake in a GLP-1 receptor–specific manner. Reduction of food intake following CNTO736 dosing is coincident with detection of the molecule in the circumventricular organs of the brain and activation of c-fos in regions protected by the blood-brain barrier. Diabetic rodents dosed chronically with CNTO736 have lower fasting and postprandial glucose and reduced body weight. CONCLUSIONS—Taken together, our data demonstrate that CNTO736 produces a spectrum of GLP-1 receptor–dependent actions while exhibiting significantly improved pharmacokinetics relative to the native GLP-1 peptide. PMID:18426860

  6. The Effect of Glucagon-Like Peptide 1 Receptor Agonists on Weight Loss in Type 2 Diabetes: A Systematic Review and Mixed Treatment Comparison Meta-Analysis

    PubMed Central

    Potts, Jessica E.; Gray, Laura J.; Brady, Emer M.; Khunti, Kamlesh; Davies, Melanie J.; Bodicoat, Danielle H.

    2015-01-01

    Aims To determine the effects of glucagon-like peptide-1 receptor agonists compared with placebo and other anti-diabetic agents on weight loss in overweight or obese patients with type 2 diabetes mellitus. Methods Electronic searches were conducted for randomised controlled trials that compared a glucagon-like peptide-1 receptor agonist therapy at a clinically relevant dose with a comparator treatment (other type 2 diabetes treatment or placebo) in adults with type 2 diabetes and a mean body mass index ≥ 25kg/m2. Pair-wise meta-analyses and mixed treatment comparisons were conducted to examine the difference in weight change at six months between the glucagon-like peptide-1 receptor agonists and each comparator. Results In the mixed treatment comparison (27 trials), the glucagon-like peptide-1 receptor agonists were the most successful in terms of weight loss; exenatide 2mg/week: -1.62kg (95% CrI: -2.95kg, -0.30kg), exenatide 20μg: -1.37kg (95% CI: -222kg, -0.52kg), liraglutide 1.2mg: -1.01kg (95%CrI: -2.41kg, 0.38kg) and liraglutide 1.8mg: -1.51 kg (95% CI: -2.67kg, -0.37kg) compared with placebo. There were no differences between the GLP-1 receptor agonists in terms of weight loss. Conclusions This review provides evidence that glucagon-like peptide-1 receptor agonist therapies are associated with weight loss in overweight or obese patients with type 2 diabetes with no difference in weight loss seen between the different types of GLP-1 receptor agonists assessed. PMID:26121478

  7. Crystalline polyoxometalate (POM)-polyethylene glycol (PEG) composites aimed as non-humidified intermediate-temperature proton conductors

    NASA Astrophysics Data System (ADS)

    Tsuboi, Masaki; Hibino, Mitsuhiro; Mizuno, Noritaka; Uchida, Sayaka

    2016-02-01

    Crystalline polyoxometalate (POM)-polyethylene glycol (PEG) composites aimed as non-humidified intermediate-temperature proton conductors were synthesized and characterized by single crystal and powder XRD, solid state MASNMR, and TG-DTA measurements. Among the POM-PEG composites, Cs2.7H0.3[PW12O40]·1.2PEG1000 (CsHPW-PEG1000) possessed one-dimensional channels with diameters of ca. 6 and 8 Å, where PEG probably resided, and showed the best performance as a proton conductor (1.2×10-5 S cm-1 at 443 K). Proton conductivities of POM-PEG composites decreased by the increase in molecular weights of PEG (CsHPW-PEG12,000) or anion charges (CsHSiW-PEG1000). Variable contact time 13C-CP (cross polarization) MASNMR revealed that local mobility (i.e., segmental motion) of PEG is related to the trends in proton conductivities. These results show that amount of acidic protons (H+) is not the primary factor in proton conduction and that segmental motion of PEG assists the proton hopping among POMs in the crystal lattice of POM-PEG composites.

  8. In vivo study of the mucus-permeating properties of PEG-coated nanoparticles following oral administration.

    PubMed

    Inchaurraga, Laura; Martín-Arbella, Nekane; Zabaleta, Virginia; Quincoces, Gemma; Peñuelas, Ivan; Irache, Juan M

    2015-11-01

    The aim of this work was to investigate the mucus-permeating properties of poly(ethyleneglycol)-coated nanoparticles prepared from the copolymer of methyl vinyl ether and maleic anhydride (Gantrez® AN) after oral administration in rats. Nanoparticles were "decorated" with PEGs of different molecular masses (PEG2000, PEG6000 and PEG10000) at a PEG-to-polymer ratio of 0.125. All the PEG-coated nanoparticles displayed a mean size of ∼150 nm, slightly negative ζ values and a "brush" conformation as determined from the calculation of the PEG density. For in vivo studies, nanoparticles were labelled with either (99m)Tc or fluorescent tags. Naked nanoparticles displayed a higher ability to interact with the mucosa of the stomach than with the small intestine. However, these interactions were restricted to the mucus layer covering the epithelial surface, as visualised by fluorescence microscopy. On the contrary, PEG-coated nanoparticles moved rapidly to the intestine, as determined by imaging, and, then, were capable to develop important interactions with the mucosa, reaching the surface of the epithelium. These mucus permeating properties were more intense for nanoparticles coated with PEG2000 or PEG6000 than with PEG10000. However, the capability of nanocarriers to develop adhesive interactions within the mucosa decreased when prepared at excessive PEG densities. PMID:25541441

  9. Colorectal delivery and retention of PEG-Amprenavir-Bac7 nanoconjugates--proof of concept for HIV mucosal pre-exposure prophylaxis.

    PubMed

    Samizadeh, Mahta; Zhang, Xiaoping; Gunaseelan, Simi; Nelson, Antoinette G; Palombo, Matthew S; Myers, Daniel R; Singh, Yashveer; Ganapathi, Usha; Szekely, Zoltan; Sinko, Patrick J

    2016-02-01

    Local delivery of anti-HIV drugs to the colorectal mucosa, a major site of HIV replication, and their retention within mucosal tissue would allow for a reduction in dose administered, reduced dosing frequency and minimal systemic exposure. The current report describes a mucosal pre-exposure prophylaxis (mPrEP) strategy that utilizes nanocarrier conjugates (NC) consisting of poly(ethylene glycol) (PEG), amprenavir (APV), and a cell-penetrating peptide (CPP; namely Bac7, a fragment derived from bactenecin 7). APV-PEG NCs with linear PEGs (2, 5, 10, and 30 kDa) exhibited reduced (52-21%) anti-HIV-1 protease (PR) activity as compared to free APV in an enzyme-based FRET assay. In MT-2 T cells, APV-PEG3.4 kDa-FITC (APF) anti-HIV-1 activity was significantly reduced (160-fold, IC50 = 8064 nM) due to poor cell uptake, whereas it was restored (IC50 = 78.29 nM) and similar to APV (IC50 = 50.29 nM) with the addition of Bac7 to the NC (i.e., APV-PEG3.4 kDa-Bac7, APB). Flow cytometry and confocal microscopy demonstrated Bac7-PEG3.4 kDa-FITC (BPF) uptake was two- and fourfold higher than APF in MT-2 T cells and Caco-2 intestinal epithelial cells, respectively. There was no detectable punctate fluorescence in either cell line suggesting that BPF directly enters the cytosol thus avoiding endosomal entrapment. After colorectal administration in mice, BPF mucosal concentrations were 21-fold higher than APF concentrations. BPF concentrations also remained constant for the 5 days of the study suggesting that (1) the NC's structural characteristics (i.e., the size of the PEG carrier and the presence of a CPP) significantly influenced tissue persistence, and (2) the NCs were probably lodged in the lamina propria since the average rodent colon mucosal cell turnover time is 2-3 days. These encouraging results suggest that Bac7 functionalized NCs delivered locally to the colorectal mucosa may form drug delivery depots that are capable of sustaining colorectal drug

  10. Efficient and Tumor Targeted siRNA Delivery by Polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate (PEI-PCL-PEG-Fol).

    PubMed

    Liu, Li; Zheng, Mengyao; Librizzi, Damiano; Renette, Thomas; Merkel, Olivia M; Kissel, Thomas

    2016-01-01

    Efficient delivery of functional nucleic acids into specific cells or tissues is still a challenge for gene therapy and largely depends on targeted delivery strategies. The folate receptor (FR) is known to be overexpressed extracellularly on a variety of human cancers and is therefore an outstanding gate for tumor-targeted Trojan horse-like delivery of therapeutics. In this study, an amphiphilic and biodegradable ternary copolymer conjugated with folate as ligand, polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate (PEI-PCL-PEG-Fol) was synthesized and evaluated for targeted siRNA delivery via folate-FR recognition. The amphiphilic character of similar polymers was shown previously to support endosomal release of endocytosed nanocarriers and to promote formation of long circulating micelles. The obtained PEI-PCL-PEG-Fol exhibited less cytotoxicity in comparison with the corresponding ternary copolymer without folate (PEI-PCL-PEG) and with unmodified PEI25kDa. Stable micelle-like polyplexes with hydrodynamic diameters about 100 nm were found to have a zeta potential of +8.6 mV, which was lower than that of micelleplexes without folate-conjugation (+13-16 mV). Nonetheless, increased cellular uptake and in vitro gene knockdown of PEI-PCL-PEG-Fol/siRNA micelleplexes were observed in SKOV-3 cells, an FR overexpressing cell line, in comparison with the nonfolate-conjugated ones. Moreover, PEI-PCL-PEG-Fol/siRNA micelleplexes exhibited excellent stability in vivo during the analysis of 120 min and a longer circulation half life than hyPEI25kDa/siRNA polyplexes. Most interestingly, the targeted delivery system yielded 17% deposition of the i.v. injected siRNA per gram in the tumor after 24 h due to the effective folate targeting and the prolonged circulation. PMID:26641134

  11. Synthesis, characterization and anticorrosion potentials of chitosan-g-PEG assembled on silver nanoparticles.

    PubMed

    Hefni, Hassan H H; Azzam, Eid M; Badr, Emad A; Hussein, M; Tawfik, Salah M

    2016-02-01

    Chitosan (Ch) grafted with poly(ethylene glycol) (Ch-g-mPEG) were synthesized using mPEG with molecular weights 2000 g/mol. The synthesized Ch-g-mPEG was characterized using gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), and X-ray diffraction (XRD) techniques. Ch-g-mPEG silver nanoparticles has been synthesized and characterized by high-resolution transmission electron microscopy (HRTEM) and energy dispersive analysis of X-rays (EDAX). The synthesized Ch-g-mPEG and its nanostructure were examined as corrosion inhibitors for carbon steel in 1M HCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results revealed that the inhibition efficiency obtained by Ch-g-mPEG self-assembled on silver nanoparticles is greater than that obtained by Ch-g-mPEG only. Potentiodynamic polarization results reveal that the synthesized compound could be classified as mixed-type corrosion inhibitors with predominant control of the cathodic reaction. The results of EIS indicate that the both charge transfer resistance and inhibition efficiency tend to increase by increasing the inhibitor concentration. PMID:26645144

  12. Impact of anti-PEG IgM antibodies on the pharmacokinetics of pegylated asparaginase preparations in mice.

    PubMed

    Poppenborg, Sabine M; Wittmann, Julia; Walther, Wolfgang; Brandenburg, Gunda; Krähmer, Ralf; Baumgart, Joachim; Leenders, Frank

    2016-08-25

    The potential impact of pre-existing anti-PEG antibodies on the asparaginase activity kinetics of two pegylated l-asparaginase preparations - pegylated recombinant l-asparaginase (PEG-rASNase MC0609) and pegaspargase (pegylated Escherichia colil-asparaginase) - was investigated in immune competent, naïve B6D2F1-hybrid mice. To generate anti-PEG antibodies, mice were pre-sensitised by repeated injections of 40kDa PEG-Diol without being conjugated to a carrier. Successful PEG-Diol pre-sensitisation was verified by analysis of anti-PEG antibody titers in serum. 88-100% of animals developed PEG-specific anti-PEG IgM antibodies after PEG-Diol pre-sensitisation. All animals positive for anti-PEG IgM antibodies and control animals (without prior PEG-Diol pre-sensitisation) were treated once with PEG-rASNase MC0609 or pegaspargase, and asparaginase enzyme activity levels and immunogenicity of both preparations were analysed. Known serum asparaginase activity profiles were measured after treatment with PEG-rASNase MC0609 or pegaspargase in all treatment groups. No rapid decrease of asparaginase activity was observed - irrespective of successful PEG-Diol pre-sensitisation and presence of acquired anti-drug-IgG and/or anti-PEG IgM antibodies. In conclusion, the pharmacokinetics of pegylated l-asparaginase was unaffected by the presence of pre-existing anti-PEG IgM antibodies in immune competent B6D2F1-hybrid mice Probably the titre or affinity of these anti-PEG IgM antibodies were too low to influence the pharmacokinetics of PEG-rASNase MC0609 or pegaspargase or anti-PEG IgM antibodies bound to PEG-ASNase without neutralising capabilities. Thus, early loss of asparaginase activity as observed in serum of ALL patients is a complex process and cannot be explained solely by the existence of pre-existing anti-PEG antibodies. PMID:27292820

  13. CuI/1,10-phen/PEG promoted decarboxylation of 2,3-diarylacrylic acids: synthesis of stilbenes under neutral and microwave conditions with an in situ generated recyclable catalyst.

    PubMed

    Zou, Yong; Huang, Qi; Huang, Tong-Kun; Ni, Qing-Chun; Zhang, En-Sheng; Xu, Tian-Long; Yuan, Mu; Li, Jun

    2013-09-25

    A series of trans- or cis-stilbenes have been synthesized in good to excellent yields via a functional group-dependent decarboxylation process from the corresponding 2,3-diaryl acrylic acids in a neutral CuI/1,10-phen/PEG-400 system under microwave conditions. The in situ generation of the recyclable catalytic complex, the use of environmentally benign solvent PEG-400, the operational simplicity, the short reaction times, as well as the functional group-dependent chemo- and stereo-selectivity have made the decarboxylation process a highly efficient and applicable protocol. PMID:24057265

  14. Adsorption of Plasma Proteins onto PEGylated Lipid Bilayers: The Effect of PEG Size and Grafting Density.

    PubMed

    Lee, Hwankyu; Larson, Ronald G

    2016-05-01

    Lipid bilayers grafted with polyethylene glycol (PEG) of different sizes (Mw = 750, 2000, and 5000) and grafting densities (1.6-25 mol % of PEGylated lipid in dipalmitoylphosphatidylcholine (DPPC) lipid molecules) were simulated with human serum albumin (HSA) using coarse-grained force fields. At low enough grafting density, the PEG has a conformation similar to that of an isolated chain in water, and its Flory radius RF is smaller than the distance between the grafting points (d), which is the so-called "mushroom" regime. In contrast, densely grafted PEG chains (RF > d) extend like brushes, with brush layer thickness given by the Alexander-de Gennes theory. A nearly spherical HSA added to this simulation migrates to the bilayer surface because of the charge interactions between anion residues of HSA and cationic cholines of DPPC, but this HSA-bilayer binding can be sterically suppressed by the PEG chains to an extent that depends on the PEG size and grafting density. In particular, regardless of the extent of the coverage of the PEG on the bilayer, the binding between HSAs and bilayers is suppressed by the PEG layer in a brush but not in a mushroom, indicating that the attractive force between proteins and bilayers can overcome the steric effect of the PEG layer in the mushroom state or in the transition region from mushroom to brush. This helps explain and clarify experiments that show much less adsorption of plasma proteins onto the particle or membrane surface when PEGs are in the brush rather than in the mushroom state. PMID:27046506

  15. Long-Term PEG-J Tube Safety in Patients With Advanced Parkinson's Disease

    PubMed Central

    Epstein, Michael; Johnson, David A; Hawes, Robert; Schmulewitz, Nathan; Vanagunas, Arvydas D; Gossen, E Roderich; Robieson, Weining Z; Eaton, Susan; Dubow, Jordan; Chatamra, Krai; Benesh, Janet

    2016-01-01

    OBJECTIVES: The objectives of this study were to present procedure- and device-associated adverse events (AEs) identified with long-term drug delivery via percutaneous endoscopic gastrojejunostomy (PEG-J). Levodopa-carbidopa intestinal gel (LCIG, also known in US as carbidopa-levodopa enteral suspension, CLES) is continuously infused directly to the proximal small intestine via PEG-J in patients with advanced Parkinson's disease (PD) to overcome slow and erratic gastric emptying and treat motor fluctuations that are not adequately controlled by oral or other pharmacological therapy. METHODS: An independent adjudication committee of three experienced (>25 years each) gastroenterologists reviewed gastrointestinal procedure- and device-associated AEs reported for PD patients (total n=395) enrolled in phase 3 LCIG studies. The rate, clinical significance, and causality of the procedure/device events were determined. RESULTS: The patient median exposure to PEG-J at the data cutoff was 480 days. Procedure- and device-associated serious AEs (SAEs) occurred in 67 (17%) patients. A total of 42% of SAEs occurred during the first 4 weeks following PEG-J placement. SAEs of major clinical significance with the highest procedural incidence were peritonitis (1.5%), pneumonia (1.5%), and abdominal pain (1.3%). The most common non-serious procedure- and device-associated AEs were abdominal pain (31%), post-operative wound infection (20%), and procedural pain (23%). In all, 17 (4.3%) patients discontinued treatment owing to an AE. CONCLUSIONS: In conclusion, incidences of PEG-J AEs with the LCIG delivery system and PEG-J longevity were compared favorably with ranges described in the PEG/PEG-J literature. A low discontinuation rate in this study suggests acceptable procedural outcomes and AE rates in PD patients treated with this PEG-J drug delivery system. PMID:27030949

  16. PEG-Protein Interaction Induced Contraction of NalD Chains

    PubMed Central

    Yu, Jiyan; Chen, Weizhong; Wu, Chi; Chen, Hao

    2014-01-01

    In a recent attempt to crystallize a regulator of MexAB-OprM multi-drug efflux systems in Pseudomonas aeruginosa (NalD), we found that adding polyethylene glycol (PEG3350, Mw = 3,350 g/mol) into the protein solution increases the speed of NalD migration in gel electrophoresis, signaling a smaller hydrodynamic size. At first we conjectured that NalD was degraded unexpectedly by PEG; however, we found that there was no change in its molar mass by MALDI-TOF characterization. Moreover, we found that adding polyacrylic acid (PAA) into the solution mixture returned the NalD migration to its normal speed. Furthermore, our analytic ultracentrifugation and dynamic laser light scattering results directly reveal that NalD interacts with PEG so that individual NalD chains gradually shrink as more PEG chains are added in the range of 10–50 mg/mL. Size exclusion chromatography also confirms that the NalD chain shrinks in the presence of PEG. A combination of these results indicates that PEG3350 chains can complex with NalD to induce an intra-protein chain contraction, presumably via the formation of hydrogen bond between –C-O-C– on PEG and –COOH on NalD, resulting in a smaller hydrodynamic size (faster migration) and a higher apparent molar mass. Note that because the presence of PEG affects osmotic pressure, it is considered to be a precipitator of protein crystallization. Our current finding reveals that the interaction of PEG/protein may play a significant role in protein crystallization. The complexation potentially makes the protein chain segments less flexible, and consequently makes crystallization easier. Hopefully, our current results will stimulate further studies in this direction. PMID:24810951

  17. PEG-protein interaction induced contraction of NalD chains.

    PubMed

    Yu, Jiyan; Chen, Weizhong; Wu, Chi; Chen, Hao

    2014-01-01

    In a recent attempt to crystallize a regulator of MexAB-OprM multi-drug efflux systems in Pseudomonas aeruginosa (NalD), we found that adding polyethylene glycol (PEG3350, Mw = 3,350 g/mol) into the protein solution increases the speed of NalD migration in gel electrophoresis, signaling a smaller hydrodynamic size. At first we conjectured that NalD was degraded unexpectedly by PEG; however, we found that there was no change in its molar mass by MALDI-TOF characterization. Moreover, we found that adding polyacrylic acid (PAA) into the solution mixture returned the NalD migration to its normal speed. Furthermore, our analytic ultracentrifugation and dynamic laser light scattering results directly reveal that NalD interacts with PEG so that individual NalD chains gradually shrink as more PEG chains are added in the range of 10-50 mg/mL. Size exclusion chromatography also confirms that the NalD chain shrinks in the presence of PEG. A combination of these results indicates that PEG3350 chains can complex with NalD to induce an intra-protein chain contraction, presumably via the formation of hydrogen bond between -C-O-C- on PEG and -COOH on NalD, resulting in a smaller hydrodynamic size (faster migration) and a higher apparent molar mass. Note that because the presence of PEG affects osmotic pressure, it is considered to be a precipitator of protein crystallization. Our current finding reveals that the interaction of PEG/protein may play a significant role in protein crystallization. The complexation potentially makes the protein chain segments less flexible, and consequently makes crystallization easier. Hopefully, our current results will stimulate further studies in this direction. PMID:24810951

  18. Assessment of PLGA-PEG-PLGA Copolymer Hydrogel for Sustained Drug Delivery in the Ear

    PubMed Central

    Feng, Liang; Ward, Jonette A.; Li, S. Kevin; Tolia, Gaurav; Hao, Jinsong; Choo, Daniel I.

