Science.gov

Sample records for performance post-post-modern sublime

  1. Experimental Investigation of Transient Sublimator Performance

    NASA Technical Reports Server (NTRS)

    Sheth, Rubik B.; Stephen, Ryan A.; Leimkuehler, Thomas O.

    2010-01-01

    Sublimators have been used as heat rejection devices for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Sublimators typically operate with steady-state feedwater utilization at or near 100%. However, sublimators are currently being considered to operate in a cyclical topping mode, which represents a new mode of operation for sublimators. Sublimators can be used as a topper during mission phases such as low lunar or low earth orbit. In these mission phases, the sublimator will be repeatedly started and stopped during each orbit to provide supplemental heat rejection for the portion of the orbit where the radiative sink temperature exceeds the system setpoint temperature. This paper will investigate the effects of these transient starts and stops on the feedwater utilization during various feedwater timing scenarios. The X-38 sublimator and Contamination Insensitive Sublimator (CIS) were tested in a ground vacuum chamber to understand this behavior and to quantify the feedwater performance. Data from various scenarios will be analyzed to investigate feedwater utilization under the cyclical conditions. This paper will also provide recommendations for future sublimator designs and/or feedwater control.

  2. Investigation of Transient Performance for a Sublimator

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Sheth, Rubik; Stephan, Ryan A.

    2009-01-01

    Sublimators have been used as heat rejection devices for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Sublimators typically operate with steady-state feedwater utilization at or near 100%. However, sublimators are currently being considered to operate in a cyclical topping mode during low lunar orbit for Altair and possibly Orion, which represents a new mode of operation for sublimators. In this mission phase, the sublimator will be repeatedly started and stopped during each orbit to provide supplemental heat rejection for the portion of the orbit where the sink temperature exceeds the system setpoint temperature. This paper will investigate the effects of these transient starts and stops on the feedwater utilization during various feedwater timing scenarios. The X-38 sublimator, which represents the state of the art in sublimator technology, was used to understand this behavior and to quantify the feedwater performance. Data from various scenarios will be analyzed to investigate feedwater utilization under the cyclical conditions. This paper will also provide recommendations for future sublimator designs and/or feedwater control.

  3. Investigation of Transient Performance for a Sublimator

    NASA Technical Reports Server (NTRS)

    Sheth, Rubik B.; Stephan, Ryan A.; Leimkuehler, Thomas O.

    2011-01-01

    Sublimators have been used as heat rejection devices for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Sublimators typically operate with steady-state feedwater utilization at or near 100%. However, sublimators are currently being considered to operate in a cyclical topping mode, which represents a new mode of operation for sublimators. Sublimators can be used as a topper during mission phases such as low lunar or low earth orbit. In these mission phases, the sublimator will be repeatedly started and stopped during each orbit to provide supplemental heat rejection for the portion of the orbit where the radiative sink temperature exceeds the system setpoint temperature. This paper will investigate the effects of these transient starts and stops on the feedwater utilization during various feedwater timing scenarios. The X-38 sublimator and Contamination Insensitive Sublimator (CIS) were tested in a ground vacuum chamber to understand this behavior and to quantify the feedwater performance. Data from various scenarios will be analyzed to investigate feedwater utilization under the cyclical conditions

  4. Experimental Investigation of Transient Sublimator Performance

    NASA Technical Reports Server (NTRS)

    Sheth, Rubik B.; Stephan, Ryan A.; Leimkuehler, Thomas O.

    2012-01-01

    Sublimators have been used as heat rejection devices for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Sublimators typically operate with steady-state feedwater utilization at or near 100%. However, sublimators are currently being considered for operations in a cyclical topping mode, which represents a new mode of operation for sublimators. Sublimators can be used as a supplemental heat rejection device during mission phases where the environmental temperature or heat rejection requirement changes rapidly. This scenario may occur during low lunar orbit, low earth orbit, or other planetary orbits. In these mission phases, the need for supplemental heat rejection will vary between zero and some fraction of the overall heat load. In particular, supplemental heat rejection is required for the portion of the orbit where the radiative sink temperature exceeds the system setpoint temperature. This paper will describe the effects of these transient starts and stops on the feedwater utilization during various feedwater timing scenarios. Experimental data from various scenarios is analyzed to investigate feedwater consumption efficiency under the cyclical conditions. Start up utilization tests were conducted to better understand the transient performance. This paper also provides recommendations for future sublimator design and transient operation.

  5. Experimental Investigation of Sublimator Performance at Transient Heat Loads

    NASA Technical Reports Server (NTRS)

    Sheth, Rubik B.; Stephen, Ryan A.; Leimkuehler, Thomas O.

    2011-01-01

    Sublimators have been used as heat rejection devices for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Sublimators typically operate with steady-state feedwater utilization at or near 100%. However, sublimators are currently being considered to operate in a cyclical topping mode, which represents a new mode of operation for sublimators. Sublimators can be used as a topper during mission phases such as low lunar or low earth orbit. In these mission phases, the sublimator will be repeatedly started and stopped during each orbit to provide supplemental heat rejection for the portion of the orbit where the radiative sink temperature exceeds the system setpoint temperature. This paper will summarize the effort put into understanding sublimator response under a transient heat load. The performance will be assessed by detailing the changes in feedwater utilization due to transient starts and stops during various feedwater timing scenarios. Sublimator start up utilization will be assessed as a possible relationship to transient performance of a sublimator. This paper will also provide recommendations for future sublimator designs and/or feedwater control.

  6. Investigation of Transient Performance for a Sublimator

    NASA Technical Reports Server (NTRS)

    Sheth, Rubik B.; Stephan, Ryan A.; Leimkuehler, Thomas O.

    2010-01-01

    Sublimators have been used as heat rejection devices for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Sublimators typically operate with steady-state feedwater utilization at or near 100 %. However, Sublimators are currently being considered to operate in a cyclical topping mode during low lunar orbit for Altair and possibly Orion. The cyclical topping mode represents a new mode of operation for sublimators. In this operational mode, the sublimator will be repeatedly started and stopped during each orbit to provide supplemental heat rejection for the portion of the orbit where the radiative sink temperature exceeds the system setpoint temperature. This paper will investigate the effects of these transient starts and stops on the feedwater utilization for various feedwater timing scenarios.

  7. Meteorological conditions associated to high sublimation amounts in semiarid high-elevation Andes decrease the performance of empirical melt models

    NASA Astrophysics Data System (ADS)

    Ayala, Alvaro; Pellicciotti, Francesca; MacDonell, Shelley; McPhee, James; Burlando, Paolo

    2015-04-01

    Empirical melt (EM) models are often preferred to surface energy balance (SEB) models to calculate melt amounts of snow and ice in hydrological modelling of high-elevation catchments. The most common reasons to support this decision are that, in comparison to SEB models, EM models require lower levels of meteorological data, complexity and computational costs. However, EM models assume that melt can be characterized by means of a few index variables only, and their results strongly depend on the transferability in space and time of the calibrated empirical parameters. In addition, they are intrinsically limited in accounting for specific process components, the complexity of which cannot be easily reconciled with the empirical nature of the model. As an example of an EM model, in this study we use the Enhanced Temperature Index (ETI) model, which calculates melt amounts using air temperature and the shortwave radiation balance as index variables. We evaluate the performance of the ETI model on dry high-elevation sites where sublimation amounts - that are not explicitly accounted for the EM model - represent a relevant percentage of total ablation (1.1 to 8.7%). We analyse a data set of four Automatic Weather Stations (AWS), which were collected during the ablation season 2013-14, at elevations between 3466 and 4775 m asl, on the glaciers El Tapado, San Francisco, Bello and El Yeso, which are located in the semiarid Andes of central Chile. We complement our analysis using data from past studies in Juncal Norte Glacier (Chile) and Haut Glacier d'Arolla (Switzerland), during the ablation seasons 2008-09 and 2006, respectively. We use the results of a SEB model, applied to each study site, along the entire season, to calibrate the ETI model. The ETI model was not designed to calculate sublimation amounts, however, results show that their ability is low also to simulate melt amounts at sites where sublimation represents larger percentages of total ablation. In fact, we

  8. The Sublime and Education

    ERIC Educational Resources Information Center

    Carson, Jamin

    2006-01-01

    The sublime is a theory of aesthetics that reached its highest popularity in British literature during the Romantic period (c. 1785-1832). This article (1) explicates philosophers' different meanings of the sublime; (2) show how the sublime is relevant to education; and (3) show how the sublime "works" in literature by analyzing William Blake's…

  9. Heat rejection sublimator

    NASA Technical Reports Server (NTRS)

    Dingell, Charles W. (Inventor); Quintana, Clemente E. (Inventor); Le, Suy (Inventor); Clark, Michael R. (Inventor); Cloutier, Robert E. (Inventor); Hafermalz, David Scott (Inventor)

    2009-01-01

    A sublimator includes a sublimation plate having a thermal element disposed adjacent to a feed water channel and a control point disposed between at least a portion of the thermal element and a large pore substrate. The control point includes a sintered metal material. A method of dissipating heat using a sublimator includes a sublimation plate having a thermal element and a control point. The thermal element is disposed adjacent to a feed water channel and the control point is disposed between at least a portion of the thermal element and a large pore substrate. The method includes controlling a flow rate of feed water to the large pore substrate at the control point and supplying heated coolant to the thermal element. Sublimation occurs in the large pore substrate and the controlling of the flow rate of feed water is independent of time. A sublimator includes a sublimation plate having a thermal element disposed adjacent to a feed water channel and a control point disposed between at least a portion of the thermal element and a large pore substrate. The control point restricts a flow rate of feed water from the feed water channel to the large pore substrate independent of time.

  10. Enhanced performance of CdS/CdTe thin-film devices through temperature profiling techniques applied to close-spaced sublimation deposition

    SciTech Connect

    Xiaonan Li; Sheldon, P.; Moutinho, H.; Matson, R.

    1996-05-01

    The authors describe a methodology developed and applied to the close-spaced sublimation technique for thin-film CdTe deposition. The developed temperature profiles consisted of three discrete temperature segments, which the authors called the nucleation, plugging, and annealing temperatures. They have demonstrated that these temperature profiles can be used to grow large-grain material, plug pinholes, and improve CdS/CdTe photovoltaic device performance by about 15%. The improved material and device properties have been obtained while maintaining deposition temperatures compatible with commercially available substrates. This temperature profiling technique can be easily applied to a manufacturing environment by adjusting the temperature as a function of substrate position instead of time.

  11. A sublimation heat engine

    NASA Astrophysics Data System (ADS)

    Wells, Gary G.; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-03-01

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid-vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation.

  12. Sublimation, culture, and creativity.

    PubMed

    Kim, Emily; Zeppenfeld, Veronika; Cohen, Dov

    2013-10-01

    Combining insights from Freud and Weber, this article explores whether Protestants (vs. Catholics and Jews) are more likely to sublimate their taboo feelings and desires toward productive ends. In the Terman sample (Study 1), Protestant men and women who had sexual problems related to anxieties about taboos and depravity had greater creative accomplishments, as compared to those with sexual problems unrelated to such concerns and to those reporting no sexual problems. Two laboratory experiments (Studies 2 and 3) found that Protestants produced more creative artwork (sculptures, poems, collages, cartoon captions) when they were (a) primed with damnation-related words, (b) induced to feel unacceptable sexual desires, or (c) forced to suppress their anger. Activating anger or sexual attraction was not enough; it was the forbidden or suppressed nature of the emotion that gave the emotion its creative power. The studies provide possibly the first experimental evidence for sublimation and suggest a cultural psychological approach to defense mechanisms. PMID:23834638

  13. X-38 Advanced Sublimator

    NASA Technical Reports Server (NTRS)

    Dingell, Chuck; Quintana, Clemente; Le, Suy; Hafemalz, David S.; Clark, Mike; Cloutier, Robert

    2009-01-01

    A document discusses a heat rejection device for transferring heat from a space vehicle by venting water into space through the use of a novel, two-stage water distribution system. The system consists of two different, porous media that stop water-borne contaminants from clogging the system and causing operational failures. Feedwater passes through a small nozzle, then into a porous disk made of sintered stainless steel, and then finally into large-pore aluminum foam. The smaller pore layer of the steel disk controls the pressure drop of the feedwater. The ice forms in the foam layer, and then sublimates, leaving any contaminants behind. The pore-size of the foam is two orders of magnitude larger than the current porous plate sublimators, allowing for a greater tolerance for contaminants. Using metallic fibers in the foam also negates problems with compression seen in the use of poly(tetrafluoroethylene) felt.

  14. A sublimation heat engine

    PubMed Central

    Wells, Gary G.; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-01-01

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid–vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation. PMID:25731669

  15. A sublimation heat engine.

    PubMed

    Wells, Gary G; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-01-01

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid-vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation. PMID:25731669

  16. Modelling Sublimation of Carbon Dioxide

    ERIC Educational Resources Information Center

    Winkel, Brian

    2012-01-01

    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  17. Sublimation systems and associated methods

    DOEpatents

    Turner, Terry D.; McKellar, Michael G.; Wilding, Bruce M.

    2016-02-09

    A system for vaporizing and sublimating a slurry comprising a fluid including solid particles therein. The system includes a first heat exchanger configured to receive the fluid including solid particles and vaporize the fluid and a second heat exchanger configured to receive the vaporized fluid and solid particles and sublimate the solid particles. A method for vaporizing and sublimating a fluid including solid particles therein is also disclosed. The method includes feeding the fluid including solid particles to a first heat exchanger, vaporizing the fluid, feeding the vaporized fluid and solid particles to a second heat exchanger and sublimating the solid particles. In some embodiments the fluid including solid particles is liquid natural gas or methane including solid carbon dioxide particles.

  18. Sublimed C60 films for tribology

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat; Gupta, B. K.; Van Cleef, Garrett W.; Capp, Cindy; Coe, James V.

    1993-06-01

    Fullerenes take the form of hollow, geodesic domes, which are formed from a network of pentagons and hexagons. The C60 molecule has the highest possible symmetry (icosahedral) and assumes the shape of a soccer ball. At room temperature, fullerene molecules pack in a face-centered-cubic lattice bonded with weak van der Waals attractions. Fullerenes can be dissolved in solvents such as toluene and benzene and easily sublimed. The resilience, high load bearing capacity, low surface energy, high chemical stability, and spherical shape of C60 molecules and weak intermolecular bonding offer great potential for various mechanical and tribological applications. Sublimed films of C60 have been produced and friction and wear performance of these films in various operating environments are the subject of this letter.

  19. Displacement, Substitution, Sublimation: A Bibliography.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    Sigmund Freund worked with the mechanisms of displacement, substitution, and sublimation. These mechanisms have many similarities and have been studied diagnostically and therapeutically. Displacement and substitution seem to fit in well with phobias, hysterias, somatiyations, prejudices, and scapegoating. Phobias, prejudices, and scapegoating…

  20. Eisenhower and the American Sublime

    ERIC Educational Resources Information Center

    O'Gorman, Ned

    2008-01-01

    This essay presents Dwight D. Eisenhower's presidential rhetoric as an iteration of an American synecdochal sublime. Eisenhower's rhetoric sought to re-aim civic sight beyond corporeal objects to the nation's transcendental essence. This rhetoric is intimately connected to prevailing political anxieties and exigencies, especially the problem of…

  1. Membrane evaporator/sublimator investigation

    NASA Technical Reports Server (NTRS)

    Elam, J.; Ruder, J.; Strumpf, H.

    1974-01-01

    Data are presented on a new evaporator/sublimator concept using a hollow fiber membrane unit with a high permeability to liquid water. The aim of the program was to obtain a more reliable, lightweight and simpler Extra Vehicular Life Support System (EVLSS) cooling concept than is currently being used.

  2. APPARATUS FOR CONDENSATION AND SUBLIMATION

    DOEpatents

    Schmidt, R.J.; Fuis, F. Jr.

    1958-10-01

    An apparatus is presented for the sublimation and condensation of uranium compounds in order to obtain an improved crystalline structure of this material. The apparatus comprises a vaporizing chamber and condensing structure connected thereto. There condenser is fitted with a removable liner having a demountable baffle attached to the liner by means of brackets and a removable pin. The baffle is of spiral cross-section and is provided with cooling coils disposed between the surfaces of the baffle for circulation of a temperature controlling liquid within the baffle. The cooling coll provides for controlllng the temperature of the baffle to insure formatlon of a satisfactory condensate, and the removable liner facilitates the removal of condensate formed during tbe sublimation process.

  3. Calculational criticality analyses of 10- and 20-MW UF{sub 6} freezer/sublimer vessels

    SciTech Connect

    Jordan, W.C.

    1993-02-01

    Calculational criticality analyses have been performed for 10- and 20-MW UF{sub 6} freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF{sub 6} in each vessel have been considered for uranium enriched between 2 and 5 wt % {sup 235}U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

  4. Calculational criticality analyses of 10- and 20-MW UF[sub 6] freezer/sublimer vessels

    SciTech Connect

    Jordan, W.C.

    1993-02-01

    Calculational criticality analyses have been performed for 10- and 20-MW UF[sub 6] freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF[sub 6] in each vessel have been considered for uranium enriched between 2 and 5 wt % [sup 235]U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

  5. Schopenhauer, Nietzsche, and the Aesthetically Sublime

    ERIC Educational Resources Information Center

    Vandenabeele, Bart

    2003-01-01

    Much has been written on the relationship between Arthur Schopenhauer and Friedrich Nietzsche. Much remains to be said, however, concerning their respective theories of the sublime. In this article, the author first argues against the traditional, dialectical view of Schopenhauer's theory of the sublime that stresses the crucial role the sublime…

  6. Cooling-Trough Condenser for Sublimation Tubes

    NASA Astrophysics Data System (ADS)

    Eisenbraun, E. J.; Lucas, J. M.

    1995-11-01

    A wrap-around, trough condenser for use with large diameter (2.5") sublimation tubes is described. The design permits attachment of the condenser to the sublimation tube without removing the tube from the heater. It also permits the use of a variety of liquid (tap water, Dry Ice, and alcohol or acetone) or solid (ice or Dry Ice) coolants.

  7. Isotopic Fractionation of Water-Ice from Sublimation

    NASA Astrophysics Data System (ADS)

    Christensen, E.; Boyer, C.; Park, M.; Gormally, J.; Benitez, E.; Dominguez, G.

    2015-12-01

    Elizabeth Christensen, Charisa Boyer, Manesseh Park, Ezra Benitez, Gerardo Dominguez Understanding the multi-isotopic fractionation of water-ice that results from its sublimation may be important for understanding the isotopic composition of cometary ices. Here we describe an experimental setup whose purpose is to understand the effects of various astrophysical processes on the δD and δ18O and δ17O composition of water-ices. Our setup consists of an ultrahigh vacuum (UHV) chamber with oil free pumping, a closed cycle He cryostat to achieve low temperatures (capable of reaching 6K), and a vacuum line connected to the chamber via a UHV feed-through. Water isotopologues H216O, H218O, H217O, and HD16O samples can be measured after sublimation of water-ice with a cavity ring-down spectrometer (Picarro L2120-i) that is connected to the vacuum line. To perform these experiments, ambient water vapor was introduced into, frozen, and purified inside the UHV chamber (T< 150 K). Water-ice samples were sublimated for varying amounts of time to collect various fractions of the original reservoir. We will present the first results on the oxygen and deuterium isotopic fractionation of water-ice sublimation and discuss their implications for interpreting the isotopic compositions of cometary ices.

  8. Sublimator Driven Coldplate Engineering Development Unit Test Results

    NASA Technical Reports Server (NTRS)

    Sheth, Rubik B.; Stephan, Ryan A.; Leimkuehler, Thomas O.

    2010-01-01

    The Sublimator Driven Coldplate (SDC) is a unique piece of thermal control hardware that has several advantages over a traditional thermal control scheme. The principal advantage is the possible elimination of a pumped fluid loop, potentially increasing reliability and reducing complexity while saving both mass and power. Because the SDC requires a consumable feedwater, it can only be used for short mission durations. Additionally, the SDC is ideal for a vehicle with small transport distances and low heat rejection requirements. An SDC Engineering Development Unit was designed and fabricated. Performance tests were performed in a vacuum chamber to quantify and assess the performance of the SDC. The test data was then used to develop correlated thermal math models. Nonetheless, an Integrated Sublimator Driven Coldplate (ISDC) concept is being developed. The ISDC couples a coolant loop with the previously described SDC hardware. This combination allows the SDC to be used as a traditional coldplate during long mission phases and provides for dissimilar system redundancy

  9. In Situ Observation on Dislocation-Controlled Sublimation of Mg Nanoparticles.

    PubMed

    Yu, Qian; Mao, Min-Min; Li, Qing-Jie; Fu, Xiao-Qian; Tian, He; Li, Ji-Xue; Mao, Scott X; Zhang, Ze

    2016-02-10

    Sublimation is an important endothermic phase transition in which the atoms break away from their neighbors in the crystal lattice and are removed into the gas phase. Such debonding process may be significantly influenced by dislocations, the crystal defect that changes the bonding environment of local atoms. By performing systematic defects characterization and in situ transmission electron microscopy (TEM) tests on a core--shell MgO-Mg system, which enables us to "modulate" the internal dislocation density, we investigated the role of dislocations on materials' sublimation with particular focus on the sublimation kinetics and mechanism. It was observed that the sublimation rate increases significantly with dislocation density. As the density of screw dislocations is high, the intersection of screw dislocation spirals creates a large number of monatomic ledges, resulting in a "liquid-like" motion of solid-gas interface, which significantly deviates from the theoretically predicted sublimation plane. Our calculation based on density functional theory demonstrated that the remarkable change of sublimation rate with dislocation density is due to the dramatic reduction in binding energy of the monatomic ledges. This study provides direct observation to improve our understanding on this fundamental phase transition as well as to shed light on tuning materials' sublimation by "engineering" dislocation density in applications. PMID:26799861

  10. Coating Thermoelectric Devices To Suppress Sublimation

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey; Caillat, Thierry; Fleurial, Jean-Pierre; Snyder, G. Jeffrey

    2007-01-01

    A technique for suppressing sublimation of key elements from skutterudite compounds in advanced thermoelectric devices has been demonstrated. The essence of the technique is to cover what would otherwise be the exposed skutterudite surface of such a device with a thin, continuous film of a chemically and physically compatible metal. Although similar to other sublimation-suppression techniques, this technique has been specifically tailored for application to skutterudite antimonides. The primary cause of deterioration of most thermoelectric materials is thermal decomposition or sublimation - one or more elements sublime from the hot side of a thermoelectric couple, changing the stoichiometry of the device. Examples of elements that sublime from their respective thermoelectric materials are Ge from SiGe, Te from Pb/Te, and now Sb from skutterudite antimonides. The skutterudite antimonides of primary interest are CoSb3 [electron-donor (n) type] and CeFe(3-x)Co(x)Sb12 [electron-acceptor (p) type]. When these compounds are subjected to typical operating conditions [temperature of 700 C and pressure <10(exp -5) torr (0.0013 Pa)], Sb sublimes from their surfaces, with the result that Sb depletion layers form and advance toward their interiors. As the depletion layer advances in a given device, the change in stoichiometry diminishes the thermal-to-electric conversion efficiency of the device. The problem, then, is to prevent sublimation, or at least reduce it to an acceptably low level. In preparation for an experiment on suppression of sublimation, a specimen of CoSb3 was tightly wrapped in a foil of niobium, which was selected for its chemical stability. In the experiment, the wrapped specimen was heated to a temperature of 700 C in a vacuum of residual pressure <10(exp -5) torr (0.0013 Pa), then cooled and sectioned. Examination of the sectioned specimen revealed that no depletion layer had formed, indicating the niobium foil prevented sublimation of antimony at 700 C

  11. Experimental determination of ice sublimation energies

    NASA Astrophysics Data System (ADS)

    Luna, R.; Canto, J.; Satorre, M. A.; Domingo, M.

    2011-11-01

    In Astrophysics, the study of ices is important due to the wide range of scenarios in which they are present. Their physical and chemical characteristics play an important role in the study of the interstellar medium (ISM). The assessment of the energy of sublimation allows us to improve our understanding of physical and/or chemical processes that take place where ices are present. The energy of sublimation E_sub is defined as the change of energy between solid and gas phase of certain molecule. This value is important to determinate other thermodynamical parameters such as the reticular energy of ionic compounds, the energy of formation in gas phase from the energy of formation in condensed phase, or to estimate the sublimation rate, which is very important in determining the evolution of surfaces of astrophysical objects.

  12. Comet 67P/CG: Influence of the sublimation coefficient on the temperature and outgassing

    NASA Astrophysics Data System (ADS)

    Kossacki, Konrad J.; Markiewicz, Wojciech J.

    2013-05-01

    The sublimation rate of ice is commonly calculated using simple Hertz-Knudsen formula. This formula is derived from the kinetic theory of gases and ignores microphysical processes determining the actual sublimation rate. The microphysical processes can be accounted for by including in the Herz-Knudsen equation a temperature dependent sublimation coefficient (Kossacki, K.J., Markiewicz, W.J., Skorov, Y., Koemle, N.I. [1999]. Planet. Space Sci. 47, 1521-1530; Gundlach, B., Skorov, Y.V., Blum, J. [2011]. Icarus, 213, 710-719). Here we address the question to what extent inaccuracy of the simple Hertz-Knudsen equation affects the calculated temperature of a cometary nucleus and the emission rate of water vapor to space. We performed numerical simulations dealing with evolution of a model comet of the orbit the same as Comet 67P/Churyumov-Gerasimenko, target comet of the Rosetta mission (Glassmeier, K.H., Boehnardt, H., Koshny, D., Kuhrt, E., Richter, I. [2007]. Space Sci. Rev. 128, 1-21). We have found, that the temperature below dust mantle is most sensitive to the value of the sublimation coefficient when the mantle is coarse grained, while the sublimation rate is most affected when the mantle is fine grained. We also conclude that derivation of the temperature below the mantle from the measured water production rate ignoring temperature dependence of the sublimation coefficient leads to an underestimate of the temperature by more than 10 K when the nucleus is fine grained.

  13. Heat of Sublimation of I-2.

    ERIC Educational Resources Information Center

    Henderson, Giles; Robarts, Ronald A., Jr.

    1978-01-01

    Describes an inexpensive double-beam laser photometry experiment to determine the molar heat of sublimation of I-2. The experiment employs common laboratory materials and components and gives results with a two percent to three percent accuracy. (Author/GA)

  14. No reduction using sublimation of cyanuric acid

    DOEpatents

    Perry, Robert A.

    1990-01-01

    An arrangement for reducing the NO content of a gas stream comprises contacting the gas stream with NHCO into a temperature effective for heat induced decomposition of HNCO and for resultant lowering of the NO content of the gas stream. Preferably, the HNCO is generated by sublimation of cyanuric acid.

  15. NO reduction using sublimation of cyanuric acid

    DOEpatents

    Perry, Robert A.

    1988-01-01

    An arrangement for reducing the NO content of a gas stream comprises contacting the gas stream with HNCO at a temperature effective for heat induced decomposition of HNCO and for resultant lowering of the NO content of the gas stream. Preferably, the HNCO is generated by sublimation of cyanuric acid.

  16. Energy dissipation during sublimation from porous media

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Skorov, Yu. V.

    2002-09-01

    Several physical processes during the sublimation from and inside porous media have been investigated in detail in a series our papers (Skorov et al., 1999, Icarus 140, 173, Skorov et al., 2001, Icarus 153, 180, Davidsson and Skorov, 2002, Icarus 156, 223, Davidsson and Skorov, 2002, Icarus, in press) in order to analyse the gas production of cometary nuclei . New features are the absorption of the irradiation within the uppermost layers of the pores (rather than on the surface), taking into account the gas pressure of the coma, and temperature dependent condensation and sublimation coefficients. Detailed kinetic calculations revealed deviations from the canonical gasdynamic models. We will summarize the impact of these new calculations on the physics of sublimation from a cometary nucleus. The absorption of the irradiation below the surface leads to a decrease of sublimation flux near the subsolar point but to an increase near the evening terminator and nightside of a rotating nucleus. More absorbed energy is available to be transferred into the interior of the nucleus. This effect and consequences for the development of cometary nuclei will be discussed.

  17. System and method for suppressing sublimation using opacified aerogel

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeff S. (Inventor); Snyder, G. Jeffrey (Inventor); Calliat, Thierry (Inventor); Fleurial, Jean-Pierre (Inventor); Jones, Steven M. (Inventor); Palk, Jong-Ah (Inventor)

    2008-01-01

    The present invention relates to a castable, aerogel-based, ultra-low thermal conductivity opacified insulation to suppress sublimation. More specifically, the present invention relates to an aerogel opacified with various opacifying or reflecting constituents to suppress sublimation and provide thermal insulation in thermoelectric modules. The opacifying constituent can be graded within the aerogel for increased sublimation suppression, and the density of the aerogel can similarly be graded to achieve optimal thermal insulation and sublimation suppression.

  18. Numerical simulation of drifting snow sublimation in the saltation layer

    PubMed Central

    Dai, Xiaoqing; Huang, Ning

    2014-01-01

    Snow sublimation is an important hydrological process and one of the main causes of the temporal and spatial variation of snow distribution. Compared with surface sublimation, drifting snow sublimation is more effective due to the greater surface exposure area of snow particles in the air. Previous studies of drifting snow sublimation have focused on suspended snow, and few have considered saltating snow, which is the main form of drifting snow. In this study, a numerical model is established to simulate the process of drifting snow sublimation in the saltation layer. The simulated results show 1) the average sublimation rate of drifting snow particles increases linearly with the friction velocity; 2) the sublimation rate gradient with the friction velocity increases with increases in the environmental temperature and the undersaturation of air; 3) when the friction velocity is less than 0.525 m/s, the snowdrift sublimation of saltating particles is greater than that of suspended particles; and 4) the snowdrift sublimation in the saltation layer is less than that of the suspended particles only when the friction velocity is greater than 0.625 m/s. Therefore, the drifting snow sublimation in the saltation layer constitutes a significant portion of the total snow sublimation. PMID:25312383

  19. Psychotherapy. Sublimation and the psychodynamics of birding.

    PubMed

    Clemens, Norman A

    2012-07-01

    An adventure in extreme birding prompted the psychoanalyst author to reflect on "why do people do this?" Like myriad human interests, vocations, and avocations, the activity of bird watching is a socially acceptable activity that is the final pathway for multiple motivations that are likely to have a long history in the individual's development. It may have origins in basic survival skills. Various psychological defense mechanisms may be involved, the most mature and successful one being sublimation. Success of a defense-like sublimation may be viewed in terms of freedom from anxiety or from obsessive extremes that interfere with the individual's wellbeing, important relationships, or physical or financial health. The author considers whether the characters in the film The Big Year exemplify such success or the lack of it. PMID:22805903

  20. No reduction using sublimation of cyanuric acid

    DOEpatents

    Perry, Robert

    1989-01-01

    An arrangement for reducing the NO content of a gas stream comprises contacting the gas stream with HNCO at a temperature effective for heat induced decomposition of HNCO and for resultant lowering of the NO content of the gas stream. Preferably, the HNCO is generated by sublimation of cyanuric acid and CO or other H-atom generating species is also present or added to the gas stream.

  1. A New Method for Estimating Bacterial Abundances in Natural Samples using Sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Cleaves, H. James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L.

    2004-01-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert were heated to a temperature of 500 C for several seconds under reduced pressure. The sublimate was collected on a cold finger and the amount of adenine released from the samples then determined by high performance liquid chromatography (HPLC) with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approx. l0(exp 5) to l0(exp 9) E. coli cell equivalents per gram. For most of these samples, the sublimation based cell counts were in agreement with total bacterial counts obtained by traditional DAPI staining. The simplicity and robustness of the sublimation technique compared to the DAPI staining method makes this approach particularly attractive for use by spacecraft instrumentation. NASA is currently planning to send a lander to Mars in 2009 in order to assess whether or not organic compounds, especially those that might be associated with life, are present in Martian surface samples. Based on our analyses of the Atacama Desert soil samples, several million bacterial cells per gam of Martian soil should be detectable using this sublimation technique.

  2. New method for estimating bacterial cell abundances in natural samples by use of sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Cleaves, H. James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L.

    2004-01-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples, including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert, were heated to a temperature of 500 degrees C for several seconds under reduced pressure. The sublimate was collected on a cold finger, and the amount of adenine released from the samples was then determined by high-performance liquid chromatography with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approximately 10(5) to 10(9) E. coli cell equivalents per gram. For most of these samples, the sublimation-based cell counts were in agreement with total bacterial counts obtained by traditional DAPI (4,6-diamidino-2-phenylindole) staining.

  3. Sublimating grains model of cometary coma.

    NASA Astrophysics Data System (ADS)

    Faggi, S.; Tozzi, G. P.; Brucato, J. R.

    Billion years of space weathering produces a crust of organic matter (see e.g. Kanuchova et al. 2012) that will be released when a comet enter for the first time in the inner Solar System. New comets, coming form the Oort Colud at their first passage close to the Sun, are particularly important because they are not differentiated by the Solar radiation and they are supposed to have a large quantity of ice organic matter close to the surface. When a comet approach to the Sun, its activity is driven by the sublimation of these nucleus ices: if the heliocentric distances, R_H , is greater than 3 AU the sublimation of CO and CO_2 ices is the main source of comet activity, otherwise at shorter distances, the sublimation of water become the most important mechanism of activity. These gases, escaping from the nucleus, drag in the coma grains that can be refractory dust (silicates, carbon), water ice and/or organic ices. Oort comets at their first passage in the inner Solar System, should produce an halo of organic or water icy particles. Our group has been monitoring new, inbound, bright Oort comets (C/2011 F1, C/2012 S1, C/2012 K1, C/2013 V5, C/2012 F3, C/2013 US10, C/2013 X1) to search for these icy grains. The method consists in detecting the cloud of sublimating grains in the inner coma by using the Sigma Af function (Tozzi et al. 2007) directly from images. However this over-population of grains, beside the sublimation, can be also due to short time activity (outburst) or too big grains expanding at very slow velocity, as it has been found in comet 67P/C-G (Tozzi eta al, 2011, A&A, 531, 54). To disentangle between the phenomena it is necessary to monitor the comet both at short timescale, for the outbursts (by repeating the observations after few nights), and at long term (weeks-months). If the cloud does not expand with the decreasing of the heliocentric distance there is high probability that we are in presence of organic and/or water ice grains. We can disentangle

  4. Science Sublime: The Philosophy of the Sublime, Dewey's Aesthetics, and Science Education

    ERIC Educational Resources Information Center

    Cavanaugh, Shane

    2014-01-01

    Feelings of awe, wonder, and appreciation have been largely ignored in the working lives of scientists and, in turn, science education has not accurately portrayed science to students. In an effort to bring the affective qualities of science into the classroom, this work draws on the writings of the sublime by Burke, Kant, Emerson, and Wordsworth…

  5. Reassessing Aesthetic Appreciation of Nature in the Kantian Sublime

    ERIC Educational Resources Information Center

    Brady, Emily

    2012-01-01

    The sublime has been a relatively neglected topic in recent work in philosophical aesthetics, with existing discussions confined mainly to problems in Kant's theory. Given the revival of interest in his aesthetic theory and the influence of the Kantian sublime compared to other eighteenth-century accounts, this focus is not surprising. Kant's…

  6. Testing and Model Correlation of Sublimator Driven Coldplate Coupons

    NASA Technical Reports Server (NTRS)

    Sheth, Rubik; Stephan, Ryan; Leimkuehler, Thomas O.

    2008-01-01

    The Sublimator Driven Coldplate (SDC) is a unique piece of thermal control hardware that has several advantages over a traditional thermal control scheme. The principal advantage is the possible elimination of a pumped fluid loop, potentially saving mass, power, and complexity. Because this concept relies on evaporative heat rejection techniques, it is primarily useful for short mission durations. Additionally, the concept requires a conductive path between the heat-generating component and the heat rejection device. Therefore, it is mostly a relevant solution for a vehicle with a relatively low heat rejection requirement. Coupon level tests were performed at NASA's Johnson Space Center to better understand the basic operational principles and to validate the analytical methods being used for the SDC development. This paper outlines the results of the SDC coupon tests, the subsequent thermal model correlation, and a description of the SDC Engineering Development Unit design.

  7. The SCITEAS experiment: Optical characterizations of sublimating icy planetary analogues

    NASA Astrophysics Data System (ADS)

    Pommerol, A.; Jost, B.; Poch, O.; El-Maarry, M. R.; Vuitel, B.; Thomas, N.

    2015-05-01

    We have designed and built a laboratory facility to investigate the spectro-photometric and morphologic properties of different types of ice-bearing planetary surface analogs and follow their evolution upon exposure to a low pressure and low temperature environment. The results obtained with this experiment are used to verify and improve our interpretations of current optical remote-sensing datasets. They also provide valuable information for the development and operation of future optical instruments. The Simulation Chamber for Imaging the Temporal Evolution of Analogue Samples (SCITEAS) is a small thermal vacuum chamber equipped with a variety of ports and feedthroughs that permit both in-situ and remote characterizations as well as interacting with the sample. A large quartz window located directly above the sample is used to observe its surface from outside with a set of visible and near-infrared cameras. The sample holder can be easily and quickly inserted and removed from the chamber and is compatible with the other measurement facilities of the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern. We report here on the results of two of the first experiments performed in the SCITEAS chamber. In the first experiment, fine-grained water ice mixed with dark organic and mineral matter was left to sublime in vacuum and at low temperature, simulating the evolution of the surface of a comet nucleus approaching the Sun. We observed and characterized the formation and evolution of a crust of refractory organic and mineral matter at the surface of the sample and linked the evolution of its structure and texture to its spectro-photometric properties. In the second experiment, a frozen soil was prepared by freezing a mixture of smectite mineral and water. The sample was then left to sublime for 6 h to simulate the loss of volatiles from icy soil at high latitudes on Mars. Colour images were produced using the definitions of the

  8. Sublimation Growth of Titanium Nitride Crystals

    SciTech Connect

    Du, Li; Edgar, J H; Kenik, Edward A; Meyer III, Harry M

    2009-01-01

    The sublimation-recondensation growth of titanium nitride crystal with N/Ti ratio of 0.99 on tungsten substrate is reported. The growth rate dependence on temperature and pressure was determined, and the calculated activation energy is 775.8 29.8kJ/mol. The lateral and vertical growth rates changed with the time of growth and the fraction of the tungsten substrate surface covered. The orientation relationship of TiN (001) || W (001) with TiN [100] || W [110], a 45o angle between TiN [100] and W [100], occurs not only for TiN crystals deposited on W (001) textured tungsten but also for TiN crystals deposited on randomly orientated tungsten. This study demonstrates that this preferred orientational relationship minimizes the lattice mismatch between the TiN and tungsten.

  9. Sublime science: Teaching for scientific sublime experiences in middle school classrooms

    NASA Astrophysics Data System (ADS)

    Cavanaugh, Shane

    Due to a historical separation of cognition and emotion, the affective aspects of learning are often seen as trivial in comparison to the more 'essential' cognitive qualities - particularly in the domain of science. As a result of this disconnect, feelings of awe, wonder, and astonishment as well as appreciation have been largely ignored in the working lives of scientists. In turn, I believe that science education has not accurately portrayed the world of science to our students. In an effort to bring the affective qualities of science into the science classroom, I have drawn on past research in the field of aesthetic science teaching and learning as well as works by, Burke, Kant, and Dewey to explore a new construct I have called the "scientific sublime". Scientific sublime experiences represent a sophisticated treatment of the cognitive as well as affective qualities of science learning. The scientific sublime represents feelings of awe, wonder, and appreciation that come from a deep understanding. It is only through this understanding of a phenomenon that we can appreciate its true complexity and intricacies, and these understandings when mixed with the emotions of awe and reverence, are sublime. Scientific sublime experiences are an attempt at the re-integration of cognition and feeling. The goal of this research was twofold: to create and teach a curriculum that fosters scientific sublime experiences in middle school science classes, and to better understand how these experiences are manifested in students. In order to create an approach to teaching for scientific sublime experiences, it was first necessary for me to identify key characteristics of such an experience and a then to create a pedagogical approach, both of which are described in detail in the dissertation. This research was conducted as two studies in two different middle schools. My pedagogical approach was used to create and teach two five-week 7 th grade science units---one on weather

  10. Prediction of Sublimation Pressures of Low Volatility Solids

    NASA Astrophysics Data System (ADS)

    Drake, Bruce Douglas

    Sublimation pressures are required for solid-vapor phase equilibrium models in design of processes such as supercritical fluid extraction, sublimation purification and vapor epitaxy. The objective of this work is to identify and compare alternative methods for predicting sublimation pressures. A bibliography of recent sublimation data is included. Corresponding states methods based on the triple point (rather than critical point) are examined. A modified Trouton's rule is the preferred method for estimating triple point pressure in the absence of any sublimation data. Only boiling and melting temperatures are required. Typical error in log_{10} P _{rm triple} is 0.3. For lower temperature estimates, the slope of the sublimation curve is predicted by a correlation based on molar volume. Typical error is 10% of slope. Molecular dynamics methods for surface modeling are tested as estimators of vapor pressure. The time constants of the vapor and solid phases are too different to allow the vapor to come to thermal equilibrium with the solid. The method shows no advantages in prediction of sublimation pressure but provides insight into appropriate models and experimental methods for sublimation. Density-dependent augmented van der Waals equations of state based on hard-sphere distribution functions are examined. The perturbation term is almost linear and is well fit by a simple quadratic. Use of the equation provides reasonable fitting of sublimation pressures from one data point. Order-of-magnitude estimation is possible from melting temperature and solid molar volume. The inverse -12 fluid is used to develop an additional equation of state. Sublimation pressure results, including quality of pressure predictions, are similar to the hard-sphere results. Three-body (Axilrod -Teller) interactions are used to improve results.

  11. Static sublimation purification process and characterization of LiZnAs semiconductor material

    NASA Astrophysics Data System (ADS)

    Montag, Benjamin W.; Reichenberger, Michael A.; Edwards, Nathaniel S.; Ugorowski, Philip B.; Sunder, Madhana; Weeks, Joseph; McGregor, Douglas S.

    2016-03-01

    Refinement of the class AIBIICV materials continue as a candidate for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled 3He and 10BF3 detectors. The 6Li(n,t)4He reaction yields a total Q value of 4.78 MeV, larger than 10B, and easily identified above background radiations. Hence, devices composed of either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) may provide a semiconductor material for compact high efficiency neutron detectors. A sub-branch of the III-V semiconductors, the filled tetrahedral compounds, AIBIICV, known as Nowotny-Juza compounds, are known for their desirable cubic crystal structure. Starting material was synthesized by equimolar portions of Li, Zn, and As sealed under vacuum (10-6 Torr) in quartz ampoules with a boron nitride lining, and reacted in a compounding furnace [1]. The synthesized material showed signs of high impurity levels from material and electrical property characterization. In the present work, a static vacuum sublimation of synthesized LiZnAs loaded in a quartz vessel was performed to help purify the synthesized material. The chemical composition of the sublimed material and remains material was confirmed by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Lithium was not detected in the sublimed material, however, near stoichiometric amounts of each constituent element were found in the remains material for LiZnAs. X-ray diffraction phase identification scans of the remains material and sublimed material were compared, and further indicated the impurity materials were removed from the synthesized materials. The remaining powder post the sublimation process showed characteristics of a higher purity ternary compound.

  12. The formation of filamentary sublimate residues (FSR) from mineral grains

    NASA Technical Reports Server (NTRS)

    Storrs, A. D.; Fanale, F. P.; Saunders, R. S.; Stephens, J. B.

    1988-01-01

    The significant interparticle forces observed between solar system dust grains upon desorption or sublimation of excess volatiles in simulated Martian or cometary environments are presently investigated, in order to more precisely define these mechanisms and to simulate the types of deposits thereby formed. Some classes of phyllosilicate mineral grains are noted to bond together to form a highly porous filamentary sublimate residue (FSR) exhibiting an exceptionally high tensile strength for its density; this may be important in its control of erosion and sublimation in Martian and cometary environments. It is concluded that FSR formation from clean mineral grains in water ice may be important in the formation of the Martian polar layered terrain.

  13. Sublimation in bright spots on (1) Ceres

    NASA Astrophysics Data System (ADS)

    Nathues, A.; Hoffmann, M.; Schaefer, M.; Le Corre, L.; Reddy, V.; Platz, T.; Cloutis, E. A.; Christensen, U.; Kneissl, T.; Li, J.-Y.; Mengel, K.; Schmedemann, N.; Schaefer, T.; Russell, C. T.; Applin, D. M.; Buczkowski, D. L.; Izawa, M. R. M.; Keller, H. U.; O'Brien, D. P.; Pieters, C. M.; Raymond, C. A.; Ripken, J.; Schenk, P. M.; Schmidt, B. E.; Sierks, H.; Sykes, M. V.; Thangjam, G. S.; Vincent, J.-B.

    2015-12-01

    The dwarf planet (1) Ceres, the largest object in the main asteroid belt with a mean diameter of about 950 kilometres, is located at a mean distance from the Sun of about 2.8 astronomical units (one astronomical unit is the Earth-Sun distance). Thermal evolution models suggest that it is a differentiated body with potential geological activity. Unlike on the icy satellites of Jupiter and Saturn, where tidal forces are responsible for spewing briny water into space, no tidal forces are acting on Ceres. In the absence of such forces, most objects in the main asteroid belt are expected to be geologically inert. The recent discovery of water vapour absorption near Ceres and previous detection of bound water and OH near and on Ceres (refs 5, 6, 7) have raised interest in the possible presence of surface ice. Here we report the presence of localized bright areas on Ceres from an orbiting imager. These unusual areas are consistent with hydrated magnesium sulfates mixed with dark background material, although other compositions are possible. Of particular interest is a bright pit on the floor of crater Occator that exhibits probable sublimation of water ice, producing haze clouds inside the crater that appear and disappear with a diurnal rhythm. Slow-moving condensed-ice or dust particles may explain this haze. We conclude that Ceres must have accreted material from beyond the ‘snow line’, which is the distance from the Sun at which water molecules condense.

  14. Sublimation in bright spots on (1) Ceres.

    PubMed

    Nathues, A; Hoffmann, M; Schaefer, M; Le Corre, L; Reddy, V; Platz, T; Cloutis, E A; Christensen, U; Kneissl, T; Li, J-Y; Mengel, K; Schmedemann, N; Schaefer, T; Russell, C T; Applin, D M; Buczkowski, D L; Izawa, M R M; Keller, H U; O'Brien, D P; Pieters, C M; Raymond, C A; Ripken, J; Schenk, P M; Schmidt, B E; Sierks, H; Sykes, M V; Thangjam, G S; Vincent, J-B

    2015-12-10

    The dwarf planet (1) Ceres, the largest object in the main asteroid belt with a mean diameter of about 950 kilometres, is located at a mean distance from the Sun of about 2.8 astronomical units (one astronomical unit is the Earth-Sun distance). Thermal evolution models suggest that it is a differentiated body with potential geological activity. Unlike on the icy satellites of Jupiter and Saturn, where tidal forces are responsible for spewing briny water into space, no tidal forces are acting on Ceres. In the absence of such forces, most objects in the main asteroid belt are expected to be geologically inert. The recent discovery of water vapour absorption near Ceres and previous detection of bound water and OH near and on Ceres (refs 5-7) have raised interest in the possible presence of surface ice. Here we report the presence of localized bright areas on Ceres from an orbiting imager. These unusual areas are consistent with hydrated magnesium sulfates mixed with dark background material, although other compositions are possible. Of particular interest is a bright pit on the floor of crater Occator that exhibits probable sublimation of water ice, producing haze clouds inside the crater that appear and disappear with a diurnal rhythm. Slow-moving condensed-ice or dust particles may explain this haze. We conclude that Ceres must have accreted material from beyond the 'snow line', which is the distance from the Sun at which water molecules condense. PMID:26659183

  15. Sulfur "Concrete" for Lunar Applications - Sublimation Concerns

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Toutanji, Houssam

    2006-01-01

    Melting sulfur and mixing it with an aggregate to form "concrete" is commercially well established and constitutes a material that is particularly well-suited for use in corrosive environments. Discovery of the mineral troilite (FeS) on the moon poses the question of extracting the sulfur for use as a lunar construction material. This would be an attractive alternative to conventional concrete as it does not require water. However, the viability of sulfur concrete in a lunar environment, which is characterized by lack of an atmosphere and extreme temperatures, is not well understood. Here it is assumed that the lunar ore can be mined, refined, and the raw sulfur melded with appropriate lunar regolith to form, for example, bricks. This study evaluates pure sulfur and two sets of small sulfur concrete samples that have been prepared using JSC-1 lunar stimulant and SiO2 powder as aggregate additions. Each set was subjected to extended periods in a vacuum environment to evaluate sublimation issues. Results from these experiments are presented and discussed within the context of the lunar environment.

  16. Carbon-Sublimation Production of Fullerenes.

    NASA Astrophysics Data System (ADS)

    Tinker, Frank Albert

    1995-01-01

    Carbon-sublimation production of fullerenes enjoys wide use in both experimental and industrial application worldwide. Although it has been nearly five years since the inception of the technique, little is known about the roles various parameters play in the production process. This work attempts to shed light, both experimentally and theoretically, on the basic processes at work in this type of fullerene production. Experimental results herein show that a functional relationship exists among the C_{60 }, C_{70}, C_{76}, C_ {78}, and C_{84} fullerenes produced in carbon arcs. This result is interpreted to mean that an equilibrium description of the production process may be valid. Theoretical calculations are then offered in support of such a view. The theory goes on to show details of an equilibrium description that reproduce essential features of fullerene mass-spectra. It is shown that equilibrium abundances of n-atom -sized clusters are highly dependent on the stoichiometric equation chosen to describe the system. However, common traits of the investigated equilibrium descriptions lead to useful conclusions.

  17. Mass spectrometry study of the sublimation of aliphatic dipeptides

    NASA Astrophysics Data System (ADS)

    Badelin, V. G.; Tyunina, E. Yu.; Krasnov, A. V.; Tyunina, V. V.; Giricheva, N. I.; Girichev, A. V.

    2012-03-01

    The sublimation of glycyl-L-α-alanine (Gly-Ala), L-α-alanyl-L-α-alanine (Ala-Ala), and DL-α-alanyl-DL-α-valine (Ala-Val) aliphatic dipeptides is studied by electron ionization mass spectrometry in combination with Knudsen effusion. The temperature range in which substances sublime as monomer molecular forms is determined. Enthalpies of sublimation Δs H°( T) are determined for Gly-Ala, Ala-Ala, and Ala-Val. It is shown that the enthalpy of sublimation of dipeptides increases with an increase in the side hydrocarbon radical. The unknown Δs H°(298) values for 17 amino acids and nine dipeptides are estimated using the proposed "structure-property" correlation model, in which the geometry and electron characteristics of molecules are used as structural descriptors.

  18. Nietzsche's View of Sublimation in the Educational Process

    ERIC Educational Resources Information Center

    Sharp, Ann Margaret

    1975-01-01

    Article outlined Nietzsche's beliefs on the primary aim of education, the conscious production of the free man through the process of sublimation, the active redirecting of one's life energy in the service of creativity. (Editor/RK)

  19. Development and Testing of the Contaminant Insensitive Sublimator

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2007-01-01

    Sublimators have been used for heat rejection for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Some of the attractive features of sublimators are that they are compact, lightweight, and self-regulating. One of the drawbacks of previous designs has been sensitivity to non-volatile contamination in the feedwater, which can clog relatively small pores (approx. 3-6 micrometers) in the porous plates where ice forms and sublimates. A new design that is less sensitive to contaminants is being developed at the Johnson Space Center (JSC). This paper describes the design, fabrication, and testing of the Contaminant Insensitive Sublimator (CIS) Engineering Development Unit (EDU).

  20. Development and Testing of the Contaminant Insensitive Sublimator

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.; Westheimer, David T.

    2006-01-01

    Sublimators have been used for heat rejection for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Some of the attractive features of sublimators are that they are compact, lightweight, and self-regulating. One of the drawbacks of previous designs has been sensitivity to non-volatile contamination in the feedwater, which can clog relatively small pores (approx.3-6 microns) in the porous plates where ice forms and sublimates. A new design that is less sensitive to contaminants is being developed at the Johnson Space Center. This paper describes the design, fabrication, and testing of the Contaminant Insensitive Sublimator (CIS) Engineering Development Unit (EDU).

  1. Scanning electron microscope observations of sublimates from Merapi Volcano, Indonesia

    USGS Publications Warehouse

    Symonds, R.

    1993-01-01

    Sublimates were sampled from high-temperature (up to 800??C) fumaroles at Merapi volcano in January 1984. Sampling is accomplished by inserting silica tubes into high-temperature vents. Volcanic glass flows through the tubes and sublimates precipitate on the inner walls in response to the temperature gradient. With decreasing temperature (800-500??C) in the tubes, there are five sublimate zones. Texturally, the sublimate phases grade from large, well-formed crystals at their highest-temperature occurrence to more numerous, smaller crystals that are less perfect at lower temperatures. These changes imply that the crystal nucleation and growth rates increase and decrease, respectively, as temperature decreases. Overall, the textural data suggest that the gas is saturated or slightly super-saturated with the phases at their hottest occurrence, but that the gas becomes increasingly super-saturated with the phases at lower temperatures. -from Author

  2. Dynamics and Mechanisms of Exfoliated Black Phosphorus Sublimation.

    PubMed

    Fortin-Deschênes, Matthieu; Levesque, Pierre L; Martel, Richard; Moutanabbir, Oussama

    2016-05-01

    We report on real time observations of the sublimation of exfoliated black phosphorus layers throughout annealing using in situ low energy electron microscopy. We found that sublimation manifests itself above 375 ± 20 °C through the nucleation and expansion of asymmetric, faceted holes with the long axis aligned along the [100] direction and sharp tips defined by edges consisting of alternating (10) and (11) steps. This thermally activated process repeats itself via successive sublimation of individual layers. Calculations and simulations using density functional theory and kinetic Monte Carlo allowed to determine the involved atomic pathways. Sublimation is found to occur via detachments of phosphorus dimers rather than single atoms. This behavior and the role of defects is described using an analytical model that captures all essential features. This work establishes an atomistic-level understanding of the thermal stability of exfoliated black phosphorus and defines the temperature window available for material and device processing. PMID:27097073

  3. Sublimation TiN Coating of RF Power Components

    NASA Astrophysics Data System (ADS)

    Lorkiewicz, J.; Kula, J.; Pszona, S.; Sobczak, J.; Bilinski, A.

    2008-03-01

    Titanium evaporation in a reactive atmosphere of ammonia has been chosen to deposit thin (up to 10 nm) protective surface layers containing titanium nitride and titanium oxinitrides which suppress secondary electron emission. The coating procedure, applied by the author in DESY (Hamburg) for TESLA couplers anti-multipactor protection, has been recently implemented in The Andrzej Soltan Institute for Nuclear Studies (IPJ) where a new coating device is used, equipped with a special titanium sublimation setup in a 100 1 vacuum chamber. Several arrays of cylindrical and coaxial RF coupler windows have been coated so far after optimizing the processing parameters. A check of the obtained surface layers ability to attenuate secondary electron emission has been performed; measurements of the secondary electron yield from TiN layers deposited on alumina samples were done in IPJ on as-delivered coated samples, then after vacuum bake-out and finally after additional electron bombardment of their surfaces. Also chemical composition of the surface layers has been studied using XPS in the Institute of Physical Chemistry (IChF).

  4. Sublimation of a crystal slowed by sorption of foreign molecules from a gaseous medium

    NASA Astrophysics Data System (ADS)

    Bochkarev, A. A.; Polyakova, V. I.

    2014-07-01

    Numerical simulation of the sublimation of the surface of an ice crystal has shown that the presence of a non-condensable gas substantially reduces the sublimation rate. It has been found that the slowing of the sublimation due to the adsorption of gas molecules on the crystal surface that fill the vacancies during sublimation prevents the formation of vacancy islands on the surface of the crystal required for evaporation of the surface molecular layer. The available results of studies that explain the slowing of the sublimation by the presence of a diffusion layer formed in the vapor medium near the sublimating surface are supplemented with new data showing that molecular processes on the crystal surface play an equally important role as the diffusion layer. Cases have been found where crystal sublimation is accelerated by the sorption of gas molecules. The obtained results refining the theory of sublimation can be used to develop methods for controlling sublimation.

  5. Ceres water regime: surface temperature, water sublimation and transient exo(atmo)sphere

    NASA Astrophysics Data System (ADS)

    Formisano, M.; De Sanctis, M. C.; Magni, G.; Federico, C.; Capria, M. T.

    2016-01-01

    Recent observations of water emission around Ceres suggest the presence of an ice layer on or beneath the surface of this asteroid. Several mechanisms have been suggested to explain these plumes, among which cometary-like sublimation seems to be plausible, since there is a correlation between the magnitude of the emission and the change in the heliocentric distance along the orbit. In this work, we applied a comet sublimation model to study the plausible scenarios that match with Herschel observations of the water flux (1026 molecules s-1). Each scenario is characterized by a well-defined set of physical and orbital parameters. Moreover, a study of the dynamic evolution of the H2O plume has been performed, showing that an optically thin transient atmospheric envelope, with a typical timescale of some tens of days, can be maintained by the H2O surface emission. Our simulations could be useful theoretical support for the Dawn NASA mission by giving a better understanding of the physical conditions for water sublimation and ice stability.

  6. Sublimation rates of explosive materials : method development and initial results.

    SciTech Connect

    Phelan, James M.; Patton, Robert Thomas

    2004-08-01

    Vapor detection of explosives continues to be a technological basis for security applications. This study began experimental work to measure the chemical emanation rates of pure explosive materials as a basis for determining emanation rates of security threats containing explosives. Sublimation rates for TNT were determined with thermo gravimetric analysis using two different techniques. Data were compared with other literature values to provide sublimation rates from 25 to 70 C. The enthalpy of sublimation for the combined data was found to be 115 kJ/mol, which corresponds well with previously reported data from vapor pressure determinations. A simple Gaussian atmospheric dispersion model was used to estimate downrange concentrations based on continuous, steady-state conditions at 20, 45 and 62 C for a nominal exposed block of TNT under low wind conditions. Recommendations are made for extension of the experimental vapor emanation rate determinations and development of turbulent flow computational fluid dynamics based atmospheric dispersion estimates of standoff vapor concentrations.

  7. Alumina Paste Sublimation Suppression Barrier for Thermoelectric Device

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah (Inventor); Caillat, Thierry (Inventor)

    2014-01-01

    Alumina as a sublimation suppression barrier for a Zintl thermoelectric material in a thermoelectric power generation device operating at high temperature, e.g. at or above 1000K, is disclosed. The Zintl thermoelectric material may comprise Yb.sub.14MnSb.sub.11. The alumina may be applied as an adhesive paste dried and cured on a substantially oxide free surface of the Zintl thermoelectric material and polished to a final thickness. The sublimation suppression barrier may be finalized by baking out the alumina layer on the Zintl thermoelectric material until it becomes substantially clogged with ytterbia.

  8. Enthalpy of sublimation as measured using a silicon oscillator

    NASA Astrophysics Data System (ADS)

    Shakeel, Hamza; Pomeroy, J. M.

    In this study, we report the enthalpy of sublimation of common gases (nitrogen, oxygen, argon, carbon dioxide, neon, krypton, xenon, and water vapor) using a large area silicon oscillator with a sub-ng (~0.027 ng/cm2) mass sensitivity. The double paddle oscillator design enables high frequency stability (17 ppb) at cryogenic temperatures and provides a consistent technique for enthalpy measurements. The enthalpies of sublimation are derived from the rate of mass loss during programmed thermal desorption and are detected as a change in the resonance frequency of the self-tracking oscillator. These measured enthalpy values show excellent agreement with the accepted literature values.

