Sample records for perfusion weighted mri

  1. Inflow-weighted pulmonary perfusion: comparison between dynamic contrast-enhanced MRI versus perfusion scintigraphy in complex pulmonary circulation

    PubMed Central

    2013-01-01

    Background Due to the different properties of the contrast agents, the lung perfusion maps as measured by 99mTc-labeled macroaggregated albumin perfusion scintigraphy (PS) are not uncommonly discrepant from those measured by dynamic contrast-enhanced MRI (DCE-MRI) using indicator-dilution analysis in complex pulmonary circulation. Since PS offers the pre-capillary perfusion of the first-pass transit, we hypothesized that an inflow-weighted perfusion model of DCE-MRI could simulate the result by PS. Methods 22 patients underwent DCE-MRI at 1.5T and also PS. Relative perfusion contributed by the left lung was calculated by PS (PSL%), by DCE-MRI using conventional indicator dilution theory for pulmonary blood volume (PBVL%) and pulmonary blood flow (PBFL%) and using our proposed inflow-weighted pulmonary blood volume (PBViwL%). For PBViwL%, the optimal upper bound of the inflow-weighted integration range was determined by correlation coefficient analysis. Results The time-to-peak of the normal lung parenchyma was the optimal upper bound in the inflow-weighted perfusion model. Using PSL% as a reference, PBVL% showed error of 49.24% to −40.37% (intraclass correlation coefficient RI = 0.55) and PBFL% had error of 34.87% to −27.76% (RI = 0.80). With the inflow-weighted model, PBViwL% had much less error of 12.28% to −11.20% (RI = 0.98) from PSL%. Conclusions The inflow-weighted DCE-MRI provides relative perfusion maps similar to that by PS. The discrepancy between conventional indicator-dilution and inflow-weighted analysis represents a mixed-flow component in which pathological flow such as shunting or collaterals might have participated. PMID:23448679

  2. Inflow-weighted pulmonary perfusion: comparison between dynamic contrast-enhanced MRI versus perfusion scintigraphy in complex pulmonary circulation.

    PubMed

    Lin, Yi-Ru; Tsai, Shang-Yueh; Huang, Teng-Yi; Chung, Hsiao-Wen; Huang, Yi-Luan; Wu, Fu-Zong; Lin, Chu-Chuan; Peng, Nan-Jing; Wu, Ming-Ting

    2013-02-28

    Due to the different properties of the contrast agents, the lung perfusion maps as measured by 99mTc-labeled macroaggregated albumin perfusion scintigraphy (PS) are not uncommonly discrepant from those measured by dynamic contrast-enhanced MRI (DCE-MRI) using indicator-dilution analysis in complex pulmonary circulation. Since PS offers the pre-capillary perfusion of the first-pass transit, we hypothesized that an inflow-weighted perfusion model of DCE-MRI could simulate the result by PS. 22 patients underwent DCE-MRI at 1.5T and also PS. Relative perfusion contributed by the left lung was calculated by PS (PS(L%)), by DCE-MRI using conventional indicator dilution theory for pulmonary blood volume (PBV(L%)) and pulmonary blood flow (PBFL%) and using our proposed inflow-weighted pulmonary blood volume (PBV(iw)(L%)). For PBViw(L%), the optimal upper bound of the inflow-weighted integration range was determined by correlation coefficient analysis. The time-to-peak of the normal lung parenchyma was the optimal upper bound in the inflow-weighted perfusion model. Using PSL% as a reference, PBV(L%) showed error of 49.24% to -40.37% (intraclass correlation coefficient R(I) = 0.55) and PBF(L%) had error of 34.87% to -27.76% (R(I) = 0.80). With the inflow-weighted model, PBV(iw)(L%) had much less error of 12.28% to -11.20% (R(I) = 0.98) from PS(L%). The inflow-weighted DCE-MRI provides relative perfusion maps similar to that by PS. The discrepancy between conventional indicator-dilution and inflow-weighted analysis represents a mixed-flow component in which pathological flow such as shunting or collaterals might have participated.

  3. Diffusion Weighted/Tensor Imaging, Functional MRI and Perfusion Weighted Imaging in Glioblastoma-Foundations and Future.

    PubMed

    Salama, Gayle R; Heier, Linda A; Patel, Praneil; Ramakrishna, Rohan; Magge, Rajiv; Tsiouris, Apostolos John

    2017-01-01

    In this article, we review the basics of diffusion tensor imaging and functional MRI, their current utility in preoperative neurosurgical mapping, and their limitations. We also discuss potential future applications, including implementation of resting state functional MRI. We then discuss perfusion and diffusion-weighted imaging and their application in advanced neuro-oncologic practice. We explain how these modalities can be helpful in guiding surgical biopsies and differentiating recurrent tumor from treatment related changes.

  4. Diffusion Weighted/Tensor Imaging, Functional MRI and Perfusion Weighted Imaging in Glioblastoma—Foundations and Future

    PubMed Central

    Salama, Gayle R.; Heier, Linda A.; Patel, Praneil; Ramakrishna, Rohan; Magge, Rajiv; Tsiouris, Apostolos John

    2018-01-01

    In this article, we review the basics of diffusion tensor imaging and functional MRI, their current utility in preoperative neurosurgical mapping, and their limitations. We also discuss potential future applications, including implementation of resting state functional MRI. We then discuss perfusion and diffusion-weighted imaging and their application in advanced neuro-oncologic practice. We explain how these modalities can be helpful in guiding surgical biopsies and differentiating recurrent tumor from treatment related changes. PMID:29403420

  5. Semi-automated and automated glioma grading using dynamic susceptibility-weighted contrast-enhanced perfusion MRI relative cerebral blood volume measurements.

    PubMed

    Friedman, S N; Bambrough, P J; Kotsarini, C; Khandanpour, N; Hoggard, N

    2012-12-01

    Despite the established role of MRI in the diagnosis of brain tumours, histopathological assessment remains the clinically used technique, especially for the glioma group. Relative cerebral blood volume (rCBV) is a dynamic susceptibility-weighted contrast-enhanced perfusion MRI parameter that has been shown to correlate to tumour grade, but assessment requires a specialist and is time consuming. We developed analysis software to determine glioma gradings from perfusion rCBV scans in a manner that is quick, easy and does not require a specialist operator. MRI perfusion data from 47 patients with different histopathological grades of glioma were analysed with custom-designed software. Semi-automated analysis was performed with a specialist and non-specialist operator separately determining the maximum rCBV value corresponding to the tumour. Automated histogram analysis was performed by calculating the mean, standard deviation, median, mode, skewness and kurtosis of rCBV values. All values were compared with the histopathologically assessed tumour grade. A strong correlation between specialist and non-specialist observer measurements was found. Significantly different values were obtained between tumour grades using both semi-automated and automated techniques, consistent with previous results. The raw (unnormalised) data single-pixel maximum rCBV semi-automated analysis value had the strongest correlation with glioma grade. Standard deviation of the raw data had the strongest correlation of the automated analysis. Semi-automated calculation of raw maximum rCBV value was the best indicator of tumour grade and does not require a specialist operator. Both semi-automated and automated MRI perfusion techniques provide viable non-invasive alternatives to biopsy for glioma tumour grading.

  6. Tissue-Negative Transient Ischemic Attack: Is There a Role for Perfusion MRI?

    PubMed

    Grams, Raymond W; Kidwell, Chelsea S; Doshi, Amish H; Drake, Kendra; Becker, Jennifer; Coull, Bruce M; Nael, Kambiz

    2016-07-01

    Approximately 60% of patients with a clinical transient ischemic attack (TIA) do not have DWI evidence of cerebral ischemia. The purpose of this study was to assess the added diagnostic value of perfusion MRI in the evaluation of patients with TIA who have normal DWI findings. The inclusion criteria for this retrospective study were clinical presentation of TIA at admission with a discharge diagnosis of TIA confirmed by a stroke neurologist, MRI including both DWI and perfusion-weighted imaging within 48 hours of symptom onset, and no DWI lesion. Cerebral blood flow (CBF) and time to maximum of the residue function (Tmax) maps were evaluated independently by two observers. Multivariate analysis was used to assess perfusion findings; clinical variables; age, blood pressure, clinical symptoms, diabetes (ABCD2) score; duration of TIA; and time between MRI and onset and resolution of symptoms. Fifty-two patients (33 women, 19 men; age range, 20-95 years) met the inclusion criteria. A regional perfusion abnormality was identified on either Tmax or CBF maps of 12 of 52 (23%) patients. Seven (58%) of the patients with perfusion abnormalities had hypoperfused lesions best detected on Tmax maps; the other five had hyperperfusion best detected on CBF maps. In 11 of 12 (92%) patients with abnormal perfusion MRI findings, the regional perfusion deficit correlated with the initial neurologic deficits. Multivariable analysis revealed no significant difference in demographics, ABCD2 scores, or presentation characteristics between patients with and those without perfusion abnormalities. Perfusion MRI that includes Tmax and CBF parametric maps adds diagnostic value by depicting regions with delayed perfusion or postischemic hyperperfusion in approximately one-fourth of TIA patients who have normal DWI findings.

  7. Quantitative lung perfusion evaluation using Fourier decomposition perfusion MRI.

    PubMed

    Kjørstad, Åsmund; Corteville, Dominique M R; Fischer, Andre; Henzler, Thomas; Schmid-Bindert, Gerald; Zöllner, Frank G; Schad, Lothar R

    2014-08-01

    To quantitatively evaluate lung perfusion using Fourier decomposition perfusion MRI. The Fourier decomposition (FD) method is a noninvasive method for assessing ventilation- and perfusion-related information in the lungs, where the perfusion maps in particular have shown promise for clinical use. However, the perfusion maps are nonquantitative and dimensionless, making follow-ups and direct comparisons between patients difficult. We present an approach to obtain physically meaningful and quantifiable perfusion maps using the FD method. The standard FD perfusion images are quantified by comparing the partially blood-filled pixels in the lung parenchyma with the fully blood-filled pixels in the aorta. The percentage of blood in a pixel is then combined with the temporal information, yielding quantitative blood flow values. The values of 10 healthy volunteers are compared with SEEPAGE measurements which have shown high consistency with dynamic contrast enhanced-MRI. All pulmonary blood flow (PBF) values are within the expected range. The two methods are in good agreement (mean difference = 0.2 mL/min/100 mL, mean absolute difference = 11 mL/min/100 mL, mean PBF-FD = 150 mL/min/100 mL, mean PBF-SEEPAGE = 151 mL/min/100 mL). The Bland-Altman plot shows a good spread of values, indicating no systematic bias between the methods. Quantitative lung perfusion can be obtained using the Fourier Decomposition method combined with a small amount of postprocessing. Copyright © 2013 Wiley Periodicals, Inc.

  8. Perfusion MRI: The Five Most Frequently Asked Clinical Questions

    PubMed Central

    Essig, Marco; Nguyen, Thanh Binh; Shiroishi, Mark S.; Saake, Marc; Provenzale, James M.; Enterline, David S.; Anzalone, Nicoletta; Dörfler, Arnd; Rovira, Àlex; Wintermark, Max; Law, Meng

    2013-01-01

    OBJECTIVE This article addresses questions that radiologists frequently ask when planning, performing, processing, and interpreting MRI perfusion studies in CNS imaging. CONCLUSION Perfusion MRI is a promising tool in assessing stroke, brain tumors, and neurodegenerative diseases. Most of the impediments that have limited the use of perfusion MRI can be overcome to allow integration of these methods into modern neuroimaging protocols. PMID:23971482

  9. Early Changes in Tumor Perfusion from T1-Weighted Dynamic Contrast-Enhanced MRI following Neural Stem Cell-Mediated Therapy of Recurrent High-Grade Glioma Correlate with Overall Survival

    PubMed Central

    Sahoo, Prativa; Frankel, Paul; Ressler, Julie; Gutova, Margarita; Annala, Alexander J.; Portnow, Jana; Aboody, Karen S.

    2018-01-01

    Background The aim of this study was to correlate T1-weighted dynamic contrast-enhanced MRI- (DCE-MRI-) derived perfusion parameters with overall survival of recurrent high-grade glioma patients who received neural stem cell- (NSC-) mediated enzyme/prodrug gene therapy. Methods A total of 12 patients were included in this retrospective study. All patients were enrolled in a first-in-human study (NCT01172964) of NSC-mediated therapy for recurrent high-grade glioma. DCE-MRI data from all patients were collected and analyzed at three time points: MRI#1—day 1 postsurgery/treatment, MRI#2— day 7 ± 3 posttreatment, and MRI#3—one-month follow-up. Plasma volume (V p), permeability (K tr), and leakage (λ tr) perfusion parameters were calculated by fitting a pharmacokinetic model to the DCE-MRI data. The contrast-enhancing (CE) volume was measured from the last dynamic phase acquired in the DCE sequence. Perfusion parameters and CE at each MRI time point were recorded along with their relative change between MRI#2 and MRI#3 (Δ32). Cox regression was used to analyze patient survival. Results At MRI#1 and at MRI#3, none of the parameters showed a significant correlation with overall survival (OS). However, at MRI#2, CE and λ tr were significantly associated with OS (p < 0.05). The relative λ tr and V p from timepoint 2 to timepoint 3 (Δ32 λ tr and Δ32 V p) were each associated with a higher hazard ratio (p < 0.05). All parameters were highly correlated, resulting in a multivariate model for OS including only CE at MRI#2 and Δ32 V p, with an R 2 of 0.89. Conclusion The change in perfusion parameter values from 1 week to 1 month following NSC-mediated therapy combined with contrast-enhancing volume may be a useful biomarker to predict overall survival in patients with recurrent high-grade glioma. PMID:29731779

  10. Early Changes in Tumor Perfusion from T1-Weighted Dynamic Contrast-Enhanced MRI following Neural Stem Cell-Mediated Therapy of Recurrent High-Grade Glioma Correlate with Overall Survival.

    PubMed

    Sahoo, Prativa; Frankel, Paul; Ressler, Julie; Gutova, Margarita; Annala, Alexander J; Badie, Behnam; Portnow, Jana; Aboody, Karen S; D'Apuzzo, Massimo; Rockne, Russell C

    2018-01-01

    The aim of this study was to correlate T1-weighted dynamic contrast-enhanced MRI- (DCE-MRI-) derived perfusion parameters with overall survival of recurrent high-grade glioma patients who received neural stem cell- (NSC-) mediated enzyme/prodrug gene therapy. A total of 12 patients were included in this retrospective study. All patients were enrolled in a first-in-human study (NCT01172964) of NSC-mediated therapy for recurrent high-grade glioma. DCE-MRI data from all patients were collected and analyzed at three time points: MRI#1-day 1 postsurgery/treatment, MRI#2- day 7 ± 3 posttreatment, and MRI#3-one-month follow-up. Plasma volume ( V p ), permeability ( K tr ), and leakage ( λ tr ) perfusion parameters were calculated by fitting a pharmacokinetic model to the DCE-MRI data. The contrast-enhancing (CE) volume was measured from the last dynamic phase acquired in the DCE sequence. Perfusion parameters and CE at each MRI time point were recorded along with their relative change between MRI#2 and MRI#3 (Δ 32 ). Cox regression was used to analyze patient survival. At MRI#1 and at MRI#3, none of the parameters showed a significant correlation with overall survival (OS). However, at MRI#2, CE and λ tr were significantly associated with OS ( p < 0.05). The relative λ tr and V p from timepoint 2 to timepoint 3 (Δ 32 λ tr and Δ 32 V p ) were each associated with a higher hazard ratio ( p < 0.05). All parameters were highly correlated, resulting in a multivariate model for OS including only CE at MRI#2 and Δ 32 V p , with an R 2 of 0.89. The change in perfusion parameter values from 1 week to 1 month following NSC-mediated therapy combined with contrast-enhancing volume may be a useful biomarker to predict overall survival in patients with recurrent high-grade glioma.

  11. Perfusion MRI: The Five Most Frequently Asked Technical Questions

    PubMed Central

    Essig, Marco; Shiroishi, Mark S.; Nguyen, Thanh Binh; Saake, Marc; Provenzale, James M.; Enterline, David; Anzalone, Nicoletta; Dörfler, Arnd; Rovira, Àlex; Wintermark, Max; Law, Meng

    2013-01-01

    OBJECTIVE This and its companion article address the 10 most frequently asked questions that radiologists face when planning, performing, processing, and interpreting different MR perfusion studies in CNS imaging. CONCLUSION Perfusion MRI is a promising tool in assessing stroke, brain tumors, and patients with neurodegenerative diseases. Most of the impediments that have limited the use of perfusion MRI can be overcome to allow integration of these methods into modern neuroimaging protocols. PMID:23255738

  12. IDH mutant and 1p/19q co-deleted oligodendrogliomas: tumor grade stratification using diffusion-, susceptibility-, and perfusion-weighted MRI.

    PubMed

    Lin, Yu; Xing, Zhen; She, Dejun; Yang, Xiefeng; Zheng, Yingyan; Xiao, Zebin; Wang, Xingfu; Cao, Dairong

    2017-06-01

    Currently, isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion are proven diagnostic biomarkers for both grade II and III oligodendrogliomas (ODs). Non-invasive diffusion-weighted imaging (DWI), susceptibility-weighted imaging (SWI), and dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) are widely used to provide physiological information (cellularity, hemorrhage, calcifications, and angiogenesis) of neoplastic histology and tumor grade. However, it is unclear whether DWI, SWI, and DSC-PWI are able to stratify grades of IDH-mutant and 1p/19q co-deleted ODs. We retrospectively reviewed the conventional MRI (cMRI), DWI, SWI, and DSC-PWI obtained on 33 patients with IDH-mutated and 1p/19q co-deleted ODs. Features of cMRI, normalized ADC (nADC), intratumoral susceptibility signals (ITSSs), normalized maxim CBV (nCBV), and normalized maximum CBF (nCBF) were compared between low-grade ODs (LGOs) and high-grade ODs (HGOs). Receiver operating characteristic curve and logistic regression were applied to determine diagnostic performances. HGOs tended to present with prominent edema and enhancement. nADC, ITSSs, nCBV, and nCBF were significantly different between groups (all P < 0.05). The combination of SWI and DSC-PWI for grading resulted in sensitivity and specificity of 100.00 and 93.33%, respectively. IDH-mutant and 1p/19q co-deleted ODs can be stratified by grades using cMRI and advanced magnetic resonance imaging techniques including DWI, SWI, and DSC-PWI. Combined ITSSs with nCBV appear to be a promising option for grading molecularly defined ODs in clinical practice.

  13. A methodology for generating normal and pathological brain perfusion SPECT images for evaluation of MRI/SPECT fusion methods: application in epilepsy

    NASA Astrophysics Data System (ADS)

    Grova, C.; Jannin, P.; Biraben, A.; Buvat, I.; Benali, H.; Bernard, A. M.; Scarabin, J. M.; Gibaud, B.

    2003-12-01

    Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were found within

  14. A study on cerebral hemodynamic analysis of moyamoya disease by using perfusion MRI

    NASA Astrophysics Data System (ADS)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan

    2013-10-01

    This study examined the clinical applications of perfusion magnetic resonance imaging (MRI) in patients with moyamoya disease (MMD). Twenty-two patients with moyamoya disease (9 men and 13 women) with a mean age of 9.3 years (range: 4-22 years) were enrolled in this study. Perfusion MRI was performed by scanning the patients7.5 cm upward from the base of the cerebellum before their being process for post-treatment. The scan led to the acquisition of the following four map images: the cerebral blood volume (CBV), the cerebral blood flow (CBF), the mean transit time (MTT) for the contrast medium, and the time to peak (TTP) for the contrast medium. The lesions were assessed using the CBV, the CBF, the MTT and the TTP maps of perfusion MRI; the MTT and the TTP were measured in the lesion areas, as well as in the normal and the symmetric areas. Perfusion defects were recognizable in all four perfusion MRI maps, and the MTT and the TTP showed a conspicuous delay in the parts where perfusion defects were recognized. The MTT and the TTP images of perfusion MRI reflected a significant correlation between the degrees of stenosis and occlusion in the posterior cerebral artery (PCA), as well as the development of collateral vessels. The four perfusion MRI maps could be used to predict the degrees of stenosis and occlusion in the posterior circulation, as well as the development of the collateral vessels, which enabled a hemodynamic evaluation of the parts with perfusion defects. Overall, perfusion MRI is useful for the diagnosis and the treatment of moyamoya disease and can be applied to clinical practice.

  15. Arterial Spin Labeling - Fast Imaging with Steady-State Free Precession (ASL-FISP): A Rapid and Quantitative Perfusion Technique for High Field MRI

    PubMed Central

    Gao, Ying; Goodnough, Candida L.; Erokwu, Bernadette O.; Farr, George W.; Darrah, Rebecca; Lu, Lan; Dell, Katherine M.; Yu, Xin; Flask, Chris A.

    2014-01-01

    Arterial Spin Labeling (ASL) is a valuable non-contrast perfusion MRI technique with numerous clinical applications. Many previous ASL MRI studies have utilized either Echo-Planar Imaging (EPI) or True Fast Imaging with Steady-State Free Precession (True FISP) readouts that are prone to off-resonance artifacts on high field MRI scanners. We have developed a rapid ASL-FISP MRI acquisition for high field preclinical MRI scanners providing perfusion-weighted images with little or no artifacts in less than 2 seconds. In this initial implementation, a FAIR (Flow-Sensitive Alternating Inversion Recovery) ASL preparation was combined with a rapid, centrically-encoded FISP readout. Validation studies on healthy C57/BL6 mice provided consistent estimation of in vivo mouse brain perfusion at 7 T and 9.4 T (249±38 ml/min/100g and 241±17 ml/min/100g, respectively). The utility of this method was further demonstrated in detecting significant perfusion deficits in a C57/BL6 mouse model of ischemic stroke. Reasonable kidney perfusion estimates were also obtained for a healthy C57/BL6 mouse exhibiting differential perfusion in the renal cortex and medulla. Overall, the ASL-FISP technique provides a rapid and quantitative in vivo assessment of tissue perfusion for high field MRI scanners with minimal image artifacts. PMID:24891124

  16. Diffusion-weighted Breast MRI: Clinical Applications and Emerging Techniques

    PubMed Central

    Partridge, Savannah C.; Nissan, Noam; Rahbar, Habib; Kitsch, Averi E.; Sigmund, Eric E.

    2016-01-01

    Diffusion weighted MRI (DWI) holds potential to improve the detection and biological characterization of breast cancer. DWI is increasingly being incorporated into breast MRI protocols to address some of the shortcomings of routine clinical breast MRI. Potential benefits include improved differentiation of benign and malignant breast lesions, assessment and prediction of therapeutic efficacy, and non-contrast detection of breast cancer. The breast presents a unique imaging environment with significant physiologic and inter-subject variations, as well as specific challenges to achieving reliable high quality diffusion weighted MR images. Technical innovations are helping to overcome many of the image quality issues that have limited widespread use of DWI for breast imaging. Advanced modeling approaches to further characterize tissue perfusion, complexity, and glandular organization may expand knowledge and yield improved diagnostic tools. PMID:27690173

  17. Functional MRI detects perfusion impairment in renal allografts with delayed graft function.

    PubMed

    Hueper, Katja; Gueler, Faikah; Bräsen, Jan Hinrich; Gutberlet, Marcel; Jang, Mi-Sun; Lehner, Frank; Richter, Nicolas; Hanke, Nils; Peperhove, Matti; Martirosian, Petros; Tewes, Susanne; Vo Chieu, Van Dai; Großhennig, Anika; Haller, Hermann; Wacker, Frank; Gwinner, Wilfried; Hartung, Dagmar

    2015-06-15

    Delayed graft function (DGF) after kidney transplantation is not uncommon, and it is associated with long-term allograft impairment. Our aim was to compare renal perfusion changes measured with noninvasive functional MRI in patients early after kidney transplantation to renal function and allograft histology in biopsy samples. Forty-six patients underwent MRI 4-11 days after transplantation. Contrast-free MRI renal perfusion images were acquired using an arterial spin labeling technique. Renal function was assessed by estimated glomerular filtration rate (eGFR), and renal biopsies were performed when indicated within 5 days of MRI. Twenty-six of 46 patients had DGF. Of these, nine patients had acute rejection (including borderline), and eight had other changes (e.g., tubular injury or glomerulosclerosis). Renal perfusion was significantly lower in the DGF group compared with the group with good allograft function (231 ± 15 vs. 331 ± 15 ml·min(-1)·100 g(-1), P < 0.001). Living donor allografts exhibited significantly higher perfusion values compared with deceased donor allografts (P < 0.001). Renal perfusion significantly correlated with eGFR (r = 0.64, P < 0.001), resistance index (r = -0.57, P < 0.001), and cold ischemia time (r = -0.48, P < 0.01). Furthermore, renal perfusion impairment early after transplantation predicted inferior renal outcome and graft loss. In conclusion, noninvasive functional MRI detects renal perfusion impairment early after kidney transplantation in patients with DGF. Copyright © 2015 the American Physiological Society.

  18. Correlation between dynamic contrast-enhanced perfusion MRI relative cerebral blood volume and vascular endothelial growth factor expression in meningiomas.

    PubMed

    Ginat, Daniel T; Mangla, Rajiv; Yeaney, Gabrielle; Schaefer, Pamela W; Wang, Henry

    2012-08-01

    To determine whether there is a correlation between vascular endothelial growth factor (VEGF) expression and cerebral blood flow (CBV) measurements in dynamic contrast-enhanced susceptibility perfusion magnetic resonance imaging (MRI) and to correlate the perfusion characteristics in high- versus low-grade meningiomas. A total of 48 (24 high-grade and 24 low-grade) meningiomas with available dynamic susceptibility-weighted MRI were retrospectively reviewed for maximum CBV and semiquantitative VEGF immunoreactivity. Correlation between normalized CBV and VEGF was made using the Spearman rank test and comparison between CBV in high- versus low-grade meningiomas was made using the Wilcoxon test. There was a significant (P = .01) correlation between normalized maximum CBV and VEGF scores with a Spearman correlation coefficient of 0.37. In addition, there was a significant (P < .01) difference in normalized maximum CBV ratios between high-grade meningiomas (mean 12.6; standard deviation 5.2) and low-grade meningiomas (mean 8.2; standard deviation 5.2). The data suggest that CBV accurately reflects VEGF expression and tumor grade in meningiomas. Perfusion-weighted MRI can potentially serve as a useful biomarker for meningiomas, pending prospective studies. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.

  19. Alteration of cerebral perfusion in patients with idiopathic normal pressure hydrocephalus measured by 3D perfusion weighted magnetic resonance imaging.

    PubMed

    Walter, Christof; Hertel, F; Naumann, E; Mörsdorf, M

    2005-12-01

    It is controversial whether alteration of cerebral perfusion plays an important role in the pathophysiology of patients with idiopathic normal pressure hydrocephalus (NPH) and can help to predict the outcome after shunt surgery. 28 patients with suspected NPH were examined clinically (Homburg Hydrocephalus Scale, walking test, incontinence protocol) and by 3D dynamic susceptibility based perfusion weighted magnetic resonance imaging (PWI-MRI) before and after cerebrospinal fluid release (spinal tap test, STT). The perfusion parameters (negative integral (NI), time of arrival (T0), time to peak (TTP), mean transit time, and the difference TTP-T0 were analysed. Three different groups of patients were identified preoperatively: In group 1 seven patients showed an increase in the cerebral perfusion and a clinical improvement after STT. The second group (9 patients) also revealed an increase of the cerebral perfusion, but no significant alteration of the clinical assessment could be found. In the third group neither the cerebral perfusion nor the clinical assessment changed. 14 of the 16 patients (group 1 and 2) were examined three months after shunt placement. 11 patients showed a good or excellent result, 2 patients revealed a fair assessment, and only 1 patient had transiently improved. No patient was downgraded after shunting. In the patient group 1 and 2 the NI increased significantly (effect size: 34%), whereas in group 3 no significant alteration of NI was observed. PWI-MRI improves the prediction of outcome after shunt placement in patients with NPH and can offer new insights into the pathophysiology.

  20. Interobserver variability in the radiological assessment of magnetic resonance imaging (MRI) including perfusion MRI in glioblastoma multiforme.

    PubMed

    Kerkhof, M; Hagenbeek, R E; van der Kallen, B F W; Lycklama À Nijeholt, G J; Dirven, L; Taphoorn, M J B; Vos, M J

    2016-10-01

    Conventional magnetic resonance imaging (MRI) has limited value for differentiation of true tumor progression and pseudoprogression in treated glioblastoma multiforme (GBM). Perfusion weighted imaging (PWI) may be helpful in the differentiation of these two phenomena. Here interobserver variability in routine radiological evaluation of GBM patients is assessed using MRI, including PWI. Three experienced neuroradiologists evaluated MR scans of 28 GBM patients during temozolomide chemoradiotherapy at three time points: preoperative (MR1) and postoperative (MR2) MR scan and the follow-up MR scan after three cycles of adjuvant temozolomide (MR3). Tumor size was measured both on T1 post-contrast and T2 weighted images according to the Response Assessment in Neuro-Oncology criteria. PW images of MR3 were evaluated by visual inspection of relative cerebral blood volume (rCBV) color maps and by quantitative rCBV measurements of enhancing areas with highest rCBV. Image interpretability of PW images was also scored. Finally, the neuroradiologists gave a conclusion on tumor status, based on the interpretation of both T1 and T2 weighted images (MR1, MR2 and MR3) in combination with PWI (MR3). Interobserver agreement on visual interpretation of rCBV maps was good (κ = 0.63) but poor on quantitative rCBV measurements and on interpretability of perfusion images (intraclass correlation coefficient 0.37 and κ = 0.23, respectively). Interobserver agreement on the overall conclusion of tumor status was moderate (κ = 0.48). Interobserver agreement on the visual interpretation of PWI color maps was good. However, overall interpretation of MR scans (using both conventional and PW images) showed considerable interobserver variability. Therefore, caution should be applied when interpreting MRI results during chemoradiation therapy. © 2016 EAN.

  1. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis?

    PubMed

    Gaberel, Thomas; Gakuba, Clement; Goulay, Romain; Martinez De Lizarrondo, Sara; Hanouz, Jean-Luc; Emery, Evelyne; Touze, Emmanuel; Vivien, Denis; Gauberti, Maxime

    2014-10-01

    The aim of the present study was to investigate the impact of different stroke subtypes on the glymphatic system using MRI. We first improved and characterized an in vivo protocol to measure the perfusion of the glymphatic system using MRI after minimally invasive injection of a gadolinium chelate within the cisterna magna. Then, the integrity of the glymphatic system was evaluated in 4 stroke models in mice including subarachnoid hemorrhage (SAH), intracerebral hemorrhage, carotid ligature, and embolic ischemic stroke. We were able to reliably evaluate the glymphatic system function using MRI. Moreover, we provided evidence that the glymphatic system was severely impaired after SAH and in the acute phase of ischemic stroke, but was not altered after carotid ligature or in case of intracerebral hemorrhage. Notably, this alteration in glymphatic perfusion reduced brain clearance rate of low-molecular-weight compounds. Interestingly, glymphatic perfusion after SAH can be improved by intracerebroventricular injection of tissue-type plasminogen activator. Moreover, spontaneous arterial recanalization was associated with restoration of the glymphatic function after embolic ischemic stroke. SAH and acute ischemic stroke significantly impair the glymphatic system perfusion. In these contexts, injection of tissue-type plasminogen activator either intracerebroventricularly to clear perivascular spaces (for SAH) or intravenously to restore arterial patency (for ischemic stroke) may improve glymphatic function. © 2014 American Heart Association, Inc.

  2. [MRI methods for pulmonary ventilation and perfusion imaging].

    PubMed

    Sommer, G; Bauman, G

    2016-02-01

    Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes. The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment. Magnetic resonance imaging (MRI) with hyperpolarized gases, O2-enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used. Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters. Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons. The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies.

  3. Suppression of pulmonary vasculature in lung perfusion MRI using correlation analysis.

    PubMed

    Risse, Frank; Kuder, Tristan A; Kauczor, Hans-Ulrich; Semmler, Wolfhard; Fink, Christian

    2009-11-01

    The purpose of the study was to evaluate the feasibility of suppressing the pulmonary vasculature in lung perfusion MRI using cross-correlation analysis (CCA). Perfusion magnetic resonance imaging (MRI) (3D FLASH, TR/TE/flip angle: 0.8 ms/2.1 ms/40 degrees ) of the lungs was performed in seven healthy volunteers at 1.5 Tesla after injection of Gd-DTPA. CCA was performed pixel-wise in lung segmentations using the signal time-course of the main pulmonary artery and left atrium as references. Pixels with high correlation coefficients were considered as arterial or venous and excluded from further analysis. Quantitative perfusion parameters [pulmonary blood flow (PBF) and volume (PBV)] were calculated for manual lung segmentations separately, with the entire left and right lung with all intrapulmonary vessels (IPV) included, excluded manually or excluded using CCA. The application of CCA allowed reliable suppression of hilar and large IPVs. Using vascular suppression by CCA, perfusion parameters were significantly reduced (p perfusion in MRI. Overestimation of perfusion parameters caused by pulmonary vessels is significantly reduced.

  4. MDMA ‘ecstasy’ increases cerebral cortical perfusion determined by bolus-tracking arterial spin labelling (btASL) MRI

    PubMed Central

    Rouine, J; Gobbo, O L; Campbell, M; Gigliucci, V; Ogden, I; McHugh Smith, K; Duffy, P; Behan, B; Byrne, D; Kelly, M E; Blau, C W; Kerskens, C M; Harkin, A

    2013-01-01

    Background and Purpose The purpose of this study was to assess cerebral perfusion changes following systemic administration of the recreational drug 3,4-methylendioxymethamphetamine (MDMA ‘ecstasy’) to rats. Experimental Approach Cerebral perfusion was quantified using bolus-tracking arterial spin labelling (btASL) MRI. Rats received MDMA (20 mg·kg−1; i.p.) and were assessed 1, 3 or 24 h later. Rats received MDMA (5 or 20 mg·kg−1; i.p.) and were assessed 3 h later. In addition, rats received MDMA (5 or 10 mg·kg−1; i.p.) or saline four times daily over 2 consecutive days and were assessed 8 weeks later. Perfusion-weighted images were generated in a 7 tesla (7T) MRI scanner and experimental data was fitted to a quantitative model of cerebral perfusion to generate mean transit time (MTT), capillary transit time (CTT) and signal amplitude. Key Results MDMA reduces MTT and CTT and increases amplitude in somatosensory and motor cortex 1 and 3 h following administration, indicative of an increase in perfusion. Prior exposure to MDMA provoked a long-term reduction in cortical 5-HT concentration, but did not produce a sustained effect on cerebral cortical perfusion. The response to acute MDMA challenge (20 mg·kg−1; i.p.) was attenuated in these animals indicating adaptation in response to prior MDMA exposure. Conclusions and Implications MDMA provokes changes in cortical perfusion, which are quantifiable by btASL MRI, a neuroimaging tool with translational potential. Future studies are directed towards elucidation of the mechanisms involved and correlating changes in cerebrovascular function with potential behavioural deficits associated with drug use. PMID:23517012

  5. Myocardial perfusion MRI with sliding-window conjugate-gradient HYPR.

    PubMed

    Ge, Lan; Kino, Aya; Griswold, Mark; Mistretta, Charles; Carr, James C; Li, Debiao

    2009-10-01

    First-pass perfusion MRI is a promising technique for detecting ischemic heart disease. However, the diagnostic value of the method is limited by the low spatial coverage, resolution, signal-to-noise ratio (SNR), and cardiac motion-related image artifacts. In this study we investigated the feasibility of using a method that combines sliding window and CG-HYPR methods (SW-CG-HYPR) to reduce the acquisition window for each slice while maintaining the temporal resolution of one frame per heartbeat in myocardial perfusion MRI. This method allows an increased number of slices, reduced motion artifacts, and preserves the relatively high SNR and spatial resolution of the "composite images." Results from eight volunteers demonstrate the feasibility of SW-CG-HYPR for accelerated myocardial perfusion imaging with accurate signal intensity changes of left ventricle blood pool and myocardium. Using this method the acquisition time per cardiac cycle was reduced by a factor of 4 and the number of slices was increased from 3 to 8 as compared to the conventional technique. The SNR of the myocardium at peak enhancement with SW-CG-HYPR (13.83 +/- 2.60) was significantly higher (P < 0.05) than the conventional turbo-FLASH protocol (8.40 +/- 1.62). Also, the spatial resolution of the myocardial perfection images was significantly improved. SW-CG-HYPR is a promising technique for myocardial perfusion MRI. (c) 2009 Wiley-Liss, Inc.

  6. Large enhancement of perfusion contribution on fMRI signal

    PubMed Central

    Wang, Xiao; Zhu, Xiao-Hong; Zhang, Yi; Chen, Wei

    2012-01-01

    The perfusion contribution to the total functional magnetic resonance imaging (fMRI) signal was investigated using a rat model with mild hypercapnia at 9.4 T, and human subjects with visual stimulation at 4 T. It was found that the total fMRI signal change could be approximated as a linear superposition of ‘true' blood oxygenation level-dependent (BOLD; T2/T2*) effect and the blood flow-related (T1) effect. The latter effect was significantly enhanced by using short repetition time and large radiofrequency pulse flip angle and became comparable to the ‘true' BOLD signal in response to a mild hypercapnia in the rat brain, resulting in an improved contrast-to-noise ratio (CNR). Bipolar diffusion gradients suppressed the intravascular signals but had no significant effect on the flow-related signal. Similar results of enhanced fMRI signal were observed in the human study. The overall results suggest that the observed flow-related signal enhancement is likely originated from perfusion, and this enhancement can improve CNR and the spatial specificity for mapping brain activity and physiology changes. The nature of mixed BOLD and perfusion-related contributions in the total fMRI signal also has implication on BOLD quantification, in particular, the BOLD calibration model commonly used to estimate the change of cerebral metabolic rate of oxygen. PMID:22395206

  7. 3D ECG- and respiratory-gated non-contrast-enhanced (CE) perfusion MRI for postoperative lung function prediction in non-small-cell lung cancer patients: A comparison with thin-section quantitative computed tomography, dynamic CE-perfusion MRI, and perfusion scan.

    PubMed

    Ohno, Yoshiharu; Seki, Shinichiro; Koyama, Hisanobu; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Takenaka, Daisuke; Kassai, Yoshimori; Yui, Masao; Sugimura, Kazuro

    2015-08-01

    To compare predictive capabilities of non-contrast-enhanced (CE)- and dynamic CE-perfusion MRIs, thin-section multidetector computed tomography (CT) (MDCT), and perfusion scan for postoperative lung function in non-small cell lung cancer (NSCLC) patients. Sixty consecutive pathologically diagnosed NSCLC patients were included and prospectively underwent thin-section MDCT, non-CE-, and dynamic CE-perfusion MRIs and perfusion scan, and had their pre- and postoperative forced expiratory volume in one second (FEV1 ) measured. Postoperative percent FEV1 (po%FEV1 ) was then predicted from the fractional lung volume determined on semiquantitatively assessed non-CE- and dynamic CE-perfusion MRIs, from the functional lung volumes determined on quantitative CT, from the number of segments observed on qualitative CT, and from uptakes detected on perfusion scans within total and resected lungs. Predicted po%FEV1 s were then correlated with actual po%FEV1 s, which were %FEV1 s measured postoperatively. The limits of agreement were also determined. All predicted po%FEV1 s showed significant correlation (0.73 ≤ r ≤ 0.93, P < 0.0001) and limits of agreement with actual po%FEV1 (non-CE-perfusion MRI: 0.3 ± 10.0%, dynamic CE-perfusion MRI: 1.0 ± 10.8%, perfusion scan: 2.2 ± 14.1%, quantitative CT: 1.2 ± 9.0%, qualitative CT: 1.5 ± 10.2%). Non-CE-perfusion MRI may be able to predict postoperative lung function more accurately than qualitatively assessed MDCT and perfusion scan. © 2014 Wiley Periodicals, Inc.

  8. Diagnostic performance of dual-energy CT stress myocardial perfusion imaging: direct comparison with cardiovascular MRI.

    PubMed

    Ko, Sung Min; Song, Meong Gun; Chee, Hyun Kun; Hwang, Hweung Kon; Feuchtner, Gudrun Maria; Min, James K

    2014-12-01

    The purpose of this study was to assess the diagnostic performance of stress perfusion dual-energy CT (DECT) and its incremental value when used with coronary CT angiography (CTA) for identifying hemodynamically significant coronary artery disease. One hundred patients with suspected or known coronary artery disease without chronic myocardial infarction detected with coronary CTA underwent stress perfusion DECT, stress cardiovascular perfusion MRI, and invasive coronary angiography (ICA). Stress perfusion DECT and cardiovascular stress perfusion MR images were used for detecting perfusion defects. Coronary CTA and ICA were evaluated in the detection of ≥50% coronary stenosis. The diagnostic performance of coronary CTA for detecting hemo-dynamically significant stenosis was assessed before and after stress perfusion DECT on a per-vessel basis with ICA and cardiovascular stress perfusion MRI as the reference standard. The performance of stress perfusion DECT compared with cardiovascular stress perfusion MRI on a per-vessel basis in the detection of perfusion defects was sensitivity, 89%; specificity, 74%; positive predictive value, 73%; negative predictive value, 90%. Per segment, these values were sensitivity, 76%; specificity, 80%; positive predictive value, 63%; and negative predictive value, 88%. Compared with ICA and cardiovascular stress perfusion MRI per vessel territory the sensitivity, specificity, positive predictive value, and negative predictive value of coronary CTA were 95%, 61%, 61%, and 95%. The values for stress perfusion DECT were 92%, 72%, 68%, and 94%. The values for coronary CTA and stress perfusion DECT were 88%, 79%, 73%, and 91%. The ROC AUC increased from 0.78 to 0.84 (p=0.02) with the use of coronary CTA and stress perfusion DECT compared with coronary CTA alone. Stress perfusion DECT plays a complementary role in enhancing the accuracy of coronary CTA for identifying hemodynamically significant coronary stenosis.

  9. Contrast-enhanced CT- and MRI-based perfusion assessment for pulmonary diseases: basics and clinical applications

    PubMed Central

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Miura, Sachiko; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-01-01

    Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases. PMID:27523813

  10. Cerebral perfusion alterations in epileptic patients during peri-ictal and post-ictal phase: PASL vs DSC-MRI.

    PubMed

    Pizzini, Francesca B; Farace, Paolo; Manganotti, Paolo; Zoccatelli, Giada; Bongiovanni, Luigi G; Golay, Xavier; Beltramello, Alberto; Osculati, Antonio; Bertini, Giuseppe; Fabene, Paolo F

    2013-07-01

    Non-invasive pulsed arterial spin labeling (PASL) MRI is a method to study brain perfusion that does not require the administration of a contrast agent, which makes it a valuable diagnostic tool as it reduces cost and side effects. The purpose of the present study was to establish the viability of PASL as an alternative to dynamic susceptibility contrast (DSC-MRI) and other perfusion imaging methods in characterizing changes in perfusion patterns caused by seizures in epileptic patients. We evaluated 19 patients with PASL. Of these, the 9 affected by high-frequency seizures were observed during the peri-ictal period (within 5hours since the last seizure), while the 10 patients affected by low-frequency seizures were observed in the post-ictal period. For comparison, 17/19 patients were also evaluated with DSC-MRI and CBF/CBV. PASL imaging showed focal vascular changes, which allowed the classification of patients in three categories: 8 patients characterized by increased perfusion, 4 patients with normal perfusion and 7 patients with decreased perfusion. PASL perfusion imaging findings were comparable to those obtained by DSC-MRI. Since PASL is a) sensitive to vascular alterations induced by epileptic seizures, b) comparable to DSC-MRI for detecting perfusion asymmetries, c) potentially capable of detecting time-related perfusion changes, it can be recommended for repeated evaluations, to identify the epileptic focus, and in follow-up and/or therapy-response assessment. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. WE-G-18C-09: Separating Perfusion and Diffusion Components From Diffusion Weighted MRI of Rectum Tumors Based On Intravoxel Incoherent Motion (IVIM) Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyagi, N; Wengler, K; Mazaheri, Y

    2014-06-15

    Purpose: Pseudodiffusion arises from the microcirculation of blood in the randomly oriented capillary network and contributes to the signal decay acquired using a multi-b value diffusion weighted (DW)-MRI sequence. This effect is more significant at low b-values and should be properly accounted for in apparent diffusion coefficient (ADC) calculations. The purpose of this study was to separate perfusion and diffusion component based on a biexponential and a segmented monoexponential model using IVIM analysis Methods. The signal attenuation is modeled as S(b) = S0[(1−f)exp(−bD) + fexp(−bD*)]. Fitting the biexponetial decay leads to the quantification of D, the true diffusion coefficient, D*,more » the pseudodiffusion coefficient, and f, the perfusion fraction. A nonlinear least squares fit and two segmented monoexponential models were used to derive the values for D, D*,‘and f. In the segmented approach b = 200 s/mm{sup 2} was used as the cut-off value for calculation of D. DW-MRI's of a rectum cancer patient were acquired before chemotherapy, before radiation therapy (RT), and 4 weeks into RT and were investigated as an example case. Results: Mean ADC for the tumor drawn on the DWI cases was 0.93, 1.0 and 1.13 10{sup −3}×mm{sup 2}/s before chemotherapy, before RT and 4 weeks into RT. The mean (D.10{sup −3} × mm{sup 2}/s, D* 10{sup −3} × mm{sup 2}/s, and f %) based on biexponential fit was (0.67, 18.6, and 27.2%), (0.72, 17.7, and 28.9%) and (0.83,15.1, and 30.7%) at these time points. The mean (D, D* f) based on segmented fit was (0.72, 10.5, and 12.1%), (0.72, 8.2, and 17.4%) and (.82, 8.1, 16.5%) Conclusion: ADC values are typically higher than true diffusion coefficients. For tumors with significant perfusion effect, ADC should be analyzed at higher b-values or separated from the perfusion component. Biexponential fit overestimates the perfusion fraction because of increased sensitivity to noise at low b-values.« less

  12. Brain perfusion alterations in tick-borne encephalitis-preliminary report.

    PubMed

    Tyrakowska-Dadełło, Zuzanna; Tarasów, Eugeniusz; Janusek, Dariusz; Moniuszko-Malinowska, Anna; Zajkowska, Joanna; Pancewicz, Sławomir

    2018-03-01

    Magnetic resonance imaging (MRI) changes in tick-borne encephalitis (TBE) are non-specific and the pathophysiological mechanisms leading to their formation remain unclear. This study investigated brain perfusion in TBE patients using dynamic susceptibility-weighted contrast-enhanced magnetic resonance perfusion imaging (DSC-MRI perfusion). MRI scans were performed for 12 patients in the acute phase, 3-5days after the diagnosis of TBE. Conventional MRI and DSC-MRI perfusion studies were performed. Cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and time to peak (TTP) parametric maps were created. The bilateral frontal, parietal, and temporal subcortical regions and thalamus were selected as regions of interest. Perfusion parameters of TBE patients were compared to those of a control group. There was a slight increase in CBF and CBV, with significant prolongation of TTP in subcortical areas in the study subjects, while MTT values were comparable to those of the control group. A significant increase in thalamic CBF (p<0.001) and increased CBV (p<0.05) were observed. Increased TTP and a slight reduction in MTT were also observed within this area. The DSC-MRI perfusion study showed that TBE patients had brain perfusion disturbances, expressed mainly in the thalami. These results suggest that DSC-MRI perfusion may provide important information regarding the areas affected in TBE patients. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Patterns of postictal cerebral perfusion in idiopathic generalized epilepsy: a multi-delay multi-parametric arterial spin labelling perfusion MRI study.

    PubMed

    Chen, Guangxiang; Lei, Du; Ren, Jiechuan; Zuo, Panli; Suo, Xueling; Wang, Danny J J; Wang, Meiyun; Zhou, Dong; Gong, Qiyong

    2016-07-04

    The cerebral haemodynamic status of idiopathic generalized epilepsy (IGE) is a very complicated process. Little attention has been paid to cerebral blood flow (CBF) alterations in IGE detected by arterial spin labelling (ASL) perfusion magnetic resonance imaging (MRI). However, the selection of an optimal delay time is difficult for single-delay ASL. Multi-delay multi-parametric ASL perfusion MRI overcomes the limitations of single-delay ASL. We applied multi-delay multi-parametric ASL perfusion MRI to investigate the patterns of postictal cerebral perfusion in IGE patients with absence seizures. A total of 21 IGE patients with absence seizures and 24 healthy control subjects were enrolled. IGE patients exhibited prolonged arterial transit time (ATT) in the left superior temporal gyrus. The mean CBF of IGE patients was significantly increased in the left middle temporal gyrus, left parahippocampal gyrus and left fusiform gyrus. Prolonged ATT in the left superior temporal gyrus was negatively correlated with the age at onset in IGE patients. This study demonstrated that cortical dysfunction in the temporal lobe and fusiform gyrus may be related to epileptic activity in IGE patients with absence seizures. This information can play an important role in elucidating the pathophysiological mechanism of IGE from a cerebral haemodynamic perspective.

  14. Combined diffusion-weighted, blood oxygen level-dependent, and dynamic contrast-enhanced MRI for characterization and differentiation of renal cell carcinoma.

    PubMed

    Notohamiprodjo, Mike; Staehler, Michael; Steiner, Nicole; Schwab, Felix; Sourbron, Steven P; Michaely, Henrik J; Helck, Andreas D; Reiser, Maximilian F; Nikolaou, Konstantin

    2013-06-01

    To investigate a multiparametric magnetic resonance imaging (MRI) approach comprising diffusion-weighted imaging (DWI), blood oxygen-dependent (BOLD), and dynamic contrast-enhanced (DCE) MRI for characterization and differentiation of primary renal cell carcinoma (RCC). Fourteen patients with clear-cell carcinoma and four patients with papillary RCC were examined with DWI, BOLD MRI, and DCE MRI at 1.5T. The apparent diffusion coefficient (ADC) was calculated with a monoexponential decay. The spin-dephasing rate R2* was derived from parametric R2* maps. DCE-MRI was analyzed using a two-compartment exchange model allowing separation of perfusion (plasma flow [FP] and plasma volume [VP]), permeability (permeability surface area product [PS]), and extravascular extracellular volume (VE). Statistical analysis was performed with Wilcoxon signed-rank test, Pearson's correlation coefficient, and receiver operating characteristic curve analysis. Clear-cell RCC showed higher ADC and lower R2* compared to papillary subtypes, but differences were not significant. FP of clear-cell subtypes was significantly higher than in papillary RCC. Perfusion parameters showed moderate but significant inverse correlation with R2*. VE showed moderate inverse correlation with ADC. Fp and Vp showed best sensitivity for histological differentiation. Multiparametric MRI comprising DWI, BOLD, and DCE MRI is feasible for assessment of primary RCC. BOLD moderately correlates to DCE MRI-derived perfusion. ADC shows moderate correlation to the extracellular volume, but does not correlate to tumor oxygenation or perfusion. In this preliminary study DCE-MRI appeared superior to BOLD and DWI for histological differentiation. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  15. Perfusion weighted imaging and its application in stroke

    NASA Astrophysics Data System (ADS)

    Li, Enzhong; Tian, Jie; Han, Ying; Wang, Huifang; Li, Xingfeng; Zhu, Fuping

    2003-05-01

    To study the technique and application of perfusion weighted imaging (PWI) in the diagnosis and medical treatment of acute stroke, 25 patients were examined by 1.5 T or 1.0 T MRI scanner. The Data analysis was done with "3D Med System" developed by our Lab to process the data and obtain apparent diffusion coefficient (ADC) map, cerebral blood volume (CBV) map, cerebral blood flow (CBF) map as well as mean transit time (MTT) map. In accute stage of stroke, normal or slightly hypointensity in T1-, hyperintensity in T2- and diffusion-weighted images were seen in the cerebral infarction areas. There were hypointensity in CBV map, CBF map and ADC map; and hyperintensity in MTT map that means this infarct area could be saved. If the hyperintensity area in MTT map was larger than the area in diffusion weighted imaging (DWI), the larger part was called penumbra and could be cured by an appropriate thrombolyitic or other therapy. The CBV, CBF and MTT maps are very important in the diagnosis and medical treatment of acute especially hyperacute stroke. Comparing with DWI, we can easily know the situation of penumbra and the effect of curvative therapy. Besides, we can also make a differential diagnosis with this method.

  16. Functional Cardiac Magnetic Resonance Imaging (MRI) in the Assessment of Myocardial Viability and Perfusion

    PubMed Central

    2003-01-01

    Executive Summary Objective The objective of this health technology policy assessment was to determine the effectiveness safety and cost-effectiveness of using functional cardiac magnetic resonance imaging (MRI) for the assessment of myocardial viability and perfusion in patients with coronary artery disease and left ventricular dysfunction. Results Functional MRI has become increasingly investigated as a noninvasive method for assessing myocardial viability and perfusion. Most patients in the published literature have mild to moderate impaired LV function. It is possible that the severity of LV dysfunction may be an important factor that can alter the diagnostic accuracy of imaging techniques. There is some evidence of comparable or better performance of functional cardiac MRI for the assessment of myocardial viability and perfusion compared with other imaging techniques. However limitations to most of the studies included: Functional cardiac MRI studies that assess myocardial viability and perfusion have had small sample sizes. Some studies assessed myocardial viability/perfusion in patients who had already undergone revascularization, or excluded patients with a prior MI (Schwitter et al., 2001). Lack of explicit detail of patient recruitment. Patients with LVEF >35%. Interstudy variability in post MI imaging time(including acute or chronic MI), when patients with a prior MI were included. Poor interobserver agreement (kappa statistic) in the interpretation of the results. Traditionally, 0.80 is considered “good”. Cardiac MRI measurement of myocardial perfusion to as an adjunct tool to help diagnose CAD (prior to a definitive coronary angiography) has also been examined in some studies, with methodological limitations, yielding comparable results. Many studies examining myocardial viability and perfusion report on the accuracy of imaging methods with limited data on long-term patient outcome and management. Kim et al. (2000) revealed that the transmural

  17. Optimization of flow-sensitive alternating inversion recovery (FAIR) for perfusion functional MRI of rodent brain.

    PubMed

    Nasrallah, Fatima A; Lee, Eugene L Q; Chuang, Kai-Hsiang

    2012-11-01

    Arterial spin labeling (ASL) MRI provides a noninvasive method to image perfusion, and has been applied to map neural activation in the brain. Although pulsed labeling methods have been widely used in humans, continuous ASL with a dedicated neck labeling coil is still the preferred method in rodent brain functional MRI (fMRI) to maximize the sensitivity and allow multislice acquisition. However, the additional hardware is not readily available and hence its application is limited. In this study, flow-sensitive alternating inversion recovery (FAIR) pulsed ASL was optimized for fMRI of rat brain. A practical challenge of FAIR is the suboptimal global inversion by the transmit coil of limited dimensions, which results in low effective labeling. By using a large volume transmit coil and proper positioning to optimize the body coverage, the perfusion signal was increased by 38.3% compared with positioning the brain at the isocenter. An additional 53.3% gain in signal was achieved using optimized repetition and inversion times compared with a long TR. Under electrical stimulation to the forepaws, a perfusion activation signal change of 63.7 ± 6.3% can be reliably detected in the primary somatosensory cortices using single slice or multislice echo planar imaging at 9.4 T. This demonstrates the potential of using pulsed ASL for multislice perfusion fMRI in functional and pharmacological applications in rat brain. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Triggered intravoxel incoherent motion MRI for the assessment of calf muscle perfusion during isometric intermittent exercise.

    PubMed

    Mastropietro, Alfonso; Porcelli, Simone; Cadioli, Marcello; Rasica, Letizia; Scalco, Elisa; Gerevini, Simonetta; Marzorati, Mauro; Rizzo, Giovanna

    2018-06-01

    The main aim of this paper was to propose triggered intravoxel incoherent motion (IVIM) imaging sequences for the evaluation of perfusion changes in calf muscles before, during and after isometric intermittent exercise. Twelve healthy volunteers were involved in the study. The subjects were asked to perform intermittent isometric plantar flexions inside the MRI bore. MRI of the calf muscles was performed on a 3.0 T scanner and diffusion-weighted (DW) images were obtained using eight different b values (0 to 500 s/mm 2 ). Acquisitions were performed at rest, during exercise and in the subsequent recovery phase. A motion-triggered echo-planar imaging DW sequence was implemented to avoid movement artifacts. Image quality was evaluated using the average edge strength (AES) as a quantitative metric to assess the motion artifact effect. IVIM parameters (diffusion D, perfusion fraction f and pseudo-diffusion D*) were estimated using a segmented fitting approach and evaluated in gastrocnemius and soleus muscles. No differences were observed in quality of IVIM images between resting state and triggered exercise, whereas the non-triggered images acquired during exercise had a significantly lower value of AES (reduction of more than 20%). The isometric intermittent plantar-flexion exercise induced an increase of all IVIM parameters (D by 10%; f by 90%; D* by 124%; fD* by 260%), in agreement with the increased muscle perfusion occurring during exercise. Finally, IVIM parameters reverted to the resting values within 3 min during the recovery phase. In conclusion, the IVIM approach, if properly adapted using motion-triggered sequences, seems to be a promising method to investigate muscle perfusion during isometric exercise. Copyright © 2018 John Wiley & Sons, Ltd.

  19. Pretreatment Dynamic Susceptibility Contrast MRI Perfusion in Glioblastoma: Prediction of EGFR Gene Amplification.

    PubMed

    Gupta, A; Young, R J; Shah, A D; Schweitzer, A D; Graber, J J; Shi, W; Zhang, Z; Huse, J; Omuro, A M P

    2015-06-01

    Molecular and genetic testing is becoming increasingly relevant in GBM. We sought to determine whether dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) perfusion imaging could predict EGFR-defined subtypes of GBM. We retrospectively identified 106 consecutive glioblastoma (GBM) patients with known EGFR gene amplification, and a subset of 65 patients who also had known EGFRvIII gene mutation status. All patients underwent T2* DSC MRI perfusion. DSC perfusion maps and T2* signal intensity time curves were evaluated, and the following measures of tumor perfusion were recorded: (1) maximum relative cerebral blood volume (rCBV), (2) relative peak height (rPH), and (3) percent signal recovery (PSR). The imaging metrics were correlated to EGFR gene amplification and EGFRvIII mutation status using univariate analyses. EGFR amplification was present in 44 (41.5 %) subjects and absent in 62 (58.5 %). Among the 65 subjects who had undergone EGFRvIII mutation transcript analysis, 18 subjects (27.7 %) tested positive for the EGFRvIII mutation, whereas 47 (72.3 %) did not. Higher median rCBV (3.31 versus 2.62, p = 0.01) and lower PSR (0.70 versus 0.78, p = 0.03) were associated with high levels of EGFR amplification. Higher median rPH (3.68 versus 2.76, p = 0.03) was associated with EGFRvIII mutation. DSC MRI perfusion may have a role in identifying patients with EGFR gene amplification and EGFRvIII gene mutation status, potential targets for individualized treatment protocols. Our results raise the need for further investigation for imaging biomarkers of genetically unique GBM subtypes.

  20. Is a combination of Tc-SPECT or perfusion weighted magnetic resonance imaging with spinal tap test helpful in the diagnosis of normal pressure hydrocephalus?

    PubMed

    Hertel, F; Walter, C; Schmitt, M; Mörsdorf, M; Jammers, W; Busch, H P; Bettag, M

    2003-04-01

    The aim of this study was to evaluate the combination of spinal tap test (STT) with cerebral perfusion measurement assessed either by Tc-bicisate-SPECT (Tc-SPECT) or perfusion weighted MRI (pwMRI), or both, for a better preoperative selection of promising candidates for shunt operations in suspected idiopathic normal pressure hydrocephalus. 27 consecutive patients were examined with a standard clinical protocol (assessed by the Homburg Hydrocephalus Scale (HHS)) as well as with 99m Tc-bicisate-SPECT (n=27) or additionally by pwMRI (n=12) before and after STT. The results of these examinations were compared preoperatively for each patient and correlated with postoperative clinical outcome after shunt surgery. Nine patients showed both, a clinical improvement, and increased cerebral perfusion after STT. They underwent shunt surgery with good to excellent results. In another nine patients increasing cerebral perfusion was detected although they did not show a clear clinical improvement after STT. Six of them also received a shunt operation with good to excellent outcome. Three patients of the last group could have an operation. Nine patients did not show any clinical improvement or any kind of increasing cerebral perfusion after STT. Therefore, they did not undergo surgery. The results of SPECT and pwMRI correlated in 92 % of the patients (11 of 12). It is concluded that a combination of clinical assessment with SPECT or pwMRI is helpful in the preoperative selection of patients for shunting procedures with suspected NPH syndrome. This combination is a minimal invasive and objective test modality that is superior to STT alone. Further studies are necessary for a comparison of the described imaging techniques with different diagnostic tests in this difficult field of cerebral disease.

  1. Detection of Local Tumor Recurrence After Definitive Treatment of Head and Neck Squamous Cell Carcinoma: Histogram Analysis of Dynamic Contrast-Enhanced T1-Weighted Perfusion MRI.

    PubMed

    Choi, Sang Hyun; Lee, Jeong Hyun; Choi, Young Jun; Park, Ji Eun; Sung, Yu Sub; Kim, Namkug; Baek, Jung Hwan

    2017-01-01

    This study aimed to explore the added value of histogram analysis of the ratio of initial to final 90-second time-signal intensity AUC (AUCR) for differentiating local tumor recurrence from contrast-enhancing scar on follow-up dynamic contrast-enhanced T1-weighted perfusion MRI of patients treated for head and neck squamous cell carcinoma (HNSCC). AUCR histogram parameters were assessed among tumor recurrence (n = 19) and contrast-enhancing scar (n = 27) at primary sites and compared using the t test. ROC analysis was used to determine the best differentiating parameters. The added value of AUCR histogram parameters was assessed when they were added to inconclusive conventional MRI results. Histogram analysis showed statistically significant differences in the 50th, 75th, and 90th percentiles of the AUCR values between the two groups (p < 0.05). The 90th percentile of the AUCR values (AUCR 90 ) was the best predictor of local tumor recurrence (AUC, 0.77; 95% CI, 0.64-0.91) with an estimated cutoff of 1.02. AUCR 90 increased sensitivity by 11.7% over that of conventional MRI alone when added to inconclusive results. Histogram analysis of AUCR can improve the diagnostic yield for local tumor recurrence during surveillance after treatment for HNSCC.

  2. ANTONIA perfusion and stroke. A software tool for the multi-purpose analysis of MR perfusion-weighted datasets and quantitative ischemic stroke assessment.

    PubMed

    Forkert, N D; Cheng, B; Kemmling, A; Thomalla, G; Fiehler, J

    2014-01-01

    The objective of this work is to present the software tool ANTONIA, which has been developed to facilitate a quantitative analysis of perfusion-weighted MRI (PWI) datasets in general as well as the subsequent multi-parametric analysis of additional datasets for the specific purpose of acute ischemic stroke patient dataset evaluation. Three different methods for the analysis of DSC or DCE PWI datasets are currently implemented in ANTONIA, which can be case-specifically selected based on the study protocol. These methods comprise a curve fitting method as well as a deconvolution-based and deconvolution-free method integrating a previously defined arterial input function. The perfusion analysis is extended for the purpose of acute ischemic stroke analysis by additional methods that enable an automatic atlas-based selection of the arterial input function, an analysis of the perfusion-diffusion and DWI-FLAIR mismatch as well as segmentation-based volumetric analyses. For reliability evaluation, the described software tool was used by two observers for quantitative analysis of 15 datasets from acute ischemic stroke patients to extract the acute lesion core volume, FLAIR ratio, perfusion-diffusion mismatch volume with manually as well as automatically selected arterial input functions, and follow-up lesion volume. The results of this evaluation revealed that the described software tool leads to highly reproducible results for all parameters if the automatic arterial input function selection method is used. Due to the broad selection of processing methods that are available in the software tool, ANTONIA is especially helpful to support image-based perfusion and acute ischemic stroke research projects.

  3. Diffusion and perfusion weighted magnetic resonance imaging for tumor volume definition in radiotherapy of brain tumors.

    PubMed

    Guo, Lu; Wang, Gang; Feng, Yuanming; Yu, Tonggang; Guo, Yu; Bai, Xu; Ye, Zhaoxiang

    2016-09-21

    Accurate target volume delineation is crucial for the radiotherapy of tumors. Diffusion and perfusion magnetic resonance imaging (MRI) can provide functional information about brain tumors, and they are able to detect tumor volume and physiological changes beyond the lesions shown on conventional MRI. This review examines recent studies that utilized diffusion and perfusion MRI for tumor volume definition in radiotherapy of brain tumors, and it presents the opportunities and challenges in the integration of multimodal functional MRI into clinical practice. The results indicate that specialized and robust post-processing algorithms and tools are needed for the precise alignment of targets on the images, and comprehensive validations with more clinical data are important for the improvement of the correlation between histopathologic results and MRI parameter images.

  4. Comparing cerebral perfusion in Alzheimer's disease and Parkinson's disease dementia: an ASL-MRI study.

    PubMed

    Le Heron, Campbell J; Wright, Sarah L; Melzer, Tracy R; Myall, Daniel J; MacAskill, Michael R; Livingston, Leslie; Keenan, Ross J; Watts, Richard; Dalrymple-Alford, John C; Anderson, Tim J

    2014-06-01

    Emerging evidence suggests that Alzheimer's disease (AD) and Parkinson's disease dementia (PDD) share neurodegenerative mechanisms. We sought to directly compare cerebral perfusion in these two conditions using arterial spin labeling magnetic resonance imaging (ASL-MRI). In total, 17 AD, 20 PDD, and 37 matched healthy controls completed ASL and structural MRI, and comprehensive neuropsychological testing. Alzheimer's disease and PDD perfusion was analyzed by whole-brain voxel-based analysis (to assess absolute blood flow), a priori specified region of interest analysis, and principal component analysis (to generate a network differentiating the two groups). Corrections were made for cerebral atrophy, age, sex, education, and MRI scanner software version. Analysis of absolute blood flow showed no significant differences between AD and PDD. Comparing each group with controls revealed an overlapping, posterior pattern of hypoperfusion, including posterior cingulate gyrus, precuneus, and occipital regions. The perfusion network that differentiated AD and PDD groups identified relative differences in medial temporal lobes (AD

  5. High temporal resolution dynamic contrast-enhanced MRI using compressed sensing-combined sequence in quantitative renal perfusion measurement.

    PubMed

    Chen, Bin; Zhao, Kai; Li, Bo; Cai, Wenchao; Wang, Xiaoying; Zhang, Jue; Fang, Jing

    2015-10-01

    To demonstrate the feasibility of the improved temporal resolution by using compressed sensing (CS) combined imaging sequence in dynamic contrast-enhanced MRI (DCE-MRI) of kidney, and investigate its quantitative effects on renal perfusion measurements. Ten rabbits were included in the accelerated scans with a CS-combined 3D pulse sequence. To evaluate the image quality, the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared between the proposed CS strategy and the conventional full sampling method. Moreover, renal perfusion was estimated by using the separable compartmental model in both CS simulation and realistic CS acquisitions. The CS method showed DCE-MRI images with improved temporal resolution and acceptable image contrast, while presenting significantly higher SNR than the fully sampled images (p<.01) at 2-, 3- and 4-X acceleration. In quantitative measurements, renal perfusion results were in good agreement with the fully sampled one (concordance correlation coefficient=0.95, 0.91, 0.88) at 2-, 3- and 4-X acceleration in CS simulation. Moreover, in realistic acquisitions, the estimated perfusion by the separable compartmental model exhibited no significant differences (p>.05) between each CS-accelerated acquisition and the full sampling method. The CS-combined 3D sequence could improve the temporal resolution for DCE-MRI in kidney while yielding diagnostically acceptable image quality, and it could provide effective measurements of renal perfusion. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Renal Cell Carcinoma Perfusion before and after Radiofrequency Ablation Measured with Dynamic Contrast Enhanced MRI: A Pilot Study.

    PubMed

    Wah, Tze Min; Sourbron, Steven; Wilson, Daniel Jonathan; Magee, Derek; Gregory, Walter Martin; Selby, Peter John; Buckley, David L

    2018-01-08

    To investigate if the early treatment effects of radiofrequency ablation (RFA) on renal cell carcinoma (RCC) can be detected with dynamic contrast enhanced (DCE)-MRI and to correlate RCC perfusion with RFA treatment time. 20 patients undergoing RFA of their 21 RCCs were evaluated with DCE-MRI before and at one month after RFA treatment. Perfusion was estimated using the maximum slope technique at two independent sittings. Total RCC blood flow was correlated with total RFA treatment time, tumour location, size and histology. DCE-MRI examinations were successfully evaluated for 21 RCCs (size from 1.3 to 4 cm). Perfusion of the RCCs decreased significantly ( p < 0.0001) from a mean of 203 (±80) mL/min/100 mL before RFA to 8.1 (±3.1) mL/min/100 mL after RFA with low intra-observer variability ( r ≥ 0.99, p < 0.0001). There was an excellent correlation ( r = 0.95) between time to complete ablation and pre-treatment total RCC blood flow. Tumours with an exophytic location exhibit the lowest mean RFA treatment time. DCE-MRI can detect early treatment effects by measuring RCC perfusion before and after RFA. Perfusion significantly decreases in the zone of ablation, suggesting that it may be useful for the assessment of treatment efficacy. Pre-RFA RCC blood flow may be used to predict RFA treatment time.

  7. Sub-band denoising and spline curve fitting method for hemodynamic measurement in perfusion MRI

    NASA Astrophysics Data System (ADS)

    Lin, Hong-Dun; Huang, Hsiao-Ling; Hsu, Yuan-Yu; Chen, Chi-Chen; Chen, Ing-Yi; Wu, Liang-Chi; Liu, Ren-Shyan; Lin, Kang-Ping

    2003-05-01

    In clinical research, non-invasive MR perfusion imaging is capable of investigating brain perfusion phenomenon via various hemodynamic measurements, such as cerebral blood volume (CBV), cerebral blood flow (CBF), and mean trasnit time (MTT). These hemodynamic parameters are useful in diagnosing brain disorders such as stroke, infarction and periinfarct ischemia by further semi-quantitative analysis. However, the accuracy of quantitative analysis is usually affected by poor signal-to-noise ratio image quality. In this paper, we propose a hemodynamic measurement method based upon sub-band denoising and spline curve fitting processes to improve image quality for better hemodynamic quantitative analysis results. Ten sets of perfusion MRI data and corresponding PET images were used to validate the performance. For quantitative comparison, we evaluate gray/white matter CBF ratio. As a result, the hemodynamic semi-quantitative analysis result of mean gray to white matter CBF ratio is 2.10 +/- 0.34. The evaluated ratio of brain tissues in perfusion MRI is comparable to PET technique is less than 1-% difference in average. Furthermore, the method features excellent noise reduction and boundary preserving in image processing, and short hemodynamic measurement time.

  8. MRI-based assessment of liver perfusion and hepatocyte injury in the murine model of acute hepatitis.

    PubMed

    Byk, Katarzyna; Jasinski, Krzysztof; Bartel, Zaneta; Jasztal, Agnieszka; Sitek, Barbara; Tomanek, Boguslaw; Chlopicki, Stefan; Skorka, Tomasz

    2016-12-01

    To assess alterations in perfusion and liver function in the concanavalin A (ConA)-induced mouse model of acute liver failure (ALF) using two magnetic resonance imaging (MRI)-based methods: dynamic contrast-enhanced MRI (DCE-MRI) with Gd-EOB-DTPA contrast agent and arterial spin labelling (ASL). BALB/c mice were studied using a 9.4 T MRI system. The IntraGateFLASH TM and FAIR-EPI pulse sequences were used for optimum mouse abdomen imaging. The average perfusion values for the liver of the control and ConA group were equal to 245 ± 20 and 200 ± 32 ml/min/100 g (p = 0.008, respectively). DCE-MRI showed that the time to the peak of the image enhancement was 6.14 ± 1.07 min and 9.72 ± 1.69 min in the control and ConA group (p < 0.001, respectively), while the rate of the contrast wash-out in the control and ConA group was 0.037 ± 0.008 and 0.021 ± 0.008 min -1 (p = 0.004, respectively). These results were consistent with hepatocyte injury in the ConA-treated mice as confirmed by histopathological staining. Both the ASL and DCE-MRI techniques represent a reliable methodology to assess alterations in liver perfusion and hepatocyte integrity in murine hepatitis.

  9. The diagnostic performance of perfusion MRI for differentiating glioma recurrence from pseudoprogression: A meta-analysis.

    PubMed

    Wan, Bing; Wang, Siqi; Tu, Mengqi; Wu, Bo; Han, Ping; Xu, Haibo

    2017-03-01

    The purpose of this meta-analysis was to evaluate the diagnostic accuracy of perfusion magnetic resonance imaging (MRI) as a method for differentiating glioma recurrence from pseudoprogression. The PubMed, Embase, Cochrane Library, and Chinese Biomedical databases were searched comprehensively for relevant studies up to August 3, 2016 according to specific inclusion and exclusion criteria. The quality of the included studies was assessed according to the quality assessment of diagnostic accuracy studies (QUADAS-2). After performing heterogeneity and threshold effect tests, pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were calculated. Publication bias was evaluated visually by a funnel plot and quantitatively using Deek funnel plot asymmetry test. The area under the summary receiver operating characteristic curve was calculated to demonstrate the diagnostic performance of perfusion MRI. Eleven studies covering 416 patients and 418 lesions were included in this meta-analysis. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 0.88 (95% confidence interval [CI] 0.84-0.92), 0.77 (95% CI 0.69-0.84), 3.93 (95% CI 2.83-5.46), 0.16 (95% CI 0.11-0.22), and 27.17 (95% CI 14.96-49.35), respectively. The area under the summary receiver operating characteristic curve was 0.8899. There was no notable publication bias. Sensitivity analysis showed that the meta-analysis results were stable and credible. While perfusion MRI is not the ideal diagnostic method for differentiating glioma recurrence from pseudoprogression, it could improve diagnostic accuracy. Therefore, further research on combining perfusion MRI with other imaging modalities is warranted.

  10. Parametric Response Maps of Perfusion MRI May Identify Recurrent Glioblastomas Responsive to Bevacizumab and Irinotecan

    PubMed Central

    Aquino, Domenico; Cuppini, Lucia; Anghileri, Elena; Finocchiaro, Gaetano; Bruzzone, Maria Grazia; Eoli, Marica

    2014-01-01

    Background Perfusion weighted imaging (PWI) can be used to measure key aspects of tumor vascularity in vivo and recent studies suggest that perfusion imaging may be useful in the early assessment of response to angiogenesis inhibitors. Aim of this work is to compare Parametric Response Maps (PRMs) with the Region Of Interest (ROI) approach in the analysis of tumor changes induced by bevacizumab and irinotecan in recurrent glioblastomas (rGBM), and to evaluate if changes in tumor blood volume measured by perfusion MRI may predict clinical outcome. Methods 42 rGBM patients with KPS ≥50 were treated until progression, as defined by MRI with RANO criteria. Relative cerebral blood volume (rCBV) variation after 8 weeks of treatment was calculated through semi-automatic ROI placement in the same anatomic region as in baseline. Alternatively, rCBV variations with respect to baseline were calculated into the evolving tumor region using a voxel-by-voxel difference. PRMs were created showing where rCBV significantly increased, decreased or remained unchanged. Results An increased blood volume in PRM (PRMCBV+) higher than 18% (first quartile) after 8 weeks of treatment was associated with increased progression free survival (PFS; 24 versus 13 weeks, p = 0.045) and overall survival (OS; 38 versus 25 weeks, p = 0.016). After 8 weeks of treatment ROI analysis showed that mean rCBV remained elevated in non responsive patients (4.8±0.9 versus 5.1±1.2, p = 0.38), whereas decreased in responsive patients (4.2±1.3 versus 3.8±1.6 p = 0.04), and re-increased progressively when patients approached tumor progression. Conclusions Our data suggest that PRMs can provide an early marker of response to antiangiogenic treatment and warrant further confirmation in a larger cohort of GBM patients. PMID:24675671

  11. Myocardial perfusion quantification using simultaneously acquired 13 NH3 -ammonia PET and dynamic contrast-enhanced MRI in patients at rest and stress.

    PubMed

    Kunze, Karl P; Nekolla, Stephan G; Rischpler, Christoph; Zhang, Shelley HuaLei; Hayes, Carmel; Langwieser, Nicolas; Ibrahim, Tareq; Laugwitz, Karl-Ludwig; Schwaiger, Markus

    2018-04-19

    Systematic differences with respect to myocardial perfusion quantification exist between DCE-MRI and PET. Using the potential of integrated PET/MRI, this study was conceived to compare perfusion quantification on the basis of simultaneously acquired 13 NH 3 -ammonia PET and DCE-MRI data in patients at rest and stress. Twenty-nine patients were examined on a 3T PET/MRI scanner. DCE-MRI was implemented in dual-sequence design and additional T 1 mapping for signal normalization. Four different deconvolution methods including a modified version of the Fermi technique were compared against 13 NH 3 -ammonia results. Cohort-average flow comparison yielded higher resting flows for DCE-MRI than for PET and, therefore, significantly lower DCE-MRI perfusion ratios under the common assumption of equal arterial and tissue hematocrit. Absolute flow values were strongly correlated in both slice-average (R 2  = 0.82) and regional (R 2  = 0.7) evaluations. Different DCE-MRI deconvolution methods yielded similar flow result with exception of an unconstrained Fermi method exhibiting outliers at high flows when compared with PET. Thresholds for Ischemia classification may not be directly tradable between PET and MRI flow values. Differences in perfusion ratios between PET and DCE-MRI may be lifted by using stress/rest-specific hematocrit conversion. Proper physiological constraints are advised in model-constrained deconvolution. © 2018 International Society for Magnetic Resonance in Medicine.

  12. Automated scoring of regional lung perfusion in children from contrast enhanced 3D MRI

    NASA Astrophysics Data System (ADS)

    Heimann, Tobias; Eichinger, Monika; Bauman, Grzegorz; Bischoff, Arved; Puderbach, Michael; Meinzer, Hans-Peter

    2012-03-01

    MRI perfusion images give information about regional lung function and can be used to detect pulmonary pathologies in cystic fibrosis (CF) children. However, manual assessment of the percentage of pathologic tissue in defined lung subvolumes features large inter- and intra-observer variation, making it difficult to determine disease progression consistently. We present an automated method to calculate a regional score for this purpose. First, lungs are located based on thresholding and morphological operations. Second, statistical shape models of left and right children's lungs are initialized at the determined locations and used to precisely segment morphological images. Segmentation results are transferred to perfusion maps and employed as masks to calculate perfusion statistics. An automated threshold to determine pathologic tissue is calculated and used to determine accurate regional scores. We evaluated the method on 10 MRI images and achieved an average surface distance of less than 1.5 mm compared to manual reference segmentations. Pathologic tissue was detected correctly in 9 cases. The approach seems suitable for detecting early signs of CF and monitoring response to therapy.

  13. A Perfusion MRI Study of Emotional Valence and Arousal in Parkinson's Disease

    PubMed Central

    Limsoontarakul, Sunsern; Campbell, Meghan C.; Black, Kevin J.

    2011-01-01

    Background. Brain regions subserving emotion have mostly been studied using functional magnetic resonance imaging (fMRI) during emotion provocation procedures in healthy participants. Objective. To identify neuroanatomical regions associated with spontaneous changes in emotional state over time. Methods. Self-rated emotional valence and arousal scores, and regional cerebral blood flow (rCBF) measured by perfusion MRI, were measured 4 or 8 times spanning at least 2 weeks in each of 21 subjects with Parkinson's disease (PD). A random-effects SPM analysis, corrected for multiple comparisons, identified significant clusters of contiguous voxels in which rCBF varied with valence or arousal. Results. Emotional valence correlated positively with rCBF in several brain regions, including medial globus pallidus, orbital prefrontal cortex (PFC), and white matter near putamen, thalamus, insula, and medial PFC. Valence correlated negatively with rCBF in striatum, subgenual cingulate cortex, ventrolateral PFC, and precuneus—posterior cingulate cortex (PCC). Arousal correlated positively with rCBF in clusters including claustrum-thalamus-ventral striatum and inferior parietal lobule and correlated negatively in clusters including posterior insula—mediodorsal thalamus and midbrain. Conclusion. This study demonstrates that the temporal stability of perfusion MRI allows within-subject investigations of spontaneous fluctuations in mental state, such as mood, over relatively long-time intervals. PMID:21969917

  14. Semi-quantitative assessment of pulmonary perfusion in children using dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Thong, William E.; Ou, Phalla

    2013-03-01

    This paper addresses the study of semi-quantitative assessment of pulmonary perfusion acquired from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in a study population mainly composed of children with pulmonary malformations. The automatic analysis approach proposed is based on the indicator-dilution theory introduced in 1954. First, a robust method is developed to segment the pulmonary artery and the lungs from anatomical MRI data, exploiting 2D and 3D mathematical morphology operators. Second, the time-dependent contrast signal of the lung regions is deconvolved by the arterial input function for the assessment of the local hemodynamic system parameters, ie. mean transit time, pulmonary blood volume and pulmonary blood flow. The discrete deconvolution method implements here a truncated singular value decomposition (tSVD) method. Parametric images for the entire lungs are generated as additional elements for diagnosis and quantitative follow-up. The preliminary results attest the feasibility of perfusion quantification in pulmonary DCE-MRI and open an interesting alternative to scintigraphy for this type of evaluation, to be considered at least as a preliminary decision in the diagnostic due to the large availability of the technique and to the non-invasive aspects.

  15. Perfusion MRI in Early Stage of Legg-Calvé-Perthes Disease to Predict Lateral Pillar Involvement: A Preliminary Study.

    PubMed

    Kim, Harry K W; Wiesman, Kathryn D; Kulkarni, Vedant; Burgess, Jamie; Chen, Elena; Brabham, Case; Ikram, Haseeb; Du, Jerry; Lu, Amanda; Kulkarni, Ashok V; Dempsey, Molly; Herring, J Anthony

    2014-07-16

    Current radiographic classifications for Legg-Calvé-Perthes disease cannot be applied at the early stages of the disease. The purpose of this study was to quantify the perfusion of the femoral epiphysis in the early stages of Legg-Calvé-Perthes disease with use of perfusion magnetic resonance imaging (MRI) and to determine if the extent of epiphyseal perfusion can predict the lateral pillar involvement at the mid-fragmentation stage. Twenty-nine patients had gadolinium-enhanced perfusion MRI at the initial stage or early fragmentation stage of Legg-Calvé-Perthes disease and were followed prospectively. The percent perfusion of the whole epiphysis and its lateral third was measured by four independent observers using image analysis software. The radiographs obtained at the mid-fragmentation stage were used for the lateral pillar classification. Intraclass correlation coefficient (ICC) and logistic regression analyses were performed. The mean age (and standard deviation) at diagnosis was 7.7 ± 1.7 years (range, 5.3 to 11.3 years). The mean interval between the MRI and the time of maximum fragmentation was 8.2 ± 5.5 months. The interobserver ICC for the percent perfusion of the lateral third of the epiphysis was 0.90 (95% confidence interval [CI]: 0.83 to 0.95). The mean percent perfusion of the lateral third of the epiphysis was 92% ± 2%, 68% ± 18%, and 46% ± 12% for the hips in which the lateral pillar was later classified as A, B, and C, respectively (p = 0.001). When the perfusion level was ≥90% in the lateral third of the epiphysis, the odds ratio of the lateral pillar being later classified as group A, as opposed to B or C, was 72.0 (CI: 3.5 to 1476). With a perfusion level of ≤55% in the lateral third of the epiphysis, the odds ratio of the lateral pillar being later classified as group C, as opposed to A or B, was 33.3 (CI: 2.8 to 392). Similar results were obtained for the whole epiphysis. Perfusion MRI measurements of the total epiphysis and its

  16. TH-CD-206-01: Expectation-Maximization Algorithm-Based Tissue Mixture Quantification for Perfusion MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, H; Xing, L; Liang, Z

    Purpose: To investigate the feasibility of estimating the tissue mixture perfusions and quantifying cerebral blood flow change in arterial spin labeled (ASL) perfusion MR images. Methods: The proposed perfusion MR image analysis framework consists of 5 steps: (1) Inhomogeneity correction was performed on the T1- and T2-weighted images, which are available for each studied perfusion MR dataset. (2) We used the publicly available FSL toolbox to strip off the non-brain structures from the T1- and T2-weighted MR images. (3) We applied a multi-spectral tissue-mixture segmentation algorithm on both T1- and T2-structural MR images to roughly estimate the fraction of eachmore » tissue type - white matter, grey matter and cerebral spinal fluid inside each image voxel. (4) The distributions of the three tissue types or tissue mixture across the structural image array are down-sampled and mapped onto the ASL voxel array via a co-registration operation. (5) The presented 4-dimensional expectation-maximization (4D-EM) algorithm takes the down-sampled three tissue type distributions on perfusion image data to generate the perfusion mean, variance and percentage images for each tissue type of interest. Results: Experimental results on three volunteer datasets demonstrated that the multi-spectral tissue-mixture segmentation algorithm was effective to initialize tissue mixtures from T1- and T2-weighted MR images. Compared with the conventional ASL image processing toolbox, the proposed 4D-EM algorithm not only generated comparable perfusion mean images, but also produced perfusion variance and percentage images, which the ASL toolbox cannot obtain. It is observed that the perfusion contribution percentages may not be the same as the corresponding tissue mixture volume fractions estimated in the structural images. Conclusion: A specific application to brain ASL images showed that the presented perfusion image analysis method is promising for detecting subtle changes in tissue

  17. Investigation of the mechanisms mediating MDMA "Ecstasy"-induced increases in cerebro-cortical perfusion determined by btASL MRI.