    2014-01-01

    Temperature sensitive copolymer systems were previously studied using modified diffusion cells in vitro for intratympanic injection, and the PLGA-PEG-PLGA copolymer systems were found to provide sustained drug delivery for several days. The objectives of the present study were to assess the safety of PLGA-PEG-PLGA copolymers in intratympanic injection in guinea pigs in vivo and to determine the effects of additives glycerol and poloxamer in PLGA-PEG-PLGA upon drug release in the diffusion cells in vitro for sustained inner ear drug delivery. In the experiments, the safety of PLGA-PEG-PLGA copolymers to inner ear was evaluated using auditory brainstem response (ABR). The effects of the additives upon drug release from PLGA-PEG-PLGA hydrogel were investigated in the modified Franz diffusion cells in vitro with cidofovir as the model drug. The phase transition temperatures of the PLGA-PEG-PLGA copolymers in the presence of the additives were also determined. In the ABR safety study, the PLGA-PEG-PLGA copolymer alone did not affect hearing when delivered at 0.05-mL dose but caused hearing loss after 0.1-mL injection. In the drug release study, the incorporation of the bioadhesive additive, poloxamer, in the PLGA-PEG-PLGA formulations was found to decrease the rate of drug release whereas the increase in the concentration of the humectant additive, glycerol, provided the opposite effect. In summary, the PLGA-PEG-PLGA copolymer did not show toxicity to the inner ear at the 0.05-mL dose and could provide sustained release that could be controlled by using the additives for inner ear applications. PMID:24438444

  19. Colloidal stability and thermo-responsive properties of iron oxide nanoparticles coated with polymers: advantages of Pluronic® F68-PEG mixture

    NASA Astrophysics Data System (ADS)

    Chiper, Manuela; Hervé Aubert, Katel; Augé, Amélie; Fouquenet, Jean-François; Soucé, Martin; Chourpa, Igor

    2013-10-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are recognized to be an attractive platform for developing novel drug delivery approaches and thus several types of functionalized magnetic nanocarriers based on SPIONs have been synthesized and studied. The coating of the metal oxide surface was achieved in a one-pot synthesis with biocompatible polyethylene glycol (PEG) and thermo-responsive modified Pluronic® F68. The resulting thermo-responsive magnetic nanocarriers can incorporate water insoluble drugs into their hydrophobic compartment and later release them in a temperature dependent manner. Here we report novel magnetic nanocarriers with significant improvements regarding the colloidal stability and critical temperature obtained by mixing various molar ratios of hydrophilic PEG with thermo-responsive Pluronic® F68 bearing different end group functionalities. Various methods have been employed to characterize the magnetic nanocarriers, such as photon correlation spectroscopy (DLS), atomic absorption, FT-IR spectroscopy, and surface-enhanced Raman scattering. The transition temperature that determines changes in the conformation of the block copolymer chain was studied by DLS as a function of temperature. Moreover, the drug loading properties of SPION-(F68-OMe)-(F68-FA) and SPION-PEG-F68-FA were analyzed with a hydrophobic fluorescent dye, DID oil. The behavior of the encapsulated DID into the nanocarrier shell was studied as a function of temperature via fluorescence spectroscopy. These results offer original insights into the enhanced colloidal stability and thermo-sensitive properties of the novel synthesized magnetic nanocarriers.

  20. Colloidal stability and thermo-responsive properties of iron oxide nanoparticles coated with polymers: advantages of Pluronic® F68-PEG mixture.

    PubMed

    Chiper, Manuela; Hervé Aubert, Katel; Augé, Amélie; Fouquenet, Jean-François; Soucé, Martin; Chourpa, Igor

    2013-10-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are recognized to be an attractive platform for developing novel drug delivery approaches and thus several types of functionalized magnetic nanocarriers based on SPIONs have been synthesized and studied. The coating of the metal oxide surface was achieved in a one-pot synthesis with biocompatible polyethylene glycol (PEG) and thermo-responsive modified Pluronic® F68. The resulting thermo-responsive magnetic nanocarriers can incorporate water insoluble drugs into their hydrophobic compartment and later release them in a temperature dependent manner. Here we report novel magnetic nanocarriers with significant improvements regarding the colloidal stability and critical temperature obtained by mixing various molar ratios of hydrophilic PEG with thermo-responsive Pluronic® F68 bearing different end group functionalities. Various methods have been employed to characterize the magnetic nanocarriers, such as photon correlation spectroscopy (DLS), atomic absorption, FT-IR spectroscopy, and surface-enhanced Raman scattering. The transition temperature that determines changes in the conformation of the block copolymer chain was studied by DLS as a function of temperature. Moreover, the drug loading properties of SPION-(F68-OMe)-(F68-FA) and SPION-PEG-F68-FA were analyzed with a hydrophobic fluorescent dye, DID oil. The behavior of the encapsulated DID into the nanocarrier shell was studied as a function of temperature via fluorescence spectroscopy. These results offer original insights into the enhanced colloidal stability and thermo-sensitive properties of the novel synthesized magnetic nanocarriers. PMID:24013614

  1. Shape Transformation Following Reduction-Sensitive PEG Cleavage of Polymer/DNA Nanoparticles

    PubMed Central

    Williford, John-Michael; Ren, Yong; Huang, Kevin; Pan, Deng; Mao, Hai-Quan

    2014-01-01

    PEGylated polycation/DNA micellar nanoparticles have been developed that can undergo shape transformation upon cleavage of the PEG grafts in response to an environmental cue. As a proof-of-principle, DNA nanoparticles with higher PEG grafting density adopting long, worm- and rod-like morphologies, transition to more condensed nanoparticles with spherical and short-rod morphologies upon cleavage of a fraction of the PEG grafts from the copolymer. This shape transformation leads to increased surface charges, correlating with improved transfection efficiency. PMID:25530853

  2. A Sustainable and Efficient Synthesis of Benzyl Phosphonates Using PEG/KI Catalytic System

    PubMed Central

    Disale, Shamrao; Kale, Sandip; Abraham, George; Kahandal, Sandeep; Sawarkar, Ashish N.; Gawande, Manoj B.

    2016-01-01

    An efficient and expedient protocol for the synthesis of benzyl phosphonates using KI/K2CO3 as a catalytic system and PEG-400 as benign solvent has been developed. The reaction proceeds smoothly at room temperature achieving excellent selectivity and yield of the corresponding products. The combination of PEG-400, KI, and K2CO3 in this reaction avoids the need of volatile/toxic organic solvents and reactive alkali metals or metal nanoparticles/hydrides. We believe that this benign combination (PEG-400 and KI) could be used for other related organic transformations. PMID:27579301

  3. Synthesis and characterization of PEG-P(MAA-SS-VCL) nanoparticles

    NASA Astrophysics Data System (ADS)

    Yu, L. L.; Yang, K.; Mu, R. H.; Zhang, N.; Su, L.

    2016-07-01

    The PEG-P(MAA-SS-VCL) nanoparticles were obtained using disulfide containing dimethacrylate (SS) as cross-linking agent, using polyethylene glycol methyl acrylate (PEGMA), N-Vinyl-ε-caprolactam (VCL), and methacrylic acid (MAA) as monomers via homogeneous polymerization in aqueous. The PEG-P(MAA-SS-VCL) nanoparticles were characterized by FT-IR and TGA. The particle size and morphology variation in different environments were detected by dynamic light scattering (DLS) and scanning electron microscopy (SEM). It is the very method that PEG-P(MAA-SS-VCL) nanoparticles can be obtained in this study.

  4. A Sustainable and Efficient Synthesis of Benzyl Phosphonates Using PEG/KI Catalytic System.

    PubMed

    Disale, Shamrao; Kale, Sandip; Abraham, George; Kahandal, Sandeep; Sawarkar, Ashish N; Gawande, Manoj B

    2016-01-01

    An efficient and expedient protocol for the synthesis of benzyl phosphonates using KI/K2CO3 as a catalytic system and PEG-400 as benign solvent has been developed. The reaction proceeds smoothly at room temperature achieving excellent selectivity and yield of the corresponding products. The combination of PEG-400, KI, and K2CO3 in this reaction avoids the need of volatile/toxic organic solvents and reactive alkali metals or metal nanoparticles/hydrides. We believe that this benign combination (PEG-400 and KI) could be used for other related organic transformations. PMID:27579301

  5. ``Sheddable'' PEG-lipid to balance the contradiction of PEGylation between long circulation and poor uptake

    NASA Astrophysics Data System (ADS)

    Zhao, Caiyan; Deng, Hongzhang; Xu, Jing; Li, Shuyi; Zhong, Lin; Shao, Leihou; Wu, Yan; Liang, Xing-Jie

    2016-05-01

    PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a ``sheddable'' PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic microenvironment, the PEG chains detached from the surfaces of the micelles while the degree of linker cleavage could not cause a significant particle size change, which facilitated the carrier binding to tumor cells and improved the cellular uptake. Subsequently, the ``sheddable'' PEG-lipid micelles easily internalized into cells and the increased acidity in the lysosomes further promoted drug release. Thus, this ``sheddable'' PEG-lipid nanocarrier could be a good candidate for effective intracellular drug delivery in cancer chemotherapy.PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a ``sheddable'' PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic

  6. Thermogelling Biodegradable Polymers with Hydrophilic Backbones: PEG-g-PLGA

    SciTech Connect

    Jeong, Byeongmoon; Kibbey, Merinda R.; Birnbaum, Jerome C.; Won, You-Yeong; Gutowska, Anna

    2000-10-31

    The aqueous solutions of poly(ethylene glycol)grafted with poly(lactic acid-co-glycolic acid) flow freely at room temperature but form gels at higher temperature. The existence of micelles in water at low polymer concentration was confirmed by Cro-transmission electron microscopy and dye solubilization studies. The micellar diameter and critical micelle concentration are about 9 nm and 0.47 wt.% respectively. The critical gel concentration, above which a gel phase appears was 16 wt.% and sol-to-gel transition temperature was slightly affected by the concentration in the range of 16 {approx} 25 wt.%. At sol-to-gel transition, viscosity increased abruptly and C-NMR showed molecular motion of hydrophilic poly(lactic acid-co-glycolic acid) side-chains increased. The hydrogel of PEG-g-PLGA with hydrophilic backbones was transparent during degradation and remained a gel for one week, suggesting a promising material for short-term drug delivery.

  7. Improving Tumor-Targeting Capability and Pharmacokinetics of 99mTc-Labeled Cyclic RGD Dimers with PEG4 Linkers

    PubMed Central

    Wang, Lijun; Shi, Jiyun; Kim, Young-Seung; Zhai, Shizhen; Jia, Bing; Zhao, Huiyun; Liu, Zhaofei; Wang, Fan; Chen, Xiaoyuan; Liu, Shuang

    2009-01-01

    This report describes the synthesis of two cyclic RGD (Arg-Gly-Asp) conjugates, HYNIC-2PEG4-dimer (HYNIC = 6-hydrazinonicotinyl; 2PEG4-dimer = E[PEG4-c(RGDfK)]2; and PEG4 = 15-amino-4,7,10,13-tetraoxapentadecanoic acid) and HYNIC-3PEG4-dimer (3PEG4-dimer = PEG4-E[PEG4-c(RGDfK)]2), and evaluation of their 99mTc complexes [99mTc(HYNIC-2PEG4-dimer)(tricine)(TPPTS)] (99mTc-2PEG4-dimer: TPPTS = trisodium triphenylphosphine-3,3′,3″-trisulfonate) and [99mTc(HYNIC-3PEG4-dimer)(tricine)(TPPTS)] (99mTc-3PEG4-dimer) as novel radiotracers for imaging integrin αvβ3 expression in athymic nude mice bearing U87MG glioma and MDA-MB-435 breast cancer xenografts. The integrin αvβ3 binding affinities of RGD peptides were determined by competitive displacement of 125I-c(RGDyK) on U87MG glioma cells. It was found that the two PEG4 linkers between RGD motifs in HYNIC-2PEG4-dimer (IC50 = 2.8 ± 0.5 nM) and HYNIC-3PEG4-dimer (IC50 = 2.4 ± 0.7 nM) are responsible for their higher integrin αvβ3 binding affinity than that of HYNIC-PEG4-dimer (PEG4-dimer = PEG4-E[c(RGDfK)]2; IC50 = 7.5 ± 2.3 nM). Addition of extra PEG4 linker in HYNIC-3PEG4-dimer has little impact on integrin αvβ3 binding affinity. 99mTc-2PEG4-dimer and 99mTc-3PEG4-dimer were prepared in high yield with >95% radiochemical purity and the specific activity of > 10 Ci/μmol. Biodistribution studies clearly demonstrated that PEG4 linkers are particularly useful for improving the tumor uptake and clearance kinetics of 99mTc-2PEG4-dimer and 99mTc-3PEG4-dimer from non-cancerous organs. It was also found that there was a linear relationship between the tumor size and radiotracer tumor uptake expressed as %ID (percentage of the injected dose) in U87MG glioma and MDA-MB-435 breast tumor models. The blocking experiment showed that the tumor uptake of 99mTc-2PEG4-dimer is integrin αvβ3-mediated. In the metabolism study, 99mTc-2PEG4-dimer had high metabolic stability during its excretion from renal and hepatobiliary routes

  8. Shell-sheddable, pH-sensitive supramolecular nanoparticles based on ortho ester-modified cyclodextrin and adamantyl PEG.

    PubMed

    Ji, Ran; Cheng, Jing; Yang, Ting; Song, Cheng Cheng; Li, Lei; Du, Fu-Sheng; Li, Zi-Chen

    2014-10-13

    We report a new type of pH-sensitive supramolecular aggregates which possess a programmable character of sequential dePEGylation and degradation. As a platform of designing and building multifunctional supramolecular nanoparticles, a family of 6-OH ortho ester-modified β-cyclodextrin (β-CD) derivatives have been synthesized via the facile reaction between β-CD and cyclic ketene acetals with different alkyl lengths. These asymmetric acid-labile β-CD derivatives formed amphiphilic supramolecules with adamantane-modified PEG through host-guest interaction in polar solvents such as ethanol. The supramolecules can self-assemble in water to form acid-labile supramolecular aggregates. The results of TEM and light scattering measurements demonstrate that the size and morphology of the aggregates are influenced by the alkyl or PEG length and the host-guest feed ratio. By carefully balancing the alkyl and PEG lengths and adjusting the host-guest ratio, well-dispersed vesicles (50-100 nm) or sphere-like nanoparticles (200-500 nm) were obtained. Zeta potential measurements reveal that these supramolecular aggregates are capable of being surface-functionalized via dynamic host-guest interaction. The supramolecular aggregates were stable at pH 8.4 for at least 12 h as proven by the (1)H NMR and LLS measurements. However, rapid dePEGylation occurred at pH 7.4 due to the hydrolysis of the ortho ester linkages locating at the interface, which resulted in aggregation of the dePEGylated hydrophobic inner cores. Upon further decreasing the pH to 6.4, the hydrophobic cores were further degraded due to the acid-accelerated hydrolysis of the ortho esters. The incubation stability of the acid-labile supramolecular aggregates in neutral buffer could be improved by incorporating hydrophobic poly(ε-caprolactone) into the core of the aggregates. PMID:25144934

  9. Protein kinase A mediates glucagon-like peptide 1-induced nitric oxide production and muscle microvascular recruitment

    PubMed Central

    Dong, Zhenhua; Chai, Weidong; Wang, Wenhui; Zhao, Lina; Fu, Zhuo; Cao, Wenhong

    2013-01-01

    Glucagon-like peptide-1 (GLP-1) causes vasodilation and increases muscle glucose uptake independent of insulin. Recently, we have shown that GLP-1 recruits muscle microvasculature and increases muscle glucose use via a nitric oxide (NO)-dependent mechanism. Protein kinase A (PKA) is a major signaling intermediate downstream of GLP-1 receptors. To examine whether PKA mediates GLP-1's microvascular action in muscle, GLP-1 was infused to overnight-fasted male rats for 120 min in the presence or absence of H89, a PKA inhibitor. Hindleg muscle microvascular recruitment and glucose use were determined. GLP-1 infusion acutely increased muscle microvascular blood volume within 30 min without altering microvascular blood flow velocity or blood pressure. This effect persisted throughout the 120-min infusion period, leading to a significant increase in muscle microvascular blood flow. These changes were paralleled with an approximately twofold increase in plasma NO levels and hindleg glucose extraction. Systemic infusion of H89 completely blocked GLP-1-mediated muscle microvascular recruitment and increases in NO production and muscle glucose extraction. In cultured endothelial cells, GLP-1 acutely increased PKA activity and stimulated endothelial NO synthase phosphorylation at Ser1177 and NO production. PKA inhibition abolished these effects. In ex vivo studies, perfusion of the distal saphenous artery with GLP-1 induced significant vasorelaxation that was also abolished by pretreatment of the vessels with PKA inhibitor H89. We conclude that GLP-1 recruits muscle microvasculature by expanding microvascular volume and increases glucose extraction in muscle via a PKA/NO-dependent pathway in the vascular endothelium. This may contribute to postprandial glycemic control and complication prevention in diabetes. PMID:23193054

  10. Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders

    PubMed Central

    Salcedo, Isidro; Tweedie, David; Li, Yazhou; Greig, Nigel H

    2012-01-01

    Like type-2 diabetes mellitus (T2DM), neurodegenerative disorders and stroke are an ever increasing, health, social and economic burden for developed Westernized countries. Age is an important risk factor in all of these; due to the rapidly increasing rise in the elderly population T2DM and neurodegenerative disorders, both represent a looming threat to healthcare systems. Whereas several efficacious drugs are currently available to ameliorate T2DM, effective treatments to counteract pathogenic processes of neurodegenerative disorders are lacking and represent a major scientific and pharmaceutical challenge. Epidemiological data indicate an association between T2DM and most major neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Likewise, there is an association between T2DM and stroke incidence. Studies have revealed that common pathophysiological features, including oxidative stress, insulin resistance, abnormal protein processing and cognitive decline, occur across these. Based on the presence of shared mechanisms and signalling pathways in these seemingly distinct diseases, one could hypothesize that an effective treatment for one disorder could prove beneficial in the others. Glucagon-like peptide-1 (GLP-1)-based anti-diabetic drugs have drawn particular attention as an effective new strategy to not only regulate blood glucose but also to reduce apoptotic cell death of pancreatic beta cells in T2DM. Evidence supports a neurotrophic and neuroprotective role of GLP-1 receptor (R) stimulation in an increasing array of cellular and animal neurodegeneration models as well as in neurogenesis. Herein, we review the physiological role of GLP-1 in the nervous system, focused towards the potential benefit of GLP-1R stimulation as an immediately translatable treatment strategy for acute and chronic neurological disorders. PMID:22519295

  11. Mathematical Modeling of Interacting Glucose-Sensing Mechanisms and Electrical Activity Underlying Glucagon-Like Peptide 1 Secretion

    PubMed Central

    Riz, Michela; Pedersen, Morten Gram

    2015-01-01

    Intestinal L-cells sense glucose and other nutrients, and in response release glucagon-like peptide 1 (GLP-1), peptide YY and other hormones with anti-diabetic and weight-reducing effects. The stimulus-secretion pathway in L-cells is still poorly understood, although it is known that GLP-1 secreting cells use sodium-glucose co-transporters (SGLT) and ATP-sensitive K+-channels (K(ATP)-channels) to sense intestinal glucose levels. Electrical activity then transduces glucose sensing to Ca2+-stimulated exocytosis. This particular glucose-sensing arrangement with glucose triggering both a depolarizing SGLT current as well as leading to closure of the hyperpolarizing K(ATP) current is of more general interest for our understanding of glucose-sensing cells. To dissect the interactions of these two glucose-sensing mechanisms, we build a mathematical model of electrical activity underlying GLP-1 secretion. Two sets of model parameters are presented: one set represents primary mouse colonic L-cells; the other set is based on data from the GLP-1 secreting GLUTag cell line. The model is then used to obtain insight into the differences in glucose-sensing between primary L-cells and GLUTag cells. Our results illuminate how the two glucose-sensing mechanisms interact, and suggest that the depolarizing effect of SGLT currents is modulated by K(ATP)-channel activity. Based on our simulations, we propose that primary L-cells encode the glucose signal as changes in action potential amplitude, whereas GLUTag cells rely mainly on frequency modulation. The model should be useful for further basic, pharmacological and theoretical investigations of the cellular signals underlying endogenous GLP-1 and peptide YY release. PMID:26630068

  12. Overview of Glucagon-like Peptide-1 Analogs and Dipeptidyl Peptidase-4 Inhibitors for Type 2 Diabetes

    PubMed Central

    Pratley, Richard E.

    2008-01-01

    Context Impairment of incretin activity is now recognized as integral to the metabolic derangement underlying type 2 diabetes. Glucoregulatory agents that target the incretin system have recently been developed, and the place of these drugs in the treatment of type 2 diabetes can be assessed based on a growing body of clinical data. Evidence Acquisition A PubMed search was conducted to identify clinical studies of incretin therapies in type 2 diabetes. Article reference lists were also searched for relevant information, and supplemental material such as conference abstracts, drug prescribing information, and treatment guidelines were included as appropriate. Evidence Synthesis Two classes of therapies target the incretin system. The first, glucagon-like peptide-1 (GLP-1) agonists (exemplified by exenatide and liraglutide), have demonstrated considerable efficacy in clinical trials, reducing hemoglobin A1c (HbA1c) by up to 1.3%, decreasing fasting and postprandial glucose concentrations, reducing weight by approximately 3.0 kg, and improving cardiovascular risk factors. The second class, the dipeptidyl peptidase-4 inhibitors (such as sitagliptin and vildagliptin) rely on production of endogenous GLP-1 and act by reducing its turnover. The dipeptidyl peptidase-4 (DPP-4) inhibitors produce modest reductions in HbA1c (< 1%) compared with GLP-1 agonists and are generally weight-neutral. Neither GLP-1 agonists nor DPP-4 inhibitors cause hypoglycemia unless used with other agents known to increase risk. Conclusions GLP-1 agonists and DPP-4 inhibitors provide a valuable new treatment option for patients with type 2 diabetes and may be associated with a wider range of therapeutic benefits than older drugs. PMID:18769687

  13. Glucagon-Like Peptide-1 Synthetic Analogs: New Therapeutic Agents for Use in the Treatment of Diabetes Mellitus

    PubMed Central

    Holz, George G.; Chepurny, Oleg G.