  9. Contactless prompt tumbling rebound of drops from a sublimating slope

    NASA Astrophysics Data System (ADS)

    Antonini, Carlo; Jung, Stefan; Wetzel, Andreas; Heer, Emmanuel; Schoch, Philippe; Moqaddam, Ali Mazloomi; Chikatamarla, Shyam S.; Karlin, Ilya; Marengo, Marco; Poulikakos, Dimos

    2016-05-01

    We have uncovered a drop rebound regime, characteristic of highly viscous liquids impacting tilted sublimating surfaces. Here the drops, rather than showing a slide, spread, recoil, and rebound behavior, exhibit a prompt tumbling rebound. As a result, glycerol surprisingly rebounds faster than three orders of magnitude less viscous water. When a viscous drop impacts a sublimating surface, part of its initial linear momentum is converted into angular momentum: Lattice Boltzmann simulations confirmed that tumbling owes its appearance to the rapid transition of the internal angular velocity prior to rebound to a constant value, as in a tumbling solid body.

  10. Graphite Sublimation Tests for the Muon Collider/Neutrino Factory Target Development Program

    SciTech Connect

    Haines, JR

    2002-02-07

    A passively cooled graphite target was proposed for a 1.5 MW neutrino production research facility because of its simplicity and favorable performance as a target material for neutrino production (Ref. 1). The conceptual design for the target in the Reference 1 study was a graphite rod 15 mm in diameter by 800 mm long. Figure 1 shows the graphite target rod supported by graphite spokes, which are mounted to a water-cooled stainless steel support tube. The target is radiatively cooled to the water-cooled surface of the support tube. Based on nuclear analysis results (Ref. 2), the time-averaged power deposition in the target is 35 kW. If this power is deposited uniformly along the axial length of the target, the volumetric power deposition in the target is about 250 MW/m{sup 3}. The target surface temperature required to radiate the deposited power to a water-cooled tube is estimated to be about 1850 C, and the temperature at the center of the target is about 75 C hotter. The sublimation erosion rate (e), estimated assuming that the graphite is submersed in a perfect vacuum environment, can be derived from kinetic theory and is given by: e = p{sub sat} (m/2{pi} kT){sup 1/2} where p{sub sat} is the saturation pressure, m is the molecular weight, k is the Boltzmann constant, and T is the surface temperature. The saturation pressure given in Ref. 3 can be approximated by: p{sub sat} = exp(-A/T + B) where A = 9.47 x 10{sup 3}, B = 24.2, and the units of p{sub sat} and T are atmospheres and K, respectively. Using these equations, the saturation pressure and sublimation erosion rate are plotted in Fig. 2 as a function of temperature. The surface recession rate shown with units of mm/s in Fig. 2 assumes one-sided erosion. At the average power deposition value of 250 MW/m{sup 3}, the surface temperature is 1850 C resulting in a sublimation erosion rate of only 2.2 mm/day. However, if the actual power deposition were peaked by a factor of two in the axial direction, then the

  11. Laboratory experiments to explore the sediment transport capacity of carbon dioxide sublimation under martian conditions

    NASA Astrophysics Data System (ADS)

    Sylvest, Matthew; Conway, Susan; Patel, Manish; Dixon, John; Barnes, Adam

    2015-04-01

    Every spring, the solid carbon dioxide deposited over the martian high latitudes sublimates. Several, unusual surface features, including dark spots and flows on sand dunes, as well as recent activity in martian gullies, have been associated with this CO2 sublimation. Water and/or brines have also been proposed as potential agents for these events, but the timing of these phenomena suggest CO2 sublimation is more likely. However, the exact mechanism by which CO2 sublimation moves sediment is not fully understood, and this understanding is required to validate the CO2 hypothesis. Here we present the results of the first ever laboratory simulations of this process under martian conditions, and show that significant quantities of loose sediment can be transported. The centrepiece of the apparatus is a 1m diameter, 2m long Mars simulation chamber, housed at The Open University, UK. JSC Mars-1A regolith simulant was formed into a slope, inside a box, ~30 cm long, 23 cm wide by 12 cm deep. The box is constructed of coiled, copper tubing to allow cooling of the regolith by liquid nitrogen. The experimental procedure consists of four stages: 1) establishment of a dry atmosphere in the chamber, 2) cooling the regolith sufficiently to support condensation of CO2 frost at reduced pressure, 3) introduction of cooled CO2 gas above the regolith to deposit as frost, and 4) video recording the surface evolution under radiant heating (~100 mins). Two High Definition digital video cameras were mounted above the box and image pairs taken from the videos were then used to create digital elevation models (DEMs) in Agisoft Photoscan at regular intervals. In our initial experiments we performed four experimental runs where the slope was set at or near the angle of repose (~30°). In each case we observed mass wasting events triggered by the sublimation of the deposited CO2 over the whole duration of the insolation. The highest levels of activity occurred in the first third of the run

  12. The Digital Sublime: Lessons from Kelli Connell's "Double Life"

    ERIC Educational Resources Information Center

    Huang, Yi-hui

    2012-01-01

    The digital sublime refers to digital-composite photography that presents "the existence of something unpresentable" and that renders a matchless look a sophisticated fabrication, a perfect and clean composition, a maximum color saturation, a multiple-point perspective, and stunning or newfangled content. Abandoning the traditional one-shot mode…

  13. System for NO reduction using sublimation of cyanuric acid

    DOEpatents

    Perry, R.A.

    1989-01-24

    An arrangement for reducing the NO content of a gas stream comprises contacting the gas stream with HNCO at a temperature effective for heat induced decomposition of HNCO and for resultant lowering of the NO content of the gas stream. Preferably, the HNCO is generated by sublimation of cyanuric acid. 1 fig.

  14. Optimization of fast dissolving etoricoxib tablets prepared by sublimation technique.

    PubMed

    Patel, D M; Patel, M M

    2008-01-01

    The purpose of this investigation was to develop fast dissolving tablets of etoricoxib. Granules containing etoricoxib, menthol, crospovidone, aspartame and mannitol were prepared by wet granulation technique. Menthol was sublimed from the granules by exposing the granules to vacuum. The porous granules were then compressed in to tablets. Alternatively, tablets were first prepared and later exposed to vacuum. The tablets were evaluated for percentage friability and disintegration time. A 3(2) full factorial design was applied to investigate the combined effect of 2 formulation variables: amount of menthol and crospovidone. The results of multiple regression analysis indicated that for obtaining fast dissolving tablets; optimum amount of menthol and higher percentage of crospovidone should be used. A surface response plots are also presented to graphically represent the effect of the independent variables on the percentage friability and disintegration time. The validity of a generated mathematical model was tested by preparing a checkpoint batch. Sublimation of menthol from tablets resulted in rapid disintegration as compared with the tablets prepared from granules that were exposed to vacuum. The optimized tablet formulation was compared with conventional marketed tablets for percentage drug dissolved in 30 min (Q(30)) and dissolution efficiency after 30 min (DE(30)). From the results, it was concluded that fast dissolving tablets with improved etoricoxib dissolution could be prepared by sublimation of tablets containing suitable subliming agent. PMID:20390084

  15. Optimization of Fast Dissolving Etoricoxib Tablets Prepared by Sublimation Technique

    PubMed Central

    Patel, D. M.; Patel, M. M.

    2008-01-01

    The purpose of this investigation was to develop fast dissolving tablets of etoricoxib. Granules containing etoricoxib, menthol, crospovidone, aspartame and mannitol were prepared by wet granulation technique. Menthol was sublimed from the granules by exposing the granules to vacuum. The porous granules were then compressed in to tablets. Alternatively, tablets were first prepared and later exposed to vacuum. The tablets were evaluated for percentage friability and disintegration time. A 32 full factorial design was applied to investigate the combined effect of 2 formulation variables: amount of menthol and crospovidone. The results of multiple regression analysis indicated that for obtaining fast dissolving tablets; optimum amount of menthol and higher percentage of crospovidone should be used. A surface response plots are also presented to graphically represent the effect of the independent variables on the percentage friability and disintegration time. The validity of a generated mathematical model was tested by preparing a checkpoint batch. Sublimation of menthol from tablets resulted in rapid disintegration as compared with the tablets prepared from granules that were exposed to vacuum. The optimized tablet formulation was compared with conventional marketed tablets for percentage drug dissolved in 30 min (Q30) and dissolution efficiency after 30 min (DE30). From the results, it was concluded that fast dissolving tablets with improved etoricoxib dissolution could be prepared by sublimation of tablets containing suitable subliming agent. PMID:20390084

  16. Modeling the development of martian sublimation thermokarst landforms

    USGS Publications Warehouse

    Dundas, Colin M.; Byrne, Shane; McEwen, Alfred S.

    2015-01-01

    Sublimation-thermokarst landforms result from collapse of the surface when ice is lost from the subsurface. On Mars, scalloped landforms with scales of decameters to kilometers are observed in the mid-latitudes and considered likely thermokarst features. We describe a landscape evolution model that couples diffusive mass movement and subsurface ice loss due to sublimation. Over periods of tens of thousands of Mars years under conditions similar to the present, the model produces scallop-like features similar to those on the Martian surface, starting from much smaller initial disturbances. The model also indicates crater expansion when impacts occur in surfaces underlain by excess ice to some depth, with morphologies similar to observed landforms on the Martian northern plains. In order to produce these landforms by sublimation, substantial quantities of excess ice are required, at least comparable to the vertical extent of the landform, and such ice must remain in adjacent terrain to support the non-deflated surface. We suggest that Martian thermokarst features are consistent with formation by sublimation, without melting, and that significant thicknesses of very clean excess ice (up to many tens of meters, the depth of some scalloped depressions) are locally present in the Martian mid-latitudes. Climate conditions leading to melting at significant depth are not required.

  17. Modeling the development of martian sublimation thermokarst landforms

    NASA Astrophysics Data System (ADS)

    Dundas, Colin M.; Byrne, Shane; McEwen, Alfred S.

    2015-12-01

    Sublimation-thermokarst landforms result from collapse of the surface when ice is lost from the subsurface. On Mars, scalloped landforms with scales of decameters to kilometers are observed in the mid-latitudes and considered likely thermokarst features. We describe a landscape evolution model that couples diffusive mass movement and subsurface ice loss due to sublimation. Over periods of tens of thousands of Mars years under conditions similar to the present, the model produces scallop-like features similar to those on the martian surface, starting from much smaller initial disturbances. The model also indicates crater expansion when impacts occur in surfaces underlain by excess ice to some depth, with morphologies similar to observed landforms on the martian northern plains. In order to produce these landforms by sublimation, substantial quantities of excess ice are required, at least comparable to the vertical extent of the landform, and such ice must remain in adjacent terrain to support the non-deflated surface. We suggest that martian thermokarst features are consistent with formation by sublimation, without melting, and that significant thicknesses of very clean excess ice (up to many tens of meters, the depth of some scalloped depressions) are locally present in the martian mid-latitudes. Climate conditions leading to melting at significant depth are not required.

  18. Literary Study, Measurement, and the Sublime: Disciplinary Assessment

    ERIC Educational Resources Information Center

    Heiland, Donna, Ed.; Rosenthal, Laura J., Ed.

    2011-01-01

    This collection of essays, "Literary Study, Measurement, and the Sublime: Disciplinary Assessment," edited by Donna Heiland and Laura J. Rosenthal, represents an important new venture in the Foundation's communication program. The book is the product of many authors, including the editors, both of whom have written essays for it. But it is the…

  19. System for NO reduction using sublimation of cyanuric acid

    DOEpatents

    Perry, Robert A.

    1989-01-01

    An arrangement for reducing the NO content of a gas stream comprises contacting the gas stream with HNCO at a temperature effective for heat induced decomposition of HNCO and for resultant lowering of the NO content of the gas stream. Preferably, the HNCO is generated by sublimation of cyanuric acid.

  20. Modular Porous Plate Sublimator /MPPS/ requires only water supply for coolant

    NASA Technical Reports Server (NTRS)

    Rathbun, R. J.

    1966-01-01

    Modular porous plate sublimators, provided for each location where heat must be dissipated, conserve the battery power of a space vehicle by eliminating the coolant pump. The sublimator requires only a water supply for coolant.

  1. Alumina Paste Layer as a Sublimation Suppression Barrier for Yb14MnSb11

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah; Caillat, Thierry

    2010-01-01

    Sublimation is a major cause of degradation of thermoelectric power generation systems. Most thermoelectric materials tend to have peak values at the temperature where sublimation occurs. A sublimation barrier is needed that is stable at operating temperatures, inert against thermoelectric materials, and able to withstand thermal cycling stress. A porous alumina paste layer is suitable as a sublimation barrier for Yb14MnSb11. It can accommodate stress generated by the thermal expansion discrepancy between the suppression layer and thermoelectric materials. Sublimation suppression is achieved by filling pores naturally with YbO2, a natural byproduct of sublimation. YbO2 generated during the sublimation of Yb14MnSb11 fills the porous structure of the alumina paste, causing sublimation to decrease with time as the pores become filled.

  2. Advances in sublimation studies for particles of explosives

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Nguyen, Viet; Fischer, Thomas; Abrishami, Tara; Papantonakis, Michael; Kendziora, Chris; Mott, David R.; McGill, R. Andrew

    2015-05-01

    When handling explosives, or related surfaces, the hands routinely become contaminated with particles of explosives and related materials. Subsequent contact with a solid surface results in particle crushing and deposition. These particles provide an evidentiary trail which is useful for security applications. As such, the opto-physico-chemical characteristics of these particles are critical to trace explosives detection applications in DOD or DHS arenas. As the persistence of these particles is vital to their forensic exploitation, it is important to understand which factors influence their persistence. The longevity or stability of explosives particles on a substrate is a function of several environmental parameters or particle properties including: Vapor pressure, particle geometry, airflow, particle field size, substrate topography, humidity, reactivity, adlayers, admixtures, particle areal density, and temperature. In this work we deposited particles of 2,4-dinitrotoluene on standard microscopy glass slides by particle sieving and studied their sublimation as a function of airflow velocity, areal particle density and particle field size. Analysis of 2D microscopic images was used to compute and track particle size and geometrical characteristics. The humidity, temperature and substrate type were kept constant for each experiment. A custom airflow cell, using standard microscopy glass slide, allowed in-situ photomicroscopy. Areal particle densities and airflow velocities were selected to provide relevant loadings and flow velocities for a range of potential applications. For a chemical of interest, we define the radial sublimation velocity (RSV) for the equivalent sphere of a particle as the parameter to characterize the sublimation rate. The RSV is a useful parameter because it is independent of particle size. The sublimation rate for an ensemble of particles was found to significantly depend on airflow velocity, the areal density of the particles, and the

  3. Relationship between molecular descriptors and the enthalpies of sublimation of natural amino acids

    NASA Astrophysics Data System (ADS)

    Badelin, V. G.; Tyunina, V. V.; Girichev, G. V.; Tyunina, E. Yu.

    2016-07-01

    A multiparameter correlation between the enthalpies of sublimation and molecular descriptors of natural amino acids is proposed, based on generalized experimental and literature data on the heat effects of sublimation. The contributions from Van der Waals interactions, hydrogen bond formation, and electrostatic effects into enthalpy of sublimation has been evaluated using regression coefficients.

  4. Effect of recondensation of sublimed species on nanoparticle temperature evolution in time-resolved laser-induced incandescence

    NASA Astrophysics Data System (ADS)

    Memarian, F.; Liu, F.; Thomson, K. A.; Daun, K. J.; Snelling, D. R.; Smallwood, G. J.

    2015-03-01

    In high-fluence laser-induced incandescence (LII), current LII models significantly overpredict the soot nanoparticle temperature decay rate compared to that inferred from two-color pyrometry at the first 100 ns after the peak laser pulse in atmospheric pressure flames. One possible cause is the back flow of sublimed species, which to date has been neglected in LII modeling. In this study, the transient direct simulation Monte Carlo (DSMC) method has been used, for the first time, to calculate the temperature evolution of soot particles, taking into account recondensation of sublimed species. In this algorithm, the physical time is discretized into a number of time steps called ensemble time steps, and the heat flux is calculated by performing several DSMC runs in each ensemble time step before proceeding to the next ensemble time step until the variance reaches an acceptable value. This heat flux is then used to update the nanoparticle temperature over the ensemble time step. Using the new algorithm, the temperature evolution of the particle can be predicted by the DSMC code, which is an improvement to previous DSMC simulations in which predetermined temperature decay curves must be prescribed. The results show that recondensation of sublimed species on the originating nanoparticle is not significant. Although accounting for condensation of sublimed species originating from neighboring soot particles enhances the role of recondensation of sublimed species in slowing down the soot particle temperature decay, it is still not sufficient to be considered as a plausible cause for the discrepancy between modeled soot temperature and the two-color pyrometry measured one in high-fluence LII.

  5. Robust Magnetic Properties of a Sublimable Single-Molecule Magnet.

    PubMed

    Kiefl, Evan; Mannini, Matteo; Bernot, Kevin; Yi, Xiaohui; Amato, Alex; Leviant, Tom; Magnani, Agnese; Prokscha, Thomas; Suter, Andreas; Sessoli, Roberta; Salman, Zaher

    2016-06-28

    The organization of single-molecule magnets (SMMs) on surfaces via thermal sublimation is a prerequisite for the development of future devices for spintronics exploiting the richness of properties offered by these magnetic molecules. However, a change in the SMM properties due to the interaction with specific surfaces is usually observed. Here we present a rare example of an SMM system that can be thermally sublimated on gold surfaces while maintaining its intact chemical structure and magnetic properties. Muon spin relaxation and ac susceptibility measurements are used to demonstrate that, unlike other SMMs, the magnetic properties of this system in thin films are very similar to those in the bulk, throughout the full volume of the film, including regions near the metal and vacuum interfaces. These results exhibit the robustness of chemical and magnetic properties of this complex and provide important clues for the development of nanostructures based on SMMs. PMID:27139335

  6. Trust: the sublime duty in health care leadership.

    PubMed

    Piper, Llewellyn E

    2010-01-01

    Trust is the essence of human social existence. From the moment of birth, trust is the basic component in any human relationship and interaction. Trust is the Holy Grail for human confidence in others. From human survival to organizational survival, trust is the primordial bond. No organization is more dependent on trust than health care. This article views trust as the most basic fundamental quality for leadership. Trust is a sublime duty of a leader and the leadership of an organization. Leadership sets the culture of trust. Trust is the one quality that is essential for guiding an organization toward serving others. This article addresses trust from many perspectives. Trust is viewed from our subordinates, our peers, our superiors, and the public we serve. This article postulates how trust in an organization is the sublime duty of leadership that unites all human understanding and without it destroys all human relationships. PMID:20145465

  7. Martian circumpolar sulfate-rich deposits: sublimation tills derived from the North Polar Cap

    NASA Astrophysics Data System (ADS)

    Masse, M.; Bourgeois, O.; Le Mouélic, S.; Verpoorter, C.; Le Deit, L.

    2009-12-01

    The North Polar Cap of Mars is an accumulation of ice layers with various amounts of interstratified dust particles. A dune field surrounds this polar cap. On one of the densest part of this dune field, Olympia Undae, Langevin et al. (Science, 2005) have detected calcium-rich sulfates (gypsum). To constrain the origin of these gypsum deposits, we performed an integrated morphological, structural and compositional analyses of a key area where it is possible to see the circum-polar dune field, the surface of the ice cap and a cross-section through the ice cap. The mineralogical composition of this area is investigated by applying a spectral derivative method to data acquired by OMEGA and CRISM hyperspectral imaging spectrometers. These are compared to laboratory spectra of ice-gypsum mixtures in simulated martian pressure and temperature conditions. We find that dunes of the circumpolar field and dust interstratified in the ice cap have the same composition. Both contain gypsum. Landforms produced by sublimation of ice are also visible on dust-rich layers of the ice cap. We therefore infer that the superficial circumpolar dust deposits correspond to a sublimation till produced by the ice cap. Circumpolar gypsum-rich deposits thus derive directly from the ice cap. Gypsum crystals are released at the surface of the cap as the ice sublimes. This material is then reworked by winds and forms the circumpolar dunes. There are two hypotheses for the ultimate origin of the gypsum crystals. (1) Pre-existing gypsum crystals might have been deposited together with ice crystals during the formation of the ice cap. (2) Authigenic gypsum crystals might have grown within the ice cap by weathering of dust trapped in the ice. The second hypothesis is consistent with the existence of authigenic sulfate inclusions in terrestrial polar ice (Ohno et al., GRL, 2006) and with the formation process suggested by Niles et al. (Nature, 2009) for martian equatorial sulfates.

  8. Novel Strategy to Fabricate Floating Drug Delivery System Based on Sublimation Technique.

    PubMed

    Huanbutta, Kampanart; Limmatvapirat, Sontaya; Sungthongjeen, Srisagul; Sriamornsak, Pornsak

    2016-06-01

    The present study aims to develop floating drug delivery system by sublimation of ammonium carbonate (AMC). The core tablets contain a model drug, hydrochlorothiazide, and various levels (i.e., 0-50% w/w) of AMC. The tablets were then coated with different amounts of the polyacrylate polymers (i.e., Eudragit® RL100, Eudragit® RS100, and the mixture of Eudragit® RL100 and Eudragit® RS100 at 1:1 ratio). The coated tablets were kept at ambient temperature (25°C) or cured at 70°C for 12 h before further investigation. The floating and drug release behaviors of the tablets were performed in simulated gastric fluid USP without pepsin at 37°C. The results showed that high amount of AMC induced the floating of the tablets. The coated tablets containing 40 and 50% AMC floated longer than 8 h with a time-to-float of about 3 min. The sublimation of AMC from the core tablets decreased the density of system, causing floating of the tablets. The tablets coated with Eudragit® RL100 floated at a faster rate than those of Eudragit® RS100. Even the coating level of polymer did not influence the time-to-float and floating time of coated tablets containing the same amount of AMC, the drug release from the tablets coated with higher coating level of polymer showed slower drug release. The results suggested that the sublimation technique using AMC is promising for the development of floating drug delivery system. PMID:26314245

  9. Piezoelectric crystal microbalance measurements of enthalpy of sublimation of C2-C9 dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Dirri, F.; Palomba, E.; Longobardo, A.; Zampetti, E.

    2015-07-01

    We present here a novel experimental setup able to measure the enthalpy of sublimation of a given compound by means of Piezoelectric Crystal Microbalances (PCM). This experiment was performed in the TG-Lab facility in IAPS-INAF, dedicated to the development of TGA sensors for space measurements, such as detection of organic and non-organic volatile species and refractory materials in planetary environments. In order to study physical-chemical processes concerning the Volatile Organic Compounds (VOC) present in atmospheric environments, the setup has been tested on Dicarboxylic acids. Acids with low molecular weight are among the components of organic fraction of particulate matter in the atmosphere, coming from different sources (biogenic and anthropogenic). Considering their relative abundance, it is useful to consider Dicarboxylic acid as "markers" to define the biogenic or anthropogenic origin of the aerosol, thus obtaining some information of the emission sources. In this work, a temperature controlled effusion cell was used to sublimate VOC, creating a molecular flux that was collimated onto a cold PCM. The VOC re-condensed onto the PCM quartz crystal allowing the determination of the deposition rate. From the measurements of deposition rates, it was possible to infer the enthalpy of sublimation of Adipic acid, i.e. Δ Hsub: 141.6 ± 0.8 kJ mol-1, Succinic acid, i.e. 113.3 ± 1.3 kJ mol-1, Oxalic acid, i.e. 62.5 ± 3.1 kJ mol-1 and Azelaic acid, i.e. 124.2 ± 1.2 kJ mol-1 (weight average values). The results obtained are in very good agreement with literature within 10 % for the Adipic, Succinic and Oxalic acid.

  10. Sublimator Driven Coldplate Engineering Development Unit Test Results and Development of Second Generation SDC

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.; Sheth, Rubik B.

    2009-01-01

    The Sublimator Driven Coldplate (SDC) is a unique piece of thermal control hardware that has several advantages over a traditional thermal control scheme. The principal advantage is the possible elimination of a pumped fluid loop, potentially increasing reliability and reducing complexity while saving both mass and power. Furthermore, the Integrated Sublimator Driven Coldplate (ISDC) concept couples a coolant loop with the previously described SDC hardware. This combination allows the SDC to be used as a traditional coldplate during long mission phases. The previously developed SDC technology cannot be used for long mission phases due to the fact that it requires a consumable feedwater for heat rejection. Adding a coolant loop also provides for dissimilar redundancy on the Altair Lander ascent module thermal control system, which is the target application for this technology. Tests were performed on an Engineering Development Unit at NASA s Johnson Space Center to quantify and assess the performance of the SDC. Correlated thermal math models were developed to help explain the test data. The paper also outlines the preliminary results of an ISDC concept being developed.

  11. Formulation and evaluation of fast dissolving tablets of cinnarizine using superdisintegrant blends and subliming material.

    PubMed

    Basu, Biswajit; Bagadiya, Abhishek; Makwana, Sagar; Vipul, Vora; Batt, Devraj; Dharamsi, Abhay

    2011-10-01

    The aim of this investigation was to develop fast dissolving tablet of cinnarizine. A combination of super disintegrants, i.e., sodium starch glycolate (SSG) and crosscarmellose sodium (CCS) were used along with camphor as a subliming material. An optimized concentration of camphor was added to aid the porosity of the tablet. A 3(2) full factorial design was applied to investigate the combined effect of two formulation variables: Amount of SSG and CCS. Infrared (IR) spectroscopy was performed to identify the physicochemical interaction between drug and polymer. IR spectroscopy showed that there is no interaction of drug with polymer. In the present study, direct compression was used to prepare the tablets. The powder mixtures were compressed into tablet using flat face multi punch tablet machine. Camphor was sublimed from the tablet by exposing the tablet to vacuum drier at 60°C for 12 hours. All the formulations were evaluated for their characteristics such as average weight, hardness, wetting time, friability, content uniformity, dispersion time (DT), and dissolution rate. An optimized tablet formulation (F 9) was found to have good hardness of 3.30 ± 0.10 kg/cm(2), wetting time of 42.33 ± 4.04 seconds, DT of 34.67 ± 1.53 seconds, and cumulative drug release of not less than 99% in 16 minutes. PMID:22247895

  12. Computational analysis for dry-ice sublimation assisted CO2 jet impingement flow

    NASA Astrophysics Data System (ADS)

    Kwak, Songmi; Lee, Jaeseon

    2015-11-01

    The flow and heat transfer characteristics of the novel gas-solid two-phase jet impingement are investigated computationally. When the high pressure carbon dioxide (CO2) flow passes through a nozzle or orifice, it experiences the sudden expansion and the rapid temperature drop occurred by Joule-Thomson effect. This temperature drop causes the lower bulk jet fluid temperature than the CO2 sublimation line, so dry-ice becomes formed. By using CO2 gas-solid mixture as a working fluid of jet impingement, it is expected the heat transfer enhancement can be achieved due to the low bulk temperature and the additional phase change latent heat. In this study, 2D CFD model is created to predict the cooling effect of gas-solid CO2 jet. The gas-solid CO2 flow is considered by Euler-Lagrangian approach of mixed phase and the additional heat transfer module is embedded to account for the sublimation phenomena of the solid state CO2. The jet flow and heat transfer performance of gas-solid CO2 jet is investigated by the variance of flow parameter like Reynolds number, solid phase concentration and jet geometries.

  13. Coupled fluid-thermal analysis of low-pressure sublimation and condensation with application to freeze-drying

    NASA Astrophysics Data System (ADS)

    Ganguly, Arnab

    Freeze-drying is a low-pressure, low-temperature condensation pumping process widely used in the manufacture of bio-pharmaceuticals for removal of solvents by sublimation. The goal of the process is to provide a stable dosage form by removing the solvent in such a way that the sensitive molecular structure of the active substance is least disturbed. The vacuum environment presents unique challenges for understanding and controlling heat and mass transfer in the process. As a result, the design of equipment and associated processes has been largely empirical, slow and inefficient. A comprehensive simulation framework to predict both, process and equipment performance is critical to improve current practice. A part of the dissertation is aimed at performing coupled fluid-thermal analysis of low-pressure sublimation-condensation processes typical of freeze-drying technologies. Both, experimental and computational models are used to first understand the key heat transfer modes during the process. A modeling and computational framework, validated with experiments for analysis of sublimation, water-vapor flow and condensation in application to pharmaceutical freeze-drying is developed. Augmented with computational fluid dynamics modeling, the simulation framework presented here allows to predict for the first time, dynamic product/process conditions taking into consideration specifics of equipment design. Moreover, by applying the modeling framework to process design based on a design-space approach, it has demonstrated that there is a viable alternative to empiricism.

  14. Sublimation measurements and analysis of high temperature thermoelectric materials and devices

    NASA Technical Reports Server (NTRS)

    Shields, V.; Noon, L.

    1983-01-01

    High temperature thermoelectric device sublimation effects are compared for rare earth sulfides, selenides, and state-of-the-art Si-Ge alloys. Although rare earth calcogenides can potentially exhibit superior sublimation characteristics, the state-of-the-art Si-Ge alloy with silicon nitride sublimation-inhibitive coating has been tested to 1000 C. Attention is given to the ceramic electrolyte cells, forming within electrical and thermal insulation, which affect leakage conductance measurements in Si-Ge thermoelectric generators.

  15. Adhesive coated electrical apparatus having sublimable protective covering and an assembly method

    SciTech Connect

    Wootton, R.E.

    1982-08-10

    Electrical apparatus including an enclosure, an electrode disposed within the enclosure, and supports for insulatably supporting the electrode within the enclosure has a permanently sticky adhesive material which is disposed on the interior surface of the outer enclosure. A high-vapor-pressure sublimable material is disposed on the permanently sticky adhesive material, with the sublimable material capable of subliming away in the presence of a vacuum. The presence of the sublimable material enables the apparatus to be non-sticky during assembly and handling operations, while being rendered sticky upon commissioning of the apparatus.

  16. Dynamic sublimation pressure and the catastrophic breakup of Comet ISON

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan K.; Johnson, Brandon C.; Bowling, Timothy; Jay Melosh, H.; Minton, David; Lisse, Carey M.; Battams, Karl

    2015-09-01

    Previously proposed mechanisms have difficulty explaining the disruption of Comet C/2012 S1 (ISON) as it approached the Sun. We describe a novel cometary disruption mechanism whereby comet nuclei fragment and disperse through dynamic sublimation pressure, which induces differential stresses within the interior of the nucleus. When these differential stresses exceed its material strength, the nucleus breaks into fragments. We model the sublimation process thermodynamically and propose that it is responsible for the disruption of Comet ISON. We estimate the bulk unconfined crushing strength of Comet ISON's nucleus and the resulting fragments to be 0.5 Pa and 1-9 Pa, respectively, assuming typical Jupiter Family Comet (JFC) albedos. However, if Comet ISON has an albedo similar to Pluto, this strength estimate drops to 0.2 Pa for the intact nucleus and 0.6-4 Pa for its fragments. Regardless of assumed albedo, these are similar to previous strength estimates of JFCs. This suggests that, if Comet ISON is representative of dynamically new comets, then low bulk strength is a primordial property of some comet nuclei, and not due to thermal processing during migration into the Jupiter Family.

  17. The thermal sublimation process and atmosphere of Iapetus

    NASA Astrophysics Data System (ADS)

    Lin, I. L.; Wang, Y. C.; Ip, W. H.

    Iapetus one of the outer icy satellites of Saturn is characterized by a large albedo asymmetry 0 04 vs 0 5 between the leading and trailing hemispheres The origin of this color dichotomy is still a puzzle A related question is whether the long-term surface icy material transport driven by thermal sublimation might be effective in modifying or shaping some of the observed features We have made used the preliminary results reported by the CIRS observations on Cassini to construct a surface temperature map The peak temperature on the dark side reaches 130K and the corresponding value on the bright side is about 100K If the dark material is composed mainly of water ice the related sublimation process - in addition to ion sputtering and photo-sputtering - could support the formation of a thin atmosphere This surface-bound atmosphere is of exospheric nature and the surface transport of the water molecules is characterized by ballistic motion from low latitude region to the poles We will present our simulation results on the short-term and long-term mass transport and atmospheric processes

  18. Cerium Tetrafluoride: Sublimation, Thermolysis, and Atomic Fluorine Migration.

    PubMed

    Chilingarov, N S; Knot'ko, A V; Shlyapnikov, I M; Mazej, Z; Kristl, M; Sidorov, L N

    2015-08-01

    Saturated vapor pressure p° and enthalpy of sublimation (ΔsH°) of cerium tetrafluoride CeF4 were determined by means of Knudsen effusion mass spectrometry in the range of 750-920 K. It was discovered that sublimation of cerium tetrafluoride from a platinum effusion cell competes with thermal decomposition to CeF3 in the solid phase, but no accompanying release of fluorine to the gas phase occurs. Thus, fluorine atoms migrate within the surface layer of CeF4(s) to the regions of their irreversible drain. We used scanning electron microscopy to study the distribution of the residual CeF3(s) across the inner surface of the effusion cell after complete evaporation of CeF4(s). It was observed that CeF3 accumulates near the edge of the effusion orifice and near the junction of the lid and the body of the cell, that is, in those regions where the fluorine atoms can migrate to a free platinum surface and thus be depleted from the system. Distribution of CeF3(s) solid particles indicates the ways of fluorine atoms migration providing CeF3(s) formation inside the CeF4(s) surface layer. PMID:26165149

  19. Matrix isolation sublimation: An apparatus for producing cryogenic beams of atoms and molecules

    SciTech Connect

    Sacramento, R. L.; Alves, B. X.; Silva, B. A.; Wolff, W.; Cesar, C. L.; Oliveira, A. N.; Li, M. S.

    2015-07-15

    We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H{sub 2} are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.

  20. Testing and Model Correlation of Sublimator Driven Coldplate Coupons and EDU

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.

    2009-01-01

    The Sublimator Driven Coldplate (SDC) is a unique piece of thermal control hardware that has several advantages over a more traditional thermal control system. The principal advantage is the possible elimination of a pumped fluid loop, potentially saving mass, power, and complexity. Because this concept relies on evaporative heat rejection techniques, it is primarily useful for short mission durations. Additionally, the concept requires a conductive path between the heat-generating component and the heat rejection device. Therefore, it is mostly a relevant solution for a vehicle with a relatively low heat rejection requirement and/or short transport distances. Tests were performed on coupons and an Engineering Development Unit (EDU) at NASA s Johnson Space Center to better understand the basic operational principles and to validate the analytical methods being used for the SDC development. This paper outlines the results of the SDC tests, the subsequent thermal model correlation, and a description of the SDC Engineering Development Unit test results.

  1. Evaluation of explosive sublimation as the mechanism of nanosecond laser ablation of tungsten under vacuum conditions

    NASA Astrophysics Data System (ADS)

    Oderji, Hassan Yousefi; Farid, Nazar; Sun, Liying; Fu, Cailong; Ding, Hongbin

    2016-08-01

    A non-equilibrium mechanism for nanosecond laser ablation is suggested herein, and its predictions are compared to the results of W experiments performed under vacuum conditions. A mechanism of particle formation is explained via this model, with partial sublimation of the superheated irradiated zone of the target considered to be the mechanism of laser ablation. In this study, a mixture of vapor and particles was explosively generated and subsequently prevented the rest of a laser pulse from reaching its intended target. This mechanism was found to play an essential role in the ablation of W under vacuum conditions, and it provides a theoretical justification for particle formation. Moreover, special considerations were taken into account for the expansion of plasma into a vacuum. The model was evaluated by measuring the mass of ablated particles using a quartz crystal deposition monitor and time-resolved optical emission spectroscopy. The results of this model were found to be in good agreement with experimental values.

  2. Direct Isolation of Purines and Pyrimidines from Nucleic Acids Using Sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Schubert, Michael; Bada, Jeffrey L.

    2003-01-01

    A sublimation technique was developed to isolate purines and pyrimidines directly from lambda-deoxyribonucleic acid (lambda-DNA) and Escherichia coli cells. The sublimation of adenine, cytosine, guanine, and thymine from lambda-DNA was tested under reduced pressure (approx. 0.5 Torr) at temperatures of >150 C. With the exception of guanine, approximately 60 -75% of each base was sublimed directly from the lambda-DNA and recovered on a coldfinger of the sublimation apparatus after heating to 450 C. Several nucleobases including adenine, cytosine, thymine, and uracil were also recovered from E. coli bacteria after heating the cells to the same temperature, although some thermal decomposition of the bases also occurred. These results demonstrate the feasibility of using sublimation to isolate purines and pyrimidines from native E. coli DNA and RNA without any chemical treatment of the cells.

  3. Graphite Sublimation Tests for the Muon Collider/Neutrino Factory Target Development Program

    SciTech Connect

    Haines, JR

    2002-03-25

    A passively cooled graphite target was proposed for a 1.5 MW neutrino production research facility because of its simplicity and favorable performance as a target material for neutrino production. The conceptual design for the target in the Reference 1 study was a graphite rod 15 mm in diameter by 800 mm long. Figure 1 shows the graphite target rod supported by graphite spokes, which are mounted to a water-cooled stainless steel support tube. The target is radiatively cooled to the water-cooled surface of the support tube. Based on nuclear analysis results, the time-averaged power deposition in the target is 35 kW. If this power is deposited uniformly along the axial length of the target, the volumetric power deposition in the target is about 250 MW/m{sup 3}. The target surface temperature required to radiate the deposited power to a water-cooled tube is estimated to be about 1850 C, and the temperature at the center of the target is about 75 C hotter. The sublimation erosion rate (e), estimated assuming that the graphite is submersed in a perfect vacuum environment, can be derived from kinetic theory and is given by: e = p{sub sat}(m/2{pi} kT){sup 1/2} where p{sub sat} is the saturation pressure, m is the molecular weight, k is the Boltzmann constant, and T is the surface temperature. The saturation pressure given in Ref. 3 can be approximated by: p{sub sat} =exp(-A/T + B) where A = 9.47 x 10{sup 3}, B = 24.2, and the units of p{sub sat} and T are atmospheres and K, respectively. Using these equations, the saturation pressure and sublimation erosion rate are plotted in Fig. 2 as a function of temperature. The surface recession rate shown with units of mm/s in Fig. 2 assumes one-sided erosion. At the average power deposition value of 250 MW/m{sup 3}, the surface temperature is 1850 C resulting in a sublimation erosion rate of only 2.2 {micro}m/day. However, if the actual power deposition were peaked by a factor of two in the axial direction, then the surface

  4. Methods of conveying fluids and methods of sublimating solid particles

    DOEpatents

    Turner, Terry D; Wilding, Bruce M

    2013-10-01

    A heat exchanger and associated methods for sublimating solid particles therein, for conveying fluids therethrough, or both. The heat exchanger includes a chamber and a porous member having a porous wall having pores in communication with the chamber and with an interior of the porous member. A first fluid is conveyed into the porous member while a second fluid is conveyed into the porous member through the porous wall. The second fluid may form a positive flow boundary layer along the porous wall to reduce or eliminate substantial contact between the first fluid and the interior of the porous wall. The combined first and second fluids are conveyed out of the porous member. Additionally, the first fluid and the second fluid may each be conveyed into the porous member at different temperatures and may exit the porous member at substantially the same temperature.

  5. Sublimation Model for Formation of Martian Residual Cap Depressions

    NASA Astrophysics Data System (ADS)

    Byrne, S.; Ingersoll, A. P.

    2000-10-01

    In an effort for explain the formation of the 'Swiss-cheese' terrain visible on the southern residual cap of Mars, we have developed a radiative model to follow the growth/decay of an initial depression due to sublimation/condensation of carbon dioxide. The pits making up this terrain have many distinctive features, they are shallow ( 10m deep), with steep walls and flat floors and contain an interior moat which runs along the bottom of the walls. They have lateral sizes ranging from a few 10's of meters to a kilometer and are quasi-circular. The model accounts for incident sunlight, emitted thermal radiation, and scattered short and long wave radiation. We have investigated many cases involving pure dry-ice with constant albedo, albedo as a function of insolation, and differing albedo for fresh and residual frost (the latter has lower albedo). The last case mentioned shows the most promising results to date. With these conditions it is possible for the depressions to grow and develop flat central portions although they still lack the observed steep walls of the pits. In the other cases mentioned the initial depressions heal themselves and disappear into the surrounding terrain. Other processes or materials could be responsible for the remainder of the observed features. Water ice stored a few meters under a carbon dioxide covering would have dramatic effects on the growth of any depression which encounters it, both due to its low sublimation rate and its ability to store heat. We will extend the current model to include a water ice layer and account for the subsequent heat storage which could possibly follow. For water ice models, a challenge is to reproduce the low brightness temperatures that persist throughout the summer at the residual south polar cap.

  6. The effect of plasma heating on sublimation-driven flow in Io's atmosphere

    NASA Technical Reports Server (NTRS)

    Wong, Mau C.; Johnson, Robert E.

    1995-01-01

    The atmospheric flow on Io is numerically computed in a flat 2-D axisymmetric geometry for a sublimation atmosphere on the trailing hemisphere subjected to plasma bombardment, UV heating, and IR cooling. Calculations are performed for subsolar vapor pressures of approximately 6.5 x 10(exp -3) Pa (approximately 3 x 10(exp 18) SO2/sq cm) and 6.8 x 10(exp -4) Pa (approximately 4 x 10(exp 17) SO2/sq cm); the latter approximates the vapor pressure of F. P. Fanale et al. (1982). The amount of plasma energy deposited in the atmosphere is 20% of the plasma flow energy due to corotation (J. A. Linker et al., 1988). It is found that plasma heating significantly inflates the upper atmosphere, increasing both the exobase altitude and the amount of surface covered by more than an exospheric column of gas. This in turn controls the supply of the Io plasma torus (M. A. McGrath and R. E. Johnson, 1987). The horizontal flow of mass and energy is also important in determining the exobase altitude; and it is shown that IR cooling can be important, although our use of the equilibrium, cool-to-space approximation for a pure SO2 gas (E. Lellouch et al., 1992) may overestimate this effect. The calculated exobase altitudes are somewhat lower than those suggested by McGrath and Johnson (1987) for supplying the torus, indicating the details of the plasma energy deposition and sputter ejection rate near the exobase, as well as the IR emission from this region need to be examined. In addition, the molecules sublimed (or sputtered) from the surface are transported to the exobase in times short compared to the molecular photodissociation time. Therefore, the exobase is dominated by molecular species and the exobase is supplied by a small region of the surface.

  7. Estimating surface sublimation losses from snowpacks in a mountain catchment using eddy covariance and turbulent transfer calculations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sublimation is a critical component of the snow cover mass balance. While sublimation can be directly measured using eddy covariance (EC), such measurements are relatively uncommon in complex mountainous environments. EC measurements of surface snowpack sublimation from three consecutive winter sea...

  8. A neurobiological enquiry into the origins of our experience of the sublime and beautiful.

    PubMed

    Ishizu, Tomohiro; Zeki, Semir

    2014-01-01

    Philosophies of aesthetics have posited that experience of the sublime-commonly but not exclusively derived from scenes of natural grandeur-is distinct from that of beauty and is a counterpoint to it. We wanted to chart the pattern of brain activity which correlates with the declared intensity of experience of the sublime, and to learn whether it differs from the pattern that correlates with the experience of beauty, reported in our previous studies (e.g., Ishizu and Zeki, 2011). 21 subjects participated in a functional magnetic resonance imaging experiment. Prior to the experiment, they viewed pictures of landscapes, which they rated on a scale of 1-5, with 5 being the most sublime and 1 being the least. This allowed us to select, for each subject, five sets of stimuli-from ones experienced as very sublime to those experienced as not at all sublime-which subjects viewed and re-rated in the scanner while their brain activity was imaged. The results revealed a distinctly different pattern of brain activity from that obtained with the experience of beauty, with none of the areas active with the latter experience also active during experience of the sublime. Sublime and beautiful experiences thus appear to engage separate and distinct brain systems. PMID:25426046

  9. Increase of SiC sublimation growth rate by optimizing of powder packaging

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Cai, Dang; Zhang, Hui

    2007-07-01

    In this paper, a comprehensive model for silicon carbide (SiC) sublimation crystal growth considering powder packaging is presented. This model is based on heat and mass transfer of porous powder charge with different sizes of the particle and accounts for induction heating, powder charge sublimation, vapor transport, and porosity evolution in a SiC sublimation crystal growth system. The mechanism of vapor transport is proposed by introducing a driving force arising from temperature difference between powder charge and seed in the growth system. Powder porosity evolution and sublimation rate variations are predicted based on vapor transport mechanism. Effects of powder geometry, such as particle sizes, volume and size ratios of different particles, and driving forces on the sublimation rate are studied. In addition, simulation results for powder sublimation with and without a central hole are presented. The results indicate that the sublimation rate can be increased by optimizing the powder packaging, or by creating a hole in the center of packed powder.

  10. Sublimation characterization and vapor pressure estimation of an HIV nonnucleoside reverse transcriptase inhibitor using thermogravimetric analysis.

    PubMed

    Xie, Minli; Ziemba, Theresa M; Maurin, Michael B

    2003-01-01

    The purpose of this research is to investigate the sublimation process of DPC 963, a second-generation nonnucleoside reverse transcriptase inhibitor for HIV-1 retrovirus, and to better understand the effect of sublimation during active pharmaceutical ingredient (API) manufacture and formulation development, especially the drying processes. Sublimation of DPC 963 at 150 degrees C and above was determined by thermogravimetric analysis-Fourier transform infrared (TGA-FTIR). The rates of sublimation at different temperatures were measured using isothermal TGA. Condensed material was collected and analyzed by differential scanning calorimetry (DSC), x-ray powder diffraction (XRPD), and infrared (IR) spectrometry. Benzoic acid was used as a reference standard to derive a linear logarithmic relationship between sublimation/evaporation rate and vapor pressure specific to the TGA system used in this study. Sublimation and evaporation of DPC 963 were found to follow apparent zero-order kinetics. Using the Eyring equation, the enthalpy and entropy of the sublimation and evaporation processes were obtained. The enthalpies of sublimation and evaporation were found to be 29 and 22 kcal/mol, respectively. The condensed material from the vapor phase was found to exist in 2 physical forms, amorphous and crystalline. Using benzoic acid as a reference standard, vapor pressure of DPC 963 at different temperatures was calculated using the linear logarithmic relationship obtained. DPC 963 undergoes sublimation at appreciable rates at 150 degrees C and above but this is not likely to pose a serious issue during the manufacturing process. Vapor pressure estimation using thermogravimetric analysis provided sufficient accuracy to be used as a fast, simple, and safe alternative to the traditional methods of vapor pressure determination. PMID:12916905

  11. Ice sublimation and rheology - Implications for the Martian polar layered deposits

    NASA Technical Reports Server (NTRS)

    Hofstadter, Mark D.; Murray, Bruce C.

    1990-01-01

    If the sublimation and creep of water ice are important processes in the Martian polar layered deposits, ice-rich scenario formation and evolution schemes must invoke a mechanism for the inhibition of sublimation, such as a dust layer derived from the residue of the sublimating deposits. This layer could be of the order of 1 m in thickness. If the deposits are ice-rich, flows of more than 1 km should have occurred. It is noted that the dust particles in question may be cemented by such ice that may be present, but that impurities may also have served to cement dust particles together even in the absence of ice.

  12. Sublimation rates of carbon monoxide and carbon dioxide from comets at large heliocentric distances

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1992-01-01

    Using a simple model for outgassing from a small flat surface area, the sublimation rates of carbon monoxide and carbon dioxide, two species more volatile than water ice that are known to be present in comets, are calculated for a suddenly activated discrete source on the rotating nucleus. The instantaneous sublimation rate depends upon the comet's heliocentric distance and the Sun's zenith angle at the location of the source. The values are derived for the constants of CO and CO2 in an expression that yields the local rotation-averaged sublimation rate as a function of the comet's spin parameters and the source's cometocentric latitude.

  13. Technological possibilities of processing the sublimates of electron-beam remelting of niobium to form ferroniobium

    NASA Astrophysics Data System (ADS)

    Chumarev, V. M.; Leont'ev, L. I.; Potapov, V. I.; Udoeva, L. Yu.; Upolovnikova, A. G.

    2012-01-01

    The possibility of melting of ferroniobium from the sublimates of electron-beam remelting of niobium ingots is studied using thermodynamic analysis and a "hot" simulation. The basic requirements for the conditions of processing of sublimates with various (Nb/Al)met ratios are evaluated and determined. A ferroalloy the contents of controlled impurities in which correspond to certain ferroniobium grades of Russian and foreign standards is produced by melting of charges containing the sublimates, a deoxidizer (Fe2O3), and a flux (CaO, CaF2) in an electroslag furnace.

  14. Titanium Nitride Epitaxy on Tungsten (100) by Sublimation Crystal Growth

    SciTech Connect

    Mercurio, Lisa; Du, Li; Edgar, J H; Kenik, Edward A

    2007-01-01

    Titanium nitride crystals were grown from titanium nitride powder on tungsten by the sublimation-recondensation technique. The bright golden TiN crystals displayed a variety of shapes including cubes, truncated tetrahedrons, truncated octahedrons, and tetrahedrons bounded by (111) and (100) crystal planes. The TiN crystals formed regular, repeated patterns within individual W grains that suggested epitaxy. X-ray diffraction and electron backscattering diffraction revealed that the tungsten foil was highly textured with a preferred foil normal of (100) and confirmed that the TiN particles deposited epitaxially with the orientation TiN(100)/W(100) and TiN[100]/W[110], that is, the unit cells of the TiN crystals were rotated 45{sup o} with respect to the tungsten. Because of its larger coefficient of thermal expansion compared to W, upon cooling from the growth temperature, the TiN crystals were under in-plane tensile strain, causing many of the TiN crystals to crack.

  15. Generalized Orbital Projections of a Sublimating Ice Particle

    NASA Technical Reports Server (NTRS)

    Menkin, Evgeny; Bacon, Jack

    2006-01-01

    The issue of orbital debris resulting from human activities in space is a growing concern for the space users' community. Waste generated in Low Earth Orbit (LEO) can stay in orbit for a long time, creating significant hazards for other spacecraft flying at lower intercepting orbits. Many spacecraft, especially crewed vehicles, are required to vent fluids into space. These fluids include propellant, wastewater, excess condensate, and others. It is important to analyze the behavior of particles that result from these activities, since each individual particle is capable of damaging or destroying a spacecraft in a lower, crossing orbit, and such particles are invisible to tracking radar systems on the ground. The deorbit trajectory of an ice particle is complex. It depends on factors including attitude of the vehicle during vent, initial velocities of particles, altitude at which the vent occurred, and numerous evaporation and sublimation factors. These include contamination within the vented water, evolution of bubbles within the clear water, and sun flux factors such as time of the year and current beta angle. The purpose of this study is to examine the influences of these factors on the trajectories of ice particles resulting from condensate water dumps, and to bound the safe trajectories of spacecraft that lie below the venting spacecraft.

  16. Transformation of Polar Ice Sublimate Residue into Martian Circumpolar Sand

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.; Parker, T. J.; Stephens, J. B.; Laue, E. G.; Fanale, F. P.

    1985-01-01

    The experimental demonstration that a credible Martian sand may be formed from dust-bearing ice provides a new set of possible explanations for some of the observed Martian aeolian landforms. It is hypothesized that a light-weight fluffy rind is formed on the polar caps. This could provide material easily entrainable by Martian winds, which generally blow equatorward from the poles. These winds would peel the fluffy rind from the surface of the sublimating summer polar caps and from the equatorward slopes of the polar troughs. These pieces of material would then be rolled into lumps (of high sailarea/mass ratio) by the wind. They would become pigmented as they saltate across the surface, perhaps gathering carbonaceous meteoritic dust or other impurities on their surfaces, or through chemical reactions with the ice-free environment away from their point of origin. Once they became trapped in topographic wind shadows, they would form dune structures because they are hydraulically equivalent to sand particles.

  17. Possibility of graphene growth by close space sublimation.

    PubMed

    Sopinskyy, Mykola V; Khomchenko, Viktoriya S; Strelchuk, Viktor V; Nikolenko, Andrii S; Olchovyk, Genadiy P; Vishnyak, Volodymyr V; Stonis, Viktor V

    2014-01-01

    Carbon films on the Si/SiO2 substrate are fabricated using modified method of close space sublimation at atmospheric pressure. The film properties have been characterized by micro-Raman and X-ray photoelectron spectroscopy and monochromatic ellipsometry methods. Ellipsometrical measurements demonstrated an increase of the silicon oxide film thickness in the course of manufacturing process. The XPS survey spectra of the as-prepared samples indicate that the main elements in the near-surface region are carbon, silicon, and oxygen. The narrow-scan spectra of C1s, Si2p, O1s regions indicate that silicon and oxygen are mainly in the SiOx (x ≈ 2) oxide form, whereas the main component of C1s spectrum at 284.4 eV comes from the sp2-hybridized carbon phase. Micro-Raman spectra confirmed the formation of graphene films with the number of layers that depended on the distance between the graphite source and substrate. PMID:24731549

  18. Imaging the dust sublimation front of a circumbinary disk

    NASA Astrophysics Data System (ADS)

    Hillen, M.; Kluska, J.; Le Bouquin, J.-B.; Van Winckel, H.; Berger, J.-P.; Kamath, D.; Bujarrabal, V.

    2016-04-01

    Aims: We present the first near-IR milli-arcsecond-scale image of a post-AGB binary that is surrounded by hot circumbinary dust. Methods: A very rich interferometric data set in six spectral channels was acquired of IRAS 08544-4431 with the new RAPID camera on the PIONIER beam combiner at the Very Large Telescope Interferometer (VLTI). A broadband image in the H-band was reconstructed by combining the data of all spectral channels using the SPARCO method. Results: We spatially separate all the building blocks of the IRAS 08544-4431 system in our milliarcsecond-resolution image. Our dissection reveals a dust sublimation front that is strikingly similar to that expected in early-stage protoplanetary disks, as well as an unexpected flux signal of ~4% from the secondary star. The energy output from this companion indicates the presence of a compact circum-companion accretion disk, which is likely the origin of the fast outflow detected in Hα. Conclusions: Our image provides the most detailed view into the heart of a dusty circumstellar disk to date. Our results demonstrate that binary evolution processes and circumstellar disk evolution can be studied in detail in space and over time. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 094.D-0865.

  19. Climatological observations and predicted sublimation rates at Lake Hoare, Antarctica.

    USGS Publications Warehouse

    Clow, G.D.; McKay, C.P.; Simmons, G.M., Jr.; Wharton, R.A., Jr.

    1988-01-01

    In December 1985, an automated meteorological station was established at Lake Hoare in the dry valley region of Antarctica. Here, we report on the first year-round observations available for any site in Taylor Valley. This dataset augments the year-round data obtained at Lake Vanda (Wright Valley) by winter-over crews during the late 1960s and early 1970s. The mean annual solar flux at Lake Hoare was 92 W m-2 during 1986, the mean air temperature -17.3 degrees C, and the mean 3-m wind speed 3.3 m s-1. The local climate is controlled by the wind regime during the 4-month sunless winter and by seasonal and diurnal variations in the incident solar flux during the remainder of the year. Temperature increases of 20 degrees-30 degrees C are frequently observed during the winter due to strong fo??hn winds descending from the Polar Plateau. A model incorporating nonsteady molecular diffusion into Kolmogorov-scale eddies in the interfacial layer and similarity-theory flux-profiles in the surface sublayer, is used to determine the rate of ice sublimation from the acquired meteorological data. Despite the frequent occurrence of strong winter fo??hns, the bulk of the annual ablation occurs during the summer due to elevated temperatures and persistent moderate winds. The annual ablation from Lake Hoare is estimated to have been 35.0 +/- 6.3 cm for 1986.

  20. Bion and the sublime: the origins of an aesthetic paradigm.

    PubMed

    Civitarese, Giuseppe

    2014-12-01

    In constructing his theory Bion drew on a number of symbolic matrices: psychoanalysis, philosophy, mathematics, literature, aesthetics. The least investigated of these is the last. True, we know that Bion cites many authors of the Romantic period, such as Coleridge, Keats, Blake and Wordsworth, as well as others who were held in high esteem in the Romantic period, such as Milton. However, less is known about the influence exerted on him by the aesthetics of the sublime, which while chronologically preceding Romanticism is in fact one of its components. My working hypothesis is that tracing a number of Bion's concepts back to this secret model can serve several purposes: firstly, it contributes to the study of the sources, and, secondly, it makes these concepts appear much less occasional and idiosyncratic than we might believe, being as they are mostly those less immediately understandable but not less important (O, negative capability, nameless dread, the infinite, the language of achievement, unison etc.). Finally, connecting these notions to a matrix, that is, disclosing the meaning of elements that are not simply juxtaposed but dynamically interrelated, in my view significantly increases not only their theoretical intelligibility but also their usefulness in clinical practice. In conclusion, one could legitimately argue that Bion gradually subsumed all the other paradigms he drew on within the aesthetic paradigm. PMID:25388282

  1. Experimental Results on Isotopic Fractionation of Dusty Deuterated Water Ice During Sublimation

    NASA Astrophysics Data System (ADS)

    Moores, J. E.; Smith, P. H.; Brown, R. H.; Lauretta, D. S.; Boynton, W. V.; Drake, M. J.

    2008-03-01

    Observed heavy fractionation of HDO during sublimation of water ice when mixed with or overlain by (regolith) fine particulate dust is described. Results from two sets of apparatus simulating comets and the Mars polar environment will be presented.

  2. Schiller Goes to the Movies: Locating the Sublime in "Thelma and Louise."

    ERIC Educational Resources Information Center

    Hoyng, Peter

    1997-01-01

    Endeavors to make students aware of similarities between today's movie culture and the theater of the 18th century; parallels between a traditional drama and a movie script; and Schiller's understanding of the sublime. (36 references) (Author/CK)

  3. Martian polar and circum-polar sulfate-bearing deposits: Sublimation tills derived from the North Polar Cap

    NASA Astrophysics Data System (ADS)

    Massé, M.; Bourgeois, O.; Le Mouélic, S.; Verpoorter, C.; Le Deit, L.; Bibring, J. P.

    2010-10-01

    Previous spectroscopic studies have shown the presence of hydrated minerals in various kinds of sedimentary accumulations covering and encircling the martian North Polar Cap. More specifically, gypsum, a hydrated calcium sulfate, has been detected on Olympia Planum, a restricted part of the Circum-Polar Dune Field. To further constrain the geographical distribution and the process of formation and accumulation of these hydrated minerals, we performed an integrated morphological, structural and compositional analysis of a key area where hydrated minerals were detected and where the main polar landforms are present. By the development of a spectral processing method based on spectral derivation and by the acquisition of laboratory spectra of gypsum-ice mixtures we find that gypsum-bearing sediment is not restricted to the Olympia Planum dunes but is also present in all kinds of superficial sediment covering the surface of the North Polar Cap and the Circum-Polar Dune Field. Spectral signatures consistent with perchlorates are also detected on these deposits. The interpretation of landforms reveals that this gypsum-bearing sediment was released from the ice cap by sublimation. We thus infer that gypsum crystals that are now present in the Circum-Polar Dune Field derive from the interior of the North Polar Cap. Gypsum crystals that were initially trapped in the ice cap have been released by sublimation of the ice and have accumulated in the form of ablation tills at the surface of the ice cap. These gypsum-bearing sublimation tills are reworked by winds and are transported towards the Circum-Polar Dune Field. Comparison with sulfates found in terrestrial glaciers suggests that gypsum crystals in the martian North Polar Cap have formed by weathering of dust particles, either in the atmosphere prior to their deposition during the formation of the ice cap, and/or in the ice cap after their deposition.

  4. Collection-efficient, axisymmetric vacuum sublimation module for the purification of solid materials

    NASA Astrophysics Data System (ADS)

    May, Michael; Paul, Elizabeth; Katovic, Vladimir

    2015-11-01

    A vacuum sublimation module of axisymmetric geometry was developed and employed to purify solid-phase materials. The module provides certain practical advantages and it comprises: a metering valve, glass collector, glass lower body, main seal, threaded bushing, and glass internal cartridge (the latter to contain starting material). A complementary process was developed to de-solvate, sublime, weigh, and collect solid chemical materials exemplified by oxalic acid, ferrocene, pentachlorobenzene, chrysene, and urea. The oxalic acid sublimate was analyzed by titration, melting range, Fourier Transform Infrared (FT-IR) Spectroscopy, cyclic voltammetry, and its (aqueous phase) electrolytically generated gas. The analytical data were consistent with a high-purity, anhydrous oxalic acid sublimate. Cyclic voltammograms of 0.11 mol. % oxalic acid in water displayed a 2.1 V window on glassy carbon electrode beyond which electrolytic decomposition occurs. During module testing, fifteen relatively pure materials were sublimed with (energy efficient) passive cooling and the solid-phase recovery averaged 95 mass %. Key module design features include: compact vertical geometry, low-angle conical collector, uniformly compressed main seal, modest power consumption, transparency, glovebox compatibility, cooling options, and preferential conductive heat transfer. To help evaluate the structural (module) heat transfer, vertical temperature profiles along the dynamically evacuated lower body were measured versus electric heater power: for example, an input of 18.6 W generated a temperature 443-K at the bottom. Experimental results and engineering calculations indicate that during sublimation, solid conduction is the primary mode of heat transfer to the starting material.

