Science.gov

Sample records for performance dye-sensitized solar

  1. Optimizing the Performance of a Plastic Dye Sensitized Solar Cell

    SciTech Connect

    Lee, B.; Buchholz, D.; Guo, P.; Hwang, D.; Chang, R.P.H.

    2011-05-19

    This article describes that a fluorine plasma treatment can increase the nanopore filling of a plastic electrolyte in a dye-sensitized solar cell to improve its performance. The one-step fluorine treatment can be used in a controlled way to increase the size of nanopores and nanochannels in the TiO{sub 2} nanoparticle electrode and, at the same time, passivate the TiO{sub 2} nanoparticle surfaces. In combination with the fluorine treatment, a sequential electrolyte filling process has been developed that allows the overall cell conversion efficiency to be increased by as much as 25%. The plastic-based electrolyte cells are found to be much more stable compared with their counterpart, the liquid electrolyte cells. Using this new process, and in combination with a photon confinement scheme, the overall cell efficiency can reach to about 9% using a masked frame measurement technique.

  2. Performance of Caesalpinia sappan heartwood extract as photo sensitizer for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ananth, S.; Vivek, P.; Saravana Kumar, G.; Murugakoothan, P.

    2015-02-01

    A natural dye extracted from Caesalpinia sappan heartwood was used as photo sensitizer for the first time to fabricate titanium dioxide (TiO2) nanoparticles based dye sensitized solar cells. Brazilin and brazilein are the major pigments present in the natural dye and their optimized molecular structure were calculated using Density functional theory (DFT) at 6-31G (d) level. The HOMO-LUMO were performed to reveal the energy gap using optimized structure. Pure TiO2 nanoparticles in anatase phase were synthesized by sol-gel technique. The pure and natural dye sensitized TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Low cost and environment friendly dye sensitized solar cells were fabricated using natural dye sensitized TiO2 based photo anode. The solar light to electron conversion efficiency of Caesalpinia sappan heartwood extract sensitized dye sensitized solar cell is 1.1%.

  3. Dye Sensitized Solar Cells

    PubMed Central

    Wei, Di

    2010-01-01

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

  4. Dye sensitized solar cells.

    PubMed

    Wei, Di

    2010-01-01

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO(2), ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

  5. Effects of cell area on the performance of dye sensitized solar cell

    SciTech Connect

    Khatani, Mehboob E-mail: noranimuti-mohamed@petronas.com.my E-mail: azclement@yahoo.com Mohamed, Norani Muti E-mail: noranimuti-mohamed@petronas.com.my E-mail: azclement@yahoo.com Hamid, Nor Hisham E-mail: noranimuti-mohamed@petronas.com.my E-mail: azclement@yahoo.com Sahmer, Ahmad Zahrin E-mail: noranimuti-mohamed@petronas.com.my E-mail: azclement@yahoo.com Samsudin, Adel E-mail: noranimuti-mohamed@petronas.com.my E-mail: azclement@yahoo.com

    2014-10-24

    Dye sensitized solar cells (DSCs) have significant advantage over the current silicon cells by having low manufacturing cost and potentially high conversion efficiency. Therefore, DSCs are expected to be used as the next generation solar cell device that covers wide range of new applications. In order to achieve highly efficient DSCs for practical application, study on the effect of increasing the cell’s area on the performance of dye sensitized solar need to be carried out. Three different DSC cell areas namely, 1, 12.96 and 93.5 cm{sup 2} respectively were fabricated and analyzed through solar simulator and electrochemical impedance spectroscopy (EIS). From the analysis of electrochemical impedance spectroscopy (EIS), it was observed that the cell’s electron lifetime was influenced significantly by the cell’s area. Although the collection efficiency of all cells recorded to be approximately 100% but higher recombination rate with increased cell area reduced the performance of the cell.

  6. Enhanced performance of dye-sensitized solar cells via plasmonic sandwiched structure

    NASA Astrophysics Data System (ADS)

    Lin, Su-Jien; Lee, Kuang-Che; Wu, Jyun-Lin; Wu, Jun-Yi

    2011-07-01

    The plasmonic structure of sandwiched TiO2/NPs-Ag/TiO2 electrodes was fabricated by sputter technology and sol-gel and spin coating procedure to enhance the performance of dye-sensitized solar cells. The improvement of the incident photon to photocurrent efficiency spectrum corresponding to the strong absorption and damping reflection indicated light trapping of plasmonic structure to elongate the optical pathways of photons. More light trapped close to photocurrent collecting electrode provides better charge-collection and light harvesting efficiencies. As a result of improved dye absorption, about 23% enhancement in photocurrent density has been achieved.

  7. Bi-functional ion exchangers for enhanced performance of dye-sensitized solar cells.

    PubMed

    Kong, Eui-Hyun; Chang, Yong-June; Lim, Jongchul; Kim, Back-Hyun; Lee, Jung-Hoon; Kwon, Do-Kyun; Park, Taiho; Jang, Hyun Myung

    2013-07-28

    Ion exchange using aerosol OT (AOT) offers dye adsorption twice as fast as known methods. Moreover, it suppresses the dye-agglomeration that may cause insufficient dye-coverage on the photoelectrode surface. Consequently, its dual function of fast dye-loading and higher dye-coverage significantly improves the power conversion efficiency of dye-sensitized solar cells. PMID:23775416

  8. Eugenic metal-free sensitizers with double anchors for high performance dye-sensitized solar cells.

    PubMed

    Hung, Wei-I; Liao, You-Ya; Lee, Ting-Hui; Ting, Yu-Chien; Ni, Jen-Shyang; Kao, Wei-Siang; Lin, Jiann T; Wei, Tzu-Chien; Yen, Yung-Sheng

    2015-02-01

    A series of new phenothiazine-based dyes (HL5-HL7) with double acceptors/anchors have been synthesized and used as the sensitizers for highly efficient dye-sensitized solar cells (DSSCs). Among them, the HL7-based cell exhibits the best efficiency of 8.32% exceeding the N719-based cell (7.35%) by ∼13%. PMID:25555237

  9. Indoor Light Performance of Coil Type Cylindrical Dye Sensitized Solar Cells.

    PubMed

    Kapil, Gaurav; Ogomi, Yuhei; Pandey, Shyam S; Ma, Tingli; Hayase, Shuzi

    2016-04-01

    A very good performance under low/diffused light intensities is one of the application areas in which dye-sensitized solar cells (DSSCs) can be utilized effectively compared to their inorganic silicon solar cell counterparts. In this article, we have investigated the 1 SUN and low intensity fluorescent light performance of Titanium (Ti)-coil based cylindrical DSSC (C-DSSC) using ruthenium based N719 dye and organic dyes such as D205 and Y123. Electrochemical impedance spectroscopic results were analyzed for variable solar cell performances. Reflecting mirror with parabolic geometry as concentrator was also utilized to tap diffused light for indoor applications. Fluorescent light at relatively lower illumination intensities (0.2 mW/cm2 to 0.5 mW/cm2) were used for the investigation of TCO-less C-DSSC performance with and without reflector geometry. Furthermore, the DSSC performances were analyzed and compared with the commercially available amorphous silicon based solar cell for indoor applications. PMID:27451601

  10. Enhanced photovoltaic performance of dye-sensitized solar cell using composite photoanode on 3D electrode

    NASA Astrophysics Data System (ADS)

    Lim, Chiew Keat; Huang, Hui; Tse, Man Siu; Tan, Ooi Kiang

    2013-12-01

    For dye-sensitized solar cell (DSSC), an efficient transport of electron from the dye sensitizer through the mesoporous oxide layer and to be collected by electrode is crucial for high photovoltaic conversion efficiency. In this work, two novel approaches were developed in DSSC fabrication to improve the overall photovoltaic performance. The concurrent improvement in the charge transport property and light harvesting efficiency was achieved by incorporating N-doped TiO2 in the mesoporous TiO2 layer of the photoanode. These N-doped TiO2 (TiNxOy) was formed by using the single step thermal oxidation of Titanium Nitride (TiN) nanomaterials. At the same time, the 3D electrode with SnO2 nanorods grown on the FTO glass using plasma enhanced chemical vapor deposition (PECVD) system was used to enhance the charge collection efficiency. By combining these two approaches simultaneously, the DSSC with composite TiNxOy-TiO2 photoanode on SnO2 nanorods 3D electrode was successfully fabricated and characterized. As compared to the standard DSSC, an overall increment of 28 % in the conversion efficiency was achieved. Higher incident photon-current conversion efficiency (IPCE) values were also obtained, specifically for the region 400 - 500 nm due to the cosensitization effect of N-doped TiO2. Efficient transfer of electron due to the decrease in charge transfer resistance at the mesoporous oxide/dye/electrolyte interface was observed from electrochemical impedance spectroscopy (EIS) measurement. With the use of SnO2 nanorods, the adhesion between the mesoporous TiO2/FTO was enhanced and the transit time of a photogenerated electron through the mesoporous layer before being collected at the FTO electrode was significantly reduced by 50 %.

  11. Correlating Titania Morphology and Chemical Composition with Dye-sensitized Solar Cell Performance

    SciTech Connect

    Santulli, A.C.; Wong, S.; Koenigsmann, C.; Tiano, A.L., DeRosa, D.

    2011-04-20

    We have investigated the use of various morphologies, including nanoparticles, nanowires, and sea-urchins of TiO{sub 2} as the semiconducting material used as components of dye-sensitized solar cells (DSSCs). Analysis of the solar cells under AM 1.5 solar irradiation reveals the superior performance of hydrothermally derived nanoparticles, by comparison with two readily available commercial nanoparticle materials, within the DSSC architecture. The sub-structural morphology of films of these nanostructured materials has been directly characterized using SEM and indirectly probed using dye desorption. Furthermore, the surfaces of these nanomaterials were studied using TEM in order to visualize their structure, prior to their application within DSSCs. Surface areas of the materials have been quantitatively analyzed by collecting BET adsorption and dye desorption data. Additional investigation using open circuit voltage decay measurements reveals the efficiency of electron conduction through each TiO{sub 2} material. Moreover, the utilization of various chemically distinctive titanate materials within the DSSCs has also been investigated, demonstrating the deficiencies of using these particular chemical compositions within traditional DSSCs.

  12. Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23 mA/cm2, a photovoltage (Voc) of 0.75 V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%.

  13. Improving Performance of Dye-Sensitized Solar Cell by Multi-Emission Effect of Phosphors.

    PubMed

    Kim, Young Moon; Kim, Chang Seob; Choi, Hyung Wook

    2015-10-01

    Generally, the N-719 dye, used in dye-sensitized solar cells (DSSCs), only absorbs visible light in the wavelength range from 400 to 700 nm. Consequently, most of the ultraviolet and infrared rays from the sun are not utilized by this dye. However, ultraviolet and infrared rays can be converted to visible light by upconversion luminescence. Such visible light can then be reabsorbed by the dye, allowing for a larger range of solar irradiation to be utilized in DSSCs. Phosphor (ZnGa2O4, Y2O3:Er(3+)), acting as a luminescence medium, was added to the TiO2 electrode of DSSCs, and owing to the effect of upconversion, it increased their photocurrent density and efficiency. Phosphor (ZnGa2O4, Y2O3:Er(3+)) co-doped TiO2 electrode cells showed better performance than phosphor-free cells. In fact, the highest efficiency observed for a DSSC containing five phosphor layers was 7.03% with a short-circuit current density (Jsc) of 15.62 mA/cm2, an open circuit voltage (Voc) of 0.661 V, and a fill factor (FF) of 68.17%. PMID:26726482

  14. Effects of Ethyl Cellulose on Performance of Titania Photoanode for Dye-sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Liu, Ting-Chien; Wu, Chih-Chung; Huang, Chih-Hsiang; Chen, Chih-Ming

    2016-06-01

    Ethyl cellulose (EC) was added to a titania (TiO2) paste from 2 wt.% to 18 wt.% as a binder/dispersant, and its effects on the photovoltaic performance of dye-sensitized solar cells (DSSCs) were investigated. The TiO2 mesoporous film constructed on the photoanode exhibited a dense and network structure composed of well-interconnected TiO2 nanoparticles when using a proper amount of EC (10 wt.%). Excessive and deficient addition of EC resulted in aggregation of TiO2 nanoparticles and formation of pores, respectively, in the TiO2 film. The power conversion efficiency (PCE) of DSSC showed a strong dependence on the EC content and the highest PCE of 7.53% with the highest short-circuit current density (J SC) of 12.7 mA/cm2 was achieved when the content of EC was 10 wt.%. The incident photon-to-current conversion efficiency (IPCE) results indicated that the TiO2 mesoporous film fabricated using a proper EC addition was beneficial for electron generation (also confirmed by dye desorption experiments) and electron transport, and, therefore, improved the photovoltaic performance of DSSCs.

  15. Optimization of the dye-sensitized solar cell performance by mechanical compression

    NASA Astrophysics Data System (ADS)

    Meen, Teen Hang; Tsai, Jenn Kai; Tu, Yu Shin; Wu, Tian Chiuan; Hsu, Wen Dung; Chang, Shoou-Jinn

    2014-09-01

    In this study, the P25 titanium dioxide (TiO2) nanoparticle (NP) thin film was coated on the fluorine-doped tin oxide (FTO) glass substrate by a doctor blade method. The film then compressed mechanically to be the photoanode of dye-sensitized solar cells (DSSCs). Various compression pressures on TiO2 NP film were tested to optimize the performance of DSSCs. The mechanical compression reduces TiO2 inter-particle distance improving the electron transport efficiency. The UV-vis spectrophotometer and electrochemical impedance spectroscopy (EIS) were employed to quantify the light-harvesting efficiency and the charge transport impedance at various interfaces in DSSC, respectively. The incident photon-to-current conversion efficiency was also monitored. The results show that when the DSSC fabricated by the TiO2 NP thin film compressed at pressure of 279 kg/cm2, the minimum resistance of 9.38 Ω at dye/TiO2 NP/electrolyte interfaces, the maximum short-circuit photocurrent density of 15.11 mA/cm2, and the photoelectric conversion efficiency of 5.94% were observed. Compared to the DSSC fabricated by the non-compression of TiO2 NP thin film, the overall conversion efficiency is improved over 19.5%. The study proves that under suitable compression pressure the performance of DSSC can be optimized.

  16. Optimization of the dye-sensitized solar cell performance by mechanical compression

    PubMed Central

    2014-01-01

    In this study, the P25 titanium dioxide (TiO2) nanoparticle (NP) thin film was coated on the fluorine-doped tin oxide (FTO) glass substrate by a doctor blade method. The film then compressed mechanically to be the photoanode of dye-sensitized solar cells (DSSCs). Various compression pressures on TiO2 NP film were tested to optimize the performance of DSSCs. The mechanical compression reduces TiO2 inter-particle distance improving the electron transport efficiency. The UV–vis spectrophotometer and electrochemical impedance spectroscopy (EIS) were employed to quantify the light-harvesting efficiency and the charge transport impedance at various interfaces in DSSC, respectively. The incident photon-to-current conversion efficiency was also monitored. The results show that when the DSSC fabricated by the TiO2 NP thin film compressed at pressure of 279 kg/cm2, the minimum resistance of 9.38 Ω at dye/TiO2 NP/electrolyte interfaces, the maximum short-circuit photocurrent density of 15.11 mA/cm2, and the photoelectric conversion efficiency of 5.94% were observed. Compared to the DSSC fabricated by the non-compression of TiO2 NP thin film, the overall conversion efficiency is improved over 19.5%. The study proves that under suitable compression pressure the performance of DSSC can be optimized. PMID:25276109

  17. Performance and stability improvements for dye-sensitized solar cells in the presence of luminescent coatings

    NASA Astrophysics Data System (ADS)

    Bella, Federico; Griffini, Gianmarco; Gerosa, Matteo; Turri, Stefano; Bongiovanni, Roberta

    2015-06-01

    Here we present how the sunlight radiation incident on a dye-sensitized solar cell (DSSC) can be shifted of a few tens of nanometers by means of an economical, easy to prepare and multifunctional photocurable fluoropolymeric light-shifting (LS) coating, to achieve both improved efficiency and device stability. By the introduction of a very small amount of a luminescent agent in the LS coating, the down-shifting of near-UV photons to higher wavelengths easily harvestable by the organic dye of a DSSC is successfully demonstrated. This optical effect not only results in an over 60% improvement of the power conversion efficiency of DSSC devices, but the UV light filtering action promoted by the luminescent agent also provides protection to the photosensitive DSSC components. This aspect, combined with a potential thermal shielding effect and the easy-cleaning behavior imparted to the coating by its fluorinated nature, leads to excellent device stability as evidenced from an aging test performed outdoors under real operating conditions for more than 2000 h. Our study demonstrates that the use of light-cured multifunctional coatings with light management characteristics at the nanometer scale represents a new promising strategy to simultaneously increase the performance and durability of DSSC devices.

  18. Optimization of the dye-sensitized solar cell performance by mechanical compression.

    PubMed

    Meen, Teen Hang; Tsai, Jenn Kai; Tu, Yu Shin; Wu, Tian Chiuan; Hsu, Wen Dung; Chang, Shoou-Jinn

    2014-01-01

    In this study, the P25 titanium dioxide (TiO2) nanoparticle (NP) thin film was coated on the fluorine-doped tin oxide (FTO) glass substrate by a doctor blade method. The film then compressed mechanically to be the photoanode of dye-sensitized solar cells (DSSCs). Various compression pressures on TiO2 NP film were tested to optimize the performance of DSSCs. The mechanical compression reduces TiO2 inter-particle distance improving the electron transport efficiency. The UV-vis spectrophotometer and electrochemical impedance spectroscopy (EIS) were employed to quantify the light-harvesting efficiency and the charge transport impedance at various interfaces in DSSC, respectively. The incident photon-to-current conversion efficiency was also monitored. The results show that when the DSSC fabricated by the TiO2 NP thin film compressed at pressure of 279 kg/cm(2), the minimum resistance of 9.38 Ω at dye/TiO2 NP/electrolyte interfaces, the maximum short-circuit photocurrent density of 15.11 mA/cm(2), and the photoelectric conversion efficiency of 5.94% were observed. Compared to the DSSC fabricated by the non-compression of TiO2 NP thin film, the overall conversion efficiency is improved over 19.5%. The study proves that under suitable compression pressure the performance of DSSC can be optimized. PMID:25276109

  19. Influence of electrolyte co-additives on the performance of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Stergiopoulos, Thomas; Rozi, Evangelia; Karagianni, Chaido-Stefania; Falaras, Polycarpos

    2011-12-01

    The presence of specific chemical additives in the redox electrolyte results in an efficient increase of the photovoltaic performance of dye-sensitized solar cells (DSCs). The most effective additives are 4- tert-butylpyridine (TBP), N-methylbenzimidazole (NMBI) and guanidinium thiocyanate (GuNCS) that are adsorbed onto the photoelectrode/electrolyte interface, thus shifting the semiconductor's conduction band edge and preventing recombination with triiodides. In a comparative work, we investigated in detail the action of TBP and NMBI additives in ionic liquid-based redox electrolytes with varying iodine concentrations, in order to extract the optimum additive/I2 ratio for each system. Different optimum additive/I2 ratios were determined for TBP and NMBI, despite the fact that both generally work in a similar way. Further addition of GuNCS in the optimized electrolytic media causes significant synergistic effects, the action of GuNCS being strongly influenced by the nature of the corresponding co-additive. Under the best operation conditions, power conversion efficiencies as high as 8% were obtained.

  20. Full-ionic liquid gel electrolytes: Enhanced photovoltaic performances in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Qinghua; Tang, Qunwei; He, Benlin; Yang, Peizhi

    2014-10-01

    Liquid electrolytes containing redox species have been widely used in dye-sensitized solar cells (DSSCs), whereas the volatility of organic solvents has been a tremendous obstacle for their commercial application. To assemble durable DSSCs, here we report the synthesis of full-ionic liquid electrolyte, in which 1-butyl-3-methylimidazolium nitrate is employed as solvent and 1-methyl-3-propylimidazolium iodide is iodide source. Using the imbibition performance of amphiphilic poly(acrylic acid/gelatin) [poly(AA/GR)] and poly(acrylic acid/cetyltrimethyl ammonium bromide) [poly(AA/CTAB)] matrices, full-ionic liquid electrolytes are imbibed into three-dimensional framework of poly(AA/GR) or poly(AA/CTAB) to form stable gel electrolytes. Room-temperature ionic conductivities as high as 17.82 and 18.44 mS cm-1 are recorded from full-ionic liquid imbibed poly(AA/GR) and poly(AA/CTAB) gel electrolytes, respectively. Promising power conversion efficiencies of 7.19% and 7.15% are determined from their DSSC devices in comparison with 6.55% and 6.12% from traditional acetonitrile-based poly(AA/GR) and poly(AA/CTAB) gel electrolytes, respectively. The new concept along with easy fabrication demonstrates the full-ionic liquid electrolytes to be good alternatives for robust gel electrolytes in quasi-solid-state DSSCs.

  1. Interface Engineering through Atomic Layer Deposition towards Highly Improved Performance of Dye-Sensitized Solar Cells

    PubMed Central

    Lu, Hao; Tian, Wei; Guo, Jun; Li, Liang

    2015-01-01

    A composite photoanode comprising ultralong ZnO nanobelts and TiO2 nanoparticles was prepared and its performance in dye-sensitized solar cells (DSSCs) was optimized and compared to the photoanode consisting of conventional TiO2 nanoparticles. The ultralong ZnO nanobelts were synthesized in high yield by a facile solution approach at 90 oC followed by annealing at 500 oC. The effect of the ratio of ZnO nanobelts to TiO2 nanoparticles on the light scattering, specific surface area, and interface recombination were investigated. An optimum amount of ZnO nanobelts enhanced the photon-conversion efficiency by 61.4% compared to that of the conventional TiO2 nanoparticles. To further reduce the recombination rate and increase the carrier lifetime, Atomic Layer Deposition (ALD) technique was utilized to coat a continuous TiO2 film surrounding the ZnO nanobelts and TiO2 nanoparticles, functioning as a barrier-free access of all electrons to conductive electrodes. This ALD treatment improved the interface contact within the whole photoanode system, finally leading to significant enhancement (137%) in the conversion efficiency of DSSCs. PMID:26238737

  2. High performance low temperature carbon composite catalysts for flexible dye sensitized solar cells.

    PubMed

    Hashmi, Syed Ghufran; Halme, Janne; Saukkonen, Tapio; Rautama, Eeva-Leena; Lund, Peter

    2013-10-28

    Roll-to-roll manufacturing of dye sensitized solar cells (DSSCs) requires efficient and low cost materials that adhere well on the flexible substrates used. In this regard, different low temperature carbon composite counter electrode (CE) catalyst ink formulations for flexible DSSCs were developed that can be simply and quickly coated on plastic substrates and dried below 150 °C. The CEs were investigated in terms of photovoltaic performance in DSSCs by current-voltage measurements, mechanical adhesion properties by bending and tape tests, electro-catalytic performance by electrochemical impedance spectroscopy and microstructure by electron microscopy. In the bending and tape tests, PEDOT-carbon composite catalyst layers exhibited higher elasticity and better adhesion on all the studied substrates (ITO-PET and ITO-PEN plastic, and FTO-glass), compared to a binder free carbon composite and a TiO2 binder enriched carbon composite, and showed lower charge transfer resistance (1.5-3 Ω cm(2)) than the traditional thermally platinized CE (5 Ω cm(2)), demonstrating better catalytic performance for the tri-iodide reduction reaction. Also the TiO2 binder enriched carbon composite showed good catalytic characteristics and relatively good adhesion on ITO-PET, but on ITO-PEN its adhesion was poor. A DSSC with the TiO2 binder enriched catalyst layer reached 85% of the solar energy conversion efficiency of the reference DSSC based on the traditional thermally platinized CE. Based on the aforementioned characteristics, these carbon composites are promising candidates for replacing the platinum catalyst in a high volume roll-to-roll manufacturing process of DSSCs. PMID:24042582

  3. Theoretical modeling of the series resistance effect on dye-sensitized solar cell performance

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Dai, Songyuan; Chen, Shuanghong; Zhang, Changneng; Sui, Yifeng; Xiao, Shangfeng; Hu, Linhua

    2009-12-01

    Based on the continuity equations and the equivalent circuit, the conductivity of substrates and the resistances of silver grid in dye-sensitized solar cell (DSC) are investigated. The complete I-V characteristics of DSC are obtained with different internal resistances. The theoretical and experimental results show internal resistances dominate the fill factor of DSC. At the same time, DSC module is investigated by numerical simulation under parallel connection with different illumination intensities. It can be found the high resistivity of substrates and the high illumination intensity lead to a lower optimal width in the DSC module.

  4. Dye-sensitized solar cells

    DOEpatents

    Skotheim, T.A.

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell is comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent. 3 figs.

  5. Dye-sensitized solar cells

    DOEpatents

    Skotheim, Terje A. [Berkeley, CA

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  6. Effect of photoanode thickness on electrochemical performance of dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Khatani, Mehboob; Mohamed, Norani Muti; Hamid, Nor Hisham; Muhsan, Ali Samer; Sahmer, Ahmed Zahrin

    2015-07-01

    The thickness of photoanode is crucial as it adsorbed a large amount of dye molecules that provide electrons for generation of electricity in dye sensitized solar cell (DSC). Thus, in order to realize the practical application of DSC, study on various thickness of photoanode need to be carried out to analyze its effect on the electrochemical behavior of dye sensitized solar cell. To enhance the conversion efficiency, an additional layer of TiO2 using TiCl4 treatment was deposited prior to the deposition of the photoanode (active area of 1cm2) with the thickness of 6, 12, 18, 24, and 30 µm on fluorine doped tin oxide (FTO) glass substrate. The resulting photoanode after the soak in N719 dye for more than 12hrs were used to be assembled in a test cell in combination with liquid electrolyte and counter electrode. The fabricated cells were characterized by solar simulator, ultraviolet-visible spectroscopy (UV-VIS), and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) was used to approximate the thickness of photoanode. An optimum power conversion efficiency of 4.54% was obtained for the cell fabricated with 18 µm photoanode thickness. This is attributed to the reduced resistance related to electron transport in the TiO2/dye/electrolyte interface as proven by the EIS result. This led to the reduction of internal resistance, the increase in the electron life time and the improvement in the conversion efficiency.

  7. Improving Performance via Blocking Layers in Dye-Sensitized Solar Cells Based on Nanowire Photoanodes.

    PubMed

    Li, Luping; Xu, Cheng; Zhao, Yang; Chen, Shikai; Ziegler, Kirk J

    2015-06-17

    Electron recombination in dye-sensitized solar cells (DSSCs) results in significant electron loss and performance degradation. However, the reduction of electron recombination via blocking layers in nanowire-based DSSCs has rarely been investigated. In this study, HfO2 or TiO2 blocking layers are deposited on nanowire surfaces via atomic layer deposition (ALD) to reduce electron recombination in nanowire-based DSSCs. The control cell consisting of ITO nanowires coated with a porous shell of TiO2 by TiCl4 treatment yields an efficiency of 2.82%. The efficiency increases dramatically to 5.38% upon the insertion of a 1.3 nm TiO2 compact layer between the nanowire surface and porous TiO2 shell. This efficiency enhancement implies that porous sol-gel coatings on nanowires (e.g., via TiCl4 treatment) result in significant electron recombination in nanowire-based DSSCs, while compact coatings formed by ALD are more advantageous because of their ability to act as a blocking layer. By comparing nanowire-based DSSCs with their nanoparticle-based counterparts, we find that the nanowire-based DSSCs suffer more severe electron recombination from ITO due to the much higher surface area exposed to the electrolyte. While the insertion of a high band gap compact layer of HfO2 between the interface of the conductive nanowire and TiO2 shell improves performance, a comparison of the cell performance between TiO2 and HfO2 compact layers indicates that charge collection is suppressed by the difference in energy states. Consequently, the use of high band gap materials at the interface of conductive nanowires and TiO2 is not recommended. PMID:26010178

  8. Graphene assistance enhanced dye-sensitized solar cell performance of tin sulfide microspheres

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Chen, Peng; Zuo, Xueqin; Zhou, Lei; Yang, Xiao; Li, Guang; Wu, Mingzai; Ma, Yongqing; Jin, Shaowei; Zhu, Kerong

    2015-10-01

    In this work, the nanosheet-assembled SnS2 microspheres were synthesized through a solvothermal method, and the catalytic activities of the microspheres were investigated by J-V and power conversion efficiency tests as counter electrodes in dye-sensitized solar cells. The cell showed an energy conversion efficiency up to 6.4%. To further improve the power conversion efficiency of the counter electrode of the microspheres, different amounts of reduced graphene were added into the microspheres by simply physical mixing. With the addition of 6 wt% reduced graphene, the short-circuit current density, open-circuit voltage and fill factor were 15.18 mA cm-2, 775 mV, and 63.4%, respectively. More important, the conversion efficiency reached 7.46%, which is approximately 17% higher than that of the cell with pure SnS2 microspheres as counter electrode. Compared to conventional materials used in dye-sensitized solar cells, SnS2 microspheres have the advantages of facile synthesis, low-cost and high efficiency with graphene assistance.

  9. Effect of photoanode thickness on electrochemical performance of dye sensitized solar cell

    SciTech Connect

    Khatani, Mehboob Hamid, Nor Hisham Sahmer, Ahmed Zahrin; Mohamed, Norani Muti Muhsan, Ali Samer

    2015-07-22

    The thickness of photoanode is crucial as it adsorbed a large amount of dye molecules that provide electrons for generation of electricity in dye sensitized solar cell (DSC). Thus, in order to realize the practical application of DSC, study on various thickness of photoanode need to be carried out to analyze its effect on the electrochemical behavior of dye sensitized solar cell. To enhance the conversion efficiency, an additional layer of TiO{sub 2} using TiCl{sub 4} treatment was deposited prior to the deposition of the photoanode (active area of 1cm{sup 2}) with the thickness of 6, 12, 18, 24, and 30 µm on fluorine doped tin oxide (FTO) glass substrate. The resulting photoanode after the soak in N719 dye for more than 12hrs were used to be assembled in a test cell in combination with liquid electrolyte and counter electrode. The fabricated cells were characterized by solar simulator, ultraviolet-visible spectroscopy (UV-VIS), and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) was used to approximate the thickness of photoanode. An optimum power conversion efficiency of 4.54% was obtained for the cell fabricated with 18 µm photoanode thickness. This is attributed to the reduced resistance related to electron transport in the TiO{sub 2}/dye/electrolyte interface as proven by the EIS result. This led to the reduction of internal resistance, the increase in the electron life time and the improvement in the conversion efficiency.

  10. Effect of polymer electrolyte on the performance of natural dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Adel, R.; Abdallah, T.; Moustafa, Y. M.; Al-sabagh, A. M.; Talaat, H.

    2015-10-01

    Polymer electrolyte based on polyacrylonitrile (PAN), Ethylene Carbonate (EC) and Acetonitrile (ACN) mixed with Potassium Iodide and Iodine in liquid and thin film forms were employed in natural dye sensitized solar cells (NDSSCs). Three natural dyes; black berry, hibiscus and rose are used as the sensitizing dye. The NDSSCs used, follow the configuration: FTO/TiO2/Natural Dye/Electrolyte/ Carbon/FTO. The liquid form polymer electrolyte with black berry natural dye gives an increase of 111% in short circuit photocurrent density (Jsc), 17.5% to open circuit voltage (Voc), fill factor of 0.57 ± 0.05 and three times increase in the conversion efficiency of 0.242 ± 0.012% compared to the iodine electrolyte.

  11. Optoelectronic and Photovoltaic Performances of Pyridine Based Monomer and Polymer Capped ZnO Dye-Sensitized Solar Cells.

    PubMed

    Singh, Satbir; Raj, Tilak; Singh, Amarpal; Kaur, Navneet

    2016-06-01

    The present research work describes the comparative analysis and performance characteristics of 4-pyridine based monomer and polymer capped ZnO dye-sensitized solar cells. The N, N-dimethyl-N4-((pyridine-4yl)methylene) propaneamine (4,monomer) and polyamine-4-pyridyl Schiff base (5, polymer) dyes were synthesized through one step condensation reaction between 4-pyridinecarboxaldehyde 1 and N, N-dimethylpropylamine 2/polyamine 3. Products obtained N, N-dimethyl-N4-((pyridine-4yl)methylene)propaneamine (4) and polyamine-4-pyridyl Schiff base (5) were purified and characterized using 1H, 13C NMR, mass, IR and CHN spectroscopy. Both the dyes 4 and 5 were further coated over ZnO nanoparticles and characterized using SEM, DLS and XRD analysis. Absorption profile and emission profile was monitored using fluorescence and UV-Vis absorption spectroscopy. A thick layer of these inbuilt dye linked ZnO nanoparticles of dyes (4) and (5) was pasted on one of the conductive side of ITO glass followed with a liquid electrolyte and counter electrode of the same conductive glass. Polyamine-4-pyridyl Schiff base polymer (5) decorated dye sensitized solar cell has shown better exciting photovoltaic properties in the form of short circuit current density (J(sc) = 6.3 mA/cm2), open circuit photo voltage (V(oc) = 0.7 V), fill factor (FF = 0.736) than monomer decorated dye sensitized solar cell. Polymer dye (5) based ZnO solar cell has shown a maximum solar power to electrical conversion efficiency of 3.25%, which is enhanced by 2.16% in case of monomer dye based ZnO solar cell under AM 1.5 sun illuminations. PMID:27427659

  12. Effect of Anatase Synthesis on the Performance of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Sánchez-García, Mario Alberto; Bokhimi, Xim; Maldonado-Álvarez, Arturo; Jiménez-González, Antonio Esteban

    2015-07-01

    Anatase nanoparticles were synthesized from a titanium isopropoxide solution using a hydrothermal process at different pressures in an autoclave system while keeping the volume of the solution constant. As the autoclave pressure was increased from 1 to 71 atm (23 to 210 °C), the crystal size in the nanoparticles increased from 9 to 13.8 nm. The anatase nanoparticles were used to build dye-sensitized solar cells (DSSC). Mesoporous films of this oxide were deposited over conducting SnO2:F substrates using the screen-printing technique and then annealed at 530 °C at 1 atm of air pressure. The morphology of the mesoporous film surface of anatase, studied using scanning electron microscopy, revealed that the crystal size and pore distribution were functions of the pressure conditions. The energy band gap of the films as a function of the crystal size exhibited quantum effects below 11.8 nm. The effects of the anatase synthesis conditions and properties of the mesoporous film on the DSSC-type solar cell parameters, η%, V OC, J SC, and FF, were also investigated: the mesoporous anatase films prepared at 200 °C (54 atm of pressure in the autoclave) and annealed at 530 °C in air generated the best solar cell, having the highest conversion efficiency.

  13. Effect of Anatase Synthesis on the Performance of Dye-Sensitized Solar Cells.

    PubMed

    Sánchez-García, Mario Alberto; Bokhimi, Xim; Maldonado-Álvarez, Arturo; Jiménez-González, Antonio Esteban

    2015-12-01

    Anatase nanoparticles were synthesized from a titanium isopropoxide solution using a hydrothermal process at different pressures in an autoclave system while keeping the volume of the solution constant. As the autoclave pressure was increased from 1 to 71 atm (23 to 210 °C), the crystal size in the nanoparticles increased from 9 to 13.8 nm. The anatase nanoparticles were used to build dye-sensitized solar cells (DSSC). Mesoporous films of this oxide were deposited over conducting SnO2:F substrates using the screen-printing technique and then annealed at 530 °C at 1 atm of air pressure. The morphology of the mesoporous film surface of anatase, studied using scanning electron microscopy, revealed that the crystal size and pore distribution were functions of the pressure conditions. The energy band gap of the films as a function of the crystal size exhibited quantum effects below 11.8 nm. The effects of the anatase synthesis conditions and properties of the mesoporous film on the DSSC-type solar cell parameters, η%, V OC, J SC, and FF, were also investigated: the mesoporous anatase films prepared at 200 °C (54 atm of pressure in the autoclave) and annealed at 530 °C in air generated the best solar cell, having the highest conversion efficiency. PMID:26220107

  14. Self-ordering anodized nanotubes: Enhancing the performance by surface plasmon for dye-sensitized solar cell

    SciTech Connect

    Agarwala, S.; Ho, G.W.

    2012-05-15

    In the present work, electrochemical anodization has been used to prepare uniform TiO{sub 2} nanotube array photoelectrode. The average internal diameter, tube length and wall thickness of the optimized morphology is {approx}180 nm, 14 {mu}m and 10 nm, respectively. It was found that the tube diameter increases with the anodization voltage. Diffraction data reveals that the nanotubes consist solely of anatase phase. Back illuminated geometry of dye-sensitized solar cell (DSSC), with nanotubes grown at 60 V for 2 h, gave a cell performance of 4.5%. TiO{sub 2} nanotubes are loaded with silver (Ag) nanoparticles synthesized by a hydrothermal route. The Ag particle size is controlled resulting in solar conversion efficiency to increase by 22%. The DSSC based on TiO{sub 2} nanotube with Ag nanoparticles shows power conversion efficiency of 5.5%. Detailed characterization are performed, presented and discussed. - Graphical abstract: Enhanced solar conversion efficiency of dye-sensitized solar cells by decorating TiO{sub 2} nanotube array with Ag nanoparticles. Highlights: Black-Right-Pointing-Pointer Uniform array of TiO{sub 2} nanotubes synthesized via electrochemical anodization. Black-Right-Pointing-Pointer Back illuminated DSSC gave a cell performance of 4.5%. Black-Right-Pointing-Pointer TiO{sub 2} nanotubes are loaded with Ag nanoparticles, which increased the power conversion efficiency to 5.5%.

  15. nanostructures for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rashad, M. M.; Shalan, A. E.