    PubMed

    Rouine, J; Kelly, M E; Jennings-Murphy, C; Duffy, P; Gorman, I; Gormley, S; Kerskens, C M; Harkin, Andrew

    2015-05-01

    Acute administration of the recreational drug of abuse 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy) has previously been shown to increase cerebro-cortical perfusion as determined by bolus-tracking arterial spin labelling (btASL) MRI. The purpose of the current study was to assess the mechanisms mediating these changes following systemic administration of MDMA to rats. Pharmacological manipulation of serotonergic, dopaminergic and nitrergic transmission was carried out to determine the mechanism of action of MDMA-induced increases in cortical perfusion using btASL MRI. Fenfluramine (10 mg/kg), like MDMA (20 mg/kg), increased cortical perfusion. Increased cortical perfusion was not obtained with the 5-HT2 receptor agonist 2,5-dimethoxy-4-iodophenyl-aminopropane hydrochloride (DOI) (1 mg/kg). Depletion of central 5-HT following systemic administration of the tryptophan hydroxylase inhibitor para-chlorophenylalanine (pCPA) produced effects similar to those observed with MDMA. Pre-treatment with the 5-HT receptor antagonist metergoline (4 mg/kg) or with the 5-HT reuptake inhibitor citalopram (30 mg/kg), however, failed to produce any effect alone or influence the response to MDMA. Pre-treatment with the dopamine D1 receptor antagonist SCH 23390 (1 mg/kg) failed to influence the changes in cortical perfusion obtained with MDMA. Treatment with the neuronal nitric oxide (NO) synthase inhibitor 7-nitroindazole (7-NI) (25 mg/kg) provoked no change in cerebral perfusion alone yet attenuated the MDMA-related increase in cortical perfusion. Cortical 5-HT depletion is associated with increases in perfusion although this mechanism alone does not account for MDMA-related changes. A role for NO, a key regulator of cerebrovascular perfusion, is implicated in MDMA-induced increases in cortical perfusion.

  18. Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI.

    PubMed

    Bauman, Grzegorz; Puderbach, Michael; Deimling, Michael; Jellus, Vladimir; Chefd'hotel, Christophe; Dinkel, Julien; Hintze, Christian; Kauczor, Hans-Ulrich; Schad, Lothar R

    2009-09-01

    Assessment of regional lung perfusion and ventilation has significant clinical value for the diagnosis and follow-up of pulmonary diseases. In this work a new method of non-contrast-enhanced functional lung MRI (not dependent on intravenous or inhalative contrast agents) is proposed. A two-dimensional (2D) true fast imaging with steady precession (TrueFISP) pulse sequence (TR/TE = 1.9 ms/0.8 ms, acquisition time [TA] = 112 ms/image) was implemented on a 1.5T whole-body MR scanner. The imaging protocol comprised sets of 198 lung images acquired with an imaging rate of 3.33 images/s in coronal and sagittal view. No electrocardiogram (ECG) or respiratory triggering was used. A nonrigid image registration algorithm was applied to compensate for respiratory motion. Rapid data acquisition allowed observing intensity changes in corresponding lung areas with respect to the cardiac and respiratory frequencies. After a Fourier analysis along the time domain, two spectral lines corresponding to both frequencies were used to calculate the perfusion- and ventilation-weighted images. The described method was applied in preliminary studies on volunteers and patients showing clinical relevance to obtain non-contrast-enhanced perfusion and ventilation data.

  19. Simultaneous detection of landmarks and key-frame in cardiac perfusion MRI using a joint spatial-temporal context model

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoguang; Xue, Hui; Jolly, Marie-Pierre; Guetter, Christoph; Kellman, Peter; Hsu, Li-Yueh; Arai, Andrew; Zuehlsdorff, Sven; Littmann, Arne; Georgescu, Bogdan; Guehring, Jens

    2011-03-01

    Cardiac perfusion magnetic resonance imaging (MRI) has proven clinical significance in diagnosis of heart diseases. However, analysis of perfusion data is time-consuming, where automatic detection of anatomic landmarks and key-frames from perfusion MR sequences is helpful for anchoring structures and functional analysis of the heart, leading toward fully automated perfusion analysis. Learning-based object detection methods have demonstrated their capabilities to handle large variations of the object by exploring a local region, i.e., context. Conventional 2D approaches take into account spatial context only. Temporal signals in perfusion data present a strong cue for anchoring. We propose a joint context model to encode both spatial and temporal evidence. In addition, our spatial context is constructed not only based on the landmark of interest, but also the landmarks that are correlated in the neighboring anatomies. A discriminative model is learned through a probabilistic boosting tree. A marginal space learning strategy is applied to efficiently learn and search in a high dimensional parameter space. A fully automatic system is developed to simultaneously detect anatomic landmarks and key frames in both RV and LV from perfusion sequences. The proposed approach was evaluated on a database of 373 cardiac perfusion MRI sequences from 77 patients. Experimental results of a 4-fold cross validation show superior landmark detection accuracies of the proposed joint spatial-temporal approach to the 2D approach that is based on spatial context only. The key-frame identification results are promising.

  20. Correlation between lumbo-ventricular perfusion and MRI-CSF flow studies in idiopathic normal pressure hydrocephalus.

    PubMed

    Hakim, R; Black, P M

    1998-01-01

    After the initial description of normal pressure hydrocephalus (NPH) and its clinical triad, there has been a continuous interest from clinicians and researchers to set different diagnostic criteria that would make the selection of candidates for shunt surgery easier and more precise. A preliminary group of 12 patients was given a diagnosis of idiopathic normal pressure hydrocephalus by clinical and radiologic criteria. Each patient underwent two different tests: a magnetic resonance imaging-cerebrospinal fluid (MRI-CSF) flow study and a lumbo-ventricular perfusion test. The purpose was to compare the correlation of the results obtained with these tests and the clinical results obtained after CSF diversion. Eleven patients were given shunts and one was managed with lumbar punctures. One year after treatment, 10 of the 12 patients had improved with good results. The MRI-CSF flow studies were reliable in six patients; there were five false negatives and one false positive. The lumbo-ventricular perfusion test showed reliability in nine patients; there were two false negatives and one false positive. In only three patients were the results of both of these tests in accordance with the outcome. Even though there are few patients in this study so far, the data suggests that at the present time the most predictive guides for the diagnosis of NPH and its outcome after shunting are the clinical criteria and the radiological findings in computed tomography (CT) and/or MRI rather than lumbo-ventricular perfusion and CSF flow studies.

  1. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain.

    PubMed

    Sedlacik, Jan; Reitz, Matthias; Bolar, Divya S; Adalsteinsson, Elfar; Schmidt, Nils O; Fiehler, Jens

    2015-03-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7 T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml · kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s(∧)-1] = 20.7/20.4/20.1, R2*[s(∧)-1] = 31.6/29.6/25.9, R2'[s-(∧)1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml · min(∧)-1 · 100 g(∧)-1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood oxygenation level. We found

  2. Myonecrosis following stent placement: association between impaired TIMI myocardial perfusion grade and MRI visualization of microinfarction.

    PubMed

    Choi, James W; Gibson, C Michael; Murphy, Sabina A; Davidson, Charles J; Kim, Raymond J; Ricciardi, Mark J

    2004-04-01

    Contrast-enhanced cardiac MRI (ceMRI) and TIMI myocardial perfusion grade analysis (TMPG) are proven methods for visualization of microinfarction and assessment of microvascular perfusion, respectively. To determine whether microvascular obstruction accounts for procedure-related myonecrosis, 14 poststent patients, 9 with procedural CK-MB elevation and 5 controls, underwent ceMRI and TMPG. All had TIMI 3 flow pre- and poststent. TMPG was normal in 12/14 pre- and 7/14 poststent. Those with poststent decline in TMPG had higher CK-MB (median, 41.0 vs. 7.4 ng/mL; P = 0.01) and larger infarct mass (median, 3.1 vs. 0.89 g; P = 0.04). More extensive myonecrosis (CK-MB > 3 x normal; infarct mass > 3 g) was observed more frequently if there was a poststent decline in TMPG (3/3, 100%, vs. 2/11, 18.2%; P = 0.03). These data support the theory that distal embolization and microvascular obstruction are associated with myonecrosis following otherwise successful coronary stent placement and provide further insight into its pathophysiology. Copyright 2004 Wiley-Liss, Inc.

  3. Split Bregman multicoil accelerated reconstruction technique: A new framework for rapid reconstruction of cardiac perfusion MRI

    PubMed Central

    Kamesh Iyer, Srikant; Tasdizen, Tolga; Likhite, Devavrat; DiBella, Edward

    2016-01-01

    Purpose: Rapid reconstruction of undersampled multicoil MRI data with iterative constrained reconstruction method is a challenge. The authors sought to develop a new substitution based variable splitting algorithm for faster reconstruction of multicoil cardiac perfusion MRI data. Methods: The new method, split Bregman multicoil accelerated reconstruction technique (SMART), uses a combination of split Bregman based variable splitting and iterative reweighting techniques to achieve fast convergence. Total variation constraints are used along the spatial and temporal dimensions. The method is tested on nine ECG-gated dog perfusion datasets, acquired with a 30-ray golden ratio radial sampling pattern and ten ungated human perfusion datasets, acquired with a 24-ray golden ratio radial sampling pattern. Image quality and reconstruction speed are evaluated and compared to a gradient descent (GD) implementation and to multicoil k-t SLR, a reconstruction technique that uses a combination of sparsity and low rank constraints. Results: Comparisons based on blur metric and visual inspection showed that SMART images had lower blur and better texture as compared to the GD implementation. On average, the GD based images had an ∼18% higher blur metric as compared to SMART images. Reconstruction of dynamic contrast enhanced (DCE) cardiac perfusion images using the SMART method was ∼6 times faster than standard gradient descent methods. k-t SLR and SMART produced images with comparable image quality, though SMART was ∼6.8 times faster than k-t SLR. Conclusions: The SMART method is a promising approach to reconstruct good quality multicoil images from undersampled DCE cardiac perfusion data rapidly. PMID:27036592

  4. Diffusion, Perfusion, and Histopathologic Characteristics of Desmoplastic Infantile Ganglioglioma.

    PubMed

    Ho, Chang Y; Gener, Melissa; Bonnin, Jose; Kralik, Stephen F

    2016-07-01

    We present a case series of a rare tumor, the desmoplastic infantile ganglioglioma (DIG) with MRI diffusion and perfusion imaging quantification as well as histopathologic characterization. Four cases with pathologically-proven DIG had diffusion weighted imaging (DWI) and two of the four had dynamic susceptibility contrast imaging. All four tumors demonstrate DWI findings compatible with low-grade pediatric tumors. For the two cases with perfusion imaging, a higher relative cerebral blood volume was associated with higher proliferation index on histopathology for one of the cases. Our results are discussed in conjunction with a literature review.

  5. The role of magnetic resonance diffusion-weighted imaging and three-dimensional arterial spin labelling perfusion imaging in the differentiation of parasellar meningioma and cavernous haemangioma.

    PubMed

    Xiao, Hua-Feng; Lou, Xin; Liu, Meng-Yu; Wang, Yu-Lin; Wang, Yan; Chen, Zhi-Ye; Shi, Kai-Ning; Ma, Lin

    2014-08-01

    To evaluate the diagnostic value of magnetic resonance diffusion-weighted imaging (DWI) and three-dimensional arterial spin labelling perfusion imaging (3D-ASL) in distinguishing cavernous haemangioma from parasellar meningioma, using histological data as a reference standard. Patients with parasellar meningioma or parasellar cavernous haemangioma underwent conventional T1- and T2-weighted magnetic resonance imaging (MRI) followed by DWI and 3D-ASL using a 3.0 Tesla MRI. The minimum apparent diffusion coefficient (minADC) from DWI and the maximal normalized cerebral blood flow (nCBF) from 3D-ASL were measured in each tumour. Diagnosis was confirmed by histology. MinADC was significantly lower and nCBF significantly higher in meningioma (n = 19) than cavernous haemangioma (n = 15). There was a significant negative correlation between minADC and nCBF (r = -0.605). DWI and 3D-ASL are useful in differentiating cavernous haemangiomas from parasellar meningiomas, particularly in situations when the appearance on conventional MRI sequences is otherwise ambiguous. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. MRI-based quantification of Duchenne muscular dystrophy in a canine model

    NASA Astrophysics Data System (ADS)

    Wang, Jiahui; Fan, Zheng; Kornegay, Joe N.; Styner, Martin A.

    2011-03-01

    Duchenne muscular dystrophy (DMD) is a progressive and fatal X-linked disease caused by mutations in the DMD gene. Magnetic resonance imaging (MRI) has shown potential to provide non-invasive and objective biomarkers for monitoring disease progression and therapeutic effect in DMD. In this paper, we propose a semi-automated scheme to quantify MRI features of golden retriever muscular dystrophy (GRMD), a canine model of DMD. Our method was applied to a natural history data set and a hydrodynamic limb perfusion data set. The scheme is composed of three modules: pre-processing, muscle segmentation, and feature analysis. The pre-processing module includes: calculation of T2 maps, spatial registration of T2 weighted (T2WI) images, T2 weighted fat suppressed (T2FS) images, and T2 maps, and intensity calibration of T2WI and T2FS images. We then manually segment six pelvic limb muscles. For each of the segmented muscles, we finally automatically measure volume and intensity statistics of the T2FS images and T2 maps. For the natural history study, our results showed that four of six muscles in affected dogs had smaller volumes and all had higher mean intensities in T2 maps as compared to normal dogs. For the perfusion study, the muscle volumes and mean intensities in T2FS were increased in the post-perfusion MRI scans as compared to pre-perfusion MRI scans, as predicted. We conclude that our scheme successfully performs quantitative analysis of muscle MRI features of GRMD.

  7. Does Perfusion MRI After Closed Reduction of Developmental Dysplasia of the Hip Reduce the Incidence of Avascular Necrosis?

    PubMed

    Gornitzky, Alex L; Georgiadis, Andrew G; Seeley, Mark A; Horn, B David; Sankar, Wudbhav N

    2016-05-01

    surgeon preference, with two of 33 (6%) requiring such further interventions. Salter criteria were then used to determine the proportion of AVN on radiographs at 1-year and final followup. Secondary outcomes including residual dysplasia and the need for further corrective surgery were ascertained through radiographic and retrospective chart review. At 1-year followup there was no difference in the proportion of AVN in the historical CT group as compared with the pMRI group (six of 25 [24%] versus one of 25 [4%]; odds ratio [OR], 7.6; 95% confidence interval [CI], 0.8-363; p = 0.098). However, by final followup there was a statistically higher proportion of AVN in the CT group (seven of 25 [28%] versus one of 25 [4%]; OR, 9.3; 95% CI, 1.0-438; p = 0.049). No patient with normal perfusion on postreduction pMRI went on to develop AVN. In those pMRI patients in whom a successful reduction was initially obtained, two of 25 (8%) went on to require further corrective surgery and one of 25 (4%) had a redislocation event. With the numbers available, no patient-specific factors at the time of closed reduction were predictive of future AVN, including the patient's age/weight, the presence of an ossific nucleus, history of previous bracing treatment, or the abduction angle in spica cast. A pMRI-based protocol immediately after closed reduction/spica casting may decrease the risk of AVN by helping the surgeon to evaluate femoral head vascularity. Although preliminary in nature, this study could serve to guide further investigation into the potential role of pMRI for the treatment of patients who require closed reduction/spica casting for DDH. Level III, therapeutic study.

  8. Structural and Perfusion Abnormalities of Brain on MRI and Technetium-99m-ECD SPECT in Children With Cerebral Palsy: A Comparative Study.

    PubMed

    Rana, Kamer Singh; Narwal, Varun; Chauhan, Lokesh; Singh, Giriraj; Sharma, Monica; Chauhan, Suneel

    2016-04-01

    Cerebral palsy has traditionally been associated with hypoxic ischemic brain damage. This study was undertaken to demonstrate structural and perfusion brain abnormalities. Fifty-six children diagnosed clinically as having cerebral palsy were studied between 1 to 14 years of age and were subjected to 3 Tesla magnetic resonance imaging (MRI). Brain and Technetium-99m-ECD brain single-photon emission computed tomography (SPECT) scan. Male to female ratio was 1.8:1 with a mean age of 4.16 ± 2.274 years. Spastic cerebral palsy was the most common type, observed in 91%. Birth asphyxia was the most common etiology (69.6%). White matter changes (73.2%) such as periventricular leukomalacia and corpus callosal thinning were the most common findings on MRI. On SPECT all cases except one revealed perfusion impairments in different regions of brain. MRI is more sensitive in detecting white matter changes, whereas SPECT is better in detecting cortical and subcortical gray matter abnormalities of perfusion. © The Author(s) 2015.

  9. Advanced MRI Methods for Assessment of Chronic Liver Disease

    PubMed Central

    Taouli, Bachir; Ehman, Richard L.; Reeder, Scott B.

    2010-01-01

    MRI plays an increasingly important role for assessment of patients with chronic liver disease. MRI has numerous advantages, including lack of ionizing radiation and the possibility of performing multiparametric imaging. With recent advances in technology, advanced MRI methods such as diffusion-, perfusion-weighted MRI, MR elastography, chemical shift based fat-water separation and MR spectroscopy can now be applied to liver imaging. We will review the respective roles of these techniques for assessment of chronic liver disease. PMID:19542391

  10. Diffusion, Perfusion, and Histopathologic Characteristics of Desmoplastic Infantile Ganglioglioma

    PubMed Central

    Ho, Chang Y; Gener, Melissa; Bonnin, Jose; Kralik, Stephen F

    2016-01-01

    We present a case series of a rare tumor, the desmoplastic infantile ganglioglioma (DIG) with MRI diffusion and perfusion imaging quantification as well as histopathologic characterization. Four cases with pathologically-proven DIG had diffusion weighted imaging (DWI) and two of the four had dynamic susceptibility contrast imaging. All four tumors demonstrate DWI findings compatible with low-grade pediatric tumors. For the two cases with perfusion imaging, a higher relative cerebral blood volume was associated with higher proliferation index on histopathology for one of the cases. Our results are discussed in conjunction with a literature review. PMID:27761184

  11. Regional myocardial oxygen tension: 19F MRI of sequestered perfluorocarbon.

    PubMed

    Shukla, H P; Mason, R P; Bansal, N; Antich, P P

    1996-06-01

    A novel noninvasive method of measuring local myocardial oxygen tension (pO2) in the perfused rat heart using 19F MRI is demonstrated. Tissue pO2 was determined on the basis of the 19F spin-lattice relaxation rate (R1) of perflubron (perfluorooctyl bromide) sequestered in the heart after IV infusion of an emulsion. Spectroscopic measurement of R1 was previously used to measure a global weighted average of oxygen status. 19F MRI now provides 3D spatial resolution indicating local cardiac pO2 under normally perfused, globally ischemic, and regionally ischemic conditions.

  12. [Diffusion weighted imaging and perfusion weighted imaging in the differential diagnosis of benign and malignant renal masses on 3.0 T MRI].

    PubMed

    Xu, Xiaowen; Wang, Peijun; Ma, Liang; Shao, Zhihong; Zhang, Min

    2015-01-20

    To explore the value of diffusion weighted imaging (DWI) and perfusion weighted imaging (PWI) in identifying benign and malignant renal masses and differentiating the histological types of renal masses. Fifteen healthy volunteers and 46 patients with renal masses proven by pathology, including clear cell carcinomas (n = 18), papillary carcinomas (n = 8), chromophobe carcinomas (n = 7) and angiomyolipomas (n = 13), were examined with DWI and PWI scan at 3.0 T MRI. ANOVA was employed to compare the values of transfer constant (K(trans)), rate constant of backflux (Kep) and extra-vascular extra-cellular space fractional volume (Ve) proceeded by PWI and the value of ADC resulted from DWI between normal kidney and different histological types of renal masses. Receiver operating characteristics (ROC) curve was used to analyze and compare the diagnostic value of the methods of PWI and DWI in differentiating benign and malignant renal masses. The ADC value of normal renal parenchyma was (2.10 ± 0.24) × 10⁻³ mm²/s, which was statistically higher than benign and malignant renal masses (P < 0.05). The ADC value of benign masses was statistically higher than that of all histological types of malignant masses (P < 0.05). Among three histological types of malignancies, clear cell carcinoma showed the statistically highest ADC value (P < 0.05). But the difference between papillary carcinoma and chromophobe carcinoma had no statistical significance (P > 0.05).Values of K(trans), Kep and Ve between normal renal parenchyma and different histological types of renal masses had statistical differences.Values of K(trans) and Ve in three histological types of malignant renal masses were statistically higher than those of benign renal masses.Kep value of clear cell carcinoma was significantly higher than that of benign renal masses (P < 0.05).However, other histological types of malignant masses had no significant difference with benign masses.For three malignant masses, K(trans) of

  13. MRI quantification of diffusion and perfusion in bone marrow by intravoxel incoherent motion (IVIM) and non-negative least square (NNLS) analysis.

    PubMed

    Marchand, A J; Hitti, E; Monge, F; Saint-Jalmes, H; Guillin, R; Duvauferrier, R; Gambarota, G

    2014-11-01

    To assess the feasibility of measuring diffusion and perfusion fraction in vertebral bone marrow using the intravoxel incoherent motion (IVIM) approach and to compare two fitting methods, i.e., the non-negative least squares (NNLS) algorithm and the more commonly used Levenberg-Marquardt (LM) non-linear least squares algorithm, for the analysis of IVIM data. MRI experiments were performed on fifteen healthy volunteers, with a diffusion-weighted echo-planar imaging (EPI) sequence at five different b-values (0, 50, 100, 200, 600 s/mm2), in combination with an STIR module to suppress the lipid signal. Diffusion signal decays in the first lumbar vertebra (L1) were fitted to a bi-exponential function using the LM algorithm and further analyzed with the NNLS algorithm to calculate the values of the apparent diffusion coefficient (ADC), pseudo-diffusion coefficient (D*) and perfusion fraction. The NNLS analysis revealed two diffusion components only in seven out of fifteen volunteers, with ADC=0.60±0.09 (10(-3) mm(2)/s), D*=28±9 (10(-3) mm2/s) and perfusion fraction=14%±6%. The values obtained by the LM bi-exponential fit were: ADC=0.45±0.27 (10(-3) mm2/s), D*=63±145 (10(-3) mm2/s) and perfusion fraction=27%±17%. Furthermore, the LM algorithm yielded values of perfusion fraction in cases where the decay was not bi-exponential, as assessed by NNLS analysis. The IVIM approach allows for measuring diffusion and perfusion fraction in vertebral bone marrow; its reliability can be improved by using the NNLS, which identifies the diffusion decays that display a bi-exponential behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Evaluation of pharmacokinetic models for perfusion imaging with dynamic contrast-enhanced magnetic resonance imaging in porcine skeletal muscle using low-molecular-weight contrast agents.

    PubMed

    Hindel, Stefan; Papanastasiou, Giorgos; Wust, Peter; Maaß, Marc; Söhner, Anika; Lüdemann, Lutz

    2018-06-01

    Pharmacokinetic models for perfusion quantification with a low-molecular-weight contrast agent (LMCA) in skeletal muscle using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) were evaluated. Tissue perfusion was measured in seven regions of interest (ROIs) placed in the total hind leg supplied by the femoral artery in seven female pigs. DCE-MRI was performed using a 3D gradient echo sequence with k-space sharing. The sequence was acquired twice, first after LMCA and then after blood pool contrast agent injection. Blood flow was augmented by continuous infusion of the vasodilator adenosine into the femoral artery, resulting in up to four times increased blood flow. The results obtained with several LMCA models were compared with those of a two-compartment blood pool model (2CBPM) consisting of a capillary and an arteriolar compartment. Measurements performed with a Doppler flow probe placed at the femoral artery served as ground truth. The two-compartment exchange model extended by an arteriolar compartment (E2CXM) showed the highest fit quality of all LMCA models and the most significant correlation with the Doppler measurements, r = 0.78 (P < 0.001). The best correspondence between the capillary perfusion measurements of the LMCA models and those of the 2CBPM was found with the E2CXM (slope of the regression line equal to 1, r = 0.85, P < 0.001). The results for the clinical patient data corresponded very well with the results obtained in the animal experiments. Double-contrast agent DCE-MRI in combination with the E2CXM yields the most reliable results and can be used in clinical routine. Magn Reson Med 79:3154-3162, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Accelerating free breathing myocardial perfusion MRI using multi coil radial k - t SLR

    NASA Astrophysics Data System (ADS)

    Goud Lingala, Sajan; DiBella, Edward; Adluru, Ganesh; McGann, Christopher; Jacob, Mathews

    2013-10-01

    The clinical utility of myocardial perfusion MR imaging (MPI) is often restricted by the inability of current acquisition schemes to simultaneously achieve high spatio-temporal resolution, good volume coverage, and high signal to noise ratio. Moreover, many subjects often find it difficult to hold their breath for sufficiently long durations making it difficult to obtain reliable MPI data. Accelerated acquisition of free breathing MPI data can overcome some of these challenges. Recently, an algorithm termed as k - t SLR has been proposed to accelerate dynamic MRI by exploiting sparsity and low rank properties of dynamic MRI data. The main focus of this paper is to further improve k - t SLR and demonstrate its utility in considerably accelerating free breathing MPI. We extend its previous implementation to account for multi-coil radial MPI acquisitions. We perform k - t sampling experiments to compare different radial trajectories and determine the best sampling pattern. We also introduce a novel augmented Lagrangian framework to considerably improve the algorithm’s convergence rate. The proposed algorithm is validated using free breathing rest and stress radial perfusion data sets from two normal subjects and one patient with ischemia. k - t SLR was observed to provide faithful reconstructions at high acceleration levels with minimal artifacts compared to existing MPI acceleration schemes such as spatio-temporal constrained reconstruction and k - t SPARSE/SENSE.

  16. Accelerating free breathing myocardial perfusion MRI using multi coil radial k-t SLR

    PubMed Central

    Lingala, Sajan Goud; DiBella, Edward; Adluru, Ganesh; McGann, Christopher; Jacob, Mathews

    2013-01-01

    The clinical utility of myocardial perfusion MR imaging (MPI) is often restricted by the inability of current acquisition schemes to simultaneously achieve high spatio-temporal resolution, good volume coverage, and high signal to noise ratio. Moreover, many subjects often find it difficult to hold their breath for sufficiently long durations making it difficult to obtain reliable MPI data. Accelerated acquisition of free breathing MPI data can overcome some of these challenges. Recently, an algorithm termed as k − t SLR has been proposed to accelerate dynamic MRI by exploiting sparsity and low rank properties of dynamic MRI data. The main focus of this paper is to further improve k − t SLR and demonstrate its utility in considerably accelerating free breathing MPI. We extend its previous implementation to account for multi-coil radial MPI acquisitions. We perform k − t sampling experiments to compare different radial trajectories and determine the best sampling pattern. We also introduce a novel augmented Lagrangian framework to considerably improve the algorithm's convergence rate. The proposed algorithm is validated using free breathing rest and stress radial perfusion data sets from two normal subjects and one patient with ischemia. k − t SLR was observed to provide faithful reconstructions at high acceleration levels with minimal artifacts compared to existing MPI acceleration schemes such as spatio-temporal constrained reconstruction (STCR) and k − t SPARSE/SENSE. PMID:24077063

  17. Study on the cerebrovascular reserve capacity by MR perfusion weighted imaging in SHR

    NASA Astrophysics Data System (ADS)

    Zhou, Quan; Dong, Yang; Chen, WenLi; Lin, Xueying; Xing, Da; Huang, Li

    2007-05-01

    Cerebrovascular disease is one of the leading causes of death, and approximately 50% of survivors have a residual neurologic deficit and greater than 25% require chronic care. Cerebrovascular reserve capacity (CVRC) describes how far cerebral perfusion can increase from a baseline value after stimulation. High blood pressure is the most important independent risk factor for stroke and other vascular diseases. The incidence of stroke in the hypertensive is six times higher than in the patient with normal blood pressure. CVRC in the hypertensive was even lower than in control patients. MR perfusion weighted imaging (MR PWI) with the well-established acetazolamide (ACZ) stimulation test has been used for assessing brain function. The aim of this work is to assess the cerebrovascular reserve capacity by MR PWI with "ACZ" tolerance test in spontaneous hypertensive rat (SHR) and to identify its value in evaluating the CVRC. Experimental animal including 3 groups: Wistar-Kyoto rats (WKY) (12-week-old) as control group, SHR (12-week-old and 20-week-old) as experimental group. MR PWI was performed respectively before and after acetazolamide administrated orally in 3 groups on a clinical 1.5 Tesla GE Signa MR fx/i whole-body MR system. The ROI was chosen in the bilateral frontal lobe to measure the value of rCBV, rCBF and MTT. The results showed that before ACZ-test, there was statistic differences between the WKY and SHR(12-week-old), and between SHR(12-week-old) and SHR(20-week-old) in the values of rCBV and rCBF (P>0.05), and after ACZ-test, there were statistic differences between WKY and SHR (20-week-old), and between SHR(12-week-old) and SHR(20-week-old) in the rCBV value (P<0.05). It is concluded that the method of MRI PWI combined with the "ACZ stress test" can provide more qualitative and half-quantitative information on the cerebral perfusion to evaluate the CVRC in SHR.

  18. Alterations of the Blood-Brain Barrier and Regional Perfusion in Tumor Development: MRI Insights from a Rat C6 Glioma Model.

    PubMed

    Huhndorf, Monika; Moussavi, Amir; Kramann, Nadine; Will, Olga; Hattermann, Kirsten; Stadelmann, Christine; Jansen, Olav; Boretius, Susann

    2016-01-01

    Angiogenesis and anti-angiogenetic medications play an important role in progression and therapy of glioblastoma. In this context, in vivo characterization of the blood-brain-barrier and tumor vascularization may be important for individual prognosis and therapy optimization. We analyzed perfusion and capillary permeability of C6-gliomas in rats at different stages of tumor-growth by contrast enhanced MRI and dynamic susceptibility contrast (DSC) MRI at 7 Tesla. The analyses included maps of relative cerebral blood volume (CBV) and signal recovery derived from DSC data over a time period of up to 35 days after tumor cell injections. In all rats tumor progression was accompanied by temporal and spatial changes in CBV and capillary permeability. A leakage of the blood-brain barrier (slow contrast enhancement) was observed as soon as the tumor became detectable on T2-weighted images. Interestingly, areas of strong capillary permeability (fast signal enhancement) were predominantly localized in the center of the tumor. In contrast, the tumor rim was dominated by an increased CBV and showed the highest vessel density compared to the tumor center and the contralateral hemisphere as confirmed by histology. Substantial regional differences in the tumor highlight the importance of parameter maps in contrast or in addition to region-of-interest analyses. The data vividly illustrate how MRI including contrast-enhanced and DSC-MRI may contribute to a better understanding of tumor development.

  19. MR-perfusion (MRP) and diffusion-weighted imaging (DWI) in prostate cancer: quantitative and model-based gadobenate dimeglumine MRP parameters in detection of prostate cancer.

    PubMed

    Scherr, M K; Seitz, M; Müller-Lisse, U G; Ingrisch, M; Reiser, M F; Müller-Lisse, U L

    2010-12-01

    Various MR methods, including MR-spectroscopy (MRS), dynamic, contrast-enhanced MRI (DCE-MRI), and diffusion-weighted imaging (DWI) have been applied to improve test quality of standard MRI of the prostate. To determine if quantitative, model-based MR-perfusion (MRP) with gadobenate dimeglumine (Gd-BOPTA) discriminates between prostate cancer, benign tissue, and transitional zone (TZ) tissue. 27 patients (age, 65±4 years; PSA 11.0±6.1 ng/ml) with clinical suspicion of prostate cancer underwent standard MRI, 3D MR-spectroscopy (MRS), and MRP with Gd-BOPTA. Based on results of combined MRI/MRS and subsequent guided prostate biopsy alone (17/27), biopsy and radical prostatectomy (9/27), or sufficient negative follow-up (7/27), maps of model-free, deconvolution-based mean transit time (dMTT) were generated for 29 benign regions (bROIs), 14 cancer regions (cROIs), and 18 regions of transitional zone (tzROIs). Applying a 2-compartment exchange model, quantitative perfusion analysis was performed including as parameters: plasma flow (PF), plasma volume (PV), plasma mean transit time (PMTT), extraction flow (EFL), extraction fraction (EFR), interstitial volume (IV) and interstitial mean transit time (IMTT). Two-sided T-tests (significance level p<0.05) discriminated bROIs vs. cROIs and cROIs vs. tzROIs, respectively. PMTT discriminated best between bROIs (11.8±3.0 s) and cROIs (24.3±9.6 s) (p<0.0001), while PF, PV, PS, EFR, IV, IMTT also differed significantly (p 0.00002-0.0136). Discrimination between cROIs and tzROIs was insignificant for all parameters except PV (14.3±2.5 ml vs. 17.6±2.6 ml, p<0.05). Besides MRI, MRS and DWI quantitative, 2-compartment MRP with Gd-BOPTA discriminates between prostate cancer and benign tissue with several parameters. However, distinction of prostate cancer and TZ does not appear to be reliable. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Normal saline as a natural intravascular contrast agent for dynamic perfusion-weighted MRI of the brain: Proof of concept at 1.5T.

    PubMed

    Jara, Hernán; Mian, Asim; Sakai, Osamu; Anderson, Stephan W; Horn, Mitchel J; Norbash, Alexander M; Soto, Jorge A

    2016-12-01

    Gadolinium-based contrast agents have associated risks. Normal saline (NS) is a nontoxic sodium chloride water solution that can significantly increase the magnetic resonance imaging (MRI) relaxation times of blood via transient hemodilution (THD). The purpose of this pilot study was to test in vivo in the head the potential of normal saline as a safer, exogenous perfusion contrast agent. This Health Insurance Portability and Accountability Act (HIPAA)-compliant prospective study was approved by the local Institutional Review Board (IRB): 12 patients were scanned with T 1 -weighted inversion recovery turbo spin echo pulse sequence at 1.5T. The dynamic inversion recovery pulse sequence was run before, during, and after the NS injection for up to 5 minutes: 100 ml of NS was power-injected via antecubital veins at 3-4 ml/s. Images were processed to map maximum enhancement area-under-the-curve, time-to-peak, and mean-transit-time. These maps were used to identify the areas showing significant NS injection-related signal and to generate enhancement time curves. Hardware and pulse sequence stability were studied via phantom experimentation. Main features of the time curves were tested against theoretical modeling of THD signal effects using inversion recovery pulse sequences. Pearson correlation coefficient (R) mapping was used to differentiate genuine THD effects from motion confounders and noise. The scans of 8 out of 12 patients showed NS injection-related effects that correlate in magnitude with tissue type (gray matter ∼15% and white matter ∼3%). Motion artifacts prevented ascertaining NS signal effects in the remaining four patients. Positive and negative time curves were observed in vivo and this dual THD signal polarity was also observed in the theoretical simulations. R-histograms that were approximately constant in the range 0.1 < |R| < 0.8 and leading to correlation fractions of F corr (|R| > 0.5) = 0.45 and 0.59 were found to represent scans with genuine

  1. Simultaneous Myocardial Strain and Dark-Blood Perfusion Imaging Using a Displacement-Encoded MRI Pulse Sequence

    PubMed Central

    Le, Yuan; Stein, Ashley; Berry, Colin; Kellman, Peter; Bennett, Eric E.; Taylor, Joni; Lucas, Katherine; Kopace, Rael; Chefd’Hotel, Christophe; Lorenz, Christine H.; Croisille, Pierre; Wen, Han

    2010-01-01

    The purpose of this study is to develop and evaluate a displacement-encoded pulse sequence for simultaneous perfusion and strain imaging. Displacement-encoded images in 2–3 myocardial slices were repeatedly acquired using a single shot pulse sequence for 3 to 4 minutes, which covers a bolus infusion of Gd. The magnitudes of the images were T1 weighted and provided quantitative measures of perfusion, while the phase maps yielded strain measurements. In an acute coronary occlusion swine protocol (n=9), segmental perfusion measurements were validated against microsphere reference standard with a linear regression (slope 0.986, R2 = 0.765, Bland-Altman standard deviation = 0.15 ml/min/g). In a group of ST-elevation myocardial infarction(STEMI) patients (n=11), the scan success rate was 76%. Short-term contrast washout rate and perfusion are highly correlated (R2=0.72), and the pixel-wise relationship between circumferential strain and perfusion was better described with a sigmoidal Hill curve than linear functions. This study demonstrates the feasibility of measuring strain and perfusion from a single set of images. PMID:20544714

  2. Body weight lower limits of fetal postmortem MRI at 1.5 T.

    PubMed

    Jawad, N; Sebire, N J; Wade, A; Taylor, A M; Chitty, L S; Arthurs, O J

    2016-07-01

    To evaluate the diagnostic yield of postmortem magnetic resonance imaging (PM-MRI) compared with conventional autopsy in fetuses of early gestational age and low body weight. Fetuses of < 31 weeks' gestation that underwent 1.5-T PM-MRI and conventional autopsy were included. The findings of PM-MRI and conventional autopsy were reported blinded to each other. The reports of conventional autopsy and PM-MRI for each organ system (cardiovascular, neurological, abdominal, non-cardiac thoracic and musculoskeletal) were classified as either diagnostic or non-diagnostic. The likelihood of a non-diagnostic examination by PM-MRI was calculated according to fetal gestational age and body weight. Full datasets were examined of 204 fetuses, with mean gestational age of 20.95 ± 3.82 weeks (range, 12.0-30.7 weeks) and body-weight range of 15.9-1872 g. Body weight was the most significant predictor of diagnostic yield of PM-MRI. There was 95% confidence that 90% of fetuses will show diagnostic images by PM-MRI for all five organ systems when fetal body weight is ≥ 535 g, but < 50% of fetuses will have all five systems diagnostic on PM-MRI when body weight is < 122 g. PM-MRI is highly likely to provide adequate diagnostic images for fetuses with a body weight > 500 g. Below this weight, the diagnostic yield of standard 1.5-T PM-MRI decreases significantly. These data should help inform parents and clinicians on the suitability of performing PM-MRI in fetuses with low body weight. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  3. Combining diffusion-weighted MRI with Gd-EOB-DTPA-enhanced MRI improves the detection of colorectal liver metastases.

    PubMed

    Koh, D-M; Collins, D J; Wallace, T; Chau, I; Riddell, A M

    2012-07-01

    To compare the diagnostic accuracy of gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced MRI, diffusion-weighted MRI (DW-MRI) and a combination of both techniques for the detection of colorectal hepatic metastases. 72 patients with suspected colorectal liver metastases underwent Gd-EOB-DTPA MRI and DW-MRI. Images were retrospectively reviewed with unenhanced T(1) and T(2) weighted images as Gd-EOB-DTPA image set, DW-MRI image set and combined image set by two independent radiologists. Each lesion detected was scored for size, location and likelihood of metastasis, and compared with surgery and follow-up imaging. Diagnostic accuracy was compared using receiver operating characteristics and interobserver agreement by kappa statistics. 417 lesions (310 metastases, 107 benign) were found in 72 patients. For both readers, diagnostic accuracy using the combined image set was higher [area under the curve (Az)=0.96, 0.97] than Gd-EOB-DTPA image set (Az=0.86, 0.89) or DW-MRI image set (Az=0.93, 0.92). Using combined image set improved identification of liver metastases compared with Gd-EOB-DTPA image set (p<0.001) or DW-MRI image set (p<0.001). There was very good interobserver agreement for lesion classification (κ=0.81-0.88). Combining DW-MRI with Gd-EOB-DTPA-enhanced T(1) weighted MRI significantly improved the detection of colorectal liver metastases.

  4. Temporal similarity perfusion mapping: A standardized and model-free method for detecting perfusion deficits in stroke

    PubMed Central

    Song, Sunbin; Luby, Marie; Edwardson, Matthew A.; Brown, Tyler; Shah, Shreyansh; Cox, Robert W.; Saad, Ziad S.; Reynolds, Richard C.; Glen, Daniel R.; Cohen, Leonardo G.; Latour, Lawrence L.

    2017-01-01

    Introduction Interpretation of the extent of perfusion deficits in stroke MRI is highly dependent on the method used for analyzing the perfusion-weighted signal intensity time-series after gadolinium injection. In this study, we introduce a new model-free standardized method of temporal similarity perfusion (TSP) mapping for perfusion deficit detection and test its ability and reliability in acute ischemia. Materials and methods Forty patients with an ischemic stroke or transient ischemic attack were included. Two blinded readers compared real-time generated interactive maps and automatically generated TSP maps to traditional TTP/MTT maps for presence of perfusion deficits. Lesion volumes were compared for volumetric inter-rater reliability, spatial concordance between perfusion deficits and healthy tissue and contrast-to-noise ratio (CNR). Results Perfusion deficits were correctly detected in all patients with acute ischemia. Inter-rater reliability was higher for TSP when compared to TTP/MTT maps and there was a high similarity between the lesion volumes depicted on TSP and TTP/MTT (r(18) = 0.73). The Pearson's correlation between lesions calculated on TSP and traditional maps was high (r(18) = 0.73, p<0.0003), however the effective CNR was greater for TSP compared to TTP (352.3 vs 283.5, t(19) = 2.6, p<0.03.) and MTT (228.3, t(19) = 2.8, p<0.03). Discussion TSP maps provide a reliable and robust model-free method for accurate perfusion deficit detection and improve lesion delineation compared to traditional methods. This simple method is also computationally faster and more easily automated than model-based methods. This method can potentially improve the speed and accuracy in perfusion deficit detection for acute stroke treatment and clinical trial inclusion decision-making. PMID:28973000

  5. Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow.

    PubMed

    van Osch, Matthias Jp; Teeuwisse, Wouter M; Chen, Zhensen; Suzuki, Yuriko; Helle, Michael; Schmid, Sophie

    2017-01-01

    With the publication in 2015 of the consensus statement by the perfusion study group of the International Society for Magnetic Resonance in Medicine (ISMRM) and the EU-COST action 'ASL in dementia' on the implementation of arterial spin labelling MRI (ASL) in a clinical setting, the development of ASL can be considered to have become mature and ready for clinical prime-time. In this review article new developments and remaining issues will be discussed, especially focusing on quantification of ASL as well as on new technological developments of ASL for perfusion imaging and flow territory mapping. Uncertainty of the achieved labelling efficiency in pseudo-continuous ASL (pCASL) as well as the presence of arterial transit time artefacts, can be considered the main remaining challenges for the use of quantitative cerebral blood flow (CBF) values. New developments in ASL centre around time-efficient acquisition of dynamic ASL-images by means of time-encoded pCASL and diversification of information content, for example by combined 4D-angiography with perfusion imaging. Current vessel-encoded and super-selective pCASL-methodology have developed into easily applied flow-territory mapping methods providing relevant clinical information with highly similar information content as digital subtraction angiography (DSA), the current clinical standard. Both approaches seem therefore to be ready for clinical use.

  6. Added Value of Assessing Adnexal Masses with Advanced MRI Techniques

    PubMed Central

    Thomassin-Naggara, I.; Balvay, D.; Rockall, A.; Carette, M. F.; Ballester, M.; Darai, E.; Bazot, M.

    2015-01-01

    This review will present the added value of perfusion and diffusion MR sequences to characterize adnexal masses. These two functional MR techniques are readily available in routine clinical practice. We will describe the acquisition parameters and a method of analysis to optimize their added value compared with conventional images. We will then propose a model of interpretation that combines the anatomical and morphological information from conventional MRI sequences with the functional information provided by perfusion and diffusion weighted sequences. PMID:26413542

  7. Characteristics of quantitative perfusion parameters on dynamic contrast‐enhanced MRI in mammographically occult breast cancer

    PubMed Central

    Ryu, Jung Kyu; Rhee, Sun Jung; Song, Jeong Yoon; Cho, Soo Hyun

    2016-01-01

    The purpose of this study was to compare the characteristics of quantitative perfusion parameters obtained from dynamic contrast‐enhanced (DCE) magnetic resonance imaging (MRI) in patients with mammographically occult (MO) breast cancers and those with mammographically visible (MV) breast cancers. Quantitative parameters (AUC, Ktrans,kep,ve,vp, and wi) from 13 MO breast cancers and 16 MV breast cancers were mapped after the DCE‐MRI data were acquired. Various prognostic factors, including axillary nodal status, estrogen receptor (ER), progesterone receptor (PR), Ki‐67, p53, E‐cadherin, and human epidermal growth factor receptor 2 (HER2) were obtained in each group. Fisher's exact test was used to compare any differences of the various prognostic factors between the two groups. The Mann‐Whitney U test was applied to compare the quantitative parameters between these two groups. Finally, Spearman's correlation was used to investigate the relationships between perfusion indices and four factors — age, tumor size, Ki‐67, and p53 — for each group. Although age, tumor size, and the prognostic factors were not statistically different between the two groups, the mean values of the quantitative parameters, except wi in the MV group, were higher than those in the MO group without statistical significance (p=0.219). The kep value was significantly different between the two groups (p=0.048), but the other parameters were not. In the MO group, vp with size, ve with p53, and Ktrans and vp with Ki‐67 had significant correlations (p<0.05). However, in the MV group, only kep showed significant correlation with age. The kep value was only the perfusion parameter of statistical significance between MO and MV breast cancers. PACS number(s): 87.19.U‐, 87.61.‐c PMID:27685105

  8. Role of FDG-PET/MRI, FDG-PET/CT, and Dynamic Susceptibility Contrast Perfusion MRI in Differentiating Radiation Necrosis from Tumor Recurrence in Glioblastomas.

    PubMed

    Hojjati, Mojgan; Badve, Chaitra; Garg, Vasant; Tatsuoka, Curtis; Rogers, Lisa; Sloan, Andrew; Faulhaber, Peter; Ros, Pablo R; Wolansky, Leo J

    2018-01-01

    To compare the utility of quantitative PET/MRI, dynamic susceptibility contrast (DSC) perfusion MRI (pMRI), and PET/CT in differentiating radiation necrosis (RN) from tumor recurrence (TR) in patients with treated glioblastoma multiforme (GBM). The study included 24 patients with GBM treated with surgery, radiotherapy, and temozolomide who presented with progression on imaging follow-up. All patients underwent PET/MRI and pMRI during a single examination. Additionally, 19 of 24 patients underwent PET/CT on the same day. Diagnosis was established by pathology in 17 of 24 and by clinical/radiologic consensus in 7 of 24. For the quantitative PET/MRI and PET/CT analysis, a region of interest (ROI) was drawn around each lesion and within the contralateral white matter. Lesion to contralateral white matter ratios for relative maximum, mean, and median were calculated. For pMRI, lesion ROI was drawn on the cerebral blood volume (CBV) maps and histogram metrics were calculated. Diagnostic performance for each metric was assessed using receiver operating characteristic curve analysis and area under curve (AUC) was calculated. In 24 patients, 28 lesions were identified. For PET/MRI, relative mean ≥ 1.31 resulted in AUC of .94 with both sensitivity and negative predictive values (NPVs) of 100%. For pMRI, CBV max ≥3.32 yielded an AUC of .94 with both sensitivity and NPV measuring 100%. The joint model utilizing r-mean (PET/MRI) and CBV mode (pMRI) resulted in AUC of 1.0. Our study demonstrates that quantitative PET/MRI parameters in combination with DSC pMRI provide the best diagnostic utility in distinguishing RN from TR in treated GBMs. © 2017 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  9. MRI as a Translational Tool for the Study of Neonatal Stroke

    PubMed Central

    Dzietko, Mark; Wendland, Michael; Derugin, Nikita; Ferriero, Donna M.; Vexler, Zinaida S.

    2013-01-01

    More than half of neonatal stroke survivors have long-term sequelae, including seizures and neurological deficits. Although the immature brain has tremendous potential for recovery, mechanisms governing repair are essentially unexplored. We explored whether magnetic resonance imaging (MRI) early or late after transient middle cerebral arterial occlusion in 10-day-old (P10) rats can serve as an intermediate endpoint for long-term studies. Injured animals selected by diffusion-weighted MRI during middle cerebral arterial occlusion were scanned using T2-weighted MRI at P18 and P25 (injury volumes on MRI and histology were compared), or were subjected to contrast-enhanced MRI at P13 to characterize cerebral microcirculatory disturbances and blood-brain barrier leakage. Injury volume did not predict histological outcome at 2 weeks. Major reductions occurred by P18, with no further changes by P25. Cerebral perfusion was significantly reduced in the injured caudate but blood-brain barrier leakage was small. Therefore, conventional T2-weighted MRI performed during a subchronic injury phase predicts long-term histological outcome after experimental neonatal focal stroke. PMID:21670390

  10. Fully automated registration of first-pass myocardial perfusion MRI using independent component analysis.

    PubMed

    Milles, J; van der Geest, R J; Jerosch-Herold, M; Reiber, J H C; Lelieveldt, B P F

    2007-01-01

    This paper presents a novel method for registration of cardiac perfusion MRI. The presented method successfully corrects for breathing motion without any manual interaction using Independent Component Analysis to extract physiologically relevant features together with their time-intensity behavior. A time-varying reference image mimicking intensity changes in the data of interest is computed based on the results of ICA, and used to compute the displacement caused by breathing for each frame. Qualitative and quantitative validation of the method is carried out using 46 clinical quality, short-axis, perfusion MR datasets comprising 100 images each. Validation experiments showed a reduction of the average LV motion from 1.26+/-0.87 to 0.64+/-0.46 pixels. Time-intensity curves are also improved after registration with an average error reduced from 2.65+/-7.89% to 0.87+/-3.88% between registered data and manual gold standard. We conclude that this fully automatic ICA-based method shows an excellent accuracy, robustness and computation speed, adequate for use in a clinical environment.

  11. Dissociative Part-Dependent Resting-State Activity in Dissociative Identity Disorder: A Controlled fMRI Perfusion Study

    PubMed Central

    Schlumpf, Yolanda R.; Reinders, Antje A. T. S.; Nijenhuis, Ellert R. S.; Luechinger, Roger; van Osch, Matthias J. P.; Jäncke, Lutz

    2014-01-01

    Background In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the “Emotional Part” (EP) and the “Apparently Normal Part” (ANP), have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors. Methods Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls. Results Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events. Conclusion DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are

  12. Groupwise registration of cardiac perfusion MRI sequences using normalized mutual information in high dimension

    NASA Astrophysics Data System (ADS)

    Hamrouni, Sameh; Rougon, Nicolas; Pr"teux, Françoise

    2011-03-01

    In perfusion MRI (p-MRI) exams, short-axis (SA) image sequences are captured at multiple slice levels along the long-axis of the heart during the transit of a vascular contrast agent (Gd-DTPA) through the cardiac chambers and muscle. Compensating cardio-thoracic motions is a requirement for enabling computer-aided quantitative assessment of myocardial ischaemia from contrast-enhanced p-MRI sequences. The classical paradigm consists of registering each sequence frame on a reference image using some intensity-based matching criterion. In this paper, we introduce a novel unsupervised method for the spatio-temporal groupwise registration of cardiac p-MRI exams based on normalized mutual information (NMI) between high-dimensional feature distributions. Here, local contrast enhancement curves are used as a dense set of spatio-temporal features, and statistically matched through variational optimization to a target feature distribution derived from a registered reference template. The hard issue of probability density estimation in high-dimensional state spaces is bypassed by using consistent geometric entropy estimators, allowing NMI to be computed directly from feature samples. Specifically, a computationally efficient kth-nearest neighbor (kNN) estimation framework is retained, leading to closed-form expressions for the gradient flow of NMI over finite- and infinite-dimensional motion spaces. This approach is applied to the groupwise alignment of cardiac p-MRI exams using a free-form Deformation (FFD) model for cardio-thoracic motions. Experiments on simulated and natural datasets suggest its accuracy and robustness for registering p-MRI exams comprising more than 30 frames.

  13. Feasibility of ASL spinal bone marrow perfusion imaging with optimized inversion time.

    PubMed

    Xing, Dong; Zha, Yunfei; Yan, Liyong; Wang, Kejun; Gong, Wei; Lin, Hui

    2015-11-01

    To assess the correlation between flow-sensitive alternating inversion recovery (FAIR) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the measurement of spinal bone marrow (SBM) perfusion; in addition, to assess for an optimized inversion time (TI) as well as the reproducibility of SBM FAIR perfusion. The optimized TI of a FAIR SBM perfusion experiment was carried out on 14 volunteers; two adjacent vertebral bodies were selected from each volunteer to measure the change of signal intensity (ΔM) and the signal-to-noise ratio (SNR) of FAIR perfusion MRI with five different TIs. Then, reproducibility of FAIR data from 10 volunteers was assessed by the reposition SBM FAIR experiments. Finally, FAIR and DCE-MRI were performed on 27 subjects. The correlation between the blood flow on FAIR (BFASL ) and perfusion-related parameters on DCE-MRI was evaluated. The maximum value of ΔM and SNR were 36.39 ± 12.53 and 2.38 ± 0.97, respectively; both were obtained when TI was near 1200 msec. There were no significant difference between the two successive measurements of SBM BFASL perfusion (P = 0.879), and the within-subject coefficients of variation (wCV) of the measurements was 3.28%. The BFASL showed a close correlation with K(trans) (P < 0.001) and Kep (P = 0.004), and no correlation with Ve (P = 0.082) was found. 1200 msec was the optimal TI for the SBM ASL perfusion image, which led to the maximum ΔM and a good quality perfusion image. The SBM FAIR perfusion scan protocol has good reproducibility, and as blood flow measurement on FAIR is reliable and closely related with the parameters on DCE-MRI, FAIR is feasible for measuring SBM blood flow. © 2015 Wiley Periodicals, Inc.

  14. SU-F-I-16: Short Breast MRI with High-Resolution T2-Weighted and Dynamic Contrast Enhanced T1-Weighted Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, J; Son, J; Arun, B

    Purpose: To develop and demonstrate a short breast (sb) MRI protocol that acquires both T2-weighted and dynamic contrast-enhanced T1-weighted images in approximately ten minutes. Methods: The sb-MRI protocol consists of two novel pulse sequences. The first is a flexible fast spin-echo triple-echo Dixon (FTED) sequence for high-resolution fat-suppressed T2-weighted imaging, and the second is a 3D fast dual-echo spoiled gradient sequence (FLEX) for volumetric fat-suppressed T1-weighted imaging before and post contrast agent injection. The flexible FTED sequence replaces each single readout during every echo-spacing period of FSE with three fast-switching bipolar readouts to produce three raw images in a singlemore » acquisition. These three raw images are then post-processed using a Dixon algorithm to generate separate water-only and fat-only images. The FLEX sequence acquires two echoes using dual-echo readout after each RF excitation and the corresponding images are post-processed using a similar Dixon algorithm to yield water-only and fat-only images. The sb-MRI protocol was implemented on a 3T MRI scanner and used for patients who had undergone concurrent clinical MRI for breast cancer screening. Results: With the same scan parameters (eg, spatial coverage, field of view, spatial and temporal resolution) as the clinical protocol, the total scan-time of the sb-MRI protocol (including the localizer, bilateral T2-weighted, and dynamic contrast-enhanced T1-weighted images) was 11 minutes. In comparison, the clinical breast MRI protocol took 43 minutes. Uniform fat suppression and high image quality were consistently achieved by sb-MRI. Conclusion: We demonstrated a sb-MRI protocol comprising both T2-weighted and dynamic contrast-enhanced T1-weighted images can be performed in approximately ten minutes. The spatial and temporal resolution of the images easily satisfies the current breast MRI accreditation guidelines by the American College of Radiology. The protocol

  15. Realistic simulated MRI and SPECT databases. Application to SPECT/MRI registration evaluation.

    PubMed

    Aubert-Broche, Berengere; Grova, Christophe; Reilhac, Anthonin; Evans, Alan C; Collins, D Louis

    2006-01-01

    This paper describes the construction of simulated SPECT and MRI databases that account for realistic anatomical and functional variability. The data is used as a gold-standard to evaluate four SPECT/MRI similarity-based registration methods. Simulation realism was accounted for using accurate physical models of data generation and acquisition. MRI and SPECT simulations were generated from three subjects to take into account inter-subject anatomical variability. Functional SPECT data were computed from six functional models of brain perfusion. Previous models of normal perfusion and ictal perfusion observed in Mesial Temporal Lobe Epilepsy (MTLE) were considered to generate functional variability. We studied the impact noise and intensity non-uniformity in MRI simulations and SPECT scatter correction may have on registration accuracy. We quantified the amount of registration error caused by anatomical and functional variability. Registration involving ictal data was less accurate than registration involving normal data. MR intensity nonuniformity was the main factor decreasing registration accuracy. The proposed simulated database is promising to evaluate many functional neuroimaging methods, involving MRI and SPECT data.

  16. Magnetic Resonance Imaging of Ventilation and Perfusion in the Lung

    NASA Technical Reports Server (NTRS)

    Prisk, Gordon Kim (Inventor); Hopkins, Susan Roberta (Inventor); Pereira De Sa, Rui Carlos (Inventor); Theilmann, Rebecca Jean (Inventor); Buxton, Richard Bruce (Inventor); Cronin, Matthew Vincent (Inventor)

    2017-01-01

    Methods, devices, and systems are disclosed for implementing a fully quantitative non-injectable contrast proton MRI technique to measure spatial ventilation-perfusion (VA/Q) matching and spatial distribution of ventilation and perfusion. In one aspect, a method using MRI to characterize ventilation and perfusion in a lung includes acquiring an MR image of the lung having MR data in a voxel and obtaining a breathing frequency parameter, determining a water density value, a specific ventilation value, and a perfusion value in at least one voxel of the MR image based on the MR data and using the water density value to determine an air content value, and determining a ventilation-perfusion ratio value that is the product of the specific ventilation value, the air content value, the inverse of the perfusion value, and the breathing frequency.

  17. Novel Diffusion-Weighted MRI for High-Grade Prostate Cancer Detection

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0346 TITLE: Novel Diffusion-Weighted MRI for High -Grade Prostate Cancer Detection PRINCIPAL INVESTIGATOR: Michael Abern...Unlimited The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of...Diffusion-Weighted MRI for High -Grade Prostate Cancer Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0346 5c. PROGRAM ELEMENT NUMBER 6

  18. SNR and functional sensitivity of BOLD and perfusion-based fMRI using arterial spin labeling with spiral SENSE at 3 T.

    PubMed

    Perthen, Joanna E; Bydder, Mark; Restom, Khaled; Liu, Thomas T

    2008-05-01

    Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) studies using parallel imaging to reduce the readout window have reported a loss in temporal signal-to-noise ratio (SNR) that is less than would be expected given a purely thermal noise model. In this study, the impact of parallel imaging on the noise components and functional sensitivity of both BOLD and perfusion-based fMRI data was investigated. Dual-echo arterial spin labeling data were acquired on five subjects using sensitivity encoding (SENSE), at reduction factors (R) of 1, 2 and 3. Direct recording of cardiac and respiratory activity during data acquisition enabled the retrospective removal of physiological noise. The temporal SNR of the perfusion time series closely followed the thermal noise prediction of a radicalR loss in SNR as the readout window was shortened, with temporal SNR values (relative to the R=1 data) of 0.72 and 0.56 for the R=2 and R=3 data, respectively, after accounting for physiological noise. However, the BOLD temporal SNR decreased more slowly than predicted even after accounting for physiological noise, with relative temporal SNR values of 0.80 and 0.63 for the R=2 and R=3 data, respectively. Spectral analysis revealed that the BOLD trends were dominated by low-frequency fluctuations, which were not dominant in the perfusion data due to signal processing differences. The functional sensitivity, assessed using mean F values over activated regions of interest (ROIs), followed the temporal SNR trends for the BOLD data. However, results for the perfusion data were more dependent on the threshold used for ROI selection, most likely due to the inherently low SNR of functional perfusion data.

  19. Fetal MRI: A Technical Update with Educational Aspirations

    PubMed Central

    Gholipour, Ali; Estroff, Judith A.; Barnewolt, Carol E.; Robertson, Richard L.; Grant, P. Ellen; Gagoski, Borjan; Warfield, Simon K.; Afacan, Onur; Connolly, Susan A.; Neil, Jeffrey J.; Wolfberg, Adam; Mulkern, Robert V.

    2015-01-01

    Fetal magnetic resonance imaging (MRI) examinations have become well-established procedures at many institutions and can serve as useful adjuncts to ultrasound (US) exams when diagnostic doubts remain after US. Due to fetal motion, however, fetal MRI exams are challenging and require the MR scanner to be used in a somewhat different mode than that employed for more routine clinical studies. Herein we review the techniques most commonly used, and those that are available, for fetal MRI with an emphasis on the physics of the techniques and how to deploy them to improve success rates for fetal MRI exams. By far the most common technique employed is single-shot T2-weighted imaging due to its excellent tissue contrast and relative immunity to fetal motion. Despite the significant challenges involved, however, many of the other techniques commonly employed in conventional neuro- and body MRI such as T1 and T2*-weighted imaging, diffusion and perfusion weighted imaging, as well as spectroscopic methods remain of interest for fetal MR applications. An effort to understand the strengths and limitations of these basic methods within the context of fetal MRI is made in order to optimize their use and facilitate implementation of technical improvements for the further development of fetal MR imaging, both in acquisition and post-processing strategies. PMID:26225129

  20. Modified dixon‐based renal dynamic contrast‐enhanced MRI facilitates automated registration and perfusion analysis

    PubMed Central

    Leiner, Tim; Vink, Eva E.; Blankestijn, Peter J.; van den Berg, Cornelis A.T.

    2017-01-01

    Purpose Renal dynamic contrast‐enhanced (DCE) MRI provides information on renal perfusion and filtration. However, clinical implementation is hampered by challenges in postprocessing as a result of misalignment of the kidneys due to respiration. We propose to perform automated image registration using the fat‐only images derived from a modified Dixon reconstruction of a dual‐echo acquisition because these provide consistent contrast over the dynamic series. Methods DCE data of 10 hypertensive patients was used. Dual‐echo images were acquired at 1.5 T with temporal resolution of 3.9 s during contrast agent injection. Dixon fat, water, and in‐phase and opposed‐phase (OP) images were reconstructed. Postprocessing was automated. Registration was performed both to fat images and OP images for comparison. Perfusion and filtration values were extracted from a two‐compartment model fit. Results Automatic registration to fat images performed better than automatic registration to OP images with visible contrast enhancement. Median vertical misalignment of the kidneys was 14 mm prior to registration, compared to 3 mm and 5 mm with registration to fat images and OP images, respectively (P = 0.03). Mean perfusion values and MR‐based glomerular filtration rates (GFR) were 233 ± 64 mL/100 mL/min and 60 ± 36 mL/minute, respectively, based on fat‐registered images. MR‐based GFR correlated with creatinine‐based GFR (P = 0.04) for fat‐registered images. For unregistered and OP‐registered images, this correlation was not significant. Conclusion Absence of contrast changes on Dixon fat images improves registration in renal DCE MRI and enables automated postprocessing, resulting in a more accurate estimation of GFR. Magn Reson Med 80:66–76, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access

  1. Three-dimensional MRI perfusion maps: a step beyond volumetric analysis in mental disorders

    PubMed Central

    Fabene, Paolo F; Farace, Paolo; Brambilla, Paolo; Andreone, Nicola; Cerini, Roberto; Pelizza, Luisa; Versace, Amelia; Rambaldelli, Gianluca; Birbaumer, Niels; Tansella, Michele; Sbarbati, Andrea

    2007-01-01

    A new type of magnetic resonance imaging analysis, based on fusion of three-dimensional reconstructions of time-to-peak parametric maps and high-resolution T1-weighted images, is proposed in order to evaluate the perfusion of selected volumes of interest. Because in recent years a wealth of data have suggested the crucial involvement of vascular alterations in mental diseases, we tested our new method on a restricted sample of schizophrenic patients and matched healthy controls. The perfusion of the whole brain was compared with that of the caudate nucleus by means of intrasubject analysis. As expected, owing to the encephalic vascular pattern, a significantly lower time-to-peak was observed in the caudate nucleus than in the whole brain in all healthy controls, indicating that the suggested method has enough sensitivity to detect subtle perfusion changes even in small volumes of interest. Interestingly, a less uniform pattern was observed in the schizophrenic patients. The latter finding needs to be replicated in an adequate number of subjects. In summary, the three-dimensional analysis method we propose has been shown to be a feasible tool for revealing subtle vascular changes both in normal subjects and in pathological conditions. PMID:17229290

  2. Quantification of in vivo pH-weighted amide proton transfer (APT) MRI in acute ischemic stroke

    NASA Astrophysics Data System (ADS)

    Zhou, Iris Y.; Igarashi, Takahiro; Guo, Yingkun; Sun, Phillip Z.

    2015-03-01

    Amide proton transfer (APT) imaging is a specific form of chemical exchange saturation transfer (CEST) MRI that probes the pH-dependent amide proton exchange.The endogenous APT MRI is sensitive to tissue acidosis, which may complement the commonly used perfusion and diffusion scans for characterizing heterogeneous ischemic tissue damage. Whereas the saturation transfer asymmetry analysis (MTRasym) may reasonably compensate for direct RF saturation, in vivo MTRasym is however, susceptible to an intrinsically asymmetric shift (MTR'asym). Specifically, the reference scan for the endogenous APT MRI is 7 ppm upfield from that of the label scan, and subjects to concomitant RF irradiation effects, including nuclear overhauser effect (NOE)-mediated saturation transfer and semisolid macromolecular magnetization transfer. As such, the commonly used asymmetry analysis could not fully compensate for such slightly asymmetric concomitant RF irradiation effects, and MTRasym has to be delineated in order to properly characterize the pH-weighted APT MRI contrast. Given that there is very little change in relaxation time immediately after ischemia and the concomitant RF irradiation effects only minimally depends on pH, the APT contrast can be obtained as the difference of MTRasym between the normal and ischemic regions. Thereby, the endogenous amide proton concentration and exchange rate can be solved using a dual 2-pool model, and the in vivo MTR'asym can be calculated by subtracting the solved APT contrast from asymmetry analysis (i.e., MTR'asym =MTRasym-APTR). In addition, MTR'asym can be quantified using the classical 2-pool exchange model. In sum, our study delineated the conventional in vivo pH-sensitive MTRasym contrast so that pHspecific contrast can be obtained for imaging ischemic tissue acidosis.

  3. MRI Evaluation and Safety in the Developing Brain

    PubMed Central

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J.; Panigrahy, Ashok

    2015-01-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5T and 3T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, sedation considerations and a discussion of current technologies such as MRI-conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. PMID:25743582

  4. Measurement of the distribution of ventilation-perfusion ratios in the human lung with proton MRI: comparison with the multiple inert-gas elimination technique.

    PubMed

    Sá, Rui Carlos; Henderson, A Cortney; Simonson, Tatum; Arai, Tatsuya J; Wagner, Harrieth; Theilmann, Rebecca J; Wagner, Peter D; Prisk, G Kim; Hopkins, Susan R

    2017-07-01

    We have developed a novel functional proton magnetic resonance imaging (MRI) technique to measure regional ventilation-perfusion (V̇ A /Q̇) ratio in the lung. We conducted a comparison study of this technique in healthy subjects ( n = 7, age = 42 ± 16 yr, Forced expiratory volume in 1 s = 94% predicted), by comparing data measured using MRI to that obtained from the multiple inert gas elimination technique (MIGET). Regional ventilation measured in a sagittal lung slice using Specific Ventilation Imaging was combined with proton density measured using a fast gradient-echo sequence to calculate regional alveolar ventilation, registered with perfusion images acquired using arterial spin labeling, and divided on a voxel-by-voxel basis to obtain regional V̇ A /Q̇ ratio. LogSDV̇ and LogSDQ̇, measures of heterogeneity derived from the standard deviation (log scale) of the ventilation and perfusion vs. V̇ A /Q̇ ratio histograms respectively, were calculated. On a separate day, subjects underwent study with MIGET and LogSDV̇ and LogSDQ̇ were calculated from MIGET data using the 50-compartment model. MIGET LogSDV̇ and LogSDQ̇ were normal in all subjects. LogSDQ̇ was highly correlated between MRI and MIGET (R = 0.89, P = 0.007); the intercept was not significantly different from zero (-0.062, P = 0.65) and the slope did not significantly differ from identity (1.29, P = 0.34). MIGET and MRI measures of LogSDV̇ were well correlated (R = 0.83, P = 0.02); the intercept differed from zero (0.20, P = 0.04) and the slope deviated from the line of identity (0.52, P = 0.01). We conclude that in normal subjects, there is a reasonable agreement between MIGET measures of heterogeneity and those from proton MRI measured in a single slice of lung. NEW & NOTEWORTHY We report a comparison of a new proton MRI technique to measure regional V̇ A /Q̇ ratio against the multiple inert gas elimination technique (MIGET). The study reports good relationships

  5. High Temporospatial Resolution Dynamic Contrast Enhanced (DCE) Wrist MRI with Variable-Density Pseudo-Random CIRcular Cartesian UnderSampling (CIRCUS) Acquisition: Evaluation of Perfusion in Rheumatoid Arthritis Patients

    PubMed Central

    Liu, Jing; Pedoia, Valentina; Heilmeier, Ursula; Ku, Eric; Su, Favian; Khanna, Sameer; Imboden, John; Graf, Jonathan; Link, Thomas; Li, Xiaojuan

    2016-01-01

    This study is to evaluate highly accelerated 3D dynamic contrast-enhanced (DCE) wrist MRI for assessment of perfusion in rheumatoid arthritis (RA) patients. A pseudo-random variable-density undersampling strategy, CIRcular Cartesian UnderSampling (CIRCUS), was combined with k-t SPARSE-SENSE reconstruction to achieve a highly accelerated 3D DCE wrist MRI. Two healthy volunteers and ten RA patients were studied. Two patients were on methotrexate (MTX) only (Group I) and the other eight were treated with a combination therapy of MTX and Anti-Tumour Necrosis Factor (TNF) therapy (Group II). Patients were scanned at baseline and 3-month follow-up. DCE MR images were used to evaluate perfusion in synovitis and bone marrow edema pattern in the RA wrist joints. A series of perfusion parameters were derived and compared with clinical disease activity scores of 28 joints (DAS28). 3D DCE wrist MR images were obtained with a spatial resolution of 0.3×0.3×1.5mm3 and temporal resolution of 5 s (with an acceleration factor of 20). The derived perfusion parameters, most notably, transition time (dT) of synovitis, showed significant negative correlations with DAS28-ESR (r=-0.80, p<0.05) and DAS28-CRP (r=-0.87, p<0.05) at baseline and also correlated significantly with treatment responses evaluated by clinical score changes between baseline and 3-month follow-up (with DAS28-ESR: r=-0.79, p<0.05, and DAS28-CRP: r=-0.82, p<0.05). Highly accelerated 3D DCE wrist MRI with improved temporospatial resolution has been achieved in RA patients and provides accurate assessment of neovascularization and perfusion in RA joints, showing promise as a potential tool for evaluating treatment responses. PMID:26608949

  6. Prognostic value of perfusion-weighted magnetic resonance imaging in acute intracerebral hemorrhage.

    PubMed

    Hu, Xibin; Bai, Xueqin; Zai, Ning; Sun, Xinhai; Zhu, Laimin; Li, Xian

    2016-07-01

    This study intends to investigate the prognostic value of perfusion-weighted magnetic resonance imaging in acute intracerebral hemorrhage. Demographic, clinical and biochemical data between acute intracerebral hemorrhage (AICH) and healthy volunteer groups were assessed in this study, such as rCBV and MTT values. The optimal cutoff values of rCBV and MTT for diagnosing AICH were determined by the ROC curves. Apart from that, we also investigated the association between rCBV/MTT values and cerebral hematoma volumes of AICH patients. The unconditional logistic regression was conducted to determine significant risk factors for AICH. AICH patients have significantly lower rCBV and higher MTT compared to the control group (all P < 0.05). As suggested by the relatively high sensitivity and specificity, both rCBV and MTT values could be utilized for AICH diagnosis. Moreover, rCBV and MTT were significantly associated with the cerebral hematoma volumes of AICH patients (all P < 0.05). Results from unconditional logistic regression analysis revealed that MTT was a significant risk factor for AICH (P < 0.05 and OR > 1), while rCBV is considered as a protective factor (P < 0.05 and OR < 1). Perfusion-weighted magnetic resonance imaging produces a high prognostic value for diagnosing AICH.

  7. Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI.

    PubMed

    Sauwen, N; Acou, M; Van Cauter, S; Sima, D M; Veraart, J; Maes, F; Himmelreich, U; Achten, E; Van Huffel, S

    2016-01-01

    Tumor segmentation is a particularly challenging task in high-grade gliomas (HGGs), as they are among the most heterogeneous tumors in oncology. An accurate delineation of the lesion and its main subcomponents contributes to optimal treatment planning, prognosis and follow-up. Conventional MRI (cMRI) is the imaging modality of choice for manual segmentation, and is also considered in the vast majority of automated segmentation studies. Advanced MRI modalities such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have already shown their added value in tumor tissue characterization, hence there have been recent suggestions of combining different MRI modalities into a multi-parametric MRI (MP-MRI) approach for brain tumor segmentation. In this paper, we compare the performance of several unsupervised classification methods for HGG segmentation based on MP-MRI data including cMRI, DWI, MRSI and PWI. Two independent MP-MRI datasets with a different acquisition protocol were available from different hospitals. We demonstrate that a hierarchical non-negative matrix factorization variant which was previously introduced for MP-MRI tumor segmentation gives the best performance in terms of mean Dice-scores for the pathologic tissue classes on both datasets.

  8. Real Diffusion-Weighted MRI Enabling True Signal Averaging and Increased Diffusion Contrast

    PubMed Central

    Eichner, Cornelius; Cauley, Stephen F; Cohen-Adad, Julien; Möller, Harald E; Turner, Robert; Setsompop, Kawin; Wald, Lawrence L

    2015-01-01

    This project aims to characterize the impact of underlying noise distributions on diffusion-weighted imaging. The noise floor is a well-known problem for traditional magnitude-based diffusion-weighted MRI (dMRI) data, leading to biased diffusion model fits and inaccurate signal averaging. Here, we introduce a total-variation-based algorithm to eliminate shot-to-shot phase variations of complex-valued diffusion data with the intention to extract real-valued dMRI datasets. The obtained real-valued diffusion data are no longer superimposed by a noise floor but instead by a zero-mean Gaussian noise distribution, yielding dMRI data without signal bias. We acquired high-resolution dMRI data with strong diffusion weighting and, thus, low signal-to-noise ratio. Both the extracted real-valued and traditional magnitude data were compared regarding signal averaging, diffusion model fitting and accuracy in resolving crossing fibers. Our results clearly indicate that real-valued diffusion data enables idealized conditions for signal averaging. Furthermore, the proposed method enables unbiased use of widely employed linear least squares estimators for model fitting and demonstrates an increased sensitivity to detect secondary fiber directions with reduced angular error. The use of phase-corrected, real-valued data for dMRI will therefore help to clear the way for more detailed and accurate studies of white matter microstructure and structural connectivity on a fine scale. PMID:26241680

  9. Differentiating radiation necrosis from tumor progression in brain metastases treated with stereotactic radiotherapy: utility of intravoxel incoherent motion perfusion MRI and correlation with histopathology.

    PubMed

    Detsky, Jay S; Keith, Julia; Conklin, John; Symons, Sean; Myrehaug, Sten; Sahgal, Arjun; Heyn, Chinthaka C; Soliman, Hany

    2017-09-01

    Radiation necrosis is a serious potential adverse event of stereotactic radiosurgery that cannot be reliably differentiated from recurrent tumor using conventional imaging techniques. Intravoxel incoherent motion (IVIM) is a magnetic resonance imaging (MRI) based method that uses a diffusion-weighted sequence to estimate quantitative perfusion and diffusion parameters. This study evaluated the IVIM-derived apparent diffusion coefficient (ADC) and perfusion fraction (f), and compared the results to the gold standard histopathological-defined outcomes of radiation necrosis or recurrent tumor. Nine patients with ten lesions were included in this study; all lesions exhibited radiographic progression after stereotactic radiosurgery for brain metastases that subsequently underwent surgical resection due to uncertainty regarding the presence of radiation necrosis versus recurrent tumor. Pre-surgical IVIM was performed to obtain f and ADC values and the results were compared to histopathology. Five lesions exhibited pathological radiation necrosis and five had predominantly recurrent tumor. The IVIM perfusion fraction reliably differentiated tumor recurrence from radiation necrosis (f mean  = 10.1 ± 0.7 vs. 8.3 ± 1.2, p = 0.02; cutoff value of 9.0 yielding a sensitivity/specificity of 100%/80%) while the ADC did not distinguish between the two (ADC mean  = 1.1 ± 0.2 vs. 1.2 ± 0.4, p = 0.6). IVIM shows promise in differentiating recurrent tumor from radiation necrosis for brain metastases treated with radiosurgery, but needs to be validated in a larger cohort.

  10. FAIR exempting separate T (1) measurement (FAIREST): a novel technique for online quantitative perfusion imaging and multi-contrast fMRI.

    PubMed

    Lai, S; Wang, J; Jahng, G H

    2001-01-01

    A new pulse sequence, dubbed FAIR exempting separate T(1) measurement (FAIREST) in which a slice-selective saturation recovery acquisition is added in addition to the standard FAIR (flow-sensitive alternating inversion recovery) scheme, was developed for quantitative perfusion imaging and multi-contrast fMRI. The technique allows for clean separation between and thus simultaneous assessment of BOLD and perfusion effects, whereas quantitative cerebral blood flow (CBF) and tissue T(1) values are monitored online. Online CBF maps were obtained using the FAIREST technique and the measured CBF values were consistent with the off-line CBF maps obtained from using the FAIR technique in combination with a separate sequence for T(1) measurement. Finger tapping activation studies were carried out to demonstrate the applicability of the FAIREST technique in a typical fMRI setting for multi-contrast fMRI. The relative CBF and BOLD changes induced by finger-tapping were 75.1 +/- 18.3 and 1.8 +/- 0.4%, respectively, and the relative oxygen consumption rate change was 2.5 +/- 7.7%. The results from correlation of the T(1) maps with the activation images on a pixel-by-pixel basis show that the mean T(1) value of the CBF activation pixels is close to the T(1) of gray matter while the mean T(1) value of the BOLD activation pixels is close to the T(1) range of blood and cerebrospinal fluid. Copyright 2001 John Wiley & Sons, Ltd.

  11. Acute baclofen diminishes resting baseline blood flow to limbic structures: A perfusion fMRI study

    PubMed Central

    Franklin, Teresa R.; Shin, Joshua; Jagannathan, Kanchana; Suh, Jesse J.; Detre, John A.; O’Brien, Charles P.; Childress, Anna Rose

    2012-01-01

    Background Preclinical and clinical evidence show that the GABA B agonist, baclofen is a promising treatment for addictive disorders; however, until recently its mechanism of action in the human brain was unknown. In previous work we utilized a laboratory model that included a medication versus placebo regimen to examine baclofen’s actions on brain circuitry. Perfusion fMRI [measure of cerebral blood flow (CBF)] data acquired ‘at rest’ before and on the last day of the 21-day medication regimen showed that baclofen diminished CBF bilaterally in the VS, insula and medial orbitofrontal cortex (mOFC). In the present study, we hypothesized that a single dose of baclofen would have effects similar to repeated dosing. Methods To test our hypothesis, in a crossover design, CBF data were acquired using pseudo continuous arterial spin labeled (pCASL) perfusion fMRI. Subjects were either un-medicated or were administered a 20 mg dose of baclofen approximately 110 min prior to scanning. Results Acute baclofen diminished mOFC, amygdala, and ventral anterior insula CBF without causing sedation (family-wise error corrected at p = 0.001). Conclusions Results demonstrate that similar to repeated dosing, an acute dose of baclofen blunts the ‘limbic’ substrate that is hyper-responsive to drugs and drug cues. Smokers often manage their craving and can remain abstinent for extended periods after quitting, however the risk of eventual relapse approaches 90%. Given that chronic medication may not be a practical solution to the long-term risk of relapse, acute baclofen may be useful on an ‘as-needed’ basis to block craving during ‘at risk’ situations. PMID:22513380

  12. Visual Assessment of Brain Perfusion MRI Scans in Dementia: A Pilot Study.

    PubMed

    Fällmar, David; Lilja, Johan; Velickaite, Vilma; Danfors, Torsten; Lubberink, Mark; Ahlgren, André; van Osch, Matthias J P; Kilander, Lena; Larsson, Elna-Marie

    2016-05-01

    Functional imaging is becoming increasingly important for the detection of neurodegenerative disorders. Perfusion MRI with arterial spin labeling (ASL) has been reported to provide promising diagnostic possibilities but is not yet widely used in routine clinical work. The aim of this study was to compare, in a clinical setting, the visual assessment of subtracted ASL CBF maps with and without additional smoothing, to FDG-PET data. Ten patients with a clinical diagnosis of dementia and 11 age-matched cognitively healthy controls were examined with pseudo-continuous ASL (pCASL) and 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET). Three diagnostic physicians visually assessed the pCASL maps after subtraction only, and after postprocessing using Gaussian smoothing and GLM-based beta estimate functions. The assessment scores were compared to FDG PET values. Furthermore, the ability to discriminate patients from healthy elderly controls was assessed. Smoothing improved the correlation between visually assessed regional ASL perfusion scores and the FDG PET SUV-r values from the corresponding regions. However, subtracted pCASL maps discriminated patients from healthy controls better than smoothed maps. Smoothing increased the number of false-positive patient identifications. Application of beta estimate functions had only a marginal effect. Spatial smoothing of ASL images increased false positive results in the discrimination of hypoperfusion conditions from healthy elderly. It also decreased interreader agreement. However, regional characterization and subjective perception of image quality was improved. Copyright © 2015 by the American Society of Neuroimaging.

  13. Accelerated Dual-contrast First-pass Perfusion MRI of the Mouse Heart: Development and Application to Diet-induced Obese Mice

    PubMed Central

    Naresh, Nivedita K.; Chen, Xiao; Roy, Rene J.; Antkowiak, Patrick F.; Annex, Brian H.; Epstein, Frederick H.

    2014-01-01

    Background Gene-modified mice may be used to elucidate molecular mechanisms underlying abnormal myocardial blood flow (MBF). We sought to develop a quantitative myocardial perfusion imaging technique for mice and to test the hypothesis that myocardial perfusion reserve (MPR) is reduced in a mouse model of diet-induced obesity (DIO). Methods A dual-contrast saturation-recovery sequence with ky-t undersampling and a motion-compensated compressed sensing reconstruction algorithm was developed for first-pass MRI on a small-bore 7T system. Control mice were imaged at rest and with the vasodilators ATL313 and Regadenoson (n=6 each). In addition, we imaged mice fed a high-fat diet (HFD) for 24 weeks. Results In control mice, MBF was 5.7±0.8 ml/g/min at rest and it increased to 11.8±0.6 ml/g/min with ATL313 and to 10.4±0.3 ml/g/min with Regadenoson. In HFD mice we detected normal resting MBF (5.6±0.4 vs. 5.0±0.3 on control diet), low MBF at stress (7.7±0.4 vs. 10.4±0.3 on control diet, p<0.05), and reduced MPR (1.4±0.2 vs. 2.0±0.3 on control diet, p<0.05). Conclusions Accelerated dual-contrast first-pass MRI with motion-compensated compressed sensing provides spatiotemporal resolution suitable for measuring MBF in free-breathing mice, and detected reduced MPR in DIO mice. These techniques may be used to study molecular mechanisms that underlie abnormal myocardial perfusion. PMID:24760707

  14. Using Dynamic Contrast Enhanced MRI to Quantitatively Characterize Maternal Vascular Organization in the Primate Placenta

    PubMed Central

    Frias, A.E.; Schabel, M.C.; Roberts, V.H.J.; Tudorica, A.; Grigsby, P.L.; Oh, K.Y.; Kroenke, C. D.

    2015-01-01

    Purpose The maternal microvasculature of the primate placenta is organized into 10-20 perfusion domains that are functionally optimized to facilitate nutrient exchange to support fetal growth. This study describes a dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) method for identifying vascular domains, and quantifying maternal blood flow in them. Methods A rhesus macaque on the 133rd day of pregnancy (G133, term=165 days) underwent Doppler ultrasound (US) procedures, DCE-MRI, and Cesarean-section delivery. Serial T1-weighted images acquired throughout intravenous injection of a contrast reagent (CR) bolus were analyzed to obtain CR arrival time maps of the placenta. Results Watershed segmentation of the arrival time map identified 16 perfusion domains. The number and location of these domains corresponded to anatomical cotyledonary units observed following delivery. Analysis of the CR wave front through each perfusion domain enabled determination of volumetric flow, which ranged from 9.03 to 44.9 mL/sec (25.2 ± 10.3 mL/sec). These estimates are supported by Doppler US results. Conclusions The DCE-MRI analysis described here provides quantitative estimates of the number of maternal perfusion domains in a primate placenta, and estimates flow within each domain. Anticipated extensions of this technique are to the study placental function in nonhuman primate models of obstetric complications. PMID:24753177

  15. Time-resolved 3D pulmonary perfusion MRI: comparison of different k-space acquisition strategies at 1.5 and 3 T.

    PubMed

    Attenberger, Ulrike I; Ingrisch, Michael; Dietrich, Olaf; Herrmann, Karin; Nikolaou, Konstantin; Reiser, Maximilian F; Schönberg, Stefan O; Fink, Christian

    2009-09-01

    Time-resolved pulmonary perfusion MRI requires both high temporal and spatial resolution, which can be achieved by using several nonconventional k-space acquisition techniques. The aim of this study is to compare the image quality of time-resolved 3D pulmonary perfusion MRI with different k-space acquisition techniques in healthy volunteers at 1.5 and 3 T. Ten healthy volunteers underwent contrast-enhanced time-resolved 3D pulmonary MRI on 1.5 and 3 T using the following k-space acquisition techniques: (a) generalized autocalibrating partial parallel acquisition (GRAPPA) with an internal acquisition of reference lines (IRS), (b) GRAPPA with a single "external" acquisition of reference lines (ERS) before the measurement, and (c) a combination of GRAPPA with an internal acquisition of reference lines and view sharing (VS). The spatial resolution was kept constant at both field strengths to exclusively evaluate the influences of the temporal resolution achieved with the different k-space sampling techniques on image quality. The temporal resolutions were 2.11 seconds IRS, 1.31 seconds ERS, and 1.07 VS at 1.5 T and 2.04 seconds IRS, 1.30 seconds ERS, and 1.19 seconds VS at 3 T.Image quality was rated by 2 independent radiologists with regard to signal intensity, perfusion homogeneity, artifacts (eg, wrap around, noise), and visualization of pulmonary vessels using a 3 point scale (1 = nondiagnostic, 2 = moderate, 3 = good). Furthermore, the signal-to-noise ratio in the lungs was assessed. At 1.5 T the lowest image quality (sum score: 154) was observed for the ERS technique and the highest quality for the VS technique (sum score: 201). In contrast, at 3 T images acquired with VS were hampered by strong artifacts and image quality was rated significantly inferior (sum score: 137) compared with IRS (sum score: 180) and ERS (sum score: 174). Comparing 1.5 and 3 T, in particular the overall rating of the IRS technique (sum score: 180) was very similar at both field

  16. Mastication induces long-term increases in blood perfusion of the trigeminal principal nucleus.

    PubMed

    Viggiano, A; Manara, R; Conforti, R; Paccone, A; Secondulfo, C; Lorusso, L; Sbordone, L; Di Salle, F; Monda, M; Tedeschi, G; Esposito, F

    2015-12-17

    Understanding mechanisms for vessel tone regulation within the trigeminal nuclei is of great interest because some headache syndromes are due to dysregulation of such mechanisms. Previous experiments on animal models suggest that mastication may alter neuron metabolism and blood supply in these nuclei. To investigate this hypothesis in humans, arterial spin-labeling magnetic resonance imaging (MRI) was used to measure blood perfusion within the principal trigeminal nucleus (Vp) and in the dorsolateral-midbrain (DM, including the mesencephalic trigeminal nucleus) in healthy volunteers, before and immediately after a mastication exercise consisting of chewing a gum on one side of the mouth for 1 h at 1 bite/s. The side preference for masticating was evaluated with a chewing test and the volume of the masseter muscle was measured on T1-weighted MRI scans. The results demonstrated that the mastication exercise caused a perfusion increase within the Vp, but not in the DM. This change was correlated to the preference score for the side where the exercise took place. Moreover, the basal Vp perfusion was correlated to the masseter volume. These results indicate that the local vascular tone of the trigeminal nuclei can be constitutively altered by the chewing practice and by strong or sustained chewing. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Utilization of MRI for Cerebral White Matter Injury in a Hypobaric Swine Model-Validation of Technique.