  5. Desorption and sublimation kinetics for fluorinated aluminum nitride surfaces

    SciTech Connect

    King, Sean W. Davis, Robert F.; Nemanich, Robert J.

    2014-09-01

    an additional high temperature peak at 910 °C with E{sub d} = 370 ± 10 kJ/mol that is consistent with both the dehydrogenation of surface AlOH species and H{sub 2} assisted sublimation of AlN. Similarly, N{sub 2} exhibited a similar higher temperature desorption peak with E{sub d} = 535 ± 40 kJ/mol that is consistent with the activation energy for direct sublimation of AlN.

  6. The sublimation coefficient of water ice: influence on the temperature and outgassing of Comet 67P/C-G

    NASA Astrophysics Data System (ADS)

    Kossacki, K. J.; Markiewicz, W. J.

    2013-09-01

    In most published works dealing with evolution of cometary nuclei, the sublimation rate of ices is calculated with simple Hertz-Knudsen equation. This formulation, derived from the kinetic theory of gases, ignores microphysical processes which determine the sublimation rate. To correctly account for these processes the modified Herz-Knudsen equation must include temperature dependent sublimation coefficient. Including this temperature dependence we find, that the temperature below dust mantle is most sensitive to the value of the sublimation coefficient when the mantle is coarse grained, while the sublimation rate is most affected when the mantle is fine grained. Most importantly, we also find that derivation of the temperature below the dust mantle from the measured water production rate ignoring temperature dependence of the sublimation coefficient can lead to an underestimate of the sub-dust temperature by more than 10 K.

  7. Conceptual design of a low-pressure micro-resistojet based on a sublimating solid propellant

    NASA Astrophysics Data System (ADS)

    Cervone, Angelo; Mancas, Alexandru; Zandbergen, Barry

    2015-03-01

    In the current and future trend towards smaller satellite missions, the development of a simple and reliable propulsion system with performance and characteristics in line with the typical requirements of nano-satellites and CubeSats plays a crucial role for enhancing the capabilities of this type of missions. This paper describes the design of a micro-resistojet using water stored in the frozen state (ice) as propellant, operating under sublimation conditions at low pressure. The low operating pressure allows for using the vapor pressure of ice as the only method of propellant feeding, thereby allowing for extremely low thrust and electric power usage. The results of an extensive set of numerical simulations for optimizing the thruster geometry in terms of power ratio and specific impulse produced are discussed. In addition, the design of the complete propulsion system is described. It makes use of a limited number of moving parts and two power sources, one in the thruster to increase the propellant temperature and one in the tank to maintain the propellant storage conditions. Results show that the proposed design represents an alternative option capable of meeting the typical requirements of small satellite missions by means of an intrinsically green propellant such as water, with the pressure inside the system never exceeding 600 Pa. Optimization results showed an optimum thrust to power ratio in range 0.2-1.2 mN/W for an expansion slot aspect ratio of 2.5.

  8. Mechanism and kinetics for ammonium dinitramide (ADN) sublimation: a first-principles study.

    PubMed

    Zhu, R S; Chen, Hui-Lung; Lin, M C

    2012-11-01

    The mechanism for sublimation of NH(4)N(NO(2))(2) (ADN) has been investigated quantum-mechanically with generalized gradient approximation plane-wave density functional theory calculations; the solid surface is represented by a slab model and the periodic boundary conditions are applied. The calculated lattice constants for the bulk ADN, which were found to consist of NH(4)(+)[ON(O)NNO(2)](-) units, instead of NH(4)(+)[N(NO(2))(2)](-), agree quite well with experimental values. Results show that three steps are involved in the sublimation/decomposition of ADN. The first step is the relaxation of the surface layer with 1.6 kcal/mol energy per NH(4)ON(O)NNO(2) unit; the second step is the sublimation of the surface layer to form a molecular [NH(3)]-[HON(O)NNO(2)] complex with a 29.4 kcal/mol sublimation energy, consistent with the experimental observation of Korobeinichev et al. (10) The last step is the dissociation of the [H(3)N]-[HON(O)NNO(2)] complex to give NH(3) and HON(O)NNO(2) with the dissociation energy of 13.9 kcal/mol. Direct formation of NO(2) (g) from solid ADN costs a much higher energy, 58.3 kcal/mol. Our calculated total sublimation enthalpy for ADN(s) → NH(3)(g) + HON(O)NNO(2)) (g), 44.9 kcal/mol via three steps, is in good agreement with the value, 42.1 kcal/mol predicted for the one-step sublimation process in this work and the value 44.0 kcal/mol computed by Politzer et al. (11) using experimental thermochemical data. The sublimation rate constant for the rate-controlling step 2 can be represented as k(sub) = 2.18 × 10(12) exp (-30.5 kcal/mol/RT) s(-1), which agrees well with available experimental data within the temperature range studied. The high pressure limit decomposition rate constant for the molecular complex H(3)N···HON(O)NNO(2) can be expressed by k(dec) = 3.18 × 10(13) exp (-15.09 kcal/mol/RT) s(-1). In addition, water molecules were found to increase the sublimation enthalpy of ADN, contrary to that found in the ammonium

  9. In situ observation of graphene sublimation and multi-layer edge reconstructions

    PubMed Central

    Huang, Jian Yu; Ding, Feng; Yakobson, Boris I.; Lu, Ping; Qi, Liang; Li, Ju

    2009-01-01

    We induced sublimation of suspended few-layer graphene by in situ Joule-heating inside a transmission electron microscope. The graphene sublimation fronts consisted of mostly {1100} zigzag edges. Under appropriate conditions, a fractal-like “coastline” morphology was observed. Extensive multiple-layer reconstructions at the graphene edges led to the formation of unique carbon nanostructures, such as sp2-bonded bilayer edges (BLEs) and nanotubes connected to BLEs. Flat fullerenes/nanopods and nanotubes tunneling multiple layers of graphene sheets were also observed. Remarkably, >99% of the graphene edges observed during sublimation are BLEs rather than monolayer edges (MLEs), indicating that BLEs are the stable edges in graphene at high temperatures. We reproduced the “coastline” sublimation morphologies by kinetic Monte Carlo (kMC) simulations. The simulation revealed geometrical and topological features unique to quasi-2-dimensional (2D) graphene sublimation and reconstructions. These reconstructions were enabled by bending, which cannot occur in first-order phase transformations of 3D bulk materials. These results indicate that substrate of multiple-layer graphene can offer unique opportunities for tailoring carbon-based nanostructures and engineering novel nano-devices with complex topologies. PMID:19515820

  10. Observations of the northern seasonal polar cap on Mars: I. Spring sublimation activity and processes

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Byrne, S.; Portyankina, G.; Bourke, M.; Dundas, C.; McEwen, A.; Mellon, M.; Pommerol, A.; Thomas, N.

    2013-08-01

    Spring sublimation of the seasonal CO2 northern polar cap is a dynamic process in the current Mars climate. Phenomena include dark fans of dune material propelled out onto the seasonal ice layer, polygonal cracks in the seasonal ice, sand flow down slipfaces, and outbreaks of gas and sand around the dune margins. These phenomena are concentrated on the north polar erg that encircles the northern residual polar cap. The Mars Reconnaissance Orbiter has been in orbit for three Mars years, allowing us to observe three northern spring seasons. Activity is consistent with and well described by the Kieffer model of basal sublimation of the seasonal layer of ice applied originally in the southern hemisphere. Three typical weak spots have been identified on the dunes for escape of gas sublimed from the bottom of the seasonal ice layer: the crest of the dune, the interface of the dune with the interdune substrate, and through polygonal cracks in the ice. Pressurized gas flows through these vents and carries out material entrained from the dune. Furrows in the dunes channel gas to outbreak points and may be the northern equivalent of southern radially-organized channels ("araneiform" terrain), albeit not permanent. Properties of the seasonal CO2 ice layer are derived from timing of seasonal events such as when final sublimation occurs. Modification of dune morphology shows that landscape evolution is occurring on Mars today, driven by seasonal activity associated with sublimation of the seasonal CO2 polar cap.

  11. Observations of the northern seasonal polar cap on Mars: I. Spring sublimation activity and processes

    USGS Publications Warehouse

    Hansen, C.J.; Byrne, S.; Portyankina, G.; Bourke, M.; Dundas, C.; McEwen, A.; Mellon, M.; Pommerol, A.; Thomas, N.

    2013-01-01

    Spring sublimation of the seasonal CO2 northern polar cap is a dynamic process in the current Mars climate. Phenomena include dark fans of dune material propelled out onto the seasonal ice layer, polygonal cracks in the seasonal ice, sand flow down slipfaces, and outbreaks of gas and sand around the dune margins. These phenomena are concentrated on the north polar erg that encircles the northern residual polar cap. The Mars Reconnaissance Orbiter has been in orbit for three Mars years, allowing us to observe three northern spring seasons. Activity is consistent with and well described by the Kieffer model of basal sublimation of the seasonal layer of ice applied originally in the southern hemisphere. Three typical weak spots have been identified on the dunes for escape of gas sublimed from the bottom of the seasonal ice layer: the crest of the dune, the interface of the dune with the interdune substrate, and through polygonal cracks in the ice. Pressurized gas flows through these vents and carries out material entrained from the dune. Furrows in the dunes channel gas to outbreak points and may be the northern equivalent of southern radially-organized channels (“araneiform” terrain), albeit not permanent. Properties of the seasonal CO2 ice layer are derived from timing of seasonal events such as when final sublimation occurs. Modification of dune morphology shows that landscape evolution is occurring on Mars today, driven by seasonal activity associated with sublimation of the seasonal CO2 polar cap.

  12. A neurobiological enquiry into the origins of our experience of the sublime and beautiful

    PubMed Central

    Ishizu, Tomohiro; Zeki, Semir

    2014-01-01

    Philosophies of aesthetics have posited that experience of the sublime—commonly but not exclusively derived from scenes of natural grandeur—is distinct from that of beauty and is a counterpoint to it. We wanted to chart the pattern of brain activity which correlates with the declared intensity of experience of the sublime, and to learn whether it differs from the pattern that correlates with the experience of beauty, reported in our previous studies (e.g., Ishizu and Zeki, 2011). 21 subjects participated in a functional magnetic resonance imaging experiment. Prior to the experiment, they viewed pictures of landscapes, which they rated on a scale of 1–5, with 5 being the most sublime and 1 being the least. This allowed us to select, for each subject, five sets of stimuli—from ones experienced as very sublime to those experienced as not at all sublime—which subjects viewed and re-rated in the scanner while their brain activity was imaged. The results revealed a distinctly different pattern of brain activity from that obtained with the experience of beauty, with none of the areas active with the latter experience also active during experience of the sublime. Sublime and beautiful experiences thus appear to engage separate and distinct brain systems. PMID:25426046

  13. Distributed modelling of climate change impacts on snow sublimation in Northern Mongolia

    NASA Astrophysics Data System (ADS)

    Wimmer, F.; Schlaffer, S.; Aus der Beek, T.; Menzel, L.

    2009-08-01

    Sublimation of snow is an important factor of the hydrological cycle in Mongolia and is likely to increase according to future climate projections. In this study the hydrological model TRAIN was used to assess spatially distributed current and future sublimation rates based on interpolated daily data of precipitation, air temperature, air humidity, wind speed and solar radiation. An automated procedure for the interpolation of the input data is provided. Depending on the meteorological parameter and the data availability for the individual days, the most appropriate interpolation method is chosen automatically from inverse distance weighting, Ordinary Least Squares interpolation, Ordinary or Universal Kriging. Depending on elevation simulated annual sublimation in the period 1986-2006 was 23 to 35 mm, i.e. approximately 80% of total snowfall. Moreover, future climate projections for 2071-2100 of ECHAM5 and HadCM3, based on the A1B emission scenario of the Intergovernmental Panel on Climate Change, were analysed with TRAIN. In the case of ECHAM5 simulated sublimation increases by up to 17% (26...41 mm) while it remains at the same level for HadCM3 (24...34 mm). The differences are mainly due to a distinct increase in winter precipitation for ECHAM5. Simulated changes of the all-season hydrological conditions, e.g. the sublimation-to-precipitation ratio, were ambiguous due to diverse precipitation patterns derived by the global circulation models.

  14. The Effect of CO2 Ice Cap Sublimation on Mars Atmosphere

    NASA Technical Reports Server (NTRS)

    Batterson, Courtney

    2016-01-01

    Sublimation of the polar CO2 ice caps on Mars is an ongoing phenomenon that may be contributing to secular climate change on Mars. The transfer of CO2 between the surface and atmosphere via sublimation and deposition may alter atmospheric mass such that net atmospheric mass is increasing despite seasonal variations in CO2 transfer. My study builds on previous studies by Kahre and Haberle that analyze and compare data from the Phoenix and Viking Landers 1 and 2 to determine whether secular climate change is happening on Mars. In this project, I use two years worth of temperature, pressure, and elevation data from the MSL Curiosity rover to create a program that allows for successful comparison of Curiosity pressure data to Viking Lander pressure data so a conclusion can be drawn regarding whether CO2 ice cap sublimation is causing a net increase in atmospheric mass and is thus contributing to secular climate change on Mars.

  15. Iridium-bearing sublimates at a hot-spot volcano (Piton de la Fournaise, Indian Ocean)

    SciTech Connect

    Toutain, J.P. ); Meyer, G.

    1989-12-01

    Sublimates and incrustations derived upon the cooling of volcanic gases have been collected on various sites (Piton de la Fournaise, Poas, Momotombo, Etna, Ardoukoba and Erta-Ale). They have been analyzed for Ir and other volatile elements (Se, As, Cu, Au, Ag, Pb, Tl) by means of instrumental neutron activation analysis (INAA) and proton induced X-Ray emission (PIXE). Among the investigated volcanoes, only Piton de la Fournaise is found to release detectable amounts of iridium. Ir in Piton de la Fournaise sublimates is associated with F-minerals. This confirms its gaseous transport as a volatile fluoride compound. Iridium seems to be preferentialy released by hot-spot type volcanoes, and its detection in Piton de la Fournaise sublimates provides a positive argument in favor of a volcanic hypothesis to explain the KTB events.

  16. Modifications of comet materials by the sublimation process: Results from simulation experiments

    NASA Technical Reports Server (NTRS)

    Gruen, E.; Bar-Nun, Akiva; Lammerzahl, P.; Klinger, J.; Kochan, H.; Keller, H. U.; Neukum, G.; Roessler, K.; Stoeffler, D.; Spohn, T.

    1989-01-01

    An active comet like comet Halley loses by sublimation a surface layer of the order of 1 m thickness per perihelion passage. In situ measurements show that water ice is the main constituent which contributes to the gas emission although even more volatile species (CO, NH3, CH4, CO2 etc.) have been identified. Dust particles which were embedded in the ices are carried by the sublimating gases. Measurements of the chemical composition of cometary grains indicate that they are composed of silicates of approximate chondritic composition and refractory carbonaceous material. Comet simulation experiments show that significant modifications of cometary materials occur due to sublimation process in near surface layers which have to be taken into account in order to derive the original state of the material.

  17. The Sublimation Rate of CO2 Under Simulated Mars Conditions and the Possible Climatic Implications

    NASA Astrophysics Data System (ADS)

    Bryson, Kathryn; Chevrier, V.; Roe, L.; White, K.; Blackburn, D.

    2008-09-01

    In order to understand the behavior of CO2 on Mars, we have studied the sublimation of dry ice under simulated martian conditions. Our experiments resulted in an average sublimation rate for CO2 ice of 1.20 ± 0.27 mm h-1. These results are very close to those observed of the martian polar caps retreat, and suggest a common process for the sublimation mechanism on Mars and in our chamber. Based on these results we created a model where irradiance from the sun is the primary source of heat on the martian polar surface. Our model predicts a 32 cm offset between the amount of CO2 ice sublimated and deposited in the southern polar region. The eccentricity of the martian orbit causes the southern hemisphere to sublimate more then it deposits back during one martian year. We have compared MOC and HiRISE images from approximately the same season (Ls 285.57º and 289.5º, respectively) from three martian years apart. These images indicate an average sublimation rate of 0.43 ± 0.04 m y-1, very close to the 0.32 m y-1 predicted by our model. Due to the length of Mars’ precession cycle, 93,000 martian years, it will take an extensive amount of time for the equinoxes to change. Therefore, we predict that the CO2 of the south polar cap will migrate entirely to the northern polar cap before such changes could occur. If the CO2 ice is only a thin layer above a much thicker water ice layer, this could expose large amounts of water ice, having a drastic climactic affect.

  18. Crystallization and sublimation of non-racemic mixtures of natural amino acids: a path towards homochirality

    NASA Astrophysics Data System (ADS)

    Tarasevych, Arkadii V.; Guillemin, Jean-Claude

    2012-07-01

    Homochirality of biologically important molecules such as amino acids and sugars is a prerequisite for the origin of life. There are different forces or mechanisms in the Universe to trigger off the primary imbalance in the enantiomeric ratio. Very likely the initial bias of one type of enantiomers over the other on Earth was arisen from the inflow of extraterrestrial matter (carbonaceous meteorites). The phase transitions (crystallization, sublimation) of non-racemic mixtures of enantiomers are ones of the most probable mechanisms for the homochirogenesis[1]. The sublimation, almost uninvestigated subject and forgotten for 30 years, revealed recently a pathway to the enantioenrichment of natural amino acids[2]. Starting from a mixture with a low content of an enantiopure amino acid a partial sublimation gives a considerable enrichment. In our further experiments we combined two first-order phase transitions of amino acid(s) mixtures: crystallization and sublimation. The results show the possibility of the transfer of enantiopurity between different amino acids[3]. Subliming a crystallized mixture of racemic amino acids with an enantiopure one we found that the sublimate is a non-racemic mixture of the same handedness for all components. The significance of the studies can be realized taking into account that just 5 of 22 proteinogenic amino acids are able to homochiral self-organization. The relevance of these studies to the Prebiotic Earth and to the evolution of the single handedness of biological molecules will be discussed. [1] Blackmond, Phil. Trans. R. Soc. B 2011, 366, 2878. [2] Guillemin et al., Chem. Commun. 2010 , 46, 1482. [3] Tarasevych, Guillemin et al., submitted.

  19. Collection-efficient, axisymmetric vacuum sublimation module for the purification of solid materials.

    PubMed

    May, Michael; Paul, Elizabeth; Katovic, Vladimir

    2015-11-01

    A vacuum sublimation module of axisymmetric geometry was developed and employed to purify solid-phase materials. The module provides certain practical advantages and it comprises: a metering valve, glass collector, glass lower body, main seal, threaded bushing, and glass internal cartridge (the latter to contain starting material). A complementary process was developed to de-solvate, sublime, weigh, and collect solid chemical materials exemplified by oxalic acid, ferrocene, pentachlorobenzene, chrysene, and urea. The oxalic acid sublimate was analyzed by titration, melting range, Fourier Transform Infrared (FT-IR) Spectroscopy, cyclic voltammetry, and its (aqueous phase) electrolytically generated gas. The analytical data were consistent with a high-purity, anhydrous oxalic acid sublimate. Cyclic voltammograms of 0.11 mol. % oxalic acid in water displayed a 2.1 V window on glassy carbon electrode beyond which electrolytic decomposition occurs. During module testing, fifteen relatively pure materials were sublimed with (energy efficient) passive cooling and the solid-phase recovery averaged 95 mass %. Key module design features include: compact vertical geometry, low-angle conical collector, uniformly compressed main seal, modest power consumption, transparency, glovebox compatibility, cooling options, and preferential conductive heat transfer. To help evaluate the structural (module) heat transfer, vertical temperature profiles along the dynamically evacuated lower body were measured versus electric heater power: for example, an input of 18.6 W generated a temperature 443-K at the bottom. Experimental results and engineering calculations indicate that during sublimation, solid conduction is the primary mode of heat transfer to the starting material. PMID:26628150

  20. Thermal Stability and Anisotropic Sublimation of Two-Dimensional Colloidal Bi2Te3 and Bi2Se3 Nanocrystals.

    PubMed

    Buha, Joka; Gaspari, Roberto; Del Rio Castillo, Antonio Esau; Bonaccorso, Francesco; Manna, Liberato

    2016-07-13

    The structural and compositional stabilities of two-dimensional (2D) Bi2Te3 and Bi2Se3 nanocrystals, produced by both colloidal synthesis and by liquid phase exfoliation, were studied by in situ transmission electron microscopy (TEM) during annealing at temperatures between 350 and 500 °C. The sublimation process induced by annealing is structurally and chemically anisotropic and takes place through the preferential dismantling of the prismatic {011̅0} type planes, and through the preferential sublimation of Te (or Se). The observed anisotropic sublimation is independent of the method of nanocrystal's synthesis, their morphology, or the presence of surfactant molecules on the nanocrystals surface. A thickness-dependent depression in the sublimation point has been observed with nanocrystals thinner than about 15 nm. The Bi2Se3 nanocrystals were found to sublimate below 280 °C, while the Bi2Te3 ones sublimated at temperatures between 350 and 450 °C, depending on their thickness, under the vacuum conditions in the TEM column. Density functional theory calculations confirm that the sublimation of the prismatic {011̅0} facets is more energetically favorable. Within the level of modeling employed, the sublimation occurs at a rate about 700 times faster than the sublimation of the {0001} planes at the annealing temperatures used in this work. This supports the distinctly anisotropic mechanisms of both sublimation and growth of Bi2Te3 and Bi2Se3 nanocrystals, known to preferentially adopt a 2D morphology. The anisotropic sublimation behavior is in agreement with the intrinsic anisotropy in the surface free energy brought about by the crystal structure of Bi2Te3 or Bi2Se3. PMID:27231980

  1. Matrix sublimation method for the formation of high-density amorphous ice

    NASA Astrophysics Data System (ADS)

    Kouchi, A.; Hama, T.; Kimura, Y.; Hidaka, H.; Escribano, R.; Watanabe, N.

    2016-08-01

    A novel method for the formation of amorphous ice involving matrix sublimation has been developed. A CO-rich CO:H2O mixed ice was deposited at 8-10 K under ultra-high vacuum condition, which was then allowed to warm. After the sublimation of matrix CO at 35 K, amorphous ice remained. The amorphous ice formed exhibits a highly porous microscale texture; however, it also rather exhibits a density similar to that of high-density amorphous ice formed under high pressure. Furthermore, unlike conventional vapor-deposited amorphous ice, the amorphous ice is stable up to 140 K, where it transforms directly to cubic ice Ic.

  2. Sulfur in vacuum - Sublimation effects on frozen melts, and applications to Io's surface and torus

    NASA Technical Reports Server (NTRS)

    Nash, Douglas B.

    1987-01-01

    Vacuum sublimation effects on solid sulfur yield a form of the element that is white at room temperature, is fluffy in texture, and forms on frozen sulfur in vacuum through differential evaporation of molecular species in the solid. This vacuum sulfur should exist in large quantity on Io, if the solid free sulfur there has solidified from a melt; a sulfur volcanism model for Io is accordingly developed on this basis which implies that the color and spectra of different sulfur regions of Io could indicate their relative crystallization ages and cooling histories. The flux of sublimating hotspot sulfur appears consistent with estimated turnover rates of the Io surface.

  3. On the sublimation of blowing snow and of snow in canopies

    NASA Astrophysics Data System (ADS)

    Taylor, P. A.; Simon, K.; Gordon, M.; Weng, W.

    2003-04-01

    Tests have been made within the Canadian Land Surface Scheme (CLASS) of various parameterizations of sublimation of blowing snow, and tested in the context of data from weather stations (Goose Bay and Resolute) in northern Canada. We will focus on parameterization schemes based on results obtained with the PIEKTUK model of blowing snow. In addition we will present preliminary results concerning the parameterization of sublimation of snow caught in tree canopies, using schemes similar to those for evaporation from wet canopies. This is considered to be a major factor in the water budgets of forested areas in northern Canada.

  4. Sorbent, Sublimation, and Icing Modeling Methods: Experimental Validation and Application to an Integrated MTSA Subassembly Thermal Model

    NASA Technical Reports Server (NTRS)

    Bower, Chad; Padilla, Sebastian; Iacomini, Christie; Paul, Heather L.

    2010-01-01

    This paper details the validation of modeling methods for the three core components of a Metabolic heat regenerated Temperature Swing Adsorption (MTSA) subassembly, developed for use in a Portable Life Support System (PLSS). The first core component in the subassembly is a sorbent bed, used to capture and reject metabolically produced carbon dioxide (CO2). The sorbent bed performance can be augmented with a temperature swing driven by a liquid CO2 (LCO2) sublimation heat exchanger (SHX) for cooling the sorbent bed, and a condensing, icing heat exchanger (CIHX) for warming the sorbent bed. As part of the overall MTSA effort, scaled design validation test articles for each of these three components have been independently tested in laboratory conditions. Previously described modeling methodologies developed for implementation in Thermal Desktop and SINDA/FLUINT are reviewed and updated, their application in test article models outlined, and the results of those model correlations relayed. Assessment of the applicability of each modeling methodology to the challenge of simulating the response of the test articles and their extensibility to a full scale integrated subassembly model is given. The independent verified and validated modeling methods are applied to the development of a MTSA subassembly prototype model and predictions of the subassembly performance are given. These models and modeling methodologies capture simulation of several challenging and novel physical phenomena in the Thermal Desktop and SINDA/FLUINT software suite. Novel methodologies include CO2 adsorption front tracking and associated thermal response in the sorbent bed, heat transfer associated with sublimation of entrained solid CO2 in the SHX, and water mass transfer in the form of ice as low as 210 K in the CIHX.

  5. DIRECT STELLAR RADIATION PRESSURE AT THE DUST SUBLIMATION FRONT IN MASSIVE STAR FORMATION: EFFECTS OF A DUST-FREE DISK

    SciTech Connect

    Tanaka, Kei E. I.; Nakamoto, Taishi

    2011-10-01

    In massive star formation ({approx}> 40 M{sub sun}) by core accretion, the direct stellar radiation pressure acting on the dust particles exceeds the gravitational force and interferes with mass accretion at the dust sublimation front, the first absorption site. Ram pressure generated by high accretion rates of 10{sup -3} M{sub sun} yr{sup -1} is thought to be required to overcome the direct stellar radiation pressure. We investigate the direct stellar irradiation on the dust sublimation front, including the inner accretion disk structure. We show that the ram pressure of the accretion disk is lower than the stellar radiation pressure at the dust sublimation front. Thus, another mechanism must overcome the direct stellar radiation pressure. We suggest that the inner hot dust-free region is optically thick, shielding the dust sublimation front from direct stellar irradiation. Thus, accretion would not halt at the dust sublimation front, even at lower accretion rates.

  6. Structure-property relationships in halogenbenzoic acids: Thermodynamics of sublimation, fusion, vaporization and solubility.

    PubMed

    Zherikova, Kseniya V; Svetlov, Aleksey A; Kuratieva, Natalia V; Verevkin, Sergey P

    2016-10-01

    Temperature dependences of vapor pressures for 2-, 3-, and 4-bromobenzoic acid, as well as for five isomeric bromo-methylbenzoic acids were studied by the transpiration method. Melting temperatures and enthalpies of fusion for all isomeric bromo-methylbenzoic acids and 4-bromobenzoic acid were measured with a DSC. The molar enthalpies of sublimation and vaporization were derived. These data together with results available in the literature were collected and checked for internal consistency using a group-additivity procedure and results from X-ray structural diffraction studies. Specific (hydrogen bonding) interactions in the liquid and in the crystal phase of halogenbenzoic acids were quantified based on experimental values of vaporization and sublimation enthalpies. Structure-property correlations of solubilities of halogenobenzoic acids with sublimation pressures and sublimation enthalpies were developed and solubilities of bromo-benzoic acids were estimated. These new results resolve much of the ambiguity in the available thermochemical and solubility data on bromobenzoic acids. The approach based on structure property correlations can be applied for the assessment of water solubility of sparingly soluble drugs. PMID:27424058

  7. Using Mass Transport to Guide the Purification of Small Molecule Organic Semiconductors via Sublimation

    NASA Astrophysics Data System (ADS)

    Morgan, Nathan T.; Zhang, Yi; Grandbois, Matthew L.; Bell, Bruce M.; Holmes, Russell J.; Cussler, E. L.

    2015-03-01

    Organic electronic materials have garnered considerable commercial attention for next generation display and solid-state lighting applications. Widespread adoption of these technologies is slowed by considerable production costs, partially due to an expensive purification step. This work explores the current method of industrial purification, thermal gradient sublimation, in order to isolate the fundamental mechanisms limiting sublimation rate and controlling product deposition. For the archetypical hole transport materials, N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (NPD) and 4,4',4''-tris(carbazol-9-yl) triphenylamine (TCTA), a combination of viscous flow and physical vapor deposition are shown to be rate-limiting at constant sublimation temperature. Surprisingly, diffusion within the solid feed, reaction at the feed particle surface, and mass transfer within the bed of feed particles are not rate limiting in the case. This mechanism is different from that which is observed in many industrial sublimation systems. These results can be used to guide the design and operation of future large-scale purification systems, which are critical for the widespread adoption of organic optoelectronic devices.

  8. Application of ion beam analysis to the selective sublimation processing of thin films for gas sensing

    NASA Astrophysics Data System (ADS)

    Vomiero, A.; Scian, C.; Della Mea, G.; Guidi, V.; Martinelli, G.; Schiffrer, G.; Comini, E.; Ferroni, M.; Sberveglieri, G.

    2006-08-01

    Ion beam analysis was successfully applied to a novel technique, named selective sublimation process (SSP), for deposition of nanostructured gas-sensing films through reactive sputtering. The method consists of the co-deposition of a mixed oxide, one of which has a relatively low sublimation temperature. Annealing at suitable temperature causes the sublimation of the most volatile compound, leaving a layer with adjustable composition. The appropriate choice of thermal treatments and the consequent tailoring of the composition play a crucial role in the determination of the microstructural properties. We developed a model based on diffusion equations that provides a useful guide to control the deposition and processing parameters and we applied the model on the systems TiO2-WO3 and TiO2-MoO3. Rutherford backscattering (RBS) was demonstrated to be effective for the characterization of the diffusion and sublimation processes during SSP. Experimental results fully agree with theoretical prediction, and allowed the calculation of all the parameters involved in SSP.

  9. Undergraduate Laboratory Experiment Facilitating Active Learning of Concepts in Transport Phenomena: Experiment with a Subliming Solid

    ERIC Educational Resources Information Center

    Utgikar, Vivek P.

    2015-01-01

    An experiment based on the sublimation of a solid was introduced in the undergraduate Transport Phenomena course. The experiment required the students to devise their own apparatus and measurement techniques. The theoretical basis, assignment of the experiment, experimental results, and student/instructor observations are described in this paper.…

  10. How to Kill a Journalism School: The Digital Sublime in the Discourse of Discontinuance

    ERIC Educational Resources Information Center

    McDevitt, Michael; Sindorf, Shannon

    2012-01-01

    The authors argue that journalism's uncertain identity in academia has made it vulnerable to unreflective instrumentalism in the digital era. They show how instrumentalism intertwined with the digital sublime constitutes a rhetorically resonate rationale for closing a journalism school. Evidence comes from documents and testimony associated with…

  11. Sublimation-induced orbital perturbations of extrasolar active asteroids and comets: application to white dwarf systems

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Eggl, Siegfried; Gänsicke, Boris T.

    2015-09-01

    The metal budgets in some white dwarf (WD) atmospheres reveal that volatile-rich circumstellar bodies must both exist in extrasolar systems and survive the giant branch phases of stellar evolution. The resulting behaviour of these active asteroids or comets which orbit WDs is not well-understood, but may be strongly influenced by sublimation due to stellar radiation. Here we develop a model, generally applicable to any extrasolar system with a main-sequence or WD star, that traces sublimation-induced orbital element changes in approximately km-sized extrasolar minor planets and comets travelling within hundreds of au. We derive evolution equations on orbital time-scales and for arbitrarily steep power-law sublimation dependences on distance, and place our model in a Solar system context. We also demonstrate the importance of coupling sublimation and general relativity, and the orbital consequences of outgassing in arbitrary directions. We prove that non-gravitational accelerations alone cannot result in orbit crossing with the WD disruption radius, but may shrink or expand the orbit by up to several au after a single pericentre passage, potentially affecting subsequent interactions with remnant debris and planets. Our analysis suggests that extant planets must exist in polluted WD systems.

  12. Sublimation of natural amino acids and induction of asymmetry by meteoritic amino acids

    NASA Astrophysics Data System (ADS)

    Tarasevych, Arkadii V.; Guillemin, Jean-Claude

    It is believed that the homochirality of building blocks of life like amino acids (AAs) and sugars is a prerequisite requirement for the origin and evolution of life. Among different mechanisms that might have triggered the initial disparity in the enantiomeric ratio on the primitive Earth, the key roles were assigned to: (i) local chiral symmetry breaking and (ii) the inflow of extraterrestrial matter (eg the carbonaceous meteorites containing non-racemic AAs). Recently it has been revealed that sublimation, a subject almost completely neglected for a long time, gives a pathway to enantioenrichment of natural AAs (1,2 and references herein). Sublimation is however one of the key physical processes that occur on comets. Starting from a mixture with a low content of an enantiopure AA, a partial sublimation gives an important enrichment of the sublimate (1,2). The resulted disparity in the ratio between enantiomers of a partial sublimate is determined by the crystalline nature of the starting mixture: we observed a drastic difference in the behavior of (i) mixtures based on true racemic compounds and (ii) mechanical mixtures of two enantiopure solid phases. On the other hand, combination of crystallization and sublimation can lead to segregation of enantioenriched fractions starting from racemic composition of sublimable aliphatic AAs (Ala, Leu, Pro, Val) in mixtures with non-volatile enantiopure ones (Asn, Asp, Glu, Ser, Thr) (3). The resulted sense of chirality correlates with the handedness of the non-volatile AAs: the observed changes in enantiomeric ratios clearly demonstrate the preferential homochiral interactions and a tendency of natural amino acids to homochiral self-organization. It is noteworthy that just these 5 (Asn, Asp, Glu, Ser, Thr) out of 22 proteinogenic amino acids are able to local symmetry breaking. On the other hand, recent data on the enantiomeric composition of the Tagish Lake, a C2-type carbonaceous meteorite, revealed a large L

  13. Sublimation of ice-tholins mixtures: A morphological and spectro-photometric study

    NASA Astrophysics Data System (ADS)

    Poch, Olivier; Pommerol, Antoine; Jost, Bernhard; Carrasco, Nathalie; Szopa, Cyril; Thomas, Nicolas

    2016-03-01

    Sublimation, the direct transition from solid to gas phase, is a process responsible for shaping and changing the reflectance properties of many Solar System surfaces. In this study, we have characterized the evolution of the structure/texture and of the visible and near-infrared (VIS-NIR) spectral reflectance of surfaces made of water ice mixed with analogues of complex extraterrestrial organic matter, named tholins, under low temperature (<-70 °C) and pressure (10-5 mbar) conditions. The experiments were carried out in the SCITEAS simulation setup recently built as part of the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern (Pommerol, A. et al. [2015a]. Planet. Space Sci. 109-110, 106-122). As the water ice sublimated, we observed in situ the formation of a sublimation lag deposit made of a water-free porous (>90% porosity) network of organic filaments on top of the ice. The temporal evolution of the tholins and water ice spectral features (reflectance at the absorption bands wavelengths, red slope, from 0.40 to 1.90 μm) are analyzed throughout the sublimation of the samples. We studied how different mixtures of tholins with water (0.1 wt.% tholins as coating or inclusions within the water particles), and different ice particle sizes (4.5 ± 2.5 or 67 ± 31 μm) influence the morphological and spectral evolutions of the samples. The sublimation of the ice below the mantle produces a gas flow responsible for the ejection of mm to cm-sized fragments of the deposit in outbursts-like events. The results show remarkable differences between these samples in term of mantle structure, speed of mantle building, rates and surface area of mantle ejections. These data provide useful references for interpreting remote-sensing observations of icy Solar System surfaces, in particular the activity of comet nuclei where sublimation of organic-rich ices and deposition of organic-dust particles likely play a major role. Consequently, the

  14. Spatial and temporal variation of sublimation on Antarctica: Results of a high-resolution general circulation model

    NASA Astrophysics Data System (ADS)

    van den Broeke, Michiel R.

    1997-12-01

    In this paper we use output of a high-resolution general circulation model (ECHAM-3 T106, resolution 1.1°×1.1°) to study the spatial and temporal variation of sublimation on Antarctica. First, we compare model results with available observations of sublimation rates. The yearly cycle, with small latent heat fluxes during the winter, is well reproduced, and the agreement with sparsely available spot observations is fair. The model results suggest that a significant 10-15% of the annual precipitation over Antarctica is lost through sublimation and that sublimation plays an important role in the formation of blue ice areas. A preliminary analysis of the atmospheric boundary layer moisture budget shows that the spatial variation of sublimation in the coastal zone of East Antarctica can be explained by variations of horizontal advection of dry air. Dry air advection, and thus surface sublimation, is enhanced in areas where katabatic winds are strong and have a large downslope component and where the Antarctic topography drops suddenly from the plateau to the coastal zone. In areas where horizontal advection is small, like the plateau and the large ice shelves, special conditions must be met to make significant sublimation at the surface possible.

  15. Effects of Atmospheric and Surface Dust on the Sublimation Rates of CO2 on Mars

    NASA Technical Reports Server (NTRS)

    Bonev, B. P.; James, P. B.; Bjorkman, J. E.; Hansen, G. B.; Wolff, M. J.

    2003-01-01

    We present an overview of our modeling work dedicated to study the effects of atmospheric dust on the sublimation of CO2 on Mars. The purpose of this study is to better understand the extent to which dust storm activity can be a root cause for interannual variability in the planetary CO2 seasonal cycle, through modifying the springtime regression rates of the south polar cap. We obtain calculations of the sublimation fluxes for various types of polar surfaces and different amounts of atmospheric dust. These calculations have been compared qualitatively with the regression patterns observed by Mars Global Surveyor (MGS) in both visible and infrared wavelengths, for two years of very different dust histories (1999, and 2001).

  16. Controlling Gaussian and mean curvatures at microscale by sublimation and condensation of smectic liquid crystals

    NASA Astrophysics Data System (ADS)

    Kim, Dae Seok; Cha, Yun Jeong; Kim, Mun Ho; Lavrentovich, Oleg D.; Yoon, Dong Ki

    2016-01-01

    Soft materials with layered structure such as membranes, block copolymers and smectics exhibit intriguing morphologies with nontrivial curvatures. Here, we report restructuring the Gaussian and mean curvatures of smectic A films with free surface in the process of sintering, that is, reshaping at elevated temperatures. The pattern of alternating patches of negative, zero and positive mean curvature of the air-smectic interface has a profound effect on the rate of sublimation. As a result of sublimation, condensation and restructuring, initially equilibrium smectic films with negative and zero Gaussian curvature are transformed into structures with pronounced positive Gaussian curvature of layers packing, which are rare in the samples obtained by cooling from the isotropic melt. The observed relationship between the curvatures, bulk elastic behaviour and interfacial geometries in sintering of smectic liquid crystals might pave the way for new approaches to control soft morphologies at micron and submicron scales.

  17. Three-dimensional textures and defects of soft material layering revealed by thermal sublimation

    PubMed Central

    Yoon, Dong Ki; Kim, Yun Ho; Kim, Dae Seok; Oh, Seong Dae; Smalyukh, Ivan I.; Clark, Noel A.; Jung, Hee-Tae

    2013-01-01

    Layering is found and exploited in a variety of soft material systems, ranging from complex macromolecular self-assemblies to block copolymer and small-molecule liquid crystals. Because the control of layer structure is required for applications and characterization, and because defects reveal key features of the symmetries of layered phases, a variety of techniques have been developed for the study of soft-layer structure and defects, including X-ray diffraction and visualization using optical transmission and fluorescence confocal polarizing microscopy, atomic force microscopy, and SEM and transmission electron microscopy, including freeze-fracture transmission electron microscopy. Here, it is shown that thermal sublimation can be usefully combined with such techniques to enable visualization of the 3D structure of soft materials. Sequential sublimation removes material in a stepwise fashion, leaving a remnant layer structure largely unchanged and viewable using SEM, as demonstrated here using a lamellar smectic liquid crystal. PMID:24218602

  18. Controlling Gaussian and mean curvatures at microscale by sublimation and condensation of smectic liquid crystals

    PubMed Central

    Kim, Dae Seok; Cha, Yun Jeong; Kim, Mun Ho; Lavrentovich, Oleg D.; Yoon, Dong Ki

    2016-01-01

    Soft materials with layered structure such as membranes, block copolymers and smectics exhibit intriguing morphologies with nontrivial curvatures. Here, we report restructuring the Gaussian and mean curvatures of smectic A films with free surface in the process of sintering, that is, reshaping at elevated temperatures. The pattern of alternating patches of negative, zero and positive mean curvature of the air–smectic interface has a profound effect on the rate of sublimation. As a result of sublimation, condensation and restructuring, initially equilibrium smectic films with negative and zero Gaussian curvature are transformed into structures with pronounced positive Gaussian curvature of layers packing, which are rare in the samples obtained by cooling from the isotropic melt. The observed relationship between the curvatures, bulk elastic behaviour and interfacial geometries in sintering of smectic liquid crystals might pave the way for new approaches to control soft morphologies at micron and submicron scales. PMID:26725975

  19. Practical sublimation source for large-scale chromium gettering in fusion devices

    SciTech Connect

    Simpkins, J.E.; Emerson, L.C.; Mioduszewski, P.K.

    1983-01-01

    This paper describes the technique of chromium gettering with a large-scale sublimation source which resembles in its design the VARIAN Ti-Ball. It consists of a hollow chromium sphere with a diameter of approximately 3 cm and an incandescent filament for radiation heating from inside the ball. While the fabrication of the source is described in a companion paper, we discuss here the gettering technique. The experimental arrangement consists of an UHV system instrumented for total- and partial-pressure measurements, a film-thickness monitor, thermocouples, an optical pyrometer, and appropriate instrumentation to measure the heating power. The results show the temperature and corresponding sublimation rate of the Cr-Ball as function of input power. In addition, an example of the total pumping speed of a gettered surface is shown.

  20. Adamantane derivatives of sulfonamides: sublimation, solubility, solvation and transfer processes in biologically relevant solvents.

    PubMed

    Perlovich, G L; Volkova, T V; Sharapova, A V; Kazachenko, V P; Strakhova, N N; Proshin, A N

    2016-04-01

    Eight adamantane derivatives of sulfonamides were synthesized and characterized. Temperature dependencies of saturation vapor pressure were obtained using the transpiration method and thermodynamic functions of the sublimation processes were calculated. Solubility values of the selected compounds in buffer (pH 7.4), 1-octanol and 1-hexane were determined at different temperatures using the isothermal saturation method. Thermophysical characteristics of fusion processes (melting points and fusion enthalpies) of the substances were studied using the DSC method. Transfer processes from buffer to 1-octanol, from buffer to 1-hexane and 1-hexane to 1-octanol were analyzed. The impact of the molecules' structural modification on sublimation, solubility and solvation/hydration processes in the solvents was studied. Correlation equations connecting the thermodynamic functions with physicochemical descriptors were obtained. PMID:26976747

  1. Sublimating icy planetesimals as the source of nucleation seeds for grain condensation in classical novae

    NASA Technical Reports Server (NTRS)

    Matese, John J.; Whitmire, D. P.; Reynolds, R. T.

    1989-01-01

    The problem of grain nucleation during novae outbursts is a major obstacle to our understanding of dust formation in these systems. How nucleation seeds can form in the hostile post-outburst environment remains an unresolved matter. It is suggested that the material for seeding the condensation of ejecta outflow is stored in a primordial disk of icy planetesimals surrounding the system. Evidence is presented that the requisite number of nucleation seeds can be released by sublimation of the planetesimals during outbursts.

  2. Glaciers of the McMurdo dry valleys: Terrestrial analog for Martian polar sublimation

    NASA Astrophysics Data System (ADS)

    MacClune, Karen Lewis; Fountain, Andrew G.; Kargel, Jeffery S.; MacAyeal, Douglas R.

    2003-04-01

    The surfaces of the Martian north and south polar residual caps are marked by unusual ice features: Dark spiralesque troughs up to 1 km deep, 10 km wide, and 300 km long appear on both ice caps, and circular pits that make up the ``Swiss cheese'' terrain appear on the south polar cap. Both types of features are of interest to researchers as a potential means of understanding ice composition and flow rates. Some glaciers of the McMurdo dry valleys have surface features unknown elsewhere on terrestrial glaciers, including canyons over 6 km long, 100 m wide, and tens of meters deep and basins up to 100 m across. High sublimation, dust accumulation, and very little melting is key to their origin. These processes and ice landforms are suggested as terrestrial analogs for the sublimation behavior of Martian ice caps, where dust accumulation and sublimation are significant but surface melting is absent. We have developed a solar radiation model of canyon formation and have applied it to the Martian polar caps. The modeled processes do well to describe direct and reflected radiation within V grooves, a process that may be significant in the development of the spiral troughs and Swiss cheese terrain. The model fails to reproduce the low observed slopes of the Martian troughs. The grooves are too shallow, with opening angles of ~165° compared with model predictions of ~90°. The reason for the failure may be that we have not included creep closure, which should flatten their slopes.

  3. Properties of Filamentary Sublimation Residues from Dispersions of Clay in Ice

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Parker, T. J.; Saunders, R. S.; Laue, E. G.; Fanale, F. P.

    1985-01-01

    The properties of sublimate residues are of considerable interest in studies of the thermal modeling of Martian and cometary ice surfaces. The study of the formation of sand grains from this mantle on Martian polar ice is also supported by these experiments. To understand these properties, a series of low temperature vacuum experiments were run during which dirty ices that might be expected to be found in Martian polar caps and in comet nuclei were made and then freeze dried. In addition to using particulate material of appropriate grain size and minerology, particle nucleated ices were simulated by dispersing the particulates in the ice so that they did not contact one another. This noncontact dispersion was the most difficult requirement to achieve but the most rewarding in that it produced a new filamentary sublimate residue that was not a relic of the frozen dispersion. If the siliceous particles are allowed to touch one another in the ice the structure of the contacting particles in the ice will remain as a relic after the ice is sublimed away.

  4. Inter-vial Variance of the Sublimation Rate in Shelf Freeze-dryer

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masakazu; Harashima, Konomi; Ariyama, Hiroichi; Yao, Ai-Ru

    Significant inter-vial variance in the sublimation rate has been pointed out by several authors in relation to the placement of the vials on a well controlled shelf. All the previous reports have described the phenomena observed in the experiments or the production processes, and have made some suggestive remarks, but have not clearly proposed a solution to the problem. In the shelf freeze-drying of pharmaceuticals, one of the major ploblems is how to achieve inter-vial uniformity and batch to batch uniformity or consistency. In this study, We have developed a new model of laboratory-scale freeze-dryer which has temperature-controllable chamber walls, and using this new model we have analyzed causes of inter-vial variance in the sublimation rate. The higher sublimation rate for the vials placed on the shelf edge is due to additional heat input from the wall and also due to further additional heat from the shelf surface on which no kissing vial is placed. It is possible to cancel out the additional heat input from the shelf by maintaining an optimum wall temperature, which must be lower than the material temperature. This paper discusses a method for eliminating the inter-vail variance in drying conditions and shortening the drying time by means of chamber wall temperature control.

  5. Evidence for a Receding Dust Sublimation Region around a Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    Kishimoto, Makoto; Hönig, Sebastian F.; Antonucci, Robert; Millan-Gabet, Rafael; Barvainis, Richard; Millour, Florentin; Kotani, Takayuki; Tristram, Konrad R. W.; Weigelt, Gerd

    2013-10-01

    The near-IR emission in Type 1 active galactic nuclei (AGNs) is thought to be dominated by the thermal radiation from dust grains that are heated by the central engine in the UV/optical and are almost at the sublimation temperature. A brightening of the central source can thus further sublimate the innermost dust, leading to an increase in the radius of the near-IR emitting region. Such changes in radius have been indirectly probed by the measurements of the changes in the time lag between the near-IR and UV/optical light variation. Here we report direct evidence for such a receding sublimation region through the near-IR interferometry of the brightest Type 1 AGN in NGC 4151. The increase in radius follows a significant brightening of the central engine with a delay of at least a few years, which is thus the implied destruction timescale of the innermost dust distribution. Compiling historic flux variations and radius measurements, we also infer the reformation timescale for the inner dust distribution to be several years in this galactic nucleus. More specifically and quantitatively, we find that the radius at a given time seems to be correlated with a long-term average of the flux over the previous several (~6) years, instead of the instantaneous flux. Finally, we also report measurements of three more Type 1 AGNs newly observed with the Keck interferometer, as well as the second epoch measurements for three other AGNs.

  6. Formulation Design and Optimization of Orodispersible Tablets of Quetiapine Fumarate by Sublimation Method

    PubMed Central

    Kalyankar, P.; Panzade, P.; Lahoti, S.

    2015-01-01

    The objective of present study was to formulate directly compressible orodispersible tablets of quetiapine fumarate by sublimation method with a view to enhance patient compliance. A full 32 factorial design was used to investigate the effect of two variables viz., concentration of Indion 414 and camphor. Indion 414 (3-5 % w/w) was used as superdisintegrant and camphor (5-15 % w/w) as subliming agent. The tablets were evaluated for thickness, weight variation, hardness, friability, content uniformity, wetting time, porosity, in vitro disintegration time and in vitro drug release. The formulation containing 5% w/w of Indion 414 and 5% w/w camphor was emerged as promising based on evaluation parameters. The disintegration time for optimized formulation was 18.66 s. The tablet surface was evaluated for presence of pores by scanning electron microscopy before and after sublimation. Differential scanning colorimetric study did not indicate any drug excipient incompatibility, either during mixing or after compression. The effect of independent variables on disintegration time, % drug release and friability is presented graphically by surface response plots. Short-term stability studies on the optimized formulation indicated no significant changes in drug content and in vitro disintegration time. The directly compressible orodispersible tablets of quetiapine fumarate with lower friability, greater drug release and shorter disintegration times were obtained using Indion 414 and camphor at optimum concentrations. PMID:26180271

  7. Formulation Design and Optimization of Orodispersible Tablets of Quetiapine Fumarate by Sublimation Method.

    PubMed

    Kalyankar, P; Panzade, P; Lahoti, S

    2015-01-01

    The objective of present study was to formulate directly compressible orodispersible tablets of quetiapine fumarate by sublimation method with a view to enhance patient compliance. A full 3(2) factorial design was used to investigate the effect of two variables viz., concentration of Indion 414 and camphor. Indion 414 (3-5 % w/w) was used as superdisintegrant and camphor (5-15 % w/w) as subliming agent. The tablets were evaluated for thickness, weight variation, hardness, friability, content uniformity, wetting time, porosity, in vitro disintegration time and in vitro drug release. The formulation containing 5% w/w of Indion 414 and 5% w/w camphor was emerged as promising based on evaluation parameters. The disintegration time for optimized formulation was 18.66 s. The tablet surface was evaluated for presence of pores by scanning electron microscopy before and after sublimation. Differential scanning colorimetric study did not indicate any drug excipient incompatibility, either during mixing or after compression. The effect of independent variables on disintegration time, % drug release and friability is presented graphically by surface response plots. Short-term stability studies on the optimized formulation indicated no significant changes in drug content and in vitro disintegration time. The directly compressible orodispersible tablets of quetiapine fumarate with lower friability, greater drug release and shorter disintegration times were obtained using Indion 414 and camphor at optimum concentrations. PMID:26180271

  8. A method to measure winter precipitation and sublimation under global warming conditions

    NASA Astrophysics Data System (ADS)

    Herndl, Markus; Slawitsch, Veronika; von Unold, Georg

    2016-04-01

    Winter precipitation and snow sublimation are fundamental components of the alpine moisture budget. Much work has been done in the study of these processes and its important contribution to the annual water balance. Due to the above-average sensitivity of the alpine region to climate change, a change in the importance and magnitude of these water balance parameters can be expected. To determine these effects, a lysimeter-facility enclosed in an open-field climate manipulation experiment was established in 2015 at AREC Raumberg-Gumpenstein which is able to measure winter precipitation and sublimation under global warming conditions. In this facility, six monolithic lysimeters are equipped with a snow cover monitoring system, which separates the snow cover above the lysimeter automatically from the surrounding snow cover. Three of those lysimeters were exposed to a +3°C scenario and three lysimeters to ambient conditions. Weight data are recorded every minute and therefore it is possible to get high-resolution information about the water balance parameter in winter. First results over two snow event periods showed that the system can measure very accurately winter precipitation and sublimation especially in comparison with other measurement systems and usually used models. Also first trends confirm that higher winter temperatures may affect snow water equivalent and snow cover duration. With more data during the next years using this method, it is possible to quantify the influence of global warming on water balance parameters during the winter periods.

  9. EVIDENCE FOR A RECEDING DUST SUBLIMATION REGION AROUND A SUPERMASSIVE BLACK HOLE

    SciTech Connect

    Kishimoto, Makoto; Tristram, Konrad R. W.; Weigelt, Gerd; Hönig, Sebastian F.; Antonucci, Robert; Millan-Gabet, Rafael; Barvainis, Richard; Millour, Florentin; Kotani, Takayuki

    2013-10-01

    The near-IR emission in Type 1 active galactic nuclei (AGNs) is thought to be dominated by the thermal radiation from dust grains that are heated by the central engine in the UV/optical and are almost at the sublimation temperature. A brightening of the central source can thus further sublimate the innermost dust, leading to an increase in the radius of the near-IR emitting region. Such changes in radius have been indirectly probed by the measurements of the changes in the time lag between the near-IR and UV/optical light variation. Here we report direct evidence for such a receding sublimation region through the near-IR interferometry of the brightest Type 1 AGN in NGC 4151. The increase in radius follows a significant brightening of the central engine with a delay of at least a few years, which is thus the implied destruction timescale of the innermost dust distribution. Compiling historic flux variations and radius measurements, we also infer the reformation timescale for the inner dust distribution to be several years in this galactic nucleus. More specifically and quantitatively, we find that the radius at a given time seems to be correlated with a long-term average of the flux over the previous several (∼6) years, instead of the instantaneous flux. Finally, we also report measurements of three more Type 1 AGNs newly observed with the Keck interferometer, as well as the second epoch measurements for three other AGNs.

  10. Enhancement of Sublimation of Single Graphene Layer by Interacting with Gas Molecules in Rarefied Environment

    NASA Astrophysics Data System (ADS)

    Murugesan, Ramki; Park, Jae Hyun

    2014-11-01

    Graphene has excellent mechanical properties. One of them is the resistance to high temperature environment. Since the sublimation temperature of graphene is over 4500 K, it has been used for diverse high temperature applications in order to protect the system. In this study, using extensive molecular dynamics simulations, we show that the sublimation of graphene could be enhanced (occurs at the lower temperature) by interacting with the gas molecules. With increase in temperature, the bonds in graphene becomes so sensitive to interact with the incoming gas molecules. When the temperature is low, the graphene is stable to the impingement of gas molecules: The light H2 gases are stick to the graphene surface and remains being attached while the heavy CO2 and H2O are bounced back from the surface. However, at high temperature H2 gases are absorbed on the graphene and destroy the C -C bonds by forming C -H bonds. The local breakage of bond at the impingement spot spreads the entire graphene soon, causing a complete sublimation. Even though the heavy CO2 and H2O molecules also break the C -C bonds at high temperature,but their impingement effect is localized and the breakage does not propagate over the entire surface. This research was supported by Agency for Defence Development (ADD).

  11. Sublimation kinetics and diffusion coefficients of TNT, PETN, and RDX in air by thermogravimetry.

    PubMed

    Hikal, Walid M; Weeks, Brandon L

    2014-07-01

    The diffusion coefficients of explosives are crucial in their trace detection and lifetime estimation. We report on the experimental values of diffusion coefficients of three of the most important explosives in both military and industry: TNT, PETN, and RDX. Thermogravimetric analysis (TGA) was used to determine the sublimation rates of TNT, PETN, and RDX powders in the form of cylindrical billets. The TGA was calibrated using ferrocene as a standard material of well-characterized sublimation rates and vapor pressures to determine the vapor pressures of TNT, PETN, and RDX. The determined sublimation rates and vapor pressures were used to indirectly determine the diffusion coefficients of TNT, PETN, and RDX for the first time. A linear log-log dependence of the diffusion coefficients on temperature is observed for the three materials. The diffusion coefficients of TNT, PETN, and RDX at 273 K were determined to be 5.76×10(-6)m(2)/sec, 4.94×10(-6)m(2)/s, and 5.89×10(-6)m(2)/s, respectively. Values are in excellent agreement with the theoretical values in literature. PMID:24840410

  12. Formulation Development and Characterization of Meclizine Hydrochloride Sublimated Fast Dissolving Tablets.

    PubMed

    Vemula, Sateesh Kumar; Vangala, Mohan

    2014-01-01

    The intention of present research is to formulate and develop the meclizine hydrochloride fast dissolving tablets using sublimation method to enhance the dissolution rate. In this study an attempt was made to fasten the drug release from the oral tablets by incorporating the superdisintegrants and camphor as sublimating agent. The prepared fast dissolving tablets were subjected to precompression properties and characterized for hardness, weight variation, friability, wetting time, water absorption ratio, and disintegration time. From in vitro release studies, the formulation F9 exhibited fast release profile of about 98.61% in 30 min, and disintegration time 47 sec when compared with other formulations. The percent drug release in 30 min (Q 30) and initial dissolution rate for formulation F9 was 98.61 ± 0.25%, 3.29%/min. These were very much higher compared to marketed tablets (65.43 ± 0.57%, 2.18%/min). The dissolution efficiency was found to be 63.37 and it is increased by 1.4-fold with F9 FDT tablets compared to marketed tablets. Differential scanning calorimetry and Fourier transform infrared spectroscopy studies revealed that there was no possibility of interactions. Thus the development of meclizine hydrochloride fast dissolving tablets by sublimation method is a suitable approach to improve the dissolution rate. PMID:27355021

  13. Formulation Development and Characterization of Meclizine Hydrochloride Sublimated Fast Dissolving Tablets

    PubMed Central

    Vangala, Mohan

    2014-01-01

    The intention of present research is to formulate and develop the meclizine hydrochloride fast dissolving tablets using sublimation method to enhance the dissolution rate. In this study an attempt was made to fasten the drug release from the oral tablets by incorporating the superdisintegrants and camphor as sublimating agent. The prepared fast dissolving tablets were subjected to precompression properties and characterized for hardness, weight variation, friability, wetting time, water absorption ratio, and disintegration time. From in vitro release studies, the formulation F9 exhibited fast release profile of about 98.61% in 30 min, and disintegration time 47 sec when compared with other formulations. The percent drug release in 30 min (Q30) and initial dissolution rate for formulation F9 was 98.61 ± 0.25%, 3.29%/min. These were very much higher compared to marketed tablets (65.43 ± 0.57%, 2.18%/min). The dissolution efficiency was found to be 63.37 and it is increased by 1.4-fold with F9 FDT tablets compared to marketed tablets. Differential scanning calorimetry and Fourier transform infrared spectroscopy studies revealed that there was no possibility of interactions. Thus the development of meclizine hydrochloride fast dissolving tablets by sublimation method is a suitable approach to improve the dissolution rate. PMID:27355021

  14. An examination of the thermodynamics of fusion, vaporization, and sublimation of (R,S)- and (R)-flurbiprofen by correlation gas chromatography.