    2010-01-01

    Glucagon-like peptide-1-(7-36)-amide (GLP-1) is a potent blood glucose-lowering hormone now under investigation for use as a therapeutic agent in the treatment of type 2 (adult onset) diabetes mellitus. GLP-1 binds with high affinity to G protein-coupled receptors (GPCRs) located on pancreatic β-cells, and it exerts insulinotropic actions that include the stimulation of insulin gene transcription, insulin biosynthesis, and insulin secretion. The beneficial therapeutic action of GLP-1 also includes its ability to act as a growth factor, stimulating formation of new pancreatic islets (neogenesis) while slowing b-cell death (apoptosis). GLP-1 belongs to a large family of structurally-related hormones and neuropeptides that include glucagon, secretin, GIP, PACAP, and VIP. Biosynthesis of GLP-1 occurs in the enteroendocrine L-cells of the distal intestine, and the release of GLP-1 into the systemic circulation accompanies ingestion of a meal. Although GLP-1 is inactivated rapidly by dipeptidyl peptidase IV (DDP-IV), synthetic analogs of GLP-1 exist, and efforts have been directed at engineering these peptides so that they are resistant to enzymatic hydrolysis. Additional modifications of GLP-1 incorporate fatty acylation and drug affinity complex (DAC) technology to improve serum albumin binding, thereby slowing renal clearance of the peptides. NN2211, LY315902, LY307161, and CJC-1131 are GLP-1 synthetic analogs that reproduce many of the biological actions of GLP-1, but with a prolonged duration of action. AC2993 (Exendin-4) is a naturally occurring peptide isolated from the lizard Heloderma, and it acts as a high affinity agonist at the GLP-1 receptor. This review summarizes structural features and signal transduction properties of GLP-1 and its cognate b-cell GPCR. The usefulness of synthetic GLP-1 analogs as blood glucose-lowering agents is discussed, and the applicability of GLP-1 as a therapeutic agent for treatment of type 2 diabetes is highlighted. PMID

  14. Effect of Glucagon-like Peptide-1 on the Differentiation of Adipose-derived Stem Cells into Osteoblasts and Adipocytes

    PubMed Central

    Lee, Hye Min; Joo, Bo Sun; Lee, Chang Hoon; Kim, Heung Yeol

    2015-01-01

    Objectives Glucagon-like peptide-1 (GLP-1) is an intestinally secreted hormone and it plays an important role in the regulation of glucose homeostasis. However, the possible role of GLP-1 in the differentiation of adipose-derived stem cells (ADSCs) remains unknown. Therefore this study investigated the effect of GLP-1 on the differentiation of ADSCs into osteoblasts and adipocytes. Methods ADSCs were isolated from human adipose tissues of the abdomens, cultured and characterized by flow cytometry and multi-lineage potential assay. ADSCs were induced in osteogenic and adipogenic media treated with two different doses (10 and 100 nM) of GLP-1, and then the effect of GLP-1 on differentiation of ADSCs into osteoblast and adipocyte was examined. The signaling pathway involved in these processes was also examined. Results Isolated human ADSCs expressed mesenchymal stem cell (MSC) specific markers as well as GLP-1 receptor (GLP-1R) proteins. They also showed multiple-lineage potential of MSC. GLP-1 was upregulated the activity and mRNA expression of osteoblast-specific marker, alkaline phosphatase and the mineralization of calcium. In contrast, GLP-1 significantly suppressed the expression of adipocyte-specific markers, peroxisome proliferator-activated receptor gamma (PPAR-γ), lipoprotein lipase (LPL) and adipocyte protein 2 (AP2). This decreased expression of adipocyte specific markers caused by GLP-1 was significantly reversed by the treatment of extracellular signal-regulated kinase (ERK) inhibitor, PD98059 (P < 0.05). Conclusion This result demonstrates that GLP-1 stimulates osteoblast differentiation in ADSCs, whereas it inhibits adipocyte differentiation. The ERK signaling pathway seems to be involved in these differentiation processes mediated by GLP-1. PMID:26357647

  15. Prediction of the effect on antihyperglycaemic action of sitagliptin by plasma active form glucagon-like peptide-1

    PubMed Central

    Kushiyama, Akifumi; Kikuchi, Takako; Tanaka, Kentaro; Tahara, Tazu; Takao, Toshiko; Onishi, Yukiko; Yoshida, Yoko; Kawazu, Shoji; Iwamoto, Yasuhiko

    2016-01-01

    AIM: To investigate whether active glucagon-like peptide-1 (GLP-1) is a prediction Factor of Effect of sitagliptin on patients with type 2 diabetes mellitus (GLP-1 FEST:UMIN000010645). METHODS: Seventy-six patients with type 2 diabetes, who had insufficient glycemic control [Hemoglobin A1c (HbA1c) ≥ 7%] in spite of treatment with metformin and/or sulfonylurea, were included in the investigation. Patients were divided into three groups by tertiles of fasting plasma active GLP-1 level, before the administration of 50 mg sitagliptin. RESULTS: At baseline, body mass index, serum UA, insulin and HOMA-IR were higher in the high active GLP-1 group than in the other two groups. The high active GLP-1 group did not show any decline of HbA1c (7.6% ± 1.4% to 7.5% ± 1.5%), whereas the middle and low groups indicated significant decline of HbA1c (7.4 ± 0.7 to 6.8 ± 0.6 and 7.4 ± 1.2 to 6.9 ± 1.3, respectively) during six months. Only the low and middle groups showed a significant increment of active GLP-1, C-peptide level, a decreased log and proinsulin/insulin ratio after administration. In logistic analysis, the low or middle group is a significant explanatory variable for an HbA1c decrease of ≥ 0.5%, and its odds ratio is 4.5 (1.40-17.6) (P = 0.01) against the high active GLP-1 group. This remains independent when adjusted for HbA1c level before administration, patients’ medical history, medications, insulin secretion and insulin resistance. CONCLUSION: Plasma fasting active GLP-1 is an independent predictive marker for the efficacy of dipeptidyl peptidase 4 inhibitor sitagliptin. PMID:27326345

  16. The glucagon-like peptide-1 analogue exendin-4 reverses impaired intracellular Ca(2+) signalling in steatotic hepatocytes.

    PubMed

    Ali, Eunüs S; Hua, Jin; Wilson, Claire H; Tallis, George A; Zhou, Fiona H; Rychkov, Grigori Y; Barritt, Greg J

    2016-09-01

    The release of Ca(2+) from the endoplasmic reticulum (ER) and subsequent replenishment of ER Ca(2+) by Ca(2+) entry through store-operated Ca(2+) channels (SOCE) play critical roles in the regulation of liver metabolism by adrenaline, glucagon and other hormones. Both ER Ca(2+) release and Ca(2+) entry are severely inhibited in steatotic hepatocytes. Exendin-4, a slowly-metabolised glucagon-like peptide-1 (GLP-1) analogue, is known to reduce liver glucose output and liver lipid, but the mechanisms involved are not well understood. The aim of this study was to determine whether exendin-4 alters intracellular Ca(2+) homeostasis in steatotic hepatocytes, and to evaluate the mechanisms involved. Exendin-4 completely reversed lipid-induced inhibition of SOCE in steatotic liver cells, but did not reverse lipid-induced inhibition of ER Ca(2+) release. The action of exendin-4 on Ca(2+) entry was rapid in onset and was mimicked by GLP-1 or dibutyryl cyclic AMP. In steatotic liver cells, exendin-4 caused a rapid decrease in lipid (half time 6.5min), inhibited the accumulation of lipid in liver cells incubated in the presence of palmitate plus the SOCE inhibitor BTP-2, and enhanced the formation of cyclic AMP. Hormone-stimulated accumulation of extracellular glucose in glycogen replete steatotic liver cells was inhibited compared to that in non-steatotic cells, and this effect of lipid was reversed by exendin-4. It is concluded that, in steatotic hepatocytes, exendin-4 reverses the lipid-induced inhibition of SOCE leading to restoration of hormone-regulated cytoplasmic Ca(2+) signalling. The mechanism may involve GLP-1 receptors, cyclic AMP, lipolysis, decreased diacylglycerol and decreased activity of protein kinase C. PMID:27178543

  17. Glucagon like peptide-1 attenuates bleomycin-induced pulmonary fibrosis, involving the inactivation of NF-κB in mice.

    PubMed

    Gou, Si; Zhu, Tao; Wang, Wei; Xiao, Min; Wang, Xi-chen; Chen, Zhong-hua

    2014-10-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with high mortality and poor prognosis. Previous studies confirmed that NF-κB plays a critical role in the pathogenesis of pulmonary fibrosis and glucagon like peptide-1 (GLP-1) has a property of anti-inflammation by inactivation of NF-κB. Furthermore, the GLP-1 receptor was detected in the lung tissues. Our aim was to investigate the potential value and mechanisms of GLP-1 on BLM-induced pulmonary fibrosis in mice. Mice with BLM-induced pulmonary fibrosis were treated with or without GLP-1 administration. 28 days after BLM infusion, the number of total cells, macrophages, neutrophils, lymphocytes, and the content of TGF-β1 in BALF were measured. Hematoxylin-eosin (HE) staining and Masson's trichrome (MT) staining were performed. The Ashcroft score and hydroxyproline content were analyzed. RT-qPCR and western blot were used to evaluate the expression of α-SMA and VCAM-1. The phosphorylation of NF-κB p65 was also assessed by western blot. DNA binding of NF-κB p65 was measured through Trans(AM) p65 transcription factor ELISA kit. GLP-1 reduced inflammatory cell infiltration and the content of TGF-β1 in BLAF in mice with BLM injection. The Ashcroft score and hydroxyproline content were decreased by GLP-1 administration. Meanwhile, BLM-induced overexpression of α-SMA and VCAM-1 were blocked by GLP-1 treatment in mice. GLP-1 also reduced the ratio of phosphor-NF-κB p65/total-NF-κB p65 and NF-κB p65 DNA binding activity in BLM-induced pulmonary fibrosis in mice. Our data found that BLM-induced lung inflammation and pulmonary fibrosis were significantly alleviated by GLP-1 treatment in mice, possibly through inactivation of NF-κB. PMID:25111852

  18. Intestinal Sodium Glucose Cotransporter 1 Inhibition Enhances Glucagon-Like Peptide-1 Secretion in Normal and Diabetic Rodents.

    PubMed

    Oguma, Takahiro; Nakayama, Keiko; Kuriyama, Chiaki; Matsushita, Yasuaki; Yoshida, Kumiko; Hikida, Kumiko; Obokata, Naoyuki; Tsuda-Tsukimoto, Minoru; Saito, Akira; Arakawa, Kenji; Ueta, Kiichiro; Shiotani, Masaharu

    2015-09-01

    The sodium glucose cotransporter (SGLT) 1 plays a major role in glucose absorption and incretin hormone release in the gastrointestinal tract; however, the impact of SGLT1 inhibition on plasma glucagon-like peptide-1 (GLP-1) levels in vivo is controversial. We analyzed the effects of SGLT1 inhibitors on GLP-1 secretion in normoglycemic and hyperglycemic rodents using phloridzin, CGMI [3-(4-cyclopropylphenylmethyl)-1-(β-d-glucopyranosyl)-4-methylindole], and canagliflozin. These compounds are SGLT2 inhibitors with moderate SGLT1 inhibitory activity, and their IC50 values against rat SGLT1 and mouse SGLT1 were 609 and 760 nM for phloridzin, 39.4 and 41.5 nM for CGMI, and 555 and 613 nM for canagliflozin, respectively. Oral administration of these inhibitors markedly enhanced and prolonged the glucose-induced plasma active GLP-1 (aGLP-1) increase in combination treatment with sitagliptin, a dipeptidyl peptidase-4 (DPP4) inhibitor, in normoglycemic mice and rats. CGMI, the most potent SGLT1 inhibitor among them, enhanced glucose-induced, but not fat-induced, plasma aGLP-1 increase at a lower dose compared with canagliflozin. Both CGMI and canagliflozin delayed intestinal glucose absorption after oral administration in normoglycemic rats. The combined treatment of canagliflozin and a DPP4 inhibitor increased plasma aGLP-1 levels and improved glucose tolerance compared with single treatment in both 8- and 13-week-old Zucker diabetic fatty rats. These results suggest that transient inhibition of intestinal SGLT1 promotes GLP-1 secretion by delaying glucose absorption and that concomitant inhibition of intestinal SGLT1 and DPP4 is a novel therapeutic option for glycemic control in type 2 diabetes mellitus. PMID:26105952

  19. Mathematical Modeling of Interacting Glucose-Sensing Mechanisms and Electrical Activity Underlying Glucagon-Like Peptide 1 Secretion.

    PubMed

    Riz, Michela; Pedersen, Morten Gram

    2015-12-01

    Intestinal L-cells sense glucose and other nutrients, and in response release glucagon-like peptide 1 (GLP-1), peptide YY and other hormones with anti-diabetic and weight-reducing effects. The stimulus-secretion pathway in L-cells is still poorly understood, although it is known that GLP-1 secreting cells use sodium-glucose co-transporters (SGLT) and ATP-sensitive K+-channels (K(ATP)-channels) to sense intestinal glucose levels. Electrical activity then transduces glucose sensing to Ca2+-stimulated exocytosis. This particular glucose-sensing arrangement with glucose triggering both a depolarizing SGLT current as well as leading to closure of the hyperpolarizing K(ATP) current is of more general interest for our understanding of glucose-sensing cells. To dissect the interactions of these two glucose-sensing mechanisms, we build a mathematical model of electrical activity underlying GLP-1 secretion. Two sets of model parameters are presented: one set represents primary mouse colonic L-cells; the other set is based on data from the GLP-1 secreting GLUTag cell line. The model is then used to obtain insight into the differences in glucose-sensing between primary L-cells and GLUTag cells. Our results illuminate how the two glucose-sensing mechanisms interact, and suggest that the depolarizing effect of SGLT currents is modulated by K(ATP)-channel activity. Based on our simulations, we propose that primary L-cells encode the glucose signal as changes in action potential amplitude, whereas GLUTag cells rely mainly on frequency modulation. The model should be useful for further basic, pharmacological and theoretical investigations of the cellular signals underlying endogenous GLP-1 and peptide YY release. PMID:26630068

  20. AMPK activation by glucagon-like peptide-1 prevents NADPH oxidase activation induced by hyperglycemia in adult cardiomyocytes.

    PubMed

    Balteau, Magali; Van Steenbergen, Anne; Timmermans, Aurélie D; Dessy, Chantal; Behets-Wydemans, Gaetane; Tajeddine, Nicolas; Castanares-Zapatero, Diego; Gilon, Patrick; Vanoverschelde, Jean-Louis; Horman, Sandrine; Hue, Louis; Bertrand, Luc; Beauloye, Christophe

    2014-10-15

    Exposure of cardiomyocytes to high glucose concentrations (HG) stimulates reactive oxygen species (ROS) production by NADPH oxidase (NOX2). NOX2 activation is triggered by enhanced glucose transport through a sodium-glucose cotransporter (SGLT) but not by a stimulation of glucose metabolism. The aim of this work was to identify potential therapeutic approaches to counteract this glucotoxicity. In cultured adult rat cardiomyocytes incubated with 21 mM glucose (HG), AMP-activated protein kinase (AMPK) activation by A769662 or phenformin nearly suppressed ROS production. Interestingly, glucagon-like peptide 1 (GLP-1), a new antidiabetic drug, concomitantly induced AMPK activation and prevented the HG-mediated ROS production (maximal effect at 100 nM). α2-AMPK, the major isoform expressed in cardiomyocytes (but not α1-AMPK), was activated in response to GLP-1. Anti-ROS properties of AMPK activators were not related to changes in glucose uptake or glycolysis. Using in situ proximity ligation assay, we demonstrated that AMPK activation prevented the HG-induced p47phox translocation to caveolae, whatever the AMPK activators used. NOX2 activation by either α-methyl-d-glucopyranoside, a glucose analog transported through SGLT, or angiotensin II was also counteracted by GLP-1. The crucial role of AMPK in limiting HG-mediated NOX2 activation was demonstrated by overexpressing a constitutively active form of α2-AMPK using adenoviral infection. This overexpression prevented NOX2 activation in response to HG, whereas GLP-1 lost its protective action in α2-AMPK-deficient mouse cardiomyocytes. Under HG, the GLP-1/AMPK pathway inhibited PKC-β2 phosphorylation, a key element mediating p47phox translocation. In conclusion, GLP-1 induces α2-AMPK activation and blocks HG-induced p47phox translocation to the plasma membrane, thereby preventing glucotoxicity. PMID:25128166

  1. Dietary Mannoheptulose Increases Fasting Serum Glucagon Like Peptide-1 and Post-Prandial Serum Ghrelin Concentrations in Adult Beagle Dogs

    PubMed Central

    McKnight, Leslie L.; Eyre, Ryan; Gooding, Margaret A.; Davenport, Gary M.; Shoveller, Anna Kate

    2015-01-01

    Simple Summary There is increased interest in the use of nutraceuticals for weight management in companion animals. A nutraceutical can broadly be considered a food (or a part of) that provides a health benefit. Mannoheptulose (MH), a sugar found in avocados, is being investigated as a nutraceutical for dogs. In this study, dogs fed a diet containing MH had increased concentrations of blood biomarkers related to energy intake. In addition, dogs fed MH were less physically active than dogs fed a control diet. These findings suggest that dietary MH has the ability to alter energy intake and lower daily energy expenditure. Abstract There is a growing interest in the use of nutraceuticals for weight management in companion animals. The purpose of this study was to determine the effects of mannoheptulose (MH), a sugar in avocados that inhibits glycolysis, on energy metabolism in adult Beagle dogs. The study was a double-blind, randomized controlled trial where dogs were allocated to a control (CON, n = 10, 10.1 ± 0.4 kg) or MH containing diet (168 mg/kg, n = 10, 10.3 ± 0.4 kg). Blood was collected after an overnight fast and 1 h post-feeding (week 12) to determine serum satiety related hormones and biochemistry. Resting and post-prandial energy expenditure and respiratory quotient were determined by indirect calorimetry (weeks 4 and 8). Physical activity was measured using an accelerometer (weeks 3, 7, 11). Body composition was assessed using dual X-ray absorptiometry (week 12). MH significantly (p < 0.05) increased fasting serum glucagon-like peptide-1 and post-prandial serum ghrelin. MH tended (p < 0.1) to increase fasting serum gastric inhibitory peptide and decrease physical activity. Together, these findings suggest that dietary MH has the ability to promote satiation and lowers daily energy expenditure. PMID:26479244

  2. Efficacy and tolerability of glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes mellitus

    PubMed Central

    McCarty, Delilah J.

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) has been evaluated for use in the treatment of type 2 diabetes mellitus (T2DM) due to its role in glucose regulation. Four GLP-1 receptor agonists (RAs) are currently indicated for T2DM in the USA. Exenatide and liraglutide are short-acting and require twice-daily and daily dosing, respectively. Two longer acting agents, exenatide long-acting release (LAR) and albiglutide, were formulated to allow for once-weekly dosing. All four GLP-1 RAs have demonstrated reductions in hemoglobin A1c, fasting blood glucose, and body weight both as monotherapy and in combination with first- and second-line diabetes agents including metformin, sulfonylureas, thiazolidinediones, and insulin. Greater glycemic control was seen with liraglutide compared with the other GLP-1 treatment options; however, the two long-acting agents were superior to exenatide twice daily. All agents were well tolerated with most adverse events being mild or moderate in nature. The most common adverse event was transient nausea which typically resolved 4–8 weeks after treatment initiation. Long-acting agents had lower rates of nausea but an increased incidence of injection site reactions. Trials have suggested GLP-1 RAs may improve cardiovascular risk factors including blood pressure, lipid parameters and inflammatory markers. Future trials are needed to confirm the clinical outcomes of these agents. Overall, GLP-1 RAs will provide benefit for patients with T2DM intolerable to or not reaching glycemic goals with first-line agents, especially in patients in need of weight loss. PMID:25678952

  3. Glucagon-like peptide-1 improves beta-cell antioxidant capacity via extracellular regulated kinases pathway and Nrf2 translocation.

    PubMed

    Fernández-Millán, E; Martín, M A; Goya, L; Lizárraga-Mollinedo, E; Escrivá, F; Ramos, S; Álvarez, C

    2016-06-01

    Oxidative stress plays an important role in the development of beta-cell dysfunction and insulin resistance, two major pathophysiological abnormalities of type 2 diabetes. Expression levels of antioxidant enzymes in beta cells are very low, rendering them more susceptible to damage caused by reactive oxygen species (ROS). Although the antioxidant effects of glucagon-like peptide-1 (GLP-1) and its analogs have been previously reported, the exact mechanisms involved are still unclear. In this study, we demonstrated that GLP-1 was able to effectively inhibit oxidative stress and cell death of INS-1E beta cells induced by the pro-oxidant tert-butyl hydroperoxide (tert-BOOH). Incubation with GLP-1 enhanced cellular levels of glutathione and the activity of its related enzymes, glutathione-peroxidase (GPx) and -reductase (GR) in beta cells. However, inhibition of ERK, but not of the PI3K/AKT pathway abolished, at least in part, the antioxidant effect of GLP-1. Moreover, ERK activation seems to be protein kinase A (PKA)-dependent because inhibition of PKA with H-89 was sufficient to block the GLP-1-derived protective effect on beta cells. GLP-1 likewise increased the synthesis of GR and favored the translocation of the nuclear transcription factor erythroid 2p45-related factor (Nrf2), a transcription factor implicated in the expression of several antioxidant/detoxificant enzymes. Glucose-stimulated insulin secretion was also preserved in beta-cells challenged with tert-BOOH but pre-treated with GLP-1, probably through the down-regulation of the mitochondrial uncoupling-protein2 (UCP2). Thus, our results provide additional mechanisms of action of GLP-1 to prevent oxidative damage in beta cells through the modulation of signaling pathways involved in antioxidant enzyme regulation. PMID:26968794

  4. Glucagon-Like Peptide-1 Receptor Activation in the Ventral Tegmental Area Decreases the Reinforcing Efficacy of Cocaine.

    PubMed

    Schmidt, Heath D; Mietlicki-Baase, Elizabeth G; Ige, Kelsey Y; Maurer, John J; Reiner, David J; Zimmer, Derek J; Van Nest, Duncan S; Guercio, Leonardo A; Wimmer, Mathieu E; Olivos, Diana R; De Jonghe, Bart C; Hayes, Matthew R

    2016-06-01

    Cocaine addiction continues to be a significant public health problem for which there are currently no effective FDA-approved treatments. Thus, there is a clear need to identify and develop novel pharmacotherapies for cocaine addiction. Recent evidence indicates that activation of glucagon-like peptide-1 (GLP-1) receptors in the ventral tegmental area (VTA) reduces intake of highly palatable food. As the neural circuits and neurobiological mechanisms underlying drug taking overlap to some degree with those regulating food intake, these findings suggest that activation of central GLP-1 receptors may also attenuate cocaine taking. Here, we show that intra-VTA administration of the GLP-1 receptor agonist exendin-4 (0.05 μg) significantly reduced cocaine, but not sucrose, self-administration in rats. We also demonstrate that cocaine taking is associated with elevated plasma corticosterone levels and that systemic infusion of cocaine activates GLP-1-expressing neurons in the nucleus tractus solitarius (NTS), a hindbrain nucleus that projects monosynaptically to the VTA. To determine the potential mechanisms by which cocaine activates NTS GLP-1-expressing neurons, we microinjected corticosterone (0.5 μg) directly into the hindbrain fourth ventricle. Intraventricular corticosterone attenuated cocaine self-administration and this effect was blocked in animals pretreated with the GLP-1 receptor antagonist exendin-(9-39) (10 μg) in the VTA. Finally, AAV-shRNA-mediated knockdown of VTA GLP-1 receptors was sufficient to augment cocaine self-administration. Taken together, these findings indicate that increased activation of NTS GLP-1-expressing neurons by corticosterone may represent a homeostatic response to cocaine taking, thereby reducing the reinforcing efficacy of cocaine. Therefore, central GLP-1 receptors may represent a novel target for cocaine addiction pharmacotherapies. PMID:26675243

  5. Aggregation of a model porphyrin within poly(ethylene glycol) (PEG): effect of water, PEG molecular weight, ionic liquids, salts, and temperature.