    PubMed

    McGuire, Jennifer A; Sherman, Paul M; Dean, Erica; Bernot, Jeremy M; Rowland, Laura M; McGuire, Stephen A; Kochunov, Peter V

    2017-05-01

    Repetitive hypobaric exposure in humans induces subcortical white matter change, observable on magnetic resonance imaging (MRI) and associated with cognitive impairment. Similar findings occur in traumatic brain injury (TBI). We are developing a swine MRI-driven model to understand the pathophysiology and to develop treatment interventions. Five miniature pigs (Sus scrofa domestica) were repetitively exposed to nonhypoxic hypobaria (30,000 feet/FIO 2 100%/transcutaneous PO 2 >90%) while under general anesthesia. Three pigs served as controls. Pre-exposure and postexposure MRIs were obtained that included structural sequences, dynamic contrast perfusion, and diffusion tensor quantification. Statistical comparison of individual subject and group change was performed utilizing a two-tailed t test. No structural imaging change was noted on T2-weighted or three-dimensional fluid-attenuated inversion recovery imaging between MRI 1 and MRI 2. No absolute difference in dynamic contrast perfusion was observed. A trend (p = 0.084) toward increase in interstitial extra-axonal fluid was noted. When individual subjects were examined, this trend toward increased extra-axonal fluid paralleled a decrease in contrast perfusion rate. This study demonstrates high reproducibility of quantitative noninvasive MRI, suggesting MRI is an appropriate assessment tool for TBI and hypobaric-induced injury research in swine. The lack of fluid-attenuated inversion recovery change may be multifactorial and requires further investigation. A trend toward increased extra-axonal water content that negatively correlates with dynamic contrast perfusion implies generalized axonal injury was induced. This study suggests this is a potential model for hypobaric-induced injury as well as potentially other axonal injuries such as TBI in which similar subcortical white matter change occurs. Further development of this model is necessary. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  18. SU-E-I-36: A KWIC and Dirty Look at Dose Savings and Perfusion Metrics in Simulated CT Neuro Perfusion Exams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, J; Martin, T; Young, S

    Purpose: CT neuro perfusion scans are one of the highest dose exams. Methods to reduce dose include decreasing the number of projections acquired per gantry rotation, however conventional reconstruction of such scans leads to sampling artifacts. In this study we investigated a projection view-sharing reconstruction algorithm used in dynamic MRI – “K-space Weighted Image Contrast” (KWIC) – applied to simulated perfusion exams and evaluated dose savings and impacts on perfusion metrics. Methods: A FORBILD head phantom containing simulated time-varying objects was developed and a set of parallel-beam CT projection data was created. The simulated scans were 60 seconds long, 1152more » projections per turn, with a rotation time of one second. No noise was simulated. 5mm, 10mm, and 50mm objects were modeled in the brain. A baseline, “full dose” simulation used all projections and reduced dose cases were simulated by downsampling the number of projections per turn from 1152 to 576 (50% dose), 288 (25% dose), and 144 (12.5% dose). KWIC was further evaluated at 72 projections per rotation (6.25%). One image per second was reconstructed using filtered backprojection (FBP) and KWIC. KWIC reconstructions utilized view cores of 36, 72, 144, and 288 views and 16, 8, 4, and 2 subapertures respectively. From the reconstructed images, time-to-peak (TTP), cerebral blood flow (CBF) and the FWHM of the perfusion curve were calculated and compared against reference values from the full-dose FBP data. Results: TTP, CBF, and the FWHM were unaffected by dose reduction (to 12.5%) and reconstruction method, however image quality was improved when using KWIC. Conclusion: This pilot study suggests that KWIC preserves image quality and perfusion metrics when under-sampling projections and that the unique contrast weighting of KWIC could provided substantial dose-savings for perfusion CT scans. Evaluation of KWIC in clinical CT data will be performed in the near future. R01 EB

  19. Feasibility of quantitative regional ventilation and perfusion mapping with phase-resolved functional lung (PREFUL) MRI in healthy volunteers and COPD, CTEPH, and CF patients.

    PubMed

    Voskrebenzev, Andreas; Gutberlet, Marcel; Klimeš, Filip; Kaireit, Till F; Schönfeld, Christian; Rotärmel, Alexander; Wacker, Frank; Vogel-Claussen, Jens

    2018-04-01

    In this feasibility study, a phase-resolved functional lung imaging postprocessing method for extraction of dynamic perfusion (Q) and ventilation (V) parameters using a conventional 1H lung MRI Fourier decomposition acquisition is introduced. Time series of coronal gradient-echo MR images with a temporal resolution of 288 to 324 ms of two healthy volunteers, one patient with chronic thromboembolic hypertension, one patient with cystic fibrosis, and one patient with chronic obstructive pulmonary disease were acquired at 1.5 T. Using a sine model to estimate cardiac and respiratory phases of each image, all images were sorted to reconstruct full cardiac and respiratory cycles. Time to peak (TTP), V/Q maps, and fractional ventilation flow-volume loops were calculated. For the volunteers, homogenous ventilation and perfusion TTP maps (V-TTP, Q-TTP) were obtained. The chronic thromboembolic hypertension patient showed increased perfusion TTP in hypoperfused regions in visual agreement with dynamic contrast-enhanced MRI, which improved postpulmonary endaterectomy surgery. Cystic fibrosis and chronic obstructive pulmonary disease patients showed a pattern of increased V-TTP and Q-TTP in regions of hypoventilation and decreased perfusion. Fractional ventilation flow-volume loops of the chronic obstructive pulmonary disease patient were smaller in comparison with the healthy volunteer, and showed regional differences in visual agreement with functional small airways disease and emphysema on CT. This study shows the feasibility of phase-resolved functional lung imaging to gain quantitative information regarding regional lung perfusion and ventilation without the need for ultrafast imaging, which will be advantageous for future clinical translation. Magn Reson Med 79:2306-2314, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Multivoxel MR Spectroscopy in Acute Ischemic Stroke:Comparison to the Stroke Protocol MRI

    PubMed Central

    Dani, Krishna A.; An, Li; Henning, Erica C.; Shen, Jun; Warach, Steven

    2014-01-01

    Background and Purpose Few patients with stroke have been imaged with MR spectroscopy (MRS) within the first few hours after onset. We compared data from current MRI protocols to MRS in subjects with ischemic stroke. Methods MRS was incorporated into the standard clinical MRI stroke protocol for subjects <24 hours after onset. MRI and clinical correlates for the metabolic data from MRS were sought. Results One hundred thirty-six MRS voxels from 32 subjects were analyzed. Lactate preceded the appearance of the lesion on diffusion-weighted imaging in some voxels but in others lagged behind it. Current protocols may predict up to 41% of the variance of MRS metabolites. Serum glucose concentration and time to maximum partially predicted the concentration of all major metabolites. Conclusion MRS may be helpful in acute stroke, especially for lactate detection when perfusion-weighted imaging is unavailable. Current MRI protocols do provide surrogate markers for some indices of metabolic activity. PMID:23091121

  1. MRI evaluation and safety in the developing brain.

    PubMed

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J; Panigrahy, Ashok

    2015-03-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences, such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility-weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5-T and 3-T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges, and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, and sedation considerations, and a discussion of current technologies such as MRI conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Accelerated dual-contrast first-pass perfusion MRI of the mouse heart: development and application to diet-induced obese mice.

    PubMed

    Naresh, Nivedita K; Chen, Xiao; Roy, Rene J; Antkowiak, Patrick F; Annex, Brian H; Epstein, Frederick H

    2015-03-01

    Gene-modified mice may be used to elucidate molecular mechanisms underlying abnormal myocardial blow flow (MBF). We sought to develop a quantitative myocardial perfusion imaging technique for mice and to test the hypothesis that myocardial perfusion reserve (MPR) is reduced in a mouse model of diet-induced obesity (DIO). A dual-contrast saturation-recovery sequence with ky -t undersampling and a motion-compensated compressed sensing reconstruction algorithm was developed for first-pass MRI on a small-bore 7 Tesla system. Control mice were imaged at rest and with the vasodilators ATL313 and Regadenoson (n = 6 each). In addition, we imaged mice fed a high-fat diet (HFD) for 24 weeks. In control mice, MBF was 5.7 ± 0.8 mL/g/min at rest and it increased to 11.8 ± 0.6 mL/g/min with ATL313 and to 10.4 ± 0.3 mL/g/min with Regadenoson. In HFD mice, we detected normal resting MBF (5.6 ± 0.4 versus 5.0 ± 0.3 on control diet), low MBF at stress (7.7 ± 0.4 versus 10.4 ± 0.3 on control diet, P < 0.05), and reduced MPR (1.4 ± 0.2 versus 2.0 ± 0.3 on control diet, P < 0.05). Accelerated dual-contrast first-pass MRI with motion-compensated compressed sensing provides spatiotemporal resolution suitable for measuring MBF in free-breathing mice, and detected reduced MPR in DIO mice. These techniques may be used to study molecular mechanisms that underlie abnormal myocardial perfusion. © 2014 Wiley Periodicals, Inc.

  3. Magnetic Particle Imaging for Real-Time Perfusion Imaging in Acute Stroke.

    PubMed

    Ludewig, Peter; Gdaniec, Nadine; Sedlacik, Jan; Forkert, Nils D; Szwargulski, Patryk; Graeser, Matthias; Adam, Gerhard; Kaul, Michael G; Krishnan, Kannan M; Ferguson, R Matthew; Khandhar, Amit P; Walczak, Piotr; Fiehler, Jens; Thomalla, Götz; Gerloff, Christian; Knopp, Tobias; Magnus, Tim

    2017-10-24

    The fast and accurate assessment of cerebral perfusion is fundamental for the diagnosis and successful treatment of stroke patients. Magnetic particle imaging (MPI) is a new radiation-free tomographic imaging method with a superior temporal resolution, compared to other conventional imaging methods. In addition, MPI scanners can be built as prehospital mobile devices, which require less complex infrastructure than computed tomography (CT) and magnetic resonance imaging (MRI). With these advantages, MPI could accelerate the stroke diagnosis and treatment, thereby improving outcomes. Our objective was to investigate the capabilities of MPI to detect perfusion deficits in a murine model of ischemic stroke. Cerebral ischemia was induced by inserting of a microfilament in the internal carotid artery in C57BL/6 mice, thereby blocking the blood flow into the medial cerebral artery. After the injection of a contrast agent (superparamagnetic iron oxide nanoparticles) specifically tailored for MPI, cerebral perfusion and vascular anatomy were assessed by the MPI scanner within seconds. To validate and compare our MPI data, we performed perfusion imaging with a small animal MRI scanner. MPI detected the perfusion deficits in the ischemic brain, which were comparable to those with MRI but in real-time. For the first time, we showed that MPI could be used as a diagnostic tool for relevant diseases in vivo, such as an ischemic stroke. Due to its shorter image acquisition times and increased temporal resolution compared to that of MRI or CT, we expect that MPI offers the potential to improve stroke imaging and treatment.

  4. Comparison of semi-quantitative and quantitative dynamic contrast-enhanced MRI evaluations of vertebral marrow perfusion in a rat osteoporosis model.

    PubMed

    Zhu, Jingqi; Xiong, Zuogang; Zhang, Jiulong; Qiu, Yuyou; Hua, Ting; Tang, Guangyu

    2017-11-14

    This study aims to investigate the technical feasibility of semi-quantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the assessment of longitudinal changes of marrow perfusion in a rat osteoporosis model, using bone mineral density (BMD) measured by micro-computed tomography (micro-CT) and histopathology as the gold standards. Fifty rats were randomly assigned to the control group (n=25) and ovariectomy (OVX) group whose bilateral ovaries were excised (n=25). Semi-quantitative and quantitative DCE-MRI, micro-CT, and histopathological examinations were performed on lumbar vertebrae at baseline and 3, 6, 9, and 12 weeks after operation. The differences between the two groups in terms of semi-quantitative DCE-MRI parameter (maximum enhancement, E max ), quantitative DCE-MRI parameters (volume transfer constant, K trans ; interstitial volume, V e ; and efflux rate constant, K ep ), micro-CT parameter (BMD), and histopathological parameter (microvessel density, MVD) were compared at each of the time points using an independent-sample t test. The differences in these parameters between baseline and other time points in each group were assessed via Bonferroni's multiple comparison test. A Pearson correlation analysis was applied to assess the relationships between DCE-MRI, micro-CT, and histopathological parameters. In the OVX group, the E max values decreased significantly compared with those of the control group at weeks 6 and 9 (p=0.003 and 0.004, respectively). The K trans values decreased significantly compared with those of the control group from week 3 (p<0.05). However, the V e values decreased significantly only at week 9 (p=0.032), and no difference in the K ep was found between two groups. The BMD values of the OVX group decreased significantly compared with those of the control group from week 3 (p<0.05). Transmission electron microscopy showed tighter gaps between vascular endothelial cells with swollen mitochondria

  5. Dynamic contrast-enhanced magnetic resonance imaging: fundamentals and application to the evaluation of the peripheral perfusion

    PubMed Central

    Gordon, Yaron; Partovi, Sasan; Müller-Eschner, Matthias; Amarteifio, Erick; Bäuerle, Tobias; Weber, Marc-André; Kauczor, Hans-Ulrich

    2014-01-01

    Introduction The ability to ascertain information pertaining to peripheral perfusion through the analysis of tissues’ temporal reaction to the inflow of contrast agent (CA) was first recognized in the early 1990’s. Similar to other functional magnetic resonance imaging (MRI) techniques such as arterial spin labeling (ASL) and blood oxygen level-dependent (BOLD) MRI, dynamic contrast-enhanced MRI (DCE-MRI) was at first restricted to studies of the brain. Over the last two decades the spectrum of ailments, which have been studied with DCE-MRI, has been extensively broadened and has come to include pathologies of the heart notably infarction, stroke and further cerebral afflictions, a wide range of neoplasms with an emphasis on antiangiogenic treatment and early detection, as well as investigations of the peripheral vascular and musculoskeletal systems. Applications to peripheral perfusion DCE-MRI possesses an unparalleled capacity to quantitatively measure not only perfusion but also other diverse microvascular parameters such as vessel permeability and fluid volume fractions. More over the method is capable of not only assessing blood flowing through an organ, but in contrast to other noninvasive methods, the actual tissue perfusion. These unique features have recently found growing application in the study of the peripheral vascular system and most notably in the diagnosis and treatment of peripheral arterial occlusive disease (PAOD). Review outline The first part of this review will elucidate the fundamentals of data acquisition and interpretation of DCE-MRI, two areas that often remain baffling to the clinical and investigating physician because of their complexity. The second part will discuss developments and exciting perspectives of DCE-MRI regarding the assessment of perfusion in the extremities. Emerging clinical applications of DCE-MRI will be reviewed with a special focus on investigation of physiology and pathophysiology of the microvascular and

  6. Quantification of myocardial blood flow with dynamic perfusion 3.0 Tesla MRI: Validation with (15) O-water PET.

    PubMed

    Tomiyama, Yuuki; Manabe, Osamu; Oyama-Manabe, Noriko; Naya, Masanao; Sugimori, Hiroyuki; Hirata, Kenji; Mori, Yuki; Tsutsui, Hiroyuki; Kudo, Kohsuke; Tamaki, Nagara; Katoh, Chietsugu

    2015-09-01

    To develop and validate a method for quantifying myocardial blood flow (MBF) using dynamic perfusion magnetic resonance imaging (MBFMRI ) at 3.0 Tesla (T) and compare the findings with those of (15) O-water positron emission tomography (MBFPET ). Twenty healthy male volunteers underwent magnetic resonance imaging (MRI) and (15) O-water positron emission tomography (PET) at rest and during adenosine triphosphate infusion. The single-tissue compartment model was used to estimate the inflow rate constant (K1). We estimated the extraction fraction of Gd-DTPA using K1 and MBF values obtained from (15) O-water PET for the first 10 subjects. For validation, we calculated MBFMRI values for the remaining 10 subjects and compared them with the MBFPET values. In addition, we compared MBFMRI values of 10 patients with coronary artery disease with those of healthy subjects. The mean resting and stress MBFMRI values were 0.76 ± 0.10 and 3.04 ± 0.82 mL/min/g, respectively, and showed excellent correlation with the mean MBFPET values (r = 0.96, P < 0.01). The mean stress MBFMRI value was significantly lower for the patients (1.92 ± 0.37) than for the healthy subjects (P < 0.001). The use of dynamic perfusion MRI at 3T is useful for estimating MBF and can be applied for patients with coronary artery disease. © 2014 Wiley Periodicals, Inc.

  7. Small-bowel MRI in children and young adults with Crohn disease: retrospective head-to-head comparison of contrast-enhanced and diffusion-weighted MRI.

    PubMed

    Neubauer, Henning; Pabst, Thomas; Dick, Anke; Machann, Wolfram; Evangelista, Laura; Wirth, Clemens; Köstler, Herbert; Hahn, Dietbert; Beer, Meinrad

    2013-01-01

    Small-bowel MRI based on contrast-enhanced T1-weighted sequences has been challenged by diffusion-weighted imaging (DWI) for detection of inflammatory bowel lesions and complications in patients with Crohn disease. To evaluate free-breathing DWI, as compared to contrast-enhanced MRI, in children, adolescents and young adults with Crohn disease. This retrospective study included 33 children and young adults with Crohn disease ages 17 ± 3 years (mean ± standard deviation) and 27 matched controls who underwent small-bowel MRI with contrast-enhanced T1-weighted sequences and DWI at 1.5 T. The detectability of Crohn manifestations was determined. Concurrent colonoscopy as reference was available in two-thirds of the children with Crohn disease. DWI and contrast-enhanced MRI correctly identified 32 and 31 patients, respectively. All 22 small-bowel lesions and all Crohn complications were detected. False-positive findings (two on DWI, one on contrast-enhanced MRI), compared to colonoscopy, were a result of large-bowel lumen collapse. Inflammatory wall thickening was comparable on DWI and contrast-enhanced MRI. DWI was superior to contrast-enhanced MRI for detection of lesions in 27% of the assessed bowel segments and equal to contrast-enhanced MRI in 71% of segments. DWI facilitates fast, accurate and comprehensive workup in Crohn disease without the need for intravenous administration of contrast medium. Contrast-enhanced MRI is superior in terms of spatial resolution and multiplanar acquisition.

  8. Arterial spin labelling MRI for detecting pseudocapsule defects and predicting renal capsule invasion in renal cell carcinoma.

    PubMed

    Zhang, H; Wu, Y; Xue, W; Zuo, P; Oesingmann, N; Gan, Q; Huang, Z; Wu, M; Hu, F; Kuang, M; Song, B

    2017-11-01

    To evaluate prospectively the performance of combining morphological and arterial spin labelling (ASL) magnetic resonance imaging (MRI) for detecting pseudocapsule defects in renal cell carcinoma (RCC), and to predict renal capsule invasion confirmed histopathologically. Twenty consecutive patients with suspicious renal tumours underwent MRI. Renal ASL imaging was performed and renal blood flow was measured quantitatively. The diagnostic performance of T2-weighted images alone, and a combination of T2-weighted and ASL images for predicting renal capsule invasion were assessed. Twenty renal lesions were evaluated in 20 patients. All lesions were clear cell RCCs (ccRCCs) confirmed at post-surgical histopathology. Fifteen ccRCCs showed pseudocapsule defects on T2-weighted images, of which 12 cases showed existing blood flow in defect areas on perfusion images. To predict renal capsule invasion, the sensitivity, specificity, positive predictive value, and negative predictive value were 100%, 71.4%, 86.7%, 100%, respectively, for T2-weighted images alone, and 92.3%, 100%, 100%, 87.5%, respectively, for the combination of T2-weighted and ASL images. ASL images can reflect the perfusion of pseudocapsule defects and as such, the combination of T2-weighted and ASL images produces promising diagnostic accuracy for predicting renal capsule invasion. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  9. Quantifying fluctuations of resting state networks using arterial spin labeling perfusion MRI

    PubMed Central

    Varma, Gopal; Scheidegger, Rachel; Alsop, David C

    2015-01-01

    Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to investigate spontaneous low-frequency signal fluctuations across brain resting state networks. However, BOLD only provides relative measures of signal fluctuations. Arterial Spin Labeling (ASL) MRI holds great potential for quantitative measurements of resting state network fluctuations. This study systematically quantified signal fluctuations of the large-scale resting state networks using ASL data from 20 healthy volunteers by separating them from global signal fluctuations and fluctuations caused by residual noise. Global ASL signal fluctuation was 7.59% ± 1.47% relative to the ASL baseline perfusion. Fluctuations of seven detected resting state networks vary from 2.96% ± 0.93% to 6.71% ± 2.35%. Fluctuations of networks and residual noise were 6.05% ± 1.18% and 6.78% ± 1.16% using 4-mm resolution ASL data applied with Gaussian smoothing kernel of 6mm. However, network fluctuations were reduced by 7.77% ± 1.56% while residual noise fluctuation was markedly reduced by 39.75% ± 2.90% when smoothing kernel of 12 mm was applied to the ASL data. Therefore, global and network fluctuations are the dominant structured noise sources in ASL data. Quantitative measurements of resting state networks may enable improved noise reduction and provide insights into the function of healthy and diseased brain. PMID:26661226

  10. Quantifying fluctuations of resting state networks using arterial spin labeling perfusion MRI.

    PubMed

    Dai, Weiying; Varma, Gopal; Scheidegger, Rachel; Alsop, David C

    2016-03-01

    Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to investigate spontaneous low-frequency signal fluctuations across brain resting state networks. However, BOLD only provides relative measures of signal fluctuations. Arterial Spin Labeling (ASL) MRI holds great potential for quantitative measurements of resting state network fluctuations. This study systematically quantified signal fluctuations of the large-scale resting state networks using ASL data from 20 healthy volunteers by separating them from global signal fluctuations and fluctuations caused by residual noise. Global ASL signal fluctuation was 7.59% ± 1.47% relative to the ASL baseline perfusion. Fluctuations of seven detected resting state networks vary from 2.96% ± 0.93% to 6.71% ± 2.35%. Fluctuations of networks and residual noise were 6.05% ± 1.18% and 6.78% ± 1.16% using 4-mm resolution ASL data applied with Gaussian smoothing kernel of 6mm. However, network fluctuations were reduced by 7.77% ± 1.56% while residual noise fluctuation was markedly reduced by 39.75% ± 2.90% when smoothing kernel of 12 mm was applied to the ASL data. Therefore, global and network fluctuations are the dominant structured noise sources in ASL data. Quantitative measurements of resting state networks may enable improved noise reduction and provide insights into the function of healthy and diseased brain. © The Author(s) 2015.

  11. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao Yue, E-mail: yuecao@umich.edu; Department of Radiology, University of Michigan, Ann Arbor, Michigan; Wang Hesheng

    2013-01-01

    Purpose: To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials: Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation betweenmore » mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results: There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions: This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver

  12. Role of diffusion-weighted MRI in differentiation of hepatic abscesses from non-infected fluid collections.

    PubMed

    Schmid-Tannwald, C; Schmid-Tannwald, C M; Morelli, J N; Neumann, R; Reiser, M F; Nikolaou, K; Rist, C

    2014-07-01

    To evaluate the role of diffusion-weighted magnetic resonance imaging (DW-MRI) in the differentiation of hepatic abscesses from non-infected fluid collections. In this retrospective study, 22 hepatic abscesses and 27 non-infected hepatic fluid collections were examined in 27 patients who underwent abdominal MRI including DW-MRI. Two independent observers reviewed T2-weighted + DW-MRI and T2-weighted + contrast-enhanced T1-weighted (CET1W) images in two sessions. Detection rates and confidence levels were calculated and compared using McNemar's and Wilcoxon's signed rank tests, respectively. Apparent diffusion coefficient (ADC) values of abscesses and non-infected fluid collections were compared using the t-test. Receiver operating characteristic (ROC) curves were constructed. There was no statistically significant difference in the accuracy of detecting abscesses using T2-weighted + DW-MRI (both observers: 21/22, 95.5%) versus T2-weighted + CET1W images (observer 1: 21/22, 95.5%; observer 2: 22/22, 100%; p < 0.01). Mean ADC values were significantly lower with abscesses versus non-infected fluid collections (0.83 ± 0.24 versus 2.25 ± 0.61 × 10(-3) mm(2)/s; p < 0.001). With ROC analysis there was good discrimination of abscess from non-infected fluid collections at a threshold ADC value of 1.36 × 10(-3) mm(2)/s. DW-MRI allows qualitative and quantitative differentiation of abscesses from non-infected fluid collections in the liver. Copyright © 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  13. Robust dynamic myocardial perfusion CT deconvolution using adaptive-weighted tensor total variation regularization

    NASA Astrophysics Data System (ADS)

    Gong, Changfei; Zeng, Dong; Bian, Zhaoying; Huang, Jing; Zhang, Xinyu; Zhang, Hua; Lu, Lijun; Feng, Qianjin; Liang, Zhengrong; Ma, Jianhua

    2016-03-01

    Dynamic myocardial perfusion computed tomography (MPCT) is a promising technique for diagnosis and risk stratification of coronary artery disease by assessing the myocardial perfusion hemodynamic maps (MPHM). Meanwhile, the repeated scanning of the same region results in a relatively large radiation dose to patients potentially. In this work, we present a robust MPCT deconvolution algorithm with adaptive-weighted tensor total variation regularization to estimate residue function accurately under the low-dose context, which is termed `MPD-AwTTV'. More specifically, the AwTTV regularization takes into account the anisotropic edge property of the MPCT images compared with the conventional total variation (TV) regularization, which can mitigate the drawbacks of TV regularization. Subsequently, an effective iterative algorithm was adopted to minimize the associative objective function. Experimental results on a modified XCAT phantom demonstrated that the present MPD-AwTTV algorithm outperforms and is superior to other existing deconvolution algorithms in terms of noise-induced artifacts suppression, edge details preservation and accurate MPHM estimation.

  14. MO-G-18C-05: Real-Time Prediction in Free-Breathing Perfusion MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, H; Liu, W; Ruan, D

    Purpose: The aim is to minimize frame-wise difference errors caused by respiratory motion and eliminate the need for breath-holds in magnetic resonance imaging (MRI) sequences with long acquisitions and repeat times (TRs). The technique is being applied to perfusion MRI using arterial spin labeling (ASL). Methods: Respiratory motion prediction (RMP) using navigator echoes was implemented in ASL. A least-square method was used to extract the respiratory motion information from the 1D navigator. A generalized artificial neutral network (ANN) with three layers was developed to simultaneously predict 10 time points forward in time and correct for respiratory motion during MRI acquisition.more » During the training phase, the parameters of the ANN were optimized to minimize the aggregated prediction error based on acquired navigator data. During realtime prediction, the trained ANN was applied to the most recent estimated displacement trajectory to determine in real-time the amount of spatial Results: The respiratory motion information extracted from the least-square method can accurately represent the navigator profiles, with a normalized chi-square value of 0.037±0.015 across the training phase. During the 60-second training phase, the ANN successfully learned the respiratory motion pattern from the navigator training data. During real-time prediction, the ANN received displacement estimates and predicted the motion in the continuum of a 1.0 s prediction window. The ANN prediction was able to provide corrections for different respiratory states (i.e., inhalation/exhalation) during real-time scanning with a mean absolute error of < 1.8 mm. Conclusion: A new technique enabling free-breathing acquisition during MRI is being developed. A generalized ANN development has demonstrated its efficacy in predicting a continuum of motion profile for volumetric imaging based on navigator inputs. Future work will enhance the robustness of ANN and verify its effectiveness with

  15. Imaging lung perfusion

    PubMed Central

    Wielpütz, Mark O.; Kauczor, Hans-Ulrich

    2012-01-01

    From the first measurements of the distribution of pulmonary blood flow using radioactive tracers by West and colleagues (J Clin Invest 40: 1–12, 1961) allowing gravitational differences in pulmonary blood flow to be described, the imaging of pulmonary blood flow has made considerable progress. The researcher employing modern imaging techniques now has the choice of several techniques, including magnetic resonance imaging (MRI), computerized tomography (CT), positron emission tomography (PET), and single photon emission computed tomography (SPECT). These techniques differ in several important ways: the resolution of the measurement, the type of contrast or tag used to image flow, and the amount of ionizing radiation associated with each measurement. In addition, the techniques vary in what is actually measured, whether it is capillary perfusion such as with PET and SPECT, or larger vessel information in addition to capillary perfusion such as with MRI and CT. Combined, these issues affect quantification and interpretation of data as well as the type of experiments possible using different techniques. The goal of this review is to give an overview of the techniques most commonly in use for physiological experiments along with the issues unique to each technique. PMID:22604884

  16. Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis.

    PubMed

    Server, Andrés; Orheim, Tone E Døli; Graff, Bjørn A; Josefsen, Roger; Kumar, Theresa; Nakstad, Per H

    2011-05-01

    Conventional magnetic resonance (MR) imaging has limited capacity to differentiate between glioblastoma multiforme (GBM) and metastasis. The purposes of this study were: (1) to compare microvascular leakage (MVL), cerebral blood volume (CBV), and blood flow (CBF) in the distinction of metastasis from GBM using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC-MRI), and (2) to estimate the diagnostic accuracy of perfusion and permeability MR imaging. A prospective study of 61 patients (40 GBMs and 21 metastases) was performed at 3 T using DSC-MRI. Normalized rCBV and rCBF from tumoral (rCBVt, rCBFt), peri-enhancing region (rCBVe, rCBFe), and by dividing the value in the tumor by the value in the peri-enhancing region (rCBVt/e, rCBFt/e), as well as MVL were calculated. Hemodynamic and histopathologic variables were analyzed statistically and Spearman/Pearson correlations. Receiver operating characteristic curve analysis was performed for each of the variables. The rCBVe, rCBFe, and MVL were significantly greater in GBMs compared with those of metastases. The optimal cutoff value for differentiating GBM from metastasis was 0.80 which implies a sensitivity of 95%, a specificity of 92%, a positive predictive value of 86%, and a negative predictive value of 97% for rCBVe ratio. We found a modest correlation between rCBVt and rCBFt ratios. MVL measurements in GBMs are significantly higher than those in metastases. Statistically, both rCBVe, rCBVt/e and rCBFe, rCBFt/e were useful in differentiating between GBMs and metastases, supporting the hypothesis that perfusion MR imaging can detect infiltration of tumor cells in the peri-enhancing region.

  17. Classification of human coronary atherosclerotic plaques using ex vivo high-resolution multicontrast-weighted MRI compared with histopathology.

    PubMed

    Li, Tao; Li, Xin; Zhao, Xihai; Zhou, Weihua; Cai, Zulong; Yang, Li; Guo, Aitao; Zhao, Shaohong

    2012-05-01

    The objective of our study was to evaluate the feasibility of ex vivo high-resolution multicontrast-weighted MRI to accurately classify human coronary atherosclerotic plaques according to the American Heart Association classification. Thirteen human cadaver heart specimens were imaged using high-resolution multicontrast-weighted MR technique (T1-weighted, proton density-weighted, and T2-weighted). All MR images were matched with histopathologic sections according to the landmark of the bifurcation of the left main coronary artery. The sensitivity and specificity of MRI for the classification of plaques were determined, and Cohen's kappa analysis was applied to evaluate the agreement between MRI and histopathology in the classification of atherosclerotic plaques. One hundred eleven MR cross-sectional images obtained perpendicular to the long axis of the proximal left anterior descending artery were successfully matched with the histopathologic sections. For the classification of plaques, the sensitivity and specificity of MRI were as follows: type I-II (near normal), 60% and 100%; type III (focal lipid pool), 80% and 100%; type IV-V (lipid, necrosis, fibrosis), 96.2% and 88.2%; type VI (hemorrhage), 100% and 99.0%; type VII (calcification), 93% and 100%; and type VIII (fibrosis without lipid core), 100% and 99.1%, respectively. Isointensity, which indicates lipid composition on histopathology, was detected on MRI in 48.8% of calcified plaques. Agreement between MRI and histopathology for plaque classification was 0.86 (p < 0.001). Ex vivo high-resolution multicontrast-weighted MRI can accurately classify advanced atherosclerotic plaques in human coronary arteries.

  18. Changes in hepatic perfusion assessed by dynamic contrast enhanced MRI, associated with morphologic evaluation, in patients with liver metastases from colorectal cancer treated with first-line chemotherapy.

    PubMed

    Tampellini, Marco; Gned, Dario; Baratelli, Chiara; Brizzi, Maria Pia; Ottone, Azzurra; Alabiso, Irene; Bertaggia, Chiara; Di Maio, Massimo; Scagliotti, Giorgio Vittorio; Veltri, Andrea

    2016-12-01

    Blood perfusion of liver metastases can be non-invasively assessed by dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). The aim of this study was to explore whether the ratio of hepatic arterial to total liver blood flow (Hepatic Perfusion Index-HPI) and the area under the enhancement curve (AUC) of selected liver areas in patients with hepatic metastases from colorectal cancer treated with first-line chemotherapy could predict response and/or be a prognostic variable. Sequential liver DCE-MRI studies with morphological imaging reconstruction were performed in 43 consecutive patients at baseline and every 3 months during oxaliplatin-based first-line chemotherapy. Data about HPI of the whole liver, and AUC of metastatic and healthy areas were calculated at each time-point and compared both at baseline and sequentially during the treatment. Baseline HPI and AUC values did not discriminate patients responsive to chemotherapy, nor those with better survival outcomes. HPI and AUC values at 3 months decreased significantly more in responders than non-responders. AUCs calculated from areas of the liver with or without neoplastic lesions varied consistently, being increased in progressing patients and decreased in responding patients. Our results did not support the hypothesis of a predictive or prognostic role of HPI and AUCs calculated by DCE-MRI in liver metastatic CRC patients, thus the primary endpoint of the study was not reached. However, reduced arterial blood flow in metastatic liver can be obtained by chemotherapy alone, without any anti-angiogenic agent; interestingly, HPI and AUC data suggest a possible relationship between tumor metabolism and entire liver perfusion.

  19. Respiratory motion prediction and prospective correction for free-breathing arterial spin-labeled perfusion MRI of the kidneys.

    PubMed

    Song, Hao; Ruan, Dan; Liu, Wenyang; Stenger, V Andrew; Pohmann, Rolf; Fernández-Seara, Maria A; Nair, Tejas; Jung, Sungkyu; Luo, Jingqin; Motai, Yuichi; Ma, Jingfei; Hazle, John D; Gach, H Michael

    2017-03-01

    Respiratory motion prediction using an artificial neural network (ANN) was integrated with pseudocontinuous arterial spin labeling (pCASL) MRI to allow free-breathing perfusion measurements in the kidney. In this study, we evaluated the performance of the ANN to accurately predict the location of the kidneys during image acquisition. A pencil-beam navigator was integrated with a pCASL sequence to measure lung/diaphragm motion during ANN training and the pCASL transit delay. The ANN algorithm ran concurrently in the background to predict organ location during the 0.7-s 15-slice acquisition based on the navigator data. The predictions were supplied to the pulse sequence to prospectively adjust the axial slice acquisition to match the predicted organ location. Additional navigators were acquired immediately after the multislice acquisition to assess the performance and accuracy of the ANN. The technique was tested in eight healthy volunteers. The root-mean-square error (RMSE) and mean absolute error (MAE) for the eight volunteers were 1.91 ± 0.17 mm and 1.43 ± 0.17 mm, respectively, for the ANN. The RMSE increased with transit delay. The MAE typically increased from the first to last prediction in the image acquisition. The overshoot was 23.58% ± 3.05% using the target prediction accuracy of ± 1 mm. Respiratory motion prediction with prospective motion correction was successfully demonstrated for free-breathing perfusion MRI of the kidney. The method serves as an alternative to multiple breathholds and requires minimal effort from the patient. © 2017 American Association of Physicists in Medicine.

  20. MRI Sequences in Head & Neck Radiology - State of the Art.

    PubMed

    Widmann, Gerlig; Henninger, Benjamin; Kremser, Christian; Jaschke, Werner

    2017-05-01

    Background  Magnetic resonance imaging (MRI) has become an essential imaging modality for the evaluation of head & neck pathologies. However, the diagnostic power of MRI is strongly related to the appropriate selection and interpretation of imaging protocols and sequences. The aim of this article is to review state-of-the-art sequences for the clinical routine in head & neck MRI and to describe the evidence for which medical question these sequences and techniques are useful. Method  Literature review of state-of-the-art sequences in head & neck MRI. Results and Conclusion  Basic sequences (T1w, T2w, T1wC+) and fat suppression techniques (TIRM/STIR, Dixon, Spectral Fat sat) are important tools in the diagnostic workup of inflammation, congenital lesions and tumors including staging. Additional sequences (SSFP (CISS, FIESTA), SPACE, VISTA, 3D-FLAIR) are used for pathologies of the cranial nerves, labyrinth and evaluation of endolymphatic hydrops in Menière's disease. Vessel and perfusion sequences (3D-TOF, TWIST/TRICKS angiography, DCE) are used in vascular contact syndromes, vascular malformations and analysis of microvascular parameters of tissue perfusion. Diffusion-weighted imaging (EPI-DWI, non-EPI-DWI, RESOLVE) is helpful in cholesteatoma imaging, estimation of malignancy, and evaluation of treatment response and posttreatment recurrence in head & neck cancer. Understanding of MRI sequences and close collaboration with referring physicians improves the diagnostic confidence of MRI in the daily routine and drives further research in this fascinating image modality. Key Points:   · Understanding of MRI sequences is essential for the correct and reliable interpretation of MRI findings.. · MRI protocols have to be carefully selected based on relevant clinical information.. · Close collaboration with referring physicians improves the output obtained from the diagnostic possibilities of MRI.. Citation Format · Widmann G, Henninger B, Kremser C et

  1. Comparison of quantitative regional ventilation-weighted fourier decomposition MRI with dynamic fluorinated gas washout MRI and lung function testing in COPD patients.

    PubMed

    Kaireit, Till F; Gutberlet, Marcel; Voskrebenzev, Andreas; Freise, Julia; Welte, Tobias; Hohlfeld, Jens M; Wacker, Frank; Vogel-Claussen, Jens

    2018-06-01

    Ventilation-weighted Fourier decomposition-MRI (FD-MRI) has matured as a reliable technique for quantitative measures of regional lung ventilation in recent years, but has yet not been validated in COPD patients. To compare regional fractional lung ventilation obtained by ventilation-weighted FD-MRI with dynamic fluorinated gas washout MRI ( 19 F-MRI) and lung function test parameters. Prospective study. Twenty-seven patients with chronic obstructive pulmonary disease (COPD, median age 61 [54-67] years) were included. For FD-MRI and for 19 F-MRI a spoiled gradient echo sequence was used at 1.5T. FD-MRI coronal slices were acquired in free breathing. Dynamic 19 F-MRI was performed after inhalation of 25-30 L of a mixture of 79% fluorinated gas (C 3 F 8 ) and 21% oxygen via a closed face mask tubing using a dedicated coil tuned to 59.9 MHz. 19 F washout times in numbers of breaths ( 19 F-n breaths ) as well as fractional ventilation maps for both methods (FD-FV, 19 F-FV) were calculated. Slices were matched using a landmark driven algorithm, and only corresponding slices with an overlap of >90% were coregistered for evaluation. The obtained parameters were correlated with each other using Spearman's correlation coefficient (r). FD-FV strongly correlated with 19 F-n breaths on a global (r = -0.72, P < 0.0001) as well as on a lobar level and with lung function test parameters (FD-FV vs. FEV1, r = 0.76, P < 0.0001). There was a small systematic overestimation of FD-FV compared to 19 F-FV (mean difference -0.03 (95% confidence interval [CI]: -0.097; -0.045). Regional ventilation-weighted Fourier decomposition-MRI is a promising noninvasive, radiation-free tool for quantification of regional ventilation in COPD patients. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1534-1541. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Added value of diffusion-weighted MRI in detection of cervical cancer recurrence: comparison with morphologic and dynamic contrast-enhanced MRI sequences.

    PubMed

    Lucas, Rita; Lopes Dias, João; Cunha, Teresa Margarida

    2015-01-01

    We aimed to evaluate the added value of diffusion-weighted imaging (DWI) to standard magnetic resonance imaging (MRI) for detecting post-treatment cervical cancer recurrence. The detection accuracy of T2-weighted (T2W) images was compared with that of T2W MRI combined with either dynamic contrast-enhanced (DCE) MRI or DWI. Thirty-eight women with clinically suspected uterine cervical cancer recurrence more than six months after treatment completion were examined with 1.5 Tesla MRI including T2W, DCE, and DWI sequences. Disease was confirmed histologically and correlated with MRI findings. The diagnostic performance of T2W imaging and its combination with either DCE or DWI were analyzed. Sensitivity, positive predictive value, and accuracy were calculated. Thirty-six women had histologically proven recurrence. The accuracy for recurrence detection was 80% with T2W/DCE MRI and 92.1% with T2W/DWI. The addition of DCE sequences did not significantly improve the diagnostic ability of T2W imaging, and this sequence combination misclassified two patients as falsely positive and seven as falsely negative. The T2W/DWI combination revealed a positive predictive value of 100% and only three false negatives. The addition of DWI to T2W sequences considerably improved the diagnostic ability of MRI. Our results support the inclusion of DWI in the initial MRI protocol for the detection of cervical cancer recurrence, leaving DCE sequences as an option for uncertain cases.

  3. Gd-doped BNNTs as T2-weighted MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Ciofani, Gianni; Boni, Adriano; Calucci, Lucia; Forte, Claudia; Gozzi, Alessandro; Mazzolai, Barbara; Mattoli, Virgilio

    2013-08-01

    This work describes, for the first time, doping of boron nitride nanotubes (BNNTs) with gadolinium (Gd@BNNTs), a stable functionalization that permits non-invasive BNNT tracking via magnetic resonance imaging (MRI). We report the structure, Gd loading, and relaxometric properties in water suspension at 7 T of Gd@BNNTs, and show the behaviour of these nanostructures as promising T2-weighted contrast agents. Finally, we demonstrate their complete biocompatibility in vitro on human neuroblastoma cells, together with their ability to effectively label and affect contrast in MRI images at 7 T.

  4. Quantification of myocardial perfusion based on signal intensity of flow sensitized MRI

    NASA Astrophysics Data System (ADS)

    Abeykoon, Sumeda B.

    The quantitative assessment of perfusion is important for early recognition of a variety of heart diseases, determination of disease severity and their cure. In conventional approach of measuring cardiac perfusion by arterial spin labeling, the relative difference in the apparent T1 relaxation times in response to selective and non-selective inversion of blood entering the region of interest is related to perfusion via a two-compartment tissue model. But accurate determination of T1 in small animal hearts is difficult and prone to errors due to long scan times. The purpose of this study is to develop a fast, robust and simple method to quantitatively assess myocardial perfusion using arterial spin labeling. The proposed method is based on signal intensities (SI) of inversion recovery slice-select, non-select and steady-state images. Especially in this method data are acquired at a single inversion time and at short repetition times. This study began by investigating the accuracy of assessment of perfusion using a two compartment system. First, determination of perfusion by T1 and SI were implemented to a simple, two-compartment phantom model. Mathematical model developed for full spin exchange models (in-vivo experiments) by solving a modified Bloch equation was modified to develop mathematical models (T1 and SI) for a phantom (zero spin exchange). The phantom result at different flow rates shows remarkable evidence of accuracy of the two-compartment model and SI, T1 methods: the SI method has less propagation error and less scan time. Next, twelve healthy C57BL/6 mice were scanned for quantitative perfusion assessment and three of them were repeatedly scanned at three different time points for a reproducibility test. The myocardial perfusion of healthy mice obtained by the SI-method, 5.7+/-1.6 ml/g/min, was similar (p=0.38) to that obtained by the conventional T1 method, 5.6+/- 2.3 ml/g/min. The reproducibility of the SI method shows acceptable results: the

  5. Differentiation of brain infection from necrotic glioblastoma using combined analysis of diffusion and perfusion MRI.

    PubMed

    Chawla, Sanjeev; Wang, Sumei; Mohan, Suyash; Nasrallah, MacLean; Verma, Gaurav; Brem, Steven; O'Rourke, Donald M; Wolf, Ronald L; Poptani, Harish; Nabavizadeh, S Ali

    2018-04-20

    Accurate differentiation of brain infections from necrotic glioblastomas (GBMs) may not always be possible on morphologic MRI or on diffusion tensor imaging (DTI) and dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) if these techniques are used independently. To investigate the combined analysis of DTI and DSC-PWI in distinguishing brain injections from necrotic GBMs. Retrospective. Fourteen patients with brain infections and 21 patients with necrotic GBMs. 3T MRI, DTI, and DSC-PWI. Parametric maps of mean diffusivity (MD), fractional anisotropy (FA), coefficient of linear (CL), and planar anisotropy (CP) and leakage corrected cerebral blood volume (CBV) were computed and coregistered with postcontrast T 1 -weighted and FLAIR images. All lesions were segmented into the central core and enhancing region. For each region, median values of MD, FA, CL, CP, relative CBV (rCBV), and top 90 th percentile of rCBV (rCBV max ) were measured. All parameters from both regions were compared between brain infections and necrotic GBMs using Mann-Whitney tests. Logistic regression analyses were performed to obtain the best model in distinguishing these two conditions. From the central core, significantly lower MD (0.90 × 10 -3  ± 0.44 × 10 -3 mm 2 /s vs. 1.66 × 10 -3  ± 0.62 × 10 -3 mm 2 /s, P = 0.001), significantly higher FA (0.15 ± 0.06 vs. 0.09 ± 0.03, P < 0.001), and CP (0.07 ± 0.03 vs. 0.04 ± 0.02, P = 0.009) were observed in brain infections compared to those in necrotic GBMs. Additionally, from the contrast-enhancing region, significantly lower rCBV (1.91 ± 0.95 vs. 2.76 ± 1.24, P = 0.031) and rCBV max (3.46 ± 1.41 vs. 5.89 ± 2.06, P = 0.001) were observed from infective lesions compared to necrotic GBMs. FA from the central core and rCBV max from enhancing region provided the best classification model in distinguishing brain infections from necrotic GBMs, with a sensitivity of 91

  6. Theoretical considerations in measurement of time discrepancies between input and myocardial time-signal intensity curves in estimates of regional myocardial perfusion with first-pass contrast-enhanced MRI.

    PubMed

    Natsume, Takahiro; Ishida, Masaki; Kitagawa, Kakuya; Nagata, Motonori; Sakuma, Hajime; Ichihara, Takashi

    2015-11-01

    The purpose of this study was to develop a method to determine time discrepancies between input and myocardial time-signal intensity (TSI) curves for accurate estimation of myocardial perfusion with first-pass contrast-enhanced MRI. Estimation of myocardial perfusion with contrast-enhanced MRI using kinetic models requires faithful recording of contrast content in the blood and myocardium. Typically, the arterial input function (AIF) is obtained by setting a region of interest in the left ventricular cavity. However, there is a small delay between the AIF and the myocardial curves, and such time discrepancies can lead to errors in flow estimation using Patlak plot analysis. In this study, the time discrepancies between the arterial TSI curve and the myocardial tissue TSI curve were estimated based on the compartment model. In the early phase after the arrival of the contrast agent in the myocardium, the relationship between rate constant K1 and the concentrations of Gd-DTPA contrast agent in the myocardium and arterial blood (LV blood) can be described by the equation K1={dCmyo(tpeak)/dt}/Ca(tpeak), where Cmyo(t) and Ca(t) are the relative concentrations of Gd-DTPA contrast agent in the myocardium and in the LV blood, respectively, and tpeak is the time corresponding to the peak of Ca(t). In the ideal case, the time corresponding to the maximum upslope of Cmyo(t), tmax, is equal to tpeak. In practice, however, there is a small difference in the arrival times of the contrast agent into the LV and into the myocardium. This difference was estimated to correspond to the difference between tpeak and tmax. The magnitudes of such time discrepancies and the effectiveness of the correction for these time discrepancies were measured in 18 subjects who underwent myocardial perfusion MRI under rest and stress conditions. The effects of the time discrepancies could be corrected effectively in the myocardial perfusion estimates. Copyright © 2015 Elsevier Inc. All rights

  7. Is there more valuable information in PWI datasets for a voxel-wise acute ischemic stroke tissue outcome prediction than what is represented by typical perfusion maps?

    NASA Astrophysics Data System (ADS)

    Forkert, Nils Daniel; Siemonsen, Susanne; Dalski, Michael; Verleger, Tobias; Kemmling, Andre; Fiehler, Jens

    2014-03-01

    The acute ischemic stroke is a leading cause for death and disability in the industry nations. In case of a present acute ischemic stroke, the prediction of the future tissue outcome is of high interest for the clinicians as it can be used to support therapy decision making. Within this context, it has already been shown that the voxel-wise multi-parametric tissue outcome prediction leads to more promising results compared to single channel perfusion map thresholding. Most previously published multi-parametric predictions employ information from perfusion maps derived from perfusion-weighted MRI together with other image sequences such as diffusion-weighted MRI. However, it remains unclear if the typically calculated perfusion maps used for this purpose really include all valuable information from the PWI dataset for an optimal tissue outcome prediction. To investigate this problem in more detail, two different methods to predict tissue outcome using a k-nearest-neighbor approach were developed in this work and evaluated based on 18 datasets of acute stroke patients with known tissue outcome. The first method integrates apparent diffusion coefficient and perfusion parameter (Tmax, MTT, CBV, CBF) information for the voxel-wise prediction, while the second method employs also apparent diffusion coefficient information but the complete perfusion information in terms of the voxel-wise residue functions instead of the perfusion parameter maps for the voxel-wise prediction. Overall, the comparison of the results of the two prediction methods for the 18 patients using a leave-one-out cross validation revealed no considerable differences. Quantitatively, the parameter-based prediction of tissue outcome led to a mean Dice coefficient of 0.474, while the prediction using the residue functions led to a mean Dice coefficient of 0.461. Thus, it may be concluded from the results of this study that the perfusion parameter maps typically derived from PWI datasets include all

  8. Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle

    PubMed Central

    Hindel, Stefan; Sauerbrey, Anika; Maaß, Marc; Maderwald, Stefan; Schlamann, Marc; Lüdemann, Lutz

    2015-01-01

    The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultrasonic Doppler probe was attached to the right femoral artery to determine total flow in the hind leg musculature. The femoral artery was catheterized for continuous local administration of adenosine to increase blood flow up to four times the baseline level. Three different stable perfusion levels were induced. The MR protocol included a 3D gradient-echo sequence with a temporal resolution of approximately 1.5 seconds. Before each dynamic sequence, static MR images were acquired with flip angles of 5°, 10°, 20°, and 30°. Both static and dynamic images were used to generate relaxation rate and baseline magnetization maps with a flip angle method. 0.1 mL/kg body weight of blood pool contrast medium was injected via a central venous catheter at a flow rate of 5 mL/s. The right hind leg was segmented in 3D into medial, cranial, lateral, and pelvic thigh muscles, lower leg, bones, skin, and fat. The arterial input function (AIF) was measured in the aorta. Perfusion of the different anatomic regions was calculated using a one- and a two-compartment model with delay- and dispersion-corrected AIFs. The F-test for model comparison was used to decide whether to use the results of the one- or two-compartment model fit. Total flow was calculated by integrating volume-weighted perfusion values over the whole measured region. The resulting values of delay, dispersion, blood volume, mean transit time, and flow were all in physiologically and physically reasonable ranges. In 107 of 160 ROIs, the blood signal was separated, using a two-compartment model, into a capillary and an arteriolar signal contribution, decided by the F-test. Overall flow in hind leg muscles, as measured by the

  9. Three-dimensional T1rho-weighted MRI at 1.5 Tesla.

    PubMed

    Borthakur, Arijitt; Wheaton, Andrew; Charagundla, Sridhar R; Shapiro, Erik M; Regatte, Ravinder R; Akella, Sarma V S; Kneeland, J Bruce; Reddy, Ravinder

    2003-06-01

    To design and implement a magnetic resonance imaging (MRI) pulse sequence capable of performing three-dimensional T(1rho)-weighted MRI on a 1.5-T clinical scanner, and determine the optimal sequence parameters, both theoretically and experimentally, so that the energy deposition by the radiofrequency pulses in the sequence, measured as the specific absorption rate (SAR), does not exceed safety guidelines for imaging human subjects. A three-pulse cluster was pre-encoded to a three-dimensional gradient-echo imaging sequence to create a three-dimensional, T(1rho)-weighted MRI pulse sequence. Imaging experiments were performed on a GE clinical scanner with a custom-built knee-coil. We validated the performance of this sequence by imaging articular cartilage of a bovine patella and comparing T(1rho) values measured by this sequence to those obtained with a previously tested two-dimensional imaging sequence. Using a previously developed model for SAR calculation, the imaging parameters were adjusted such that the energy deposition by the radiofrequency pulses in the sequence did not exceed safety guidelines for imaging human subjects. The actual temperature increase due to the sequence was measured in a phantom by a MRI-based temperature mapping technique. Following these experiments, the performance of this sequence was demonstrated in vivo by obtaining T(1rho)-weighted images of the knee joint of a healthy individual. Calculated T(1rho) of articular cartilage in the specimen was similar for both and three-dimensional and two-dimensional methods (84 +/- 2 msec and 80 +/- 3 msec, respectively). The temperature increase in the phantom resulting from the sequence was 0.015 degrees C, which is well below the established safety guidelines. Images of the human knee joint in vivo demonstrate a clear delineation of cartilage from surrounding tissues. We developed and implemented a three-dimensional T(1rho)-weighted pulse sequence on a 1.5-T clinical scanner. Copyright 2003

  10. MR measures of renal perfusion, oxygen bioavailability and total renal blood flow in a porcine model: noninvasive regional assessment of renal function.

    PubMed

    Wentland, Andrew L; Artz, Nathan S; Fain, Sean B; Grist, Thomas M; Djamali, Arjang; Sadowski, Elizabeth A

    2012-01-01

    Magnetic resonance imaging (MRI) may be a useful adjunct to current methods of evaluating renal function. MRI is a noninvasive imaging modality that has the ability to evaluate the kidneys regionally, which is lacking in current clinical methods. Other investigators have evaluated renal function with MRI-based measurements, such as with techniques to measure cortical and medullary perfusion, oxygen bioavailability and total renal blood flow (TRBF). However, use of all three techniques simultaneously, and therefore the relationships between these MRI-derived functional parameters, have not been reported previously. To evaluate the ability of these MRI techniques to track changes in renal function, we scanned 11 swine during a state of hyperperfusion with acetylcholine and a saline bolus and subsequently scanned during a state of hypoperfusion with the prolonged use of isoflurane anesthesia. For each time point, measurements of perfusion, oxygen bioavailability and TRBF were acquired. Measurements of perfusion and oxygen bioavailability were compared with measurements of TRBF for all swine across all time points. Cortical perfusion, cortical oxygen bioavailability, medullary oxygen bioavailability and TRBF significantly increased with the acetylcholine challenge. Cortical perfusion, medullary perfusion, cortical oxygen bioavailability and TRBF significantly decreased during isoflurane anesthesia. Cortical perfusion (Spearman's correlation coefficient = 0.68; P < 1 × 10(-6)) and oxygen bioavailability (Spearman's correlation coefficient = -0.60; P < 0.0001) correlated significantly with TRBF, whereas medullary perfusion and oxygen bioavailability did not correlate with TRBF. Our results demonstrate expected changes given the pharmacologically induced changes in renal function. Maintenance of the medullary oxygen bioavailability in low blood flow states may reflect the autoregulation particular to this region of the kidney. The ability to non-invasively measure all

  11. Differential nephrotoxicity of low molecular weight proteins including Bence Jones proteins in the perfused rat nephron in vivo.

    PubMed Central

    Sanders, P W; Herrera, G A; Chen, A; Booker, B B; Galla, J H

    1988-01-01

    To investigate the pathogenetic mechanisms of tubule nephrotoxicity of low molecular weight proteins (LMWP), proximal tubules (PT) of rats were perfused in vivo with artificial tubule fluid (ATF) containing one of five LMWPs: three human Bence Jones proteins (BJP), beta-lactoglobulin (BLG), and rabbit myoglobin (MYG). Volume (JV), chloride (JCl) and glucose (JG) fluxes in these perfused PTs were compared with those determined using ATF alone. In separate experiments, perfused nephrons were examined with electron and immunoelectron microscopy. After exposure to BJP1 or BLG, JV, JCl, and JG were less (P less than 0.05) than corresponding control fluxes. Cell damage of these perfused PTs, along with cellular debris in the distal tubules, was prominent. The PT lysosomes often appeared atypical and contained crystals. In contrast, perfusion with BJP2, BJP3, or MYG did not alter JV, JCl, or JG. These findings were corroborated by the normal ultrastructure of these PTs despite immunohistochemical evidence of endocytosis of the BJPs. Isoelectric point, molecular form, and isotype were not factors associated with PT damage. In addition, proteins with pI less than 7.4 precipitated in the distal nephron, forming acellular casts. Thus, certain nephrotoxic LMWPs damaged the PT, while others precipitated in the distal tubule, obstructing the nephron. These two pathogenetic mechanisms may independently be responsible for tubulointerstitial nephropathy of LMWPs in humans. Images PMID:3198767

  12. MRI assessment of local acute radiation syndrome.

    PubMed

    Weber-Donat, G; Amabile, J-C; Lahutte-Auboin, M; Potet, J; Baccialone, J; Bey, E; Teriitehau, C; Laroche, P

    2012-12-01

    To describe local acute radiation syndrome and its radiological imaging characteristics. We performed a retrospective study of patients who had suffered skin and deeper radiation damage who were investigated by magnetic resonance imaging (MRI). We compared the clinical findings, C-reactive protein (CRP) levels and MRI results. A total of 22 MRI examinations were performed between 2005 and 2010 in 7 patients; 6 patients had increased CRP levels and MRI abnormalities. They were treated by surgery and local cellular therapy. One patient had no CRP or MRI abnormalities, and had a spontaneous good outcome. Eighteen abnormal MR examinations demonstrated high STIR signal and/or abnormal enhancement in the dermis and muscle tissues. Three MRI examinations demonstrated skeletal abnormalities, consistent with radionecrosis. The four normal MRI examinations were associated only with minor clinical manifestations such as pain and pigmentation disorders. MRI seems to be a useful and promising imaging investigation in radiation burns management i.e. initial lesion evaluation, treatment evaluation and complication diagnosis. MRI findings correlated perfectly with clinical stage and no false negative examinations were obtained. In particular, the association between normal MRI and low CRP level seems to be related to good outcome without specific treatment. Local acute radiation syndrome (radioepidermitis) mainly affects the skin and superficial tissues. MRI findings correspond with clinical stage (with a strong negative predictive value). MRI outperformed X-ray examination for the diagnosis of bone radionecrosis. Diffusion-weighted imaging shows low ADC in bone and soft tissue necrosis. Perfusion sequence allows assessment of tissue microcirculation impairment.

  13. Schizophrenia patients differentiation based on MR vascular perfusion and volumetric imaging

    NASA Astrophysics Data System (ADS)

    Spanier, A. B.; Joskowicz, L.; Moshel, S.; Israeli, D.

    2015-03-01

    Candecomp/Parafac Decomposition (CPD) has emerged as a framework for modeling N-way arrays (higher-order matrices). CPD is naturally well suited for the analysis of data sets comprised of observations of a function of multiple discrete indices. In this study we evaluate the prospects of using CPD for modeling MRI brain properties (i.e. brain volume and gray-level) for schizophrenia diagnosis. Taking into account that 3D imaging data consists of millions of pixels per patient, the diagnosis of a schizophrenia patient based on pixel analysis constitutes a methodological challenge (e.g. multiple comparison problem). We show that the CPD could potentially be used as a dimensionality redaction method and as a discriminator between schizophrenia patients and match control, using the gradient of pre- and post Gd-T1-weighted MRI data, which is strongly correlated with cerebral blood perfusion. Our approach was tested on 68 MRI scans: 40 first-episode schizophrenia patients and 28 matched controls. The CPD subject's scores exhibit statistically significant result (P < 0.001). In the context of diagnosing schizophrenia with MRI, the results suggest that the CPD could potentially be used to discriminate between schizophrenia patients and matched control. In addition, the CPD model suggests for brain regions that might exhibit abnormalities in schizophrenia patients for future research.

  14. Unsupervised nonlinear dimensionality reduction machine learning methods applied to multiparametric MRI in cerebral ischemia: preliminary results

    NASA Astrophysics Data System (ADS)

    Parekh, Vishwa S.; Jacobs, Jeremy R.; Jacobs, Michael A.

    2014-03-01

    The evaluation and treatment of acute cerebral ischemia requires a technique that can determine the total area of tissue at risk for infarction using diagnostic magnetic resonance imaging (MRI) sequences. Typical MRI data sets consist of T1- and T2-weighted imaging (T1WI, T2WI) along with advanced MRI parameters of diffusion-weighted imaging (DWI) and perfusion weighted imaging (PWI) methods. Each of these parameters has distinct radiological-pathological meaning. For example, DWI interrogates the movement of water in the tissue and PWI gives an estimate of the blood flow, both are critical measures during the evolution of stroke. In order to integrate these data and give an estimate of the tissue at risk or damaged; we have developed advanced machine learning methods based on unsupervised non-linear dimensionality reduction (NLDR) techniques. NLDR methods are a class of algorithms that uses mathematically defined manifolds for statistical sampling of multidimensional classes to generate a discrimination rule of guaranteed statistical accuracy and they can generate a two- or three-dimensional map, which represents the prominent structures of the data and provides an embedded image of meaningful low-dimensional structures hidden in their high-dimensional observations. In this manuscript, we develop NLDR methods on high dimensional MRI data sets of preclinical animals and clinical patients with stroke. On analyzing the performance of these methods, we observed that there was a high of similarity between multiparametric embedded images from NLDR methods and the ADC map and perfusion map. It was also observed that embedded scattergram of abnormal (infarcted or at risk) tissue can be visualized and provides a mechanism for automatic methods to delineate potential stroke volumes and early tissue at risk.

  15. Unenhanced breast MRI (STIR, T2-weighted TSE, DWIBS): An accurate and alternative strategy for detecting and differentiating breast lesions.

    PubMed

    Telegrafo, Michele; Rella, Leonarda; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe; Moschetta, Marco

    2015-10-01

    To assess the role of STIR, T2-weighted TSE and DWIBS sequences for detecting and characterizing breast lesions and to compare unenhanced (UE)-MRI results with contrast-enhanced (CE)-MRI and histological findings, having the latter as the reference standard. Two hundred eighty consecutive patients (age range, 27-73 years; mean age±standard deviation (SD), 48.8±9.8years) underwent MR examination with a diagnostic protocol including STIR, T2-weighted TSE, THRIVE and DWIBS sequences. Two radiologists blinded to both dynamic sequences and histological findings evaluated in consensus STIR, T2-weighted TSE and DWIBS sequences and after two weeks CE-MRI images searching for breast lesions. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy for UE-MRI and CE-MRI were calculated. UE-MRI results were also compared with CE- MRI. UE-MRI sequences obtained sensitivity, specificity, diagnostic accuracy, PPV and NPV values of 94%, 79%, 86%, 79% and 94%, respectively. CE-MRI sequences obtained sensitivity, specificity, diagnostic accuracy, PPV and NPV values of 98%, 83%, 90%, 84% and 98%, respectively. No statistically significant difference between UE-MRI and CE-MRI was found. Breast UE-MRI could represent an accurate diagnostic tool and a valid alternative to CE-MRI for evaluating breast lesions. STIR and DWIBS sequences allow to detect breast lesions while T2-weighted TSE sequences and ADC values could be useful for lesion characterization. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results.

    PubMed

    Nketiah, Gabriel; Elschot, Mattijs; Kim, Eugene; Teruel, Jose R; Scheenen, Tom W; Bathen, Tone F; Selnæs, Kirsten M

    2017-07-01

    To evaluate the diagnostic relevance of T2-weighted (T2W) MRI-derived textural features relative to quantitative physiological parameters derived from diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI in Gleason score (GS) 3+4 and 4+3 prostate cancers. 3T multiparametric-MRI was performed on 23 prostate cancer patients prior to prostatectomy. Textural features [angular second moment (ASM), contrast, correlation, entropy], apparent diffusion coefficient (ADC), and DCE pharmacokinetic parameters (K trans and V e ) were calculated from index tumours delineated on the T2W, DW, and DCE images, respectively. The association between the textural features and prostatectomy GS and the MRI-derived parameters, and the utility of the parameters in differentiating between GS 3+4 and 4+3 prostate cancers were assessed statistically. ASM and entropy correlated significantly (p < 0.05) with both GS and median ADC. Contrast correlated moderately with median ADC. The textural features correlated insignificantly with K trans and V e . GS 4+3 cancers had significantly lower ASM and higher entropy than 3+4 cancers, but insignificant differences in median ADC, K trans , and V e . The combined texture-MRI parameters yielded higher classification accuracy (91%) than the individual parameter sets. T2W MRI-derived textural features could serve as potential diagnostic markers, sensitive to the pathological differences in prostate cancers. • T2W MRI-derived textural features correlate significantly with Gleason score and ADC. • T2W MRI-derived textural features differentiate Gleason score 3+4 from 4+3 cancers. • T2W image textural features could augment tumour characterization.

  17. Evaluation of heart perfusion in patients with acute myocardial infarction using dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Nielsen, Gitte; Fritz-Hansen, Thomas; Dirks, Christina G; Jensen, Gorm B; Larsson, Henrik B W

    2004-09-01

    To investigate the diagnostic ability of quantitative magnetic resonance imaging (MRI) heart perfusion in acute heart patients, a fast, multislice dynamic contrast-enhanced MRI sequence was applied to patients with acute myocardial infarction. Seven patients with acute transmural myocardial infarction were studied using a Turbo-fast low angle shot (FLASH) MRI sequence to monitor the first pass of an extravascular contrast agent (CA), gadolinium diethylene triamine pentaacetic acid (Gd-DTPA). Quantitation of perfusion, expressed as Ki (mL/100 g/minute), in five slices, each having 60 sectors, provided an estimation of the severity and extent of the perfusion deficiency. Reperfusion was assessed both by noninvasive criteria and by coronary angiography (CAG). The Ki maps clearly delineated the infarction in all patients. Thrombolytic treatment was clearly beneficial in one case, but had no effect in the two other cases. Over the time-course of the study, normal perfusion values were not reestablished following thrombolytic treatment in all cases investigated. This study shows that quantitative MRI perfusion values can be obtained from acutely ill patients following acute myocardial infarction. The technique provides information on both the volume and severity of affected myocardial tissue, enabling the power of treatment regimes to be assessed objectively, and this approach should aid individual patient stratification and prognosis. Copyright 2004 Wiley-Liss, Inc.

  18. Distortion correction for diffusion-weighted MRI tractography and fMRI in the temporal lobes.

    PubMed

    Embleton, Karl V; Haroon, Hamied A; Morris, David M; Ralph, Matthew A Lambon; Parker, Geoff J M

    2010-10-01

    Single shot echo-planar imaging (EPI) sequences are currently the most commonly used sequences for diffusion-weighted imaging (DWI) and functional magnetic resonance imaging (fMRI) as they allow relatively high signal to noise with rapid acquisition time. A major drawback of EPI is the substantial geometric distortion and signal loss that can occur due to magnetic field inhomogeneities close to air-tissue boundaries. If DWI-based tractography and fMRI are to be applied to these regions, then the distortions must be accurately corrected to achieve meaningful results. We describe robust acquisition and processing methods for correcting such distortions in spin echo (SE) EPI using a variant of the reversed direction k space traversal method with a number of novel additions. We demonstrate that dual direction k space traversal with maintained diffusion-encoding gradient strength and direction results in correction of the great majority of eddy current-associated distortions in DWI, in addition to those created by variations in magnetic susceptibility. We also provide examples to demonstrate that the presence of severe distortions cannot be ignored if meaningful tractography results are desired. The distortion correction routine was applied to SE-EPI fMRI acquisitions and allowed detection of activation in the temporal lobe that had been previously found using PET but not conventional fMRI. © 2010 Wiley-Liss, Inc.

  19. Application of a Simplified Method for Estimating Perfusion Derived from Diffusion-Weighted MR Imaging in Glioma Grading.

    PubMed

    Cao, Mengqiu; Suo, Shiteng; Han, Xu; Jin, Ke; Sun, Yawen; Wang, Yao; Ding, Weina; Qu, Jianxun; Zhang, Xiaohua; Zhou, Yan

    2017-01-01

    Purpose : To evaluate the feasibility of a simplified method based on diffusion-weighted imaging (DWI) acquired with three b -values to measure tissue perfusion linked to microcirculation, to validate it against from perfusion-related parameters derived from intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging, and to investigate its utility to differentiate low- from high-grade gliomas. Materials and Methods : The prospective study was approved by the local institutional review board and written informed consent was obtained from all patients. From May 2016 and May 2017, 50 patients confirmed with glioma were assessed with multi- b -value DWI and DCE MR imaging at 3.0 T. Besides conventional apparent diffusion coefficient (ADC 0,1000 ) map, perfusion-related parametric maps for IVIM-derived perfusion fraction ( f ) and pseudodiffusion coefficient (D*), DCE MR imaging-derived pharmacokinetic metrics, including K trans , v e and v p , as well as a metric named simplified perfusion fraction (SPF), were generated. Correlation between perfusion-related parameters was analyzed by using the Spearman rank correlation. All imaging parameters were compared between the low-grade ( n = 19) and high-grade ( n = 31) groups by using the Mann-Whitney U test. The diagnostic performance for tumor grading was evaluated with receiver operating characteristic (ROC) analysis. Results : SPF showed strong correlation with IVIM-derived f and D* ( ρ = 0.732 and 0.716, respectively; both P < 0.001). Compared with f , SPF was more correlated with DCE MR imaging-derived K trans ( ρ = 0.607; P < 0.001) and v p ( ρ = 0.397; P = 0.004). Among all parameters, SPF achieved the highest accuracy for differentiating low- from high-grade gliomas, with an area under the ROC curve value of 0.942, which was significantly higher than that of ADC 0,1000 ( P = 0.004). By using SPF as a discriminative index, the diagnostic sensitivity and specificity were

  20. Breast cancer detection using double reading of unenhanced MRI including T1-weighted, T2-weighted STIR, and diffusion-weighted imaging: a proof of concept study.

    PubMed

    Trimboli, Rubina M; Verardi, Nicola; Cartia, Francesco; Carbonaro, Luca A; Sardanelli, Francesco

    2014-09-01

    The purpose of this study was to investigate the diagnostic performance of unenhanced MRI in detecting breast cancer and to assess the impact of double reading. A total of 116 breasts of 67 women who were 36-89 years old were studied at 1.5 T using an unenhanced protocol including axial T1-weighted gradient-echo, T2-weighted STIR, and echo-planar diffusion-weighted imaging (DWI). Two blinded readers (R1 and R2) independently evaluated unenhanced images using the BIRADS scale. A combination of pathology and negative follow-up served as the reference standard. McNemar and kappa statistics were used. Per-breast cancer prevalence was 37 of 116 (32%): 30 of 37 (81%) invasive ductal carcinoma, five of 37 (13%) ductal carcinoma in situ, and two of 37 (6%) invasive lobular carcinoma. Per-breast sensitivity of unenhanced MRI was 29 of 37 (78%) for R1, 28 of 37 (76%) for R2, and 29 of 37 (78%) for double reading. Specificity was 71 of 79 (90%) for both R1 and R2 and 69 of 79 (87%) for double reading. Double reading did not provide a significant increase in sensitivity. Interobserver agreement was almost perfect (Cohen κ = 0.873). An unenhanced breast MRI protocol composed of T1-weighted gradient echo, T2-weighted STIR, and echo-planar DWI enabled breast cancer detection with sensitivity of 76-78% and specificity of 90% without a gain in sensitivity from double reading.

  1. Effects of Constant Flow vs. Constant Pressure Perfusion on Fluid Filtration in Severe Hypothermic Isolated Blood-Perfused Rat Lungs.

    PubMed

    Halsøy, Kathrine; Kondratiev, Timofey; Tveita, Torkjel; Bjertnaes, Lars J

    2016-01-01

    Victims of severe accidental hypothermia are prone to fluid extravasation but rarely develop lung edema. We hypothesize that combined hypothermia-induced increase in pulmonary vascular resistance (PVR) and a concomitant fall in cardiac output protect the lungs against edema development. Our aim was to explore in hypothermic-isolated blood-perfused rat lungs whether perfusion at constant pressure influences fluid filtration differently from perfusion at constant flow. Isolated blood-perfused rat lungs were hanging freely in a weight transducer for measuring weight changes (ΔW). Fluid filtration coefficient (Kfc), was determined by transiently elevating left atrial pressure (Pla) by 5.8 mmHg two times each during normothermia (37°C) and during hypothermia (15°C). The lung preparations were randomized to two groups. One group was perfused with constant flow (Constant flow group) and the other group with constant pulmonary artery pressure (Constant PPA group). Microvascular pressure (Pmv) was determined before and during elevation of Pla (ΔPmv) by means of the double occlusion technique. Kfc was calculated with the formula Kfc = ΔW/ΔPmv/min. All Kfc values were normalized to predicted lung weight (P LW ), which was based on body weight (BW) according to the formula: P LW  = 0.0053 BW - 0.48 and presented as Kfc PLW in mg/min/mmHg/g. At cessation, bronchoalveolar lavage (BAL) fluid/perfusate protein concentration (B/P) ratio was determined photometrically. Data were analyzed with parametric or non-parametric tests as appropriate. p  < 0.05 considered as significant. Perfusate flow remained constant in the Constant flow group, but was more than halved during hypothermia in the Constant PPA group concomitant with a more fold increase in PVR. In the Constant flow group, Kfc PLW and B/P ratio increased significantly by more than 10-fold during hypothermia concerted by visible signs of edema in the trachea. Hemoglobin and hematocrit increased within

  2. Preliminary experience with a novel method of three-dimensional co-registration of prostate cancer digital histology and in vivo multiparametric MRI.

    PubMed

    Orczyk, C; Rusinek, H; Rosenkrantz, A B; Mikheev, A; Deng, F-M; Melamed, J; Taneja, S S

    2013-12-01

    To assess a novel method of three-dimensional (3D) co-registration of prostate cancer digital histology and in-vivo multiparametric magnetic resonance imaging (mpMRI) image sets for clinical usefulness. A software platform was developed to achieve 3D co-registration. This software was prospectively applied to three patients who underwent radical prostatectomy. Data comprised in-vivo mpMRI [T2-weighted, dynamic contrast-enhanced weighted images (DCE); apparent diffusion coefficient (ADC)], ex-vivo T2-weighted imaging, 3D-rebuilt pathological specimen, and digital histology. Internal landmarks from zonal anatomy served as reference points for assessing co-registration accuracy and precision. Applying a method of deformable transformation based on 22 internal landmarks, a 1.6 mm accuracy was reached to align T2-weighted images and the 3D-rebuilt pathological specimen, an improvement over rigid transformation of 32% (p = 0.003). The 22 zonal anatomy landmarks were more accurately mapped using deformable transformation than rigid transformation (p = 0.0008). An automatic method based on mutual information, enabled automation of the process and to include perfusion and diffusion MRI images. Evaluation of co-registration accuracy using the volume overlap index (Dice index) met clinically relevant requirements, ranging from 0.81-0.96 for sequences tested. Ex-vivo images of the specimen did not significantly improve co-registration accuracy. This preliminary analysis suggests that deformable transformation based on zonal anatomy landmarks is accurate in the co-registration of mpMRI and histology. Including diffusion and perfusion sequences in the same 3D space as histology is essential further clinical information. The ability to localize cancer in 3D space may improve targeting for image-guided biopsy, focal therapy, and disease quantification in surveillance protocols. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  3. Accuracy of arterial spin labeling magnetic resonance imaging (MRI) perfusion in detecting the epileptogenic zone in patients with drug-resistant neocortical epilepsy: comparison with electrophysiological data, structural MRI, SISCOM and FDG-PET.

    PubMed

    Sierra-Marcos, A; Carreño, M; Setoain, X; López-Rueda, A; Aparicio, J; Donaire, A; Bargalló, N

    2016-01-01

    Locating the epileptogenic zone (EZ) in patients with neocortical epilepsy presents major challenges. Our aim was to assess the accuracy of arterial spin labeling (ASL), an emerging non-invasive magnetic resonance imaging (MRI) perfusion technique, to locate the EZ in patients with drug-resistant neocortical epilepsy. Twenty-five consecutive patients with neocortical epilepsy referred to our epilepsy unit for pre-surgical evaluation underwent a standardized assessment including video-electroencephalography (EEG) monitoring, structural MRI, subtraction ictal single-photon emission computed tomography co-registered to MRI (SISCOM) and fluorodeoxyglucose positron emission tomography (FDG-PET) studies. An ASL sequence was included in the MRI studies. Areas of hypoperfusion or hyperperfusion on ASL were classified into 15 anatomic-functional cortical regions; these regional cerebral blood flow maps were compared with the EZ determined by the other tests and the strength of concordance was assessed with the kappa coefficient. Of the 25 patients [16 (64%) women; mean age 32.4 (±13.8) years], 18 (72%) had lesions on structural MRI. ASL abnormalities were seen in 15 (60%) patients (nine hypoperfusion, six hyperperfusion). ASL had a very good concordance with FDG-PET (k = 0.84), a good concordance with structural MRI (k = 0.76), a moderate concordance with video-EEG monitoring (k = 0.53) and a fair concordance with SISCOM (k = 0.28). Arterial spin labeling might help to confirm the location and extent of the EZ in the pre-surgical workup of patients with drug-resistant neocortical epilepsy. © 2015 EAN.

  4. Stress Cardiac MRI in Women With Myocardial Infarction and Nonobstructive Coronary Artery Disease.

    PubMed

    Mauricio, Rina; Srichai, Monvadi B; Axel, Leon; Hochman, Judith S; Reynolds, Harmony R

    2016-10-01

    In a prospective study, cardiac MRI (CMR) and intravascular ultrasound were performed in women with myocardial infarction (MI) and nonobstructive coronary artery disease (MINOCA). Forty participants underwent adenosine-stress CMR (sCMR). Abnormal perfusion may co-localize with ischemic late gadolinium enhancement (LGE) and T2-weighted signal hyperintensity (T2+), suggesting microvascular dysfunction contributed to MI. Qualitative perfusion analysis was performed by 2 independent readers. Abnormal myocardial perfusion reserve index (MPRI) was defined as global average ≤1.84. Abnormal rest perfusion was present in 10 patients (25%) and stress perfusion abnormalities in 25 (63%). Abnormal stress perfusion was not associated with LGE but tended to occur with T2+. Among patients with abnormal perfusion and LGE, the LGE pattern was ischemic in half. The locations of abnormal perfusion and LGE matched in 75%, T2+ in 100%. Abnormal stress perfusion was not associated with plaque disruption and matched in location in 63%. MPRI was abnormal in 10 patients (25%) and was not associated with LGE, T2+ or plaque disruption. Abnormal perfusion on sCMR is common among women with MINOCA. Abnormal perfusion usually co-localized with LGE and/or T2+ when present. Variability in LGE pattern leads to uncertainty about whether the finding of abnormal perfusion was cause or consequence of the tissue state leading to LGE. Low MPRI, possibly indicating diffuse microvascular disease, was observed with and without LGE and T2+. Multiple mechanisms may lead to abnormal perfusion on sCMR. Microvascular dysfunction may contribute to the pathogenesis of and coexist with other causes of MINOCA. © 2016 Wiley Periodicals, Inc.

  5. Assessment of cerebral blood perfusion reserve with acetazolamide using 3D spiral ASL MRI: Preliminary experience in pediatric patients.

    PubMed

    Hu, Houchun H; Li, Zhiqiang; Pokorney, Amber L; Chia, Jonathan M; Stefani, Niccolo; Pipe, James G; Miller, Jeffrey H

    2017-01-01

    To demonstrate the clinical feasibility of a new non-Cartesian cylindrically-distributed spiral 3D pseudo-continuous arterial spin labeling (pCASL) magnetic resonance imaging (MRI) pulse sequence in pediatric patients in quantifying cerebral blood flow (CBF) response to an acetazolamide (ACZ) vasodilator challenge. MRI exams were performed on two 3 Tesla Philips Ingenia systems using 32 channel head coil arrays. After local institutional review board approval, the 3D spiral-based pCASL technique was added to a standard brain MRI exam and evaluated in 13 pediatric patients (average age: 11.7±6.4years, range: 1.4-22.2years). All patients were administered ACZ for clinically indicated reasons. Quantitative whole-brain CBF measurements were computed pre- and post-ACZ to assess cerebrovascular reserve. 3D spiral pCASL data were successfully reconstructed in all 13 cases. In 11 patients, CBF increased 2.8% to 93.2% after administration of ACZ. In the two remaining patients, CBF decreased by 2.4 to 6.0% after ACZ. The group average change in CBF due to ACZ was approximately 25.0% and individual changes were statistically significant (p<0.01) in all patients using a paired t-test analysis. CBF perfusion data were diagnostically useful in supporting conventional MR angiography and clinical findings. 3D cylindrically-distributed spiral pCASL MRI provides a robust approach to assess cerebral blood flow and reserve in pediatric patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Modulation of resting brain cerebral blood flow by the GABA B agonist, baclofen: A longitudinal perfusion fMRI study

    PubMed Central

    Franklin, Teresa R.; Wang, Ze; Sciortino, Nathan; Harper, Derek; Li, Yin; Hakun, Jonathan; Kildea, Susan; Kampman, Kyle; Ehrman, Ron; Detre, John A.; O’Brien, Charles P.; Childress, Anna Rose

    2011-01-01

    Background Preclinical studies confirm that the GABA B agonist, baclofen blocks dopamine release in the reward-responsive ventral striatum (VS) and medial prefrontal cortex, and consequently, blocks drug motivated behavior. Its mechanism in humans is unknown. Here, we used continuous arterial spin labeled (CASL) perfusion fMRI to examine baclofen’s effects on blood flow in the human brain. Methods Twenty-one subjects (all smokers, 12 females) were randomized to receive either baclofen (80 mg/day; N = 10) or placebo (N = 11). A five minute quantitative perfusion fMRI resting baseline (RB) scan was acquired at two time points; prior to the dosing regimen (Time 1) and on the last day of 21 days of drug administration (Time 2). SPM2 was employed to compare changes in RB from Time 1 to 2. Results Baclofen diminished cerebral blood flow (CBF) in the VS and mOFC and increased it in the lateral OFC, a region involved in suppressing previously rewarded behavior. CBF in bilateral insula was also blunted by baclofen (T values ranged from −11.29 to 15.3 at p = 0.001, 20 contiguous voxels). CBF at Time 2 was unchanged in placebo subjects. There were no differences between groups in side effects or cigarettes smoked per day (at either time point). Conclusions Baclofen’s modulatory actions on regions involved in motivated behavior in humans are reflected in the resting state and provide insight into the underlying mechanism behind its potential to block drug-motivated behavior, in preclinical studies, and its putative effectiveness as an anti-craving/anti-relapse agent in humans. PMID:21333466

  7. SU-D-207A-03: Potential Role of BOLD MRI in Discrimination of Aggressive Tumor Habitat in Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, J; Lopez, C; Tschudi, Y

    Purpose: To determine whether blood oxygenation level dependent (BOLD) MRI signal measured in prostate cancer patients, in addition to quantitative diffusion and perfusion parameters from multiparametric (mp)MRI exams, can help discriminate aggressive and/or radioresistant lesions. Methods: Several ongoing clinical trials in our institution require mpMRI exam to determine eligibility (presence of identifiable tumor lesion on mpMRI) and prostate volumes for dose escalation. Upon consent, patients undergo fiducial markers placement and a T2*-weighted imaging at the time of CT sim to facilitate the fusion. In a retrospective analysis eleven clinical trial patients were identified who had undergone mpMRI on GE 3Tmore » magnet, followed by T2*-weighted imaging (time-period mean±SD = 48±20 days) using a consistent protocol (gradient echo, TR/TE=30/11.8ms, flip angle=12, matrix=256×256×75, voxel size=1.25×1.25×2.5mm). ROIs for prostate tumor lesions were automatically determined using ADC threshold ≤1200 µm2/s. Although the MR protocol was not intended for BOLD analysis, we utilized the T2*-weighted signal normalized to that in nearby muscle; likewise, T2-weighted lesion signal was normalized to muscle, following rigid registration of the T2 to T2* images. The ratio of these normalized signals, T2*/T2, is a measure of BOLD effect in the prostate tumors. Perfusion parameters (Ktrans, ve, kep) were also calculated. Results: T2*/T2 (mean±SE) was found to be substantially lower for Gleason score (GS) 8&9 (0.82±0.04) compared to GS 7 (1.08±0.07). A k-means cluster analysis of T2*/T2 versus kep = Ktrans/ve revealed two distinct clusters, one with higher T2*/T2 and lower kep, containing only GS 7 lesions, and another with lower T2*/T2 and higher kep, associated with tumor aggressiveness. This latter cluster contained all GS 8&9 lesions, as well as some GS 7. Conclusion: BOLD MRI, in addition to ADC and kep, may play a role (perhaps orthogonal to Gleason score) in

  8. Assessing Intrarenal Non-perfusion and Vascular Leakage in Acute Kidney Injury withzz 19F MRI and Perfluorocarbon Nanoparticles

    PubMed Central

    Hu, Lingzhi; Chen, Junjie; Yang, Xiaoxia; Senpan, Angana; Allen, John S.; Yanaba, Noriko; Caruthers, Shelton D.; Lanza, Gregory M.; Hammerman, Marc R.; Wickline, Samuel A.