    PubMed

    Umnahanant, Patamaporn; Hasty, Darrell; Chickos, James

    2012-06-01

    The vaporization, fusion, and sublimation enthalpies of (R,S)- and (R)-flurbiprofen at T = 298.15 K are reported and compared with literature values when available. Correlation gas chromatography experiments were first performed to identify appropriate standards that could be used for materials containing a single fluorine substituent. Subsequent correlations resulted in a vaporization enthalpy for (R,S)-flurbiprofen and (R)-flurbiprofen, ΔH(vap) (298.15 K), of (127.5 ± 5.5) and (127.4 ± 4.7) kJ mol, respectively. Fusion enthalpies, ΔH(fus) (387 K), of (28.2 ± and, ΔH(fus) (381 K), (22.8 ± kJ mol(-1) were also measured by differential scanning calorimetry for the racemic and chiral forms of flurbiprofen. Adjusted to T = 298.15 K and combined with the vaporization enthalpy resulted in sublimation enthalpies, ΔH(sub) (298.15 K), of (155.6 ± 5.8) and (145.1 ± 5.7) kJ mol(-1) for (R,S)- and (R)-flurbiprofen, respectively. The fusion enthalpy measured for the racemic form was in excellent agreement with the literature value, while the sublimation enthalpy varies substantially from previous work. Two weak solid-solid phase transitions were also observed for (R)-flurbiprofen at T = 353.9 K (0.30 ± 0.1) and 363.2 K (0.21 ± 0.03) kJ · mol(-1). PMID:22411450

  15. Experimental Investigation of Sublimation of Ice at Subsonic and Supersonic Speeds and Its Relation to Heat Transfer

    NASA Technical Reports Server (NTRS)

    Coles, Willard D.; Ruggeri, Robert S.

    1954-01-01

    An experimental investigation was conducted in a 3.84- by 10-inch tunnel to determine the mass transfer by sublimation, heat transfer, and skin friction for an iced surface on a flat plate for Mach numbers of 0.4, 0.6, and 0.8 and pressure altitudes to 30,000 feet. Measurements of rates of sublimation were also made for a Mach number of 1.3 at a pressure altitude of 30,000 feet. The results show that the parameters of sublimation and heat transfer were 40 to 50 percent greater for an iced surface than was the bare-plate heat-transfer parameter. For iced surfaces of equivalent roughness, the ratio of sublimation to heat-transfer parameters was found to be 0.90. The sublimation data obtained at a Mach number of 1.3 showed no appreciable deviation from that obtained at subsonic speeds. The data obtained indicate that sublimation as a means of removing ice formations of appreciable thickness is usually too slow to be of mach value in the de-icing of aircraft at high altitudes.

  16. Impact of sublimation losses in the mass balance of glaciers in semi-arid mountain regions

    NASA Astrophysics Data System (ADS)

    Ayala, Alvaro; Pellicciotti, Francesca; Burlando, Paolo; MacDonell, Shelley; McPhee, James

    2016-04-01

    Glaciers in semiarid mountain regions may lose an important part of their winter snow accumulation through sublimation processes that are enhanced by the high-elevation, intense radiation and dry atmosphere of these environments. As glaciers in these regions secure freshwater resources to lower valleys during summer and drought periods, it is important to advance in a detailed quantification of their sublimation losses. However, logistical concerns and complex meteorological features make the measuring and modelling of glacier mass balances a difficult task. In this study, we estimated the spring-summer mass balances of Tapado and Juncal Norte glaciers in the semiarid Andes of north-central Chile by running a distributed energy balance model that accounts for melt, refreezing and sublimation from the surface and blowing snow. Meteorological input data were available from on-glacier Automatic Weather Stations (AWS) that were installed during the ablation season of years 2005-06, 2008-09, 2013-14 and 2014-15. Snow pits, ablation stakes and a time-lapse camera that provided surface albedo were also available. Distributed air temperature and wind speed were dynamically downscaled from NASA MERRA reanalysis using the software WINDSIM and validated against the data from the AWSs. The rest of the meteorological variables were distributed using statistical relations with air temperature derived from the AWSs data. Initial snow conditions were estimated using satellite images and distributed manual snow depth measurements. Preliminary results show that total ablation diminishes with elevation and that, during the early ablation season (October-November), melt is the main ablation component below 4500 m with sublimation dominating the ablation above this elevation. Above 4500 m an important fraction of meltwater refreezes during night. As the ablation season advances (December-February), melt extends to higher elevations, refreezing plays a smaller role and sublimation is

  17. Sublimating grains in the coma of new comets originating from the Oort Cloud

    NASA Astrophysics Data System (ADS)

    Faggi, S.; Tozzi, G.; Brucato, J.; Bruni, I.; Licandro, J.; Mazzotta Epifani, E.; Meech, K.; Mottola, S.

    2014-07-01

    It is expected that a billion of years of space weathering (see, e.g., Kanuchova et al., 2012, Icarus, 221, 12) produces a crust of organic matter that will be released when a comet enters, for the first time, in the inner Solar System. When approaching to the Sun, a comet is at heliocentric distances r_h greater than 3 au, the sublimation of CO and CO_2 is the main source of cometary activity. At shorter distances, the sublimation of water becomes the most important mechanism of activity. The gases escaping from the nucleus cause drag for the coma grains that can be refractory dust (silicates, carbon), water ice, and/or organic ices. Oort comets at their first passage in the inner Solar System, should produce an halo of organic or water ice particles. Recently, our group started to monitor new, inbound, bright Oort comets (C/2011 F1, C/2012 S1, C/2012 K1, C/2013 V5, C/2012 F3) to search for these grains. The method consists of detecting the cloud of sublimating grains in the inner coma by using the ΣAf(ρ) function (Tozzi et al., 2007, A&A, 476, 979). However, this over-population of grains, beside the sublimation, can be also due to short-time activity (outburst) or too large grains expanding at very slow velocity, as it has been found in comet 67P/C-G (Tozzi et al., 2011, A&A, 531, 54). To discriminate between the phenomena, it is necessary to monitor the comet both at short timescales for the outbursts (by repeating the observations after a few nights), and in a longer term (weeks to months). If the cloud does not expand with decreasing heliocentric distance, there is a high probability that organic and/or water-ice grains are present. We can discriminate between organic and water-ice grains by measuring their color and spectra. In this work, we will present the results obtained from the observations of C/2011 F1 (LINEAR) and C/2012 S1 (ISON). The comparison between data and theoretical simulations, obtained with a simple model assuming sublimating grains

  18. First-order feasibility analysis of a space suit radiator concept based on estimation of water mass sublimation using Apollo mission data

    NASA Astrophysics Data System (ADS)

    Metts, Jonathan G.; Klaus, David M.

    2012-01-01

    EVAs, and solar elevation angles were added to predict the performance of an electrochromic space suit radiator under Apollo conditions. Then, using these actual data sets, the hypothetical water mass savings that would be expected had this technology been employed were calculated. The results indicate that electrochromic suit radiators would have reduced sublimator water consumption by 69.0% across the entire Apollo program, for a total mass savings of 68.5 kg to the lunar surface. Further analysis is needed to determine the net impact as a function of the complete system, taking into account both suit components and consumable mass, but the water mass reduction found in this study suggests a favorable system trade is likely.

  19. Sublime Science

    ERIC Educational Resources Information Center

    Girod, Mark

    2007-01-01

    One of the shortcomings in most efforts to integrate art and science is that many people have a shallow understanding of art, which inevitably leads to shallow connections between art and science. Coloring drawings of planets, building sculptures of volcanoes, and decorating scientific diagrams are fine activities, but they do not link science and…

  20. Sublimation-driven erosion on Hyperion: Topographic analysis and landform simulation model tests

    NASA Astrophysics Data System (ADS)

    Howard, Alan D.; Moore, Jeffrey M.; Schenk, Paul M.; White, Oliver L.; Spencer, John

    2012-07-01

    The unique appearance of Hyperion can be explained in part by the loss to space of ballistic ejecta during impact events, as was proposed by Thomas et al. (Thomas, P.C. et al. [2007a]. Icarus 190, 573-584). We conclude that such loss is a partial explanation, accounting for the lack of appreciable intercrater plains on a saturation-cratered surface. In order to create the smooth surfaces and the reticulate, honeycomb pattern of narrow divides between old craters, appreciable subsequent modification of crater morphology must occur through mass-wasting processes accompanied by sublimation, probably facilitated by the loss of CO2 as a component of the relief-supporting matrix of the bedrock. During early stages of crater degradation, steep, crenulate bedrock slopes occupy the upper crater walls with abrupt transitions downslope onto smooth slopes near the angle of repose mantled by mass wasting debris, as can be seen within young craters. Long-continued mass wasting eventually results in slopes totally mantled with particulate debris. This mass wasting effectively destroys small craters, at least in part accounting for the paucity of sub-kilometer craters on Hyperion. Surface temperatures measured by Cassini CIRS range from 58 K to 127 K and imply a surface thermal inertia of 11 ± 2 J m-2 K-1 s-1/2 and bolometric albedo ranging from 0.05 to 0.33. Resulting H2O sublimation rates are only tens of cm per billion years for most of the surface, so the evolution of the observed landforms is likely to require sublimation of more volatile species such as CO2.

  1. Piezoelectric crystal microbalance measurements of enthalpy of sublimation of C2-C9 dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Dirri, F.; Palomba, E.; Longobardo, A.; Zampetti, E.

    2016-02-01

    We present here a novel experimental set-up that is able to measure the enthalpy of sublimation of a given compound by means of piezoelectric crystal microbalances (PCMs). The PCM sensors have already been used for space measurements, such as for the detection of organic and non-organic volatile species and refractory materials in planetary environments. In Earth atmospherics applications, PCMs can be also used to obtain some physical-chemical processes concerning the volatile organic compounds (VOCs) present in atmospheric environments. The experimental set-up has been developed and tested on dicarboxylic acids. In this work, a temperature-controlled effusion cell was used to sublimate VOC, creating a molecular flux that was collimated onto a cold PCM. The VOC recondensed onto the PCM quartz crystal, allowing the determination of the deposition rate. From the measurements of deposition rates, it has been possible to infer the enthalpy of sublimation of adipic acid, i.e. ΔHsub : 141.6 ± 0.8 kJ mol-1, succinic acid, i.e. 113.3 ± 1.3 kJ mol-1, oxalic acid, i.e. 62.5 ± 3.1 kJ mol-1, and azelaic acid, i.e. 124.2 ± 1.2 kJ mol-1. The results obtained show an accuracy of 1 % for succinic, adipic, and azelaic acid and within 5 % for oxalic acid and are in very good agreement with previous works (within 6 % for adipic, succinic, and oxalic acid and within 11 % or larger for azelaic acid).

  2. Near-infrared Emission from Sublimating Dust in Collisionally Active Debris Disks

    NASA Astrophysics Data System (ADS)

    van Lieshout, Rik; Dominik, Carsten; Kama, Mihkel; Michiel, Min

    2013-07-01

    Hot exozodiacal dust is thought to be responsible for excess near-infrared (NIR) emission emanating from the innermost parts of some debris disks. The origin of this dust, however, is still a matter of debate. We test whether hot exozodiacal dust can be supplied from an exterior parent belt by Poynting-Robertson (P-R) drag, paying special attention to the pile-up of dust that occurs due to the interplay of P-R drag and dust sublimation. Specifically, we investigate whether pile-ups still occur when collisions are taken into account, and if they can explain the observed NIR excess. We compute the steady-state distribution of dust in the inner disk by solving the continuity equation. First, we derive an analytic solution under a number of simplifying assumptions. Second, we develop a numerical debris disk model that for the first time treats the complex interaction of collisions, P-R drag, and sublimation in a self-consistent way. From the resulting dust distributions we generate simple emission spectra and compare these to observed excess NIR fluxes. We confirm that P-R drag always supplies a small amount of dust to the sublimation zone, but find that a fully consistent treatment yields a maximum amount of dust that is about 7 times lower than that given by analytical estimates. The NIR excess due this material is much smaller (<10^-3 for A-type stars with parent belts at >1 AU) than the values derived from interferometric observations (~10^-2). Furthermore, the pile-up of dust still occurs when collisions are considered, but its effect on the NIR flux is insignificant. Finally, the cross-section in the innermost regions is clearly dominated by barely bound grains.

  3. Near-infrared emission from sublimating dust in collisionally active debris disks

    NASA Astrophysics Data System (ADS)

    van Lieshout, R.; Dominik, C.; Kama, M.; Min, M.

    2014-11-01

    Context. Hot exozodiacal dust is thought to be responsible for excess near-infrared (NIR) emission emanating from the innermost parts of some debris disks. The origin of this dust, however, is still a matter of debate. Aims: We test whether hot exozodiacal dust can be supplied from an exterior parent belt by Poynting-Robertson (P-R) drag, paying special attention to the pile-up of dust that occurs owing to the interplay of P-R drag and dust sublimation. Specifically, we investigate whether pile-ups still occur when collisions are taken into account, and if they can explain the observed NIR excess. Methods: We computed the steady-state distribution of dust in the inner disk by solving the continuity equation. First, we derived an analytical solution under a number of simplifying assumptions. Second, we developed a numerical debris disk model that for the first time treats the complex interaction of collisions, P-R drag, and sublimation in a self-consistent way. From the resulting dust distributions, we generated thermal emission spectra and compare these to observed excess NIR fluxes. Results: We confirm that P-R drag always supplies a small amount of dust to the sublimation zone, but find that a fully consistent treatment yields a maximum amount of dust that is about 7 times lower than that given by analytical estimates. The NIR excess due to this material is much less (≲10-3 for A-type stars with parent belts at ≳1 AU) than the values derived from interferometric observations (~10-2). Pile-up of dust still occurs when collisions are considered, but its effect on the NIR flux is insignificant. Finally, the cross-section in the innermost regions is clearly dominated by barely bound grains. Appendices are available in electronic form at http://www.aanda.org

  4. Dynamical screening of van der Waals interactions in nanostructured solids: Sublimation of fullerenes

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Yang, Jing; Rappe, Andrew M.

    2015-04-01

    Sublimation energy is one of the most important properties of molecular crystals, but it is difficult to study, because the attractive long-range van der Waals (vdW) interaction plays an important role. Here, we apply efficient semilocal density functional theory (DFT), corrected with the dynamically screened vdW interaction (DFT + vdW), the Rutgers-Chalmers nonlocal vdW-DF, and the pairwise-based dispersion-corrected DFT-D2 developed by Grimme and co-workers, to study the sublimation of fullerenes. We find that the short-range part, which accounts for the interaction due to the orbital overlap between fullerenes, is negligibly small. Our calculation shows that there exists a strong screening effect on the vdW interaction arising from the valence electrons of fullerenes. On the other hand, higher-order contributions can be as important as the leading-order term. The reasons are that (i) the surface of fullerene molecules is metallic and thus highly polarizable, (ii) the band gap of fullerene solids is small (less than 2 eV), and (iii) fullerene molecules in the solid phase are so densely packed, yielding the high valence electron density and small equilibrium intermolecular distances (the first nearest neighbor distance is only about 10 Å for C60). However, these two effects make opposite contributions, leading to significant error cancellation between these two contributions. We demonstrate that, by considering higher-order contributions and the dynamical screening, the DFT + vdW method can yield sublimation energies of fullerenes in good agreement with reference values, followed by vdW-DF and DFT-D2. The insights from this study are important for a better understanding of the long-range nature of vdW interactions in nanostructured solids.

  5. Dynamical screening of van der Waals interactions in nanostructured solids: Sublimation of fullerenes

    SciTech Connect

    Tao, Jianmin; Yang, Jing; Rappe, Andrew M.

    2015-04-28

    Sublimation energy is one of the most important properties of molecular crystals, but it is difficult to study, because the attractive long-range van der Waals (vdW) interaction plays an important role. Here, we apply efficient semilocal density functional theory (DFT), corrected with the dynamically screened vdW interaction (DFT + vdW), the Rutgers-Chalmers nonlocal vdW-DF, and the pairwise-based dispersion-corrected DFT-D2 developed by Grimme and co-workers, to study the sublimation of fullerenes. We find that the short-range part, which accounts for the interaction due to the orbital overlap between fullerenes, is negligibly small. Our calculation shows that there exists a strong screening effect on the vdW interaction arising from the valence electrons of fullerenes. On the other hand, higher-order contributions can be as important as the leading-order term. The reasons are that (i) the surface of fullerene molecules is metallic and thus highly polarizable, (ii) the band gap of fullerene solids is small (less than 2 eV), and (iii) fullerene molecules in the solid phase are so densely packed, yielding the high valence electron density and small equilibrium intermolecular distances (the first nearest neighbor distance is only about 10 Å for C{sub 60}). However, these two effects make opposite contributions, leading to significant error cancellation between these two contributions. We demonstrate that, by considering higher-order contributions and the dynamical screening, the DFT + vdW method can yield sublimation energies of fullerenes in good agreement with reference values, followed by vdW-DF and DFT-D2. The insights from this study are important for a better understanding of the long-range nature of vdW interactions in nanostructured solids.

  6. Formation of graphene layers by vacuum sublimation of silicon carbide using a scanning heat source

    SciTech Connect

    Dmitriev, A. N.; Cherednichenko, D. I.

    2011-12-15

    The kinetics of surface graphitization during dissociative vacuum evaporation of silicon carbide, under the effect of a scanning heat source, is studied. A model of the process is developed. The model provides a means for theoretically treating the dynamics of formation and the number of residual carbon atomic layers. The vapor stoichiometric coefficient which ensures the minimization of the number of structural defects in graphene, is optimized at the sublimation temperature: {theta} = 1/{eta}(T{sub max}). The proposed method can be used as a basis for graphene production technology.

  7. The Anomalous Drift of Comet ISON (C/2012 S1) due to Sublimating Volatiles near Perihelion

    NASA Astrophysics Data System (ADS)

    Steckloff, J. K.; Keane, J. V.; Milam, S.; Coulson, I.; Knight, M. M.

    2014-12-01

    Prior to perihelion passage on 28 November 2013, the observed right ascension (RA) and declination (Dec) coordinates of comet C/2012 S1 (ISON) significantly lagged the predicted JPL (# 53) ephemeris. We show that this "braking effect" is due to a dynamic pressure exerted by sublimating gases on the sunward side of the nucleus [1]. Comet ISON was observed November 23 through November 28 using the SCUBA-2 sub-millimeter camera on the James Clerk Maxwell Telescope (JCMT). Imaging is achieved simultaneously at wavelengths of 850 μm and 450 μm, with RA and Dec determined from the central peak in the coma brightness [2]. When comet ISON was first detected at 850 μm, the 1-mm-sized dust particles were tightly bound to the comet nucleus until at least November 23. Three days later, the dust was less tightly bound, elongated and diffuse, spread out over as much as 120 arc seconds (80,000 km) in the anti-solar direction, suggesting a fragmentation event. We compute the average braking velocity of the nucleus of comet ISON by first measuring the distance between the central RA position and the predicted JPL ephemeris. We then calculate the change in this distance between subsequent observations, and divide this value by the elapsed time between the two observations to yield an average drift velocity of the nucleus over this time interval. We assume that comet ISON, like a number of Jupiter Family Comets visited by spacecraft [3], has low thermal inertia. Thus, the sublimating gases are emitted predominantly on the sunward side of the nucleus. Additionally, we assume that water ice dominates the sublimating gases [4]. We then calculate the pressure on the surface of the nucleus due to the emitted gases using the procedure described in [1]. We match the average drift velocity of the nucleus due to this sublimation pressure with the observed average drift velocity from the JCMT observations, which is sensitive to the size of the body, allowing us to estimate the size of the

  8. Induced Recrystallization of CdTe Thin Films Deposited by Close-Spaced Sublimation

    SciTech Connect

    Moutinho, H. R.; Dhere, R. G.; Al-Jassim, M. M.; Levi, D. H.; Kazmerski, L. L.; Mayo, B.

    1998-10-29

    We have deposited CdTe thin films by close-spaced sublimation at two different temperature ranges. The films deposited at the lower temperature partially recrystallized after CdCl{sub 2} treatment at 350 C and completely recrystallized after the same treatment at 400 C. The films deposited at higher temperature did not recrystallize at these two temperatures. These results confirmed that the mechanisms responsible for changes in physical properties of CdTe films treated with CdCl{sub 2} are recrystallization and grain growth, and provided an alternative method to deposit CSS films using lower temperatures.

  9. Induced Recrystallization of CdTe Thin Films Deposited by Close-Spaced Sublimation

    SciTech Connect

    Moutinho, H. R.; Dhere, R. G.; Al-Jassim, M. M.; Levi, D. H.; Kazmerski, L. L.; Mayo, B.

    1998-10-26

    We have deposited CdTe thin films by close-spaced sublimation at two different temperature ranges. The films deposited at the lower temperature partially recrystallized after CdCl2 treatment at 350 C and completely recrystallized after the same treatment at 400 C. The films deposited at higher temperature did not recrystallize at these two temperatures. These results confirmed that the mechanisms responsible for changes in physical properties of CdTe films treated with CdCl2 are recrystallization and grain growth, and provided an alternative method to deposit CSS films using lower temperatures.

  10. Modeling of Sublimation-Driven Erosion and Ice Pinnacle Formation on Callisto

    NASA Astrophysics Data System (ADS)

    White, Oliver; Umurhan, Orkan M.; Howard, Alan D.; Moore, Jeffrey M.

    2014-11-01

    Most of the areas observed at high resolution on the Galilean satellite Callisto have a morphology that implies sublimation-driven landform modification and mass wasting is at work [Moore et al., 1999]. These areas comprise rolling dark plains with interspersed bright pinnacles. Howard and Moore [2008], using the MARSSIM landform evolution model, simulated evolution of this landscape as a combination of bedrock volatile sublimation, mass wasting of the dark, non-coherent residue, and redeposition of ice at high-elevation cold traps sheltered from thermal re-radiation to form the pinnacles.The goal of our study is to further investigate the details of pinnacle formation by refining this model, and by constraining values for the variable environmental parameters within the model such that they are consistent with the current understanding of Callisto’s surface environment. We present the results of the updated model and our experimentation with varying key parameters.Our refinement of the model has caused us to revise the result of Howard and Moore [2008] that the pinnacles represent an ice cover of several tens to hundreds of meters. Instead, our results indicate an ice coverage reaching several meters at most, a figure that is consistent with the prediction of Moore et al. [2004]. We have also modified the model such that ice contained within the pinnacles is now subject to sublimation itself.Using Fick’s Law to solve for the diffusive transport rate between a volatile table and an atmosphere [Moore et al., 1996], we have determined that the loss rate of H2O ice from the volatile-refractory bedrock through sublimation is too slow 10-20 kg m-2 s-1) to account for the formation of the ice pinnacles, and that a volatile mixture that contains H2O ice is necessary to facilitate its loss. We find that CO2 hydrate fulfills this role well: loss rates of CO2●6H2O 10-10 kg m-2 s-1) are sufficient to produce deposited ice thicknesses reaching several meters, with the

  11. Dust clouds around red giant stars - Evidence of sublimating comet disks?

    NASA Astrophysics Data System (ADS)

    Matese, J. J.; Whitmire, D. P.; Reynolds, R. T.

    1989-09-01

    The dust production by disk comets around intermediate mass stars evolving into red giants is studied, focusing on AGB supergiants. The model of Iben and Renzini (1983) is used to study the observed dust mass loss for AGB stars. An expression is obtained for the comet disk net dust production rate and values of the radius and black body temperature corresponding to peak sublimation are calculated for a range of stellar masses. Also, the fractional amount of dust released from a cometesimal disk during a classical nova outburst is estimated.

  12. Time-resolved photoluminescence of polycrystalline CdTe grown by close-spaced sublimation

    SciTech Connect

    Keyes, B.; Dhere, R.; Ramanathan, K. )

    1994-06-30

    Polycrystalline CdTe has shown great promise as a low-cost material for thin-film, terrestrial photovoltaic applications, with efficiencies approaching 16% achieved with close-spaced sublimation (CSS)-grown CdTe. Due to the inherent complexities of polycrystalline material, much of the progress in this area has occurred through a slow trial-and-error process. This report uses time-resolved photoluminescence (TRPL) to characterize the CdTe material quality as a function of one basic growth parameter---substrate temperature. This characterization is done for two different glass substrate materials, soda-lime silicate and borosilicate.

  13. Characterization of CdMnTe films deposited from polycrystalline powder source using closed-space sublimation method

    SciTech Connect

    Lai, Jianming; Wang, Junnan; Wang, Lin; Ji, Huanhuan; Xu, Run; Zhang, Jijun; Huang, Jian; Shen, Yue; Min, Jiahua; Wang, Linjun Xia, Yiben

    2015-09-15

    CdMnTe films were prepared on quartz substrates by closed-space sublimation of polycrystalline Cd{sub 0.74}Mn{sub 0.26}Te powders. This was performed at different substrate temperatures (T{sub s} = 200, 300, 350, and 400 °C). The interfacial adhesion strength between the films and substrates, when fabricated from polycrystalline powders, was greater than that of films grown using a bulk source. X-ray diffraction studies revealed that the as-deposited films had a zinc blende structure with a preferential (111) orientation. Precipitation of Te occurred in the films deposited at T{sub s} = 200 °C, as confirmed using scanning electron microscopy, x-ray diffraction, and Raman spectroscopy. The growth mode and re-evaporation dependence on the value of T{sub s} of the films were investigated. Our results suggested that materials suitable for radiation detection can be grown from a powder source at lower substrate temperatures then when grown from a bulk source.

  14. Optical and electrical characterizations of highly efficient CdTe thin film solar cells prepared by close-spaced sublimation

    NASA Astrophysics Data System (ADS)

    Okamoto, T.; Yamada, A.; Konagai, M.

    2000-06-01

    The effects of the Cu diffusion on the optical and electrical properties of CdTe thin film solar cells prepared by close-spaced sublimation (CSS) were investigated by capacitance-voltage ( C- V) measurement and low-temperature photoluminescence (PL) measurement. C- V measurement revealed that the net acceptor concentration in the CdTe layer was independent of the heat treatment after screen printing of the Cu-doped graphite electrode for Cu diffusion into the CdTe layer, although it greatly affected the solar cell performance. Furthermore, the depth profile of PL spectrum of CdTe layer implies that the heat treatment for Cu diffusion facilitates the formation of low-resistance contact to CdTe through the formation of a heavily doped (p +) region in the CdTe adjacent to the back electrode, but Cu atoms do not act as effective acceptors in the CdTe layer except the region near the back electrode.

  15. The formation of striae within cometary dust tails by a sublimation-driven YORP-like effect

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan K.; Jacobson, Seth A.

    2016-01-01

    Sublimating gas molecules scatter off of the surface of an icy body in the same manner as photons (Lambertian Scattering). This means that for every photon-driven body force, there should be a sublimation-driven analog that affects icy bodies. Thermal photons emitted from the surfaces of asymmetrically shaped bodies in the Solar System generate net torques that change the spin rates of these bodies over time. The long-term averaging of this torque is called the YORP effect. Here we propose a sublimation-driven analog to the YORP effect (Sublimation-YORP or SYORP), in which sublimating gas molecules emitted from the surfaces of icy bodies in the Solar System also generate net torques on the bodies. However, sublimating gas molecules carry ∼104-105 times more momentum away from the body than thermal photons, resulting in much greater body torques. Previous studies of sublimative torques focused on emissions from highly localized sources on the surfaces of Jupiter Family Comet nuclei, and have therefore required extensive empirical observations to predict the resulting behavior of the body. By contrast, SYORP applies to non-localized emissions across the entire body, which likely dominates sublimation-drive torques on small icy chunks and dynamically young comets outside the Jupiter Family, and can therefore be applied without high-resolution spacecraft observations of their surfaces. Instead, we repurpose the well-tested mathematical machinery of the YORP effect to account for sublimation-driven torques. We show how an SYORP-driven mechanism best matches observations of the rarely observed, Sun-oriented linear features (striae) in the tails of comets, whose formation mechanism has remained enigmatic for decades. The SYORP effect naturally explains why striae tend to be observed between near-perihelion and ∼1 AU from the Sun for comets with perihelia less than 0.6 AU, and solves longstanding problems with moving enough material into the cometary tail to form

  16. The growth of sublimation crystals and surface hoar on the Antarctic plateau

    NASA Astrophysics Data System (ADS)

    Gallet, J.-C.; Domine, F.; Savarino, J.; Dumont, M.; Brun, E.

    2013-12-01

    On the Antarctic plateau, the budget of water vapor and energy is in part determined by precipitation, but these are so low that the dynamic of snow crystal growth and sublimation at the surface can be important factors. At Dome C (75° S, 123° E), we have frequently observed the growth of crystals on the snow surface under calm sunny weather. Here, we present the time variations of specific surface area and density of these crystals. Using the detailed snow model Crocus, we conclude that these crystals were very likely due to the nighttime formation of surface hoar crystals and to the daytime formation of sublimation crystals. These latter crystals form by processes similar to those involved in the formation of frost flowers on young sea ice. The formation of these crystals impact the albedo, mass and energy budget of the Antarctic plateau. In particular, the specific surface area variations of the surface layer can induce an instantaneous forcing of up to -10 W m-2 at noon, resulting in a surface temperature drop of 0.45 K.

  17. Formation of gullies on Mars by debris flows triggered by CO2 sublimation

    NASA Astrophysics Data System (ADS)

    Pilorget, C.; Forget, F.

    2016-01-01

    Martian gully landforms resemble terrestrial debris flows formed by the action of liquid water and have thus been interpreted as evidence for potential habitable environments on Mars within the past few millennia. However, ongoing gully formation has been detected under surface conditions much too cold for liquid water, but at times in the martian year when a thin layer of seasonal CO2 frost is present and defrosting above the regolith. These observations suggest that the CO2 condensation-sublimation cycle could play a role in gully formation. Here we use a thermo-physical numerical model of the martian regolith underlying a CO2 ice layer and atmosphere to show that the pores beneath the ice layer can be filled with CO2 ice and subjected to extreme pressure variations during the defrosting season. The subsequent gas fluxes can destabilize the regolith material and induce gas-lubricated debris flows with geomorphic characteristics similar to martian gullies. Moreover, we find that subsurface CO2 ice condensation, sublimation and pressurization occurs at conditions found at latitudes and slope orientations where gullies are observed. We conclude that martian gullies can result from geologic dry ice processes that have no terrestrial analogues and do not require liquid water. Such dry ice processes may have helped shape the evolution of landforms elsewhere on the martian surface.

  18. Vapor pressures and enthalpies of sublimation of D-glucose, D-xylose, cellobiose, and levoglucosan

    SciTech Connect

    Oja, V.; Suuberg, E.M.

    1999-01-01

    The vapor pressures of {alpha}-D-glucose (or dextrose), D-xylose, D-cellobiose (or 4-{beta}-D-glucopyranosyl-D-glucopyranose), and levoglucosan (or 1,6-anhydro-{beta}-D-glucopyranose) have been measured using the Knudsen effusion technique, in the range of temperatures from 344 to 488 K. The measurements were all made in the solid sublimation regime, and enthalpies of sublimation were calculated from the Clausius-Claperon equation. The vapor pressures may be correlated by ln(P/Pa) = A {minus} B/(T/K), where A = 53.16, B = 23.382 ({+-}600) for D-glucose (395--406 K), A = 46.29 and B = 19,006 ({+-} 375) for D-xylose (370--395 K), and A = 70.30 and B = 36,264 ({+-} 5,220) for cellobiose (474--488 K). Levoglucosan displayed a solid phase transition at approximately 386 K, and its vapor pressure was affected accordingly. For this material, A = 38.96 and B = 15,049 ({+-} 123) in the temperature range 344--386 K and A = 31.19 and B = 12,066 ({+-} 709) in the temperature range 386--405 K.

  19. GaAs surface cleaning by thermal oxidation and sublimation in molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Saito, Junji; Nanbu, Kazuo; Ishikawa, Tomonori; Kondo, Kazuo

    1988-01-01

    GaAs surface cleaning by thermal oxidation and sublimation prior to molecular-beam-epitaxial growth has been investigated as a means of reducing the carrier depletion at the substrate and epitaxial layer interface. The carrier depletion between the substrate and epitaxial films, measured by a C-V carrier profiling technique, was shown to decrease significantly with an increase in the thickness of the thermal oxidation. The concentration of carbon contamination near the substrate-epitaxial interface was measured using secondary ion mass spectroscopy. The carbon concentration correlated very well with the carrier depletion. Therefore, the main origin of the carrier depletion is believed to be the carbon concentration of the initial growth surface. Based on these results, the thermal oxidation and sublimation of a semi-insulating GaAs substrate was successfully applied to improve the mobility and sheet concentration of the two-dimensional electron gas in selectively doped GaAs/N-Al0.3Ga0.7As heterostructures with very thin GaAs buffer layers.

  20. [Sublimation-dried mare's milk and the possibility of its use in creating infant and dietary food products].

    PubMed

    Stoianova, L G; Abramova, L A; Ladodo, K S

    1988-01-01

    The main biological parameters were studied in sublimated mare's milk: protein fraction composition, amino-acid spectrum, fatty-acid composition of lipids and the content of vitamins and mineral substances. A high biological value of the sublimated mare's milk has been proved, as well as significant proximity of its composition to human milk. Preliminary data have evidenced expediency of mare's milk use for the development of adapted milk mixtures for baby foods. However, the fatty component of the mixtures needs certain correction by addition of vegetable oil. The sublimated mare's milk can be used for the production of kumiss, that would extend its application in dietotherapy by removing season and territory limitations. PMID:3388813

  1. An investigation on the mechanism of sublimed DHB matrix on molecular ion yields in SIMS imaging of brain tissue.

    PubMed

    Dowlatshahi Pour, Masoumeh; Malmberg, Per; Ewing, Andrew

    2016-05-01

    We have characterized the use of sublimation to deposit matrix-assisted laser desorption/ionization (MALDI) matrices in secondary ion mass spectrometry (SIMS) analysis, i.e. matrix-enhanced SIMS (ME-SIMS), a common surface modification method to enhance sensitivity for larger molecules and to increase the production of intact molecular ions. We use sublimation to apply a thin layer of a conventional MALDI matrix, 2,5-dihydroxybenzoic acid (DHB), onto rat brain cerebellum tissue to show how this technique can be used to enhance molecular yields in SIMS while still retaining a lateral resolution around 2 μm and also to investigate the mechanism of this enhancement. The results here illustrate that cholesterol, which is a dominant lipid species in the brain, is decreased on the tissue surface after deposition of matrix, particularly in white matter. The decrease of cholesterol is followed by an increased ion yield of several other lipid species. Depth profiling of the sublimed rat brain reveals that the lipid species are de facto extracted by the DHB matrix and concentrated in the top most layers of the sublimed matrix. This extraction/concentration of lipids directly leads to an increase of higher mass lipid ion yield. It is also possible that the decrease of cholesterol decreases the potential suppression of ion yield caused by cholesterol migration to the tissue surface. This result provides us with significant insights into the possible mechanisms involved when using sublimation to deposit this matrix in ME-SIMS. Graphical Abstract Schematic representation of the enhancement on the molecular ion yields in SIMS by deposition of DHB matrix on the brain tissue using sublimation. PMID:26922337

  2. Sublimation of water ice mixed with silicates and tholins: Evolution of surface texture and reflectance spectra, with implications for comets

    NASA Astrophysics Data System (ADS)

    Poch, Olivier; Pommerol, Antoine; Jost, Bernhard; Carrasco, Nathalie; Szopa, Cyril; Thomas, Nicolas

    2016-03-01

    The surfaces of many objects in the Solar System comprise substantial quantities of water ice sometimes mixed with minerals and/or organic molecules. The sublimation of the ice changes the structural and optical properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surface analogues of cometary ices, made of water ice, complex organic matter (tholins) and silicates, as they undergo sublimation under low temperature (<-70 °C) and pressure (10-5 mbar) conditions inside the SCITEAS simulation chamber. As the water ice sublimated, we observed in situ the formation of a porous sublimation lag deposit, or sublimation mantle, at the top of the ice. This mantle is a network of filaments made of the non-volatile particles. Organics or phyllosilicates grains, able to interact via stronger inter-particulate forces than olivine grains, can form a foam-like structure having internal cohesiveness, holding olivine grains together. As this mantle builds-up, the band depths of the sub-surface water ice are attenuated until complete extinction under only few millimeters of mantle. Optically thick sublimation mantles are mainly featureless in the near infrared. The absorption bands of the minerals present in the mantle are weak, or even totally absent if minerals are mixed with organics which largely dominate the VIS-NIR reflectance spectrum. During sublimation, ejections of large fragments of mantle, triggered by the gas flow, expose ice particles to the surface. The contrast of brightness between mantled and ice-exposed areas depends on the wavelength range and the dust/ice ratio considered. We describe how the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the ice and the dust/ice mass ratio influence the texture, activity and spectro-photometric properties of the sublimation mantles. These data provide useful references for

  3. Cadmium sulfide thin films deposited by close spaced sublimation and cadmium sulfide/cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    Marinskiy, Dmitriy Nikolaevich

    1998-12-01

    One of the applications of CdS films is as a window layer in CdTe and Cu(In,Ga)Sesb2 solar cells. The study of the optical and structural properties of CdS films deposited by close spaced sublimation as well as their influence on CdS/CdTe solar cell performance is part of the CdTe solar cell program at the University of South Florida. CdS films have been deposited by the close-spaced sublimation technique. The influence of the main process parameters, the substrate and source temperatures, and the ambient in the deposition chamber has been investigated. As-deposited films have been subjected to heat treatments in Hsb2 ambient, in CdClsb2 atmosphere, and in atmosphere with small amounts of oxygen. A special annealing chamber was built to carry out the annealing experiments in the presence of CdClsb2 vapor and oxygen. Several CSS chambers were assembled to study the influence of various process parameters simultaneously and validate the results. Results of scanning electron microscopy and photoluminescence measurements have been used as the primary characterization techniques. X-ray diffraction, electron microprobe analysis, and transmission measurements have also been carried out. It was found that as deposited CdS films have a hexagonal structure independent of the process parameters used. The presence of a CdO phase was detected in the samples grown with the highest oxygen concentration in the ambient. The resistivity of CdS films is controlled by intergrain barriers. Photoluminescence measurements showed the presence of oxygen-acceptor transition and a wide variation in the intensity of deep emission bands. The variation in the intensities was correlated with the variation in the deposition and annealing conditions. However, no correlation was found between the PL intensities of defect bands and cell performance. CdS/CdTe junctions have been fabricated using standard deposition and postgrowth techniques developed in the USF solar cells laboratory. All cells have

  4. Deracemization of Amino Acids by Partial Sublimation and via Homochiral Self-Organization

    NASA Astrophysics Data System (ADS)

    Tarasevych, Arkadii V.; Sorochinsky, Alexander E.; Kukhar, Valery P.; Guillemin, Jean-Claude

    2013-04-01

    Deracemization of a 50/50 mixture of enantiomers of aliphatic amino acids (Ala, Leu, Pro, Val) can be achieved by a simple sublimation of a pre-solubilized solid mixture of the racemates with a huge amount of a less-volatile optically active amino acid (Asn, Asp, Glu, Ser, Thr). The choice of chirality correlates with the handedness of the enantiopure amino acids—Asn, Asp, Glu, Ser, and Thr. The deracemization, enantioenrichment and enantiodepletion observed in these experiments clearly demonstrate the preferential homochiral interactions and a tendency of natural amino acids to homochiral self-organization. These data may contribute toward an ultimate understanding of the pathways by which prebiological homochirality might have emerged.

  5. Homo-epitaxial growth of CdTe by sublimation under low pressure

    NASA Astrophysics Data System (ADS)

    Yoshioka, Yasushi; Yoda, Hiroki; Kasuga, Masanobu

    1991-12-01

    A new method to obtain a twin-free single crystal of CdTe on a CdTe substrate by sublimation is described. When CdTe(111)A substrates were employed for the homo-epitaxial growth of CdTe, twin crystals were frequently obtained. The substrate of CdTe(211)A and (211)B, however, gave no twins resulting in single crystals of high quality. The difference may come from the existence of many steps, sufficient to suppress two-dimensional nucleation and to promote step flow mechanism. To obtain twin-free films, therefore, a fairly large tilt angle of the substrate from a singular plane and a fairly low supersaturation are essential.

  6. The source of sublimates on the Apollo 15 green and Apollo 17 orange glass samples

    NASA Technical Reports Server (NTRS)

    Meyer, C., Jr.; Mckay, D. S.; Anderson, D. H.; Butler, P., Jr.

    1975-01-01

    Elemental analyses of the thin film of micromounds which coat the surfaces of Apollo 15 green glass and Apollo 17 orange glass are reported. It is thought that Zn, Ga, Pb, Cu, Tl, S, F, and Cl condensed as a sublimate on the outside surface of these glass particles in lava fountains about 3.4 and 3.6 b.y. ago (Apollos 15 and 17, respectively). The heavy metals enriched in these samples may have been mobilized in a halide- and sulfide-rich vapor, while the source of these elements and of the glass may be a sulfide- and halide-rich pyroxenite inside the moon. The isotopic composition of lead on the surface of individual particles was determined, and the composition is considered with respect to the evolution of the source region. The lead on the surfaces is similar to lead that has been mixed into other soils and breccias at nearby sites.

  7. Growth of CdTe thin films on graphene by close-spaced sublimation method

    SciTech Connect

    Jung, Younghun; Yang, Gwangseok; Kim, Jihyun; Chun, Seungju; Kim, Donghwan

    2013-12-02

    CdTe thin films grown on bi-layer graphene were demonstrated by using the close-spaced sublimation method, where CdTe was selectively grown on the graphene. The density of the CdTe domains was increased with increasing the number of the defective sites in the graphene, which was controlled by the duration of UV exposure. The CdTe growth rate on the bi-layer graphene electrodes was 400 nm/min with a bandgap energy of 1.45–1.49 eV. Scanning electron microscopy, micro-Raman spectroscopy, micro-photoluminescence, and X-ray diffraction technique were used to confirm the high quality of the CdTe thin films grown on the graphene electrodes.

  8. Induced recrystallization of CdTe thin films deposited by close-spaced sublimation

    SciTech Connect

    Moutinho, H.R.; Dhere, R.G.; Al-Jassim, M.M.; Levi, D.H.; Kazmerski, L.L.; Mayo, B.

    1999-03-01

    We have deposited CdTe thin films by close-spaced sublimation at two different temperature ranges. The films deposited at the lower temperature partially recrystallized after CdCl{sub 2} treatment at 350&hthinsp;{degree}C and completely recrystallized after the same treatment at 400&hthinsp;{degree}C. The films deposited at higher temperature did not recrystallize at these two temperatures. These results confirmed that the mechanisms responsible for changes in physical properties of CdTe films treated with CdCl{sub 2} are recrystallization and grain growth, and provided an alternative method to deposit CSS films using lower temperatures. {copyright} {ital 1999 American Institute of Physics.}

  9. Growth of SiC single crystals on patterned seeds by a sublimation method

    NASA Astrophysics Data System (ADS)

    Yang, Xianglong; Chen, Xiufang; Peng, Yan; Xu, Xiangang; Hu, Xiaobo

    2016-04-01

    Growth of 6H-SiC on patterned seeds with the vertical sidewalls composed of {11-20} and {1-100} faces by a sublimation method at 1700-2000 °C was studied. Anisotropy in lateral growth rates was observed, i.e the growth rate towards <11-20> was faster than that along <1-100>. It was found that free lateral growth on mesas was accompanied by a sharp decrease in the density of threading dislocation. The dependence of lateral growth rate on growth conditions such as reactor pressure and growth temperature was investigated. The factors governing the process of lateral growth of 6H-SiC on patterned seeds were discussed.

  10. Near-equilibrium growth of thick, high quality beta-SiC by sublimation

    NASA Technical Reports Server (NTRS)

    Shields, Virgil B.; Fekade, Konjit; Spencer, Michael G.

    1993-01-01

    A close spaced near-equilibrium growth technique was used to produce thick, high quality epitaxial layers of beta-silicon carbide. The process utilized a sublimation method to grow morphologically smooth layers. The beta silicon carbide growth layers varied from about 200 to 750 microns in thickness. Chemical vapor deposition grown, 2-10 microns, beta silicon carbide films were used as seeds at 1860 and 1910 C growth temperatures. The respective average growth rates were 20 and 30 microns per hour. The layers are p-type with a 3.1 x 10 exp 17/cu cm carrier concentration. Electrical measurements indicate considerable improvement in the breakdown voltage of Schottky barriers on growth samples. Breakdown values ranged from 25 to 60 V. These measurements represent the highest values reported for 3C-SiC.

  11. HiRISE Images of the Sublimation of the Southern Seasonal Polar Cap of Mars

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; McEwen, A. S.; Okubo, C.; Byrne, S.; Becker, T.; Kieffer, H.; Mellon, M.; HiRISE Team

    2007-12-01

    The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) has returned images with unprecedented resolution of Mars southern seasonal CO2 polar cap. Several high latitude sites were selected for systematic monitoring throughout the spring as the seasonal cap sublimed away. The capability of MRO to turn off-nadir enabled acquisition of stereo pairs to study the topography. HiRISE color capability distinguishes processes involving dust and frost. Color images show evidence of localized migration of frost as dark spots sublimate. Unique landforms are found in the cryptic terrain[1] region of Mars polar cap. These unusual landforms have narrow channels emanating radially, dubbed spiders[2]. Fans of dust blown by the prevailing wind are hypothesized to come from gas jets of CO2 subliming beneath translucent seasonal ice [3]. HiRISE images show a wide variety of morphologies of narrow channels. In some regions deep narrow channels converge radially, while in others the high channel density is more akin to lace. A smooth evolution of one form to another has been observed. Channels converge dendritically, often uphill, consistent with formation by flowing gas, not liquid. More dust fans are observed in regions of spiders than in lace, suggesting that the sublimating gas under the seasonal ice builds up more pressure and can entrain more dust in spidery areas. These differing terrain types are found within a single 6 x 10 km image, which has presumably homogeneous weather, thus a uniform layer of ice and exposure to atmospheric dust. HiRiSE images show that the dust fans tend to emerge from low spots, where the subsurface is accessed, then are blown up and out onto the surface of the seasonal ice. The fans evolve from a thin diffuse covering to thick blankets filling in the narrow channels. We hypothesize that dust collects in the channels, and that these relatively more permeable dust-filled channels form pathways for the next seasons

  12. Switchover software reliability estimate for Paducah Freezer/Sublimer computer systems

    SciTech Connect

    Flanagan, D.M.; Davis, J.N.

    1993-04-01

    K-25 Engineering Division purchased a series of redundant computer systems and developed software for the purpose of providing continuous process monitoring and control for the Freezer/Sublimer equipment in the gaseous diffusion process at the Paducah Gaseous Diffusion Plant. The application software is loaded on two central processing units (CPU) so that in the event of a failure of the primary unit, the processing can switch to the backup unit and continue processing without error. It is the purpose of this document to demonstrate the reliability of this system with respect to its ability to switch properly between redundant CPU. The total reliability estimation problem -- which considers the computer hardware, the operating system software, and the application software -- has been reduced to one that considers only the application software directly involved in the switchover process. Estimates are provided for software reliability and the testing coverage. Software and hardware reliability models and reliability growth models are considered in addition to Bayesian approaches.

  13. Formation of the molecular crystal structure during the vacuum sublimation of paracetamol

    NASA Astrophysics Data System (ADS)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.

    2015-04-01

    The results from structural and thermal studies on the formation of molecular crystals during the vacuum sublimation of paracetamol from its vapor phase are given. It is established that the vapor-crystal phase transition proceeds in a complicated way as the superposition of two phase transitions: a first-order phase transition with a change in density, and a second-order phase transition with a change in ordering. It is shown that the latter is a smeared phase transition that proceeds with the formation of a pretransitional phase that is irreversibly dissipated during phase transformation, leading to the formation of crystals of the rhombic syngony. Data from differential scanning calorimetry and X-ray diffraction analysis are presented along with microphotographs.

  14. Main-belt comets: sublimation-driven activity in the asteroid belt

    NASA Astrophysics Data System (ADS)

    Hsieh, Henry H.

    2016-01-01

    Our knowledge of main-belt comets (MBCs), which exhibit comet-like activity likely due to the sublimation of volatile ices, yet orbit in the main asteroid belt, has increased greatly since the discovery of the first known MBC, 133P/Elst-Pizarro, in 1996, and their recognition as a new class of solar system objects after the discovery of two more MBCs in 2005. I review work that has been done over the last 10 years to improve our understanding of these enigmatic objects, including the development of systematic discovery methods and diagnostics for distinguishing MBCs from disrupted asteroids (which exhibit comet-like activity due to physical disruptions such as impacts or rotational destabilization). I also discuss efforts to understand the dynamical and thermal properties of these objects.

  15. Formulation Design and Optimization of Fast Dissolving Clonazepam Tablets by Sublimation Method

    PubMed Central

    Shirsand, S. B.; Suresh, Sarasija; Kusumdevi, V.; Swamy, P. V.

    2011-01-01

    Fast dissolving tablets of clonazepam were prepared by sublimation method with a view to enhance patient compliance. A 32 full factorial design was applied to investigate the combined effect of two formulation variables: amount of croscarmellose sodium and camphor. Croscarmellose sodium (2-8% w/w) was used as superdisintegrant and camphor (20-40% w/w) was used as subliming agent, to increase the porosity of the tablets, since it helps water to penetrate into the tablets, along with directly compressible mannitol to enhance mouth feel. The tablets were evaluated for hardness, friability, thickness, drug content uniformity, in vitro dispersion time, wetting time and water absorption ratio. Based on in vitro dispersion time (approximately 11 s); the formulation containing 5% w/w croscarmellose sodium and 40% w/w camphor was found to be promising and tested for in vitro drug release pattern (in pH 6.8 phosphate buffer). Short-term stability (at 40°/75% relative humidity for 3 mo) and drug-excipient interaction. Surface response plots are presented to graphically represent the effect of independent variables on the in vitro dispersion time. The validity of the generated mathematical model was tested by preparing two extra-design checkpoints. The optimized tablet formulation was compared with conventional commercial tablet formulation for drug release profiles. This formulation showed nearly nine-fold faster drug release (t50% 1.8 min) compared to the conventional commercial tablet formulation (t50% 16.4 min). Short-term stability studies on the formulation indicated that there are no significant changes in drug content and in vitro dispersion time (P<0.05). PMID:22923860

  16. Formulation design and optimization of fast dissolving clonazepam tablets by sublimation method.

    PubMed

    Shirsand, S B; Suresh, Sarasija; Kusumdevi, V; Swamy, P V

    2011-09-01

    Fast dissolving tablets of clonazepam were prepared by sublimation method with a view to enhance patient compliance. A 3(2) full factorial design was applied to investigate the combined effect of two formulation variables: amount of croscarmellose sodium and camphor. Croscarmellose sodium (2-8% w/w) was used as superdisintegrant and camphor (20-40% w/w) was used as subliming agent, to increase the porosity of the tablets, since it helps water to penetrate into the tablets, along with directly compressible mannitol to enhance mouth feel. The tablets were evaluated for hardness, friability, thickness, drug content uniformity, in vitro dispersion time, wetting time and water absorption ratio. Based on in vitro dispersion time (approximately 11 s); the formulation containing 5% w/w croscarmellose sodium and 40% w/w camphor was found to be promising and tested for in vitro drug release pattern (in pH 6.8 phosphate buffer). Short-term stability (at 40°/75% relative humidity for 3 mo) and drug-excipient interaction. Surface response plots are presented to graphically represent the effect of independent variables on the in vitro dispersion time. The validity of the generated mathematical model was tested by preparing two extra-design checkpoints. The optimized tablet formulation was compared with conventional commercial tablet formulation for drug release profiles. This formulation showed nearly nine-fold faster drug release (t(50%) 1.8 min) compared to the conventional commercial tablet formulation (t(50%) 16.4 min). Short-term stability studies on the formulation indicated that there are no significant changes in drug content and in vitro dispersion time (P<0.05). PMID:22923860

  17. Fe embedded in ice: The impacts of sublimation and energetic particle bombardment

    NASA Astrophysics Data System (ADS)

    Frankland, Victoria L.; Plane, John M. C.

    2015-05-01

    Icy particles containing a variety of Fe compounds are present in the upper atmospheres of planets such as the Earth and Saturn. In order to explore the role of ice sublimation and energetic ion bombardment in releasing Fe species into the gas phase, Fe-dosed ice films were prepared under UHV conditions in the laboratory. Temperature-programmed desorption studies of Fe/H2O films revealed that no Fe atoms or Fe-containing species co-desorbed along with the H2O molecules. This implies that when noctilucent ice cloud particles sublimate in the terrestrial mesosphere, the metallic species embedded in them will coalesce to form residual particles. Sputtering of the Fe-ice films by energetic Ar+ ions was shown to be an efficient mechanism for releasing Fe into the gas phase, with a yield of 0.08 (Ar+ energy=600 eV). Extrapolating with a semi-empirical sputtering model to the conditions of a proton aurora indicates that sputtering by energetic protons (>100 keV) should also be efficient. However, the proton flux in even an intense aurora will be too low for the resulting injection of Fe species into the gas phase to compete with that from meteoric ablation. In contrast, sputtering of the icy particles in the main rings of Saturn by energetic O+ ions may be the source of recently observed Fe+ in the Saturnian magnetosphere. Electron sputtering (9.5 keV) produced no detectable Fe atoms or Fe-containing species. Finally, it was observed that Fe(OH)2 was produced when Fe was dosed onto an ice film at 140 K (but not at 95 K). Electronic structure theory shows that the reaction which forms this hydroxide from adsorbed Fe has a large barrier of about 0.7 eV, from which we conclude that the reaction requires both translationally hot Fe atoms and mobile H2O molecules on the ice surface.

  18. Estimating snow sublimation using natural chemical and isotopic tracers across a gradient of solar radiation

    NASA Astrophysics Data System (ADS)

    Gustafson, Joseph R.; Brooks, P. D.; Molotch, N. P.; Veatch, W. C.

    2010-12-01

    Changes in both climate and vegetation may dramatically impact the amount of water stored in seasonal snow cover and the timing of spring snowmelt. This study quantifies how spatial variability in solar radiation affects the spatial and temporal patterns in snow water equivalent (SWE), snow chemistry, and snow water isotopes in the Jemez Mountains, New Mexico. Depth, density, stratigraphy, temperature, and snow samples were collected approximately monthly from five locations between January and April 2007 to quantify the effects of solar forcing on snowpack water and chemical balance. Locations varied in solar forcing due to topography and vegetation, while minimizing variability in precipitation, elevation, aspect, interception, and wind redistribution. Snowfall (340 ± 5 mm) was similar across all sites, but peak SWE at maximum accumulation ranged from 187 to 340 mm. Solute concentrations were highest directly under canopies, intermediate in nonshaded forest openings, and lowest in shaded forest openings. Conservative solute concentrations (SO42-, R2 = 0.80), Cl- (R2 = 0.60), and isotope values (δ18O R2 = 0.96) were inversely related to SWE at maximum accumulation. Mass balance estimates of snowpack water balance using solute concentrations and isotopes indicated that sublimation ranged from <2% to ˜20% of winter precipitation, consistent with previous studies at the site. The strong relationships between solar forcing, SWE, and chemistry suggest that snow chemistry at maximum accumulation can be used to estimate overwinter sublimation. Furthermore, variability in solar forcing also can be used to refine spatial estimates of catchment solute and isotope input at melt.

  19. CURVED WALLS: GRAIN GROWTH, SETTLING, AND COMPOSITION PATTERNS IN T TAURI DISK DUST SUBLIMATION FRONTS

    SciTech Connect

    McClure, M. K.; Calvet, N.; Hartmann, L.; Ingleby, L.; D'Alessio, P.; Espaillat, C.; Sargent, B.; Watson, D. M.; Hernández, J. E-mail: ncalvet@umich.edu E-mail: lingleby@umich.edu E-mail: cespaillat@cfa.harvard.edu E-mail: dmw@pas.rochester.edu

    2013-10-01

    The dust sublimation walls of disks around T Tauri stars represent a directly observable cross-section through the disk atmosphere and midplane. Their emission properties can probe the grain size distribution and composition of the innermost regions of the disk, where terrestrial planets form. Here we calculate the inner dust sublimation wall properties for four classical T Tauri stars with a narrow range of spectral types and inclination angles and a wide range of mass accretion rates to determine the extent to which the walls are radially curved. Best fits to the near- and mid-IR excesses are found for curved, two-layer walls in which the lower layer contains larger, hotter, amorphous pyroxene grains with Mg/(Mg+Fe) = 0.6 and the upper layer contains submicron, cooler, mixed amorphous olivine and forsterite grains. As the mass accretion rates decrease from 10{sup –8} to 10{sup –10} M{sub ☉} yr{sup –1}, the maximum grain size in the lower layer decreases from ∼3 to 0.5 μm. We attribute this to a decrease in fragmentation and turbulent support for micron-sized grains with decreasing viscous heating. The atmosphere of these disks is depleted of dust with dust-gas mass ratios 1 × 10{sup –4} of the interstellar medium (ISM) value, while the midplane is enhanced to eight times the ISM value. For all accretion rates, the wall contributes at least half of the flux in the optically thin 10 μm silicate feature. Finally, we find evidence for an iron gradient in the disk, suggestive of that found in our solar system.

  20. The Sublime Corpse in Gertrudis Gomez de Avellaneda's Women's Journal "Album Cubano de lo Bueno y lo Bello" (1860)

    ERIC Educational Resources Information Center

    LaGreca, Nancy

    2009-01-01

    This article examines Gertrudis Gomez de Avellaneda's choice to include articles depicting the advanced decay of cadavers, which are simultaneously horrible and awesome, in her women's periodical "Album Cubano de lo Bueno y lo Bello". Background on Avellaneda's biography, women's print culture, and theories of the sublime provide a frame for the…

  1. Sublimation on the glaciers of the upper Huasco valley, Chile, using eddy covariance data and energy balance modelling

    NASA Astrophysics Data System (ADS)

    MacDonell, Shelley; Cullen, Nicolas; Nicholson, Lindsey; Mölg, Thomas; Kinnard, Christophe

    2010-05-01

    On the cold, arid glaciers of the Norte Chico region, Chile, sublimation plays an important role in mass loss from the glacier surface. The ratio of sublimation : melt on these glaciers dictates not only the amount of meltwater delivered to the watershed, but it also drives the development of morphological features on the glacier surface, such as penitentes. As the rate of sublimation is driven by the latent heat flux, understanding the behaviour of the turbulent heat flux across the glacier surface is key to quantifying the spatial and temporal patterns of ablation. We measured the turbulent heat fluxes at a point on the surface of the Guanaco Glacier during 23-31 January, 2008 using an open-path eddy covariance system. The eddy covariance system was installed adjacent to an existing automatic weather station operating at 5325 m on the glacier surface, in a region devoid of penitents and other surface deformities. The results from the eddy covariance measurements were subsequently used to assess the sublimation results calculated using a point energy balance model. Results showed that 0.5-3 mm w.e. of sublimation occurred per day during the study period, which corresponded well with the energy balance results. However to assess the total sublimation rate on this glacier, sublimation rates from penitentes, ablation cusps and debris-covered regions must also be calculated. Thus this paper will also take a first look at another set of eddy covariance measurements made in a penitente field on the Toro 1 Glacier between December 2009-January 2010 to quantify the importance of penitentes for producing ablation on these glaciers as well. The eddy covariance system was installed adjacent to an existing automatic weather station operating at 5200 m on the glacier surface, in a location with a 100 m fetch of penitentes. From these measurements we are able to ascertain the role that penitentes play in modifying turbulent heat fluxes in the main part of the ablation season

  2. Sublimation of Ices Containing Organics and/or Minerals and Implications for Icy Bodies Surface Structure and Spectral Properties

    NASA Astrophysics Data System (ADS)

    Poch, O.; Pommerol, A.; Jost, B.; Yoldi, Z.; Carrasco, N.; Szopa, C.; Thomas, N.