    2014-08-01

    Hierarchical architectures consisting of one-dimensional (1D) nanostructures are of great interest for potential use in energy and environmental applications in recent years. In this work, hierarchical tungsten oxide (WO3) has been synthesized via a facile hydrothermal route from ammonium metatungstate hydrate and implemented as photoelectrode for dye-sensitized solar cells. The urchin-like WO3 micro-patterns are constructed by self-organized nanoscale length 1D building blocks, which are single crystalline in nature, grown along (001) direction and confirm an orthorhombic crystal phase. The obtained powders were investigated by XRD, SEM, TEM and UV-Vis Spectroscopy. The photovoltaic performance of dye-sensitized solar cells based on WO3 photoanodes was investigated. With increasing the calcination temperature of the prepared nanopowders, the light-electricity conversion efficiency ( η) was increased. The results were attributed to increase the crystallinity of the particles and ease of electron movement. The DSSC based on hierarchical WO3 showed a short-circuit current, an open-circuit voltage, a fill factor, and a conversion efficiency of 4.241 mA/cm2, 0.656 V, 66.74, and 1.85 %, respectively.

  16. Dysprosium, holmium and erbium ions doped indium oxide nanotubes as photoanodes for dye sensitized solar cells and improved device performance.

    PubMed

    Miao, Chuang; Chen, Cong; Dai, Qilin; Xu, Lin; Song, Hongwei

    2015-02-15

    In this work, rare earth (RE) ion RE(3+) (RE(3+)=Dy(3+), Ho(3+) and Er(3+)) doped and undoped In2O3 nanotubes are synthesized by the electrospinning method and the band gap of In2O3 is systemically controlled, depending on the order of doped elements. Dye-sensitized solar cells (DSSCs) based on In2O3:RE(3+) nanotubes are also fabricated, and significantly improved performance of In2O3-DSSC is observed due to the modulation of the band gap, larger recombination charge transfer resistance and longer electron lifetime. PMID:25460702

  17. Effects of benzo-annelation of asymmetric phthalocyanine on the photovoltaic performance of dye-sensitized solar cells.

    PubMed

    Yu, Lijuan; Shi, Wenye; Lin, Li; Liu, Yuwen; Li, Renjie; Peng, Tianyou; Li, Xingguo

    2014-06-14

    Novel highly asymmetric zinc tetraazaporphyrin (TAP) derivatives (Zn-tri-TAPNc and Zn-tri-PcNc) with one carboxyl and three tert-butyl peripheral substituent groups were synthesized. A highly asymmetric zinc phthalocyanine (ZnPc) derivative (Zn-tri-PcNc) has a benzo-annelated ring which contains tribenzonaphtho-condensed tetraazaporphyrin with the same peripheral substituents as Zn-tri-TAPNc. As a sensitizer for the TiO2-based dye-sensitized solar cell, Zn-tri-PcNc derived from the benzo-annelation of the TAP macrocycle showed improved light harvesting and electron injection efficiency, which can retard the charge recombination, resulting in a great improvement in the incident photon-to-current conversion efficiency (IPCE). The Zn-tri-PcNc-sensitized solar cell exhibited a higher conversion efficiency (2.89%) than the Zn-tri-TAPNc-sensitized one (1.20%) under AM 1.5G solar irradiation. The present results on the TAP macrocycle's benzo-annelation demonstrate that optimization of molecular structure via changing the peripheral substituent group's "push-pull" effect and enlarging the conjugated π-system is an effective approach to improve the performance of the tetraazaporphyrin-based dye-sensitized solar cell. PMID:24740460

  18. Molecular design rule of phthalocyanine dyes for highly efficient near-IR performance in dye-sensitized solar cells.

    PubMed

    Kimura, Mutsumi; Nomoto, Hirotaka; Suzuki, Hiroyuki; Ikeuchi, Takuro; Matsuzaki, Hiroyuki; Murakami, Takuro N; Furube, Akihiko; Masaki, Naruhiko; Griffith, Matthew J; Mori, Shogo

    2013-06-01

    A series of zinc-phthalocyanine sensitizers (PcS16-18) with different adsorption sites have been designed and synthesized in order to investigate the dependence of adsorption-site structures on the solar-cell performances in zinc-phthalocyanine based dye-sensitized solar cells. The change of adsorption site affected the electron injection efficiency from the photoexcited dye into the nanocrystalline TiO2 semiconductor, as monitored by picosecond time-resolved fluorescence spectroscopy. The zinc-phthalocyanine sensitizer PcS18, possessing one carboxylic acid directly attached to the ZnPc ring and six 2,6-diisopropylphenoxy units, showed a record power conversion efficiency value of 5.9 % when used as a light-harvesting dye on a TiO2 electrode under one simulated solar condition. PMID:23576330

  19. Photovoltaic performance of dye-sensitized solar cells using TiO2 nanotubes aggregates produced by hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Chen, Qiufan; Sun, Xiaonan; Liu, Anping; Zhang, Qifeng; Cao, Guozhong; Zhou, Xiaoyuan

    2015-09-01

    This paper reports the synthesis, detailed structural characterization of aggregated TiO2 nanotubes and the application of such aggregated TiO2 nanotubes as photoelectrodes in solar cells (dye sensitized DSCs). A maximum overall conversion efficiency of 7.9% has been achieved, which use conventional dyes without any additional chemical treatments under circumstances of an open-circuit voltage of 710 mV, a short-circuit current density of 16.8mA/cm2, and a fill factor of 66%. This impressive performance is believed to attribute to the micron-sized aggregate structure which may be favorable for light harvesting, the desired high specific surface area and pure anatase phase for dye absorption. This significant improvement in the conversion efficiency indicates that DSCs based on aggregated TiO2 nanotubes are a promising alternative to semiconductor-based solar cells.

  20. Stretchable, wearable dye-sensitized solar cells.

    PubMed

    Yang, Zhibin; Deng, Jue; Sun, Xuemei; Li, Houpu; Peng, Huisheng

    2014-05-01

    A stretchable, wearable dye-sensitized solar-cell textile is developed from elastic, electrically conducting fiber as a counter electrode and spring-like titanium wire as the working electrode. Dyesensitized solar cells are demonstrated with energy-conversion efficiencies up to 7.13%. The high energy-conversion efficiencies can be well maintained under stretch by 30% and after stretch for 20 cycles. PMID:24648169

  1. Enhanced performance of dye-sensitized solar cells based on P25/Ta2O5 composite films

    NASA Astrophysics Data System (ADS)

    Jiang, Qingsong; Gao, Jian; Yi, Lin; Hu, Guang; Zhang, Jun

    2016-04-01

    In this paper, novel titanium dioxide/tantalum pentoxide (P25/Ta2O5) composite films have been successfully fabricated and applied to dye-sensitized solar cells (DSSCs). Ta2O5 nanoparticles are synthesized by a simple low-temperature solvothermal method. The influence of Ta2O5 nanoparticles on photovoltaic performance of DSSCs is systematically investigated. As a result, the DSSC based on 10 wt% Ta2O5 incorporated P25 film exhibits excellent photovoltaic performance with a power conversion efficiency (PCE) as high as 5.85 %. Compared to a reference DSSC based on the pure P25 film (4.93 %), the PCE of DSSCs has been remarkably enhanced by 19 %. Such enhancement can be mainly attributed to the higher electron collection efficiency in P25/Ta2O5 composite films, which result from the suppression of the electron recombination at the photoanode/electrolyte interface.

  2. Dye-sensitized solar cell based on spray deposited ZnO thin film: performance analysis through DFT approach.

    PubMed

    Parthiban, R; Balamurugan, D; Jeyaprakash, B G

    2015-02-01

    A dye-sensitized solar cell based on a spray deposited zinc oxide (ZnO) photoanode with Evans blue as a sensitizer was fabricated. Structural analysis confirms the hexagonal wurtzite phase of the ZnO photoanode with c-axis orientation. Surface morphology of the ZnO photoanode shows uniform distribution of spherically-shaped grains, ranging from 18 nm to 25 nm. The power conversion efficiency of the device was measured as 0.1%. Density functional theory was adopted to study the observed photovoltaic performance of the fabricated device. The analysis of the electronic properties of Evans blue dye showed that it has a pronounced effect on the observed device performance. PMID:25459624

  3. Influence of VB group doped TiO2 on photovoltaic performance of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Duan, Yandong; Zhou, Xiaowen; Lin, Yuan

    2013-07-01

    Dye-sensitized solar cell with VB group (vanadium (V), niobium (Nb) and tantalum (Ta)) doped TiO2 prepared by hydrothermal method shows a higher photovoltaic efficiency compared with the undoped TiO2. All the VB doping shift the flat band potential positively and increase the doping density which is investigated by Mott-Schottky plot. The positive shift of flat band potential improves the driving force of injecting electron from the LUMO of dye to the conduction band of TiO2 and the photocurrent. On the other hand, the increase of doping density accelerates transfer rate of electrons in TiO2 than the un-doped, which is confirmed by intensity-modulated photocurrent. V-, Nb-, Ta-doped TiO2 exhibited photovoltaic performance with 7.80%, 8.33%, 8.18%, respectively, compared with that of the cells based on pure TiO2 (7.42%).

  4. Robust High-performance Dye-sensitized Solar Cells Based on Ionic Liquid-sulfolane Composite Electrolytes.

    PubMed

    Lau, Genevieve P S; Décoppet, Jean-David; Moehl, Thomas; Zakeeruddin, Shaik M; Grätzel, Michael; Dyson, Paul J

    2015-01-01

    Novel ionic liquid-sulfolane composite electrolytes based on the 1,2,3-triazolium family of ionic liquids were developed for dye-sensitized solar cells. The best performing device exhibited a short-circuit current density of 13.4 mA cm(-2), an open-circuit voltage of 713 mV and a fill factor of 0.65, corresponding to an overall power conversion efficiency (PCE) of 6.3%. In addition, these devices are highly stable, retaining more than 95% of the initial device PCE after 1000 hours of light- and heat-stress. These composite electrolytes show great promise for industrial application as they allow for a 14.5% improvement in PCE, compared to the solvent-free eutectic ionic liquid electrolyte system, without compromising device stability. PMID:26670595

  5. Mesoporous titania-vertical nanorod films with interfacial engineering for high performance dye-sensitized solar cells.

    PubMed

    Ahmed, Irfan; Fakharuddin, Azhar; Wali, Qamar; Bin Zainun, Ayib Rosdi; Ismail, Jamil; Jose, Rajan

    2015-03-13

    Working electrode (WE) fabrication offers significant challenges in terms of achieving high-efficiency dye-sensitized solar cells (DSCs). We have combined the beneficial effects of vertical nanorods grown on conducting glass substrate for charge transport and mesoporous particles for dye loading and have achieved a high photoconversion efficiency of (η) > 11% with an internal quantum efficiency of ∼93% in electrode films of thickness ∼7 ± 0.5 μm. Controlling the interface between the vertical nanorods and the mesoporous film is a crucial step in attaining high η. We identify three parameters, viz., large surface area of nanoparticles, increased light scattering of the nanorod-nanoparticle layer, and superior charge transport of nanorods, that simultaneously contribute to the improved photovoltaic performance of the WE developed. PMID:25687409

  6. Enhanced performance of supported HfO2 counter electrodes for redox couples used in dye-sensitized solar cells.

    PubMed

    Yun, Sining; Pu, Haihui; Chen, Junhong; Hagfeldt, Anders; Ma, Tingli

    2014-02-01

    Mesoporous-graphitic-carbon-supported HfO2 (HfO2 -MGC) nanohybrids were synthesized by using a soft-template route. Characterization and a systematic investigation of the catalytic properties, stability, and catalytic mechanism were performed for HfO2 -MGC counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). The new HfO2 -MGC as a CE in DSSCs showed a surprisingly high efficiency of 7.75 % for the triiodide/iodide redox couple and 3.69 % for the disulfide/thiolate redox couple, greater than the Pt electrode in the corresponding electrolyte system, which opens up a possibility for its practical application. PMID:24399514

  7. Improvement in performance of dye-sensitized solar cells with porous TiO2 electrodes using squid ink particles

    NASA Astrophysics Data System (ADS)

    Matsuura, Toshihiko; Nagai, Sakura; Ogasawara, Kou; Minato, Ken-ichi; Sakai, Mitsuo; Ueno, Takashi

    2016-06-01

    A potentially appealing alternative to the traditional fabrication process of TiO2 film electrodes for dye-sensitized solar cells (DSSCs) was presented by utilizing water-soluble TiO2 composite pastes containing size-controlled ink particles (SIPs) isolated from the squid. The mixture ratios of SIPs in the paste formulations affected the photoelectric conversion efficiency (PCE). The highest PCE was achieved when the mixture ratio of SIPs was 20%. The process is highly reproducible and leads to a 35% increase in PCE compared with that in the DSSC without SIP addition. The utilization of SIPs in the fabrication of TiO2 film electrodes enhanced the performance of DSSCs.

  8. Robust High-performance Dye-sensitized Solar Cells Based on Ionic Liquid-sulfolane Composite Electrolytes

    PubMed Central

    Lau, Genevieve P. S.; Décoppet, Jean-David; Moehl, Thomas; Zakeeruddin, Shaik M.; Grätzel, Michael; Dyson, Paul J.

    2015-01-01

    Novel ionic liquid-sulfolane composite electrolytes based on the 1,2,3-triazolium family of ionic liquids were developed for dye-sensitized solar cells. The best performing device exhibited a short-circuit current density of 13.4 mA cm−2, an open-circuit voltage of 713 mV and a fill factor of 0.65, corresponding to an overall power conversion efficiency (PCE) of 6.3%. In addition, these devices are highly stable, retaining more than 95% of the initial device PCE after 1000 hours of light- and heat-stress. These composite electrolytes show great promise for industrial application as they allow for a 14.5% improvement in PCE, compared to the solvent-free eutectic ionic liquid electrolyte system, without compromising device stability. PMID:26670595

  9. Hybrid structure of polyaniline/ZnO nanograss and its application in dye-sensitized solar cell with performance improvement

    SciTech Connect

    Zhu Shibu; Wei Wei; Chen Xiangnan; Jiang Man; Zhou Zuowan

    2012-06-15

    Polyaniline (PANI) hybridized ZnO photoanode for dye-sensitized solar cell (DSSC) was primarily prepared via a two-step process which involved hydrothermal growth of ZnO nanograss on the fluorine-doped tin oxide (FTO) substrate and subsequently chemisorption of PANI on the surfaces of the ZnO nanorods. The PANI hybridized ZnO nanograss films were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), and the results indicated that there were chemical interactions between PANI and ZnO. Both pure ZnO nanograss and PANI hybridized ZnO nanograss were applied to DSSC. The results of photoelectrochemical measurement showed that the photocurrent density of PANI (100 mg/L) hybridized ZnO nanograss photoanode was significantly enhanced, and the overall light-conversion efficiency increased by 60%. The electrochemical impedance spectra (EIS) displayed that the electron densities in photoanodes of PANI hybridized ZnO nanograss were larger than that in pure ZnO nanograss. This is ascribed to more effective charge separation and faster interfacial charge transferring occurred in the hybrid photoanode. - Graphical abstract: Operational principle of the DSSC: the introduced hybridizing PANI layer performs effective charge separation and faster interfacial charge transferring. Highlights: Black-Right-Pointing-Pointer PANI/ZnO nanograss hybrid materials as photoanode in Dye-sensitized solar cell. Black-Right-Pointing-Pointer Photoelectric conversion efficiency after hybridization was enhanced by 60%. Black-Right-Pointing-Pointer PANI hybridizing ZnO nanograss induced a rapid charge separation.

  10. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts.

    PubMed

    Bai, Yu; Cao, Yiming; Zhang, Jing; Wang, Mingkui; Li, Renzhi; Wang, Peng; Zakeeruddin, Shaik M; Grätzel, Michael

    2008-08-01

    Low-cost excitonic solar cells based on organic optoelectronic materials are receiving an ever-increasing amount of attention as potential alternatives to traditional inorganic photovoltaic devices. In this rapidly developing field, the dye-sensitized solar cell (DSC) has achieved so far the highest validated efficiency of 11.1% (ref. 2) and remarkable stability. However, the cells with the best performance use volatile solvents in their electrolytes, which may be prohibitive for outdoor solar panels in view of the need for robust encapsulation. Solvent-free room-temperature ionic liquids have been pursued as an attractive solution to this dilemma, and device efficiencies of over 7% were achieved by using some low-viscosity formulations containing 1-ethyl-3-methylimidazolium thiocyanate, selenocyanate, tricyanomethide or tetracyanoborate. Unfortunately, apart from tetracyanoborate, all of these low-viscosity melts proved to be unstable under prolonged thermal stress and light soaking. Here, we introduce the concept of using eutectic melts to produce solvent-free liquid redox electrolytes. Using a ternary melt in conjunction with a nanocrystalline titania film and the amphiphilic heteroleptic ruthenium complex Z907Na (ref. 10) as a sensitizer, we reach excellent stability and an unprecedented efficiency of 8.2% under air-mass 1.5 global illumination. Our results are of importance to realize large-scale outdoor applications of mesoscopic DSCs. PMID:18587401

  11. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts

    NASA Astrophysics Data System (ADS)

    Bai, Yu; Cao, Yiming; Zhang, Jing; Wang, Mingkui; Li, Renzhi; Wang, Peng; Zakeeruddin, Shaik M.; Grätzel, Michael

    2008-08-01

    Low-cost excitonic solar cells based on organic optoelectronic materials are receiving an ever-increasing amount of attention as potential alternatives to traditional inorganic photovoltaic devices. In this rapidly developing field, the dye-sensitized solar cell (DSC) has achieved so far the highest validated efficiency of 11.1% (ref. 2) and remarkable stability. However, the cells with the best performance use volatile solvents in their electrolytes, which may be prohibitive for outdoor solar panels in view of the need for robust encapsulation. Solvent-free room-temperature ionic liquids have been pursued as an attractive solution to this dilemma, and device efficiencies of over 7% were achieved by using some low-viscosity formulations containing 1-ethyl-3-methylimidazolium thiocyanate, selenocyanate, tricyanomethide or tetracyanoborate. Unfortunately, apart from tetracyanoborate, all of these low-viscosity melts proved to be unstable under prolonged thermal stress and light soaking. Here, we introduce the concept of using eutectic melts to produce solvent-free liquid redox electrolytes. Using a ternary melt in conjunction with a nanocrystalline titania film and the amphiphilic heteroleptic ruthenium complex Z907Na (ref. 10) as a sensitizer, we reach excellent stability and an unprecedented efficiency of 8.2% under air-mass 1.5 global illumination. Our results are of importance to realize large-scale outdoor applications of mesoscopic DSCs.

  12. Dual functions of YF3:Eu3+ for improving photovoltaic performance of dye-sensitized solar cells

    PubMed Central

    Wu, Jihuai; Wang, Jiangli; Lin, Jianming; Xiao, Yaoming; Yue, Gentian; Huang, Miaoliang; Lan, Zhang; Huang, Yunfang; Fan, Leqing; Yin, Shu; Sato, Tsugio

    2013-01-01

    In order to enhance the photovoltaic performance of dye-sensitized solar cell (DSSC), a novel design is demonstrated by introducing rare-earth compound europium ion doped yttrium fluoride (YF3:Eu3+) in TiO2 film in the DSSC. As a conversion luminescence medium, YF3:Eu3+ transfers ultraviolet light to visible light via down-conversion, and increases incident harvest and photocurrent of DSSC. As a p-type dopant, Eu3+ elevates the Fermi level of TiO2 film and thus heightens photovoltage of the DSSC. The conversion luminescence and p-type doping effect are demonstrated by photoluminescence spectra and Mott-Schottky plots. When the ratio of YF3:Eu3+/TiO2 in the doping layer is optimized as 5 wt.%, the light-to-electric energy conversion efficiency of the DSSC reaches 7.74%, which is increased by 32% compared to that of the DSSC without YF3:Eu3+ doping. Double functions of doped rare-earth compound provide a new route for enhancing the photovoltaic performance of solar cells. PMID:23792787

  13. Influence of TiCl4 Treatment on Structure and Performance of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Sedghi, Arman; Nourmohammadi Miankushki, Hoda

    2013-07-01

    Titanium dioxide (TiO2) electrodes are vital components for the fabrication of dye-sensitized solar cells (DSSC). Titanium tetrachloride (TiCl4) treatment is usually adopted as a pre- or post-treatment for the improvement of TiO2 electrodes in DSSCs. Previous reports associated these treatments with the improvement of bonding strength between the fluorinated tin oxide (FTO) substrate and the porous TiO2 layer, blocking the charge recombination at the interface between the FTO and electrolyte, but pre- and post-treatment effects were not studied simultaneously. In this study, three types of TiO2 electrode, untreated, post-treated, and pre- and post-treated, were fabricated. After the TiCl4 treatment of TiO2 electrodes, they were immersed in a dye solution and cells were assembled. Cell performance was measured using a solar light simulator at an intensity of 1000 W.m-2. The best result was achieved by the pre- and post-treated TiO2 electrode. The performance of the cell was improved by increasing the thickness of electrodes and this would raise the overall conversion efficiency up to 7.5%.

  14. Improve photovoltaic performance of titanium dioxide nanorods based dye-sensitized solar cells by Ca-doping

    SciTech Connect

    Li, Weixin; Yang, Junyou Zhang, Jiaqi; Gao, Sheng; Luo, Yubo; Liu, Ming

    2014-09-15

    Highlights: • TiO{sub 2} nanorods doped with Ca ions were synthesized by one-step hydrothermal method. • The flat band edge of rutile TiO{sub 2} shifted positively via Ca-doping. • The photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs) based on TiO{sub 2} electrode was much enhanced by Ca-doping. • A relatively high open circuit voltage was obtained by adopting Ca-doped TiO{sub 2} nanorods electrode. - Abstract: Ca-doped TiO{sub 2} nanorod arrays were prepared via the one-step hydrothermal method successfully, and the effect of Ca ions content on the photovoltaic conversion efficiency of dye-sensitized solar cells has been fully discussed in the paper. Although no obvious change on the microstructure and morphology was observed by field emission scanning electron microscope and transmission electron microscope for the Ca-doped samples, the results of X-ray diffraction and X-ray photoelectron spectroscopy confirmed that Ti{sup 4+} was substituted with Ca{sup 2+} successfully. UV–vis spectroscopy results revealed that the flat band edge shifted positively by Ca ions doping. The photovoltaic conversion efficiency of the dye-sensitized solar cells based on the 2 mol% Ca-doped TiO{sub 2} electrode was 43% higher than that of the undoped one due to the less recombination possibility.

  15. Effect of Al Doping on Performance of CuGaO2 p-Type Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Ursu, D.; Vaszilcsin, N.; Bănica, R.; Miclau, M.

    2016-01-01

    The p-type semiconductor Cu(I)-based delafossite transparent conducting oxides are good candidates to be used as hole collectors in dye-sensitized solar cells. The Al-doped CuGaO2 has been synthesized by hydrothermal method and its properties have been investigated as cathode elements in ruthenium dye N719-sensitized solar cells. The photocurrent density ( J sc) and the open-circuit voltage ( V oc) for 5% Al-doped CuGaO2 microparticles using N719 dye were approximately two times higher than undoped CuGaO2 microparticles. The integration of aluminum dopants in the delafossite structure improves the photovoltaic performance of CuGaO2 thin films, due to the excellent optical transparency of CuGaO2 in the visible range as well as the improved electrical conductivity caused by the apparition of the intrinsic acceptor defect associate (Al Cu •• 2O i ″ )″ with tetrahedrally coordinated Al on the Cu-site.

  16. On the performance of ruthenium dyes in dye sensitized solar cells: a free cluster approach based on theoretical indexes.

    PubMed

    Barrera, M; Crivelli, I; Loeb, B

    2016-05-01

    The performance of ruthenium dye sensitized solar cells (DSSC) with different types of ligand was studied by means of a theoretical model where the ruthenium complex is bound to two [Ti(OH)3](+) units, instead of the more usual cluster TiO2 model. Electron injection is proposed to proceed from a thermalized (3)MLCT state rather than from higher vibrational excited states. The efficiency of the dye linked to the two [Ti(OH)3](+) units was determined in terms of a global index (ξ), calculated as the product of three theoretical indexes (FI) built from the results of time-dependent density functional theory (TDDFT) calculations. The index considers the harvested and delivered energy (F1), the charge transferred to the semiconductor (F2), and dye regeneration (F3). The results show that this set of parameters is unique for each dye, and allows the comparative evaluation of the performance of a series of dyes, with a different ancillary ligand at each stage of the cell operation. The method provides insights that can help explain the improved performance of N3 and black dyes compared to other dyes. Graphical abstract Calculated global efficiency for complexes C1-C6. Inset General structure of the interacting model. PMID:27138946

  17. Solid Solutions of Rare Earth Cations in Mesoporous Anatase Beads and Their Performances in Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Cavallo, Carmen; Salleo, Alberto; Gozzi, Daniele; di Pascasio, Francesco; Quaranta, Simone; Panetta, Riccardo; Latini, Alessandro

    2015-11-01

    Solid solutions of the rare earth (RE) cations Pr3+, Nd3+, Sm3+, Gd3+, Er3+ and Yb3+ in anatase TiO2 have been synthesized as mesoporous beads in the concentration range 0.1-0.3% of metal atoms. The solid solutions were have been characterized by XRD, SEM, diffuse reflectance UV-Vis spectroscopy, BET and BJH surface analysis. All the solid solutions possess high specific surface areas, up to more than 100 m2/g. The amount of adsorbed dye in each photoanode has been determined spectrophotometrically. All the samples were tested as photoanodes in dye-sensitized solar cells (DSSCs) using N719 as dye and a nonvolatile, benzonitrile based electrolyte. All the cells were have been tested by conversion efficiency (J-V), quantum efficiency (IPCE), electrochemical impedance spectroscopy (EIS) and dark current measurements. While lighter RE cations (Pr3+, Nd3+) limit the performance of DSSCs compared to pure anatase mesoporous beads, cations from Sm3+ onwards enhance the performance of the devices. A maximum conversion efficiency of 8.7% for Er3+ at a concentration of 0.2% has been achieved. This is a remarkable efficiency value for a DSSC employing N719 dye without co-adsorbents and a nonvolatile electrolyte. For each RE cation the maximum performances are obtained for a concentration of 0.2% metal atoms.

  18. Solid Solutions of Rare Earth Cations in Mesoporous Anatase Beads and Their Performances in Dye-Sensitized Solar Cells

    PubMed Central

    Cavallo, Carmen; Salleo, Alberto; Gozzi, Daniele; Di Pascasio, Francesco; Quaranta, Simone; Panetta, Riccardo; Latini, Alessandro

    2015-01-01

    Solid solutions of the rare earth (RE) cations Pr3+, Nd3+, Sm3+, Gd3+, Er3+ and Yb3+ in anatase TiO2 have been synthesized as mesoporous beads in the concentration range 0.1–0.3% of metal atoms. The solid solutions were have been characterized by XRD, SEM, diffuse reflectance UV-Vis spectroscopy, BET and BJH surface analysis. All the solid solutions possess high specific surface areas, up to more than 100 m2/g. The amount of adsorbed dye in each photoanode has been determined spectrophotometrically. All the samples were tested as photoanodes in dye-sensitized solar cells (DSSCs) using N719 as dye and a nonvolatile, benzonitrile based electrolyte. All the cells were have been tested by conversion efficiency (J–V), quantum efficiency (IPCE), electrochemical impedance spectroscopy (EIS) and dark current measurements. While lighter RE cations (Pr3+, Nd3+) limit the performance of DSSCs compared to pure anatase mesoporous beads, cations from Sm3+ onwards enhance the performance of the devices. A maximum conversion efficiency of 8.7% for Er3+ at a concentration of 0.2% has been achieved. This is a remarkable efficiency value for a DSSC employing N719 dye without co-adsorbents and a nonvolatile electrolyte. For each RE cation the maximum performances are obtained for a concentration of 0.2% metal atoms. PMID:26577287

  19. Ground and excited state properties of high performance anthocyanidin dyes-sensitized solar cells in the basic solutions

    SciTech Connect

    Prima, Eka Cahya; Yuliarto, Brian; Suyatman; Dipojono, Hermawan Kresno

    2015-09-30

    The aglycones of anthocyanidin dyes were previously reported to form carbinol pseudobase, cis-chalcone, and trans-chalcone due to the basic levels. The further investigations of ground and excited state properties of the dyes were characterized using density functional theory with PCM(UFF)/B3LYP/6-31+G(d,p) level in the basic solutions. However, to the best of our knowledge, the theoretical investigation of their potential photosensitizers has never been reported before. In this paper, the theoretical photovoltaic properties sensitized by dyes have been successfully investigated including the electron injections, the ground and excited state oxidation potentials, the estimated open circuit voltages, and the light harvesting efficiencies. The results prove that the electronic properties represented by dyes’ LUMO-HOMO levels will affect to the photovoltaic performances. Cis-chalcone dye is the best anthocyanidin aglycone dye with the electron injection spontaneity of −1.208 eV, the theoretical open circuit voltage of 1.781 V, and light harvesting efficiency of 56.55% due to the best HOMO-LUMO levels. Moreover, the ethanol solvent slightly contributes to the better cell performance than the water solvent dye because of the better oxidation potential stabilization in the ground state as well as in the excited state. These results are in good agreement with the known experimental report that the aglycones of anthocyanidin dyes in basic solvent are the high potential photosensitizers for dye-sensitized solar cell.

  20. Enhancement in the photovoltaic performance of a dye-sensitized solar cell by an optimized ZnO barrier layer

    NASA Astrophysics Data System (ADS)

    Seo, Hyunwoong; Son, Min-Kyu; Kim, Jin-Kyoung; Shin, Inyoung; Prabakar, K.; Kim, Hee-Je

    2010-05-01

    A dye-sensitized solar cell (DSC) has been considered as a strong alternative to conventional photovoltaic devices based on semiconductors such as silicon or compound semiconductors. The barrier layer functioned by the use of an electrode consisting of two different conduction band potentials is very effective in increasing the photovoltaic performance of a DSC. Especially, zinc oxide (ZnO) is very effective as a barrier layer because it has a higher energy level of the conduction band than TiO2and good contact with TiO2 and dye molecules. We tried to fabricate the ZnO barrier layer using zinc acetate aqueous solution by the dip-coating method, although ZnO film is usually fabricated by chemical vapor deposition or sputter deposition. The experimental parameters were optimized to achieve an effective ZnO barrier layer. The electrochemical impedance spectroscopy and x-ray diffraction pattern were measured to analyze the ZnO layer. The photovoltaic performance of a completed DSC with an optimized ZnO barrier layer was measured and compared with that of a conventional DSC. Consequently, a DSC with a ZnO barrier layer had an increased VOC up to 0.85 V and an enhanced efficiency of 4.05%.

  1. Enhancement of p-Type Dye-Sensitized Solar Cell Performance by Supramolecular Assembly of Electron Donor and Acceptor

    PubMed Central

    Tian, Haining; Oscarsson, Johan; Gabrielsson, Erik; Eriksson, Susanna K.; Lindblad, Rebecka; Xu, Bo; Hao, Yan; Boschloo, Gerrit; Johansson, Erik M. J.; Gardner, James M.; Hagfeldt, Anders; Rensmo, Håkan; Sun, Licheng

    2014-01-01

    Supramolecular interactions based on porphyrin and fullerene derivatives were successfully adopted to improve the photovoltaic performance of p-type dye-sensitized solar cells (DSCs). Photoelectron spectroscopy (PES) measurements suggest a change in binding configuration of ZnTCPP after co-sensitization with C60PPy, which could be ascribed to supramolecular interaction between ZnTCPP and C60PPy. The performance of the ZnTCPP/C60PPy-based p-type DSC has been increased by a factor of 4 in comparison with the DSC with the ZnTCPP alone. At 560 nm, the IPCE value of DSCs based on ZnTCPP/C60PPy was a factor of 10 greater than that generated by ZnTCPP-based DSCs. The influence of different electrolytes on charge extraction and electron lifetime was investigated and showed that the enhanced Voc from the Co2+/3+(dtbp)3-based device is due to the positive EF shift of NiO. PMID:24603319

  2. Effects of polymer chemistry on polymer-electrolyte dye sensitized solar cell performance: A theoretical and experimental investigation

    NASA Astrophysics Data System (ADS)

    Smolin, Yuriy Y.; Nejati, Siamak; Bavarian, Mona; Lee, Daeyeon; Lau, Kenneth K. S.; Soroush, Masoud

    2015-01-01

    The effects of polymer chemistry on interfacial properties and overall performance in polymer-electrolyte dye sensitized solar cells (DSSCs) are investigated theoretically and experimentally. Specifically, polymer electrolytes based on poly(2-hydroxyethyl methacrylate) (PHEMA), poly(glycidyl methacrylate) (PGMA), and poly(4-vinylpyridine) (P4VP) are considered. These polymers are grown directly within the mesoporous TiO2 photoanode via a single step polymerization and coating using initiated chemical vapor deposition (iCVD) to maximize pore filling. The experimental study coupled with a 1-D first-principles macroscopic DSSC mathematical model provides insight into the cell interfacial processes and overall performance. Parameter estimation using the macroscopic model indicates that the pendant groups on the polymers strongly affect the conduction band position of TiO2, the back electron transfer at the photoanode-electrolyte interface, and the exchange current density at the platinum cathode. The estimated difference between the TiO2 conduction band edge and the redox potential of the electrolyte are 0.87, 0.99 and 1.06 eV for P4VP, PGMA, and PHEMA, respectively. Estimated recombination rate constants for P4VP and PGMA are respectively 54% and 19% lower than that of PHEMA. This study indicates that by varying polymer electrolyte chemistry, DSSC characteristics including open-circuit voltage, short-circuit current density, and fill factor can be tuned.

  3. High-Performance Platinum-Free Dye-Sensitized Solar Cells with Molybdenum Disulfide Films as Counter Electrodes.

    PubMed

    Hussain, Sajjad; Shaikh, Shoyebmohamad F; Vikraman, Dhanasekaran; Mane, Rajaram S; Joo, Oh-Shim; Naushad, Mu; Jung, Jongwan

    2015-12-21

    By using a radio-frequency sputtering method, we synthesized large-area, uniform, and transparent molybdenum disulfide film electrodes (1, 3, 5, and 7 min) on transparent and conducting fluorine-doped tin oxide (FTO), as ecofriendly, cost-effective counter electrodes (CE) for dye-sensitized solar cells (DSSCs). These CEs were used in place of the routinely used expensive platinum CEs for the catalytic reduction of a triiodide electrolyte. The structure and morphology of the MoS2 was analyzed by using Raman spectroscopy, X-ray diffraction, and X-ray photoemission spectroscopy measurements and the DSSC characteristics were investigated. An unbroken film of MoS2 was identified on the FTO crystallites from field-emission scanning electron microscopy. Cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel curve measurements reveal the promise of MoS2 as a CE with a low charge-transfer resistance, high electrocatalytic activity, and fast reaction kinetics for the reduction of triiodide to iodide. Finally, an optimized transparent MoS2 CE, obtained after 5 min synthesis time, showed a high power-conversion efficiency of 6.0 %, which comparable to the performance obtained with a Pt CE (6.6 %) when used in TiO2 -based DSCCs, thus signifying the importance of sputtering time on DSSC performance. PMID:26472540

  4. Nanowire dye-sensitized solar cells.

    PubMed

    Law, Matt; Greene, Lori E; Johnson, Justin C; Saykally, Richard; Yang, Peidong

    2005-06-01

    Excitonic solar cells-including organic, hybrid organic-inorganic and dye-sensitized cells (DSCs)-are promising devices for inexpensive, large-scale solar energy conversion. The DSC is currently the most efficient and stable excitonic photocell. Central to this device is a thick nanoparticle film that provides a large surface area for the adsorption of light-harvesting molecules. However, nanoparticle DSCs rely on trap-limited diffusion for electron transport, a slow mechanism that can limit device efficiency, especially at longer wavelengths. Here we introduce a version of the dye-sensitized cell in which the traditional nanoparticle film is replaced by a dense array of oriented, crystalline ZnO nanowires. The nanowire anode is synthesized by mild aqueous chemistry and features a surface area up to one-fifth as large as a nanoparticle cell. The direct electrical pathways provided by the nanowires ensure the rapid collection of carriers generated throughout the device, and a full Sun efficiency of 1.5% is demonstrated, limited primarily by the surface area of the nanowire array. PMID:15895100

  5. Performance of Kerria japonica and Rosa chinensis flower dyes as sensitizers for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hemalatha, K. V.; Karthick, S. N.; Justin Raj, C.; Hong, N.-Y.; Kim, S.-K.; Kim, H.-J.

    2012-10-01

    The natural dyes carotenoid and anthocyanin were extracted from Kerria japonica and Rosa chinensis, respectively, using a simple extraction technique without any further purification. They were then used as sensitizers in dye-sensitized solar cells (DSSCs), and their characteristics were studied. The ranges of short-circuit current (JSC) from 0.559 to 0.801 (mA/cm2), open-circuit voltage (VOC) from 0.537 to 0.584 V, and fill factor from 0.676 to 0.705 were obtained for the DSSCs made using the extracted dyes. Sugar molecules were added externally to the dye for stabilization and to increase the conversion efficiency. The efficiencies of the K. japonica and R. chinensis dyes were 0.22% and 0.29%, respectively; after the addition of sugar, the efficiency increased to 0.29% for K. japonica and decreased to 0.27% for R. chinensis. Thus, the addition of sugar molecules increased the conversion efficiency slightly with the carotenoid dye of K. japonica, while there was no considerable change with the anthocyanin of R. chinensis. This paper briefly discusses the simple extraction technique of these natural dyes and their performance in DSSCs.

  6. Influence of niobium doping in hierarchically organized titania nanostructure on performance of dye-sensitized solar cells.