    2014-01-01

    Purpose We sought to develop a unique sensor-reporter approach for functional kidney imaging that employs circulating perfluorocarbon nanoparticles (PFC NPs) and 19F MRI. Methods Because the detected 19F signal intensity directly reflects local blood volume, and the 19F R1 is linearly proportional to local blood oxygen content (pO2), 19F spin density weighted and T1 weighted images were utilized to generate quantitative functional mapping in both healthy and ischemia-reperfusion (acute kidney injury, AKI) injured mouse kidneys. 1H Blood-Oxygenation-Level-Dependant (BOLD) MRI was also employed as a supplementary approach to facilitate the compressive analysis of renal circulation and its pathological changes in AKI. Results Heterogeneous blood volume distribution and intrarenal oxygenation gradient were confirmed in healthy kidneys by 19F MRI. In a mouse model of AKI, 19F MRI, in conjunction with BOLR MRI, sensitively delineated renal vascular damage and recovery. In the cortico-medullary (CM) junction region, we observed 25% lower 19F signal (p<0.05) and 70% longer 1H T2* (p<0.01) in injured kidneys compared to contralateral kidneys at 24 hours after initial ischemia-reperfusion injury. We also detected 71% higher 19F signal (p<0.01) and 40% lower 1H T2* (p<0.05) in the renal medulla region of injured kidneys compared to contralateral kidneys. Conclusion With demonstrated superior diagnostic capability, functional kidney 19F MRI using PFC NPs could serve as a new diagnostic measures for comprehensive evaluation of renal function and pathology. PMID:23929727

  9. An unsupervised approach for measuring myocardial perfusion in MR image sequences

    NASA Astrophysics Data System (ADS)

    Discher, Antoine; Rougon, Nicolas; Preteux, Francoise

    2005-08-01

    Quantitatively assessing myocardial perfusion is a key issue for the diagnosis, therapeutic planning and patient follow-up of cardio-vascular diseases. To this end, perfusion MRI (p-MRI) has emerged as a valuable clinical investigation tool thanks to its ability of dynamically imaging the first pass of a contrast bolus in the framework of stress/rest exams. However, reliable techniques for automatically computing regional first pass curves from 2D short-axis cardiac p-MRI sequences remain to be elaborated. We address this problem and develop an unsupervised four-step approach comprising: (i) a coarse spatio-temporal segmentation step, allowing to automatically detect a region of interest for the heart over the whole sequence, and to select a reference frame with maximal myocardium contrast; (ii) a model-based variational segmentation step of the reference frame, yielding a bi-ventricular partition of the heart into left ventricle, right ventricle and myocardium components; (iii) a respiratory/cardiac motion artifacts compensation step using a novel region-driven intensity-based non rigid registration technique, allowing to elastically propagate the reference bi-ventricular segmentation over the whole sequence; (iv) a measurement step, delivering first-pass curves over each region of a segmental model of the myocardium. The performance of this approach is assessed over a database of 15 normal and pathological subjects, and compared with perfusion measurements delivered by a MRI manufacturer software package based on manual delineations by a medical expert.

  10. Whole-body MRI including diffusion-weighted MRI compared with 5-HTP PET/CT in the detection of neuroendocrine tumors

    PubMed Central

    Carlbom, Lina; Caballero-Corbalán, José; Granberg, Dan; Sörensen, Jens; Eriksson, Barbro; Ahlström, Håkan

    2017-01-01

    Aim We wanted to explore if whole-body magnetic resonance imaging (MRI) including diffusion-weighted (DW) and liver-specific contrast agent-enhanced imaging could be valuable in lesion detection of neuroendocrine tumors (NET). [11C]-5-Hydroxytryptophan positron emission tomography/computed tomography (5-HTP PET/CT) was used for comparison. Materials and methods Twenty-one patients with NET were investigated with whole-body MRI, including DW imaging (DWI) and contrast-enhanced imaging of the liver, and whole-body 5-HTP PET/CT. Seven additional patients underwent upper abdomen MRI including DWI, liver-specific contrast agent-enhanced imaging, and 5-HTP PET/CT. Results There was a patient-based concordance of 61% and a lesion-based concordance of 53% between the modalities. MRI showed good concordance with PET in detecting bone metastases but was less sensitive in detecting metastases in mediastinal lymph nodes. MRI detected more liver metastases than 5-HTP PET/CT. Conclusion Whole-body MRI with DWI did not detect all NET lesions found with whole-body 5-HTP PET/CT. Our findings indicate that MRI of the liver including liver-specific contrast agent-enhanced imaging and DWI could be a useful complement to whole-body 5-HTP PET/CT. PMID:27894208

  11. Comparison of block and event-related experimental designs in diffusion-weighted functional MRI.

    PubMed

    Williams, Rebecca J; McMahon, Katie L; Hocking, Julia; Reutens, David C

    2014-08-01

    To compare diffusion-weighted functional magnetic resonance imaging (DfMRI), a novel alternative to the blood oxygenation level-dependent (BOLD) contrast, in a functional MRI experiment. Nine participants viewed contrast reversing (7.5 Hz) black-and-white checkerboard stimuli using block and event-related paradigms. DfMRI (b = 1800 mm/s(2)) and BOLD sequences were acquired. Four parameters describing the observed signal were assessed: percent signal change, spatial extent of the activation, the Euclidean distance between peak voxel locations, and the time-to-peak of the best fitting impulse response for different paradigms and sequences. The BOLD conditions showed a higher percent signal change relative to DfMRI; however, event-related DfMRI showed the strongest group activation (t = 21.23, P < 0.0005). Activation was more diffuse and spatially closer to the BOLD response for DfMRI when the block design was used. DfMRIevent showed the shortest TTP (4.4 ± 0.88 sec). The hemodynamic contribution to DfMRI may increase with the use of block designs. © 2013 Wiley Periodicals, Inc.

  12. Benign and malignant skull-involved lesions: discriminative value of conventional CT and MRI combined with diffusion-weighted MRI.

    PubMed

    Tu, Zhanhai; Xiao, Zebin; Zheng, Yingyan; Huang, Hongjie; Yang, Libin; Cao, Dairong

    2018-01-01

    Background Little is known about the value of computed tomography (CT) and magnetic resonance imaging (MRI) combined with diffusion-weighted imaging (DWI) in distinguishing malignant from benign skull-involved lesions. Purpose To evaluate the discriminative value of DWI combined with conventional CT and MRI for differentiating between benign and malignant skull-involved lesions. Material and Methods CT and MRI findings of 58 patients with pathologically proven skull-involved lesions (43 benign and 15 malignant) were retrospectively reviewed. Conventional CT and MRI characteristics and apparent diffusion coefficient (ADC) value of the two groups were evaluated and compared. Multivariate logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the differential performance of each parameter separately and together. Results The presence of cortical defects or break-through and ill-defined margins were associated with malignant skull-involved lesions (both P < 0.05). Malignant skull-involved lesions demonstrated a significantly lower ADC ( P = 0.016) than benign lesions. ROC curve analyses indicated that a combination of CT, MRI, and DWI with an ADC ≤ 0.703 × 10 -3 mm 2 /s showed optimal sensitivity, while DWI along showed optimal specificity of 88.4% in differentiating between benign and malignant skull-involved lesions. Conclusion The combination of CT, MRI, and DWI can help to differentiate malignant from benign skull-involved lesions. CT + MRI + DWI offers optimal sensitivity, while DWI offers optimal specificity.

  13. Genes involved in prostate cancer progression determine MRI visibility

    PubMed Central

    Li, Ping; You, Sungyong; Nguyen, Christopher; Wang, Yanping; Kim, Jayoung; Sirohi, Deepika; Ziembiec, Asha; Luthringer, Daniel; Lin, Shih-Chieh; Daskivich, Timothy; Wu, Jonathan; Freeman, Michael R; Saouaf, Rola; Li, Debiao; Kim, Hyung L.

    2018-01-01

    MRI is used to image prostate cancer and target tumors for biopsy or therapeutic ablation. The objective was to understand the biology of tumors not visible on MRI that may go undiagnosed and untreated. Methods: Prostate cancers visible or invisible on multiparametric MRI were macrodissected and examined by RNAseq. Differentially expressed genes (DEGs) based on MRI visibility status were cross-referenced with publicly available gene expression databases to identify genes associated with disease progression. Genes with potential roles in determining MRI visibility and disease progression were knocked down in murine prostate cancer xenografts, and imaged by MRI. Results: RNAseq identified 1,654 DEGs based on MRI visibility status. Comparison of DEGs based on MRI visibility and tumor characteristics revealed that Gleason score (dissimilarity test, p<0.0001) and tumor size (dissimilarity test, p<0.039) did not completely determine MRI visibility. Genes in previously reported prognostic signatures significantly correlated with MRI visibility suggesting that MRI visibility was prognostic. Cross-referencing DEGs with external datasets identified four genes (PHYHD1, CENPF, ALDH2, GDF15) that predict MRI visibility, progression free survival and metastatic deposits. Genetic modification of a human prostate cancer cell line to induce miR-101 and suppress CENPF decreased cell migration and invasion. As prostate cancer xenografts in mice, these cells had decreased visibility on diffusion weighted MRI and decreased perfusion, which correlated with immunostaining showing decreased cell density and proliferation. Conclusions: Genes involved in prostate cancer prognosis and metastasis determine MRI visibility, indicating that MRI visibility has prognostic significance. MRI visibility was associated with genetic features linked to poor prognosis. PMID:29556354

  14. Fast T2*-weighted MRI of the prostate at 3 Tesla.

    PubMed

    Hardman, Rulon L; El-Merhi, Fadi; Jung, Adam J; Ware, Steve; Thompson, Ian M; Friel, Harry T; Peng, Qi

    2011-04-01

    To describe a rapid T2*-weighted (T2*W), three-dimensional (3D) echo planar imaging (EPI) sequence and its application in mapping local magnetic susceptibility variations in 3 Tesla (T) prostate MRI. To compare the sensitivity of T2*W EPI with routinely used T1-weighted turbo-spin echo sequence (T1W TSE) in detecting hemorrhage and the implications on sequences sensitive to field inhomogeneities such as MR spectroscopy (MRS). B(0) susceptibility weighted mapping was performed using a 3D EPI sequence featuring a 2D spatial excitation pulse with gradients of spiral k-space trajectory. A series of 11 subjects were imaged using 3T MRI and combination endorectal (ER) and six-channel phased array cardiac coils. T1W TSE and T2*W EPI sequences were analyzed quantitatively for hemorrhage contrast. Point resolved spectroscopy (PRESS MRS) was performed and data quality was analyzed. Two types of susceptibility variation were identified: hemorrhagic and nonhemorrhagic T2*W-positive areas. Post-biopsy hemorrhage lesions showed on average five times greater contrast on the T2*W images than T1W TSE images. Six nonhemorrhage regions of severe susceptibility artifact were apparent on the T2*W images that were not seen on standard T1W or T2W images. All nonhemorrhagic susceptibility artifact regions demonstrated compromised spectral quality on 3D MRS. The fast T2*W EPI sequence identifies hemorrhagic and nonhemorrhagic areas of susceptibility variation that may be helpful in prostate MRI planning at 3.0T. Copyright © 2011 Wiley-Liss, Inc.

  15. Dopaminergic Therapy Modulates Cortical Perfusion in Parkinson Disease With and Without Dementia According to Arterial Spin Labeled Perfusion Magnetic Resonance Imaging

    PubMed Central

    Lin, Wei-Che; Chen, Pei-Chin; Huang, Yung-Cheng; Tsai, Nai-Wen; Chen, Hsiu-Ling; Wang, Hung-Chen; Lin, Tsu-Kung; Chou, Kun-Hsien; Chen, Meng-Hsiang; Chen, Yi-Wen; Lu, Cheng-Hsien

    2016-01-01

    Abstract Arterial spin labeling (ASL) magnetic resonance imaging analyses allow for the quantification of altered cerebral blood flow, and provide a novel means of examining the impact of dopaminergic treatments. The authors examined the cerebral perfusion differences among 17 Parkinson disease (PD) patients, 17 PD with dementia (PDD) patients, and 17 healthy controls and used ASL-MRI to assess the effects of dopaminergic therapies on perfusion in the patients. The authors demonstrated progressive widespread cortical hypoperfusion in PD and PDD and robust effects for the dopaminergic therapies. Specifically, dopaminergic medications further decreased frontal lobe and cerebellum perfusion in the PD and PDD groups, respectively. These patterns of hypoperfusion could be related to cognitive dysfunctions and disease severity. Furthermore, desensitization to dopaminergic therapies in terms of cortical perfusion was found as the disease progressed, supporting the concept that long-term therapies are associated with the therapeutic window narrowing. The highly sensitive pharmaceutical response of ASL allows clinicians and researchers to easily and effectively quantify the absolute perfusion status, which might prove helpful for therapeutic planning. PMID:26844450

  16. Dopaminergic Therapy Modulates Cortical Perfusion in Parkinson Disease With and Without Dementia According to Arterial Spin Labeled Perfusion Magnetic Resonance Imaging.

    PubMed

    Lin, Wei-Che; Chen, Pei-Chin; Huang, Yung-Cheng; Tsai, Nai-Wen; Chen, Hsiu-Ling; Wang, Hung-Chen; Lin, Tsu-Kung; Chou, Kun-Hsien; Chen, Meng-Hsiang; Chen, Yi-Wen; Lu, Cheng-Hsien

    2016-02-01

    Arterial spin labeling (ASL) magnetic resonance imaging analyses allow for the quantification of altered cerebral blood flow, and provide a novel means of examining the impact of dopaminergic treatments. The authors examined the cerebral perfusion differences among 17 Parkinson disease (PD) patients, 17 PD with dementia (PDD) patients, and 17 healthy controls and used ASL-MRI to assess the effects of dopaminergic therapies on perfusion in the patients. The authors demonstrated progressive widespread cortical hypoperfusion in PD and PDD and robust effects for the dopaminergic therapies. Specifically, dopaminergic medications further decreased frontal lobe and cerebellum perfusion in the PD and PDD groups, respectively. These patterns of hypoperfusion could be related to cognitive dysfunctions and disease severity. Furthermore, desensitization to dopaminergic therapies in terms of cortical perfusion was found as the disease progressed, supporting the concept that long-term therapies are associated with the therapeutic window narrowing. The highly sensitive pharmaceutical response of ASL allows clinicians and researchers to easily and effectively quantify the absolute perfusion status, which might prove helpful for therapeutic planning.

  17. Whole-body diffusion-weighted MR image stitching and alignment to anatomical MRI

    NASA Astrophysics Data System (ADS)

    Ceranka, Jakub; Polfliet, Mathias; Lecouvet, Frederic; Michoux, Nicolas; Vandemeulebroucke, Jef

    2017-02-01

    Whole-body diffusion-weighted (WB-DW) MRI in combination with anatomical MRI has shown a great poten- tial in bone and soft tissue tumour detection, evaluation of lymph nodes and treatment response assessment. Because of the vast body coverage, whole-body MRI is acquired in separate stations, which are subsequently combined into a whole-body image. However, inter-station and inter-modality image misalignments can occur due to image distortions and patient motion during acquisition, which may lead to inaccurate representations of patient anatomy and hinder visual assessment. Automated and accurate whole-body image formation and alignment of the multi-modal MRI images is therefore crucial. We investigated several registration approaches for the formation or stitching of the whole-body image stations, followed by a deformable alignment of the multi- modal whole-body images. We compared a pairwise approach, where diffusion-weighted (DW) image stations were sequentially aligned to a reference station (pelvis), to a groupwise approach, where all stations were simultaneously mapped to a common reference space while minimizing the overall transformation. For each, a choice of input images and corresponding metrics was investigated. Performance was evaluated by assessing the quality of the obtained whole-body images, and by verifying the accuracy of the alignment with whole-body anatomical sequences. The groupwise registration approach provided the best compromise between the formation of WB- DW images and multi-modal alignment. The fully automated method was found to be robust, making its use in the clinic feasible.

  18. Glioblastoma: Vascular Habitats Detected at Preoperative Dynamic Susceptibility-weighted Contrast-enhanced Perfusion MR Imaging Predict Survival.

    PubMed

    Juan-Albarracín, Javier; Fuster-Garcia, Elies; Pérez-Girbés, Alexandre; Aparici-Robles, Fernando; Alberich-Bayarri, Ángel; Revert-Ventura, Antonio; Martí-Bonmatí, Luis; García-Gómez, Juan M

    2018-06-01

    Purpose To determine if preoperative vascular heterogeneity of glioblastoma is predictive of overall survival of patients undergoing standard-of-care treatment by using an unsupervised multiparametric perfusion-based habitat-discovery algorithm. Materials and Methods Preoperative magnetic resonance (MR) imaging including dynamic susceptibility-weighted contrast material-enhanced perfusion studies in 50 consecutive patients with glioblastoma were retrieved. Perfusion parameters of glioblastoma were analyzed and used to automatically draw four reproducible habitats that describe the tumor vascular heterogeneity: high-angiogenic and low-angiogenic regions of the enhancing tumor, potentially tumor-infiltrated peripheral edema, and vasogenic edema. Kaplan-Meier and Cox proportional hazard analyses were conducted to assess the prognostic potential of the hemodynamic tissue signature to predict patient survival. Results Cox regression analysis yielded a significant correlation between patients' survival and maximum relative cerebral blood volume (rCBV max ) and maximum relative cerebral blood flow (rCBF max ) in high-angiogenic and low-angiogenic habitats (P < .01, false discovery rate-corrected P < .05). Moreover, rCBF max in the potentially tumor-infiltrated peripheral edema habitat was also significantly correlated (P < .05, false discovery rate-corrected P < .05). Kaplan-Meier analysis demonstrated significant differences between the observed survival of populations divided according to the median of the rCBV max or rCBF max at the high-angiogenic and low-angiogenic habitats (log-rank test P < .05, false discovery rate-corrected P < .05), with an average survival increase of 230 days. Conclusion Preoperative perfusion heterogeneity contains relevant information about overall survival in patients who undergo standard-of-care treatment. The hemodynamic tissue signature method automatically describes this heterogeneity, providing a set of vascular habitats with high

  19. Early MRI changes in glioblastoma in the period between surgery and adjuvant therapy.

    PubMed

    Farace, Paolo; Amelio, Dante; Ricciardi, Giuseppe K; Zoccatelli, Giada; Magon, Stefano; Pizzini, Francesca; Alessandrini, Franco; Sbarbati, Andrea; Amichetti, Maurizio; Beltramello, Alberto

    2013-01-01

    To investigate the increase in MRI contrast enhancement (CE) occurring in glioblastoma during the period between surgery and initiation of chemo-radiotherapy, thirty-seven patients with newly diagnosed glioblastoma were analyzed by early post-operative magnetic resonance (EPMR) imaging within three days of surgery and by pre-adjuvant magnetic resonance (PAMR) examination before adjuvant therapy. Areas of new CE were investigated by use of EPMR diffusion-weighted imaging and PAMR perfusion imaging (by arterial spin-labeling). PAMR was acquired, on average, 29.9 days later than EPMR (range 20-37 days). During this period an increased area of CE was observed for 17/37 patients. For 3/17 patients these regions were confined to areas of reduced EPMR diffusion, suggesting postsurgical infarct. For the other 14/17 patients, these areas suggested progression. For 11/17 patients the co-occurrence of hyperperfusion in PAMR perfusion suggested progression. PAMR perfusion and EPMR diffusion did not give consistent results for 3/17 patients for whom small new areas of CE were observed, presumably because of the poor spatial resolution of perfusion imaging. Before initiation of adjuvant therapy, areas of new CE of resected glioblastomas are frequently observed. Most of these suggest tumor progression, according to EPMR diffusion and PAMR perfusion criteria.

  20. Support vector machine for breast cancer classification using diffusion-weighted MRI histogram features: Preliminary study.

    PubMed

    Vidić, Igor; Egnell, Liv; Jerome, Neil P; Teruel, Jose R; Sjøbakk, Torill E; Østlie, Agnes; Fjøsne, Hans E; Bathen, Tone F; Goa, Pål Erik

    2018-05-01

    Diffusion-weighted MRI (DWI) is currently one of the fastest developing MRI-based techniques in oncology. Histogram properties from model fitting of DWI are useful features for differentiation of lesions, and classification can potentially be improved by machine learning. To evaluate classification of malignant and benign tumors and breast cancer subtypes using support vector machine (SVM). Prospective. Fifty-one patients with benign (n = 23) and malignant (n = 28) breast tumors (26 ER+, whereof six were HER2+). Patients were imaged with DW-MRI (3T) using twice refocused spin-echo echo-planar imaging with echo time / repetition time (TR/TE) = 9000/86 msec, 90 × 90 matrix size, 2 × 2 mm in-plane resolution, 2.5 mm slice thickness, and 13 b-values. Apparent diffusion coefficient (ADC), relative enhanced diffusivity (RED), and the intravoxel incoherent motion (IVIM) parameters diffusivity (D), pseudo-diffusivity (D*), and perfusion fraction (f) were calculated. The histogram properties (median, mean, standard deviation, skewness, kurtosis) were used as features in SVM (10-fold cross-validation) for differentiation of lesions and subtyping. Accuracies of the SVM classifications were calculated to find the combination of features with highest prediction accuracy. Mann-Whitney tests were performed for univariate comparisons. For benign versus malignant tumors, univariate analysis found 11 histogram properties to be significant differentiators. Using SVM, the highest accuracy (0.96) was achieved from a single feature (mean of RED), or from three feature combinations of IVIM or ADC. Combining features from all models gave perfect classification. No single feature predicted HER2 status of ER + tumors (univariate or SVM), although high accuracy (0.90) was achieved with SVM combining several features. Importantly, these features had to include higher-order statistics (kurtosis and skewness), indicating the importance to account for heterogeneity. Our

  1. Perfusion kinetics in human brain tumor with DCE-MRI derived model and CFD analysis.

    PubMed

    Bhandari, A; Bansal, A; Singh, A; Sinha, N

    2017-07-05

    Cancer is one of the leading causes of death all over the world. Among the strategies that are used for cancer treatment, the effectiveness of chemotherapy is often hindered by factors such as irregular and non-uniform uptake of drugs inside tumor. Thus, accurate prediction of drug transport and deposition inside tumor is crucial for increasing the effectiveness of chemotherapeutic treatment. In this study, a computational model of human brain tumor is developed that incorporates dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) data into a voxelized porous media model. The model takes into account realistic transport and perfusion kinetics parameters together with realistic heterogeneous tumor vasculature and accurate arterial input function (AIF), which makes it patient specific. The computational results for interstitial fluid pressure (IFP), interstitial fluid velocity (IFV) and tracer concentration show good agreement with the experimental results. The computational model can be extended further for predicting the deposition of chemotherapeutic drugs in tumor environment as well as selection of the best chemotherapeutic drug for a specific patient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Twelve-month prostate volume reduction after MRI-guided transurethral ultrasound ablation of the prostate.

    PubMed

    Bonekamp, David; Wolf, M B; Roethke, M C; Pahernik, S; Hadaschik, B A; Hatiboglu, G; Kuru, T H; Popeneciu, I V; Chin, J L; Billia, M; Relle, J; Hafron, J; Nandalur, K R; Staruch, R M; Burtnyk, M; Hohenfellner, M; Schlemmer, H-P

    2018-06-25

    To quantitatively assess 12-month prostate volume (PV) reduction based on T2-weighted MRI and immediate post-treatment contrast-enhanced MRI non-perfused volume (NPV), and to compare measurements with predictions of acute and delayed ablation volumes based on MR-thermometry (MR-t), in a central radiology review of the Phase I clinical trial of MRI-guided transurethral ultrasound ablation (TULSA) in patients with localized prostate cancer. Treatment day MRI and 12-month follow-up MRI and biopsy were available for central radiology review in 29 of 30 patients from the published institutional review board-approved, prospective, multi-centre, single-arm Phase I clinical trial of TULSA. Viable PV at 12 months was measured as the remaining PV on T2-weighted MRI, less 12-month NPV, scaled by the fraction of fibrosis in 12-month biopsy cores. Reduction of viable PV was compared to predictions based on the fraction of the prostate covered by the MR-t derived acute thermal ablation volume (ATAV, 55°C isotherm), delayed thermal ablation volume (DTAV, 240 cumulative equivalent minutes at 43°C thermal dose isocontour) and treatment-day NPV. We also report linear and volumetric comparisons between metrics. After TULSA, the median 12-month reduction in viable PV was 88%. DTAV predicted a reduction of 90%. Treatment day NPV predicted only 53% volume reduction, and underestimated ATAV and DTAV by 36% and 51%. Quantitative volumetry of the TULSA phase I MR and biopsy data identifies DTAV (240 CEM43 thermal dose boundary) as a useful predictor of viable prostate tissue reduction at 12 months. Immediate post-treatment NPV underestimates tissue ablation. • MRI-guided transurethral ultrasound ablation (TULSA) achieved an 88% reduction of viable prostate tissue volume at 12 months, in excellent agreement with expectation from thermal dose calculations. • Non-perfused volume on immediate post-treatment contrast-enhanced MRI represents only 64% of the acute thermal ablation volume

  3. Diffusion-weighted MRI monitoring of pancreatic cancer response to radiofrequency heat-enhanced intratumor chemotherapy.

    PubMed

    Zhang, Tong; Zhang, Feng; Meng, Yanfeng; Wang, Han; Le, Thomas; Wei, Baojie; Lee, Donghoon; Willis, Patrick; Shen, Baozhong; Yang, Xiaoming

    2013-12-01

    The aim of this study was to evaluate the feasibility of using diffusion-weighted MRI to monitor the early response of pancreatic cancers to radiofrequency heat (RFH)-enhanced chemotherapy. Human pancreatic carcinoma cells (PANC-1) in different groups and 24 mice with pancreatic cancer xenografts in four groups were treated with phosphate-buffered saline (PBS) as a control, RFH at 42 °C, gemcitabine and gemcitabine plus RFH at 42 °C. One day before and 1, 7 and 14 days after treatment, diffusion-weighted MRI and T2 -weighted imaging were applied to monitor the apparent diffusion coefficients (ADCs) of tumors and tumor growth. MRI findings were correlated with the results of tumor apoptosis analysis. In the in vitro experiments, the quantitative viability assay showed lower relative cell viabilities for treatment with gemcitabine plus RFH at 42 °C relative to treatment with RFH only and gemcitabine only (37 ± 5% versus 65 ± 4% and 58 ± 8%, respectively, p < 0.05). In the in vivo experiments, the combination therapy resulted in smaller relative tumor volumes than RFH only and chemotherapy only (0.82 ± 0.17 versus 2.23 ± 0.90 and 1.64 ± 0.44, respectively, p = 0.003). In vivo, 14-T MRI demonstrated a remarkable decrease in ADCs at day 1 and increased ADCs at days 7 and 14 in the combination therapy group. The apoptosis index in the combination therapy group was significantly higher than those in the chemotherapy-only, RFH-only and PBS treatment groups (37 ± 6% versus 20 ± 5%, 8 ± 2% and 3 ± 1%, respectively, p < 0.05). This study confirms that it is feasible to use MRI to monitor RFH-enhanced chemotherapy in pancreatic cancers, which may present new options for the efficient treatment of pancreatic malignancies using MRI/RFH-integrated local chemotherapy. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia.

    PubMed

    Wintermark, P; Hansen, A; Warfield, S K; Dukhovny, D; Soul, J S

    2014-01-15

    The measurement of brain perfusion may provide valuable information for assessment and treatment of newborns with hypoxic-ischemic encephalopathy (HIE). While arterial spin labeled perfusion (ASL) magnetic resonance imaging (MRI) provides noninvasive and direct measurements of regional cerebral blood flow (CBF) values, it is logistically challenging to obtain. Near-infrared spectroscopy (NIRS) might be an alternative, as it permits noninvasive and continuous monitoring of cerebral hemodynamics and oxygenation at the bedside. The purpose of this study is to determine the correlation between measurements of brain perfusion by NIRS and by MRI in term newborns with HIE treated with hypothermia. In this prospective cohort study, ASL-MRI and NIRS performed during hypothermia were used to assess brain perfusion in these newborns. Regional cerebral blood flow (CBF) values, measured from 1-2 MRI scans for each patient, were compared to mixed venous saturation values (SctO2) recorded by NIRS just before and after each MRI. Analysis included groupings into moderate versus severe HIE based on their initial background pattern of amplitude-integrated electroencephalogram. Twelve concomitant recordings were obtained of seven neonates. Strong correlation was found between SctO2 and CBF in asphyxiated newborns with severe HIE (r=0.88; p value=0.0085). Moreover, newborns with severe HIE had lower CBF (likely lower oxygen supply) and extracted less oxygen (likely lower oxygen demand or utilization) when comparing SctO2 and CBF to those with moderate HIE. NIRS is an effective bedside tool to monitor and understand brain perfusion changes in term asphyxiated newborns, which in conjunction with precise measurements of CBF obtained by MRI at particular times, may help tailor neuroprotective strategies in term newborns with HIE. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Near-Infrared Spectroscopy versus Magnetic Resonance Imaging To Study Brain Perfusion in Newborns with Hypoxic-Ischemic Encephalopathy Treated with Hypothermia

    PubMed Central

    Wintermark, P.; Hansen, A.; Warfield, SK.; Dukhovny, D.; Soul, JS.

    2014-01-01

    Background The measurement of brain perfusion may provide valuable information for assessment and treatment of newborns with hypoxic-ischemic encephalopathy (HIE). While arterial spin labeled perfusion (ASL) magnetic resonance imaging (MRI) provides noninvasive and direct measurements of regional cerebral blood flow (CBF) values, it is logistically challenging to obtain. Near-infrared spectroscopy (NIRS) might be an alternative, as it permits noninvasive and continuous monitoring of cerebral hemodynamics and oxygenation at the bedside. Objective The purpose of this study is to determine the correlation between measurements of brain perfusion by NIRS and by MRI in term newborns with HIE treated with hypothermia. Design/Methods In this prospective cohort study, ASL-MRI and NIRS performed during hypothermia were used to assess brain perfusion in these newborns. Regional cerebral blood flow values (CBF), measured from 1–2 MRI scans for each patient, were compared to mixed venous saturation values (SctO2) recorded by NIRS just before and after each MRI. Analysis included groupings into moderate versus severe HIE based on their initial background pattern of amplitude-integrated electroencephalogram. Results Twelve concomitant recordings were obtained of seven neonates. Strong correlation was found between SctO2 and CBF in asphyxiated newborns with severe HIE (r = 0.88; p value = 0.0085). Moreover, newborns with severe HIE had lower CBF (likely lower oxygen supply) and extracted less oxygen (likely lower oxygen demand or utilization) when comparing SctO2 and CBF to those with moderate HIE. Conclusions NIRS is an effective bedside tool to monitor and understand brain perfusion changes in term asphyxiated newborns, which in conjunction with precise measurements of CBF obtained by MRI at particular times, may help tailor neuroprotective strategies in term newborns with HIE. PMID:23631990

  6. First in vivo magnetic particle imaging of lung perfusion in rats

    NASA Astrophysics Data System (ADS)

    Zhou, Xinyi Y.; Jeffris, Kenneth E.; Yu, Elaine Y.; Zheng, Bo; Goodwill, Patrick W.; Nahid, Payam; Conolly, Steven M.

    2017-05-01

    Pulmonary embolism (PE), along with the closely related condition of deep vein thrombosis, affect an estimated 600 000 patients in the US per year. Untreated, PE carries a mortality rate of 30%. Because many patients experience mild or non-specific symptoms, imaging studies are necessary for definitive diagnosis of PE. Iodinated CT pulmonary angiography is recommended for most patients, while nuclear medicine-based ventilation/perfusion (V/Q) scans are reserved for patients in whom the use of iodine is contraindicated. Magnetic particle imaging (MPI) is an emerging tracer imaging modality with high image contrast (no tissue background signal) and sensitivity to superparamagnetic iron oxide (SPIO) tracer. Importantly, unlike CT or nuclear medicine, MPI uses no ionizing radiation. Further, MPI is not derived from magnetic resonance imaging (MRI); MPI directly images SPIO tracers via their strong electronic magnetization, enabling deep imaging of anatomy including within the lungs, which is very challenging with MRI. Here, the first high-contrast in vivo MPI lung perfusion images of rats are shown using a novel lung perfusion agent, MAA-SPIOs.

  7. Tumor Vessel Compression Hinders Perfusion of Ultrasonographic Contrast Agents1

    PubMed Central

    Galiè, Mirco; D'Onofrio, Mirko; Montani, Maura; Amici, Augusto; Calderan, Laura; Marzola, Pasquina; Benati, Donatella; Merigo, Flavia; Marchini, Cristina; Sbarbati, Andrea

    2005-01-01

    Abstract Contrast-enhanced ultrasound (CEUS) is an advanced approach to in vivo assessment of tumor vascularity and is being increasingly adopted in clinical oncology. It is based on 1- to 10 µm-sized gas microbubbles, which can cross the capillary beds of the lungs and are effective echo enhancers. It is known that high cell density, high transendothelial fluid exchange, and poorly functioning lymphatic circulation all provoke solid stress, which compresses vessels and drastically reduces tumor blood flow. Given their size, we supposed that the perfusion of microbubbles is affected by anatomic features of tumor vessels more than are contrast agents traditionally used in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Here, we compared dynamic information obtained from CEUS and DCE-MRI on two experimental tumor models exhibiting notable differences in vessel anatomy. We found that tumors with small, flattened vessels show a much higher resistance to microbubble perfusion than to MRI contrast agents, and appear scarcely vascularized at CEUS examination, despite vessel volume adequate for normal function. Thus, whereas CEUS alone could induce incorrect diagnosis when tumors have small or collapsed vessels, integrated analysis using CEUS and DCE-MRI allows in vivo identification of tumors with a vascular profile frequently associated with malignant phenotypes. PMID:15967105

  8. Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress

    NASA Astrophysics Data System (ADS)

    Wang, Jiongjiong; Rao, Hengyi; Wetmore, Gabriel S.; Furlan, Patricia M.; Korczykowski, Marc; Dinges, David F.; Detre, John A.

    2005-12-01

    Despite the prevalence of stress in everyday life and its impact on happiness, health, and cognition, little is known about the neural substrate of the experience of everyday stress in humans. We use a quantitative and noninvasive neuroimaging technique, arterial spin-labeling perfusion MRI, to measure cerebral blood flow (CBF) changes associated with mild to moderate stress induced by a mental arithmetic task with performance monitoring. Elicitation of stress was verified by self-report of stress and emotional state and measures of heart rate and salivary-cortisol level. The change in CBF induced by the stress task was positively correlated with subjective stress rating in the ventral right prefrontal cortex (RPFC) and left insula/putamen area. The ventral RPFC along with right insula/putamen and anterior cingulate showed sustained activation after task completion in subjects reporting a high stress level during arithmetic tasks. Additionally, variations of baseline CBF in the ventral RPFC and right orbitofrontal cortex were found to correlate with changes in salivary-cortisol level and heart rate caused by undergoing stress tasks. We further demonstrated that the observed right prefrontal activation could not be attributed to increased cognitive demand accompanying stress tasks and extended beyond neural pathways associated with negative emotions. Our results provide neuroimaging evidence that psychological stress induces negative emotion and vigilance and that the ventral RPFC plays a key role in the central stress response. anterior cingulate cortex | arterial spin labeling | right prefrontal cortex

  9. Radiofrequency thermal ablation in canine femur: evaluation of coagulation necrosis reproducibility and MRI-histopathologic correlation.

    PubMed

    Lee, Jeong Min; Choi, Seong Hong; Park, Hee Seon; Lee, Min Woo; Han, Chang Jin; Choi, Joon-il; Choi, Ja-Young; Hong, Sung Hwan; Han, Joon Koo; Choi, Byung Ihn

    2005-09-01

    Our purposes were to determine whether a single application of radiofrequency energy to normal bone can create coagulation necrosis reproducibly and to assess the accuracy of MRI at revealing the extent of radiofrequency-induced thermal bone injury. Using a 200-W generator and a 17-gauge cooled-tip electrode, a total of 11 radiofrequency ablations were performed under fluoroscopic guidance in the distal femurs of seven dogs. Radiofrequency was applied in standard monopolar mode at 100 W for 10 min. During radiofrequency ablation, the changes in impedance and currents were recorded. MRI, including unenhanced T1- and T2-weighted images and contrast-enhanced fat-suppressed T1-weighted images, was performed to evaluate ablation regions. Six dogs were killed on day 4 after MRI and one dog on day 7. In all animals, radiofrequency ablation created a well-defined coagulation necrosis and no significant complications were noted. The mean long-axis diameter and the mean short-axis diameter of the coagulation zones produced were 45.9 +/- 5.5 mm and 17.7 +/- 2.7 mm, respectively. At gross examination, thermal ablation regions appeared as a central, light-brown area with a dark-brown peripheral hemorrhagic zone, which was surrounded by a pale-yellow rim. On MRI, the ablated areas showed multilayered zones with signal intensities that differed from normal marrow on unenhanced images and a perfusion defect on contrast-enhanced T1-weighted images. The maximum difference between lesion sizes on MR images, established by measuring macroscopic coagulation necrosis, was 3 mm. The correlation between the diameter of coagulation necrosis and lesion size at MRI was strong, with correlation coefficients ranging from 0.89 for unenhanced T1-weighted images and 0.97 for unenhanced T2-weighted images to 0.98 for contrast-enhanced T1-weighted images (p < 0.05). Radiofrequency ablation created well-defined coagulation necrosis in a reproducible manner, and MRI accurately determined the extent

  10. Effects of resting state condition on reliability, trait specificity, and network connectivity of brain function measured with arterial spin labeled perfusion MRI.

    PubMed

    Li, Zhengjun; Vidorreta, Marta; Katchmar, Natalie; Alsop, David C; Wolf, Daniel H; Detre, John A

    2018-06-01

    Resting state fMRI (rs-fMRI) provides imaging biomarkers of task-independent brain function that can be associated with clinical variables or modulated by interventions such as behavioral training or pharmacological manipulations. These biomarkers include time-averaged regional brain function as manifested by regional cerebral blood flow (CBF) measured using arterial spin labeled (ASL) perfusion MRI and correlated temporal fluctuations of function across brain networks with either ASL or blood oxygenation level dependent (BOLD) fMRI. Resting-state studies are typically carried out using just one of several prescribed state conditions such as eyes closed (EC), eyes open (EO), or visual fixation on a cross-hair (FIX), which may affect the reliability and specificity of rs-fMRI. In this study, we collected test-retest ASL MRI data during 4 resting-state task conditions: EC, EO, FIX and PVT (low-frequency psychomotor vigilance task), and examined the effects of these task conditions on reliability and reproducibility as well as trait specificity of regional brain function. We also acquired resting-state BOLD fMRI under FIX and compared the network connectivity reliabilities between the four ASL conditions and the BOLD FIX condition. For resting-state ASL data, EC provided the highest CBF reliability, reproducibility, trait specificity, and network connectivity reliability, followed by EO, while FIX was lowest on all of these measures. PVT demonstrated lower CBF reliability, reproducibility and trait specificity than EO and EC. Overall network connectivity reliability was comparable between ASL and BOLD. Our findings confirm ASL CBF as a reliable, stable, and consistent measure of resting-state regional brain function and support the use of EC or EO over FIX and PVT as the resting-state condition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Dynamic susceptibility contrast (DSC) perfusion MRI in differential diagnosis between radionecrosis and neoangiogenesis in cerebral metastases using rCBV, rCBF and K2.

    PubMed

    Muto, Mario; Frauenfelder, Giulia; Senese, Rossana; Zeccolini, Fabio; Schena, Emiliano; Giurazza, Francesco; Jäger, Hans Rolf

    2018-07-01

    Distinction between treatment-related changes and tumour recurrence in patients who have received radiation treatment for brain metastases can be difficult on conventional MRI. In this study, we investigated the ability of dynamic susceptibility contrast (DSC) perfusion in differentiating necrotic changes from pathological angiogenesis and compared measurements of relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF) and K2, using a dedicated software. Twenty-nine patients with secondary brain tumors were included in this retrospective study and underwent DSC perfusion MRI with a 3-month follow-up imaging after chemo- or radiation-therapy. Region-of-interests were drawn around the contrast enhancing lesions and measurements of rCBV, rCBF and K2 were performed in all patients. Based on subsequent histological examination or clinico-radiological follow-up, the cohort was divided in two groups: recurrent disease and stable disease. Differences between the two groups were analyzed using the Student's t test. Sensitivity, specificity and diagnostic accuracy of rCBV measurements were analyzed considering three different cut-off values. Between patients with and without disease, only rCBV and rCBF values were significant (p < 0.05). The only cut-off value giving the best diagnostic accuracy of 100% was rCBV = 2.1 (sensitivity = 100%; specificity = 100%). Patients with tumor recurrence showed a higher mean value of rCBV (mean = 4.28, standard deviation = 2.09) than patients with necrotic-related changes (mean = 0.77, standard deviation = 0.44). DSC-MRI appears a clinically useful method to differentiate between tumor recurrence, tumor necrosis and pseudoprogression in patients treated for cerebral metastases. Relative CBV using a cut-off value of 2.1 proved to be the most accurate and reliable parameter.

  12. Comparison of gadolinium-EOB-DTPA-enhanced and diffusion-weighted liver MRI for detection of small hepatic metastases.

    PubMed

    Shimada, Kotaro; Isoda, Hiroyoshi; Hirokawa, Yuusuke; Arizono, Shigeki; Shibata, Toshiya; Togashi, Kaori

    2010-11-01

    To compare the accuracy of gadolinium ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI with that of diffusion-weighted MRI (DWI) in the detection of small hepatic metastases (2 cm or smaller). Forty-five patients underwent abdominal MRI at 3 T, including T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), heavily T2WI (HASTE), DWI with a b-value of 500 s/mm(2) and contrast-enhanced MRI with Gd-EOB-DTPA. Two groups were assigned and compared: group A (T1WI, T2WI, HASTE and contrast-enhanced study with Gd-EOB-DTPA), and group B (T1WI, T2WI, HASTE and DWI). Two observers independently interpreted the images obtained in a random order. For all hepatic metastases, the diagnostic performance using each imaging set was evaluated by receiver-operating characteristic (ROC) curve analysis. A total of 51 hepatic metastases were confirmed. The area under the ROC curve (Az) of group A was larger than that of group B, and the difference in the mean Az values between the two image sets was statistically significant, whereas, there were three metastases that lay near thin vessels or among multiple cysts and were better visualised in group B than in group A. Gd-EOB-DTPA-enhanced MRI showed higher accuracy in the detection of small metastases than DWI.

  13. Stress Perfusion Coronary Flow Reserve Versus Cardiac Magnetic Resonance for Known or Suspected CAD.

    PubMed

    Kato, Shingo; Saito, Naka; Nakachi, Tatsuya; Fukui, Kazuki; Iwasawa, Tae; Taguri, Masataka; Kosuge, Masami; Kimura, Kazuo

    2017-08-15

    Phase-contrast (PC) cine magnetic resonance imaging (MRI) of the coronary sinus is a noninvasive method to quantify coronary flow reserve (CFR). This study sought to compare the prognostic value of CFR by cardiac magnetic resonance (CMR) and stress perfusion CMR to predict major adverse cardiac events (MACE). Participants included 276 patients with known coronary artery disease (CAD) and 400 with suspected CAD. CFR was calculated as myocardial blood flow during adenosine triphosphate infusion divided by myocardial blood flow at rest using PC cine MRI of the coronary sinus. During a median follow-up of 2.3 years, 47 patients (7%) experienced MACE. Impaired CFR (<2.0) and >10% ischemia on stress perfusion CMR were significantly associated with MACE in patients with known CAD (hazard ratio [HR]: 5.17 and HR: 5.10, respectively) and suspected CAD (HR: 14.16 and HR: 6.50, respectively). The area under the curve for predicting MACE was 0.773 for CFR and 0.731 for stress perfusion CMR (p = 0.58) for patients with known CAD, and 0.885 for CFR and 0.776 for stress perfusion CMR (p = 0.059) in the group with suspected CAD. In patients with known CAD, sensitivity, specificity, and positive and negative predictive values to predict MACE were 64%, 91%, 38%, and 97%, respectively, for CFR, and 82%, 59%, 15%, and 97%, respectively, for stress perfusion CMR. In the suspected CAD group, these values were 65%, 99%, 80%, and 97%, respectively, for CFR, and 72%, 83%, 22%, and 98%, respectively, for stress perfusion CMR. The predictive values of CFR and stress perfusion CMR for MACE were comparable in patients with known CAD. In patients with suspected CAD, CFR showed higher HRs and areas under the curve than stress perfusion CMR, suggesting that CFR assessment by PC cine MRI might provide better risk stratification for patients with suspected CAD. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. Association of cartilage degeneration with four year weight gain– 3T MRI data from the Osteoarthritis Initiative

    PubMed Central

    Bucknor, Matthew D.; Nardo, Lorenzo; Joseph, Gabby B.; Alizai, Hamza; Srikhum, Waraporn; Nevitt, Michael C.; Lynch, John A.; McCulloch, Charles E.; Link, Thomas M.

    2015-01-01

    Objective To determine the effect of weight gain on progression of early knee morphologic abnormalities using magnetic resonance imaging (MRI) in a longitudinal study over 48 months. Design We studied the right knee of 100 subjects from the Osteoarthritis Initiative, selecting subjects aged ≥ 45 with osteoarthritis risk factors who demonstrated weight gain (minimum 5% increase in body mass index, BMI, n=50) or no change in weight (BMI change < 2%, n=50), frequency matched for age, gender, and baseline BMI. Baseline and 48 month knee MRI studies were scored for lesions using a modified whole organ MRI score (WORMS). Logistic regression models were used to compare the differences between the two groups. Results The odds of worsening maximum cartilage (11.3, 95%, CI 3.5–51.4) and meniscal WORMS (4.5, 95% CI 1.4–17.3) were significantly greater in the weight gain group compared to the no change group, in addition to the odds of worsening cartilage defects at the patella and average meniscal WORMS (p<0.05). Odds of worsening average bone marrow edema pattern (BMEP) were significantly greater for the weight gain group compared to the no change cohort (p<0.05). Conclusion Our study demonstrated that weight gain is strongly associated with increased progression of cartilage degeneration in middle-aged individuals with risk factors for osteoarthritis. PMID:25591445

  15. Using Perfusion fMRI to Measure Continuous Changes in Neural Activity with Learning

    ERIC Educational Resources Information Center

    Olson, Ingrid R.; Rao, Hengyi; Moore, Katherine Sledge; Wang, Jiongjiong; Detre, John A.; Aguirre, Geoffrey K.

    2006-01-01

    In this study, we examine the suitability of a relatively new imaging technique, "arterial spin labeled perfusion imaging," for the study of continuous, gradual changes in neural activity. Unlike BOLD imaging, the perfusion signal is stable over long time-scales, allowing for accurate assessment of continuous performance. In addition, perfusion…

  16. Diffusion-weighted MRI in intrahepatic bile duct adenoma arising from the cirrhotic liver.

    PubMed

    An, Chansik; Park, Sumi; Choi, Yoon Jung

    2013-01-01

    A 64-year-old male patient with liver cirrhosis underwent a CT study for hepatocellular carcinoma surveillance, which demonstrated a 1.4-cm hypervascular subcapsular tumor in the liver. On gadoxetic acid-enhanced MRI, the tumor showed brisk arterial enhancement and persistent hyperenhancement in the portal phase, but hypointensity in the hepatobiliary phase. On diffusion-weighted MRI, the tumor showed an apparent diffusion coefficient twofold greater than that of the background liver parenchyma, which suggested that the lesion was benign. The histologic diagnosis was intrahepatic bile duct adenoma with alcoholic liver cirrhosis.

  17. Fully automated processing of fMRI data in SPM: from MRI scanner to PACS.

    PubMed

    Maldjian, Joseph A; Baer, Aaron H; Kraft, Robert A; Laurienti, Paul J; Burdette, Jonathan H

    2009-01-01

    Here we describe the Wake Forest University Pipeline, a fully automated method for the processing of fMRI data using SPM. The method includes fully automated data transfer and archiving from the point of acquisition, real-time batch script generation, distributed grid processing, interface to SPM in MATLAB, error recovery and data provenance, DICOM conversion and PACS insertion. It has been used for automated processing of fMRI experiments, as well as for the clinical implementation of fMRI and spin-tag perfusion imaging. The pipeline requires no manual intervention, and can be extended to any studies requiring offline processing.

  18. Comparing kidney perfusion using noncontrast arterial spin labeling MRI and microsphere methods in an interventional swine model.

    PubMed

    Artz, Nathan S; Wentland, Andrew L; Sadowski, Elizabeth A; Djamali, Arjang; Grist, Thomas M; Seo, Songwon; Fain, Sean B

    2011-02-01

    The purpose of this study was to assess the ability of a flow-sensitive alternating inversion recovery-arterial spin labeling (FAIR-ASL) technique to track renal perfusion changes during pharmacologic and physiologic alterations in renal blood flow using microspheres as a gold standard. Fluorescent microsphere and FAIR-ASL perfusion were compared in the cortex of the kidney for 11 swine across 4 interventional time points: (1) under baseline conditions, (2) during an acetylcholine and fluid bolus challenge to increase perfusion, (3) initially after switching to isoflurane anesthesia, and (4) after 2 hours of isoflurane anesthesia. In 10 of the 11 swine, a bag of ice was placed on the hilum of 1 kidney at the beginning of isoflurane administration to further reduce perfusion in 1 kidney. Both ASL and microspheres tracked the expected cortical perfusion changes (P < 0.02) across the interventions, including an increase in perfusion during the acetylcholine challenge and decrease during the administration of isoflurane. Both techniques also measured lower cortical perfusion in the iced compared with the non-iced kidneys (P ≤ 0.01). The ASL values were systematically lower compared with microsphere perfusion. Very good correlation (r = 0.81, P < 0.0001) was observed between the techniques, and the relationship appeared linear for perfusion values in the expected physiologic range (microsphere perfusion <550 mL/min/100 g) although ASL values saturated for perfusion >550 mL/min/100 g. Cortical perfusion measured with ASL correlated with microspheres and reliably detected changes in renal perfusion in response to physiologic challenge.

  19. Measurement of brain perfusion in newborns: Pulsed arterial spin labeling (PASL) versus pseudo-continuous arterial spin labeling (pCASL)

    PubMed Central

    Boudes, Elodie; Gilbert, Guillaume; Leppert, Ilana Ruth; Tan, Xianming; Pike, G. Bruce; Saint-Martin, Christine; Wintermark, Pia

    2014-01-01

    Background Arterial spin labeling (ASL) perfusion-weighted imaging (PWI) by magnetic resonance imaging (MRI) has been shown to be useful for identifying asphyxiated newborns at risk of developing brain injury, whether or not therapeutic hypothermia was administered. However, this technique has been only rarely used in newborns until now, because of the challenges to obtain sufficient signal-to-noise ratio (SNR) and spatial resolution in newborns. Objective To compare two methods of ASL-PWI (i.e., single inversion-time pulsed arterial spin labeling [single TI PASL], and pseudo-continuous arterial spin labeling [pCASL]) to assess brain perfusion in asphyxiated newborns treated with therapeutic hypothermia and in healthy newborns. Design/methods We conducted a prospective cohort study of term asphyxiated newborns meeting the criteria for therapeutic hypothermia; four additional healthy term newborns were also included as controls. Each of the enrolled newborns was scanned at least once during the first month of life. Each MRI scan included conventional anatomical imaging, as well as PASL and pCASL PWI-MRI. Control and labeled images were registered separately to reduce the effect of motion artifacts. For each scan, the axial slice at the level of the basal ganglia was used for comparisons. Each scan was scored for its image quality. Quantification of whole-slice cerebral blood flow (CBF) was done afterwards using previously described formulas. Results A total number of 61 concomitant PASL and pCASL scans were obtained in nineteen asphyxiated newborns treated with therapeutic hypothermia and four healthy newborns. After discarding the scans with very poor image quality, 75% (46/61) remained for comparison between the two ASL methods. pCASL images presented a significantly superior image quality score compared to PASL images (p < 0.0001). Strong correlation was found between the CBF measured by PASL and pCASL (r = 0.61, p < 0.0001). Conclusion This study

  20. Medial tibial pain: a dynamic contrast-enhanced MRI study.

    PubMed

    Mattila, K T; Komu, M E; Dahlström, S; Koskinen, S K; Heikkilä, J

    1999-09-01

    The purpose of this study was to compare the sensitivity of different magnetic resonance imaging (MRI) sequences to depict periosteal edema in patients with medial tibial pain. Additionally, we evaluated the ability of dynamic contrast-enhanced imaging (DCES) to depict possible temporal alterations in muscular perfusion within compartments of the leg. Fifteen patients with medial tibial pain were examined with MRI. T1-, T2-weighted, proton density axial images and dynamic and static phase post-contrast images were compared in ability to depict periosteal edema. STIR was used in seven cases to depict bone marrow edema. Images were analyzed to detect signs of compartment edema. Region-of-interest measurements in compartments were performed during DCES and compared with controls. In detecting periosteal edema, post-contrast T1-weighted images were better than spin echo T2-weighted and proton density images or STIR images, but STIR depicted the bone marrow edema best. DCES best demonstrated the gradually enhancing periostitis. Four subjects with severe periosteal edema had visually detectable pathologic enhancement during DCES in the deep posterior compartment of the leg. Percentage enhancement in the deep posterior compartment of the leg was greater in patients than in controls. The fast enhancement phase in the deep posterior compartment began slightly slower in patients than in controls, but it continued longer. We believe that periosteal edema in bone stress reaction can cause impairment of venous flow in the deep posterior compartment. MRI can depict both these conditions. In patients with medial tibial pain, MR imaging protocol should include axial STIR images (to depict bone pathology) with T1-weighted axial pre and post-contrast images, and dynamic contrast enhanced imaging to show periosteal edema and abnormal contrast enhancement within a compartment.

  1. Data-driven mapping of hypoxia-related tumor heterogeneity using DCE-MRI and OE-MRI.

    PubMed

    Featherstone, Adam K; O'Connor, James P B; Little, Ross A; Watson, Yvonne; Cheung, Sue; Babur, Muhammad; Williams, Kaye J; Matthews, Julian C; Parker, Geoff J M

    2018-04-01

    Previous work has shown that combining dynamic contrast-enhanced (DCE)-MRI and oxygen-enhanced (OE)-MRI binary enhancement maps can identify tumor hypoxia. The current work proposes a novel, data-driven method for mapping tissue oxygenation and perfusion heterogeneity, based on clustering DCE/OE-MRI data. DCE-MRI and OE-MRI were performed on nine U87 (glioblastoma) and seven Calu6 (non-small cell lung cancer) murine xenograft tumors. Area under the curve and principal component analysis features were calculated and clustered separately using Gaussian mixture modelling. Evaluation metrics were calculated to determine the optimum feature set and cluster number. Outputs were quantitatively compared with a previous non data-driven approach. The optimum method located six robustly identifiable clusters in the data, yielding tumor region maps with spatially contiguous regions in a rim-core structure, suggesting a biological basis. Mean within-cluster enhancement curves showed physiologically distinct, intuitive kinetics of enhancement. Regions of DCE/OE-MRI enhancement mismatch were located, and voxel categorization agreed well with the previous non data-driven approach (Cohen's kappa = 0.61, proportional agreement = 0.75). The proposed method locates similar regions to the previous published method of binarization of DCE/OE-MRI enhancement, but renders a finer segmentation of intra-tumoral oxygenation and perfusion. This could aid in understanding the tumor microenvironment and its heterogeneity. Magn Reson Med 79:2236-2245, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley

  2. Focal liver lesions segmentation and classification in nonenhanced T2-weighted MRI.

    PubMed

    Gatos, Ilias; Tsantis, Stavros; Karamesini, Maria; Spiliopoulos, Stavros; Karnabatidis, Dimitris; Hazle, John D; Kagadis, George C

    2017-07-01

    To automatically segment and classify focal liver lesions (FLLs) on nonenhanced T2-weighted magnetic resonance imaging (MRI) scans using a computer-aided diagnosis (CAD) algorithm. 71 FLLs (30 benign lesions, 19 hepatocellular carcinomas, and 22 metastases) on T2-weighted MRI scans were delineated by the proposed CAD scheme. The FLL segmentation procedure involved wavelet multiscale analysis to extract accurate edge information and mean intensity values for consecutive edges computed using horizontal and vertical analysis that were fed into the subsequent fuzzy C-means algorithm for final FLL border extraction. Texture information for each extracted lesion was derived using 42 first- and second-order textural features from grayscale value histogram, co-occurrence, and run-length matrices. Twelve morphological features were also extracted to capture any shape differentiation between classes. Feature selection was performed with stepwise multilinear regression analysis that led to a reduced feature subset. A multiclass Probabilistic Neural Network (PNN) classifier was then designed and used for lesion classification. PNN model evaluation was performed using the leave-one-out (LOO) method and receiver operating characteristic (ROC) curve analysis. The mean overlap between the automatically segmented FLLs and the manual segmentations performed by radiologists was 0.91 ± 0.12. The highest classification accuracies in the PNN model for the benign, hepatocellular carcinoma, and metastatic FLLs were 94.1%, 91.4%, and 94.1%, respectively, with sensitivity/specificity values of 90%/97.3%, 89.5%/92.2%, and 90.9%/95.6% respectively. The overall classification accuracy for the proposed system was 90.1%. Our diagnostic system using sophisticated FLL segmentation and classification algorithms is a powerful tool for routine clinical MRI-based liver evaluation and can be a supplement to contrast-enhanced MRI to prevent unnecessary invasive procedures. © 2017 American

  3. Arterial Perfusion Imaging–Defined Subvolume of Intrahepatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hesheng, E-mail: hesheng@umich.edu; Farjam, Reza; Feng, Mary

    2014-05-01

    Purpose: To assess whether an increase in a subvolume of intrahepatic tumor with elevated arterial perfusion during radiation therapy (RT) predicts tumor progression after RT. Methods and Materials: Twenty patients with unresectable intrahepatic cancers undergoing RT were enrolled in a prospective, institutional review board–approved study. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was performed before RT (pre-RT), after delivering ∼60% of the planned dose (mid-RT) and 1 month after completion of RT to quantify hepatic arterial perfusion. The arterial perfusions of the tumors at pre-RT were clustered into low-normal and elevated perfusion by a fuzzy clustering-based method, and the tumor subvolumesmore » with elevated arterial perfusion were extracted from the hepatic arterial perfusion images. The percentage changes in the tumor subvolumes and means of arterial perfusion over the tumors from pre-RT to mid-RT were evaluated for predicting tumor progression post-RT. Results: Of the 24 tumors, 6 tumors in 5 patients progressed 5 to 21 months after RT completion. Neither tumor volumes nor means of tumor arterial perfusion at pre-RT were predictive of treatment outcome. The mean arterial perfusion over the tumors increased significantly at mid-RT in progressive tumors compared with the responsive tumors (P=.006). From pre-RT to mid-RT, the responsive tumors had a decrease in the tumor subvolumes with elevated arterial perfusion (median, −14%; range, −75% to 65%), whereas the progressive tumors had an increase of the subvolumes (median, 57%; range, −7% to 165%) (P=.003). Receiver operating characteristic analysis of the percentage change in the subvolume for predicting tumor progression post-RT had an area under the curve of 0.90. Conclusion: The increase in the subvolume of the intrahepatic tumor with elevated arterial perfusion during RT has the potential to be a predictor for tumor progression post-RT. The tumor subvolume could be a

  4. T2-weighted MRI of the upper abdomen: comparison of four fat-suppressed T2-weighted sequences including PROPELLER (BLADE) technique.

    PubMed

    Bayramoglu, Sibel; Kilickesmez, Ozgür; Cimilli, Tan; Kayhan, Arda; Yirik, Gülseren; Islim, Filiz; Alibek, Sedat

    2010-03-01

    The aim of this study was to compare four different fat-suppressed T2-weighted sequences with different techniques with regard to image quality and lesion detection in upper abdominal magnetic resonance imaging (MRI) scans. Thirty-two consecutive patients referred for upper abdominal MRI for the evaluation of various suspected pathologies were included in this study. Different T2-weighted sequences (free-breathing navigator-triggered turbo spin-echo [TSE], free-breathing navigator-triggered TSE with restore pulse (RP), breath-hold TSE with RP, and free-breathing navigator-triggered TSE with RP using the periodically rotated overlapping parallel lines with enhanced reconstruction technique [using BLADE, a Siemens implementation of this technique]) were used on all patients. All images were assessed independently by two radiologists. Assessments of motion artifacts; the edge sharpness of the liver, pancreas, and intrahepatic vessels; depictions of the intrahepatic vessels; and overall image quality were performed qualitatively. Quantitative analysis was performed by calculation of the signal-to-noise ratios for liver tissue and gallbladder as well as contrast-to-noise ratios of liver to spleen. Liver and gallbladder signal-to-noise ratios as well as liver to spleen contrast-to-noise ratios were significantly higher (P < .05) for the BLADE technique compared to all other sequences. In qualitative analysis, the severity of motion artifacts was significantly lower with T2-weighted free-breathing navigator-triggered BLADE sequences compared to other sequences (P < .01). The edge sharpness of the liver, pancreas, and intrahepatic vessels; depictions of the intrahepatic vessels; and overall image quality were significantly better with the BLADE sequence (P < .05). The T2-weighted free-breathing navigator-triggered TSE sequence with the BLADE technique is a promising approach for reducing motion artifacts and improving image quality in upper abdominal MRI scans.

  5. High-resolution T2-weighted cervical cancer imaging: a feasibility study on ultra-high-field 7.0-T MRI with an endorectal monopole antenna.

    PubMed

    Hoogendam, Jacob P; Kalleveen, Irene M L; de Castro, Catalina S Arteaga; Raaijmakers, Alexander J E; Verheijen, René H M; van den Bosch, Maurice A A J; Klomp, Dennis W J; Zweemer, Ronald P; Veldhuis, Wouter B

    2017-03-01

    We studied the feasibility of high-resolution T 2 -weighted cervical cancer imaging on an ultra-high-field 7.0-T magnetic resonance imaging (MRI) system using an endorectal antenna of 4.7-mm thickness. A feasibility study on 20 stage IB1-IIB cervical cancer patients was conducted. All underwent pre-treatment 1.5-T MRI. At 7.0-T MRI, an external transmit/receive array with seven dipole antennae and a single endorectal monopole receive antenna were used. Discomfort levels were assessed. Following individualised phase-based B 1 + shimming, T 2 -weighted turbo spin echo sequences were completed. Patients had stage IB1 (n = 9), IB2 (n = 4), IIA1 (n = 1) or IIB (n = 6) cervical cancer. Discomfort (ten-point scale) was minimal at placement and removal of the endorectal antenna with a median score of 1 (range, 0-5) and 0 (range, 0-2) respectively. Its use did not result in adverse events or pre-term session discontinuation. To demonstrate feasibility, T 2 -weighted acquisitions from 7.0-T MRI are presented in comparison to 1.5-T MRI. Artefacts on 7.0-T MRI were due to motion, locally destructive B 1 interference, excessive B 1 under the external antennae and SENSE reconstruction. High-resolution T 2 -weighted 7.0-T MRI of stage IB1-IIB cervical cancer is feasible. The addition of an endorectal antenna is well tolerated by patients. • High resolution T 2 -weighted 7.0-T MRI of the inner female pelvis is challenging • We demonstrate a feasible approach for T 2 -weighted 7.0-T MRI of cervical cancer • An endorectal monopole receive antenna is well tolerated by participants • The endorectal antenna did not lead to adverse events or session discontinuation.

  6. Comparative study of microelectrode recording-based STN location and MRI-based STN location in low to ultra-high field (7.0 T) T2-weighted MRI images

    NASA Astrophysics Data System (ADS)

    Verhagen, Rens; Schuurman, P. Richard; van den Munckhof, Pepijn; Fiorella Contarino, M.; de Bie, Rob M. A.; Bour, Lo J.

    2016-12-01

    Objective. The correspondence between the anatomical STN and the STN observed in T2-weighted MRI images used for deep brain stimulation (DBS) targeting remains unclear. Using a new method, we compared the STN borders seen on MRI images with those estimated by intraoperative microelectrode recordings (MER). Approach. We developed a method to automatically generate a detailed estimation of STN shape and the location of its borders, based on multiple-channel MER measurements. In 33 STNs of 19 Parkinson patients, we quantitatively compared the dorsal and lateral borders of this MER-based STN model with the STN borders visualized by 1.5 T (n = 14), 3.0 T (n = 10) and 7.0 T (n = 9) T2-weighted MRI. Main results. The dorsal border was identified more dorsally on coronal T2 MRI than by the MER-based STN model, with a significant difference in the 3.0 T (range 0.97-1.19 mm) and 7.0 T (range 1.23-1.25 mm) groups. The lateral border was significantly more medial on 1.5 T (mean: 1.97 mm) and 3.0 T (mean: 2.49 mm) MRI than in the MER-based STN; a difference that was not found in the 7.0 T group. Significance. The STN extends further in the dorsal direction on coronal T2 MRI images than is measured by MER. Increasing MRI field strength to 3.0 T or 7.0 T yields similar discrepancies between MER and MRI at the dorsal STN border. In contrast, increasing MRI field strength to 7.0 T may be useful for identification of the lateral STN border and thereby improve DBS targeting.

  7. Comparison of qualitative and quantitative analysis of T2-weighted MRI scans in chronic-progressive multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Adams, Hans-Peter; Wagner, Simone; Koziol, James A.

    1998-06-01

    Magnetic resonance imaging (MRI) is routinely used for the diagnosis of multiple sclerosis (MS), and for objective assessment of the extent of disease as a marker of treatment efficacy in MS clinical trials. The purpose of this study is to compare the evaluation of T2-weighted MRI scans in MS patients using a semi-automated quantitative technique with an independent assessment by a neurologist. Baseline, 6- month, and 12-month T2-weighted MRI scans from 41 chronic progressive MS patients were examined. The lesion volume ranged from 0.50 to 51.56 cm2 (mean: 8.08 cm2). Reproducibility of the quantitative technique was assessed by the re-evaluation of a random subset of 20 scans, the coefficient of variation of the replicate determinations was 8.2%. The reproducibility of the neurologist evaluations was assessed by the re-evaluation of a random subset of 10 patients. The rank correlation between the results of the two methods was 0.097, which did not significantly differ from zero. Disease-related activity in T2-weighted MRI scans is a multi-dimensional construct, and is not adequately summarized solely by determination of lesion volume. In this setting, image analysis software should not only support storage and retrieval as sets of pixels, but should also support links to an anatomical dictionary.

  8. Readout-segmented multi-shot diffusion-weighted MRI of the knee joint in patients with juvenile idiopathic arthritis.

    PubMed

    Sauer, Alexander; Li, Mengxia; Holl-Wieden, Annette; Pabst, Thomas; Neubauer, Henning

    2017-10-12

    Diffusion-weighted MRI has been proposed as a new technique for imaging synovitis without intravenous contrast application. We investigated diagnostic utility of multi-shot readout-segmented diffusion-weighted MRI (multi-shot DWI) for synovial imaging of the knee joint in patients with juvenile idiopathic arthritis (JIA). Thirty-two consecutive patients with confirmed or suspected JIA (21 girls, median age 13 years) underwent routine 1.5 T MRI with contrast-enhanced T1w imaging (contrast-enhanced MRI) and with multi-shot DWI (RESOLVE, b-values 0-50 and 800 s/mm 2 ). Contrast-enhanced MRI, representing the diagnostic standard, and diffusion-weighted images at b = 800 s/mm 2 were separately rated by three independent blinded readers at different levels of expertise for the presence and the degree of synovitis on a modified 5-item Likert scale along with the level of subjective diagnostic confidence. Fourteen (44%) patients had active synovitis and joint effusion, nine (28%) patients showed mild synovial enhancement not qualifying for arthritis and another nine (28%) patients had no synovial signal alterations on contrast-enhanced imaging. Ratings by the 1st reader on contrast-enhanced MRI and on DWI showed substantial agreement (κ = 0.74). Inter-observer-agreement was high for diagnosing, or ruling out, active arthritis of the knee joint on contrast-enhanced MRI and on DWI, showing full agreement between 1st and 2nd reader and disagreement in one case (3%) between 1st and 3rd reader. In contrast, ratings in cases of absent vs. little synovial inflammation were markedly inconsistent on DWI. Diagnostic confidence was lower on DWI, compared to contrast-enhanced imaging. Multi-shot DWI of the knee joint is feasible in routine imaging and reliably diagnoses, or rules out, active arthritis of the knee joint in paediatric patients without the need of gadolinium-based i.v. contrast injection. Possibly due to "T2w shine-through" artifacts, DWI does not reliably

  9. Comparison of BOLD, diffusion-weighted fMRI and ADC-fMRI for stimulation of the primary visual system with a block paradigm.

    PubMed

    Nicolas, R; Gros-Dagnac, H; Aubry, F; Celsis, P

    2017-06-01

    The blood oxygen level-dependent (BOLD) effect is extensively used for functional MRI (fMRI) but presents some limitations. Diffusion-weighted fMRI (DfMRI) has been proposed as a method more tightly linked to neuronal activity. This work proposes a protocol of DfMRI acquired for several b-values and diffusion directions that is compared to gradient-echo BOLD (GE-BOLD) and to repeated spin-echo BOLD (SE-BOLD, acquisitions performed with b=0s/mm 2 ), which was also used to ensure the reproducibility of the response. A block stimulation paradigm of the primary visual system (V1) was performed in 12 healthy subjects with checkerboard alternations (2Hz frequency). DfMRI was performed at 3T with 5 b-values (b=1500, 1000, 500, 250, 0s/mm 2 ) with TR/TE=1004/93ms, Δ/δ=45.4ms/30ms, and 6 spatial directions for diffusion measures. GE-BOLD was performed with a similar block stimulation design timing. Apparent Diffusion Coefficient (ADC)-fMRI was computed with all b-values used. An identical Z-score level was used for all fMRI modalities for the comparison of volumes of activation. ADC-fMRI and SE-BOLD fMRI activation locations were compared in a voxel-based analysis to a cytoarchitectural probability map of V1. SE-BOLD activation volumes represented only 55% of the GE-BOLD activation volumes (P<0.0001). DfMRI activation volumes averaged for all b-values acquired represented only 12% of GE-BOLD (P<0.0001) and only 22% of SE-BOLD activation volumes (P<0.005). Compared to SE-BOLD-fMRI, ADC-fMRI activations showed fewer pixels outside of V1 and a higher average probability of belonging to V1. DfMRI and ADC-fMRI acquisition at 3T could be easily post-processed with common neuro-imaging software. DfMRI and ADC-fMRI activation volumes were significantly smaller than those obtained with SE-BOLD. ADC-fMRI activations were more precisely localized in V1 than those of SE-BOLD-fMRI. This validated the increased capability of ADC-fMRI compared to BOLD to enhance the precision of

  10. Update on the MRI Core of the Alzheimer's Disease Neuroimaging Initiative

    PubMed Central

    Jack, Clifford R; Bernstein, Matt A; Borowski, Bret J; Gunter, Jeffrey L; Fox, Nick C; Thompson, Paul M; Schuff, Norbert; Krueger, Gunnar; Killiany, Ronald J; DeCarli, Charles S; Dale, Anders M; Weiner, Michael W

    2010-01-01

    Functions of the ADNI MRI core fall into three categories: (1) those of the central MRI core lab at Mayo Clinic, Rochester, Minnesota, needed to generate high quality MRI data in all subjects at each time point; (2) those of the funded ADNI MRI core imaging analysis groups responsible for analyzing the MRI data, and (3) the joint function of the entire MRI core in designing and problem solving MR image acquisition, pre-processing and analyses methods. The primary objective of ADNI was and continues to be improving methods for clinical trials in Alzheimer's disease. Our approach to the present (“ADNI-GO”) and future (“ADNI-2”, if funded) MRI protocol will be to maintain MRI methodological consistency in previously enrolled “ADNI-1” subjects who are followed longitudinally in ADNI-GO and ADNI-2. We will modernize and expand the MRI protocol for all newly enrolled ADNI-GO and ADNI-2 subjects. All newly enrolled subjects will be scanned at 3T with a core set of three sequence types: 3D T1-weighted volume, FLAIR, and a long TE gradient echo volumetric acquisition for micro hemorrhage detection. In addition to this core ADNI-GO and ADNI-2 protocol, we will perform vendor specific pilot sub-studies of arterial spin labeling perfusion, resting state functional connectivity and diffusion tensor imaging. One each of these sequences will be added to the core protocol on systems from each MRI vendor. These experimental sub-studies are designed to demonstrate the feasibility of acquiring useful data in a multi-center (but single vendor) setting for these three emerging MRI applications. PMID:20451869

  11. A Comparison of Ultrasonography, Computerised Tomography, and Conventional MRI Findings for Splenic Nodules Associated with Type 1 Gaucher’s Disease with Diffusion-Weighted MRI Findings

    PubMed Central

    Albayrak, Eda; Sonmezgoz, Fitnet; Ozmen, Zafer; Aktas, Fatma; Altunkas, Aysegul

    2017-01-01

    A 26-year-old female patient with Type 1 Gaucher’s disease (GD) was admitted to our clinic with complaints of stomachache and signs of anemia. The patient underwent ultrasonography (US), computerised tomography (CT), and magnetic resonance imaging (MRI) scan. Imaging studies revealed massive hepatosplenomegaly, choledocolithiasis, and six nodules in the spleen with a mean size of 14 mm. The nodules appeared hyperechoic, hypoechoic, and of mixed echogenicity on the US and hypodense on the CT. While the nodules were observed to be iso-hypointense in T1-weighted (T1WI) images, they appeared to be hyperintense in the T2-weighted (T2WI) images. There were no diffusion restrictions in these nodules that appeared on the diffusion-weighted magnetic resonance imaging (DWI). A nodule located at the lower pole was observed to be hypointense in the T2WI images. The nodule located at the lower pole, which appeared hypointense in T2WI series, had restricted diffusion upon DWI. In this study, we aimed to present the properties of splenic GD nodules using US, CT, and conventional MRI, together with DWI. This case report is the first to apply US, CT, and conventional MRI, together with DWI, to the splenic nodules associated with Gaucher’s disease. PMID:29386979

  12. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for the prediction of non-union consolidation.

    PubMed

    Fischer, Christian; Nissen, Mareike; Schmidmaier, Gerhard; Bruckner, Thomas; Kauczor, Hans-Ulrich; Weber, Marc-André

    2017-02-01

    Non-union perfusion can be visualized with dynamic contrast-enhanced (DCE) MRI. This study evaluated DCE-MRI to predict non-union consolidation after surgery and detect factors that affect bone healing. Between 2010 and 2015 non-union perfusion was prospectively quantified in 205 patients (mean age, 51.5 years, 129 men, 76 women) before intervention and at 6, 12, 26, 52 and more weeks follow-up. DCE-MRI results were related to the osseous consolidation, the ability to predict successful outcome was estimated by ROC analysis. The relevance of the body mass index (BMI) and the non-union severity score (NUSS) to the healing process was assessed. Tibial (n=99) and femoral (n=76) non-unions were most common. Consolidation could be assessed in 169 patients, of these 103 (61%) showed eventual healing and demonstrated higher perfusion than in failed consolidation at 6 (p=0.0226), 12 (p=0.0252) and 26 (p=0.0088) weeks follow-up. DCE-MRI at 26 weeks follow-up predicted non-union consolidation with a sensitivity of 75% and a specificity of 87% (false classification rate 19%). Higher BMI (p=0.041) and NUSS (p<0.0001) were associated with treatment failure. DCE-MRI perfusion analysis after non-union surgery predicts successful outcome and could facilitate the decision of early intervention. NUSS and BMI are important prognostic factors concerning consolidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Choroidal Blood Flow Decreases with Age: An MRI Study

    PubMed Central

    San Emeterio Nateras, Oscar; Harrison, Joseph M.; Muir, Eric R.; Zhang, Yi; Peng, Qi; Chalfin, Steven; Gutierrez, Juan E.; Johnson, Daniel A.; Kiel, Jeffrey W.; Duong, Timothy Q.

    2014-01-01

    Purpose To verify that a visual fixation protocol with cued eye blinks achieves sufficient stability for magnetic resonance imaging (MRI) blood-flow measurements and to determine if choroidal blood flow (ChBF) changes with age in humans. Methods The visual fixation stability achievable during an MRI scan was measured in five normal subjects using an eye-tracking camera outside the MRI scanner. Subjects were instructed to blink immediately after recorded MRI sound cues but to otherwise maintain stable visual fixation on a small target. Using this fixation protocol, ChBF was measured with MRI using a 3 Tesla clinical scanner in 17 normal subjects (24–68 years old). Arterial and intraocular pressures (IOP) were measured to calculate perfusion pressure in the same subjects. Results The mean temporal fluctuations (standard deviation) of the horizontal and vertical displacements were 29 ± 9 μm and 38 ± 11 μm within individual fixation periods, and 50 ± 34 μm and 48 ± 19 μm across different fixation periods. The absolute displacements were 67 ± 31 μm and 81 ± 26 μm. ChBF was negatively correlated with age (R =−0.7, p = 0.003), declining 2.7 ml/100 ml/min per year. There were no significant correlations between ChBF versus perfusion pressure, arterial pressure, or IOP. There were also no significant correlations between age versus perfusion pressure, arterial pressure, or IOP. Multiple regression analysis indicated that age was the only measured independent variable that was significantly correlated with ChBF (p = 0.03). Conclusions The visual fixation protocol with cued eye blinks was effective in achieving sufficient stability for MRI measurements. ChBF had a significant negative correlation with age. PMID:24655028

  14. Appearances of colorectal hepatic metastases at diffusion-weighted MRI compared with histopathology: initial observations.

    PubMed

    Scurr, E D; Collins, D J; Temple, L; Karanjia, N; Leach, M O; Koh, D-M

    2012-03-01

    To describe the appearances of colorectal liver metastases on diffusion-weighted MRI (DW-MRI) and to compare these appearances with histopathology. 43 patients with colorectal liver metastases were evaluated using breath-hold DW-MRI (b-values 0, 150 and 500 s mm(-2)). The b=500 s mm(-2) DW-MRI were reviewed consensually for lesion size and appearance by two readers. 18/43 patients underwent surgery allowing radiological-pathological comparison. Tissue sections were reviewed by a pathologist, who classified metastases histologically as cellular, fibrotic, necrotic or mixed. The frequency of DW-MRI findings and histological features were compared using the χ(2) test. 84 metastases were found in 43 patients. On b=500 s mm(-2) DW-MRI, metastases showed three high signal intensity patterns: rim (55/84), uniform (23/84) and variegate (6/84). Of the 55 metastases showing rim pattern, 54 were >1 cm in diameter (p<0.01, χ(2) test). 25/84 metastases were surgically resected. Of these, 11/22 metastases >1 cm in diameter showed rim pattern and demonstrated central necrosis at histopathology (p=0.04, χ(2) test). No definite relationship was found between uniform and variegate patterns with histology. Rim high signal intensity was the most common appearance of colorectal liver metastases >1 cm diameter on DW-MRI at b-values of 500 s mm(-2), a finding attributable to central necrosis.

  15. MRI of the lung: state of the art.

    PubMed

    Wielpütz, Mark; Kauczor, Hans-Ulrich

    2012-01-01

    Magnetic resonance imaging (MRI) of the lung is technically challenging due to the low proton density and fast signal decay of the lung parenchyma itself. Additional challenges consist of tissue loss, hyperinflation, and hypoxic hypoperfusion, e.g., in emphysema, a so-called "minus-pathology". However, pathological changes resulting in an increase of tissue ("plus-pathology"), such as atelectases, nodules, infiltrates, mucus, or pleural effusion, are easily depicted with high diagnostic accuracy. Although MRI is inferior or at best equal to multi-detector computed tomography (MDCT) for the detection of subtle morphological features, MRI now offers an increasing spectrum of functional imaging techniques such as perfusion assessment and measurement of ventilation and respiratory mechanics that are superior to what is possible with MDCT. Without putting patients at risk with ionizing radiation, repeated examinations allow for the evaluation of the course of lung disease and monitoring of the therapeutic response through quantitative imaging, providing a level of functional detail that cannot be obtained by any other single imaging modality. As such, MRI will likely be used for clinical applications beyond morphological imaging for many lung diseases. In this article, we review the technical aspects and protocol suggestions for chest MRI and discuss the role of MRI in the evaluation of nodules and masses, airway disease, respiratory mechanics, ventilation, perfusion and hemodynamics, and pulmonary vasculature.

  16. Detection of the index tumour and tumour volume in prostate cancer using T2-weighted and diffusion-weighted magnetic resonance imaging (MRI) alone.

    PubMed

    Rud, Erik; Klotz, Dagmar; Rennesund, Kristin; Baco, Eduard; Berge, Viktor; Lien, Diep; Svindland, Aud; Lundeby, Eskild; Berg, Rolf E; Eri, Lars M; Eggesbø, Heidi B

    2014-12-01

    To examine the performance of T2-weighted (T2W) and diffusion-weighted (DW) magnetic resonance imaging (MRI) for detecting the index tumour in patients with prostate cancer and to examine the agreement between MRI and histology when assessing tumour volume (TV) and overall tumour burden. The study included 199 consecutive patients with biopsy confirmed prostate cancer randomised to MRI before radical prostatectomy from December 2009 to July 2012. MRI-detected tumours (MRTs) were ranked from 1 to 3 according to decreasing volume and were compared with histologically detected tumours (HTs) ranked from 1 to 3, with HT 1 = index tumour. Whole-mount section histology was used as a reference standard. The TVs of true-positive MRTs (MRTVs 1-3) were compared with the TVs found by histology (HTVs 1-3). All tumours were registered on a 30-sector map and by classifying each sector as positive/negative, the rate of true-positive and -negative sectors was calculated. The detection rate for the HT 1 (index tumour) was 92%; HT 2, 45%; and HT 3, 37%. The MRTV 1-3 vs the HTV 1-3 were 2.8 mL vs 4.0 mL (index tumour, P < 0.001), 1.0 mL vs 0.9 mL (tumour 2, P = 0.413), and 0.6 mL vs 0.5 mL (tumour 3, P = 0.492). The rate of true-positive and -negative sectors was 50% and 88%, κ = 0.39. A combination of T2W and DW MRI detects the index tumour in 92% of cases, although MRI underestimates both TV and tumour burden compared with histology. © 2014 The Authors. BJU International © 2014 BJU International.

  17. Quantitative and Qualitative Assessment of Pulmonary Emphysema with T2-Weighted PROPELLER MRI in a High-Risk Population Compared to Low-Dose CT.

    PubMed

    Meier-Schroers, Michael; Sprinkart, Alois Martin; Becker, Manuel; Homsi, Rami; Thomas, Daniel

    2018-03-07

     To determine the suitability of T2-weighted PROPELLER MRI for the assessment of pulmonary emphysema.  60 participants in a lung cancer screening program (30 subjects with pulmonary emphysema, and 30 control subjects without emphysema) were included for this retrospective study. All subjects were examined with low-dose CT (LDCT) and MRI within the screening program. The use of a T2-weighted PROPELLER sequence for the assessment of emphysema was analyzed and correlated with the results of LDCT. The presence and the extent of pulmonary emphysema were first assessed qualitatively using a three-point score, and then quantitatively with a semi-automated software program to obtain emphysema indices.  All 30 cases with pulmonary emphysema were accurately detected by MRI. There were 3 cases with emphysema according to MRI without emphysematous changes on LDCT (false-positive results). The qualitative scores as well as the emphysema indices were significantly higher in the emphysema group compared to the control group for MRI and LDCT (p < 0.001). Both the scores and the indices correlated significantly between MRI and LDCT (qualitative score of severity: r = 0.912/p < 0.001 in the emphysema group and r = 0.668/p < 0.001 in the control group; emphysema index: r = 0.960/p < 0.001 in the emphysema group and r = 0.746/p < 0.001 in the control group).  The presence and the extent of pulmonary emphysema may be assessed qualitatively and quantitatively by T2-weighted PROPELLER MRI with very good correlation to LDCT.   · T2-weighted PROPELLER MRI may be suitable for the assessment of pulmonary emphysema.. · There was significant correlation between MRI and LDCT regarding qualitative scores and quantitative emphysema indices in our study with correlation coefficients for different subgroups ranging from r = 0.668 to r = 0.960.. · T2-weighted PROPELLER MRI may have the potential to be used for follow-up examinations in

  18. Myocardial perfusion magnetic resonance imaging using sliding-window conjugate-gradient highly constrained back-projection reconstruction for detection of coronary artery disease.