    2015-12-01

    The surfaces of many objects in the Solar System comprise substantial quantities of water ice either in pure form or mixed with minerals and/or organic molecules. Sublimation is a process responsible for shaping and changing the reflectance properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surfaces made of mixtures of water ice and non-volatile components (complex organic matter and silicates), as they undergo sublimation of the water ice under low temperature and pressure conditions (Poch et al., under review). We prepared icy surfaces which are potential analogues of ices found on comets, icy satellites or trans-neptunian objects (TNOs). The experiments were carried out in the SCITEAS simulation setup recently built as part of the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern (Pommerol et al., 2015a). As the water ice sublimated, we observed in situ the formation of a sublimation lag deposit, or sublimation mantle, made of the non-volatiles at the top of the samples. The texture (porosity, internal cohesiveness etc.), the activity (outbursts and ejection of mantle fragments) and the spectro-photometric properties of this mantle are found to differ strongly depending on the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the volatile component and the dust/ice mass ratio. The results also indicate how the band depths of the sub-surface water ice evolve during the build-up of the sublimation mantle. These data provide useful references for interpreting remote-sensing observations of Rosetta (see Pommerol et al., 2015b), and also New Horizons. Poch, O., et al., under review in IcarusPommerol, A., et al., 2015a, Planet. Space Sci. 109-110, 106-122. http://dx.doi.org/10.1016/j.pss.2015.02.004Pommerol, A., et al., 2015b, Astronomy and Astrophysics, in press. http://dx.doi.org/10.1051/0004-6361/201525977

  3. Origin of Sublimation Polygons in the Antarctic Western Dry Valleys: Implications for Patterned Ground Development on Mars

    NASA Astrophysics Data System (ADS)

    Marchant, D. R.; Head, J. W.

    2003-12-01

    Two hypotheses have been developed in order to address the age, origin, and evolution of surface polygons in the western Dry Valleys region of southern Victoria Land. Resolution of this debate has direct relevance and implications for patterned ground in ice-rich terrain on Mars. One hypothesis, the dynamic hypothesis, states that growth of sand-wedges pervasively deforms sediment across polygonal terrain, recycling sediment from troughs to polygon centers and back again over time scales of thousands of years. A second hypothesis, the stability hypothesis, states that deformation associated with sand-wedge polygons, particularly those that form over buried ice, is restricted to polygon troughs; the implication is that polygon centers may contain undisturbed soils >1 million years old. Evidence comes from field data that show that the age, origin, and morphology of polygons that form over buried ice in the western Dry Valleys region is tied collectively to the location and rate of sublimation of underlying ice. In Beacon Valley, sublimation of debris-rich ice produces a dry surface lag that insulates and slows loss of remaining ice. Sub-zero temperature cycling of near-surface ice and soil creates tensile stresses that result in a network of hexagonal cracks, extending upward from buried ice toward the ground surface. Where fines sift downward into open thermal-contraction cracks, a coarse-grained lag deposit forms on top of the ice. Owing to spatial variations in till texture, rates of sublimation vary across the ice surface. High rates occur below coarse-grained lags that cap contraction cracks; low rates are found at polygon centers beneath fine-grained low porosity/permeability debris. Measured concentrations of in-situ produced cosmogenic 3He in two depth profiles through sublimation till show a steady decrease with depth, indicating negligible recycling of surface materials on million-year time scales. These data suggest that once polygon troughs deepen

  4. Thermal alteration in carbonaceous chondrites and implications for sublimation in rock comets

    NASA Astrophysics Data System (ADS)

    Springmann, Alessondra; Lauretta, Dante S.; Steckloff, Jordan K.

    2015-11-01

    Rock comets are small solar system bodies in Sun-skirting orbits (perihelion q < ~0.15 AU) that form comae rich in mineral sublimation products, but lack typical cometary ice sublimation products (H2O, CO2, etc.). B-class asteroid (3200) Phaethon, considered to be the parent body of the Geminid meteor shower, is the only rock comet currently known to periodically eject dust and form a coma. Thermal fracturing or thermal decomposition of surface materials may be driving Phaethon’s cometary activity (Li & Jewitt, 2013). Phaethon-like asteroids have dynamically unstable orbits, and their perihelia can change rapidly over their ~10 Myr lifetimes (de León et al., 2010), raising the possibility that other asteroids may have been rock comets in the past. Here, we propose using spectroscopic observations of mercury (Hg) as a tracer of an asteroid’s thermal metamorphic history, and therefore as a constraint on its minimum achieved perihelion distance.B-class asteroids such as Phaethon have an initial composition similar to aqueously altered primitive meteorites such as CI- or CM-type meteorites (Clark et al., 2010). Laboratory heating experiments of ~mm sized samples of carbonaceous chondrite meteorites from 300K to 1200K at a rate of 15K/minute show mobilization and volatilization of various labile elements at temperatures that could be reached by Mercury-crossing asteroids. Samples became rapidly depleted in labile elements and, in particular, lost ~75% of their Hg content when heated from ~500-700 K, which corresponds to heliocentric distances of ~0.15-0.3 au, consistent with our thermal models. Mercury has strong emission lines in the UV (~ 185 nm) and thus its presence (or absence) relative to carbonaceous chondrite abundances would indicate if these bodies had perihelia in their dynamical histories inside of 0.15 AU, and therefore may have previously been Phaethon-like rock comets. Future space telescopes or balloon-borne observing platforms equipped with a UV

  5. The growth of sublimation crystals and surface hoar on the Antarctic plateau

    NASA Astrophysics Data System (ADS)

    Gallet, J.-C.; Domine, F.; Savarino, J.; Dumont, M.; Brun, E.

    2014-07-01

    On the Antarctic plateau, precipitation quantities are so low that the surface mass budget is for an important part determined by exchanges of water vapor between the snow surface and the atmosphere surface. At Dome C (75° S, 123° E), we have frequently observed the growth of crystals on the snow surface under calm sunny weather. Here we present the time variations of specific surface area (SSA) and density of these crystals. Using the detailed snow model Crocus, we conclude that the formation of these crystals was very likely due to the nighttime formation of surface hoar crystals and to the daytime formation of sublimation crystals. These latter crystals form by processes similar to those involved in the formation of frost flowers on young sea ice. The formation of these crystals impacts the albedo, mass and energy budget of the Antarctic plateau. In particular, the SSA variations of the surface layer can induce an instantaneous forcing at the snow surface up to -10 W m-2 at noon, resulting in a surface temperature drop of 0.45 K. This result confirms that snow SSA is a crucial variable to consider in the energy budget and climate of snow-covered surfaces.

  6. The impacts of moisture transport on drifting snow sublimation in the saltation layer

    NASA Astrophysics Data System (ADS)

    Huang, Ning; Dai, Xiaoqing; Zhang, Jie

    2016-06-01

    Drifting snow sublimation (DSS) is an important physical process related to moisture and heat transfer that happens in the atmospheric boundary layer, which is of glaciological and hydrological importance. It is also essential in order to understand the mass balance of the Antarctic ice sheets and the global climate system. Previous studies mainly focused on the DSS of suspended snow and ignored that in the saltation layer. Here, a drifting snow model combined with balance equations for heat and moisture is established to simulate the physical DSS process in the saltation layer. The simulated results show that DSS can strongly increase humidity and cooling effects, which in turn can significantly reduce DSS in the saltation layer. However, effective moisture transport can dramatically weaken the feedback effects. Due to moisture advection, DSS rate in the saltation layer can be several orders of magnitude greater than that of the suspended particles. Thus, DSS in the saltation layer has an important influence on the distribution and mass-energy balance of snow cover.

  7. [Purification of PTCDA by Vacuum Sublimation and Spectral Test and Analysis].

    PubMed

    Zhang, Xu; Zhang, Jie; Yan, Zhao-wen; Zhou, Xing-yu; Zhang, Fu-jia

    2015-04-01

    The organic semiconductor 3, 4, 9, 10 perylenetetracarboxylic dianhydride (PTCDA) with the purity of 97.5% was purified by sublimation to 99.9%. The high-purity PTCDA material was measured by mass spectra, infrared spectrum and X-ray photoelectron spectroscopy (XPS). Detailed analysis revealed its molecular structure, the forming of chemical bond, the vibration modes of atoms in equilibrium lattice position, electronic configuration and the shift of binding energy of atoms. Based on the infrared spectrum analysis, the molecular structure of PTCDA is consisting of perylene core group with five C rings and two anhydrides located at both ends of perylene core, which is mainly bonded with covalent bond. The stretching vibration of C atoms in the crystal lattice dominates in their equilibrium positions. The PTCDA molecules have a large number of π electrons which can move freely; the intermolecular delocalized π bond overlap determines the conductivity of PTCDA. Based on XPS analysis, it can be found that there exist two kinds of C atoms with different binding energy: 285.3 and 288.7 eV, respectively, corresponding to the C atoms in the perylene ring and anhydride. In addition, there are two kinds of O atoms, i. e. C==0 and C--O--C, whose bonding energy is 531.3 and 533.1 eV, respectively. PMID:26197568

  8. Sublimation and combustion of coal particles in the erosion laser torch

    SciTech Connect

    Bulat, A.; Shumrikov, V.; Osenny, V.

    2005-07-01

    Rate of coal particles' combustion in low-temperature plasma is of interest both from application and scientific points of view. Necessity of knowing parameters of the process of coal particles' combustion in plasma torch with the temperature of 2500-3000 K is governed by arising a number of state-of-the-art technological tasks related to the problems of finding new methods of power production, generation of high-calorific synthetic gases and using carbon as a high temperature structural material in nuclear power engineering. The present work deals with a rate of combustion of the sorbed coal particles in the erosion laser torch formed by means of interaction of pulse laser radiation (wave length {lambda} = 1,06 {mu}m, power density j = 10{sup 5} - 10{sup 7} Wcm{sup 2} with coals of various grades (in the wide range of carbon concentrations (80-95 %)). Physical and mathematical modeling of the process of coal particles' sublimation and combustion in non-equilibrium plasma flows with weight-average temperature of 2500-3000 K showed a good convergence of results for the particles of 10-100 {mu}m diameter and satisfactory one for the particles of {gt} 250{mu}m diameter.

  9. Native Defect Control of CdTe Thin Film Solar Cells by Close-Spaced Sublimation

    NASA Astrophysics Data System (ADS)

    Okamoto, Tamotsu; Kitamoto, Shinji; Yamada, Akira; Konagai, Makoto

    2001-05-01

    The control of native defects in the CdTe thin film solar cells was investigated using a novel source for close-spaced sublimation (CSS) process which was prepared by vacuum evaporation with elemental Cd and Te (evaporated source). The evaporated sources were prepared on glass substrates at room temperature, and the Cd/Te ratio was controlled by varying the Cd and Te beam equivalent pressures. In the cells using the Te-rich source, the conversion efficiency was less than 0.2% because of the extremely low shunt resistance. On the other hand, a conversion efficiency above 15% was obtained by using the Cd-rich source. Capacitance-voltage (C-V) characteristics revealed that the acceptor concentration in the CdTe layer increased with increasing Cd/Te ratio of the evaporated source. Furthermore, photoluminescence spectra implied that the formation of the Cd vacancies in the CdTe layer was suppressed using the Cd-rich source.

  10. Modeling Io's Sublimation-Driven Atmosphere: Gas Dynamics and Radiation Emission

    SciTech Connect

    Walker, Andrew C.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.; Moore, Chris H.; Stewart, Benedicte; Gratiy, Sergey L.; Levin, Deborah A.

    2008-12-31

    Io's sublimation-driven atmosphere is modeled using the direct simulation Monte Carlo method. These rarefied gas dynamics simulations improve upon earlier models by using a three-dimensional domain encompassing the entire planet computed in parallel. The effects of plasma impact heating, planetary rotation, and inhomogeneous surface frost are investigated. Circumplanetary flow is predicted to develop from the warm subsolar region toward the colder night-side. The non-equilibrium thermal structure of the atmosphere, including vibrational and rotational temperatures, is also presented. Io's rotation leads to an asymmetric surface temperature distribution which is found to strengthen circumplanetary flow near the dusk terminator. Plasma heating is found to significantly inflate the atmosphere on both day- and night-sides. The plasma energy flux also causes high temperatures at high altitudes but permits relatively cooler temperatures at low altitudes near the dense subsolar point due to plasma energy depletion. To validate the atmospheric model, a radiative transfer model was developed utilizing the backward Monte Carlo method. The model allows the calculation of the atmospheric radiation from emitting/absorbing and scattering gas using an arbitrary scattering law and an arbitrary surface reflectivity. The model calculates the spectra in the {nu}{sub 2} vibrational band of SO{sub 2} which are then compared to the observational data.

  11. Laser Desorption Ionization Mass Spectrometry Imaging of Drosophila Brain Using Matrix Sublimation versus Modification with Nanoparticles.

    PubMed

    Phan, Nhu T N; Mohammadi, Amir Saeid; Dowlatshahi Pour, Masoumeh; Ewing, Andrew G

    2016-02-01

    Laser desorption ionization mass spectrometry (LDI-MS) is used to image brain lipids in the fruit fly, Drosophila, a common invertebrate model organism in biological and neurological studies. Three different sample preparation methods, including sublimation with two common organic matrixes for matrix-assisted laser desorption ionization (MALDI) and surface-assisted laser desorption ionization (SALDI) using gold nanoparticles, are examined for sample profiling and imaging the fly brain. Recrystallization with trifluoroacetic acid following matrix deposition in MALDI is shown to increase the incorporation of biomolecules with one matrix, resulting in more efficient ionization, but not for the other matrix. The key finding here is that the mass fragments observed for the fly brain slices with different surface modifications are significantly different. Thus, these approaches can be combined to provide complementary analysis of chemical composition, particularly for the small metabolites, diacylglycerides, phosphatidylcholines, and triacylglycerides, in the fly brain. Furthermore, imaging appears to be beneficial using modification with gold nanoparticles in place of matrix in this application showing its potential for cellular and subcellular imaging. The imaging protocol developed here with both MALDI and SALDI provides the best and most diverse lipid chemical images of the fly brain to date with LDI. PMID:26705612

  12. Isolation of Purines and Pyrimidines from the Murchison Meteorite Using Sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Bada, J. L.

    2004-01-01

    The origin of life on Earth, and possibly on other planets such as Mars, would have required the presence of liquid water and a continuous supply of prebiotic organic compounds. The exogenous delivery of organic matter by asteroids, comets, and carbonaceous meteorites could have contributed to the early Earth s prebiotic inventory by seeding the planet with biologically important organic compounds. A wide variety of prebiotic organic compounds have previously been detected in the Murchison CM type carbonaceous chondrite including amino acids, purines and pyrimidines. These compounds dominate terrestrial biochemistry and are integral components of proteins, DNA and RNA. Several purines including adenine, guanine, hypoxanthine, and xanthine, as well as the pyrimidine uracil, have previously been detected in water or formic acid extracts of Murchison using ion-exclusion chromatography and ultraviolet spectroscopy. However, even after purification of these extracts, the accurate identification and quantification of nucleobases is difficult due to interfering UV absorbing compounds. In order to reduce these effects, we have developed an extraction technique using sublimation to isolate purines and pyrimidines from other non-volatile organic compounds in Murchison acid extracts.

  13. Sublimation studies of NpO sub 2 F sub 2

    SciTech Connect

    Kleinschmidt, P.D. ); Lau, K.H.; Hildenbrand, D.L. )

    1992-08-15

    Using Knudsen effusion mass spectrometry, we have identified the following reaction as the sublimation decomposition mechanism of NpO{sub 2}F{sub 2}({ital s}): 2NpO{sub 2}F{sub 2}({ital s})=NpO{sub 2}({ital s})+O{sub 2}({ital g})+NpF{sub 4}({ital g}). From second-law analysis of the measured pressures of NpF{sub 4}({ital g}) over the temperature range 820--985 K the derived enthalpy change at 298 K is 556.8{plus minus}12.2 kJ/mol and the entropy change is 342.4 {plus minus}13.8 J/K mol. From these values and enthalpies of formation and entropies reported in the literature for the other species we calculate the enthalpy of formation of NpO{sub 2}F{sub 2}({ital s}) to be {minus}1608{plus minus}10 kJ/mol and the entropy to be 147{plus minus}9 J/K mol.

  14. Direct Observation of Sublimation Behaviors in One-Dimensional In2Se3/In2O3 Nanoheterostructures.

    PubMed

    Hsin, Cheng-Lun; Huang, Chun-Wei; Chen, Jui-Yuan; Liao, Kuo-Cheng; Liu, Po-Liang; Wu, Wen-Wei; Chen, Lih-Juann

    2015-06-01

    Recently, in situ transmission electron microscopy (TEM) has provided a route to analyze structural characterization and chemical evolution with its powerful and unique applications. In this paper, we disclose the detailed phenomenon of sublimation on the atomic scale. In2Se3/In2O3 nanowires were synthesized via the vapor-liquid-solid mechanism and studied in an ultra-high-vacuum (UHV) TEM at high temperature in real time. During in situ observation of the sublimation process of the nanowires, the evolution and reconstruction of the exposed In2Se3 surface progressed in different manners with time. The surface structure was decomposed by mass-desorption and stepwise-migration processes, which are also energetically favored processes in the ab initio calculation. This study developed a new concept and will be essential in the development of atomic kinetics. PMID:25942426

  15. Selective Growth of CdTe on Nano-patterned CdS via Close-Space Sublimation

    NASA Astrophysics Data System (ADS)

    Aguirre, Brandon A.; Zubia, David; Ordonez, Rafael; Anwar, Farhana; Prieto, Heber; Sanchez, Carlos A.; Salazar, Maria T.; Pimentel, Alejandro. A.; Michael, Joseph R.; Zhou, Xiaowang; Mcclure, John C.; Nielson, Gregory N.; Cruz-Campa, Jose L.

    2014-07-01

    Selective-area deposition of CdTe on CdS via close-space sublimation is used to study the effect of window size (2 μm and 300 nm) on grain growth. The basic fabrication procedures for each of the layers (CdS, SiO2, and CdTe) and for achieving selective-area growth are presented. Selective-area growth of both micro- and nano-scale CdTe islands on CdS substrates using close-spaced sublimation is demonstrated. Scanning electron microscopy and electron backscatter diffraction microstructure analysis show that the micro-scale CdTe islands remain polycrystalline. However, when the island size is reduced to 300 nm, single crystal CdTe can be achieved within the windows. The CdTe grains were most often in the (101) orientation for both the micro- and nano-sized CdTe islands.

  16. Sublimation rate of ice under simulated Mars conditions and the effect of layers of mock regolith JSC Mars-1

    NASA Astrophysics Data System (ADS)

    Chevrier, Vincent; Sears, Derek W. G.; Chittenden, Julie D.; Roe, Larry A.; Ulrich, Richard; Bryson, Kathryn; Billingsley, Lisa; Hanley, Jennifer

    2007-01-01

    We have studied the sublimation of ice buried beneath ≤200 mm of JSC Mars-1 model regolith under simulated Mars conditions. As expected, even thin layers of regolith cause large decreases in sublimation rate, up to one order of magnitude at 50 mm. When the depth of the regolith was 50 to 200 mm we detected water desorbing from the overlying layers for which we were able to determine a desorption coefficient of 1.45 ± 0.5 × 10-3 h-1. After allowing for the effect of desorption, we found that the diffusion coefficient for water vapor through our regolith is 1.74 ± 0.70 × 10-4 m2 s-1, in excellent agreement with theoretical values. We thus find that a 1-m thick layer of ice buried below a meter of regolith resembling JSC Mars-1 on Mars at 235 K would last ˜800 years.

  17. Modelling of the sublimation of icy grains in the coma of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Gicquel, A.; Vincent, J.-B.; Shi, X.; Sierks, H.; Rose, M.; Güttler, C.; Tubiana, C.

    2015-10-01

    The ESA (European Space Agency) Rosetta spacecraft was launched on 2 March 2004, to reach comet 67P/Churyumov-Gerasimenko in August 2014. Since March 2014, images of the nucleus and the coma (gas and dust) of the comet have been acquired by the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) camera system [1] using both, the wide angle camera (WAC) and the narrow angle camera (NAC). The orbiter will be maintained in the vicinity of the comet until perihelion (Rh=1.3 AU) or even until Rh=1.8 AU post-perihelion (December 2015). Nineteen months of uninterrupted, close-up observations of the gas and dust coma will be obtained and will help to characterize the evolution of comet gas and dust activity during its approach to the Sun. Indeed, for the first time, we will follow the development of a comet's coma from a close distance. Also the study of the dust-gas interaction in the coma will highlight the sublimation of icy grains. Even if the sublimation of icy grains is known, it is not yet integrated in a complete dust-gas model. We are using the Direct Simulation Monte Carlo (DSMC) method to study the gas flow close to the nucleus. The code called PI-DSMC (www.pidsmc. com) can simulate millions of molecules for multiple species.When the gas flow is simulated, we inject the dust particle with a zero velocity and we take into account the 3 forces acting on the grains in a cometary environment (drag force, gravity and radiative pressure). We used the DLL (Dynamic Link Library) model to integrate the sublimation of icy grains in the gas flowand allow studying the effect of the additional gas on the dust particle trajectories. For a quantitative analysis of the sublimation of icy, outflowing grains we will consider an ensemble of grains of various radii with different compositions [2] The evolution of the grains, once they are ejected into the coma, depends on their initial size, their composition and the heliocentric distance (because the temperature of

  18. Strong Near-Infrared Emission Interior to the Dust Sublimation Radius of Young Stellar Objects MWC 275 and AB Aurigae

    NASA Astrophysics Data System (ADS)

    Tannirkulam, A.; Monnier, J. D.; Millan-Gabet, R.; Harries, T. J.; Pedretti, E.; ten Brummelaar, T. A.; McAlister, H.; Turner, N.; Sturmann, J.; Sturmann, L.

    2008-04-01

    Using the longest optical-interferometeric baselines currently available, we have detected strong near-infrared (NIR) emission from inside the dust destruction radius of Herbig Ae stars MWC 275 and AB Aur. Our submilliarcsecond resolution observations unambiguously place the emission between the dust destruction radius and the magnetospheric corotation radius. We argue that this new component corresponds to hot gas inside the dust sublimation radius, confirming recent claims based on spectrally resolved interferometry and dust evaporation front modeling.

  19. Properties of filamentary sublimation residues from dispersions of clay in ice. [on Martian poles, comet nuclei, and icy satellites

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.; Parker, T. J.; Stephens, J. B.; Fanale, F. P.; Sutton, S.

    1986-01-01

    Results are reported from experimental studies of the formation of ice mixed with mineral particles in an effort to simulate similar processes on natural surfaces such as at the Martian poles, on comet nuclei and on icy satellites. The study consisted of low-pressure, low-temperature sublimations of water ice from dilutions of water-clay (montmorillonite and Cabosil) dispersions of various component ratios. Liquid dispersions were sprayed into liquid nitrogen to form droplets at about -50 C. Both clay-water dispersions left a filamentary residue on the bottom of the Dewar after the water ice had sublimated off. The residue was studied with optical and SEM microscopy, the latter method revealing a high electrical conductivity in the residue. The results suggest that the sublimation of the water ice can leave a surface crust, which may be analogous to processes at the Martian poles and on comet nuclei. The process could proceed by the attachment of water molecules to salt crystals during the hottest part of the Martian year. The residue remaining was found to remain stable up to 370 C, be porous, and remain resilient, which could allow it to insulate ice bodies such as comets in space.

  20. Measurement of vapor pressures and heats of sublimation of dicarboxylic acids using atmospheric solids analysis probe mass spectrometry.

    PubMed

    Bruns, Emily A; Greaves, John; Finlayson-Pitts, Barbara J

    2012-06-21

    Vapor pressures of low volatility compounds are important parameters in several atmospheric processes, including the formation of new particles and the partitioning of compounds between the gas phase and particles. Understanding these processes is critical for elucidating the impacts of aerosols on climate, visibility, and human health. Dicarboxylic acids are an important class of compounds in the atmosphere for which reported vapor pressures often vary by more than an order of magnitude. In this study, atmospheric solids analysis probe mass spectrometry (ASAP-MS), a relatively new atmospheric pressure ionization technique, is applied for the first time to the measurement of vapor pressures and heats of sublimation of a series of dicarboxylic acids. Pyrene was also studied because its vapor pressures and heat of sublimation are relatively well-known. The heats of sublimation measured using ASAP-MS were in good agreement with published values. The vapor pressures, assuming an evaporation coefficient of unity, were typically within a factor of ∼3 lower than published values made at similar temperatures for most of the acids. The underestimation may be due to diffusional constraints resulting from evaporation at atmospheric pressure. However, this study establishes that ASAP-MS is a promising new technique for such measurements. PMID:22432524

  1. Investigating the Persistence of a Snowpack Sublimation Stable Isotope Signal in Tree Xylem Water during the Growing Season

    NASA Astrophysics Data System (ADS)

    Schulze, E. S.; Bowling, D. R.

    2014-12-01

    Previous work identified a riparian meadow in the Rocky Mountains where streamside box elder (Acer negundo) trees did not use stream water, the most reliable and readily available source. A follow-up study showed that the water used by trees appears to be more evaporatively enriched than all available measured sources, including stream water, precipitation-derived soil water, and groundwater. While it is unlikely that there is a missing pool of water these trees are accessing, they may be tapping into a distinct subset of the bulk soil water available, possibly derived from much colder and older snowmelt. In this study, we investigated whether snowpack sublimation and subsequent melt water may impart an enriched isotopic signature that persists throughout the following growing season in less-mobile soil water pools. Profile samples of the snowpack, bulk melt water, and early season soil lysimeter water were collected throughout the winter and analyzed for hydrogen and oxygen stable isotopes. As snow began to melt in the spring, water samples for isotope analysis were taken from soil profiles, stream water, groundwater, and stems. Although sublimation likely occurred at the site, such processes did not impart an evaporative isotope enrichment on the snowpack throughout the season. Both snow pack and melt water remained closely tied to the local meteoric water line as they infiltrated soil. These findings suggest that snowpack sublimation processes preceding melt water infiltration are not the source of evaporative enrichment in tree water at our site.

  2. Effects of interfacial interaction potential on the sublimation rates of TNT films on a silica surface examined by QCM and AFM techniques

    NASA Astrophysics Data System (ADS)

    Mu, R.; Ueda, A.; Liu, Y. C.; Wu, M.; Henderson, D. O.; Lareau, R. T.; Chamberlain, R. T.

    2003-04-01

    The study of 2,4,6-trinitrotoluene (TNT) sublimation rates from the bulk surface and a substrate surface have been evaluated quantitatively with both atomic force microscopy and quartz crystal microbalance (QCM) techniques. A first principle theoretical model is proposed, which allows obtaining three critical parameters, bulk sublimation rate, surface interaction potential, and the effective decay length, with no arbitrary parameters. The bulk sublimation rate predicted by the model is quantitatively confirmed by QCM experiments. The isothermal measurements with QCM showed that the sublimation activation energy of bulk TNT is 131 kJ/mol. More importantly, all results were obtained at one atmosphere and near room temperature. Thus, it should have direct impacts on explosive trace detection device applications.

  3. In-Situ Growth of Yb2O3 Layer for Sublimation Suppression for Yb14MnSb11 Thermoelectric Material for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Opila, Elizabeth J.; Nathal, Michael V.

    2012-01-01

    The compound Yb14MnSb11 is a p-type thermoelectric material of interest to the National Aeronautics and Space Administration (NASA) as a candidate replacement for the state-of-the-art Si-Ge used in current radioisotope thermoelectric generators (RTGs). Ideally, the hot end of this leg would operate at 1000 C in the vacuum of space. Although Yb14MnSb11 shows the potential to double the value of the thermoelectric figure of merit (zT) over that of Si-Ge at 1000 C, it suffers from a high sublimation rate at elevated temperatures and would require a coating in order to survive the required RTG lifetime of 14 years. The purpose of the present work is to measure the sublimation rate of Yb14MnSb11 and to investigate sublimation suppression for this material. This paper reports on the sublimation rate of Yb14MnSb11 at 1000 C (approximately 3 x 10(exp -3) grams per square centimeter hour) and efforts to reduce the sublimation rate with an in situ grown Yb2O3 layer. Despite the success in forming thin, dense, continuous, and adherent oxide scales on Yb14MnSb11, the scales did not prove to be sublimation barriers.

  4. In Situ Growth of a Yb2O3 Layer for Sublimation Suppression for Yb14MnSb11 Thermoelectric Material for Space Power Applications

    NASA Astrophysics Data System (ADS)

    Nesbitt, James A.; Opila, Elizabeth J.; Nathal, Michael V.

    2012-06-01

    The compound Yb14MnSb11 is a p-type thermoelectric material of interest to the National Aeronautics and Space Administration (NASA) as a candidate replacement for the state-of-the-art Si-Ge used in current radioisotope thermoelectric generators (RTGs). Ideally, the hot end of this leg would operate at 1000°C in the vacuum of space. Although Yb14MnSb11 shows the potential to double the value of the thermoelectric figure of merit ( zT) over that of Si-Ge at 1000°C, it suffers from a high sublimation rate at elevated temperatures and would require a coating in order to survive the required RTG lifetime of 14 years. The purpose of the present work is to measure the sublimation rate of Yb14MnSb11 and to investigate sublimation suppression for this material. This paper reports on the sublimation rate of Yb14MnSb11 at 1000°C (˜3 × 10-3 g/cm2 h) and efforts to reduce the sublimation rate with an in situ grown Yb2O3 layer. Despite the success in forming thin, dense, continuous, and adherent oxide scales on Yb14MnSb11, the scales did not prove to be sublimation barriers.

  5. Sublimation extraction coupled with gas chromatography-mass spectrometry: A new technique for future in situ analyses of purines and pyrimidines on Mars

    NASA Astrophysics Data System (ADS)

    Glavin, D. P.; Cleaves, H. J.; Buch, A.; Schubert, M.; Aubrey, A.; Bada, J. L.; Mahaffy, P. R.

    2006-12-01

    We have developed a sublimation technique coupled with chemical derivatization and gas chromatography mass spectrometry (GC-MS) to detect nucleobases and other volatile organic compounds derived from bacteria in Mars analog materials. To demonstrate this technique, a sample of serpentine inoculated with Escherichia coli ( E. coli) cells was heated to 500 °C for several seconds under Martian ambient pressure. The sublimate was collected on a cold finger, then derivatized and analyzed by GC-MS. We found that adenine, cytosine, thymine and uracil were the most abundant molecules detected in the sublimed E. coli extract by GC-MS. In addition, nucleobases were also detected in sublimed extracts of a deep-sea sediment sample, seawater, and soil collected from the Atacama Desert in Chile after heating the samples under the same conditions. Our results indicate that nucleobases can be easily isolated directly from natural samples using sublimation and then detected by GC-MS after chemical derivatization. The sublimation-based extraction technique is one approach that should be considered for use by future in situ instruments designed to detect organic compounds relevant to life in the Martian regolith.

  6. Characterization of the Sublimation and Vapor Pressure of 2-(2-Nitrovinyl) Furan (G-0) Using Thermogravimetric Analysis: Effects of Complexation with Cyclodextrins.

    PubMed

    Ruz, Vivian; González, Mirtha Mayra; Winant, Danny; Rodríguez, Zenaida; Van den Mooter, Guy

    2015-01-01

    In the present work, the sublimation of crystalline solid 2-(2-nitrovinyl) furan (G-0) in the temperature range of 35 to 60 °C (below the melting point of the drug) was studied using thermogravimetric analysis (TGA). The sublimated product was characterized using Fourier-transformed-infrared spectroscopy (FT-IR) and thin layer chromatography (TLC). The sublimation rate at each temperature was obtained using the slope of the linear regression model and followed apparent zero-order kinetics. The sublimation enthalpy from 35 to 60 °C was obtained from the Eyring equation. The Gückel method was used to estimate the sublimation rate and vapor pressure at 25 °C. Physical mixtures, kneaded and freeze-dried complexes were prepared with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and sulfobutyl ether-β-cyclodextrin (SBE-β-CD) and analyzed using isothermal TGA at 50 °C. The complexation contributed to reducing the sublimation process. The best results were achieved using freeze-dried complexes with both cyclodextrins. PMID:26295385

  7. Sublimation-Driven Activity in Main-Belt Comet 313p/Gibbs

    NASA Astrophysics Data System (ADS)

    Hsieh, Henry H.; Hainaut, Olivier; Novaković, Bojan; Bolin, Bryce; Denneau, Larry; Fitzsimmons, Alan; Haghighipour, Nader; Kleyna, Jan; Kokotanekova, Rosita; Lacerda, Pedro; Meech, Karen J.; Micheli, Marco; Moskovitz, Nick; Schunova, Eva; Snodgrass, Colin; Wainscoat, Richard J.; Wasserman, Lawrence; Waszczak, Adam

    2015-02-01

    We present an observational and dynamical study of newly discovered main-belt comet 313P/Gibbs. We find that the object is clearly active both in observations obtained in 2014 and in precovery observations obtained in 2003 by the Sloan Digital Sky Survey, strongly suggesting that its activity is sublimation-driven. This conclusion is supported by a photometric analysis showing an increase in the total brightness of the comet over the 2014 observing period, and dust modeling results showing that the dust emission persists over at least three months during both active periods, where we find start dates for emission no later than 2003 July 24 ± 10 for the 2003 active period and 2014 July 28 ± 10 for the 2014 active period. From serendipitous observations by the Subaru Telescope in 2004 when the object was apparently inactive, we estimate that the nucleus has an absolute R-band magnitude of HR = 17.1 ± 0.3, corresponding to an effective nucleus radius of re ∼ 1.00 ± 0.15 km. The object’s faintness at that time means we cannot rule out the presence of activity, and so this computed radius should be considered an upper limit. We find that 313P’s orbit is intrinsically chaotic, having a Lyapunov time of Tl = 12,000 yr and being located near two three-body mean-motion resonances with Jupiter and Saturn, 11J-1S-5A and 10J+12S-7A, yet appears stable over >50 Myr in an apparent example of stable chaos. We furthermore find that 313P is the second main-belt comet, after P/2012 T1 (PANSTARRS), to belong to the ∼155 Myr old Lixiaohua asteroid family.

  8. Vacuum sublimed α ,ω-dihexylsexithiophene thin films: Correlating electronic structure and molecular orientation

    NASA Astrophysics Data System (ADS)

    Duhm, S.; Salzmann, I.; Koch, N.; Fukagawa, H.; Kataoka, T.; Hosoumi, S.; Nebashi, K.; Kera, S.; Ueno, N.

    2008-08-01

    In order to correlate the molecular orientation of organic thin films with charge injection barriers at organic/metal interfaces, the electronic structure and molecular orientation of vacuum sublimed thin films of α ,ω-dihexylsexithiophene (DH6T) on the substrates Ag(111), highly oriented pyrolytic graphite (HOPG), and tetratetracontane (TTC) precovered Ag(111) were investigated. Results from metastable atom electron spectroscopy, ultraviolet photoelectron spectroscopy, and x-ray diffraction were used to derive growth models (including molecular orientation and conformation) of DH6T on the different substrates. On Ag(111), DH6T exhibits a transition from lying molecules in the monolayer/bilayer range to almost standing upright molecules in multilayers. This is accompanied by a shift of the molecular energy levels to a lower binding energy by 0.65 eV with respect to the vacuum level. The unit cell of standing DH6T on lying DH6T on Ag(111) is estimated to be similar to the DH6T bulk phase. On HOPG, DH6T grows in the bulk phase with lying orientation, starting already from the monolayer coverage. DH6T on TTC precovered Ag(111) grows in an almost lying orientation and a conformation that allows a strong overlap of the hexyl chains of DH6T with the alkyl chains of TTC. In all cases, the electronic structure and, particulary, the ionization energy of DH6T is dependent on the orientation of DH6T, i.e., lying DH6T has higher ionization energy than standing DH6T.

  9. SUBLIMATION-DRIVEN ACTIVITY IN MAIN-BELT COMET 313P/GIBBS

    SciTech Connect

    Hsieh, Henry H.; Hainaut, Olivier; Novaković, Bojan; Bolin, Bryce; Denneau, Larry; Haghighipour, Nader; Kleyna, Jan; Meech, Karen J.; Schunova, Eva; Wainscoat, Richard J.; Fitzsimmons, Alan; Kokotanekova, Rosita; Snodgrass, Colin; Lacerda, Pedro; Micheli, Marco; Moskovitz, Nick; Wasserman, Lawrence; Waszczak, Adam

    2015-02-10

    We present an observational and dynamical study of newly discovered main-belt comet 313P/Gibbs. We find that the object is clearly active both in observations obtained in 2014 and in precovery observations obtained in 2003 by the Sloan Digital Sky Survey, strongly suggesting that its activity is sublimation-driven. This conclusion is supported by a photometric analysis showing an increase in the total brightness of the comet over the 2014 observing period, and dust modeling results showing that the dust emission persists over at least three months during both active periods, where we find start dates for emission no later than 2003 July 24 ± 10 for the 2003 active period and 2014 July 28 ± 10 for the 2014 active period. From serendipitous observations by the Subaru Telescope in 2004 when the object was apparently inactive, we estimate that the nucleus has an absolute R-band magnitude of H{sub R} = 17.1 ± 0.3, corresponding to an effective nucleus radius of r{sub e} ∼ 1.00 ± 0.15 km. The object’s faintness at that time means we cannot rule out the presence of activity, and so this computed radius should be considered an upper limit. We find that 313P’s orbit is intrinsically chaotic, having a Lyapunov time of T{sub l} = 12,000 yr and being located near two three-body mean-motion resonances with Jupiter and Saturn, 11J-1S-5A and 10J+12S-7A, yet appears stable over >50 Myr in an apparent example of stable chaos. We furthermore find that 313P is the second main-belt comet, after P/2012 T1 (PANSTARRS), to belong to the ∼155 Myr old Lixiaohua asteroid family.

  10. CdZnS thin films sublimated by closed space using mechanical mixing: A new approach

    NASA Astrophysics Data System (ADS)

    Mahmood, Waqar; Shah, Nazar Abbas

    2014-06-01

    Cadmium sulfide (CdS) is a prominent material for its tunable band gap used as a window layer in II-VI semiconductor solar cells. The light trapping capability of window layer is one of the powerful tools to enhance the efficiency of the cell. CdS and zinc (Zn) powders were mixed mechanically with different weight percents to make CdZnS (CZS) powder. CZS was deposited onto an ultrasonically cleaned glass substrate using close spaced sublimation (CSS) technique. CZS as-deposited thin films were characterized for structural, surface morphology with energy dispersive X-rays (EDX) and optical properties for the use of window layer in CdS/CdTe based solar cells. The different Zn concentrations in CZS played a vital role on crystallite size in structural analysis and optical properties e.g. transmission, absorption coefficient and energy band gap, etc. The crystallite size of as-deposited CZS thin films were increased as Zn concentration was increased up to certain value. The energy band gap varies from 2.42 eV to 2.57 eV for as-deposited CZS thin films with increasing Zn concentrations and surface morphology changes also. These changes were occurred due to zinc diffusion in CdS thin films. An angle resolved transmission data was taken to check the behavior of CdS and CZS thin film at different angles. A comparative study was carried out between CdS thin films and CZS thin films for the use of good window layer material.

  11. Aluminum Nitride-Silicon Carbide Alloy Crystals Grown on SiC Substrates by Sublimation

    SciTech Connect

    Gu, Z; Du, Li; Edgar, J H; Payzant, E Andrew; Walker, Larry R; Liu, R; Engelhard, M H

    2005-01-01

    AlN-SiC alloy crystals, with a thickness greater than 500μm, were grown on 4H- and 6H-SiC substrates from a mixture of AlN and SiC powders by the sublimation-recondensation method at 1860-1990 C. On-axis SiC substrates produced a rough surface covered with hexagonal grains, while 6H- and 4H- off-axis SiC substrates with different miscut angles (8 or 3.68 ) formed a relatively smooth surface with terraces and steps. The substrate misorientation ensured that the AlNSiC alloy crystals grew two dimensionally as identified by scanning electron microscopy (SEM). Xray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that the AlN-SiC alloys had the wurtzite structure. Electron probe microanalysis (EPMA) and x-ray photoelectron spectroscopy (XPS) demonstrated that the resultant alloy crystals had non-stoichiometric ratios of Al:N and Si:C and a uniform composition throughout the alloy crystal from the interface to the surface. The composition ratio of Al:Si of the alloy crystals changed with the growth temperature, and differed from the original source composition, which was consistent with the results predicted by thermodynamic calculation of the solid-vapor distribution of each element. XPS detected the bonding between Si-C, Si-N, Si-O for the Si 2p spectra. The dislocation density decreased with the growth, which was lower than 10^6cm-2 at the alloy surface, more than two orders of magnitude lower compared to regions close to the crystal/substrate interface, as determined by TEM.

  12. Aluminum Nitride-Silicon Carbide Alloy Crystals Grown on SiC Substrates by Sublimation

    SciTech Connect

    Gu, Zheng; Du, L; Edgar, James H.; Payzant, Edward A.; Walker, L. R.; Liu, R.; Engelhard, Mark H.

    2005-12-20

    AlN-SiC alloy crystals, with a thickness greater than 500 m, were grown on 4H- and 6H-SiC substrates from a mixture of AlN and SiC powders by the sublimation-recondensation method at 1860-1990 C. On-axis SiC substrates produced a rough surface covered with hexagonal grains, while 6H- and 4H- off-axis SiC substrates with different miscut angles (8? or 3.68?) formed a relatively smooth surface with terraces and steps. The substrate misorientation ensured that the AlN-SiC alloy crystals grew two dimensionally as identified by scanning electron microscopy (SEM). X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that the AlN-SiC alloys had the wurtzite structure. Electron probe microanalysis (EPMA) and x-ray photoelectron spectroscopy (XPS) demonstrated that the resultant alloy crystals had non-stoichiometric ratios of Al:N and Si:C and a uniform composition throughout the alloy crystal from the interface to the surface. The composition ratio of Al:Si of the alloy crystals changed with the growth temperature, and differed from the original source composition, which was consistent with the results predicted by thermodynamic calculation of the solid-vapor distribution of each element. XPS detected the bonding between Si-C, Si-N, Si-O for the Si 2p spectra. The dislocation density decreased with the growth, which was lower than 106 cm-2 at the alloy surface, more than two orders of magnitude lower compared to regions close to the crystal/substrate interface, as determined by TEM.

  13. AdS/QCD, Light-Front Holography, and Sublimated Gluons

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    The gauge/gravity duality leads to a simple analytical and phenomenologically compelling nonperturbative approximation to the full light-front QCD Hamiltonian - 'Light-Front Holography', which provides a Lorentz-invariant first-approximation to QCD, and successfully describes the spectroscopy of light-quark meson and baryons, their elastic and transition form factors, and other hadronic properties. The bound-state Schroedinger and Dirac equations of the soft-wall AdS/QCD model predict linear Regge trajectories which have the same slope in orbital angular momentum L and radial quantum number n for both mesons and baryons. Light-front holography connects the fifth-dimensional coordinate of AdS space z to an invariant impact separation variable {zeta} in 3+1 space at fixed light-front time. A key feature is the determination of the frame-independent light-front wavefunctions of hadrons - the relativistic analogs of the Schroedinger wavefunctions of atomic physics which allow one to compute form factors, transversity distributions, spin properties of the valence quarks, jet hadronization, and other hadronic observables. One thus obtains a one-parameter color-confining model for hadron physics at the amplitude level. AdS/QCD also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function with an infrared fixed point which agrees with the effective coupling a{sub g1} (Q{sup 2}) extracted from measurements of the Bjorken sum rule below Q{sup 2} < 1 GeV{sup 2}. This is consistent with a flux-tube interpretation of QCD where soft gluons with virtualities Q{sup 2} < 1 GeV{sup 2} are sublimated into a color-confining potential for quarks. We discuss a number of phenomenological hadronic properties which support this picture.

  14. Basal sublimation and venting of the north seasonal cap of Mars

    NASA Astrophysics Data System (ADS)

    Piqueux, S.; Christensen, P. R.

    2007-12-01

    Spots, fans and dark polygonal patterns form during the spring on the southern seasonal cap of Mars as a consequence of 1) the basal sublimation of the translucent and impermeable slab of carbon dioxide and 2) the venting of the CO2 gas loaded with dust and sand size material scoured from the surface of the polar layered deposits. The dark polygons on the cap have a similar formation process as the spots but the dust and sand erupt from elongated vents rather than point sources. In the summer, spiders and etched polygons remain on the southern polar layered deposits. The spiders are shaped by the scouring action of confined CO2 gas flowing between the cap and the basement and converging toward point sources, whereas the etched polygons result form the forced migration of the CO2 gas over longer distances. Comparable observations during the spring near the north pole on the seasonal cap indicate that similar processes occur in both polar regions and that the venting model developed for the south seasonal cap also operates near the north pole. However, spider and etched polygonal features are extremely uncommon on the north substrate, indicating that the conditions for their formation (e.g. mechanical strength of the slab and the substrate, transparency of the seasonal cap) are not met. The continual erosion and re-sedimentation occurring at the surface of the polar layered deposits by the seasonal degassing is a major geomorphological agent shaping the polar regions. The polar layered deposits have been proposed to contain the stratigraphic record of climatic changes and catastrophic events of very high interest for future missions. Our observations suggest that both polar regions deposits may have been locally disrupted by the seasonal sub-ice gas flow and that the stratigraphic record may have been partially lost. The Phoenix landing site might have been affected in the past and the stratigraphic information associated with the original deposition of the polar

  15. Effect of acoustic streaming on the mass transfer from a sublimating sphere

    NASA Astrophysics Data System (ADS)

    Kawahara, N.; Yarin, A. L.; Brenn, G.; Kastner, O.; Durst, F.

    2000-04-01

    particles much smaller than the sound wavelength. Good agreement between experiment and the theory of Yarin et al. is demonstrated. The time-averaged heat and mass transfer rates over a sphere surface are greatest at the sphere's equator and least at its poles in the experiment as predicted by the theory (the ultrasonic standing wave spans the vertical axis passing through the poles). The measured distribution of the mass transfer rate over the sphere surface also agrees with the theoretical predictions, which shows that in strong acoustic fields sublimation (or evaporation) results from the acoustic streaming.

  16. Physical chemistry of freeze-drying: measurement of sublimation rates for frozen aqueous solutions by a microbalance technique.

    PubMed

    Pikal, M J; Shah, S; Senior, D; Lang, J E

    1983-06-01

    The sublimation rate of frozen solutions was studied as a function of freezing rate, thickness of dried product (l), temperature, residual air pressure, and solute concentration. Data are presented for pure water, aqueous potassium chloride, aqueous povidone, and aqueous dobutamine hydrochloride-mannitol (System I). The resistance of the dried product to water vapor flow (Rp) was evaluated from the sublimation rate and the sample temperature. The primary experimental technique was based on freeze-drying a cylindrical microsample isothermally, with the sample suspended from one arm of a vacuum microbalance. Methodology to evaluate resistance data from vial freeze-drying experiments is also described. In separate experiments, samples in the form of a thin (15-microns) film were visually observed through a microscope during freeze-drying. Freeze-drying of most samples appeared to occur by water vapor escaping through open channels created by prior sublimation of ice. Contrary to the usual theoretical model, Rp is neither independent of temperature nor directly proportional to l. Rather, Rp decreases with increasing temperature and the l dependence is normally of the form Rp = (A0 + A1l)/(1 + A2l), where Ai (i = 0, 1, 2) are constants. In several cases, Rp is very large near l = 0, decreases sharply at l congruent to 0.1 cm, and obeys the above equation where l greater than 0.2 cm, a result suggesting an amorphous surface skin which cracks on desorption of water. The temperature dependence of Rp suggests that, as the sample temperature approaches the eutectic (or collapse) temperature, hydrodynamic surface flow of adsorbed water is an important flow mechanism. PMID:6875825

  17. Single Nanoparticle Mass Spectrometry as a High Temperature Kinetics Tool: Sublimation, Oxidation, and Emission Spectra of Hot Carbon Nanoparticles.

    PubMed

    Howder, Collin R; Long, Bryan A; Gerlich, Dieter; Alley, Rex N; Anderson, Scott L

    2015-12-17

    In single nanoparticle mass spectrometry, individual charged nanoparticles (NPs) are trapped in a quadrupole ion trap and detected optically, allowing their mass, charge, and optical properties to be monitored continuously. Previous experiments of this type probed NPs that were either fluorescent or large enough to detect by light scattering. Alternatively, small NPs can be heated to temperatures where thermally excited emission is strong enough to allow detection, and this approach should provide a new tool for measurements of sublimation and surface reaction kinetics of materials at high temperatures. As an initial test, we report a study of carbon NPs in the 20-50 nm range, heated by 10.6 μm, 532 nm, or 445 nm lasers. The kinetics for sublimation and oxidation of individual carbon NPs were studied, and a model is presented for the factors that control the NP temperature, including laser heating, and cooling by sublimation, buffer gas collisions, and radiation. The estimated NP temperatures were in the 1700-2000 K range, and the NP absorption cross sections ranged from ∼0.8 to 0.2% of the geometric cross sections for 532 nm and 10.6 μm excitation, respectively. Emission spectra of single NPs and small NP ensembles show a feature in the IR that appears to be the high energy tail of the thermal (blackbody-like) emission expected from hot particles but also a discrete feature peaking around 750 nm. Both the IR tail and 750 nm peak are observed for all particles and for both IR and visible laser excitation. No significant difference was observed between graphite and amorphous carbon NPs. PMID:26513667

  18. Age and stability of sublimation till over buried glacier ice, inferred from 21Ne measurements, Ong Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Bibby, T.; Putkonen, J.; Morgan, D. J.; Balco, G.

    2014-12-01

    Ong Valley, in the Central Transantarctic Mountains, contains three distinct glacial drifts deposited by past advances of the Argosy glacier into the valley. Massive ice occurs below two of the till deposits. Potentially, such buried ice under shallow regolith cover could provide access to past climate and biological records more easily than deep ice coring. We measured cosmic-ray produced 21Ne in these tills as a means of constraining the age and stability of the three drifts, as well as the ice below them. We collected samples in vertical profiles from two hand-dug sections through each drift. The pits from two drifts overlying buried ice extended to the buried ice surface. The hypothesis that these are sublimation tills implies that 21Ne concentrations are a function of i) any inheritance from prior exposure; ii) the age since emplacement of the ice and till; iii) the sublimation rate of the ice; and iv) the surface erosion rate of the till. 21Ne concentrations in the youngest drift are ca. 10 M atoms/g and invariant with depth, indicating that they are predominantly due to inheritance, and provide only a weak maximum age constraint of ca. 0.1 Mya. The two older drifts have surface 21Ne concentrations of 200-250 M atoms/ g and depth concentration profiles consistent with a sublimation till origin. Given that 21Ne concentrations in the deepest samples in each of the two older drifts provide an upper limit on the inherited 21Ne concentration, these imply minimum ages of 1 Mya for the middle drift and 1.6 Mya for the oldest. This implies a 1 Mya minimum age for the ice underlying the middle drift.

  19. The role of sublimation and condensation on the development of ice sedimentation waves on the North Polar Cap of Mars

    NASA Astrophysics Data System (ADS)

    Herny, C.; Carpy, S.; Bourgeois, O.; Masse, M.; Spiga, A.; Le Mouélic, S.; Perret, L.; Smith, I. B.; Rodriguez, S.

    2015-10-01

    Mass and energy balance of ice sheets are driven by complex interactions between the atmosphere and the cryosphere. For instance, it has been demonstrated that feedbacks between katabatic winds and the cryosphere lead to the formation of sedimentation waves at the surface of Martian and terrestrial ice sheets [1, 2, 3 and 4]. Here we explore the role of sublimation and condensation of water vapor in the development of these sedimentation waves. We conduct this study by complementary observational and numerical investigations on the North Polar Cap of Mars.

  20. Sublimation rates of carbon monoxide and carbon dioxide from comet nuclei at large distances from the Sun

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1991-01-01

    One of the more attractive among the plausible scenarios for the major emission event recently observed on Comet Halley at a heliocentric distance of 14.3 AU is activation of a source of ejecta driven by an icy substance much more volatile than water. As prerequisite for the forthcoming detailed analysis of the imaging observations of this event, a simple model is proposed that yields the sublimation rate versus time at any location on the surface of a rotating cometary nucleus for two candidate ices: carbon monoxide and carbon dioxide. The model's variable parameters are the comet's heliocentric distance r and the Sun's instantaneous zenith angle z.

  1. Optimization of the design of a crucible for a SiC sublimation growth system using a global model

    NASA Astrophysics Data System (ADS)

    Chen, X. J.; Liu, L. J.; Tezuka, H.; Usuki, Y.; Kakimoto, K.

    2008-04-01

    Induction heating, temperature field and growth rate for a sublimation growth system of silicon carbide were calculated by using a global simulation model. The effects of shape of the crucible on temperature distribution and growth rate were investigated. It was found that thickness of the substrate holder, distance between the powder and substrate, and angle between the crucible wall and powder free surface are important for growth rate and crystal quality. Finally, a curved powder free surface was also studied. The results indicate that the use of a curved powder free surface is also an effective method for obtaining a higher growth rate.

  2. An atomic beam of 6Li — 7Li for high resolution spectroscopy from matrix isolation sublimation

    NASA Astrophysics Data System (ADS)

    Oliveira, A. N.; Sacramento, R. L.; Silva, B. A.; Uhlmann, F. O.; Wolff, W.; Cesar, C. L.

    2016-07-01

    We propose the Matrix Isolation Sublimation (MlSu) technique for generating cold lithium atoms for the measurement of the 6Li - 7Li isotope shift in D1 and D2 transitions. The technique is capable of generating cold 6Li and 7Li beams at 4 K with forward velocity of 125 m/s. Using this beam we offer a distinguished source of lithium atoms for transitions measurements, adding a new possibility to make high resolution spectroscopy towards improving the experimental checks of the theory.

  3. Single-crystal field-effect transistors of new Cl2-NDI polymorph processed by sublimation in air

    NASA Astrophysics Data System (ADS)

    He, Tao; Stolte, Matthias; Burschka, Christian; Hansen, Nis Hauke; Musiol, Thomas; Kälblein, Daniel; Pflaum, Jens; Tao, Xutang; Brill, Jochen; Würthner, Frank

    2015-01-01

    Physical properties of active materials built up from small molecules are dictated by their molecular packing in the solid state. Here we demonstrate for the first time the growth of n-channel single-crystal field-effect transistors and organic thin-film transistors by sublimation of 2,6-dichloro-naphthalene diimide in air. Under these conditions, a new polymorph with two-dimensional brick-wall packing mode (β-phase) is obtained that is distinguished from the previously reported herringbone packing motif obtained from solution (α-phase). We are able to fabricate single-crystal field-effect transistors with electron mobilities in air of up to 8.6 cm2 V-1 s-1 (α-phase) and up to 3.5 cm2 V-1 s-1 (β-phase) on n-octadecyltriethoxysilane-modified substrates. On silicon dioxide, thin-film devices based on β-phase can be manufactured in air giving rise to electron mobilities of 0.37 cm2 V-1 s-1. The simple crystal and thin-film growth procedures by sublimation under ambient conditions avoid elaborate substrate modifications and costly vacuum equipment-based fabrication steps.

  4. The not-so-sublime early Earth recorded in Hadean zircons

    NASA Astrophysics Data System (ADS)

    Cavosie, A. J.

    2011-12-01

    oxygen isotope ratios (up to 7.5 %) are evidence that the early formed crust was evolved (granitic), rather than primitive (gabbroic). (4) Variable oxygen and Li isotope ratios in zircon record processes of surface alteration and subsequent magmatic recycling of altered crust, constraining the appearance of low surface temperatures and liquid water oceans by 4.3 to 4.2 Ga. (5) Evidence for the Late Heavy Bombardment has not been identified in Hadean zircons; planar microstructures known to form in shock metamorphosed zircon have not been found in Hadean grains. (6) Other claims, including reports of modern-style plate interactions based on zircon mineral inclusion barometry, and the presence of diamond inclusions in Hadean zircons, remain controversial, and open to interpretation. Many aspects of the Hadean are therefore similar to the Archean; distinguishing the two eons thus remains a challenge. However, the cooling and condensation of liquid surface water and its subsequent effect on magma chemistry, as recorded in Hadean zircons from 4.3 to 4.2 Ga, suggests a global-scale process that created habitats for life, and clearly marked the end of 'hell-like' Hadean surface conditions. As the timescale and processes active on the early Earth become better quantified through careful documentation and measurement of these ancient zircons, the Hadean becomes somewhat less sublime.

  5. An enhanced model of the contemporary and long-term (200 ka) sublimation of the massive subsurface ice in Beacon Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Sletten, Ronald S.; Hagedorn, Birgit; Hallet, Bernard; McKay, Christopher P.; Stone, John O.

    2015-08-01

    A massive ice body buried under several decimeters of dry regolith in Beacon Valley, Antarctica, is believed to be more than 1 Ma old and perhaps over 8.1 Ma; however, vapor diffusion models suggest that subsurface ice in this region is not stable under current climate conditions. To better understand the controls on sublimation rates and stability of this massive ice, we have modeled vapor diffusion using 12 years of climate and soil temperature data from 1999 to 2011, including field measurements of episodic snow cover and snowmelt events that have not been represented in previous models of ground ice sublimation. The model is then extended to reconstruct the sublimation history over the last 200 ka using paleotemperatures estimated from ice core data from nearby Taylor Dome and a relationship between atmospheric temperature and humidity derived from our meteorological records. The model quantifies the impact of episodic snow events; they account for a nearly 30% reduction in the massive ice loss. The sublimation rate of ground ice averages 0.11 mm a-1 between 1999 and 2011 in Beacon Valley. Parameterized with past environmental conditions and assuming the same regolith thickness, the modeled sublimation rate of ground ice in Beacon Valley averages 0.09 mm a-1 for the last 200 ka, comparable to the long-term average rate estimated independently from various studies based on cosmogenic isotopes. This study provides a realistic estimate of the long-term sublimation history and supports the inference that the buried ice in Beacon Valley is older than 1 Ma.

  6. Material composition assessment and discovering sublimation activity on asteroids 145 Adeona, 704 Interamnia, 779 Nina, and 1474 Beira

    NASA Astrophysics Data System (ADS)

    Busarev, V. V.; Barabanov, S. I.; Puzin, V. B.

    2016-07-01

    Spectrophotometric observations of 145 Adeona, 704 Interamnia, 779 Nina, and 1474 Beira—asteroids of close primitive types—allowed us to detect similar mineralogical absorption bands in their reflectance spectra centered in the range 0.35 to 0.92 μm; the bands are at 0.38, 0.44, and 0.67-0.71 μm. On the same asteroids, the spectral signs of simultaneous sublimation activity were found for the first time. Namely, there are maxima at ˜0.35-0.60 μm in the reflectance spectra of Adeona, Interamnia, and Nina and at ˜0.55-075 μm in the spectra of Beira. We connect this activity with small heliocentric distances of the asteroids and, consequently, with a high insolation at their surfaces. Examination of the samples of probable analogues allowed us to identify Fe3+ and Fe2+ in the material of these asteroids through the mentioned absorption bands. For analogues, we took powdered samples of carbonaceous chondrites Orgueil (CI), Mighei (CM2), Murchison (CM2), and Boriskino (CM2), as well as hydrosilicates of the serpentine group. Laboratory spectral reflectance study of the samples of low-iron Mg serpentines (<2 wt % FeO) showed that the equivalent width of the absorption band centered at 0.44-0.46 μm strongly correlates with the content of Fe3+ in octahedral and tetrahedral coordinations. Our conclusion is that this absorption band can be used as a qualitative indicator of Fe3+ in the surface matter of asteroids and other solid celestial bodies. The comparison of the listed analog samples and the asteroids by parameters of the spectral features suggests that the silicate component of the asteroids' surface material is a mixture of hydrated and oxidized compounds, including oxides and hydroxides of bivalent and trivalent iron and carbonaceous-chondritic material. At the same time, the sublimation activity of Adeona, Interamnia, Nina, and Beira at high surface temperatures points to a substantial content of water ice in their material. This contradicts the

  7. Origin, Evolution, and Preservation of Cold Based Debris Covered Glaciers: Quantifying Sublimation Rates of Ancient Buried Ice in Antarctica

    NASA Astrophysics Data System (ADS)

    Kowalewski, D. E.; Marchant, D. R.