    PubMed

    Park, Jong Hoon; Noh, Jun Hong; Han, Byung Suh; Shin, Seong Sik; Park, Ik Jae; Kim, Dong Hoe; Hong, Kug Sun

    2012-06-01

    Niobium doped hierarchically organized TiO2 nanostructures composed of 20 nm size anatase nanocrystals were synthesized using pulsed laser deposition (PLD). The Nb doping concentration could be facilely controlled by adjusting the concentration of Nb in target materials. We could investigate the influence of Nb doping in the TiO2 photoelectrode on the cell performance of dye-sensitized solar cells (DSSCs) by the exclusion of morphological effects using the prepared Nb-doped TiO2 anostructures. We found no significant change in short circuit current density (Jsc) as a function of Nb doping concentration. However, open circuit voltage (Voc) and fill factor (FF) monotonously decrease with increasing Nb concentration. Dark current characteristics of the DSSCs reveal that the decrease in Voc and FF is attributed to the decrease in shunt resistance due to the increase in conductivity TiO2 by Nb doping. However, electrochemical impedance spectra (EIS) analysis at open circuit condition under illumination showed that the resistance at the TiO2/dye/electrolyte interface increases with Nb concentration, revealing that Nb doping suppress the charge recombination at the interface. In addition, electron life time obtained using characteristic frequency in Bode plot increases from 14 msec to 56 msec with increasing Nb concentration from 0 to 1.2 at%. This implies that the improved light harvesting can be achieved by increasing diffusion length through Nb-doping in the conventional TiO2 photoelectrode. PMID:22905583

  7. Nitrogen-Doped Porous Carbons As Electrode Materials for High-Performance Supercapacitor and Dye-Sensitized Solar Cell.

    PubMed

    Wang, Lan; Gao, Zhiyong; Chang, Jiuli; Liu, Xiao; Wu, Dapeng; Xu, Fang; Guo, Yuming; Jiang, Kai

    2015-09-16

    Activated N-doped porous carbons (a-NCs) were synthesized by pyrolysis and alkali activation of graphene incorporated melamine formaldehyde resin (MF). The moderate N doping levels, mesopores rich porous texture, and incorporation of graphene enable the applications of a-NCs in surface and conductivity dependent electrode materials for supercapacitor and dye-sensitized solar cell (DSSC). Under optimal activation temperature of 700 °C, the afforded sample, labeled as a-NC700, possesses a specific surface area of 1302 m2 g(-1), a N fraction of 4.5%, and a modest graphitization. When used as a supercapacitor electrode, a-NC700 offers a high specific capacitance of 296 F g(-1) at a current density of 1 A g(-1), an acceptable rate capability, and a high cycling stability in 1 M H2SO4 electrolyte. As a result, a-NC700 supercapacitor delivers energy densities of 5.0-3.5 Wh kg(-1) under power densities of 83-1609 W kg(-1). Moreover, a-NC700 also demonstrates high electrocatalytic activity for I3- reduction. When employed as a counter electrode (CE) of DSSC, a power conversion efficiency (PCE) of 6.9% is achieved, which is comparable to that of the Pt CE based counterpart (7.1%). The excellent capacitive and photovoltaic performances highlight the potential of a-NCs in sustainable energy devices. PMID:26320745

  8. Performance of Kerria japonica and Rosa chinensis flower dyes as sensitizers for dye-sensitized solar cells.

    PubMed

    Hemalatha, K V; Karthick, S N; Justin Raj, C; Hong, N-Y; Kim, S-K; Kim, H-J

    2012-10-01

    The natural dyes carotenoid and anthocyanin were extracted from Kerria japonica and Rosa chinensis, respectively, using a simple extraction technique without any further purification. They were then used as sensitizers in dye-sensitized solar cells (DSSCs), and their characteristics were studied. The ranges of short-circuit current (J(SC)) from 0.559 to 0.801(mA/cm(2)), open-circuit voltage (V(OC)) from 0.537 to 0.584 V, and fill factor from 0.676 to 0.705 were obtained for the DSSCs made using the extracted dyes. Sugar molecules were added externally to the dye for stabilization and to increase the conversion efficiency. The efficiencies of the K. japonica and R. chinensis dyes were 0.22% and 0.29%, respectively; after the addition of sugar, the efficiency increased to 0.29% for K. japonica and decreased to 0.27% for R. chinensis. Thus, the addition of sugar molecules increased the conversion efficiency slightly with the carotenoid dye of K. japonica, while there was no considerable change with the anthocyanin of R. chinensis. This paper briefly discusses the simple extraction technique of these natural dyes and their performance in DSSCs. PMID:22698848

  9. Effect of TiO2 Particle Size on the Performance of Flexible Dye Sensitized Solar Cells.

    PubMed

    Li, Zhen-yu; Akhtar, M Shaheer; Yang, O-bong

    2015-09-01

    The size TiO2 nanoparticles was controlled by changing the concentration of titanium tetraisopropanolate (TTIP) and utilized as light scattering particles in the efficient flexible photoelectrodes for flexible dye sensitized solar cells (DSSCs). The flexible photoelectrodes were prepared by TiO2 nanoparticles (-25 nm) paste with different concentrations of ethanolic TTIP solution. The addition of TTIP produced the bigger TiO2 nanoparticles, which significantly enhanced the dye absorption of flexible TiO2 photoelectrode. The fabricated flexible DSSCs showed the reasonable conversion efficiency of 2.50% with short circuit current (J(sc)) of 6.3 mA/cm2, open circuit voltage (V(oc)) of 0.720 V and fill factor (FF) of 0.55. The improvement in photovoltaic performance with 25 wt% TTIP might due to uniform distribution of small TiO2 nanoparticles over the big particles to lead the enhancement in the surface area, resulting in the high dye absorption and light harvesting efficiency. PMID:26716227

  10. Improving the dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Willig, Frank

    2007-09-01

    Two dye sensitized solar cells (DSC) can be joined to form a tandem cell with two separate absorption ranges for the two different absorber materials. This can enhance the solar conversion efficiency and in particular the photovoltage of the DSC. Water splitting appears as a realistic long term target. The DSC tandem can be realized as n-n junction employing known dye molecules with optimal absorption spectra. Dye molecules with elongated shapes can be realized by covalently attaching a conducting bridge group terminated by an anchor group to a desired chromophore. Due to the long conducting bridge group separating the hole state of the dye from the surface of the semiconductor recombination is slowed down. The ordered molecular structure can be self-assembled on the recently introduced rod or cylinder shaped oxide electrodes but will not slow down recombination in the nm-cavities of the conventional TiO II Graetzel electrode.

  11. Highly efficient photocathodes for dye-sensitized tandem solar cells.

    PubMed

    Nattestad, A; Mozer, A J; Fischer, M K R; Cheng, Y-B; Mishra, A; Bäuerle, P; Bach, U

    2010-01-01

    Thin-film dye-sensitized solar cells (DSCs) based on mesoporous semiconductor electrodes are low-cost alternatives to conventional silicon devices. High-efficiency DSCs typically operate as photoanodes (n-DSCs), where photocurrents result from dye-sensitized electron injection into n-type semiconductors. Dye-sensitized photocathodes (p-DSCs) operate in an inverse mode, where dye-excitation is followed by rapid electron transfer from a p-type semiconductor to the dye (dye-sensitized hole injection). Such p-DSCs and n-DSCs can be combined to construct tandem solar cells (pn-DSCs) with a theoretical efficiency limitation well beyond that of single-junction DSCs (ref. 4). Nevertheless, the efficiencies of such tandem pn-DSCs have so far been hampered by the poor performance of the available p-DSCs (refs 3, 5-15). Here we show for the first time that p-DSCs can convert absorbed photons to electrons with yields of up to 96%, resulting in a sevenfold increase in energy conversion efficiency compared with previously reported photocathodes. The donor-acceptor dyes, studied as photocathodic sensitizers, comprise a variable-length oligothiophene bridge, which provides control over the spatial separation of the photogenerated charge carriers. As a result, charge recombination is decelerated by several orders of magnitude and tandem pn-DSCs can be constructed that exceed the efficiency of their individual components. PMID:19946281

  12. Highly efficient photocathodes for dye-sensitized tandem solar cells

    NASA Astrophysics Data System (ADS)

    Nattestad, A.; Mozer, A. J.; Fischer, M. K. R.; Cheng, Y.-B.; Mishra, A.; Bäuerle, P.; Bach, U.

    2010-01-01

    Thin-film dye-sensitized solar cells (DSCs) based on mesoporous semiconductor electrodes are low-cost alternatives to conventional silicon devices. High-efficiency DSCs typically operate as photoanodes (n-DSCs), where photocurrents result from dye-sensitized electron injection into n-type semiconductors. Dye-sensitized photocathodes (p-DSCs) operate in an inverse mode, where dye-excitation is followed by rapid electron transfer from a p-type semiconductor to the dye (dye-sensitized hole injection). Such p-DSCs and n-DSCs can be combined to construct tandem solar cells (pn-DSCs) with a theoretical efficiency limitation well beyond that of single-junction DSCs (ref. 4). Nevertheless, the efficiencies of such tandem pn-DSCs have so far been hampered by the poor performance of the available p-DSCs (refs 3, 5-15). Here we show for the first time that p-DSCs can convert absorbed photons to electrons with yields of up to 96%, resulting in a sevenfold increase in energy conversion efficiency compared with previously reported photocathodes. The donor-acceptor dyes, studied as photocathodic sensitizers, comprise a variable-length oligothiophene bridge, which provides control over the spatial separation of the photogenerated charge carriers. As a result, charge recombination is decelerated by several orders of magnitude and tandem pn-DSCs can be constructed that exceed the efficiency of their individual components.

  13. Performance Enhancement of Dye-Sensitized Solar Cells Based on TiO₂ Thick Mesoporous Photoanodes by Morphological Manipulation.

    PubMed

    Keshavarzi, Reza; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj

    2015-10-27

    This study is an attempt to give an account of the preparation of mesoporous TiO2 thick templated films of nonsimilar pore architecture and their use in dye-sensitized solar cells (DSSCs). Highly crystallized mesoporous titania thick templated films with four different morphologies including hexagonal, wormlike, cubic, and gridlike mesostructure, have been successfully synthesized through an evaporation-induced self-assembly (EISA) route followed by layer-by-layer deposition. Stabilization, followed by each coating, and calcinations, carried out after every five layers, were used to produce crack-free thick films. These mesoporous templated titanium dioxide samples were characterized by TEM, XRD, SEM, BET, and UV-vis measurements and used as a photoelectrode material in DSSCs. The mesostructured films with a thickness of about 7 μm demonstrated better performance in comparison to nanocrystalline TiO2 films (NC-TiO2) at a film thickness of 13 μm as the most typical films utilized in DSSCs. The findings reveal that a surfactant/Ti ratio change undergone for developing cubic mesostructures can enhance the crystallinity and roughness factor and therefore increase the energy conversion efficiency of DSSC. The cell performances derived from these mesofilms were enhanced compared to the efficiencies reported thus far. The best photovoltaic performance of 8.73% came from DSSC using the cubic mesoporous TiO2 photoelectrode with the following properties: open circuit voltage of 743 mV, short circuit photocurrent density of 16.35 mA/cm(2), and fill factor of 0.72. PMID:26421504

  14. Controllable synthesis of ZnO nanograss with different morphologies and enhanced performance in dye-sensitized solar cells

    SciTech Connect

    Zhu Shibu; Chen Xiangnan; Zuo Feibiao; Jiang Man; Zhou Zuowan; Hui, David

    2013-01-15

    A series of ZnO nanograss films grown on fluorine-doped tin oxide coated glass substrates were synthesized via hydrothermal method by using polyethyleneimine (PEI) as adjusting agent. The films were characterized by field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD). It was found that the PEI not only affected the aspect ratios of ZnO nanograss but also changed the geometrical shape of ZnO nanograss. A possible mechanism based on PEI adsorbed on the non-polar facets of ZnO that governed the growth rate of different directions were proposed to elucidate the effect of PEI on morphology of ZnO. The ZnO nanograss films were applied to dye-sensitized solar cells (DSSCs). The results showed that the photocurrent density significantly enhanced, and the power conversion efficiency increased by 55% based on ZnO nanograss synthesized in a growth solution containing 7 mmol/L PEI, resulting from the dye loading properties related to the different morphologies. - Graphical abstract: Effect of PEI on ZnO nanograss: controlling the aspect ratio and morphology of ZnO and enhancing their photovoltaic performance. Highlights: Black-Right-Pointing-Pointer ZnO nanograss with different aspect ratios were synthesized by adjusting PEI content. Black-Right-Pointing-Pointer PEI affects both on the aspect ratios and geometrical shapes of ZnO nanograss. Black-Right-Pointing-Pointer ZnO nanograss with high aspect ratio and needle-like tip was advantageous for improved photovoltaic conversion performance.

  15. Photochemical performance of ZnO nanostructures in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Das, Partha Pratim; Mukhopadhyay, Soumita; Agarkar, Shruti A.; Jana, Arpita; Devi, P. Sujatha

    2015-10-01

    In this work, the photoconversion efficiencies of ZnO having diverse microstructures and structural defects have been investigated. A conversion efficiency of 1.38% was achieved for the DSSCs fabricated with as prepared ZnO nanorods having minimum vacancy defects and a favourable one dimensional directional pathway for electron conduction. The DSSCs fabricated with ZnO nanoparticles exhibited relatively low conversion efficiency of 1.004% probably due to multiple trapping/detrapping phenomena within the grain boundaries and ZnO flowers though exhibited a high dye adsorption capability exhibited the lowest conversion efficiency of 0.59% due to a high concentration of structural defects. Based on the experimental evidences, we believe that the type of defects and their concentrations are more important than shape in controlling the overall performance of ZnO based DSSCs.

  16. Plasmonic-resonance-based ternary composite complementary enhancement of the performance of dye-sensitized solar cells.

    PubMed

    Bai, Lihua; Li, Meiya; Liu, Xiaolian; Luoshan, Mengdai; Zhang, Feng; Guo, Kaimo; Zhu, Yongdan; Sun, Beilei; Zhao, Xingzhong

    2016-10-14

    Graphene (G), TiO2 fusiform nanorods (TiO2NRs) adsorbed with Au nanoparticles (AuNPs) are prepared and blended as multifunctional materials into TiO2 nanocrystalline film to form a novel ternary (G-TiO2NRs-Au) composite photoanode in dye-sensitized solar cells (DSSCs). The effects of G-TiO2NRs-Au on the properties of the photoanode and DSSC are investigated. Results show that, by blending G-TiO2NRs-Au, the light absorption and scattering of the photoanode are obviously improved, and the charge transfer resistance R2 and electron recombination are decreased, resulting in a significant enhancement in the short-circuit current density (J sc) and the photoelectric conversion efficiency (PCE) of the DSSCs. The maximum J sc of 17.66 mA cm(-2) and PCE of 8.56% are obtained in the optimal G-TiO2NRs-Au-based DSSC, about 33.6% and 35.0% higher than that obtained in the conventional TiO2-based DSSC. This significant improvement in the performance of the DSSC can be attributed to the ternary composite complementary effects of multi-functions from the surface plasmon resonance of AuNPs, light scattering of TiO2NRs, and the improved dye loading and fast electron transmission channel from graphene. This study provides an effective way of ternary composite complementary enhancement of the J sc and PCE of the DSSCs. PMID:27595326

  17. High-performance plastic platinized counter electrode via photoplatinization technique for flexible dye-sensitized solar cells.

    PubMed

    Fu, Nian-Qing; Fang, Yan-Yan; Duan, Yan-Dong; Zhou, Xiao-Wen; Xiao, Xu-Rui; Lin, Yuan

    2012-11-27

    A photoplatinization technique was proposed to deposit Pt on a thin TiO(2) layer modified indium tin oxide-coated polyethylene naphthalate (ITO/PEN) substrate at low temperature (about 50 °C after 1 h of UV irradiation) for the first time. The fabrication process includes coating and hydrolyzing the tetra-n-butyl titanate to form a TiO(2)-modified layer and the photoplatinization of the modified substrate in H(2)PtCl(6)/2-propanol precursor solution under UV irradiation. The obtained platinized electrodes were used as counter electrodes (CE) for flexible dye-sensitized solar cells (FDSCs). The well-optimized platinized electrode showed high optical transmittance, up to 76.5% between 400 and 800 nm (T(av)), and the charge transfer resistance (R(ct)) was as low as 0.66 Ω cm(2). A series of characterizations also demonstrated the outstanding chemical/electrochemical durability and mechanical stability of the platinized electrode. The FDSCs with TiO(2)/Ti photoanodes and the obtained CEs achieved a power conversion efficiency (PCE) up to 8.12% under rear-side irradiation (AM 1.5 illumination, 100 mW cm(-2)). The obtained CEs were also employed in all-plastic bifacial DSCs. When irradiated from the rear side, the bifacial FDSC yielded a PCE of 6.26%, which approached 90% that of front-side irradiation (6.97%). Our study revealed that, apart from serving as a functional layer for deposition of Pt, the thin TiO(2) layer modification on ITO/PEN substrates also played an important role in improving the transparency and the mechanical properties of the CE. The effect of the thickness of the TiO(2) layer for Pt coating on the performance of the CE was also investigated. PMID:23039879

  18. Density-controlled ZnO/TiO2 nanocomposite photoanode for improving dye-sensitized solar cells performance

    NASA Astrophysics Data System (ADS)

    Yao, Jimmy; Lin, Chih-Min; Yin, Stuart (.

    2015-03-01

    Dye-sensitized solar cells (DSSCs) via ZnO/TiO2 nanocomposite photoanode with density-controlled abilities are presented in this paper. This nanocomposite photoanode is composed of TiO2 nanoparticles dispersed into densitycontrolled vertically aligned ZnO-TiO2 core-shell nanorod arrays. The density-controlled ZnO-TiO2 core-shell nanorod arrays were synthesized directly onto fluorine-doped tin oxide (FTO) substrates using an innovative two-step wet chemical route. First, the density-controlled ZnO nanorod arrays were formed by applying a ZnO hydrothermal process from a TiO2 nanocrystals template. Second, the ZnO-TiO2 core-shell nanorod arrays were formed by depositing a TiO2 shell layer from a sol-gel process. The major advantages of a density-controlled ZnO/TiO2 nanocomposite photoanode include (1) providing a better diffusion path from ZnO nanorod arrays and (2) reducing the recombination loss by introducing an energy barrier layer TiO2 conformal shell coating. To validate the advantages of a density-controlled ZnO/TiO2 nanocomposite photoanode, DSSCs based on a ZnO/TiO2 nanocomposite photoanode were fabricated, in which N719 dye was used. The average dimensions of the ZnO nanorod arrays were 20 μm and 650 nm for the length and the diameter, respectively, while the designated spacing between each nanorod was around 5 μm. The performance of the solar cell was tested by using a standard AM 1.5 solar simulator from Newport Corporation. The experimental results confirmed that an open-circuit voltage, 0.93 V, was achieved, which was much higher than the conventional TiO2 nanoparticles thin film structure for the same thickness. Thus, density-controlled ZnO/TiO2 nanocomposite photoanodes could improve the performance of DSSCs by offering a better electron diffusion path.

  19. Dye-sensitized Schottky barrier solar cells

    DOEpatents

    Skotheim, Terje A.

    1978-01-01

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  20. Superior Light-Harvesting Heteroleptic Ruthenium(II) Complexes with Electron-Donating Antennas for High Performance Dye-Sensitized Solar Cells.

    PubMed

    Chen, Wang-Chao; Kong, Fan-Tai; Li, Zhao-Qian; Pan, Jia-Hong; Liu, Xue-Peng; Guo, Fu-Ling; Zhou, Li; Huang, Yang; Yu, Ting; Dai, Song-Yuan

    2016-08-01

    Three heteroleptic polypyridyl ruthenium complexes, RC-41, RC-42, and RC-43, with efficient electron-donating antennas in the ancillary ligands were designed, synthesized, and characterized as sensitizers for dye-sensitized solar cell. All the RC dye sensitizers showed remarkable light-harvesting capacity and broadened absorption range. Significantly, RC-43 obtained the lower energy metal-ligand charge transfer (MLCT) band peaked at 557 nm with a high molar extinction coefficient of 27 400 M(-1) cm(-1). In conjunction with TiO2 photoanode of submicrospheres and iodide-based electrolytes, the DSSCs sensitizing with the RC sensitizers, achieved impressively high short-circuit current density (19.04 mA cm(-2) for RC-41, 19.83 mA cm(-2) for RC-42, and 20.21 mA cm(-2) for RC-43) and power conversion efficiency (10.07% for RC-41, 10.52% for RC-42, and 10.78% for RC-43). The superior performances of RC dye sensitizers were attributed to the enhanced light-harvesting capacity and incident-photon-to-current efficiency (IPCE) caused by the introduction of electron-donating antennas in the ancillary ligands. The interfacial charge recombination/regeneration kinetics and electron lifetime were further evaluated by the electrochemical impedance spectroscopy (EIS) and transient absorption spectroscopy (TAS). These data decisively revealed the dependences on the photovoltaic performance of ruthenium sensitizers incorporating electron-donating antennas. PMID:27409513

  1. Improved performance of dye-sensitized solar cells by tuning the properties of ruthenium complexes containing conjugated bipyridine ligands

    NASA Astrophysics Data System (ADS)

    Nguyen, Hong Minh; Nghia Nguyen, Duc; Kim, Nakjoong

    2010-06-01

    Three heteroleptic ruthenium complexes cis-[Ru(H2dcbpy)(L)(NCS)2], where H2dcbpy is 4,4'-dicarboxy-2,2'-bipyridine and L is 4-(4-(N,N-di-(p-anisyl)amino)styryl)-4'-methyl-2,2'-bipyridine (Dye-1), 4-(4-(N,N-di-(p-hexyloxyphenyl)amino)styryl)-4'-methyl-2,2'-bipyridine (Dye-2) or 4-(5-(N,N-di-(p-hexyloxyphenyl)-amino)-thiophene-2-yl-ethenyl)-4'-methyl-2,2'-bipyridine (Dye-3) have been synthesized and characterized. The influence of differently conjugated bipyridine ligands on these complexes was studied using UV-Vis spectroscopy and cyclic voltammetry. These heteroleptic complexes show appreciably broad absorption ranges and quite high extinction coefficients. These new dyes were used as photosensitizers in nanocrystalline TiO2 dye-sensitized solar cells. It was found that the difference in light-harvesting property between Dye-1, Dye-2 and Dye-3 is associated mainly with molar extinction coefficients and alignment of the HOMO–LUMO energy levels. The power conversion efficiencies of solar cells based on Dye-1 and Dye-2 are 4.21% and 4.41%, while Dye-3 delivered a lower efficiency of 2.88% under the same device fabrication and measurement conditions.

  2. Strategies for optimizing the performance of carbazole thiophene appended unsymmetrical squaraine dyes for dye-sensitized solar cells.

    PubMed

    Soman, Suraj; Rahim, M A; Lingamoorthy, S; Suresh, Cherumuttathu H; Das, Suresh

    2015-09-21

    Unsymmetrical squaraine dyes (CTSQ-1 and CTSQ-2) with carbazole thiophene donor units were synthesized, characterized and used as sensitizers in dye-sensitized solar cells (DSSCs). These squaraines exhibited intense absorption in the near IR-visible region of the solar spectrum both in solution and on TiO2 surface. The LUMO level of the parent sensitizer (CTSQ-2) was positioned at a potential much close to the conduction band of TiO2 resulting in lack of enough driving force for electron injection which was modulated by structurally changing the donor carbazole moiety (CTSQ-1), pushing the LUMO more positive thereby enhancing the driving force. Theoretical calculations were carried out in order to have a better understanding of the electron density distribution in CTSQ-1 and CTSQ-2. Electron injection dynamics in CTSQ-1 was studied in detail by changing the Li(+) concentration and its effects on photovoltaic parameters were discussed with the help of JV, IPCE, lifetime and EIS measurements. PMID:26279243

  3. Synthesis of zinc phthalocyanine with large steric hindrance and its photovoltaic performance for dye-sensitized solar cells.

    PubMed

    Lin, Li; Peng, Bosi; Shi, Wenye; Guo, Yingying; Li, Renjie

    2015-03-28

    A zinc phthalocyanine (ZnPc) derivative (Zn-tri-PcNc-8) containing tri-benzonaphtho-condensed porphyrazine with one carboxylic and six diphenylphenoxy peripheral substitutions was designed and synthesized as a sensitizer for dye-sensitized solar cells (DSSCs). For the purpose of extending the absorption spectra while minimizing the formation of ZnPc molecular aggregates, bulky 2,6-diphenylphenoxy groups were used as electron donor moieties, and the carboxylic group as an anchoring group to graft the sensitizer onto the semiconductor. It was found that a TiO2-based solar cell sensitized by Zn-tri-PcNc-8 shows a maximum incident photon-to-current conversion efficiency in the red/near-IR light range (650-750 nm), and a solar cell sensitized at near room temperature (30 °C) for 48 h exhibits the best efficiency (3.01%). The efficiency was much higher than that (1.96%) for a solar cell sensitized by its analogue (Zn-tri-PcNc-2) having one carboxyl and three tert-butyl groups without chenodeoxycholic acid (CDCA), indicating that the introduction of six bulky diphenylphenoxy substitutions with large steric hindrance in the ZnPc macrocycle can effectively suppress the molecular aggregates, thus resulting in an improved conversion efficiency. The present results shed light on an effective solution to adjust the ZnPc property via chemical modification such as changing the "push-pull" effect and adding large steric hindrance substituents to further improve the efficiency of the phthalocyanine-sensitized solar cell. PMID:25716344

  4. A higher performance dye-sensitized solar cell based on the modified PMII/EMIMBF4 binary room temperature ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Wang, Wu-yang; Cao, Da-peng; Wang, Chao; Zhang, Xiang-yu; Mi, Bao-xiu; Gao, Zhi-qiang; Liang, Zhong-cheng

    2016-07-01

    Additives and iodine (I2) are used to modify the binary room temperature ionic liquid (RTIL) electrolyte to enhance the photovoltaic performance of dye-sensitized solar cells (DSSCs). The short-circuit current density ( J SC) of 17.89 mA/cm2, open circuit voltage ( V OC) of 0.71 V and fill factor ( FF) of 0.50 are achieved in the optimal device. An average photoelectric conversion efficiency ( PCE) of 6.35% is achieved by optimization, which is over two times larger than that of the parent device before optimization (2.06%), while the maximum PCE can reach up to 6.63%.

  5. Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells.

    PubMed

    He, Ziming; Guai, Guanhong; Liu, Jing; Guo, Chunxian; Loo, Joachim Say Chye; Li, Chang Ming; Tan, Timothy Thatt Yang

    2011-11-01

    We present a one-step solvothermal approach to prepare uniform graphene-TiO(2) nanocomposites with delicately controlled TiO(2) nanostructures, including ultra-small 2 nm nanoparticles, 12 nm nanoparticles and nanorods. Using three composites as photoanode materials, the effect of nanostructure of graphene-composited TiO(2) on the performance of dye-sensitized solar cells was investigated, and results showed that the ultra-small 2 nm TiO(2)-graphene composite based photoanode exhibited the highest power conversion efficiency of 7.25%. PMID:22006266

  6. Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification

    NASA Astrophysics Data System (ADS)

    Gondal, M. A.; Ilyas, A. M.; Baig, Umair

    2016-08-01

    Separation of photo-generated charge carriers (electron and holes) is a major approach to improve the photovoltaic and photocatalytic performance of metal oxide semiconductors. For harsh environment like high temperature applications, ceramic like silicon carbide is very prominent. In this work, 10%, 20% and 40% by weight of pre-oxidized silicon carbide was coupled with titanium dioxide (TiO2) to form nanocomposite semiconductor via elegant pulsed laser ablation in liquid technique using second harmonic 532 nm wavelength of neodymium-doped yttrium aluminium garnet (Nd-YAG) laser. In addition, the effect of silicon carbide concentration on the performance of silicon carbide-titanium dioxide nanocomposite as photo-anode in dye sensitized solar cell and as photocatalyst in photodegradation of methyl orange dye in water was also studied. The result obtained shows that photo-conversion efficiency of the dye sensitized solar cell was improved from 0.6% to 1.65% and the percentage of methyl orange dye removed was enhanced from 22% to 77% at 24 min under ultraviolet-visible solar spectrum in the nanocomposite with 10% weight of silicon carbide. This remarkable performance enhancement could be due to the improvement in electron transfer phenomenon by the presence of silicon carbide on titanium dioxide.

  7. The Photovoltaic Performances of PVdF-HFP Electrospun Membranes Employed Quasi-Solid-State Dye Sensitized Solar Cells.

    PubMed

    Gnana kumar, G; Balanay, Mannix P; Nirmala, R; Kim, Dong Hee; Raj kumar, T; Senthilkumar, N; Kim, Ae Rhan; Yoo, Dong Jin

    2016-01-01

    The PVdF-HFP nanofiber membranes with different molecular weight were prepared by electrospinning technique and were investigated as solid state electrolyte membranes in quasi solid state dye sensitized solar cells (QS-DSSC). The homogeneously distributed and fully interconnected nanofibers were obtained for all of the prepared PVdF-HFP electrospun membranes and the average fiber diameters of fabricated membranes were dependent upon the molecular weight of polymer. The thermal stability of electrospun PVdF-HFP membrane was decreased with a decrement of molecular weight, specifying the high heat transfer area of small diameter nanofibers. The QS-DSSC fabricated with the lower molecular weight PVdF-HFP electrospun nanofiber membrane exhibited the power conversion efficiency of 1 = 5.38%, which is superior over the high molecular weight membranes and is comparable with the liquid electrolyte. Furthermore, the electrospun PVdF-HFP membrane exhibited long-term durability over the liquid electrolyte, owing to the higher adsorption and retention efficiencies of liquid electrolyte in its highly porous and interconnected nanofibers. Thus the proposed electrospun PVdF-HFP membrane effectively tackled the volatilization and leakage of liquid electrolyte and provided good photoconversion efficiency associated with an excellent stability, which constructs the prepared electrospun membranes as credible solid state candidates for the application of QS-DSSCs. PMID:27398491

  8. Investigation of effect of anti-aggregation agent on the performance of nanostructure dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hosseinnezhad, M.; Moradian, S.; Gharanjig, K.

    2015-06-01

    Dye sensitized solar cells (DSSCs) based on indigo dyes exhibit suitable conversion efficiency. These organic dyes have been undergone for aggregation. Electron transfer process is reduced due to an aggregation of molecular dyes. Therefore, anti-aggregation agent is commonly utilized in fabrication of DSSCs. In the present study, two anti-aggregation agents namely as 3α,7α-dihydroxy-5β-cholanic acid (cheno) and 3α,7α,12α-trihydroxy-5β-cholanic acid (cholic acid) were added to indigo dye solution in DSSCs in order to determine the photovoltaic parameters such as short circuit photocurrent, open circuit voltage and conversion efficiency of each individual dye in the absence and presence of anti-aggregation agents. The results show that the conversion efficiencies are improved with reduced aggregation. Spectrophotometric evaluations of the indigo dyes in solution and on a TiO2 substrate were carried out in the absence and presence of anti-aggregation agents in order to estimate changes in the status of the dyes in different environments. J-type aggregates on the nano TiO2 are reduced in the presence of anti-aggregation agents.

  9. Enhanced Photovoltaic Performances of Dye-Sensitized Solar Cells by Co-Sensitization of Benzothiadiazole and Squaraine-Based Dyes.

    PubMed

    Islam, Ashraful; Akhtaruzzaman, Md; Chowdhury, Towhid H; Qin, Chuanjiang; Han, Liyuan; Bedja, Idriss M; Stalder, Romain; Schanze, Kirk S; Reynolds, John R

    2016-02-24

    Dye-sensitized solar cells (DSSCs) based on a donor-acceptor-donor oligothienylene dye containing benzothiadiazole (T4BTD-A) were cosensitized with dyes containing cis-configured squaraine rings (HSQ3 and HSQ4). The cosensitized dyes showed incident monochromatic photon-to-current conversion efficiency (IPCE) greater than 70% in the 300-850 nm wavelength region. The individual overall conversion efficiencies of the sensitizers T4BTD-A, HSQ3, and HSQ4 were 6.4%, 4.8%, and 5.8%, respectively. Improved power conversion efficiencies of 7.0% and 7.7% were observed when T4BTD-A was cosensitized with HSQ3 and HSQ4, respectively, thanks to a significant increase in current density (JSC) for the cosensitized DSSCs. Intensity-modulated photovoltage spectroscopy results showed a longer lifetime for cosensitized T4BTD-A+HSQ3 and T4BTD-A+HSQ4 compared to that of HSQ3 and HSQ4, respectively. PMID:26812212

  10. Effects of heterocycles containing different atoms as π-bridges on the performance of dye-sensitized solar cells.

    PubMed

    Jia, Hailang; Ju, Xuehai; Zhang, Mingdao; Ju, Zemin; Zheng, Hegen

    2015-07-01

    Two new D-π-A zinc porphyrin dyes with thiophene and furan π-bridges have been synthesized and employed in dye-sensitized solar cells (DSSCs). Here, the triphenylamine (TPA) moiety was used as the electron donor, and the hexylthiophene chromophores were introduced onto the donor groups, which effectively extended the π-conjugation system. Although the two dyes had similar molecular structures, there was a significant difference between their optical and photoelectric properties. The EIS analysis suggested that the dye with the thiophene π-bridge had a lower charge recombination rate compared to the dye with the furan π-bridge. Based on their light-harvesting abilities, the power conversion efficiency (PCE) of dye JP-S was higher than that of dye JP-O. The JP-S-based DSSC showed a PCE of 5.84%, whereas the PCE of the JP-O-based DSSC was 4.68%. Moreover, using the dye TTR1 as a co-sensitizer made up for the poor absorption of porphyrin dyes in the 480-600 nm range and reduced the charge recombination. The JP-S + TTR1-based DSSCs showed a higher PCE of 6.71%, and the Jsc and Voc values of the device were both increased using this strategy. PMID:26040414

  11. To probe the equivalence and opulence of nanocrystal and nanotube based dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Jyoti, Divya; Mohan, Devendra

    2016-05-01

    Dye-Sensitized solar cells based on TiO2 nanocrystal and TiO2 nanotubes have been fabricated by a simple sol-gel hydrothermal process and their performances have been compared. Current density and voltage (JV) characteristics and incident photon to current conversion efficiency (IPCE) plots have been set as criterion to check which one is better as a photoanode candidate in dye-sensitized solar cell. It has been observed that although open circuit voltage values for both type of cells do not differ much still, nanotube based dye-sensitized solar cells are more successful having an efficiency value of 7.28%.

  12. Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    He, Ziming; Guai, Guanhong; Liu, Jing; Guo, Chunxian; Chye Loo, Joachim Say; Li, Chang Ming; Tan, Timothy Thatt Yang

    2011-11-01

    We present a one-step solvothermal approach to prepare uniform graphene-TiO2 nanocomposites with delicately controlled TiO2 nanostructures, including ultra-small 2 nm nanoparticles, 12 nm nanoparticles and nanorods. Using three composites as photoanode materials, the effect of nanostructure of graphene-composited TiO2 on the performance of dye-sensitized solar cells was investigated, and results showed that the ultra-small 2 nm TiO2-graphene composite based photoanode exhibited the highest power conversion efficiency of 7.25%.We present a one-step solvothermal approach to prepare uniform graphene-TiO2 nanocomposites with delicately controlled TiO2 nanostructures, including ultra-small 2 nm nanoparticles, 12 nm nanoparticles and nanorods. Using three composites as photoanode materials, the effect of nanostructure of graphene-composited TiO2 on the performance of dye-sensitized solar cells was investigated, and results showed that the ultra-small 2 nm TiO2-graphene composite based photoanode exhibited the highest power conversion efficiency of 7.25%. Electronic supplementary information (ESI) available: Detailed experimental procedures, AFM images, SEM images, J-V curves for optimization, and tables containing EDX results, BET results and calculation data. See DOI: 10.1039/c1nr11300c

  13. Performance of polymer electrolyte based on chitosan blended with poly(ethylene oxide) for plasmonic dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Buraidah, M. H.; Teo, L. P.; Au Yong, C. M.; Shah, Shahan; Arof, A. K.

    2016-07-01

    Chitosan and poly(ethylene oxide) powders have been mixed in different weight ratios. To each mixture, a fixed amount of ammonium iodide has been added. All mixtures have been dissolved in 1% acetic acid solution to form polymer blend electrolyte films by the solution cast technique. X-ray diffraction indicates that the polymer blend electrolytes are amorphous. Fourier transform infrared spectroscopy shows shifting of the amine, carboxamide and Csbnd Osbnd C bands to lower wavenumbers indicating the occurrence of complexation. Electrochemical impedance spectroscopy has been used to study the electrical properties of the samples. The ionic conductivity for 55 wt.% chitosan-45 wt.% NH4I electrolyte system is 3.73 × 10-7 S cm-1 at room temperature and is increased to 3.66 × 10-6 S cm-1 for the blended film (16.5 wt.% chitosan-38.5 wt.% PEO)-45 wt.% NH4I film. Dye-sensitized solar cells (DSSCs) have been fabricated by sandwiching the polymer electrolyte between the TiO2/dye photoelectrode and Pt counter electrode. DSSCs fabricated exhibits short-circuit current density (Jsc) of 2.71 mA cm-2, open circuit voltage (Voc) of 0.58 V and efficiency of 0.78% with configuration ITO/TiO2/N3 dye/(16.5 wt.% chitosan-38.5 wt.% PEO)-45 wt.% NH4I(+I2)/Pt/ITO and Jsc of 2.84 mA cm-2, Voc of 0.58 V and efficiency of 1.13% with configuration ITO/TiO2 + Ag nanoparticles/N3 dye/(16.5 wt.% chitosan-38.5 wt.% PEO)-45 wt.% NH4I(+I2)/Pt/ITO.

  14. Synthesis, photophysics of two new perylene bisimides and their photovoltaic performances in quasi solid state dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Mikroyannidis, John A.; Stylianakis, Minas M.; Roy, M. S.; Suresh, P.; Sharma, G. D.