    PubMed

    Rai, Rewa; Kumar, Vinod; Pandey, Siddharth

    2014-04-28

    Understanding molecular aggregation within environmentally-benign media is of utmost importance. Aggregation of a common porphyrin, 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TSPP), dissolved in media composed of poly(ethylene glycols) (PEGs) up to an average molecular weight (MW) of 8000 as major components, is investigated. J-aggregates of TSPP are well-manifested via the bathochromically-shifted UV-vis absorbance band of TSPP. As media, 10 wt% water-added PEGs at pH 1 show excellent efficiency for TSPP J-aggregation. The J-aggregation efficiency increases as the PEG MW is increased and it is found to be the maximum for the medium constituted of PEG3000. Once formed, some of the J-aggregates decay back to the diprotonated form via pseudo-first order kinetics. Addition of salts NaCl and NaBF4 and ionic liquids [bmim][PF6], [bmim][Tf2N], [bmim][BF4], and [bmim][OTf] [bmim = 1-butyl-3-methylimidazolium, PF6 = hexafluorophosphate, Tf2N = bis(trifluoromethylsulfonyl)imide, BF4 = tetrafluoroborate, and OTf = trifluoromethanesulfonate], respectively, to TSPP dissolved in 10 wt% water added PEGs at pH 1 results in increased J-aggregation efficiency. Ionic liquids are found to protect porphyrin J-aggregates from decaying to their diprotonated form. Increasing temperature from ambient to 90 °C results in decreased J-aggregation efficiency of TSPP in the presence of salts NaCl and NaBF4, respectively; concentration of J-aggregates does not change much with temperature when an ionic liquid as an additive is present in the medium. The polymer chain length and electrostatic interactions appear to play a major role in porphyrin J-aggregation efficiency and kinetics within water-added acidic mixtures of PEG. PMID:24618770

  6. Highly compacted DNA nanoparticles with low MW PEG coatings: in vitro, ex vivo and in vivo evaluation

    PubMed Central

    Boylan, Nicholas J.; Suk, Jung Soo; Lai, Samuel K.; Jelinek, Raz; Boyle, Michael P.; Cooper, Mark J.; Hanes, Justin

    2011-01-01

    Highly compacted DNA nanoparticles, composed of single molecules of plasmid DNA compacted with block copolymers of poly-L-lysine and 10 kDa polyethylene glycol (CK30PEG10k), mediate effective gene delivery to the brain, eyes and lungs in vivo. Nevertheless, we found that CK30PEG10k DNA nanoparticles are immobilized by mucoadhesive interactions in sputum that lines the lung airways of patients with cystic fibrosis (CF), which would presumably preclude the efficient delivery of cargo DNA to the underlying epithelium. We previously found that nanoparticles can rapidly penetrate human mucus secretions if they are densely coated with low MW PEG (2–5 kDa), whereas nanoparticles with 10 kDa PEG coatings were immobilized. We thus sought to reduce mucoadhesion of DNA nanoparticles by producing CK30PEG DNA nanoparticles with low MW PEG coatings. We examined the morphology, colloidal stability, nuclease resistance, diffusion in human sputum and in vivo gene transfer of CK30PEG DNA nanoparticles prepared using various PEG MWs. CK30PEG10k and CK30PEG5k formulations did not aggregate in saline, provided partial protection against DNase I digestion and exhibited the highest gene transfer to lung airways following inhalation in BALB/c mice. However, all DNA nanoparticle formulations were immobilized in freshly expectorated human CF sputum, likely due to inadequate PEG surface coverage. PMID:21903145

  7. Time-Resolved SAXS/WAXS Study of the Phase Behavior and Microstructural Evolution of Drug/PEG Solid Dispersions

    SciTech Connect

    Zhu, Qing; Harris, Michael T.; Taylor, Lynne S.

    2013-03-07

    Simultaneous small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) was employed to elucidate the physical state and location of various small molecule drugs blended with polyethylene glycol (PEG), as well as the time dependent microstructural evolution of the systems. Samples were prepared by comelting physical mixtures of the drug and PEG, followed by solidification at 25 C. The model drugs selected encompassed a wide variety of physicochemical properties in terms of crystallization tendency and potential for interaction with PEG. It was observed that compounds which crystallized rapidly and had weak interactions with PEG tended to be excluded from the interlamellar region of the PEG matrix. In contrast, drugs which had favorable interactions with PEG were incorporated into the interlamellar regions of the polymer up until the point at which the drug crystallized whereby phase separation occurred. These factors are likely to impact the effectiveness of drug/PEG systems as drug delivery systems.

  8. A Versatile Star PEG Grafting Method for the Generation of Nonfouling and Nonthrombogenic Surfaces

    PubMed Central

    Thalla, Pradeep Kumar; Contreras-García, Angel; Fadlallah, Hicham; Barrette, Jérémie; De Crescenzo, Gregory; Merhi, Yahye; Lerouge, Sophie

    2013-01-01

    Polyethylene glycol (PEG) grafting has a great potential to create nonfouling and nonthrombogenic surfaces, but present techniques lack versatility and stability. The present work aimed to develop a versatile PEG grafting method applicable to most biomaterial surfaces, by taking advantage of novel primary amine-rich plasma-polymerized coatings. Star-shaped PEG covalent binding was studied using static contact angle, X-ray photoelectron spectroscopy (XPS), and quartz crystal microbalance with dissipation monitoring (QCM-D). Fluorescence and QCM-D both confirmed strong reduction of protein adsorption when compared to plasma-polymerized coatings and pristine poly(ethyleneterephthalate) (PET). Moreover, almost no platelet adhesion was observed after 15 min perfusion in whole blood. Altogether, our results suggest that primary amine-rich plasma-polymerized coatings offer a promising stable and versatile method for PEG grafting in order to create nonfouling and nonthrombogenic surfaces and micropatterns. PMID:23509823

  9. Photo-crosslinked PDMSstar-PEG Hydrogels: Synthesis, Characterization, and Potential Application for Tissue Engineering Scaffolds

    PubMed Central

    Hou, Yaping; Schoener, Cody A.; Regan, Katherine R.; Munoz-Pinto, Dany; Hahn, Mariah S.; Grunlan, Melissa A.

    2010-01-01

    Inorganic-organic hydrogels with tunable chemical and physical properties were prepared from methacrylated star polydimethylsiloxane (PDMSstar-MA) and diacrylated poly(ethylene glycol) (PEG-DA) for use as tissue engineering scaffolds. Eighteen compositionally unique hydrogels were prepared by photo-crosslinking varying weight ratios of PEG-DA and PDMSstar-MA of different molecular weights (Mn): PEG-DA (Mn = 3.4k and 6k g/mol) and PDMSstar-MA (Mn = 1.8k, 5k and 7k g/mol). Introduction of PDMSstar-MA caused formation of discrete PDMS-enriched microparticles dispersed within the PEG matrix. The swelling ratio, mechanical properties in tension and compression, non-specific protein adhesion, controlled introduction of bioactivity and cytotoxicity of hydrogels were studied. This library of inorganic-organic hydrogels with tunable properties provides a useful platform to study the effect of scaffold properties on cell behavior. PMID:20146518

  10. Buried Bumper Syndrome Revisited: A Rare but Potentially Fatal Complication of PEG Tube Placement

    PubMed Central

    Biswas, Saptarshi; Dontukurthy, Sujana; Rosenzweig, Mathew G.; Kothuru, Ravi

    2014-01-01

    Percutaneous endoscopic gastrostomy (PEG) has been used for providing enteral access to patients who require long-term enteral nutrition for years. Although generally considered safe, PEG tube placement can be associated with many immediate and delayed complications. Buried bumper syndrome (BBS) is one of the uncommon and late complications of percutaneous endoscopic gastrostomy (PEG) placement. It occurs when the internal bumper of the PEG tube erodes into the gastric wall and lodges itself between the gastric wall and skin. This can lead to a variety of additional complications such as wound infection, peritonitis, and necrotizing fasciitis. We present here a case of buried bumper syndrome which caused extensive necrosis of the anterior abdominal wall. PMID:24829838

  11. Gravity-regulated formation of the peg in developing cucumber seedlings

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Scott, T. K.

    1994-01-01

    It has been proposed that peg formation in the vascular transition region (TR zone) between the hypocotyl and the root in Cucurbitaceae seedlings is a gravimorphogenetic phenomenon. Initiation of the peg became visible 36 h after imbibition when cucumber (Cucumis sativus L. cv. Burpee Hybrid II) seeds were germinated in a horizontal position at 24 degrees C in the dark. Simultaneously, sedimented amyloplasts (putative statoliths) were apparent in the sheath cells surrounding the vascular strands, and in the cortical cells immediately adjacent to them, in the TR zone. In contrast, the other cortical cells, some of which were destined to develop into the peg, contained amyloplasts which were not sedimented. These results suggest that the graviperception mechanism for peg formation may be like that of statoliths in shoot gravitropism. By 48 h following imbibition, the cells of the TR zone still had sedimented amyloplasts but had lost their sensitivity to gravity, possibly because of their maturation.

  12. Potential induction of anti-PEG antibodies and complement activation toward PEGylated therapeutics.

    PubMed

    Verhoef, Johan J F; Carpenter, John F; Anchordoquy, Thomas J; Schellekens, Huub

    2014-12-01

    Conjugation of polyethylene glycol (PEG) to therapeutics has proven to be an effective approach to increase the serum half-life. However, the increased use of PEGylated therapeutics has resulted in unexpected immune-mediated side-effects. There are claims that these are caused by anti-PEG antibodies inducing rapid clearance. These claims are however hampered by the lack of standardized and well-validated antibody assays. PEGylation has also been associated with the activation of the complement system causing severe hypersensitivity reactions. Here, we critically review the clinical and analytical tools used. In addition, we propose an explanation of the immune-mediated side-effects of PEGylated products based on the haptogenic properties of PEG, responsible for complement activation and the induction of anti-PEG antibodies. PMID:25205349

  13. Rheology and microstructure of MDI PEG reactive prepolymer-modified bitumen

    NASA Astrophysics Data System (ADS)

    Navarro, F. J.; Partal, P.; Martínez-Boza, F.; Gallegos, C.; Bordado, J. C. M.; Diogo, A. C.

    2006-12-01

    This paper deals with the use of a new bitumen modifier, a reactive prepolymer, based on the reaction of 4,4‧-diphenylmethane diisocyanate (MDI) and a low molecular weight polyethylene glycol (PEG). The rheological and thermal behaviours of modified bitumen containing a low MDI PEG concentration, as well as its morphology, have been studied. A relatively low amount of MDI PEG (0.5 to 1.5% wt.) yields a significant improvement in the modified bitumen rheological properties, mainly in the high in-service temperature region. In this range of temperature, the rheological properties are clearly affected by curing time at room temperature. These results indicate that chemical changes, due to the reaction of MDI isocyanate groups with the most polar groups ( OH; NH) of asphaltenes and resins, are produced. Thus, new chemical structures, non-visible by optical microscopy, slowly develop in MDI PEG modified bitumen when samples are cured at room temperature.

  14. Gravimorphogenesis of Cucurbitaceae plants: development of peg cells and graviperception mechanism in cucumber seedlings.

    PubMed

    Takahashi, H; Fujii, N; Kamada, M; Higashitani, A; Yamazaki, Y; Kobayashi, A; Takano, M; Yamasaki, S; Sakata, T; Mizuno, H; Kaneko, Y; Murata, T; Kamigaichi, S; Aizawa, S; Yoshizaki, I; Shimazu, T; Fukui, K

    2000-06-01

    We examined the effect of microgravity on the peg formation of cucumber seedlings for clarifying the mechanism of gravimorphogenesis in cucurbitaceous plants. The spaceflight experiments verified that gravity controls the formation of peg, hypocotyl hook and growth orientation of cucumber seedlings. Space-grown cucumber developed a peg on each side of the transition zone of the hypocotyl and root, indicating that on the ground peg formation is regulated negatively by gravity (Takahashi et al. 2000). It was found that the auxin-regulated gene, CS-IAA1, was strongly expressed in the transition zone where peg develops (Fujii et al. 2000). In the seedlings grown horizontally on the ground, CS-IAA1 transcripts were much abundant on the lower side of the transition zone, but no such differential expression of CS-IAA1 was observed in the space-grown cucumber (Kamada et al. 2000). These results imply that gravity plays a role in peg formation through auxin redistribution. By the negative control, peg formation on the upper side of the transition zone in the horizontally growing seedlings might be suppressed due to a reduction in auxin concentration. The threshold theory of auxin concentration accounted for the new concept, negative control of morphogenesis by gravity (Kamada et al. 2000). Anatomical studies have shown that there exists the target cells destined to be a peg and distinguishable at the early stage of the growth. Ultra-structural analysis suggested that endoplasmic reticulum develops well in the cells of the future peg. Furthermore, it was found that reorganization of cortical microtubules is required for the change in cell growth polarity in the process of peg formation. The spaceflight experiment with cucumber seedlings also suggested that in microgravity positive hydrotropic response of roots occurred without interference by gravitropic response (Takahashi et al. 1999b). Thus, this spaceflight experiment together with the ground-based studies has shown that

  15. Current status of percutaneous endoscopic gastrostomy (PEG) in a general hospital in Japan: a cross-sectional study

    PubMed Central

    Kusano, Chika; Yamada, Nobuo; Kikuchi, Kenji; Hashimoto, Masaji; Gotoda, Takuji

    2016-01-01

    Background: There has been debate over the indications for percutaneous endoscopic gastrostomy (PEG) in recent years in Japan. In addition, the level of satisfaction of patients and patient’s family after PEG remains unclear. The aim of this study was to investigate the current status of PEG and the level of satisfaction of patients and patients’ families after PEG in Japan. Methods: We reviewed the existing data of all patients who underwent PEG tube insertion at Yuri Kumiai General Hospital (Akita, Japan) between February 2000 and December 2010. We examined the following points: underlying diseases requiring PEG, levels of consciousness, and performance status. We also sent a questionnaire to the patients and patient’s families to ask about their satisfaction with and thoughts about PEG. Results: The data of 545 patients who underwent PEG were reviewed. There were 295 men and 250 women, with a mean age of 77.2 ± 11.4 years. PEG was indicated most frequently for cerebrovascular disorders (48.2%, 239/545). There were 515 (94.4%, 515/545) patients showing consciousness disturbance and 444 (81.5%, 444/545) bedridden patients. The questionnaire was answered by one patient himself and 316 patients’ families. When asked, “Was performing PEG a good decision?”, 57.5% (182/316) of the patients’ families answered yes. Meanwhile, when patients’ family members were asked if they would wish to undergo PEG if they were in the same condition as the patient, 28.4% (90/316) answered yes, whereas 55.3% (175/316) answered no. Conclusions: Few patients were able to make their own decision about PEG tube placement because of consciousness disturbance. As a result, many family members of the patients did not want to experience PEG for themselves. Future studies should be performed to clarify the quality of life and ethical aspects associated with PEG. PMID:27313796

  16. The major determinant of exendin-4/glucagon-like peptide 1 differential affinity at the rat glucagon-like peptide 1 receptor N-terminal domain is a hydrogen bond from SER-32 of exendin-4*

    PubMed Central

    Mann, RJ; Nasr, NE; Sinfield, JK; Paci, E; Donnelly, D

    2010-01-01

    BACKGROUND AND PURPOSE Exendin-4 (exenatide, Ex4) is a high-affinity peptide agonist at the glucagon-like peptide-1 receptor (GLP-1R), which has been approved as a treatment for type 2 diabetes. Part of the drug/hormone binding site was described in the crystal structures of both GLP-1 and Ex4 bound to the isolated N-terminal domain (NTD) of GLP-1R. However, these structures do not account for the large difference in affinity between GLP-1 and Ex4 at this isolated domain, or for the published role of the C-terminal extension of Ex4. Our aim was to clarify the pharmacology of GLP-1R in the context of these new structural data. EXPERIMENTAL APPROACH The affinities of GLP-1, Ex4 and various analogues were measured at human and rat GLP-1R (hGLP-1R and rGLP-1R, respectively) and various receptor variants. Molecular dynamics coupled with in silico mutagenesis were used to model and interpret the data. KEY RESULTS The membrane-tethered NTD of hGLP-1R displayed similar affinity for GLP-1 and Ex4 in sharp contrast to previous studies using the soluble isolated domain. The selectivity at rGLP-1R for Ex4(9–39) over Ex4(9–30) was due to Ser-32 in the ligand. While this selectivity was not observed at hGLP-1R, it was regained when Glu-68 of hGLP-1R was mutated to Asp. CONCLUSIONS AND IMPLICATIONS GLP-1 and Ex4 bind to the NTD of hGLP-1R with similar affinity. A hydrogen bond between Ser32 of Ex4 and Asp-68 of rGLP-1R, which is not formed with Glu-68 of hGLP-1R, is responsible for the improved affinity of Ex4 at the rat receptor. PMID:20649595

  17. Inner ear delivery of dexamethasone using injectable silk-polyethylene glycol (PEG) hydrogel.

    PubMed

    Yu, Dehong; Sun, Changling; Zheng, Zhaozhu; Wang, Xueling; Chen, Dongye; Wu, Hao; Wang, Xiaoqin; Shi, Fuxin

    2016-04-30

    Minimally invasive delivery and sustained release of therapeutics to the inner ear are of importance to the medical treatment of inner ear disease. In this study, the injectable silk fibroin-polyethylene glycol (Silk-PEG) hydrogel was investigated as a drug delivery carrier to deliver poorly soluble micronized dexamethasone (mDEX) to the inner ear of guinea pigs. Encapsulation of mDEX with a loading up to 5% (w/v) did not significantly change the silk gelation time, and mDEX were evenly distributed in the PEG-Silk hydrogel as visualized by SEM. The loading of mDEX in Silk-PEG hydrogel largely influenced in vitro drug release kinetics. The optimized Silk-PEG-mDEX hydrogel (2.5% w/v loading, in situ-forming,10μl) was administered directly onto the round window membrane of guinea pigs. The DEX concentration in perilymph maintained above 100ng/ml for at least 10 days for the Silk-PEG formulation while less than 12h for the control sample of free mDEX. Minimal systemic exposure was achieved with low DEX concentrations (<0.2μg/ml) in cerebrospinal fluid (CSF) and plasma in the first 2h after the local application of the Silk-PEG-mDEX hydrogel. A transient hearing threshold shift was found but then resolved after 14days as revealed by auditory brainstem response (ABR), showing minimal inflammatory responses on the round window membrane and scala taympani. The Silk-PEG hydrogel completely degraded in 21 days. Thus, the injectable PEG-Silk hydrogel is an effective and safe vehicle for inner ear delivery and sustained release of glucocorticoid. PMID:26972377

  18. Assessment of PEG on polymeric particles surface, a key step in drug carrier translation.

    PubMed

    Rabanel, Jean-Michel; Hildgen, Patrice; Banquy, Xavier

    2014-07-10

    Injectable drug nanocarriers have greatly benefited in their clinical development from the addition of a superficial hydrophilic corona to improve their cargo pharmacokinetics. The most studied and used polymer for this purpose is poly(ethylene glycol), PEG. However, in spite of its wide use for over two decades now, there is no general consensus on the optimum PEG chain coverage-density and size required to escape from the mononuclear phagocyte system and to extend the circulation time. Moreover, cellular uptake and active targeting may have conflicting requirements in terms of surface properties of the nanocarriers which complicate even more the optimization process. These persistent issues can be largely attributed to the lack of straightforward characterization techniques to assess the coverage-density, the conformation or the thickness of a PEG layer grafted or adsorbed on a particulate drug carrier and is certainly one of the main reasons why so few clinical applications involving PEG coated particle-based drug delivery systems are under clinical trial so far. The objective of this review is to provide the reader with a brief description of the most relevant techniques used to assess qualitatively or quantitatively PEG chain coverage-density, conformation and layer thickness on polymeric nanoparticles. Emphasis has been made on polymeric particle (solid core) either made of copolymers containing PEG chains or modified after particle formation. Advantages and limitations of each technique are presented as well as methods to calculate PEG coverage-density and to investigate PEG chains conformation on the NP surface. PMID:24768790

  19. The effect of osmotic pressure of aqueous PEG solutions on red blood cells.

    PubMed

    Herrmann, A; Arnold, K; Pratsch, L

    1985-08-01

    A drastic increase of the intracellular microviscosity of red blood cells in the presence of polyethylene glycol (PEG) was established by electron spin resonance using the small spin label molecule 2,2,6,6-tetramethyl-piperidine-N-oxyl-4-one (TEMPONE). The effective osmotic pressure of PEG solutions stressing the cells was estimated by comparison with those cytoplasmic rotational correlation times of TEMPONE measured in NaCl or sucrose containing media of known osmotic pressure. PMID:2998502

  20. Hemocompatibility of folic-acid-conjugated amphiphilic PEG-PLGA copolymer nanoparticles for co-delivery of cisplatin and paclitaxel: treatment effects for non-small-cell lung cancer.

    PubMed

    He, Zelai; Shi, Zengfang; Sun, Wenjie; Ma, Jing; Xia, Junyong; Zhang, Xiangyu; Chen, Wenjun; Huang, Jingwen

    2016-06-01

    In this study, we used folic-acid-modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) to encapsulate cisplatin and paclitaxel (separately or together), and evaluated their antitumor effects against lung cancer; this study was conducted in order to investigate the antitumor effects of the co-delivery of cisplatin and paclitaxel by a targeted drug delivery system. Blood compatibility assays and complement activation tests revealed that FA-PEG-PLGA nanoparticles did not induce blood hemolysis, blood clotting, or complement activation. The results also indicated that FA-PEG-PLGA nanoparticles had no biotoxic effects, the drug delivery system allowed controlled release of the cargo molecules, and the co-delivery of cisplatin and paclitaxel efficiently induces cancer cell apoptosis and cell cycle retardation. In addition, co-delivery of cisplatin and paclitaxel showed the ability to suppress xenograft lung cancer growth and prolong the survival time of xenografted mice. These results implied that FA-PEG-PLGA nanoparticles can function as effective carriers of cisplatin and paclitaxel, and that co-delivery of cisplatin and paclitaxel by FA-PEG-PLGA nanoparticles results in more effective antitumor effects than the combination of free-drugs or single-drug-loaded nanoparticles. PMID:26695149

  1. Exploring the relationship between anti-PEG IgM behaviors and PEGylated nanoparticles and its significance for accelerated blood clearance.