    PubMed

    Ma, Heng; Yang, Jun; Liu, Jing; Ge, Lan; An, Jing; Tang, Qing; Li, Han; Zhang, Yu; Chen, David; Wang, Yong; Liu, Jiabin; Liang, Zhigang; Lin, Kai; Jin, Lixin; Bi, Xiaoming; Li, Kuncheng; Li, Debiao

    2012-04-15

    Myocardial perfusion magnetic resonance imaging (MRI) with sliding-window conjugate-gradient highly constrained back-projection reconstruction (SW-CG-HYPR) allows whole left ventricular coverage, improved temporal and spatial resolution and signal/noise ratio, and reduced cardiac motion-related image artifacts. The accuracy of this technique for detecting coronary artery disease (CAD) has not been determined in a large number of patients. We prospectively evaluated the diagnostic performance of myocardial perfusion MRI with SW-CG-HYPR in patients with suspected CAD. A total of 50 consecutive patients who were scheduled for coronary angiography with suspected CAD underwent myocardial perfusion MRI with SW-CG-HYPR at 3.0 T. The perfusion defects were interpreted qualitatively by 2 blinded observers and were correlated with x-ray angiographic stenoses ≥50%. The prevalence of CAD was 56%. In the per-patient analysis, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of SW-CG-HYPR was 96% (95% confidence interval 82% to 100%), 82% (95% confidence interval 60% to 95%), 87% (95% confidence interval 70% to 96%), 95% (95% confidence interval 74% to100%), and 90% (95% confidence interval 82% to 98%), respectively. In the per-vessel analysis, the corresponding values were 98% (95% confidence interval 91% to 100%), 89% (95% confidence interval 80% to 94%), 86% (95% confidence interval 76% to 93%), 99% (95% confidence interval 93% to 100%), and 93% (95% confidence interval 89% to 97%), respectively. In conclusion, myocardial perfusion MRI using SW-CG-HYPR allows whole left ventricular coverage and high resolution and has high diagnostic accuracy in patients with suspected CAD. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Automated segmentation of multifocal basal ganglia T2*-weighted MRI hypointensities

    PubMed Central

    Glatz, Andreas; Bastin, Mark E.; Kiker, Alexander J.; Deary, Ian J.; Wardlaw, Joanna M.; Valdés Hernández, Maria C.

    2015-01-01

    Multifocal basal ganglia T2*-weighted (T2*w) hypointensities, which are believed to arise mainly from vascular mineralization, were recently proposed as a novel MRI biomarker for small vessel disease and ageing. These T2*w hypointensities are typically segmented semi-automatically, which is time consuming, associated with a high intra-rater variability and low inter-rater agreement. To address these limitations, we developed a fully automated, unsupervised segmentation method for basal ganglia T2*w hypointensities. This method requires conventional, co-registered T2*w and T1-weighted (T1w) volumes, as well as region-of-interest (ROI) masks for the basal ganglia and adjacent internal capsule generated automatically from T1w MRI. The basal ganglia T2*w hypointensities were then segmented with thresholds derived with an adaptive outlier detection method from respective bivariate T2*w/T1w intensity distributions in each ROI. Artefacts were reduced by filtering connected components in the initial masks based on their standardised T2*w intensity variance. The segmentation method was validated using a custom-built phantom containing mineral deposit models, i.e. gel beads doped with 3 different contrast agents in 7 different concentrations, as well as with MRI data from 98 community-dwelling older subjects in their seventies with a wide range of basal ganglia T2*w hypointensities. The method produced basal ganglia T2*w hypointensity masks that were in substantial volumetric and spatial agreement with those generated by an experienced rater (Jaccard index = 0.62 ± 0.40). These promising results suggest that this method may have use in automatic segmentation of basal ganglia T2*w hypointensities in studies of small vessel disease and ageing. PMID:25451469

  20. Measurement of Murine Single-Kidney Glomerular Filtration Rate Using Dynamic Contrast-Enhanced MRI.

    PubMed

    Jiang, Kai; Tang, Hui; Mishra, Prasanna K; Macura, Slobodan I; Lerman, Lilach O

    2018-06-01

    To develop and validate a method for measuring murine single-kidney glomerular filtration rate (GFR) using dynamic contrast-enhanced MRI (DCE-MRI). This prospective study was approved by the Institutional Animal Care and Use Committee. A fast longitudinal relaxation time (T 1 ) measurement method was implemented to capture gadolinium dynamics (1 s/scan), and a modified two-compartment model was developed to quantify GFR as well as renal perfusion using 16.4T MRI in mice 2 weeks after unilateral renal artery stenosis (RAS, n = 6) or sham (n = 8) surgeries. This approach was validated by comparing model-derived GFR and perfusion to those obtained by fluorescein isothiocyanante (FITC)-inulin clearance and arterial spin labeling (ASL), respectively, using the Pearson's and Spearman's rank correlations and Bland-Altman analysis. The compartmental model provided a good fitting to measured gadolinium dynamics in both normal and RAS kidneys. The proposed DCE-MRI method offered assessment of single-kidney GFR and perfusion, comparable to the FITC-inulin clearance (Pearson's correlation coefficient r = 0.95 and Spearman's correlation coefficient ρ = 0.94, P < 0.0001, and mean difference -7.0 ± 11.0 μL/min) and ASL (r = 0.92 and ρ = 0.84, P < 0.0001, and mean difference 4.4 ± 66.1 mL/100 g/min) methods. The proposed DCE-MRI method may be useful for reliable noninvasive measurements of single-kidney GFR and perfusion in mice. Magn Reson Med 79:2935-2943, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. Partial volume correction of brain perfusion estimates using the inherent signal data of time-resolved arterial spin labeling.

    PubMed

    Ahlgren, André; Wirestam, Ronnie; Petersen, Esben Thade; Ståhlberg, Freddy; Knutsson, Linda

    2014-09-01

    Quantitative perfusion MRI based on arterial spin labeling (ASL) is hampered by partial volume effects (PVEs), arising due to voxel signal cross-contamination between different compartments. To address this issue, several partial volume correction (PVC) methods have been presented. Most previous methods rely on segmentation of a high-resolution T1 -weighted morphological image volume that is coregistered to the low-resolution ASL data, making the result sensitive to errors in the segmentation and coregistration. In this work, we present a methodology for partial volume estimation and correction, using only low-resolution ASL data acquired with the QUASAR sequence. The methodology consists of a T1 -based segmentation method, with no spatial priors, and a modified PVC method based on linear regression. The presented approach thus avoids prior assumptions about the spatial distribution of brain compartments, while also avoiding coregistration between different image volumes. Simulations based on a digital phantom as well as in vivo measurements in 10 volunteers were used to assess the performance of the proposed segmentation approach. The simulation results indicated that QUASAR data can be used for robust partial volume estimation, and this was confirmed by the in vivo experiments. The proposed PVC method yielded probable perfusion maps, comparable to a reference method based on segmentation of a high-resolution morphological scan. Corrected gray matter (GM) perfusion was 47% higher than uncorrected values, suggesting a significant amount of PVEs in the data. Whereas the reference method failed to completely eliminate the dependence of perfusion estimates on the volume fraction, the novel approach produced GM perfusion values independent of GM volume fraction. The intra-subject coefficient of variation of corrected perfusion values was lowest for the proposed PVC method. As shown in this work, low-resolution partial volume estimation in connection with ASL perfusion

  2. Myocardial perfusion magnetic resonance imaging using sliding-window conjugate-gradient HYPR methods in canine with stenotic coronary arteries.

    PubMed

    Ge, Lan; Kino, Aya; Lee, Daniel; Dharmakumar, Rohan; Carr, James C; Li, Debiao

    2010-01-01

    First-pass perfusion magnetic resonance imaging (MRI) is a promising technique for detecting ischemic heart disease. However, the diagnostic value of the method is limited by the low spatial coverage, resolution, signal-to-noise ratio (SNR), and cardiac motion-related image artifacts. A combination of sliding window and conjugate-gradient HighlY constrained back-PRojection reconstruction (SW-CG-HYPR) method has been proposed in healthy volunteer studies to reduce the acquisition window for each slice while maintaining the temporal resolution of 1 frame per heartbeat in myocardial perfusion MRI. This method allows for improved spatial coverage, resolution, and SNR. In this study, we use a controlled animal model to test whether the myocardial territory supplied by a stenotic coronary artery can be detected accurately by SW-CG-HYPR perfusion method under pharmacological stress. Results from 6 mongrel dogs (15-25 kg) studies demonstrate the feasibility of SW-CG-HYPR to detect regional perfusion defects. Using this method, the acquisition time per cardiac cycle was reduced by a factor of 4, and the spatial coverage was increased from 2 to 3 slices to 6 slices as compared with the conventional techniques including both turbo-Fast Low Angle Short (FLASH) and echoplanar imaging (EPI). The SNR of the healthy myocardium at peak enhancement with SW-CG-HYPR (12.68 ± 2.46) is significantly higher (P < 0.01) than the turbo-FLASH (8.65 ± 1.93) and EPI (5.48 ± 1.24). The spatial resolution of SW-CG-HYPR images is 1.2 × 1.2 × 8.0 mm, which is better than the turbo-FLASH (1.8 × 1.8 × 8.0 mm) and EPI (2.0 × 1.8 × 8.0 mm). Sliding-window CG-HYPR is a promising technique for myocardial perfusion MRI. This technique provides higher image quality with respect to significantly improved SNR and spatial resolution of the myocardial perfusion images, which might improve myocardial perfusion imaging in a clinical setting.

  3. MRI to assess renal structure and function.

    PubMed

    Artunc, Ferruh; Rossi, Cristina; Boss, Andreas

    2011-11-01

    In addition to excellent anatomical depiction, MRI techniques have expanded to study functional aspects of renal physiology, such as renal perfusion, glomerular filtration rate (GFR) or tissue oxygenation. This review will focus on current developments with an emphasis on clinical applicability. The method of GFR determination is largely heterogeneous and still has weaknesses. However, the technique of employing liver disappearance curves has been shown to be accurate in healthy persons and patients with chronic kidney disease. In potential kidney donors, complete evaluation of kidney anatomy and function can be accomplished in a single-stop investigation. Techniques without contrast media can be utilized to measure renal tissue oxygenation (blood oxygen level-dependent MRI) or perfusion (arterial spin labeling) and could aid in the diagnosis and treatment of ischemic renal diseases, such as renal artery stenosis. Diffusion imaging techniques may provide information on spatially restricted water diffusion and tumor cellularity. Functional MRI opens new horizons in studying renal physiology and pathophysiology in vivo. Although extensively utilized in research, labor-intensive postprocessing and lack of standardization currently limit the clinical applicability of functional MRI. Further studies are necessary to evaluate the clinical value of functional magnetic resonance techniques for early discovery and characterization of kidney disease.

  4. Diffusion Weighted MRI and MRS to Differentiate Radiation Necrosis and Recurrent Disease in Gliomas

    NASA Astrophysics Data System (ADS)

    Ewell, Lars

    2006-03-01

    A difficulty encountered in the diagnosis of patients with gliomas is the differentiation between recurrent disease and Radiation Induced Necrosis (RIN). Both can appear as ‘enhancing lesions’ on a typical T2 weighted MRI scan. Magnetic Resonance Spectroscopy (MRS) and Diffusion Weighted MRI (DWMRI) have the potential to be helpful regarding this differentiation. MRS has the ability to measure the concentration of brain metabolites, such as Choline, Creatin and N- Acetyl Aspartate, the ratios of which have been shown to discriminate between RIN and recurrent disease. DWMRI has been linked via a rise in the Apparent Diffusion Coefficient (ADC) to successful treatment of disease. Using both of these complimentary non-invasive imaging modalities, we intend to initiate an imaging protocol whereby we will study how best to combine metabolite ratios and ADC values to obtain the most useful information in the least amount of scan time. We will look for correlations over time between ADC values, and MRS, among different sized voxels.

  5. Appearances of colorectal hepatic metastases at diffusion-weighted MRI compared with histopathology: initial observations

    PubMed Central

    Scurr, E D; Collins, D J; Temple, L; Karanjia, N; Leach, M O; Koh, D-M

    2012-01-01

    Objective To describe the appearances of colorectal liver metastases on diffusion-weighted MRI (DW-MRI) and to compare these appearances with histopathology. Methods 43 patients with colorectal liver metastases were evaluated using breath-hold DW-MRI (b-values 0, 150 and 500 s mm–2). The b=500 s mm–2 DW-MRI were reviewed consensually for lesion size and appearance by two readers. 18/43 patients underwent surgery allowing radiological–pathological comparison. Tissue sections were reviewed by a pathologist, who classified metastases histologically as cellular, fibrotic, necrotic or mixed. The frequency of DW-MRI findings and histological features were compared using the χ2 test. Results 84 metastases were found in 43 patients. On b=500 s mm–2 DW-MRI, metastases showed three high signal intensity patterns: rim (55/84), uniform (23/84) and variegate (6/84). Of the 55 metastases showing rim pattern, 54 were >1 cm in diameter (p<0.01, χ2 test). 25/84 metastases were surgically resected. Of these, 11/22 metastases >1 cm in diameter showed rim pattern and demonstrated central necrosis at histopathology (p=0.04, χ2 test). No definite relationship was found between uniform and variegate patterns with histology. Conclusion Rim high signal intensity was the most common appearance of colorectal liver metastases >1 cm diameter on DW-MRI at b-values of 500 s mm–2, a finding attributable to central necrosis. PMID:21224302

  6. First-pass myocardial perfusion MRI with reduced subendocardial dark-rim artifact using optimized Cartesian sampling.

    PubMed

    Zhou, Zhengwei; Bi, Xiaoming; Wei, Janet; Yang, Hsin-Jung; Dharmakumar, Rohan; Arsanjani, Reza; Bairey Merz, C Noel; Li, Debiao; Sharif, Behzad

    2017-02-01

    The presence of subendocardial dark-rim artifact (DRA) remains an ongoing challenge in first-pass perfusion (FPP) cardiac magnetic resonance imaging (MRI). We propose a free-breathing FPP imaging scheme with Cartesian sampling that is optimized to minimize the DRA and readily enables near-instantaneous image reconstruction. The proposed FPP method suppresses Gibbs ringing effects-a major underlying factor for the DRA-by "shaping" the underlying point spread function through a two-step process: 1) an undersampled Cartesian sampling scheme that widens the k-space coverage compared to the conventional scheme; and 2) a modified parallel-imaging scheme that incorporates optimized apodization (k-space data filtering) to suppress Gibbs-ringing effects. Healthy volunteer studies (n = 10) were performed to compare the proposed method against the conventional Cartesian technique-both using a saturation-recovery gradient-echo sequence at 3T. Furthermore, FPP imaging studies using the proposed method were performed in infarcted canines (n = 3), and in two symptomatic patients with suspected coronary microvascular dysfunction for assessment of myocardial hypoperfusion. Width of the DRA and the number of DRA-affected myocardial segments were significantly reduced in the proposed method compared to the conventional approach (width: 1.3 vs. 2.9 mm, P < 0.001; number of segments: 2.6 vs. 8.7; P < 0.0001). The number of slices with severe DRA was markedly lower for the proposed method (by 10-fold). The reader-assigned image quality scores were similar (P = 0.2), although the quantified myocardial signal-to-noise ratio was lower for the proposed method (P < 0.05). Animal studies showed that the proposed method can detect subendocardial perfusion defects and patient results were consistent with the gold-standard invasive test. The proposed free-breathing Cartesian FPP imaging method significantly reduces the prevalence of severe DRAs compared to the conventional approach

  7. Cerebral perfusion imaging with bolus harmonic imaging (Honorable Mention Poster Award)

    NASA Astrophysics Data System (ADS)

    Kier, Christian; Toth, Daniel; Meyer-Wiethe, Karsten; Schindler, Angela; Cangur, Hakan; Seidel, Gunter; Aach, Til

    2005-04-01

    Fast visualisation of cerebral microcirculation supports diagnosis of acute stroke. However, the commonly used CT/MRI-based methods are time consuming, costly and not applicable to every patient. The bolus perfusion harmonic imaging (BHI) method is an ultrasound imaging technique which makes use of the fact, that ultrasound contrast agents unlike biological tissues resonate at harmonic frequencies. Exploiting this effect, the contrast between perfused and non-perfused areas can be improved. Thus, BHI overcomes the low signal-to-noise ratio of transcranial ultrasound and the high impedance of the skull. By analysing image sequences, visualising the qualitative characteristics of an US contrast agent bolus injection becomes possible. The analysis consists of calculating four perfusion-related parameters, Local Peak Intensity, Time To Peak, Area Under Curve, and Average Rising, from the time/intensity curve and providing them as colour-coded images. For calculating these parameters the fundamental assumption is that image intensity corresponds to contrast agent concentration which in turn shows the perfusion of the corresponding brain region. In a clinical study on patients suffering from acute ischemic stroke it is shown that some of the parameters correlate significantly to the infarction area. Thus, BHI becomes a less time-consuming and inexpensive bedside method for diagnosis of cerebral perfusion deficits.

  8. Functional localization of the human color center by decreased water displacement using diffusion-weighted fMRI.

    PubMed

    Williams, Rebecca J; Reutens, David C; Hocking, Julia

    2015-11-01

    Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.

  9. Synergistic Effects of Hemoglobin and Tumor Perfusion on Tumor Control and Survival in Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayr, Nina A.; Center for Advanced Radiation Technology and Therapy; Wang, Jian Z.

    2009-08-01

    Purpose: The tumor oxygenation status is likely influenced by two major factors: local tumor blood supply (tumor perfusion) and its systemic oxygen carrier, hemoglobin (Hgb). Each has been independently shown to affect the radiotherapy (RT) outcome in cervical cancer. This study assessed the effect of local tumor perfusion, systemic Hgb levels, and their combination on the treatment outcome in cervical cancer. Methods and Materials: A total of 88 patients with cervical cancer, Stage IB2-IVA, who were treated with RT/chemotherapy, underwent serial dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) before RT, at 20-22 Gy, and at 45-50 Gy. The DCE-MRI perfusion parameters,more » mean and lowest 10th percentile of the signal intensity distribution in the tumor pixels, and the Hgb levels, including pre-RT, nadir, and mean Hgb (average of weekly Hgb during RT), were correlated with local control and disease-specific survival. The median follow-up was 4.6 years. Results: Local recurrence predominated in the group with both a low mean Hgb (<11.2 g/dL) and low perfusion (lowest 10th percentile of signal intensity <2.0 at 20-22 Gy), with a 5-year local control rate of 60% vs. 90% for all other groups (p = .001) and a disease-specific survival rate of 41% vs. 72% (p = .008), respectively. In the group with both high mean Hgb and high perfusion, the 5-year local control rate and disease-specific survival rate was 100% and 78%, respectively. Conclusion: These results suggest that the compounded effects of Hgb level and tumor perfusion during RT influence the radioresponsiveness and survival in cervical cancer patients. The outcome was worst when both were impaired. The management of Hgb may be particularly important in patients with low tumor perfusion.« less

  10. Contrast-Enhanced Ultrasound (CEUS) and Quantitative Perfusion Analysis in Patients with Suspicion for Prostate Cancer.

    PubMed

    Maxeiner, Andreas; Fischer, Thomas; Schwabe, Julia; Baur, Alexander Daniel Jacques; Stephan, Carsten; Peters, Robert; Slowinski, Torsten; von Laffert, Maximilian; Marticorena Garcia, Stephan Rodrigo; Hamm, Bernd; Jung, Ernst-Michael

    2018-06-06

     The aim of this study was to investigate contrast-enhanced ultrasound (CEUS) parameters acquired by software during magnetic resonance imaging (MRI) US fusion-guided biopsy for prostate cancer (PCa) detection and discrimination.  From 2012 to 2015, 158 out of 165 men with suspicion for PCa and with at least 1 negative biopsy of the prostate were included and underwent a multi-parametric 3 Tesla MRI and an MRI/US fusion-guided biopsy, consecutively. CEUS was conducted during biopsy with intravenous bolus application of 2.4 mL of SonoVue ® (Bracco, Milan, Italy). In the latter CEUS clips were investigated using quantitative perfusion analysis software (VueBox, Bracco). The area of strongest enhancement within the MRI pre-located region was investigated and all available parameters from the quantification tool box were collected and analyzed for PCa and its further differentiation was based on the histopathological results.  The overall detection rate was 74 (47 %) PCa cases in 158 included patients. From these 74 PCa cases, 49 (66 %) were graded Gleason ≥ 3 + 4 = 7 (ISUP ≥ 2) PCa. The best results for cancer detection over all quantitative perfusion parameters were rise time (p = 0.026) and time to peak (p = 0.037). Within the subgroup analysis (> vs ≤ 3 + 4 = 7a (ISUP 2)), peak enhancement (p = 0.012), wash-in rate (p = 0.011), wash-out rate (p = 0.007) and wash-in perfusion index (p = 0.014) also showed statistical significance.  The quantification of CEUS parameters was able to discriminate PCa aggressiveness during MRI/US fusion-guided prostate biopsy. © Georg Thieme Verlag KG Stuttgart · New York.

  11. No evidence of perfusion abnormalities in the basal ganglia of a patient with generalized chorea-ballism and polycythaemia vera: analysis using subtraction SPECT co-registered to MRI.

    PubMed

    Kim, Woojun; Kim, Joong-Seok; Lee, Kwang-Soo; Kim, Yeong-In; Park, Chong-Won; Chung, Yong-An

    2008-10-01

    Polycythaemia vera is a well-known cause of symptomatic chorea, however, the pathophysiology of this correlation remains unclear. We report on a patient with generalized chorea-ballism associated with polycythaemia vera, and we present the findings of 99mTc-hexamethylpropylene amine oxime (HMPAO) SPECT done in both the choreic state and the non-choreic state. The SPECT during both the choreic and the non-choreic states did not reveal any definite perfusion changes in specific regions of the brain, as compared with 6 age-matched controls. In addition, the subtraction SPECT co-registered to MRI (SISCOM) analysis did not show any difference in cerebral blood flow during the choreic and non-choreic states. This result suggests that the basic mechanism of chorea associated with polycythaemia vera does not appear to be associated with a reduction in cerebral perfusion to a specific cerebral area, such as the basal ganglia or its thalamocortical connections.

  12. Evaluation of three inverse problem models to quantify skin microcirculation using diffusion-weighted MRI

    NASA Astrophysics Data System (ADS)

    Cordier, G.; Choi, J.; Raguin, L. G.

    2008-11-01

    Skin microcirculation plays an important role in diseases such as chronic venous insufficiency and diabetes. Magnetic resonance imaging (MRI) can provide quantitative information with a better penetration depth than other noninvasive methods, such as laser Doppler flowmetry or optical coherence tomography. Moreover, successful MRI skin studies have recently been reported. In this article, we investigate three potential inverse models to quantify skin microcirculation using diffusion-weighted MRI (DWI), also known as q-space MRI. The model parameters are estimated based on nonlinear least-squares (NLS). For each of the three models, an optimal DWI sampling scheme is proposed based on D-optimality in order to minimize the size of the confidence region of the NLS estimates and thus the effect of the experimental noise inherent to DWI. The resulting covariance matrices of the NLS estimates are predicted by asymptotic normality and compared to the ones computed by Monte-Carlo simulations. Our numerical results demonstrate the effectiveness of the proposed models and corresponding DWI sampling schemes as compared to conventional approaches.

  13. Measurement of the permeability, perfusion, and histogram characteristics in relapsing-remitting multiple sclerosis using dynamic contrast-enhanced MRI with extended Tofts linear model.

    PubMed

    Yin, Ping; Xiong, Hua; Liu, Yi; Sah, Shambhu K; Zeng, Chun; Wang, Jingjie; Li, Yongmei; Hong, Nan

    2018-01-01

    To investigate the application value of using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with extended Tofts linear model for relapsing-remitting multiple sclerosis (RRMS) and its correlation with expanded disability status scale (EDSS) scores and disease duration. Thirty patients with multiple sclerosis (MS) underwent conventional magnetic resonance imaging (MRI) and DCE-MRI with a 3.0 Tesla MR scanner. An extended Tofts linear model was used to quantitatively measure MR imaging biomarkers. The histogram parameters and correlation among imaging biomarkers, EDSS scores, and disease duration were also analyzed. The MR imaging biomarkers volume transfer constant (K trans ), volume of the extravascular extracellular space per unit volume of tissue (Ve), fractional plasma volume (V p ), cerebral blood flow (CBF), and cerebral blood volume (CBV) of contrast-enhancing (CE) lesions were significantly higher (P < 0.05) than those of nonenhancing (NE) lesions and normal-appearing white matter (NAWM) regions. The skewness of Ve value in CE lesions was more close to normal distribution. There was no significant correlation among the biomarkers with the EDSS scores and disease duration (P > 0.05). Our study demonstrates that the DCE-MRI with the extended Tofts linear model can measure the permeability and perfusion characteristic in MS lesions and in NAWM regions. The K trans , Ve, Vp, CBF, and CBV of CE lesions were significantly higher than that of NE lesions. The skewness of Ve value in CE lesions was more close to normal distribution, indicating that the histogram can be helpful to distinguish the pathology of MS lesions.

  14. Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls.

    PubMed

    Veraart, Jelle; Sijbers, Jan; Sunaert, Stefan; Leemans, Alexander; Jeurissen, Ben

    2013-11-01

    Linear least squares estimators are widely used in diffusion MRI for the estimation of diffusion parameters. Although adding proper weights is necessary to increase the precision of these linear estimators, there is no consensus on how to practically define them. In this study, the impact of the commonly used weighting strategies on the accuracy and precision of linear diffusion parameter estimators is evaluated and compared with the nonlinear least squares estimation approach. Simulation and real data experiments were done to study the performance of the weighted linear least squares estimators with weights defined by (a) the squares of the respective noisy diffusion-weighted signals; and (b) the squares of the predicted signals, which are reconstructed from a previous estimate of the diffusion model parameters. The negative effect of weighting strategy (a) on the accuracy of the estimator was surprisingly high. Multi-step weighting strategies yield better performance and, in some cases, even outperformed the nonlinear least squares estimator. If proper weighting strategies are applied, the weighted linear least squares approach shows high performance characteristics in terms of accuracy/precision and may even be preferred over nonlinear estimation methods. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Detailed T1-Weighted Profiles from the Human Cortex Measured in Vivo at 3 Tesla MRI.

    PubMed

    Ferguson, Bart; Petridou, Natalia; Fracasso, Alessio; van den Heuvel, Martijn P; Brouwer, Rachel M; Hulshoff Pol, Hilleke E; Kahn, René S; Mandl, René C W

    2018-04-01

    Studies into cortical thickness in psychiatric diseases based on T1-weighted MRI frequently report on aberrations in the cerebral cortex. Due to limitations in image resolution for studies conducted at conventional MRI field strengths (e.g. 3 Tesla (T)) this information cannot be used to establish which of the cortical layers may be implicated. Here we propose a new analysis method that computes one high-resolution average cortical profile per brain region extracting myeloarchitectural information from T1-weighted MRI scans that are routinely acquired at a conventional field strength. To assess this new method, we acquired standard T1-weighted scans at 3 T and compared them with state-of-the-art ultra-high resolution T1-weighted scans optimised for intracortical myelin contrast acquired at 7 T. Average cortical profiles were computed for seven different brain regions. Besides a qualitative comparison between the 3 T scans, 7 T scans, and results from literature, we tested if the results from dynamic time warping-based clustering are similar for the cortical profiles computed from 7 T and 3 T data. In addition, we quantitatively compared cortical profiles computed for V1, V2 and V7 for both 7 T and 3 T data using a priori information on their relative myelin concentration. Although qualitative comparisons show that at an individual level average profiles computed for 7 T have more pronounced features than 3 T profiles the results from the quantitative analyses suggest that average cortical profiles computed from T1-weighted scans acquired at 3 T indeed contain myeloarchitectural information similar to profiles computed from the scans acquired at 7 T. The proposed method therefore provides a step forward to study cortical myeloarchitecture in vivo at conventional magnetic field strength both in health and disease.

  16. TU-F-CAMPUS-J-02: Evaluation of Textural Feature Extraction for Radiotherapy Response Assessment of Early Stage Breast Cancer Patients Using Diffusion Weighted MRI and Dynamic Contrast Enhanced MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Y; Wang, C; Horton, J

    Purpose: To investigate the feasibility of using classic textural feature extraction in radiotherapy response assessment, we studied a unique cohort of early stage breast cancer patients with paired pre - and post-radiation Diffusion Weighted MRI (DWI-MRI) and Dynamic Contrast Enhanced MRI (DCE-MRI). Methods: 15 female patients from our prospective phase I trial evaluating preoperative radiotherapy were included in this retrospective study. Each patient received a single-fraction radiation treatment, and DWI and DCE scans were conducted before and after the radiotherapy. DWI scans were acquired using a spin-echo EPI sequence with diffusion weighting factors of b = 0 and b =more » 500 mm{sup 2} /s, and the apparent diffusion coefficient (ADC) maps were calculated. DCE-MRI scans were acquired using a T{sub 1}-weighted 3D SPGR sequence with a temporal resolution of about 1 minute. The contrast agent (CA) was intravenously injected with a 0.1 mmol/kg bodyweight dose at 2 ml/s. Two parameters, volume transfer constant (K{sup trans} ) and k{sub ep} were analyzed using the two-compartment Tofts kinetic model. For DCE parametric maps and ADC maps, 33 textural features were generated from the clinical target volume (CTV) in a 3D fashion using the classic gray level co-occurrence matrix (GLCOM) and gray level run length matrix (GLRLM). Wilcoxon signed-rank test was used to determine the significance of each texture feature’s change after the radiotherapy. The significance was set to 0.05 with Bonferroni correction. Results: For ADC maps calculated from DWI-MRI, 24 out of 33 CTV features changed significantly after the radiotherapy. For DCE-MRI pharmacokinetic parameters, all 33 CTV features of K{sup trans} and 33 features of k{sub ep} changed significantly. Conclusion: Initial results indicate that those significantly changed classic texture features are sensitive to radiation-induced changes and can be used for assessment of radiotherapy response in breast cancer.« less

  17. MRI diffusion-weighted imaging (DWI) in pediatric small bowel Crohn disease: correlation with MRI findings of active bowel wall inflammation.

    PubMed

    Ream, Justin M; Dillman, Jonathan R; Adler, Jeremy; Khalatbari, Shokoufeh; McHugh, Jonathan B; Strouse, Peter J; Dhanani, Muhammad; Shpeen, Benjamin; Al-Hawary, Mahmoud M

    2013-09-01

    Restricted diffusion on diffusion-weighted imaging (DWI) sequences during magnetic resonance enterography (MRE) has been shown in segments of bowel affected by Crohn disease. However, the exact meaning of this finding, particularly within the pediatric Crohn disease population, is poorly understood. The purpose of this study was to determine the significance of bowel wall restricted diffusion in children with small bowel Crohn disease by correlating apparent diffusion coefficient (ADC) values with other MRI markers of disease activity. A retrospective review of pediatric patients (≤ 18 years of age) with Crohn disease terminal ileitis who underwent MRE with DWI at our institution between May 1, 2009 and May 31, 2011 was undertaken. All of the children had either biopsy-proven Crohn disease terminal ileitis or clinically diagnosed Crohn disease, including terminal ileal involvement by imaging. The mean minimum ADC value within the wall of the terminal ileum was determined for each examination. ADC values were tested for correlation/association with other MRI findings to determine whether a relationship exists between bowel wall restricted diffusion and disease activity. Forty-six MRE examinations with DWI in children with terminal ileitis were identified (23 girls and 23 boys; mean age, 14.3 years). There was significant negative correlation or association between bowel wall minimum ADC value and established MRI markers of disease activity, including degree of bowel wall thickening (R = (-)0.43; P = 0.003), striated pattern of arterial enhancement (P = 0.01), degree of arterial enhancement (P = 0.01), degree of delayed enhancement (P = 0.045), amount of mesenteric inflammatory changes (P < 0.0001) and presence of a stricture (P = 0.02). ADC values were not significantly associated with bowel wall T2-weighted signal intensity, length of disease involvement or mesenteric fibrofatty proliferation. Increasing bowel wall restricted diffusion

  18. Toward fully automated processing of dynamic susceptibility contrast perfusion MRI for acute ischemic cerebral stroke.

    PubMed

    Kim, Jinsuh; Leira, Enrique C; Callison, Richard C; Ludwig, Bryan; Moritani, Toshio; Magnotta, Vincent A; Madsen, Mark T

    2010-05-01

    We developed fully automated software for dynamic susceptibility contrast (DSC) MR perfusion-weighted imaging (PWI) to efficiently and reliably derive critical hemodynamic information for acute stroke treatment decisions. Brain MR PWI was performed in 80 consecutive patients with acute nonlacunar ischemic stroke within 24h after onset of symptom from January 2008 to August 2009. These studies were automatically processed to generate hemodynamic parameters that included cerebral blood flow and cerebral blood volume, and the mean transit time (MTT). To develop reliable software for PWI analysis, we used computationally robust algorithms including the piecewise continuous regression method to determine bolus arrival time (BAT), log-linear curve fitting, arrival time independent deconvolution method and sophisticated motion correction methods. An optimal arterial input function (AIF) search algorithm using a new artery-likelihood metric was also developed. Anatomical locations of the automatically determined AIF were reviewed and validated. The automatically computed BAT values were statistically compared with estimated BAT by a single observer. In addition, gamma-variate curve-fitting errors of AIF and inter-subject variability of AIFs were analyzed. Lastly, two observes independently assessed the quality and area of hypoperfusion mismatched with restricted diffusion area from motion corrected MTT maps and compared that with time-to-peak (TTP) maps using the standard approach. The AIF was identified within an arterial branch and enhanced areas of perfusion deficit were visualized in all evaluated cases. Total processing time was 10.9+/-2.5s (mean+/-s.d.) without motion correction and 267+/-80s (mean+/-s.d.) with motion correction on a standard personal computer. The MTT map produced with our software adequately estimated brain areas with perfusion deficit and was significantly less affected by random noise of the PWI when compared with the TTP map. Results of image

  19. Estimation of contrast agent bolus arrival delays for improved reproducibility of liver DCE MRI

    NASA Astrophysics Data System (ADS)

    Chouhan, Manil D.; Bainbridge, Alan; Atkinson, David; Punwani, Shonit; Mookerjee, Rajeshwar P.; Lythgoe, Mark F.; Taylor, Stuart A.

    2016-10-01

    Delays between contrast agent (CA) arrival at the site of vascular input function (VIF) sampling and the tissue of interest affect dynamic contrast enhanced (DCE) MRI pharmacokinetic modelling. We investigate effects of altering VIF CA bolus arrival delays on liver DCE MRI perfusion parameters, propose an alternative approach to estimating delays and evaluate reproducibility. Thirteen healthy volunteers (28.7  ±  1.9 years, seven males) underwent liver DCE MRI using dual-input single compartment modelling, with reproducibility (n  =  9) measured at 7 days. Effects of VIF CA bolus arrival delays were assessed for arterial and portal venous input functions. Delays were pre-estimated using linear regression, with restricted free modelling around the pre-estimated delay. Perfusion parameters and 7 days reproducibility were compared using this method, freely modelled delays and no delays using one-way ANOVA. Reproducibility was assessed using Bland-Altman analysis of agreement. Maximum percent change relative to parameters obtained using zero delays, were  -31% for portal venous (PV) perfusion, +43% for total liver blood flow (TLBF), +3247% for hepatic arterial (HA) fraction, +150% for mean transit time and  -10% for distribution volume. Differences were demonstrated between the 3 methods for PV perfusion (p  =  0.0085) and HA fraction (p  <  0.0001), but not other parameters. Improved mean differences and Bland-Altman 95% Limits-of-Agreement for reproducibility of PV perfusion (9.3 ml/min/100 g, ±506.1 ml/min/100 g) and TLBF (43.8 ml/min/100 g, ±586.7 ml/min/100 g) were demonstrated using pre-estimated delays with constrained free modelling. CA bolus arrival delays cause profound differences in liver DCE MRI quantification. Pre-estimation of delays with constrained free modelling improved 7 days reproducibility of perfusion parameters in volunteers.

  20. Intravoxel Incoherent Motion MR Imaging in the Head and Neck: Correlation with Dynamic Contrast-Enhanced MR Imaging and Diffusion-Weighted Imaging.

    PubMed

    Xu, Xiao Quan; Choi, Young Jun; Sung, Yu Sub; Yoon, Ra Gyoung; Jang, Seung Won; Park, Ji Eun; Heo, Young Jin; Baek, Jung Hwan; Lee, Jeong Hyun

    2016-01-01

    To investigate the correlation between perfusion- and diffusion-related parameters from intravoxel incoherent motion (IVIM) and those from dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted imaging in tumors and normal muscles of the head and neck. We retrospectively enrolled 20 consecutive patients with head and neck tumors with MR imaging performed using a 3T MR scanner. Tissue diffusivity (D), pseudo-diffusion coefficient (D(*)), and perfusion fraction (f) were derived from bi-exponential fitting of IVIM data obtained with 14 different b-values in three orthogonal directions. We investigated the correlation between D, f, and D(*) and model-free parameters from the DCE-MRI (wash-in, Tmax, Emax, initial AUC60, whole AUC) and the apparent diffusion coefficient (ADC) value in the tumor and normal masseter muscle using a whole volume-of-interest approach. Pearson's correlation test was used for statistical analysis. No correlation was found between f or D(*) and any of the parameters from the DCE-MRI in all patients or in patients with squamous cell carcinoma (p > 0.05). The ADC was significantly correlated with D values in the tumors (p < 0.001, r = 0.980) and muscles (p = 0.013, r = 0.542), despite its significantly higher value than D. The difference between ADC and D showed significant correlation with f values in the tumors (p = 0.017, r = 0.528) and muscles (p = 0.003, r = 0.630), but no correlation with D(*) (p > 0.05, respectively). Intravoxel incoherent motion shows no significant correlation with model-free perfusion parameters derived from the DCE-MRI but is feasible for the analysis of diffusivity in both tumors and normal muscles of the head and neck.

  1. Insulin resistance is associated with lower arterial blood flow and reduced cortical perfusion in cognitively asymptomatic middle-aged adults

    PubMed Central

    Hoscheidt, Siobhan M; Kellawan, J Mikhail; Berman, Sara E; Rivera-Rivera, Leonardo A; Krause, Rachel A; Oh, Jennifer M; Beeri, Michal S; Rowley, Howard A; Wieben, Oliver; Carlsson, Cynthia M; Asthana, Sanjay; Johnson, Sterling C; Schrage, William G

    2016-01-01

    Insulin resistance (IR) is associated with poor cerebrovascular health and increased risk for dementia. Little is known about the unique effect of IR on both micro- and macrovascular flow particularly in midlife when interventions against dementia may be most effective. We examined the effect of IR as indexed by the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) on cerebral blood flow in macro- and microvessels utilizing magnetic resonance imaging (MRI) among cognitively asymptomatic middle-aged individuals. We hypothesized that higher HOMA-IR would be associated with reduced flow in macrovessels and lower cortical perfusion. One hundred and twenty cognitively asymptomatic middle-aged adults (57 ± 5 yrs) underwent fasting blood draw, phase contrast-vastly undersampled isotropic projection reconstruction (PC VIPR) MRI, and arterial spin labeling (ASL) perfusion. Higher HOMA-IR was associated with lower arterial blood flow, particularly within the internal carotid arteries (ICAs), and lower cerebral perfusion in several brain regions including frontal and temporal lobe regions. Higher blood flow in bilateral ICAs predicted greater cortical perfusion in individuals with lower HOMA-IR, a relationship not observed among those with higher HOMA-IR. Findings provide novel evidence for an uncoupling of macrovascular blood flow and microvascular perfusion among individuals with higher IR in midlife. PMID:27488909

  2. Localized Spatio-Temporal Constraints for Accelerated CMR Perfusion

    PubMed Central

    Akçakaya, Mehmet; Basha, Tamer A.; Pflugi, Silvio; Foppa, Murilo; Kissinger, Kraig V.; Hauser, Thomas H.; Nezafat, Reza

    2013-01-01

    Purpose To develop and evaluate an image reconstruction technique for cardiac MRI (CMR)perfusion that utilizes localized spatio-temporal constraints. Methods CMR perfusion plays an important role in detecting myocardial ischemia in patients with coronary artery disease. Breath-hold k-t based image acceleration techniques are typically used in CMR perfusion for superior spatial/temporal resolution, and improved coverage. In this study, we propose a novel compressed sensing based image reconstruction technique for CMR perfusion, with applicability to free-breathing examinations. This technique uses local spatio-temporal constraints by regularizing image patches across a small number of dynamics. The technique is compared to conventional dynamic-by-dynamic reconstruction, and sparsity regularization using a temporal principal-component (pc) basis, as well as zerofilled data in multi-slice 2D and 3D CMR perfusion. Qualitative image scores are used (1=poor, 4=excellent) to evaluate the technique in 3D perfusion in 10 patients and 5 healthy subjects. On 4 healthy subjects, the proposed technique was also compared to a breath-hold multi-slice 2D acquisition with parallel imaging in terms of signal intensity curves. Results The proposed technique results in images that are superior in terms of spatial and temporal blurring compared to the other techniques, even in free-breathing datasets. The image scores indicate a significant improvement compared to other techniques in 3D perfusion (2.8±0.5 vs. 2.3±0.5 for x-pc regularization, 1.7±0.5 for dynamic-by-dynamic, 1.1±0.2 for zerofilled). Signal intensity curves indicate similar dynamics of uptake between the proposed method with a 3D acquisition and the breath-hold multi-slice 2D acquisition with parallel imaging. Conclusion The proposed reconstruction utilizes sparsity regularization based on localized information in both spatial and temporal domains for highly-accelerated CMR perfusion with potential utility in free

  3. Brain Perfusion In Asphyxiated Newborns Treated with Therapeutic Hypothermia

    PubMed Central

    Wintermark, Pia; Hansen, Anne; Gregas, Matthew C.; Soul, Janet; Labrecque, Michelle; Robertson, Richard L.; Warfield, Simon K.

    2012-01-01

    Background and Purpose Induced hypothermia is thought to work partly by mitigating reperfusion injury in asphyxiated term newborns. The purpose of this study is to assess brain perfusion in the first week of life in these newborns. Patients and Methods In this prospective cohort study, magnetic resonance imaging (MRI) and perfusion imaging by arterial spin labeling (ASL-PI) was used to assess brain perfusion in these newborns. We measured regional cerebral blood flow values on 1–2 MRIs obtained during the first week of life and compared them to values obtained in control term newborns. The same or later MRI scans were obtained to define the extent of brain injury. Results Eighteen asphyxiated and four control term newborns were enrolled; eleven asphyxiated newborns were treated with hypothermia. Those developing brain injury despite being treated with induced hypothermia usually displayed hypoperfusion on day of life (DOL) 1, and then hyperperfusion on DOL 2–3 in brain areas subsequently exhibiting injury. Asphyxiated newborns not treated with hypothermia who developed brain injury also displayed hyperperfusion on DOL 1–6 in brain areas displaying injury. Conclusions Our data show that ASL-PI may be useful for identifying asphyxiated newborns at risk of developing brain injury, whether or not hypothermia is administered. Since hypothermia for 72 hours may not prevent brain injury when hyperperfusion is found early in the course of neonatal hypoxic-ischemic encephalopathy, such newborns may be candidates for adjustments in their hypothermia therapy or for adjunctive neuroprotective therapies. PMID:21979494

  4. Accounting for the Confound of Meninges in Segmenting Entorhinal and Perirhinal Cortices in T1-Weighted MRI.

    PubMed

    Xie, Long; Wisse, Laura E M; Das, Sandhitsu R; Wang, Hongzhi; Wolk, David A; Manjón, Jose V; Yushkevich, Paul A

    2016-10-01

    Quantification of medial temporal lobe (MTL) cortices, including entorhinal cortex (ERC) and perirhinal cortex (PRC), from in vivo MRI is desirable for studying the human memory system as well as in early diagnosis and monitoring of Alzheimer's disease. However, ERC and PRC are commonly over-segmented in T1-weighted (T1w) MRI because of the adjacent meninges that have similar intensity to gray matter in T1 contrast. This introduces errors in the quantification and could potentially confound imaging studies of ERC/PRC. In this paper, we propose to segment MTL cortices along with the adjacent meninges in T1w MRI using an established multi-atlas segmentation framework together with super-resolution technique. Experimental results comparing the proposed pipeline with existing pipelines support the notion that a large portion of meninges is segmented as gray matter by existing algorithms but not by our algorithm. Cross-validation experiments demonstrate promising segmentation accuracy. Further, agreement between the volume and thickness measures from the proposed pipeline and those from the manual segmentations increase dramatically as a result of accounting for the confound of meninges. Evaluated in the context of group discrimination between patients with amnestic mild cognitive impairment and normal controls, the proposed pipeline generates more biologically plausible results and improves the statistical power in discriminating groups in absolute terms comparing to other techniques using T1w MRI. Although the performance of the proposed pipeline is inferior to that using T2-weighted MRI, which is optimized to image MTL sub-structures, the proposed pipeline could still provide important utilities in analyzing many existing large datasets that only have T1w MRI available.

  5. Prediction of early neurological deterioration using diffusion- and perfusion-weighted imaging in hyperacute middle cerebral artery ischemic stroke.

    PubMed

    Arenillas, Juan F; Rovira, Alex; Molina, Carlos A; Grivé, Elisenda; Montaner, Joan; Alvarez-Sabín, José

    2002-09-01

    Early neurological deterioration (END) occurs in approximately one third of all ischemic stroke patients and is associated with a poor outcome. Our study sought to assess the value of ultra-early MRI in the prediction of END in stroke patients. Between August 1999 and November 2001, 38 stroke patients with a proven middle cerebral artery (MCA) or intracranial internal carotid artery (ICA) occlusion on MR angiography underwent perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) within 6 hours after onset, and 30 fulfilled all inclusion criteria. Control DWI and MR angiography were performed between days 3 and 5. Cranial CT was performed to rule out hemorrhagic transformation. Vascular risk factors, temperature, blood pressure, glycemia, and blood count were assessed on admission. National Institutes of Health Stroke Scale (NIHSS) scores were obtained at baseline and at 6, 12, 24, and 48 hours. At the same time points, transcranial Doppler (TCD) examinations were conducted to assess arterial recanalization. END was defined as an increase in the NIHSS score >4. A logistic regression model was applied to detect independent predictors of END. The Kruskal-Wallis test was used to evaluate the relationship between infarct growth and duration of vessel occlusion. Initial MR angiography showed an occlusion of intracranial ICA in 7 patients (23.3%), of proximal MCA in 14 (46.6%), and of distal MCA in the remaining 9 (30%). A PWI-DWI mismatch >20% was observed in 28 patients (93.3%). END occurred in 7 patients (23.3%). Baseline NIHSS score (P=0.05), proximal site of occlusion (P=0.002), initial DWI (P=0.002) and PWI (P=0.003) volumes, and reduced PWI-DWI mismatch (P=0.038) were associated with END in the univariate analysis. Only hyperacute DWI volume remained as a predictor of END when a logistic regression model was applied (odds ratio, 11.5; 95% CI, 2.31 to 57.10; P=0.0028). A receiver operator characteristic curve identified a cutoff point of DWI >89 cm(3

  6. Combined use of susceptibility weighted magnetic resonance imaging sequences and dynamic susceptibility contrast perfusion weighted imaging to improve the accuracy of the differential diagnosis of recurrence and radionecrosis in high-grade glioma patients.

    PubMed

    Kim, Tae-Hyung; Yun, Tae Jin; Park, Chul-Kee; Kim, Tae Min; Kim, Ji-Hoon; Sohn, Chul-Ho; Won, Jae Kyung; Park, Sung-Hye; Kim, Il Han; Choi, Seung Hong

    2017-03-21

    Purpose was to assess predictive power for overall survival (OS) and diagnostic performance of combination of susceptibility-weighted MRI sequences (SWMRI) and dynamic susceptibility contrast (DSC) perfusion-weighted imaging (PWI) for differentiation of recurrence and radionecrosis in high-grade glioma (HGG). We enrolled 51 patients who underwent radiation therapy or gamma knife surgeryfollowed by resection for HGG and who developed new measurable enhancement more than six months after complete response. The lesions were confirmed as recurrence (n = 32) or radionecrosis (n = 19). The mean and each percentile value from cumulative histograms of normalized CBV (nCBV) and proportion of dark signal intensity on SWMRI (proSWMRI, %) within enhancement were compared. Multivariate regression was performed for the best differentiator. The cutoff value of best predictor from ROC analysis was evaluated. OS was determined with Kaplan-Meier method and log-rank test. Recurrence showed significantly lower proSWMRI and higher mean nCBV and 90th percentile nCBV (nCBV90) than radionecrosis. Regression analysis revealed both nCBV90 and proSWMRI were independent differentiators. Combination of nCBV90 and proSWMRI achieved 71.9% sensitivity (23/32), 100% specificity (19/19) and 82.3% accuracy (42/51) using best cut-off values (nCBV90 > 2.07 and proSWMRI≤15.76%) from ROC analysis. In subgroup analysis, radionecrosis with nCBV > 2.07 (n = 5) showed obvious hemorrhage (proSWMRI > 32.9%). Patients with nCBV90 > 2.07 and proSWMRI≤15.76% had significantly shorter OS. In conclusion, compared with DSC PWI alone, combination of SWMRI and DSC PWI have potential to be prognosticator for OS and lower false positive rate in differentiation of recurrence and radionecrosis in HGG who develop new measurable enhancement more than six months after complete response.

  7. Computer-aided detection of prostate cancer in T2-weighted MRI within the peripheral zone

    NASA Astrophysics Data System (ADS)

    Rampun, Andrik; Zheng, Ling; Malcolm, Paul; Tiddeman, Bernie; Zwiggelaar, Reyer

    2016-07-01

    In this paper we propose a prostate cancer computer-aided diagnosis (CAD) system and suggest a set of discriminant texture descriptors extracted from T2-weighted MRI data which can be used as a good basis for a multimodality system. For this purpose, 215 texture descriptors were extracted and eleven different classifiers were employed to achieve the best possible results. The proposed method was tested based on 418 T2-weighted MR images taken from 45 patients and evaluated using 9-fold cross validation with five patients in each fold. The results demonstrated comparable results to existing CAD systems using multimodality MRI. We achieved an area under the receiver operating curve (A z ) values equal to 90.0%+/- 7.6% , 89.5%+/- 8.9% , 87.9%+/- 9.3% and 87.4%+/- 9.2% for Bayesian networks, ADTree, random forest and multilayer perceptron classifiers, respectively, while a meta-voting classifier using average probability as a combination rule achieved 92.7%+/- 7.4% .

  8. Reticular Appearance on Gadolinium-enhanced T1- and Diffusion-weighted MRI, and Low Apparent Diffusion Coefficient Values in Microcystic Meningioma Cysts.

    PubMed

    Terada, Yukinori; Toda, Hiroki; Okumura, Ryosuke; Ikeda, Naokado; Yuba, Yoshiaki; Katayama, Toshiro; Iwasaki, Koichi

    2018-03-01

    Microcystic meningioma, a rare meningioma subtype, can present diagnostic difficulty. We aimed to investigate the historadiological properties of microcystic meningioma using conventional magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) analysis. We retrospectively analyzed conventional MRI and DWI results of six microcystic meningioma cases by examining their appearance and determining their apparent diffusion coefficient (ADC) values. The ADC values of the intratumoral components were normalized with ADC values of the cerebrospinal fluid in the lateral ventricle (ADC ratios). As cystic formations are frequently associated with microcystic meningiomas, their MRI characteristics were compared with the imaging data from 11 cystic meningiomas of non-microcystic subtypes. We found that cysts in microcystic meningioma tended to have a reticular appearance on DWI, as they did on gadolinium-enhanced T1-weighted imaging. Additionally, these reticular cysts had significantly lower ADC ratios than microcystic non-reticular and non-microcystic cysts. These DWI characteristics likely reflect the histological properties of microcystic meningioma. A reticular appearance on gadolinium-enhanced T1-weighted MRI and DWI, and cyst formation with relatively low ADC values can be diagnostic markers of microcystic meningiomas.

  9. The perfusion index derived from a pulse oximeter for predicting low superior vena cava flow in very low birth weight infants.

    PubMed

    Takahashi, S; Kakiuchi, S; Nanba, Y; Tsukamoto, K; Nakamura, T; Ito, Y

    2010-04-01

    Superior vena cava (SVC) flow is used as an index for evaluating systemic blood flow in neonates. Thus far, several reports have shown that low SVC flow is a risk factor for intraventricular hemorrhage (IVH) in the preterm infant. Therefore, it is likely to be a useful index in the management of the preterm infant. The perfusion index (PI) derived from a pulse oximeter is a marker that allows noninvasive and continuous monitoring of peripheral perfusion. The objective of this paper was to determine the accuracy of the PI for detecting low SVC flow in very low birth weight infants born before 32 weeks of gestation. We studied the correlation between PI and SVC flow 0 to 72 h after birth in very low birth weight infants born before 32 weeks of gestation. The best cut-off value for low SVC flow was calculated from the respective receiver-operating characteristic curves. A positive correlation was found between the PI and SVC flow (r=0.509, P<0.001). The best cut-off value for the PI to detect low SVC flow was 0.44 (sensitivity 87.5%, specificity 86.3%, positive predictive value 38.9%, negative predictive value 98.6%). This study found that the PI was associated with SVC flow, and it was a useful index for detecting low SVC flow in very low birth weight infants born before 32 weeks of gestation. Therefore, use of the PI should be evaluated in the cardiovascular management of the preterm infant.

  10. Stroke penumbra defined by an MRI-based oxygen challenge technique: 1. Validation using [14C]2-deoxyglucose autoradiography.

    PubMed

    Robertson, Craig A; McCabe, Christopher; Gallagher, Lindsay; Lopez-Gonzalez, Maria del Rosario; Holmes, William M; Condon, Barrie; Muir, Keith W; Santosh, Celestine; Macrae, I Mhairi

    2011-08-01

    Accurate identification of ischemic penumbra will improve stroke patient selection for reperfusion therapies and clinical trials. Current magnetic resonance imaging (MRI) techniques have limitations and lack validation. Oxygen challenge T(2)(*) MRI (T(2)(*) OC) uses oxygen as a biotracer to detect tissue metabolism, with penumbra displaying the greatest T(2)(*) signal change during OC. [(14)C]2-deoxyglucose (2-DG) autoradiography was combined with T(2)(*) OC to determine metabolic status of T(2)(*)-defined penumbra. Permanent middle cerebral artery occlusion was induced in anesthetized male Sprague-Dawley rats (n=6). Ischemic injury and perfusion deficit were determined by diffusion- and perfusion-weighted imaging, respectively. At 147 ± 32 minutes after stroke, T(2)(*) signal change was measured during a 5-minute 100% OC, immediately followed by 125 μCi/kg 2-DG, intravenously. Magnetic resonance images were coregistered with the corresponding autoradiograms. Regions of interest were located within ischemic core, T(2)(*)-defined penumbra, equivalent contralateral structures, and a region of hyperglycolysis. A T(2)(*) signal increase of 9.22% ± 3.9% (mean ± s.d.) was recorded in presumed penumbra, which displayed local cerebral glucose utilization values equivalent to contralateral cortex. T(2)(*) signal change was negligible in ischemic core, 3.2% ± 0.78% in contralateral regions, and 1.41% ± 0.62% in hyperglycolytic tissue, located outside OC-defined penumbra and within the diffusion abnormality. The results support the utility of OC-MRI to detect viable penumbral tissue following stroke.

  11. Cerebral misery perfusion due to carotid occlusive disease

    PubMed Central

    Maddula, Mohana; Sprigg, Nikola; Bath, Philip M; Munshi, Sunil

    2017-01-01

    Purpose Cerebral misery perfusion (CMP) is a condition where cerebral autoregulatory capacity is exhausted, and cerebral blood supply in insufficient to meet metabolic demand. We present an educational review of this important condition, which has a range of clinical manifestations. Method A non-systematic review of published literature was undertaken on CMP and major cerebral artery occlusive disease, using Pubmed and Sciencedirect. Findings Patients with CMP may present with strokes in watershed territories, collapses and transient ischaemic attacks or episodic movements associated with an orthostatic component. While positron emission tomography is the gold standard investigation for misery perfusion, advanced MRI is being increasingly used as an alternative investigation modality. The presence of CMP increases the risk of strokes. In addition to the devastating effect of stroke, there is accumulating evidence of impaired cognition and quality of life with carotid occlusive disease (COD) and misery perfusion. The evidence for revascularisation in the setting of complete carotid occlusion is weak. Medical management constitutes careful blood pressure management while addressing other vascular risk factors. Discussion The evidence for the management of patients with COD and CMP is discussed, together with recommendations based on our local experience. In this review, we focus on misery perfusion due to COD. Conclusion Patients with CMP and COD may present with a wide-ranging clinical phenotype and therefore to many specialties. Early identification of patients with misery perfusion may allow appropriate management and focus on strategies to maintain or improve cerebral blood flow, while avoiding potentially harmful treatment. PMID:28959496

  12. Assessment of mediastinal tumors with diffusion-weighted single-shot echo-planar MRI.

    PubMed

    Razek, Ahmed Abdel; Elmorsy, Ahmed; Elshafey, Mohsen; Elhadedy, Tamer; Hamza, Osama

    2009-09-01

    To assess the role of diffusion-weighted single-shot echo-planar magnetic resonance imaging (MRI) in patients with mediastinal tumors. Prospective study was conducted on 45 consecutive patients (29 male, 16 female, age 22-66 years, mean 41 years) with mediastinal tumor. They underwent diffusion-weighted single-shot echo-planar MRI of the mediastinum with a b-factor of 0, 300, and 600 sec/mm(2). The apparent diffusion coefficient (ADC) value of the mediastinal tumor was correlated with the histopathological findings. The mean ADC value of malignant mediastinal tumors was 1.09 +/- 0.25 x 10(-3) mm(2)/sec, and of benign tumors was 2.38 +/- 0.56 x 10(-3) mm(2)/sec. There was a significant difference in the mean ADC value between malignant and benign tumors (P = 0.001) and within different grades of malignancy (0.001). When an ADC value of 1.56 x 10(-3) mm(2)/sec was used as a threshold value for differentiating malignant from benign tumor, the best results were obtained with an accuracy of 95%, sensitivity of 96%, specificity of 94%, positive predictive value of 94%, negative predictive value of 96%, and area under the curve of 0.938. The ADC value is a noninvasive parameter that can be used for differentiation of malignant from benign mediastinal tumors and grading of mediastinal malignancy.

  13. Myocardial perfusion characteristics during machine perfusion for heart transplantation.

    PubMed

    Peltz, Matthias; Cobert, Michael L; Rosenbaum, David H; West, LaShondra M; Jessen, Michael E

    2008-08-01

    Optimal parameters for machine perfusion preservation of hearts prior to transplantation have not been determined. We sought to define regional myocardial perfusion characteristics of a machine perfusion device over a range of conditions in a large animal model. Dog hearts were connected to a perfusion device (LifeCradle, Organ Transport Systems, Inc, Frisco, TX) and cold perfused at differing flow rates (1) at initial device startup and (2) over the storage interval. Myocardial perfusion was determined by entrapment of colored microspheres. Myocardial oxygen consumption (MVO(2)) was estimated from inflow and outflow oxygen differences. Intra-myocardial lactate was determined by (1)H magnetic resonance spectroscopy. MVO(2) and tissue perfusion increased up to flows of 15 mL/100 g/min, and the ratio of epicardial:endocardial perfusion remained near 1:1. Perfusion at lower flow rates and when low rates were applied during startup resulted in decreased capillary flow and greater non-nutrient flow. Increased tissue perfusion correlated with lower myocardial lactate accumulation but greater edema. Myocardial perfusion is influenced by flow rates during device startup and during the preservation interval. Relative declines in nutrient flow at low flow rates may reflect greater aortic insufficiency. These factors may need to be considered in clinical transplant protocols using machine perfusion.

  14. Demonstration of the reproducibility of free-breathing diffusion-weighted MRI and dynamic contrast enhanced MRI in children with solid tumours: a pilot study.

    PubMed

    Miyazaki, Keiko; Jerome, Neil P; Collins, David J; Orton, Matthew R; d'Arcy, James A; Wallace, Toni; Moreno, Lucas; Pearson, Andrew D J; Marshall, Lynley V; Carceller, Fernando; Leach, Martin O; Zacharoulis, Stergios; Koh, Dow-Mu

    2015-09-01

    The objectives are to examine the reproducibility of functional MR imaging in children with solid tumours using quantitative parameters derived from diffusion-weighted (DW-) and dynamic contrast enhanced (DCE-) MRI. Patients under 16-years-of age with confirmed diagnosis of solid tumours (n = 17) underwent free-breathing DW-MRI and DCE-MRI on a 1.5 T system, repeated 24 hours later. DW-MRI (6 b-values, 0-1000 sec/mm(2)) enabled monoexponential apparent diffusion coefficient estimation using all (ADC0-1000) and only ≥100 sec/mm(2) (ADC100-1000) b-values. DCE-MRI was used to derive the transfer constant (K(trans)), the efflux constant (kep), the extracellular extravascular volume (ve), and the plasma fraction (vp), using a study cohort arterial input function (AIF) and the extended Tofts model. Initial area under the gadolinium enhancement curve and pre-contrast T1 were also calculated. Percentage coefficients of variation (CV) of all parameters were calculated. The most reproducible cohort parameters were ADC100-1000 (CV = 3.26%), pre-contrast T1 (CV = 6.21%), and K(trans) (CV = 15.23%). The ADC100-1000 was more reproducible than ADC0-1000, especially extracranially (CV = 2.40% vs. 2.78%). The AIF (n = 9) derived from this paediatric population exhibited sharper and earlier first-pass and recirculation peaks compared with the literature's adult population average. Free-breathing functional imaging protocols including DW-MRI and DCE-MRI are well-tolerated in children aged 6 - 15 with good to moderate measurement reproducibility. • Diffusion MRI protocol is feasible and well-tolerated in a paediatric oncology population. • DCE-MRI for pharmacokinetic evaluation is feasible and well tolerated in a paediatric oncology population. • Paediatric arterial input function (AIF) shows systematic differences from the adult population-average AIF. • Variation of quantitative parameters from paired functional MRI measurements were within 20%.

  15. The evolving role of MRI in the assessment of coronary artery disease.

    PubMed

    Blackwell, G G; Pohost, G M

    1995-04-13

    Magnetic resonance imaging (MRI) methods are positioned to make a major impact in the care of patients with ischemic heart disease. Further advances are to be expected in the area of myocardial perfusion imaging and noninvasive MRI coronary "angiography." Work also continues in determining quantitative flow via MRI. Although expensive, the unique ability of MRI methods to provide multiple pieces of information in a single examination may make this technology cost effective. The concept of a "one-step shop" is progressing steadily toward a clinical reality.

  16. Quantitative Serial MRI of the Treated Fibroid Uterus

    PubMed Central

    Williams, Alistair R. W.; McKillop, Graham; Walker, Jane; Horne, Andrew W.; Newby, David E.; Anderson, Richard A.; Semple, Scott I.; Marshall, Ian; Lewis, Steff C.; Millar, Robert P.; Bastin, Mark E.; Critchley, Hilary O. D.

    2014-01-01

    Objective There are no long-term medical treatments for uterine fibroids, and non-invasive biomarkers are needed to evaluate novel therapeutic interventions. The aim of this study was to determine whether serial dynamic contrast-enhanced MRI (DCE-MRI) and magnetization transfer MRI (MT-MRI) are able to detect changes that accompany volume reduction in patients administered GnRH analogue drugs, a treatment which is known to reduce fibroid volume and perfusion. Our secondary aim was to determine whether rapid suppression of ovarian activity by combining GnRH agonist and antagonist therapies results in faster volume reduction. Methods Forty women were assessed for eligibility at gynaecology clinics in the region, of whom thirty premenopausal women scheduled for hysterectomy due to symptomatic fibroids were randomized to three groups, receiving (1) GnRH agonist (Goserelin), (2) GnRH agonist+GnRH antagonist (Goserelin and Cetrorelix) or (3) no treatment. Patients were monitored by serial structural, DCE-MRI and MT-MRI, as well as by ultrasound and serum oestradiol concentration measurements from enrolment to hysterectomy (approximately 3 months). Results A volumetric treatment effect assessed by structural MRI occurred by day 14 of treatment (9% median reduction versus 9% increase in untreated women; P = 0.022) and persisted throughout. Reduced fibroid perfusion and permeability assessed by DCE-MRI occurred later and was demonstrable by 2–3 months (43% median reduction versus 20% increase respectively; P = 0.0093). There was no apparent treatment effect by MT-MRI. Effective suppression of oestradiol was associated with early volume reduction at days 14 (P = 0.041) and 28 (P = 0.0061). Conclusion DCE-MRI is sensitive to the vascular changes thought to accompany successful GnRH analogue treatment of uterine fibroids and should be considered for use in future mechanism/efficacy studies of proposed fibroid drug therapies. GnRH antagonist administration

  17. Diagnosis of hepatic metastasis: comparison of respiration-triggered diffusion-weighted echo-planar MRI and five t2-weighted turbo spin-echo sequences.

    PubMed

    Bruegel, Melanie; Gaa, Jochen; Waldt, Simone; Woertler, Klaus; Holzapfel, Konstantin; Kiefer, Berthold; Rummeny, Ernst J

    2008-11-01

    The purpose of this study was to compare the value of respiration-triggered diffusion-weighted (DW) single-shot echo-planar MRI (EPI) and five variants of T2-weighted turbo spin-echo (TSE) sequences in the diagnosis of hepatic metastasis. Fifty-two patients with extrahepatic primary malignant tumors underwent 1.5-T MRI that included DW EPI and the following variants of T2-weighted TSE techniques: breath-hold fat-suppressed HASTE, breath-hold fat-supressed TSE, respiration-triggered fat-suppressed TSE, breath-hold STIR, and respiration-triggered STIR. Images were reviewed independently by two blinded observers who used a 5-point confidence scale to identify lesions. Results were correlated with surgical and histopathologic findings and follow-up imaging findings. The accuracy of each technique was measured with free-response receiver operating characteristic analysis. A total of 118 hepatic metastatic lesions (mean diameter, 12.8 mm; range, 3-84 mm) were evaluated. Accuracy values were higher (p < 0.001) with DW EPI (0.91-0.92) than with the T2-weighted TSE techniques (0.47-0.67). Imaging with the HASTE sequence (0.47-0.52) was less accurate (p < 0.05) than imaging with the breath-hold TSE, breath-hold STIR, respiration-triggered TSE, and respiration-triggered STIR sequences (0.59-0.67). Sensitivity was higher (p < 0.001) with DW EPI (0.88-0.91) than with T2-weighted TSE techniques (0.45-0.62). For small (< or = 10 mm) metastatic lesions only, the differences in sensitivity between DW EPI (0.85) and T2-weighted TSE techniques (0.26-0.44) were even more pronounced. DW EPI was more sensitive and more accurate than imaging with T2-weighted TSE techniques. Because of the black-blood effect on vessels and low susceptibility to motion artifacts, DW EPI was particularly useful for the detection of small (< or = 10 mm) metastatic lesions.

  18. Repeated diffusion MRI reveals earliest time point for stratification of radiotherapy response in brain metastases

    NASA Astrophysics Data System (ADS)

    Mahmood, Faisal; Johannesen, Helle H.; Geertsen, Poul; Hansen, Rasmus H.

    2017-04-01

    An imaging biomarker for early prediction of treatment response potentially provides a non-invasive tool for better prognostics and individualized management of the disease. Radiotherapy (RT) response is generally related to changes in gross tumor volume manifesting months later. In this prospective study we investigated the apparent diffusion coefficient (ADC), perfusion fraction and pseudo diffusion coefficient derived from diffusion weighted MRI as potential early biomarkers for radiotherapy response of brain metastases. It was a particular aim to assess the optimal time point for acquiring the DW-MRI scan during the course of treatment, since to our knowledge this important question has not been addressed directly in previous studies. Twenty-nine metastases (N  =  29) from twenty-one patients, treated with whole-brain fractionated external beam RT were analyzed. Patients were scanned with a 1 T MRI system to acquire DW-, T2*W-, T2W- and T1W scans, before start of RT, at each fraction and at follow up two to three months after RT. The DW-MRI parameters were derived using regions of interest based on high b-value images (b  =  800 s mm-2). Both volumetric and RECIST criteria were applied for response evaluation. It was found that in non-responding metastases the mean ADC decreased and in responding metastases it increased. The volume based response proved to be far more consistently predictable by the ADC change found at fraction number 7 and later, compared to the linear response (RECIST). The perfusion fraction and pseudo diffusion coefficient did not show sufficient prognostic value with either response assessment criteria. In conclusion this study shows that the ADC derived using high b-values may be a reliable biomarker for early assessment of radiotherapy response for brain metastases patients. The earliest response stratification can be achieved using two DW-MRI scans, one pre-treatment and one at treatment day 7-9 (equivalent to 21 Gy).

  19. [Effect of vibration caused by time-varying magnetic fields on diffusion-weighted MRI].

    PubMed

    Ogura, Akio; Maeda, Fumie; Miyai, Akira; Hayashi, Kohji; Hongoh, Takaharu

    2006-04-20

    Diffusion-weighted images (DWIs) with high b-factor in the body are often used to detect and diagnose cancer at MRI. The echo planar imaging (EPI) sequence and high motion probing gradient pulse are used at diffusion weighted imaging, causing high table vibration. The purpose of this study was to assess whether the diffusion signal and apparent diffusion coefficient (ADC) values are influenced by this vibration because of time-varying magnetic fields. Two DWIs were compared. In one, phantoms were fixed on the MRI unit's table transmitting the vibration. In the other, phantoms were supported in air, in the absence of vibration. The phantoms called "solution phantoms" were made from agarose of a particular density. The phantoms called "jelly phantoms" were made from agarose that was heated. The diffusion signal and ADC value of each image were compared. The results showed that the signal of DWI units using the solution phantom was not affected by vibration. However, the signal of DWI and ADC were increased in the low-density jelly phantom as a result of vibration, causing the jelly phantom to vibrate. The DWIs of vibrating regions such as the breast maybe be subject to error. A countermeasure seems to be to support the region adequately.

  20. A brain stress test: Cerebral perfusion during memory encoding in mild cognitive impairment.

    PubMed

    Xie, Long; Dolui, Sudipto; Das, Sandhitsu R; Stockbower, Grace E; Daffner, Molly; Rao, Hengyi; Yushkevich, Paul A; Detre, John A; Wolk, David A

    2016-01-01

    Arterial spin labeled perfusion magnetic resonance imaging (ASL MRI) provides non-invasive quantification of cerebral blood flow, which can be used as a biomarker of brain function due to the tight coupling between cerebral blood flow (CBF) and brain metabolism. A growing body of literature suggests that regional CBF is altered in neurodegenerative diseases. Here we examined ASL MRI CBF in subjects with amnestic mild cognitive impairment (n = 65) and cognitively normal healthy controls (n = 62), both at rest and during performance of a memory-encoding task. As compared to rest, task-enhanced ASL MRI improved group discrimination, which supports the notion that physiologic measures during a cognitive challenge, or "stress test", may increase the ability to detect subtle functional changes in early disease stages. Further, logistic regression analysis demonstrated that ASL MRI and concomitantly acquired structural MRI provide complementary information of disease status. The current findings support the potential utility of task-enhanced ASL MRI as a biomarker in early Alzheimer's disease.

  1. Value of diffusion-weighted MRI during carotid angioplasty and stenting.

    PubMed

    McDonnell, C O; Fearn, S J; Baker, S R; Goodman, M A; Price, D; Lawrence-Brown, M M D

    2006-07-01

    The incidence of neurological injury following carotid angioplasty and stenting is of great interest to those advocating it as an alternative to endarterectomy in the management of critical carotid stenosis. A significant inter-observer variation exists in determining the presence or absence of a neurological deficit following the procedure objective imaging would be advantageous. In this study, we sought to assess diffusion weighted MRI as a diagnostic tool in evaluating the incidence of neurological injury following carotid angioplasty and stenting (CAS). The first 110 cases of CAS in our unit were included in this series. The procedure was abandoned in three patients. Patients underwent intracranial and extracranial MR angiography, together with diffusion-weighted MRI (DWI) prior to and following CAS and had a formal neurological assessment in the intensive care unit after the procedure. One hundred and ten Procedures were attempted in 98 patients. Twenty-eight percent were asymptomatic. Following CAS, 7.2% of patients had a positive neurological exam (two major strokes with one fatality) and 21% had positive DWI scans, equating to a sensitivity of 86% and a specificity of 85% for DWI in detecting cerebral infarction following CAS. The positive predictive value of the test was 0.3 and negative predictive value 0.99. The major stroke and death rate was 1.8%. While the use of a cerebral protection device appeared to significantly reduce the incidence of cerebral infarction (5% vs. 25%, p = 0.031) this may be a reflection of the learning curve encountered during the study. The incidence of subclinical DWI detected neurological injury was significantly higher than clinical neurological deficit following CAS. Conventional methods of neurological assessment of patients undergoing CAS may be too crude to detect subtle changes and more sensitive tests of cerebral function are required to establish whether these subclinical lesions are relevant.

  2. Improve definition of titanium tandems in MR-guided high dose rate brachytherapy for cervical cancer using proton density weighted MRI

    PubMed Central

    2013-01-01

    Background For cervical cancer patients treated with MR-guided high dose rate brachytherapy, the accuracy of radiation delivery depends on accurate localization of both tumors and the applicator, e.g. tandem and ovoid. Standard T2-weighted (T2W) MRI has good tumor-tissue contrast. However, it suffers from poor uterus-tandem contrast, which makes the tandem delineation very challenging. In this study, we evaluated the possibility of using proton density weighted (PDW) MRI to improve the definition of titanium tandems. Methods Both T2W and PDW MRI images were obtained from each cervical cancer patient. Imaging parameters were kept the same between the T2W and PDW sequences for each patient except the echo time (90 ms for T2W and 5.5 ms for PDW) and the slice thickness (0.5 cm for T2W and 0.25 cm for PDW). Uterus-tandem contrast was calculated by the equation C = (Su-St)/Su, where Su and St represented the average signal in the uterus and the tandem, respectively. The diameter of the tandem was measured 1.5 cm away from the tip of the tandem. The tandem was segmented by the histogram thresholding technique. Results PDW MRI could significantly improve the uterus-tandem contrast compared to T2W MRI (0.42±0.24 for T2W MRI, 0.77±0.14 for PDW MRI, p=0.0002). The average difference between the measured and physical diameters of the tandem was reduced from 0.20±0.15 cm by using T2W MRI to 0.10±0.11 cm by using PDW MRI (p=0.0003). The tandem segmented from the PDW image looked more uniform and complete compared to that from the T2W image. Conclusions Compared to the standard T2W MRI, PDW MRI has better uterus-tandem contrast. The information provided by PDW MRI is complementary to those provided by T2W MRI. Therefore, we recommend adding PDW MRI to the simulation protocol to assist tandem delineation process for cervical cancer patients. PMID:23327682

  3. The perfused swine uterus model: long-term perfusion

    PubMed Central

    2012-01-01

    Background It has previously been shown that the viability of swine uteri can be maintained within the physiological range in an open perfusion model for up to 8 hours. The aim of this study was to assess medium- to long-term perfusion of swine uteri using a modified Krebs–Ringer bicarbonate buffer solution (KRBB) in the established open perfusion model. Methods In an experimental study at an infertility institute, 30 swine uteri were perfused: group 1: n = 11, KRBB; group 2: n = 8, modified KRBB with drainage of perfusate supernatant; group 3: n = 11, modified KRBB with drainage of perfusate every 2 h and substitution with fresh medium. Modified and conventional KRBB were compared with regard to survival and contraction parameters: intrauterine pressure (IUP), area under the curve (AUC), and frequency of contractions (F). Results Modified KRBB showed significantly higher IUP, AUC, and F values than perfusion with conventional KRBB. In group 3, the organ survival time of up to 17 h, with a 98% rate of effective contraction time, differed significantly from group 1 (P < 0.001). Conclusions Using modified KRBB in combination with perfusate substitution improves the open model for perfusion of swine uteri with regard to survival time and quality of contraction parameters. This model can be used for medium- to long-term perfusion of swine uteri, allowing further metabolic ex vivo studies in a cost-effective way and with little logistic effort. PMID:23241226

  4. Correlation study between intravoxel incoherent motion MRI and dynamic contrast-enhanced MRI in head and neck squamous cell carcinoma: Evaluation in primary tumors and metastatic nodes.

    PubMed

    Marzi, Simona; Piludu, Francesca; Forina, Chiara; Sanguineti, Giuseppe; Covello, Renato; Spriano, Giuseppe; Vidiri, Antonello

    2017-04-01

    To correlate intravoxel incoherent motion (IVIM) imaging and dynamic contrast-enhanced (DCE) MRI in head and neck squamous cell carcinoma (HNSCC). Forty untreated patients with HNSCC were included retrospectively in the study. Perfusion fraction f, diffusion coefficient D and perfusion-related diffusion coefficient D* were extracted by bi-exponential fitting of IVIM data. Semi-quantitative DCE-MRI parameters, including positive enhancement integral (PEI) and maximum slope of increase (MSI), were calculated. The relationships between all variables were assessed by Spearman's test for correlation. 27 primary tumors (PTs) and 23 lymph nodes (LNs) were analyzed. The residual sum of squares (RSS), used to assess the fit quality, was significantly different between PTs and LNs, with the last showing lower values. In LNs, D* and the product D*×f were positively related to both nPEI and nMSI, while no significant correlation was found in PTs. Evident relationships between D* and D*×f and DCE-MRI perfusion measurements were found in LNs, while no significant association emerged in PTs. This presumably is due to the poorer agreement between the experimental data and curve fitting for PTs, as compared to LNs. Additional work is warranted to improve the reliability of the IVIM parameter estimations in primary HNSCCs. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Influence of amplitude-related perfusion parameters in the parotid glands by non-fat-saturated dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Chiu, Su-Chin; Cheng, Cheng-Chieh; Chang, Hing-Chiu; Chung, Hsiao-Wen; Chiu, Hui-Chu; Liu, Yi-Jui; Hsu, Hsian-He; Juan, Chun-Jung

    2016-04-01

    To verify whether quantification of parotid perfusion is affected by fat signals on non-fat-saturated (NFS) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and whether the influence of fat is reduced with fat saturation (FS). This study consisted of three parts. First, a retrospective study analyzed DCE-MRI data previously acquired on different patients using NFS (n = 18) or FS (n = 18) scans. Second, a phantom study simulated the signal enhancements in the presence of gadolinium contrast agent at six concentrations and three fat contents. Finally, a prospective study recruited nine healthy volunteers to investigate the influence of fat suppression on perfusion quantification on the same subjects. Parotid perfusion parameters were derived from NFS and FS DCE-MRI data using both pharmacokinetic model analysis and semiquantitative parametric analysis. T tests and linear regression analysis were used for statistical analysis with correction for multiple comparisons. NFS scans showed lower amplitude-related parameters, including parameter A, peak enhancement (PE), and slope than FS scans in the patients (all with P < 0.0167). The relative signal enhancement in the phantoms was proportional to the dose of contrast agent and was lower in NFS scans than in FS scans. The volunteer study showed lower parameter A (6.75 ± 2.38 a.u.), PE (42.12% ± 14.87%), and slope (1.43% ± 0.54% s(-1)) in NFS scans as compared to 17.63 ± 8.56 a.u., 104.22% ± 25.15%, and 9.68% ± 1.67% s(-1), respectively, in FS scans (all with P < 0.005). These amplitude-related parameters were negatively associated with the fat content in NFS scans only (all with P < 0.05). On NFS DCE-MRI, quantification of parotid perfusion is adversely affected by the presence of fat signals for all amplitude-related parameters. The influence could be reduced on FS scans.

  6. Intramuscular adipose tissue determined by T1-weighted MRI at 3T primarily reflects extramyocellular lipids.

    PubMed

    Akima, Hiroshi; Hioki, Maya; Yoshiko, Akito; Koike, Teruhiko; Sakakibara, Hisataka; Takahashi, Hideyuki; Oshida, Yoshiharu

    2016-05-01

    The purpose of this study was to assess relationships between intramuscular adipose tissue (IntraMAT) content determined by MRI and intramyocellular lipids (IMCL) and extramyocellular lipids (EMCL) determined by (1)H magnetic resonance spectroscopy ((1)H MRS) or echo intensity determined by B-mode ultrasonography of human skeletal muscles. Thirty young and elderly men and women were included. T1-weighted MRI was taken from the right mid-thigh to measure IntraMAT content of the vastus lateralis (VL) and biceps femoris (BF) using a histogram shape-based thresholding technique. IMCL and EMCL were measured from the VL and BF at the right mid-thigh using (1)H MRS. Ultrasonographic images were taken from the VL and BF of the right mid-thigh to measure echo intensity based on gray-scale level for quantitative analysis. There was a significant correlation between IntraMAT content by MRI and EMCL of the VL and BF (VL, r=0.506, P<0.01; BF, r=0.591, P<0.001) and between echo intensity and EMCL of the VL and BF (VL, r=0.485, P<0.05; BF, r=0.648, P<0.01). IntraMAT content was also significantly correlated with echo intensity of the VL and BF (VL, r=0.404, P<0.05; BF, r=0.493, P<0.01). Our study suggests that IntraMAT content determined by T1-weighted MRI at 3T primarily reflects extramyocellular lipids, not intramyocellular lipids, in human skeletal muscles. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. MR perfusion-weighted imaging in the evaluation of high-grade gliomas after treatment: a systematic review and meta-analysis

    PubMed Central

    Baradaran, Hediyeh; Delgado, Diana; Askin, Gulce; Christos, Paul; John Tsiouris, Apostolos; Gupta, Ajay

    2017-01-01

    Background. Distinction between tumor and treatment related changes is crucial for clinical management of patients with high-grade gliomas. Our purpose was to evaluate whether dynamic susceptibility contrast-enhanced (DSC) and dynamic contrast enhanced (DCE) perfusion-weighted imaging (PWI) metrics can effectively differentiate between recurrent tumor and posttreatment changes within the enhancing signal abnormality on conventional MRI. Methods. A comprehensive literature search was performed for studies evaluating PWI-based differentiation of recurrent tumor and posttreatment changes in patients with high-grade gliomas (World Health Organization grades III and IV). Only studies published in the “temozolomide era” beginning in 2005 were included. Summary estimates of diagnostic accuracy were obtained by using a random-effects model. Results. Of 1581 abstracts screened, 28 articles were included. The pooled sensitivities and specificities of each study's best performing parameter were 90% and 88% (95% CI: 0.85–0.94; 0.83–0.92) and 89% and 85% (95% CI: 0.78–0.96; 0.77–0.91) for DSC and DCE, respectively. The pooled sensitivities and specificities for detecting tumor recurrence using the 2 most commonly evaluated parameters, mean relative cerebral blood volume (rCBV) (threshold range, 0.9–2.15) and maximum rCBV (threshold range, 1.49–3.1), were 88% and 88% (95% CI: 0.81–0.94; 0.78–0.95) and 93% and 76% (95% CI: 0.86–0.98; 0.66–0.85), respectively. Conclusions. PWI-derived thresholds separating viable tumor from treatment changes demonstrate relatively good accuracy in individual studies. However, because of significant variability in optimal reported thresholds and other limitations in the existing body of literature, further investigation and standardization is needed before implementing any particular quantitative PWI strategy across institutions. PMID:27502247

  8. WE-G-18C-02: Estimation of Optimal B-Value Set for Obtaining Apparent Diffusion Coefficient Free From Perfusion in Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karki, K; Hugo, G; Ford, J

    2014-06-15

    Purpose: Diffusion-weighted MRI (DW-MRI) is increasingly being investigated for radiotherapy planning and response assessment. Selection of a limited number of b-values in DW-MRI is important to keep geometrical variations low and imaging time short. We investigated various b-value sets to determine an optimal set for obtaining monoexponential apparent diffusion coefficient (ADC) close to perfusion-insensitive intravoxel incoherent motion (IVIM) model ADC (ADC IVIM) in nonsmall cell lung cancer. Methods: Seven patients had 27 DW-MRI scans before and during radiotherapy in a 1.5T scanner. Respiratory triggering was applied to the echo-planar DW-MRI with TR=4500ms approximately, TE=74ms, pixel size=1.98X1.98mm{sub 2}, slice thickness=4–6mm andmore » 7 axial slices. Diffusion gradients were applied to all three axes producing traceweighted images with eight b-values of 0–1000μs/μm{sup 2}. Monoexponential model ADC values using various b-value sets were compared to ADC IVIM using all b-values. To compare the relative noise in ADC maps, intra-scan coefficient of variation (CV) of active tumor volumes was computed. Results: ADC IVIM, perfusion coefficient and perfusion fraction for tumor volumes were in the range of 880-1622 μm{sup 2}/s, 8119-33834 μm{sup 2}/s and 0.104–0.349, respectively. ADC values using sets of 250, 800 and 1000; 250, 650 and 1000; and 250–1000μs/μm{sup 2} only were not significantly different from ADC IVIM(p>0.05, paired t-test). Error in ADC values for 0–1000, 50–1000, 100–1000, 250–1000, 500–1000, and three b-value sets- 250, 500 and 1000; 250, 650 and 1000; and 250, 800 and 1000μs/μm{sup 2} were 15.0, 9.4, 5.6, 1.4, 11.7, 3.7, 2.0 and 0.2% relative to the reference-standard ADC IVIM, respectively. Mean intrascan CV was 20.2, 20.9, 21.9, 24.9, 32.6, 25.8, 25.4 and 24.8%, respectively, whereas that for ADC IVIM was 23.3%. Conclusion: ADC values of two 3 b-value sets (250, 650 and 1000; and 250, 800 and 1000μs/μm{sup 2

  9. Visual feature extraction from voxel-weighted averaging of stimulus images in 2 fMRI studies.

    PubMed

    Hart, Corey B; Rose, William J

    2013-11-01

    Multiple studies have provided evidence for distributed object representation in the brain, with several recent experiments leveraging basis function estimates for partial image reconstruction from fMRI data. Using a novel combination of statistical decomposition, generalized linear models, and stimulus averaging on previously examined image sets and Bayesian regression of recorded fMRI activity during presentation of these data sets, we identify a subset of relevant voxels that appear to code for covarying object features. Using a technique we term "voxel-weighted averaging," we isolate image filters that these voxels appear to implement. The results, though very cursory, appear to have significant implications for hierarchical and deep-learning-type approaches toward the understanding of neural coding and representation.