    Two new symmetrical compounds A and P based on perylene-anthracene and perylene-pyrene, respectively, were synthesized and characterized by FT-IR, 1H NMR, TGA and TMA. These compounds contained tert-butyl groups which enhanced their solubility, decomposed above 400 °C and gave char yields of 46-65% at 800 °C in N 2. Compound A showed significantly higher glass transition temperature (124 °C) than P (75 °C). Their absorption spectra were broad with longer wavelength absorption at 467-525 nm and optical band gap of 2.05 eV. The solutions of the compounds emitted green-yellow light with maximum at 555 nm, while their films were not photoluminescent. The compound A shows better photovoltaic response than compound P. Quasi solid state dye sensitized solar cells (DSSCs) have been fabricated employing compound A as sensitizer and polymer sol gel as electrolyte and characterized through the current-voltage characteristics in dark as well as under illumination and electrochemical impedance spectra. We found that the Al 2O 3 modification of TiO 2 layer significantly improves the dye absorption resulting in enhancement of power conversion efficiency (PCE) (from 1.15 to 2.13%) which is attributed to the increase in electron lifetime and reduction in back transfer of electrons. Finally, the TiO 2 has been incorporated into the polymer electrolyte gel to improve the power conversion efficiency (3.42%) of the quasi solid state DSSC. The faster electron diffusion in the device, the high ionic conductivity and the low activation energy of the polymer electrolyte are also responsible for enhanced PCE, when TiO 2 nano-particles are incorporated in the polymer electrolyte.

  15. Digital Printing of Titanium Dioxide for Dye Sensitized Solar Cells

    PubMed Central

    Cherrington, Ruth; Wood, Benjamin Michael; Salaoru, Iulia; Goodship, Vannessa

    2016-01-01

    Silicon solar cell manufacturing is an expensive and high energy consuming process. In contrast, dye sensitized solar cell production is less environmentally damaging with lower processing temperatures presenting a viable and low cost alternative to conventional production. This paper further enhances these environmental credentials by evaluating the digital printing and therefore additive production route for these cells. This is achieved here by investigating the formation and performance of a metal oxide photoelectrode using nanoparticle sized titanium dioxide. An ink-jettable material was formulated, characterized and printed with a piezoelectric inkjet head to produce a 2.6 µm thick layer. The resultant printed layer was fabricated into a functioning cell with an active area of 0.25 cm2 and a power conversion efficiency of 3.5%. The binder-free formulation resulted in a reduced processing temperature of 250 °C, compatible with flexible polyamide substrates which are stable up to temperatures of 350 ˚C. The authors are continuing to develop this process route by investigating inkjet printing of other layers within dye sensitized solar cells. PMID:27166761

  16. Digital Printing of Titanium Dioxide for Dye Sensitized Solar Cells.

    PubMed

    Cherrington, Ruth; Wood, Benjamin Michael; Salaoru, Iulia; Goodship, Vannessa

    2016-01-01

    Silicon solar cell manufacturing is an expensive and high energy consuming process. In contrast, dye sensitized solar cell production is less environmentally damaging with lower processing temperatures presenting a viable and low cost alternative to conventional production. This paper further enhances these environmental credentials by evaluating the digital printing and therefore additive production route for these cells. This is achieved here by investigating the formation and performance of a metal oxide photoelectrode using nanoparticle sized titanium dioxide. An ink-jettable material was formulated, characterized and printed with a piezoelectric inkjet head to produce a 2.6 µm thick layer. The resultant printed layer was fabricated into a functioning cell with an active area of 0.25 cm(2) and a power conversion efficiency of 3.5%. The binder-free formulation resulted in a reduced processing temperature of 250 °C, compatible with flexible polyamide substrates which are stable up to temperatures of 350 ˚C. The authors are continuing to develop this process route by investigating inkjet printing of other layers within dye sensitized solar cells. PMID:27166761

  17. Exploiting nanocarbons in dye-sensitized solar cells.

    PubMed

    Kavan, Ladislav

    2014-01-01

    Fullerenes, carbon nanotubes, nanodiamond, and graphene find various applications in the development of solar cells, including dye sensitized solar cells. Nanocarbons can be used as (1) active light-absorbing component, (2) current collector, (3) photoanode additive, or (4) counter electrode. Graphene-based materials have attracted considerable interest for catalytic counter electrodes, particularly in state-of-the-art dye sensitized solar cells with Co-mediators. The understanding of electrochemical charge-transfer at carbon surfaces is key to optimization of these solar cells, but the electrocatalysis on carbon surfaces is still a subject of conflicting debate. Due to the rich palette of problems at the interface of nanocarbons and photovoltaics, this review is selective rather than comprehensive. Its motivation was to highlight selected prospective inputs from nanocarbon science towards the development of novel dye sensitized solar cells with improved efficiency, durability, and cost. PMID:23729170

  18. Performance analysis of electrophorically deposited ZnO-based dye-sensitized solar cells prepared using compression at elevated temperature along with postannealing

    NASA Astrophysics Data System (ADS)

    Shamimul Haque Choudhury, Md.; Kishi, Naoki; Soga, Tetsuo

    2016-01-01

    In this investigation, zinc oxide (ZnO)-based dye-sensitized solar cells (DSSCs) were fabricated by electrophoretic deposition (EPD) using fluorine-doped tin oxide (FTO)-coated glass substrates. Electrophoretically deposited photoanodes were annealed at different temperatures to investigate the effect of the postannealing temperature on the photovoltaic performance of DSSCs. Solar cells prepared with different compression pressures and compressions at an elevated temperature (optimum at 70 °C) were the state-of-the-art for this type of investigation. The photovoltaic performance was found to be improved by this novel heating and compression technique compared with the conventional postannealing or compression technique. When high-temperature postannealing (around 450 °C) was carried out along with heating and compression, the efficiency was found to be improved. From the surface morphology of the photoanodes investigated by scanning electron microscopy (SEM), it was evident that compression at an elevated temperature is favorable to obtain a uniform compact layer.

  19. Green grasses as light harvesters in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A.; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-01

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a).

  20. Asymmetric Zinc Phthalocyanines as Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Tunc, Gulenay; Yavuz, Yunus; Gurek, Aysegul; Canimkurbey, Betul; Kosemen, Arif; San, Sait Eren; Ahsen, Vefa

    Dye-sensitized solar cells (DSSCs) have received increasing attention due to their high incident to photon efficiency, easy fabrication and low production cost . Tremendous research efforts have been devoted to the development of new and efficient sensitizers suitable for practical use. In TiO2-based DSSCs, efficiencies of up to 11.4% under simulated sunlight have been obtained with rutheniumepolypyridyl complexes. However, the main drawback of ruthenium complexes is the lack of absorption in the red region of the visible light and the high cost. For this reason, dyes with large and stable p-conjugated systems such as porphyrins and phthalocyanines are important classes of potential sensitizers for highly efficient DSSCs. Phthalocyanines (Pcs) have been widely used as sensitizers because of their improved light-harvesting properties in the far red- and near-IR spectral regions and their extraordinary robustness [1]. In this work, a series of asymmetric Zn(II) Pcs bearing a carboxylic acid group and six hexylthia groups either at the peripheral or non-peripheral positions have been designed and synthesized to investigate the influence of the COOH group and the positions of hexylthia groups on the dye-sensitized solar cell (DSSC) performance.

  1. The Effect of Scattering Layer on the Performance of Dye-Sensitized Solar Cells Using TiO2 Hollow Spheres/TiO2 Nanoparticles Films as Photoanodes.

    PubMed

    Park, Su Kyung; Suh, Soong-Hyuck; Lee, Min Woo; Yun, Tae Kwan; Bae, Jae Young

    2015-10-01

    TiO2 hollow spheres were successfully synthesized using poly styrene as the template. Dye-sensitized solar cells are fabricated based on double-layered composite films of TiO2 nanoparticles and TiO2 hollow spheres. The photoelectric conversion performances of Dye-sensitized solar cells based on TiO2 nanoparticles/TiO2 nanoparticles, TiO2 nanoparticles/TiO2 hollow spheres and TiO2 hollow spheres/TiO2 hollow spheres double-layered films are investigated, and their photoelectric conversion efficiencies were determined to 4.52, 7.10 and 5.48%, respectively. Dye-sensitized solar cells based on double layered composite films of TiO2 nanoparticles and TiO2 hollow spheres exhibit the highest photo-electric conversion efficiency mainly due to the combined effect of two factors, the high light scattering of over-layer hollow spheres that enhance harvesting light of the Dye-sensitized solar cells and the under-layer TiO2 nanoparticle layer that ensures good electronic contact between TiO2 film and FTO conducting glass. The double layered composite TiO2 film electrodes are a promising development in enhancing the performance of dye-sensitized solar cells. PMID:26726506

  2. Quasi Solid Polymer Electrolytes for Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Dissanayake, M. A. K. Lakshman

    2013-07-01

    order to maximize the performance of these solar cells. In this presentation, a particular attention will be drawn to the use of binary iodide mixtures in PAN based gel electrolytes to enhance the efficiency of dye-sensitized solar cells.

  3. Effects of counter electrodes on photovoltaic performance of all-solid-state TiO2-based dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shang, Mingwei; Liu, Benjamin; Dong, Zhenhua; Dong, Zhenyu; Dong, Lifeng

    2015-03-01

    In order to analyse the effects of counter electrodes on photovoltaic performance of dye-sensitized solar cells (DSSCs), different electrodes were used as the counter electrodes for all-solid-state TiO2-based DSSCs. An inorganic solid-state electrolyte, CsSnI2.95F0.05, was selected to couple with N719 dye-sensitized TiO2 nanorod arrays to fabricate the DSSCs. Fluorine doped tin oxide transparent conducting glass (FTO), platinum coated FTO (Pt/FTO), graphite coated FTO (graphite/FTO), and graphite coated common glass (graphite/glass) were investigated as the counter electrodes, and the cells composed of the corresponding electrodes above have power-conversion efficiencies of 2.17%, 9.84%, 7.62%, and 3.45%, respectively. Our findings indicate that due to its unique catalytic and conducting properties, graphite can replace both Pt and FTO as a counter electrode to reduce the fabrication cost of all-solid-state TiO2-based DSSCs.

  4. Review on Metallic and Plastic Flexible Dye Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Yugis, A. R.; Mansa, R. F.; Sipaut, C. S.

    2015-04-01

    Dye sensitized solar cells (DSSCs) are a promising alternative for the development of a new generation of photovoltaic devices. DSSCs have promoted intense research due to their low cost and eco-friendly advantage over conventional silicon-based crystalline solar cells. In recent years, lightweight flexible types of DSSCs have attracted much intention because of drastic reduction in production cost and more extensive application. The substrate that used as electrode of the DSSCs has a dominant impact on the methods and materials that can be applied to the cell and consequently on the resulting performance of DSSCs. Furthermore, the substrates influence significantly the stability of the device. Although the power conversion efficiency still low compared to traditional glass based DSSCs, flexible DSSCs still have potential to be the most efficient and easily implemented technology.

  5. Dye-sensitized solar cells based on purple corn sensitizers

    NASA Astrophysics Data System (ADS)

    Phinjaturus, Kawin; Maiaugree, Wasan; Suriharn, Bhalang; Pimanpaeng, Samuk; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan

    2016-09-01

    Natural dye extracted from husk, cob and silk of purple corn, were used for the first time as photosensitizers in dye sensitized solar cells (DSSCs). The dye sensitized solar cells fabrication process has been optimized in terms of solvent extraction. The resulting maximal efficiency of 1.06% was obtained from purple corn husk extracted by acetone. The ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS) and incident photon-to-current efficiency (IPCE) were employed to characterize the natural dye and the DSSCs.

  6. Performance of dye-sensitized solar cells fabricated with extracts from fruits of ivy gourd and flowers of red frangipani as sensitizers

    NASA Astrophysics Data System (ADS)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Anandan, Sambandam; Murugan, Ramaswamy

    2013-03-01

    Natural dyes extracted from fruits of ivy gourd and flowers of red frangipani were used as sensitizers to fabricate dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FTIR), Fourier transform Raman (FT-Raman) and liquid chromatography-mass spectrometry (LC-MS) studies indicated the presence of β-carotene in the fruits of ivy gourd and anthocyanins in the flowers of red frangipani. The extract of the flowers of red frangipani exhibits higher photosensitized performance compared to the fruits of ivy gourd and this is due to the better charge transfer between the dyes of flowers of red frangipani and the TiO2 photoanode surface.

  7. Performance enhancement of dye-sensitized solar cell with a TiCl4-treated TiO2 compact layer

    NASA Astrophysics Data System (ADS)

    Park, Jisuk; Lee, Myeongkyu

    2015-03-01

    We here show that an effective blocking layer for dye-sensitized solar cells (DSSCs) can be formed by spin coating a commercial TiO2 paste onto a conducting glass substrate. The spin-coated TiO2 layer was made more compact than the main absorption layer by TiCl4 treatment. DSSCs employing a compact layer exhibited an average current density and an efficiency of 19.09 mA/cm2 and 9.10%, respectively, while 16.91 mA/cm2 and 8.33% were obtained from unblocked reference cells. The enhanced DSSC performance is attributed to the increased electron lifetime. Intensity-modulated photovoltage spectroscopy and open-circuit voltage decay analysis showed that a TiCl4-treated compact layer substantially suppresses the charge recombination at the TiO2/substrate interface, thereby increasing the electron lifetime. [Figure not available: see fulltext.

  8. Nanoparticle self-assembled hollow TiO2 spheres with well matching visible light scattering for high performance dye-sensitized solar cells.

    PubMed

    Pang, Hongchang; Yang, Hongbin; Guo, Chun Xian; Lu, Jinlin; Li, Chang Ming

    2012-09-11

    Submicrometer-sized hollow TiO(2) spheres are directly self-assembled from TiO(2) nanoparticles without using any template or surfactant as a scattering layer for dye-sensitized solar cells, showing good visible light scattering match to significantly improve the photoconversion efficiency. PMID:22836665

  9. Natural dye -sensitized mesoporous ZnO solar cell

    NASA Astrophysics Data System (ADS)

    Wu, Qishuang; Shen, Yue; Wu, Guizhi; Li, Linyu; Cao, Meng; Gu, Feng

    2010-10-01

    Natural dye-sensitized solar cells (N-DSSCs) were assembled using chlorophyll sensitized mesoporous ZnO (based on FTO) as the photoanode and platinum plate as the cathode. The natural dyes (chlorophyll) were extracted from spinach by simple procedure. The absorption spectrum and fluorescence spectrum of chlorophyll were studied. Mesoporous ZnO (m-ZnO) applied to the N-DSSCs was synthesized through hydrothermal method. The structures and morphologies were characterized by X-ray Diffraction (XRD) and diffuse reflection. The results indicated that the samples had an average pore size of 17 nm and the m-ZnO was hexagonal wurtzite structure. The performances of the N-DSSCs were investigated under AM 1.5G illumination. The Voc of the N-DSSCs was about 480mv, and the Isc was about 470μA. The performance of the N-DSSCs could be further improved by adjusting its structure.

  10. Natural dye -sensitized mesoporous ZnO solar cell

    NASA Astrophysics Data System (ADS)

    Wu, Qishuang; Shen, Yue; Wu, Guizhi; Li, Linyu; Cao, Meng; Gu, Feng

    2011-02-01

    Natural dye-sensitized solar cells (N-DSSCs) were assembled using chlorophyll sensitized mesoporous ZnO (based on FTO) as the photoanode and platinum plate as the cathode. The natural dyes (chlorophyll) were extracted from spinach by simple procedure. The absorption spectrum and fluorescence spectrum of chlorophyll were studied. Mesoporous ZnO (m-ZnO) applied to the N-DSSCs was synthesized through hydrothermal method. The structures and morphologies were characterized by X-ray Diffraction (XRD) and diffuse reflection. The results indicated that the samples had an average pore size of 17 nm and the m-ZnO was hexagonal wurtzite structure. The performances of the N-DSSCs were investigated under AM 1.5G illumination. The Voc of the N-DSSCs was about 480mv, and the Isc was about 470μA. The performance of the N-DSSCs could be further improved by adjusting its structure.

  11. Carbon Nanotubes for Dye-Sensitized Solar Cells.

    PubMed

    Batmunkh, Munkhbayar; Biggs, Mark J; Shapter, Joseph G

    2015-07-01

    As one type of emerging photovoltaic cell, dye-sensitized solar cells (DSSCs) are an attractive potential source of renewable energy due to their eco-friendliness, ease of fabrication, and cost effectiveness. However, in DSSCs, the rarity and high cost of some electrode materials (transparent conducting oxide and platinum) and the inefficient performance caused by slow electron transport, poor light-harvesting efficiency, and significant charge recombination are critical issues. Recent research has shown that carbon nanotubes (CNTs) are promising candidates to overcome these issues due to their unique electrical, optical, chemical, physical, as well as catalytic properties. This article provides a comprehensive review of the research that has focused on the application of CNTs and their hybrids in transparent conducting electrodes (TCEs), in semiconducting layers, and in counter electrodes of DSSCs. At the end of this review, some important research directions for the future use of CNTs in DSSCs are also provided. PMID:25864907

  12. Highly efficient monolithic dye-sensitized solar cells.

    PubMed

    Kwon, Jeong; Park, Nam-Gyu; Lee, Jun Young; Ko, Min Jae; Park, Jong Hyeok

    2013-03-01

    Monolithic dye-sensitized solar cells (M-DSSCs) provide an effective way to reduce the fabrication cost of general DSSCs since they do not require transparent conducting oxide substrates for the counter electrode. However, conventional monolithic devices have low efficiency because of the impediments resulting from counter electrode materials and spacer layers. Here, we demonstrate highly efficient M-DSSCs featuring a highly conductive polymer combined with macroporous polymer spacer layers. With M-DSSCs based on a PEDOT/polymer spacer layer, a power conversion efficiency of 7.73% was achieved, which is, to the best of our knowledge, the highest efficiency for M-DSSCs to date. Further, PEDOT/polymer spacer layers were applied to flexible DSSCs and their cell performance was investigated. PMID:23432389

  13. Dye Sensitized Solar Cells for Economically Viable Photovoltaic Systems.

    PubMed

    Jung, Hyun Suk; Lee, Jung-Kun

    2013-05-16

    TiO2 nanoparticle-based dye sensitized solar cells (DSSCs) have attracted a significant level of scientific and technological interest for their potential as economically viable photovoltaic devices. While DSSCs have multiple benefits such as material abundance, a short energy payback period, constant power output, and compatibility with flexible applications, there are still several challenges that hold back large scale commercialization. Critical factors determining the future of DSSCs involve energy conversion efficiency, long-term stability, and production cost. Continuous advancement of their long-term stability suggests that state-of-the-art DSSCs will operate for over 20 years without a significant decrease in performance. Nevertheless, key questions remain in regards to energy conversion efficiency improvements and material cost reduction. In this Perspective, the present state of the field and the ongoing efforts to address the requirements of DSSCs are summarized with views on the future of DSSCs. PMID:26282979

  14. Space Environmental Testing of Dye-Sensitized Solar Cells

    NASA Technical Reports Server (NTRS)

    Harris, Jerry D.; Anglin, Emily J.; Hepp, Aloysius F.; Bailey, Sheila G.; Scheiman, David A.; Castro, Stephenie L.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Recent advances in nanocrystalline dye-sensitized solar cells has lead NASA to investigate the potential of these devices for space power generation, Reported here is the first space environment characterization of these type of photovoltaic devices. Cells containing liquid electrolytes were exposed to simulated low-earth orbit conditions and their performance evaluated. All cells were characterized under simulated air mass zero (AMO) illumination. Complete cells were exposed to pressures less than 1 x 10(exp -7) torr for over a month, with no sign of sealant failure or electrolyte leakage. Cells from Solaronix SA were rapid thermal cycled under simulated low-earth orbit conditions. The cells were cycled 100 times from -80 C to 80 C, which is equivalent to 6 days in orbit. The best cell had a 4.6% loss in efficiency as a result of the thermal cycling,

  15. Halogen Bonding Promotes Higher Dye-Sensitized Solar Cell Photovoltages.

    PubMed

    Simon, Sarah J C; Parlane, Fraser G L; Swords, Wesley B; Kellett, Cameron W; Du, Chuan; Lam, Brian; Dean, Rebecca K; Hu, Ke; Meyer, Gerald J; Berlinguette, Curtis P

    2016-08-24

    We report here an enhancement in photovoltage for dye-sensitized solar cells (DSSCs) where halogen-bonding interactions exist between a nucleophilic electrolyte species (I(-)) and a photo-oxidized dye immobilized on a TiO2 surface. The triarylamine-based dyes under investigation showed larger rate constants for dye regeneration (kreg) by the nucleophilic electrolyte species when heavier halogen substituents were positioned on the dye. The open-circuit voltages (VOC) tracked these kreg values. This analysis of a homologous series of dyes that differ only in the identity of two halogen substituents provides compelling evidence that the DSSC photovoltage is sensitive to kreg. This study also provides the first direct evidence that halogen-bonding interactions between the dye and the electrolyte can bolster DSSC performance. PMID:27518595

  16. Aerogel tempelated ZnO dye-sensitized solar cells.

    SciTech Connect

    Hamann, T. W.; Martinson , A. B. E.; Elam, J. W.; Pellin, M. J.; Hupp, J. T.; Materials Science Division; Northwestern Univ.

    2008-01-01

    Atomic layer deposition is employed to conformally coat low density, high surface area aerogel films with ZnO. The ZnO/aerogel membranes are incorporated as photoanodes in dye-sensitized solar cells, which exhibit excellent power efficiencies of up to 2.4% under 100 mW cm{sup -2} light intensity.

  17. The electronic structure engineering of organic dye sensitizers for solar cells: The case of JK derivatives.

    PubMed

    Zhang, Cai-Rong; Ma, Jin-Gang; Zhe, Jian-Wu; Jin, Neng-Zhi; Shen, Yu-Lin; Wu, You-Zhi; Chen, Yu-Hong; Liu, Zi-Jiang; Chen, Hong-Shan

    2015-11-01

    The design and development of novel dye sensitizers are effective method to improve the performance of dye-sensitized solar cells (DSSCs) because dye sensitizers have significant influence on photo-to-current conversion efficiency. In the procedure of dye sensitizer design, it is very important to understand how to tune their electronic structures and related properties through the substitution of electronic donors, acceptors, and conjugated bridges in dye sensitizers. Here, the electronic structures and excited-state properties of organic JK dye sensitizers are calculated by using density functional theory (DFT) and time dependent DFT methods. Based upon the calculated results, we investigated the role of different electronic donors, acceptors, and π-conjugated bridges in the modification of electronic structures, absorption properties, as well as the free energy variations for electron injection and dye regeneration. In terms of the analysis of transition configurations and molecular orbitals, the effective chromophores which are favorable for electron injection in DSSCs are addressed. Meanwhile, considering the absorption spectra and free energy variation, the promising electronic donors, π-conjugated bridges, and acceptors are presented to design dye sensitizers. PMID:26116996

  18. Bilayer film electrode of brookite TiO2 particles with different morphology to improve the performance of pure brookite-based dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Jinlei; Wu, Shufang; Ri, Jin Hyok; Jin, Jingpeng; Peng, Tianyou

    2016-09-01

    A novel bilayer brookite TiO2 film photoanode consisting of quasi nanocube film as underlayer and rice-like submicrometer particle film as overlayer are fabricated for improving the photovoltaic properties of the pure brookite-based dye-sensitized solar cells (DSSCs). The brookite TiO2 nanocubes have a mean size of ∼50 nm, and the brookite TiO2 rice-like particles have diameter of ∼600 nm and length of ∼1100 nm. An optimal photovoltaic conversion efficiency of 5.51% is obtained from the bilayer brookite-based solar cell, with ∼41% improvement in the efficiency as compared to the single brookite nanocube film-based one (3.91%) under AM 1.5G one sun irradiation. The bilayer brookite-based solar cell shows not only reduced charge recombination and dark current, but also prolonged electron lifetime compared to the single brookite nanocube film-based one. All these lead to a higher photocurrent and voltage, and then to the improved efficiency of the brookite-based solar cell. The present results demonstrate a clear advance towards efficient improvement of the photovoltaic performance of pure brookite-based solar cells.

  19. Progress in nanostructured photoanodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Xueyang; Fang, Jian; Liu, Yong; Lin, Tong

    2016-05-01

    Solar cells represent a principal energy technology to convert light into electricity. Commercial solar cells are at present predominately produced by single- or multi-crystalline silicon wafers. The main drawback to silicon-based solar cells, however, is high material and manufacturing costs. Dye-sensitized solar cells (DSSCs) have attracted much attention during recent years because of the low production cost and other advantages. The photoanode (working electrode) plays a key role in determining the performance of DSSCs. In particular, nanostructured photoanodes with a large surface area, high electron transfer efficiency, and low electron recombination facilitate to prepare DSSCs with high energy conversion efficiency. In this review article, we summarize recent progress in the development of novel photoanodes for DSSCs. Effect of semiconductor material (e.g. TiO2, ZnO, SnO2, N2O5, and nano carbon), preparation, morphology and structure (e.g. nanoparticles, nanorods, nanofibers, nanotubes, fiber/particle composites, and hierarchical structure) on photovoltaic performance of DSSCs is described. The possibility of replacing silicon-based solar cells with DSSCs is discussed.

  20. Progress in nanostructured photoanodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Xueyang; Fang, Jian; Liu, Yong; Lin, Tong

    2016-09-01

    Solar cells represent a principal energy technology to convert light into electricity. Commercial solar cells are at present predominately produced by single- or multi-crystalline silicon wafers. The main drawback to silicon-based solar cells, however, is high material and manufacturing costs. Dye-sensitized solar cells (DSSCs) have attracted much attention during recent years because of the low production cost and other advantages. The photoanode (working electrode) plays a key role in determining the performance of DSSCs. In particular, nanostructured photoanodes with a large surface area, high electron transfer efficiency, and low electron recombination facilitate to prepare DSSCs with high energy conversion efficiency. In this review article, we summarize recent progress in the development of novel photoanodes for DSSCs. Effect of semiconductor material (e.g. TiO2, ZnO, SnO2, N2O5, and nano carbon), preparation, morphology and structure (e.g. nanoparticles, nanorods, nanofibers, nanotubes, fiber/particle composites, and hierarchical structure) on photovoltaic performance of DSSCs is described. The possibility of replacing silicon-based solar cells with DSSCs is discussed.

  1. Boosting Photovoltaic Performance of Dye-Sensitized Solar Cells Using Silver Nanoparticle-Decorated N,S-Co-Doped-TiO2 Photoanode.

    PubMed

    Lim, Su Pei; Pandikumar, Alagarsamy; Lim, Hong Ngee; Ramaraj, Ramasamy; Huang, Nay Ming

    2015-01-01

    A silver nanoparticle-decorated N,S-co-doped TiO2 nanocomposite was successfully prepared and used as an efficient photoanode in high-performance dye-sensitized solar cells (DSSCs) with N719 dye. The DSSCs assembled with the N,S-TiO2@Ag-modified photoanode demonstrated an enhanced solar-to-electrical energy conversion efficiency of 8.22%, which was better than that of a DSSC photoanode composed of unmodified TiO2 (2.57%) under full sunlight illumination (100 mWcm(-2), AM 1.5 G). This enhanced efficiency was mainly attributed to the reduced band gap energy, improved interfacial charge transfer, and retarded charge recombination process. The influence of the Ag content on the overall efficiency was also investigated, and the optimum Ag content with N,S-TiO2 was found to be 20 wt%. Because of the enhanced solar energy conversion efficiency of the N,S-TiO2@Ag nanocomposite, it should be considered as a potential photoanode for high-performance DSSCs. PMID:26146362

  2. Boosting Photovoltaic Performance of Dye-Sensitized Solar Cells Using Silver Nanoparticle-Decorated N,S-Co-Doped-TiO2 Photoanode

    PubMed Central

    Lim, Su Pei; Pandikumar, Alagarsamy; Lim, Hong Ngee; Ramaraj, Ramasamy; Huang, Nay Ming

    2015-01-01

    A silver nanoparticle-decorated N,S-co-doped TiO2 nanocomposite was successfully prepared and used as an efficient photoanode in high-performance dye-sensitized solar cells (DSSCs) with N719 dye. The DSSCs assembled with the N,S-TiO2@Ag-modified photoanode demonstrated an enhanced solar-to-electrical energy conversion efficiency of 8.22%, which was better than that of a DSSC photoanode composed of unmodified TiO2 (2.57%) under full sunlight illumination (100 mWcm−2, AM 1.5 G). This enhanced efficiency was mainly attributed to the reduced band gap energy, improved interfacial charge transfer, and retarded charge recombination process. The influence of the Ag content on the overall efficiency was also investigated, and the optimum Ag content with N,S-TiO2 was found to be 20 wt%. Because of the enhanced solar energy conversion efficiency of the N,S-TiO2@Ag nanocomposite, it should be considered as a potential photoanode for high-performance DSSCs. PMID:26146362

  3. Enhancement of Spectral Response of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Chang, Shuai

    Dye-Sensitized solar cell (DSSC) is a class of third-generation solar devices. A notable feature of DSSC is that it can be manufactured by solution-based approach; this non-vacuum processing renders significant reduction in manufacturing costs. Different from conventional solar cells, in a DSSC, mesoporous semiconductor film with large surface areas is utilized for anchoring dye molecules, serving as light absorbing layer. Dye sensitizers play an important role in determining the final performance in DSSCs. Since the first highly-efficient DSSC was reported in 1991 sensitized by a ruthenium-based dye, numerous researchers have been focused on the development and characterization of various kinds of dyes for the applications in DSSCs. These include mainly metal complexes dyes, organic dyes, porphyrins and phthalocyanines dyes. The first part of my thesis work is to develop and test new dyes for DSSCs and a series of phenothiazine-based organic dyes and new porphyrin dyes are reported during the process. It has been realized that extending the response of dye sensitizers to a wider range of the solar spectrum is a key step in further improving the device efficiency. Typically, there are two ways for expanding the strong spectral response of DSSCs from visible to far red/NIR region. One approach is called co-sensitization. Herein, we demonstrate a new co-sensitization concept where small molecules is used to insert the interstitial site of between the pre-adsorbed large molecules. In this case, the co-adsorbed small ones is found to improve the light response and impede the back recombination, finally leading to the power conversion efficiency over 10% in conventional DSSC devices and a record-equaling efficiency of 9.2% in quasi-solid-state devices. I also implemented graphene sheets in the anode films for better charge transfer efficiency and break the energy conversion limit of co-sensitization in DSSCs. The optimal configuration between porphyrin dyes and

  4. Significance of TiCl4 post-treatment on the performance of hydrothermally synthesized titania nanotubes-based dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Akilavasan, Jeganathan; Wijeratne, Kosala; Gannoruwa, Asangi; Alamoud, A. R. M.; Bandara, Jayasundera

    2013-01-01

    In this investigation, the effect of concentration of TiCl4 for the post-treatment of hydrothermally synthesized titania nanotubes-based working electrode for dye-sensitized solar cells has been studied. Hydrothermally synthesized TiO2 nanotubes were treated with different concentrations of TiCl4 to investigate the effect of TiCl4 concentration. The solar cell performance increased with the increase in TiCl4 concentration up to 0.5 M and leveled off. The best solar cell showed a short-circuit current density (J sc), open-circuit voltage (V oc), fill factor (FF) and efficiency (η) of 12.75 mA/cm2, 795 mV, 69.2 % and 7.04 %, respectively, while untreated TiO2 nanotube showed J sc, V oc, FF and η of 2.4 mA/cm2, 899 mV, 78.9 % and 1.7 %, respectively.

  5. Vegetable-based dye-sensitized solar cells.

    PubMed

    Calogero, Giuseppe; Bartolotta, Antonino; Di Marco, Gaetano; Di Carlo, Aldo; Bonaccorso, Francesco

    2015-05-21

    There is currently a large effort to improve the performance of low cost renewable energy devices. Dye-sensitized solar cells (DSSCs) are emerging as one of the most promising low cost photovoltaic technologies, addressing "secure, clean and efficient solar energy conversion". Vegetable dyes, extracted from algae, flowers, fruit and leaves, can be used as sensitizers in DSSCs. Thus far, anthocyanin and betalain extracts together with selected chlorophyll derivatives are the most successful vegetable sensitizers. This review analyses recent progress in the exploitation of vegetable dyes for solar energy conversion and compares them to the properties of synthetic dyes. We provide an in-depth discussion on the main limitation of cell performance e.g. dye degradation, effective electron injection from the dye into the conduction band of semiconducting nanoparticles, such as titanium dioxide and zinc oxide, outlining future developments for the use of vegetable sensitizers in DSSCs. We also discuss the cost of vegetable dyes and how their versatility can boost the advancement of new power management solutions, especially for their integration in living environments, making the practical application of such systems economically viable. Finally, we present our view on future prospects in the development of synthetic analogues of vegetable dyes as sensitizers in DSSCs. PMID:25855097

  6. Improvement of dye-sensitized solar cell performance through infiltration of TiO{sub 2} nanoparticles between mesoporous TiO{sub 2} particles

    SciTech Connect

    Park, Su-Bin; Chung, Il Jun; Woo, Ji Won; Kim, Tae Hun; Li, Zhenghua; Jin, Mingshi; Lee, Duk Jae; Kim, Ji Man

    2014-10-15

    Highlights: • Spherical mesoporous TiO{sub 2} materials were obtained by a simple sol–gel method. • Physical mixture of TiO{sub 2} nanoparticle and mesoporous TiO{sub 2} was utilized for solar cell electrode. • Mixed electrode system exhibited higher DSSC performance. - Abstract: There are two factors on the efficiency of dye-sensitized solar cell (DSSC): one is the amount of dye adsorbed, and the other is contact resistance. In this study, TiO{sub 2} nanoparticles (nano-TiO{sub 2}, about 20 nm particle size) were infiltrated between mesoporous TiO{sub 2} (meso-TiO{sub 2}) particles with about 300 nm particle sizes, in order to reduce the contact resistance of TiO{sub 2} electrodes. The infiltrated nano-TiO{sub 2} can facilitate electron transfer between meso-TiO{sub 2} particles by filling the empty volume of DSSC electrodes. As a result, the TiO{sub 2} electrode containing 65 wt% of meso-TiO{sub 2} and 35 wt% of nano-TiO{sub 2} exhibited the highest performance of DSSC.

  7. Porous, single crystalline titanium nitride nanoplates grown on carbon fibers: excellent counter electrodes for low-cost, high performance, fiber-shaped dye-sensitized solar cells.

    PubMed

    Chen, Liang; Dai, Hui; Zhou, Yong; Hu, Yingjie; Yu, Tao; Liu, Jianguo; Zou, Zhigang

    2014-11-28

    An excellent, platinum free fiber counter electrode (CE) was successfully fabricated, consisting of porous, single crystalline titanium nitride (TiN) nanoplates grown on carbon fibers (CF). The fiber-shaped dye-sensitized solar cells (FDSSCs) based on the TiN-CF CE show a high conversion efficiency of 7.20%, comparable or even superior to that of the Pt wire (6.23%). PMID:25068835

  8. Improved performance of dye sensitized solar cells using Cu-doped TiO2 as photoanode materials: Band edge movement study by spectroelectrochemistry

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Wei, Liguo; Yang, Yulin; Xia, Xue; Wang, Ping; Yu, Jia; Luan, Tianzhu

    2016-08-01

    Cu-doped TiO2 nanoparticles are prepared and used as semiconductor materials of photoanode to improve the performance of dye sensitized solar cells (DSSCs). UV-Vis spectroscopy and variable temperature spectroelectrochemistry study are used to characterize the influence of copper dopant with different concentrations on the band gap energies of TiO2 nanoparticles. The prepared Cu-doped TiO2 semiconductor has avoided the formation of CuO during hydrothermal process and lowered the conduction band position of TiO2, which contribute to increase the short circuit current density of DSSCs. At the optimum Cu concentration of 1.0 at.%, the short circuit current density increased from 12.54 to 14.98 mA cm-2, full sun solar power conversion efficiencies increased from 5.58% up to 6.71% as compared to the blank DSSC. This showed that the presence of copper in DSSCs leads to improvements of up to 20% in the conversion efficiency of DSSCs.

  9. Performance evaluation of titanium dioxide based dye-sensitized solar cells under the influence of anodization steps, nanotube length and ionic liquid-free redox electrolyte solvents

    NASA Astrophysics Data System (ADS)

    Cheong, Y. L.; Beh, K. P.; Yam, F. K.; Hassan, Z.

    2016-06-01

    In this work, highly ordered titanium dioxide (TiO2) nanotube (NT) arrays were synthesized on titanium foil using electrochemical anodization method. The morphological aspects of the nanotubes based on different anodization duration and number of anodization steps (maximum two) have been investigated. The nanotube arrays subsequently used as photoanode in a dye-sensitized solar cell (DSSC) assembly. The studies on the effects of different solvents for triiodide/iodide redox electrolyte and NT length towards the performance of DSSC were conducted. It is known that electrolyte solvent can significantly affect the photovoltaic conversion efficiency. It is noteworthy that longer NT length tends to yield higher efficiency due to better dye adsorption. However, when the NTs exceeded certain length the efficiency decreases instead. Meanwhile, a comparison of DSSC performance based on number of anodization steps on titanium was performed. Highly ordered NT arrays could be obtained using two-steps anodization, which proved to have positive effects on the DSSC performance. The highest photovoltaic conversion efficiency in this work is 2.04%, achieved by two-step anodization. The corresponding average nanotubes length was ∼18 μm, with acetonitrile (ACN) as the redox electrolyte solvent.