    PubMed

    Shiraishi, Kouichi; Kawano, Kumi; Maitani, Yoshie; Aoshi, Taiki; Ishii, Ken J; Sanada, Yusuke; Mochizuki, Shinichi; Sakurai, Kazuo; Yokoyama, Masayuki

    2016-07-28

    Surface PEGylation on nanoparticles has greatly helped prolong their blood circulation half-lives. However, The injection of PEGylated nanoparticles into mice induced poly(ethylene glycol) (PEG)-specific IgM antibodies (anti-PEG IgMs), significantly changing PEG-liposomes' pharmacokinetics. In this study, we used various PEG-conjugates to conduct a mechanistic study of anti-PEG IgMs' binding behavior. The conventional belief has been that anti-PEG IgMs bind to PEG main chains; however, our findings reveal that anti-PEG IgMs did not bind to PEG main chains, whereas anti-PEG IgMs did bind to PEG-hydrophobic polymer blocks. The insertion of a hydrophilic polymer between each PEG chain and each hydrophobic polymer block suppressed anti-PEG IgMs' binding. We prove here that hydrophobic blocks are essential to anti-PEG IgMs' binding, and also that anti-PEG IgMs do not bind to intact PEGs without hydrophobic moiety. These results support our conclusion that anti-PEG IgMs exhibit specificity to PEG; however, the presence of a hydrophobic block at a proximity position from each PEG chain is essential for the binding. Also in the present study, we elucidate relations between anti-PEG IgMs and PEGylated nanoparticles. In one of our previous studies, anti-PEG IgMs scarcely affected the pharmacokinetics of PEG-b-poly(β-benzyl l-aspartate) block copolymer (PEG-PBLA) micelles, whereas anti-PEG IgMs significantly decreased PEG-liposomes' blood circulation half-life. Finally, we found that the ratio of anti-PEG IgM molecules to PEG-liposome particles is critical to these pharmacokinetic changes, and that a 10-fold increase in the number of anti-PEG IgM molecules permitted them to capture the PEG-liposome particles, thus leading to the aforementioned changes. PMID:27164541

  2. Multi-arm PEG/silica hydrogel for sustained ocular drug delivery.

    PubMed

    Lu, Changhai; Zahedi, Payam; Forman, Adam; Allen, Christine

    2014-01-01

    In the present study, a series of sustained drug delivery multiarm poly(ethylene glycol) (PEG)/silica hydrogels were prepared and characterized. The hydrogels were formed by hydrolysis and condensation of poly(4-arm PEG silicate) using the sol-gel method. The relationships between water content in the PEG/silica hydrogel and stability as well as rheological properties were evaluated. Scanning electron microscopy analysis of the PEG/silica hydrogels revealed water content-dependent changes in microstructure. An increase in water content resulted in larger pores within the hydrogel, longer gelation time and higher viscosity. The PEG/silica hydrogels were loaded with dexamethasone (DMS) or dexamethasone sodium phosphate (DMSP), drugs that are hydrophobic and hydrophilic in nature, respectively. Evaluation of in vitro release revealed a zero-order release profile for DMS over the first 6 days, suggesting that degradation of the silica hydrogel matrix was the primary mechanism of drug release. It was also found that the drug-release profile could be tailored by varying the water content used during hydrogel preparation. In contrast, more than 90% of DMSP was released within 1 h, suggesting that DMSP release was only controlled by diffusion. Overall, results from this study indicate that PEG/silica hydrogels may be promising drug-eluting depot materials for the sustained delivery of hydrophobic, ophthalmic drugs. PMID:24285503

  3. Pore structure modified diatomite-supported PEG composites for thermal energy storage

    PubMed Central

    Qian, Tingting; Li, Jinhong; Deng, Yong

    2016-01-01

    A series of novel composite phase change materials (PCMs) were tailored by blending PEG and five kinds of diatomite via a vacuum impregnation method. To enlarge its pore size and specific surface area, different modification approaches including calcination, acid treatment, alkali leaching and nano-silica decoration on the microstructure of diatomite were outlined. Among them, 8 min of 5 wt% NaOH dissolution at 70 °C has been proven to be the most effective and facile. While PEG melted during phase transformation, the maximum load of PEG could reach 70 wt.%, which was 46% higher than that of the raw diatomite. The apparent activation energy of PEG in the composite was 1031.85 kJ·mol−1, which was twice higher than that of the pristine PEG. Moreover, using the nano-silica decorated diatomite as carrier, the maximum PEG load was 66 wt%. The composite PCM was stable in terms of thermal and chemical manners even after 200 cycles of melting and freezing. All results indicated that the obtained composite PCMs were promising candidate materials for building applications due to its large latent heat, suitable phase change temperature, excellent chemical compatibility, improved supercooling extent, high thermal stability and long-term reliability. PMID:27580677

  4. XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors.

    PubMed

    Sharma, Sadhana; Johnson, Robert W; Desai, Tejal A

    2004-09-15

    In the past two decades, the biological and medical fields have seen great advances in the development of biosensors capable of quantifying biomolecules. Many of these biosensors have micro- and nano-scale features, are fabricated using biochip technology, and use silicon as a base material. The creation of antifouling sensor interfaces is critical to avoid serious consequences that arise due to their contact with biological fluids. To this end, we have created thin PEG interfaces of various grafting densities on silicon using a single-step PEG-silane coupling reaction scheme. Initial PEG concentration (5-50 mM) and coupling time (0.5-24 h) were varied to attain different grafting densities, and different PEG interfaces so created were analyzed using XPS and AFM. Furthermore, all the PEG interfaces were evaluated using XPS and AFM for their antifouling abilities using fibrinogen as the model protein. Results indicated that PEG interfaces created in this investigation are appropriate for biosensors with micro- and nano-scale features, and are efficient in controlling protein fouling. PMID:15308226

  5. PEG and Thickeners: A Critical Interaction Between Polyethylene Glycol Laxative and Starch-Based Thickeners.

    PubMed

    Carlisle, Brian J; Craft, Garrett; Harmon, Julie P; Ilkevitch, Alina; Nicoghosian, Jenik; Sheyner, Inna; Stewart, Jonathan T

    2016-09-01

    Clinicians commonly encounter dysphagia and constipation in a skilled nursing population. Increasing the viscosity of liquids, usually with a starch- or xanthan gum-based thickener, serves as a key intervention for patients with dysphagia. We report a newly identified and potentially dangerous interaction between polyethylene glycol 3350 laxative (PEG) and starch-thickened liquids. A patient requiring nectar-thickened liquids became constipated, and medical staff prescribed PEG for constipation. His nurse observed that the thickened apple juice immediately thinned to near-water consistency when PEG was added. She obtained the same results with thickened water and coffee. We quantified this phenomenon by isothermal rotational rheology. Results confirmed a precipitous loss of thickening when PEG was added to starch-based thickeners but not with xanthan gum-based thickeners. Clinicians and front-line staff should be aware of this potentially critical interaction between PEG- and starch-based thickeners. Although confirmatory studies are needed, our preliminary data suggest that PEG may be compatible with xanthan gum-- based thickeners. PMID:27569713

  6. "Sheddable" PEG-lipid to balance the contradiction of PEGylation between long circulation and poor uptake.

    PubMed

    Zhao, Caiyan; Deng, Hongzhang; Xu, Jing; Li, Shuyi; Zhong, Lin; Shao, Leihou; Wu, Yan; Liang, Xing-Jie

    2016-05-19

    PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a "sheddable" PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic microenvironment, the PEG chains detached from the surfaces of the micelles while the degree of linker cleavage could not cause a significant particle size change, which facilitated the carrier binding to tumor cells and improved the cellular uptake. Subsequently, the "sheddable" PEG-lipid micelles easily internalized into cells and the increased acidity in the lysosomes further promoted drug release. Thus, this "sheddable" PEG-lipid nanocarrier could be a good candidate for effective intracellular drug delivery in cancer chemotherapy. PMID:27167180

  7. Pore structure modified diatomite-supported PEG composites for thermal energy storage.

    PubMed

    Qian, Tingting; Li, Jinhong; Deng, Yong

    2016-01-01

    A series of novel composite phase change materials (PCMs) were tailored by blending PEG and five kinds of diatomite via a vacuum impregnation method. To enlarge its pore size and specific surface area, different modification approaches including calcination, acid treatment, alkali leaching and nano-silica decoration on the microstructure of diatomite were outlined. Among them, 8 min of 5 wt% NaOH dissolution at 70 °C has been proven to be the most effective and facile. While PEG melted during phase transformation, the maximum load of PEG could reach 70 wt.%, which was 46% higher than that of the raw diatomite. The apparent activation energy of PEG in the composite was 1031.85 kJ·mol(-1), which was twice higher than that of the pristine PEG. Moreover, using the nano-silica decorated diatomite as carrier, the maximum PEG load was 66 wt%. The composite PCM was stable in terms of thermal and chemical manners even after 200 cycles of melting and freezing. All results indicated that the obtained composite PCMs were promising candidate materials for building applications due to its large latent heat, suitable phase change temperature, excellent chemical compatibility, improved supercooling extent, high thermal stability and long-term reliability. PMID:27580677

  8. Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules.

    PubMed

    Mosqueira, V C; Legrand, P; Gulik, A; Bourdon, O; Gref, R; Labarre, D; Barratt, G

    2001-11-01

    The aim of our work was to examine the relationship between modifications of the surface of nanocapsules (NC) by adsorption or covalent grafting of poly(ethylene oxide) (PEG), and changes in their phospholipid (PL) content on complement activation (C3 cleavage) and on uptake by macrophages. The physicochemical characterization of the NC included an investigation of their properties, such as surface charge, size, hydrophilicity, morphology and homogeneity. This is the first time that such properties have been correlated with biological interactions for NC, a novel carrier system with a structure more complex than nanospheres. C3 crossed immunoelectrophoresis revealed the reduced activation for NC with longer PEG chain and higher density, although all formulations induced C3 cleavage to a lesser or greater extent. NC bearing PEG covalently bound to the surface were weaker activators of complement than plain PLA [poly(D,L-lactide)] NC or nanospheres (NS). Furthermore, the fluorescent/confocal microscopy of J774A1 cells in contact with NC reveal a dramatically reduced interaction with PEG-bearing NC. However, the way in which PEG was attached (covalent or adsorbed) seemed to affect the mechanism of uptake. Taken together, these results suggest that the low level of protein binding to NC covered with a high density of 20kDa PEG chains is likely to be due to the steric barriers surrounding these particles, which prevents protein adsorption and reduces their interaction with macrophages. PMID:11575471

  9. Preparation and characterization of (PCL-crosslinked-PEG)/hydroxyapatite as bone tissue engineering scaffolds.

    PubMed

    Koupaei, Narjes; Karkhaneh, Akbar; Daliri Joupari, Morteza

    2015-12-01

    In this study, interconnected porous bioactive scaffolds were synthesized for bone tissue engineering. At the first step, poly( ɛ-caprolactone) (PCL) diols were diacrylated with acryloyl chloride. Then, the scaffolds were synthesized by radical crosslinking reaction of PCL and poly(ethyleneglycol) (PEG) diacrylates in the presence of hydroxyapatite (HA) particles. Morphological, swelling, thermal, and mechanical characteristics as well as degradability of the scaffolds were investigated. Results showed that increasing the ratio of PEG to PCL led to significant increase of swelling ratio and degradation rate, and decrease of crystallinity and compressive modulus of the networks, respectively. It was found that the incorporation of HA particles with the polymer matrices resulted in an augmented crystallinity, a decreased swelling ratio, and also a significantly increased compressive modulus of the networks. Cytocompatability and osteoconductivity of the scaffolds were assessed by MTT and alkaline phosphatase (ALP) assays, respectively. The results confirmed the cytocompatible nature of PCL/PEG/HA scaffolds with no toxicity. MG-63 cells attached and spread on the pore walls offered by the scaffolds. PCL/PEG/HA scaffolds compared with PCL/PEG ones showed higher ALP activity. Thus, the results indicated that the PCL/PEG/HA scaffolds have the potential of being used as promising substrates in bone tissue engineering. PMID:26015080

  10. Asymmetrical flow field-flow fractionation for the analysis of PEG-asparaginase.

    PubMed

    John, C; Herz, T; Boos, J; Langer, K; Hempel, G

    2016-01-01

    Monomethoxypolyethylene glycol L-asparaginase (PEG-ASNASE) is the PEGylated version of the enzyme L-asparaginase (ASNASE). Both are used for remission induction in acute lymphoblastic leukemia (ALL) and non-Hodgkin's lymphoma (NHL). The treatment control is generally carried out by performing activity assays, though methods to determine the actual enzyme rather than its activity are rare. Using asymmetrical flow field-flow fractionation (AF4) offered the chance to develop a method capable of simultaneously measuring PEG-ASNASE and PEG. A method validation was performed in accordance with FDA guidelines for PEG-ASNASE from non-biological solutions. The method unfolded a linearity of 15-750 U/mL with coefficients of correlation of r(2)>0.99. The coefficients of variation (CV) for within-run and between-run variability were 1.18-10.15% and 2.43-8.73%, respectively. Furthermore, the method was used to perform stability tests of the product Oncaspar® (PEG-ASNASE) and estimation of the molecular weight by multi-angle light scattering (MALS) of stressed samples to correlate them with the corresponding activity. The findings indicate that Oncaspar® stock solution should not be stored any longer than 24 h at room temperature and cannot be frozen in pure aqueous media. The validated method might be useful for the pharmaceutical industry and its quality control of PEG-ASNASE production. PMID:26695272

  11. Lithium Polymer Electrolytes Based On PMMA / PEG And Penetrant Diffusion In Kraton Penta-Block Ionomer

    NASA Astrophysics Data System (ADS)

    Meng, Yan

    The study of diffusion in polymeric material is critical to many research fields and applications, such as polymer morphology, protective coatings (paints and varnishes), separation membranes, transport phenomena, polymer electrolytes, polymer melt, and controlled release of drugs from polymer carriers [1-9]. However, it is still a challenge to understand, predict and control the diffusion of molecules and ions of different sizes in polymers [2]. This work studied the medium to long range diffusion of species (i.e., ions and molecules) in solid polymer electrolytes based on poly(ethylene glycol)/poly(methyl methacrylate) (PEG/PMMA) for Li-based batteries, and polymeric permselective membranes via pulsed-field gradient NMR and a.c. impedance. Over the past decades polymer electrolytes have attracted much attention because of their promising technological application as an ion-conducting medium in solid-state batteries, fuel cells, electrochromic displays, and chemical sensors [10, 11]. However, despite numerous studies related to ionic transport in these electrolytes the understanding of the migration mechanism is still far from being complete, and progress in the field remains largely empirical [10, 12-15]. Among various candidates for solid polymer electrolyte (SPE) material, the miscible polymer pair, poly(ethylene oxide)/poly(methyl methacrylate) (PEO/PMMA), is an attractive one, because there is a huge difference in mobility between PEO and PMMA in their blends, and PEO chains remain exceptionally mobile in the blend even at temperature below the glass transition temperature of the blend [ 16]. Thus the mechanical strength and dimensional stability is maintained by PMMA component, while the chain motions or rearrangements of the PEO component virtually contribute to the ion transport [17]. The current work prepared two types of SPE based on poly(ethylene glycol) (PEG) /PMMA (40/60 by weight) for Li-based batteries: lithium bis(trifluoromethylsulfonylimide) (Li

  12. Role of Cell-Matrix Interactions on VIC Phenotype and Tissue Deposition in 3D PEG Hydrogels

    PubMed Central

    Gould, Sarah T.; Anseth, Kristi S.

    2014-01-01

    Valvular interstitial cells (VICs) respond to 3D matrix interactions in a complex manner, but better understanding these effects on VIC function is important for applications ranging from valve tissue engineering to studying valve disease. Here, we encapsulated VICs in poly(ethylene glycol) (PEG) hydrogels modified with three different adhesive ligands derived from fibronectin (RGDS), elastin (VGVAPG), and collagen-1 (P15). By day 14, VICs became significantly more elongated in RGDS containing gels compared to VGVAPG or P15. This difference in cell morphology appeared to correlate with global matrix metalloproteinase (MMP) activity, as VICs encapsulated in RGDS-functionalized hydrogels secreted higher levels of active MMP at day 2. VIC activation to a myofibroblast phenotype was also characterized by staining for α-smooth muscle actin (αSMA) at day 14. The percentage of αSMA+ VICs in the VGVAPG gels was the highest (56%) compared to RGDS (33%) or P15 (38%) gels. Matrix deposition and composition were also characterized at day 14 and 42 and found to depend on the initial hydrogel composition. All gel formulations had similar levels of collagen, elastin, and chondroitin sulfate deposited as the porcine aortic valve. However, the composition of collagen deposited by VICs in VGVAPG functionalized gels had a significantly higher collagen-X to collagen-1 ratio, which is associated with stenotic valves. Taken together, these data suggest that peptide functionalized PEG hydrogels are a useful system to culture VICs in 3D, and with the ability to systematically alter biochemical and biophysical properties, this platform may prove useful in manipulating VIC function for valve regeneration. PMID:24130082

  13. Role of cell-matrix interactions on VIC phenotype and tissue deposition in 3D PEG hydrogels.

    PubMed

    Gould, Sarah T; Anseth, Kristi S

    2013-10-16

    Valvular interstitial cells (VICs) respond to 3D matrix interactions in a complex manner, but understanding these effects on VIC function better is important for applications ranging from valve tissue engineering to studying valve disease. Here, we encapsulated VICs in poly(ethylene glycol) (PEG) hydrogels modified with three different adhesive ligands, derived from fibronectin (RGDS), elastin (VGVAPG) and collagen-1 (P15). By day 14, VICs became significantly more elongated in RGDS-containing gels compared to VGVAPG or P15. This difference in cell morphology appeared to correlate with global matrix metalloproteinase (MMP) activity, as VICs encapsulated in RGDS-functionalized hydrogels secreted higher levels of active MMP at day 2. VIC activation to a myofibroblast phenotype was also characterized by staining for α-smooth muscle actin (αSMA) at day 14. The percentage of αSMA(+) VICs in the VGVAPG gels was the highest (56%) compared to RGDS (33%) or P15 (38%) gels. Matrix deposition and composition were also characterized at days 14 and 42 and found to depend on the initial hydrogel composition. All gel formulations had similar levels of collagen, elastin and chondroitin sulphate deposited as the porcine aortic valve. However, the composition of collagen deposited by VICs in VGVAPG-functionalized gels had a significantly higher collagen-X:collagen-1 ratio, which is associated with stenotic valves. Taken together, these data suggest that peptide-functionalized PEG hydrogels are a useful system for culturing VICs three-dimensionally and, with the ability to systematically alter biochemical and biophysical properties, this platform may prove useful in manipulating VIC function for valve regeneration. Copyright © 2013 John Wiley & Sons, Ltd. PMID:24130082

  14. Postprandial glucose, insulin, and glucagon-like peptide-1 responses of different equine breeds adapted to meals containing micronized maize.

    PubMed

    Bamford, N J; Baskerville, C L; Harris, P A; Bailey, S R

    2015-07-01

    The enteroinsular axis is a complex system that includes the release of incretin hormones from the gut to promote the absorption and utilization of glucose after a meal. The insulinogenic effect of incretin hormones such as glucagon-like peptide-1 (GLP-1) remains poorly characterized in the horse. The aim of this study was to compare postprandial glucose, insulin, and GLP-1 responses of different equine breeds adapted to twice-daily meals containing micronized maize. Four Standardbred horses, 4 mixed-breed ponies, and 4 Andalusian cross horses in moderate BCS (5.5 ± 0.2 out of 9) were fed meals at 0800 and 1600 h each day. The meals contained micronized maize (mixed with soaked soybean hulls and lucerne chaff), with the amount of maize gradually increased over 12 wk to reach a final quantity of 1.7 g/kg BW (1.1 g/kg BW starch) in each meal. Animals had ad libitum access to the same hay throughout. After 12 wk of acclimation, serial blood samples were collected from all animals over a 14-h period to measure concentrations of glucose, insulin, and GLP-1, with meals fed immediately after the 0 and 8 h samples. Glucose area under the curve (AUC) values were similar between breed groups (P = 0.41); however, ponies and Andalusian horses exhibited significantly higher insulin AUC values after both meals compared with Standardbred horses (both P < 0.005). Postprandial GLP-1 AUC values were also significantly higher in ponies and Andalusian horses compared with Standardbred horses (breed × time interaction; P < 0.001). Correlation analysis demonstrated a strong positive association between concentrations of insulin and GLP-1 over time (rs = 0.752; P < 0.001). The increased insulin concentrations in ponies and Andalusian horses may partly reflect lower insulin sensitivity but could also be attributed to increased GLP-1 release. Given that hyperinsulinemia is a recognized risk factor for the development of laminitis in domestic equids, this study provides evidence that the

  15. Controlled Thermoresponsive Hydrogels by Stereocomplexed PLA-PEG-PLA Prepared via Hybrid Micelles of Pre-Mixed Copolymers with Different PEG Lengths

    SciTech Connect

    Abebe, Daniel G.; Fujiwara, Tomoko

    2012-09-05

    The stereocomplexed hydrogels derived from the micelle mixture of two enantiomeric triblock copolymers, PLLA-PEG-PLLA and PDLA-PEG-PDLA, reported in 2001 exhibited sol-to-gel transition at approximately body temperature upon heating. However, the showed poor storage modulus (ca. 1000 Pa) determined their insufficiency as injectable implant biomaterials for many applications. In this study, the mechanical property of these hydrogels was significantly improved by the modifications of molecular weights and micelle structure. Co-micelles composed of block copolymers with two sizes of PEG block length were shown to possess unique and dissimilar properties from the micelles composed of single-sized block copolymers. The stereomixture of PLA-PEG-PLA comicelles showed a controllable sol-to-gel transition at a wide temperature range of 4 and 80 C. The sol-gel phase diagram displays a linear relationship of temperature versus copolymer composition; hence, a transition at body temperature can be readily achieved by adjusting the mixed copolymer ratio. The resulting thermoresponsive hydrogels exhibit a storage modulus notably higher (ca. 6000 Pa) than that of previously reported hydrogels. As a physical network solely governed by self-reorganization of micelles, followed by stereocomplexation, this unique system offers practical, safe, and simple implantable biomaterials.