    2007-12-01

    Growing interest in our planet's climate history has placed a premium on acquiring detailed records of past climate change. Of considerable interest are archives of ancient atmosphere trapped within the debris-covered alpine glaciers of the western Dry Valleys region of Antarctica. The Mullins Valley debris-covered glacier (~8 km in length) is sourced from local snowfall at the steep headwall of the valley. The first 1.2 km of this glacier is generally free of overlying debris except for isolated cobbles and boulders. Thereafter, the ice surface is covered with a thin, continuous sheet of dolerite-rich rubble. Factors that influence the origin and modification of this ice include atmospheric temperature and relative humidity, precipitation, incoming solar radiance, surface albedo, till texture, winds, surface roughness, salts, and secondary ice lenses. We applied a diffusion model to track vapor flux within a sublimation till overlying the Mullins Valley debris-covered glacier, purportedly the world's oldest debris-covered alpine glacier. As input, we used meteorological data from HOBO data loggers that captured climate change and till temperatures. Results show that vapor flows into and out of the sublimation till at rates dependent on the non-linear variation of soil temperature with depth. Sublimation rates along the Mullins Glacier varied as a function of till thickness, local climate (using a calculated regional lapse rate of 0.88°C per 100 m), and till texture. Ice loss during the study interval (November 27, 2006 to December 24, 2006) ranged from as high as 2.12 mm for exposed glacier ice in the upper ablation zone, to as low as 0.01 mm for buried ice beneath till >50 cm in thickness. Averaged over the entire ablation zone (6.7 km2), this yields a net ice-surface lowering of 0.32 mm during the study interval. Numerical modeling suggests that a modest ice accumulation rate at the headwall of ~1 cm a-1 appears sufficient to maintain current ice volumes

  8. Volatilization, transport and sublimation of metallic and non-metallic elements in high temperature gases at Merapi Volcano, Indonesia

    USGS Publications Warehouse

    Symonds, R.B.; Rose, William I., Jr.; Reed, M.H.; Lichte, F.E.; Finnegan, David L.

    1987-01-01

    Condensates, silica tube sublimates and incrustations were sampled from 500-800??C fumaroles and lava samples were collected at Merapi Volcano, Indonesia in Jan.-Feb., 1984. With respect to the magma, Merapi gases are enriched by factors greater than 105 in Se, Re, Bi and Cd; 104-105 in Au, Br, In, Pb and W; 103-104 in Mo, Cl, Cs, S, Sn and Ag; 102-103 in As, Zn, F and Rb; and 1-102 in Cu, K, Na, Sb, Ni, Ga, V, Fe, Mn and Li. The fumaroles are transporting more than 106 grams/day ( g d) of S, Cl and F; 104-106 g/d of Al, Br, Zn, Fe, K and Mg; 103-104 g d of Pb, As, Mo, Mn, V, W and Sr; and less than 103 g d of Ni, Cu, Cr, Ga, Sb, Bi, Cd, Li, Co and U. With decreasing temperature (800-500??C) there were five sublimate zones found in silica tubes: 1) cristobalite and magnetite (first deposition of Si, Fe and Al); 2) K-Ca sulfate, acmite, halite, sylvite and pyrite (maximum deposition of Cl, Na, K, Si, S, Fe, Mo, Br, Al, Rb, Cs, Mn, W, P, Ca, Re, Ag, Au and Co); 3) aphthitalite (K-Na sulfate), sphalerite, galena and Cs-K. sulfate (maximum deposition of Zn, Bi, Cd, Se and In; higher deposition of Pb and Sn); 4) Pb-K chloride and Na-K-Fe sulfate (maximum deposition of Pb, Sn and Cu); and 5) Zn, Cu and K-Pb sulfates (maximum deposition of Pb, Sn, Ti, As and Sb). The incrustations surrounding the fumaroles are also chemically zoned. Bi, Cd, Pb, W, Mo, Zn, Cu, K, Na, V, Fe and Mn are concentrated most in or very close to the vent as expected with cooling, atmospheric contamination and dispersion. The highly volatile elements Br, Cl, As and Sb are transported primarily away from high temperature vents. Ba, Si, P, Al, Ca and Cr are derived from wall rock reactions. Incomplete degassing of shallow magma at 915??C is the origin of most of the elements in the Merapi volcanic gas, although it is partly contaminated by particles or wall rock reactions. The metals are transported predominantly as chloride species. As the gas cools in the fumarolic environment, it becomes saturated

  9. Comparative study of 3C-SiC layers sublimation-grown on a 6H-SiC substrate

    SciTech Connect

    Shustov, D. B.; Lebedev, A. A. Lebedev, S. P.; Nelson, D. K.; Sitnikova, A. A.; Zamoryanskaya, M. V.

    2013-09-15

    n-3C-SiC/n-6H-SiC heterostructures grown by vacuum sublimation on CREE commercial 6H-SiC substrates are studied. Transmission electron microscopy (TEM) demonstrated that a transitional layer of varying thickness, composed of a mixture of 3C- and 6H-SiC polytypes, is formed on the substrate. A 3C polytype layer was obtained on the interlayer. Cathodoluminescence study of the surface of the film demonstrated that defects in the form of inclusions of another phase (6H-polytype), stacking faults, and twin boundaries (separating domains of cubic modification, grown in various orientations) are found on the surface and in the surface layer with a thickness on the order of 100 {mu}m. Varying the growth conditions changes the concentration of various types of defects.

  10. Sublimation behavior of silicon nitride /Si3N4/ coated silicon germanium /SiGe/ unicouples. [for Radioisotope Thermoelectric Generators

    NASA Technical Reports Server (NTRS)

    Stapfer, G.; Truscello, V. C.

    1975-01-01

    For the Multi-Hundred Watt (MHW) Radioisotope Thermoelectric Generator (RTG), the silicon germanium unicouples are coated with silicon nitride to minimize degradation mechanisms which are directly attributable to material sublimation effects. A program is under way to determine the effective vapor suppression of this coating as a function of temperature and gas environment. The results of weight loss experiments, using Si3N4 coated hot shoes (SiMo), operating over a temperature range from 900 C to 1200 C, are analyzed and discussed. These experiments were conducted both in high vacuum and at different pressures of carbon monoxide (CO) to determine its effect on the coating. Although the results show a favorable vapor suppression at all operating temperatures, the pressure of the CO and the thickness of the coating have a decided effect on the useful lifetime of the coating.

  11. The role of oxygen in CdS/CdTe solar cells deposited by close-spaced sublimation

    SciTech Connect

    Rose, D.H.; Levi, D.H.; Matson, R.J.

    1996-05-01

    The presence of oxygen during close-spaced sublimation (CSS) of CdTe has been previously reported to be essential for high-efficiency CdS/CdTe solar cells because it increases the acceptor density in the absorber. The authors find that the presence of oxygen during CSS increases the nucleation site density of CdTe, thus decreasing pinhole density and grain size. Photoluminescence showed that oxygen decreases material quality in the bulk of the CdTe film, but positively impacts the critical CdS/CdTe interface. Through device characterization the authors were unable to verify an increase in acceptor density with increased oxygen. These results, along with the achievement of high-efficiency cells (13% AM1.5) without the use of oxygen, led the authors to conclude that the use of oxygen during CSS deposition of CdTe can be useful but is not essential.

  12. Method of fabricating conducting oxide-silicon solar cells utilizing electron beam sublimation and deposition of the oxide

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1979-01-01

    In preparing tin oxide and indium tin oxide-silicon heterojunction solar cells by electron beam sublimation of the oxide and subsequent deposition thereof on the silicon, the engineering efficiency of the resultant cell is enhanced by depositing the oxide at a predetermined favorable angle of incidence. Typically the angle of incidence is between 40.degree. and 70.degree. and preferably between 55.degree. and 65.degree. when the oxide is tin oxide and between 40.degree. and 70.degree. when the oxide deposited is indium tin oxide. gi The Government of the United States of America has rights in this invention pursuant to Department of Energy Contract No. EY-76-C-03-1283.

  13. Epitaxial Growth of High-Resistivity CdTe Thick Films Grown Using a Modified Close Space Sublimation Method

    NASA Astrophysics Data System (ADS)

    Jiang, Quanzhong; Brinkman, Andy W.; Veeramani, Perumal; Sellin, Paul. J.

    2010-02-01

    This paper reports the growth of high-resistivity CdTe thick epitaxial films of single crystal nature using a modified close space sublimation method (MCSS) in a Te-rich environment. We propose that the high Te2 partial pressure results in an increased concentration of TeCd antisites acting as deep donors to produce the high-resistivity CdTe, as well as improved quality of thick films. This is in agreement with the deep-donor model introduced by Fiderele et al. [Cryst. Res. Technol. 38 (2003) 588]. The thick films have a µeτe value in the order 10-4 cm2 V-1 and as expected, the TeCd antisites appeared not to act as electron traps.

  14. Influence of snow surface sublimation on stable isotope and chemical records and on surface energy balance over a Bolivian glacier, Illimani.

    NASA Astrophysics Data System (ADS)

    Wagnon, P.; Vimeux, F.; Bonnaveira, H.; Berthier, E.; de Angelis, M.; Petit, J.

    2001-12-01

    Post deposition processes like sublimation of surface snow are on primary importance in cold high latitude glaciers in the tropical Andes. Such a process modifies surface energy balance, isotopic and chemical composition of deposited snow. This is a real problem for interpretation of isotopic and chemical profiles from tropical ice cores. A sublimation experiment has been carried out during May 2001 where a 137 m ice core has been drilled down to the bedrock in June 1999 (Illimani, 17oS, 68oW, 6340 m). Variations of surface snow composition (both water stable isotopes and chemistry) have been monitoring over one week, twice a day while measurements of surface enegy balance were made with an automatic weather station. We present here the combination of these results. Main result from energy balance surface study is that sublimation rate is very hight. Chemical and isotopic compositions of surface snow, show also that sublimation probably affects climate signal recorded in the ice. Thus, interpretation of stable isotopes and chemical records from ice cores have to be carefully done under a certain temporal resolution.

  15. Performance.

    PubMed

    Chambers, David W

    2006-01-01

    High performance is difficult to maintain because it is dynamic and not well understood. Based on a synthesis of many sources, a model is proposed where performance is a function of the balance between capacity and challenge. Too much challenge produces coping (or a crash); excess capacity results in boredom. Over time, peak performance drifts toward boredom. Performance can be managed by adjusting our level of ability, our effort, the opportunity to perform, and the challenge we agree to take on. Coping, substandard but acceptable performance, is common among professionals and its long-term side effects can be debilitating. A crash occurs when coping mechanisms fail. PMID:17020177

  16. Experimental and theoretical simulation of sublimating dusty water ice with implications for D/H ratios of water ice on Comets and Mars

    NASA Astrophysics Data System (ADS)

    Moores, John E.; Brown, Robert H.; Lauretta, Dante S.; Smith, Peter H.

    2012-04-01

    Sublimation experiments have been carried out to determine the effect of the mineral dust content of porous ices on the isotopic composition of the sublimate gas over medium (days to weeks) timescales. Whenever mineral dust of any kind was present, the D/H ratio of the sublimated gas was seen to decrease with time from the bulk ratio. Fractionations of up to 2.5 were observed for dust mixing ratios of 9 wt% and higher of JSC MARS-1 regolith simulant 1-10 μm crushed and sieved fraction. These favored the presence of the light isotope, H2O, in the gas phase. The more dust was added to the mixture, the more pronounced was this effect. Theoretical modeling of gas migration within the porous samples and adsorption on the excavated dust grains was undertaken to explain the results. Adsorption onto the dust grains is able to explain the low D/H ratios in the sublimate gas if adsorption favors retention of HDO over H2O. This leads to significant isotopic enrichment of HDO on the dust over time and depletion in the amount of HDO escaping the system as sublimate gas. This effect is significant for planetary bodies on which water moves mainly through the gas phase and a significant surface reservoir of dust may be found, such as on Comets and Mars. For each of these, inferences about the bulk water D/H ratio as inferred from gas phase measurements needs to be reassessed in light of the volatile cycling history of each body.

  17. Experimental and theoretical simulation of sublimating dusty water ice with implications for D/H ratios of water ice on Comets and Mars

    NASA Astrophysics Data System (ADS)

    Moores, John E.; Brown, Robert H.; Lauretta, Dante S.; Smith, Peter H.

    2012-12-01

    Sublimation experiments have been carried out to determine the effect of the mineral dust content of porous ices on the isotopic composition of the sublimate gas over medium (days to weeks) timescales. Whenever mineral dust of any kind was present, the D/H ratio of the sublimated gas was seen to decrease with time from the bulk ratio. Fractionations of up to 2.5 were observed for dust mixing ratios of 9 wt% and higher of JSC MARS-1 regolith simulant 1-10 μm crushed and sieved fraction. These favored the presence of the light isotope, H2O, in the gas phase. The more dust was added to the mixture, the more pronounced was this effect. Theoretical modeling of gas migration within the porous samples and adsorption on the excavated dust grains was undertaken to explain the results. Adsorption onto the dust grains is able to explain the low D/H ratios in the sublimate gas if adsorption favors retention of HDO over H2O. This leads to significant isotopic enrichment of HDO on the dust over time and depletion in the amount of HDO escaping the system as sublimate gas. This effect is significant for planetary bodies on which water moves mainly through the gas phase and a significant surface reservoir of dust may be found, such as on Comets and Mars. For each of these, inferences about the bulk water D/H ratio as inferred from gas phase measurements needs to be reassessed in light of the volatile cycling history of each body.

  18. Re-analysis of martian gully orientation and slope for comparison with climate model predictions of freeze-thaw and dry-ice sublimation.

    NASA Astrophysics Data System (ADS)

    Conway, Susan; Harrison, Tanya; Lewis, Stephen; Balme, Matthew; Soare, Richard; Britton, Andrew

    2016-04-01

    hours during which the surface temperature was below the CO2 condensation point of 149K. We use these data as a proxy for where CO2sublimation processes can be active. (ii) The number of sols for which the daily minimum is below 273K and the daily maximum is above 273K. We use these data as a proxy for where ice could be stable and then melt during freeze-thaw cycles. Our results reveal that neither of these simple modelling cases exactly fits the observational data, therefore we conclude that it is likely that a mixture of CO2 and water related processes are responsible for forming martian gullies. We aim to perform a number of tests to assess both the applicability of these simple proxies and to test a wider range of substrate properties (buried ice) and orbital parameters (perihelion and increased atmospheric pressure at high obliquity) to see if they give better fits to our observations.

  19. A field study of the geomorphic effects of sublimating CO2 blocks on dune slopes at Coral Pink Dunes, Utah.

    NASA Astrophysics Data System (ADS)

    Bourke, Mary; Nield, Jo; Diniega, Serina; Hansen, Candy; McElwaine, Jim

    2016-04-01

    The seasonal sublimation of CO2 ice is an active driver of present-day surface change on Mars. Diniega et al (2013) proposed that a discrete type of Martian gully, found on southern hemisphere dunes, were formed by the movement of CO2 seasonal ice blocks. These 'Linear Gullies' consist primarily of long (100 m - 2.5 km) grooves with near-uniform width (few-10 m wide), and typical depth of <2 m. They are near-linear throughout most of their length but sometimes contains zones of low-to-high sinuosity. They are commonly bounded by levées. The groove is generally prefaced by a small alcove that originates at the dune brink. We present the results of a set of field experiments that were undertaken at the Coral Pink sand dunes, Utah. These are sister experiments to those undertaken in Arizona (Bourke et al, 2016). The experiments were undertaken on an active barchan dune with a 16 m long lee slope (30.3°). Ambient air temperature was 30°C and relative humidity was 25%; sand surface temperatures were 26.5°C. A CO2 ice block (60x205x210 mm) was placed at the dune brink and with a gentle nudge it moved downslope. The dynamics of the block movement were recorded using a pair of high resolution video cameras. Geomorphological observations were noted and topographic change was quantified using a Leica P20 terrestrial laser scanner with a resolution of 0.8 mm at 10 m, and change detection limits less than 3 mm. The block run was repeated a total of 10 times and launched from the same location at the dune brink. The experiment ran for 45 minutes. The block size was reduced to (45 x 190 x 195 mm) by the end of the run series. The resultant geomorphology shows that the separate block runs occupied different tracks leading to a triangular plan form shape with a maximum width of 3.5 m. This is different from the findings in Arizona where a narrower track span was recorded (1.7m) (Bourke et al, 2016). Similar block dynamics were observed at both sites (as blocks moved straight

  20. Adsorptive fractionation of HDO on JSC MARS-1 during sublimation with implications for the regolith of Mars

    NASA Astrophysics Data System (ADS)

    Moores, John E.; Smith, Peter H.; Boynton, William V.

    2011-02-01

    A chamber was constructed to simulate the boundary between the ice table, regolith and atmosphere of Mars and to examine fractionation between H 2O and HDO during sublimation under realistic martian conditions of temperature and pressure. Thirteen experimental runs were conducted with regolith overlying the ice. The thickness and characteristic grain size of the regolith layer as well as the temperature of the underlying ice was varied. From these runs, values for the effective diffusivity, taking into account the effects of adsorption, of the regolith were derived. These effective diffusivities ranged from 1.8 × 10 -4 m 2 s -1 to 2.2 × 10 -3 m 2 s -1 for bare ice and from 2.4 × 10 -11 m 2 s -1 to 2.0 × 10 -9 m 2 s -1 with an adsorptive layer present. From these, latent heats of adsorption of 8.6 ± 2.6 kJ mol -1 and 9.3 ± 2.8 kJ mol -1 were derived at ice-surface temperatures above 223 ± 8 K and 96 ± 28 kJ mol -1 and 104 ± 31 kJ mol -1 respectively for H 2O and HDO were derived at colder temperatures. For temperatures below 223 K, the effective diffusivity of HDO was found to be lower than the diffusivity of H 2O by 40% on average, suggesting that the regolith was adsorptively fractionating the sublimating gas with a fractionation factor of 1.96 ± 0.74. Applying these values to Mars predicts that adsorbed water on the regolith is enriched in HDO compared to the atmosphere, particularly where the regolith is colder. Based on current observations, the D/H ratio of the regolith may be as high as 21 ± 8 times VSMOW at 12°S and L S = 357° if the regolith is hydrated primarily by the atmosphere, neglecting any hydration from subsurface ice.

  1. Growth optimization and applicability of thick on-axis SiC layers using sublimation epitaxy in vacuum

    NASA Astrophysics Data System (ADS)

    Jokubavicius, Valdas; Sun, Jianwu; Liu, Xinyu; Yazdi, Gholamreza; Ivanov, Ivan. G.; Yakimova, Rositsa; Syväjärvi, Mikael

    2016-08-01

    We demonstrate growth of thick SiC layers (100-200 μm) on nominally on-axis hexagonal substrates using sublimation epitaxy in vacuum (10-5 mbar) at temperatures varying from 1700 to 1975 °C with growth rates up to 270 μm/h and 70 μm/h for 6H- and 4H-SiC, respectively. The stability of hexagonal polytypes are related to process growth parameters and temperature profile which can be engineered using different thermal insulation materials and adjustment of the induction coil position with respect to the graphite crucible. We show that there exists a range of growth rates for which single-hexagonal polytype free of foreign polytype inclusions can be maintained. Further on, foreign polytypes like 3C-SiC can be stabilized by moving out of the process window. The applicability of on-axis growth is demonstrated by growing a 200 μm thick homoepitaxial 6H-SiC layer co-doped with nitrogen and boron in a range of 1018 cm-3 at a growth rate of about 270 μm/h. Such layers are of interest as a near UV to visible light converters in a monolithic white light emitting diode concept, where subsequent nitride-stack growth benefits from the on-axis orientation of the SiC layer.

  2. CO2 jets formed by sublimation beneath translucent slab ice in Mars' seasonal south polar ice cap.

    PubMed

    Kieffer, Hugh H; Christensen, Philip R; Titus, Timothy N

    2006-08-17

    The martian polar caps are among the most dynamic regions on Mars, growing substantially in winter as a significant fraction of the atmosphere freezes out in the form of CO2 ice. Unusual dark spots, fans and blotches form as the south-polar seasonal CO2 ice cap retreats during spring and summer. Small radial channel networks are often associated with the location of spots once the ice disappears. The spots have been proposed to be simply bare, defrosted ground; the formation of the channels has remained uncertain. Here we report infrared and visible observations that show that the spots and fans remain at CO2 ice temperatures well into summer, and must be granular materials that have been brought up to the surface of the ice, requiring a complex suite of processes to get them there. We propose that the seasonal ice cap forms an impermeable, translucent slab of CO2 ice that sublimates from the base, building up high-pressure gas beneath the slab. This gas levitates the ice, which eventually ruptures, producing high-velocity CO2 vents that erupt sand-sized grains in jets to form the spots and erode the channels. These processes are unlike any observed on Earth. PMID:16915284

  3. Pedestal Craters in Utopia Planitia and Malea Planum: Evidence for a Past Ice-Rich Substrate from Marginal Sublimation Pits.

    NASA Astrophysics Data System (ADS)

    Kadish, S. J.; Head, J. W.; Barlow, N. G.; Marchant, D. R.

    2008-09-01

    Introduction: Pedestal craters (Pd) are a subclass of impact craters unique to Mars [1] characterized by a crater perched near the center of a pedestal (mesa or plateau) that is surrounded by a quasi-circular, outward-facing scarp. The marginal scarp is usually several crater diameters from the crater rim (Figs. 2,4,5), and tens to over 100 meters above the surrounding plains (Fig. 2). Pd have been interpreted to form by armoring of the proximal substrate during the impact event. Hypotheses for the armoring mechanism include an ejecta covering [e.g., 3], increased ejecta mobilization caused by volatile substrates [4], distal glassy/melt-rich veneers [5], and/or an atmospheric blast/thermal effect [6]. Subsequently, a marginal scarp forms by preferential erosion of the substrate surrounding the armored region, most commonly thought to involve eolian removal of fine-grained, non-armored material [e.g., 3]. An understanding of the distribution of Pd, which form predominantly poleward of ~40°N and S latitude [7-9] (Fig. 1), and the role of redistribution of ice and dust during periods of climate change [e.g., 10-11], suggests that the substrate might have been volatile-rich [8-9, 12-14]. As such, some researchers [e.g., 8-9] have proposed a model for Pd formation that involves impact during periods of higher obliquity, when mid- to high-latitude substrates were characterized by thick deposits of snow and ice [e.g., 15]. Subsequent sublimation of the volatile units, except below the armored regions, yielded the perched Pd. Thus, this model predicts that thick deposits of snow/ice should underlie Pd. This is in contrast to the eolian model [3], which calls primarily for deflation of sand and dust. Here, we show the results of our study [8,16] that has documented and characterized 2461 Pd on Mars equatorward of ~65° N and S latitude (Fig. 1) in order to test these hypotheses for the origin of pedestal craters. In particular, we report on the detection of 50 Pd in Utopia

  4. Effect of the duration of the growth process on the properties of GaN grown by the sublimation method

    SciTech Connect

    Wolfson, A. A.; Mokhov, E. N.

    2009-03-15

    Variation in the structural and morphological features and luminescent characteristics of thick epitaxial GaN layers grown by the sublimation sandwich method with the duration of the crystallization process has been studied. This was, in particular, done by means of scanning electron microscopy in the secondary-electron and color-cathodoluminescence modes. It was found that rather high-quality GaN layers with a thickness of up to 0.5 mm can be grown in a time of about 1.5 h, with their surface hardly exhibiting any luminescence in the visible spectral range. However, making the growth process longer in order to obtain thicker layers impairs the quality of a crystal being grown, which is accompanied by an increase in the intensity of cathodoluminescence from its surface layer in the visible (predominantly yellow) region of the spectrum. Reasons for the poorer quality of GaN layers in this case are discussed. It is suggested that, as the evaporation rate from the source decreases, the amount of active nitrogen near the growth surface becomes lower.

  5. CO2 jets formed by sublimation beneath translucent slab ice in Mars' seasonal south polar ice cap

    USGS Publications Warehouse

    Kieffer, H.H.; Christensen, P.R.; Titus, T.N.

    2006-01-01

    The martian polar caps are among the most dynamic regions on Mars, growing substantially in winter as a significant fraction of the atmosphere freezes out in the form of CO2 ice. Unusual dark spots, fans and blotches form as the south-polar seasonal CO2 ice cap retreats during spring and summer. Small radial channel networks are often associated with the location of spots once the ice disappears. The spots have been proposed to be simply bare, defrosted ground; the formation of the channels has remained uncertain. Here we report infrared and visible observations that show that the spots and fans remain at CO2 ice temperatures well into summer, and must be granular materials that have been brought up to the surface of the ice, requiring a complex suite of processes to get them there. We propose that the seasonal ice cap forms an impermeable, translucent slab of CO2 ice that sublimates from the base, building up high-pressure gas beneath the slab. This gas levitates the ice, which eventually ruptures, producing high-velocity CO 2 vents that erupt sand-sized grains in jets to form the spots and erode the channels. These processes are unlike any observed on Earth. ?? 2006 Nature Publishing Group.

  6. Solid sulfur in vacuum: Sublimation effects on surface microtexture, color and spectral reflectance, and applications to planetary surfaces

    NASA Technical Reports Server (NTRS)

    Nash, D. B.

    1987-01-01

    A form of sulfur that is white at room temperature and very fluffy in texture has been found in laboratory experiments on the effects of vacuum sublimation (evaporation) on solid sulfur. This work is an outgrowth of proton sputtering experiments on sulfur directed toward understanding Jovian magnetospheric effects on the surface of Io. Fluffy white sulfur is formed on the surface of solid yellow, tan, or brown sulfur melt freezes in vacuum by differential (fractional) evaporation of two or more sulfur molecular species present in the original sulfur; S(8) ring sulfur is thought to be the dominant sublimination phase lost to the vacuum sink, and polymeric chain sulfur S(u) the dominant residual phase that remains in place, forming the residual fluffy surface layer. The reflectance spectrum of the original sulfur surface is greaty modified by formation of the fluffy layer: the blue absorption band-edge and shoulder move 0.05 to 0.06 microns toward shorter wavelengths resulting in a permanent increase in reflectivity near 0.42 to 0.46 microns; the UV reflectivity below 0.40 microns is reduced. This form of sulfur should exist in large quantity on the surface of Io, especially in hotspot regions if there is solid free sulfur there that has solidified from a melt. Its color and spectra will indicate relative crystallization age on a scale of days to months and/or surface temperature distribution history.

  7. Plasma assisted growth of MoO3 films on different substrate locations relative to sublimation source

    NASA Astrophysics Data System (ADS)

    Sharma, Rabindar K.; Saini, Sujit K.; Kumar, Prabhat; Singh, Megha; Reddy, G. B.

    2016-05-01

    In the present paper, we reported the role of substrate locations relative to source on the growth of MoO3 films deposited on Ni coated glass substrates using plasma assisted sublimation process (PASP). According to the XRD and SEM results, substrate location is very crucial factor to control the morphology of MoO3 films and the best nanostructure growth (in terms of alignments and features) is obtained in case of Sample B (in which substrate is placed on source). The structural results point out that all films exhibit only orthorhombic phase of molybdenum oxide (i.e. α-MoO3)but the most preferential growth is recorded in Sample B due to the presence of intense peaks crossponding to only (0 k 0) family of crystal planes (k = 2, 4,6..). The Raman analysis again confirms the orthorhombic nature of MoO3 NFs and details of vibrational bondsin Sample B have been given in the present report. The MoO3 NFs show intense PL emission in wavelength range of 300-700 nm with three peaks located at 415, 490, and 523 nm in accordance to the improved crystallinity in Sample B.

  8. In-Space Propulsion Engine Architecture Based on Sublimation of Planetary Resources: From Exploration Robots to NED Mitigation

    NASA Technical Reports Server (NTRS)

    Sibille, Laurent; Mantovani, James G.

    2011-01-01

    Volatile solids occur naturally on most planetary bodies including the Moon, Mars, asteroids and comets. Examples of recent discoveries include water ice, frozen carbon dioxide and hydrocarbons. The ability to utilize readily available resources for in-space propulsion and for powering surface systems during a planetary mission will help minimize the overall cost and extend the op.erational life of a mission. The utilization of volatile solids to achieve these goals is attractive for its simplicity. We have investigated the potential of subliming in situ volatiles and silicate minerals to power propulsion engines for a wide range of in-space applications where environmental conditions are favorable. This paper addresses the' practicality of using planetary solid volatiles as a power source for propulsion and surface systems by presenting results of modeling involving thermodynamic and physical mechanics calculations, and laboratory testing to measure the thrust obtained from ,a volatile solid engine (VSE). Applications of a VSE for planetary exploration are discussed as a means for propulsion and for mechanical actuators and surface mobility platforms.

  9. HiRISE observations of gas sublimation-driven activity in Mars' southern polar regions: III. Models of processes involving translucent ice

    USGS Publications Warehouse

    Portyankina, G.; Markiewicz, W.J.; Thomas, N.; Hansen, C.J.; Milazzo, M.

    2010-01-01

    Enigmatic surface features, known as 'spiders', found at high southern martian latitudes, are probably caused by sublimation-driven erosion under the seasonal carbon dioxide ice cap. The Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) has imaged this terrain in unprecedented details throughout southern spring. It has been postulated [Kieffer, H.H., Titus, T.N., Mullins, K.F., Christensen, P.R., 2000. J. Geophys. Res. 105, 9653-9700] that translucent CO2 slab ice traps gas sublimating at the ice surface boundary. Wherever the pressure is released the escaping gas jet entrains loose surface material and carries it to the top of the ice where it is carried downslope and/or downwind and deposited in a fan shape. Here we model two stages of this scenario: first, the cleaning of CO2 slab ice from dust, and then, the breaking of the slab ice plate under the pressure built below it by subliming ice. Our modeling results and analysis of HiRISE images support the gas jet hypothesis and show that outbursts happen very early in spring. ?? 2009 Elsevier Inc. All rights reserved.

  10. A redetermination of the ice/vapor ratio of Enceladus’ plumes: Implications for sublimation and the lack of a liquid water reservoir

    NASA Astrophysics Data System (ADS)

    Kieffer, Susan W.; Lu, Xinli; McFarquhar, Greg; Wohletz, Kenneth H.

    2009-09-01

    The discovery of plumes of H 2O vapor and ice particles erupting from the south pole of Enceladus, the tiny frigid satellite of Saturn, sparked controversy over whether these plumes are produced by boiling, or by sublimation with subsequent recondensation of the sublimated vapor [Porco, C.C., Helfenstein, P., Thomas, P.C., Ingersoll, A.P., Wisdom, J., West, R., Neukum, G., Denk, T., Wagner, R., Roatsch, T., Kieffer, S., Turtle, E., McEwen, A., Johnson, T.V., Rathbun, J., Veverka, J., Wilson, D., Perry, J., Spitale, J., Brahic, A., Burns, J.A., DelGenio, A.D., Dones, L., Murray, C.D., Squyres, S., 2006. Science 311, 1393-1401]. Porco et al.'s analysis that the masses of ice (I) and vapor (V) in the plume were comparable was taken to argue against the occurrence of sublimation and recondensation, leading to the hypothesis that the reservoir was boiling water, possibly as close as 7 m to the surface. Thus, it has been advocated that Enceladus should be a target for astrobiology exploration. Here we show, with recalculations using the original data and methodologies, as well as with new sensitivity studies, that the mass of ice in the column is significantly less than the mass of water vapor, and that by considering three additional effects, I/V is likely to be <0.2-0.1. This means that the plume is dominated by vapor that the thermodynamics permits to be easily produced by sublimation with recondensation. The low I/V ratio provides no compelling criterion for consideration of a liquid water reservoir. The uncertainties on the I/V ratio have not previously been discussed in the literature. Although the I/V ratio is sensitive to particle sizes and size distributions, the masses of ice (I) and vapor (V) are not comparable in any scenario constrained by available observations. We thus discuss the implications of sublimation from a thermodynamic point of view in a context that has not been presented previously. Constraints on I/V ratio from future spacecraft measurements

  11. An Enhanced Vapor Transport and Sublimation Model using 10+ Years of Field Measurements of Earth's Oldest Ground Ice in Beacon Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Liu, L.; Sletten, R. S.; Hagedorn, B.; Stone, J. O.; Hallet, B.; McKay, C. P.

    2011-12-01

    Ground ice in the Antarctic Dry Valleys is fundamentally important as a reservoir of water, proxy for climatic information, and a major component of the periglacial landscape. It is also one of Earth's closest analog for widespread, near-surface ice found in Martian soils. While the exact antiquity of the ground ice at Beacon Valley is still under discussion, considerable evidence suggests that it is the oldest known ice on Earth. Why this ice can persist for so long is still unclear since models based solely on water vapor fluxes predict drying of the soil to depths of several meters within only a few thousand years; however, ice persists in the ground at depths of only a few decimeters. Other independent data of a profile of cosmogenic isotopes of 10Be in the ice and quartz grains within the ice indicates that, on time scales of ~105 years or more, ice sublimates much more slowly. The interest in determining the age of relict ice in Beacon Valley, Antarctica, as well as the discrepancy between theoretical modeled and field sample-based ground ice sublimation rates are bringing renewed attention to this ice. Here we present an enhanced model of water vapor diffusion and corresponding sublimation using detailed climate and soil temperature data from 1999 to 2011 in Beacon Valley, where the massive ground ice is found as close as ~0.30 m below the surface. This is the first model to incorporate the effect of snow cover and snow melt on the soil vapor pressure that is based on actual field measurements using a camera and electrical conductivity probes. It suggests that water vapor condenses in the upper dry soil during the winter but is completely lost to the atmosphere during the austral summer. Episodic snowmelt events and snow cover in the summer temporarily reverses the vapor transport and reduces the annual ice loss. These episodic events slow down the sublimation rates by one-third; this effect is likely to be extended due to persistence of water in the top

  12. Sublimation of icy aggregates in the coma of comet 67P/Churyumov-Gerasimenko detected with the OSIRIS cameras onboard Rosetta.

    NASA Astrophysics Data System (ADS)

    Gicquel, A.; Vincent, J.-B.; Agarwal, J.; A'Hearn, M. F.; Bertini, I.; Bodewits, D.; Sierks, H.; Lin, Z.-Y.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Barucci, M. A.; Bertaux, J.-L.; Besse, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; Deller, J.; De Cecco, M.; Frattin, E.; El-Maarry, M. R.; Fornasier, S.; Fulle, M.; Groussin, O.; Gutiérrez, P. J.; Gutiérrez-Marquez, P.; Güttler, C.; Höfner, S.; Hofmann, M.; Hu, X.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Moreno, J. J. Lopez; Lowry, S.; Marzari, F.; Masoumzadeh, N.; Massironi, M.; Moreno, F.; Mottola, S.; Naletto, G.; Oklay, N.; Pajola, M.; Pommerol, A.; Preusker, F.; Scholten, F.; Shi, X.; Thomas, N.; Toth, I.; Tubiana, C.

    2016-08-01

    Beginning in March 2014, the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras began capturing images of the nucleus and coma (gas and dust) of comet 67P/Churyumov-Gerasimenko using both the wide angle camera (WAC) and the narrow angle camera (NAC). The many observations taken since July of 2014 have been used to study the morphology, location, and temporal variation of the comet's dust jets. We analyzed the dust monitoring observations shortly after the southern vernal equinox on May 30 and 31, 2015 with the WAC at the heliocentric distance R_h = 1.53 AU, where it is possible to observe that the jet rotates with the nucleus. We found that the decline of brightness as a function of the distance of the jet is much steeper than the background coma, which is a first indication of sublimation. We adapted a model of sublimation of icy aggregates and studied the effect as a function of the physical properties of the aggregates (composition and size). The major finding of this article was that through the sublimation of the aggregates of dirty grains (radius a between 5μm and 50μm) we were able to completely reproduce the radial brightness profile of a jet beyond 4 km from the nucleus. To reproduce the data we needed to inject a number of aggregates between 8.5 × 1013 and 8.5 × 1010 for a = 5μm and 50μm respectively, or an initial mass of H_2O ice around 22kg.

  13. A close-space sublimation driven pathway for the manipulation of substrate-supported micro- and nanostructures

    NASA Astrophysics Data System (ADS)

    Sundar, Aarthi

    gold beneath the grid selectively attaches to it due to the surface energy gradient which drives gold from the low surface energy oxide surface to the higher surface energy nickel mesh. With this process being confined to areas adjacent to and in contact with the grid surface the film ruptures at well-defined locations to form isolated islands of gold and subsequently, a periodic array of microstructures. The process can be carried out on substrates of different crystallographic orientations leading to nanostructures which are formed epitaxially and have orientations based on underlying substrate orientations. The process can be extended by placing a metallic foil of Pt or Ni over preformed templates, in which case a reduction in the size of the initial structures is observed. Placing a foil on structures with random placement and a wide size distribution results, not only in a size reduction, but also a narrowed size distribution. Additive processes are carried out by using materials which possess high vapor pressures much below the sublimation temperature of the template materials. In this case a germanium substrate was used as a source of germanium adatoms while gold or silver nanostructures were used as heterogeneous nucleation sites. At elevated temperatures the adatoms collect in sufficient quantities to transform each site into a liquid alloy which, upon cooling, phase separates into elemental components sharing a common interface and, hence, resulting in the formation of heterodimers and hollowed metal nanocrescents upon etching away the Ge. A process which combined aspects of the additive and subtractive process was carried out by using a metallic foil with a high vapor pressure and higher surface energy than the substrate surface (in this case Pd foil). This process resulted in the initial preformed gold templates being annihilated and replaced by nanostructures of palladium, thereby altering their chemical composition. The assembly process relies on the

  14. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015. Part 1. C1 - C10

    NASA Astrophysics Data System (ADS)

    Acree, William; Chickos, James S.

    2016-09-01

    A compendium of phase change enthalpies published in 2010 is updated to include the period 1880-2015. Phase change enthalpies including fusion, vaporization, and sublimation enthalpies are included for organic, organometallic, and a few inorganic compounds. Part 1 of this compendium includes organic compounds from C1 to C10. Part 2 of this compendium, to be published separately, will include organic and organometallic compounds from C11 to C192. Sufficient data are presently available to permit thermodynamic cycles to be constructed as an independent means of evaluating the reliability of the data. Temperature adjustments of phase change enthalpies from the temperature of measurement to the standard reference temperature, T = 298.15 K, and a protocol for doing so are briefly discussed.

  15. Investigation of induced recrystallization and stress in close-spaced sublimated and radio-frequency magnetron sputtered CdTe thin films

    SciTech Connect

    Moutinho, H.R.; Dhere, R.G.; Al-Jassim, M.M.; Levi, D.H.; Kazmerski, L.L.

    1999-07-01

    We have induced recrystallization of small grain CdTe thin films deposited at low temperatures by close-spaced sublimation (CSS), using a standard CdCl{sub 2} annealing treatment. We also studied the changes in the physical properties of CdTe films deposited by radio-frequency magnetron sputtering after the same post-deposition processing. We demonstrated that the effects of CdCl{sub 2} on the physical properties of CdTe films are similar, and independent of the deposition method. The recrystallization process is linked directly to the grain size and stress in the films. These studies indicated the feasibility of using lower-temperature processes in fabricating efficient CSS CdTe solar cells. We believe that, after the optimization of the parameters of the chemical treatment, these films can attain a quality similar to CSS films grown using current standard conditions. {copyright} {ital 1999 American Vacuum Society.}

  16. Influence of substrate temperature on structural and optical properties of bismuth oxide thin films deposited by close-spaced vacuum sublimation

    NASA Astrophysics Data System (ADS)

    Ivashchenko, M. M.; Buryk, I. P.; Latyshev, V. M.; Stepanenko, A. O.; Levchenko, K. S.

    2015-12-01

    Bi2O3 thin films were deposited on ultrasonically-cleaned glass and mica substrates by close-spaced vacuum sublimation technique. Films surface morphology was studied using scanning electron microscopy (SEM). Structural study based on the transmission-electron microscopy (TEM) and selected-area electron diffraction (SAED) analysis has been shown that deposited films were polycrystalline with face-centered cubic structure. Optical study was carried out by spectral photometry analysis in the wavelengths range λ = 320-900 nm using the optical transmittance and absorbance measurements. For determination optical band gap Eg the Tauc plot was used and the band gap energy Eg is determined in the range of 3.50-3.62 eV, respectively. Fourier-transform infra-red (FTIR) analysis shown that obtained films are well-crystalline and have a good optical quality.

  17. Towards an understanding of the molecular mechanism of solvation of drug molecules: a thermodynamic approach by crystal lattice energy, sublimation, and solubility exemplified by hydroxybenzoic acids.

    PubMed

    Perlovich, German L; Volkova, Tatyana V; Bauer-Brandl, Annette

    2006-07-01

    Temperature dependencies of saturated vapor pressure and heat capacities for the 2-, 3-, and 4-hydroxybenzoic acids were measured and thermodynamic functions of sublimation calculated (2-hydroxybenzoic acid: DeltaG(sub) (298) = 38.5 kJ/mol; DeltaH(sub) (298) = 96.6 +/- 0.8 kJ/mol; DeltaS(sub) (298) = 191 +/- 3 J/mol . K; 3-hydroxybenzoic acid: DeltaG(sub) (298) = 50.6 kJ/mol; DeltaH(sub) (298) = 105.2 +/- 0.8 kJ/mol; DeltaS(sub) (298) = 180 +/- 2 J/mol . K; 4-hydroxybenzoic acid: DeltaG(sub) (298) = 55.0 kJ/mol; DeltaH(sub) (298) = 113.3 +/- 0.7 kJ/mol; DeltaS(sub) (298) = 193 +/- 2 J/mol . K). Analysis of crystal lattice packing energies based on geometry optimization of the molecules in the crystal using diffraction data and the program Dmol(3) was carried out. The energetic contributions of van der Waals, Coulombic, and hydrogen bond terms to the total packing energy were analyzed. The fraction of hydrogen bond energy in the packing energy increases as: 3-hydroxybenzoic (29.7%) < 2-hydroxybenzoic (34.7%) < 4-hydroxybenzoic acid (42.0%). Enthalpies of evaporation were estimated from enthalpies of sublimation and fusion. Temperature dependencies of the solubility in n-octanol and n-hexane were measured. The thermodynamic functions of solubility and solvation processes were deduced. Specific and nonspecific solvation terms were distinguished using the transfer from the "inert" n-hexane to the other solvents. The transfer of the molecules from water to n-octanol is enthalpy driven process. PMID:16729271

  18. Life Testing of Yb14MnSb11 for High Performance Thermoelectric Couples

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah; Brandon, Erik; Caillat, Thierry; Ewell, Richard; Fleurial, Jean-Pierre

    2011-01-01

    The goal of this study is to verify the long term stability of Yb14MnSb11 for high performance thermoelectric (TE) couples. Three main requirements need to be satisfied to ensure the long term stability of thermoelectric couples: 1) stable thermoelectric properties, 2) stable bonding interfaces, and 3) adequate sublimation suppression. The efficiency of the couple is primarily based on the thermoelectric properties of the materials selected for the couple. Therefore, these TE properties should exhibit minimal degradation during the operating period of the thermoelectric couples. The stability of the bonding is quantified by low contact resistances of the couple interfaces. In order to ensure high efficiency, the contact resistances of the bonding interfaces should be negligible. Sublimation suppression is important because the majority of thermoelectric materials used for power generation have peak figures of merit at temperatures where sublimation rates are high. Controlling sublimation is also essential to preserve the efficiency of the couple. During the course of this research, three different life tests were performed with Yb14MnSb11 coupons. TE properties of Yb14MnSb11 exhibited no degradation after 6 months of aging at 1273K, and the electrical contact resistance between a thin metallization layer and the Yb14MnSb11 remained negligible after 1500hr aging at 1273K. A sublimation suppression layer for Yb14MnSb11 was developed and demonstrated for more than 18 months with coupon testing at 1273K. These life test data indicate that thermoelectric elements based on Yb14MnSb11 are a promising technology for use in future high performance thermoelectric power generating couples.

  19. Hysteresis and change of transition temperature in thin films of Fe{[Me2Pyrz]3BH}2, a new sublimable spin-crossover molecule

    NASA Astrophysics Data System (ADS)

    Davesne, V.; Gruber, M.; Studniarek, M.; Doh, W. H.; Zafeiratos, S.; Joly, L.; Sirotti, F.; Silly, M. G.; Gaspar, A. B.; Real, J. A.; Schmerber, G.; Bowen, M.; Weber, W.; Boukari, S.; Da Costa, V.; Arabski, J.; Wulfhekel, W.; Beaurepaire, E.

    2015-05-01

    Thin films of the spin-crossover (SCO) molecule Fe{[Me2Pyrz]3BH}2 (Fe-pyrz) were sublimed on Si/SiO2 and quartz substrates, and their properties investigated by X-ray absorption and photoemission spectroscopies, optical absorption, atomic force microscopy, and superconducting quantum interference device. Contrary to the previously studied Fe(phen)2(NCS)2, the films are not smooth but granular. The thin films qualitatively retain the typical SCO properties of the powder sample (SCO, thermal hysteresis, soft X-ray induced excited spin-state trapping, and light induced excited spin-state trapping) but present intriguing variations even in micrometer-thick films: the transition temperature decreases when the thickness is decreased, and the hysteresis is affected. We explain this behavior in the light of recent studies focusing on the role of surface energy in the thermodynamics of the spin transition in nano-structures. In the high-spin state at room temperature, the films have a large optical gap (˜5 eV), decreasing at thickness below 50 nm, possibly due to film morphology.

  20. Qualification of a sublimation tool applied to the case of metalorganic chemical vapor deposition of In2O3 from In(tmhd)3 as a solid precursor

    NASA Astrophysics Data System (ADS)

    Szkutnik, P. D.; Angélidès, L.; Todorova, V.; Jiménez, C.

    2016-02-01

    A solid delivery system consisting of a source canister, a gas management, and temperature controlled enclosure designed and manufactured by Air Liquide Electronics Systems was tested in the context of gas-phase delivery of the In(tmhd)3 solid precursor. The precursor stream was delivered to a thermal metalorganic chemical vapor deposition reactor to quantify deposition yield under various conditions of carrier gas flow and sublimation temperature. The data collected allowed the determination of characteristic parameters such as the maximum precursor flow rate (18.2 mg min-1 in specified conditions) and the critical mass (defined as the minimum amount of precursor able to attain the maximum flow rate) found to be about 2.4 g, as well as an understanding of the influence of powder distribution inside the canister. Furthermore, this qualification enabled the determination of optimal delivery conditions which allowed for stable and reproducible precursor flow rates over long deposition times (equivalent to more than 47 h of experiment). The resulting In2O3 layers was compared with those elaborated via pulsed liquid injection obtained in the same chemical vapor deposition chamber and under the same deposition conditions.

  1. Structural properties and dielectric function of graphene grown by high-temperature sublimation on 4H-SiC(000-1)

    SciTech Connect

    Bouhafs, C. Darakchieva, V.; Persson, I. L.; Persson, P. O. Å.; Yakimova, R.; Tiberj, A.; Paillet, M.; Zahab, A.-A.; Landois, P.; Juillaguet, S.; Schöche, S.; Schubert, M.

    2015-02-28

    Understanding and controlling growth of graphene on the carbon face (C-face) of SiC presents a significant challenge. In this work, we study the structural, vibrational, and dielectric function properties of graphene grown on the C-face of 4H-SiC by high-temperature sublimation in an argon atmosphere. The effect of growth temperature on the graphene number of layers and crystallite size is investigated and discussed in relation to graphene coverage and thickness homogeneity. An amorphous carbon layer at the interface between SiC and the graphene is identified, and its evolution with growth temperature is established. Atomic force microscopy, micro-Raman scattering spectroscopy, spectroscopic ellipsometry, and high-resolution cross-sectional transmission electron microscopy are combined to determine and correlate thickness, stacking order, dielectric function, and interface properties of graphene. The role of surface defects and growth temperature on the graphene growth mechanism and stacking is discussed, and a conclusion about the critical factors to achieve decoupled graphene layers is drawn.

  2. Structural and optical properties of AgAlTe{sub 2} layers grown on sapphire substrates by closed space sublimation method

    SciTech Connect

    Uruno, A. Usui, A.; Kobayashi, M.

    2014-11-14

    AgAlTe{sub 2} layers were grown on a- and c-plane sapphire substrates using a closed space sublimation method. Grown layers were confirmed to be single phase layers of AgAlTe{sub 2} by X-ray diffraction. AgAlTe{sub 2} layers were grown to have a strong preference for the (112) orientation on both kinds of substrates. The variation in the orientation of grown layers was analyzed in detail using the X-ray diffraction pole figure measurement, which revealed that the AgAlTe{sub 2} had a preferential epitaxial relationship with the c-plane sapphire substrate. The atomic arrangement between the (112) AgAlTe{sub 2} layer and sapphire substrates was compared. It was considered that the high order of the lattice arrangement symmetry probably effectively accommodated the lattice mismatch. The optical properties of the grown layer were also evaluated by transmittance measurements. The bandgap energy was found to be around 2.3 eV, which was in agreement with the theoretical bandgap energy of AgAlTe{sub 2}.

  3. [Spectral analyzing effects of atmosphere states on the structure and characteristics of CdTe polycrystalline thin films made by close-spaced sublimation].

    PubMed

    Zheng, Hua-jing; Zheng, Jia-gui; Feng, Liang-huan; Zhang, Jing-quan; Xie, Er-qing

    2005-07-01

    The structure and characteristics of CdTe thin films are dependent on the working atmosphere states in close-spaced sublimation. In the present paper, CdTe polycrystalline thin films were deposited by CSS in mixture atmosphere of argon and oxygen. The physical mechanism of CSS was analyzed, and the temperature distribution in CSS system was measured. The dependence of preliminary nucleus creation on the atmosphere states (involving component and pressure) was studied. Transparencies were measured and optic energy gaps were calculated. The results show that: (1) The CdTe films deposited in different atmospheres are cubic structure. With increasing oxygen concentration, a increases and reaches the maximum at 6% oxygen concentration, then reduces, and increases again after passing the point at 12% oxygen concentration. Among them, the sample depositing at 9% oxygen concentration is the best. The optic energy gaps are 1.50-1.51 eV for all CdTe films. (2) The samples depositing at different pressures at 9% oxygen concentration are all cubical structure of CdTe, and the diffraction peaks of CdS and SnO2:F still appear. With the gas pressure increasing, the crystal size of CdTe minishes, the transparency of the thin film goes down, and the absorption side shifts to the short-wave direction. (3) The polycrystalline thin films with high quality deposit in 4 minutes under the depositing condition that the substrate temperature is 550 degrees C, and source temperature is 620 degrees C at 9% oxygen concentration. PMID:16241058

  4. The Repression of the Sublime

    ERIC Educational Resources Information Center

    Haronian, Frank

    1977-01-01

    Psychosynthesis is one approach that strives to reach from the lower unconscious to the self, helping man to recognize his higher as well as his lower impulses, to accept the responsibility of deciding which to express and which to renounce, and to deal with the anxiety that is an inescapable aspect of the process of self-actualization. (Author)

  5. Transport phenomena in the close-spaced sublimation deposition process for manufacture of large-area cadmium telluride photovoltaic panels: Modeling and optimization

    NASA Astrophysics Data System (ADS)

    Malhotra, C. P.

    With increasing national and global demand for energy and concerns about the effect of fossil fuels on global climate change, there is an increasing emphasis on the development and use of renewable sources of energy. Solar cells or photovoltaics constitute an important renewable energy technology but the major impediment to their widespread adoption has been their high initial cost. Although thin-film photovoltaic semiconductors such as cadmium sulfide-cadmium telluride (CdS/CdTe) can potentially be inexpensively manufactured using large area deposition techniques such as close-spaced sublimation (CSS), their low stability has prevented them from becoming an alternative to traditional polycrystalline silicon solar cells. A key factor affecting the stability of CdS/CdTe cells is the uniformity of deposition of the thin films. Currently no models exist that can relate the processing parameters in a CSS setup with the film deposition uniformity. Central to the development of these models is a fundamental understanding of the complex transport phenomena which constitute the deposition process which include coupled conduction and radiation as well as transition regime rarefied gas flow. This thesis is aimed at filling these knowledge gaps and thereby leading to the development of the relevant models. The specific process under consideration is the CSS setup developed by the Materials Engineering Group at the Colorado State University (CSU). Initially, a 3-D radiation-conduction model of a single processing station was developed using the commercial finite-element software ABAQUS and validated against data from steady-state experiments carried out at CSU. A simplified model was then optimized for maximizing the steady-state thermal uniformity within the substrate. It was inferred that contrary to traditional top and bottom infrared lamp heating, a lamp configuration that directs heat from the periphery of the sources towards the center results in the minimum temperature

  6. Fabrication of quasi-superlattices at the interface between 3 C-SiC epitaxial layer and substrates of hexagonal SiC polytypes by sublimation epitaxy in vacuum

    NASA Astrophysics Data System (ADS)

    Lebedev, A. A.; Davydov, S. Yu.; Sorokin, L. M.; Shakhov, L. V.

    2015-12-01

    Transmission electron microscopy has been used to study the structure of a transition layer between a hexagonal substrate (6 H-SiC and 4 H-SiC) and a cubic silicon carbide layer grown by sublimation epitaxy in vacuum. It is shown by microdiffraction analysis that the transition layer with a thickness of 210 nm is constituted by alternating layers of cubic (3 C) and hexagonal (6 H) silicon carbide. It is demonstrated that 6 H-SiC/3 C-SiC and 4 H-SiC/3 C-SiC quasi-superlattices can be produced by this method.

  7. Space Suit Radiator Performance in Lunar and Mars Environments

    NASA Technical Reports Server (NTRS)

    Paul, Heather; Trevino, Luis; Nabity, James; Mason, Georgia; Copeland, Robert; Libberton, Kerry; Stephan, Ryan

    2007-01-01

    During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 3.48 lbs, an additional eight pounds of water are loaded into the unit of which about six to eight are sublimated and lost; this is the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the Astronaut during an EVA, we can significantly reduce the amount of expendable water consumed by the sublimator. Last year we reported on the design and initial operational assessment tests of our novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X). Herein, we report on tests conducted in the NASA Johnson Space Center Chamber E Thermal Vacuum Test Facility. Up to 800 Btu/h of heat were rejected in lunar and Mars environments with temperatures as cold as 150 F. Tilting the radiator did not cause an observable loss in performance. The RAFT-X endured freeze/thaw cycles and in fact, the heat exchanger was completely frozen three times without any apparent damage to the unit. We were also able to operate the heat exchanger in a partially frozen configuration to throttle the heat rejection rate from 530 Btu/h at low water flow rate down to 300 Btu/h. Finally, the deliberate loss of a single loop heat pipe only degraded the heat rejection performance by about 2 to 5%.

  8. Space Suit Radiator Performance in Lunar and Mars Environments

    NASA Technical Reports Server (NTRS)

    Nabity, James; Mason, Georgia; Copeland, Robert; Libberton, Kerry; Trevino, Luis; Stephan, Ryan; Paul, Heather

    2007-01-01

    During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 3.48 lbs, an additional eight pounds of water are loaded into the unit of which about six to eight are sublimated and lost; this is the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the Astronaut during an EVA, we can significantly reduce the amount of expendable water consumed by the sublimator. Last year we reported on the design and initial operational assessment tests of our novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X). Herein, we report on tests conducted in the NASA Johnson Space Center Chamber E Thermal Vacuum Test Facility. Up to 800 Btu/h of heat were rejected in lunar and Mars environments with temperatures as cold as -150 F. Tilting the radiator did not cause an observable loss in performance. The RAFT-X endured freeze / thaw cycles and in fact, the heat exchanger was completely frozen three times without any apparent damage to the unit. We were also able to operate the heat exchanger in a partially frozen configuration to throttle the heat rejection rate from 530 Btu/h at low water flow rate down to 300 Btu/h. Finally, the deliberate loss of a single loop heat pipe only degraded the heat rejection performance by about 2 to 5%.

  9. Computer modeling of thermoelectric generator performance

    NASA Technical Reports Server (NTRS)

    Chmielewski, A. B.; Shields, V.

    1982-01-01

    Features of the DEGRA 2 computer code for simulating the operations of a spacecraft thermoelectric generator are described. The code models the physical processes occurring during operation. Input variables include the thermoelectric couple geometry and composition, the thermoelectric materials' properties, interfaces and insulation in the thermopile, the heat source characteristics, mission trajectory, and generator electrical requirements. Time steps can be specified and sublimation of the leg and hot shoe is accounted for, as are shorts between legs. Calculations are performed for conduction, Peltier, Thomson, and Joule heating, the cold junction can be adjusted for solar radition, and the legs of the thermoelectric couple are segmented to enhance the approximation accuracy. A trial run covering 18 couple modules yielded data with 0.3% accuracy with regard to test data. The model has been successful with selenide materials, SiGe, and SiN4, with output of all critical operational variables.

  10. Hysteresis and change of transition temperature in thin films of Fe([Me{sub 2}Pyrz]{sub 3}BH){sub 2}, a new sublimable spin-crossover molecule

    SciTech Connect

    Davesne, V.; Gruber, M.; Studniarek, M.; Doh, W. H.; Zafeiratos, S.; Joly, L.; Schmerber, G.; Bowen, M.; Weber, W.; Boukari, S.; Da Costa, V.; Arabski, J.; Beaurepaire, E.; Sirotti, F.; Silly, M. G.; Gaspar, A. B.; Real, J. A. [Institut de Ciència Molecular , Universitat de València, C and others

    2015-05-21

    Thin films of the spin-crossover (SCO) molecule Fe([Me{sub 2}Pyrz]{sub 3}BH){sub 2} (Fe-pyrz) were sublimed on Si/SiO{sub 2} and quartz substrates, and their properties investigated by X-ray absorption and photoemission spectroscopies, optical absorption, atomic force microscopy, and superconducting quantum interference device. Contrary to the previously studied Fe(phen){sub 2}(NCS){sub 2}, the films are not smooth but granular. The thin films qualitatively retain the typical SCO properties of the powder sample (SCO, thermal hysteresis, soft X-ray induced excited spin-state trapping, and light induced excited spin-state trapping) but present intriguing variations even in micrometer-thick films: the transition temperature decreases when the thickness is decreased, and the hysteresis is affected. We explain this behavior in the light of recent studies focusing on the role of surface energy in the thermodynamics of the spin transition in nano-structures. In the high-spin state at room temperature, the films have a large optical gap (∼5 eV), decreasing at thickness below 50 nm, possibly due to film morphology.

  11. Performativity, Performance and Education

    ERIC Educational Resources Information Center

    Locke, Kirsten

    2015-01-01

    This article explores Lyotard's notion of performativity through an engagement with McKenzie's analysis of performance as a "formation of knowledge and power" that has displaced the notion of discipline as the tool for social evaluation. Through conditions of "performance" capitalism, education is to conform to a…

  12. Core-shell-like Y2O3:[(Tb3+-Yb3+), Li+]/CdZnS heterostructure synthesized by super-close-space sublimation for broadband down-conversion

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojie; Zhang, Zhenzhong; Meng, Fanzhi; Yu, Yingning; Han, Lin; Liu, Xiaojuan; Meng, Jian

    2014-04-01

    Combination with semiconductors is a promising approach to the realization of broadband excitation of light conversion materials based on rare earth compounds, to boost the energy efficiency of silicon solar cells. Cd1-xZnxS is a wide bandgap semiconductor with large exciton binding energy. By changing its composition, the bandgap of Cd1-xZnxS can be tuned to match the absorption of trivalent lanthanide (Ln) ions, which makes it a competent energy donor for the Ln3+-Yb3+ couple. In this work, we designed a clean route to a broadband down-converter based on a core-shell-like Y2O3:[(Tb3+-Yb3+), Li+]/Cd0.81Zn0.19S (CdZnS) heterostructure. By hot-pressing and subsequent annealing of a Y2O3:[(Tb3+-Yb3+), Li+]/CdZnS mixture, highly pure CdZnS was sublimated and deposited on the Y2O3:[(Tb3+-Yb3+), Li+] grains while maintaining the original composition of the precursor. The CdZnS shell acted as a light absorber and energy donor for the Tb3+-Yb3+ quantum cutting couple. Because the use of solvents was avoided during the formation of the heterostructures, few impurities were incorporated into the samples, and the non-radiative transition was therefore markedly suppressed. The Y2O3:[(Tb3+-Yb3+), Li+]/CdZnS heterostructures possess strong near-infrared (NIR) luminescence from Yb3+. Broadband down-conversion to the Yb3+ NIR emission was obtained in a wide range of 250-650 nm.