  10. Porous Zn-doped TiO2 nanowall photoanode: Effect of Zn2+ concentration on the dye-sensitized solar cell performance

    NASA Astrophysics Data System (ADS)

    Saad, Siti Khatijah Md; Umar, Akrajas Ali; Rahman, Mohd. Yusri Abd.; Salleh, Muhamad Mat

    2015-10-01

    We report the study of the utilization of a new synthesized-photoactive materials of Zn-doped TiO2 nanowall (ZTNW) in a dye-sensitized solar cell (DSSC) and the study of the effect of Zn2+ concentration in the ZTNW on the DSSC performance. ZTNW was prepared directly on the ITO substrate using a liquid phase deposition (LPD) method in an aqueous solution containing TiO2 and Zn precursors. The effect of Zn2+ dopants on the performance of DSSC was studied by preparing the ZTNW with several concentrations of Zn2+, namely from 10.0 to 40.0 mM. It was found that the performance of DSSC with a structure of ITO/ZTNW/N719/Electrolyte/Pt increases with the increasing of Zn2+ concentration and optimum at 24.0 mM. Typical power conversion efficiency as high as 1.98% was obtained from the optimum ZTNW sample. The role of Zn2+ concentration in the device performance will be discussed and examined using electrochemical-impedance spectroscopy method.

  11. Dye-sensitized solar cells using laser processing techniques

    NASA Astrophysics Data System (ADS)

    Kim, Heungsoo; Pique, Alberto; Kushto, Gary P.; Auyeung, Raymond C. Y.; Lee, S. H.; Arnold, Craig B.; Kafafi, Zakia H.

    2004-07-01

    Laser processing techniques, such as laser direct-write (LDW) and laser sintering, have been used to deposit mesoporous nanocrystalline TiO2 (nc-TiO2) films for use in dye-sensitized solar cells. LDW enables the fabrication of conformal structures containing metals, ceramics, polymers and composites on rigid and flexible substrates without the use of masks or additional patterning techniques. The transferred material maintains a porous, high surface area structure that is ideally suited for dye-sensitized solar cells. In this experiment, a pulsed UV laser (355nm) is used to forward transfer a paste of commercial TiO2 nanopowder (P25) onto transparent conducting electrodes on flexible polyethyleneterephthalate (PET) and rigid glass substrates. For the cells based on flexible PET substrates, the transferred TiO2 layers were sintered using an in-situ laser to improve electron paths without damaging PET substrates. In this paper, we demonstrate the use of laser processing techniques to produce nc-TiO2 films (~10 μm thickness) on glass for use in dye-sensitized solar cells (Voc = 690 mV, Jsc = 8.7 mA/cm2, ff = 0.67, η = 4.0 % at 100 mW/cm2). This work was supported by the Office of Naval Research.

  12. Three-dimensional nitrogen doped holey reduced graphene oxide framework as metal-free counter electrodes for high performance dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yu, Mei; Zhang, Jindan; Li, Songmei; Meng, Yanbing; Liu, Jianhua

    2016-03-01

    Three-dimensional nitrogen doped holey reduced graphene oxide framework (NHGF) with hierarchical porosity structure was developed as high-performance metal-free counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). With plenty of exposed active sites, efficient electron and ion transport pathways as well as a high surface hydrophilicity, NHGF-CE exhibits good electrocatalytic performances for I- /I3- redox couple and a low charge transfer resistance (Rct). The Rct of NHGF-CE is 1.46 Ω cm2, which is much lower than that of Pt-CE (4.02 Ω cm2). The DSSC with NHGF-CE reaches a power conversion efficiency of 5.56% and a fill factor of 65.5%, while those of the DSSC with Pt-CE are only 5.45% and 62.3%, respectively. The achievement of the highly efficient 3D structure presents a potential way to fabricate low-cost and metal-free counter electrodes with excellent performance.

  13. Enhanced photovoltaic performance of dye-sensitized solar cells based on NaYF4:Yb(3+), Er(3+)-incorporated nanocrystalline TiO2 electrodes.

    PubMed

    Zhu, Guang; Wang, Hongyan; Zhang, Quanxin; Zhang, Li

    2015-08-01

    Near infrared to visible up-conversion of light by rare earth ion-doped phosphors (NaYF4:Yb(3+), Er(3+)) that convert multiple photons of lower energy to higher energy photons offer new possibilities for improved performance of photovoltaic devices. Here, up-conversion phosphor NaYF4:Yb(3+), Er(3+) doped nanocrystalline TiO2 films are designed and used as a electrode for dye-sensitized solar cells, and the photovoltaic performance of DSSCs based on composite electrodes are investigated. The results show the cell with NaYF4:Yb(3+), Er(3+) achieves a power conversion efficiency of 7.65% under one sun illumination (AM 1.5G, 100mWcm(-2)), which is an increase of 14% compared to the cell without NaYF4:Yb(3+), Er(3+) (6.71%). The performance improvement is attributed to the dual effects of enhanced light harvesting from extended light absorption range and increased light scattering, and lower electron transfer resistance. PMID:25875488

  14. Effect of crystallization of Cu₂ZnSnSxSe₄-x counter electrode on the performance for efficient dye-sensitized solar cells.

    PubMed

    Chen, Hongli; Kou, Dongxing; Chang, Zhixian; Zhou, Wenhui; Zhou, Zhengji; Wu, Sixin

    2014-12-10

    Cu2ZnSnSxSe4-x (CZTSSe) counter electrodes (CEs) in dye-sensitized solar cells (DSSCs) are commonly developed with porous structures, but their high surface area could also retard electron transport processes owing to the abundant grain boundaries. Herein, we employed a convenient solution method and a rapid heating process to prepare well crystalline CZTSSe CEs in DSSCs. The influence of crystallization of CZTSSe film on DSSCs performances was discussed in depth. The thermogravimetric analysis, phase morphology, conductivity, and electrochemical characteristics of CZTSSe films were performed. It is found that the rapid heating process is beneficial to the formation of well crystalline film with large grains. As the porosity and grain boundaries in the bulk film are dramatically reduced with the enhanced crystallization, the charge transport process is gradually improved. Using cyclic voltammogram and electrochemical impedance spectroscopy measurements, we propose that the accelerating charge transport is of great importance to the photovoltaic performances of DSSCs due to their superior electrocatalytic activities. As the highest cell efficiency was achieved, well crystalline CZTSSe is an efficient CE catalytic material. PMID:25382857

  15. Effects of Taiwan Roselle anthocyanin treatment and single-walled carbon nanotube addition on the performance of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Chou, C. S.; Tsai, P. J.; Wu, P.; Shu, G. G.; Huang, Y. H.; Chen, Y. S.

    2014-04-01

    This study investigates the relationship between the performance of a dye-sensitized solar cell (DSSC) sensitized by a natural sensitizer of Taiwan Roselle anthocyanin (TRA) and fabrication process conditions of the DSSC. A set of systematic experiments has been carried out at various soaking temperatures, soaking periods, sensitizer concentrations, pH values, and additions of single-walled carbon nanotube (SWCNT). An absorption peak (520 nm) is found for TRA, and it is close to that of the N719 dye (518 nm). At a fixed concentration of TRA and a fixed soaking period, a lower pH of the extract or a lower soaking temperature is found favorable to the formation of pigment cations, which leads to an enhanced power conversion efficiency (η) of DSSC. For instance, by applying 17.53 mg/100ml TRA at 30 for 10 h, as the pH of the extract decreases to 2.00 from 2.33 (the original pH of TRA), the η of DSSC with TiO2+SWCNT electrode increases to 0.67% from 0.11% of a traditional DSSC with TiO2 electrode. This performance improvement can be explained by the combined effect of the pH of sensitizer and the additions of SWCNT, a first investigation in DSSC using the natural sensitizer with SWCNT.

  16. Impact of the different electron-releasing subunits on the dye-sensitized solar cell performance of new triphenylamine-benzimidazole based molecules

    NASA Astrophysics Data System (ADS)

    Dinçalp, Haluk; Saltan, Gözde Murat; Aykut, Deniz; Zafer, Ceylan

    2015-10-01

    New triphenylamine-benzimidazole type small molecules with different electron-releasing groups were designed and synthesized to investigate their photovoltaic performances in dye sensitized solar cells (DSSCs). Their good visible absorptions covering the 400-535 nm in addition to suitable lowest unoccupied molecular orbital (LUMO) energy levels between -3.03 and -3.11 eV make good candidates them for DSSC devices. Fluorescence quenching studies of the dyes with pristine titania support the good electron injection to conduction band of TiO2. Time resolved measurements of the dyes in solutions indicate the occurence of charge generation during the excited state. One of the used dyes in DSSC devices, TPA5a, carrying a methoxy group in triphenylamine part of the structure, gave much higher power conversion efficiency (PCE) value of 4.31% as compared to the other derivatives. Device fabricated from TPA5a dye gives good external quantum efficiency (EQE) value above 70% at 460 nm. Also, electron impedance spectroscopy (EIS) analysis of the devices gives a good explanation of the understanding of the cell performances.

  17. Enhanced photovoltaic performance of dye-sensitized solar cells using a new photoelectrode material: upconversion YbF3-Ho/TiO2 nanoheterostructures.

    PubMed

    Yu, Jia; Yang, Yulin; Fan, Ruiqing; Wang, Ping; Dong, Yuwei

    2016-02-21

    New up-conversion YbF3-Ho/TiO2 (UC/TiO2) nanoheterostructures are designed and explored as an efficient photoelectrode material to yield dye-sensitized solar cells (DSSCs) with enhanced performance. In this study, we analyze the photogenerated charge transfer properties of the UC/TiO2 nanoheterostructures via surface photovoltage (SPV) and transient photovoltage (TPV) techniques, and the interfacial dynamics of charge transfer and recombination processes in DSSCs using electrochemical impedance spectroscopy (EIS) and open circuit photovoltage decay (OCVD) techniques. It is found that these UC/TiO2 nanoheterostructures combine the upconversion function of YbF3-Ho and the semiconductive merits from TiO2. More importantly, the hetero-junction interface in the UC/TiO2 nanoheterostructures not only induces direct electron-injection from YbF3-Ho to TiO2 by utilizing near-infrared light, but also further improves the existing merits of TiO2 through facilitating the interfacial photoinduced charge separation, suppressing the photoinduced charge recombination and prolonging the lifetimes of excited electrons, which can give further improvement of the photovoltaic performances. When integrating the UC/TiO2 nanoheterostructures into DSSCs, an overall energy conversion efficiency of 8.0% is achieved. There is a 23% enhancement in the overall conversion efficiency and a 19% improvement in the photocurrent, compared to the pristine devices. PMID:26866582

  18. Novel D-A-π-A organic dyes based on 3-dimensional triarylamine and benzothiadiazole derivatives for high-performance dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Huang, Hongli; Chen, Huajie; Long, Jun; Wang, Guo; Tan, Songting

    2016-09-01

    Organic dyes with a 3-dimensional (3D) structure is helpful for retarding dyes aggregation and charge recombination as well as improving the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). In this contribution, a novel 3D triarylamine derivative (IDTTPA) featuring an indenothiophenene unit has been designed, synthesized, and applied to develop a 3D organic dyes. Two novel D-A-π-A organic dyes (CD1 and CD2) based on IDTTPA as the electron donors, 2,1,3-benzothiadiazole derivatives as the auxiliary acceptors, and formic acid as the anchoring groups have been successfully synthesized and applied in DSSCs. The effects of the fluoro substitute groups on the photophysical, electrochemical, and photovoltaic properties are investigated. The results indicate that the fluoro-containing dye CD2 exhibits higher molar extinction coefficient, stronger light-capturing ability, and better photovoltaic performance than those of CD1 dye without fluoro substitute. Investigation of the DSSCs performance shows that CD2-based DSSCs exhibit a high PCE value of 7.91%, higher than that of CD1-based DSSCs (6.29%), even higher than that of the reference DSSCs based on N719 (7.49%). This works has demonstrated that this kind of 3D unit (IDTTPA) is a strong and promising electron donor unit to develop high efficiency metal-free organic dyes.

  19. Effects of TiO{sub 2} film thickness on photovoltaic properties of dye-sensitized solar cell and its enhanced performance by graphene combination

    SciTech Connect

    Zhang, Haiyan; Wang, Wenguang; Liu, Hui; Wang, Rong; Chen, Yiming; Wang, Zhiwei

    2014-01-01

    Graphical abstract: - Highlights: • DSSC based on TiO{sub 2} film with 8 printing layers showed the highest efficiency. • The photoelectric conversion efficiency of the DSSC increased from 5.52% to 6.49% by graphene combination. • A mechanism for the enhanced performance of the DSSC was proposed. - Abstract: Dye-sensitized solar cells based on TiO{sub 2} films with different printing layers (6-10) were fabricated by screen printing method. The prepared samples were characterized by scanning electron microscopy, X-ray diffraction and UV–vis absorption spectroscopy. The effects of thickness on the photoelectric conversion performance of the as-fabricated DSSCs were investigated. An optimum photoelectric conversion efficiency of 5.52% was obtained in a DSSC with 8 printing layers. Furthermore, after a moderate amount of graphene was combined with TiO{sub 2}, the photoelectric conversion efficiency of the DSSC based on graphene/TiO{sub 2} composite film rose from 5.52% to 6.49%, with an increase of η by 17.6%. The results indicated that graphene not only enhances the transport of electrons from the film to the fluorine doped tin oxide substrates and reduces the charge recombination rate, but also reduces the electrolyte–electrode interfacial resistance, clearly increasing the photoelectric conversion efficiency.

  20. High Performance Dye-Sensitized Solar Cells with Enhanced Light-Harvesting Efficiency Based on Polyvinylpyrrolidone-Coated Au-TiO2 Microspheres.

    PubMed

    Ding, Yong; Sheng, Jiang; Yang, Zhenhai; Jiang, Ling; Mo, Li'e; Hu, Linhua; Que, Yaping; Dai, Songyuan

    2016-04-01

    Surface plasmon resonance using noble metal nanoparticles is regarded as an attractive and viable strategy to improve the optical absorption and/or photocurrent in dye-sensitized solar cells (DSSCs). However, no significant improvement in device performance has been observed. The bottleneck is the stability of the noble-metal nanoparticles caused by chemical corrosion. Here, we propose a simple method to synthesize high-performance DSSCs based on polyvinylpyrrolidone-coated Au-TiO2 microspheres that utilize the merits of TiO2 microspheres and promote the coupling of surface plasmons with visible light. When 0.4 wt % Au nanoparticles were embedded into the TiO2 microspheres, the device achieved a power conversion efficiency (PCE) as high as 10.49 %, a 7.9 % increase compared with pure TiO2 microsphere-based devices. Simulation results theoretically confirmed that the improvement of the PCE is caused by the enhancement of the absorption cross-section of dye molecules and photocurrent. PMID:26915757

  1. Rational design of anatase TiO2 architecture with hierarchical nanotubes and hollow microspheres for high-performance dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gu, Jiuwang; Khan, Javid; Chai, Zhisheng; Yuan, Yufei; Yu, Xiang; Liu, Pengyi; Wu, Mingmei; Mai, Wenjie

    2016-01-01

    Large surface area, sufficient light-harvesting and superior electron transport property are the major factors for an ideal photoanode of dye-sensitized solar cells (DSSCs), which requires rational design of the nanoarchitectures and smart integration of state-of-the-art technologies. In this work, a 3D anatase TiO2 architecture consisting of vertically aligned 1D hierarchical TiO2 nanotubes (NTs) with ultra-dense branches (HTNTs, bottom layer) and 0D hollow TiO2 microspheres with rough surface (HTS, top layer) is first successfully constructed on transparent conductive fluorine-doped tin oxide glass through a series of facile processes. When used as photoanodes, the DSSCs achieve a very large short-current density of 19.46 mA cm-2 and a high overall power conversion efficiency of 8.38%. The remarkable photovoltaic performance is predominantly ascribed to the enhanced charge transport capacity of the NTs (function as the electron highway), the large surface area of the branches (act as the electron branch lines), the pronounced light harvesting efficiency of the HTS (serve as the light scattering centers), and the engineered intimate interfaces between all of them (minimize the recombination effect). Our work demonstrates a possibility of fabricating superior photoanodes for high-performance DSSCs by rational design of nanoarchitectures and smart integration of multi-functional components.

  2. Modulation on charge recombination and light harvesting toward high-performance benzothiadiazole-based sensitizers in dye-sensitized solar cells: A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Zhao; Zhang, Ji; Li, Hai-Bin; Wu, Yong; Xu, Hong-Liang; Zhang, Min; Geng, Yun; Su, Zhong-Min

    2014-12-01

    Factors associated with short circuit current density (Jsc) and open circuit photovoltage (Voc) of dye sensitized solar cells (DSSCs) have been analyzed through DFT and TDDFT calculations to explore the origin of the significant performance differences with only tiny structure difference (1.24% for 1 and 8.21% for 2) (Advanced Functional Materials 2012, 22, 1291-1302). Our results reveal that the insertion of phenyl ring in 2 enlarges the distance between the dye cation hole and the semiconductor surface and makes the benzothiadiazole (BTDA) unit, which has strong interaction with the electrolyte, far away from the semiconductor, resulting in a decreased charge recombination rate compared with that of 1. However, the insertion of phenyl ring also results in a distortion of the molecular structure, leading to a decreased light harvesting ability. Hence, two dyes (6 and 7) derived from 2 with better conjugation degree, farther position of BTDA unit and longer molecular length have been designed to keep the advantages and overcome the disadvantages of 2 simultaneously. The results demonstrate that we get the desired properties of dyes through reasonable molecular design, and these two dyes could be promising candidates in DSSC field and further improve the performance of the cell.

  3. Efficient Performance of Electrostatic Spray-Deposited TiO2 Blocking Layers in Dye-Sensitized Solar Cells after Swift Heavy Ion Beam Irradiation

    PubMed Central

    2011-01-01

    A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm-2) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm-2). When SHI irradiation of oxygen ions of fluence 1 × 1013 ions/cm2 was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs.

  4. Modification of TiO₂ electrode with organic silane interposed layer for high-performance of dye-sensitized solar cells.

    PubMed

    Sewvandi, Galhenage A; Tao, Zhuoqi; Kusunose, Takafumi; Tanaka, Yasuhiro; Nakanishi, Shunsuke; Feng, Qi

    2014-04-23

    Back electron transfer from the TiO2 electrode surface to the electrolyte is the main reason behind the low-open circuit potential (Voc) and the low-fill factor (FF) of the dye-sensitized solar cells (DSSCs). Modifications to the TiO2 electrode, fabricated using {010}-faceted TiO2 nanoparticles with six different kinds of silane, are reported to decrease the back electron transfer on the TiO2 surface. The effect of alkyl chain length of hydrocarbon silanes and fluorocarbon silanes on adsorption parameters of surface coverage and adsorption constant, interfacial resistance, and photovoltaic performances were investigated. Adsorption isotherms, impedance analysis, and photovoltaic measurements were used as the investigation techniques. The reduction of back electron transfer depended on the TiO2 surface coverage by silane, alkyl chain length, and the molecular structure of the silane. Even though Voc and FF were improved, significant reduction in short-circuit photocurrent density (Jsc) was observed after silanization because of desorption of dye during silanization. A new approach, sequential adsorption process of silane and dye, was introduced to enhance Voc and FF without lowering Jsc. Heptadecafluorodecyl trimethoxy-silane showed the highest coverage on the surface of the TiO2 and had the highest effect on the performance improvement of the DSSC, where Voc, FF, and efficiency (η) were improved by 22, 8.0, and 22%, respectively. PMID:24684283

  5. High performance dye-sensitized solar cells using graphene modified fluorine-doped tin oxide glass by Langmuir–Blodgett technique

    SciTech Connect

    Roh, Ki-Min; Jo, Eun-Hee; Chang, Hankwon; Han, Tae Hee; Jang, Hee Dong

    2015-04-15

    Since the introduction of dye-sensitized solar cells (DSSCs) with low fabrication cost and high power conversion efficiency, extensive studies have been carried out to improve the charge transfer rate and performance of DSSCs. In this paper, we present DSSCs that use surface modified fluorine-doped tin oxide (FTO) substrates with reduced graphene oxide (r-GO) sheets prepared using the Langmuir–Blodgett (LB) technique to decrease the charge recombination at the TiO{sub 2}/FTO interface. R-GO sheets were excellently attached on FTO surface without physical deformations such as wrinkles; effects of the surface coverage of r-GO on the DSSC performance were also investigated. By using graphene modified FTO substrates, the resistance at the interface of TiO{sub 2}/FTO was reduced and the power conversion efficiency was increased to 8.44%. - Graphical abstract: DSSCs with graphene modified FTO glass were fabricated with the Langmuir Blodgett technique. GO sheets were transferred to FTO at various surface pressures in order to change the surface density of graphene and the highest power conversion efficiency of the DSSC was 8.44%. - Highlights: • By LB technique, r-GO sheets were coated on FTO without physical deformation. • DSSCs were fabricated with, r-GO modified FTO substrates. • With surface modification by r-GO, the interface resistance of DSSC decreased. • Maximum PCE of the DSSC was increased up to 8.44%.

  6. Metal-Free Sensitizers for Dye-Sensitized Solar Cells.

    PubMed

    Chaurasia, Sumit; Lin, Jiann T

    2016-06-01

    This review focuses on our work on metal-free sensitizers for dye-sensitized solar cells (DSSCs). Sensitizers based on D-A'-π-A architecture (D is a donor, A is an acceptor, A' is an electron-deficient entity) exhibit better light harvesting than D-π-A-type sensitizers. However, appropriate molecular design is needed to avoid excessive aggregation of negative charge at the electron-deficient entity upon photoexcitation. Rigidified aromatics, including aromatic segments comprising fused electron-excessive and -deficient units in the spacer, allow effective electronic communication, and good photoinduced charge transfer leads to excellent cell performance. Sensitizers with two anchors/acceptors, D(-π-A)2 , can more efficiently harvest light, inject electrons, and suppress dark current compared with congeners with a single anchor. Appropriate incorporation of heteroaromatic units in the spacer is beneficial to DSSC performance. High-performance, aqueous-based DSSCs can be achieved with a dual redox couple comprising imidazolium iodide and 2,2,6,6-tetramethylpiperidin-N-oxyl, and/or using dyes of improved wettability through the incorporation of a triethylene oxide methyl ether chain. PMID:27114164

  7. Enhanced Photovoltaic Performance of Dye-Sensitized Solar Cells by Efficient Near-Infrared Sunlight Harvesting using Upconverting Y2O3:Er3+/Yb3+ Phosphor Nanoparticles

    NASA Astrophysics Data System (ADS)

    Du, Peng; Lim, Joo Ho; Leem, Jung Woo; Cha, Sung Min; Yu, Jae Su

    2015-08-01

    We report the efficiency enhancement in dye-sensitized solar cells (DSSCs) using Er3+/Yb3+-co-doped Y2O3 (i.e., Y2O3:Er3+/Yb3+) phosphor nanoparticles, prepared by a simple and cost-effective urea-based homogeneous precipitation method, for efficient near-infrared (NIR) sunlight harvesting. Under the light excitation at a wavelength of 980 nm, the as-prepared samples exhibited strong upconversion emissions at green and red visible wavelengths. To investigate the influence of Y2O3:Er3+/Yb3+ nanoparticles on the photovoltaic performance of DSSCs, the phosphor nanoparticles were incorporated into titanium dioxide films to form a composite photoelectrode. For the resulting DSSCs, the increased power conversion efficiency ( PCE) of 6.68 % was obtained mainly by the increased photocurrent of J SC = 13.68 mA/cm2 due to the light harvesting enhancement via the NIR-to-visible upconversion process (cf., PCE = 5.94 %, J SC = 12.74 mA/cm2 for the reference DSSCs without phosphor nanoparticles), thus, indicating the PCE increment ratio of ~12.4 %.

  8. New phenothiazine-based dyes for efficient dye-sensitized solar cells: Positioning effect of a donor group on the cell performance

    NASA Astrophysics Data System (ADS)

    Hua, Yong; Chang, Shuai; Wang, Hongda; Huang, Dandan; Zhao, Jianzhang; Chen, Tao; Wong, Wai-Yeung; Wong, Wai-Kwok; Zhu, Xunjin

    2013-12-01

    Two types of new phenothiazine-based dyes have been developed, in which Type 1 molecules are appended with a donor aryl group at the C(7) position and n-hexyl group at the N(10) of phenothiazine (PT1 and PT2), and Type 2 molecules are with the donor aryl group at the N(10) of phenothiazine (PT3 and PT4), together with a cyanoacrylate moiety at the C(3) position in both types of species. The structural features of a donor aryl group at the C(7) position of phenothiazine extends the π-conjugation of the chromophore, while the donor aryl group at N(10) significantly increases the steric hindrance of the dye due to its mutually perpendicular structural characteristics with either phenyl ring of bent phenothiazine. As a result, Type 1 dyes have better light harvesting properties in contact with TiO2 films, and give much better dye-sensitized solar cell (DSSC) performance than Type 2 dyes. The PT1-sensitized DSSC shows a high open-circuit voltage (Voc) of 0.829 V and lead to a final power conversion efficiency of 6.72% based on PT1.

  9. Enhanced photoelectrical performance of dye-sensitized solar cells with double-layer TiO2 on perovskite SrTiO3 substrate

    NASA Astrophysics Data System (ADS)

    Liu, Qiuhong; Sun, Qiong; Zhang, Min; Li, Yang; Zhao, Mei; Dong, Lifeng

    2016-04-01

    In this research, perovskite SrTiO3 particles are synthesized by a hydrothermal method, and TiO2 with a double-layer structure is grown on the SrTiO3 surface by a hydrolysis-condensation process. Structural characterizations reveal that TiO2 comprises of two phases: anatase film at the bottom and single-crystal rutile nanorods grown along the [110] direction on top. The TiO2-SrTiO3 composite film is investigated as photoanode material for dye-sensitized solar cells. In comparison with pure TiO2 and SrTiO3, the composite photoanode shows a much better performance in photoelectric conversion efficiency (1.35 %), which is about 2 and 100 times as efficient as pure TiO2 and SrTiO3, respectively. This indicates that the composite structure can facilitate charge carrier transfer and reduce electron-hole recombination to enhance photoelectrical properties of TiO2-based photoanode materials.

  10. Improved performance of dye-sensitized solar cells with novel conjugated organic dye using aluminum oxide-coated nanoporous titanium oxide films

    NASA Astrophysics Data System (ADS)

    Jo, Hyo Jeong; Nam, Jung Eun; Kim, Dae-Hwan; Kang, Jin-Kyu

    2014-03-01

    This work introduces the TiO2/dye/electrolyte interface in the recombination and offers an interface treatment method using solution process for dye-sensitized solar cells (DSSCs). Solution-processed ultra-thin metal oxides introduce to treat the surface of mesoporous TiO2 to reduce the defect density and improve the electronic quality. Among the metal oxides, an Al2O3 barrier is incorporated into DSSCs as a carrier-recombination blocking layer. In all instances, the short-circuit current density increase and the dark current is suppressed after Al2O3 deposition. The impact of the Al2O3 barriers is also studied in devices employing different dyes. To compare the behavior of metal-free organic dyes and Ru dyes when Al2O3 barrier layers are involved, the charge transfer between the dye and TiO2 electrodes, associated with interfacial electron injection, is investigated by Raman spectroscopy. The metal-free organic dye had a high molar extinction coefficient and better adsorption properties compare to Ru dye, which resulted in higher charge-collection efficiency. To verify the strategy, the DSSCs photovoltaic performances containing these dyes are compared using their current-voltage curves. Electrochemical impedance spectroscopy (EIS), Intensity Modulated Photocurrent Spectroscopy (IMPS), and Intensity Modulated photoVoltage Spectroscopy (IMVS) were used to further investigate the kinetics process of the TiO2 film electrodes.

  11. Plasmonic enhancement of the performance of dye-sensitized solar cell by core-shell AuNRs@SiO2 in composite photoanode

    NASA Astrophysics Data System (ADS)

    Bai, Lihua; Li, Meiya; Guo, Kaimo; Luoshan, Mengdai; Mehnane, Hadja Fatima; Pei, Ling; Pan, Muchen; Liao, Lei; Zhao, Xingzhong

    2014-12-01

    A series of dye-sensitized solar cells (DSSCs) with differing amounts of Au nanorods (AuNRs) (coated with a SiO2 layer as a core-shell AuNR@SiO2 (AuNRS)) composited photoanodes are prepared. The influences of different amounts of AuNRSs on the performance of the composite photoanodes and DSSCs are investigated. Studies revealed that, by increasing the amount of AuNRSs, the intensity of the light absorption spectra of the photoanodes is gradually increased while the dye absorbed is reduced. The short-circuit current density (Jsc), open-circuit voltage (Voc) and photoelectric conversion efficiency (η) increased gradually first and then decreased with the increase of AuNRSs, while the charge transfer resistance R2 and the dark current showed an opposite change trend. The optimal properties were obtained in the 2.0 wt% AuNRSs doped DSSC, with a maximum Jsc of 15.88 mA cm-2, a highest Voc of 730 mV and a best η of 7.21%, giving 20.8%, 38 mV and 23.0% higher than those of the conventional pure TiO2-based DSSC, respectively. The significant improvements in the properties of the optimal DSSC are attributed to the increase of the light coupling and thus the light absorption of the dye due to the localized surface plasmon resonance of the AuNRSs. ,

  12. Dye-sensitized solar cell characteristics of nanocomposite zinc ferrite working electrode: Effect of composite precursors and titania as a blocking layer on photovoltaic performance

    NASA Astrophysics Data System (ADS)

    Habibi, Mohammad Hossein; Habibi, Amir Hossein; Zendehdel, Mahmoud; Habibi, Mehdi

    2013-06-01

    This research investigates the performance of a zinc ferrite (ZF) as working electrodes in a dye-sensitized solar cell (DSSC). This ZF working electrode was prepared by sol-gel and thermal decomposition of four different precursors including: zinc acetate dihydrate (Zn(CH3COO)2ṡ2H2O), ferric nitrate nonahydrate (Fe(NO3)3ṡ9H2O), iron(III) acetate; Fe(C2H3O2)3, and zinc nitrate hexahydrate, Zn(NO3)2ṡ6H2O. The effects of annealing temperature and precursors on the structural, morphological, and optical properties were investigated. The field emission scanning electron microscope images (FESEM) and scanning electron microscopy (SEM) show that ZFe films are polycrystalline in nature and homogeneous with densely packed grains. Nanoporous zinc ferrite coatings were prepared by doctor blade technique on the fluorine-doped tin oxide (FTO) and used as working electrodes in DSSC. In all DSSCs, platinized FTO and [Co(bpy)3]2+/3+ in 3-methoxy proponitrile were used as counter electrode and redox mediator system respectively. Comparing the fill factors of four different zinc ferrite nanocomposites, the highest fill factor was for ZnFe2O4-TBL sample. Cell fabricated with ZnFeA working electrode shows relatively higher Jsc.

  13. Development of Flexible Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan

    2010-03-01

    We are developing a low cost and easy process to fabricate porous metal oxide thin films on flexible substrate for high performance dye-sensitized solar cells (DSSCs). The research addresses on the formulation of TiO2 precursor to create smooth and continuous porous thin films on large size plastic or metal foil substrates enabling excellent adhesion, robust mechanics, and chemical stability. The porous nanocrystalline TiO2 thin films are used as anode electrodes for attaching light sensitizers. The first trial is to blend a polymer to Ti alkoxide precursors at various concentrations. After depositing the mixture on the substrates, the substrates are baked, exposed to UV light, taken place wet or dry etch to remove polymers leading to a porous structure. An appropriate annealing process will be applied to TiO2 to turn it into crystalline. Alternative low temperature annealing method including steaming hydrothermal, plasma etches, and UV-ozone treatment will be tested with the annealing process controlled at low temperature.

  14. Influence of Ancillary Ligands in Dye-Sensitized Solar Cells.

    PubMed

    Pashaei, Babak; Shahroosvand, Hashem; Graetzel, Michael; Nazeeruddin, Mohammad Khaja

    2016-08-24

    Dye-sensitized solar cells (DSSCs) have motivated many researchers to develop various sensitizers with tailored properties involving anchoring and ancillary ligands. Ancillary ligands carry favorable light-harvesting abilities and are therefore crucial in determining the overall power conversion efficiencies. The use of ancillary ligands having aliphatic chains and/or π-extended aromatic units decreases charge recombination and permits the collection of a large fraction of sunlight. This review aims to provide insight into the relationship between ancillary ligand structure and DSSC properties, which can further guide the function-oriented design and synthesis of different sensitizers for DSSCs. This review outlines how the new and rapidly expanding class of chelating ancillary ligands bearing 2,2'-bipyridyl, 1,10-phenanthroline, carbene, dipyridylamine, pyridyl-benzimidazole, pyridyl-azolate, and other aromatic ligands provides a conduit for potentially enhancing the performance and stability of DSSCs. Finally, these classes of Ru polypyridyl complexes have gained increasing interest for feasible large-scale commercialization of DSSCs due to their more favorable light-harvesting abilities and long-term thermal and chemical stabilities compared with other conventional sensitizers. Therefore, the main idea is to inspire readers to explore new avenues in the design of new sensitizers for DSSCs based on different ancillary ligands. PMID:27479482

  15. Peptide-templating dye-sensitized solar cells.

    PubMed

    Han, Tae Hee; Moon, Hyoung-Seok; Hwang, Jin Ok; Seok, Sang Il; Im, Sang Hyuk; Kim, Sang Ouk

    2010-05-01

    A hollow TiO(2) nanoribbon network electrode for dye-sensitized solar cells (DSSC) was fabricated by a biotemplating process combining peptide self-assembly and atomic layer deposition (ALD). An aromatic peptide of diphenylalanine was assembled into a three-dimensional network consisting of highly entangled nanoribbons. A thin TiO(2) layer was deposited at the surface of the peptide template via the ALD process. After the pyrolysis of the peptide template, a highly entangled nanotubular TiO(2) framework was successfully prepared. Evolution of the crystal phase and crystallite size of the TiO(2) nanostructure was exploited by controlling the calcination temperature. Finally, the hollow TiO(2) nanoribbon network electrode was integrated into DSSC devices and their photochemical performances were investigated. Hollow TiO(2) nanoribbon-based DSSCs exhibited a power conversion efficiency of 3.8%, which is comparable to the conventional TiO(2) nanoparticle-based DSSCs (3.5%). Our approach offers a novel pathway for DSSCs consisting of TiO(2) electrodes via biotemplating. PMID:20378945

  16. Peptide-templating dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Han, Tae Hee; Moon, Hyoung-Seok; Hwang, Jin Ok; Seok, Sang Il; Im, Sang Hyuk; Ouk Kim, Sang

    2010-05-01

    A hollow TiO2 nanoribbon network electrode for dye-sensitized solar cells (DSSC) was fabricated by a biotemplating process combining peptide self-assembly and atomic layer deposition (ALD). An aromatic peptide of diphenylalanine was assembled into a three-dimensional network consisting of highly entangled nanoribbons. A thin TiO2 layer was deposited at the surface of the peptide template via the ALD process. After the pyrolysis of the peptide template, a highly entangled nanotubular TiO2 framework was successfully prepared. Evolution of the crystal phase and crystallite size of the TiO2 nanostructure was exploited by controlling the calcination temperature. Finally, the hollow TiO2 nanoribbon network electrode was integrated into DSSC devices and their photochemical performances were investigated. Hollow TiO2 nanoribbon-based DSSCs exhibited a power conversion efficiency of 3.8%, which is comparable to the conventional TiO2 nanoparticle-based DSSCs (3.5%). Our approach offers a novel pathway for DSSCs consisting of TiO2 electrodes via biotemplating.

  17. Preparation of anatase TiO2 nanorods with high aspect ratio for high-performance dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Tang, Ying; Wang, Chen; Hu, Yajing; Huang, Lu; Fu, Jianxun; Yang, Weiguang

    2016-01-01

    Due to offering a direct conduction pathway and fast electron transport, 1D nanostructures play an important role in improving charge collection efficiency in dye-sensitized solar cells (DSSCs). The anatase TiO2 nanorods with different aspect ratios between 3.2 and 6.3 were obtained by controlling reaction time for DSSCs. As their aspect ratios increased, more dye was adsorbed on the anatase TiO2 nanorods film. A promising power conversion efficiency of 7.51% was obtained for the anatase TiO2 nanorods with the biggest aspect ratio of 6.3.

  18. Effect of Poly(Ether Urethane) Introduction on the Performance of Polymer Electrolyte for All-Solid-State Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Zhou, Yan-Fang; Xiang, Wan-Chun; Fang, Shi-Bi; Chen, Shen; Zhou, Xiao-Wen; Zhang, Jing-Bo; Lin, Yuan

    2009-12-01

    The introduction of poly(ether urethane) (PEUR) into polymer electrolyte based on poly(ethylene oxide), LiI and I2, has significantly increased the ionic conductivity by nearly two orders of magnitudes. An increment of I-3 diffusion coefficient is also observed. All-solid-state dye-sensitized solar cells are constructed using the polymer electrolytes. It was found that PEUR incorporation has a beneficial effect on the enhancement of open circuit voltage Voc by shifting the band edge of TiO2 to a negative value. Scanning electron microscope images indicate the perfect interfacial contact between the TiO2 electrode and the blend electrolyte.