  10. Elevated Amygdala Perfusion Mediates Developmental Sex Differences in Trait Anxiety

    PubMed Central

    Kaczkurkin, Antonia N.; Moore, Tyler M.; Ruparel, Kosha; Ciric, Rastko; Calkins, Monica E.; Shinohara, Russell T.; Elliott, Mark A.; Hopson, Ryan; Roalf, David R.; Vandekar, Simon N.; Gennatas, Efstathios D.; Wolf, Daniel H.; Scott, J. Cobb; Pine, Daniel S.; Leibenluft, Ellen; Detre, John A.; Foa, Edna B.; Gur, Raquel E.; Gur, Ruben C.; Satterthwaite, Theodore D.

    2016-01-01

    Background Adolescence is a critical period for emotional maturation and is a time when clinically significant symptoms of anxiety and depression increase, particularly in females. However, few studies relate developmental differences in symptoms of anxiety and depression to brain development. Cerebral blood flow (CBF) is one brain phenotype that is known to have marked developmental sex differences. Methods We investigated whether developmental sex differences in CBF mediated sex differences in anxiety and depression symptoms by capitalizing upon a large sample of 875 youths who completed cross-sectional imaging as part of the Philadelphia Neurodevelopmental Cohort. Perfusion was quantified on a voxelwise basis using arterial spin labeled MRI at 3T. Perfusion images were related to trait and state anxiety using a general additive model with penalized splines, while controlling for gray matter density on a voxelwise basis. Clusters found to be related to anxiety were evaluated for interactions with age, sex, and puberty. Results Trait anxiety was associated with elevated perfusion in a network of regions including the amygdala, anterior insula, and fusiform cortex, even after accounting for pre-scanner state anxiety. Notably, these relationships strengthened with age and the transition through puberty. Moreover, higher trait anxiety in post-pubertal females was mediated by elevated perfusion of the left amygdala. Conclusions Taken together, these results demonstrate that differences in the evolution of cerebral perfusion during the adolescent period may be a critical element of the affective neurobiology underlying sex differences in anxiety and mood symptoms. PMID:27395327

  11. Prognostic value of high-dose dobutamine stress magnetic resonance imaging in 1,493 consecutive patients: assessment of myocardial wall motion and perfusion.

    PubMed

    Korosoglou, Grigorios; Elhmidi, Yacine; Steen, Henning; Schellberg, Dieter; Riedle, Nina; Ahrens, Johannes; Lehrke, Stephanie; Merten, Constanze; Lossnitzer, Dirk; Radeleff, Jannis; Zugck, Christian; Giannitsis, Evangelos; Katus, Hugo A

    2010-10-05

    This study sought to determine the prognostic value of wall motion and perfusion assessment during high-dose dobutamine stress (DS) cardiac magnetic resonance imaging (MRI) in a large patient cohort. DS-MRI offers the possibility to integrate myocardial perfusion and wall motion analysis in a single examination for the detection of coronary artery disease (CAD). A total of 1,493 consecutive patients with suspected or known CAD underwent DS-MRI, using a standard protocol in a 1.5-T magnetic resonance scanner. Wall motion and perfusion were assessed at baseline and during stress, and outcome data including cardiac death, nonfatal myocardial infarction ("hard events"), and "late" revascularization performed >90 days after the MR scans were collected during a 2 ± 1 year follow-up period. Fifty-three hard events, including 14 cardiac deaths and 39 nonfatal infarctions, occurred during the follow-up period, whereas 85 patients underwent "late" revascularization. Using multivariable regression analysis, an abnormal result for wall motion or perfusion during stress yielded the strongest independent prognostic value for both hard events and late revascularization, clearly surpassing that of clinical and baseline magnetic resonance parameters (for wall motion: adjusted hazard ratio [HR] of 5.9 [95% confidence interval (CI): 2.5 to 13.6] for hard events and of 3.1 [95% CI: 1.7 to 5.6] for late revascularization, and for perfusion: adjusted HR of 5.4 [95% CI: 2.3 to 12.9] for hard events and of 6.2 [95% CI: 3.3 to 11.3] for late revascularization, p < 0.001 for all). DS-MRI can accurately identify patients who are at increased risk for cardiac death and myocardial infarction, separating them from those with normal findings, who have very low risk for future cardiac events. (Prognostic Value of High Dose Dobutamine Stress Magnetic Resonance Imaging; NCT00837005). Copyright © 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  12. Determination of the Association Between T2-weighted MRI and Gleason Sub-pattern: A Proof of Principle Study.

    PubMed

    Downes, Michelle R; Gibson, Eli; Sykes, Jenna; Haider, Masoom; van der Kwast, Theo H; Ward, Aaron

    2016-11-01

    The study aimed to determine the relationship between T2-weighted magnetic resonance imaging (MRI) signal and histologic sub-patterns in prostate cancer areas with different Gleason grades. MR images of prostates (n = 25) were obtained prior to radical prostatectomy. These were processed as whole-mount specimens with tumors and the peripheral zone was annotated digitally by two pathologists. Gleason grade 3 was the most prevalent grade and was subdivided into packed, intermediate, and sparse based on gland-to-stroma ratio. Large cribriform, intraductal carcinoma, and small cribriform glands (grade 4 group) were separately annotated but grouped together for statistical analysis. The log MRI signal intensity for each contoured region (n = 809) was measured, and pairwise comparisons were performed using the open-source software R version 3.0.1. Packed grade 3 sub-pattern has a significantly lower MRI intensity than the grade 4 group (P < 0.00001). Sparse grade 3 has a significantly higher MRI intensity than the packed grade 3 sub-pattern (P < 0.0001). No significant difference in MRI intensity was observed between the Gleason grade 4 group and the sparse sub-pattern grade 3 group (P = 0.54). In multivariable analysis adjusting for peripheral zone, the P values maintained significance (packed grade 3 group vs grade 4 group, P < 0.001; and sparse grade 3 sub-pattern vs packed grade 3 sub-pattern, P < 0.001). This study demonstrated that T2-weighted MRI signal is dependent on histologic sub-patterns within Gleason grades 3 and 4 cancers, which may have implications for directed biopsy sampling and patient management. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  13. A variational image-based approach to the correction of susceptibility artifacts in the alignment of diffusion weighted and structural MRI.

    PubMed

    Tao, Ran; Fletcher, P Thomas; Gerber, Samuel; Whitaker, Ross T

    2009-01-01

    This paper presents a method for correcting the geometric and greyscale distortions in diffusion-weighted MRI that result from inhomogeneities in the static magnetic field. These inhomogeneities may due to imperfections in the magnet or to spatial variations in the magnetic susceptibility of the object being imaged--so called susceptibility artifacts. Echo-planar imaging (EPI), used in virtually all diffusion weighted acquisition protocols, assumes a homogeneous static field, which generally does not hold for head MRI. The resulting distortions are significant, sometimes more than ten millimeters. These artifacts impede accurate alignment of diffusion images with structural MRI, and are generally considered an obstacle to the joint analysis of connectivity and structure in head MRI. In principle, susceptibility artifacts can be corrected by acquiring (and applying) a field map. However, as shown in the literature and demonstrated in this paper, field map corrections of susceptibility artifacts are not entirely accurate and reliable, and thus field maps do not produce reliable alignment of EPIs with corresponding structural images. This paper presents a new, image-based method for correcting susceptibility artifacts. The method relies on a variational formulation of the match between an EPI baseline image and a corresponding T2-weighted structural image but also specifically accounts for the physics of susceptibility artifacts. We derive a set of partial differential equations associated with the optimization, describe the numerical methods for solving these equations, and present results that demonstrate the effectiveness of the proposed method compared with field-map correction.

  14. Fast analytical spectral filtering methods for magnetic resonance perfusion quantification.

    PubMed

    Reddy, Kasireddy V; Mitra, Abhishek; Yalavarthy, Phaneendra K

    2016-08-01

    The deconvolution in the perfusion weighted imaging (PWI) plays an important role in quantifying the MR perfusion parameters. The PWI application to stroke and brain tumor studies has become a standard clinical practice. The standard approach for this deconvolution is oscillatory-limited singular value decomposition (oSVD) and frequency domain deconvolution (FDD). The FDD is widely recognized as the fastest approach currently available for deconvolution of MR perfusion data. In this work, two fast deconvolution methods (namely analytical fourier filtering and analytical showalter spectral filtering) are proposed. Through systematic evaluation, the proposed methods are shown to be computationally efficient and quantitatively accurate compared to FDD and oSVD.

  15. Whole body MRI, including diffusion-weighted imaging in follow-up of patients with testicular cancer.

    PubMed

    Mosavi, Firas; Laurell, Anna; Ahlström, Håkan

    2015-11-01

    Whole body (WB) magnetic resonance imaging (MRI), including diffusion-weighted imaging (DWI) has become increasingly utilized in cancer imaging, yet the clinical utility of these techniques in follow-up of testicular cancer patients has not been evaluated. The purpose of this study was to evaluate the feasibility of WB MRI with continuous table movement (CTM) technique, including multistep DWI in follow-up of patients with testicular cancer. WB MRI including DWI was performed in follow-up of 71 consecutive patients (median age, 37 years; range 19-84) with histologically confirmed testicular cancer. WB MRI protocol included axial T1-Dixon and T2-BLADE sequences using CTM technique. Furthermore, multi-step DWI was performed using b-value 50 and 1000 s/mm(2). One criterion for feasibility was patient tolerance and satisfactory image quality. Another criterion was the accuracy in detection of any pathological mass, compared to standard of reference. Signal intensity in DWI was used for evaluation of residual mass activity. Clinical, laboratory and imaging follow-up were applied as standard of reference for the evaluation of WB MRI. WB MRI was tolerated in nearly all patients (69/71 patients, 97%) and the image quality was satisfactory. Metal artifacts deteriorated the image quality in six patients, but it did not influence the overall results. No case of clinical relapse was observed during the follow-up time. There was a good agreement between conventional WB MRI and standard of reference in all patients. Three patients showed residual masses and DWI signal was not restricted in these patients. Furthermore, DWI showed abnormally high signal intensity in a normal-sized retroperitoneal lymph node indicating metastasis. The subsequent (18)F-FDG PET/CT could verify the finding. WB MRI with CTM technique including multi-step DWI is feasible in follow-up of patients with testicular cancer. DWI may contribute to important added-value data to conventional MRI sequences

  16. Voxel-level comparison of arterial spin-labeled perfusion magnetic resonance imaging in adolescents with internet gaming addiction

    PubMed Central

    2013-01-01

    Background Although recent studies have clearly demonstrated functional and structural abnormalities in adolescents with internet gaming addiction (IGA), less is known about how IGA affects perfusion in the human brain. We used pseudocontinuous arterial spin-labeling (ASL) perfusion functional magnetic resonance imaging (fMRI) to measure the effects of IGA on resting brain functions by comparing resting cerebral blood flow in adolescents with IGA and normal subjects. Methods Fifteen adolescents with IGA and 18 matched normal adolescents underwent structural and perfusion fMRI in the resting state. Direct subtraction, voxel-wise general linear modeling was performed to compare resting cerebral blood flow (CBF) between the 2 groups. Correlations were calculated between the mean CBF value in all clusters that survived AlphaSim correction and the Chen Internet Addiction Scale (CIAS) scores, Barratt Impulsiveness Scale-11 (BIS-11) scores, or hours of Internet use per week (hours) in the 15 subjects with IGA. Results Compared with control subjects, adolescents with IGA showed significantly higher global CBF in the left inferior temporal lobe/fusiform gyrus, left parahippocampal gyrus/amygdala, right medial frontal lobe/anterior cingulate cortex, left insula, right insula, right middle temporal gyrus, right precentral gyrus, left supplementary motor area, left cingulate gyrus, and right inferior parietal lobe. Lower CBF was found in the left middle temporal gyrus, left middle occipital gyrus, and right cingulate gyrus. There were no significant correlations between mean CBF values in all clusters that survived AlphaSim correction and CIAS or BIS-11 scores or hours of Internet use per week. Conclusions In this study, we used ASL perfusion fMRI and noninvasively quantified resting CBF to demonstrate that IGA alters the CBF distribution in the adolescent brain. The results support the hypothesis that IGA is a behavioral addiction that may share similar neurobiological

  17. Atlas-derived perfusion correlates of white matter hyperintensities in patients with reduced cardiac output.

    PubMed

    Jefferson, Angela L; Holland, Christopher M; Tate, David F; Csapo, Istvan; Poppas, Athena; Cohen, Ronald A; Guttmann, Charles R G

    2011-01-01

    Reduced cardiac output is associated with increased white matter hyperintensities (WMH) and executive dysfunction in older adults, which may be secondary to relations between systemic and cerebral perfusion. This study preliminarily describes the regional distribution of cerebral WMH in the context of a normal cerebral perfusion atlas and aims to determine if these variables are associated with reduced cardiac output. Thirty-two participants (72 ± 8 years old, 38% female) with cardiovascular risk factors or disease underwent structural MRI acquisition at 1.5T using a standard imaging protocol that included FLAIR sequences. WMH distribution was examined in common anatomical space using voxel-based morphometry and as a function of normal cerebral perfusion patterns by overlaying a single photon emission computed tomography (SPECT) atlas. Doppler echocardiogram data was used to dichotomize the participants on the basis of low (n=9) and normal (n=23) cardiac output. Global WMH count and volume did not differ between the low and normal cardiac output groups; however, atlas-derived SPECT perfusion values in regions of hyperintensities were reduced in the low versus normal cardiac output group (p<0.001). Our preliminary data suggest that participants with low cardiac output have WMH in regions of relatively reduced perfusion, while normal cardiac output participants have WMH in regions with relatively higher regional perfusion. This spatial perfusion distribution difference for areas of WMH may occur in the context of reduced systemic perfusion, which subsequently impacts cerebral perfusion and contributes to subclinical or clinical microvascular damage. Copyright © 2009 Elsevier Inc. All rights reserved.

  18. Improvements in Diagnostic Accuracy with Quantitative Dynamic Contrast-Enhanced MRI

    DTIC Science & Technology

    2011-12-01

    Magnetic   Resonance   Imaging  during  the  Menstrual  Cylce:  Perfusion   Imaging  Signal   Enhanceent,  and  Influence  of...acquisition of quantitative images displaying the concentration of contrast media as well as MRI -detectable proton density. To date 21 patients have...truly  quantitative   images  of  a  dynamic  contrast-­‐enhanced  (DCE)   MRI  of  the

  19. Diffusion-weighted MRI derived apparent diffusion coefficient identifies prognostically distinct subgroups of pediatric diffuse intrinsic pontine glioma.

    PubMed

    Lober, Robert M; Cho, Yoon-Jae; Tang, Yujie; Barnes, Patrick D; Edwards, Michael S; Vogel, Hannes; Fisher, Paul G; Monje, Michelle; Yeom, Kristen W

    2014-03-01

    While pediatric diffuse intrinsic pontine gliomas (DIPG) remain fatal, recent data have shown subgroups with distinct molecular biology and clinical behavior. We hypothesized that diffusion-weighted MRI can be used as a prognostic marker to stratify DIPG subsets with distinct clinical behavior. Apparent diffusion coefficient (ADC) values derived from diffusion-weighted MRI were computed in 20 consecutive children with treatment-naïve DIPG tumors. The median ADC for the cohort was used to stratify the tumors into low and high ADC groups. Survival, gender, therapy, and potential steroid effects were compared between the ADC groups. Median age at diagnosis was 6.6 (range 2.3-13.2) years, with median follow-up seven (range 1-36) months. There were 14 boys and six girls. Seventeen patients received radiotherapy, five received chemotherapy, and six underwent cerebrospinal fluid diversion. The median ADC of 1,295 × 10(-6) mm(2)/s for the cohort partitioned tumors into low or high diffusion groups, which had distinct median survivals of 3 and 13 months, respectively (log-rank p < 0.001). Low ADC tumors were found only in boys, whereas high ADC tumors were found in both boys and girls. Available tissue specimens in three low ADC tumors demonstrated high-grade histology, whereas one high ADC tumor demonstrated low-grade histology with a histone H3.1 K27M mutation and high-grade metastatic lesion at autopsy. ADC derived from diffusion-weighted MRI may identify prognostically distinct subgroups of pediatric DIPG.

  20. Perfusion-induced changes in cardiac contractility depend on capillary perfusion.

    PubMed

    Dijkman, M A; Heslinga, J W; Sipkema, P; Westerhof, N

    1998-02-01

    The perfusion-induced increase in cardiac contractility (Gregg phenomenon) is especially found in heart preparations that lack adequate coronary autoregulation and thus protection of changes in capillary pressure. We determined in the isolated perfused papillary muscle of the rat whether cardiac muscle contractility is related to capillary perfusion. Oxygen availability of this muscle is independent of internal perfusion, and perfusion may be varied or even stopped without loss of function. Muscles contracted isometrically at 27 degrees C (n = 7). During the control state stepwise increases in perfusion pressure resulted in all muscles in a significant increase in active tension. Muscle diameter always increased with increased perfusion pressure, but muscle segment length was unaffected. Capillary perfusion was then obstructed by plastic microspheres (15 microns). Flow, at a perfusion pressure of 66.6 +/- 26.2 cmH2O, reduced from 17.6 +/- 5.4 microliters/min in the control state to 3.2 +/- 1.3 microliters/min after microspheres. Active tension developed by the muscle in the unperfused condition before microspheres and after microspheres did not differ significantly (-12.8 +/- 29.4% change). After microspheres similar perfusion pressure steps as in control never resulted in an increase in active tension. Even at the two highest perfusion pressures (89.1 +/- 28.4 and 106.5 +/- 31.7 cmH2O) that were applied a significant decrease in active tension was found. We conclude that the Gregg phenomenon is related to capillary perfusion.

  1. Automatic delineation of brain regions on MRI and PET images from the pig.

    PubMed

    Villadsen, Jonas; Hansen, Hanne D; Jørgensen, Louise M; Keller, Sune H; Andersen, Flemming L; Petersen, Ida N; Knudsen, Gitte M; Svarer, Claus

    2018-01-15

    The increasing use of the pig as a research model in neuroimaging requires standardized processing tools. For example, extraction of regional dynamic time series from brain PET images requires parcellation procedures that benefit from being automated. Manual inter-modality spatial normalization to a MRI atlas is operator-dependent, time-consuming, and can be inaccurate with lack of cortical radiotracer binding or skull uptake. A parcellated PET template that allows for automatic spatial normalization to PET images of any radiotracer. MRI and [ 11 C]Cimbi-36 PET scans obtained in sixteen pigs made the basis for the atlas. The high resolution MRI scans allowed for creation of an accurately averaged MRI template. By aligning the within-subject PET scans to their MRI counterparts, an averaged PET template was created in the same space. We developed an automatic procedure for spatial normalization of the averaged PET template to new PET images and hereby facilitated transfer of the atlas regional parcellation. Evaluation of the automatic spatial normalization procedure found the median voxel displacement to be 0.22±0.08mm using the MRI template with individual MRI images and 0.92±0.26mm using the PET template with individual [ 11 C]Cimbi-36 PET images. We tested the automatic procedure by assessing eleven PET radiotracers with different kinetics and spatial distributions by using perfusion-weighted images of early PET time frames. We here present an automatic procedure for accurate and reproducible spatial normalization and parcellation of pig PET images of any radiotracer with reasonable blood-brain barrier penetration. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Comparison of microdialysis sampling perfusion fluid components on the foreign body reaction in rat subcutaneous tissue.

    PubMed

    Keeler, Geoffrey D; Durdik, Jeannine M; Stenken, Julie A

    2014-06-16

    Microdialysis sampling is a commonly used technique for collecting solutes from the extracellular space of tissues in laboratory animals and humans. Large molecular weight solutes can be collected using high molecular weight cutoff (MWCO) membranes (100kDa or greater). High MWCO membranes require addition of high molecular weight dextrans or albumin to the perfusion fluid to prevent fluid loss via ultrafiltration. While these perfusion fluid additives are commonly used during microdialysis sampling, the tissue response to the loss of these compounds across the membrane is poorly understood. Tissue reactions to implanted microdialysis sampling probes containing different microdialysis perfusion fluids were compared over a 7-day time period in rats. The base perfusion fluid was Ringer's solution supplemented with either bovine serum albumin (BSA), rat serum albumin (RSA), Dextran-70, or Dextran-500. A significant inflammatory response to Dextran-70 was observed. No differences in the tissue response between BSA and RSA were observed. Among these agents, the BSA, RSA, and Dextran-500 produced a significantly reduced inflammatory response compared to the Dextran-70. This work demonstrates that use of Dextran-70 in microdialysis sampling perfusion fluids should be eliminated and replaced with Dextran-500 or other alternatives. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. DCE-MRI of hepatocellular carcinoma: perfusion quantification with Tofts model versus shutter-speed model--initial experience.

    PubMed

    Jajamovich, Guido H; Huang, Wei; Besa, Cecilia; Li, Xin; Afzal, Aneela; Dyvorne, Hadrien A; Taouli, Bachir

    2016-02-01

    To quantify hepatocellular carcinoma (HCC) perfusion and flow with the fast exchange regime-allowed Shutter-Speed model (SSM) compared to the Tofts model (TM). In this prospective study, 25 patients with HCC underwent DCE-MRI. ROIs were placed in liver parenchyma, portal vein, aorta and HCC lesions. Signal intensities were analyzed employing dual-input TM and SSM models. ART (arterial fraction), K (trans) (contrast agent transfer rate constant from plasma to extravascular extracellular space), ve (extravascular extracellular volume fraction), kep (contrast agent intravasation rate constant), and τi (mean intracellular water molecule lifetime) were compared between liver parenchyma and HCC, and ART, K (trans), v e and k ep were compared between models using Wilcoxon tests and limits of agreement. Test-retest reproducibility was assessed in 10 patients. ART and v e obtained with TM; ART, ve, ke and τi obtained with SSM were significantly different between liver parenchyma and HCC (p < 0.04). Parameters showed variable reproducibility (CV range 14.7-66.5% for both models). Liver K (trans) and ve; HCC ve and kep were significantly different when estimated with the two models (p < 0.03). Our results show differences when computed between the TM and the SSM. However, these differences are smaller than parameter reproducibilities and may be of limited clinical significance.

  4. Quantitative MRI and spectroscopy of bone marrow

    PubMed Central

    Ruschke, Stefan; Dieckmeyer, Michael; Diefenbach, Maximilian; Franz, Daniela; Gersing, Alexandra S.; Krug, Roland; Baum, Thomas

    2017-01-01

    Bone marrow is one of the largest organs in the human body, enclosing adipocytes, hematopoietic stem cells, which are responsible for blood cell production, and mesenchymal stem cells, which are responsible for the production of adipocytes and bone cells. Magnetic resonance imaging (MRI) is the ideal imaging modality to monitor bone marrow changes in healthy and pathological states, thanks to its inherent rich soft‐tissue contrast. Quantitative bone marrow MRI and magnetic resonance spectroscopy (MRS) techniques have been also developed in order to quantify changes in bone marrow water–fat composition, cellularity and perfusion in different pathologies, and to assist in understanding the role of bone marrow in the pathophysiology of systemic diseases (e.g. osteoporosis). The present review summarizes a large selection of studies published until March 2017 in proton‐based quantitative MRI and MRS of bone marrow. Some basic knowledge about bone marrow anatomy and physiology is first reviewed. The most important technical aspects of quantitative MR methods measuring bone marrow water–fat composition, fatty acid composition, perfusion, and diffusion are then described. Finally, previous MR studies are reviewed on the application of quantitative MR techniques in both healthy aging and diseased bone marrow affected by osteoporosis, fractures, metabolic diseases, multiple myeloma, and bone metastases. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:332–353. PMID:28570033

  5. Child dermoid cyst mimicking a craniopharyngioma: the benefit of MRI T2-weighted diffusion sequence.

    PubMed

    Amelot, Aymeric; Borha, Alin; Calmon, Raphael; Barbet, Patrick; Puget, Stephanie

    2018-02-01

    Brain dermoid cysts are very rare lesions. Although benign, these cysts may be associated with devastating complications due to mass effect or meningitis. The discovery of completely asymptomatic dermoid cysts in the pediatric population is exceedingly rare. Despite the advances in imaging modalities, it sometimes remains difficult to exclude the differential diagnosis of craniopharyngioma. We describe a 12-year-old boy addressed for suspicion of craniopharyngioma diagnosed by decreased visual acuity, bitemporal hemianopia and a CT scan showing a large hypodense suprasellar lesion with intralesional calcifications. Despite the unusual localization and size of this lesion, the absence of dermal sinus commonly found, and before visualizing a hyperintense mass on MRI-diffusion, the diagnosis of craniopharyngioma was ruled out in favor of a dermoid cyst. Radical excision was performed. In the suprasellar area, craniopharyngioma and dermoid cyst may have very similar radiological aspects: low density masses on CT scan and a hyperintense signal on T1-weighted MRI sequences with a variable signal on T2-weighted sequences. Hitherto, only two cases in literature have described suprasellar dermoid cyst. Their initial diagnosis was facilitated by the presence of a dermal sinus.

  6. Modulatory effects of ketamine, risperidone and lamotrigine on resting brain perfusion in healthy human subjects.

    PubMed

    Shcherbinin, Sergey; Doyle, Orla; Zelaya, Fernando O; de Simoni, Sara; Mehta, Mitul A; Schwarz, Adam J

    2015-11-01

    Resting brain perfusion, measured using the MRI-based arterial spin labelling (ASL) technique, is sensitive to detect central effects of single, clinically effective, doses of pharmacological compounds. However, pharmacological interaction experiments, such as the modulation of one drug response in the presence of another, have not been widely investigated using a task-free ASL approach. We assessed the effects of three psychoactive compounds (ketamine, risperidone and lamotrigine), and their interaction, on resting brain perfusion in healthy human volunteers. A multivariate Gaussian process classification (GPC) and more conventional univariate analyses were applied. The four pre-infusion conditions for each subject comprised risperidone, lamotrigine and two placebo sessions. The two placebo conditions enabled us to evaluate the classification performance in a test-retest setting, in addition to its performance in distinguishing the active oral drugs from placebo (direct effect on brain perfusion). The post ketamine- or saline-infusion scans allowed the effect of ketamine, and its interaction with risperidone and lamotrigine, on brain perfusion to be characterised. The pseudo-continuous ASL measurements of perfusion were sensitive to the effects of ketamine infusion and risperidone. The GPC captured consistent changes in perfusion across the group and contextualised the univariate changes with a larger pattern of regions contributing to accurate discrimination of ketamine from placebo. The findings argue against perfusion changes confounding in the previously described evoked BOLD response to ketamine and emphasise the blockade of the NMDA receptor over neuronal glutamate release in determining the perfusion changes induced by ketamine.

  7. Microfluidic perfusion culture.

    PubMed

    Hattori, Koji; Sugiura, Shinji; Kanamori, Toshiyuki

    2014-01-01

    Microfluidic perfusion culture is a novel technique to culture animal cells in a small-scale microchamber with medium perfusion. Polydimethylsiloxane (PDMS) is the most popular material to fabricate a microfluidic perfusion culture chip. Photolithography and replica molding techniques are generally used for fabrication of a microfluidic perfusion culture chip. Pressure-driven perfusion culture system is convenient technique to carry out the perfusion culture of animal cells in a microfluidic device. Here, we describe a general theory on microfluid network design, microfabrication technique, and experimental technique for pressure-driven perfusion culture in an 8 × 8 microchamber array on a glass slide-sized microchip made out of PDMS.

  8. Comparison of endorectal coil and nonendorectal coil T2W and diffusion-weighted MRI at 3 Tesla for localizing prostate cancer: correlation with whole-mount histopathology.

    PubMed

    Turkbey, Baris; Merino, Maria J; Gallardo, Elma Carvajal; Shah, Vijay; Aras, Omer; Bernardo, Marcelino; Mena, Esther; Daar, Dagane; Rastinehad, Ardeshir R; Linehan, W Marston; Wood, Bradford J; Pinto, Peter A; Choyke, Peter L

    2014-06-01

    To compare utility of T2-weighted (T2W) MRI and diffusion-weighted MRI (DWI-MRI) obtained with and without an endorectal coil at 3 Tesla (T) for localizing prostate cancer. This Institutional Review Board-approved study included 20 patients (median prostate-specific antigen, 8.4 ng/mL). Patients underwent consecutive prostate MRIs at 3T, first with a surface coil alone, then with combination of surface, endorectal coils (dual coil) followed by robotic assisted radical prostatectomy. Lesions were mapped at time of acquisition on dual-coil T2W, DWI-MRI. To avoid bias, 6 months later nonendorectal coil T2W, DWI-MRI were mapped. Both MRI evaluations were performed by two readers blinded to pathology with differences resolved by consensus. A lesion-based correlation with whole-mount histopathology was performed. At histopathology 51 cancer foci were present ranging in size from 2 to 60 mm. The sensitivity of the endorectal dual-coil, nonendorectal coil MRIs were 0.76, 0.45, respectively. PPVs for endorectal dual-coil, nonendorectal coil MRI were 0.80, 0.64, respectively. Mean size of detected lesions with nonendorectal coil MRI were larger than those detected by dual-coil MRI (22 mm versus 17.4 mm). Dual-coil prostate MRI detected more cancer foci than nonendorectal coil MRI. While nonendorectal coil MRI is an attractive alternative, physicians performing prostate MRI should be aware of its limitations. Copyright © 2013 Wiley Periodicals, Inc.

  9. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers.

    PubMed

    Chowdhury, Abeed H; Cox, Eleanor F; Francis, Susan T; Lobo, Dileep N

    2012-07-01

    We compared the effects of intravenous infusions of 0.9% saline ([Cl] 154 mmol/L) and Plasma-Lyte 148 ([Cl] 98 mmol/L, Baxter Healthcare) on renal blood flow velocity and perfusion in humans using magnetic resonance imaging (MRI). Animal experiments suggest that hyperchloremia resulting from 0.9% saline infusion may affect renal hemodynamics adversely, a phenomenon not studied in humans. Twelve healthy adult male subjects received 2-L intravenous infusions over 1 hour of 0.9% saline or Plasma-Lyte 148 in a randomized, double-blind manner. Crossover studies were performed 7 to 10 days apart. MRI scanning proceeded for 90 minutes after commencement of infusion to measure renal artery blood flow velocity and renal cortical perfusion. Blood was sampled and weight recorded hourly for 4 hours. Sustained hyperchloremia was seen with saline but not with Plasma-Lyte 148 (P < 0.0001), and fall in strong ion difference was greater with the former (P = 0.025). Blood volume changes were identical (P = 0.867), but there was greater expansion of the extravascular fluid volume after saline (P = 0.029). There was a significant reduction in mean renal artery flow velocity (P = 0.045) and renal cortical tissue perfusion (P = 0.008) from baseline after saline, but not after Plasma-Lyte 148. There was no difference in concentrations of urinary neutrophil gelatinase-associated lipocalin after the 2 infusions (P = 0.917). This is the first human study to demonstrate that intravenous infusion of 0.9% saline results in reductions in renal blood flow velocity and renal cortical tissue perfusion. This has implications for intravenous fluid therapy in perioperative and critically ill patients. NCT01087853.

  10. Interactions among peripheral perfusion, cardiac activity, oxygen saturation, thermal profile and body position in growing low birth weight infants

    PubMed Central

    Sahni, R; Schulze, KF; Ohira-Kist, K; Kashyap, S; Myers, MM; Fifer, WP

    2015-01-01

    Aims To investigate the correlation between the ‘perfusion index’ (PI) and other commonly used estimates of cutaneous blood flow [heart rate (HR), surface temperatures (ST) and central-to-peripheral thermal gradients (C-P grad)] and to use this new non-invasive tool to compare differences between prone and supine sleep position in low birth weight (LBW) infants. Methods Six-hour continuous recordings of pulse oximetry, cardiac activity and absolute ST from three sites (flank, forearm and leg), along with minute-to-minute assessment of behavioural states were performed in 31 LBW infants. Infants were randomly assigned to the prone or supine position for the first 3 h and then reversed for the second 3 h. PI data were correlated with HR and C-P grad, and compared across sleep positions during quiet sleep (QS) and active sleep (AS). Results Perfusion index correlated significantly with HR (r2 = 0.40) and flank-to-forearm thermal gradient (r2 = 0.28). In the prone position during QS, infants exhibited higher PI (3.7 ± 0.9 vs. 3.1 ± 0.7), HR (158.4 ± 8.9 vs. 154.1 ± 8.8 bpm), SpO2 (95.8 ± 2.6 vs. 95.2 ± 2.6%), flank (36.7 ± 0.4 vs. 36.5 ± 0.4°C), forearm (36.1 ± 0.6 vs. 35.5 ± 0.4°C) and leg (35.4 ± 0.7 vs. 34.7 ± 0.7°C) temperatures and narrower flank-to-forearm (0.6 ± 0.4 vs. 0.9 ± 0.3°C) and flank-to-leg (1.3 ± 0.6 vs. 1.8 ± 0.7°C) gradients, compared to those of the supine position. Similar differences were observed during AS. Conclusion Perfusion index is a good non-invasive estimate of tissue perfusion. Prone sleeping position is associated with a higher PI, possibly reflecting thermoregulatory adjustments in cardiovascular control. The effects of these position-related changes may have important implications for the increased risk for sudden infant death syndrome in prone position. PMID:19785632

  11. Early Conventional MRI for Prediction of Neurodevelopmental Impairment in Extremely-Low-Birth-Weight Infants.

    PubMed

    Slaughter, Laurel A; Bonfante-Mejia, Eliana; Hintz, Susan R; Dvorchik, Igor; Parikh, Nehal A

    2016-01-01

    Extremely-low-birth-weight (ELBW; ≤1,000 g) infants are at high risk for neurodevelopmental impairments. Conventional brain MRI at term-equivalent age is increasingly used for prediction of outcomes. However, optimal prediction models remain to be determined, especially for cognitive outcomes. The aim was to evaluate the accuracy of a data-driven MRI scoring system to predict neurodevelopmental impairments. 122 ELBW infants had a brain MRI performed at term-equivalent age. Conventional MRI findings were scored with a standardized algorithm and tested using a multivariable regression model to predict neurodevelopmental impairment, defined as one or more of the following at 18-24 months' corrected age: cerebral palsy, bilateral blindness, bilateral deafness requiring amplification, and/or cognitive/language delay. Results were compared with a commonly cited scoring system. In multivariable analyses, only moderate-to-severe gyral maturational delay was a significant predictor of overall neurodevelopmental impairment (OR: 12.6, 95% CI: 2.6, 62.0; p < 0.001). Moderate-to-severe gyral maturational delay also predicted cognitive delay, cognitive delay/death, and neurodevelopmental impairment/death. Diffuse cystic abnormality was a significant predictor of cerebral palsy (OR: 33.6, 95% CI: 4.9, 229.7; p < 0.001). These predictors exhibited high specificity (range: 94-99%) but low sensitivity (30-67%) for the above outcomes. White or gray matter scores, determined using a commonly cited scoring system, did not show significant association with neurodevelopmental impairment. In our cohort, conventional MRI at term-equivalent age exhibited high specificity in predicting neurodevelopmental outcomes. However, sensitivity was suboptimal, suggesting additional clinical factors and biomarkers are needed to enable accurate prognostication. © 2016 S. Karger AG, Basel.

  12. GRE T2∗-Weighted MRI: Principles and Clinical Applications

    PubMed Central

    Tang, Meng Yue; Chen, Tian Wu; Zhang, Xiao Ming; Huang, Xiao Hua

    2014-01-01

    The sequence of a multiecho gradient recalled echo (GRE) T2*-weighted imaging (T2*WI) is a relatively new magnetic resonance imaging (MRI) technique. In contrast to T2 relaxation, which acquires a spin echo signal, T2* relaxation acquires a gradient echo signal. The sequence of a GRE T2*WI requires high uniformity of the magnetic field. GRE T2*WI can detect the smallest changes in uniformity in the magnetic field and can improve the rate of small lesion detection. In addition, the T2* value can indirectly reflect changes in tissue biochemical components. Moreover, it can be used for the early diagnosis and quantitative diagnosis of some diseases. This paper reviews the principles and clinical applications as well as the advantages and disadvantages of GRE T2*WI. PMID:24987676

  13. Imaging Human Brain Perfusion with Inhaled Hyperpolarized 129Xe MR Imaging.

    PubMed

    Rao, Madhwesha R; Stewart, Neil J; Griffiths, Paul D; Norquay, Graham; Wild, Jim M

    2018-02-01

    Purpose To evaluate the feasibility of directly imaging perfusion of human brain tissue by using magnetic resonance (MR) imaging with inhaled hyperpolarized xenon 129 ( 129 Xe). Materials and Methods In vivo imaging with 129 Xe was performed in three healthy participants. The combination of a high-yield spin-exchange optical pumping 129 Xe polarizer, custom-built radiofrequency coils, and an optimized gradient-echo MR imaging protocol was used to achieve signal sensitivity sufficient to directly image hyperpolarized 129 Xe dissolved in the human brain. Conventional T1-weighted proton (hydrogen 1 [ 1 H]) images and perfusion images by using arterial spin labeling were obtained for comparison. Results Images of 129 Xe uptake were obtained with a signal-to-noise ratio of 31 ± 9 and demonstrated structural similarities to the gray matter distribution on conventional T1-weighted 1 H images and to perfusion images from arterial spin labeling. Conclusion Hyperpolarized 129 Xe MR imaging is an injection-free means of imaging the perfusion of cerebral tissue. The proposed method images the uptake of inhaled xenon gas to the extravascular brain tissue compartment across the intact blood-brain barrier. This level of sensitivity is not readily available with contemporary MR imaging methods. © RSNA, 2017.

  14. Diffusion-weighted magnetic resonance imaging reveals the effects of different cooling temperatures on the diffusion of water molecules and perfusion within human skeletal muscle.

    PubMed

    Yanagisawa, O; Fukubayashi, T

    2010-11-01

    To evaluate the effect of local cooling on the diffusion of water molecules and perfusion within muscle at different cooling temperatures. Magnetic resonance diffusion-weighted (DW) images of the leg (seven males) were obtained before and after 30 min cooling (0, 10, and 20°C), and after a 30 min recovery period. Two types of apparent diffusion coefficient (ADC; ADC1, reflecting both water diffusion and perfusion within muscle, and ADC2, approximating the true water diffusion coefficient) of the ankle dorsiflexors were calculated from DW images. T2-weighted images were also obtained to calculate T2 values of the ankle dorsiflexors. The skin temperature was measured before, during, and after cooling. Both ADC values significantly decreased after cooling under all cooling conditions; the rate of decrease depended on the cooling temperature used (ADC1: -36% at 0°C, -27.8% at 10°C, and -22.6% at 20°C; ADC2: -26% at 0°C, -21.1% at 10°C, and -14.6% at 20°C). These significant decreases were maintained during the recovery period. Conversely, the T2 value showed no significant changes. Under all cooling conditions, skin temperature significantly decreased during cooling; the rate of decrease depended on the cooling temperature used (-74.8% at 0°C, -51.1% at 10°C, and -26.8% at 20°C). Decreased skin temperatures were not restored to pre-cooling values during the recovery period under any cooling conditions. Local cooling decreased the water diffusion and perfusion within muscle with decreased skin temperature; the rates of decrease depended on the cooling temperature used. These decreases were maintained for 30 min after cooling. Copyright © 2010 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  15. Uptake of Free Choline by Isolated Perfused Rat Liver

    NASA Astrophysics Data System (ADS)

    Zeisel, Steven H.; Story, David L.; Wurtman, Richard J.; Brunengraber, Henri

    1980-08-01

    The uptake of free choline by isolated perfused rat liver was characterized. A saturable uptake mechanism [Ka=0.17± 0.07 mM (SD); Vmax=0.84± 0.16\\ μ mol/min × g dry weight] and a nonsaturable mechanism (through which uptake is proportional to choline concentration in the perfusate) were identified. Most of the choline transported into hepatocytes was converted to betaine, phosphorylcholine, or lecithin. Free choline also accumulated within the intracellular space, suggesting that choline oxidase activity does not always limit choline's uptake by the liver.

  16. γ-Aminobutyric acid (GABA) concentration inversely correlates with basal perfusion in human occipital lobe

    PubMed Central

    Donahue, Manus J; Rane, Swati; Hussey, Erin; Mason, Emily; Pradhan, Subechhya; Waddell, Kevin W; Ally, Brandon A

    2014-01-01

    Commonly used neuroimaging approaches in humans exploit hemodynamic or metabolic indicators of brain function. However, fundamental gaps remain in our ability to relate such hemo-metabolic reactivity to neurotransmission, with recent reports providing paradoxical information regarding the relationship among basal perfusion, functional imaging contrast, and neurotransmission in awake humans. Here, sequential magnetic resonance spectroscopy (MRS) measurements of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA+macromolecules normalized by the complex N-acetyl aspartate-N-acetyl aspartyl glutamic acid: [GABA+]/[NAA–NAAG]), and magnetic resonance imaging (MRI) measurements of perfusion, fractional gray-matter volume, and arterial arrival time (AAT) are recorded in human visual cortex from a controlled cohort of young adult male volunteers with neurocognitive battery-confirmed comparable cognitive capacity (3 T; n=16; age=23±3 years). Regression analyses reveal an inverse correlation between [GABA+]/[NAA–NAAG] and perfusion (R=−0.46; P=0.037), yet no relationship between AAT and [GABA+]/[NAA–NAAG] (R=−0.12; P=0.33). Perfusion measurements that do not control for AAT variations reveal reduced correlations between [GABA+]/[NAA–NAAG] and perfusion (R=−0.13; P=0.32). These findings largely reconcile contradictory reports between perfusion and inhibitory tone, and underscore the physiologic origins of the growing literature relating functional imaging signals, hemodynamics, and neurotransmission. PMID:24398941

  17. Dynamic Measurement of Tumor Vascular Permeability and Perfusion using a Hybrid System for Simultaneous Magnetic Resonance and Fluorescence Imaging.

    PubMed

    Ren, Wuwei; Elmer, Andreas; Buehlmann, David; Augath, Mark-Aurel; Vats, Divya; Ripoll, Jorge; Rudin, Markus

    2016-04-01

    Assessing tumor vascular features including permeability and perfusion is essential for diagnostic and therapeutic purposes. The aim of this study was to compare fluorescence and magnetic resonance imaging (MRI)-based vascular readouts in subcutaneously implanted tumors in mice by simultaneous dynamic measurement of tracer uptake using a hybrid fluorescence molecular tomography (FMT)/MRI system. Vascular permeability was measured using a mixture of extravascular imaging agents, GdDOTA and the dye Cy5.5, and perfusion using a mixture of intravascular agents, Endorem and a fluorescent probe (Angiosense). Dynamic fluorescence reflectance imaging (dFRI) was integrated into the hybrid system for high temporal resolution. Excellent correspondence between uptake curves of Cy5.5/GdDOTA and Endorem/Angiosense has been found with correlation coefficients R > 0.98. The two modalities revealed good agreement regarding permeability coefficients and centers-of-gravity of the imaging agent distribution. The FMT/dFRI protocol presented is able to accurately map physiological processes and poses an attractive alternative to MRI for characterizing tumor neoangiogenesis.

  18. High resolution 3D MRI of mouse mammary glands with intra-ductal injection of contrast media

    PubMed Central

    Markiewicz, Erica; Fan, Xiaobing; Mustafi, Devkumar; Zamora, Marta; Roman, Brian B.; Jansen, Sanaz A.; Macleod, Kay; Conzen, Suzanne D.; Karczmar, Gregory S.

    2014-01-01

    The purpose of this study was to use high resolution 3D MRI to study mouse mammary gland ductal architecture based on intra-ductal injection of contrast agents. Female FVB/N mice age 12–20 weeks (n = 12), were used in this study. A 34G, 45° tip Hamilton needle with a 25uL Hamilton syringe was inserted into the tip of the nipple. Approximately 20–25uL of a Gadodiamide/Trypan blue/saline solution was injected slowly over one minute into the nipple and duct. To prevent washout of contrast media from ducts due to perfusion, and maximize the conspicuity of ducts on MRI, mice were sacrificed one minute after injection. High resolution 3D T1-weighted images were acquired on a 9.4T Bruker scanner after sacrifice to eliminate motion artifacts and reduce contrast media leakage from ducts. Trypan blue staining was well distributed throughout the ductal tree. MRI showed the mammary gland ductal structure clearly. In spoiled gradient echo T1-weighted images, the signal-to-noise ratio of regions identified as enhancing mammary ducts following contrast injection was significantly higher than that of muscle (p < 0.02) and significantly higher than that of contralateral mammary ducts that were not injected with contrast media (p < 0.0001). The methods described here could be adapted for injection of specialized contrast agents to measure metabolism or target receptors in normal ducts and ducts with in situ cancers. PMID:25179139

  19. Influence of amplitude-related perfusion parameters in the parotid glands by non-fat-saturated dynamic contrast-enhanced magnetic resonance imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Su-Chin; Cheng, Cheng-Chieh; Chang, Hing-Chiu

    Purpose: To verify whether quantification of parotid perfusion is affected by fat signals on non-fat-saturated (NFS) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and whether the influence of fat is reduced with fat saturation (FS). Methods: This study consisted of three parts. First, a retrospective study analyzed DCE-MRI data previously acquired on different patients using NFS (n = 18) or FS (n = 18) scans. Second, a phantom study simulated the signal enhancements in the presence of gadolinium contrast agent at six concentrations and three fat contents. Finally, a prospective study recruited nine healthy volunteers to investigate the influence of fatmore » suppression on perfusion quantification on the same subjects. Parotid perfusion parameters were derived from NFS and FS DCE-MRI data using both pharmacokinetic model analysis and semiquantitative parametric analysis. T tests and linear regression analysis were used for statistical analysis with correction for multiple comparisons. Results: NFS scans showed lower amplitude-related parameters, including parameter A, peak enhancement (PE), and slope than FS scans in the patients (all with P < 0.0167). The relative signal enhancement in the phantoms was proportional to the dose of contrast agent and was lower in NFS scans than in FS scans. The volunteer study showed lower parameter A (6.75 ± 2.38 a.u.), PE (42.12% ± 14.87%), and slope (1.43% ± 0.54% s{sup −1}) in NFS scans as compared to 17.63 ± 8.56 a.u., 104.22% ± 25.15%, and 9.68% ± 1.67% s{sup −1}, respectively, in FS scans (all with P < 0.005). These amplitude-related parameters were negatively associated with the fat content in NFS scans only (all with P < 0.05). Conclusions: On NFS DCE-MRI, quantification of parotid perfusion is adversely affected by the presence of fat signals for all amplitude-related parameters. The influence could be reduced on FS scans.« less

  20. DCE-MRI: a review and applications in veterinary oncology.

    PubMed

    Boss, M Keara; Muradyan, N; Thrall, D E

    2013-06-01

    Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is a functional imaging technique that assesses the physiology of tumour tissue by exploiting abnormal tumour microvasculature. Advances made through DCE-MRI include improvement in the diagnosis of cancer, optimization of treatment choices, assessment of treatment efficacy and non-invasive identification of prognostic information. DCE-MRI enables quantitative assessment of tissue vessel density, integrity, and permeability, and this information can be applied to study of angiogenesis, hypoxia and the evaluation of various biomarkers. Reproducibility of DCE-MRI results is important in determining the significance of observed changes in the parameters. As improvements are made towards the utility of DCE-MRI and interpreting biologic associations, the technique will be applied more frequently in the study of cancer in animals. Given the importance of tumour perfusion with respect to tumour oxygenation and drug delivery, the use of DCE-MRI is a convenient and powerful way to gain basic information about a tumour. © 2011 John Wiley & Sons Ltd.

  1. Pretreatment prediction of brain tumors' response to radiation therapy using high b-value diffusion-weighted MRI.

    PubMed

    Mardor, Yael; Roth, Yiftach; Ochershvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael

    2004-01-01

    Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm(2) to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, R(D), reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and R(D) were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P <.002 and r = 0.77, P <.001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy.

  2. Clinical Use of CT Perfusion For Diagnosis and Prediction of Lesion Growth in Acute Ischemic Stroke

    PubMed Central

    Huisa, Branko N; Neil, William P; Schrader, Ronald; Maya, Marcel; Pereira, Benedict; Bruce, Nhu T; Lyden, Patrick D

    2012-01-01

    Background and Purpose CT perfusion (CTP) mapping in research centers correlates well with diffusion weighted imaging (DWI) lesions and may accurately differentiate the infarct core from ischemic penumbra. The value of CTP in real-world clinical practice has not been fully established. We investigated the yield of CTP– derived cerebral blood volume (CBV) and mean transient time (MTT) for the detection of cerebral ischemia and ischemic penumbra in a sample of acute ischemic stroke (AIS) patients. Methods We studied 165 patients with initial clinical symptoms suggestive of AIS. All patients had an initial non-contrast head CT, CT Perfusion (CTP), CT angiogram (CTA) and follow up brain MRI. The obtained perfusion images were used for image processing. CBV, MTT and DWI lesion volumes were visually estimated and manually traced. Statistical analysis was done using R-2.14.and SAS 9.1. Results All normal DWI sequences had normal CBV and MTT studies (N=89). Seventy-three patients had acute DWI lesions. CBV was abnormal in 23.3% and MTT was abnormal in 42.5% of these patients. There was a high specificity (91.8%)but poor sensitivity (40.0%) for MTT maps predicting positive DWI. Spearman correlation was significant between MTT and DWI lesions (ρ=0.66, p>0.0001) only for abnormal MTT and DWI lesions>0cc. CBV lesions did not correlate with final DWI. Conclusions In real-world use, acute imaging with CTP did not predict stroke or DWI lesions with sufficient accuracy. Our findings argue against the use of CTP for screening AIS patients until real-world implementations match the accuracy reported from specialized research centers. PMID:23253533

  3. Use of diffusion-weighted MRI to modify radiosurgery planning in brain metastases may reduce local recurrence.

    PubMed

    Zakaria, Rasheed; Pomschar, Andreas; Jenkinson, Michael D; Tonn, Jörg-Christian; Belka, Claus; Ertl-Wagner, Birgit; Niyazi, Maximilian

    2017-02-01

    Stereotactic radiosurgery (SRS) is an effective and well tolerated treatment for selected brain metastases; however, local recurrence still occurs. We investigated the use of diffusion weighted MRI (DWI) as an adjunct for SRS treatment planning in brain metastases. Seventeen consecutive patients undergoing complete surgical resection of a solitary brain metastasis underwent image analysis retrospectively. SRS treatment plans were generated based on standard 3D post-contrast T1-weighted sequences at 1.5T and then separately using apparent diffusion coefficient (ADC) maps in a blinded fashion. Control scans immediately post operation confirmed complete tumour resection. Treatment plans were compared to one another and with volume of local recurrence at progression quantitatively and qualitatively by calculating the conformity index (CI), the overlapping volume as a proportion of the total combined volume, where 1 = identical plans and 0 = no conformation whatsoever. Gross tumour volumes (GTVs) using ADC and post-contrast T1-weighted sequences were quantitatively the same (related samples Wilcoxon signed rank test = -0.45, p = 0.653) but showed differing conformations (CI 0.53, p < 0.001). The diffusion treatment volume (DTV) obtained by combining the two target volumes was significantly greater than the treatment volume based on post contrast T1-weighted MRI alone, both quantitatively (median 13.65 vs. 9.52 cm 3 , related samples Wilcoxon signed rank test p < 0.001) and qualitatively (CI 0.74, p = 0.001). This DTV covered a greater volume of subsequent tumour recurrence than the standard plan (median 3.53 cm 3 vs. 3.84 cm 3 , p = 0.002). ADC maps may be a useful tool in addition to the standard post-contrast T1-weighted sequence used for SRS planning.

  4. Whole body MRI: Improved Lesion Detection and Characterization With Diffusion Weighted Techniques

    PubMed Central

    Attariwala, Rajpaul; Picker, Wayne

    2013-01-01

    Diffusion-weighted imaging (DWI) is an established functional imaging technique that interrogates the delicate balance of water movement at the cellular level. Technological advances enable this technique to be applied to whole-body MRI. Theory, b-value selection, common artifacts and target to background for optimized viewing will be reviewed for applications in the neck, chest, abdomen, and pelvis. Whole-body imaging with DWI allows novel applications of MRI to aid in evaluation of conditions such as multiple myeloma, lymphoma, and skeletal metastases, while the quantitative nature of this technique permits evaluation of response to therapy. Persisting signal at high b-values from restricted hypercellular tissue and viscous fluid also permits applications of DWI beyond oncologic imaging. DWI, when used in conjunction with routine imaging, can assist in detecting hemorrhagic degradation products, infection/abscess, and inflammation in colitis, while aiding with discrimination of free fluid and empyema, while limiting the need for intravenous contrast. DWI in conjunction with routine anatomic images provides a platform to improve lesion detection and characterization with findings rivaling other combined anatomic and functional imaging techniques, with the added benefit of no ionizing radiation. PMID:23960006

  5. Temporal and spatial profile of brain diffusion-weighted MRI after cardiac arrest

    PubMed Central

    Mlynash, M.; Campbell, D.M.; Leproust, E.M.; Fischbein, N.J.; Bammer, R.; Eyngorn, I.; Hsia, A.W.; Moseley, M.; Wijman, C.A.C.

    2010-01-01

    Background and Purpose Diffusion-weighted MRI (DWI) of the brain is a promising technique to help predict functional outcome in comatose survivors of cardiac arrest. We aimed to evaluate prospectively the temporal-spatial profile of brain apparent diffusion coefficient (ADC) changes in comatose survivors during the first 8 days after cardiac arrest. Methods ADC values were measured by two independent and blinded investigators in predefined brain regions in 18 good and 15 poor outcome patients with 38 brain MRIs, and compared with 14 normal controls. The same brain regions were also assessed qualitatively by two other independent and blinded investigators. Results In poor outcome patients, cortical structures, in particular the occipital and temporal lobes, and the putamen exhibited the most profound ADC reductions, which were noted as early as 1.5 days and reached nadir between 3 to 5 days after the arrest. Conversely, when compared to normal controls, good outcome patients exhibited increased diffusivity, in particular in the hippocampus, temporal and occipital lobes, and corona radiata. By the qualitative MRI readings, one or more cortical gray matter structures were read as moderately-to-severely abnormal in all poor outcome patients imaged beyond 54 hours after the arrest, but not in the three patients imaged earlier. Conclusions Brain DWI changes in comatose post-cardiac arrest survivors in the first week after the arrest are region- and time-dependent and differ between good and poor outcome patients. With the increasing use of MRI in this context, it is important to be aware of these relationships. PMID:20595666

  6. Histogram based analysis of lung perfusion of children after congenital diaphragmatic hernia repair.

    PubMed

    Kassner, Nora; Weis, Meike; Zahn, Katrin; Schaible, Thomas; Schoenberg, Stefan O; Schad, Lothar R; Zöllner, Frank G

    2018-05-01

    To investigate a histogram based approach to characterize the distribution of perfusion in the whole left and right lung by descriptive statistics and to show how histograms could be used to visually explore perfusion defects in two year old children after Congenital Diaphragmatic Hernia (CDH) repair. 28 children (age of 24.2±1.7months; all left sided hernia; 9 after extracorporeal membrane oxygenation therapy) underwent quantitative DCE-MRI of the lung. Segmentations of left and right lung were manually drawn to mask the calculated pulmonary blood flow maps and then to derive histograms for each lung side. Individual and group wise analysis of histograms of left and right lung was performed. Ipsilateral and contralateral lung show significant difference in shape and descriptive statistics derived from the histogram (Wilcoxon signed-rank test, p<0.05) on group wise and individual level. Subgroup analysis (patients with vs without ECMO therapy) showed no significant differences using histogram derived parameters. Histogram analysis can be a valuable tool to characterize and visualize whole lung perfusion of children after CDH repair. It allows for several possibilities to analyze the data, either describing the perfusion differences between the right and left lung but also to explore and visualize localized perfusion patterns in the 3D lung volume. Subgroup analysis will be possible given sufficient sample sizes. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Renal perfusion scintiscan

    MedlinePlus

    ... Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion Images Kidney anatomy Kidney - blood and urine flow Intravenous pyelogram References Rottenberg G, Andi AC. Renal ...

  8. Characterization of breast lesion using T1-perfusion magnetic resonance imaging: Qualitative vs. quantitative analysis.

    PubMed

    Thakran, S; Gupta, P K; Kabra, V; Saha, I; Jain, P; Gupta, R K; Singh, A

    2018-06-14

    The objective of this study was to quantify the hemodynamic parameters using first pass analysis of T 1 -perfusion magnetic resonance imaging (MRI) data of human breast and to compare these parameters with the existing tracer kinetic parameters, semi-quantitative and qualitative T 1 -perfusion analysis in terms of lesion characterization. MRI of the breast was performed in 50 women (mean age, 44±11 [SD] years; range: 26-75) years with a total of 15 benign and 35 malignant breast lesions. After pre-processing, T 1 -perfusion MRI data was analyzed using qualitative approach by two radiologists (visual inspection of the kinetic curve into types I, II or III), semi-quantitative (characterization of kinetic curve types using empirical parameters), generalized-tracer-kinetic-model (tracer kinetic parameters) and first pass analysis (hemodynamic-parameters). Chi-squared test, t-test, one-way analysis-of-variance (ANOVA) using Bonferroni post-hoc test and receiver-operating-characteristic (ROC) curve were used for statistical analysis. All quantitative parameters except leakage volume (Ve), qualitative (type-I and III) and semi-quantitative curves (type-I and III) provided significant differences (P<0.05) between benign and malignant lesions. Kinetic parameters, particularly volume transfer coefficient (K trans ) provided a significant difference (P<0.05) between all grades except grade-II vs III. The hemodynamic parameter (relative-leakage-corrected-breast-blood-volume [rBBVcorr) provided a statistically significant difference (P<0.05) between all grades. It also provided highest sensitivity and specificity among all parameters in differentiation between different grades of malignant breast lesions. Quantitative parameters, particularly rBBVcorr and K trans provided similar sensitivity and specificity in differentiating benign from malignant breast lesions for this cohort. Moreover, rBBVcorr provided better differentiation between different grades of malignant breast

  9. Posterior hypoperfusion in Parkinson's disease with and without dementia measured with arterial spin labeling MRI.

    PubMed

    Kamagata, Koji; Motoi, Yumiko; Hori, Masaaki; Suzuki, Michimasa; Nakanishi, Atsushi; Shimoji, Keigo; Kyougoku, Shinsuke; Kuwatsuru, Ryohei; Sasai, Keisuke; Abe, Osamu; Mizuno, Yoshikuni; Aoki, Shigeki; Hattori, Nobutaka

    2011-04-01

    To determine whether quantitative arterial spin labeling (ASL) can be used to evaluate regional cerebral blood flow in Parkinson's disease with dementia (PDD) and without dementia (PD). Thirty-five PD patients, 11 PDD patients, and 35 normal controls were scanned by using a quantitative ASL method with a 3 Tesla MRI unit. Regional cerebral blood flow was compared in the posterior cortex using region-of-interest analysis. PD and PDD patients showed lower regional cerebral blood flow in the posterior cortex than normal controls (P = 0.002 and P = 0.001, respectively, analysis of variance with a Bonferroni post hoc test). This is the first study to detect hypoperfusion in the posterior cortex in PD and PDD patients using ASL perfusion MRI. Because ASL perfusion MRI is completely noninvasive and can, therefore, safely be used for repeated assessments, this method can be used to monitor treatment effects or disease progression in PD. Copyright © 2011 Wiley-Liss, Inc.

  10. Irradiation-Dependent Effects on Tumor Perfusion and Endogenous and Exogenous Hypoxia Markers in an A549 Xenograft Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fokas, Emmanouil, E-mail: emmanouil.fokas@yahoo.d; Haenze, Joerg; Kamlah, Florentine

    2010-08-01

    Purpose: Hypoxia is a major determinant of tumor radiosensitivity, and microenvironmental changes in response to ionizing radiation (IR) are often heterogenous. We analyzed IR-dependent changes in hypoxia and perfusion in A549 human lung adenocarcinoma xenografts. Materials and Methods: Immunohistological analysis of two exogenously added chemical hypoxic markers, pimonidazole and CCI-103F, and of the endogenous marker Glut-1 was performed time dependently after IR. Tumor vessels and apoptosis were analyzed using CD31 and caspase-3 antibodies. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and fluorescent beads (Hoechst 33342) were used to monitor vascular perfusion. Results: CCI-103F signals measuring the fraction of hypoxic areas aftermore » IR were significantly decreased by approximately 50% when compared with pimonidazole signals, representing the fraction of hypoxic areas from the same tumors before IR. Interestingly, Glut-1 signals were significantly decreased at early time point (6.5 h) after IR returning to the initial levels at 30.5 h. Vascular density showed no difference between irradiated and control groups, whereas apoptosis was significantly induced at 10.5 h post-IR. DCE-MRI indicated increased perfusion 1 h post-IR. Conclusions: The discrepancy between the hypoxic fractions of CCI-103F and Glut-1 forces us to consider the possibility that both markers reflect different metabolic alterations of tumor microenvironment. The reliability of endogenous markers such as Glut-1 to measure reoxygenation in irradiated tumors needs further consideration. Monitoring tumor microvascular response to IR by DCE-MRI and measuring tumor volume alterations should be encouraged.« less

  11. Characterization of multifocal T2*-weighted MRI hypointensities in the basal ganglia of elderly, community-dwelling subjects☆

    PubMed Central

    Glatz, Andreas; Valdés Hernández, Maria C.; Kiker, Alexander J.; Bastin, Mark E.; Deary, Ian J.; Wardlaw, Joanna M.

    2013-01-01

    Multifocal T2*-weighted (T2*w) hypointensities in the basal ganglia, which are believed to arise predominantly from mineralized small vessels and perivascular spaces, have been proposed as a biomarker for cerebral small vessel disease. This study provides baseline data on their appearance on conventional structural MRI for improving and automating current manual segmentation methods. Using a published thresholding method, multifocal T2*w hypointensities were manually segmented from whole brain T2*w volumes acquired from 98 community-dwelling subjects in their early 70s. Connected component analysis was used to derive the average T2*w hypointensity count and load per basal ganglia nucleus, as well as the morphology of their connected components, while nonlinear spatial probability mapping yielded their spatial distribution. T1-weighted (T1w), T2-weighted (T2w) and T2*w intensity distributions of basal ganglia T2*w hypointensities and their appearance on T1w and T2w MRI were investigated to gain further insights into the underlying tissue composition. In 75/98 subjects, on average, 3 T2*w hypointensities with a median total volume per intracranial volume of 50.3 ppm were located in and around the globus pallidus. Individual hypointensities appeared smooth and spherical with a median volume of 12 mm3 and median in-plane area of 4 mm2. Spatial probability maps suggested an association between T2*w hypointensities and the point of entry of lenticulostriate arterioles into the brain parenchyma. T1w and T2w and especially the T2*w intensity distributions of these hypointensities, which were negatively skewed, were generally not normally distributed indicating an underlying inhomogeneous tissue structure. Globus pallidus T2*w hypointensities tended to appear hypo- and isointense on T1w and T2w MRI, whereas those from other structures appeared iso- and hypointense. This pattern could be explained by an increased mineralization of the globus pallidus. In conclusion, the

  12. Physiological and psychological individual differences influence resting brain function measured by ASL perfusion.

    PubMed

    Kano, M; Coen, S J; Farmer, A D; Aziz, Q; Williams, S C R; Alsop, D C; Fukudo, S; O'Gorman, R L

    2014-09-01

    Effects of physiological and/or psychological inter-individual differences on the resting brain state have not been fully established. The present study investigated the effects of individual differences in basal autonomic tone and positive and negative personality dimensions on resting brain activity. Whole-brain resting cerebral perfusion images were acquired from 32 healthy subjects (16 males) using arterial spin labeling perfusion MRI. Neuroticism and extraversion were assessed with the Eysenck Personality Questionnaire-Revised. Resting autonomic activity was assessed using a validated measure of baseline cardiac vagal tone (CVT) in each individual. Potential associations between the perfusion data and individual CVT (27 subjects) and personality score (28 subjects) were tested at the level of voxel clusters by fitting a multiple regression model at each intracerebral voxel. Greater baseline perfusion in the dorsal anterior cingulate cortex (ACC) and cerebellum was associated with lower CVT. At a corrected significance threshold of p < 0.01, strong positive correlations were observed between extraversion and resting brain perfusion in the right caudate, brain stem, and cingulate gyrus. Significant negative correlations between neuroticism and regional cerebral perfusion were identified in the left amygdala, bilateral insula, ACC, and orbitofrontal cortex. These results suggest that individual autonomic tone and psychological variability influence resting brain activity in brain regions, previously shown to be associated with autonomic arousal (dorsal ACC) and personality traits (amygdala, caudate, etc.) during active task processing. The resting brain state may therefore need to be taken into account when interpreting the neurobiology of individual differences in structural and functional brain activity.

  13. The dream of a one-stop-shop: Meta-analysis on myocardial perfusion CT.

    PubMed

    Pelgrim, Gert Jan; Dorrius, Monique; Xie, Xueqian; den Dekker, Martijn A M; Schoepf, U Joseph; Henzler, Thomas; Oudkerk, Matthijs; Vliegenthart, Rozemarijn

    2015-12-01

    To determine the diagnostic performance of computed tomography (CT) perfusion techniques for the detection of functionally relevant coronary artery disease (CAD) in comparison to reference standards, including invasive coronary angiography (ICA), single photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). PubMed, Web of Knowledge and Embase were searched from January 1, 1998 until July 1, 2014. The search yielded 9475 articles. After duplicate removal, 6041 were screened on title and abstract. The resulting 276 articles were independently analyzed in full-text by two reviewers, and included if the inclusion criteria were met. The articles reporting diagnostic parameters including true positive, true negative, false positive and false negative were subsequently evaluated for the meta-analysis. Results were pooled according to CT perfusion technique, namely snapshot techniques: single-phase rest, single-phase stress, single-phase dual-energy stress and combined coronary CT angiography [rest] and single-phase stress, as well the dynamic technique: dynamic stress CT perfusion. Twenty-two articles were included in the meta-analysis (1507 subjects). Pooled per-patient sensitivity and specificity of single-phase rest CT compared to rest SPECT were 89% (95% confidence interval [CI], 82-94%) and 88% (95% CI, 78-94%), respectively. Vessel-based sensitivity and specificity of single-phase stress CT compared to ICA-based >70% stenosis were 82% (95% CI, 64-92%) and 78% (95% CI, 61-89%). Segment-based sensitivity and specificity of single-phase dual-energy stress CT in comparison to stress MRI were 75% (95% CI, 60-85%) and 95% (95% CI, 80-99%). Segment-based sensitivity and specificity of dynamic stress CT perfusion compared to stress SPECT were 77% (95% CI, 67-85) and 89% (95% CI, 78-95%). For combined coronary CT angiography and single-phase stress CT, vessel-based sensitivity and specificity in comparison to ICA-based >50% stenosis were 84% (95

  14. Pulmonary CT and MRI Phenotypes that help explain COPD Pathophysiology and Outcomes

    PubMed Central

    Hoffman, Eric A.; Lynch, David A.; Barr, R. Graham; van Beek, Edwin J.R.; Parraga, Grace

    2016-01-01

    Pulmonary X-ray computed tomographic (CT) and magnetic resonance imaging (MRI) research and development has been motivated, in part, by the quest to sub-phenotype common chronic lung diseases such as chronic obstructive pulmonary disease (COPD). For thoracic CT and MRI, the main COPD research tools, disease biomarkers are being validated that go beyond anatomy and structure to include pulmonary functional measurements such as regional ventilation, perfusion and inflammation. In addition, there has also been a drive to improve spatial and contrast resolution while at the same time reducing or eliminating radiation exposure. Therefore, this review focuses on our evolving understanding of patient-relevant and clinically-important COPD endpoints and how current and emerging MRI and CT tools and measurements may be exploited for their identification, quantification and utilization. Since reviews of the imaging physics of pulmonary CT and MRI and reviews of other COPD imaging methods were previously published and well-summarized, we focus on the current clinical challenges in COPD and the potential of newly emerging MR and CT imaging measurements to address them. Here we summarize MRI and CT imaging methods and their clinical translation for generating reproducible and sensitive measurements of COPD related to pulmonary ventilation and perfusion as well as parenchyma morphology. The key clinical problems in COPD provide an important framework in which pulmonary imaging needs to rapidly move in order to address the staggering burden, costs as well as the mortality and morbidity associated with COPD. PMID:26199216

  15. GADOLINIUM(Gd)-BASED and Ion Oxide Nanoparticle Contrast Agents for Pre-Clinical and Clinical Magnetic Resonance Imaging (mri) Research

    NASA Astrophysics Data System (ADS)

    Ng, Thian C.

    2012-06-01

    It is known that one strength of MRI is its excellent soft tissue discrimination. It naturally provides sufficient contrast between the structural differences of normal and pathological tissues, their spatial extent and progression. However, to further extend its applications and enhance even more contrast for clinical studies, various Gadolinium (Gd)-based contrast agents have been developed for different organs (brain strokes, cancer, cardio-MRI, etc). These Gd-based contrast agents are paramagnetic compounds that have strong T1-effect for enhancing the contrast between tissue types. Gd-contrast can also enhance magnetic resonance angiography (CE-MRA) for studying stenosis and for measuring perfusion, vascular susceptibility, interstitial space, etc. Another class of contrast agents makes use of ferrite iron oxide nanoparticles (including Superparamagnetic Ion Oxide (SPIO) and Ultrasmall Superparamagnetic Iron Oxide (USPIO)). These nanoparticles have superior magnetic susceptibility effect and produce a drop in signal, namely in T2*-weighted images, useful for the determination of lymph nodes metastases, angiogenesis and arteriosclerosis plaques.

  16. Role of MRI and added value of diffusion-weighted and gadolinium-enhanced MRI for the diagnosis of local recurrence from rectal cancer.

    PubMed

    Molinelli, Valeria; Angeretti, Maria Gloria; Duka, Ejona; Tarallo, Nicola; Bracchi, Elena; Novario, Raffaele; Fugazzola, Carlo

    2018-03-14

    To evaluate whether the addition of gadolinium-enhanced MRI and diffusion-weighted imaging (DWI) improves T2 sequence performance for the diagnosis of local recurrence (LR) from rectal cancer and to assess which approach is better at formulating this diagnosis among readers with different experience. Forty-three patients with suspected LR underwent pelvic MRI with T2 weighted (T2) sequences, gadolinium fat-suppressed T1 weighted sequences (post-contrast T1), and DWI sequences. Three readers (expert: G, intermediate: E, resident: V) scored the likelihood of LR on T2, T2 + post-contrast T1, T2 + DWI, and T2 + post-contrast T1 + DWI. In total, 18/43 patients had LR; on T2 images, the expert reader achieved an area under the ROC curve (AUC) of 0.916, sensitivity of 88.9%, and specificity of 76%; the intermediate reader achieved values of 0.890, 88.9%, and 48%, respectively, and the resident achieved values of 0.852, 88.9%, and 48%, respectively. DWI significantly improved the AUC value for the expert radiologist by up to 0.999 (p = 0.04), while post-contrast T1 significantly improved the AUC for the resident by up to 0.950 (p = 0.04). For the intermediate reader, both the T2 + DWI AUC and T2 + post-contrast T1 AUC were better than the T2 AUC (0.976 and 0.980, respectively), but with no statistically significant difference. No statistically significant difference was achieved by any of the three readers by comparing either the T2 + DWI AUCs to the T2 + post-contrast T1 AUCs or the AUCs of the two pairs of sequences to those of the combined three sequences. Furthermore, using the T2 sequences alone, all of the readers achieved a fair number of "equivocal" cases: they decreased with the addition of either DWI or post-contrast T1 sequences and, for the two less experienced readers, they decreased even more with the three combined sequences. Both DWI and T1 post-contrast MRI increased diagnostic performance for LR diagnosis compared to T2; however, no

  17. Disruptive chemical doping in a ferritin-based iron oxide nanoparticle to decrease r2 and enhance detection with T1-weighted MRI.

    PubMed

    Clavijo Jordan, M Veronica; Beeman, Scott C; Baldelomar, Edwin J; Bennett, Kevin M

    2014-01-01

    Inorganic doping was used to create flexible, paramagnetic nanoparticle contrast agents for in vivo molecular magnetic resonance imaging (MRI) with low transverse relaxivity (r2). Most nanoparticle contrast agents formed from superparamagnetic metal oxides are developed with high r2. While sensitive, they can have limited in vivo detection due to a number of constraints with T2 or T2*-weighted imaging. T1-weighted imaging is often preferred for molecular MRI, but most T1-shortening agents are small chelates with low metal payload or are nanoparticles that also shorten T2 and limit the range of concentrations detectable with T1-weighting. Here we used tungsten and iron deposition to form doped iron oxide crystals inside the apoferritin cavity to form a WFe nanoparticle with a disordered crystal and un-coupled atomic magnetic moments. The atomic magnetic moments were thus localized, resulting in a principally paramagnetic nanoparticle. The WFe nanoparticles had no coercivity or saturation magnetization at 5 K and sweeping up to ± 20,000 Oe, while native ferritin had a coercivity of 3000 Oe and saturation at ± 20,000 Oe. This tungsten-iron crystal paramagnetism resulted in an increased WFe particle longitudinal relaxivity (r1) of 4870 mm(-1) s(-1) and a reduced transverse relaxivity (r2) of 9076 mm(-1) s(-1) compared with native ferritin. The accumulation of the particles was detected with T1-weighted MRI in concentrations from 20 to 400 nm in vivo, both injected in the rat brain and targeted to the rat kidney glomerulus. The WFe apoferritin nanoparticles were not cytotoxic up to 700 nm particle concentrations, making them potentially important for targeted molecular MRI. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Probabilistic atlas-based segmentation of combined T1-weighted and DUTE MRI for calculation of head attenuation maps in integrated PET/MRI scanners.

    PubMed

    Poynton, Clare B; Chen, Kevin T; Chonde, Daniel B; Izquierdo-Garcia, David; Gollub, Randy L; Gerstner, Elizabeth R; Batchelor, Tracy T; Catana, Ciprian

    2014-01-01

    We present a new MRI-based attenuation correction (AC) approach for integrated PET/MRI systems that combines both segmentation- and atlas-based methods by incorporating dual-echo ultra-short echo-time (DUTE) and T1-weighted (T1w) MRI data and a probabilistic atlas. Segmented atlases were constructed from CT training data using a leave-one-out framework and combined with T1w, DUTE, and CT data to train a classifier that computes the probability of air/soft tissue/bone at each voxel. This classifier was applied to segment the MRI of the subject of interest and attenuation maps (μ-maps) were generated by assigning specific linear attenuation coefficients (LACs) to each tissue class. The μ-maps generated with this "Atlas-T1w-DUTE" approach were compared to those obtained from DUTE data using a previously proposed method. For validation of the segmentation results, segmented CT μ-maps were considered to the "silver standard"; the segmentation accuracy was assessed qualitatively and quantitatively through calculation of the Dice similarity coefficient (DSC). Relative change (RC) maps between the CT and MRI-based attenuation corrected PET volumes were also calculated for a global voxel-wise assessment of the reconstruction results. The μ-maps obtained using the Atlas-T1w-DUTE classifier agreed well with those derived from CT; the mean DSCs for the Atlas-T1w-DUTE-based μ-maps across all subjects were higher than those for DUTE-based μ-maps; the atlas-based μ-maps also showed a lower percentage of misclassified voxels across all subjects. RC maps from the atlas-based technique also demonstrated improvement in the PET data compared to the DUTE method, both globally as well as regionally.

  19. Probabilistic atlas-based segmentation of combined T1-weighted and DUTE MRI for calculation of head attenuation maps in integrated PET/MRI scanners

    PubMed Central

    Poynton, Clare B; Chen, Kevin T; Chonde, Daniel B; Izquierdo-Garcia, David; Gollub, Randy L; Gerstner, Elizabeth R; Batchelor, Tracy T; Catana, Ciprian

    2014-01-01

    We present a new MRI-based attenuation correction (AC) approach for integrated PET/MRI systems that combines both segmentation- and atlas-based methods by incorporating dual-echo ultra-short echo-time (DUTE) and T1-weighted (T1w) MRI data and a probabilistic atlas. Segmented atlases were constructed from CT training data using a leave-one-out framework and combined with T1w, DUTE, and CT data to train a classifier that computes the probability of air/soft tissue/bone at each voxel. This classifier was applied to segment the MRI of the subject of interest and attenuation maps (μ-maps) were generated by assigning specific linear attenuation coefficients (LACs) to each tissue class. The μ-maps generated with this “Atlas-T1w-DUTE” approach were compared to those obtained from DUTE data using a previously proposed method. For validation of the segmentation results, segmented CT μ-maps were considered to the “silver standard”; the segmentation accuracy was assessed qualitatively and quantitatively through calculation of the Dice similarity coefficient (DSC). Relative change (RC) maps between the CT and MRI-based attenuation corrected PET volumes were also calculated for a global voxel-wise assessment of the reconstruction results. The μ-maps obtained using the Atlas-T1w-DUTE classifier agreed well with those derived from CT; the mean DSCs for the Atlas-T1w-DUTE-based μ-maps across all subjects were higher than those for DUTE-based μ-maps; the atlas-based μ-maps also showed a lower percentage of misclassified voxels across all subjects. RC maps from the atlas-based technique also demonstrated improvement in the PET data compared to the DUTE method, both globally as well as regionally. PMID:24753982

  20. Pretreatment Prediction of Brain Tumors' Response to Radiation Therapy Using High b-Value Diffusion-Weighted MRI1

    PubMed Central

    Mardor, Yael; Roth, Yiftach; Ocherashvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael

    2004-01-01

    Abstract Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm2 to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, RD, reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and RD were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P < .002 and r = 0.77, P < .001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy. PMID:15140402

  1. A review of technical aspects of T1-weighted dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in human brain tumors.

    PubMed

    Bergamino, M; Bonzano, L; Levrero, F; Mancardi, G L; Roccatagliata, L

    2014-09-01

    In the last few years, several imaging methods, such as magnetic resonance imaging (MRI) and computed tomography, have been used to investigate the degree of blood-brain barrier (BBB) permeability in patients with neurological diseases including multiple sclerosis, ischemic stroke, and brain tumors. One promising MRI method for assessing the BBB permeability of patients with neurological diseases in vivo is T1-weighted dynamic contrast-enhanced (DCE)-MRI. Here we review the technical issues involved in DCE-MRI in the study of human brain tumors. In the first part of this paper, theoretical models for the DCE-MRI analysis will be described, including the Toft-Kety models, the adiabatic approximation to the tissue homogeneity model and the two-compartment exchange model. These models can be used to estimate important kinetic parameters related to BBB permeability. In the second part of this paper, details of the data acquisition, issues related to the arterial input function, and procedures for DCE-MRI image analysis are illustrated. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. TU-AB-BRA-03: Atlas-Based Algorithms with Local Registration-Goodness Weighting for MRI-Driven Electron Density Mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farjam, R; Tyagi, N; Veeraraghavan, H

    Purpose: To develop image-analysis algorithms to synthesize CT with accurate electron densities for MR-only radiotherapy of head & neck (H&N) and pelvis anatomies. Methods: CT and 3T-MRI (Philips, mDixon sequence) scans were randomly selected from a pool of H&N (n=11) and pelvis (n=12) anatomies to form an atlas. All MRIs were pre-processed to eliminate scanner and patient-induced intensity inhomogeneities and standardize their intensity histograms. CT and MRI for each patient were then co-registered to construct CT-MRI atlases. For more accurate CT-MR fusion, bone intensities in CT were suppressed to improve the similarity between CT and MRI. For a new patient,more » all CT-MRI atlases are deformed onto the new patients’ MRI initially. A newly-developed generalized registration error (GRE) metric was then calculated as a measure of local registration accuracy. The synthetic CT value at each point is a 1/GRE-weighted average of CTs from all CT-MR atlases. For evaluation, the mean absolute error (MAE) between the original and synthetic CT (generated in a leave-one-out scheme) was computed. The planning dose from the original and synthetic CT was also compared. Results: For H&N patients, MAE was 67±9, 114±22, and 116±9 HU over the entire-CT, air and bone regions, respectively. For pelvis anatomy, MAE was 47±5 and 146±14 for the entire and bone regions. In comparison with MIRADA medical, an FDA-approved registration tool, we found that our proposed registration strategy reduces MAE by ∼30% and ∼50% over the entire and bone regions, respectively. GRE-weighted strategy further lowers MAE by ∼15% to ∼40%. Our primary dose calculation also showed highly consistent results between the original and synthetic CT. Conclusion: We’ve developed a novel image-analysis technique to synthesize CT for H&N and pelvis anatomies. Our proposed image fusion strategy and GRE metric help generate more accurate synthetic CT using locally more similar atlases (Support

  3. The effect of supine exercise on the distribution of regional pulmonary blood flow measured using proton MRI

    PubMed Central

    Hall, E. T.; Sá, R. C.; Holverda, S.; Arai, T. J.; Dubowitz, D. J.; Theilmann, R. J.; Prisk, G. K.

    2013-01-01

    The Zone model of pulmonary perfusion predicts that exercise reduces perfusion heterogeneity because increased vascular pressure redistributes flow to gravitationally nondependent lung, and causes dilation and recruitment of blood vessels. However, during exercise in animals, perfusion heterogeneity as measured by the relative dispersion (RD, SD/mean) is not significantly decreased. We evaluated the effect of exercise on pulmonary perfusion in six healthy supine humans using magnetic resonance imaging (MRI). Data were acquired at rest, while exercising (∼27% of maximal oxygen consumption) using a MRI-compatible ergometer, and in recovery. Images were acquired in most of the right lung in the sagittal plane at functional residual capacity, using a 1.5-T MR scanner equipped with a torso coil. Perfusion was measured using arterial spin labeling (ASL-FAIRER) and regional proton density using a fast multiecho gradient-echo sequence. Perfusion images were corrected for coil-based signal heterogeneity, large conduit vessels removed and quantified (in ml·min−1·ml−1) (perfusion), and also normalized for density and quantified (in ml·min−1·g−1) (density-normalized perfusion, DNP) accounting for tissue redistribution. DNP increased during exercise (11.1 ± 3.5 rest, 18.8 ± 2.3 exercise, 13.2 ± 2.2 recovery, ml·min−1·g−1, P < 0.0001), and the increase was largest in nondependent lung (110 ± 61% increase in nondependent, 63 ± 35% in mid, 70 ± 33% in dependent, P < 0.005). The RD of perfusion decreased with exercise (0.93 ± 0.21 rest, 0.73 ± 0.13 exercise, 0.94 ± 0.18 recovery, P < 0.005). The RD of DNP showed a similar trend (0.82 ± 0.14 rest, 0.75 ± 0.09 exercise, 0.81 ± 0.10 recovery, P = 0.13). In conclusion, in contrast to animal studies, in supine humans, mild exercise decreased perfusion heterogeneity, consistent with Zone model predictions. PMID:24356515

  4. A Simulation Tool for Dynamic Contrast Enhanced MRI

    PubMed Central

    Mauconduit, Franck; Christen, Thomas; Barbier, Emmanuel Luc

    2013-01-01

    The quantification of bolus-tracking MRI techniques remains challenging. The acquisition usually relies on one contrast and the analysis on a simplified model of the various phenomena that arise within a voxel, leading to inaccurate perfusion estimates. To evaluate how simplifications in the interstitial model impact perfusion estimates, we propose a numerical tool to simulate the MR signal provided by a dynamic contrast enhanced (DCE) MRI experiment. Our model encompasses the intrinsic and relaxations, the magnetic field perturbations induced by susceptibility interfaces (vessels and cells), the diffusion of the water protons, the blood flow, the permeability of the vessel wall to the the contrast agent (CA) and the constrained diffusion of the CA within the voxel. The blood compartment is modeled as a uniform compartment. The different blocks of the simulation are validated and compared to classical models. The impact of the CA diffusivity on the permeability and blood volume estimates is evaluated. Simulations demonstrate that the CA diffusivity slightly impacts the permeability estimates ( for classical blood flow and CA diffusion). The effect of long echo times is investigated. Simulations show that DCE-MRI performed with an echo time may already lead to significant underestimation of the blood volume (up to 30% lower for brain tumor permeability values). The potential and the versatility of the proposed implementation are evaluated by running the simulation with realistic vascular geometry obtained from two photons microscopy and with impermeable cells in the extravascular environment. In conclusion, the proposed simulation tool describes DCE-MRI experiments and may be used to evaluate and optimize acquisition and processing strategies. PMID:23516414

  5. High resolution 3D MRI of mouse mammary glands with intra-ductal injection of contrast media.

    PubMed

    Markiewicz, Erica; Fan, Xiaobing; Mustafi, Devkumar; Zamora, Marta; Roman, Brian B; Jansen, Sanaz A; Macleod, Kay; Conzen, Suzanne D; Karczmar, Gregory S

    2015-01-01

    The purpose of this study was to use high resolution three-dimensional (3D) magnetic resonance imaging (MRI) to study mouse mammary gland ductal architecture based on intra-ductal injection of contrast agents. Female FVB/N mice age 12-20 weeks (n=12), were used in this study. A 34G, 45° tip Hamilton needle with a 25μL Hamilton syringe was inserted into the tip of the nipple. Approximately 20-25μL of a Gadodiamide/Trypan blue/saline solution was injected slowly over one minute into the nipple and duct. To prevent washout of contrast media from ducts due to perfusion, and maximize the conspicuity of ducts on MRI, mice were sacrificed one minute after injection. High resolution 3D T1-weighted images were acquired on a 9.4T Bruker scanner after sacrifice to eliminate motion artifacts and reduce contrast media leakage from ducts. Trypan blue staining was well distributed throughout the ductal tree. MRI showed the mammary gland ductal structure clearly. In spoiled gradient echo T1-weighted images, the signal-to-noise ratio of regions identified as enhancing mammary ducts following contrast injection was significantly higher than that of muscle (p<0.02) and significantly higher than that of contralateral mammary ducts that were not injected with contrast media (p<0.0001). The methods described here could be adapted for injection of specialized contrast agents to measure metabolism or target receptors in normal ducts and ducts with in situ cancers. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Hemofiltration in ex vivo lung perfusion-a study in experimentally induced pulmonary edema.