  16. Controlled thermoresponsive hydrogels by stereocomplexed PLA-PEG-PLA prepared via hybrid micelles of pre-mixed copolymers with different PEG lengths.

    PubMed

    Abebe, Daniel G; Fujiwara, Tomoko

    2012-06-11

    The stereocomplexed hydrogels derived from the micelle mixture of two enantiomeric triblock copolymers, PLLA-PEG-PLLA and PDLA-PEG-PDLA, reported in 2001 exhibited sol-to-gel transition at approximately body temperature upon heating. However, the showed poor storage modulus (ca. 1000 Pa) determined their insufficiency as injectable implant biomaterials for many applications. In this study, the mechanical property of these hydrogels was significantly improved by the modifications of molecular weights and micelle structure. Co-micelles composed of block copolymers with two sizes of PEG block length were shown to possess unique and dissimilar properties from the micelles composed of single-sized block copolymers. The stereomixture of PLA-PEG-PLA comicelles showed a controllable sol-to-gel transition at a wide temperature range of 4 and 80 °C. The sol-gel phase diagram displays a linear relationship of temperature versus copolymer composition; hence, a transition at body temperature can be readily achieved by adjusting the mixed copolymer ratio. The resulting thermoresponsive hydrogels exhibit a storage modulus notably higher (ca. 6000 Pa) than that of previously reported hydrogels. As a physical network solely governed by self-reorganization of micelles, followed by stereocomplexation, this unique system offers practical, safe, and simple implantable biomaterials. PMID:22537225

  17. Synthesis and study the controlled release of etronidazole from the new PEG/NaY and PEG/MCM-41 nanocomposites

    PubMed Central

    2014-01-01

    Recently, hybrid materials using poly ethylene glycol and porous nanocrystals have been developed for drug release. In this study, a series of poly ethylene glycol (PEG)/NaY zeolite and PEG/MCM-41 nanocomposites get synthesized. These materials are characterized using FT-IR spectroscopy, XRD, TGA and SEM. After loading the metronidazole onto these nanocomposites, the release of Metronidazole was studied in two kinds of release fluids simulating body fluid KH2PO4-Na2HPO4 buffer (pH = 7.4) and gastric fluid (HCl aqueous solution, pH = 1.5) while controlling the time, pH values, and temperature using UV–vis. Results showed that these nanocomposites have further release related to NaY, MCM-41 and the order of release in two pH solutions was PEG/NaY > PEG/MCM-41 > NaY > MCM-41. The behavior of drug release in these nanocomposites is probably due to hydrogen bonding interactions between drug and the hydroxyl group on the composite framework. PMID:24428854

  18. The Osteogenesis of Bone Marrow Stem Cells on mPEG-PCL-mPEG/Hydroxyapatite Composite Scaffold via Solid Freeform Fabrication

    PubMed Central

    Liao, Han-Tsung; Jiang, Cho-Pei

    2014-01-01

    The study described a novel bone tissue scaffold fabricated by computer-aided, air pressure-aided deposition system to control the macro- and microstructure precisely. The porcine bone marrow stem cells (PBMSCs) seeded on either mPEG-PCL-mPEG (PCL) or mPEG-PCL-mPEG/hydroxyapatite (PCL/HA) composite scaffold were cultured under osteogenic medium to test the ability of osteogenesis in vitro. The experimental outcomes indicated that both scaffolds possessed adequate pore size, porosity, and hydrophilicity for the attachment and proliferation of PBMSCs and the PBMSCs expressed upregulated genes of osteogensis and angiogenesis in similar manner on both scaffolds. The major differences between these two types of the scaffolds were the addition of HA leading to higher hardness of PCL/HA scaffold, cell proliferation, and VEGF gene expression in PCL/HA scaffold. However, the in vivo bone forming efficacy between PBMSCs seeded PCL and PCL/HA scaffold was different from the in vitro results. The outcome indicated that the PCL/HA scaffold which had bone-mimetic environment due to the addition of HA resulted in better bone regeneration and mechanical strength than those of PCL scaffold. Therefore, providing a bone-mimetic scaffold is another crucial factor for bone tissue engineering in addition to the biocompatibility, 3D architecture with high porosity, and interpored connection. PMID:24868523

  19. Functionalized quantum dots induce proinflammatory responses in vitro: the role of terminal functional group-associated endocytic pathways

    NASA Astrophysics Data System (ADS)

    Zhang, Yijuan; Pan, Hong; Zhang, Pengfei; Gao, Ningning; Lin, Yi; Luo, Zichao; Li, Ping; Wang, Ce; Liu, Lanlan; Pang, Daiwen; Cai, Lintao; Ma, Yifan

    2013-06-01

    PEGylation has been applied as an effective strategy of surface functionalization to improve the stability and reduce non-specific binding of quantum dots (QDs). However, its effects on the proinflammatory properties of QDs and the underlying mechanism have not been well elucidated yet. Herein, the proinflammatory effects of PEGylated CdSe/ZnS QDs with an amphiphilic polymer coating (PEG-pQDs) were investigated in human pulmonary epithelial cells and macrophages by evaluating the cytokine/chemokine production. The results showed that the proinflammatory effects of PEG-pQDs were strongly associated with the functional groups (-COOH, -NH2, -OH, and -OCH3) at the end of PEG chain. COOH-PEG-pQDs demonstrated the most proinflammatory effects followed by NH2-PEG-pQDs and HO-PEG-pQDs with CH3O-PEG-pQDs exhibiting the least proinflammatory effects. The proinflammatory effects of PEG-pQDs relied on lipid raft- and class A scavenger receptor (SRA)-dependent endocytic pathways as well as the downstream NF-κB and MAPK signaling cascades. COOH-PEG-pQDs were selectively internalized by lipid raft- and SRA-mediated endocytosis, which consequently activated NF-κB signaling pathway. On the other hand, NH2-PEG-pQDs and HO-PEG-pQDs were mostly internalized via lipid raft-mediated endocytosis, thereby activating p38 MAPK/AP-1 signaling cascades. These data revealed a critical role of terminal functional group-associated endocytic pathways in the proinflammatory responses induced by PEGylated QDs in human pulmonary epithelial cells and macrophages.PEGylation has been applied as an effective strategy of surface functionalization to improve the stability and reduce non-specific binding of quantum dots (QDs). However, its effects on the proinflammatory properties of QDs and the underlying mechanism have not been well elucidated yet. Herein, the proinflammatory effects of PEGylated CdSe/ZnS QDs with an amphiphilic polymer coating (PEG-pQDs) were investigated in human pulmonary epithelial

  20. Crosslinked PEG and PEBAX Membranes for Concurrent Permeation of Water and Carbon Dioxide.

    PubMed

    Scholes, Colin A; Chen, George Q; Lu, Hiep T; Kentish, Sandra E

    2015-01-01

    Membrane technology can be used for both post combustion carbon dioxide capture and acidic gas sweetening and dehydration of natural gas. These processes are especially suited for polymeric membranes with polyether functionality, because of the high affinity of this species for both H₂O and CO₂. Here, both crosslinked polyethylene glycol diacrylate and a polyether-polyamide block copolymer (PEBAX 2533(©)) are studied for their ability to separate CO₂ from CH₄ and N₂ under single and mixed gas conditions, for both dry and wet feeds, as well as when 500 ppm H₂S is present. The solubility of gases within these polymers is shown to be better correlated with the Lennard Jones well depth than with critical temperature. Under dry mixed gas conditions, CO₂ permeability is reduced compared to the single gas measurement because of competitive sorption from CH₄ or N₂. However, selectivity for CO₂ is retained in both polymers. The presence of water in the feed is observed to swell the PEG membrane resulting in a significant increase in CO₂ permeability relative to the dry gas scenario. Importantly, the selectivity is again retained under wet feed gas conditions. The presence of H₂S is observed to only slightly reduce CO₂ permeability through both membranes. PMID:26703745

  1. Novel non-PEG derived polyethers as solid supports. 2. Solid-phase synthesis studies.

    PubMed

    Cavalli, Gabriel; Shooter, Andrew G; Pears, David A; Wellings, Donald A; Gulzar, Saeed; Steinke, Joachim H G

    2007-01-01

    Novel non-PEG derived polyether resins, coined SLURPS (Superior Liquid Uptake Resins for Polymer-supported Synthesis), were studied for their performance in solid-phase synthesis. Novel amino functional resins, SLURPS-NH2, were prepared with a loading of up to 8.5 mmol/g and employed successfully in the solid-phase synthesis of Leu-Enkephalin. The peptide was obtained with the same purity when compared to its synthesis with commercial standard poly(dimethyl acrylamide) resins. Furthermore we show loading and cleavage of aromatic carboxylic acids in excellent yield. The advantageous solvent compatibility of our support was demonstrated through the biphasic dihydroxylation of alkenes with OsO4 in t-BuOH/water mixtures producing bound 1,2-diols and synthesis and removal of a bound oxime using ethanol/water mixtures both in excellent yields. Reactions were easily monitored by gel-phase NMR and FTIR. These results show that SLURPS are very well suited for organic transformations using highly polar solvent mixtures and reagents and at much higher loading levels than standard amphiphilic resins of similar solvent compatibility. PMID:17900168

  2. Crosslinked PEG and PEBAX Membranes for Concurrent Permeation of Water and Carbon Dioxide

    PubMed Central

    Scholes, Colin A.; Chen, George Q.; Lu, Hiep T.; Kentish, Sandra E.

    2015-01-01

    Membrane technology can be used for both post combustion carbon dioxide capture and acidic gas sweetening and dehydration of natural gas. These processes are especially suited for polymeric membranes with polyether functionality, because of the high affinity of this species for both H2O and CO2. Here, both crosslinked polyethylene glycol diacrylate and a polyether-polyamide block copolymer (PEBAX 2533©) are studied for their ability to separate CO2 from CH4 and N2 under single and mixed gas conditions, for both dry and wet feeds, as well as when 500 ppm H2S is present. The solubility of gases within these polymers is shown to be better correlated with the Lennard Jones well depth than with critical temperature. Under dry mixed gas conditions, CO2 permeability is reduced compared to the single gas measurement because of competitive sorption from CH4 or N2. However, selectivity for CO2 is retained in both polymers. The presence of water in the feed is observed to swell the PEG membrane resulting in a significant increase in CO2 permeability relative to the dry gas scenario. Importantly, the selectivity is again retained under wet feed gas conditions. The presence of H2S is observed to only slightly reduce CO2 permeability through both membranes. PMID:26703745

  3. Decreasing matrix modulus of PEG hydrogels induces a vascular phenotype in human cord blood stem cells.

    PubMed

    Mahadevaiah, Shruthi; Robinson, Karyn G; Kharkar, Prathamesh M; Kiick, Kristi L; Akins, Robert E

    2015-09-01

    Adult and congenital cardiovascular diseases are significant health problems that are often managed using surgery. Bypass grafting is a principal therapy, but grafts fail at high rates due to hyperplasia, fibrosis, and atherosclerosis. Biocompatible, cellularized materials that attenuate these complications and encourage healthy microvascularization could reduce graft failure, but an improved understanding of biomaterial effects on human stem cells is needed to reach clinical utility. Our group investigates stem-cell-loaded biomaterials for placement along the adventitia of at-risk vessels and grafts. Here, the effects of substrate modulus on human CD34+ stem cells from umbilical cord blood were evaluated. Cells were isolated by immunomagnetic separation and encapsulated in 3, 4, and 6 weight% PEG hydrogels containing 0.032% gelatin and 0.0044% fibronectin. Gels reached moduli of 0.34, 4.5, and 9.1 kPa. Cell viability approached 100%. Cell morphologies appeared similar across gels, but proliferation was significantly lower in 6 wt% gels. Expression profiling using stem cell signaling arrays indicated enhanced self-renewal and differentiation into vascular endothelium among cells in the lower weight percent gels. Thus, modulus was associated with cell proliferation and function. Gels with moduli in the low kilopascal range may be useful in stimulating cell engraftment and microvascularization of graft adventitia. PMID:26016692

  4. PEG-b-PCL copolymer micelles with the ability of pH-controlled negative-to-positive charge reversal for intracellular delivery of doxorubicin.

    PubMed

    Deng, Hongzhang; Liu, Jinjian; Zhao, Xuefei; Zhang, Yuming; Liu, Jianfeng; Xu, Shuxin; Deng, Liandong; Dong, Anjie; Zhang, Jianhua

    2014-11-10

    The application of PEG-b-PCL micelles was dampened by their inherent low drug-loading capability and relatively poor cell uptake efficiency. In this study, a series of novel PEG-b-PCL copolymers methoxy poly(ethylene glycol)-b-poly(ε-caprolactone-co-γ-dimethyl maleamidic acid -ε-caprolactone) (mPEG-b-P(CL-co-DCL)) bearing different amounts of acid-labile β-carboxylic amides on the polyester moiety were synthesized. The chain structure and chemical composition of copolymers were characterized by (1)H NMR, Fourier transform infrared spectroscopy (FT-IR), and gel permeation chromatography (GPC). mPEG-b-P(CL-co-DCL) with critical micellar concentrations (CMCs) of 3.2-6.3 μg/mL could self-assemble into stable micelles in water with diameters of 100 to 150 nm. Doxorubicin (DOX), a cationic hydrophobic drug, was successfully encapsulated into the polymer micelles, achieving a very high loading content due to electrostatic interaction. Then the stability, charge-conversional behavior, loading and release profiles, cellular uptake and in vitro cytotoxicity of free drug and drug-loaded micelles were evaluated. The β-carboxylic amides functionalized polymer micelles are negatively charged and stable in neutral solution but quickly become positively charged at pH 6.0, due to the hydrolysis of β-carboxylic amides in acidic conditions. The pH-triggered negative-to-positive charge reversal not only resulted in a very fast drug release in acidic conditions, but also effectively enhanced the cellular uptake by electrostatic absorptive endocytosis. The MTT assay demonstrated that mPEG-b-P(CL-co-DCL) micelles were biocompatible to HepG2 cells while DOX-loaded micelles showed significant cytotoxicity. In sum, the introduction of acid-labile β-carboxylic amides on the polyester block in mPEG-b-P(CL-co-DCL) exhibited great potentials for the modifications in the stability in blood circulation, drug solubilization, and release properties, as well as cell internalization and

  5. Tailored stimuli-responsive interaction between particles adjusted by straightforward adsorption of mixed layers of Poly(lysine)-g-PEG and Poly(lysine)-g-PNIPAM on anionic beads.

    PubMed

    Malinge, Jeremy; Mousseau, Fanny; Zanchi, Drazen; Brun, Geoffrey; Tribet, Christophe; Marie, Emmanuelle

    2016-01-01

    We report a simple and versatile method to functionalize anionic colloid particles and control particle solubility. Poly(lysine)-based copolymers (PLL) grafted with polyethylene oxide (PLL-g-PEG) or poly(N-isopropylacrylamide) (PLL-g-PNIPAM) spontaneously adsorb on bare beads dispersed in aqueous solutions of the copolymers. The final composition of the mixed ad-layers formed (i.e. PEG/PNIPAM ratio) was adjusted by the polymer concentrations in solutions. While the (PLL-g-PEG)-coated particles were stable in a wide range of temperature, the presence of PLL-g-PNIPAM in the outer layer provided a reversible temperature-triggered aggregation at 32±1 °C. In the range of PNIPAM fraction going from 100% (beads fully covered by PLL-g-PNIPAM) down to a threshold 20% weight ratio (with 80% PLL-g-PEG), the particles aggregated rapidly to form micrometer size clusters. Below 20% weight fraction of PLL-g-PNIPAM, the kinetic was drastically lowered. Using PLL derivatives provides a straightforward route allowing to control the fraction of a functional chain (here PNIPAM) deposited on PEGylated particles, and in turn to adjust surface interaction and here the rate of particle-particle aggregation as a function of the density of functional chains. This approach can be generalized to many anionic surfaces onto which PLL is known to adhere tightly, such as glass or silica. PMID:26397909

  6. Differential effects of once-weekly glucagon-like peptide-1 receptor agonist dulaglutide and metformin on pancreatic β-cell and insulin sensitivity during a standardized test meal in patients with type 2 diabetes.

    PubMed

    Mari, A; Del Prato, S; Ludvik, B; Milicevic, Z; de la Peña, A; Shurzinske, L; Karanikas, C A; Pechtner, V

    2016-08-01

    This substudy of the AWARD-3 trial evaluated the effects of the once-weekly glucagon-like peptide-1 receptor agonist, dulaglutide, versus metformin on glucose control, pancreatic function and insulin sensitivity, after standardized test meals in patients with type 2 diabetes. Meals were administered at baseline, 26 and 52 weeks to patients randomized to monotherapy with dulaglutide 1.5 mg/week (n = 133), dulaglutide 0.75 mg/week (n = 136), or metformin ≥1500 mg/day (n = 140). Fasting and postprandial serum glucose, insulin, C-peptide and glucagon levels were measured up to 3 h post-meal. β-cell function and insulin sensitivity were assessed using empirical variables and mathematical modelling. At 26 weeks, similar decreases in area under the curve for glucose [AUCglucose (0-3 h)] were observed among all groups. β-cell function [AUCinsulin /AUCglucose (0-3 h)] increased with dulaglutide and was unchanged with metformin (p ≤ 0.005, both doses). Dulaglutide improved insulin secretion rate at 9 mmol/l glucose (p ≤ 0.04, both doses) and β-cell glucose sensitivity (p = 0.004, dulaglutide 1.5 mg). Insulin sensitivity increased more with metformin versus dulaglutide. In conclusion, dulaglutide improves postprandial glycaemic control after a standardized test meal by enhancing β-cell function, while metformin exerts a greater effect on insulin sensitivity. PMID:27059816

  7. PEG-derivatized octacosanol as micellar carrier for paclitaxel delivery.

    PubMed

    Chu, Bingyang; Qu, Ying; Huang, Yixing; Zhang, Lan; Chen, Xiaoxin; Long, Chaofeng; He, Yunqi; Ou, Caiwen; Qian, Zhiyong

    2016-03-16

    In this study, PEG-derivatized octacosanol copolymer was successfully developed to improve the anti-tumor activity and eliminate toxicity of the commercial formulation of paclitaxel (PTX). MPEG2K-C28, the conjugation of monomethoxy Poly(ethylene glycol) 2000 and octacosanol, was readily soluble in aqueous solution and self-assembled to form micelles with small sizes (< 20 nm) that are efficient in encapsulating PTX with a drug loading of 9.38 ± 0.18% and an encapsulation efficiency of 93.90 ± 2.12%. Meanwhile, octacosanol is very safe for humans and amazingly exhibits antitumor activity through inhibition activity of matrix metalloproteinases (MMPs) and translocation of the transcription factor (nuclear factor-kappa B, NF-κB) to the nucleus, which may be able to promote synergistic effects with PTX. A sustained and slower in vitro release behavior was observed in the (PTX micelles) than that of Taxol. PTX micelles exhibited more potent cytotoxicity than Taxol in the 4T1 breast cancer cell line. More interestingly, MPEG2K-C28 selectively inhibited the growth of 4T1 cells rather than the normal cells (HEK293 and L929 cell lines), indicating the antitumor activity of octacosanol remained after conjugation with MPEG. Acute toxicity evaluations indicated that MPEG2K-C28 was a safe drug carrier. Pharmacokinetic study revealed that PTX micelles improved the T1/2 and AUC of PTX (compared with Taxol) from 1.910 ± 0.139 h and 13.999 ± 1.109 mg/l × h to 2.876 ± 0.532 h and 76.462 ± 8.619 mg/l × h in vivo, respectively. The maximal tolerated dose (MTD) for PTX micelles (ca. 120 mg PTX/kg) in mice was significantly higher than that for Taxol (ca. 20mg PTX/kg). PTX micelles exhibited slightly better antitumor activity than Taxol but safer in 4T1 breast cancer model in vivo. The cell apoptosis in the immunofluorescent studies and the cell proliferation in the immunohistochemical studies also proved the results. In conclusion, MPEG2K-C28 is a simple, safe and effective

  8. A novel score predicting PEG placement in ICH – the GRAVo score

    PubMed Central

    Faigle, Roland; Marsh, Elisabeth B.; Llinas, Rafael H.; Urrutia, Victor C.; Gottesman, Rebecca F.

    2014-01-01

    Background and Purpose Dysphagia after intracerebral hemorrhage (ICH) contributes significantly to morbidity, often necessitating placement of a percutaneous endoscopic gastrostomy (PEG) tube. This study describes a novel risk prediction score for PEG placement after ICH. Methods We retrospectively analyzed data from 234 ICH patients presenting during a 4-year period. One hundred and eighty nine patients met inclusion criteria. The sample was randomly divided into a development and a validation cohort. Logistic regression was used to develop a risk score by weighting predictors of PEG placement based on strength of association. Results Age (OR 1.64 per 10 years increase in age, 95% CI 1.02–2.65), African American race (OR 3.26, 95% CI 0.96–11.05), Glasgow Coma Scale (GCS; OR 0.80, 95% CI 0.62–1.03), and ICH volume (OR 1.38 per 10 cc increase in ICH volume) were independent predictors of PEG placement. The final model for score development achieved an AUC of 0.7911 (95% CI 0.6931–0.8892) in the validation group. The score was named the GRAVo score: GCS ≤12 (2 points), Race (1 point for African-American), Age >50 years (2 points), and ICH Volume >30 cc (1 point). A score >4 was associated with nearly 12 times higher odds of PEG placement compared to a score ≤4 (OR 11.81, 95% CI 5.04–27.66), predicting PEG placement with 46.55% sensitivity and 93.13% specificity. Conclusion The GRAVo score, combining information about GCS, race, age, and ICH volume, may be a useful predictor of PEG placement in ICH patients. PMID:25468881

  9. The optimal currency-peg for an oil exporting country: The case of Saudi Arabia

    SciTech Connect

    Almasbahi, M.S.