  19. Enhanced performance of dye-sensitized solar cells based on TiO{sub 2} with NIR-absorption and visible upconversion luminescence

    SciTech Connect

    Liang, Li; Yulin, Yang; Mi, Zhou; Ruiqing, Fan; LeLe, Qiu; Xin, Wang; Department of Food and Environmental Engineering, Heilongjiang, East University, Harbin 150086 ; Lingyun, Zhang; School of Chemical Engineering, Northeast Dianli University, Jilin 132012 ; Xuesong, Zhou; Jianglong, He

    2013-02-15

    TiO{sub 2} with NIR-absorption and visible upconversion luminescence (UC-TiO{sub 2}) is prepared by a sol-gel method and calcined at 700 Degree-Sign C for 6 h. The material broadens the response region of dye sensitized solar cells (DSSCs) from an ultraviolet-visible region to the whole region of the solar spectrum. It shifts NIR sunlight to visible light which matches the strong absorbing region of the dye (N719). DSSCs based on UC-TiO{sub 2} achieved higher conversion efficiency than that on raw TiO{sub 2}. UC-TiO{sub 2} was mixed with commercial raw TiO{sub 2} as additive, and the short-circuit current density, open-circuit voltage and conversion efficiency of the DSSC reached to the optimum values 13.38 mA/cm{sup 2}, 0.78 V and 6.63% (AM1.5 global), comparing with the blank values: 7.99 mA/cm{sup 2}, 0.75 V and 4.07%, respectively. Also the mechanisms of upconversion by multiphoton absorption and energy transfer processes are interpreted in this paper. - Graphical abstract: By introducing TiO{sub 2} with NIR-absorption and visible up-conversion luminescence into DSSC, a signal reflection was explored from ultra-violet region to visible region, and to near-IR region. Highlights: Black-Right-Pointing-Pointer TiO{sub 2} with NIR-absorption and visible up-conversion luminescence (UC-TiO{sub 2}) was prepared by a sol-gel method. Black-Right-Pointing-Pointer A systematic characterization and analysis was carried out to discuss the mechanism. Black-Right-Pointing-Pointer A significantly enhanced performance of DSSC was explored by using UC-TiO{sub 2} as an additive.

  20. Enhanced performance of dye-sensitized solar cells aided by Sr,Cr co-doped TiO2 xerogel films made of uniform spheres.

    PubMed

    Bakhshayesh, A M; Bakhshayesh, N

    2015-12-15

    One-pot preparation of Sr,Cr co-doped TiO2 xerogel film for boosting the short circuit current density of dye-sensitized solar cells (DSCs) is reported. The 2.5-μm-diameter spheres are assembled from 60nm nanoparticles by a modified sol-gel method. X-ray photoelectron spectroscopy (XPS) shows that Sr(2+) and Cr(3+) ions to be well incorporated into the titania crystal lattice without forming specific strontium and chromium compositions. The crystallite size, phase composition, and band structure of the particles depend on the dopants concentration. Isolated energy levels near valence band as a result of the transition ion (i.e., Cr) introduction, in conjunction with the local lattice distortions owing to the alkaline earth ion (i.e., Sr) insertion, improves the photocatalytic activity of the prepared TiO2 spheres, enhancing the short circuit current density of the cells. The DSC co-doped with 0.075 at.% Sr and 2.5 at.% Cr (i.e., S7C25 solar cell) showed the highest power conversion efficiency of 7.89% and short circuit current density of 18.58mA/cm(2) thanks to lower charge transfer resistance (2.35Ωcm(2)), lower electron transit time (1.26ms), and higher electron diffusion coefficient (17.1×10(4)cm(2)S(-1)) compared to the other cells, demonstrated by electrochemical impedance spectroscopy (EIS). The concept of simultaneously introduction of alkaline earth ions and transition ions into TiO2 lattice will open up a new insight into the fabrication of high performance DSCs. PMID:26313709

  1. Titania nanobundle networks as dye-sensitized solar cell photoanodes

    NASA Astrophysics Data System (ADS)

    Dong, Cunku; Xiang, Wanchun; Huang, Fuzhi; Fu, Dongchuan; Huang, Wenchao; Bach, Udo; Cheng, Yi-Bing; Li, Xin; Spiccia, Leone

    2014-03-01

    Quasi-one-dimensional (1D) titania nanobundles were synthesized via a hydrothermal method and used to print random network nanostructured films. These films are shown to be ideally suited for application as photoanodes in dye-sensitized solar cells (DSCs) as they have a higher porosity compared to the traditional 1D nanostructured TiO2 materials. Devices constructed using the N719 dye and iodide/triiodide as the redox mediator in the electrolyte yielded energy conversion efficiencies (η = 6.1 +/- 0.2%), which were marginally lower than for devices made with the commonly used P25 titania films (η = 6.3 +/- 0.1%) under one sun simulated solar radiation. Application of an electrolyte based on the [Co(bpy)3]2+/3+ redox couple and the MK2 organic sensitizer resulted in higher efficiencies (η = 7.70 +/- 0.1%) than for the P25 devices (η = 6.3 +/- 0.3%). Each performance parameter (short circuit current density, open circuit voltage and fill factor) was higher for the TiO2 nanobundle devices than those for the P25-based devices. The results of electrochemical impedance spectroscopy (EIS), intensity-modulated photovoltage spectroscopy (IMVS), and dye-loading measurements indicated that the better performance of TiO2 nanobundle devices with cobalt electrolytes correlates with higher porosity, relatively fast electron transport and more efficient suppression of electron recombination. A faster rate of diffusion of the cobalt complexes through the highly porous TiO2 nanobundle network is proposed to contribute to the enhanced device efficiency.Quasi-one-dimensional (1D) titania nanobundles were synthesized via a hydrothermal method and used to print random network nanostructured films. These films are shown to be ideally suited for application as photoanodes in dye-sensitized solar cells (DSCs) as they have a higher porosity compared to the traditional 1D nanostructured TiO2 materials. Devices constructed using the N719 dye and iodide/triiodide as the redox mediator in

  2. Metal oxide-encapsulated dye-sensitized photoanodes for dye-sensitized solar cells

    DOEpatents

    Hupp, Joseph T.; Son, Ho-Jin

    2016-01-12

    Dye-sensitized semiconducting metal oxide films for photoanodes, photoanodes incorporating the films and DSCs incorporating the photoanodes are provided. Also provided are methods for making the dye sensitized semiconducting metal oxide films. The methods of making the films are based on the deposition of an encapsulating layer of a semiconducting metal oxide around the molecular anchoring groups of photosensitizing dye molecules adsorbed to a porous film of the semiconducting metal oxide. The encapsulating layer of semiconducting metal oxide is formed in such a way that it is not coated over the chromophores of the adsorbed dye molecules and, therefore, allows the dye molecules to remain electrochemically addressable.

  3. Fine Tuning of Nanocrystal and Pore Sizes of TiO2 Submicrospheres toward High Performance Dye-Sensitized Solar Cells.

    PubMed

    Li, Zhao-Qian; Ding, Yong; Mo, Li-E; Hu, Lin-Hua; Wu, Ji-Huai; Dai, Song-Yuan

    2015-10-14

    In general, the properties and performance of mesoporous TiO2 are greatly dependent on its crystal size, crystallinity, porosity, surface area, and morphology; in this regard, design and fine-tuning the crystal and pore sizes of the TiO2 submicrospheres and investigating the effect of these factors on the properties and photoelectric performance of dye-sensitized solar cells (DSSCs) is essential. In this work, uniform TiO2 submicrospheres were synthesized by a two-step procedure containing hydrolysis and solvothermal process. The crystal and pore sizes of the TiO2 submicrospheres were fine-tuned and controlled in a narrow range by adjusting the quantity of NH4OH during the solvothermal process. The effect of crystal and pore size of TiO2 submicrosphere on the performance of the DSSCs and their properties including dye-loading capacity, light scattering effect, power conversion efficiency (PCE), incident photon-to-electron conversion efficiencies (IPCEs), and electron recombination were compared and analyzed. The results show that increasing pore size plays a more significant role in improving the dye-loading capacity and PCE than increasing surface area, and an overall PCE value of 8.62% was obtained for the device with a 7.0 μm film thickness based on the TiO2 submicrospheres treated with 0.6 mL of NH4OH. Finally, the best TiO2 submicrosphere based photoanode film was optimized by TiCl4 treatment, and increasing film thickness and a remarkable PCE up to 11.11% were achieved. PMID:26393366

  4. Enhanced photovoltaic performance of fully flexible dye-sensitized solar cells based on the Nb2O5 coated hierarchical TiO2 nanowire-nanosheet arrays

    NASA Astrophysics Data System (ADS)

    Liu, Wenwu; Hong, Chengxun; Wang, Hui-gang; Zhang, Mei; Guo, Min

    2016-02-01

    Nb2O5 coated hierarchical TiO2 nanowire-sheet arrays photoanode was synthesized on flexible Ti-mesh substrate by using a hydrothermal approach. The effect of TiO2 morphology and Nb2O5 coating layer on the photovoltaic performance of the flexible dye sensitized solar cells (DSSCs) based on Ti-mesh supported nanostructures were systematically investigated. Compared to the TiO2 nanowire arrays (NWAs), hierarchical TiO2 nanowire arrays (HNWAs) with enlarged internal surface area and strong light scattering properties exhibited higher overall conversion efficiency. The introduction of thin Nb2O5 coating layers on the surface of the TiO2 HNWAs played a key role in improving the photovoltaic performance of the flexible DSSC. By separating the TiO2 and electrolyte (I-/I3-), the Nb2O5 energy barrier decreased the electron recombination rate and increased electron collection efficiency and injection efficiency, resulting in improved Jsc and Voc. Furthermore, the influence of Nb2O5 coating amounts on the power conversion efficiency were discussed in detail. The fully flexible DSSC based on Nb2O5 coated TiO2 HNWAs films with a thickness of 14 μm displayed a well photovoltaic property of 4.55% (Jsc = 10.50 mA cm-2, Voc = 0.75 V, FF = 0.58). The performance enhancement of the flexible DSSC is largely attributed to the reduced electron recombination, enlarged internal surface area and superior light scattering ability of the formed hierarchical nanostructures.

  5. Enhanced photovoltaic performance of dye-sensitized solar cells using a new photoelectrode material: upconversion YbF3-Ho/TiO2 nanoheterostructures

    NASA Astrophysics Data System (ADS)

    Yu, Jia; Yang, Yulin; Fan, Ruiqing; Wang, Ping; Dong, Yuwei

    2016-02-01

    New up-conversion YbF3-Ho/TiO2 (UC/TiO2) nanoheterostructures are designed and explored as an efficient photoelectrode material to yield dye-sensitized solar cells (DSSCs) with enhanced performance. In this study, we analyze the photogenerated charge transfer properties of the UC/TiO2 nanoheterostructures via surface photovoltage (SPV) and transient photovoltage (TPV) techniques, and the interfacial dynamics of charge transfer and recombination processes in DSSCs using electrochemical impedance spectroscopy (EIS) and open circuit photovoltage decay (OCVD) techniques. It is found that these UC/TiO2 nanoheterostructures combine the upconversion function of YbF3-Ho and the semiconductive merits from TiO2. More importantly, the hetero-junction interface in the UC/TiO2 nanoheterostructures not only induces direct electron-injection from YbF3-Ho to TiO2 by utilizing near-infrared light, but also further improves the existing merits of TiO2 through facilitating the interfacial photoinduced charge separation, suppressing the photoinduced charge recombination and prolonging the lifetimes of excited electrons, which can give further improvement of the photovoltaic performances. When integrating the UC/TiO2 nanoheterostructures into DSSCs, an overall energy conversion efficiency of 8.0% is achieved. There is a 23% enhancement in the overall conversion efficiency and a 19% improvement in the photocurrent, compared to the pristine devices.New up-conversion YbF3-Ho/TiO2 (UC/TiO2) nanoheterostructures are designed and explored as an efficient photoelectrode material to yield dye-sensitized solar cells (DSSCs) with enhanced performance. In this study, we analyze the photogenerated charge transfer properties of the UC/TiO2 nanoheterostructures via surface photovoltage (SPV) and transient photovoltage (TPV) techniques, and the interfacial dynamics of charge transfer and recombination processes in DSSCs using electrochemical impedance spectroscopy (EIS) and open circuit photovoltage

  6. Weavable dye sensitized solar cells exploiting carbon nanotube yarns

    NASA Astrophysics Data System (ADS)

    Velten, Josef; Kuanyshbekova, Zharkynay; Göktepe, Özer; Göktepe, Fatma; Zakhidov, Anvar

    2013-05-01

    Weavable Dye Sensitized Solar Cells (DSSC) made with flexible yarns of conductive multiwalled carbon nanotubes (MWNTs) were produced having a power conversion efficiency above 3%. This was achieved with a specific design and careful consideration of the yarn function in the DSSC. Fermat yarns of MWNTs individually coated with mesoporous TiO2 layer were twisted together and coated with more mesoporous TiO2 to create a 3 dimensional photo electrode to overcome electron diffusion length issues. Archimedian yarns of MWNTs coated with a thin layer of platinum worked as a counter electrode to complete the architecture used in this DSSC.

  7. Enhanced photovoltaic performance of novel TiO2 photoelectrode on TCO substrates for dye-sensitized solar cells.

    PubMed

    Nam, Jung Eun; Kwon, Soon Jin; Jo, Hyo Jeong; Yi, Kwang Bok; Kim, Dae-Hwan; Kang, Jin-Kyu

    2014-12-01

    In this study, we report synthesis and growth of rutile-anatase TiO2 thin film on fluorine-doped tin oxide (FTO) glass by a two-step hydrothermal method. The effects of additional treatments (i.e., TiCl4 post-treatment and seed layer formation were also studied. Photocurrent-voltage (I-V) measurement of rutile-anatase TiO2 thin film was performed under 1.5 G light illumination. Photovoltaic performance was investigated by incident photon-to-electron conversion efficiency (IPCE), electrochemical impedance spectroscopy (EIS), intensity-modulated photocurrent/photovoltage spectroscopy (IMVS/IMPS) and open-circuit photovoltage decay (OCVD). PMID:25971044

  8. Electronic structures and optical properties of organic dye sensitizer NKX derivatives for solar cells: a theoretical approach.

    PubMed

    Zhang, Cai-Rong; Liu, Li; Liu, Zi-Jiang; Shen, Yu-Lin; Sun, Yi-Tong; Wu, You-Zhi; Chen, Yu-Hong; Yuan, Li-Hua; Wang, Wei; Chen, Hong-Shan

    2012-09-01

    The photon to current conversion efficiency of dye-sensitized solar cells (DSCs) can be significantly affected by dye sensitizers. The design of novel dye sensitizers with good performance in DSCs depend on the dye's information about electronic structures and optical properties. Here, the geometries, electronic structures, as well as the dipole moments and polarizabilities of organic dye sensitizers C343 and 20 kinds of NKX derivatives were calculated using density functional theory (DFT), and the computations of the time dependent DFT with different functionals were performed to explore the electronic absorption properties. Based upon the calculated results and the reported experimental work, we analyzed the role of different conjugate bridges, chromophores, and electron acceptor groups in tuning the geometries, electronic structures, optical properties of dye sensitizers, and the effects on the parameters of DSCs were also investigated. PMID:23117291

  9. Performance optimization in dye-sensitized solar cells with β-NaYF4:Er3+/Yb3+ and graphene multi-functional layer hybrid composite photoanodes

    NASA Astrophysics Data System (ADS)

    Luoshan, Mengdai; Li, Meiya; Liu, Xiaolian; Guo, Kaimo; Bai, Lihua; Zhu, Yongdan; Sun, Beilei; Zhao, Xingzhong

    2015-08-01

    The β-NaYF4:Er3+/Yb3+ hexagonal submicro-prisms coated with SiO2 forming core-shell structures (NYFYE@SiO2) and graphene oxide have been synthesized via a hydrothermal route. These NYFYE@SiO2 prisms and graphene were both introduced into TiO2 nanocrystalline films to form multi-functional-layers hybrid composite photoanodes and their dye-sensitized solar cells (DSSCs). The influence of various hybrid architectures of the composite photoanodes on the performances of the photoanodes and DSSCs were explored. Studies revealed that the graphene doping obviously increased the dye absorbed in the photoanode, the short-circuit current density (Jsc) and photoelectric conversion efficiency (η) of the DSSC. The adding of the NYFYE@SiO2 prisms significantly increased the light scattering and near-infrared light harvesting of the photoelectrode, among which the SiO2 coating layer on the prisms played an important role in reducing the photoelectron recombination and thus increasing the Jsc of the DSSC. The Jsc and η of the DSSC were significantly enhanced due to the complementary role between the UC of the NYFYE@SiO2 and the graphene. The optimal properties with a Jsc of 14.63 mA/cm2 and η of 7.16% are obtained in the DSSC with the codoped composite photoanode, increasing significantly by 21.5% and 25.6%, respectively, in comparison with those of the DSSC with pure TiO2 photoanode. Our studies demonstrated that codoping in photoanode with materials of complementary functions is an effective way to improve the performance of DSSCs.

  10. Enhanced Electrocatalytic Performance of a Porous g-C3 N4 /Graphene Composite as a Counter Electrode for Dye-Sensitized Solar Cells.

    PubMed

    Wang, Guiqiang; Zhang, Juan; Kuang, Shuai; Zhang, Wei

    2016-08-01

    A porous graphitic carbon nitride (g-C3 N4 )/graphene composite was prepared by a simple hydrothermal method and explored as the counter electrode of dye-sensitized solar cells (DSCs). The obtained g-C3 N4 /graphene composite was characterized by XRD, SEM, TEM, FTIR spectroscopy, and X-ray photoelectron spectroscopy. The results show that incorporating graphene nanosheets into g-C3 N4 forms a three-dimensional architecture with a high surface area, porous structure, efficient electron-transport network, and fast charge-transfer kinetics at the g-C3 N4 /graphene interfaces. These properties result in more electrocatalytic active sites and facilitate electrolyte diffusion and electron transport in the porous framework. As a result, the as-prepared porous g-C3 N4 /graphene composite exhibits an excellent electrocatalytic activity. In I(-) /I3 (-) redox electrolyte, the charge-transfer resistance of the porous g-C3 N4 /graphene composite electrode is 1.8 Ω cm(2) , which is much lower than those of individual g-C3 N4 (70.1 Ω cm(2) ) and graphene (32.4 Ω cm(2) ) electrodes. This enhanced electrocatalytic performance is beneficial for improving the photovoltaic performance of DSCs. By employing the porous g-C3 N4 /graphene composite as the counter electrode, the DSC achieves a conversion efficiency of 7.13 %. This efficiency is comparable to 7.37 % for a cell with a platinum counter electrode. PMID:27381049

  11. Dye-Sensitized Solar Cells for Space Power

    NASA Technical Reports Server (NTRS)

    Harris, Jerry D.; Hehemann, David G.; Duraj, Stan A.

    2003-01-01

    During the course of this grant, dye-sensitized solar cells were prepared and characterized. The solar cells were prepared using materials (dyes, electrolytes, transparent conductive oxide coated glass, nanocrystalline TiO2) entirely prepared in-house, as well as prepared using materials available commercially. Complete cells were characterized under simulated AM0 illumination. The best cell prepared at NASA had an AM0 efficiency of 1.22% for a 1.1 sq cm cell. Short circuit current (Isc), open circuit voltage (Voc) and fill factor (FF) for the cell were 6.95 mA, 618 mV and 42.8%, respectively. For comparison purposes, two commercially prepared dye-sensitized solar cells were obtained from Solaronix SA, Aubonne, Switzerland. The Solaronix cells were also characterized under simulated AM0 illumination. The best cell from Solaronix had an active area of 3.71 sq cm and measured an AM0 efficiency of 3.16%. with Isc, Voc and FF of 45.80 mA, 669.6 mV and 52.3%, respectively. Both cells from Solaronix were rapid thermal cycled between -80 C and 80 C. Thermal cycling led to a 4.6% loss of efficiency in one of the cells and led to nearly a complete failure in the second cell.

  12. Effect of growth solution concentration on the performance of gallium doped ZnO nanostructures dye sensitized solar cells (DSSCs)

    NASA Astrophysics Data System (ADS)

    Iwantono, I.; Tugirin, S.; Anggelina, F.; Awitdrus, Taer, Erman; Roza, L.; Umar, A. A.

    2016-02-01

    This paper reports the synthesis of gallium doped ZnO nanostructures via seed mediated growth hydrothermal technique and their application as photo-anode in DSSC. ZnO nanostructures have been grown on Flourin Tin Oxide (FTO). The precursor used in this research was zinc-nitrate-hexahydrate (Zn (NO3)2.6H2O) and hexa-metylene-tetramine (HMT) was chosen as surfactant. The growth process was carried out at various precursor solution concentrations, 0.1, 0.2, 0.3 and 0.4 M at 90°C for 8 hours. The growth solution was then doped with 1% wt gallium nitrate hydrate. The grown ZnO nanostructures were characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-Ray (EDX) and UV-Vis Spectroscopy. The samples were crystalline with wurtzite-hexagonal and their crystal orientation was (100), (002), (101), and (110). The morphological shape of the samples changed with the concentration of the precursor. The optical absorption decreased as the concentration increased. As can be seen from SEM images that the diameter of the particles ranged from 95 to 500 nm and the thickness ranged from 1540 to 3640 nm (1.54-3.64 µm). The best performance of DSSC was obtained from the sample utilizing the ZnO nanostructures prepared at 0.1 M precursor, with their photovoltaic parameters were the Jsc of 2.190 mA cm-2, FF of 0.39, and η of 0.41%, respectively.

  13. High-performance large-scale flexible dye-sensitized solar cells based on anodic TiO2 nanotube arrays.

    PubMed

    Jen, Hsiu-Ping; Lin, Meng-Hung; Li, Lu-Lin; Wu, Hui-Ping; Huang, Wei-Kai; Cheng, Po-Jen; Diau, Eric Wei-Guang

    2013-10-23

    A simple strategy to fabricate flexible dye-sensitized solar cells involves the use of photoanodes based on TiO2 nanotube (TNT) arrays with rear illumination. The TNT films (tube length ∼35 μm) were produced via anodization, and sensitized with N719 dye for photovoltaic characterization. Pt counter electrodes of two types were used: a conventional FTO/glass substrate for a device of rigid type and an ITO/PEN substrate for a device of flexible type. These DSSC devices were fabricated into either a single-cell structure (active area 3.6×0.5 cm2) or a parallel module containing three single cells (total active area 5.4 cm2). The flexible devices exhibit remarkable performance with efficiencies η=5.40% (single cell) and 4.77% (parallel module) of power conversion, which outperformed their rigid counterparts with η=4.87% (single cell) and 4.50% (parallel model) under standard one-sun irradiation. The flexible device had a greater efficiency of conversion of incident photons to current and a broader spectral range than the rigid device; a thinner electrolyte layer for the flexible device than for the rigid device is a key factor to improve the light-harvesting ability for the TNT-DSSC device with rear illumination. Measurements of electrochemical impedance spectra show excellent catalytic activity and superior diffusion characteristics for the flexible device. This technique thus provides a new option to construct flexible photovoltaic devices with large-scale, light-weight, and cost-effective advantages for imminent applications in consumer electronics. PMID:24050628

  14. Performance characteristics of guanine incorporated PVDF-HFP/PEO polymer blend electrolytes with binary iodide salts for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Senthil, R. A.; Theerthagiri, J.; Madhavan, J.; Arof, A. K.

    2016-08-01

    In this work, we have investigated the influence of guanine as an organic dopant in dye-sensitized solar cell (DSSC) based on poly(vinylidinefluoride-co-hexafluoropropylene) (PVDF-HFP)/polyethylene oxide (PEO) polymer blend electrolyte along with binary iodide salts (potassium iodide (KI) and tetrabutylammonium iodide (TBAI)) and iodine (I2). The PVDF-HFP/KI + TBAI/I2, PVDF-HFP/PEO/KI + TBAI/I2 and guanine incorporated PVDF-HFP/PEO/KI + TBAI/I2 electrolytes were prepared by solution casting technique using DMF as solvent. The PVDF-HFP/KI + TBAI/I2 electrolyte showed an ionic conductivity value of 9.99 × 10-5 Scm-1, whereas, it was found to be increased to 4.53 × 10-5 Scm-1 when PEO was blended with PVDF-HFP/KI + TBAI/I2 electrolyte. However, a maximum ionic conductivity value of 3.67 × 10-4 Scm-1 was obtained for guanine incorporated PVDF-HFP/PEO/KI + TBAI/I2 blend electrolyte. The photovoltaic properties of all these polymer electrolytes in DSSCs were characterized. As a consequence, the power conversion efficiency of the guanine incorporated PVDF-HFP/PEO/KI + TBAI/I2 electrolyte based DSSC was significantly improved to 4.98% compared with PVDF-HFP/PEO/KI + TBAI/I2 electrolyte based DSSC (2.46%). These results revealed that the guanine can be an effective organic dopant to enhance the performance of DSSCs.

  15. Optimization of processing parameters on the controlled growth of ZnO nanorod arrays for the performance improvement of solid-state dye-sensitized solar cells

    SciTech Connect

    Lee, Yi-Mu; Yang, Hsi-Wen

    2011-03-15

    High-transparency and high quality ZnO nanorod arrays were grown on the ITO substrates by a two-step chemical bath deposition (CBD) method. The effects of processing parameters including reaction temperature (25-95 {sup o}C) and solution concentration (0.01-0.1 M) on the crystal growth, alignment, optical and electrical properties were systematically investigated. It has been found that these process parameters are critical for the growth, orientation and aspect ratio of the nanorod arrays, showing different structural and optical properties. Experimental results reveal that the hexagonal ZnO nanorod arrays prepared under reaction temperature of 95 {sup o}C and solution concentration of 0.03 M possess highest aspect ratio of {approx}21, and show the well-aligned orientation and optimum optical properties. Moreover the ZnO nanorod arrays based heterojunction electrodes and the solid-state dye-sensitized solar cells (SS-DSSCs) were fabricated with an improved optoelectrical performance. -- Graphical abstract: The ZnO nanorod arrays demonstrate well-alignment, high aspect ratio (L/D{approx}21) and excellent optical transmittance by low-temperature chemical bath deposition (CBD). Display Omitted Research highlights: > Investigate the processing parameters of CBD on the growth of ZnO nanorod arrays. > Optimization of CBD process parameters: 0.03 M solution concentration and reaction temperature of 95 {sup o}C. > The prepared ZnO samples possess well-alignment and high aspect ratio (L/D{approx}21). > An n-ZnO/p-NiO heterojunction: great rectifying behavior and low leakage current. > SS-DSSC has J{sub SC} of 0.31 mA/cm{sup 2} and V{sub OC} of 590 mV, and an improved {eta} of 0.059%.

  16. Effect of nitrogen doping on the performance of dye-sensitized solar cells composed of mesoporous TiO2 photoelectrodes.

    PubMed

    Eom, Ki Heon; Yun, Tae Kwan; Hong, Jin-Yeon; Bae, Jae Young; Huh, Seong; Won, Yong Sun

    2014-12-01

    Nitrogen-doped mesoporous TiO2 (NMP TiO2) nanoparticles are synthesized using a soft triblock copolymer template by TiCl4 hydrolysis with ammonia water and applied to the photoelectrodes of dye-sensitized solar cells (DSSCs). The large surface area of a TiO2 mesoporous structure is favorable for dye uptake, and nitrogen doping of TiO2 is expected to increase the charge transport in the photoelectrode as well as the scattering of visible light. Structural characterizations for NMP TiO2 nanoparticles by XRD, XPS, BET, and BJH analyses revealed successful synthesis. However, the photovoltaic performances of the DSSCs prepared from NMP TiO2 were not improved, as had been expected: the photo-conversion efficiency (η) of DSSCs from undoped mesoporous TiO2 (MP TiO2) was 4.69%, an improvement over the 4.15% with the application of P25 TiO2, but the efficiency of DSSCs from NMP TiO2 decreased to 3.2-3.6%. The measured amounts of adsorbed dye showed that nitrogen doping did not significantly affect dye adsorption. Therefore, it can be concluded that nitrogen doping increases isotropic charge transport in a TiO2 nanoparticle to promote charge recombination into an electrolyte, despite its advantages. The full benefits of nitrogen doping may be obtained through measures such as the deposition of a thin barrier layer of oxide onto the TiO2 surface to prevent charge recombination during charge transport in the TiO2 network. PMID:25971066

  17. Artificial evolution of coumarin dyes for dye sensitized solar cells.

    PubMed

    Venkatraman, Vishwesh; Abburu, Sailesh; Alsberg, Bjørn Kåre

    2015-11-01

    The design and discovery of novel molecular structures with optimal properties has been an ongoing effort for materials scientists. This field has in general been dominated by experiment driven trial-and-error approaches that are often expensive and time-consuming. Here, we investigate if a de novo computational design methodology can be applied to the design of coumarin-based dye sensitizers with improved properties for use in Grätzel solar cells. To address the issue of synthetic accessibility of the designed compounds, a fragment-based assembly is employed, wherein the combination of chemical motifs (derived from the existing databases of structures) is carried out with respect to user-adaptable set of rules. Rather than using computationally intensive density functional theory (DFT)/ab initio methods to screen candidate dyes, we employ quantitative structure-property relationship (QSPR) models (calibrated from empirical data) for rapid estimation of the property of interest, which in this case is the product of short circuit current (Jsc) and open circuit voltage (Voc). Since QSPR models have limited validity, pre-determined applicability domain criteria are used to prevent unacceptable extrapolation. DFT analysis of the top-ranked structures provides supporting evidence of their potential for dye sensitized solar cell applications. PMID:26428071

  18. Dye-sensitized solar cells using retinoic acid and carotenoic acids: Dependence of performance on the conjugation length and the dye concentration

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Feng; Fujii, Ritsuko; Ito, Seigo; Koyama, Yasushi; Yamano, Yumiko; Ito, Masayoshi; Kitamura, Takayuki; Yanagida, Shozo

    2005-11-01

    Titanium oxide-based dye-sensitized solar cells (DSSC) were fabricated by the use of retinoic acid and carotenoic acids having the number of conjugated double bonds, n = 5-13. The incident photon-to-current conversion efficiency, the photocurrent density and the solar energy-to-electricity conversion efficiency exhibited the highest values at n = 7, and then decreased toward both sides. The effects of dilution of CA7 with deoxycholic acid were also examined. The above parameters per unit CA7 concentration progressively increased toward the lowest concentration, which is ascribed to the isolated excitation free from singlet-triplet annihilation in the dye molecules on the TiO 2 layer.

  19. Synthesis and photovoltaic performance of novel polymeric metal complex sensitizer with benzodithiophene or carbazole derivative as donor in dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Liao, Yanlong; Hu, Jiaomei; Zhu, Chunxiao; Liu, Ye; Chen, Xu; Chen, Chenqi; Zhong, Chaofan

    2016-03-01

    Four donor-acceptor (D-A) types of novel conjugated polymeric metal complex dyes (P1-P4) with Zn (II) or Cd (II) complexes as the electron acceptors and benzodithiophene or carbazole derivative as the electron donors were designed and prepared, as promising sensitizers for dye-sensitized solar cells (DSSCs). Diaminomaleonitrile acted as ancillary ligand. The structures of the polymers were confirmed, and their thermal, optical, electrochemical, and photovoltaic properties were investigated. All conjugated polymers exhibit good thermal stability with onset decomposition temperatures with 5% weight loss over 315 °C, broad absorption with the onset of absorption at 588 nm in the visible region, and relatively lower HOMO energy levels from -5.54 to -5.71 eV. The DSSC device based on P2 which containing Cd(II) as coordination metal ion and benzodithiophene derivative as donor exhibited the highest power conversion efficiency of 2.18% under the AM 1.5 G (100 mW cm-2) sunlight illumination with an open-circuit voltage of Voc = 0.68 V, a short current density of Jsc = 4.85 mA cm-2, and a fill factor of FF = 66.2%, respectively. Therefore, these results provide a new way to design dye sensitizers for DSSCs.

  20. Natural dye sensitized TiO2 nanorods assembly of broccoli shape based solar cells.

    PubMed

    Yuvapragasam, Akila; Muthukumarasamy, N; Agilan, S; Velauthapillai, Dhayalan; Senthil, T S; Sundaram, Senthilarasu

    2015-07-01

    TiO2 nanorods based thin films with rutile phase have been synthesized using template free low temperature hydrothermal method. The scanning electron microscope images showed that the prepared TiO2 samples were made of TiO2 nanorods and the nanorods had arranged by itself to form a broccoli like shape. The X-ray diffraction studies revealed that the prepared TiO2 samples exhibit rutile phase. The grown TiO2 nanorods had been sensitized using the flowers of Sesbania (S) grandiflora, leaves of Camellia (C) sinensis and roots of Rubia (R) tinctorum. Dye sensitized solar cells had been fabricated using the natural dye sensitized TiO2 nanorods based thin film photoelectrode and the open circuit voltage and short circuit current density were found to lie in the range of 0.45-0.6 V and 5.6-6.4 mA/cm(2) respectively. The photovoltaic performance of all the fabricated natural dye sensitized TiO2 solar cells indicate that natural dyes have the potential to be used as effective sensitizer in dye sensitized solar cells. PMID:25974906

  1. Towards low temperature sintering methods for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Murali, Sukanya

    Access to economically viable renewable energy sources is essential for the development of a globally sustainable society. Solar energy has a large potential to satisfy the future need for renewable energy sources. Dye sensitized solar cells are a third generation of photovoltaic technologies with the potential for low cost environmentally safe energy production. Commercialization of this technology requires that dye sensitized solar cells with higher efficiencies can be fabricated on flexible substrates. The commonly used material for the anode in a Dye Sensitized Solar Cell consists of titanium dioxide nanoparticles covered with a layer of light sensitizing dye. For efficient electron transport throughout the nanoparticle network, good particle interconnections are necessary. For low temperature processing these interconnections can be achieved through a hydrothermal process. The focus of this research is to understand at a fundamental level this reaction-based sintering process. A titanium alkoxide precursor was mixed with commercial titania nanoparticles and coated on a transparent conductive oxide substrate. The product of the hydrolysis and condensation of the alkoxide served to connect the nanoparticles thus improving the electrical conduction of the titania electrode; this was confirmed by solar cell testing and electrochemical impedance spectroscopy. To further understand the formation of interconnections during reactive sintering, a model system based on inert silica particles was investigated. Titanium alkoxide precursor was mixed with commercial silica particles and reacted. Three different types of silica particles were used: each with a different morphology. The silica-titania multilayers/powders were characterized using SEM, XRD and BET. The efficiency of DSSCs is higher when larger non-porous silica particles are used and thin nanocrystalline titania is coated on this superstructure. This gave insight into the locations where the reactive liquid

  2. Device modeling of dye-sensitized solar cells.

    PubMed

    Bisquert, Juan; Marcus, Rudolph A

    2014-01-01

    We review the concepts and methods of modeling of the dye-sensitized solar cell, starting from fundamental electron transfer theory, and using phenomenological transport-conservation equations. The models revised here are aimed at describing the components of the current-voltage curve of the solar cell, based on small perturbation experimental methods, and to such an end, a range of phenomena occurring in the nanoparticulate electron transport materials, and at interfaces, are covered. Disorder plays a major role in the definition of kinetic parameters, and we introduce single particle as well as collective function definitions of diffusion coefficient and electron lifetime. Based on these fundamental considerations, applied tools of analysis of impedance spectroscopy are described, and we outline in detail the theory of recombination via surface states that is successful to describe the measured recombination resistance and lifetime. PMID:24085559

  3. Dye sensitized solar cells with carbon black as counter electrodes

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Feng; Chou, Yu-Chen; Haung, Jhang-Fu; Chen, Pin-Hung; Han, Hsieh-Cheng; Chiu, Kuo-Yuan; Su, Yuhlong Oliver

    2016-03-01

    In this experiment, we use carbon black as counter electrodes to replace the conventional platinum electrodes in dye sensitized solar cell (DSSC). The electrical properties and device efficiency with carbon black counter electrodes with various concentrations, and under the annealing temperature from 100 to 500 °C are discussed. After the proper annealing process, the conductivity and redoxing ability of the carbon black is improved, resulted in the enhancement of the electrical characteristics, especially fill factor, of the device. The highest device efficiency was 7.28% with the JSC of 14.70 mA/cm2, VOC of 0.75 V, and fill factor of 0.67 under 1-sun AM 1.5G solar illumination.

  4. Effect of a Coadsorbent on the Performance of Dye-Sensitized TiO2 Solar Cells: Shielding versus Band-Edge Movement

    SciTech Connect

    Frank, A. J.; Neale, N. R.; Kopidakis, N.; van de Lagemaat, J.; Gratzel, M.

    2005-11-01

    The objective of this research is to determine the operational characteristics key to efficient, low-cost, stable solar cells based on dye-sensitized mesoporous films (in collaboration with DOE's Office of Science Program). Toward this end, we have investigated the mechanism by which the adsorbent chenodeoxycholate, cografted with a sensitizer onto TiO2 nanocrystals, improves the open-circuit photovoltage (VOC) and short-circuit photocurrent density (JSC). We find that adding chenodeoxycholate not only shifts the TiO2 conduction-band edge to negative potentials but also accelerates the rate of recombination. The net effect of these opposing phenomena is to produce a higher photovoltage. It is also found that chenodeoxycholate reduces the dye loading significantly but has only a modest effect on JSC. Implications of these results to developing more efficient cells are discussed.

  5. Podlike N-doped carbon nanotubes encapsulating FeNi alloy nanoparticles: high-performance counter electrode materials for dye-sensitized solar cells.

    PubMed

    Zheng, Xiaojia; Deng, Jiao; Wang, Nan; Deng, Dehui; Zhang, Wen-Hua; Bao, Xinhe; Li, Can

    2014-07-01

    Podlike nitrogen-doped carbon nanotubes encapsulating FeNi alloy nanoparticles (Pod(N)-FeNi) were prepared by the direct pyrolysis of organometallic precursors. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and Tafel polarization measurements revealed their excellent electrocatalytic activities in the I(-)/I3(-) redox reaction of dye-sensitized solar cells (DSSCs). This is suggested to arise from the modification of the surface electronic properties of the carbon by the encapsulated metal alloy nanoparticles (NPs). Sequential scanning with EIS and CV further showed the high electrochemical stability of the Pod(N)-FeNi composite. DSSCs with Pod(N)-FeNi as the counter electrode (CE) presented a power conversion efficiency of 8.82%, which is superior to that of the control device with sputtered Pt as the CE. The Pod(N)-FeNi composite thus shows promise as an environmentally friendly, low-cost, and highly efficient CE material for DSSCs. PMID:24800923

  6. Proficiency of acceptor-donor-acceptor organic dye with spiro-MeOTAD HTM on the photovoltaic performance of dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Ramavenkateswari, K.; Venkatachalam, P.