    PubMed

    Nilsson, Tobias; Hansson, Christoffer; Wallinder, Andreas; Malm, Carl-Johan; Silverborn, Martin; Ricksten, Sven-Erik; Dellgren, Göran

    2016-02-01

    Ex vivo lung perfusion (EVLP) can potentially reduce pulmonary edema. In a pig model with induced pulmonary edema, we evaluated the effect of hemofiltration (HF) during EVLP on lung function, perfusate oncotic pressure, and lung weight. In anesthetized pigs (n = 14), pulmonary edema was induced by a balloon in the left atrium, combined with crystalloid infusion (20 mL/kg), for 2 hours. The lungs were harvested, stored cold for 2 hours, and randomized to EVLP, with or without a hemofilter (HF and noHF groups, respectively, n = 7 for each). EVLP was performed with cellular perfusate at a hematocrit of 10% to 15%. Oncotic pressure, lung performance, and weight were measured before and after 180 minutes of EVLP reconditioning with or without HF. After in vivo induction of edema, arterial oxygen tension (Pao2)/inspired oxygen fraction (Fio2), and compliance decreased by 63% and 16%, respectively. Pao2/Fio2 was considerably improved at first evaluation ex vivo in both groups. HF increased oncotic pressure by 43% and decreased lung weight by 15%. The effects were negligible in the noHF group. Compliance decreased in both groups during reconditioning, although less so in the HF group (P < .05). Pao2/Fio2, shunt fraction, and oxygen saturation remained unchanged in both groups. Pulmonary flow index decreased in both groups, and was partially reversed by nitroglycerin. Dorsal atelectatic consolidations were seen in both groups. In this lung-edema model, EVLP reconditioning with hyperoncotic solution did not affect the degree of lung edema. HF during EVLP increased perfusate oncotic pressure, decreased lung weight with beneficial effects on compliance, but did not improve lung oxygenation capacity. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  7. Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization.

    PubMed

    Sauwen, Nicolas; Acou, Marjan; Sima, Diana M; Veraart, Jelle; Maes, Frederik; Himmelreich, Uwe; Achten, Eric; Huffel, Sabine Van

    2017-05-04

    Segmentation of gliomas in multi-parametric (MP-)MR images is challenging due to their heterogeneous nature in terms of size, appearance and location. Manual tumor segmentation is a time-consuming task and clinical practice would benefit from (semi-) automated segmentation of the different tumor compartments. We present a semi-automated framework for brain tumor segmentation based on non-negative matrix factorization (NMF) that does not require prior training of the method. L1-regularization is incorporated into the NMF objective function to promote spatial consistency and sparseness of the tissue abundance maps. The pathological sources are initialized through user-defined voxel selection. Knowledge about the spatial location of the selected voxels is combined with tissue adjacency constraints in a post-processing step to enhance segmentation quality. The method is applied to an MP-MRI dataset of 21 high-grade glioma patients, including conventional, perfusion-weighted and diffusion-weighted MRI. To assess the effect of using MP-MRI data and the L1-regularization term, analyses are also run using only conventional MRI and without L1-regularization. Robustness against user input variability is verified by considering the statistical distribution of the segmentation results when repeatedly analyzing each patient's dataset with a different set of random seeding points. Using L1-regularized semi-automated NMF segmentation, mean Dice-scores of 65%, 74 and 80% are found for active tumor, the tumor core and the whole tumor region. Mean Hausdorff distances of 6.1 mm, 7.4 mm and 8.2 mm are found for active tumor, the tumor core and the whole tumor region. Lower Dice-scores and higher Hausdorff distances are found without L1-regularization and when only considering conventional MRI data. Based on the mean Dice-scores and Hausdorff distances, segmentation results are competitive with state-of-the-art in literature. Robust results were found for most patients, although

  8. Perfusion-weighted magnetic resonance imaging detects recurrent isolated vertigo caused by cerebral hypoperfusion.

    PubMed

    Xu, Xiaowei; Jiang, Li; Luo, Man; Li, Jiaoxing; Li, Weidong; Sheng, Wenli

    2015-06-01

    The etiology of isolated vertigo has been a substantial diagnostic challenge for both neurologists and otolaryngologists. This study was designed to detect recurrent isolated vertigo due to cerebral hypoperfusion using perfusion-weighted magnetic resonance imaging (PWI). We recruited isolated vertigo patients whose clinical condition was suspected to be caused by hypodynamics of the brain; these individuals formed the case group. We generated two additional groups: a negative group composed of vertigo patients whose symptoms were caused by problems associated with the ear and a healthy control group. Each subject underwent PWI, and seven regions of interest (ROIs) were chosen. The relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), and mean transit time (MTT) were obtained from each ROI. We further calculated the absolute difference of relative parameter values between two mirrored ROIs. The significant difference in the relative MTT from the mirrored cerebellar ROI (|rMTTleft-right|) of the case group was larger than those from the negative and healthy control groups (p = 0.026 and p = 0.038, respectively). Signal differences in |rrCBVleft-right| and |rrCBFleft-right| were not found among the three groups. In summary, disequilibrium in the rMTT of the bilateral cerebellum in the case group implied that hypoperfusion of the posterior circulation could trigger recurrent isolated vertigo and could be shown efficiently using PWI.

  9. Regional brain injury on conventional and diffusion weighted MRI is associated with outcome after pediatric cardiac arrest.

    PubMed

    Fink, Ericka L; Panigrahy, A; Clark, R S B; Fitz, C R; Landsittel, D; Kochanek, P M; Zuccoli, G

    2013-08-01

    To assess regional brain injury on magnetic resonance imaging (MRI) after pediatric cardiac arrest (CA) and to associate regional injury with patient outcome and effects of hypothermia therapy for neuroprotection. We performed a retrospective chart review with prospective imaging analysis. Children between 1 week and 17 years of age who had a brain MRI in the first 2 weeks after CA without other acute brain injury between 2002 and 2008 were included. Brain MRI (1.5 T General Electric, Milwaukee, WI, USA) images were analyzed by 2 blinded neuroradiologists with adjudication; images were visually graded. Brain lobes, basal ganglia, thalamus, brain stem, and cerebellum were analyzed using T1, T2, and diffusion-weighted images (DWI). We examined 28 subjects with median age 1.9 years (IQR 0.4-13.0) and 19 (68 %) males. Increased intensity on T2 in the basal ganglia and restricted diffusion in the brain lobes were associated with unfavorable outcome (all P < 0.05). Therapeutic hypothermia had no effect on regional brain injury. Repeat brain MRI was infrequently performed but demonstrated evolution of lesions. Children with lesions in the basal ganglia on conventional MRI and brain lobes on DWI within the first 2 weeks after CA represent a group with increased risk of poor outcome. These findings may be important for developing neuroprotective strategies based on regional brain injury and for evaluating response to therapy in interventional clinical trials.

  10. MRI in multiple sclerosis: current status and future prospects

    PubMed Central

    Bakshi, Rohit; Thompson, Alan J; Rocca, Maria A; Pelletier, Daniel; Dousset, Vincent; Barkhof, Frederik; Inglese, Matilde; Guttmann, Charles R G; Horsfield, Mark A; Filippi, Massimo

    2008-01-01

    Many promising MRI approaches for research or clinical management of multiple sclerosis (MS) have recently emerged, or are under development or refinement. Advanced MRI methods need to be assessed to determine whether they allow earlier diagnosis or better identification of phenotypes. Improved post-processing should allow more efficient and complete extraction of information from images. Magnetic resonance spectroscopy should improve in sensitivity and specificity with higher field strengths and should enable the detection of a wider array of metabolites. Diffusion imaging is moving closer to the goal of defining structural connectivity and, thereby, determining the functional significance of lesions at specific locations. Cell-specific imaging now seems feasible with new magnetic resonance contrast agents. The imaging of myelin water fraction brings the hope of providing a specific measure of myelin content. Ultra-high-field MRI increases sensitivity, but also presents new technical challenges. Here, we review these recent developments in MRI for MS, and also look forward to refinements in spinal-cord imaging, optic-nerve imaging, perfusion MRI, and functional MRI. Advances in MRI should improve our ability to diagnose, monitor, and understand the pathophysiology of MS. PMID:18565455

  11. Rapid perfusion quantification using Welch-Satterthwaite approximation and analytical spectral filtering

    NASA Astrophysics Data System (ADS)

    Krishnan, Karthik; Reddy, Kasireddy V.; Ajani, Bhavya; Yalavarthy, Phaneendra K.

    2017-02-01

    CT and MR perfusion weighted imaging (PWI) enable quantification of perfusion parameters in stroke studies. These parameters are calculated from the residual impulse response function (IRF) based on a physiological model for tissue perfusion. The standard approach for estimating the IRF is deconvolution using oscillatory-limited singular value decomposition (oSVD) or Frequency Domain Deconvolution (FDD). FDD is widely recognized as the fastest approach currently available for deconvolution of CT Perfusion/MR PWI. In this work, three faster methods are proposed. The first is a direct (model based) crude approximation to the final perfusion quantities (Blood flow, Blood volume, Mean Transit Time and Delay) using the Welch-Satterthwaite approximation for gamma fitted concentration time curves (CTC). The second method is a fast accurate deconvolution method, we call Analytical Fourier Filtering (AFF). The third is another fast accurate deconvolution technique using Showalter's method, we call Analytical Showalter's Spectral Filtering (ASSF). Through systematic evaluation on phantom and clinical data, the proposed methods are shown to be computationally more than twice as fast as FDD. The two deconvolution based methods, AFF and ASSF, are also shown to be quantitatively accurate compared to FDD and oSVD.

  12. CT Perfusion of the Head

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z CT Perfusion of the Head Computed tomography (CT) perfusion ... of CT Perfusion of the Head? What is CT Perfusion of the Head? Computed tomography (CT) perfusion ...

  13. Improved hepatic arterial fraction estimation using cardiac output correction of arterial input functions for liver DCE MRI

    NASA Astrophysics Data System (ADS)

    Chouhan, Manil D.; Bainbridge, Alan; Atkinson, David; Punwani, Shonit; Mookerjee, Rajeshwar P.; Lythgoe, Mark F.; Taylor, Stuart A.

    2017-02-01

    Liver dynamic contrast enhanced (DCE) MRI pharmacokinetic modelling could be useful in the assessment of diffuse liver disease and focal liver lesions, but is compromised by errors in arterial input function (AIF) sampling. In this study, we apply cardiac output correction to arterial input functions (AIFs) for liver DCE MRI and investigate the effect on dual-input single compartment hepatic perfusion parameter estimation and reproducibility. Thirteen healthy volunteers (28.7  ±  1.94 years, seven males) underwent liver DCE MRI and cardiac output measurement using aortic root phase contrast MRI (PCMRI), with reproducibility (n  =  9) measured at 7 d. Cardiac output AIF correction was undertaken by constraining the first pass AIF enhancement curve using the indicator-dilution principle. Hepatic perfusion parameters with and without cardiac output AIF correction were compared and 7 d reproducibility assessed. Differences between cardiac output corrected and uncorrected liver DCE MRI portal venous (PV) perfusion (p  =  0.066), total liver blood flow (TLBF) (p  =  0.101), hepatic arterial (HA) fraction (p  =  0.895), mean transit time (MTT) (p  =  0.646), distribution volume (DV) (p  =  0.890) were not significantly different. Seven day corrected HA fraction reproducibility was improved (mean difference 0.3%, Bland-Altman 95% limits-of-agreement (BA95%LoA)  ±27.9%, coefficient of variation (CoV) 61.4% versus 9.3%, ±35.5%, 81.7% respectively without correction). Seven day uncorrected PV perfusion was also improved (mean difference 9.3 ml min-1/100 g, BA95%LoA  ±506.1 ml min-1/100 g, CoV 64.1% versus 0.9 ml min-1/100 g, ±562.8 ml min-1/100 g, 65.1% respectively with correction) as was uncorrected TLBF (mean difference 43.8 ml min-1/100 g, BA95%LoA  ±586.7 ml min-1/ 100 g, CoV 58.3% versus 13.3 ml min-1/100 g, ±661.5 ml min-1/100 g, 60.9% respectively with correction

  14. Independent value of image fusion in unenhanced breast MRI using diffusion-weighted and morphological T2-weighted images for lesion characterization in patients with recently detected BI-RADS 4/5 x-ray mammography findings.

    PubMed

    Bickelhaupt, Sebastian; Tesdorff, Jana; Laun, Frederik Bernd; Kuder, Tristan Anselm; Lederer, Wolfgang; Teiner, Susanne; Maier-Hein, Klaus; Daniel, Heidi; Stieber, Anne; Delorme, Stefan; Schlemmer, Heinz-Peter

    2017-02-01

    The aim of this study was to evaluate the accuracy and applicability of solitarily reading fused image series of T2-weighted and high-b-value diffusion-weighted sequences for lesion characterization as compared to sequential or combined image analysis of these unenhanced sequences and to contrast- enhanced breast MRI. This IRB-approved study included 50 female participants with suspicious breast lesions detected in screening X-ray mammograms, all of which provided written informed consent. Prior to biopsy, all women underwent MRI including diffusion-weighted imaging (DWIBS, b = 1500s/mm 2 ). Images were analyzed as follows: prospective image fusion of DWIBS and T2-weighted images (FU), side-by-side analysis of DWIBS and T2-weighted series (CO), combination of the first two methods (CO+FU), and full contrast-enhanced diagnostic protocol (FDP). Diagnostic indices, confidence, and image quality of the protocols were compared by two blinded readers. Reading the CO+FU (accuracy 0.92; NPV 96.1 %; PPV 87.6 %) and the CO series (0.90; 96.1 %; 83.7 %) provided a diagnostic performance similar to the FDP (0.95; 96.1 %; 91.3 %; p > 0.05). FU reading alone significantly reduced the diagnostic accuracy (0.82; 93.3 %; 73.4 %; p = 0.023). MR evaluation of suspicious BI-RADS 4 and 5 lesions detected on mammography by using a non-contrast-enhanced T2-weighted and DWIBS sequence protocol is most accurate if MR images were read using the CO+FU protocol. • Unenhanced breast MRI with additional DWIBS/T2w-image fusion allows reliable lesion characterization. • Abbreviated reading of fused DWIBS/T2w-images alone decreases diagnostic confidence and accuracy. • Reading fused DWIBS/T2w-images as the sole diagnostic method should be avoided.

  15. Spatially constrained incoherent motion method improves diffusion-weighted MRI signal decay analysis in the liver and spleen

    PubMed Central

    Taimouri, Vahid; Afacan, Onur; Perez-Rossello, Jeannette M.; Callahan, Michael J.; Mulkern, Robert V.; Warfield, Simon K.; Freiman, Moti

    2015-01-01

    Purpose: To evaluate the effect of the spatially constrained incoherent motion (SCIM) method on improving the precision and robustness of fast and slow diffusion parameter estimates from diffusion-weighted MRI in liver and spleen in comparison to the independent voxel-wise intravoxel incoherent motion (IVIM) model. Methods: We collected diffusion-weighted MRI (DW-MRI) data of 29 subjects (5 healthy subjects and 24 patients with Crohn’s disease in the ileum). We evaluated parameters estimates’ robustness against different combinations of b-values (i.e., 4 b-values and 7 b-values) by comparing the variance of the estimates obtained with the SCIM and the independent voxel-wise IVIM model. We also evaluated the improvement in the precision of parameter estimates by comparing the coefficient of variation (CV) of the SCIM parameter estimates to that of the IVIM. Results: The SCIM method was more robust compared to IVIM (up to 70% in liver and spleen) for different combinations of b-values. Also, the CV values of the parameter estimations using the SCIM method were significantly lower compared to repeated acquisition and signal averaging estimated using IVIM, especially for the fast diffusion parameter in liver (CVIV IM = 46.61 ± 11.22, CVSCIM = 16.85 ± 2.160, p < 0.001) and spleen (CVIV IM = 95.15 ± 19.82, CVSCIM = 52.55 ± 1.91, p < 0.001). Conclusions: The SCIM method characterizes fast and slow diffusion more precisely compared to the independent voxel-wise IVIM model fitting in the liver and spleen. PMID:25832079

  16. Selective cerebro-myocardial perfusion in complex congenital aortic arch pathology: a novel technique.

    PubMed

    De Rita, Fabrizio; Lucchese, Gianluca; Barozzi, Luca; Menon, Tiziano; Faggian, Giuseppe; Mazzucco, Alessandro; Luciani, Giovanni Battista

    2011-11-01

    Simultaneous cerebro-myocardial perfusion has been described in neonatal and infant arch surgery, suggesting a reduction in cardiac morbidity. Here reported is a novel technique for selective cerebral perfusion combined with controlled and independent myocardial perfusion during surgery for complex or recurrent aortic arch lesions. From April 2008 to April 2011, 10 patients with arch pathology underwent surgery (two hypoplastic left heart syndrome [HLHS], four recurrent arch obstruction, two aortic arch hypoplasia + ventricular septal defect [VSD], one single ventricle + transposition of the great arteries + arch hypoplasia, one interrupted aortic arch type B + VSD). Median age was 63 days (6 days-36 years) and median weight 4.0 kg (1.6-52). Via midline sternotomy, an arterial cannula (6 or 8 Fr for infants) was directly inserted into the innominate artery or through a polytetrafluoroethylene (PTFE) graft (for neonates <2.0 kg). A cardioplegia delivery system was inserted into the aortic root. Under moderate hypothermia, ascending and descending aorta were cross-clamped, and "beating heart and brain" aortic arch repair was performed. Arch repair was composed of patch augmentation in five, end-to-side anastomosis in three, and replacement in two patients. Average cardiopulmonary bypass time was 163 ± 68 min (71-310). In two patients only (one HLHS, one complex single ventricle), a period of cardiac arrest was required to complete intracardiac repair. In such cases, antegrade blood cardioplegia was delivered directly via the same catheter used for selective myocardial perfusion. Average time of splanchnic ischemia during cerebro-myocardial perfusion was 39 ± 18 min (17-69). Weaning from cardiopulmonary bypass was achieved without inotropic support in three and with low dose in seven patients. One patient required veno-arterial extracorporeal membrane oxygenation. Four patients, body weight <3.0 kg, needed delayed sternal closure. No neurologic dysfunction was noted

  17. Dissociative part-dependent resting-state activity in dissociative identity disorder: a controlled FMRI perfusion study.

    PubMed

    Schlumpf, Yolanda R; Reinders, Antje A T S; Nijenhuis, Ellert R S; Luechinger, Roger; van Osch, Matthias J P; Jäncke, Lutz

    2014-01-01

    In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the "Emotional Part" (EP) and the "Apparently Normal Part" (ANP), have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors. Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls. Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events. DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are consistent with TSDP and inconsistent with the idea

  18. Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants.

    PubMed

    Rose, Jessica; Vassar, Rachel; Cahill-Rowley, Katelyn; Stecher Guzman, Ximena; Hintz, Susan R; Stevenson, David K; Barnea-Goraly, Naama

    2014-01-01

    Structural brain abnormalities identified at near-term age have been recognized as potential predictors of neurodevelopment in children born preterm. The aim of this study was to examine the relationship between neonatal physiological risk factors and early brain structure in very-low-birth-weight (VLBW) preterm infants using structural MRI and diffusion tensor imaging (DTI) at near-term age. Structural brain MRI, diffusion-weighted scans, and neonatal physiological risk factors were analyzed in a cross-sectional sample of 102 VLBW preterm infants (BW ≤ 1500 g, gestational age (GA) ≤ 32 weeks), who were admitted to the Lucile Packard Children's Hospital, Stanford NICU and recruited to participate prior to routine near-term brain MRI conducted at 36.6 ± 1.8 weeks postmenstrual age (PMA) from 2010 to 2011; 66/102 also underwent a diffusion-weighted scan. Brain abnormalities were assessed qualitatively on structural MRI, and white matter (WM) microstructure was analyzed quantitatively on DTI in six subcortical regions defined by DiffeoMap neonatal brain atlas. Specific regions of interest included the genu and splenium of the corpus callosum, anterior and posterior limbs of the internal capsule, the thalamus, and the globus pallidus. Regional fractional anisotropy (FA) and mean diffusivity (MD) were calculated using DTI data and examined in relation to neonatal physiological risk factors including gestational age (GA), bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), retinopathy of prematurity (ROP), and sepsis, as well as serum levels of C-reactive protein (CRP), glucose, albumin, and total bilirubin. Brain abnormalities were observed on structural MRI in 38/102 infants including 35% of females and 40% of males. Infants with brain abnormalities observed on MRI had higher incidence of BPD (42% vs. 25%) and sepsis (21% vs. 6%) and higher mean and peak serum CRP levels, respectively, (0.64 vs. 0.34 mg/dL, p = .008; 1.57 vs. 0.67

  19. T1-weighted dynamic contrast-enhanced brain magnetic resonance imaging: A preliminary study with low infusion rate in pediatric patients.

    PubMed

    Rochetams, Bruno-Bernard; Marechal, Bénédicte; Cottier, Jean-Philippe; Gaillot, Kathleen; Sembely-Taveau, Catherine; Sirinelli, Dominique; Morel, Baptiste

    2017-10-01

    Background The aim of this preliminary study is to evaluate the results of T1-weighted dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in pediatric patients at 1.5T, with a low peripheral intravenous gadoteric acid injection rate of 1 ml/s. Materials and methods Children with neurological symptoms were examined prospectively with conventional MRI and T1-weighted DCE MRI. An magnetic resonance perfusion analysis method was used to obtain time-concentration curves (persistent pattern, type-I; plateau pattern, type-II; washout pattern, type-III) and to calculate pharmacokinetic parameters. A total of two radiologists manually defined regions of interest (ROIs) in the part of the lesion exhibiting the greatest contrast enhancement and in the surrounding normal or contralateral tissue. Lesion/surrounding tissue or contralateral tissue pharmacokinetic parameter ratios were calculated. Tumors were categorized by grade (I-IV) using the World Health Organization (WHO) Grade. Mann-Whitney testing and receiver-operating characteristic (ROC) curves were performed. Results A total of nine boys and nine girls (mean age 10.5 years) were included. Lesions consisted of 10 brain tumors, 3 inflammatory lesions, 3 arteriovenous malformations and 2 strokes. We obtained analyzable concentration-time curves for all patients (6 type-I, 9 type-II, 3 type-III). K trans between tumor tissue and surrounding or contralateral tissue was significantly different ( p = 0.034). K trans ratios were significantly different between grade I tumors and grade IV tumors ( p = 0.027) and a K trans ratio value superior to 0.63 appeared to be discriminant to determine a grade IV of malignancy. Conclusions Our results confirm the feasibility of pediatric T1-weighted DCE MRI at 1.5T with a low injection rate, which could be of great value in differentiating brain tumor grades.

  20. On the fallacy of quantitative segmentation for T1-weighted MRI

    NASA Astrophysics Data System (ADS)

    Plassard, Andrew J.; Harrigan, Robert L.; Newton, Allen T.; Rane, Swati; Pallavaram, Srivatsan; D'Haese, Pierre F.; Dawant, Benoit M.; Claassen, Daniel O.; Landman, Bennett A.

    2016-03-01

    T1-weighted magnetic resonance imaging (MRI) generates contrasts with primary sensitivity to local T1 properties (with lesser T2 and PD contributions). The observed signal intensity is determined by these local properties and the sequence parameters of the acquisition. In common practice, a range of acceptable parameters is used to ensure "similar" contrast across scanners used for any particular study (e.g., the ADNI standard MPRAGE). However, different studies may use different ranges of parameters and report the derived data as simply "T1-weighted". Physics and imaging authors pay strong heed to the specifics of the imaging sequences, but image processing authors have historically been more lax. Herein, we consider three T1-weighted sequences acquired the same underlying protocol (MPRAGE) and vendor (Philips), but "normal study-to-study variation" in parameters. We show that the gray matter/white matter/cerebrospinal fluid contrast is subtly but systemically different between these images and yields systemically different measurements of brain volume. The problem derives from the visually apparent boundary shifts, which would also be seen by a human rater. We present and evaluate two solutions to produce consistent segmentation results across imaging protocols. First, we propose to acquire multiple sequences on a subset of the data and use the multi-modal imaging as atlases to segment target images any of the available sequences. Second (if additional imaging is not available), we propose to synthesize atlases of the target imaging sequence and use the synthesized atlases in place of atlas imaging data. Both approaches significantly improve consistency of target labeling.

  1. Distributed Perfusion Educational Model: A Shift in Perfusion Economic Realities

    PubMed Central

    Austin, Jon W.; Evans, Edward L.; Hoerr, Harry R.

    2005-01-01

    Abstract: In recent years, a steady decline in the number of perfusion education programs in the United States has been noted. At the same time, there has been a parallel decline in the number of students graduated from perfusion educational programs in the United States. Also, as noted by several authors, there has been an increase in demand for perfusion graduates. The decline in programs and graduates has also been noted in anesthesia and surgical residency programs. The shift is caused by a combination of economic and clinical factors. First, decreased reimbursement has led to reallocation of hospital resources. Second, the original enthusiasm for beating heart coronary artery bypass surgery was grossly overestimated and has led to further reallocation of hospital resources and denigration of cardiopulmonary bypass. This paper describes two models of perfusion education programs: serial perfusion education model (SPEM) and the distributed perfusion education model (DPEM). Arguments are presented that the SPEM has some serious limitations and challenges for long-term economic survival. The authors feel the DPEM along with dependence on tuition funding can survive the current clinical and economic conditions and allow the profession to adapt to changes in scope of practice. PMID:16524152

  2. Biparametric MRI of the prostate.

    PubMed

    Scialpi, Michele; D'Andrea, Alfredo; Martorana, Eugenio; Malaspina, Corrado Maria; Aisa, Maria Cristina; Napoletano, Maria; Orlandi, Emanuele; Rondoni, Valeria; Scialpi, Pietro; Pacchiarini, Diamante; Palladino, Diego; Dragone, Michele; Di Renzo, Giancarlo; Simeone, Annalisa; Bianchi, Giampaolo; Brunese, Luca

    2017-12-01

    Biparametric Magnetic Resonance Imaging (bpMRI) of the prostate combining both morphologic T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) is emerging as an alternative to multiparametric MRI (mpMRI) to detect, to localize and to guide prostatic targeted biopsy in patients with suspicious prostate cancer (PCa). BpMRI overcomes some limitations of mpMRI such as the costs, the time required to perform the study, the use of gadolinium-based contrast agents and the lack of a guidance for management of score 3 lesions equivocal for significant PCa. In our experience the optimal and similar clinical results of the bpMRI in comparison to mpMRI are essentially related to the DWI that we consider the dominant sequence for detection suspicious PCa both in transition and in peripheral zone. In clinical practice, the adoption of bpMRI standardized scoring system, indicating the likelihood to diagnose a clinically significant PCa and establishing the management of each suspicious category (from 1 to 4), could represent the rationale to simplify and to improve the current interpretation of mpMRI based on Prostate Imaging and Reporting Archiving Data System version 2 (PI-RADS v2). In this review article we report and describe the current knowledge about bpMRI in the detection of suspicious PCa and a simplified PI-RADS based on bpMRI for management of each suspicious PCa categories to facilitate the communication between radiologists and urologists.

  3. Biparametric MRI of the prostate

    PubMed Central

    Scialpi, Michele; D’Andrea, Alfredo; Martorana, Eugenio; Malaspina, Corrado Maria; Aisa, Maria Cristina; Napoletano, Maria; Orlandi, Emanuele; Rondoni, Valeria; Scialpi, Pietro; Pacchiarini, Diamante; Palladino, Diego; Dragone, Michele; Di Renzo, Giancarlo; Simeone, Annalisa; Bianchi, Giampaolo; Brunese, Luca

    2017-01-01

    Biparametric Magnetic Resonance Imaging (bpMRI) of the prostate combining both morphologic T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) is emerging as an alternative to multiparametric MRI (mpMRI) to detect, to localize and to guide prostatic targeted biopsy in patients with suspicious prostate cancer (PCa). BpMRI overcomes some limitations of mpMRI such as the costs, the time required to perform the study, the use of gadolinium-based contrast agents and the lack of a guidance for management of score 3 lesions equivocal for significant PCa. In our experience the optimal and similar clinical results of the bpMRI in comparison to mpMRI are essentially related to the DWI that we consider the dominant sequence for detection suspicious PCa both in transition and in peripheral zone. In clinical practice, the adoption of bpMRI standardized scoring system, indicating the likelihood to diagnose a clinically significant PCa and establishing the management of each suspicious category (from 1 to 4), could represent the rationale to simplify and to improve the current interpretation of mpMRI based on Prostate Imaging and Reporting Archiving Data System version 2 (PI-RADS v2). In this review article we report and describe the current knowledge about bpMRI in the detection of suspicious PCa and a simplified PI-RADS based on bpMRI for management of each suspicious PCa categories to facilitate the communication between radiologists and urologists. PMID:29201499

  4. Implementation and evaluation of a new workflow for registration and segmentation of pulmonary MRI data for regional lung perfusion assessment.

    PubMed

    Böttger, T; Grunewald, K; Schöbinger, M; Fink, C; Risse, F; Kauczor, H U; Meinzer, H P; Wolf, Ivo

    2007-03-07

    Recently it has been shown that regional lung perfusion can be assessed using time-resolved contrast-enhanced magnetic resonance (MR) imaging. Quantification of the perfusion images has been attempted, based on definition of small regions of interest (ROIs). Use of complete lung segmentations instead of ROIs could possibly increase quantification accuracy. Due to the low signal-to-noise ratio, automatic segmentation algorithms cannot be applied. On the other hand, manual segmentation of the lung tissue is very time consuming and can become inaccurate, as the borders of the lung to adjacent tissues are not always clearly visible. We propose a new workflow for semi-automatic segmentation of the lung from additionally acquired morphological HASTE MR images. First the lung is delineated semi-automatically in the HASTE image. Next the HASTE image is automatically registered with the perfusion images. Finally, the transformation resulting from the registration is used to align the lung segmentation from the morphological dataset with the perfusion images. We evaluated rigid, affine and locally elastic transformations, suitable optimizers and different implementations of mutual information (MI) metrics to determine the best possible registration algorithm. We located the shortcomings of the registration procedure and under which conditions automatic registration will succeed or fail. Segmentation results were evaluated using overlap and distance measures. Integration of the new workflow reduces the time needed for post-processing of the data, simplifies the perfusion quantification and reduces interobserver variability in the segmentation process. In addition, the matched morphological data set can be used to identify morphologic changes as the source for the perfusion abnormalities.

  5. Technical Note: Quantitative dynamic contrast-enhanced MRI of a 3-dimensional artificial capillary network.

    PubMed

    Gaass, Thomas; Schneider, Moritz Jörg; Dietrich, Olaf; Ingrisch, Michael; Dinkel, Julien

    2017-04-01

    Variability across devices, patients, and time still hinders widespread recognition of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) as quantitative biomarker. The purpose of this work was to introduce and characterize a dedicated microchannel phantom as a model for quantitative DCE-MRI measurements. A perfusable, MR-compatible microchannel network was constructed on the basis of sacrificial melt-spun sugar fibers embedded in a block of epoxy resin. Structural analysis was performed on the basis of light microscopy images before DCE-MRI experiments. During dynamic acquisition the capillary network was perfused with a standard contrast agent injection system. Flow-dependency, as well as inter- and intrascanner reproducibility of the computed DCE parameters were evaluated using a 3.0 T whole-body MRI. Semi-quantitative and quantitative flow-related parameters exhibited the expected proportionality to the set flow rate (mean Pearson correlation coefficient: 0.991, P < 2.5e-5). The volume fraction was approximately independent from changes of the applied flow rate through the phantom. Repeatability and reproducibility experiments yielded maximum intrascanner coefficients of variation (CV) of 4.6% for quantitative parameters. All evaluated parameters were well in the range of known in vivo results for the applied flow rates. The constructed phantom enables reproducible, flow-dependent, contrast-enhanced MR measurements with the potential to facilitate standardization and comparability of DCE-MRI examinations. © 2017 American Association of Physicists in Medicine.

  6. WE-B-BRD-00: MRI for Radiation Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The use of MRI in radiation therapy is rapidly increasing. Applications vary from the MRI simulator, to the MRI fused with CT, and to the integrated MRI+RT system. Compared with the standard MRI QA, a broader scope of QA features has to be defined in order to maximize the benefits of using MRI in radiation therapy. These QA features include geometric fidelity, image registration, motion management, cross-system alignment, and hardware interference. Advanced MRI techniques require a specific type of QA, as they are being widely used in radiation therapy planning, dose calculations, post-implant dosimetry, and prognoses. A vigorous and adaptivemore » QA program is crucial to defining the responsibility of the entire radiation therapy group and detecting deviations from the performance of high-quality treatment. As a drastic departure from CT simulation, MRI simulation requires changes in the work flow of treatment planning and image guidance. MRI guided radiotherapy platforms are being developed and commercialized to take the advantage of the advance in knowledge, technology and clinical experience. This symposium will from an educational perspective discuss the scope and specific issues related to MRI guided radiotherapy. Learning Objectives: Understand the difference between a standard and a radiotherapy-specific MRI QA program. Understand the effects of MRI artifacts (geometric distortion and motion) on radiotherapy. Understand advanced MRI techniques (ultrashort echo, fast MRI including dynamic MRI and 4DMRI, diffusion, perfusion, and MRS) and related QA. Understand the methods to prepare MRI for treatment planning (electron density assignment, multimodality image registration, segmentation and motion management). Current status of MRI guided treatment platforms. Dr. Jihong Wang has a research grant with Elekta-MRL project. Dr. Ke Sheng receives research grants from Varian Medical systems.« less

  7. Assessment of tumor response to oxygen challenge using quantitative diffusion MRI in an animal model.

    PubMed

    Zhang, Zhongwei; Yuan, Qing; Zhou, Heling; Zhao, Dawen; Li, Li; Gerberich, Jenifer L; Mason, Ralph P

    2015-11-01

    To assess tumor response to oxygen challenge using quantitative diffusion magnetic resonance imaging (MRI). A well-characterized Dunning R3327-AT1 rat prostate cancer line was implanted subcutaneously in the right thigh of male Copenhagen rats (n = 8). Diffusion-weighted images (DWI) with multiple b values (0, 25, 50, 100, 150, 200, 300, 500, 1000, 1500 s/mm(2) ) in three orthogonal directions were obtained using a multishot FSE-based Stejskal-Tanner DWI sequence (FSE-DWI) at 4.7T, while rats breathed medical air (21% oxygen) and with 100% oxygen challenge. Stretched-exponential and intravoxel incoherent motion (IVIM) models were used to calculate and compare quantitative diffusion parameters: diffusion heterogeneity index (α), intravoxel distribution of diffusion coefficients (DDC), tissue diffusivity (Dt), pseudo-diffusivity (Dp), and perfusion fraction (f) on a voxel-by-voxel basis. A significant increase of α (73.9 ± 4.7% in air vs. 78.1 ± 4.5% in oxygen, P = 0.0198) and a significant decrease of f (13.4 ± 3.7% in air vs. 10.4 ± 2.7% in oxygen, P = 0.0201) were observed to accompany oxygen challenge. Correlations between f and α during both air and oxygen breathing were found; the correlation coefficients (r) were -0.90 and -0.96, respectively. Positive correlations between Dt and DDC with oxygen breathing (r = 0.95, P = 0.0003), f and DDC with air breathing were also observed (r = 0.95, P = 0.0004). Quantitative diffusion MRI demonstrated changes in tumor perfusion in response to oxygen challenge. © 2015 Wiley Periodicals, Inc.

  8. Carotid artery stenting with double cerebral embolic protection in asymptomatic patients - a diffusion-weighted MRI controlled study.

    PubMed

    Vuruskan, Ertan; Saracoglu, Erhan; Ergun, Ugur; Poyraz, Fatih; Duzen, İrfan Veysel

    2017-01-01

    The aim of this study was to compare the simultaneous double-protection method (proximal balloon plus distal filter) with distal-filter protection or proximal-balloon protection alone in asymptomatic patients during carotid artery stenting. 119 consecutive patients were investigated for carotid artery stentings in the extracranial internal carotid artery with the use of distal filters (n = 41, 34.4 %), proximal balloon (MoMa) protection (n = 40, 33.6 %) or double protection (n = 38, 31.9 %). Magnetic resonance imaging (MRI) was performed on all patients before the procedure, and control diffusion-weighted MRI (DW-MRI) was obtained within 24-48 h after the procedure. Procedural data, complications, success rate, major adverse cardiovascular events, and MRI findings were collected. New cerebral high-intensity (HI) lesions were observed in 47 (39.4 %) patients. HI lesions were observed in 22 (53.6 %), 15 (37.5 %), and 10 (26.3 %) of the patients with distal filters, proximal protection, and double protection, respectively (p = 0.004). The average number of HI lesions on DW-MRI was 1.80 in the distal-filter group, 0.90 in the proximal-balloon group, and 0.55 in the double-protection group (p < 0.001). Procedure and fluoroscopy times were slightly longer in the double-protection group compared to the distal- or proximal-protection groups (p = 0.001). The double (proximal plus distal) cerebral embolic protection technique is safe and effective for minimizing the risk of cerebral embolization, even in patients with asymptomatic carotid artery stenosis, despite slightly longer procedure and fluoroscopy times.
.

  9. Diagnostic accuracy of automatic normalization of CBV in glioma grading using T1- weighted DCE-MRI.

    PubMed

    Sahoo, Prativa; Gupta, Rakesh K; Gupta, Pradeep K; Awasthi, Ashish; Pandey, Chandra M; Gupta, Mudit; Patir, Rana; Vaishya, Sandeep; Ahlawat, Sunita; Saha, Indrajit

    2017-12-01

    Aim of this retrospective study was to compare diagnostic accuracy of proposed automatic normalization method to quantify the relative cerebral blood volume (rCBV) with existing contra-lateral region of interest (ROI) based CBV normalization method for glioma grading using T1-weighted dynamic contrast enhanced MRI (DCE-MRI). Sixty patients with histologically confirmed gliomas were included in this study retrospectively. CBV maps were generated using T1-weighted DCE-MRI and are normalized by contralateral ROI based method (rCBV_contra), unaffected white matter (rCBV_WM) and unaffected gray matter (rCBV_GM), the latter two of these were generated automatically. An expert radiologist with >10years of experience in DCE-MRI and a non-expert with one year experience were used independently to measure rCBVs. Cutoff values for glioma grading were decided from ROC analysis. Agreement of histology with rCBV_WM, rCBV_GM and rCBV_contra respectively was studied using Kappa statistics and intra-class correlation coefficient (ICC). The diagnostic accuracy of glioma grading using the measured rCBV_contra by expert radiologist was found to be high (sensitivity=1.00, specificity=0.96, p<0.001) compared to the non-expert user (sensitivity=0.65, specificity=0.78, p<0.001). On the other hand, both the expert and non-expert user showed similar diagnostic accuracy for automatic rCBV_WM (sensitivity=0.89, specificity=0.87, p=0.001) and rCBV_GM (sensitivity=0.81, specificity=0.78, p=0.001) measures. Further, it was also observed that, contralateral based method by expert user showed highest agreement with histological grading of tumor (kappa=0.96, agreement 98.33%, p<0.001), however; automatic normalization method showed same percentage of agreement for both expert and non-expert user. rCBV_WM showed an agreement of 88.33% (kappa=0.76,p<0.001) with histopathological grading. It was inferred from this study that, in the absence of expert user, automated normalization of CBV using the

  10. MRI of gallstones with different compositions.

    PubMed

    Tsai, Hong-Ming; Lin, Xi-Zhang; Chen, Chiung-Yu; Lin, Pin-Wen; Lin, Jui-Che

    2004-06-01

    Gallstones are usually recognized on MRI as filling defects of hypointensity. However, they sometimes may appear as hyperintensities on T1-weighted imaging. This study investigated how gallstones appear on MRI and how their appearance influences the detection of gallstones. Gallstones from 24 patients who had MRI performed before the removal of the gallstones were collected for study. The gallstones were classified either as cholesterol gallstone (n = 4) or as pigment gallstone (n = 20) according to their gross appearance and based on analysis by Fourier transform infrared spectroscopy. MRI included three sequences: single-shot fast spin-echo T2-weighted imaging, 3D fast spoiled gradient-echo T1-weighted imaging, and in-phase fast spoiled gradient-echo T1-weighted imaging. The signal intensity and the detection rate of gallstones on MRI were further correlated with the character of the gallstones. On T1-weighted 3D fast spoiled gradient-echo images, most of the pigment gallstones (18/20) were hyperintense and all the cholesterol gallstones (4/4) were hypointense. The mean ratio of the signal intensity of gallstone to bile was (+/- standard deviation) 3.36 +/- 1.88 for pigment gallstone and 0.24 +/- 0.10 for cholesterol gallstone on the 3D fast spoiled gradient-echo sequence (p < 0.001). Combining the 3D fast spoiled gradient-echo and single-shot fast spin-echo sequences achieved the highest gallstone detection rate (96.4%). Based on the differences of signal intensity of gallstones, the 3D fast spoiled gradient-echo T1-weighted imaging was able to diagnose the composition of gallstones. Adding the 3D fast spoiled gradient-echo imaging to the single-shot fast spin-echo T2-weighted sequence can further improve the detection rate of gallstones.

  11. Is contrast enhancement needed for diagnostic prostate MRI?

    PubMed Central

    Rondoni, Valeria; Aisa, Maria Cristina; Martorana, Eugenio; D’Andrea, Alfredo; Malaspina, Corrado Maria; Orlandi, Agostino; Galassi, Giorgio; Orlandi, Emanuele; Scialpi, Pietro; Dragone, Michele; Palladino, Diego; Simeone, Annalisa; Amenta, Michele; Bianchi, Giampaolo

    2017-01-01

    Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) provides clinical guidelines for multiparametric magnetic resonance imaging (mpMRI) [T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)] of prostate. However, DCE-MRI seems to show a limited contribution in prostate cancer (PCa) detection and management. In our experience, DCE-MRI, did not show significant change in diagnostic performance in addition to DWI and T2WI [biparametric MRI (bpMRI)] which represent the predominant sequences to detect suspected lesions in peripheral and transitional zone (TZ). In this article we reviewed the role of DCE-MRI also indicating the potential contribute of bpMRI approach (T2WI and DWI) and lesion volume evaluation in the diagnosis and management of suspected PCa. PMID:28725592

  12. Is contrast enhancement needed for diagnostic prostate MRI?

    PubMed

    Scialpi, Michele; Rondoni, Valeria; Aisa, Maria Cristina; Martorana, Eugenio; D'Andrea, Alfredo; Malaspina, Corrado Maria; Orlandi, Agostino; Galassi, Giorgio; Orlandi, Emanuele; Scialpi, Pietro; Dragone, Michele; Palladino, Diego; Simeone, Annalisa; Amenta, Michele; Bianchi, Giampaolo

    2017-06-01

    Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) provides clinical guidelines for multiparametric magnetic resonance imaging (mpMRI) [T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)] of prostate. However, DCE-MRI seems to show a limited contribution in prostate cancer (PCa) detection and management. In our experience, DCE-MRI, did not show significant change in diagnostic performance in addition to DWI and T2WI [biparametric MRI (bpMRI)] which represent the predominant sequences to detect suspected lesions in peripheral and transitional zone (TZ). In this article we reviewed the role of DCE-MRI also indicating the potential contribute of bpMRI approach (T2WI and DWI) and lesion volume evaluation in the diagnosis and management of suspected PCa.

  13. Evaluation of MRI sequences for quantitative T1 brain mapping

    NASA Astrophysics Data System (ADS)

    Tsialios, P.; Thrippleton, M.; Glatz, A.; Pernet, C.

    2017-11-01

    T1 mapping constitutes a quantitative MRI technique finding significant application in brain imaging. It allows evaluation of contrast uptake, blood perfusion, volume, providing a more specific biomarker of disease progression compared to conventional T1-weighted images. While there are many techniques for T1-mapping there is a wide range of reported T1-values in tissues, raising the issue of protocols reproducibility and standardization. The gold standard for obtaining T1-maps is based on acquiring IR-SE sequence. Widely used alternative sequences are IR-SE-EPI, VFA (DESPOT), DESPOT-HIFI and MP2RAGE that speed up scanning and fitting procedures. A custom MRI phantom was used to assess the reproducibility and accuracy of the different methods. All scans were performed using a 3T Siemens Prisma scanner. The acquired data processed using two different codes. The main difference was observed for VFA (DESPOT) which grossly overestimated T1 relaxation time by 214 ms [126 270] compared to the IR-SE sequence. MP2RAGE and DESPOT-HIFI sequences gave slightly shorter time than IR-SE (~20 to 30ms) and can be considered as alternative and time-efficient methods for acquiring accurate T1 maps of the human brain, while IR-SE-EPI gave identical result, at a cost of a lower image quality.

  14. Pseudo-extravasation rate constant of dynamic susceptibility contrast-MRI determined from pharmacokinetic first principles.

    PubMed

    Li, Xin; Varallyay, Csanad G; Gahramanov, Seymur; Fu, Rongwei; Rooney, William D; Neuwelt, Edward A

    2017-11-01

    Dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) is widely used to obtain informative perfusion imaging biomarkers, such as the relative cerebral blood volume (rCBV). The related post-processing software packages for DSC-MRI are available from major MRI instrument manufacturers and third-party vendors. One unique aspect of DSC-MRI with low-molecular-weight gadolinium (Gd)-based contrast reagent (CR) is that CR molecules leak into the interstitium space and therefore confound the DSC signal detected. Several approaches to correct this leakage effect have been proposed throughout the years. Amongst the most popular is the Boxerman-Schmainda-Weisskoff (BSW) K 2 leakage correction approach, in which the K 2 pseudo-first-order rate constant quantifies the leakage. In this work, we propose a new method for the BSW leakage correction approach. Based on the pharmacokinetic interpretation of the data, the commonly adopted R 2 * expression accounting for contributions from both intravascular and extravasating CR components is transformed using a method mathematically similar to Gjedde-Patlak linearization. Then, the leakage rate constant (K L ) can be determined as the slope of the linear portion of a plot of the transformed data. Using the DSC data of high-molecular-weight (~750 kDa), iron-based, intravascular Ferumoxytol (FeO), the pharmacokinetic interpretation of the new paradigm is empirically validated. The primary objective of this work is to empirically demonstrate that a linear portion often exists in the graph of the transformed data. This linear portion provides a clear definition of the Gd CR pseudo-leakage rate constant, which equals the slope derived from the linear segment. A secondary objective is to demonstrate that transformed points from the initial transient period during the CR wash-in often deviate from the linear trend of the linearized graph. The inclusion of these points will have a negative impact on the accuracy of the leakage

  15. In vivo T2* weighted MRI visualizes cardiac lesions in murine models of acute and chronic viral myocarditis

    PubMed Central

    Helluy, Xavier; Sauter, Martina; Ye, Yu-Xiang; Lykowsky, Gunthard; Kreutner, Jakob; Yilmaz, Ali; Jahns, Roland; Boivin, Valerie; Kandolf, Reinhard; Jakob, Peter M.; Hiller, Karl-Heinz; Klingel, Karin

    2017-01-01

    Objective Acute and chronic forms of myocarditis are mainly induced by virus infections. As a consequence of myocardial damage and inflammation dilated cardiomyopathy and chronic heart failure may develop. The gold standard for the diagnosis of myocarditis is endomyocardial biopsies which are required to determine the etiopathogenesis of cardiac inflammatory processes. However, new non-invasive MRI techniques hold great potential in visualizing cardiac non-ischemic inflammatory lesions at high spatial resolution, which could improve the investigation of the pathophysiology of viral myocarditis. Results Here we present the discovery of a novel endogenous T2* MRI contrast of myocardial lesions in murine models of acute and chronic CVB3 myocarditis. The evaluation of infected hearts ex vivo and in vivo by 3D T2w and T2*w MRI allowed direct localization of virus-induced myocardial lesions without any MRI tracer or contrast agent. T2*w weighted MRI is able to detect both small cardiac lesions of acute myocarditis and larger necrotic areas at later stages of chronic myocarditis, which was confirmed by spatial correlation of MRI hypointensity in myocardium with myocardial lesions histologically. Additional in vivo and ex vivo MRI analysis proved that the contrast mechanism was due to a strong paramagnetic tissue alteration in the vicinity of myocardial lesions, effectively pointing towards iron deposits as the primary contributor of contrast. The evaluation of the biological origin of the MR contrast by specific histological staining and transmission electron microscopy revealed that impaired iron metabolism primarily in mitochondria caused iron deposits within necrotic myocytes, which induces strong magnetic susceptibility in myocardial lesions and results in strong T2* contrast. Conclusion This T2*w MRI technique provides a fast and sensitive diagnostic tool to determine the patterns and the severity of acute and chronic enteroviral myocarditis and the precise

  16. MRI features of extramedullary myeloma.

    PubMed

    Tirumani, Sree Harsha; Shinagare, Atul B; Jagannathan, Jyothi P; Krajewski, Katherine M; Munshi, Nikhil C; Ramaiya, Nikhil H

    2014-04-01

    The purpose of this study was to describe the MRI features of extramedullary myeloma and to evaluate the role of MRI in extramedullary myeloma. The cases of 28 patients (15 men, 13 women; mean age, 57.53 years; range, 34-83 years) with extramedullary myeloma who underwent MRI at one institution from January 2004 through December 2012 were retrospectively identified through an electronic search of an institutional radiology database. Two radiologists reviewed images from 44 MRI examinations in consensus to document the morphologic, signal-intensity, and enhancement characteristics of extramedullary myeloma. Electronic medical records were reviewed to document the indication for MRI and subsequent management of extramedullary myeloma. A total of 72 sites of extramedullary myeloma were noted, most commonly the paraspinal-epidural location (28/72, 39%). Two radiologic patterns were identified: lesions contiguous with bone (n = 44) and lesions noncontiguous with bone (n = 28). Lesions contiguous with bone were larger (p = 0.001; Student t test). Of 28 paraspinal-epidural lesions, 13 compressed the cord. Compared with skeletal muscle, most of the lesions were hypointense to isointense on T1-weighted images (67/72, 93.1%) and isointense to hyperintense on T2-weighted images (62/72, 86.1%). Lesions noncontiguous with bone were more often hypointense on T2-weighted images (8/28 vs 2/44; p = 0.006; Fisher exact test). Neurologic symptoms prompted MRI in most cases (n = 32/44). MRI was helpful in management by radiotherapy and surgery (19/28). Extramedullary myeloma can be contiguous or noncontiguous with bone. Lesions contiguous with bone are larger, often occur in a paraspinal or epidural location, and can cause cord compression. Lesions noncontiguous with bone can be T2 hypointense. MRI helps in treatment planning.

  17. Is ultrasound perfusion imaging capable of detecting mismatch? A proof-of-concept study in acute stroke patients.

    PubMed

    Reitmeir, Raluca; Eyding, Jens; Oertel, Markus F; Wiest, Roland; Gralla, Jan; Fischer, Urs; Giquel, Pierre-Yves; Weber, Stefan; Raabe, Andreas; Mattle, Heinrich P; Z'Graggen, Werner J; Beck, Jürgen

    2017-04-01

    In this study, we compared contrast-enhanced ultrasound perfusion imaging with magnetic resonance perfusion-weighted imaging or perfusion computed tomography for detecting normo-, hypo-, and nonperfused brain areas in acute middle cerebral artery stroke. We performed high mechanical index contrast-enhanced ultrasound perfusion imaging in 30 patients. Time-to-peak intensity of 10 ischemic regions of interests was compared to four standardized nonischemic regions of interests of the same patient. A time-to-peak >3 s (ultrasound perfusion imaging) or >4 s (perfusion computed tomography and magnetic resonance perfusion) defined hypoperfusion. In 16 patients, 98 of 160 ultrasound perfusion imaging regions of interests of the ischemic hemisphere were classified as normal, and 52 as hypoperfused or nonperfused. Ten regions of interests were excluded due to artifacts. There was a significant correlation of the ultrasound perfusion imaging and magnetic resonance perfusion or perfusion computed tomography (Pearson's chi-squared test 79.119, p < 0.001) (OR 0.1065, 95% CI 0.06-0.18). No perfusion in ultrasound perfusion imaging (18 regions of interests) correlated highly with diffusion restriction on magnetic resonance imaging (Pearson's chi-squared test 42.307, p < 0.001). Analysis of receiver operating characteristics proved a high sensitivity of ultrasound perfusion imaging in the diagnosis of hypoperfused area under the curve, (AUC = 0.917; p < 0.001) and nonperfused (AUC = 0.830; p < 0.001) tissue in comparison with perfusion computed tomography and magnetic resonance perfusion. We present a proof of concept in determining normo-, hypo-, and nonperfused tissue in acute stroke by advanced contrast-enhanced ultrasound perfusion imaging.

  18. Use of bio-informatics assessment schema (BIAS) to improve diagnosis and prognosis of myocardial perfusion data: results from the NHLBI-sponsored women's ischemia syndrome evaluation (WISE).

    PubMed

    Doyle, Mark; Pohost, Gerald M; Bairey Merz, C Noel; Shaw, Leslee J; Sopko, George; Rogers, William J; Sharaf, Barry L; Pepine, Carl J; Thompson, Diane V; Rayarao, Geetha; Tauxe, Lindsey; Kelsey, Sheryl F; Biederman, Robert W W

    2016-10-01

    We introduce an algorithmic approach to optimize diagnostic and prognostic value of gated cardiac single photon emission computed tomography (SPECT) and magnetic resonance (MR) myocardial perfusion imaging (MPI) modalities in women with suspected myocardial ischemia. The novel approach: bio-informatics assessment schema (BIAS) forms a mathematical model utilizing MPI data and cardiac metrics generated by one modality to predict the MPI status of another modality. The model identifies cardiac features that either enhance or mask the image-based evidence of ischemia. For each patient, the BIAS model value is used to set an appropriate threshold for the detection of ischemia. Women (n=130), with symptoms and signs of suspected myocardial ischemia, underwent MPI assessment for regional perfusion defects using two different modalities: gated SPECT and MR. To determine perfusion status, MR data were evaluated qualitatively (MRI QL ) and semi-quantitatively (MRI SQ ) while SPECT data were evaluated using conventional clinical criteria. Evaluators were masked to results of the alternate modality. These MPI status readings were designated "original". Two regression models designated "BIAS" models were generated to model MPI status obtained with one modality (e.g., MRI) compared with a second modality (e.g., SPECT), but importantly, the BIAS models did not include the primary Original MPI reading of the predicting modality. Instead, the BIAS models included auxiliary measurements like left ventricular chamber volumes and myocardial wall thickness. For each modality, the BIAS model was used to set a progressive threshold for interpretation of MPI status. Women were then followed for 38±14 months for the development of a first major adverse cardiovascular event [MACE: CV death, nonfatal myocardial infarction (MI) or hospitalization for heart failure]. Original and BIAS-augmented perfusion status were compared in their ability to detect coronary artery disease (CAD) and for

  19. Effectiveness of a Rapid Lumbar Spine MRI Protocol Using 3D T2-Weighted SPACE Imaging Versus a Standard Protocol for Evaluation of Degenerative Changes of the Lumbar Spine.

    PubMed

    Sayah, Anousheh; Jay, Ann K; Toaff, Jacob S; Makariou, Erini V; Berkowitz, Frank

    2016-09-01

    Reducing lumbar spine MRI scanning time while retaining diagnostic accuracy can benefit patients and reduce health care costs. This study compares the effectiveness of a rapid lumbar MRI protocol using 3D T2-weighted sampling perfection with application-optimized contrast with different flip-angle evolutions (SPACE) sequences with a standard MRI protocol for evaluation of lumbar spondylosis. Two hundred fifty consecutive unenhanced lumbar MRI examinations performed at 1.5 T were retrospectively reviewed. Full, rapid, and complete versions of each examination were interpreted for spondylotic changes at each lumbar level, including herniations and neural compromise. The full examination consisted of sagittal T1-weighted, T2-weighted turbo spin-echo (TSE), and STIR sequences; and axial T1- and T2-weighted TSE sequences (time, 18 minutes 40 seconds). The rapid examination consisted of sagittal T1- and T2-weighted SPACE sequences, with axial SPACE reformations (time, 8 minutes 46 seconds). The complete examination consisted of the full examination plus the T2-weighted SPACE sequence. Sensitivities and specificities of the full and rapid examinations were calculated using the complete study as the reference standard. The rapid and full studies had sensitivities of 76.0% and 69.3%, with specificities of 97.2% and 97.9%, respectively, for all degenerative processes. Rapid and full sensitivities were 68.7% and 66.3% for disk herniation, 85.2% and 81.5% for canal compromise, 82.9% and 69.1% for lateral recess compromise, and 76.9% and 69.7% for foraminal compromise, respectively. Isotropic SPACE T2-weighted imaging provides high-quality imaging of lumbar spondylosis, with multiplanar reformatting capability. Our SPACE-based rapid protocol had sensitivities and specificities for herniations and neural compromise comparable to those of the protocol without SPACE. This protocol fits within a 15-minute slot, potentially reducing costs and discomfort for a large subgroup of

  20. Perfusion defects in pulmonary perfusion iodine maps: causes and semiology.

    PubMed

    Bustos Fiore, A; González Vázquez, M; Trinidad López, C; Mera Fernández, D; Costas Álvarez, M

    2017-12-14

    to describe the usefulness of dual-energy CT for obtaining pulmonary perfusion maps to provide morphological and functional information in patients with pulmonary embolisms. To review the semiology of perfusion defects due to pulmonary embolism so they can be differentiated from perfusion defects due to other causes: alterations outside the range used in the iodine map caused by other diseases of the lung parenchyma or artifacts. CT angiography of the pulmonary arteries is the technique of choice for the diagnosis of pulmonary embolisms. New dual-energy CT scanners are useful for detecting perfusion defects secondary to complete or partial obstruction of pulmonary arteries and is most useful for detecting pulmonary embolisms in subsegmental branches. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Usefulness of cardiac MRI in the prognosis and follow-up of ischemic heart disease.

    PubMed

    Hidalgo, A; Pons-Lladó, G

    2015-01-01

    Cardiac magnetic resonance imaging (MRI) is an important tool that makes it possible to evaluate patients with cardiovascular disease; in addition to infarction and alterations in myocardial perfusion, cardiac MRI is useful for evaluating other phenomena such as microvascular obstruction and ischemia. The main prognostic factors in cardiac MRI are ventricular dysfunction, necrosis in late enhancement sequences, and ischemia in stress sequences. In acute myocardial infarction, cardiac MRI can evaluate the peri-infarct zone and quantify the size of the infarct. Furthermore, cardiac MRI's ability to detect and evaluate microvascular obstruction makes it a fundamental tool for establishing the prognosis of ischemic heart disease. In patients with chronic ischemic heart disease, cardiac MRI can detect ischemia induced by pharmacological stress and can diagnose infarcts that can be missed on other techniques. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  2. Basilar artery hypoplasia associated with changes of brainstem potential, transcranial Doppler and perfusion-weighted imaging.

    PubMed

    Zhang, Dao Pei; Yin, Suo; Zhang, Shu Ling; Zhang, Jie Wen; Ma, Qian Kun; Lu, Gui Feng

    2017-07-01

    The aim of this study was to observe brainstem hemodynamic alterations associated with basilar artery hypoplasia (BAH). Nine hundred and fifty-two consecutive patients received emergency multimodal computed tomography; magnetic resonance imaging and magnetic resonance angiogram during the period of January 2011 to December 2014 were included. The vascular risk factors, brainstem auditory evoked potential (BAEP), blink reflex (BR), transcranial Doppler (TCD) and dynamic susceptibility contrast-enhanced perfusion-weighted imaging were completed. There was significant difference in the abnormal rates of TCD and BAEP between BAH and non-BAH patients. A positive correlation between basilar artery diameter and systolic velocity among BAH patients was suggested. V-wave value was used to predict posterior circulation infarction (PCI) with the sensitivity of 0.933 and specificity of 0.50 with the cutoff value of 5.97 s. Abnormal BR rate was also significantly different in BAH and non-BAH patients. The latency of R2 was used to predict PCI with the sensitivity of 0.933 and specificity of 0.50 with the cutoff value of 46.4 ms. The incidence of hypoperfusion was higher in BAH than non-BAH group and it was significant difference. BAH is closely associated with hemodynamic alterations within the pons, which might contribute to vascular vertigo due to regional hypoperfusion.

  3. Automatic assessment of dynamic contrast-enhanced MRI in an ischemic rat hindlimb model: an exploratory study of transplanted multipotent progenitor cells.

    PubMed

    Hsu, Li-Yueh; Wragg, Andrew; Anderson, Stasia A; Balaban, Robert S; Boehm, Manfred; Arai, Andrew E

    2008-02-01

    This study presents computerized automatic image analysis for quantitatively evaluating dynamic contrast-enhanced MRI in an ischemic rat hindlimb model. MRI at 7 T was performed on animals in a blinded placebo-controlled experiment comparing multipotent adult progenitor cell-derived progenitor cell (MDPC)-treated, phosphate buffered saline (PBS)-injected, and sham-operated rats. Ischemic and non-ischemic limb regions of interest were automatically segmented from time-series images for detecting changes in perfusion and late enhancement. In correlation analysis of the time-signal intensity histograms, the MDPC-treated limbs correlated well with their corresponding non-ischemic limbs. However, the correlation coefficient of the PBS control group was significantly lower than that of the MDPC-treated and sham-operated groups. In semi-quantitative parametric maps of contrast enhancement, there was no significant difference in hypo-enhanced area between the MDPC and PBS groups at early perfusion-dependent time frames. However, the late-enhancement area was significantly larger in the PBS than the MDPC group. The results of this exploratory study show that MDPC-treated rats could be objectively distinguished from PBS controls. The differences were primarily determined by late contrast enhancement of PBS-treated limbs. These computerized methods appear promising for assessing perfusion and late enhancement in dynamic contrast-enhanced MRI.

  4. Relative indexes of cutaneous blood perfusion measured by real-time laser Doppler imaging (LDI) in healthy volunteers.

    PubMed

    Seyed Jafari, S Morteza; Schawkat, Megir; Van De Ville, Dimitri; Shafighi, Maziar

    2014-07-01

    We used real-time LDI to study regional variations in microcirculatory perfusion in healthy candidates to establish a new methodology for global perfusion body mapping that is based on intra-individual perfusion index ratios. Our study included 74 (37 female) healthy volunteers aged between 22 and 30 years (mean 24.49). Imaging was performed using a recent microcirculation-imaging camera (EasyLDI) for different body regions of each volunteer. The perfusion values were reported in Arbitrary Perfusion Units (APU). The relative perfusion indexes for each candidate's body region were then obtained by normalization with the perfusion value of the forehead. Basic parameters such as weight, height, and blood pressure were also measured and analyzed. The highest mean perfusion value was reported in the forehead area (259.21APU). Mean perfusion in the measured parts of the body correlated positively with mean forehead value, while there was no significant correlation between forehead blood perfusion values and room temperature, BMI, systolic blood pressure and diastolic blood pressure (p=0.420, 0.623, 0.488, 0.099, respectively). Analysis of the data showed that perfusion indexes were not significantly different between male and female volunteers except for the ventral upper arm area (p=.001). LDI is a non-invasive, fast technique that opens several avenues for clinical applications. The mean perfusion indexes are useful in clinical practice for monitoring patients before and after surgical interventions. Perfusion values can be predicted for different body parts for patients only by taking the forehead perfusion value and using the perfusion index ratios to obtain expected normative perfusion values. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Clinical use of cardiac PET/MRI: current state-of-the-art and potential future applications.

    PubMed

    Krumm, Patrick; Mangold, Stefanie; Gatidis, Sergios; Nikolaou, Konstantin; Nensa, Felix; Bamberg, Fabian; la Fougère, Christian

    2018-05-01

    Combined PET/MRI is a novel imaging method integrating the advances of functional and morphological MR imaging with PET applications that include assessment of myocardial viability, perfusion, metabolism of inflammatory tissue and tumors, as well as amyloid deposition imaging. As such, PET/MRI is a promising tool to detect and characterize ischemic and non-ischemic cardiomyopathies. To date, the greatest benefit may be expected for diagnostic evaluation of systemic diseases and cardiac masses that remain unclear in cardiac MRI, as well as for clinical and scientific studies in the setting of ischemic cardiomyopathies. Diagnosis and therapeutic monitoring of cardiac sarcoidosis has the potential of a possible 'killer-application' for combined cardiac PET/MRI. In this article, we review the current evidence and discuss current and potential future applications of cardiac PET/MRI.

  6. Transcortical Sensory Aphasia after Left Frontal Lobe Infarction: Loss of Functional Connectivity.

    PubMed

    Kwon, Miseon; Shim, Woo Hyun; Kim, Sang-Joon; Kim, Jong S

    2017-01-01

    The underlying mechanism of transcortical sensory aphasia (TSA) caused by lesions occurring in the left frontal lobe remains unclear. We attempted to investigate the mechanism with the use of functional MRI (fMRI). We studied 2 patients with TSA after a left frontal infarction identified by diffusion-weighted MRI. As control subjects, a patient with transcortical motor aphasia and a healthy normal adult were chosen. The Korean version of Western Aphasia Battery was performed initially and at 3 months post stroke. We performed fMRI using verb generation and sentence completion tasks. Resting-state fMRI (rs-fMRI) was also obtained for network-level analysis initially and at 3 months post stroke. The results of diffusion- and perfusion-weighted MRI revealed no diffusion-perfusion mismatch. Initial fMRI in patients with TSA showed no reversed inter-/intrahemispheric activation patterns. rs-fMRI showed significantly decreased resting-state functional connectivity in the language network in patients with TSA compared with the control subjects. Follow-up rs-fMRI studies showed improvement in functional connectivity along with the recovery of patients' language function. Our data showed that the auditory comprehension deficits in patients with frontal lobe infarcts is attributed to difficulty accessing the posterior language area due to functional disconnection between language centers in the acute stage of stroke. © 2017 S. Karger AG, Basel.

  7. Functional Magnetic Resonance Imaging (MRI) and MRI Tractography in Progressive Supranuclear Palsy-Like Syndrome

    PubMed Central

    Vaphiades, Michael S.; Visscher, Kristina; Rucker, Janet C.; Vattoth, Surjith; Roberson, Glenn H.

    2015-01-01

    ABSTRACT An 18-year-old woman underwent an uneventful ascending aortic aneurysm repair then developed progressive supranuclear palsy-like syndrome. Extensive neuroimaging including contrasted fat-suppressed cranial and orbital magnetic resonance imaging (MRI), MRI tractography, and functional MRI (fMRI) revealed no clear radiographic involvement except for a single tiny hypoechoic midbrain dot on the T2*-weighted gradient-echo imaging, which is not considered sufficient to account for the patient’s deficits. This case attests to the occult nature of this rare and devastating syndrome. PMID:27928334

  8. Water-dispersible magnetic carbon nanotubes as T2-weighted MRI contrast agents.

    PubMed

    Liu, Yue; Hughes, Timothy C; Muir, Benjamin W; Waddington, Lynne J; Gengenbach, Thomas R; Easton, Christopher D; Hinton, Tracey M; Moffat, Bradford A; Hao, Xiaojuan; Qiu, Jieshan

    2014-01-01

    An efficient MRI T2-weighted contrast agent incorporating a potential liver targeting functionality was synthesized via the combination of superparamagnetic iron oxide (SPIO) nanoparticles with multiwalled carbon nanotubes (MWCNTs). Poly(diallyldimethylammonium chloride) (PDDA) was coated on the surface of acid treated MWCNTs via electrostatic interactions and SPIO nanoparticles modified with a potential targeting agent, lactose-glycine adduct (Lac-Gly), were subsequently immobilized on the surface of the PDDA-MWCNTs. A narrow magnetic hysteresis loop indicated that the product displayed superparamagnetism at room temperature which was further confirmed by ZFC (zero field cooling)/FC (field cooling) curves measured by SQUID. The multifunctional MWCNT-based magnetic nanocomposites showed low cytotoxicity in vitro to HEK293 and Huh7 cell lines. Enhanced T2 relaxivities were observed for the hybrid material (186 mM(-1) s(-1)) in comparison with the pure magnetic nanoparticles (92 mM(-1) s(-1)) due to the capacity of the MWCNTs to "carry" more nanoparticles as clusters. More importantly, after administration of the composite material to an in vivo liver cancer model in mice, a significant increase in tumor to liver contrast ratio (277%) was observed in T2 weighted magnetic resonance images. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. T1-weighted dual-echo MRI for fat quantification in pediatric nonalcoholic fatty liver disease.

    PubMed

    Pacifico, Lucia; Martino, Michele Di; Catalano, Carlo; Panebianco, Valeria; Bezzi, Mario; Anania, Caterina; Chiesa, Claudio

    2011-07-07

    To determine in obese children with nonalcoholic fatty liver disease (NAFLD) the accuracy of magnetic resonance imaging (MRI) in assessing liver fat concentration. A case-control study was performed. Cases were 25 obese children with biopsy-proven NAFLD. Controls were 25 obese children matched for age and gender, without NAFLD at ultrasonography and with normal levels of aminotransferases and insulin. Hepatic fat fraction (HFF) by MRI was obtained using a modification of the Dixon method. HFF ranged from 2% to 44% [mean, 19.0% (95% CI, 15.1-27.4)] in children with NAFLD, while in the controls this value ranged from 0.08% to 4.69% [2.0% (1.3-2.5), P < 0.0001]. HFF was highly correlated with histological steatosis (r = 0.883, P < 0.0001) in the NAFLD children. According to the histological grade of steatosis, the mean HFF was 8.7% (95% CI, 6.0-11.6) for mild, 21.6% (15.3-27.0) for moderate, and 39.7% (34.4-45.0) for severe fatty liver infiltration. With a cutoff of 4.85%, HFF had a sensitivity of 95.8% for the diagnosis of histological steatosis ≥ 5%. All control children had HFF lower than 4.85%; thus, the specificity was 100%. After 12 mo, children with weight loss displayed a significant decrease in HFF. MRI is an accurate methodology for liver fat quantification in pediatric NAFLD.

  10. Transport of benzo[alpha]pyrene in the dually perfused human placenta perfusion model: effect of albumin in the perfusion medium.

    PubMed

    Mathiesen, Line; Rytting, Erik; Mose, Tina; Knudsen, Lisbeth E

    2009-09-01

    Transport of benzo[alpha]pyrene (BaP) across the placenta was examined because it is a ubiquitous and highly carcinogenic substance found in tobacco smoke, polluted air and certain foods. Foetal exposure to this substance is highly relevant but is difficult to estimate. The human placenta is unique compared to other species; since it is available without major ethical obstacles, we have used the human placenta perfusion model to study transport from mother to foetus. Placentas were donated after births at Rigshospitalet in Copenhagen from pregnant mothers who signed an informed consent. BaP is lipophilic and studies using cell culture medium in 6-hr placenta perfusions showed minimal transport through the placenta. To increase the solubility of BaP in perfusion medium and to increase physiological relevance, perfusions were also performed with albumin added to the perfusion medium [2 and 30 mg/ml bovine serum albumin (BSA) and 30 mg/ml human serum albumin (HSA)]. The addition of albumin resulted in increased transfer of BaP from maternal to foetal reservoirs. The transfer was even higher in the presence of an HSA formulation containing acetyltryptophanate and caprylate, resulting in a foetal-maternal concentration (FM) ratio of 0.71 +/- 0.10 after 3 hr and 0.78 +/- 0.11 after 6 hr, whereas the FM ratio in perfusions without albumin was only 0.05 +/- 0.03 after 6 hr of perfusion. Less BaP accumulated in placental tissue in perfusions with added albumin. This shows that transplacental transport of the pro-carcinogenic substance BaP occurs, and emphasizes the importance of adding physiological concentrations of albumin when studying the transport of lipophilic substances.

  11. Longitudinal Assessment of Renal Perfusion and Oxygenation in Transplant Donor-Recipient Pairs Using Arterial Spin Labeling and Blood Oxygen Level-Dependent Magnetic Resonance Imaging.

    PubMed

    Niles, David J; Artz, Nathan S; Djamali, Arjang; Sadowski, Elizabeth A; Grist, Thomas M; Fain, Sean B

    2016-02-01

    The aims of this study were to assess renal function in kidney transplant recipients and their respective donors over 2 years using arterial spin labeling (ASL) and blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) and to prospectively evaluate the effect of losartan on functional MRI measures in recipients. The study included 15 matched pairs of renal transplant donors and recipients. Arterial spin labeling and BOLD MRI of the kidneys were performed on donors before transplant surgery (baseline) and on both donors and recipients at 3 months, 1 year, and 2 years after transplant. After 3 months, 7 of the 15 recipients were prescribed 25 to 50 mg/d losartan for the remainder of the study. A linear mixed-effects model was used to evaluate perfusion, R2*, estimated glomerular filtration rate, and fractional excretion of sodium for changes across time or associated with losartan treatment. In donors, cortical perfusion in the remaining kidney decreased by 50 ± 19 mL/min per 100 g (11.8%) between baseline and 2 years (P < 0.05), while cortical R2* declined modestly by 0.7 ± 0.3 s-1 (5.6%; P < 0.05). In transplanted kidneys, cortical perfusion decreased markedly by 141 ± 21 mL/min per 100 g (34.2%) between baseline and 2 years (P < 0.001), while medullary R2* declined by 1.5 ± 0.8 s-1 (8.3%; P = 0.06). Single-kidney estimated glomerular filtration rate increased between baseline and 2 years by 17.7 ± 2.7 mL/min per 1.73 m (40.3%; P < 0.0001) in donors and to 14.6 ± 4.3 mL/min per 1.73 m (33.3%; P < 0.01) in recipients. Cortical perfusion at 1 and 2 years in recipients receiving 25 to 50 mg/d losartan was 62 ± 24 mL/min per 100 g higher than recipients not receiving the drug (P < 0.05). No significant effects of losartan were observed for any other markers of renal function. The results suggest an important role for noninvasive functional monitoring with ASL and BOLD MRI in kidney transplant recipients and donors, and they indicate a potentially

  12. Correlation of human papillomavirus status with apparent diffusion coefficient of diffusion-weighted MRI in head and neck squamous cell carcinomas.

    PubMed

    Driessen, Juliette P; van Bemmel, Alexander J M; van Kempen, Pauline M W; Janssen, Luuk M; Terhaard, Chris H J; Pameijer, Frank A; Willems, Stefan M; Stegeman, Inge; Grolman, Wilko; Philippens, Marielle E P

    2016-04-01

    Identification of prognostic patient characteristics in head and neck squamous cell carcinoma (HNSCC) is of great importance. Human papillomavirus (HPV)-positive HNSCCs have favorable response to (chemo)radiotherapy. Apparent diffusion coefficient, derived from diffusion-weighted MRI, has also shown to predict treatment response. The purpose of this study was to evaluate the correlation between HPV status and apparent diffusion coefficient. Seventy-three patients with histologically proven HNSCC were retrospectively analyzed. Mean pretreatment apparent diffusion coefficient was calculated by delineation of total tumor volume on diffusion-weighted MRI. HPV status was analyzed and correlated to apparent diffusion coefficient. Six HNSCCs were HPV-positive. HPV-positive HNSCC showed significantly lower apparent diffusion coefficient compared to HPV-negative. This correlation was independent of other patient characteristics. In HNSCC, positive HPV status correlates with low mean apparent diffusion coefficient. The favorable prognostic value of low pretreatment apparent diffusion coefficient might be partially attributed to patients with a positive HPV status. © 2015 Wiley Periodicals, Inc. Head Neck 38: E613-E618, 2016. © 2015 Wiley Periodicals, Inc.

  13. Physiological noise in murine solid tumours using T2*-weighted gradient-echo imaging: a marker of tumour acute hypoxia?

    PubMed

    Baudelet, Christine; Ansiaux, Réginald; Jordan, Bénédicte F; Havaux, Xavier; Macq, Benoit; Gallez, Bernard

    2004-08-07

    T2*-weighted gradient-echo magnetic resonance imaging (T2*-weighted GRE MRI) was used to investigate spontaneous fluctuations in tumour vasculature non-invasively. FSa fibrosarcomas, implanted intramuscularly (i.m.) in the legs of mice, were imaged at 4.7 T, over a 30 min or 1 h sampling period. On a voxel-by-voxel basis, time courses of signal intensity were analysed using a power spectrum density (PSD) analysis to isolate voxels for which signal changes did not originate from Gaussian white noise or linear drift. Under baseline conditions, the tumours exhibited spontaneous signal fluctuations showing spatial and temporal heterogeneity over the tumour. Statistically significant fluctuations occurred at frequencies ranging from 1 cycle/3 min to 1 cycle/h. The fluctuations were independent of the scanner instabilities. Two categories of signal fluctuations were reported: (i) true fluctuations (TFV), i.e., sequential signal increase and decrease, and (ii) profound drop in signal intensity with no apparent signal recovery (SDV). No temporal correlation between tumour and contralateral muscle fluctuations was observed. Furthermore, treatments aimed at decreasing perfusion-limited hypoxia, such as carbogen combined with nicotinamide and flunarizine, decreased the incidence of tumour T2*-weighted GRE fluctuations. We also tracked dynamic changes in T2* using multiple GRE imaging. Fluctuations of T2* were observed; however, fluctuation maps using PSD analysis could not be generated reliably. An echo-time dependency of the signal fluctuations was observed, which is typical to physiological noise. Finally, at the end of T2*-weighted GRE MRI acquisition, a dynamic contrast-enhanced MRI was performed to characterize the microenvironment in which tumour signal fluctuations occurred in terms of vessel functionality, vascularity and microvascular permeability. Our data showed that TFV were predominantly located in regions with functional vessels, whereas SDV occurred in regions

  14. All-Systolic Non-ECG-gated Myocardial Perfusion MRI: Feasibility of Multi-Slice Continuous First-Pass Imaging

    PubMed Central

    Sharif, Behzad; Arsanjani, Reza; Dharmakumar, Rohan; Bairey Merz, C. Noel; Berman, Daniel S.; Li, Debiao

    2015-01-01

    Purpose To develop and test the feasibility of a new method for non-ECG-gated first-pass perfusion (FPP) cardiac MR capable of imaging multiple short-axis slices at the same systolic cardiac phase. Methods A magnetization-driven pulse sequence was developed for non-ECG-gated FPP imaging without saturation-recovery preparation using continuous slice-interleaved radial sampling. The image reconstruction method, dubbed TRACE, employed self-gating based on reconstruction of a real-time image-based navigator combined with reference-constrained compressed sensing. Data from ischemic animal studies (n=5) was used in a simulation framework to evaluate temporal fidelity. Healthy subjects (n=5) were studied using both the proposed and conventional method to compare the myocardial contrast-to-noise ratio (CNR). Patients (n=2) underwent adenosine stress studies using the proposed method. Results Temporal fidelity of the developed method was shown to be sufficient at high heart-rates. The healthy volunteers studies demonstrated normal perfusion and no artifacts. Compared to the conventional scheme, myocardial CNR for the proposed method was slightly higher (8.6±0.6 vs. 8.0±0.7). Patient studies showed stress-induced perfusion defects consistent with invasive angiography. Conclusions The presented methods and results demonstrate feasibility of the proposed approach for high-resolution non-ECG-gated FPP imaging and indicate its potential for achieving desirable image quality (high CNR, no dark-rim artifacts) with a 3-slice spatial coverage, all imaged at the same systolic phase. PMID:26052843

  15. Absolute quantification of regional renal blood flow in swine by dynamic contrast-enhanced magnetic resonance imaging using a blood pool contrast agent.

    PubMed

    Lüdemann, Lutz; Nafz, Benno; Elsner, Franz; Grosse-Siestrup, Christian; Meissler, Michael; Kaufels, Nicola; Rehbein, Hagen; Persson, Pontus B; Michaely, Henrik J; Lengsfeld, Philipp; Voth, Matthias; Gutberlet, Matthias

    2009-03-01

    To evaluate for the first time in an animal model the possibility of absolute regional quantification of renal medullary and cortical perfusion by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using a blood pool contrast agent. A total of 18 adult female pigs (age, 16-22 weeks; body weight, 45-65 kg; no dietary restrictions) were investigated by DCE-MRI. Absolute renal blood flow (RBF) measured by an ultrasound transit time flow probe around the renal vein was used as the standard of reference. An inflatable stainless cuff placed around the renal artery near its origin from the abdominal aorta was used to reduce RBF to 60%, 40%, and 20% of the baseline flow. The last measurement was performed with the cuff fully reopened. Absolute RBF values during these 4 perfusion states were compared with the results of DCE-MRI performed on a 1.5-T scanner with an 8-channel phased-array surface coil. All scans were acquired in breath-hold technique in the coronal plane using a field of view of 460 mm.Each dynamic scan commenced with a set of five 3D T1-weighted gradient echo sequences with different flip angles (alpha = 2 degrees, 5 degrees, 10 degrees, 20 degrees, 30 degrees): TE, 0.88 milliseconds; TR, 2.65 milliseconds; slice thickness, 8.8 mm for 4 slices; acquisition matrix, 128 x 128; and acquisitions, 4. These data served to calculate 3D intrinsic longitudinal relaxation rate maps (R10) and magnetization (M0). Immediately after these images, the dynamic 3D T1-weighted gradient echo images were acquired with the same parameters and a constant alpha = 30 degrees, half Fourier, 1 acquisition, 64 frames, a time interval of 1.65 seconds between each frame, and a total duration of 105.6. Three milliliters of an albumin-binding blood pool contrast agent (0.25 mmol/mL gadofosveset trisodium, Vasovist, Bayer Schering Pharma AG, Berlin, Germany) was injected at a rate of 3 mL/s. Perfusion was calculated using the arterial input function from the aorta, which was

  16. Geometric distortion correction in prostate diffusion-weighted MRI and its effect on quantitative apparent diffusion coefficient analysis.

    PubMed

    Nketiah, Gabriel; Selnaes, Kirsten M; Sandsmark, Elise; Teruel, Jose R; Krüger-Stokke, Brage; Bertilsson, Helena; Bathen, Tone F; Elschot, Mattijs

    2018-05-01

    To evaluate the effect of correction for B 0 inhomogeneity-induced geometric distortion in echo-planar diffusion-weighted imaging on quantitative apparent diffusion coefficient (ADC) analysis in multiparametric prostate MRI. Geometric distortion correction was performed in echo-planar diffusion-weighted images (b = 0, 50, 400, 800 s/mm 2 ) of 28 patients, using two b 0 scans with opposing phase-encoding polarities. Histology-matched tumor and healthy tissue volumes of interest delineated on T 2 -weighted images were mapped to the nondistortion-corrected and distortion-corrected data sets by resampling with and without spatial coregistration. The ADC values were calculated on the volume and voxel level. The effect of distortion correction on ADC quantification and tissue classification was evaluated using linear-mixed models and logistic regression, respectively. Without coregistration, the absolute differences in tumor ADC (range: 0.0002-0.189 mm 2 /s×10 -3 (volume level); 0.014-0.493 mm 2 /s×10 -3 (voxel level)) between the nondistortion-corrected and distortion-corrected were significantly associated (P < 0.05) with distortion distance (mean: 1.4 ± 1.3 mm; range: 0.3-5.3 mm). No significant associations were found upon coregistration; however, in patients with high rectal gas residue, distortion correction resulted in improved spatial representation and significantly better classification of healthy versus tumor voxels (P < 0.05). Geometric distortion correction in DWI could improve quantitative ADC analysis in multiparametric prostate MRI. Magn Reson Med 79:2524-2532, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Limited Retinacular Vessel Damage Does Not Compromise Femoral Head Perfusion During Hip Arthroscopy - Can the Vascular Safe Zone be Extended?

    PubMed Central

    Nawabi, Danyal H.; Bedi, Asheesh; Kelly, Bryan T.