  13. Sequencing of new beauverolides by high-performance liquid chromatography and mass spectrometry.

    PubMed

    Kuzma, M; Jegorov, A; Kacer, P; Havlícek, V

    2001-10-01

    Mass spectrometry (MS) and tandem mass spectrometry (MS(n)) were used for the identification of beauverolides in the fermentation broth of Beauveria bassiana and for evaluation of the purified fraction obtained by sublimation of beauverolides. Besides being a new efficient route for purification of beauverolides, sublimation provided an enrichment of new minor lipophilic beauverolides of lower molecular weight from the original complex mycelial extract. The product ion collision-induced dissociation (CID) spectra obtained on an ion trap (electrospray ionization), the in-source CID mass spectra on a sector instrument (atmospheric-pressure chemical ionization) and the post-source decay matrix-assisted laser desorption/ionization mass spectra of beauverolides were compared and evaluated. All MS(n) experiments started with singly charged precursor ions. The following two new representatives of this group of compounds were identified by high-performance liquid chromatography and MS (HPLC/MS): cyclo-(3-hydroxy-4-methyloctanoyl-valyl-alanyl-leucyl) and cyclo-(3-hydroxy-4-methyloctanoyl-tyrosyl-alanyl-leucyl). Individual structures were confirmed by preparative isolation and nuclear magnetic resonance spectroscopy. The structure of a third novel and minor beauverolide was tentatively assigned by HPLC/MS only as cyclo-(3-hydroxy-4-methyldecanoyl-valyl-alanyl-Lxx), Lxx = leucyl, isoleucyl, or allo-isoleucyl. PMID:11747104

  14. Sublimation of Iodine at Various Pressures

    ERIC Educational Resources Information Center

    Leenson, Ilya A.

    2005-01-01

    Various phenomena that are observed in the process of heating solid iodine in closed vessels at different pressures and temperatures are described. When solid iodine is heated in an evacuated ampoule where the pressure is less than 10(super -3), no noticeable color appears and immediate condensation of tiny iodine crystals is visible higher up on…

  15. Sublimation-Condensation of Multiscale Tellurium Structures

    SciTech Connect

    Riley, Brian J.; Johnson, Bradley R.; Schaef, Herbert T.; Sundaram, S. K.

    2013-03-11

    This paper presents a simple technique for making tellurium (Te) nano and microtubes of widely varying dimensions with Multi-Scale Processing (MSP). In this process, the Te metal is placed in a reaction vessel (e.g., borosilicate or fused quartz), the vessel is evacuated, and then sealed under vacuum with a torch. The vessel is heat-treated in a temperature gradient where a portion of the tube that can also contain an additional substrate, is under a decreasing temperature gradient. Scanning and transmission electron microscopies have shown that multifaceted crystalline tubes have been formed extending from nano- up to micron-scale with diameters ranging from 51.2 ± 5.9 to 1042 ± 134 nm between temperatures of 157 and 224 °C, respectively. One-dimensional tubular features are seen at lower temperatures, while three-dimensional features, at the higher temperatures. These features have been characterized with X-ray diffraction and found to be trigonal Te with space group P3121. Our results show that the MSP can adequately be described using a simple Arrhenius equation.

  16. NO reduction using sublimation of cyanuric acid

    DOEpatents

    Perry, R.A.

    1993-01-19

    A method of reducing the NO content of a gas stream comprises contacting the gas stream with an amount of HNCO at a temperature effective for heat-induced decomposition of HNCO, said amount and temperature being effective for resultant lowering of the NO content of the gas stream, said solid agent being particulate and having a particle size of less than 90 [mu]m.

  17. No reduction using sublimation of cyanuric acid

    DOEpatents

    Perry, Robert A.

    1993-01-01

    A method of reducing the NO content of a gas stream comprises contacting the gas stream with an amount of HNCO at a temperature effective for heat-induced decomposition of HNCO, said amount and temperature being effective for resultant lowering of the NO content of the gas stream, said solid agent being particulate and having a particle size of less than 90 .mu.m.

  18. Disorders, sublime menu: the DSM-5.

    PubMed

    Sullivan, Danny

    2013-09-01

    The release of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) is the culmination of a long and remarkably public discussion which was accompanied by a great deal of controversy. Diagnostic criteria for many disorders have changed, the structure of the DSM is different, and there remain significant concerns about the forensic application of the DSM. This column briefly covers the primary changes and summarises the debate about various diagnoses, with a particular focus on diagnoses of relevance to medico-legal psychiatry and the legal system. Underlying concerns about the validity of diagnostic criteria and their applicability to forensic issues are discussed. Concerns about the DSM-5 are not only due to the specific diagnoses and their criteria, but the methodology of checklist criteria. This is amplified in medico-legal settings, but is also in part necessary. Clinicians, lawyers, and judges will all need to think carefully about how they use the DSM and its ilk in forensic settings. PMID:24218779

  19. NO reduction using sublimation of cyanuric acid

    DOEpatents

    Perry, R.A.

    1996-05-21

    A method of reducing the NO content of a gas stream comprises contacting the gas stream with an amount of HNCO at a temperature effective for heat-induced decomposition of cyanuric acid, said amount and temperature being effective for the resultant lowering of the NO content of the gas stream, said cyanuric acid being particulate and having a particle size of less than 90 {micro}m. 1 fig.

  20. Performance, Performance System, and High Performance System

    ERIC Educational Resources Information Center

    Jang, Hwan Young

    2009-01-01

    This article proposes needed transitions in the field of human performance technology. The following three transitions are discussed: transitioning from training to performance, transitioning from performance to performance system, and transitioning from learning organization to high performance system. A proposed framework that comprises…

  1. Freeze-drying for morphological control of high performance semi-interpenetrating polymer networks. III

    NASA Technical Reports Server (NTRS)

    Hsiung, H. J.; Hansen, M. G.; Pater, R. H.

    1991-01-01

    The feasibility of using a freeze-drying (solvent removal by sublimation) approach for controlling the morphology of a high-performance semi-IPN is assessed. A high-performance thermoplastic polyimide and commercially available 4,4'-bismaleimide diphenylenemethane were dissolved in a solvent, 1,3,5-trioxane. The solvent was removed from the constituents by freeze-drying. For purposes of comparison, the constituents were dissolved in a high-boiling-point solvent, N,N-dimethylformamide. The solvent was removed from the solution by evaporation. The physical and mechanical properties and phase morphology of the neat resins and composites prepared by freeze-drying and traditional solution methods are presented and compared. It is concluded that the TG is higher and that the magnitude of minor constituent separation is less in the freeze-dry processed materials than for the processed solution.

  2. Performance Matters

    ERIC Educational Resources Information Center

    Miller-Day, Michelle

    2008-01-01

    After being told in an end-of-year job review that performances are not considered valuable research outcomes, the author argues in this essay that performance matters. This essay makes a case for recognizing performance ethnographies as research, pedagogy, and active service and concludes with guidelines for performance ethnographers who are…

  3. Lyotard's Performance

    ERIC Educational Resources Information Center

    Usher, Robin

    2006-01-01

    Starting with Lyotard's characterisation of postmodernity as incredulity, this is related to another of his key concepts--that of "performativity". Lyotard appears to deploy performativity to characterise those technologies that bring about the optimisation of efficient performance. However, there is another sense of performativity where it is…

  4. Peak Performance.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2003-01-01

    Discusses the benefits of high-performance schools, which enhance the learning environment for students while saving energy, resources, and money. Describes initiatives of the Collaborative for High Performance Schools and the high-performance design of Carleton College in Minnesota. (EV)

  5. Performance Improvement.

    ERIC Educational Resources Information Center

    1996

    This document contains four papers presented at a symposium on performance improvement moderated by Edward Schorer at the 1996 conference of the Academy of Human Resource Development (AHRD) "The Organizational Ecology of Ethical Problems: International Case Studies in the Light of HPT [Human Performance Technology]" (Peter J. Dean, Laurence…

  6. Performance Contracting.

    ERIC Educational Resources Information Center

    Allen, Tom

    The management team at Minooka (Illinois) School District 201 is actively pursuing school improvement measures by establishing Performance Contracts to increase productivity. The format of the Performance Contract highlights yearly short-term and long-term goals, which are presented in the form of Job Improvement Targets stating the goal itself, a…

  7. Pilot performance

    NASA Technical Reports Server (NTRS)

    Nicholls, Jennifer

    1988-01-01

    For many years, the emphasis has been placed on the performance of the aircraft, rather than on those who fly the aircraft. This is largely due to the relative safety of flying. Just in the last few years there have been several major accidents that have shown that flying is not quite as safe as it was thought to be. Sixty-five percent of these accidents are a result of pilot performance decrements, and so it is obvious that there is a need to reduce that figure. A study has been mandated to evaluate the performance of pilots. This includes workload, circadium rhythms, jet lag, and any other factors which might affect a pilot's performance in the cockpit. The purpose of this study is to find out when and why the decrement in a pilot's performance occur and how to remedy the situation.

  8. Device Performance

    SciTech Connect

    Not Available

    2006-06-01

    In the Device Performance group, within the National Center for Photovoltaic's Measurements and Characterization Division, we measure the performance of PV cells and modules with respect to standard reporting conditions--defined as a reference temperature (25 C), total irradiance (1000 Wm-2), and spectral irradiance distribution (IEC standard 60904-3). Typically, these are ''global'' reference conditions, but we can measure with respect to any reference set. To determine device performance, we conduct two general categories of measurements: spectral responsivity (SR) and current versus voltage (I-V). We usually perform these measurements using standard procedures, but we develop new procedures when required by new technologies. We also serve as an independent facility for verifying device performance for the entire PV community. We help the PV community solve its special measurement problems, giving advice on solar simulation, instrumentation for I-V measurements, reference cells, measurement procedures, and anomalous results. And we collaborate with researchers to analyze devices and materials.

  9. Performance tests.

    PubMed

    Wetherell, A

    1996-04-01

    This paper discusses the use of psychological performance tests to assess the effects of environmental stressors. The large number and the variety of performance tests are illustrated, and the differences between performance tests and other psychological tests are described in terms of their design, construction, use, and purpose. The stressor emphasis is on the effects of drugs since that is where most performance tests have found their main application, although other stressors, e.g., fatigue, toxic chemicals, are mentioned where appropriate. Diazepam is used as an example. There is no particular performance emphasis since the tests are intended to have wide applicability. However, vehicle-driving performance is discussed because it has been the subject of a great deal of research and is probably one of the most important areas of application. Performance tests are discussed in terms of the four main underlying models--factor analysis, general information processing, multiple resource and strategy models, and processing-stage models--and in terms of their psychometric properties--sensitivity, reliability, and content, criterion, construct, and face validity. Some test taxonomies are presented. Standardization is also discussed with reference to the reaction time, mathematical processing, memory search, spatial processing, unstable tracking, verbal processing, and dual task tests used in the AGARD STRES battery. Some comments on measurement strengths and appropriate study designs and methods are included. PMID:9182033

  10. Performance tests.

    PubMed Central

    Wetherell, A

    1996-01-01

    This paper discusses the use of psychological performance tests to assess the effects of environmental stressors. The large number and the variety of performance tests are illustrated, and the differences between performance tests and other psychological tests are described in terms of their design, construction, use, and purpose. The stressor emphasis is on the effects of drugs since that is where most performance tests have found their main application, although other stressors, e.g., fatigue, toxic chemicals, are mentioned where appropriate. Diazepam is used as an example. There is no particular performance emphasis since the tests are intended to have wide applicability. However, vehicle-driving performance is discussed because it has been the subject of a great deal of research and is probably one of the most important areas of application. Performance tests are discussed in terms of the four main underlying models--factor analysis, general information processing, multiple resource and strategy models, and processing-stage models--and in terms of their psychometric properties--sensitivity, reliability, and content, criterion, construct, and face validity. Some test taxonomies are presented. Standardization is also discussed with reference to the reaction time, mathematical processing, memory search, spatial processing, unstable tracking, verbal processing, and dual task tests used in the AGARD STRES battery. Some comments on measurement strengths and appropriate study designs and methods are included. PMID:9182033

  11. Performance Support for Performance Analysis

    ERIC Educational Resources Information Center

    Schaffer, Scott; Douglas, Ian

    2004-01-01

    Over the past several years, there has been a shift in emphasis in many business, industry, government and military training organizations toward human performance technology or HPT (Rossett, 2002; Dean, 1995). This trend has required organizations to increase the human performance knowledge, skills, and abilities of the training workforce.…

  12. Compressor performance

    SciTech Connect

    Gresh, M.T.

    1990-01-01

    This book provides information on the selection, operation, testing, and aerodynamic maintenance of axial and centrifugal compressors. Coverage includes design information, gas properties data, flow meter calculation, and troubleshooting guidelines. Design parameters are covered to provide the user with the basic how and why of compressor design. The many example problems along with reference data furnished will provide easy analysis of compressor performance.

  13. Good Performers

    ERIC Educational Resources Information Center

    Bennett, Bob

    2009-01-01

    Soaring energy prices and tightening school budgets don't mix well. In fact, millions of children across the United States are being educated in energy-leaking, unhealthful facilities in dire need of physical upgrade and systems modernization. Increasing numbers of K-12 districts and institutions of higher learning are turning to performance-based…

  14. Performing Resistance

    ERIC Educational Resources Information Center

    Garoian, Charles R.; Gaudelius, Yvonne M.

    2004-01-01

    Many contemporary artists, critical theorists, and educators challenge the cultural assumptions that are embedded in our understandings of technology and its relationship to art, the body, and human life. In this article, we discuss the performance artworks of osseus labyrint, Goat Island, and Guillermo Gomez-Pena, Roberto Sifuentes, and Juan…

  15. Performance Testing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Systems Technology, Inc., Hawthorne, CA, developed an electronic Critical Tracking Task (CTT) system that analyzes and rates a subject's visual/motor responses for Ames Research Center. Originally applied to measuring the effects of long term confinement in the mid 1960's, the CTT system is now marketed as FACTOR 1000 by Performance Factors, Inc. Alameda, CA, under a licensing agreement with Systems Technology. The system is a non-invasive, self-administered test that takes less than a minute and detects impairment from a broad range of causes, including stress, fatigue, illness, drugs, or alcohol. It is used daily by Old Town Trolley Tours, San Diego, CA, to assess each driver's physical coordination skills prior to the start of each shift. FACTOR 1000 reduces liabilities and costs related to accidents, and costs less than one dollar per day per employee. Performance Factors is now BioFactors, Inc.

  16. Performance Assessment: Lessons from Performers

    ERIC Educational Resources Information Center

    Parkes, Kelly A.

    2010-01-01

    The performing arts studio is a highly complex learning setting, and assessing student outcomes relative to reliable and valid standards has presented challenges to this teaching and learning method. Building from the general international higher education literature, this article illustrates details, processes, and solutions, drawing on…

  17. Pay for Performance: Whose Performance?

    ERIC Educational Resources Information Center

    Tienken, Christopher H.

    2011-01-01

    Education reform proposals are not in short supply. Recent issues of the "Kappa Delta Pi Record" examined two of these: Common Core State Standards (Winter 2011) and Charter Schools (Spring 2011). Teacher pay for performance is another policy gaining traction in state legislatures and at the federal level. The Race to the Top (RTTT) federal grant…

  18. Performance of Water Recirculation Loop Maintenance Components for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a recirculating control loop which had no water quality maintenance. Results show that periodic water maintenance can improve performance of the SWME. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage of this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the evaluation of water recirculation maintenance components was to enhance the robustness of the SWME through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A patented bed design that was developed for a United Technologies Aerospace System military application provided a low pressure drop means for water maintenance in the SWME recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for the ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  19. The effect of elemental and hydrocarbon impurities on mercuric iodide gamma ray detector performance

    NASA Astrophysics Data System (ADS)

    Cross, Eilene S.; Buffleben, George; Soria, Ed; James, Ralph; Schieber, Michael; Natarajan, Raj; Gerrish, Vern

    Mercuric iodide is a room temperature semiconductor material that is used for gamma ray and x-ray radiation detection. Mercuric iodide is synthesized from mercuric chloride and potassium iodide and is then purified by a series of melts and sublimation steps and by zone refining. The mercuric iodide is grown into crystals and platelets and then fabricated into detectors. Elemental contamination may be a determining factor in the performance of these detectors. These contaminates may be present in the starting material or may be introduced during, or be unaffected by, the purification, growth or fabrication steps. Methods have been developed for the analysis of trace levels of elemental contamination. Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS), Inductively Coupled Plasma/Optical Emission Spectroscopy (ICP/OES) and Gas Chromatography/Mass Spectroscopy (GC/MS) are used to determine sub ppm levels of many trace elemental impurities. Trace levels of many elemental impurities in the raw mercuric iodide are significantly reduced during the purification and zone refining processes. Though the levels of impurities are reduced, poor performing mercuric iodide detectors have contamination levels remaining or reintroduced which are higher for Ag, Al, Ca, Cu, Mg, Mn, Na, Pb and Zn than detectors with good gamma ray response. This paper will discuss the analytical methodology, the effects of purification on impurity levels, and the correlation between detector performance and impurity levels.

  20. Vaporizer performance

    NASA Astrophysics Data System (ADS)

    Liu, C. H.; Perez-Ortiz, B. M.; Whitelaw, J. H.

    This paper examines the nature of the flow leaving a vaporizer, its dependence on the flowrates of air and kerosene fuel, the inlet air temperature, and the possible consequences for the performance of a combustor fueled by the vaporizer. A phase Doppler velocimeter was used to examine the distribution of droplet diameters, velocities of the droplets, and the liquid-fuel flux at the exit. Measurements are also reported which show the nature of the two-phase flow away from the vaporizer exits and in important regions within a combustor corresponding to a one-sixth annular sector of a reverse-flow arrangement. The distribution of droplets within the combustor was observed and photographs of the combusting flow are presented.

  1. Transient performance

    NASA Astrophysics Data System (ADS)

    Curnock, Barry

    Gas turbine engine transient behavior, that which is concerned with the changes in engine parameters during acceleration or decceleration of an engine from one steady state point to a different steady state point, is considered. An engine can also experience cyclic aerodynamic phenomena which occur at a nominally steady condition; examples are compressor rotator stall and intake or afterburner buzz. The following are discussed: certification requirements; mechanism of acceleration; compressor working lines and surge; and some important factors (pressure level, moment of inertia, heat soakage, clearances, measurement of transients, thrust reversal, and transient maneuvers which involve significant changes to the shaft speeds of the engine). A set of graphics illustrating transient performance is presented.

  2. Study protocol for a double blind, randomised, placebo-controlled trial of continuous subpectoral local anaesthetic infusion for pain and shoulder function following mastectomy: SUB-pectoral Local anaesthetic Infusion following MastEctomy (SUBLIME) study

    PubMed Central

    Langford, R; Brown, I; Vickery, J; Mitchell, K; Pritchard, C; Creanor, S

    2014-01-01

    Introduction Over 16 000 mastectomies are performed in England and Wales annually. Acute postoperative pain and nausea are common. The most frequently occurring long-term complications are chronic pain (up to 50%) and reduced shoulder function (reported at 35%). Regional techniques that improve acute postoperative pain relief may reduce the incidence of these complications. This study assesses the effectiveness of a 24-hour continuous local anaesthetic in the subpectoral plane in improving postoperative pain and quality of life in patients undergoing mastectomy. Methods and analysis This is a randomised, double blind, placebo-controlled, two-centre, parallel group trial in women undergoing mastectomy with or without axillary involvement. One hundred and sixty participants will be randomised in a 1:1 ratio to receive either 0.25% levobupivacaine or 0.9% saline by subpectoral infusion postoperatively for 24 h. All participants will be provided with an intravenous morphine patient-controlled analgesia (PCA) system. Participants will be followed-up for 24 h in hospital and at approximately 14 days and 6 months postoperatively. Joint primary outcome measures are total morphine consumption and total pain score (captured via patient-recorded visual analogue scale (VAS) 4 hourly) during the first 24 h postoperatively. Primary statistical analysis of total pain is based on the area under the curve of pain versus time graph. Secondary outcomes include PCA attempts in first 24 h; VAS pain scores and shoulder function by goniometry at 24 h, 14 days (approximately) and 6 months; Verbal Rating Scale pain scores in first 24 h; Brief Pain Inventory and Oxford Shoulder Score at 6 months; duration of hospital stay; incidence of postoperative nausea and vomiting; cost-effectiveness. Ethics and dissemination The study is approved by the South West England Research Ethics Committee (12/SW/0149). Results will be published in a peer-reviewed journal and presented

  3. Performance and operational analysis of a liquid desiccant open-flow solar collector

    NASA Astrophysics Data System (ADS)

    Grodzka, P. G.; Rico, S. S.

    1982-10-01

    Theoretical predictions of the heat and mass transfer in an open flow solar collector used in conjunction with an absorption chiller are compared with performance data from a rooftop system. The study focuses on aqueous solutions of a hygroscopic salt, e.g., LiCl, flowing continuously over a solar absorbing surface. Water in the solution sublimes to a region of lower vapor pressure, i.e., the atmosphere. Direction of the water-depleted dessiccant to a storage volume and then to circulation around an evaporator unit permits operation of a solar-powered air conditioner. A closed form solution was defined for the heat and mass transfer, along with a finite difference solution. The system studied comprised a sloped roof top with 2500 sq ft of asphalt shingles, collector pipes beneath the shingles, and two 500 gal storage tanks. Relatively good agreement was found between the models and the recorded data, although some discrepancies were present when considering temperatures and performance at specific times of day. The measured 30-40% efficiencies indicated that further development of the system is warranted.

  4. The Sublime and Depictions of Violence in Some Contemporary Artworks

    ERIC Educational Resources Information Center

    Johnson, Gearold; McKee, Patrick; Ragouzis, Perry

    2009-01-01

    Images of extreme and ever more graphic violence are a part of contemporary culture. Since students cannot avoid them, such images should be addressed by aesthetic educators. But this will require a theory for the analysis and evaluation of the aesthetic properties of violent imagery. The main thesis of this essay is that depiction of violence in…

  5. The Sublime Objects of Education Policy: Quality, Equity and Ideology

    ERIC Educational Resources Information Center

    Clarke, Matthew

    2014-01-01

    Quality and equity are touchstones of education policy in the twenty-first century in a range of global contexts. On the surface, this seems fitting: after all, who could object to more quality and greater equity in education? Yet what do we mean by quality and equity, and how are they related? This paper draws on Lacanian psychoanalytic theory to…

  6. SEPARATION OF NEPTUNIUM FROM PLUTONIUM BY CHLORINATION AND SUBLIMATION

    DOEpatents

    Fried, S.M.

    1958-11-18

    A process is described for separating neptunium from plutonium. The method consists in chlorinating a mixture of the oxides of Np and Pu by contacting the mixture with carbon tetrachloride at about 500 icient laborato C. ln this manner the Np is converted to the tetrachlorlde and the Pu converted to the trichloride. Since NpCl/sub 4/ is more latile than PuCl/sub 3/, the separation ls effected by vaporing sad subsequently condenslng the NpCl/sub 4/.

  7. Method of Suppressing Sublimation in Advanced Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey S. (Inventor); Caillat, Thierry (Inventor); Fleurial, Jean-Pierre (Inventor); Snyder, G. Jeffrey (Inventor)

    2009-01-01

    A method of applying a physical barrier to suppress thermal decomposition near a surface of a thermoelectric material including applying a continuous metal foil to a predetermined portion of the surface of the thermoelectric material, physically binding the continuous metal foil to the surface of the thermoelectric material using a binding member, and heating in a predetermined atmosphere the applied and physically bound continuous metal foil and the thermoelectric material to a sufficient temperature in order to promote bonding between the continuous metal foil and the surface of the thermoelectric material. The continuous metal foil forms a physical barrier to enclose a predetermined portion of the surface. Thermal decomposition is suppressed at the surface of the thermoelectric material enclosed by the physical barrier when the thermoelectric element is in operation.

  8. Emerson's "Nature" as an Early Manifestation of the Biological Sublime

    ERIC Educational Resources Information Center

    Tindol, Robert

    2013-01-01

    Ralph Waldo Emerson's first essay, "Nature," has been viewed as a reconciliation of the world of nature with the world of mind. A close analysis shows that Emerson was in fact attempting to come to terms with human fragility in a unique way by delineating the point at which the worldly and the transcendental are demarcated. Because…

  9. HiRISE observations of gas sublimation-driven activity

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Hansen, C. J.; Portyankina, G.; Russell, P. S.; Bridges, N. T.

    2009-04-01

    The High Resolution Imaging Science Experiment (HiRISE) onboard Mars Reconnaissance Orbiter (MRO) has been used to monitor the seasonal evolution of several regions at high southern latitudes and, in particular, the geyser-like activity which may result from the process described by Kieffer [JGR, 112, 8005, 2007] involving translucent CO2 ice. Here, we mostly concentrate on observations of the Inca City (81S, 296E) region. The observations indicate rapid on-set of activity at the beginning of southern spring with activity initiating before HiRISE can obtain adequately illuminated images (Ls < 174 at Inca City). Most sources became active within the subsequent 8 weeks. Activity is indicated by the production of dark deposits surrounded by brighter bluer deposits which probably arise from the freezing out of vented CO2 [Titus et al., AGU Abstract P41A-0188, 2007]. These deposits originate from araneiform structures (spiders), stones on ridges, cracks on slopes, and along linear cracks in the slab ice on flatter surfaces. The type of activity observed can often be explained qualitatively by considering the local topography. Some dark fans were observed to shorten enormously in length on a timescale of 18 days. We consider this to be strong evidence that emission was in progress at the time of HiRISE image acquisition. The orientations of surficial deposits were mostly topographically controlled in Inca City in 2007. The deposition of dark material also appeared to be influenced by local topography suggesting that the ejection from the vents was at low velocity (<10 m/s) and that a ground-hugging flow type process (a sort of "cryo-fumarole") may have been occurring. The presentation will illustrate the above features and make a first comparison between activity separated by one full Martian year. Our first observations indicate a stronger influence of wind in 2009.

  10. Method and apparatus for cutting and abrading with sublimable particles

    DOEpatents

    Bingham, D.N.

    1995-10-10

    A gas delivery system provides a first gas as a liquid under extreme pressure and as a gas under intermediate pressure. Another gas delivery system provides a second gas under moderate pressure. The second gas is selected to solidify at a temperature at or above the temperature of the liquefied gas. A nozzle assembly connected to the gas delivery systems produces a stream containing a liquid component, a solid component, and a gas component. The liquid component of the stream consists of a high velocity jet of the liquefied first gas. The high velocity jet is surrounded by a particle sheath that consists of solid particles of the second gas which solidifies in the nozzle upon contact with the liquefied gas of the high velocity jet. The gas component of the stream is a high velocity flow of the first gas that encircles the particle sheath, forming an outer jacket. 6 figs.

  11. Method and apparatus for cutting and abrading with sublimable particles

    DOEpatents

    Bingham, Dennis N.

    1995-01-01

    A gas delivery system provides a first gas as a liquid under extreme pressure and as a gas under intermediate pressure. Another gas delivery system provides a second gas under moderate pressure. The second gas is selected to solidify at a temperature at or above the temperature of the liquified gas. A nozzle assembly connected to the gas delivery systems produces a stream containing a liquid component, a solid component, and a gas component. The liquid component of the stream consists of a high velocity jet of the liquified first gas. The high velocity jet is surrounded by a particle sheath that consists of solid particles of the second gas which solidifies in the nozzle upon contact with the liquified gas of the high velocity jet. The gas component of the stream is a high velocity flow of the first gas that encircles the particle sheath, forming an outer jacket.

  12. Vocal Warm-Ups: From the Sublime to the Ridiculous.

    ERIC Educational Resources Information Center

    Briggs, Robert

    2000-01-01

    Recommends using "activation exercises," or warm-ups, to awaken students' voices, minds, and breathing mechanisms when singing choral music. Describes three activation exercises: (1) plainchant melodies; (2) the five-note scale; and (3) tongue twisters sung to melodies or scale patterns. Explains why the first and third exercises work. (CMK)

  13. A Sense Sublime: Mapping the Journey, Engaging the Mess.

    ERIC Educational Resources Information Center

    Stringer, Allison

    2000-01-01

    Definitions of spirituality do not fit in the standard packaging of science. Holistic education that acknowledges the interconnectedness of mind, body, and spirit is better suited for the exploration of spirituality. Experiential education needs to shift from trying to create spirituality for people, to providing the space and environment for…

  14. Semiconductor surface sublimation energies and atom-atom interactions

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Srinivasan; Berding, M. A.; Sher, A.; Chen, A.-B.

    1990-01-01

    The energy required to remove an atom from semiconductor surfaces is calculated using a Green's-function approach. Contrary to intuition, it is found that, in some cases, less energy is needed to remove an atom from the nearly full surface than from a nearly empty surface. The results are explained in terms of the relative energies of anion and cation dangling bonds, and the charge transfers between them. The deducted effective pair-interaction energies and their effects on surface morphology and growth perfection are discussed.

  15. Effect of Freezing on Lyophilization Process Performance and Drug Product Cake Appearance.

    PubMed

    Esfandiary, Reza; Gattu, Shravan K; Stewart, John M; Patel, Sajal M

    2016-04-01

    This study highlights the significance of the freezing step and the critical role it can play in modulating process performance and product quality during freeze-drying. For the model protein formulation evaluated, the mechanism of freezing had a significant impact on cake appearance, a potential critical product quality attribute for a lyophilized drug product. Contrary to common knowledge, a freezing step with annealing resulted in 20% increase in primary drying time compared to without annealing. In addition, annealing resulted in poor cake appearance with shrinkage, cracks, and formation of a distinct skin at the top surface of the cake. Finally, higher product resistance (7.5 cm(2).Torr.hr/g) was observed in the case of annealing compared to when annealing was not included (5 cm(2).Torr.hr/g), which explains the longer primary drying time due to reduced sublimation rates. An alternative freezing option using controlled ice nucleation resulted in reduced primary drying time (i.e., 30% reduction compared to annealing) and a more homogenous batch with elegant uniform (i.e., significantly improved) cake appearance. Here, a mechanistic understanding of the distinct differences in cake appearance as a function of freezing mechanism is proposed within the context of ice nucleation temperature, ice crystal growth, and presumed solute distribution within the frozen matrix. PMID:27019959

  16. Performance of Pain, Performance of Beauty

    ERIC Educational Resources Information Center

    Thompson, James

    2006-01-01

    "Performance of pain, performance of beauty" explores performance projects in war zones using Elaine Scarry's definitions of "pain" and "beauty" as a starting point. The way in which pain constricts the body and the experience that beauty can take a person beyond the body become a contested framework for considering two examples of performance.…

  17. Impact of the snow cover estimation method on the Snowmelt Runoff Model performance in the moroccan High Atlas Mountains

    NASA Astrophysics Data System (ADS)

    Boulet, G.; Boudhar, A.; Hanich, L.; Duchemin, B.; Chehbouni, G.; Berjamy, B.

    2009-04-01

    In the centre of Morocco, the High-Atlas range represents the most important water storage for the neighbouring arid plains through liquid but also solid precipitation. Snow in this mountain may represent an important source of water for downstream populations especially in spring and early summer. Therefore, monitoring efficiently the evolution of snow cover and snow depth is essential to properly managing the water resources of this region. In this context, five main tributary watersheds of the High-Atlas range were selected to evaluate the performance of the Snowmelt Runoff Modelling model using snow maps obtained from the SPOT-VGT satellite as input data. Before identifying the optimal parameters of the model in a systematic calibration procedure, a parameter sensitivity analysis and an investigation of the eventual equifinality problems are discussed. Calibration is performed in 2005 during the main snowfall/snowmelt season (from January 1 to May 31) and validation is carried out for the same season between 2002 and 2005. In order to quantify the added-value of remotely sensed snow cover extent, streamflow is simulated using SRM together with two Snow Cover Area (SCA) estimates: SCA estimated from remote sensing data, and SCA generated from scarce meteorological data, using a simple degree day method. Snow depletion curves developed from both methods were generally comparable in all watersheds, and satisfactory streamflow simulations were obtained at annual timescales using both snow-cover products. However, using snow cover information derived from remote sensing data can significantly improve streamflow prediction for individual interstorm periods were rainfall events are not observed by the network raingauges mostly located in the lower altitude, or when the temperature lapse rate is badly estimated. Finally, it was shown from the calibrated SRM model that roughly 25 % of streamflow arriving from the North sides of High Atlas is derived from snowmelt. In

  18. Nickel Hydroxide-Modified Sulfur/Carbon Composite as a High-Performance Cathode Material for Lithium Sulfur Battery.

    PubMed

    Niu, Xiao-Qing; Wang, Xiu-Li; Xie, Dong; Wang, Dong-Huang; Zhang, Yi-Di; Li, Yi; Yu, Ting; Tu, Jiang-Ping

    2015-08-01

    Tailored sulfur cathode is vital for the development of a high performance lithium-sulfur (Li-S) battery. A surface modification on the sulfur/carbon composite would be an efficient strategy to enhance the cycling stability. Herein, we report a nickel hydroxide-modified sulfur/conductive carbon black composite (Ni(OH)2@S/CCB) as the cathode material for the Li-S battery through the thermal treatment and chemical precipitation method. In this composite, the sublimed sulfur is stored in the CCB, followed by a surface modification of Ni(OH)2 nanoparticles with size of 1-2 nm. As a cathode for the Li-S battery, the as-prepared Ni(OH)2@S/CCB electrode exhibits better cycle stability and higher rate discharge capacity, compared with the bare S/CCB electrode. The improved performance is largely due to the introduction of Ni(OH)2 surface modification, which can effectively suppress the "shuttle effect" of polysulfides, resulting in enhanced cycling life and higher capacity. PMID:26158375

  19. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A water loop maintenance device and process to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been undergoing a performance evaluation. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the water recirculation maintenance device and process is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance process further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware. This

  20. The Performer as Writer.

    ERIC Educational Resources Information Center

    Gentile, John S.

    Most performer-writers accept the writing process simply as a means to an end: the shared performance event with a live audience. While writer-performers regard a script as more important than the performance, a solo performance is, however, a showcase of the artist's talent, and creating one's own text offers the performer artistic control. Some…

  1. High Performance Work Practices and Firm Performance.

    ERIC Educational Resources Information Center

    Department of Labor, Washington, DC. Office of the American Workplace.

    A literature survey established that a substantial amount of research has been conducted on the relationship between productivity and the following specific high performance work practices: employee involvement in decision making, compensation linked to firm or worker performance, and training. According to these studies, high performance work…

  2. Performing Surgery: Commonalities with Performers Outside Medicine

    PubMed Central

    Kneebone, Roger L.

    2016-01-01

    This paper argues for the inclusion of surgery within the canon of performance science. The world of medicine presents rich, complex but relatively under-researched sites of performance. Performative aspects of clinical practice are overshadowed by a focus on the processes and outcomes of medical care, such as diagnostic accuracy and the results of treatment. The primacy of this “clinical” viewpoint—framed by clinical professionals as the application of medical knowledge—hides resonances with performance in other domains. Yet the language of performance is embedded in the culture of surgery—surgeons “perform” operations, work in an operating “theater” and use “instruments.” This paper asks what might come into view if we take this performative language at face value and interrogate surgery from the perspective of performance science.

  3. Space Suit Radiator Performance in Lunar and Mars Environments

    NASA Technical Reports Server (NTRS)

    Nabity, James; Mason, Georgia; Copeland, Robert; Libberton, Kerry; Stephan, Ryan; Trevino, Luis; Paul, Heather

    2005-01-01

    During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to thus become the single largest expendable during an eight hour EVA. We can significantly reduce the amount of expendable water consumed in the sublimator by using a radiator to reject heat from the Astronaut during an EVA. Last year we reported on the design and initial operational assessment tests of our novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X). Herein, we report on tests conducted in the NASA Johnson Space Center Chamber E Thermal Vacuum Test Facility. Up to 260 W (900 Btu/h) of heat were rejected in Lunar and Mars environments with temperatures as cold as -170 C (- 275 F). Further, the RAFT-X endured several freeze / thaw cycles and in fact, the heat exchanger was completely frozen three times without any apparent damage to the unit.

  4. Distributed performance counters

    DOEpatents

    Davis, Kristan D; Evans, Kahn C; Gara, Alan; Satterfield, David L

    2013-11-26

    A plurality of first performance counter modules is coupled to a plurality of processing cores. The plurality of first performance counter modules is operable to collect performance data associated with the plurality of processing cores respectively. A plurality of second performance counter modules are coupled to a plurality of L2 cache units, and the plurality of second performance counter modules are operable to collect performance data associated with the plurality of L2 cache units respectively. A central performance counter module may be operable to coordinate counter data from the plurality of first performance counter modules and the plurality of second performance modules, the a central performance counter module, the plurality of first performance counter modules, and the plurality of second performance counter modules connected by a daisy chain connection.

  5. High Performance Work Systems and Firm Performance.

    ERIC Educational Resources Information Center

    Kling, Jeffrey

    1995-01-01

    A review of 17 studies of high-performance work systems concludes that benefits of employee involvement, skill training, and other high-performance work practices tend to be greater when new methods are adopted as part of a consistent whole. (Author)

  6. Performance of Water Recirculation Loop Maintenance Components for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  7. Performance of Water Recirculation Loop Maintentance Components for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Peyton, Barbara; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessonslearned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  8. Thermal Performance of Orion Active Thermal Control System With Seven-Panel Reduced-Curvature Radiator

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Yuko, James R.

    2010-01-01

    The active thermal control system (ATCS) of the crew exploration vehicle (Orion) uses radiator panels with fluid loops as the primary system to reject heat from spacecraft. The Lockheed Martin (LM) baseline Orion ATCS uses eight-panel radiator coated with silver Teflon coating (STC) for International Space Station (ISS) missions, and uses seven-panel radiator coated with AZ 93 white paint for lunar missions. As an option to increase the radiator area with minimal impact on other component locations and interfaces, the reduced-curvature (RC) radiator concept was introduced and investigated here for the thermal perspective. Each RC radiator panel has 15 percent more area than each Lockheed Martin (LM) baseline radiator panel. The objective was to determine if the RC seven-panel radiator concept could be used in the ATCS for both ISS and lunar missions. Three radiator configurations the LM baseline, an RC seven-panel radiator with STC, and an RC seven-panel radiator with AZ 93 coating were considered in the ATCS for ISS missions. Two radiator configurations the LM baseline and an RC seven-panel radiator with AZ 93 coating were considered in the ATCS for lunar missions. A Simulink/MATLAB model of the ATCS was used to compute the ATCS performance. Some major hot phases on the thermal timeline were selected because of concern about the large amount of water sublimated for thermal topping. It was concluded that an ATCS with an RC seven-panel radiator could be used for both ISS and lunar missions, but with two different coatings STC for ISS missions and AZ 93 for lunar missions to provide performance similar to or better than that of the LM baseline ATCS.

  9. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2013-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  10. Initial Cognitive Performance Predicts Longitudinal Aviator Performance

    PubMed Central

    Jo, Booil; Adamson, Maheen M.; Kennedy, Quinn; Noda, Art; Hernandez, Beatriz; Zeitzer, Jamie M.; Friedman, Leah F.; Fairchild, Kaci; Scanlon, Blake K.; Murphy, Greer M.; Taylor, Joy L.

    2011-01-01

    Objectives. The goal of the study was to improve prediction of longitudinal flight simulator performance by studying cognitive factors that may moderate the influence of chronological age. Method. We examined age-related change in aviation performance in aircraft pilots in relation to baseline cognitive ability measures and aviation expertise. Participants were aircraft pilots (N = 276) aged 40–77.9. Flight simulator performance and cognition were tested yearly; there were an average of 4.3 (± 2.7; range 1–13) data points per participant. Each participant was classified into one of the three levels of aviation expertise based on Federal Aviation Administration pilot proficiency ratings: least, moderate, or high expertise. Results. Addition of measures of cognitive processing speed and executive function to a model of age-related change in aviation performance significantly improved the model. Processing speed and executive function performance interacted such that the slowest rate of decline in flight simulator performance was found in aviators with the highest scores on tests of these abilities. Expertise was beneficial to pilots across the age range studied; however, expertise did not show evidence of reducing the effect of age. Discussion. These data suggest that longitudinal performance on an important real-world activity can be predicted by initial assessment of relevant cognitive abilities. PMID:21586627

  11. Performance Technology Landscape.

    ERIC Educational Resources Information Center

    Addison, Roger M.

    2003-01-01

    Describes a performance technology landscape that has been developed for performance improvement institutes. Defines performance technology, including identification of value; definition of outcomes; performance analysis; valuation of effectiveness; focusing on results; systemic approach; adding value; aligning workers, activity, the organization,…

  12. How Performance Improves

    SciTech Connect

    Jerry L. Harbour; Julie L. Marble

    2005-09-01

    Countless articles and books have been written about and numerous programs have been developed to improve performance. Despite this plethora of activity on how to improve performance, we have largely failed to address the more fundamental question of how performance actually improves. To begin exploring this more basic question, we have plotted some 1,200 performance records to date and found that irrespective of venue, industry, or business, there seems to be a fundamental and repeatable set of concepts regarding how performance improves over time. Such gained insights represent both opportunities and challenges to the performance technologist. Differences in performance outcomes may, for example, be as much a function of the life cycle stage of a performance system as the efficacy of the selected improvement method itself. Accordingly, it may be more difficult to compare differing performance improvement methods than previously thought.

  13. Nutrition and athletic performance

    MedlinePlus

    Nutrition can help enhance athletic performance. An active lifestyle and exercise routine, along with eating well, is ... al. American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc . 2009 ...

  14. Kinesics and Performance

    ERIC Educational Resources Information Center

    Schechner, Richard; Mintz, Cynthia

    1973-01-01

    Current teaching and thinking about theatre performances tend to ignore kinesics. Kinesics study answers the need for consideration of analogical thinking and nonverbal communication distinctive to theatrical performance. (CH)

  15. Stop Performance Anxiety!

    ERIC Educational Resources Information Center

    Ely, Mark C.

    1991-01-01

    Discusses how teachers can help music students overcome performance anxiety. Divides performance anxiety into four major components: physiological, cognitive, behavioral, and psychological. Suggests fighting anxiety with relaxation techniques, imagery, cognitive statements, positive thinking, practice, and preparation. Discourages use of…

  16. Performance Improvement Assuming Complexity

    ERIC Educational Resources Information Center

    Rowland, Gordon

    2007-01-01

    Individual performers, work teams, and organizations may be considered complex adaptive systems, while most current human performance technologies appear to assume simple determinism. This article explores the apparent mismatch and speculates on future efforts to enhance performance if complexity rather than simplicity is assumed. Included are…

  17. Performing Narrative Medicine

    ERIC Educational Resources Information Center

    Langellier, Kristin M.

    2009-01-01

    In this article, the author weaves narrative medicine and performance together to consider what might it mean to call narrative medicine a performance. To name narrative medicine as performance is to recognize the texts and bodies, the stories and selves, that participate in its practice--patients' and physicians' embodied stories as well as the…

  18. Rhythms of Mental Performance

    ERIC Educational Resources Information Center

    Valdez, Pablo; Reilly, Thomas; Waterhouse, Jim

    2008-01-01

    Cognitive performance is affected by an individual's characteristics and the environment, as well as by the nature of the task and the amount of practice at it. Mental performance tests range in complexity and include subjective estimates of mood, simple objective tests (reaction time), and measures of complex performance that require decisions to…

  19. Seven Performance Drivers.

    ERIC Educational Resources Information Center

    Ross, Linda

    2003-01-01

    Recent work with automotive e-commerce clients led to the development of a performance analysis methodology called the Seven Performance Drivers, including: standards, incentives, capacity, knowledge and skill, measurement, feedback, and analysis. This methodology has been highly effective in introducing and implementing performance improvement.…

  20. Performance Improvement Processes.

    ERIC Educational Resources Information Center

    1997

    This document contains four papers from a symposium on performance improvement processes. In "Never the Twain Shall Meet?: A Glimpse into High Performance Work Practices and Downsizing" (Laurie J. Bassi, Mark E. Van Buren) evidence from a national cross-industry of more than 200 establishments is used to demonstrate that high-performance work…

  1. Reconsidering Human Performance Technology

    ERIC Educational Resources Information Center

    Jang, Hwan Young

    2008-01-01

    This article discusses three perceived challenges in the field of human performance technology: a missing link from training to performance, limitations in gap analysis and cause analysis, and a lack of attention to business and organization performance. It then provides possible alternatives for each issue, such as instructional system…

  2. IR DIAL performance modeling

    SciTech Connect

    Sharlemann, E.T.

    1994-07-01

    We are developing a DIAL performance model for CALIOPE at LLNL. The intent of the model is to provide quick and interactive parameter sensitivity calculations with immediate graphical output. A brief overview of the features of the performance model is given, along with an example of performance calculations for a non-CALIOPE application.

  3. Integrating Learning and Performance.

    ERIC Educational Resources Information Center

    1999

    These four papers are from a symposium on integrating learning and performance. "Identifying the Skill Requirements and Performance Needs of Small Manufacturers" (Julie A. Furst-Bowe) reports a survey to identify needs of small manufacturers in northwestern Wisconsin and to determine whether a university-based performance improvement center would…

  4. Managing the star performer.

    PubMed

    Hills, Laura

    2013-01-01

    Our culture seems to be endlessly fascinated with its stars in entertainment, athletics, politics, and business, and holds fast to the idea that extraordinary talent accounts for an individual's extraordinary performance. At first glance, managing a star performer in your medical practice may seem like it would be an easy task. However, there's much more to managing a star performer than many practice managers realize. The concern is how to keep the star performer happy and functioning at a high level without detriment to the rest of the medical practice team. This article offers tips for practice managers who manage star performers. It explores ways to keep the star performer motivated, while at the same time helping the star performer to meld into the existing medical practice team. This article suggests strategies for redefining the star performer's role, for holding the star performer accountable for his or her behavior, and for coaching the star performer. Finally, this article offers practical tips for keeping the star performer during trying times, for identifying and cultivating new star performers, and for managing medical practice prima donnas. PMID:23767124

  5. Fiscal Year 2009 Performance Budget: Performance Plan

    ERIC Educational Resources Information Center

    US Department of Education, 2008

    2008-01-01

    The U.S. Department of Education set the following goals as measures of their annual performance: (1) Improve student achievement, with a focus on bringing all students to grade level in reading and mathematics by 2014; (2) Increase the academic achievement of all high school students; and (3) Ensure the accessibility, affordability and…

  6. Managing the "Performance" in Performance Management.

    ERIC Educational Resources Information Center

    Repinski, Marilyn; Bartsch, Maryjo

    1996-01-01

    Describes a five-step approach to performance management which includes (1) redefining tasks; (2) identifying skills; (3) determining what development tools are necessary; (4) prioritizing skills development; and (5) developing an action plan. Presents a hiring model that includes job analysis, job description, selection, goal setting, evaluation,…

  7. Ariel Performance Analysis System

    NASA Astrophysics Data System (ADS)

    Ariel, Gideon B.; Penny, M. A.; Saar, Dany

    1990-08-01

    The Ariel Performance Analysis System is a computer-based system for the measurement, analysis and presentation of human performance. The system is based on a proprietary technique for processing multiple high-speed film and video recordings of a subject's performance. It is noninvasive, and does not require wires, sensors, markers or reflectors. In addition, it is portable and does not require modification of the performing environment. The scale and accuracy of measurement can be set to whatever levels are required by the activity being performed.

  8. Predictive performance models and multiple task performance

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher D.; Larish, Inge; Contorer, Aaron

    1989-01-01

    Five models that predict how performance of multiple tasks will interact in complex task scenarios are discussed. The models are shown in terms of the assumptions they make about human operator divided attention. The different assumptions about attention are then empirically validated in a multitask helicopter flight simulation. It is concluded from this simulation that the most important assumption relates to the coding of demand level of different component tasks.

  9. Developing Human Performance Measures

    SciTech Connect

    Jeffrey Joe; Bruce Hallbert; Larry Blackwood; Donald Dudehoeffer; Kent Hansen

    2006-05-01

    Through the reactor oversight process (ROP), the U.S. Nuclear Regulatory Commission (NRC) monitors the performance of utilities licensed to operate nuclear power plants. The process is designed to assure public health and safety by providing reasonable assurance that licensees are meeting the cornerstones of safety and designated crosscutting elements. The reactor inspection program, together with performance indicators (PIs), and enforcement activities form the basis for the NRC’s risk-informed, performance based regulatory framework. While human performance is a key component in the safe operation of nuclear power plants and is a designated cross-cutting element of the ROP, there is currently no direct inspection or performance indicator for assessing human performance. Rather, when human performance is identified as a substantive cross cutting element in any 1 of 3 categories (resources, organizational or personnel), it is then evaluated for common themes to determine if follow-up actions are warranted. However, variability in human performance occurs from day to day, across activities that vary in complexity, and workgroups, contributing to the uncertainty in the outcomes of performance. While some variability in human performance may be random, much of the variability may be attributed to factors that are not currently assessed. There is a need to identify and assess aspects of human performance that relate to plant safety and to develop measures that can be used to successfully assure licensee performance and indicate when additional investigation may be required. This paper presents research that establishes a technical basis for developing human performance measures. In particular, we discuss: 1) how historical data already gives some indication of connection between human performance and overall plant performance, 2) how industry led efforts to measure and model human performance and organizational factors could serve as a data source and basis for a

  10. High performance polymer development

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1991-01-01

    The term high performance as applied to polymers is generally associated with polymers that operate at high temperatures. High performance is used to describe polymers that perform at temperatures of 177 C or higher. In addition to temperature, other factors obviously influence the performance of polymers such as thermal cycling, stress level, and environmental effects. Some recent developments at NASA Langley in polyimides, poly(arylene ethers), and acetylenic terminated materials are discussed. The high performance/high temperature polymers discussed are representative of the type of work underway at NASA Langley Research Center. Further improvement in these materials as well as the development of new polymers will provide technology to help meet NASA future needs in high performance/high temperature applications. In addition, because of the combination of properties offered by many of these polymers, they should find use in many other applications.

  11. How relational systems perform

    SciTech Connect

    Date, C.J.

    1984-02-13

    Contrary to popular belief, relational DBMS can perform at least as well as, and quite possibly better than, older hierarchical or network systems. Ignoring the interference effects introduced when multiple transactions are run in parallel, the author concentrates on the performance of some given database transaction considered in isolation. The two principal factors determining the performance of such a transaction are, of course, the number of I/O operations and the pathlength (amount of CPU processing).

  12. Performance Measurement Analysis System

    Energy Science and Technology Software Center (ESTSC)

    1989-06-01

    The PMAS4.0 (Performance Measurement Analysis System) is a user-oriented system designed to track the cost and schedule performance of Department of Energy (DOE) major projects (MPs) and major system acquisitions (MSAs) reporting under DOE Order 5700.4A, Project Management System. PMAS4.0 provides for the analysis of performance measurement data produced from management control systems complying with the Federal Government''s Cost and Schedule Control Systems Criteria.

  13. Cognitive aspects of performance.

    PubMed Central

    Kane, J. E.

    1978-01-01

    The study of cognitive structures and processes in the control of skilled performance is considered and reviewed with special reference to a proposed hierarchical system incorporating levels of motor integration. Cognitive styles and dispositions of general behaviour are suggested as factors which may determine performance levels. The relative importance of these personal factors and stronger personality traits in accounting for variance in performance is considered in the light of a critique of the current interactional controversy. PMID:444808

  14. Cognitive aspects of performance.

    PubMed

    Kane, J E

    1978-12-01

    The study of cognitive structures and processes in the control of skilled performance is considered and reviewed with special reference to a proposed hierarchical system incorporating levels of motor integration. Cognitive styles and dispositions of general behaviour are suggested as factors which may determine performance levels. The relative importance of these personal factors and stronger personality traits in accounting for variance in performance is considered in the light of a critique of the current interactional controversy. PMID:444808

  15. Photovoltaic array performance model.

    SciTech Connect

    Kratochvil, Jay A.; Boyson, William Earl; King, David L.

    2004-08-01

    This document summarizes the equations and applications associated with the photovoltaic array performance model developed at Sandia National Laboratories over the last twelve years. Electrical, thermal, and optical characteristics for photovoltaic modules are included in the model, and the model is designed to use hourly solar resource and meteorological data. The versatility and accuracy of the model has been validated for flat-plate modules (all technologies) and for concentrator modules, as well as for large arrays of modules. Applications include system design and sizing, 'translation' of field performance measurements to standard reporting conditions, system performance optimization, and real-time comparison of measured versus expected system performance.

  16. Behavioral Health & Performance

    NASA Video Gallery

    Summary of the Behavioral Health and Performance Operations Group’s work including an overview of astronaut selection, behavioral health services provided to astronauts, the psychological aspects o...

  17. Performance Confirmation Plan

    SciTech Connect

    Lindner, E.N.

    2000-05-19

    As described, the purpose of the Performance Confirmation Plan is to specify monitoring, testing, and analysis activities for evaluating the accuracy and adequacy of the information used to determine that performance objectives for postclosure will be met. This plan defines a number of specific performance confirmation activities and associated test concepts in support of the MGR that will be implemented to fulfill this purpose. In doing so, the plan defines an approach to identify key factors and processes, predict performance, establish tolerances and test criteria, collect data (through monitoring, testing, and experiments), analyze these data, and recommend appropriate action. The process of defining which factors to address under performance confirmation incorporates input from several areas. In all cases, key performance confirmation factors are those factors which are: (1) important to safety, (2) measurable and predictable, and (3) relevant to the program (i.e., a factor that i s affected by construction, emplacement, or is a time-dependent variable). For the present version of the plan, performance confirmation factors important to safety are identified using the principal factors from the RSS (CRWMS M and O 2000a) (which is derived from TSPA analyses) together with other available performance assessment analyses. With this basis, key performance confirmation factors have been identified, and test concepts and test descriptions have been developed in the plan. Other activities are also incorporated into the performance confirmation program outside of these key factors. Additional activities and tests have been incorporated when they are prescribed by requirements and regulations or are necessary to address data needs and model validation requirements relevant to postclosure safety. These other activities have been included with identified factors to construct the overall performance confirmation program.

  18. Performance Improvement [in HRD].

    ERIC Educational Resources Information Center

    1995

    These four papers are from a symposium that was facilitated by Richard J. Torraco at the 1995 conference of the Academy of Human Resource Development (HRD). "Performance Technology--Isn't It Time We Found Some New Models?" (William J. Rothwell) reviews briefly two classic models, describes criteria for the high performance workplace (HPW), and…

  19. Carpentry Performance Objectives.

    ERIC Educational Resources Information Center

    Day, Gerald F.; Tucker, John

    The guidelines for carpentry performance objectives were written for vocational educators in order to insure that their programs are fulfilling the training requirements of today's job market. The document outlines eight uses of performance objectives and provides sample employability profiles, training achievement records, and a carpentry…

  20. Pay for Performance.

    ERIC Educational Resources Information Center

    LaFee, Scott

    1999-01-01

    Top school administrators and school boards across the country are increasingly employing a private-sector incentive: bonus pay for improved (school) performance. Connecticut, Texas, and North Carolina have merit-pay clauses in superintendents' contracts. This article discusses pay-for-performance criteria, increased job expectations, and ethical…

  1. Technology Performance Exchange

    SciTech Connect

    2015-09-01

    To address the need for accessible, high-quality data, the Department of Energy has developed the Technology Performance Exchange (TPEx). TPEx enables technology suppliers, third-party testing laboratories, and other entities to share product performance data. These data are automatically transformed into a format that technology evaluators can easily use in their energy modeling assessments to inform procurement decisions.

  2. Test and Performance Anxiety

    ERIC Educational Resources Information Center

    Huberty, Thomas J.

    2010-01-01

    Test and performance anxiety is not recognized easily in schools, in large part because adolescents rarely refer themselves for emotional concerns. Not wanting to risk teasing or public attention, anxious adolescents suffer in silence and under perform on school-related tasks. In school, anxiety is experienced often by students when being…

  3. Speculations on Performance Models.

    ERIC Educational Resources Information Center

    Fromkin, Victoria

    1968-01-01

    According to the author, competence and performance and their interrelationships are the concern of linguistics. Performance models must: (1) be based on physical data of speech; (2) describe the phenomena under investigation; (3) predict events which are confirmed by experiment; (4) suggest causal relationships by identifying necessary and…

  4. Patterns of Performance

    ERIC Educational Resources Information Center

    Eoyang, Glenda H.

    2007-01-01

    Complex human interactions involve more than just performance toward pre-determined goals. For this reason, systems that measure and seek to improve performance must adapt to a wide range of ever-changing patterns of individual and group behavior. Historically, HPT professionals have recognized these complexities and responded in a variety of…

  5. Addressees of Performance Goals

    ERIC Educational Resources Information Center

    Ziegler, Albert; Dresel, Markus; Stoeger, Heidrun

    2008-01-01

    As performance goals aim to both procure acknowledgment of one's abilities and to avoid revealing a lack of one's abilities, the authors hypothesized that students hold specific performance goals for different addressees and that there are specific correlational patterns with other motivational constructs. They analyzed a data set of 2,675 pupils…

  6. Performance Indicators in Education.

    ERIC Educational Resources Information Center

    Hattie, John

    1990-01-01

    Higher education performance indicators are being increasingly used in the United Kingdom, United States, and Australia. A model of performance indicators was applied to departments of education in 17 Australian universities, ranking departments on inputs, processes, and outputs. Implications of various weighting schemes are discussed. Tables…

  7. Popular Music Performance Class.

    ERIC Educational Resources Information Center

    Ginocchio, John

    2001-01-01

    Discusses the creation and content of a high school course on popular music performance. Describes how the teacher decided on aspects of the course, such as student background, transcription exercises, the student report on a popular music artist, and opportunities for performance. Reflects on what the teacher learned from the experience. (CMK)

  8. Evaluating Teacher Performance Fairly.

    ERIC Educational Resources Information Center

    Sportsman, Michel Allain

    1986-01-01

    Describes foundation and development of a performance-based teacher evaluation method developed in Missouri which makes mastery learning the basis for outcomes of instruction. Eight discrete parts of the teaching act characterizing successful teaching, four criteria important in performance-based evaluation development, and four definable phases…

  9. PERFORMANCE MEASURES OF PHYSICIANS.

    ERIC Educational Resources Information Center

    PRICE, PHILIP B.; AND OTHERS

    CRITERION MEASURES DEVELOPED FOR ON-THE-JOB PERFORMANCE OF PHYSICIANS WILL BE USED IN A SUBSEQUENT STUDY TO DETERMINE HOW MUCH THE PERFORMANCE OF PHYSICIANS CAN BE PREDICTED BY THEIR INDIVIDUAL ACHIEVEMENTS IN MEDICAL AND PREMEDICAL SCHOOL. APPROXIMATELY 29 MEASURES OF THE UNIVERSITY OF UTAH COLLEGE OF MEDICINE AND OTHER PHYSICIANS IN THE UTAH…

  10. Performance Management in Education.

    ERIC Educational Resources Information Center

    George, Paul S.

    1987-01-01

    Outlines a 10-step model of performance management from corporate and government practices for use in teaching appraisal. Performance management emphasizes each teacher's uniqueness while recognizing the need to support school system goals. Steps include: build rapport, identify key results areas, jointly determine specific objectives, and…

  11. Apprentice Performance Evaluation.

    ERIC Educational Resources Information Center

    Gast, Clyde W.

    The Granite City (Illinois) Steel apprentices are under a performance evaluation from entry to graduation. Federally approved, the program is guided by joint apprenticeship committees whose monthly meetings include performance evaluation from three information sources: journeymen, supervisors, and instructors. Journeymen's evaluations are made…

  12. Performance Contracting Overview.

    ERIC Educational Resources Information Center

    Wohlferd, Gerald H.

    Conclusions reached after three years of performance contracting experience and materials with which to judge the validity of the conclusions are presented in this overview of performance contracting. The conclusions are: (1) commercial firms are no better at teaching children than are public schools; (2) commercial firms expend as much or more…

  13. Performance testing accountability measurements

    SciTech Connect

    Oldham, R.D.; Mitchell, W.G.; Spaletto, M.I.