    2016-08-01

    This work investigates the proficiency of acceptor-donor-acceptor (A-D-A) organic dye Diisopropyl azodicarboxylate (DIAC) as photosensitizer on the photovoltaic parameters of silver (Ag) doped TiO2 photoanode dye-sensitized solar cells (DSSCs) with quasi-solid state electrolyte/hole transport material (HTM) spiro-MeOTAD. TNSs (TiO2 nanosticks) photoanodes are prepared through sol-gel method and hydrothermal technique. X-ray powder diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and BET measurement were used to characterize the structure and morphology of TiO2 nanostructures. The Diisopropyl azodicarboxylate organic dye with TNPs-Ag@TNSs composite photoanode structure and spiro-MeOTAD HTM exhibited better power conversion efficiency (PCE). [Figure not available: see fulltext.

  7. Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells

    SciTech Connect

    Park, N. G.; van de Lagemaat, J.; Frank, A. J.

    2000-01-01

    The objective of this work is to develop and optimize the new dye-sensitized solar cell technology. In view of the infancy of rutile material development for solar cells, the PV response of the dye-sensitized rutile-based solar cell is remarkably close to that of the anatase-based cell.

  8. Improved performance of Ag-doped TiO2 synthesized by modified sol-gel method as photoanode of dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Gupta, Arun Kumar; Srivastava, Pankaj; Bahadur, Lal

    2016-08-01

    Ag-doped TiO2 with Ag content ranging from 1 to 7 mol% was synthesized by a modified sol-gel route, and its performance as the photoanode of dye-sensitized solar cells (DSSCs) was compared with undoped TiO2 photoanode. Titanium(IV)isopropoxide was used as precursor and hexamethylenetetramine as the capping agent. XRD results show the formation of TiO2 nanoparticles with an average crystallite size of 5 nm (1 % Ag-doped TiO2) and 9 nm (undoped TiO2), respectively. The TiO2 nanopowder was used to prepare its thin film photoelectrode using doctor's blade method. Significant improvement in light-to-energy conversion efficiency was achieved when thin films of 1 % Ag-doped TiO2 were applied as photoanode in DSSC taking N719 as the sensitizer dye. As evidenced by EIS measurements, the electron lifetime of DSSC with Ag-doped TiO2 increased from 1.33 (for undoped TiO2) to 2.05 ms. The short-circuit current density ( J sc), open-circuit voltage ( V oc), fill factor (FF) and the overall energy conversion efficiency ( η) were 1.07 mA cm-2, 0.72 V, 0.73 and 0.40 %, respectively, with the use of 1 % Ag-doped TiO2 photoanode, whereas with undoped TiO2 under similar conditions, J sc = 0.63 mA cm-2, V oc = 0.70 V, fill factor 0.45 and conversion efficiency 0.14 % could be obtained. Therefore, compared with the reference DSSC containing an undoped TiO2 photoanode, the power conversion efficiency of the cell based on Ag-doped TiO2 has been remarkably enhanced by ~70 %. The substantial improvement in the device performance is attributed to the reduced band-gap energy, retarded charge recombination and greater surface coverage of the sensitizing dye over Ag-doped TiO2, which ultimately resulted in improved IPCE, J SC and η values.

  9. Plasmonic nanoparticles enhanced dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Liu, Fang; Meng, Weisi; Huang, Yidong

    2013-12-01

    Here we present investigations on utilizing two kinds of plasmonic nanoparticles (NPs) to enhance the efficiency of dye sensitized solar cells (DSCs). The Au@PVP NPs is proposed and present the specialty of adhesiveness to dye molecules, which could help to localize additional dye molecules near the plasmonic NPs, hence increasing the optical absorption consequently the power conversion efficiency (PCE) of the DSCs by 30% from 3.3% to 4.3%. Meanwhile, an irregular Au-Ag alloy popcorn-shaped NPs (popcorn NPs) with plenty of fine structures is also proposed and realized to enhance the light absorption of DSC. A pronounced absorption enhancement in a broadband wavelength range is observed due to the excitation of localized surface plasmon at different wavelengths. The PCE is enhanced by 32% from 5.94% to 7.85%.

  10. Efficiency Records in Mesoscopic Dye-Sensitized Solar Cells.

    PubMed

    Albero, Josep; Atienzar, Pedro; Corma, Avelino; Garcia, Hermenegildo

    2015-08-01

    The aim of the present review article is to show the progress achieved in the efficiency of dye-sensitized solar cells (DSSCs) by evolution in the structure and composition of the dye. After an initial brief description of DSSCs and the operating mechanism the major part of the present article is organized according to the type of dye, trying to show the logic in the variation of the dye structure in order to achieve strong binding on the surface of the layer of nanoparticulate TiO2 , efficient interfacial electron injection between the excited dye and the semiconductor, and minimization of the unwanted dark current processes. Besides metal complexes, including polypyridyls and nitrogenated macro rings, organic dyes and inorganic light harvesters such as quantum dots and perovskites have also been included in the review. The last section summarizes the current state of the art and provides an overview on future developments in the field. PMID:26183911

  11. Enhanced performance of bi-layer Nb2O5 coated TiO2 nanoparticles/nanowires composite photoanode in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Maheswari, D.; Venkatachalam, P.

    2014-11-01

    Dye sensitized solar cells (DSSCs) were fabricated based on coumarin NKX-2700 dye sensitized bi-layer photoanode and quasi-solid state electrolyte sandwiched together with cobalt sulfide coated counter electrode. A novel bi-layer photoanode has been prepared using composite mixtures of 90 wt.% TiO2 nanoparticles + 10 wt.% TiO2 nanowires (TNPWs) as active layer and Nb2O5 is coated on the active layer, which acts as scattering layer. Hafnium oxide (HfO2) was applied over the TNPWs/Nb2O5 photoanode film, as a blocking layer. TiO2 nanoparticles (TNPs), TiO2 nanowires (TNWs) and TNPWs/Nb2O5 were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The sensitizing organic dye coumarin NKX-2700 displayed maximum absorption wavelength (λmax) at 525 nm, which could be observed from the UV-vis spectrum. DSSC-1 fabricated with composite bi-layer photoanode revealed enhanced photo-current efficiency (PCE) as compared to other DSSCs and illustrated photovoltaic parameters; short-circuit current JSC = 18 mA/cm2, open circuit voltage (VOC) = 700 mV, fill factor (FF) = 64% and PCE (η) = 8.06%. The electron transport and charge recombination behaviors of DSSCs were investigated by electrochemical impedance spectra (EIS) and the results illustrated that the DSSC-1 showed the lowest charge transport resistance (Rtr) and the longest electron lifetime (τeff). Therefore, in the present investigation, it could be concluded that the novel bi-layer photoanode with blocking layer increased the short circuit current, electron transport and suppressed the recombination of charge carriers at the photoanode/dye/electrolyte interface in DSSC-1.

  12. Improving optical absorptivity of natural dyes for fabrication of efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hemmatzadeh, Reza; Mohammadi, Ahmad

    2013-11-01

    Efficient and cheap dye-sensitized solar cells (DSSCs) were fabricated using natural dyes from Pastinaca sativa and Beta vulgaris. Natural dyes are environmentally and economically superior to ruthenium-based dyes because they are nontoxic and cheap. However, the conversion efficiency of dye-sensitized solar cells based on natural dyes is low. One way to improve the DSSC performance is to enhance the absorptivity of extracted dyes. We investigated the influence of various factors in the extraction process, such as utilization of different extraction approaches, the acidity of extraction solvent, and different compounds of solvents on the optical absorption spectra. It was found that we could considerably enhance the optical absorptivity of dye and consequently the performance of DSSC by choosing a proper mixture of ethanol and water for extracting solvent and also the acidity of dye solution.

  13. Dye-Sensitized Solar Cells: The Future of Using Earth-Abundant Elements in Counter Electrodes for Dye-Sensitized Solar Cells (Adv. Mater. 20/2016).

    PubMed

    Briscoe, Joe; Dunn, Steve

    2016-05-01

    Sustainability is an important concept generating traction in the research community. To be really sustainable the full life cycle of a product needs to be carefully considered. A key aspect of this is using elements that are either readily recycled or accessible in the Earth's biosphere. Jigsawing these materials together in compounds to address our future energy needs represents a great opportunity for the current generation of researchers. On page 3802, S. Dunn and J. Briscoe summarize the performance of a selection of alternative materials to replace platinum in the counter electrodes of dye-sensitized solar cells. PMID:27197641

  14. Characteristics of nanostructure dye-sensitized solar cells using food dyes

    NASA Astrophysics Data System (ADS)

    Hosseinnezhad, M.; Rouhani, S.

    2016-01-01

    Dye-sensitized solar cells (DSSCs) were prepared using various food dyes. Food dyes are economically superior to organometallic dyes since they are nontoxic and inexpensive. The spectrophotometric evaluation of chosen food dyes in solution and on a TO2 substrate show that the dyes form J-aggregation on the photoelectrode substrate. Oxidation of potential measurements for used food dyes ensured an energetically permissible and thermodynamically favorable charge transfer throughout the continuous cycle of a photo-electric conversion. The performance of dye-sensitized solar cells based on food dyes was studied. The results illustrate that the dye containing carboxylic acid and sulfonic acid as the acceptor group gave the maximum conversion efficiency 4.20%.

  15. Characteristics of nanostructure dye-sensitized solar cells using food dyes

    NASA Astrophysics Data System (ADS)

    Hosseinnezhad, M.; Rouhani, S.

    2016-01-01

    Dye-sensitized solar cells (DSSCs) were prepared using various food dyes. Food dyes are economically superior to organometallic dyes since they are nontoxic and inexpensive. The spectrophotometric evaluation of chosen food dyes in solution and on a TiO2 substrate show that the dyes form J-aggregation on the photoelectrode substrate. Oxidation of potential measurements for used food dyes ensured an energetically permissible and thermodynamically favorable charge transfer throughout the continuous cycle of a photo-electric conversion. The performance of dye-sensitized solar cells based on food dyes was studied. The results illustrate that the dye containing carboxylic acid and sulfonic acid as the acceptor group gave the maximum conversion efficiency 4.20%.

  16. Printable highly catalytic Pt- and TCO-free counter electrode for dye-sensitized solar cells.

    PubMed

    He, Jian; Lee, Lawrence Tien Lin; Yang, Shihang; Li, Quan; Xiao, Xudong; Chen, Tao

    2014-02-26

    Here we show that a counter electrode based on carbon network supported Cu2ZnSnS4 nanodots on Mo-coated soda-lime glass for dye-sensitized solar cells can outperform the conventional best electrode with Pt nanoparticles on the fluorine-doped SnO2 conducting glass. In the as-developed electrode, all of the elements are of high abundance ratios with low materials cost. The fabrication is scalable because it is conducted by a screen-printing based approach. Therefore, this research lays a solid ground for the large area fabrication of high-performance dye-sensitized solar cell at reduced material cost. PMID:24467193

  17. Parallel Tandems of Dye Sensitized Solar Cells with CNT Collector

    NASA Astrophysics Data System (ADS)

    Velten, Josef; Yuan, Chao-Chen; Zakhidov, Anvar

    2009-03-01

    In this presentation, we demonstrate the fabrication of monolithic parallel tandem dye sensitized solar cells using a semitransparent layer of carbon nanotubes. Each DSC sub-cell has titania photoelectrode with two different dyes: N 719 and N 749, which absorb light in different parts of solar spectrum. This layer of carbon nanotubes laminated on highly porous polymeric Millipore filter acts as both the collector of charge carrier and as the catalyst of the I/I3^- redox reaction that completes the function of the cell, overall allowing easier fabrication for tandem solar cell devices, with a potential for creating flexible devices in the future. The parallel tandem shows the total photocurrent which is nearly the sum of two Isc currents of constituent cells, and total Voc, which is average of two Voc, while conventional in-series DSC tandems show the lowest Voc and slightly increased Isc[1]. Thus the higher efficiency can be achieved in parallel DSC tandems, and we discuss the physical reasons for this effect. [1] Yanagida, et.al. J. of Photochemistry and Photobiology A: Chemistry Volume 164, Issues 1-3, 1 June 2004, Pages 33-39

  18. First principles modeling of eosin-loaded ZnO films: a step toward the understanding of dye-sensitized solar cell performances.

    PubMed

    Labat, Frédéric; Ciofini, Ilaria; Hratchian, Hrant P; Frisch, Mike; Raghavachari, Krishnan; Adamo, Carlo

    2009-10-14

    A theoretical investigation of eosin-Y (EY) loaded ZnO thin films, the basic components of a dye-sensitized solar cell (DSSC), is presented. The EY/ZnO wurtzite (10-10) system has been fully described within a periodic approach using density functional theory (DFT) and a hybrid exchange-correlation functional. Reduced systems were also analyzed to simulate an electron transfer from the dye to the substrate. Injection times from dye to the semiconductor were calculated using the Newns-Anderson approach. Finally, the UV-visible spectra of EY/ZnO films were simulated using a time-dependent DFT approach and compared to that of the EY molecule computed in solution. The results obtained highlight that EY strongly adsorbs on the ZnO substrate contributing significantly to the electronic structure of the adsorbed system. The UV-visible spectral signature of the isolated EY molecule is still found when adsorbed on ZnO but the analysis of Gamma-point crystalline orbitals reveals that a direct HOMO-->LUMO excitation cannot lead to a direct electron injection into the semiconductor, the first unoccupied orbital with contributions from the ZnO substrate being the LUMO + 1. As a consequence, a two photon injection mechanism is proposed explaining the low efficiency of the EY/ZnO solar cells. On this basis, possible strategies for enhancing the cell efficiency are presented and discussed. PMID:19761184

  19. Facile synthesis of high quality multi-walled carbon nanotubes on novel 3D KIT-6: application in high performance dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Balamurugan, Jayaraman; Pandurangan, Arumugam; Kim, Nam Hoon; Lee, Joong Hee

    2014-12-01

    A novel hard templating strategy for the synthesis of high quality multi-walled carbon nanotubes (MWCNTs) with a uniform diameter was developed. MWCNTs were successfully synthesized through chemical vapour deposition (CVD) using acetylene by employing 3D bicontinuous mesoporous silica (KIT-6) as a hard template and used as the counter electrode in dye-sensitized solar cells (DSSCs). Here, we report that Ni-Cr-KIT-6 and Co-Cr-KIT-6 systems are the most suitable catalysts for the growth of MWCNTs. Raman spectroscopy and TEM analysis revealed that the synthesized MWCNTs were of high quality and well graphitized. Impressively, DSSCs with a MWCNT counter electrode demonstrated high power conversion efficiencies (PCEs) of up to 10.53%, which was significantly higher than that of 9.87% obtained for a DSSC with a conventional Pt counter electrode. Moreover, MWCNTs had a charge transfer resistance (Rct) of only 0.74 Ω cm2 towards the I3-/I- electrolyte commonly applied in DSSCs, which is several orders of magnitude lower than that of a typical Pt electrode (2.78 Ω cm2). These results indicate that the synthesized MWCNT counter electrodes are versatile candidates that can increase the power conversion efficiency (PCE) of DSSCs.A novel hard templating strategy for the synthesis of high quality multi-walled carbon nanotubes (MWCNTs) with a uniform diameter was developed. MWCNTs were successfully synthesized through chemical vapour deposition (CVD) using acetylene by employing 3D bicontinuous mesoporous silica (KIT-6) as a hard template and used as the counter electrode in dye-sensitized solar cells (DSSCs). Here, we report that Ni-Cr-KIT-6 and Co-Cr-KIT-6 systems are the most suitable catalysts for the growth of MWCNTs. Raman spectroscopy and TEM analysis revealed that the synthesized MWCNTs were of high quality and well graphitized. Impressively, DSSCs with a MWCNT counter electrode demonstrated high power conversion efficiencies (PCEs) of up to 10.53%, which was

  20. High-performance dye-sensitized solar cells based on morphology-controllable synthesis of ZnO-ZnS heterostructure nanocone photoanodes.

    PubMed

    Rouhi, Jalal; Mamat, Mohamad Hafiz; Ooi, C H Raymond; Mahmud, Shahrom; Mahmood, Mohamad Rusop

    2015-01-01

    High-density and well-aligned ZnO-ZnS core-shell nanocone arrays were synthesized on fluorine-doped tin oxide glass substrate using a facile and cost-effective two-step approach. In this synthetic process, the ZnO nanocones act as the template and provide Zn2+ ions for the ZnS shell formation. The photoluminescence spectrum indicates remarkably enhanced luminescence intensity and a small redshift in the UV region, which can be associated with the strain caused by the lattice mismatch between ZnO and ZnS. The obtained diffuse reflectance spectra show that the nanocone-based heterostructure reduces the light reflection in a broad spectral range and is much more effective than the bare ZnO nanocone and nanorod structures. Dye-sensitized solar cells based on the heterostructure ZnO-ZnS nanocones are assembled, and high conversion efficiency (η) of approximately 4.07% is obtained. The η improvement can be attributed primarily to the morphology effect of ZnO nanocones on light-trapping and effectively passivating the interface surface recombination sites of ZnO nanocones by coating with a ZnS shell layer. PMID:25875377

  1. High-Performance Dye-Sensitized Solar Cells Based on Morphology-Controllable Synthesis of ZnO–ZnS Heterostructure Nanocone Photoanodes

    PubMed Central

    Rouhi, Jalal; Mamat, Mohamad Hafiz; Ooi, C. H. Raymond; Mahmud, Shahrom; Mahmood, Mohamad Rusop

    2015-01-01

    High-density and well-aligned ZnO–ZnS core–shell nanocone arrays were synthesized on fluorine-doped tin oxide glass substrate using a facile and cost-effective two-step approach. In this synthetic process, the ZnO nanocones act as the template and provide Zn2+ ions for the ZnS shell formation. The photoluminescence spectrum indicates remarkably enhanced luminescence intensity and a small redshift in the UV region, which can be associated with the strain caused by the lattice mismatch between ZnO and ZnS. The obtained diffuse reflectance spectra show that the nanocone-based heterostructure reduces the light reflection in a broad spectral range and is much more effective than the bare ZnO nanocone and nanorod structures. Dye-sensitized solar cells based on the heterostructure ZnO–ZnS nanocones are assembled, and high conversion efficiency (η) of approximately 4.07% is obtained. The η improvement can be attributed primarily to the morphology effect of ZnO nanocones on light-trapping and effectively passivating the interface surface recombination sites of ZnO nanocones by coating with a ZnS shell layer. PMID:25875377

  2. Improved performance of dye-sensitized solar cells with TiO 2/alumina core-shell formation using atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Ganapathy, V.; Karunagaran, B.; Rhee, Shi-Woo

    Alumina (Al 2O 3) shell formation on TiO 2 core nanoparticles by atomic layer deposition (ALD) is studied to suppress the recombination of charge carriers generated in a dye-sensitized solar cell (DSSC). It is relatively easy to control the shell thickness using the ALD method by controlling the number of cycles. An optimum thickness can be identified, which allows tunneling of the forward current while suppressing recombination. High-resolution TEM measurements show that a uniform Al 2O 3 shell is formed around the TiO 2 core particles and elemental mapping of the porous TiO 2 layer reveals that the Al 2O 3 distribution is uniform throughout the layer. The amount of dye absorption is increased with increase in the shell thickness but electrochemical impedance spectroscopic (EIS) measurement shows a drastic increase in the resistance. With an optimum Al 2O 3 thickness of 2 nm deposited by ALD, a 35% improvement in the cell efficiency (from 6.2 to 8.4%) is achieved.

  3. Fluorene-based sensitizers with a phenothiazine donor: effect of mode of donor tethering on the performance of dye-sensitized solar cells.

    PubMed

    Baheti, Abhishek; Justin Thomas, K R; Li, Chun-Ting; Lee, Chuan-Pei; Ho, Kuo-Chuan

    2015-02-01

    Two types of fluorene-based organic dyes featuring T-shape/rod-shape molecular configuration with phenothiazine donor and cyanoacrylic acid acceptor have been synthesized and characterized as sensitizers for dye-sensitized solar cells. Phenothiazine is functionalized at either nitrogen (N10) or carbon (C3) to obtain T-shape and rod-like organic dyes, respectively. The effect of structural alternation on the optical, electrochemical, and the photovoltaic properties is investigated. The crystal structure determination of the dye containing phenyl linker revealed cofacial slip-stack columnar packing of the molecules. The trends in the optical properties of the dyes are interpreted using time-dependent density functional theory (TDDFT) computations. The rod-shaped dyes exhibited longer wavelength absorption and low oxidation potentials when compared to the corresponding T-shaped dyes attributable to the favorable electronic overlap between the phenothiazine unit and the rest of the molecule in the former dyes. However, the T-shaped dyes showed better photovoltaic properties due to the lowest unoccupied molecular orbital (LUMO) energy level favorable for electron injection into the conduction band of TiO2 and appropriate orientation of the phenothiazine unit rendering effective surface blocking to suppress the recombination of electrons between the electrolyte I3(-) and TiO2. The electrochemical impedance spectroscopy investigations provide further support for the variations in the electron injection and transfer kinetics due to the structural modifications. PMID:25557120

  4. Cooperation of multifunction composite structures and fluorescein for photovoltaic performance-enhanced ZnO-based dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Chunyang; Xie, Yahong; Bai, Te; Hu, Jing; Wang, Jide

    2015-11-01

    In this study, ZnO nanoparticles (NPs), ZnO nanorods (NRs) and ZnO nanosheet-based hierarchical structures (NSHSs) were rapidly synthesized using three simple approaches at relatively low temperatures and without any organic surfactants. Based on their structural advantages in light absorption, reflection and electron transfer, an NP/NSHS/NR hybrid structure was fabricated and used as a photoanode in dye-sensitized solar cells (DSSCs). The photoanode was treated in fluorescein acetonitrile solution (down-conversion materials) to enhance the photovoltaic efficiency, as well as in ascorbic acid ethanol solution to inhibit fluorescence quenching, which is caused by the I3-/I- electrolyte. Results showed that the NP/NSHS/NR hybrid structure plus fluorescein treatment was highly effective in improving the light harvesting capacity via an efficient electron transfer path and a down-conversion luminescence process, and the light-to-electric energy conversion efficiency of the DSSCs reached 6.54%, which increased by 34% compared with that of the ZnO NP-based DSSCs.

  5. Improved performance of dye-sensitized solar cells using TiO2 nanotubes infiltrated by TiO2 nanoparticles using a dipping-rinsing-hydrolysis process

    NASA Astrophysics Data System (ADS)

    Lin, Lu-Yin; Chen, Chia-Yuan; Yeh, Min-Hsin; Tsai, Keng-Wei; Lee, Chuan-Pei; Vittal, R.; Wu, Chun-Guey; Ho, Kuo-Chuan

    2013-12-01

    An efficient back-illuminated dye-sensitized solar cell (DSSC) is made with a flexible Ti-foil based photoanode composed of a composite TiO2 film with TiO2 nanotubes (TNT) and TiO2 nanoparticles (TNP). The composite TiO2 film is fabricated through a novel dipping-rinsing-hydrolysis (DRH) process by inserting TiO2 into TNT and sintering the product to form TNP inside TNT. By directly placing TiO2 nanoparticles into TNT, the former grow internally from the base of TNT to occupy it completely. This solves previous problems of incomplete filling of TNP into TNT, which used partial penetration of TiCl4 reactant from the top of the TNT. In the present case, the TNP are grown from the base of TNT. A DSSC containing TNT and TNP prepared in this way shows a photoelectric efficiency of 6.45%, which is much higher than that (4.21%) of a DSSC with untreated TNT. The films are characterized by using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The improvement in the photoelectric efficiency is explained by using electrochemical impedance spectroscopy (EIS), incident photon-to-current conversion efficiency (IPCE) analysis, and UV-absorption spectra analysis.

  6. Facile synthesis of high quality multi-walled carbon nanotubes on novel 3D KIT-6: application in high performance dye-sensitized solar cells.

    PubMed

    Balamurugan, Jayaraman; Pandurangan, Arumugam; Kim, Nam Hoon; Lee, Joong Hee

    2015-01-14

    A novel hard templating strategy for the synthesis of high quality multi-walled carbon nanotubes (MWCNTs) with a uniform diameter was developed. MWCNTs were successfully synthesized through chemical vapour deposition (CVD) using acetylene by employing 3D bicontinuous mesoporous silica (KIT-6) as a hard template and used as the counter electrode in dye-sensitized solar cells (DSSCs). Here, we report that Ni-Cr-KIT-6 and Co-Cr-KIT-6 systems are the most suitable catalysts for the growth of MWCNTs. Raman spectroscopy and TEM analysis revealed that the synthesized MWCNTs were of high quality and well graphitized. Impressively, DSSCs with a MWCNT counter electrode demonstrated high power conversion efficiencies (PCEs) of up to 10.53%, which was significantly higher than that of 9.87% obtained for a DSSC with a conventional Pt counter electrode. Moreover, MWCNTs had a charge transfer resistance (Rct) of only 0.74 Ω cm(2) towards the I3(-)/I(-) electrolyte commonly applied in DSSCs, which is several orders of magnitude lower than that of a typical Pt electrode (2.78 Ω cm(2)). These results indicate that the synthesized MWCNT counter electrodes are versatile candidates that can increase the power conversion efficiency (PCE) of DSSCs. PMID:25429647

  7. Cauliflower-like SnO2 hollow microspheres as anode and carbon fiber as cathode for high performance quantum dot and dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ganapathy, Veerappan; Kong, Eui-Hyun; Park, Yoon-Cheol; Jang, Hyun Myung; Rhee, Shi-Woo

    2014-02-01

    Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a unique structure is used as an alternative counter electrode (CE) and compared with the standard platinum (Pt) CE. Their electrocatalytic properties are measured using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and Tafel-polarization. Under 1 sun illumination, solar cells made with hollow SnO2 photoanode sandwiched with the stable CNF CE showed a power conversion efficiency of 2.5% in QDSCs and 3.0% for DSCs, which is quite promising with the standard Pt CE (QDSCs: 2.1%, and DSCs: 3.6%).Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a

  8. Nature of photovoltaic action in dye-sensitized solar cells

    SciTech Connect

    Cahen, D.; Hodes, G.; Graetzel, M.; Guillemoles, J.F.; Riess, I.

    2000-03-09

    The authors explain the cause for the photocurrent and photovoltage in nanocrystalline, mesoporous dye-sensitized solar cells, in terms of the separation, recombination, and transport of electronic charge as well as in terms of electron energetics. On the basis of available experimental data, the basic cause for the photovoltage was confirmed as the change in the electron concentration in the nanocrystalline electron conductor that results from photoinduced charge injection from the dye. The maximum photovoltage is given by the difference in electron energies between the redox level and the bottom of the electron conductor's conduction band, rather than by any difference in electrical potential in the cell, in the dark. Charge separation occurs because of the energetic and entropic driving forces that exist at the dye/electron conductor interface, with charge transport aided by such driving forces at the electron conductor-contact interface. The mesoporosity and nanocrystallinity of the semiconductor are important not only because of the large amount of dye that can be adsorbed on the system's very large surface, but also for two additional reasons: (1) it allows the semiconductor small particles to become almost totally depleted upon immersion in the electrolyte (allowing for large photovoltages), and (2) the proximity of the electrolyte to all particles modes screening of injected electrons, and thus their transport, possible.

  9. Effect of electron-donor ancillary ligands on the heteroleptic ruthenium complexes: synthesis, characterization, and application in high-performance dye-sensitized solar cells.

    PubMed

    Chen, Wang-Chao; Kong, Fan-Tai; Liu, Xue-Peng; Guo, Fu-Ling; Zhou, Li; Ding, Yong; Li, Zhao-Qian; Dai, Song-Yuan

    2016-04-20

    Three heteroleptic ruthenium complexes, , and , with sulfur- or oxygen-containing electron-donor, phenylpyridine-based ancillary ligands, are synthesized. The influence of the different electron donors-the acyclic electron donors methylthio and methoxyl, and the cyclic electron donor methylenedioxy-on the photophysical and electrochemical behavior in dye sensitizers and photovoltaic performance in DSSCs are investigated. Compared to the conventional dye , all the dyes demonstrate superior performance in the form of molar absorptivity, photocurrent density (JSC) and conversion efficiency (η). The DSSCs based on and , with only a two-atom change in the acyclic electron donor, exhibit analogous photovoltaic performance (9.28% for and 9.32% for ). The highest photocurrent density (19.06 mA cm(-2)) and conversion efficiency (9.74%) are recorded for , which contains the cyclic electron donor. Transient absorption (TAS) and time-resolved photoluminescence (TRPL) measurements are carried out to investigate the sensitizers' regeneration and the behavior of excited electron decay kinetics. Furthermore, electrochemical impedance spectroscopy (EIS) is operated to explain the charge recombination and the electron lifetime. These consequences reveal substantial dependences on the different configurations of the electron-donor ancillary ligands. PMID:27053153

  10. Effects of nano anatase-rutile TiO2 volume fraction with natural dye containing anthocyanin on the dye sensitized solar cell performance

    NASA Astrophysics Data System (ADS)

    Agustini, S.; Wahyuono, R. A.; Sawitri, D.; Risanti, D. D.

    2013-09-01

    Since its first development, efforts to improve efficiency of Dye Sensitized Solar Cell (DSSC) are continuously carried out, either through selection of dye materials, the type of semiconductor, counter electrode design or the sandwiched structure. It is widely known that anatase and rutile are phases of TiO2 that often being used for fabrication of DSSC. Rutile is thermodynamically more stable phase having band-gap suitable for absorption of sunlight spectrum. On the other hand, anatase has higher electrical conductivity, capability to adsorp dye as well as higher electron diffusion coefficient than those of rutile. Present research uses mangosteen pericarp and Rhoeo spathacea extracted in ethanol as natural dye containing anthocyanin. These dyes were characterized by using UV-Vis and FTIR, showing that the absorption maxima peaks obtained at 389 nm and 413 nm, for mangosteen and Rhoeo spathacea, respectively. The nano TiO2 was prepared by means of co-precipitation method. The particle size were 9-11 nm and 54.5 nm for anatase and rutile, respectively, according to Scherrer's equation. DSSCs were fabricated in various volume fractions of anatase and rutile TiO2. The fabricated DSSCs were tested under 17 mW/cm2 of solar irradiation. The current-voltage (I-V) characteristic of DSSCs employing 75%: 25% volume fraction of anatase and rutile TiO2 have outstanding result than others. The highest conversion efficiencies of 0.037% and 0.013% are obtained for DSSC employing natural dye extract from mangosteen pericarp and Rhoeo spathacea, respectively.

  11. EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION.

    SciTech Connect

    BOWERMAN,B.; FTHENAKIS,V.

    2001-10-01

    Photovoltaic solar cells based on a dye-sensitized nanocrystalline titanium dioxide photoelectrode have been researched and reported since the early 1990's. Commercial production of dye-sensitized photovoltaic solar cells has recently been reported in Australia. In this report, current manufacturing methods are described, and estimates are made of annual chemical use and emissions during production. Environmental, health and safety considerations for handling these materials are discussed. This preliminary EH and S evaluation of dye-sensitized titanium dioxide solar cells indicates that some precautions will be necessary to mitigate hazards that could result in worker exposure. Additional information required for a more complete assessment is identified.

  12. Carbon coated stainless steel as counter electrode for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Prakash, Shejale Kiran; Sharma, Rakesh K.; Roy, Mahesh S.; Kumar, Mahesh

    2014-10-01

    A new type of counter electrode for dye sensitized solar cells has been fabricated using a stainless steel sheet as substrate and graphite, graphene and multiwall carbon nanotubes as the catalytic material which applied by screen printing technique. The sheet resistances of the substrates and there influence on the dye sensitized solar cells has been studied. The fabricated counter electrodes i.e. SS-graphite, SS-graphene SS-MWCNT and SS-platinum were tested for their photovoltaic response in the form of dye sensitized solar cells.

  13. Functionalized graphene sheets in dye-sensitized solar cell counter electrodes

    NASA Astrophysics Data System (ADS)

    Roy-Mayhew, Joseph Dominic

    The use of thermally exfoliated graphite oxide, commonly referred to as functionalized graphene sheets (FGSs), was investigated as a catalytic counter electrode material in dye-sensitized solar cells to substitute for platinum nanoparticles traditionally used in devices. A catalyst's activity depends both on the material's intrinsic activity as well as on its surface area accessible for reaction. Thus, this work aimed i) to determine the intrinsic activity of FGSs with various chemical compositions and structures, and ii) to create high surface area networks of FGSs to use as catalytic electrodes in dye-sensitized solar cells. Monolayers of FGSs were fabricated and electrochemically tested to determine the intrinsic catalytic activity for a common dye-sensitized solar cell redox mediator, cobalt bipyridine. It was found that lattice defect rich, oxygen-site poor FGSs catalyze the reduction of the cobalt complex as well as platinum does, exhibiting a rate constant of ~ 6 x 10-3 cm/s. This rate is an order of magnitude faster than exhibited with oxygen-site rich graphene oxide, and over two orders of magnitude faster than found with the basal plane of graphite (as a surrogate for pristine graphene). FGSs are less catalytic towards the iodide/triiodide redox mediator, thus larger surface areas must be used for effective catalysis. In this work, conductive, high surface area networks of FGSs were produced by first tape casting surfactant-stabilized aqueous suspensions of FGSs and then thermolyzing the surfactant materials. Iodide/triiodide mediated dye-sensitized solar cells using these FGS electrodes exhibited power conversion efficiencies within 10% of devices using platinum nanoparticles. Furthermore, to interpret the catalytic activity of FGSs towards the reduction of triiodide, a new electrochemical impedance spectroscopy equivalent circuit was proposed that matches the observed spectra features to the appropriate phenomena. Lastly, improved catalytic performance

  14. Increased photovoltaic performance by the optimized TiClI4 and AlCl3 surface treatment in dye-sensitized solar cells.

    PubMed

    Oh, Ju Hee; Kim, Dae-Hwan; Lee, Sang-Ju; Kwak, Giseop; Han, Yoon Soo

    2014-12-01

    The surface of TiO2 photoelectrodes coated on F-doped SnO2 (FTO) was modified by soaking it in a TiCl4:AlCl3 mixed aqueous solution with various molar ratios, and then calcining to produce the TiCl4:AlCl3-treated TiO2 photoelectrode (Ti:Al-TiO2/FTO). The highest power conversion efficiency (PCE) was obtained from dye-sensitized solar cells (DSSC) with Ti:Al(5:5)-TiO2/FTO, which was prepared from the mixed solution with the molar ratio of 5:5 (TiCi4:AlCl3). PCE of DSSC with Ti:Al (5:5)-TiO2/FTO was improved by ca. 19.6%, compared to that of the reference device with Ti:Al (10:0)-TiO2/FTO (i.e., TiO2-coated TiO2/FTO) due to an enhancement in both short-circuit photocurrent (J(sc)) and open-circuit voltage (V(oc)). A series of measurements such as UV-visible absorption, electrochemical impedance, open circuit voltage decay and dark current revealed that the increase in J(sc) was attributed to the improvement of electron collection efficiency by a prolonged electron lifetime, and the suppression of the charge recombination between injected electrons and I3(-) ions was found to increase the V(oc) value of the device with Ti:Al(5:5)-TiO2/FTO. PMID:25971045

  15. Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons

    NASA Astrophysics Data System (ADS)

    Hägglund, Carl; Zäch, Michael; Kasemo, Bengt

    2008-01-01

    An interesting possibility to improve the conversion and cost efficiencies of photovoltaic solar cells is to exploit the large optical cross sections of localized (nanoparticle) surface plasmon resonances (LSPRs). We have investigated this prospect for dye sensitized solar cells. Photoconductivity measurements were performed on flat TiO2 films, sensitized by a combination of dye molecules and arrays of nanofabricated elliptical gold disks. An enhanced dye charge carrier generation rate was found and shown to derive from the LSPR contribution by means of the polarization dependent resonance frequency in the anisotropic, aligned gold disks.

  16. Fundamental studies of nanoarchitectured dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Zhenzhen

    2011-12-01

    Dye-sensitized solar cells (DSSCs) are a promising candidate for next-generation photovoltaic panels due to their low cost, easy fabrication processes and relatively high efficiency. Despite the considerable effort on the advancement of DSSCs, the efficiency of DSSCs has been stalled for nearly two decades due to the complex interplay among various DSSC parameters. Particularly, in a conventional DSSC, a thicker semiconductor photovoltaic (PV) layer, i.e., a dye-sensitized TiO2 nanoparticle layer, is required to accommodate more light-induced charge separation centers to enhance light harvesting efficiency. However, a thicker PV layer concurrently increases the charge transport distance in the PV layer; so the system suffers from more charge recombination, leading to significant deterioration in charge collection efficiency. The conflicting demands on the thickness of PV layer by these two critical elementary photoelectrochemical processes becomes a fundamental limitation for further advancement in DSSCs and limits the choice of redox mediators and electrode materials in DSSCs. Hence, the focus of this dissertation research work is to systematically explore a transformative way to fundamentally resolve the conflicting interplay between light harvesting and charge transport. First, our strategy is to allocate part of the roughness factor to the collecting anode instead of imparting all the roughness factors onto the semiconductor PV layer attached to the anode. As a proof of concept, we first synthesized and characterized a microscopically rough Zn collecting anode, on which ZnO nanotips are grown. For the same surface roughness factor, the length of the ZnO nanotips supported on such a rough Zn anode can be much shorter than that of the ZnO nanowires supported on a planar anode. Our Zn-microtip|ZnO-nanotip DSSCs exhibit enhanced fill factor, Voc and Jsc. The investigation of kinetics indicates that the electron collection time is much faster than the electron

  17. Multifunctional Interface Modification of Energy Relay Dye in Quasi-solid Dye-sensitized Solar Cells

    PubMed Central

    Gao, Rui; Cui, Yixiu; Liu, Xiaojiang; Wang, Liduo

    2014-01-01

    In this paper, 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) has been used in interface modification of dye-sensitized solar cells (DSCs) with combined effects of retarding charge recombination and Förster resonant energy transfer (FRET). DCJTB interface modification significantly improved photovoltaic performance of DSCs. I–V curves shows the conversion efficiency increases from 4.27% to 5.64% with DCJTB coating. The application of DCJTB with combined effects is beneficial to explore more novel multi-functional interface modification materials to improve the performance of DSCs. PMID:24993900

  18. Dye-sensitized solar cell based carbon nanotube as counter electrode

    NASA Astrophysics Data System (ADS)

    Prasetio, Adi; Subagio, Agus; Purwanto, Agus; Widiyandari, Hendri

    2016-02-01

    The counter electrode using Carbon nanotube (CNT) has been successfully fabricated by the doctor blade method and their performances were investigated. We found that increasing mass of the CNT powder in binder increases electrocatalytic activity which this beneficial to conversion efficiency of the Dye-sensitized solar cell (DSSC). The photovoltaic performance of the DSSCs with 0.01, 0.02 and 0.04 gr of the CNT obtained overall conversion efficiencies of 0.32%, 0.74% and 0.91%, respectively. The results suggest that the CNT counter electrode has potential as alternative to the Pt free counter electrode for DSSC.