    1990-01-01

    In a world of generalized floating exchange rates, it is not enough to solve the problem of exchange rate policy by determining whether to peg or float the currency under consideration. It is also necessary to choose to what major currency to peg. The main purpose of this study is to investigate and determine empirically the optimum currency peg for the Saudi riyal. To accomplish this goal, a simple conventional trade model, that includes variables found in many other studies of import and export demand, was used. In addition, an exchange rate term was added as a separate independent variable in the import and export demand equations in order to assess the effect of exchange rate on the trade flows. The criteria for the optimal currency peg in this study were based on two factors. First, the error statistics for projected imports and exports using alternative exchange rate regimes. Second, variances of projected imports, exports and trade balance using alternative exchange rate regimes. The exchange rate has a significant impact on the Saudia Arabian trade flows which implies that changes in the riyals value affect the Saudi trade deficit. Moreover, the exchange rate has a more powerful effect on its aggregate imports than on the world demand for its exports. There is also a strong support for the hypothesis that the exchange rate affects the value of the Saudi bilateral trade with its five major trade partners. On the aggregate level, the SDR peg seems to be the best currency peg for the Saudi riyal since it provides the best prediction errors and the lowest variance for the trade balance. Finally, on the disaggregate level, the US dollar provides the best performance and yields the best results among all the six currency pegs considered in this study.

  10. Insufflation with carbon dioxide reduces pneumoperitoneum after percutaneous endoscopic gastrostomy (PEG): a randomized controlled trial

    PubMed Central

    Murphy, Christopher J.; Adler, Douglas G.; Cox, Kristen; Sommers, Daniel N.; Fang, John C.

    2016-01-01

    Background and study aims: Pneumoperitoneum following PEG placement has been reported in up to 60 % of cases, and while usually benign and self-limited, it can lead to evaluation for suspected perforation. This study was designed to determine whether using CO2 compared to ambient air for insufflation during PEG reduces post-procedure pneumoperitoneum. Patients and Methods: Prospective, double-blind, randomized trial of 35 consecutive patients undergoing PEG at a single academic medical center. Patients were randomized to insufflation with CO2 or ambient air. The primary outcome was pneumoperitoneum determined by left-lateral decubitus abdominal x-rays 30 minutes after PEG placement. Secondary endpoints included abdominal distention, pain, and bloating. Results: PEG was successfully placed in 17 patients using CO2 and 18 patients using ambient air. Three patients in each arm were unable or declined to have x-rays completed and were excluded. Pneumoperitoneum was identified in 2/14 (14.3 %) using CO2 and 8/15 (53.3 %) using ambient air (P = 0.05). There was no significant difference in abdominal distention, visual analog scale (VAS) scores for pain or bloating between CO2 and ambient air. Conclusion: Utilizing CO2 significantly reduces the frequency of post-procedural pneumoperitoneum compared to use of ambient air during PEG placement, with no difference in waist circumference, pain or bloating between CO2 and ambient air. CO2 appears to be safe and effective for use and may be the insufflation agent of choice during PEG. PMID:27004246

  11. FGFR-targeted gene delivery mediated by supramolecular assembly between β-cyclodextrin-crosslinked PEI and redox-sensitive PEG.

    PubMed

    Ping, Yuan; Hu, Qida; Tang, Guping; Li, Jun

    2013-09-01

    A new redox-sensitive poly(ethylene glycol) (PEG)-based gene vector specially designed to target fibroblast growth factor receptors (FGFRs) was developed by host-guest supramolecular complexation. The new vector was designed as follows: 1) A host segment was consisted of β-cyclodextrin-crosslinked low molecular polyethylenimine (PEI) conjugated with MC11 peptide (MQLPLATGGGC) that can target FGFRs, being termed as MC11-PEI-β-cyclodextrin (MPC); 2) A guest segment is consisted of PEG and adamantyl group linked by a disulfide bond, the adamantyl-SS-PEG (Ad-SS-PEG); and 3) PEGylation of MPC by supramolecular complexation between MPC and Ad-SS-PEG to generate MPC/Ad-SS-PEG polycation, where the PEG chains can stabilize the DNA polyplexes extracellularly but can be readily cleavable intracellularly. It was found that the MPC/Ad-SS-PEG complexes could efficiently condense pDNA into nanoparticles around 100-200 nm, and were able to effectively stabilize polyplexes against salt- or BSA-induced aggregation. The MPC/Ad-SS-PEG polyplexes were more readily to dissociate with the aid of heparin in the presence of 5 mm DTT. In vitro gene transfection and cytotoxicity experiments in different carcinoma cell lines expressing FGFRs showed that MPC/Ad-SS-PEG could mediate significantly higher transfection efficiency than MPC complexed with adamantyl-PEG (MPC/Ad-PEG), which has no disulfide linkage and is non-PEG-detachable. Furthermore, confocal laser scanning microscopy study indicated that MPC/Ad-SS-PEG polyplexes could mediate much more efficient endosomal escape than stably shield MPC/Ad-PEG polyplexes at 12 h post-transfection. Importantly, MPC/Ad-SS-PEG was also able to efficiently mediate tumor-targeted gene delivery in the tumor-bearing mouse model after systemic injection in vivo. These results suggest that the MPC/Ad-SS-PEG systems could be a safe and efficient non-viral vector for FGFR-mediated targeted gene delivery for cancer gene therapy. PMID:23602276

  12. Unexpected electronic perturbation effects of simple PEG environments on the optical properties of small cadmium chalcogenide clusters

    NASA Astrophysics Data System (ADS)

    Fukunaga, Naoto; Konishi, Katsuaki

    2015-12-01

    Poly(ethylene glycol) (PEG) has been widely used for the surface protection of inorganic nanoobjects because of its virtually `inert' nature, but little attention has been paid to its inherent electronic impacts on inorganic cores. Herein, we definitively show, through studies on optical properties of a series of PEG-modified Cd10Se4(SR)10 clusters, that the surrounding PEG environments can electronically affect the properties of the inorganic core. For the clusters with PEG units directly attached to an inorganic core (R = (CH2CH2O)nOCH3, 1-PEGn, n = 3, ~7, ~17, ~46), the absorption bands, associated with the low-energy transitions, continuously blue-shifted with the increasing PEG chain length. The chain length dependencies were also observed in the photoluminescence properties, particularly in the excitation spectral profiles. By combining the spectral features of several PEG17-modified clusters (2-Cm-PEG17 and 3) whose PEG and core units are separated by various alkyl chain-based spacers, it was demonstrated that sufficiently long PEG units, including PEG17 and PEG46, cause electronic perturbations in the cluster properties when they are arranged near the inorganic core. These unique effects of the long-PEG environments could be correlated with their large dipole moments, suggesting that the polarity of the proximal chemical environment is critical when affecting the electronic properties of the inorganic cluster core.Poly(ethylene glycol) (PEG) has been widely used for the surface protection of inorganic nanoobjects because of its virtually `inert' nature, but little attention has been paid to its inherent electronic impacts on inorganic cores. Herein, we definitively show, through studies on optical properties of a series of PEG-modified Cd10Se4(SR)10 clusters, that the surrounding PEG environments can electronically affect the properties of the inorganic core. For the clusters with PEG units directly attached to an inorganic core (R = (CH2CH2O)nOCH3, 1-PEGn

  13. In vivo pharmacokinetics, tissue distribution and underlying mechanisms of various PEI(-PEG)/siRNA complexes

    SciTech Connect

    Malek, Anastasia; Merkel, Olivia; Fink, Ludger; Czubayko, Frank; Kissel, Thomas; Aigner, Achim

    2009-04-01

    Background: RNA interference (RNAi) represents a novel therapeutic strategy allowing the knockdown of any pathologically relevant target gene. Since it relies on the action of small interfering RNAs (siRNAs), the in vivo delivery of siRNAs is instrumental. Polyethylenimines (PEIs) and PEGylated PEIs have been shown previously to complex siRNAs, thus mediating siRNA protection against nucleolytic degradation, cellular uptake and intracellular release. Purpose: The present study determines in vivo pharmacokinetics, tissue distribution/efficacy of siRNA delivery and adverse effects of a broad panel of PEI(-PEG)-based siRNA complexes. The aim is to systematically evaluate the effects of different degrees and patterns of PEGylation in PEI-PEG copolymers on the in vivo behavior of PEI(-PEG)/siRNA complexes in mice. Results: Upon i.v. injection of radioactively labeled, PEI(-PEG) complexed siRNAs, marked differences in the pharmacokinetics and biodistribution of the complexes are observed, with the fate of the PEI(-PEG)/siRNA complexes being mainly dependent on the degree of uptake in liver, spleen, lung and kidney. Thus, the role of these tissues is investigated in greater detail using representative PEI(-PEG)/siRNA complexes. The induction of erythrocyte aggregation and hemorrhage is dependent on the degree and pattern of PEGylation as well as on the PEI/siRNA (N/P) ratio, and represents one important effect in the lung. Furthermore, siRNA uptake in liver and spleen, but not in lung or kidney, is mediated by macrophage and is dependent on macrophage activity. In the kidney PEI(-PEG)/siRNA uptake is mostly passive and reflects the total stability of the complexes. Conclusion: Liver, lung, spleen and kidney are the major players determining the in vivo biodistribution of PEI(-PEG)/siRNA complexes. Beyond their physicochemical and in vitro bioactivity characteristics, PEI(-PEG)/siRNA complexes show marked differences in vivo which can be explained by distinct effects in

  14. Two-Phase Calorimetry. II. Studies on the Thermodynamics of Cesium and Strontium Extraction by Mixtures of H+CCD- and PEG-400 in FS-13

    SciTech Connect

    Zalupski, Peter R.; Herbst, R. S.; Delmau, Laetitia Helene; Martin, L. R.; Peterman, D. R.; Nash, Ken L

    2010-01-01

    Thermochemical characterization of the partitioning of cesium and strontium from nitric acid solutions into mixtures of the acid form of chlorinated cobalt dicarbollide (H+CCD-) and polyethylene glycol (PEG-400) in FS-13 diluent has been completed using isothermal titration microcalorimetry and radiotracer distribution methods. The phase transfer reaction for Cs+ is a straightforward (H+ for Cs+) cation exchange reaction. In contrast, the extraction of Sr2+ does not proceed in the absence of the co-solvent molecule PEG-400. This molecule is believed to facilitate the dehydration of the Sr2+ aquo cation to overcome its resistance to partitioning. The phase transfer reactions for both Cs+ and Sr2+ are enthalpy driven (exothermic), but partially compensated by an unfavorable entropy. The results of the calorimetry studies suggest that the PEG-400 functions as a stoichiometric phase transfer reagent rather than acting simply as a phase transfer catalyst or phase modifier. The calorimetry results also demonstrate that the extraction of Sr2+ is complex, including evidence for both the partitioning of Sr(NO3)+ and endothermic ion pairing interactions in the organic phase that contribute to the net enthalpic effect. The thermodynamics of the liquid-liquid distribution equilibria are discussed mainly considering the basic features of the ion solvation thermochemistry.

  15. Influence of the polymer amount on bioactivity and biocompatibility of SiO2/PEG hybrid materials synthesized by sol-gel technique.

    PubMed

    Catauro, M; Bollino, F; Papale, F; Gallicchio, M; Pacifico, S

    2015-03-01

    SiO2/PEG organic-inorganic hybrid materials, which differ in polyethylene glycol (PEG) content, were synthesized by sol-gel technique and the characterization of their structure and biological properties was carried out in order to evaluate the possible use in biomedical field. FT-IR spectroscopy detected that the two components of the hybrids (SiO2 and PEG) are linked by hydrogen bonds between the Si-OH groups of the inorganic phase and the terminal alcoholic groups and/or the ethereal oxygen atoms in the repeating units of polymer. X-ray diffraction analysis ascertained the amorphous nature of the gels and the observation of their morphology by SEM microscopy confirmed that the interpenetration of the two phases (organic and inorganic) occurs on nanometric scale. The biological characterization was carried out as a function of the polymer amount to study its influence on material behavior. The results showed that the synthesized materials were bioactive and biocompatible. The formation of a hydroxyapatite layer, indeed, was observed on their surface by SEM/EDX analysis after soaking in simulated body fluid. Moreover, the biocompatibility of SiO2/PEG hybrids was assessed performing MTT and SRB cytotoxicity tests on fibroblast cell NIH 3T3 after 24 and 48h of exposure, as well as Trypan Blue dye exclusion test. The response to the presence of the investigated materials was positive. The cell growth and proliferation showed dependence on polymer amount and time of exposure to the material extracts. Therefore, the obtained results are encouraging for the use of the obtained hybrids in dental or orthopedic applications. PMID:25579956

  16. Biological properties and biodegradation studies of chitosan biofilms plasticized with PEG and glycerol.

    PubMed

    Kammoun, Maher; Haddar, Manel; Kallel, Tasnim Kossentini; Dammak, Mohamed; Sayari, Adel

    2013-11-01

    Chitosan biofilms, prepared by casting method at various percentage of plasticizer (PEG and glycerol), were evaluated for their biological, structural and thermal properties. The addition of PEG at 30% (w/w) and glycerol at 10% (w/w) to chitosan has increased the antioxidant activity of biofilm with the percentages of 22 and 26%, respectively. The increase of ferric reducing power was noted for the mixtures of chitosan-PEG (70-30) and chitosan-GLY (75-25). Additionally, the antibacterial properties of several biofilms were tested against E. coli and S. aureus. Biofilms with 70-30 and 90-10 blends ratio of chitosan-PEG and chitosan-GLY showed the best inhibitory effect against E. coli and S. aureus with 12 and 27%, respectively. All biofilms were degraded in compost in liquid and the addition of plasticizer PEG to chitosan increased his biodegradability with a value of BOD5 about 2.33 O2/mg CO. FT-IR spectra showed that the addition of plasticizer promoted the interactions through hydrogen bonding as reflected on the shifting of main peaks but there is no effect on biodegradation. PMID:24076201

  17. Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers

    NASA Astrophysics Data System (ADS)

    Ding, Hong; Yong, Ken-Tye; Roy, Indrajit; Hu, Rui; Wu, Fang; Zhao, Lingling; Law, Wing-Cheung; Zhao, Weiwei; Ji, Wei; Liu, Liwei; Bergey, Earl J.; Prasad, Paras N.

    2011-04-01

    In this study, we have developed a novel carrier, micelle-type bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles (NPs), for the detection and treatment of pancreatic cancer. These NPs contained 4-arm-PEG as corona, and PLGA as core, the particle surface was conjugated with cyclo(arginine-glycine-aspartate) (cRGD) as ligand for in vivo tumor targeting. The hydrodynamic size of the NPs was determined to be 150-180 nm and the critical micellar concentration (CMC) was estimated to be 10.5 mg l - 1. Our in vitro study shows that these NPs by themselves had negligible cytotoxicity to human pancreatic cancer (Panc-1) and human glioblastoma (U87) cell lines. Near infrared (NIR) microscopy and flow cytometry demonstrated that the cRGD conjugated PLGA-4-arm-PEG polymeric NPs were taken up more efficiently by U87MG glioma cells, over-expressing the αvβ3 integrin, when compared with the non-targeted NPs. Whole body imaging showed that the cRGD conjugated PLGA-4-arm-PEG branched polymeric NPs had the highest accumulation in the pancreatic tumor site of mice at 48 h post-injection. Physical, hematological, and pathological assays indicated low in vivo toxicity of this NP formulation. These studies on the ability of these bioconjugated PLGA-4-arm-PEG polymeric NPs suggest that the prepared polymeric NPs may serve as a promising platform for detection and targeted drug delivery for pancreatic cancer.

  18. Resilin-PEG Hybrid Hydrogels Yield Degradable Elastomeric Scaffolds with Heterogeneous Microstructure.

    PubMed

    McGann, Christopher L; Akins, Robert E; Kiick, Kristi L

    2016-01-11

    Hydrogels derived from resilin-like polypeptides (RLPs) have shown outstanding mechanical resilience and cytocompatibility; expanding the versatility of RLP-based materials via conjugation with other polypeptides and polymers would offer great promise in the design of a range of materials. Here, we present an investigation of the biochemical and mechanical properties of hybrid hydrogels composed of a recombinant RLP and a multiarm PEG macromer. These hybrid hydrogels can be rapidly cross-linked through a Michael-type addition reaction between the thiols of cysteine residues on the RLP and vinyl sulfone groups on the multiarm PEG. Oscillatory rheology and tensile testing confirmed the formation of elastomeric hydrogels with mechanical resilience comparable to aortic elastin; hydrogel stiffness was easily modulated through the cross-linking ratio. Macromolecular phase separation of the RLP-PEG hydrogels offers the unique advantage of imparting a heterogeneous microstructure, which can be used to localize cells, through simple mixing and cross-linking. Assessment of degradation of the RLP by matrix metalloproteinases (MMPs) illustrated the specific proteolysis of the polypeptide in both its soluble form and when cross-linked into hydrogels. Finally, the successful encapsulation and viable three-dimensional culture of human mesenchymal stem cells (hMSCs) demonstrated the cytocompatibility of the RLP-PEG gels. Overall, the cytocompatibility, elastomeric mechanical properties, microheterogeneity, and degradability of the RLP-PEG hybrid hydrogels offer a suite of promising properties for the development of cell-instructive, structured tissue engineering scaffolds. PMID:26646060

  19. Dual-crosslinked oxidized, methacrylated alginate/PEG hydrogels for bioadhesive applications

    PubMed Central

    Jeon, Oju; Samorezov, Julia E.; Alsberg, Eben

    2013-01-01

    A degradable, cytocompatible bioadhesive can facilitate surgical procedures and minimize patient pain and postsurgical complications. In this study, a bioadhesive hydrogel system based on oxidized, methacrylated alginate/8-arm poly(ethylene glycol) amine (OMA/PEG) has been developed, and the bioadhesive characteristics of the crosslinked OMA/PEG hydrogels are evaluated. Here, we demonstrate that the swelling behavior, degradation profiles, and storage moduli of crosslinked OMA/PEG hydrogels are tunable by varying the degree of alginate oxidation. The crosslinked OMA/PEG hydrogels exhibit cytocompatibility when cultured with human bone marrow-derived mesenchymal stem cells. In addition, the adhesion strength of these hydrogels, controllable by varying the alginate oxidation level and measured using a porcine skin model, is superior to commercially available fibrin glue. This OMA/PEG hydrogel system with controllable biodegradation and mechanical properties and adhesion strength may be a promising bioadhesive for clinical use in biomedical applications, such as drug delivery, wound closure and healing, biomedical device implantation, and tissue engineering. PMID:24035886

  20. PPy/PMMA/PEG-based sensor for low-concentration acetone detection

    NASA Astrophysics Data System (ADS)

    Daneshkhah, A.; Shrestha, S.; Agarwal, M.; Varahramyan, K.

    2014-05-01

    A polymer pellet-based sensor device comprised of polypyrrole (PPy), polymethyl methacrylate (PMMA) and polyethylene glycol (PEG), its fabrication methods, and the experimental results for low-concentration acetone detection are presented. The design consists of a double layer pellet, where the top layer consists of PPy/PMMA and the bottom layer is composed of PPy/PMMA/PEG. Both sets of material compositions are synthesized by readily realizable chemical polymerization techniques. The mechanism of the sensor operation is based on the change in resistance of PPy and the swelling of PMMA when exposed to acetone, thereby changing the resistance of the layers. The resistances measured on the two layers, and across the pellet, are taken as the three output signals of the sensor. Because the PPy/PMMA and PPy/PMMA/PEG layers respond differently to acetone, as well as to other volatile organic compounds, it is demonstrated that the three output signals can allow the presented sensor to have a better sensitivity and selectivity than previously reported devices. Materials characterizations show formation of new composite with PPy/PMMA/PEG. Material response at various concentrations of acetone was conducted using quartz crystal microbalance (QCM). It was observed that the frequency decreased by 98 Hz for 290 ppm of acetone and by 411 Hz for 1160 ppm. Experimental results with a double layer pellet of PPy/PMMA and PPy/PMMA/PEG show an improved selectivity of acetone over ethanol. The reported acetone sensor is applicable for biomedical and other applications.

  1. In Vivo Biodistribution and Toxicity of Highly Soluble PEG-Coated Boron Nitride in Mice.

    PubMed

    Liu, Bo; Qi, Wei; Tian, Longlong; Li, Zhan; Miao, Guoying; An, Wenzhen; Liu, Dan; Lin, Jing; Zhang, Xiaoyong; Wu, Wangsuo

    2015-12-01

    The boron nitride (BN) nanoparticles, as the structural analogues of graphene, are the potential biomedicine materials because of the excellent biocompatibility, but their solubility and biosafety are the biggest obstacle for the clinic application. Here, we first synthesized the highly soluble BN nanoparticles coated by PEG (BN-PEG) with smaller size (~10 nm), then studied their biodistribution in vivo through radioisotope (Tc(99m)O4 (-)) labeling, and the results showed that BN-PEG nanoparticles mainly accumulated in the liver, lung, and spleen with the less uptake by the brain. Moreover, the pathological changes induced by BN-PEG could be significantly observed in the sections of the liver, lung, spleen, and heart, which can be also supported by the test of biochemical indexes in serum. More importantly, we first observed the biodistribution of BN-PEG in the heart tissues with high toxicity, which would give a warning about the cardiovascular disease, and provide some opportunities for the drug delivery and treatment. PMID:26659609

  2. PEGylation of novel hydroxyapatite/PEG/Ag nanocomposite particles to improve its antibacterial efficacy.

    PubMed

    Jegatheeswaran, S; Sundrarajan, M

    2015-06-01

    Hydroxyapatite (HAp) nanocomposite particles were prepared simply in the presence of polyethylene glycol (PEG) and fabricated with silver via a sol-gel route and the physico-chemical and biological properties of these materials were investigated. The objective of this study is to inspect the crystallinity and antibacterial activity of these composite materials. PEG has been used to greatly promote biocompatibility and biodegradability of HAp. Silver nanoparticles were used for improving its bactericidal efficacy while applying composites. Nano-sized HAp composite particles with PEG and nano-silver was incorporated to increase the crystalline nature of the nanocomposite. The structure of nanocomposite particles was studied by XRD, FTIR, HR-SEM, EDS and TEM analyses. Silver nanoparticles loaded on the synthesized HAp-PEG showed a synergistic antibacterial effect against Gram-negative bacterium Escherichia coli (E. coli). The controlled release of Ag(+) ion from HAp-PEG-Ag nanocomposite has given good antibacterial efficacy evidenced by epi-fluorescence microscopy images during different hours. PMID:25842123

  3. PEG conjugates in clinical development or use as anticancer agents: an overview.

    PubMed

    Pasut, Gianfranco; Veronese, Francesco M

    2009-11-12

    During the almost forty years of PEGylation, several antitumour agents, either proteins, peptides or low molecular weight drugs, have been considered for polymer conjugation but only few entered clinical phase studies. The results from the first clinical trials have shared and improved the knowledge on biodistribution, clearance, mechanism of action and stability of a polymer conjugate in vivo. This has helped to design conjugates with improved features. So far, most of the PEG conjugates comprise of a protein, which in the native form has serious shortcomings that limit the full exploitation of its therapeutic action. The main issues can be short in vivo half-life, instability towards degrading enzymes or immunogenicity. PEGylation proved to be effective in shielding sensitive sites at the protein surface, such as antigenic epitopes and enzymatic degradable sequences, as well as in prolonging the drug half-life by decreasing the kidney clearance. In this review PEG conjugates of proteins or low molecular weight drugs, in clinical development or use as anticancer agents, will be taken into consideration. In the case of PEG-protein derivatives the most represented are depleting enzymes, which act by degrading amino acids essential for cancer cells. Interestingly, PEGylated conjugates have been also considered as adjuvant therapy in many standard anticancer protocols, in this regard the case of PEG-G-CSF and PEG-interferons will be presented. PMID:19671438

  4. X-ray irradiation-induced changes in (PVA-PEG-Ag) polymer nanocomposites films

    NASA Astrophysics Data System (ADS)

    Nouh, S. A.; Benthami, K.; Abutalib, M. M.