    1993-12-31

    The New Brunswick Laboratory (NBL) provides assessment support to the DOE Operations Offices in the area of Material Control and Accountability (MC and A). During surveys of facilities, the Operations Offices have begun to request from NBL either assistance in providing materials for performance testing of accountability measurements or both materials and personnel to do performance testing. To meet these needs, NBL has developed measurement and measurement control performance test procedures and materials. The present NBL repertoire of performance tests include the following: (1) mass measurement performance testing procedures using calibrated and traceable test weights, (2) uranium elemental concentration (assay) measurement performance tests which use ampulated solutions of normal uranyl nitrate containing approximately 7 milligrams of uranium per gram of solution, and (3) uranium isotopic measurement performance tests which use ampulated uranyl nitrate solutions with enrichments ranging from 4% to 90% U-235. The preparation, characterization, and packaging of the uranium isotopic and assay performance test materials were done in cooperation with the NBL Safeguards Measurements Evaluation Program since these materials can be used for both purposes.

  14. Untangling Performance from Success

    NASA Astrophysics Data System (ADS)

    Yucesoy, Burcu; Barabasi, Albert-Laszlo

    Fame, popularity and celebrity status, frequently used tokens of success, are often loosely related to, or even divorced from professional performance. This dichotomy is partly rooted in the difficulty to distinguish performance, an individual measure that captures the actions of a performer, from success, a collective measure that captures a community's reactions to these actions. Yet, finding the relationship between the two measures is essential for all areas that aim to objectively reward excellence, from science to business. Here we quantify the relationship between performance and success by focusing on tennis, an individual sport where the two quantities can be independently measured. We show that a predictive model, relying only on a tennis player's performance in tournaments, can accurately predict an athlete's popularity, both during a player's active years and after retirement. Hence the model establishes a direct link between performance and momentary popularity. The agreement between the performance-driven and observed popularity suggests that in most areas of human achievement exceptional visibility may be rooted in detectable performance measures. This research was supported by Air Force Office of Scientific Research (AFOSR) under agreement FA9550-15-1-0077.

  15. Emotions and Golf Performance

    ERIC Educational Resources Information Center

    Cohen, Alexander B.; Tenenbaum, Gershon; English, R. William

    2006-01-01

    A multiple case study investigation is reported in which emotions and performance were assessed within the probabilistic individual zone of optimal functioning (IZOF) model (Kamata, Tenenbaum, & Hanin, 2002) to develop idiosyncratic emotion-performance profiles. These profiles were incorporated into a psychological skills training (PST)…

  16. Laboratory Performance Assessment.

    ERIC Educational Resources Information Center

    Slater, Timothy F.; Ryan, Joseph M.

    1993-01-01

    Describes a performance assessment protocol that rates six goals: (1) methodology of research, (2) use of equipment, (3) accuracy in measurement, (4) application of concepts and formulas, (5) use of mathematics, and (6) completeness and clarity. Provides an example performance task evaluation sheet. (MVL)

  17. Infiniband Performance Testing

    SciTech Connect

    Minich, M

    2005-10-13

    A look at the performance of the infiniband interconnect using the Voltaire host stack. This will attempt to compare not only infiniband to other high-performance interconnects, but will also take a look at comparing some of the different hardware choices available at the time of writing (e.g. Opteron, EM64T, pci-express and pci-x).

  18. Music and academic performance.

    PubMed

    Arnaud Cabanac; Perlovsky, Leonid; Bonniot-Cabanac, Marie-Claude; Cabanac, Michel

    2013-11-01

    In a previous study we demonstrated that listening to a pleasant music while performing an academic test helped students to overcome stress, to devote more time to more stressful and more complicated task and the grades were higher. Yet, there remained ambiguities as for the causes of the higher test performance of these students: do they perform better because they hear music during their examinations, or would they perform better anyway because they are more gifted/motivated? This motivated the current study as a preliminary step toward that general question: Do students who like/perform music have better grades than the others? Our results confirmed this hypothesis: students studying music have better grades in all subjects. PMID:23973386

  19. PPC750 Performance Monitor

    NASA Technical Reports Server (NTRS)

    Meyer, Donald; Uchenik, Igor

    2007-01-01

    The PPC750 Performance Monitor (Perfmon) is a computer program that helps the user to assess the performance characteristics of application programs running under the Wind River VxWorks real-time operating system on a PPC750 computer. Perfmon generates a user-friendly interface and collects performance data by use of performance registers provided by the PPC750 architecture. It processes and presents run-time statistics on a per-task basis over a repeating time interval (typically, several seconds or minutes) specified by the user. When the Perfmon software module is loaded with the user s software modules, it is available for use through Perfmon commands, without any modification of the user s code and at negligible performance penalty. Per-task run-time performance data made available by Perfmon include percentage time, number of instructions executed per unit time, dispatch ratio, stack high water mark, and level-1 instruction and data cache miss rates. The performance data are written to a file specified by the user or to the serial port of the computer

  20. Precision performance lamp technology

    NASA Astrophysics Data System (ADS)

    Bell, Dean A.; Kiesa, James E.; Dean, Raymond A.

    1997-09-01

    A principal function of a lamp is to produce light output with designated spectra, intensity, and/or geometric radiation patterns. The function of a precision performance lamp is to go beyond these parameters and into the precision repeatability of performance. All lamps are not equal. There are a variety of incandescent lamps, from the vacuum incandescent indictor lamp to the precision lamp of a blood analyzer. In the past the definition of a precision lamp was described in terms of wattage, light center length (LCL), filament position, and/or spot alignment. This paper presents a new view of precision lamps through the discussion of a new segment of lamp design, which we term precision performance lamps. The definition of precision performance lamps will include (must include) the factors of a precision lamp. But what makes a precision lamp a precision performance lamp is the manner in which the design factors of amperage, mscp (mean spherical candlepower), efficacy (lumens/watt), life, not considered individually but rather considered collectively. There is a statistical bias in a precision performance lamp for each of these factors; taken individually and as a whole. When properly considered the results can be dramatic to the system design engineer, system production manage and the system end-user. It can be shown that for the lamp user, the use of precision performance lamps can translate to: (1) ease of system design, (2) simplification of electronics, (3) superior signal to noise ratios, (4) higher manufacturing yields, (5) lower system costs, (6) better product performance. The factors mentioned above are described along with their interdependent relationships. It is statistically shown how the benefits listed above are achievable. Examples are provided to illustrate how proper attention to precision performance lamp characteristics actually aid in system product design and manufacturing to build and market more, market acceptable product products in the

  1. Performance expectation plan

    SciTech Connect

    Ray, P.E.

    1998-09-04

    This document outlines the significant accomplishments of fiscal year 1998 for the Tank Waste Remediation System (TWRS) Project Hanford Management Contract (PHMC) team. Opportunities for improvement to better meet some performance expectations have been identified. The PHMC has performed at an excellent level in administration of leadership, planning, and technical direction. The contractor has met and made notable improvement of attaining customer satisfaction in mission execution. This document includes the team`s recommendation that the PHMC TWRS Performance Expectation Plan evaluation rating for fiscal year 1998 be an Excellent.

  2. Breakfast and performance.

    PubMed

    Cueto, S

    2001-12-01

    Evidence suggests that the effect of fasting on performance is not uniform, but it is dependent on the basal nutritional status of the subject. Breakfast consumption has a short-term effect in improving selected learning skills, especially work memory. School breakfast programmes have a positive effect on the nutritional status of children, on school attendance and probably on dropout rates. The effect of breakfast consumption on school performance depends on the interaction between the programme, student characteristics (malnutrition) and school organisation. Unless the school setting guarantees a minimum quality standard, the benefits of breakfast consumption will not be evident in performance in complex areas like language or maths. PMID:11918495

  3. Performance Management Plan

    SciTech Connect

    IT Corporation, Las Vegas, NV

    2002-08-21

    This Performance Management Plan describes the approach for accelerating cleanup activities of U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Environmental Management (EM) Program. This approach accelerates the reduction of risk at NNSA/NV sites while performing the work responsibly, effectively, and more efficiently. In May 2002, NNSA/NV EM and the Nevada Division of Environmental Protection signed a Letter of Intent formalizing an agreement to pursue accelerated risk reduction and cleanup for activities within the State of Nevada. This Performance Management Plan provides the strategic direction for implementing the Letter of Intent.

  4. Neoliberalism, Performativity and Research

    NASA Astrophysics Data System (ADS)

    Roberts, Peter

    2007-07-01

    This paper provides a critical analysis of New Zealand's Performance Based Research Fund (PBRF). The first section sketches the development and implementation of the PBRF. The second section evaluates the scheme, concentrating on three themes: the relationship between privatization, competition and research performance; the standardization of research; and motivations for research. The paper acknowledges the thorough work completed by the Tertiary Education Advisory Commission and other policy groups in laying the foundation for the adoption of performance-based research funding in New Zealand. It is argued, however, that when viewed in its larger context, the PBRF constitutes a continuation of neoliberal trends already well established in New Zealand's tertiary education system.

  5. Performance and Accountability Report

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The NASA Fiscal Year 2002 Performance and Accountability Report is presented. Over the past year, significant changes have been implemented to greatly improve NASA's management while continuing to break new ground in science and technology. Excellent progress has been made in implementing the President's Management Agenda. NASA is leading the government in its implementation of the five government-wide initiatives. NASA received an unqualified audit opinion on FY 2002 financial statements. The vast majority of performance goals have been achieved, furthering each area of NASA's mission. The contents include: 1) NASA Vision and Mission; 2) Management's Discussion and Analysis; 3) Performance; and 4) Financial.

  6. High Performance Computing Today

    SciTech Connect

    Dongarra, Jack; Meuer,Hans; Simon,Horst D.; Strohmaier,Erich

    2000-04-01

    In last 50 years, the field of scientific computing has seen a rapid change of vendors, architectures, technologies and the usage of systems. Despite all these changes the evolution of performance on a large scale however seems to be a very steady and continuous process. Moore's Law is often cited in this context. If the authors plot the peak performance of various computers of the last 5 decades in Figure 1 that could have been called the supercomputers of their time they indeed see how well this law holds for almost the complete lifespan of modern computing. On average they see an increase in performance of two magnitudes of order every decade.

  7. DAS performance analysis

    SciTech Connect

    Bates, G.; Bodine, S.; Carroll, T.; Keller, M.

    1984-02-01

    This report begins with an overview of the Data Acquisition System (DAS), which supports several of PPPL's experimental devices. Performance measurements which were taken on DAS and the tools used to make them are then described.

  8. Protective relaying performance reporting

    SciTech Connect

    Taylor, R.P.; Ingelson, J.W.; Arnold, P.F.; Babcock, G.; Burzese, A.A.; Cornelison, J.R.; Drum, P.R.; Hasenwinkle, I.; Johnson, R.; Marsh, W. J. Jr.

    1992-10-01

    This paper reports on the performance of protective relaying systems which is an issue within the electric power industry which has received inadequate attention. The wide variations in relaying types and styles and applications, as well as differences in company structures and industry terminology, have hindered the adoption of a standardized system for the evaluation of protective relaying system performance. Such a system, if adopted by a significant portion of the industry, would provide suppliers and users better information with which to improve the product and its application and operation. The Protective Relaying Performance Criteria Working Group of the IEEE Power System Relaying Committee has generated this paper for the purpose of defining a standardized protective relaying performance reporting system.

  9. Identity verifier performance

    SciTech Connect

    Maxwell, R.

    1987-01-01

    This report is a transcript of a paper given at the Smart Card Applications and Technologies Conference, October 14, 1987. Identity verification techniques are identified and discussed, and statistical performance data is given. 20 figs. (JF)

  10. On Time Performance Pressure

    NASA Technical Reports Server (NTRS)

    Connell, Linda; Wichner, David; Jakey, Abegael

    2013-01-01

    Within many operations, the pressures for on-time performance are high. Each month, on-time statistics are reported to the Department of Transportation and made public. There is a natural tendency for employees under pressure to do their best to meet these objectives. As a result, pressure to get the job done within the allotted time may cause personnel to deviate from procedures and policies. Additionally, inadequate or unavailable resources may drive employees to work around standard processes that are seen as barriers. However, bypassing practices to enable on-time performance may affect more than the statistics. ASRS reports often highlight on-time performance pressures which may result in impact across all workgroups in an attempt to achieve on-time performance. Reporters often provide in-depth insights into their experiences which can be used by industry to identify and focus on the implementation of systemic fixes.

  11. Desalination processes and performance

    SciTech Connect

    Summers, L. J.

    1995-06-01

    Different desalination processes are evaluated for feed, capacity, performance, energy requirements, and cost. These include distillation, reverse osmosis, or electrodialysis. Detailed information is given on distillation processes and membrane processes.

  12. Poor school performance.

    PubMed

    Karande, Sunil; Kulkarni, Madhuri

    2005-11-01

    Education is one of the most important aspects of human resource development. Poor school performance not only results in the child having a low self-esteem, but also causes significant stress to the parents. There are many reasons for children to under perform at school, such as, medical problems, below average intelligence, specific learning disability, attention deficit hyperactivity disorder, emotional problems, poor socio-cultural home environment, psychiatric disorders and even environmental causes. The information provided by the parents, classroom teacher and school counselor about the child's academic difficulties guides the pediatrician to form an initial diagnosis. However, a multidisciplinary evaluation by an ophthalmologist, otolaryngologist, counselor, clinical psychologist, special educator, and child psychiatrist is usually necessary before making the final diagnosis. It is important to find the reason(s) for a child's poor school performance and come up with a treatment plan early so that the child can perform up to full potential. PMID:16391452

  13. Magnetoresistor monitors relay performance

    NASA Technical Reports Server (NTRS)

    Krebs, D. Q.

    1966-01-01

    Magnetoresistor monitors the action of relays without disturbing circuit parameters or degrading relay performance. The magnetoresistor measures the relay magnetic flux produced under transient conditions to establish the characteristic signature of the relay.

  14. HIRIS performance study

    NASA Technical Reports Server (NTRS)

    Kerekes, John P.; Landgrebe, David A.

    1989-01-01

    The remote sensing system simulation is used to study a proposed sensor concept. An overview of the instrument and its parameters is presented, along with the model of the instrument as implemented in the simulation. Signal-to-noise levels of the instrument under a variety of system configurations are presented and discussed. Classification performance under these varying configurations is also shown, along with relationships between signal-to-noise ratios, feature selection, and classification performance.

  15. Embarking on performance improvement.

    PubMed

    Brown, Bobbi; Falk, Leslie Hough

    2014-06-01

    Healthcare organizations should approach performance improvement as a program, not a project. The program should be led by a guidance team that identifies goals, prioritizes work, and removes barriers to enable clinical improvement teams and work groups to realize performance improvements. A healthcare enterprise data warehouse can provide the initial foundation for the program analytics. Evidence-based best practices can help achieve improved outcomes and reduced costs. PMID:24968632

  16. High Performance Polymers

    NASA Technical Reports Server (NTRS)

    Venumbaka, Sreenivasulu R.; Cassidy, Patrick E.

    2003-01-01

    This report summarizes results from research on high performance polymers. The research areas proposed in this report include: 1) Effort to improve the synthesis and to understand and replicate the dielectric behavior of 6HC17-PEK; 2) Continue preparation and evaluation of flexible, low dielectric silicon- and fluorine- containing polymers with improved toughness; and 3) Synthesis and characterization of high performance polymers containing the spirodilactam moiety.

  17. Motivation: revitalizing performance.

    PubMed

    Andersen, C

    1996-08-01

    It is difficult for health information managers to maintain their career motivation in times of financial cutbacks, reforms, and changing technologies. Diminished motivation leads to poor job performance, which harms the department's productivity and the manager s job security. Revitalizing performance through improved motivation does not depend on fate. The article explains why motivation diminishes and suggests a plan for recapturing lost motivation. PMID:10159539

  18. A performance geodynamo benchmark

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Heien, E. M.

    2014-12-01

    In the last ten years, a number of numerical dynamo models have successfully represented basic characteristics of the geomagnetic field. However, to approach the parameters regime of the Earth's outer core, we need massively parallel computational environment for extremely large spatial resolutions. Local methods are expected to be more suitable for massively parallel computation because the local methods needs less data communication than the spherical harmonics expansion, but only a few groups have reported results of the dynamo benchmark using local methods (Harder and Hansen, 2005; Matsui and Okuda, 2005; Chan et al., 2007) because of the difficulty treating magnetic boundary conditions based on the local methods. On the other hand, some numerical dynamo models using spherical harmonics expansion has performed successfully with thousands of processes. We perform benchmark tests to asses various numerical methods to asses the next generation of geodynamo simulations. The purpose of the present benchmark test is to assess numerical geodynamo models on a massively parallel computational platform. To compare among many numerical methods as possible, we consider the model with the insulated magnetic boundary by Christensen et al. (2001) and with the pseudo vacuum magnetic boundary, because the pseudo vacuum boundaries are implemented easier by using the local method than the magnetic insulated boundaries. In the present study, we consider two kinds of benchmarks, so-called accuracy benchmark and performance benchmark. In the present study, we will report the results of the performance benchmark. We perform the participated dynamo models under the same computational environment (XSEDE TACC Stampede), and investigate computational performance. To simplify the problem, we choose the same model and parameter regime as the accuracy benchmark test, but perform the simulations with much finer spatial resolutions as possible to investigate computational capability (e

  19. Performance Application Programming Interface

    Energy Science and Technology Software Center (ESTSC)

    2005-10-31

    PAPI is a programming interface designed to provide the tool designer and application engineer with a consistent interface and methodology for use of the performance counter hardware found in most major microprocessors. PAPI enables software engineers to see, in near real time, the relation between software performance and processor events. This release covers the hardware dependent implementation of PAPI version 3 for the IBM BlueGene/L (BG/L) system.

  20. Electric Vehicle Battery Performance

    Energy Science and Technology Software Center (ESTSC)

    1992-02-20

    DIANE is used to analyze battery performance in electric vehicle (EV) applications. The principal objective of DIANE is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity/time or power/time profile. Two releases are included with the package. Diane21 has a graphics capability; DIANENP has no graphics capability.

  1. Performance assurance program plan

    SciTech Connect

    Rogers, B.H.

    1997-11-06

    B and W Protec, Inc. (BWP) is responsible for implementing the Performance Assurance Program for the Project Hanford Management Contract (PHMC) in accordance with DOE Order 470.1, Safeguards and Security Program (DOE 1995a). The Performance Assurance Program applies to safeguards and security (SAS) systems and their essential components (equipment, hardware, administrative procedures, Protective Force personnel, and other personnel) in direct support of Category I and H special nuclear material (SNM) protection. Performance assurance includes several Hanford Site activities that conduct performance, acceptance, operability, effectiveness, and validation tests. These activities encompass areas of training, exercises, quality assurance, conduct of operations, total quality management, self assessment, classified matter protection and control, emergency preparedness, and corrective actions tracking and trending. The objective of the Performance Assurance Program is to capture the critical data of the tests, training, etc., in a cost-effective, manageable program that reflects the overall effectiveness of the program while minimizing operational impacts. To aid in achieving this objective, BWP will coordinate the Performance Assurance Program for Fluor Daniel Hanford, Inc. (FDH) and serve as the central point for data collection.

  2. Compute Server Performance Results

    NASA Technical Reports Server (NTRS)

    Stockdale, I. E.; Barton, John; Woodrow, Thomas (Technical Monitor)

    1994-01-01

    Parallel-vector supercomputers have been the workhorses of high performance computing. As expectations of future computing needs have risen faster than projected vector supercomputer performance, much work has been done investigating the feasibility of using Massively Parallel Processor systems as supercomputers. An even more recent development is the availability of high performance workstations which have the potential, when clustered together, to replace parallel-vector systems. We present a systematic comparison of floating point performance and price-performance for various compute server systems. A suite of highly vectorized programs was run on systems including traditional vector systems such as the Cray C90, and RISC workstations such as the IBM RS/6000 590 and the SGI R8000. The C90 system delivers 460 million floating point operations per second (FLOPS), the highest single processor rate of any vendor. However, if the price-performance ration (PPR) is considered to be most important, then the IBM and SGI processors are superior to the C90 processors. Even without code tuning, the IBM and SGI PPR's of 260 and 220 FLOPS per dollar exceed the C90 PPR of 160 FLOPS per dollar when running our highly vectorized suite,

  3. Repository performance confirmation.

    SciTech Connect

    Hansen, Francis D.

    2011-09-01

    Repository performance confirmation links the technical bases of repository science and societal acceptance. This paper explores the myriad aspects of what has been labeled performance confirmation in U.S. programs, which involves monitoring as a collection of distinct activities combining technical and social significance in radioactive waste management. This paper is divided into four parts: (1) A distinction is drawn between performance confirmation monitoring and other testing and monitoring objectives; (2) A case study illustrates confirmation activities integrated within a long-term testing and monitoring strategy for Yucca Mountain; (3) A case study reviews compliance monitoring developed and implemented for the Waste Isolation Pilot Plant; and (4) An approach for developing, evaluating and implementing the next generation of performance confirmation monitoring is presented. International interest in repository monitoring is exhibited by the European Commission Seventh Framework Programme 'Monitoring Developments for Safe Repository Operation and Staged Closure' (MoDeRn) Project. The MoDeRn partners are considering the role of monitoring in a phased approach to the geological disposal of radioactive waste. As repository plans advance in different countries, the need to consider monitoring strategies within a controlled framework has become more apparent. The MoDeRn project pulls together technical and societal experts to assimilate a common understanding of a process that could be followed to develop a monitoring program. A fundamental consideration is the differentiation of confirmation monitoring from the many other testing and monitoring activities. Recently, the license application for Yucca Mountain provided a case study including a technical process for meeting regulatory requirements to confirm repository performance as well as considerations related to the preservation of retrievability. The performance confirmation plan developed as part of the

  4. High-performance organic thin-film transistors of J-stacked squaraine dyes.

    PubMed

    Gsänger, Marcel; Kirchner, Eva; Stolte, Matthias; Burschka, Christian; Stepanenko, Vladimir; Pflaum, Jens; Würthner, Frank

    2014-02-12

    We have synthesized a series of dipolar squaraine dyes that contain dicyanovinyl groups as acceptor and benzannulated five-membered ring heterocycles with alkyl chains of varied length as donor moieties. Based on these squaraines, thin-film transistors (TFT) were fabricated by spin coating and solution shearing. Moreover, with one of these squaraine derivatives vacuum-deposited TFTs were prepared as well. Our detailed studies revealed that the transistor performance of the present series of squaraines is strongly dependent on their structural features as well as on the processing method of thin films. Thus, solution-sheared OTFTs of selenium squaraine bearing dodecyl substituents (denoted as Se-SQ-C12) performed best with a maximum hole mobility of 0.45 cm(2) V(-1) s(-1), which is by far the highest value yet reported for OTFTs based on squaraines. This value was even surpassed by vacuum-deposited thin films of n-butyl-substituted selenium squaraine Se-SQ-C4, the only sublimable compound in this series, exhibiting a record hole mobility of 1.3 cm(2) V(-1) s(-1). Furthermore, we have investigated the morphology of the thin films and the molecular packing of these squaraine dyes by optical spectroscopy, atomic force microscopy, and X-ray diffraction. These studies revealed a relationship between the molecular structure, packing motif, thin-film morphology, and transistor performance of the squaraine dyes. From the supramolecular point of view two packing features discovered in the single crystal structure of Se-SQ-C8 are of particular interest with regard to the structure-functionality relationship: The first is the slipped and antiparallel π-stacking motif which ensures cancellation of the molecules' dipole moments and J-type absorption band formation in thin films. The second is the presence of CN···Se noncovalent bonds which show similarities to the more common halogen-bonding interactions and which interconnect the individual one-dimensional slipped

  5. EVA Performance Prediction

    NASA Technical Reports Server (NTRS)

    Peacock, Brian; Maida, James; Rajulu, Sudhakar

    2004-01-01

    Astronaut physical performance capabilities in micro gravity EV A or on planetary surfaces when encumbered by a life support suit and debilitated by a long exposure to micro gravity will be less than unencumbered pre flight capabilities. The big question addressed by human factors engineers is: what can the astronaut be expected to do on EVA or when we arrive at a planetary surface? A second question is: what aids to performance will be needed to enhance the human physical capability? These questions are important for a number of reasons. First it is necessary to carry out accurate planning of human physical demands to ensure that time and energy critical tasks can be carried out with confidence. Second it is important that the crew members (and their ground or planetary base monitors) have a realistic picture of their own capabilities, as excessive fatigue can lead to catastrophic failure. Third it is important to design appropriate equipment to enhance human sensory capabilities, locomotion, materials handling and manipulation. The evidence from physiological research points to musculoskeletal, cardiovascular and neurovestibular degradation during long duration exposure to micro gravity . The evidence from the biomechanics laboratory (and the Neutral Buoyancy Laboratory) points to a reduction in range of motion, strength and stamina when encumbered by a pressurized suit. The evidence from a long history of EVAs is that crewmembers are indeed restricted in their physical capabilities. There is a wealth of evidence in the literature on the causes and effects of degraded human performance in the laboratory, in sports and athletics, in industry and in other physically demanding jobs. One approach to this challenge is through biomechanical and performance modeling. Such models must be based on thorough task analysis, reliable human performance data from controlled studies, and functional extrapolations validated in analog contexts. The task analyses currently carried

  6. Measuring comparative hospital performance.

    PubMed

    Griffith, John R; Alexander, Jeffrey A; Jelinek, Richard C

    2002-01-01

    Leading healthcare provider organizations now use a "balanced scorecard" of performance measures, expanding information reviewed at the governance level to include financial, customer, and internal performance information, as well as providing an opportunity to learn and grow to provide better strategic guidance. The approach, successfully used by other industries, uses competitor data and benchmarks to identify opportunities for improved mission achievement. This article evaluates one set of nine multidimensional hospital performance measures derived from Medicare reports (cash flow, asset turnover, mortality, complications, length of inpatient stay, cost per case, occupancy, change in occupancy, and percent of revenue from outpatient care). The study examines the content validity, reliability and sensitivity, validity of comparison, and independence and concludes that seven of the nine measures (all but the two occupancy measures) represent a potentially useful set for evaluating most U.S. hospitals. This set reflects correctable differences in performance between hospitals serving similar populations, that is, the measures reflect relative performance and identify opportunities to make the organization more successful. PMID:11836965

  7. The performance measurement manifesto.

    PubMed

    Eccles, R G

    1991-01-01

    The leading indicators of business performance cannot be found in financial data alone. Quality, customer satisfaction, innovation, market share--metrics like these often reflect a company's economic condition and growth prospects better than its reported earnings do. Depending on an accounting department to reveal a company's future will leave it hopelessly mired in the past. More and more managers are changing their company's performance measurement systems to track nonfinancial measures and reinforce new competitive strategies. Five activities are essential: developing an information architecture; putting the technology in place to support this architecture; aligning bonuses and other incentives with the new system; drawing on outside resources; and designing an internal process to ensure the other four activities occur. New technologies and more sophisticated databases have made the change to nonfinancial performance measurement systems possible and economically feasible. Industry and trade associations, consulting firms, and public accounting firms that already have well-developed methods for assessing market share and other performance metrics can add to the revolution's momentum--as well as profit from the business opportunities it presents. Every company will have its own key measures and distinctive process for implementing the change. But making it happen will always require careful preparation, perseverance, and the conviction of the CEO that it must be carried through. When one leading company can demonstrate the long-term advantage of its superior performance on quality or innovation or any other nonfinancial measure, it will change the rules for all its rivals forever. PMID:10109469

  8. Instrument performance evaluation

    SciTech Connect

    Swinth, K.L.

    1993-03-01

    Deficiencies exist in both the performance and the quality of health physics instruments. Recognizing the implications of such deficiencies for the protection of workers and the public, in the early 1980s the DOE and the NRC encouraged the development of a performance standard and established a program to test a series of instruments against criteria in the standard. The purpose of the testing was to establish the practicality of the criteria in the standard, to determine the performance of a cross section of available instruments, and to establish a testing capability. Over 100 instruments were tested, resulting in a practical standard and an understanding of the deficiencies in available instruments. In parallel with the instrument testing, a value-impact study clearly established the benefits of implementing a formal testing program. An ad hoc committee also met several times to establish recommendations for the voluntary implementation of a testing program based on the studies and the performance standard. For several reasons, a formal program did not materialize. Ongoing tests and studies have supported the development of specific instruments and have helped specific clients understand the performance of their instruments. The purpose of this presentation is to trace the history of instrument testing to date and suggest the benefits of a centralized formal program.

  9. Engineering performance metrics

    NASA Astrophysics Data System (ADS)

    Delozier, R.; Snyder, N.

    1993-03-01

    Implementation of a Total Quality Management (TQM) approach to engineering work required the development of a system of metrics which would serve as a meaningful management tool for evaluating effectiveness in accomplishing project objectives and in achieving improved customer satisfaction. A team effort was chartered with the goal of developing a system of engineering performance metrics which would measure customer satisfaction, quality, cost effectiveness, and timeliness. The approach to developing this system involved normal systems design phases including, conceptual design, detailed design, implementation, and integration. The lessons teamed from this effort will be explored in this paper. These lessons learned may provide a starting point for other large engineering organizations seeking to institute a performance measurement system accomplishing project objectives and in achieving improved customer satisfaction. To facilitate this effort, a team was chartered to assist in the development of the metrics system. This team, consisting of customers and Engineering staff members, was utilized to ensure that the needs and views of the customers were considered in the development of performance measurements. The development of a system of metrics is no different than the development of any type of system. It includes the steps of defining performance measurement requirements, measurement process conceptual design, performance measurement and reporting system detailed design, and system implementation and integration.

  10. Engineering performance metrics

    SciTech Connect

    DeLozier, R. ); Snyder, N. )

    1993-03-31

    Implementation of a Total Quality Management (TQM) approach to engineering work required the development of a system of metrics which would serve as a meaningful msinagement tool for evaluating effectiveness in accomplishing project objectives and in achieving improved customer satisfaction. A team effort was chartered with the goal of developing a system of engineering performance metrics which would measure customer satisfaction, quality, cost effectiveness, and timeliness. The approach to developing this system involved normal systems design phases including, conceptual design, detailed design, implementation, and integration. The lessons teamed from this effort will be explored in this paper. These lessons teamed may provide a starting point for other large engineering organizations seeking to institute a performance measurement system accomplishing project objectives and in achieving improved customer satisfaction. To facilitate this effort, a team was chartered to assist in the development of the metrics system. This team, consisting of customers and Engineering staff members, was utilized to ensure that the needs and views of the customers were considered in the development of performance measurements. The development of a system of metrics is no different than the development of any type of system. It includes the steps of defining performance measurement requirements, measurement process conceptual design, performance measurement and reporting system detailed design, and system implementation and integration.

  11. Virtual machine performance benchmarking.

    PubMed

    Langer, Steve G; French, Todd

    2011-10-01

    The attractions of virtual computing are many: reduced costs, reduced resources and simplified maintenance. Any one of these would be compelling for a medical imaging professional attempting to support a complex practice on limited resources in an era of ever tightened reimbursement. In particular, the ability to run multiple operating systems optimized for different tasks (computational image processing on Linux versus office tasks on Microsoft operating systems) on a single physical machine is compelling. However, there are also potential drawbacks. High performance requirements need to be carefully considered if they are to be executed in an environment where the running software has to execute through multiple layers of device drivers before reaching the real disk or network interface. Our lab has attempted to gain insight into the impact of virtualization on performance by benchmarking the following metrics on both physical and virtual platforms: local memory and disk bandwidth, network bandwidth, and integer and floating point performance. The virtual performance metrics are compared to baseline performance on "bare metal." The results are complex, and indeed somewhat surprising. PMID:21207096

  12. General airplane performance

    NASA Technical Reports Server (NTRS)

    Rockfeller, W C

    1939-01-01

    Equations have been developed for the analysis of the performance of the ideal airplane, leading to an approximate physical interpretation of the performance problem. The basic sea-level airplane parameters have been generalized to altitude parameters and a new parameter has been introduced and physically interpreted. The performance analysis for actual airplanes has been obtained in terms of the equivalent ideal airplane in order that the charts developed for use in practical calculations will for the most part apply to any type of engine-propeller combination and system of control, the only additional material required consisting of the actual engine and propeller curves for propulsion unit. Finally, a more exact method for the calculation of the climb characteristics for the constant-speed controllable propeller is presented in the appendix.

  13. Internet Performance to Africa

    SciTech Connect

    Cottrell, L

    2003-10-01

    We report the first results ever for real-time Internet performance to Africa using the PingER methodology. Multiple monitoring hosts were used to enable comparisons with performance from different parts of the world. From these preliminary measurements, we have found that Internet packet losses to some African sites in recent months range from very poor to bad (> 12%), some getting better, others are holding steady or getting worse. This, together with the average monthly Round Trip Times, imply end-to-end maximum TCP throughputs that are order of magnitudes different between countries in the region. Africa is shown to be far from the Internet performance in industrialized nations due to the poor infrastructure in place today. These monitoring efforts can provide valuable information to analyze the relative rates of future improvement and today they help us to quantify the digital divide and can provide quantitative information to policy makers.

  14. Performance of Stirling Engines

    NASA Astrophysics Data System (ADS)

    Iwamoto, Shoichi; Hirata, Koichi; Toda, Fujio

    We have developed five kinds of high- and low-temperature differential Stirling engines and their engine performance was investigated experimentally. In order to determine the parameters that affect engine performance, experimental results were discussed and compared with results calculated using analytical methods. We show an arranging method for the experimental results, and consider the performance of general Stirling engines. After using the arranging method with nondimensional numbers obtained by a dimensional analysis, a prediction method, which is used at the early design stage, is formulated. One of the nondimensional numbers in this prediction method is calculated based on engine specifications, including the properties of the working gas. The prediction method can predict engine speed, output power, the effect of working gas and operating conditions.

  15. Expert status and performance.

    PubMed

    Burgman, Mark A; McBride, Marissa; Ashton, Raquel; Speirs-Bridge, Andrew; Flander, Louisa; Wintle, Bonnie; Fidler, Fiona; Rumpff, Libby; Twardy, Charles

    2011-01-01

    Expert judgements are essential when time and resources are stretched or we face novel dilemmas requiring fast solutions. Good advice can save lives and large sums of money. Typically, experts are defined by their qualifications, track record and experience. The social expectation hypothesis argues that more highly regarded and more experienced experts will give better advice. We asked experts to predict how they will perform, and how their peers will perform, on sets of questions. The results indicate that the way experts regard each other is consistent, but unfortunately, ranks are a poor guide to actual performance. Expert advice will be more accurate if technical decisions routinely use broadly-defined expert groups, structured question protocols and feedback. PMID:21829574

  16. Cyclone performance and optimization

    SciTech Connect

    Leith, D.

    1989-06-15

    The objectives of this project are: to characterize the gas flow pattern within cyclones, to revise the theory for cyclone performance on the basis of these findings, and to design and test cyclones whose dimensions have been optimized using revised performance theory. This work is important because its successful completion will aid in the technology for combustion of coal in pressurized, fluidized beds. We have now received all the equipment necessary for the flow visualization studies described over the last two progress reports. We have begun more detailed studies of the gas flow pattern within cyclones as detailed below. Third, we have begun studies of the effect of particle concentration on cyclone performance. This work is critical to application of our results to commercial operations. 1 fig.

  17. Expert Status and Performance

    PubMed Central

    Burgman, Mark A.; McBride, Marissa; Ashton, Raquel; Speirs-Bridge, Andrew; Flander, Louisa; Wintle, Bonnie; Fidler, Fiona; Rumpff, Libby; Twardy, Charles

    2011-01-01

    Expert judgements are essential when time and resources are stretched or we face novel dilemmas requiring fast solutions. Good advice can save lives and large sums of money. Typically, experts are defined by their qualifications, track record and experience [1], [2]. The social expectation hypothesis argues that more highly regarded and more experienced experts will give better advice. We asked experts to predict how they will perform, and how their peers will perform, on sets of questions. The results indicate that the way experts regard each other is consistent, but unfortunately, ranks are a poor guide to actual performance. Expert advice will be more accurate if technical decisions routinely use broadly-defined expert groups, structured question protocols and feedback. PMID:21829574

  18. Steam generator performance degradation

    SciTech Connect

    Lovett, J.T.; Dow, B.L. )

    1991-09-01

    A survey was conducted to determine the range and severity of steam generator performance degradation effects experienced by PWRs in the United States. The survey results were tabulated and correlated with steam generator age and design. Operating experience at several PWRs was examined in detail. The operating experience at US PWRs was compared to that of PWRs in Japan and Germany. Possible causes for the performance degradation were postulated and evaluated. The sensitivity of steam generator output pressure to changes in various parameters (such as fouling factor, average reactor coolant temperature, and percentage of steam generator tubes plugged) was calculated. These calculations were used in the evaluation of possible causes of steam generator performance degradation. Several deposit exfoliation scenarios were evaluated in terms of the calculated effect on fouling factor trends and associated steam generator output pressure trends. 15 refs., 32 figs., 7 tabs.

  19. Hydration and cognitive performance.

    PubMed

    Sécher, M; Ritz, P

    2012-04-01

    A clinical link exists between severe dehydration and cognitive performance. Using rapid and severe water loss induced either by intense exercise and/or heat stress, initial studies suggested there were alterations in short-term memory and cognitive function related to vision, but more recent studies have not all confirmed these data. Some studies argue that water loss is not responsible for the observations made, and studies compensating water losses have failed to prevent the symptoms. Studies in children have suggested that drinking extra water helps cognitive performance, but these data rely on a small number of children. In older adults (mean age around 60) the data are not strong enough to support a relationship between mild dehydration and cognitive function. Data on frail elderly and demented people are lacking. Methodological heterogeneity in these studies are such that the relationship between mild dehydration and cognitive performance cannot be supported. PMID:22499450

  20. Human target acquisition performance

    NASA Astrophysics Data System (ADS)

    Teaney, Brian P.; Du Bosq, Todd W.; Reynolds, Joseph P.; Thompson, Roger; Aghera, Sameer; Moyer, Steven K.; Flug, Eric; Espinola, Richard; Hixson, Jonathan

    2012-06-01

    The battlefield has shifted from armored vehicles to armed insurgents. Target acquisition (identification, recognition, and detection) range performance involving humans as targets is vital for modern warfare. The acquisition and neutralization of armed insurgents while at the same time minimizing fratricide and civilian casualties is a mounting concern. U.S. Army RDECOM CERDEC NVESD has conducted many experiments involving human targets for infrared and reflective band sensors. The target sets include human activities, hand-held objects, uniforms & armament, and other tactically relevant targets. This paper will define a set of standard task difficulty values for identification and recognition associated with human target acquisition performance.

  1. Dependability and performability analysis

    NASA Technical Reports Server (NTRS)

    Trivedi, Kishor S.; Ciardo, Gianfranco; Malhotra, Manish; Sahner, Robin A.

    1993-01-01

    Several practical issues regarding specifications and solution of dependability and performability models are discussed. Model types with and without rewards are compared. Continuous-time Markov chains (CTMC's) are compared with (continuous-time) Markov reward models (MRM's) and generalized stochastic Petri nets (GSPN's) are compared with stochastic reward nets (SRN's). It is shown that reward-based models could lead to more concise model specifications and solution of a variety of new measures. With respect to the solution of dependability and performability models, three practical issues were identified: largeness, stiffness, and non-exponentiality, and a variety of approaches are discussed to deal with them, including some of the latest research efforts.

  2. High performance steam development

    SciTech Connect

    Duffy, T.; Schneider, P.

    1995-12-31

    DOE has launched a program to make a step change in power plant to 1500 F steam, since the highest possible performance gains can be achieved in a 1500 F steam system when using a topping turbine in a back pressure steam turbine for cogeneration. A 500-hour proof-of-concept steam generator test module was designed, fabricated, and successfully tested. It has four once-through steam generator circuits. The complete HPSS (high performance steam system) was tested above 1500 F and 1500 psig for over 102 hours at full power.

  3. Keeping "Performance" in HPC

    SciTech Connect

    Farber, Rob

    2007-07-06

    Virtualization, discussed in last months column, and the advent of many-core processors (chips containing tens or hundreds of cores) are two new technologies on the HPC horizon that appear to be pieces of the sustained petascale supercomputer puzzles. As usual, unresolved performance problems at current HPC performance levels will be accentuated in the future - and by these technologies - as we scale to ever faster systems. Without going into a technical deep-dive, I will discuss some of the issues related to virtualization and many-core processors that need to be understood when looking forward into the HPC future. We all want to keep the “performance” in HPC.

  4. Photovoltaic lighting system performance

    SciTech Connect

    Harrington, S.R.; Hund, T.D.

    1996-06-01

    The performance of 21 PV-powered low pressure sodium lighting systems on a multi-use has been documented in this paper. Specific areas for evaluation include the vandal resistant PV modules, constant voltage and on/off PV charge controllers, flooded deep-cycle lead-antimony and valve regulated lead-acid (VLRA) gel batteries, and low pressure sodium ballasts and lights. The PV lighting system maintenance intervals and lessons learned have been documented over the past 2.5 years. The above performance data has shown that with careful hardware selection, installation, and maintenance intervals the PV lighting systems will operate reliably.

  5. Performance of gigabit FDDI

    NASA Technical Reports Server (NTRS)

    Game, David; Maly, Kurt J.

    1990-01-01

    Great interest exists in developing high speed protocols which will be able to support data rates at gigabit speeds. Hardware currently exists which can experimentally transmit at data rates exceeding a gigabit per second, but it is not clear as to what types of protocols will provide the best performance. One possibility is to examine current protocols and their extensibility to these speeds. Scaling of Fiber Distributed Data Interface (FDDI) to gigabit speeds is studied. More specifically, delay statistics are included to provide insight as to which parameters (network length, packet length or number of nodes) have the greatest effect on performance.

  6. Performance Based Counselor Certification.

    ERIC Educational Resources Information Center

    Bernknopf, Stan; Ware, William B.

    For the past four years the Georgia Department of Education has been involved in a statewide effort to establish standards and procedures for certification of educational personnel based on competency demonstration. As part of this effort, a project was commissioned to develop a performance-based system for the certification of school counselors.…

  7. MCNP Progress & Performance Improvements

    SciTech Connect

    Brown, Forrest B.; Bull, Jeffrey S.; Rising, Michael Evan

    2015-04-14

    Twenty-eight slides give information about the work of the US DOE/NNSA Nuclear Criticality Safety Program on MCNP6 under the following headings: MCNP6.1.1 Release, with ENDF/B-VII.1; Verification/Validation; User Support & Training; Performance Improvements; and Work in Progress. Whisper methodology will be incorporated into the code, and run speed should be increased.

  8. PHEF HEME performance

    SciTech Connect

    Baich, M.A.

    1992-08-15

    The DWPF Salt Cell Vent Condenser (SCVC) includes a High Efficiency Mist Eliminator (HEME) designed to remove mercury aerosols that may form in the Precipitate Reactor (PR) condenser. The Savannah River Technology Center was requested by DWPF to make a performance assesssment of a prototypic HEME element in the vent system of the Precipitate Hydrolysis Experimental Facility at TNX.[sup a

  9. PHEF HEME performance

    SciTech Connect

    Baich, M.A.

    1992-08-15

    The DWPF Salt Cell Vent Condenser (SCVC) includes a High Efficiency Mist Eliminator (HEME) designed to remove mercury aerosols that may form in the Precipitate Reactor (PR) condenser. The Savannah River Technology Center was requested by DWPF to make a performance assesssment of a prototypic HEME element in the vent system of the Precipitate Hydrolysis Experimental Facility at TNX.

  10. Metadata for balanced performance

    SciTech Connect

    Brown, P.; Troy, R.; Fisher, D.; Louis, S.; McGraw, J.R.; Musick, R.

    1996-04-01

    Data and information intensive industries require advanced data management capabilities incorporated with large capacity storage. Performance in the environment is, in part, a function of individual storage and data management system performance, but most importantly a function of the level of their integration. This paper focuses on integration, in particular on the issue of how to use shared metadata to facilitate high performance interfaces between Mass Storage Systems (MSS) and advanced data management clients. Current MSS interfaces are based on traditional file system interaction. Increasing functionality at the interface can enhance performance by permitting clients to influence data placement, generate accurate cost estimates of I/O, and describe impending I/O activity. Flexible mechanisms are needed for providing this functionality without compromising the generality of the interface; the authors are proposing active metadata sharing. They present an architecture that details how the shared metadata fits into the overall system architecture and control structure, along with a first cut at what the metadata model should look like.

  11. Creating sustainable performance.

    PubMed

    Spreitzer, Gretchen; Porath, Christine

    2012-01-01

    What makes for sustainable individual and organizational performance? Employees who are thriving-not just satisfied and productive but also engaged in creating the future. The authors found that people who fit this description demonstrated 16% better overall performance, 125% less burnout, 32% more commitment to the organization, and 46% more job satisfaction than their peers. Thriving has two components: vitality, or the sense of being alive and excited, and learning, or the growth that comes from gaining knowledge and skills. Some people naturally build vitality and learning into their jobs, but most employees are influenced by their environment. Four mechanisms, none of which requires heroic effort or major resources, create the conditions for thriving: providing decision-making discretion, sharing information about the organization and its strategy, minimizing incivility, and offering performance feedback. Organizations such as Alaska Airlines, Zingerman's, Quicken Loans, and Caiman Consulting have found that helping people grow and remain energized at work is valiant on its own merits-but it can also boost performance in a sustainable way. PMID:22299508

  12. Analysis of EDP performance

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The objective of this contract was the investigation of the potential performance gains that would result from an upgrade of the Space Station Freedom (SSF) Data Management System (DMS) Embedded Data Processor (EDP) '386' design with the Intel Pentium (registered trade-mark of Intel Corp.) '586' microprocessor. The Pentium ('586') is the latest member of the industry standard Intel X86 family of CISC (Complex Instruction Set Computer) microprocessors. This contract was scheduled to run in parallel with an internal IBM Federal Systems Company (FSC) Internal Research and Development (IR&D) task that had the goal to generate a baseline flight design for an upgraded EDP using the Pentium. This final report summarizes the activities performed in support of Contract NAS2-13758. Our plan was to baseline performance analyses and measurements on the latest state-of-the-art commercially available Pentium processor, representative of the proposed space station design, and then phase to an IBM capital funded breadboard version of the flight design (if available from IR&D and Space Station work) for additional evaluation of results. Unfortunately, the phase-over to the flight design breadboard did not take place, since the IBM Data Management System (DMS) for the Space Station Freedom was terminated by NASA before the referenced capital funded EDP breadboard could be completed. The baseline performance analyses and measurements, however, were successfully completed, as planned, on the commercial Pentium hardware. The results of those analyses, evaluations, and measurements are presented in this final report.

  13. Structuralist Performance Issue.

    ERIC Educational Resources Information Center

    Kirby, Michael, Ed.

    1979-01-01

    Defining structuralism as an unannounced aesthetic movement that involves not only the theatre but all arts, this journal issue focuses on structuralist performance. The nine articles provide information on the following topics: the French theatre group, Atelier Theatre et Musique; "Tell Me," a play by Guy de Cointet; patterning in "Five…

  14. Assessing Team Performance.

    ERIC Educational Resources Information Center

    Trimble, Susan; Rottier, Jerry

    Interdisciplinary middle school level teams capitalize on the idea that the whole is greater than the sum of its parts. Administrators and team members can maximize the advantages of teamwork using team assessments to increase the benefits for students, teachers, and the school environment. Assessing team performance can lead to high performing…

  15. High performance parallel architectures

    SciTech Connect

    Anderson, R.E. )

    1989-09-01

    In this paper the author describes current high performance parallel computer architectures. A taxonomy is presented to show computer architecture from the user programmer's point-of-view. The effects of the taxonomy upon the programming model are described. Some current architectures are described with respect to the taxonomy. Finally, some predictions about future systems are presented. 5 refs., 1 fig.

  16. Ion thruster performance model

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.

    1984-01-01

    A model of ion thruster performance is developed for high flux density, cusped magnetic field thruster designs. This model is formulated in terms of the average energy required to produce an ion in the discharge chamber plasma and the fraction of these ions that are extracted to form the beam. The direct loss of high energy (primary) electrons from the plasma to the anode is shown to have a major effect on thruster performance. The model provides simple algebraic equations enabling one to calculate the beam ion energy cost, the average discharge chamber plasma ion energy cost, the primary electron density, the primary-to-Maxwellian electron density ratio and the Maxwellian electron temperature. Experiments indicate that the model correctly predicts the variation in plasma ion energy cost for changes in propellant gas (Ar, Kr and Xe), grid transparency to neutral atoms, beam extraction area, discharge voltage, and discharge chamber wall temperature. The model and experiments indicate that thruster performance may be described in terms of only four thruster configuration dependent parameters and two operating parameters. The model also suggests that improved performance should be exhibited by thruster designs which extract a large fraction of the ions produced in the discharge chamber, which have good primary electron and neutral atom containment and which operate at high propellant flow rates.

  17. High-Performance Happy

    ERIC Educational Resources Information Center

    O'Hanlon, Charlene

    2007-01-01

    Traditionally, the high-performance computing (HPC) systems used to conduct research at universities have amounted to silos of technology scattered across the campus and falling under the purview of the researchers themselves. This article reports that a growing number of universities are now taking over the management of those systems and…

  18. Improving Surface Irrigation Performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface irrigation systems often have a reputation for poor performance. One key feature of efficient surface irrigation systems is precision (e.g. laser-guided) land grading. Poor land grading can make other improvements ineffective. An important issue, related to land shaping, is developing the pr...

  19. High performance systems

    SciTech Connect

    Vigil, M.B.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  20. EPICS performance evaluation

    SciTech Connect

    Botlo, M.; Jagielski, M.; Romero, A.

    1993-09-01

    The authors report on the software architecture, some CPU and memory issues, and the performance of the Experimental Physics and Industrial Control System (EPICS). Specifically, they subject each EPICS software layer to a series of tests and extract quantitative results that should be useful to system architects planning to use EPICS for control applications.

  1. New Source Performance Standards

    ERIC Educational Resources Information Center

    Jenkins, Richard E.; McCutchen, Gary D.

    1972-01-01

    This feature article outlines the concept and procedures followed in establishing performance standards for new emission sources and summarizes the standards that have been established to date. Five source catagories are enumerated: fossil fuel-fired steam generators, municipal incinerators, Portland cement plants, nitric acid plants, and sulfuric…

  2. Modular Software Performance Monitoring

    NASA Astrophysics Data System (ADS)

    Kruse, Daniele Francesco; Kruzelecki, Karol

    2011-12-01

    CPU clock frequency is not likely to be increased significantly in the coming years, and data analysis speed can be improved by using more processors or buying new machines, only if one is willing to change the programming paradigm to a parallel one. Therefore, performance monitoring procedures and tools are needed to help programmers to optimize existing software running on current and future hardware. Low level information from hardware performance counters is vital to spot specific performance problems slowing program execution. HEP software is often huge and complex, and existing tools are unable to give results with the required granularity. We will report on the approach we have chosen to solve this problem that involves decomposing the application into parts and monitoring each one of them separately. Both counting and sampling methods are used to allow an analysis with the required custom granularity: from global level, up to the function level. A set of tools (based on perfmon2 - a software interface to hardware counters) for CMSSW, Gaudi and Geant4 has been developed and deployed. We will show how this type of analysis has been proven useful in spotting specific performance problems and effective in helping with code optimization.

  3. Performance Appraisal and Counseling

    ERIC Educational Resources Information Center

    Powers, M. L.

    1972-01-01

    Author, an Associate Professor of Industrial Management Engineering at the University of Oklahoma, has worked with both large and small companies and organizations in many kinds of business and industry. He discusses performance appraisal of employees, merit raises, counseling and interviewing techniques. (Editor/DR)

  4. Performing arts medicine.

    PubMed Central

    Ostwald, P F; Baron, B C; Byl, N M; Wilson, F R

    1994-01-01

    Arts medicine has come of age, resulting from 3 important developments over the past decade: improved methods of diagnosis and treatment, an awareness that artists suffer from special problems related to their occupation and lifestyle, and the establishment of health programs emphasizing an interdisciplinary approach to these patients. We focus on the patterns of illness afflicting performing artists, specifically dancers, singers, actors, and instrumental musicians, and explain some of the things a health care team can do in treating these patients. The conditions governing these patients' lives--early exposure to high expectations of excellence, incessant demands for perfection, long periods of intense practicing, fierce competition, high levels of anxiety associated with performance, and uncertain careers--need to be understood. Levels of disease and disability are remarkably high, but artists often ignore symptoms. We discuss the musculoskeletal, neurologic, vocal, psychological, and other syndromes found among performers and some of the difficulties in treating them. The prevention of injury, conservative management, collaboration with teachers, and a psychotherapeutic approach are desirable. Arts medicine programs for professional consultation exist in several major cities of the United States and abroad. Although research is needed regarding the effectiveness of health care services for performing artists, the scientific literature devoted to this field is growing. PMID:8128702

  5. Human performance measuring device

    NASA Technical Reports Server (NTRS)

    Michael, J.; Scow, J.

    1970-01-01

    Complex coordinator, consisting of operator control console, recorder, subject display panel, and limb controls, measures human performance by testing perceptual and motor skills. Device measures psychophysiological functions in drug and environmental studies, and is applicable to early detection of psychophysiological body changes.

  6. Age and Scientific Performance.

    ERIC Educational Resources Information Center

    Cole, Stephen

    1979-01-01

    The long-standing belief that age is negatively associated with scientific productivity and creativity is shown to be based upon incorrect analysis of data. Studies reported in this article suggest that the relationship between age and scientific performance is influenced by the operation of the reward system. (Author)

  7. Helping Others Improve Performance

    ERIC Educational Resources Information Center

    Durfee, Arthur E.

    1970-01-01

    Because individuals are motivated by work which they regard as challenging and worthwhile, their motivation is increased as they are given clear-cut responsibility. A performance appraisal system based on these new insights is available and may be used by supervisors. (NL)

  8. Functional performance of pyrovalves

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.

    1996-01-01

    Following several flight and ground test failures of spacecraft systems using single-shot, 'normally closed' pyrotechnically actuated valves (pyrovalves), a Government/Industry cooperative program was initiated to assess the functional performance of five qualified designs. The goal of the program was to provide information on functional performance of pyrovalves to allow users the opportunity to improve procurement requirements. Specific objectives included the demonstration of performance test methods, the seating; these gases/particles entered the fluid path of measurement of 'blowby' (the passage of gases from the pyrotechnic energy source around the activating piston into the valve's fluid path), and the quantification of functional margins for each design. Experiments were conducted at NASA's Langley Research Center on several units for each of the five valve designs. The test methods used for this program measured the forces and energies required to actuate the valves, as well as the energies and the pressures (where possible) delivered by the pyrotechnic sources. Functional performance ranged widely among the designs. Blowby cannot be prevented by o-ring seals; metal-to-metal seals were effective. Functional margin was determined by dividing the energy delivered by the pyrotechnic sources in excess to that required to accomplish the function by the energy required for that function. Two of the five designs had inadequate functional margins with the pyrotechnic cartridges evaluated.

  9. Performance Evaluation Process.

    ERIC Educational Resources Information Center

    1998

    This document contains four papers from a symposium on the performance evaluation process and human resource development (HRD). "Assessing the Effectiveness of OJT (On the Job Training): A Case Study Approach" (Julie Furst-Bowe, Debra Gates) is a case study of the effectiveness of OJT in one of a high-tech manufacturing company's product lines.…

  10. CRITERIA FOR COUNSELOR PERFORMANCE.

    ERIC Educational Resources Information Center

    MILLER, LEONARD A.; MUTHARD, JOHN E.

    THIS RESEARCH CONCERNS THE RELATIONSHIPS AMONG REHABILITATION COUNSELOR PERFORMANCE CRITERIA CURRENTLY BEING USED OR READILY AVAILABLE TO STATE VOCATIONAL REHABILITATION AGENCIES. THE 143 COUNSELORS STUDIED CAME FROM MIDDLE-SIZED AGENCIES IN SIX STATES AND, SINCE COWORKER RATINGS WERE REQUIRED, THE SAMPLE WAS LIMITED TO COUNSELORS WORKING WITH TWO…

  11. Performance Funding in Pennsylvania

    ERIC Educational Resources Information Center

    Cavanaugh, John C.; Garland, Peter

    2012-01-01

    Greater accountability in public higher education systems is a fact of life in the current political climate. Increasingly, one form this accountability takes is performance funding, which arises from elected officials' need for assurance that taxpayer funds are not only being invested and used properly but are resulting in desired outcomes at…

  12. High Performance Window Retrofit

    SciTech Connect

    Shrestha, Som S; Hun, Diana E; Desjarlais, Andre Omer

    2013-12-01

    The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

  13. The Power To Perform.

    ERIC Educational Resources Information Center

    Education Next, 2003

    2003-01-01

    Argues that attracting nontraditional leaders to school administration requires the adoption of results-based practices tying compensation to performance. Includes profiles of two nontraditional leaders: Jennifer Henry, executive director of the Academy for Urban School Leadership in Chicago and Paula Dawning, superintendent of the Benton Harbor…

  14. Precursors of Performance Funding.

    ERIC Educational Resources Information Center

    Serban, Andreea M.

    1998-01-01

    Performance funding reemerged in the 1990s as a state budgetary method for complementing or replacing other funding strategies for public colleges to better promote and respond to specific policy concerns. It has the potential to correct some of the apparent flaws in traditional budgeting but is easier to define than to put into operation. (MSE)

  15. HRD and Performance Outcomes.

    ERIC Educational Resources Information Center

    1997

    This document contains three papers from a symposium on human resource development (HRD) and performance outcomes. "Going to the Next Level of Growth: Employing Systems Thinking to Make Effective Interventions" (Carol Ann Zulauf, Joseph A. Ilacqua) shows how a systems view enables organizations to find the most effective point for interventions…

  16. Women and Performance Issue.

    ERIC Educational Resources Information Center

    Kirby, Michael, Ed.

    1980-01-01

    The diversity of important work being done by women in many aspects of theatrical performance in the United States is illustrated in this journal issue. The nine articles provide discussions of the following: (1) women's careers, images, and movements in the American theatre; (2) the evolution of La Mama, an off-off-Broadway theatre group begun in…

  17. Benchmarking and Performance Measurement.

    ERIC Educational Resources Information Center

    Town, J. Stephen

    This paper defines benchmarking and its relationship to quality management, describes a project which applied the technique in a library context, and explores the relationship between performance measurement and benchmarking. Numerous benchmarking methods contain similar elements: deciding what to benchmark; identifying partners; gathering…

  18. VENTURI SCRUBBER PERFORMANCE MODEL

    EPA Science Inventory

    The paper presents a new model for predicting the particle collection performance of venturi scrubbers. It assumes that particles are collected by atomized liquid only in the throat section. The particle collection mechanism is inertial impaction, and the model uses a single drop...

  19. Assessing Scientific Performance.

    ERIC Educational Resources Information Center

    Weiner, John M.; And Others

    1984-01-01

    A method for assessing scientific performance based on relationships displayed numerically in published documents is proposed and illustrated using published documents in pediatric oncology for the period 1979-1982. Contributions of a major clinical investigations group, the Childrens Cancer Study Group, are analyzed. Twenty-nine references are…

  20. Functional Performance of Pyrovalves

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.

    1996-01-01

    Following several flight and ground test failures of spacecraft systems using single-shot, 'normally closed' pyrotechnically actuated valves (pyrovalves), a government/industry cooperative program was initiated to assess the functional performance of five qualified designs. The goal of the program was to improve performance-based requirements for the procurement of pyrovalves. Specific objectives included the demonstration of performance test methods, the measurement of 'blowby' (the passage of gases from the pyrotechnic energy source around the activating piston into the valve's fluid path), and the quantification of functional margins for each design. Experiments were conducted in-house at NASA on several units each of the five valve designs. The test methods used for this program measured the forces and energies required to actuate the valves, as well as the energies and the pressures (where possible) delivered by the pyrotechnic sources. Functional performance ranged widely among the designs. Blowby cannot be prevented by o-ring seals; metal-to-metal seals were effective. Functional margin was determined by dividing the energy delivered by the pyrotechnic sources in excess to that required to accomplish the function by the energy required for that function. All but two designs had adequate functional margins with the pyrotechnic cartridges evaluated.