  19. Application of 3A molecular sieve layer in dye-sensitized solar cells

    SciTech Connect

    Yan, Yuan; Wang, Jinzhong E-mail: qingjiang.yu@hit.edu.cn; Yu, Qingjiang E-mail: qingjiang.yu@hit.edu.cn; Huang, Yuewu; Chang, Quanhong; Hao, Chunlei; Jiao, Shujie; Gao, Shiyong; Li, Hongtao; Wang, Dongbo

    2014-08-25

    3A molecular sieve layer was used as dehydration and electronic-insulation layer on the TiO{sub 2} electrode of dye-sensitized solar cells. This layer diminished the effect of water in electrolyte efficiently and enhanced the performance of cells. The conversion efficiency increased from 9.58% to 10.2%. The good moisture resistance of cells was attributed to the three-dimensional interconnecting structure of 3A molecular sieve with strong adsorption of water molecule. While the performance enhancement benefited from the suppression of the charge recombination of electronic-insulation layer and scattering effect of large particles.

  20. Nanographite-TiO2 photoanode for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sharma, S. S.; Sharma, Khushboo; Sharma, Vinay

    2016-05-01

    Nanographite-TiO2 (NG-TiO2) composite was successfully synthesized by the hydrothermal method and its performance as the photoanode for dye-sensitized solar cells (DSSCs) was investigated. Environmental Scanning electron microscope (E-SEM) micrographs show the uniform distribution of TiO2 nanoflowers deposited over nanographite sheets. The average performance characteristics of the assembled cell in terms of short-ciruit current density (JSC), open circuit voltage (VOC), fill factor (FF) and photoelectric conversion efficiency (η) were measured.

  1. Design and characterisation of bodipy sensitizers for dye-sensitized NiO solar cells.

    PubMed

    Summers, Gareth H; Lefebvre, Jean-François; Black, Fiona A; Davies, E Stephen; Gibson, Elizabeth A; Pullerits, Tönu; Wood, Christopher J; Zidek, Karel

    2016-01-14

    A series of photosensitizers for NiO-based dye-sensitized solar cells is presented. Three model compounds containing a triphenylamine donor appended to a boron dipyrromethene (bodipy) chromophore have been successfully prepared and characterised using emission spectroscopy, electrochemistry and spectroelectrochemistry, to ultimately direct the design of dyes with more complex structures. Carboxylic acid anchoring groups and thiophene spacers were appended to the model compounds to provide five dyes which were adsorbed onto NiO and integrated into dye-sensitized solar cells. Solar cells incorporating the simple Bodipy-CO₂H dye were surprisingly promising relative to the more complex dye 4. Cell performances were improved with dyes which had increased electronic communication between the donor and acceptor, achieved by incorporating a less hindered bodipy moiety. Further increases in performances were obtained from dyes which contained a thiophene spacer. Thus, the best performance was obtained for 7 which generated a very promising photocurrent density of 5.87 mA cm(-2) and an IPCE of 53%. Spectroelectrochemistry combined with time-resolved transient absorption spectroscopy were used to determine the identity and lifetime of excited state species. Short-lived (ps) transients were recorded for 4, 5 and 7 which are consistent with previous studies. Despite a longer lived (25 ns) charge-separated state for 6/NiO, there was no increase in the photocurrent generated by the corresponding solar cell. PMID:26660278

  2. Conducting polymers based counter electrodes for dye-sensitized solar cells

    SciTech Connect

    Veerender, P. E-mail: veeru1009@gmail.com; Saxena, Vibha E-mail: veeru1009@gmail.com; Gusain, Abhay E-mail: veeru1009@gmail.com; Jha, P. E-mail: veeru1009@gmail.com; Koiry, S. P. E-mail: veeru1009@gmail.com; Chauhan, A. K. E-mail: veeru1009@gmail.com; Aswal, D. K. E-mail: veeru1009@gmail.com; Gupta, S. K. E-mail: veeru1009@gmail.com

    2014-04-24

    Conducting polymer films were synthesized and employed as an alternative to expensive platinum counter electrodes for dye-sensitized solar cells. poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin films were spin-coated and polypyrrole films were electrochemically deposited via cyclic voltammetry method on ITO substrates. The morphology of the films were imaged by SEM and AFM. These films show good catalytic activity towards triiodide reduction as compared to Pt/FTO electrodes. Finally the photovoltaic performance of DSSC fabricated using N3 dye were compared with PT/FTO, PEDOT/ITO, and e-PPy counter electrodes.

  3. Hierarchically Structured ZnO Film for Dye-Sensitized Solar Cells with Enhanced Energy Conversion Efficiency

    SciTech Connect

    Chou, Tammy P.; Zhang, Qifeng; Fryxell, Glen E.; Cao, Guozhong

    2007-09-17

    The interest in dye-sensitized solar cells has increased due to reduced energy sources and higher energy production costs. For the most part, titania (TiO2) has been the material of choice for dye-sensitized solar cells and so far have shown to exhibit the highest overall light conversion efficiency ~ 11%.[1] However, zinc oxide (ZnO) has recently been explored as an alternative material in dye-sensitized solar cells with great potential.[2] The main reasons for this increase in research surrounding ZnO material include: 1) ZnO having a band gap similar to that for TiO2 at 3.2 eV,[3] and 2) ZnO having a much higher electron mobility ~ 115-155 cm2/Vs[4] than that for anatase titania (TiO2), which is reported to be ~ 10-5 cm2/Vs.[5] In addition, ZnO has a few advantages as the semiconductor electrode when compared to TiO2, including 1) simpler tailoring of the nanostructure as compared to TiO2, and 2) easier modification of the surface structure. These advantages[6] are thought to provide a promising means for improving the solar cell performance of the working electrode in dye-sensitized solar cells.

  4. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.

    PubMed

    Imahori, Hiroshi; Umeyama, Tomokazu; Ito, Seigo

    2009-11-17

    Recently, dye-sensitized solar cells have attracted much attention relevant to global environmental issues. Thus far, ruthenium(II) bipyridyl complexes have proven to be the most efficient TiO(2) sensitizers in dye-sensitized solar cells. However, a gradual increment in the highest power conversion efficiency has been recognized in the past decade. More importantly, considering that ruthenium is a rare metal, novel dyes without metal or using inexpensive metal are desirable for highly efficient dye-sensitized solar cells. Large pi-aromatic molecules, such as porphyrins, phthalocyanines, and perylenes, are important classes of potential sensitizers for highly efficient dye-sensitized solar cells, owing to their photostability and high light-harvesting capabilities that can allow applications in thinner, low-cost dye-sensitized solar cells. Porphyrins possess an intense Soret band at 400 nm and moderate Q bands at 600 nm. Nevertheless, the poor light-harvesting properties relative to the ruthenium complexes have limited the cell performance of porphyrin-sensitized TiO(2) cells. Elongation of the pi conjugation and loss of symmetry in porphyrins cause broadening and a red shift of the absorption bands together with an increasing intensity of the Q bands relative to that of the Soret band. On the basis of the strategy, the cell performance of porphyrin-sensitized solar cells has been improved intensively by the enhanced light absorption. Actually, some push-pull-type porphyrins have disclosed a remarkably high power conversion efficiency (6-7%) that was close to that of the ruthenium complexes. Phthalocyanines exhibit strong absorption around 300 and 700 nm and redox features that are similar to porphyrins. Moreover, phthalocyanines are transparent over a large region of the visible spectrum, thereby enabling the possibility of using them as "photovoltaic windows". However, the cell performance was poor, owing to strong aggregation and lack of directionality in the

  5. Improved performance of dye-sensitized solar cells: An TiO2-nano-SiO2 hybrid photoanode with post-treatment of TiCl4 aqueous solution

    NASA Astrophysics Data System (ADS)

    Liu, Ling; Niu, Haihong; Zhang, Shouwei; Wan, Lei; Miao, Shiding; Xu, Jinzhang

    2012-11-01

    A TiO2-nano-SiO2 hybrid film was prepared on a conductive F-doped tin oxide (FTO) substrate by depositing a mixture paste of TiO2 (P25) and nano-sized SiO2 particles. The hybrid film was further treated by a titanium tetrachloride (TiCl4) aqueous solution with different concentrations before it was assembled as a photoanode in dye sensitized solar cells (DSSCs). We studied the performance of DSSCs by using the dye molecule of cis-bis(isothiocy-anato)-bis-(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II) bis-tetrabutylammonium (N719) as sensitizer. Results suggested that the post-treatment using TiCl4 could enhance the dye adsorption. The thin TiO2 layer hydrolyzed from TiCl4 could fill gaps between nanoparticles in the composite film, leading to a better electron transport than non-treated films, and improve the light harvesting efficiency. The optimal concentration was found to be 75 mM for the post-treatment of TiO2-SiO2 hybrid film by TiCl4 solution. A photoelectron conversion efficiency of 6.39% was achieved in the back-side illuminated dye-sensitized solar cells, which is ˜105% higher than the basic efficiency of the bare TiO2 sensitized sample. TiO2-nano-SiO2 hybrid photoanode was prepared by incorporation of nano-sized SiO2 in the TiO2 film. The introduced SiO2 as a wide band-gap material gives a significant improvement of the performance of corresponding DSSCs in terms of photocurrent densities and energy conversion efficiency.

  6. Nano-TiO2 for dye-sensitized solar cells.

    PubMed

    Baraton, Marie-Isabelle

    2012-01-01

    Photovoltaics are amongst the most popular renewable energy sources and low-cost solar cell technologies are making progress to the market. Research on dye-sensitized solar cells (DSSCs) usually based on nanocrystalline TiO2 has been extensively pursued, and the number of papers and patents published in this area has grown exponentially over the last ten years. Research efforts have largely focused on the optimization of the dye, but recently the TiO2 nanocrystalline electrode itself has attracted more attention. It has been shown that particle size and shape, crystallinity, surface morphology and chemistry of the TiO2 material are key parameters to be controlled for optimized performance of the solar cell. This article will review the most recent research activities on nanostructured TiO2 for improvement of the DSSC performance. PMID:22023080

  7. High-efficiency dye-sensitized solar cells using ferrocene-based electrolytes and natural photosensitizers

    NASA Astrophysics Data System (ADS)

    Sönmezoğlu, Savaş; Akyürek, Cafer; Akin, Seçkin

    2012-10-01

    A new and promising dye-sensitized solar cell (DSSC) bilayer design was developed using an Fe2+/Fe3+ (ferrocene) liquid electrolyte and natural dyes extracted from Hypericum perforatum, Rubia tinctorum L. and Reseda luteola. The photovoltaic parameters controlling the device performance were then investigated. A DSSC based on quercetin dye displayed the most efficient solar to electricity conversion efficiency compared with other dyes with a maximum η value of 2.17%. Maximum overall conversion efficiencies under simulated sunlight that was comparable to natural photosynthesis were increased by 15%. The identification of appropriate additives for improving VOC without causing dye degradation may result in further enhancement of cell performance, making the practical application of such systems more suitable for achieving economically viable solar energy devices.

  8. A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Raj, C. Clement; Prasanth, R.

    2016-06-01

    In a dye sensitized solar cell the photoanode performs a dual role of acting as a matrix for dye adsorption and as a charge transport medium for electron transport. The surface area and the electronic property of the material determine the current output of the device. So the performance of dye sensitized solar cell is significantly affected by our choice of material to be used as photoanode. High surface area, optimum carrier density, low impedance and efficient carrier transport are requirements for an efficient photoanode material in a DSSC. The goal of this review article is to highlight the fabrication methods used for the preparation of efficient nanostructured photoanodes. The application of these nanostructured photoanode materials and their impact on the device efficiency has been described in detail. The enhancement in the surface area of the material and its impact on the dye adsorption and current generation has been discussed. A detailed analysis of the role of different blocking layers used in improving the open circuit voltage of the device has been done. The outlook and future directions in improving the device performance are also discussed.

  9. Monitoring the dye impregnation time of nanostructured photoanodes for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shahzad, N.; Pugliese, D.; Lamberti, A.; Sacco, A.; Virga, A.; Gazia, R.; Bianco, S.; Shahzad, M. I.; Tresso, E.; Pirri, C. F.

    2013-06-01

    Dye-sensitized solar cells (DSSCs) are getting increasing attention as low-cost, easy-to-prepare and colored photovoltaic devices. In the current work, in view of optimizing the fabrication procedures and understanding the mechanisms of dye attachment to the semiconductor photoanode, absorbance measurements have been performed at different dye impregnation times ranging from few minutes to 24 hours using UV-Vis spectroscopy. In addition to the traditional absorbance experiments, based on diffuse and specular reflectance on dye impregnated thin films and on the desorption of dye molecules from the photoanodes by means of a basic solution, an alternative in-situ solution depletion measurement, which enables fast and continuous evaluation of dye uptake, is presented. Photoanodes have been prepared with two different nanostructured semiconducting films: mesoporous TiO2, using a commercially available paste from Solaronix, and sponge-like ZnO obtained in our laboratory from sputtering and thermal annealing. Two different dyes have been analyzed: Ruthenizer 535-bisTBA (N719), which is widely used because it gives optimal photovoltaic performances, and a new metal-free organic dye based on a hemisquaraine molecule (CT1). Dye sensitized cells were fabricated using a customized microfluidic architecture. The results of absorbance measurements are presented and discussed in relation to the obtained solar energy conversion efficiencies and the incident photon-to-electron conversion efficiencies (IPCE).

  10. Efficient Dye-Sensitized Solar Cells Using Red Turnip and Purple Wild Sicilian Prickly Pear Fruits

    PubMed Central

    Calogero, Giuseppe; Di Marco, Gaetano; Cazzanti, Silvia; Caramori, Stefano; Argazzi, Roberto; Di Carlo, Aldo; Bignozzi, Carlo Alberto

    2010-01-01

    Dye-sensitized solar cells (DSSCs) were assembled by using the bougainvillea flowers, red turnip and the purple wild Sicilian prickly pear fruit juice extracts as natural sensitizers of TiO2 films. The yellow orange indicaxanthin and the red purple betacyanins are the main components in the cocktail of natural dyes obtained from these natural products. The best overall solar energy conversion efficiency of 1.7% was obtained, under AM 1.5 irradiation, with the red turnip extract, that showed a remarkable current density (Jsc = 9.5 mA/cm2) and a high IPCE value (65% at λ = 470 nm). Also the purple extract of the wild Sicilian prickly pear fruit showed interesting performances, with a Jsc of 9.4 mA/cm2, corresponding to a solar to electrical power conversion of 1.26%. PMID:20162014

  11. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules.

    PubMed

    Hu, Linhua; Dai, Songyuan; Weng, Jian; Xiao, Shangfeng; Sui, Yifeng; Huang, Yang; Chen, Shuanghong; Kong, Fantai; Pan, Xu; Liang, Linyun; Wang, Kongjia

    2007-01-18

    The optimization of dye-sensitized solar cells, especially the design of nanoporous TiO2 film microstructure, is an urgent problem for high efficiency and future commercial applications. However, up to now, little attention has been focused on the design of nanoporous TiO2 microstructure for a high efficiency of dye-sensitized solar cell modules. The optimization and design of TiO2 photoelectrode microstructure are discussed in this paper. TiO2 photoelectrodes with three different layers, including layers of small pore size films, larger pore size films, and light-scattering particles on the conducting glass with the desirable thickness, were designed and investigated. Moreover, the photovoltaic properties showed that the different porosities, pore size distribution, and BET surface area of each layer have a dramatic influence on short-circuit current, open-circuit voltage, and fill factor of the modules. The optimization and design of TiO2 photoelectrode microstructure contribute a high efficiency of DSC modules. The photoelectric conversion efficiency around 6% with 15 x 20 cm2 modules under illumination of simulated AM1.5 sunlight (100 mW/cm2) and 40 x 60 cm2 panels with the same performance tested outdoor have been achieved by our group. PMID:17214486

  12. Vanadium oxide (VO) based low cost counter electrode in dye sensitized solar cell (DSSC) applications

    SciTech Connect

    Vijayakumar, P.; Pandian, Muthu Senthil; Ramasamy, P.

    2015-06-24

    Vanadium oxide nanostars were synthesized by chemical method. The prepared Vanadium oxide nanostars are introduced into dye sensitized solar cell (DSSC) as counter electrode (CE) catalyst to replace the expensive platinum (Pt). The products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) method. The photovoltaic performance of the VO as counter electrode based DSSC was evaluated under simulated standard global AM 1.5G sunlight (100 mW/cm{sup 2}). The solar to electrical energy conversion efficiency (η) of the DSSC was found to be 0.38%.This work expands the Counter electrode catalyst, which can help to reduce the cost of DSSC and thereby encourage their fundamental research and commercial application.

  13. Critical analysis on degradation mechanism of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Mohamad Shahimin, Mukhzeer; Suhaimi, Suriati; Abd Wahid, Mohd Halim; Retnasamy, Vithyacharan; Ahmad Hambali, Nor Azura Malini; Reshak, Ali Hussain

    2015-09-01

    This paper reports on a précis of degradation mechanism for dye-sensitized solar cell (DSSCs). The review indicates progress in the understanding of degradation mechanism, in particular, the large improvement in the analysis of the materials used in DSSCs. The paper discussed on the stability issues of the dye, advancement of the photoelectrode film lifetime, changes in the electrolyte components and degradation analysis of the counter electrode. The photoelectrochemical parameters were evaluated in view of the possible degradation routes via open circuit voltage (Voc), short circuit current (Isc), fill factor (FF) and overall conversion efficiency (η) from the current-voltage curve. This analysis covers several types of materials that have paved the way for better-performing solar cells and directly influenced the stability and reliability of DSSCs. The new research trend together with the previous research has been highlighted to examine the key challenges faced in developing the ultimate DSSCs.

  14. Gold nanoparticle decorated multi-walled carbon nanotubes as counter electrode for dye sensitized solar cells.

    PubMed

    Kaniyoor, Adarsh; Ramaprabhu, Sundara

    2012-11-01

    A novel counter electrode material for dye sensitized solar cells (DSSCs) composed of nanostructured Au particles decorated on functionalized multi-walled carbon nanotubes (f-MWNTs) is demonstrated for the first time. MWNTs synthesized by catalytic chemical vapor deposition technique are purified and functionalized by treating with concentrated acids. Au nanoparticles are decorated on f-MWNTs by a rapid and facile microwave assisted polyol reduction method. The materials are characterized by X-ray diffractometry, Fourier transform infra red spectroscopy and electron microscopy. The DSSC fabricated with Au/f-MWNTs based counter electrode shows enhanced power conversion efficiency (eta) of 4.9% under AM 1.5G simulated solar radiation. In comparison, the reference DSSCs fabricated with f-MWNTs and Pt counter electrodes show eta of 2.1% and 4.5%. This high performance of Au/f-MWNTs counter electrode is investigated using electrochemical impedance spectroscopy and cyclic voltammetry studies. PMID:23421212

  15. Dye-sensitized solar cells using double-oxide electrodes: a brief review

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshikazu; Okamoto, Yuji; Ishii, Natsumi

    2015-04-01

    Dye-sensitized solar cells (DSC or DSSC) have been widely investigated because of their potentially high cost performance compared with Si-based solar cells and of their fascinating appearance. DSC with photoelectric conversion efficiency of >10 % (or even 12 %) have been reported, where porous TiO2 films are generally used as semi-conductor electrodes. Such porous TiO2 films usually have high specific surface area, and thus, they adsorb plenty of dye molecules, resulting in high photocurrent density. Recently, some double oxides have been examined as alternative photoanode materials, mainly in order to improve photovoltage. Here, studies on DSC using double-oxide electrodes, i.e., perovskite, spinel, ilmenite, wolframite, scheelite and pseudobrookite-types, are briefly reviewed.

  16. Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Ito, Seigo; Zakeeruddin, Shaik M.; Comte, Pascal; Liska, Paul; Kuang, Daibin; Grätzel, Michael

    2008-11-01

    Solar energy is a promising solution to global energy-related problems because it is clean, inexhaustible and readily available. However, the deployment of conventional photovoltaic cells based on silicon is still limited by cost, so alternative, more cost-effective approaches are sought. Here we report a bifacial dye-sensitized solar cell structure that provides high photo-energy conversion efficiency (~6%) for incident light striking its front or rear surfaces. The design comprises a highly stable ruthenium dye (Z907Na) in combination with an ionic-liquid electrolyte and a porous TiO2 layer. The inclusion of a SiO2 layer between the electrodes to prevent generation of unwanted back current and optimization of the thickness of the TiO2 layer are responsible for the enhanced performance.

  17. In situ direct growth of single crystalline metal (Co, Ni) selenium nanosheets on metal fibers as counter electrodes toward low-cost, high-performance fiber-shaped dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Yin, Hexing; Zhou, Yong; Dai, Hui; Yu, Tao; Liu, Jianguo; Zou, Zhigang

    2016-01-01

    Highly crystalline metal (Co, Ni) selenium (Co0.85Se or Ni0.85Se) nanosheets were in situ grown on metal (Co, Ni) fibers (M-M0.85Se). Both M-M0.85Se (Co-Co0.85Se and Ni-Ni0.85Se) fibers prove to function as excellent, low-cost counter electrodes (CEs) in fiber-shaped dye-sensitized solar cells (FDSSCs) with high power conversion efficiency (Co-Co0.85Se 6.55% and Ni-Ni0.85Se 7.07%), comparable or even superior to a Pt fiber CE (6.54%). The good performance of the present Pt-free CE-based solar cell was believed to originate from: (1) the intrinsic electrocatalytic properties of the single-crystalline M-M0.85Se (2) the enough void space among M0.85Se nanosheets that allows easier redox ion diffusion; (3) the two-dimensional morphology that provides a large contact area between the CE catalytic material and electrolyte; (4) in situ direct growth of the M0.85Se on metal fibers that renders good electrical contact between the active material and the electron collector.Highly crystalline metal (Co, Ni) selenium (Co0.85Se or Ni0.85Se) nanosheets were in situ grown on metal (Co, Ni) fibers (M-M0.85Se). Both M-M0.85Se (Co-Co0.85Se and Ni-Ni0.85Se) fibers prove to function as excellent, low-cost counter electrodes (CEs) in fiber-shaped dye-sensitized solar cells (FDSSCs) with high power conversion efficiency (Co-Co0.85Se 6.55% and Ni-Ni0.85Se 7.07%), comparable or even superior to a Pt fiber CE (6.54%). The good performance of the present Pt-free CE-based solar cell was believed to originate from: (1) the intrinsic electrocatalytic properties of the single-crystalline M-M0.85Se (2) the enough void space among M0.85Se nanosheets that allows easier redox ion diffusion; (3) the two-dimensional morphology that provides a large contact area between the CE catalytic material and electrolyte; (4) in situ direct growth of the M0.85Se on metal fibers that renders good electrical contact between the active material and the electron collector. Electronic supplementary information (ESI

  18. Synthesis and characterization of Allium cepa L. as photosensitizer of dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Sutikno, Afrian, Noverdi; Supriadi, Putra, Ngurah Made Dharma

    2016-04-01

    The synthesis and characterization of Allium cepa L. used as natural pigment for natural dye sensitizer of solar cell has successfully done and anthocyanin is extracted. Anthocynin is color pigment of plant which has characteristic absorption spectrum of photon and excites electrons up to pigment molecules. As the anthocyanin absorbed light increases the excited electrons increase as well. The generated current also increases and it leads to the efficiency increase. The energy conversion efficiency of the cells sensitized with dye of Allium cepa L. was 3,045 x 10-4%. A simple technique was taken to fabricate dye sensitizer solar cell is spincoating.

  19. Blue-coloured highly efficient dye-sensitized solar cells by implementing the diketopyrrolopyrrole chromophore.

    PubMed

    Yum, Jun-Ho; Holcombe, Thomas W; Kim, Yongjoo; Rakstys, Kasparas; Moehl, Thomas; Teuscher, Joel; Delcamp, Jared H; Nazeeruddin, Mohammed K; Grätzel, Michael

    2013-01-01

    The paradigm shift in dye sensitized solar cells (DSCs) - towards donor- π bridge-acceptor (D-π-A) dyes - increases the performances of DSCs and challenges established design principles. Framed by this shifting landscape, a series of four diketopyrrolopyrrole (DPP)-based sensitizers utilizing the donor-chromophore-anchor (D-C-A) motif were investigated computationally, spectroscopically, and fabricated by systematic evaluation of finished photovoltaic cells. In all cases, the [Co(bpy)3](3+/2+) redox-shuttle afforded superior performance compared to I3(-)/I(-). Aesthetically, careful molecular engineering of the DPP chromophore yielded the first example of a high-performance blue DSC - a challenge unmet since the inception of this photovoltaic technology: DPP17 yields over 10% power conversion efficiency (PCE) with the [Co(bpy)3](3+/2+) electrolyte at full AM 1.5 G simulated sun light. PMID:23945746

  20. The effect of ionic liquid electrolyte concentrations in dye sensitized solar cell using gel electrolyte

    NASA Astrophysics Data System (ADS)

    Pujiarti, H.; Arsyad, W. S.; Wulandari, P.; Hidayat, R.

    2014-09-01

    Dye Sensitized Solar Cells (DSSCs) have received much attention because of some advantages, such as using environment-friendly materials and requiring less high-tech equipment. Commonly DSSCs are built using conventional electrolyte solution, which is prone to electrolyte leakage and low stability. In this paper, we present the characteristics of DSSCs using gel electrolyte, which was made of ionic liquid and hybrid polymer gel, and the effect of ionic liquid concentration on their characteristics. The hybrid composite polymer was composed of siloxane and ethylene glycol polymer networks. Their working performances were investigated by the current-voltage (J-V) characterizations and small ac impedance measurements, which are correlated with the concentrations of ionic liquid electrolyte. The experimental results showed that cell working performance slightly decreased but the solution leakage problem was eliminated.

  1. Dyes extracted from Trigonella seeds as photosensitizers for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Batniji, Amal; Abdel-Latif, Monzir S.; El-Agez, Taher M.; Taya, Sofyan A.; Ghamri, Hatem

    2016-06-01

    In this paper, the extract of Trigonella seeds was used as sensitizer for dye-sensitized solar cells (DSSCs). The natural dye was extracted from the seeds using water and alcohol as solvents for the raw material. The UV-Vis absorption spectra of Trigonella extract solution and dye adsorbed on TiO2 film were measured. DSSCs sensitized by Trigonella extracted using water as a solvent exhibited better performance with efficiency of 0.215 %. The performance of the fabricated DSSCs was attempted to enhance by acid treatment of the FTO substrates with HNO3, H3PO4, and H2SO4. Electrochemical impedance spectroscopy of the fabricated cells was also carried out.

  2. All-solid-state dye-sensitized solar cells with high efficiency.

    PubMed

    Chung, In; Lee, Byunghong; He, Jiaqing; Chang, Robert P H; Kanatzidis, Mercouri G

    2012-05-24

    Dye-sensitized solar cells based on titanium dioxide (TiO(2)) are promising low-cost alternatives to conventional solid-state photovoltaic devices based on materials such as Si, CdTe and CuIn(1-x)Ga(x)Se(2) (refs 1, 2). Despite offering relatively high conversion efficiencies for solar energy, typical dye-sensitized solar cells suffer from durability problems that result from their use of organic liquid electrolytes containing the iodide/tri-iodide redox couple, which causes serious problems such as electrode corrosion and electrolyte leakage. Replacements for iodine-based liquid electrolytes have been extensively studied, but the efficiencies of the resulting devices remain low. Here we show that the solution-processable p-type direct bandgap semiconductor CsSnI(3) can be used for hole conduction in lieu of a liquid electrolyte. The resulting solid-state dye-sensitized solar cells consist of CsSnI(2.95)F(0.05) doped with SnF(2), nanoporous TiO(2) and the dye N719, and show conversion efficiencies of up to 10.2 per cent (8.51 per cent with a mask). With a bandgap of 1.3 electronvolts, CsSnI(3) enhances visible light absorption on the red side of the spectrum to outperform the typical dye-sensitized solar cells in this spectral region. PMID:22622574

  3. The application of electrospun titania nanofibers in dye-sensitized solar cells.

    PubMed

    Krysova, Hana; Zukal, Arnost; Trckova-Barakova, Jana; Chandiran, Aravind Kumar; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Kavan, Ladislav

    2013-01-01

    Titania nanofibers were fabricated using the industrial Nanospider(TM) technology. The preparative protocol was optimized by screening various precursor materials to get pure anatase nanofibers. Composite films were prepared by mixing a commercial paste of nanocrystalline anatase particles with the electrospun nanofibers, which were shortened by milling. The composite films were sensitized by Ru-bipyridine dye (coded C106) and the solar conversion efficiency was tested in a dye-sensitized solar cell filled with iodide-based electrolyte solution (coded Z960). The solar conversion efficiency of a solar cell with the optimized composite electrode (η = 7.53% at AM 1.5 irradiation) outperforms that of a solar cell with pure nanoparticle film (η = 5.44%). Still larger improvement was found for lower light intensities. At 10% sun illumination, the best composite electrode showed η = 7.04%, referenced to that of pure nanoparticle film (η = 4.69%). There are non-monotonic relations between the film's surface area, dye sorption capacity and solar performance of nanofiber-containing composite films, but the beneficial effect of the nanofiber morphology for enhancement of the solar efficiency has been demonstrated. PMID:23574954

  4. In situ direct growth of single crystalline metal (Co, Ni) selenium nanosheets on metal fibers as counter electrodes toward low-cost, high-performance fiber-shaped dye-sensitized solar cells.

    PubMed

    Chen, Liang; Yin, Hexing; Zhou, Yong; Dai, Hui; Yu, Tao; Liu, Jianguo; Zou, Zhigang

    2016-01-28

    Highly crystalline metal (Co, Ni) selenium (Co0.85Se or Ni0.85Se) nanosheets were in situ grown on metal (Co, Ni) fibers (M-M0.85Se). Both M-M0.85Se (Co-Co0.85Se and Ni-Ni0.85Se) fibers prove to function as excellent, low-cost counter electrodes (CEs) in fiber-shaped dye-sensitized solar cells (FDSSCs) with high power conversion efficiency (Co-Co0.85Se 6.55% and Ni-Ni0.85Se 7.07%), comparable or even superior to a Pt fiber CE (6.54%). The good performance of the present Pt-free CE-based solar cell was believed to originate from: (1) the intrinsic electrocatalytic properties of the single-crystalline M-M0.85Se; (2) the enough void space among M0.85Se nanosheets that allows easier redox ion diffusion; (3) the two-dimensional morphology that provides a large contact area between the CE catalytic material and electrolyte; (4) in situ direct growth of the M0.85Se on metal fibers that renders good electrical contact between the active material and the electron collector. PMID:26752737

  5. Triphenylamine-based indoline derivatives for dye-sensitized solar cells: a density functional theory investigation.

    PubMed

    Ren, Xue-Feng; Kang, Guo-Jun; He, Qiong-Qiong

    2016-01-01

    A new series of triphenylamine-based indoline dye sensitizers were molecularly designed and investigated for their potential use in dye-sensitized solar cells (DSSCs). Theoretical calculations revealed that modifying donor part of D149 by triphenylamine significantly altered the electronic structures, MO energies, and intramolecular charge transfer (ICT) absorption band. Key parameters associated with the light-harvesting efficiency at a given wavelength LHE(λ), the driving force ΔG inject, and the open-circuit photovoltage V oc were characterized. More importantly, these designed (dimeric) dye sensitizers were found to have similar broad absorption spectra to their corresponding monomers, indicating that modifying the donor part with triphenylamine may stop unfavorable dye aggregation. Further analyses of the dye-(TiO2)9 cluster interaction confirmed that there was strong electronic coupling at the interface. These results are expected to provide useful guidance in the molecular design of new highly efficient metal-free organic dyes. PMID:26659403

  6. Catalytic Improvement on Counter Electrode of Dye-Sensitized Solar Cells Using Electrospun Pt Nano-Fibers.

    PubMed

    Seol, Hyunwoong; Shiratani, Masaharu; Seneekatima, Kannanut; Pornprasertsuk, Rojana

    2016-04-01

    A dye-sensitized solar cell is one of cost-competitive photovoltaic devices. For higher performance, all components have been actively studied and improved. However, Pt is still a dominant catalyst since first development although some catalytic materials were studied so far. Catalytic materials of counter electrode play an important role in the performance because it supplies electrons from counter electrode to electrolyte. Therefore, the catalytic activation of counter electrode is closely connected with the performance enhancement. In this work, Pt nano-fiber was fabricated by electrospinning and applied for the counter electrode. Its wide surface area is advantageous for good conductivity and catalytic activation. Morphological characteristics of nano-fibers were analyzed according to electrospinning conditions. Photovoltaic properties, cyclic voltammetry, impedance analysis verified the catalytic activation. Consequently, dye-sensitized solar cell with Pt nano-fiber electrospun at 5.0 kV of applied voltage had higher performance than conventional dye-sensitized solar cell with Pt thin film. This work is significant for related researches because all nano-fibers counter electrode material proposed so far never exceeded the performance of conventional Pt counter electrode. PMID:27451627

  7. Fabrication of carbon-coated silicon nanowires and their application in dye-sensitized solar cells.

    PubMed

    Kim, Junhee; Lim, Jeongmin; Kim, Minsoo; Lee, Hae-Seok; Jun, Yongseok; Kim, Donghwan

    2014-11-12

    We report the fabrication of silicon/carbon core/shell nanowire arrays using a two-step process, involving electroless metal deposition and chemical vapor deposition. In general, foreign shell materials that sheath core materials change the inherent characteristics of the core materials. The carbon coating functionalized the silicon nanowire arrays, which subsequently showed electrocatalytic activities for the reduction of iodide/triiodide. This was verified by cyclic voltammetry and electrochemical impedance spectroscopy. We employed the carbon-coated silicon nanowire arrays in dye-sensitized solar cells as counter electrodes. We optimized the carbon shells to maximize the photovoltaic performance of the resulting devices, and subsequently, a peak power conversion efficiency of 9.22% was achieved. PMID:25319204

  8. Materials, Interfaces, and Photon Confiement in Dye-Sensitized Solar Cells

    SciTech Connect

    Lee, B.; Hwang, D.; Guo, P. J.; Ho, S. T.; Buchholtz, D. B.; Wang, C. Y.; Chang, R.P.H.

    2010-11-18

    A series of experiments have been carried out to study the effects of materials quality, surface and interfacial modification, and photon confinement on standard dye-sensitized solar cells. For these studies, both physical and optical characterization of the materials has been performed in detail. In addition, DC and AC impedance measurements along with kinetic charge-transport modeling of experimental results have yielded information on how to systematically optimize the cell efficiency. The same kinetic model has been used to interpret the results of a series of experiments on interfacial modification studies using fluorine etching in combination with TiCl{sub 4} surface treatment. By using specially designed photonic crystals to confine the photons in the cells, it is shown that the best cell efficiency can be further increased by about 13%.

  9. Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Fujihara, K.; Kumar, A.; Jose, R.; Ramakrishna, S.; Uchida, S.

    2007-09-01

    A simple technique was developed to fabricate a large-area TiO2 electrode layer using electrospun nanorods for dye-sensitized solar cells (DSSCs). Using this technique, we assembled DSSCs of area ~1 cm2 consisting of a thin TiO2 nanoparticle layer and a thick TiO2 nanorod layer as electrode. The TiO2 nanorods were obtained by mechanically grinding electrospun TiO2 nanofibers. A titania sol was first spin-coated on a conductive glass plate and a TiO2 nanorod layer was next spray dried on it to fabricate TiO2 nanoparticle/nanorod layers. These layers were subsequently sintered. The best-performing DSSC evaluated under AM1.5G (1 sun) condition gave current density ~13.6 mA cm-2, open circuit voltage ~0.8 V, fill factor ~51% and energy conversion efficiency ~5.8%.

  10. Tandem Dye-Sensitized Solar Cells Based on TCO-less Back Contact Bottom Electrodes

    NASA Astrophysics Data System (ADS)

    Baranwal, Ajay K.; Fujikawa, Naotaka; Nishimura, Terumi; Ogomi, Yuhei; Pandey, Shyam S.; Ma, Tingli; Hayase, Shuzi

    2016-04-01

    Mechanically stacked and series connected tandem dye sensitized solar cells (T-DSSCs) are fabricated in novel architectures. The architecture consist of TCO tandem DSSCs stacked with TCO-less back contact DSSCs as bottom electrodes (TCO-less tandem DSSCs). Resulting TCO-less tandem DSSCs architecture finds its usefulness in efficient photon harvesting due to improved light transmission and enhanced photons reaching to the bottom electrodes. The fabricated tandem performance was verified with visible light harvesting model dyes D131 and N719 as a proof of concept and provided the photoconversion efficiency (PCE) of 6.06% under simulated condition. Introduction of panchromatic photon harvesting by utilizing near infrared light absorbing Si-phthalocyanine dye in combination with the modified tandem DSSC architecture led to enhancement in the PCE up to 7.19%.