    2016-02-01

    The effects of X-ray irradiation on the structural, thermal and optical properties of polyvinyl alcohol-polyethylene glycol-silver (PVA-PEG-Ag) nanocomposites have been investigated. The samples of nanocomposites were prepared by adding Ag nanoparticles with 5 wt% to the (PVA-PEG) blend. The films of 0.05 mm thickness were prepared by the casting method. These films were irradiated with X-ray doses ranging from 20 to 200 kGy. The resultant effect of X-ray irradiation on the structural properties of PVA-PEG-Ag has been investigated using X-ray diffraction and Fourier transform infrared spectroscopy. Also, thermal property studies were carried out using thermogravimetric analysis. Further, the transmission of the PVA-PEG-Ag samples and any color changes were studied. Fourier transform infrared spectroscopy measurements showed that the crosslinking is the dominant mechanism at the dose range 50-200 kGy. This led to a more compact structure of PVA-PEG-Ag samples, which resulted in an improvement in its thermal stability with an increase in the activation energy of thermal decomposition. Moreover, the color intensity ΔE was greatly increased with an increase in the dose, and was accompanied by a significant increase in the yellow color component.

  5. In Vivo Biodistribution and Toxicity of Highly Soluble PEG-Coated Boron Nitride in Mice

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Qi, Wei; Tian, Longlong; Li, Zhan; Miao, Guoying; An, Wenzhen; Liu, Dan; Lin, Jing; Zhang, Xiaoyong; Wu, Wangsuo

    2015-12-01

    The boron nitride (BN) nanoparticles, as the structural analogues of graphene, are the potential biomedicine materials because of the excellent biocompatibility, but their solubility and biosafety are the biggest obstacle for the clinic application. Here, we first synthesized the highly soluble BN nanoparticles coated by PEG (BN-PEG) with smaller size (~10 nm), then studied their biodistribution in vivo through radioisotope (Tc99mO4 -) labeling, and the results showed that BN-PEG nanoparticles mainly accumulated in the liver, lung, and spleen with the less uptake by the brain. Moreover, the pathological changes induced by BN-PEG could be significantly observed in the sections of the liver, lung, spleen, and heart, which can be also supported by the test of biochemical indexes in serum. More importantly, we first observed the biodistribution of BN-PEG in the heart tissues with high toxicity, which would give a warning about the cardiovascular disease, and provide some opportunities for the drug delivery and treatment.

  6. Stabilization of Chromobacterium viscosum Lipase (CVL) Against Ultrasound Inactivation by the Pretreatment with Polyethylene Glycol (PEG).

    PubMed

    Talukder, Md Mahabubur Rahman; Shiong, Simon Choo Sze

    2015-12-01

    Although ultrasound has been used to accelerate many enzymatic reactions, the low stability of enzymes in such a system still remains a critical issue, limiting its industrial application. Here, we have reported that polyethylene glycol (PEG) pretreatment stabilized Chromobacterium viscosum lipase (CVL) in ultrasound-assisted water-isooctane emulsion. PEGs of different molecular weights and concentrations were used to pretreat CVL, and the pretreated lipase activities for olive oil hydrolysis were investigated at different ultrasonic powers. The best result was attained with PEG400 at 100 mg/ml for a lipase concentration of 0.02 mg/ml and an ultrasonic power of 106 W. The half-life time of PEG400-treated lipase at 106 W was 54 min, a 27-fold higher than that attained using untreated lipase. Circular dichroism (CD) spectra suggested that PEG increased the rigidity of CVL structure, which favored the lipase stability against ultrasound inactivation. These results have important implications for the exploitation of ultrasound in biocatalytic process. PMID:26373941

  7. Generation, characterization and in vivo biological activity of two distinct monoclonal anti-PEG IgMs

    SciTech Connect

    Hashimoto, Yosuke; Shimizu, Taro; Mima, Yu; Abu Lila, Amr S.; Ishida, Tatsuhiro; Kiwada, Hiroshi

    2014-05-15

    PEGylation, the attachment of polyethylene glycol (PEG) to nanocarriers and proteins, is a widely accepted approach to improving the in vivo efficacy of the non-PEGylated products. However, both PEGylated liposomes and PEGylated proteins reportedly trigger the production of specific antibodies, mainly IgM, against the PEG moiety, which possibly leads to a reduction in safety and therapeutic efficacy of the PEGylated products. In the present study, two monoclonal anti-PEG IgMs — HIK-M09 via immunization with an intravenous injection of PEGylated liposomes (SLs) and HIK-M11 via immunization with a subcutaneous administration of PEGylated ovalbumin (PEG-OVA) were successfully generated. The generated IgMs showed efficient reactivity to mPEG{sub 2000} conjugated to 1,2-distearoyl-sn-glycero-3-phospho-ethanolamine (DSPE), PEGylated liposome (SL) and PEG-OVA. It appears that HIK-M09 recognizes ethoxy (OCH{sub 2}CH{sub 2}) repeat units along with a terminal motif of PEG, while HIK-M11 recognizes only ethoxy repeat units of PEG. Such unique properties allow HIK-M09 to bind with dense PEG. In addition, their impact on the in vivo clearance of the PEGylated products was investigated. It was found that the generated ant-PEG IgMs induced a clearance of SL as they were intravenously administered with SL. Interestingly, the HIK-M11, generated by PEG-OVA, induced the clearance of both SL and PEG-OVA, while the HIK-M09, generated by SL, induced the clearance of SL only. We here revealed that the presence of serum anti-PEG IgM and the subsequent binding of anti-PEG IgM to the PEGylated products are not necessarily related to the enhanced clearance of the products. It appears that subsequent complement activation following anti-PEG IgM binding is the most important step in dictating the in vivo fate of PEGylated products. This study may have implications for the design, development and clinical application of PEGylated products and therapeutics. - Highlights: • Two monoclonal

  8. A role of cytoskeletal structure of cortical cells in the gravity-regulated formation of a peg in cucumber seedlings

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Murata, T.; Fujii, N.; Yamashita, M.; Higashitani, A.; Takahashi, H.

    1999-01-01

    Seedlings of cucurbitaceous plants develop a protuberant tissue, or peg, on the lower side of the transition region between root and hypocotyl when germinated in a horizontal position. Peg develops due to a change in growth polarity of the cortical cells. We have examined the role of the cytoskeketal structure in peg formation of cucumber seedlings. We observed that in both peg and normal cortical cells of 36 h-old seedlings the microtubules (MTs) were arranged perpendicular to the longitudinal axis of the elongating cells. Application of colchicine perturbed the MTs structure and inhibited the formation of pegs. In 20 h-old seedlings, MTs in cortical cells destined to be a peg tissue had no preferential organization, whereas MTs in normal cortical cells were transversely oriented. After 24 h, the MTs in future peg cells were arranged similar to those of 36 h-old seedlings, although the initiation of peg tissue was not yet visible. These results suggest that reorganization of MTs is required for peg formation and causes the change in growth polarity of the cortical cells.

  9. PVA and PEG functionalised LSMO nanoparticles for magnetic fluid hyperthermia application

    SciTech Connect

    Jadhav, S.V.; Nikam, D.S.; Khot, V.M.; Mali, S.S.; Hong, C.K.; Pawar, S.H.

    2015-04-15

    La{sub 0.7}Sr{sub 0.3}MnO{sub 3} magnetic nanoparticles are synthesized by a solution combustion method and functionalised with polyvinyl alcohol and polyethylene glycol. The induction heating characteristics of coated magnetic nanoparticles (42 °C) were observed at a reasonably low concentration (5 mg/mL). Remarkably, coated magnetic nanoparticles exhibited a promisingly high specific absorption rate with varying magnetic field and constant frequency. The surface analysis is carried out by X-ray photoelectron spectroscopy. A reduction in the agglomeration of the particles was observed when the magnetic nanoparticles were functionalised with polyvinyl alcohol or polyethylene glycol and can be confirmed by transmission electron microscopy and dynamic light scattering studies. Vibrating sample magnetometer measurements indicate superparamagnetic behaviour at room temperature before and after coating. Colloidal stability revealed a considerably higher zeta potential value for coated system. In vitro cytotoxicity test of the magnetic nanoparticles indicates that coated nanoparticles have no significant effect on cell viability within the tested concentrations (1–5 mg mL{sup -1}) as compared to uncoated La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. All these findings explore the potentiality of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanoparticles for magnetic fluid hyperthermia. - Highlights: • Surface functionalization of LSMO nanoparticles — first time with PVA • Surface functionalization of LSMO nanoparticles — first time with PEG • BSA protein — first time used as dispersion medium for stability of LSMO nanoparticles • The heating ability observed at low concentration • Improved efficiency of magnetic fluid hyperthermia treatment with surfactants.

  10. The incretin hormone glucagon‐like peptide 1 increases mitral cell excitability by decreasing conductance of a voltage‐dependent potassium channel

    PubMed Central

    Llewellyn‐Smith, Ida J.; Gribble, Fiona; Reimann, Frank; Trapp, Stefan; Fadool, Debra Ann

    2016-01-01

    Key points The gut hormone called glucagon‐like peptide 1 (GLP‐1) is a strong moderator of energy homeostasis and communication between the peripheral organs and the brain.GLP‐1 signalling occurs in the brain; using a newly developed genetic reporter line of mice, we have discovered GLP‐synthesizing cells in the olfactory bulb.GLP‐1 increases the firing frequency of neurons (mitral cells) that encode olfactory information by decreasing activity of voltage‐dependent K channels (Kv1.3).Modifying GLP‐1 levels, either therapeutically or following the ingestion of food, could alter the excitability of neurons in the olfactory bulb in a nutrition or energy state‐dependent manner to influence olfactory detection or metabolic sensing.The results of the present study uncover a new function for an olfactory bulb neuron (deep short axon cells, Cajal cells) that could be capable of modifying mitral cell activity through the release of GLP‐1. This might be of relevance for the action of GLP‐1 mimetics now widely used in the treatment of diabetes. Abstract The olfactory system is intricately linked with the endocrine system where it may serve as a detector of the internal metabolic state or energy homeostasis in addition to its classical function as a sensor of external olfactory information. The recent development of transgenic mGLU‐yellow fluorescent protein mice that express a genetic reporter under the control of the preproglucagon reporter suggested the presence of the gut hormone, glucagon‐like peptide (GLP‐1), in deep short axon cells (Cajal cells) of the olfactory bulb and its neuromodulatory effect on mitral cell (MC) first‐order neurons. A MC target for the peptide was determined using GLP‐1 receptor binding assays, immunocytochemistry for the receptor and injection of fluorescence‐labelled GLP‐1 analogue exendin‐4. Using patch clamp recording of olfactory bulb slices in the whole‐cell configuration, we report that GLP‐1 and its

  11. Ectopic Expression of Retrotransposon-Derived PEG11/RTL1 Contributes to the Callipyge Muscular Hypertrophy

    PubMed Central

    Xu, Xuewen; Ectors, Fabien; Davis, Erica E.; Pirottin, Dimitri; Cheng, Huijun; Farnir, Frédéric; Hadfield, Tracy; Cockett, Noelle; Charlier, Carole; Georges, Michel; Takeda, Haruko

    2015-01-01

    The callipyge phenotype is an ovine muscular hypertrophy characterized by polar overdominance: only heterozygous +Mat/CLPGPat animals receiving the CLPG mutation from their father express the phenotype. +Mat/CLPGPat animals are characterized by postnatal, ectopic expression of Delta-like 1 homologue (DLK1) and Paternally expressed gene 11/Retrotransposon-like 1 (PEG11/RTL1) proteins in skeletal muscle. We showed previously in transgenic mice that ectopic expression of DLK1 alone induces a muscular hypertrophy, hence demonstrating a role for DLK1 in determining the callipyge hypertrophy. We herein describe newly generated transgenic mice that ectopically express PEG11 in skeletal muscle, and show that they also exhibit a muscular hypertrophy phenotype. Our data suggest that both DLK1 and PEG11 act together in causing the muscular hypertrophy of callipyge sheep. PMID:26474044

  12. Coronal X-ray Emission of II PEG: The BeppoSAX View

    NASA Astrophysics Data System (ADS)

    Tagliaferri, G.; Covino, S.; Pallavicini, R.; Poretti, E.

    The BeppoSAX observation of II Peg confirms that this is a very active coronal source, with a possible detection of the decay of a strong X-ray flare. The NH value as determined by BeppoSAX is a factor of ten higher than expected. This is now a common result for various coronal sources observed by BeppoSAX, that still remains to be explained. The coronal metal abundance determined for II Peg by BeppoSAX is subsolar (~ 0.3), in line with the results found for many other active stars. It is still an open question if this low metal abundance is in contradiction or not with the photospheric metallicity of II Peg

  13. Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system.

    PubMed

    Giray, Seda; Bal, Tuğba; Kartal, Ayse M; Kızılel, Seda; Erkey, Can

    2012-05-01

    A novel composite material consisting of a silica aerogel core coated by a poly(ethylene) glycol (PEG) hydrogel was developed. The potential of this novel composite as a drug delivery system was tested with ketoprofen as a model drug due to its solubility in supercritical carbon dioxide. The results indicated that both drug loading capacity and drug release profiles could be tuned by changing hydrophobicity of aerogels, and that drug loading capacity increased with decreased hydrophobicity, while slower release rates were achieved with increased hydrophobicity. Furthermore, higher concentration of PEG diacrylate in the prepolymer solution of the hydrogel coating delayed the release of the drug which can be attributed to the lower permeability at higher PEG diacrylate concentrations. The novel composite developed in this study can be easily implemented to achieve the controlled delivery of various drugs and/or proteins for specific applications. PMID:22374682

  14. Anisotropic injection molding of strontium ferrite powder using a PP/PEG binder system

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Jeung, W. Y.

    2001-05-01

    In this study, new binder system for anisotropic injection molding of Sr-ferrite was developed and a process for injection molding of Sr-ferrite was optimized. The developed binder system is composed of 30 vol% PP, 60 vol% PEG-20 000 and 10 vol% PEG-4000. The extraction by water was applied to remove the major binder components PEGs and the minor binder component, PP, was subsequently burned out in air. Behaviors of extraction and thermal debinding with time and debinding atmosphere and variations of the magnetic properties with sintering temperature were studied. The sintered magnets made by PIM process showed residual carbon content of 230 ppm and a maximum energy product of 4.2 MGOe.

  15. PEG3 domain gene expression in maternal and foetal placenta in intrauterine growth restricted bovine foetuses.

    PubMed

    Li, Shun; Pausch, Hubert; Venhoranta, Heli; Adamowicz, Krzysztof; Andersson, Magnus; Zwierzchowski, Lech; Kind, Alexander; Schnieke, Angelika; Flisikowski, Krzysztof

    2016-02-01

    We used a genetic (MIMT1(Del)) model of intrauterine growth restriction to investigate dysregulation of PEG3 domain gene expression in bovine foetal and maternal placenta. ZIM2, APEG3 and PEG3 expressions were similarly reduced in MIMT1(Del/) (WT) foetal placenta, suggesting coordinated regulation. Methylation of DNA CpG sites associated with these genes showed no differences, but differences in the levels of MIMT1 RNA methylation at three CpG sites were found in foetal placenta. Our data are consistent with the presence of a bidirectional promoter 5' of MIMT1 and suggest a regulatory role for the MIMT1 non-coding transcript. PEG3 domain expression on the maternal placenta side was not affected by the foetal mutation. PMID:26537866

  16. AC conductivity and electrochemical studies of PVA/PEG based polymer blend electrolyte films

    NASA Astrophysics Data System (ADS)

    Polu, Anji Reddy; Kumar, Ranveer; Dehariya, Harsha

    2012-06-01

    Polymer blend electrolyte films based on Polyvinyl alcohol(PVA)/Poly(ethylene glycol)(PEG) and magnesium nitrate (Mg(NO3)2) were prepared by solution casting technique. Conductivity in the temperature range 303-373 K and transference number measurements have been employed to investigate the charge transport in this polymer blend electrolyte system. The highest conductivity is found to be 9.63 × 10-5 S/cm at 30°C for sample with 30 weight percent of Mg(NO3)2 in PVA/PEG blend matrix. Transport number data shows that the charge transport in this polymer electrolyte system is predominantly due to ions. Using this electrolyte, an electrochemical cell with configuration Mg/(PVA+PEG+Mg(NO3)2)/(I2+C+electrolyte) was fabricated and its discharge characteristics profile has been studied.

  17. Effects of prepartum fat supplementation on plasma concentrations of glucagon-like peptide-1, peptide YY, adropin, insulin, and leptin in periparturient dairy cows.

    PubMed

    Zapata, Rizaldy C; Salehi, Reza; Ambrose, Divakar J; Chelikani, Prasanth K

    2015-10-01

    Dietary fat supplementation during the periparturient period is one strategy to increase energy intake and attenuate the degree of negative energy balance during early lactation; however, little is known of the underlying hormonal and metabolic adaptations. We evaluated the effects of prepartum fat supplementation on energy-balance parameters and plasma concentrations of glucagon-like peptide-1, peptide tyrosine-tyrosine (PYY), adropin, insulin, leptin, glucose, nonesterified fatty acid, and β-hydroxybutyric acid in dairy cows. Twenty-four pregnant dairy cows were randomized to diets containing either rolled canola or sunflower seed at 8% of dry matter, or no oilseed supplementation, during the last 5 wk of gestation and then assigned to a common lactation diet postpartum. Blood samples were collected at -2, +2, and +14 h relative to feeding, at 2 wk after the initiation of the diets, and at 2 wk postpartum. Dietary canola and sunflower supplementation alone did not affect energy balance, body weight, and plasma concentrations of glucagon-like peptide-1, PYY, adropin, insulin, leptin, nonesterified fatty acid, and β-hydroxybutyric acid; however, canola decreased and sunflower tended to decrease dry matter intake. We also observed that the physiological stage had a significant, but divergent, effect on circulating hormones and metabolite concentrations. Plasma glucagon-like peptide-1, PYY, adropin, nonesterified fatty acid, and β-hydroxybutyric acid concentrations were greater postpartum than prepartum, whereas glucose, insulin, leptin, body weight, and energy balance were greater prepartum than postpartum. Furthermore, the interaction of treatment and stage was significant for leptin and adropin, and tended toward significance for PYY and insulin; only insulin exhibited an apparent postprandial increase. Postpartum PYY concentrations exhibited a strong negative correlation with body weight, suggesting that PYY may be associated with body weight regulation during

  18. Negative Energy Balance Blocks Neural and Behavioral Responses to Acute Stress by “Silencing” Central Glucagon-Like Peptide 1 Signaling in Rats

    PubMed Central

    Maniscalco, James W.; Zheng, Huiyuan; Gordon, Patrick J.

    2015-01-01

    Previous reports indicate that caloric restriction attenuates anxiety and other behavioral responses to acute stress, and blunts the ability of stress to increase anterior pituitary release of adrenocorticotropic hormone. Since hindbrain glucagon-like peptide-1 (GLP-1) neurons and noradrenergic prolactin-releasing peptide (PrRP) neurons participate in behavioral and endocrine stress responses, and are sensitive to the metabolic state, we examined whether overnight food deprivation blunts stress-induced recruitment of these neurons and their downstream hypothalamic and limbic forebrain targets. A single overnight fast reduced anxiety-like behavior assessed in the elevated-plus maze and acoustic startle test, including marked attenuation of light-enhanced startle. Acute stress [i.e., 30 min restraint (RES) or 5 min elevated platform exposure] robustly activated c-Fos in GLP-1 and PrRP neurons in fed rats, but not in fasted rats. Fasting also significantly blunted the ability of acute stress to activate c-Fos expression within the anterior ventrolateral bed nucleus of the stria terminalis (vlBST). Acute RES stress suppressed dark-onset food intake in rats that were fed ad libitum, whereas central infusion of a GLP-1 receptor antagonist blocked RES-induced hypophagia, and reduced the ability of RES to activate PrRP and anterior vlBST neurons in ad libitum-fed rats. Thus, an overnight fast “silences” GLP-1 and PrRP neurons, and reduces both anxiety-like and hypophagic responses to acute stress. The partial mimicking of these fasting-induced effects in ad libitum-fed rats after GLP-1 receptor antagonism suggests a potential mechanism by which short-term negative energy balance attenuates neuroendocrine and behavioral responses to acute stress. SIGNIFICANCE STATEMENT The results from this study reveal a potential central mechanism for the “metabolic tuning” of stress responsiveness. A single overnight fast, which markedly reduces anxiety-like behavior in rats

  19. The curious ability of PEG-fusion technologies to restore lost behaviors after nerve severance

    PubMed Central

    Bittner, G.D.; Sengelaub, D.R.; Trevino, R.C.; Peduzzi, J.D.; Mikesh, M.; Ghergherehchi, C.L.; Schallert, T.; Thayer, W.P.

    2016-01-01

    Traumatic injuries to PNS and CNS axons are not uncommon. Restoration