    2015-01-01

    Objectives: The utilization of hip arthroscopy for FAI is on the rise. Hip arthroscopy has been shown to be safe to the blood supply of the femoral head when performing femoral osteochondroplasty. There are no reports of avascular necrosis of the femoral head after hip arthroscopy from cohort studies. Arthroscopic safe zones have been identified, based on femoral head vascularity studies, that extend from the lateral synovial fold anterior to 12 o clock to the medial synovial fold at 6 o clock. However, advances in technique have allowed for treatment of more extensile posterolateral cam deformities with both arthroscopic and open approaches, and may therefore place a portion of the retinacular vessels at risk for injury. The purpose of this study was to quantify the effect of an extended arthroscopic femoroplasty on femoral head vascularity. We hypothesized that limited retinacular vessel damage by extending a cam resection posterior to 12 o clock would not cause a significant reduction in femoral head perfusion. Methods: Ten fresh-frozen cadaveric specimens with an intact pelvis and bilateral femurs were used. The mean patient age was 66 years (range, 64-69). Each pelvis was randomized to either the Standard Resection (SR) or Wide Resection (WR) group. In the SR group, bone was resected with a motorized burr from the lateral synovial fold at 12 o clock to the medial synovial fold, at a depth of 10mm. In the WR group, bone was resected as in the SR group but was then extended posterolaterally to 11 o clock, damaging the intervening vessels. For each pelvis, one hip was the experimental side and the contralateral hip served as a matched control. Arteriotomy was performed and the medial femoral circumflex artery origin was cannulated. After unilateral arthroscopic resection, all specimens underwent a gadolinium-enhanced MRI with a validated, quantitative protocol. A CT scan was then performed to confirm the zones of osseous resection. Contrast enhancement on MRI was

  18. Airway pressure release ventilation during ex vivo lung perfusion attenuates injury.

    PubMed

    Mehaffey, J Hunter; Charles, Eric J; Sharma, Ashish K; Money, Dustin T; Zhao, Yunge; Stoler, Mark H; Lau, Christine L; Tribble, Curtis G; Laubach, Victor E; Roeser, Mark E; Kron, Irving L

    2017-01-01

    Critical organ shortages have resulted in ex vivo lung perfusion gaining clinical acceptance for lung evaluation and rehabilitation to expand the use of donation after circulatory death organs for lung transplantation. We hypothesized that an innovative use of airway pressure release ventilation during ex vivo lung perfusion improves lung function after transplantation. Two groups (n = 4 animals/group) of porcine donation after circulatory death donor lungs were procured after hypoxic cardiac arrest and a 2-hour period of warm ischemia, followed by a 4-hour period of ex vivo lung perfusion rehabilitation with standard conventional volume-based ventilation or pressure-based airway pressure release ventilation. Left lungs were subsequently transplanted into recipient animals and reperfused for 4 hours. Blood gases for partial pressure of oxygen/inspired oxygen fraction ratios, airway pressures for calculation of compliance, and percent wet weight gain during ex vivo lung perfusion and reperfusion were measured. Airway pressure release ventilation during ex vivo lung perfusion significantly improved left lung oxygenation at 2 hours (561.5 ± 83.9 mm Hg vs 341.1 ± 136.1 mm Hg) and 4 hours (569.1 ± 18.3 mm Hg vs 463.5 ± 78.4 mm Hg). Likewise, compliance was significantly higher at 2 hours (26.0 ± 5.2 mL/cm H 2 O vs 15.0 ± 4.6 mL/cm H 2 O) and 4 hours (30.6 ± 1.3 mL/cm H 2 O vs 17.7 ± 5.9 mL/cm H 2 O) after transplantation. Finally, airway pressure release ventilation significantly reduced lung edema development on ex vivo lung perfusion on the basis of percentage of weight gain (36.9% ± 14.6% vs 73.9% ± 4.9%). There was no difference in additional edema accumulation 4 hours after reperfusion. Pressure-directed airway pressure release ventilation strategy during ex vivo lung perfusion improves the rehabilitation of severely injured donation after circulatory death lungs. After transplant, these lungs demonstrate

  19. Use of intravoxel incoherent motion diffusion-weighted imaging in identifying the vascular and avascular zones of human meniscus.

    PubMed

    Guo, Tan; Chen, Juan; Wu, Bing; Zheng, Dandan; Jiao, Sheng; Song, Yan; Chen, Min

    2017-04-01

    To investigate the hypothesis that the intravoxel incoherent motion (IVIM) diffusion-weighted imaging may depict microcirculation of meniscus and the perfusion changes in meniscal disorder. Fifty patients received diffusion-weighted MRI with multiple b-values ranging from 0 to 400 s/mm 2 . The four horns of the menisci were divided into normal, degenerated, and torn groups. IVIM parameters including perfusion fraction (f), pseudo-diffusion coefficient (D*), true diffusion coefficient (D), and the product of f and D* (f D*) of normal meniscal red zone and white zone were derived and compared for microcirculation changes of normal, degenerated, and torn posterior horn of the medial meniscus (PMM). The parameters between red and white zones among the groups were compared. Significant differences were considered when P < 0.05. Mean f and fD* were significantly higher in the red zone than those in the white zone for the normal four meniscal horns (P < 0.05), whereas D* (P = 0.882, 0.011, 0.593, and 0.33) and D (P = 0.186, 0.099, 0.767, and 0.041) did not significantly differ between the two zones. Among the normal, degenerated, and torn PMM, f was observed to be lower in the red zone of torn horns as compared to the normal horns (P = 0.013). D*, fD*, and D did not exhibit statistically significant difference among different groups (P = 0.353, 0.661, and 0.327, respectively). This hypothesis driven work shows that IVIM imaging is able to depict microcirculation of meniscus and the perfusion changes in meniscal disorder. 3 J. Magn. Reson. Imaging 2017;45:1090-1096. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Dynamic Contrast Magnetic Resonance Imaging (DCE-MRI) and Diffusion Weighted MR Imaging (DWI) for Differentiation between Benign and Malignant Salivary Gland Tumors

    PubMed Central

    Assili, S.; Fathi Kazerooni, A.; Aghaghazvini, L.; Saligheh Rad, H.R.; Pirayesh Islamian, J.

    2015-01-01

    Background Salivary gland tumors form nearly 3% of head and neck tumors. Due to their large histological variety and vicinity to facial nerves, pre-operative diagnosis and differentiation of benign and malignant parotid tumors are a major challenge for radiologists. Objective The majority of these tumors are benign; however, sometimes they tend to transform into a malignant form. Functional MRI techniques, namely dynamic contrast enhanced (DCE-) MRI and diffusion-weighted MRI (DWI) can indicate the characteristics of tumor tissue. Methods DCE-MRI analysis is based on the parameters of time intensity curve (TIC) before and after contrast agent injection. This method has the potential to identify the angiogenesis of tumors. DWI analysis is performed according to diffusion of water molecules in a tissue for determination of the cellularity of tumors. Conclusion According to the literature, these methods cannot be used individually to differentiate benign from malignant salivary gland tumors. An effective approach could be to combine the aforementioned methods to increase the accuracy of discrimination between different tumor types. The main objective of this study is to explore the application of DCE-MRI and DWI for assessment of salivary gland tumor types. PMID:26688794

  1. Selective Cerebro-Myocardial Perfusion in Complex Neonatal Aortic Arch Pathology: Midterm Results.

    PubMed

    Hoxha, Stiljan; Abbasciano, Riccardo Giuseppe; Sandrini, Camilla; Rossetti, Lucia; Menon, Tiziano; Barozzi, Luca; Linardi, Daniele; Rungatscher, Alessio; Faggian, Giuseppe; Luciani, Giovanni Battista

    2018-04-01

    Aortic arch repair in newborns and infants has traditionally been accomplished using a period of deep hypothermic circulatory arrest. To reduce neurologic and cardiac dysfunction related to circulatory arrest and myocardial ischemia during complex aortic arch surgery, an alternative and novel strategy for cerebro-myocardial protection was recently developed, where regional low-flow perfusion is combined with controlled and independent coronary perfusion. The aim of the present retrospective study was to assess short-term and mid-term results of selective and independent cerebro-myocardial perfusion in neonatal aortic arch surgery. From April 2008 to August 2015, 28 consecutive neonates underwent aortic arch surgery under cerebro-myocardial perfusion. There were 17 male and 11 female, with median age of 15 days (3-30 days) and median body weight of 3 kg (1.6-4.2 kg), 9 (32%) of whom with low body weight (<2.5 kg). The spectrum of pathologies treated was heterogeneous and included 13 neonates having single-stage biventricular repair (46%), 7 staged biventricular repair (25%), and 8 single-ventricle repair (29%). All operations were performed under moderate hypothermia and with a "beating heart and brain." Average cardiopulmonary bypass time was 131 ± 64 min (42-310 min). A period of cardiac arrest to complete intra-cardiac repair was required in nine patients (32%), and circulatory arrest in 1 to repair total anomalous pulmonary venous connection. Average time of splanchnic ischemia during cerebro-myocardial perfusion was 30 ± 11 min (15-69 min). Renal dysfunction, requiring a period of peritoneal dialysis was observed in 10 (36%) patients, while liver dysfunction was noted only in 3 (11%). There were three (11%) early and two late deaths during a median follow-up of 2.9 years (range 6 months-7.7 years), with an actuarial survival of 82% at 7 years. At latest follow-up, no patient showed signs of cardiac or neurologic dysfunction. The present experience

  2. 3D Ultrashort TE MRI for Evaluation of Cartilaginous Endplate of Cervical Disk In Vivo: Feasibility and Correlation With Disk Degeneration in T2-Weighted Spin-Echo Sequence.

    PubMed

    Kim, Yeo Ju; Cha, Jang Gyu; Shin, Yoon Sang; Chaudhari, Akshay S; Suh, Young Ju; Hwan Yoon, Seung; Gold, Garry E

    2018-05-01

    The purpose of this study was to evaluate the feasibility of 3D ultrashort TE (UTE) MRI in depicting the cartilaginous endplate (CEP) and its abnormalities and to investigate the association between CEP abnormalities and disk degeneration on T2-weighted spin-echo (SE) MR images in cervical disks in vivo. Eight healthy volunteers and 70 patients were examined using 3-T MRI with the 3D UTE cones trajectory technique (TR/TE, 16.1/0.032, 6.6). In the volunteer study, quantitative and qualitative assessments of CEP depiction were conducted for the 3D UTE and T2-weighted SE imaging. In the patient study, CEP abnormalities were analyzed. Intersequence agreement between the images obtained with the first-echo 3D UTE sequence and the images created by subtracting the second-echo from the first-echo 3D UTE sequence (subtracted 3D UTE) and the intraobserver and interobserver agreements for 3D UTE overall were also tested. The CEP abnormalities on the 3D UTE images correlated with the Miyazaki grading of the T2-weighted SE images. In the volunteer study, the CEP was well visualized on 3D UTE images but not on T2-weighted SE images (p < 0.001). In the patient study, for evaluation of CEP abnormalities, intersequence agreements were substantial to almost perfect, intraobserver agreements were substantial to almost perfect, and interobserver agreements were moderate to substantial (p < 0.001). All of the CEP abnormalities correlated with the Miyazaki grade with statistical significance (p < 0.001). Three-dimensional UTE MRI feasibly depicts the CEP and CEP abnormalities, which may be associated with the severity of disk degeneration on T2-weighted SE MRI.

  3. Cell tracking with caged xenon: using cryptophanes as MRI reporters upon cellular internalization.

    PubMed

    Klippel, Stefan; Döpfert, Jörg; Jayapaul, Jabadurai; Kunth, Martin; Rossella, Federica; Schnurr, Matthias; Witte, Christopher; Freund, Christian; Schröder, Leif

    2014-01-07

    Caged xenon has great potential in overcoming sensitivity limitations for solution-state NMR detection of dilute molecules. However, no application of such a system as a magnetic resonance imaging (MRI) contrast agent has yet been performed with live cells. We demonstrate MRI localization of cells labeled with caged xenon in a packed-bed bioreactor working under perfusion with hyperpolarized-xenon-saturated medium. Xenon hosts enable NMR/MRI experiments with switchable contrast and selectivity for cell-associated versus unbound cages. We present MR images with 10(3) -fold sensitivity enhancement for cell-internalized, dual-mode (fluorescence/MRI) xenon hosts at low micromolar concentrations. Our results illustrate the capability of functionalized xenon to act as a highly sensitive cell tracer for MRI detection even without signal averaging. The method will bridge the challenging gap for translation to in vivo studies for the optimization of targeted biosensors and their multiplexing applications. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Whole-globe biomechanics using high-field MRI.

    PubMed

    Voorhees, Andrew P; Ho, Leon C; Jan, Ning-Jiun; Tran, Huong; van der Merwe, Yolandi; Chan, Kevin; Sigal, Ian A

    2017-07-01

    The eye is a complex structure composed of several interconnected tissues acting together, across the whole globe, to resist deformation due to intraocular pressure (IOP). However, most work in the ocular biomechanics field only examines the response to IOP over smaller regions of the eye. We used high-field MRI to measure IOP induced ocular displacements and deformations over the whole globe. Seven sheep eyes were obtained from a local abattoir and imaged within 48 h using MRI at multiple levels of IOP. IOP was controlled with a gravity perfusion system and a cannula inserted into the anterior chamber. T2-weighted imaging was performed to the eyes serially at 0 mmHg, 10 mmHg, 20 mmHg and 40 mmHg of IOP using a 9.4 T MRI scanner. Manual morphometry was conducted using 3D visualization software to quantify IOP-induced effects at the globe scale (e.g. axial length and equatorial diameters) or optic nerve head scale (e.g. canal diameter, peripapillary sclera bowing). Measurement sensitivity analysis was conducted to determine measurement precision. High-field MRI revealed an outward bowing of the posterior sclera and anterior bulging of the cornea due to IOP elevation. Increments in IOP from 10 to 40 mmHg caused measurable increases in axial length in 6 of 7 eyes of 7.9 ± 5.7% (mean ± SD). Changes in equatorial diameter were minimal, 0.4 ± 1.2% between 10 and 40 mmHg, and in all cases less than the measurement sensitivity. The effects were nonlinear, with larger deformations at normal IOPs (10-20 mmHg) than at elevated IOPs (20-40 mmHg). IOP also caused measurable increases in the nasal-temporal scleral canal diameter of 13.4 ± 9.7% between 0 and 20 mmHg, but not in the superior-inferior diameter. This study demonstrates that high-field MRI can be used to visualize and measure simultaneously the effects of IOP over the whole globe, including the effects on axial length and equatorial diameter, posterior sclera displacement and bowing, and even

  5. Differentiation of Central Lung Cancer from Atelectasis: Comparison of Diffusion-Weighted MRI with PET/CT

    PubMed Central

    Yang, Rui-Meng; Li, Long; Wei, Xin-Hua; Guo, Yong-Mei; Huang, Yun-Hai; Lai, Li-Sha; Chen, A-Mei; Liu, Guo-Shun; Xiong, Wei-Feng; Luo, Liang-Ping; Jiang, Xin-Qing

    2013-01-01

    Objective Prospectively assess the performance of diffusion-weighted magnetic resonance imaging (DW-MRI) for differentiation of central lung cancer from atelectasis. Materials and Methods 38 consecutive lung cancer patients (26 males, 12 females; age range: 28–71 years; mean age: 49 years) who were referred for thoracic MR imaging examinations were enrolled. MR examinations were performed using a 1.5-T clinical scanner and scanning sequences of T1WI, T2WI, and DWI. Cancers and atelectasis were measured by mapping of the apparent diffusion coefficients (ADCs) obtained with a b-value of 500 s/mm2. Results PET/CT and DW-MR allowed differentiation of tumor and atelectasis in all 38 cases, but T2WI did not allow differentiation in 9 cases. Comparison of conventional T2WI and DW-MRI indicated a higher contrast noise ratio of the central lung carcinoma than the atelectasis by DW-MRI. ADC maps indicated significantly lower mean ADC in the central lung carcinoma than in the atelectasis (1.83±0.58 vs. 2.90±0.26 mm2/s, p<0.0001). ADC values of small cell lung carcinoma were significantly greater than those from squamous cell carcinoma and adenocarcinoma (p<0.0001 for both). Conclusions DW-MR imaging provides valuable information not obtained by conventional MR and may be useful for differentiation of central lung carcinoma from atelectasis. Future developments may allow DW-MR imaging to be used as an alternative to PET-CT in imaging of patients with lung cancer. PMID:23593186

  6. Unilateral nephrectomy diminishes ischemic acute kidney injury through enhanced perfusion and reduced pro-inflammatory and pro-fibrotic responses

    PubMed Central

    Qi, Haiyun; Damgaard, Mads; Laustsen, Christoffer; Pedersen, Michael; Krag, Søren; Birn, Henrik; Nørregaard, Rikke; Jespersen, Bente

    2017-01-01

    While unilateral nephrectomy (UNx) is suggested to protect against ischemia-reperfusion injury (IRI) in the remaining kidney, the mechanisms underlying this protection remain to be elucidated. In this study, functional MRI was employed in a renal IRI rat model to reveal global and regional changes in renal filtration, perfusion, oxygenation and sodium handling, and microarray and pathway analyses were conducted to identify protective molecular mechanisms. Wistar rats were randomized to either UNx or sham UNx immediately prior to 37 minutes of unilateral renal artery clamping or sham operation under sevoflurane anesthesia. MRI was performed 24 hours after reperfusion. Blood and renal tissue were harvested. RNA was isolated for microarray analysis and QPCR validation of gene expression results. The perfusion (T1 value) was significantly enhanced in the medulla of the post-ischemic kidney following UNx. UNx decreased the expression of fibrogenic genes, i.a. Col1a1, Fn1 and Tgfb1 in the post-ischemic kidney. This was associated with a marked decrease in markers of activated myofibroblasts (Acta2/α-Sma and Cdh11) and macrophages (Ccr2). This was most likely facilitated by down-regulation of Pdgfra, thus inhibiting pericyte-myofibroblast differentiation, chemokine production (Ccl2/Mcp1) and macrophage infiltration. UNx reduced ischemic histopathologic injury. UNx may exert renoprotective effects against IRI through increased perfusion in the renal medulla and alleviation of the acute pro-inflammatory and pro-fibrotic responses possibly through decreased myofibroblast activation. The identified pathways involved may serve as potential therapeutic targets and should be taken into account in experimental models of IRI. PMID:29267404

  7. Fully automated motion correction in first-pass myocardial perfusion MR image sequences.

    PubMed

    Milles, Julien; van der Geest, Rob J; Jerosch-Herold, Michael; Reiber, Johan H C; Lelieveldt, Boudewijn P F

    2008-11-01

    This paper presents a novel method for registration of cardiac perfusion magnetic resonance imaging (MRI). The presented method is capable of automatically registering perfusion data, using independent component analysis (ICA) to extract physiologically relevant features together with their time-intensity behavior. A time-varying reference image mimicking intensity changes in the data of interest is computed based on the results of that ICA. This reference image is used in a two-pass registration framework. Qualitative and quantitative validation of the method is carried out using 46 clinical quality, short-axis, perfusion MR datasets comprising 100 images each. Despite varying image quality and motion patterns in the evaluation set, validation of the method showed a reduction of the average right ventricle (LV) motion from 1.26+/-0.87 to 0.64+/-0.46 pixels. Time-intensity curves are also improved after registration with an average error reduced from 2.65+/-7.89% to 0.87+/-3.88% between registered data and manual gold standard. Comparison of clinically relevant parameters computed using registered data and the manual gold standard show a good agreement. Additional tests with a simulated free-breathing protocol showed robustness against considerable deviations from a standard breathing protocol. We conclude that this fully automatic ICA-based method shows an accuracy, a robustness and a computation speed adequate for use in a clinical environment.

  8. TU-G-BRA-08: BEST IN PHYSICS (JOINT IMAGING-THERAPY): Hybrid PET-MRI Imaging of Acute Radiation Induced Cardiac Toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Sherif, O; Xhaferllari, I; Gaede, S

    Purpose: To identify the presence of low-dose radiation induced cardiac toxicity in a canine model using hybrid positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: Research ethics board approval was obtained for a longitudinal imaging study of 5 canines after cardiac irradiation. Animals were imaged at baseline, 1 week post cardiac irradiation, and 1 month post cardiac irradiation using a hybrid PET- MRI system (Biograph mMR, Siemens Healthcare). The imaging protocol was designed to assess acute changes in myocardial perfusion and inflammation. Myocardial perfusion imaging was performed using N13-ammonia tracer followed by a dynamic PET acquisition scan. Amore » compartmental tracer kinetic model was used for absolute perfusion quantification. Myocardial inflammation imaging was performed using F18-fluorodeoxyglucose (FDG) tracer. The standard uptake value (SUV) over a region encompassing the whole heart was used to compare FDG scans. All animals received a simulation CT scan (GE Medical Systems) for radiation treatment planning. Radiation treatment plans were created using the Pinncale3 treatment planning system (Philips Radiation Oncology Systems) and designed to resemble the typical cardiac exposure during left-sided breast cancer radiotherapy. Cardiac irradiations were performed in a single fraction using a TrueBeam linear accelerator (Varian Medical Systems). Results: The delivered dose (mean ± standard deviation) to heart was 1.8±0.2 Gy. Reductions in myocardial stress perfusion relative to baseline were observed in 2 of the 5 animals 1 month post radiation. A global inflammatory response 1 month post radiation was observed in 4 of the 5 animals. The calculated SUV at 1 month post radiation was significantly higher (p=0.05) than the baseline SUV. Conclusion: Low doses of cardiac irradiation (< 2 Gy) may lead to myocardial perfusion defects and a global inflammatory response that can be detectable as early as 1 month post

  9. Relationship between pretreatment FDG-PET and diffusion-weighted MRI biomarkers in diffuse large B-cell lymphoma

    PubMed Central

    de Jong, Antoinette; Kwee, Thomas C; de Klerk, John MH; Adam, Judit A; de Keizer, Bart; Fijnheer, Rob; Kersten, Marie José; Ludwig, Inge; Jauw, Yvonne WS; Zijlstra, Josée M; den Bos, Indra C Pieters - Van; Stoker, Jaap; Hoekstra, Otto S; Nievelstein, Rutger AJ

    2014-01-01

    The purpose of this study was to determine the correlation between the 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) standardized uptake value (SUV) and the diffusion-weighted magnetic resonance imaging (MRI) apparent diffusion coefficient (ADC) in newly diagnosed diffuse large B-cell lymphoma (DLBCL). Pretreatment FDG-PET and diffusion-weighted MRI of 21 patients with histologically proven DLBCL were prospectively analyzed. In each patient, maximum, mean and peak standardized uptake value (SUV) was measured in the lesion with visually highest FDG uptake and in the largest lesion. Mean ADC (ADCmean, calculated with b-values of 0 and 1000 s/mm2) was measured in the same lesions. Correlations between FDG-PET metrics (SUVmax, SUVmean, SUVpeak) and ADCmean were assessed using Pearson’s correlation coefficients. In the lesions with visually highest FDG uptake, no significant correlations were found between the SUVmax, SUVmean, SUVpeak and the ADCmean (P=0.498, P=0.609 and P=0.595, respectively). In the largest lesions, there were no significant correlations either between the SUVmax, SUVmean, SUVpeak and the ADCmean (P=0.992, P=0.843 and P=0.894, respectively). The results of this study indicate that the glycolytic rate as measured by FDG-PET and changes in water compartmentalization and water diffusion as measured by the ADC are independent biological phenomena in newly diagnosed DLBCL. Further studies are warranted to assess the complementary roles of these different imaging biomarkers in the evaluation and follow-up of DLBCL. PMID:24795837

  10. Isolated hepatic perfusion as a treatment for liver metastases of uveal melanoma.

    PubMed

    Ben-Shabat, Ilan; Hansson, Christoffer; Sternby Eilard, Malin; Cahlin, Christian; Rizell, Magnus; Lindnér, Per; Mattsson, Jan; Olofsson Bagge, Roger

    2015-01-25

    Isolated hepatic perfusion (IHP) is a procedure where the liver is surgically isolated and perfused with a high concentration of the chemotherapeutic agent melphalan. Briefly, the procedure starts with the setup of a percutaneous veno-venous bypass from the femoral vein to the external jugular vein. Via a laparotomy, catheters are then inserted into the proper hepatic artery and the caval vein. The portal vein and the caval vein, both supra- and infrahepatically, are then clamped. The arterial and venous catheters are connected to a heart lung machine and the liver is perfused with melphalan (1 mg/kg body weight) for 60 min. This way it is possible to locally perfuse the liver with a high dose of a chemotherapeutic agent, without leakage to the systemic circulation. In previous studies including patients with isolated liver metastases of uveal melanoma, an overall response rate of 33-100% and a median survival between 9 and 13 months, have been reported. The aim of this protocol is to give a clear description of how to perform the procedure and to discuss IHP as a treatment option for liver metastases of uveal melanoma.

  11. MRI for the detection of calcific features of vertebral haemangioma.

    PubMed

    Bender, Y Y; Böker, S M; Diederichs, G; Walter, T; Wagner, M; Fallenberg, E; Liebig, T; Rickert, M; Hamm, B; Makowski, M R

    2017-08-01

    To evaluate the diagnostic performance of susceptibility-weighted-magnetic-resonance imaging (SW-MRI) for the detection of vertebral haemangiomas (VHs) compared to T1/T2-weighted MRI sequences, radiographs, and computed tomography (CT). The study was approved by the local ethics review board. An SW-MRI sequence was added to the clinical spine imaging protocol. The image-based diagnosis of 56 VHs in 46 patients was established using T1/T2 MRI in combination with radiography/CT as the reference standard. VHs were assessed based on T1/T2-weighted MRI images alone and in combination with SW-MRI, while radiographs/CT images were excluded from the analysis. Fifty-one of 56 VHs could be identified on T1/T2 MRI images alone, if radiographs/CT images were excluded from analysis. In five cases (9.1%), additional radiographs/CT images were required for the imaging-based diagnosis. If T1/T2 and SW-MRI images were used in combination, all VHs could be diagnosed, without the need for radiography/CT. Size measurements revealed a close correlation between CT and SW-MRI (R 2 =0.94; p<0.05). This study demonstrates that SW-MRI enables reliable detection of the typical calcified features of VHs. This is of importance for routine MRI of the spine, as the use of additional CT/radiography can be minimized. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  12. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.

    PubMed

    Kim, Seong-Gi; Ogawa, Seiji

    2012-07-01

    After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O(2) utilization (CMRO(2)), (5) dynamic responses of BOLD, CBF, CMRO(2), and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means.

  13. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals

    PubMed Central

    Kim, Seong-Gi; Ogawa, Seiji

    2012-01-01

    After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O2 utilization (CMRO2), (5) dynamic responses of BOLD, CBF, CMRO2, and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means. PMID:22395207

  14. Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans.

    PubMed

    Griffis, Joseph C; Allendorfer, Jane B; Szaflarski, Jerzy P

    2016-01-15

    Manual lesion delineation by an expert is the standard for lesion identification in MRI scans, but it is time-consuming and can introduce subjective bias. Alternative methods often require multi-modal MRI data, user interaction, scans from a control population, and/or arbitrary statistical thresholding. We present an approach for automatically identifying stroke lesions in individual T1-weighted MRI scans using naïve Bayes classification. Probabilistic tissue segmentation and image algebra were used to create feature maps encoding information about missing and abnormal tissue. Leave-one-case-out training and cross-validation was used to obtain out-of-sample predictions for each of 30 cases with left hemisphere stroke lesions. Our method correctly predicted lesion locations for 30/30 un-trained cases. Post-processing with smoothing (8mm FWHM) and cluster-extent thresholding (100 voxels) was found to improve performance. Quantitative evaluations of post-processed out-of-sample predictions on 30 cases revealed high spatial overlap (mean Dice similarity coefficient=0.66) and volume agreement (mean percent volume difference=28.91; Pearson's r=0.97) with manual lesion delineations. Our automated approach agrees with manual tracing. It provides an alternative to automated methods that require multi-modal MRI data, additional control scans, or user interaction to achieve optimal performance. Our fully trained classifier has applications in neuroimaging and clinical contexts. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Development and Evaluation of Heartbeat: A Machine Perfusion Heart Preservation System.

    PubMed

    Li, Yongnan; Zeng, Qingdong; Liu, Gang; Du, Junzhe; Gao, Bingren; Wang, Wei; Zheng, Zhe; Hu, Shengshou; Ji, Bingyang

    2017-11-01

    Static cold storage is accompanied with a partial safe ischemic interval for donor hearts. In this current study, a machine perfusion system was built to provide a better preservation for the donor heart and assessment for myocardial function. Chinese mini-swine (weight 30-35 kg, n = 16) were randomly divided into HTK, Celsior, and Heartbeat groups. All donor hearts were respectively preserved for 8 hours under static cold storage or machine perfusion. The perfusion solution is aimed to maintain its homeostasis based on monitoring the Heartbeat group. The ultrastructure of myocardium suggests better myocardial protection in the Heartbeat group compared with HTK or Celsior-preserved hearts. The myocardial and coronary artery structural and functional integrity was evaluated by immunofluorescence and Western blots in the Heartbeat. In the Heartbeat group, donor hearts maintained a high adenosine triphosphate level. Bcl-2 and Beclin-1 protein demonstrates high expression in the Celsior group. The Heartbeat system can be used to preserve donor hearts, and it could guarantee the myocardial and endothelial function of hearts during machine perfusion. Translating Heartbeat into clinical practice, it is such as to impact on donor heart preservation for cardiac transplantation. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. MRI appearance of posterior cruciate ligament tears.

    PubMed

    Rodriguez, William; Vinson, Emily N; Helms, Clyde A; Toth, Alison P

    2008-10-01

    There is little in the radiology literature regarding the MRI appearance of a torn posterior cruciate ligament (PCL). The purpose of this study was to describe the MRI appearance of surgically proven PCL tears and to emphasize previously unreported signs. The PCL is usually injured as the result of stretching deformation; on MRI, the ligament maintains continuity as a single structure with apparent thickening. On sagittal T2-weighted images, an anteroposterior diameter of 7 mm or more is highly suggestive of a torn PCL. Increased intrasubstance signal intensity in the PCL on proton-density images with lower signal intensity on T2-weighted images is another common feature.

  17. Mitochondria‐targeted antioxidant MitoQ reduced renal damage caused by ischemia‐reperfusion injury in rodent kidneys: Longitudinal observations of T 2‐weighted imaging and dynamic contrast‐enhanced MRI

    PubMed Central

    Liu, Xiaoge; Murphy, Michael P.; Xing, Wei; Wu, Huanhuan; Zhang, Rui

    2017-01-01

    Purpose To investigate the effect of mitochondria‐targeted antioxidant MitoQ in reducing the severity of renal ischemia‐reperfusion injury (IRI) in rats using T2‐weighted imaging and dynamic contrast‐enhanced MRI (DCE‐MRI). Methods Ischemia‐reperfusion injury was induced by temporarily clamping the left renal artery. Rats were pretreated with MitoQ or saline. The MRI examination was performed before and after IRI (days 2, 5, 7, and 14). The T2‐weighted standardized signal intensity of the outer stripe of the outer medulla (OSOM) was measured. The unilateral renal clearance rate kcl was derived from DCE‐MRI. Histopathology was evaluated after the final MRI examination. Results The standardized signal intensity of the OSOM on IRI kidneys with MitoQ were lower than those with saline on days 5 and 7 (P = 0.004, P < 0.001, respectively). Kcl values of IRI kidneys with MitoQ were higher than those with saline at all time points (P = 0.002, P < 0.001, P = 0.001, P < 0.001). Histopathology showed that renal damage was the most predominant on the OSOM of IRI kidneys with saline, which was less obvious with MitoQ (P < 0.001). Conclusions These findings demonstrate that MitoQ can reduce the severity of renal damage in rodent IRI models using T2‐weighted imaging and DCE‐MRI. Magn Reson Med 79:1559–1667, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28608403

  18. SU-E-P-33: Critical Role of T2-Weighted Imaging Combined with Diffusion-Weighted Imaging of MRI in Diagnosis of Loco-Regional Recurrent Esophageal Cancer After Radical Surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, G; Qiao, L; Liang, N

    Purpose: We perform this study to investigate the diagnostic efficacy of T2-weighted MRI (T2WI) and diffusion-weighted MRI (DWI) in confirming local relapses of esophageal cancer in patients highly suspected of recurrence after eradicating surgery. Methods: Forty-two postoperative esophageal cancer patients with clinical suspicions of cancer recurrence underwent 3.0T MRI applying axial, coronal, sagittal T2WI and axial DWI sequences. Two experienced radiologists (R1 and R2) both used two methods (T2WI, T2WI+DWI) to observe the images, and graded the patients ranging from 1 to 5 to represent severity of the disease based on visual signal intensity (patients equal to or more thanmore » grade 3 was confirmed as recurrent disease) Results: 27/42patients were verified of recurrent disease by pathologic findings and/or imaging findings during follow-up. The sensitivity, specificity and accuracy of R1 applying T2WI+DWI are 96%, 87% and 93% versus 81%, 80% and 77% on T2WI, these figures by R2 were 96%, 93% and 95% versus 89%, 93% and 90%. The receiver operating curve (ROC) analyses suggest that both of the two readers can obtain better accuracy when adding DWI to T2WI compared with T2WI alone. Kappa test between R1 and R2 indicates excellent inter-observer agreement on T2WI+DWI. Conclusion: Standard T2WI in combination DWI can achieve better accuracy than T2WI alone in diagnosing local recurrence of esophageal cancer, and improve consistency between different readers.« less

  19. INTRAVENOUS REGIONAL ANTIBIOTIC PERFUSION THERAPY AS AN ADJUNCTIVE TREATMENT FOR DIGITAL LESIONS IN SEABIRDS.

    PubMed

    Fiorello, Christine V

    2017-03-01

    Foot infections are a common problem among seabirds in wildlife rehabilitation. Pododermatitis and digital infections are often challenging to treat because of the presence of suboptimal substrates, abnormal weight-bearing due to injuries, and suboptimal nutritional or health status. Seabirds represent the majority of animals requiring rehabilitation after oil spills, and foot problems are a common reason for euthanasia among these birds. Antibiotic intravenous regional perfusion therapy is frequently used in humans and other species to treat infections of the distal extremities, but it has not been evaluated in seabirds. During the 2015 Refugio oil spill response, four birds with foot lesions (pododermatitis, osteomyelitis, or both) were treated with ampicillin/sulbactam administered intravenously to the affected limb(s) in addition to systemic antibiotics and anti-inflammatories. Three of the birds, all brown pelicans ( Pelecanus occidentalis ) recovered rapidly and were released. Two of these birds had acute pododermatitis and were treated once with intravenous regional perfusion. They were released approximately 3 wk after the perfusion therapy. The third pelican had osteomyelitis of a digit. It was treated twice with intravenous regional perfusion and was released about 1 mo after the initial perfusion therapy. The fourth bird, a Pacific loon ( Gavia pacifica ), was treated once with perfusion therapy but did not respond to treatment and was euthanatized. No serious adverse effects were observed. This technique should be explored further in avian species.

  20. Comparison of Dynamic Contrast Enhanced MRI and Quantitative SPECT in a Rat Glioma Model

    PubMed Central

    Skinner, Jack T.; Yankeelov, Thomas E.; Peterson, Todd E.; Does, Mark D.

    2012-01-01

    Pharmacokinetic modeling of dynamic contrast enhanced (DCE)-MRI data provides measures of the extracellular volume fraction (ve) and the volume transfer constant (Ktrans) in a given tissue. These parameter estimates may be biased, however, by confounding issues such as contrast agent and tissue water dynamics, or assumptions of vascularization and perfusion made by the commonly used model. In contrast to MRI, radiotracer imaging with SPECT is insensitive to water dynamics. A quantitative dual-isotope SPECT technique was developed to obtain an estimate of ve in a rat glioma model for comparison to the corresponding estimates obtained using DCE-MRI with a vascular input function (VIF) and reference region model (RR). Both DCE-MRI methods produced consistently larger estimates of ve in comparison to the SPECT estimates, and several experimental sources were postulated to contribute to these differences. PMID:22991315

  1. Collateral circulation formation determines the characteristic profiles of contrast-enhanced MRI in the infarcted myocardium of pigs

    PubMed Central

    Wang, Jian; Xiang, Bo; Lin, Hung-yu; Liu, Hong-yu; Freed, Darren; Arora, Rakesh C; Tian, Gang-hong

    2015-01-01

    Aim: To investigate the relationship between the collateral circulation and contrast-enhanced MR signal change for myocardial infarction (MI) in pigs. Methods: Pigs underwent permanent ligation of two diagonal branches of the left anterior descending artery. First-pass perfusion (FPP) MRI (for detecting myocardial perfusion abnormalities) and delayed enhancement (DE) MRI (for estimating myocardial infarction) using Gd-DTPA were performed at 2 h, 7 d and 4 weeks after the coronary occlusion. Myocardial blood flow (MBF) was evaluated using nonradioactive red-colored microspheres. Histological examination was performed to characterize the infarcts. Results: Acute MI performed at 2 h afterwards was characterized by hypoenhancement in both FPP- and DE-MRI, with small and almost unchanged FPP-signal intensity (SI) and DE-SI due to negligible MBF. Subacute MI detected 7 d afterwards showed small but significantly increaseing FPP-SI, and was visible as a sluggish hyperenhancement in DE-MRI with considerably higher DE-SI compared to the normal myocardium; the MBF approached the half-normal value. Chronic MI detected at 4 weeks afterwards showed increasing FPP-SI comparable to the normal myocardium, and a rapid hyperenhancement in DE-MRI with even higher DE-SI; the MBF was close to the normal value. The MBF was correlated with FPP-SI (r=+0.94, P<0.01) and with the peak DE-SI (r=+0.92, P<0.01) at the three MI stages. Remodeled vessels were observed at intra-infarction and peri-infarction zones during the subacute and chronic periods. Conclusion: Progressive collateral recovery determines the characteristic profiles of contrast-enhanced MRI in acute, subacute and chronic myocardial infarction in pigs. The FPP- and DE-MRI signal profiles not only depend on the loss of tissue viability and enlarged interstitial space, but also on establishing a collateral circulation. PMID:25832427

  2. Review of dynamic contrast-enhanced MRI: Technical aspects and applications in the musculoskeletal system.

    PubMed

    Sujlana, Parvinder; Skrok, Jan; Fayad, Laura M

    2018-04-01

    Although postcontrast imaging has been used for many years in musculoskeletal imaging, dynamic contrast enhanced (DCE) MRI is not routinely used in many centers around the world. Unlike conventional contrast-enhanced sequences, DCE-MRI allows the evaluation of the temporal pattern of enhancement in the musculoskeletal system, perhaps best known for its use in oncologic applications (such as differentiating benign from malignant tumors, evaluating for treatment response after neoadjuvant chemotherapy, and differentiating postsurgical changes from residual tumor). However, DCE-MRI can also be used to evaluate inflammatory processes such as Charcot foot and synovitis, and evaluate bone perfusion in entities like Legg Calve Perthes disease and arthritis. Finally, vascular abnormalities and associated complications may be better characterized with DCE-MRI than conventional imaging. The goal of this article is to review the applications and technical aspects of DCE-MRI in the musculoskeletal system. 5 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:875-890. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Biomarkers and perfusion – training-induced changes after stroke (BAPTISe): protocol of an observational study accompanying a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Physical activity is believed to exert a beneficial effect on functional and cognitive rehabilitation of patients with stroke. Although studies have addressed the impact of physical exercise in cerebrovascular prevention and rehabilitation, the underlying mechanisms leading to improvement are poorly understood. Training-induced increase of cerebral perfusion is a possible mediating mechanism. Our exploratory study aims to investigate training-induced changes in blood biomarker levels and magnetic resonance imaging in patients with subacute ischemic stroke. Methods/design This biomarker-driven study uses an observational design to examine a subgroup of patients in the randomized, controlled PHYS-STROKE trial. In PHYS-STROKE, 215 patients with subacute stroke (hemorrhagic and ischemic) receive either 4 weeks of physical training (aerobic training, 5 times a week, for 50 minutes) or 4 weeks of relaxation sessions (5 times a week, for 50 minutes). A convenience sample of 100 of these patients with ischemic stroke will be included in BAPTISe and will receive magnetic resonance imaging (MRI) scans and an additional blood draw before and after the PHYS-STROKE intervention. Imaging scans will address parameters of cerebral perfusion, vessel size imaging, and microvessel density (the Q factor) to estimate the degree of neovascularization in the brain. Blood tests will determine several parameters of immunity, inflammation, endothelial function, and lipometabolism. Primary objective of this study is to evaluate differential changes in MRI and blood-derived biomarkers between groups. Other endpoints are next cerebrovascular events and functional status of the patient after the intervention and after 3 months assessed by functional scores, in particular walking speed and Barthel index (co-primary endpoints of PHYS-STROKE). Additionally, we will assess the association between functional outcomes and biomarkers including imaging results. For all endpoints we will

  4. Uterine sarcoma vs adenocarcinoma: can MRI distinguish between them?

    PubMed

    Hernández Mateo, P; Méndez Fernández, R; Serrano Tamayo, E

    2016-01-01

    To analyze the MRI characteristics of uterine sarcomas (mainly carcinosarcomas) and to compare them with those of adenocarcinomas to define the findings that would be useful for the differential diagnosis. We retrospectively reviewed the MRI studies of 13 patients with histologically diagnosed uterine sarcoma. We analyzed tumor size, signal in T2-weighted, unenhanced and gadolinium-enhanced T1-weighted, and diffusion-weighted sequences. We compared the data obtained with those of another series of 30 consecutive cases of adenocarcinomas studied with MRI. The sarcomas (> 9cm in 77% of cases) were considerably larger than the adenocarcinomas (p<0.001). There were no differences in FIGO staging by MRI or surgery: both tumor types were diagnosed in early stages. The signal intensity in T2-weighted images differed significantly between the two tumor types: all the sarcomas were heterogeneous and predominantly hyperintense with respect to the myometrium in T2-weighted sequences (p<0.001). In postcontrast studies, all the sarcomas showed enhancement greater than or equal to the myometrium; this finding was significantly different from the adenocarcinomas (p<0.001). In diffusion-weighted sequences, we found no significant differences in ADC values in the areas with greatest restriction, but the ADC map was more heterogeneous in the sarcomas. Uterine sarcomas do not have specific characteristics on MRI, but some findings can indicate the diagnosis. In our study, we found significant differences between sarcomas and adenocarcinomas. Sarcomas were larger, had more hyperintense and heterogeneous signal intensity in T2-weighted sequences, and enhanced more than or at least as much as the myometrium. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  5. Can DCE-MRI Explain the Heterogeneity in Radiopeptide Uptake Imaged by SPECT in a Pancreatic Neuroendocrine Tumor Model?

    PubMed Central

    Groen, Harald C.; Niessen, Wiro J.; Bernsen, Monique R.; de Jong, Marion; Veenland, Jifke F.

    2013-01-01

    Although efficient delivery and distribution of treatment agents over the whole tumor is essential for successful tumor treatment, the distribution of most of these agents cannot be visualized. However, with single-photon emission computed tomography (SPECT), both delivery and uptake of radiolabeled peptides can be visualized in a neuroendocrine tumor model overexpressing somatostatin receptors. A heterogeneous peptide uptake is often observed in these tumors. We hypothesized that peptide distribution in the tumor is spatially related to tumor perfusion, vessel density and permeability, as imaged and quantified by DCE-MRI in a neuroendocrine tumor model. Four subcutaneous CA20948 tumor-bearing Lewis rats were injected with the somatostatin-analog 111In-DTPA-Octreotide (50 MBq). SPECT-CT and MRI scans were acquired and MRI was spatially registered to SPECT-CT. DCE-MRI was analyzed using semi-quantitative and quantitative methods. Correlation between SPECT and DCE-MRI was investigated with 1) Spearman’s rank correlation coefficient; 2) SPECT uptake values grouped into deciles with corresponding median DCE-MRI parametric values and vice versa; and 3) linear regression analysis for median parameter values in combined datasets. In all tumors, areas with low peptide uptake correlated with low perfusion/density/ /permeability for all DCE-MRI-derived parameters. Combining all datasets, highest linear regression was found between peptide uptake and semi-quantitative parameters (R2>0.7). The average correlation coefficient between SPECT and DCE-MRI-derived parameters ranged from 0.52-0.56 (p<0.05) for parameters primarily associated with exchange between blood and extracellular extravascular space. For these parameters a linear relation with peptide uptake was observed. In conclusion, the ‘exchange-related’ DCE-MRI-derived parameters seemed to predict peptide uptake better than the ‘contrast amount- related’ parameters. Consequently, fast and efficient diffusion

  6. Intraprocedure contrast enhanced ultrasound: the value in assessing the effect of ultrasound-guided high intensity focused ultrasound ablation for uterine fibroids.

    PubMed

    Peng, Song; Hu, Liang; Chen, Wenzhi; Chen, Jinyun; Yang, Caiyong; Wang, Xi; Zhang, Rong; Wang, Zhibiao; Zhang, Lian

    2015-04-01

    To investigate the value of microbubble contrast-enhanced ultrasound (CEUS) in evaluating the treatment response of uterine fibroids to HIFU ablation. Sixty-eight patients with a solitary uterine fibroid from the First Affiliated Hospital of Chongqing Medical University were included and analyzed. All patients underwent pre- and post-treatment magnetic resonance imaging (MRI) with a standardized protocol, as well as pre-evaluation, intraprocedure, and immediate post-treatment CEUS. CEUS and MRI were compared by different radiologists. In comparison with MRI, CEUS showed that the size of fibroids, volume of fibroids, size of non-perfused regions, non-perfused volume (NPV) or fractional ablation (NPV ratio) was similar to that of MRI. In terms of CEUS examination results, the median volume of fibroids was 75.2 (interquartile range, 34.2-127.3) cm(3), the median non-perfused volume was 54.9 (interquartile range, 28.0-98.1) cm(3), the mean fractional ablation was 83.7±13.6 (range, 30.0-100.0)%. In terms of MRI examination results, the median volume of fibroids was 74.1 (interquartile range, 33.4-116.2) cm(3). On the basis of contrast-enhanced T1-weighted images immediately after HIFU treatment, the median non-perfused volume was 58.5 (interquartile range, 27.7-100.0) cm(3), the average fractional ablation was 84.2±14.2 (range, 40.0-100.0)%. CEUS clearly showed the size of fibroids and the non-perfused areas of the fibroid. Results from CEUS correlated well with results obtained from MRI. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. TU-CD-BRB-12: Radiogenomics of MRI-Guided Prostate Cancer Biopsy Habitats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoyanova, R; Lynne, C; Abraham, S

    2015-06-15

    Purpose: Diagnostic prostate biopsies are subject to sampling bias. We hypothesize that quantitative imaging with multiparametric (MP)-MRI can more accurately direct targeted biopsies to index lesions associated with highest risk clinical and genomic features. Methods: Regionally distinct prostate habitats were delineated on MP-MRI (T2-weighted, perfusion and diffusion imaging). Directed biopsies were performed on 17 habitats from 6 patients using MRI-ultrasound fusion. Biopsy location was characterized with 52 radiographic features. Transcriptome-wide analysis of 1.4 million RNA probes was performed on RNA from each habitat. Genomics features with insignificant expression values (<0.25) and interquartile range <0.5 were filtered, leaving total of 212more » genes. Correlation between imaging features, genes and a 22 feature genomic classifier (GC), developed as a prognostic assay for metastasis after radical prostatectomy was investigated. Results: High quality genomic data was derived from 17 (100%) biopsies. Using the 212 ‘unbiased’ genes, the samples clustered by patient origin in unsupervised analysis. When only prostate cancer related genomic features were used, hierarchical clustering revealed samples clustered by needle-biopsy Gleason score (GS). Similarly, principal component analysis of the imaging features, found the primary source of variance segregated the samples into high (≥7) and low (6) GS. Pearson’s correlation analysis of genes with significant expression showed two main patterns of gene expression clustering prostate peripheral and transitional zone MRI features. Two-way hierarchical clustering of GC with radiomics features resulted in the expected groupings of high and low expressed genes in this metastasis signature. Conclusions: MP-MRI-targeted diagnostic biopsies can potentially improve risk stratification by directing pathological and genomic analysis to clinically significant index lesions. As determinant lesions are more reliably

  8. Voxel-based automated detection of focal cortical dysplasia lesions using diffusion tensor imaging and T2-weighted MRI data.

    PubMed

    Wang, Yanming; Zhou, Yawen; Wang, Huijuan; Cui, Jin; Nguchu, Benedictor Alexander; Zhang, Xufei; Qiu, Bensheng; Wang, Xiaoxiao; Zhu, Mingwang

    2018-05-21

    The aim of this study was to automatically detect focal cortical dysplasia (FCD) lesions in patients with extratemporal lobe epilepsy by relying on diffusion tensor imaging (DTI) and T2-weighted magnetic resonance imaging (MRI) data. We implemented an automated classifier using voxel-based multimodal features to identify gray and white matter abnormalities of FCD in patient cohorts. In addition to the commonly used T2-weighted image intensity feature, DTI-based features were also utilized. A Gaussian processes for machine learning (GPML) classifier was tested on 12 patients with FCD (8 with histologically confirmed FCD) scanned at 1.5 T and cross-validated using a leave-one-out strategy. Moreover, we compared the multimodal GPML paradigm's performance with that of single modal GPML and classical support vector machine (SVM). Our results demonstrated that the GPML performance on DTI-based features (mean AUC = 0.63) matches with the GPML performance on T2-weighted image intensity feature (mean AUC = 0.64). More promisingly, GPML yielded significantly improved performance (mean AUC = 0.76) when applying DTI-based features to multimodal paradigm. Based on the results, it can also be clearly stated that the proposed GPML strategy performed better and is robust to unbalanced dataset contrary to SVM that performed poorly (AUC = 0.69). Therefore, the GPML paradigm using multimodal MRI data containing DTI modality has promising result towards detection of the FCD lesions and provides an effective direction for future researches. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. [Lung perfusion studies after percutaneous closure of patent ductus arteriosus using the Amplatzer Duct Occluder in children].

    PubMed

    Parra-Bravo, José Rafael; Apolonio-Martínez, Adriana; Estrada-Loza, María de Jesús; Beirana-Palencia, Luisa Gracia; Ramírez-Portillo, César Iván

    2015-01-01

    The closure of patent ductus arteriosus with multiple devices has been associated with a reduction in lung perfusion. We evaluated the pulmonary perfusion after percutaneous closure of patent ductus arteriosus with the Amplatzer Duct Occluder device using perfusion lung scan. Thirty patients underwent successful percutaneous patent ductus arteriosus occlusions using the Amplatzer Duct Occluder device were included in this study. Lung perfusion scans were preformed 6 months after the procedure. Peak flow velocities and protrusion of the device were analyzed by Doppler echocardiography. A left lung perfusion<40% was considered abnormal. The device implantation was successful in all patients. Average perfusion of left lung was 44.7±4.9% (37.8-61.4). Five patients (16.6%) showed decreased perfusion of the left lung. Age, low weight, the length of the ductus arteriosus and the minimum and maximum diameter/length of the ductus arteriosus ratio were statistically significant in patients with abnormalities of lung perfusion. It was observed protrusion the device in 6 patients with a higher maximum flow rate in the left pulmonary artery. The left lung perfusion may be compromised after percutaneous closure of patent ductus arteriosus with the Amplatzer Duct Occluder. The increased flow velocity in the origin of the left pulmonary artery can be a poor indicator of reduction in pulmonary perfusion and can occur in the absence of protrusion of the device. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  10. PET/MRI assessment of the infarcted mouse heart

    NASA Astrophysics Data System (ADS)

    Buonincontri, Guido; Methner, Carmen; Krieg, Thomas; Hawkes, Robert C.; Adrian Carpenter, T.; Sawiak, Stephen J.

    2014-01-01

    Heart failure originating from myocardial infarction (MI) is a leading cause of death worldwide. Mouse models of ischaemia and reperfusion injury (I/R) are used to study the effects of novel treatment strategies targeting MI, however staging disease and treatment efficacy is a challenge. Damage and recovery can be assessed on the cellular, tissue or whole-organ scale but these are rarely measured in concert. Here, for the first time, we present data showing measures of injury in infarcted mice using complementary techniques for multi-modal characterisation of the heart. We use in vivo magnetic resonance imaging (MRI) to assess heart function with cine-MRI, hindered perfusion with late gadolinium enhancement imaging and muscular function with displacement encoded with stimulated echoes (DENSE) MRI. These measures are followed by positron emission tomography (PET) with 18-F-fluorodeoxyglucose to assess cellular metabolism. We demonstrate a protocol combining each of these measures for the same animal in the same imaging session and compare how the different markers can be used to quantify cardiac recovery on different scales following injury.

  11. Dynamic fMRI networks predict success in a behavioral weight loss program among older adults.

    PubMed

    Mokhtari, Fatemeh; Rejeski, W Jack; Zhu, Yingying; Wu, Guorong; Simpson, Sean L; Burdette, Jonathan H; Laurienti, Paul J

    2018-06-01

    More than one-third of adults in the United States are obese, with a higher prevalence among older adults. Obesity among older adults is a major cause of physical dysfunction, hypertension, diabetes, and coronary heart diseases. Many people who engage in lifestyle weight loss interventions fail to reach targeted goals for weight loss, and most will regain what was lost within 1-2 years following cessation of treatment. This variability in treatment efficacy suggests that there are important phenotypes predictive of success with intentional weight loss that could lead to tailored treatment regimen, an idea that is consistent with the concept of precision-based medicine. Although the identification of biochemical and metabolic phenotypes are one potential direction of research, neurobiological measures may prove useful as substantial behavioral change is necessary to achieve success in a lifestyle intervention. In the present study, we use dynamic brain networks from functional magnetic resonance imaging (fMRI) data to prospectively identify individuals most likely to succeed in a behavioral weight loss intervention. Brain imaging was performed in overweight or obese older adults (age: 65-79 years) who participated in an 18-month lifestyle weight loss intervention. Machine learning and functional brain networks were combined to produce multivariate prediction models. The prediction accuracy exceeded 95%, suggesting that there exists a consistent pattern of connectivity which correctly predicts success with weight loss at the individual level. Connectivity patterns that contributed to the prediction consisted of complex multivariate network components that substantially overlapped with known brain networks that are associated with behavior emergence, self-regulation, body awareness, and the sensory features of food. Future work on independent datasets and diverse populations is needed to corroborate our findings. Additionally, we believe that efforts can begin to

  12. Dynamic Contrast-Enhanced Magnetic Resonance Imaging With Gadolinium Ethoxybenzyl Diethylenetriamine Pentaacetic Acid for Quantitative Assessment of Vascular Effects on Hepatocellular-Carcinoma Lesions Treated by Transarterial Chemoembolization or Radiofrequency Ablation.

    PubMed

    Ippolito, Davide; Trattenero, Chiara; Talei Franzesi, Cammillo; Casiraghi, Alessandra; Lombardi, Sophie; Vacirca, Francesco; Corso, Rocco; Sironi, Sandro

    2016-01-01

    The aim of this study was to investigate the role of dynamic contrast-enhanced magnetic resonance imaging (MRI) in evaluation of blood flow changes related to transarterial chemoembolization (TACE) and radiofrequency ablation (RFA) procedures in patients with hepatocellular carcinoma (HCC) lesions. Fifty-four patients, with biopsy-proven HCC, who underwent TACE or RFA, were evaluated, 1 month after treatment, with upper abdominal MRI examination. Multiplanar T2-weighted, T1-weighted, and dynamic contrast-enhanced sequences were acquired. Dedicated perfusion software (T1 Perfusion Package, Viewforum; Philips Medical Systems, The Netherlands) was used to generate color permeability maps. After placing regions of interest in normal hepatic parenchyma, in successfully treated lesions, and in area of recurrence, the following perfusion parameters were calculated and statistically analyzed: relative arterial, venous, and late enhancement; maximum enhancement; maximum relative enhancement, and time to peak. Twenty-one of 54 patients had residual disease, and perfusion parameters values measured within tumor tissue were: relative arterial enhancement median, 42%; relative venous enhancement median, 69%; relative late enhancement median, 57.7%; maximum enhancement median, 749.6%; maximum relative enhancement median, 69%; time to peak median, 81.1 seconds. As for all the evaluated parameters, a significant difference (P < 0.05) was found between residual viable tumor tissue and effective treated lesions. Dynamic contrast-enhanced MRI represents a complementary noninvasive tool that may offer quantitative and qualitative information about HCC lesions treated with TACE and RFA.

  13. Automated correction of improperly rotated diffusion gradient orientations in diffusion weighted MRI.

    PubMed

    Jeurissen, Ben; Leemans, Alexander; Sijbers, Jan

    2014-10-01

    Ensuring one is using the correct gradient orientations in a diffusion MRI study can be a challenging task. As different scanners, file formats and processing tools use different coordinate frame conventions, in practice, users can end up with improperly oriented gradient orientations. Using such wrongly oriented gradient orientations for subsequent diffusion parameter estimation will invalidate all rotationally variant parameters and fiber tractography results. While large misalignments can be detected by visual inspection, small rotations of the gradient table (e.g. due to angulation of the acquisition plane), are much more difficult to detect. In this work, we propose an automated method to align the coordinate frame of the gradient orientations with that of the corresponding diffusion weighted images, using a metric based on whole brain fiber tractography. By transforming the gradient table and measuring the average fiber trajectory length, we search for the transformation that results in the best global 'connectivity'. To ensure a fast calculation of the metric we included a range of algorithmic optimizations in our tractography routine. To make the optimization routine robust to spurious local maxima, we use a stochastic optimization routine that selects a random set of seed points on each evaluation. Using simulations, we show that our method can recover the correct gradient orientations with high accuracy and precision. In addition, we demonstrate that our technique can successfully recover rotated gradient tables on a wide range of clinically realistic data sets. As such, our method provides a practical and robust solution to an often overlooked pitfall in the processing of diffusion MRI. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. MRI diffusion tensor reconstruction with PROPELLER data acquisition.

    PubMed

    Cheryauka, Arvidas B; Lee, James N; Samsonov, Alexei A; Defrise, Michel; Gullberg, Grant T

    2004-02-01

    MRI diffusion imaging is effective in measuring the diffusion tensor in brain, cardiac, liver, and spinal tissue. Diffusion tensor tomography MRI (DTT MRI) method is based on reconstructing the diffusion tensor field from measurements of projections of the tensor field. Projections are obtained by appropriate application of rotated diffusion gradients. In the present paper, the potential of a novel data acquisition scheme, PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction), is examined in combination with DTT MRI for its capability and sufficiency for diffusion imaging. An iterative reconstruction algorithm is used to reconstruct the diffusion tensor field from rotated diffusion weighted blades by appropriate rotated diffusion gradients. DTT MRI with PROPELLER data acquisition shows significant potential to reduce the number of weighted measurements, avoid ambiguity in reconstructing diffusion tensor parameters, increase signal-to-noise ratio, and decrease the influence of signal distortion.

  15. Significance of diffusion weighted imaging (DWI) as an improving factor in contrast enhanced magnetic resonance imaging (MRI) enterography in evaluation of patients with Crohn's disease.

    PubMed

    Imširović, Bilal; Zerem, Enver; Efendić, Alma; Mekić Abazović, Alma; Zerem, Omar; Djedović, Muhamed

    2018-08-01

    Aim To determine capabilities and potential of contrast enhanced magnetic resonance imaging (MRI) enterography in order to establish the diagnosis and to evaluate severity and activity of intestinal inflammation. Methods Fifty-five patients with suspicion for presence of Crohn's disease were evaluated. All patients underwent contrast enhanced MRI enterography and diffusion weighted imaging (DWI), and subsequently endoscopic examination or surgical treatment. Four parameters were analysed: thickening of the bowel wall, and presence of abscess, fistula and lymphadenopathy. Results Comparing results of DWI and contrast enhanced MRI enterography a significant difference between results given through diffusion and histopathological test was found, e.g. a significant difference between results obtained through diffusion and MRI enterography was found. MRI enterography sensitiveness for bowel wall thickening was 97.7% and specificity 70%, whilst DWI sensitivity for bowel wall thickening was 84% and specificity 100%. The diagnostics of abscess and fistula showed no significant difference between DWI and MRI, while in lymphadenopathy significant difference between contrast enhanced MRI enterography and DWI was found. Conclusion Contrast enhanced MRI enterography in combination with DWI allows for excellent evaluation of disease activity, but also problems or complications following it. The examination can be repeated, controlled, and it can contribute to monitoring of patients with this disease. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  16. Altered resting-state functional connectivity in post-traumatic stress disorder: a perfusion MRI study

    NASA Astrophysics Data System (ADS)

    Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong

    2013-03-01

    The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.

  17. Mitochondria-targeted antioxidant MitoQ reduced renal damage caused by ischemia-reperfusion injury in rodent kidneys: Longitudinal observations of T2 -weighted imaging and dynamic contrast-enhanced MRI.

    PubMed

    Liu, Xiaoge; Murphy, Michael P; Xing, Wei; Wu, Huanhuan; Zhang, Rui; Sun, Haoran

    2018-03-01

    To investigate the effect of mitochondria-targeted antioxidant MitoQ in reducing the severity of renal ischemia-reperfusion injury (IRI) in rats using T 2 -weighted imaging and dynamic contrast-enhanced MRI (DCE-MRI). Ischemia-reperfusion injury was induced by temporarily clamping the left renal artery. Rats were pretreated with MitoQ or saline. The MRI examination was performed before and after IRI (days 2, 5, 7, and 14). The T 2 -weighted standardized signal intensity of the outer stripe of the outer medulla (OSOM) was measured. The unilateral renal clearance rate k cl was derived from DCE-MRI. Histopathology was evaluated after the final MRI examination. The standardized signal intensity of the OSOM on IRI kidneys with MitoQ were lower than those with saline on days 5 and 7 (P = 0.004, P < 0.001, respectively). K cl values of IRI kidneys with MitoQ were higher than those with saline at all time points (P = 0.002, P < 0.001, P = 0.001, P < 0.001). Histopathology showed that renal damage was the most predominant on the OSOM of IRI kidneys with saline, which was less obvious with MitoQ (P < 0.001). These findings demonstrate that MitoQ can reduce the severity of renal damage in rodent IRI models using T 2 -weighted imaging and DCE-MRI. Magn Reson Med 79:1559-1667, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  18. Distribution of perfusion.

    PubMed

    Glenny, Robb; Robertson, H Thomas

    2011-01-01

    Local driving pressures and resistances within the pulmonary vascular tree determine the distribution of perfusion in the lung. Unlike other organs, these local determinants are significantly influenced by regional hydrostatic and alveolar pressures. Those effects on blood flow distribution are further magnified by the large vertical height of the human lung and the relatively low intravascular pressures in the pulmonary circulation. While the distribution of perfusion is largely due to passive determinants such as vascular geometry and hydrostatic pressures, active mechanisms such as vasoconstriction induced by local hypoxia can also redistribute blood flow. This chapter reviews the determinants of regional lung perfusion with a focus on vascular tree geometry, vertical gradients induced by gravity, the interactions between vascular and surrounding alveolar pressures, and hypoxic pulmonary vasoconstriction. While each of these determinants of perfusion distribution can be examined in isolation, the distribution of blood flow is dynamically determined and each component interacts with the others so that a change in one region of the lung influences the distribution of blood flow in other lung regions. © 2011 American Physiological Society.

  19. Optimization and control of perfusion cultures using a viable cell probe and cell specific perfusion rates.

    PubMed

    Dowd, Jason E; Jubb, Anthea; Kwok, K Ezra; Piret, James M

    2003-05-01

    Consistent perfusion culture production requires reliable cell retention and control of feed rates. An on-line cell probe based on capacitance was used to assay viable biomass concentrations. A constant cell specific perfusion rate controlled medium feed rates with a bioreactor cell concentration of approximately 5 x 10(6) cells mL(-1). Perfusion feeding was automatically adjusted based on the cell concentration signal from the on-line biomass sensor. Cell specific perfusion rates were varied over a range of 0.05 to 0.4 nL cell(-1) day(-1). Pseudo-steady-state bioreactor indices (concentrations, cellular rates and yields) were correlated to cell specific perfusion rates investigated to maximize recombinant protein production from a Chinese hamster ovary cell line. The tissue-type plasminogen activator concentration was maximized ( approximately 40 mg L(-1)) at 0.2 nL cell(-1) day(-1). The volumetric protein productivity ( approximately 60 mg L(-1) day(-1) was maximized above 0.3 nL cell(-1) day(-1). The use of cell specific perfusion rates provided a straightforward basis for controlling, modeling and optimizing perfusion cultures.

  20. Evaluation of carotid plaque vulnerability in vivo: Correlation between dynamic contrast-enhanced MRI and MRI-modified AHA classification.

    PubMed

    Ge, Xiaoqian; Zhou, Zien; Zhao, Huilin; Li, Xiao; Sun, Beibei; Suo, Shiteng; Hackett, Maree L; Wan, Jieqing; Xu, Jianrong; Liu, Xiaosheng

    2017-09-01

    To noninvasively monitor carotid plaque vulnerability by exploring the relationship between pharmacokinetic parameters (PPs) of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and plaque types based on MRI-modified American Heart Association (AHA) classification, as well as to assess the ability of PPs in discrimination between stable and vulnerable plaques suspected on MRI. Of 70 consecutive patients with carotid plaques who volunteered for 3.0T MRI (3D time-of-flight [TOF], T 1 -weighted, T 2 -weighted, 3D magnetization-prepared rapid acquisition gradient-echo [MP-RAGE] and DCE-MRI), 66 participants were available for analysis. After plaque classification according to MRI-modified AHA Lesion-Type (LT), PPs (K trans , k ep , v e , and v p ) of DCE-MRI were measured. The Extended Tofts model was used for calculation of PPs. For participants with multiple carotid plaques, the plaque with the worst MRI-modified AHA LT was chosen for analysis. Correlations between PPs and plaque types and the ability of these parameters to distinguish stable and vulnerable plaques suspected on MRI were assessed. Significant positive correlation between K trans and LT III to VI was found (ρ = 0.532, P < 0.001), as was the correlation between k ep and LT III to VI (ρ = 0.409, P < 0.001). Stable and vulnerable plaques suspected on MRI could potentially be distinguished by K trans (sensitivity 83%, specificity 100%) and k ep (sensitivity 77%, specificity 91%). K trans and k ep from DCE-MRI can provide quantitative information to monitor plaque vulnerability in vivo and differentiate vulnerable plaques suspected on MRI from stable ones. These two parameters could be adopted as imaging biomarkers for plaque characterization and risk stratification. 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:870-876. © 2017 International Society for Magnetic Resonance in Medicine.

  1. Multi-institutional validation of a novel textural analysis tool for preoperative stratification of suspected thyroid tumors on diffusion-weighted MRI.

    PubMed

    Brown, Anna M; Nagala, Sidhartha; McLean, Mary A; Lu, Yonggang; Scoffings, Daniel; Apte, Aditya; Gonen, Mithat; Stambuk, Hilda E; Shaha, Ashok R; Tuttle, R Michael; Deasy, Joseph O; Priest, Andrew N; Jani, Piyush; Shukla-Dave, Amita; Griffiths, John

    2016-04-01

    Ultrasound-guided fine needle aspirate cytology fails to diagnose many malignant thyroid nodules; consequently, patients may undergo diagnostic lobectomy. This study assessed whether textural analysis (TA) could noninvasively stratify thyroid nodules accurately using diffusion-weighted MRI (DW-MRI). This multi-institutional study examined 3T DW-MRI images obtained with spin echo echo planar imaging sequences. The training data set included 26 patients from Cambridge, United Kingdom, and the test data set included 18 thyroid cancer patients from Memorial Sloan Kettering Cancer Center (New York, New York, USA). Apparent diffusion coefficients (ADCs) were compared over regions of interest (ROIs) defined on thyroid nodules. TA, linear discriminant analysis (LDA), and feature reduction were performed using the 21 MaZda-generated texture parameters that best distinguished benign and malignant ROIs. Training data set mean ADC values were significantly different for benign and malignant nodules (P = 0.02) with a sensitivity and specificity of 70% and 63%, respectively, and a receiver operator characteristic (ROC) area under the curve (AUC) of 0.73. The LDA model of the top 21 textural features correctly classified 89/94 DW-MRI ROIs with 92% sensitivity, 96% specificity, and an AUC of 0.97. This algorithm correctly classified 16/18 (89%) patients in the independently obtained test set of thyroid DW-MRI scans. TA classifies thyroid nodules with high sensitivity and specificity on multi-institutional DW-MRI data sets. This method requires further validation in a larger prospective study. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  2. T2-Weighted Liver MRI Using the MultiVane Technique at 3T: Comparison with Conventional T2-Weighted MRI

    PubMed Central

    Kang, Kyung A; Kim, EunJu; Jeong, Woo Kyoung; Choi, Dongil; Lee, Won Jae; Jung, Sin-Ho; Baek, Sun-Young

    2015-01-01

    Objective To assess the value of applying MultiVane to liver T2-weighted imaging (T2WI) compared with conventional T2WIs with emphasis on detection of focal liver lesions. Materials and Methods Seventy-eight patients (43 men and 35 women) with 86 hepatic lesions and 20 pancreatico-biliary diseases underwent MRI including T2WIs acquired using breath-hold (BH), respiratory-triggered (RT), and MultiVane technique at 3T. Two reviewers evaluated each T2WI with respect to artefacts, organ sharpness, and conspicuity of intrahepatic vessels, hilar duct, and main lesion using five-point scales, and made pairwise comparisons between T2WI sequences for these categories. Diagnostic accuracy (Az) and sensitivity for hepatic lesion detection were evaluated using alternative free-response receiver operating characteristic analysis. Results MultiVane T2WI was significantly better than BH-T2WI or RT-T2WI for organ sharpness and conspicuity of intrahepatic vessels and main lesion in both separate reviews and pairwise comparisons (p < 0.001). With regard to motion artefacts, MultiVane T2WI or BH-T2WI was better than RT-T2WI (p < 0.001). Conspicuity of hilar duct was better with BH-T2WI than with MultiVane T2WI (p = 0.030) or RT-T2WI (p < 0.001). For detection of 86 hepatic lesions, sensitivity (mean, 97.7%) of MultiVane T2WI was significantly higher than that of BH-T2WI (mean, 89.5%) (p = 0.008) or RT-T2WI (mean, 84.9%) (p = 0.001). Conclusion Applying the MultiVane technique to T2WI of the liver is a promising approach to improving image quality that results in increased detection of focal liver lesions compared with conventional T2WI. PMID:26357498

  3. [MRI and CT-scan in presumed benign ovarian tumors].

    PubMed

    Thomassin-Naggara, I; Bazot, M

    2013-12-01

    Radiological examinations are required for the assessment of complex or indeterminate ovarian masses, mainly using MRI and CT-scan. MRI provides better tissue characterization than Doppler ultrasound or CT-scan (LE2). Pelvic MRI is recommended in case of an indeterminate or complex ovarian ultrasonographic mass (grade B). The protocol of a pelvic MRI should include morphological T1 and T2 sequences (grade B). In case of solid portion, perfusion and diffusion sequences are recommended (grade C). In case of doubt about the diagnosis of ovarian origin, pelvic MRI is preferred over the CT-scan (grade C). MRI is the technique of choice for the difference between functional and organic ovarian lesion diagnosis (grade C). It can be useful in case of clinical diagnostic uncertainty between polycystic ovary syndrome and ovarian hyperstimulation and multilocular ovarian tumor syndrome (grade C). No MRI classification for ovarian masses is currently validated. The establishment of a presumption of risk of malignancy is required in a MRI report of adnexal mass with if possible a guidance on the histological diagnosis. In the absence of clinical or sonographic diagnosis, pelvic CT-scan is recommended in the context of acute painful pelvic mass in non-pregnant patients (grade C). It specifies the anomalies and allows the differential diagnosis with digestive and urinary diseases (LE4). Given the lack of data in the literature, the precautionary principle must be applied to the realization of a pelvic MRI in a pregnant patient. A risk-benefit balance should be evaluated case by case by the clinician and the radiologist and information should be given to the patient. In an emergency situation during pregnancy, pelvic MRI is an alternative to CT-scan for the exploration of acute pelvic pain in case of uncertain sonographic diagnosis (grade C). Copyright © 2013. Published by Elsevier Masson SAS.

  4. Association between penile dynamic contrast-enhanced MRI-derived quantitative parameters and self-reported sexual function in patients with newly diagnosed prostate cancer.

    PubMed

    Vargas, Hebert Alberto; Donati, Olivio F; Wibmer, Andreas; Goldman, Debra A; Mulhall, John P; Sala, Evis; Hricak, Hedvig

    2014-10-01

    The high incidence of prostate cancer, coupled with excellent prostate cancer control rates, has resulted in growing interest in nononcological survivorship issues such as sexual function. Multiparametric magnetic resonance imaging (MRI) is increasingly being performed for local staging of prostate cancer, and due to the close anatomical relationship to the prostate, penile enhancement is often depicted in prostate MRI. To evaluate the associations between quantitative perfusion-related parameters derived from dynamic contrast-enhanced (DCE)-MRI of the penis and self-reported sexual function in patients with newly diagnosed prostate cancer. This retrospective study included 50 patients who underwent DCE-MRI for prostate cancer staging before prostatectomy. The following perfusion-related parameters were calculated: volume transfer constant (K(trans)), rate constant (k(ep)), extracellular-extravascular volume fraction (v(e)), contrast enhancement ratio (CER), area under the gadolinium curve after 180 seconds (AUC180), and slope of the time/signal intensity curve of the corpora cavernosa. Associations between perfusion-related parameters and self-reported sexual function were evaluated using the Wilcoxon Rank-Sum test. Patient responses to the sexual function domain of the Prostate Quality of Life survey. Five of the six DCE-MRI parameters (K(trans), v(e), CER, AUC180, and slope) were significantly associated with the overall score from the sexual domain of the survey (P = 0.0020-0.0252). CER, AUC180, and slope were significantly associated with the answers to all six questions (P = 0.0020-0.0483), ve was significantly associated with the answers to five of six questions (P = 0.0036-0.1029), and K(trans) was significantly associated with the answers to three of six questions (P = 0.0252-0.1023). k(ep) was not significantly associated with the overall survey score (P = 0.7665) or the answers to any individual questions (P = 0

  5. Simultaneous PET/MRI in assessing the response to chemo/radiotherapy in head and neck carcinoma: initial experience.

    PubMed

    Romeo, Valeria; Iorio, Brigida; Mesolella, Massimo; Ugga, Lorenzo; Verde, Francesco; Nicolai, Emanuele; Covello, Mario

    2018-06-19

    The purpose of the study was to assess by simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) the response to chemotherapy (CHT) and/or radiotherapy (RT) in patients with head and neck squamous cell carcinoma (HNSCC). Five patients with HNSCC underwent simultaneous PET/MRI examination before and after CHT and/or RT. Standard uptake volume (SUV), apparent diffusion coefficient (ADC), Ktrans, Kep, Ve, and iAUC pre- and post-treatment values were extracted and compared. The response to treatment was assessed according to RECIST criteria and classified as complete response (CR), partial response (PR), stable disease (SD), and progression disease (PD). In patient 1, PR was observed with increased ADC, Ktrans, and Ve values and reduction of SUV, iAUC, and Kep values; during clinical and instrumental follow-up, the patient experienced disease progression. Patient 2, classified as PR, showed increased ADC values and reduction of SUV and all perfusion parameters; follow-up demonstrated disease stability. Patient 3, considered as SD, showed increase of ADC and all perfusion values with a mild decrease of SUV; PD was observed during clinical and instrumental follow-up. Patients 4 and 5 showed a CR with no detectable tumor lesions at post-treatment PET/MRI examination, confirmed by 1-year follow-up. Multiparametric evaluation with simultaneous PET/MRI could be a useful tool to assess and predict the response to CHT and/or RT in patients with HNSCC.

  6. Computed Tomography Perfusion Improves Diagnostic Accuracy in Acute Posterior Circulation Stroke.

    PubMed

    Sporns, Peter; Schmidt, Rene; Minnerup, Jens; Dziewas, Rainer; Kemmling, André; Dittrich, Ralf; Zoubi, Tarek; Heermann, Philipp; Cnyrim, Christian; Schwindt, Wolfram; Heindel, Walter; Niederstadt, Thomas; Hanning, Uta

    2016-01-01

    Computed tomography perfusion (CTP) has a high diagnostic value in the detection of acute ischemic stroke in the anterior circulation. However, the diagnostic value in suspected posterior circulation (PC) stroke is uncertain, and whole brain volume perfusion is not yet in widespread use. We therefore studied the additional value of whole brain volume perfusion to non-contrast CT (NCCT) and CT angiography source images (CTA-SI) for infarct detection in patients with suspected acute ischemic PC stroke. This is a retrospective review of patients with suspected stroke in the PC in a database of our stroke center (n = 3,011) who underwent NCCT, CTA and CTP within 9 h after stroke onset and CT or MRI on follow-up. Images were evaluated for signs and pc-ASPECTS locations of ischemia. Three imaging models - A (NCCT), B (NCCT + CTA-SI) and C (NCCT + CTA-SI + CTP) - were compared with regard to the misclassification rate relative to gold standard (infarction in follow-up imaging) using the McNemar's test. Of 3,011 stroke patients, 267 patients had a suspected stroke in the PC and 188 patients (70.4%) evidenced a PC infarct on follow-up imaging. The sensitivity of Model C (76.6%) was higher compared with that of Model A (21.3%) and Model B (43.6%). CTP detected significantly more ischemic lesions, especially in the cerebellum, posterior cerebral artery territory and thalami. Our findings in a large cohort of consecutive patients show that CTP detects significantly more ischemic strokes in the PC than CTA and NCCT alone. © 2016 S. Karger AG, Basel.

  7. 3D T2-weighted imaging to shorten multiparametric prostate MRI protocols.

    PubMed

    Polanec, Stephan H; Lazar, Mathias; Wengert, Georg J; Bickel, Hubert; Spick, Claudio; Susani, Martin; Shariat, Shahrokh; Clauser, Paola; Baltzer, Pascal A T

    2018-04-01

    To determine whether 3D acquisitions provide equivalent image quality, lesion delineation quality and PI-RADS v2 performance compared to 2D acquisitions in T2-weighted imaging of the prostate at 3 T. This IRB-approved, prospective study included 150 consecutive patients (mean age 63.7 years, 35-84 years; mean PSA 7.2 ng/ml, 0.4-31.1 ng/ml). Two uroradiologists (R1, R2) independently rated image quality and lesion delineation quality using a five-point ordinal scale and assigned a PI-RADS score for 2D and 3D T2-weighted image data sets. Data were compared using visual grading characteristics (VGC) and receiver operating characteristics (ROC)/area under the curve (AUC) analysis. Image quality was similarly good to excellent for 2D T2w (mean score R1, 4.3 ± 0.81; R2, 4.7 ± 0.83) and 3D T2w (mean score R1, 4.3 ± 0.82; R2, 4.7 ± 0.69), p = 0.269. Lesion delineation was rated good to excellent for 2D (mean score R1, 4.16 ± 0.81; R2, 4.19 ± 0.92) and 3D T2w (R1, 4.19 ± 0.94; R2, 4.27 ± 0.94) without significant differences (p = 0.785). ROC analysis showed an equivalent performance for 2D (AUC 0.580-0.623) and 3D (AUC 0.576-0.629) T2w (p > 0.05, respectively). Three-dimensional acquisitions demonstrated equivalent image and lesion delineation quality, and PI-RADS v2 performance, compared to 2D in T2-weighted imaging of the prostate. Three-dimensional T2-weighted imaging could be used to considerably shorten prostate MRI protocols in clinical practice. • 3D shows equivalent image quality and lesion delineation compared to 2D T2w. • 3D T2w and 2D T2w image acquisition demonstrated comparable diagnostic performance. • Using a single 3D T2w acquisition may shorten the protocol by 40%. • Combined with short DCE, multiparametric protocols of 10 min are feasible.

  8. Evaluation of Marrow Perfusion in the Femoral Head by Dynamic Magnetic Resonance Imaging

    PubMed Central

    Tsukamoto, Hiroshi; Kang, Young S.; Jones, Lynne C.; Cova, Maria; Herold, Christian J.; McVeigh, Elliot; Hungerford, David S.; Zerhouni, Elias A.

    2007-01-01

    Rationale and Objectives There is a continuing need for a greater sensitivity of magnetic resonance imaging (MRI) in the diagnosis of avascular necrosis (AVN). Previously, it was demonstrated that a dynamic MRI method, with gadolinium-DTPA (Gd-DTPA) enhancement, can detect acute changes not seen on spin-echo images after arterial occlusion in a dog model. Because venous congestion appears to be a more directly relevant hemodynamic abnormality in a majority of clinical AVN cases, the authors extended the dynamic MRI technique to study changes in venous occlusion. Methods Dynamic MRI of the proximal femur was performed in five adult dogs before and after unilateral ligation of common iliac and lateral circumflex veins. Sixteen sequential gradient-recalled pulse sequence (GRASS) images (time resolution = 45 mseconds, echo time = 9 mseconds, flip angle = 65°) were obtained immediately after a bolus intravenous injection of 0.2 mmol/kg of Gd-DTPA. Simultaneous measurements of regional blood flow were made using the radioactive microsphere method. Results After venous ligation, there was a 25% to 45% decrease in the degree of enhancement compared with preligation values on the ligated side. The decrease in cumulative enhancement (integrated over the entire time course) was statistically significant. The occlusion technique was verified by confirming a statistically significant decrease in blood flow determined by the microsphere method. Conclusions Dynamic Gd-DTPA-enhanced fast MRI technique can detect acute changes in bone marrow perfusion due to venous occlusion. This technique may have applications in the early detection of nontraumatic AVN. PMID:1601616

  9. Is 3-Tesla Gd-EOB-DTPA-Enhanced MRI with Diffusion-Weighted Imaging Superior to 64-Slice Contrast-Enhanced CT for the Diagnosis of Hepatocellular Carcinoma?

    PubMed Central

    Maiwald, Bettina; Lobsien, Donald; Kahn, Thomas; Stumpp, Patrick

    2014-01-01

    Objectives To compare 64-slice contrast-enhanced computed tomography (CT) with 3-Tesla magnetic resonance imaging (MRI) using Gd-EOB-DTPA for the diagnosis of hepatocellular carcinoma (HCC) and evaluate the utility of diffusion-weighted imaging (DWI) in this setting. Methods 3-phase-liver-CT was performed in fifty patients (42 male, 8 female) with suspected or proven HCC. The patients were subjected to a 3-Tesla-MRI-examination with Gd-EOB-DTPA and diffusion weighted imaging (DWI) at b-values of 0, 50 and 400 s/mm2. The apparent diffusion coefficient (ADC)-value was determined for each lesion detected in DWI. The histopathological report after resection or biopsy of a lesion served as the gold standard, and a surrogate of follow-up or complementary imaging techniques in combination with clinical and paraclinical parameters was used in unresected lesions. Diagnostic accuracy, sensitivity, specificity, and positive and negative predictive values were evaluated for each technique. Results MRI detected slightly more lesions that were considered suspicious for HCC per patient compared to CT (2.7 versus 2.3, respectively). ADC-measurements in HCC showed notably heterogeneous values with a median of 1.2±0.5×10−3 mm2/s (range from 0.07±0.1 to 3.0±0.1×10−3 mm2/s). MRI showed similar diagnostic accuracy, sensitivity, and positive and negative predictive values compared to CT (AUC 0.837, sensitivity 92%, PPV 80% and NPV 90% for MRI vs. AUC 0.798, sensitivity 85%, PPV 79% and NPV 82% for CT; not significant). Specificity was 75% for both techniques. Conclusions Our study did not show a statistically significant difference in detection in detection of HCC between MRI and CT. Gd-EOB-DTPA-enhanced MRI tended to detect more lesions per patient compared to contrast-enhanced CT; therefore, we would recommend this modality as the first-choice imaging method for the detection of HCC and therapeutic decisions. However, contrast-enhanced CT was not inferior in our study, so

  10. Robust and efficient pharmacokinetic parameter non-linear least squares estimation for dynamic contrast enhanced MRI of the prostate.

    PubMed

    Kargar, Soudabeh; Borisch, Eric A; Froemming, Adam T; Kawashima, Akira; Mynderse, Lance A; Stinson, Eric G; Trzasko, Joshua D; Riederer, Stephen J

    2018-05-01

    To describe an efficient numerical optimization technique using non-linear least squares to estimate perfusion parameters for the Tofts and extended Tofts models from dynamic contrast enhanced (DCE) MRI data and apply the technique to prostate cancer. Parameters were estimated by fitting the two Tofts-based perfusion models to the acquired data via non-linear least squares. We apply Variable Projection (VP) to convert the fitting problem from a multi-dimensional to a one-dimensional line search to improve computational efficiency and robustness. Using simulation and DCE-MRI studies in twenty patients with suspected prostate cancer, the VP-based solver was compared against the traditional Levenberg-Marquardt (LM) strategy for accuracy, noise amplification, robustness to converge, and computation time. The simulation demonstrated that VP and LM were both accurate in that the medians closely matched assumed values across typical signal to noise ratio (SNR) levels for both Tofts models. VP and LM showed similar noise sensitivity. Studies using the patient data showed that the VP method reliably converged and matched results from LM with approximate 3× and 2× reductions in computation time for the standard (two-parameter) and extended (three-parameter) Tofts models. While LM failed to converge in 14% of the patient data, VP converged in the ideal 100%. The VP-based method for non-linear least squares estimation of perfusion parameters for prostate MRI is equivalent in accuracy and robustness to noise, while being more reliably (100%) convergent and computationally about 3× (TM) and 2× (ETM) faster than the LM-based method. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Development of Laser-Polarized Noble Gas Magnetic Resonance Imaging (MRI) Technology

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2004-01-01

    We are developing technology for laser-polarized noble gas nuclear magnetic resonance (NMR), with the aim of enabling it as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation, perfusion, and gas-exchange. In addition, laser-polarized noble gases (3He and 1BXe) do not require a large magnetic field for sensitive NMR detection, opening the door to practical MRI with novel, open-access magnet designs at very low magnetic fields (and hence in confined spaces). We are pursuing two specific aims in this technology development program. The first aim is to develop an open-access, low-field (less than 0.01 T) instrument for MRI studies of human gas inhalation as a function of subject orientation, and the second aim is to develop functional imaging of the lung using laser-polarized He-3 and Xe-129.

  12. Myocardial perfusion imaging with PET

    PubMed Central

    Nakazato, Ryo; Berman, Daniel S; Alexanderson, Erick; Slomka, Piotr

    2013-01-01

    PET-myocardial perfusion imaging (MPI) allows accurate measurement of myocardial perfusion, absolute myocardial blood flow and function at stress and rest in a single study session performed in approximately 30 min. Various PET tracers are available for MPI, and rubidium-82 or nitrogen-13-ammonia is most commonly used. In addition, a new fluorine-18-based PET-MPI tracer is currently being evaluated. Relative quantification of PET perfusion images shows very high diagnostic accuracy for detection of obstructive coronary artery disease. Dynamic myocardial blood flow analysis has demonstrated additional prognostic value beyond relative perfusion imaging. Patient radiation dose can be reduced and image quality can be improved with latest advances in PET/CT equipment. Simultaneous assessment of both anatomy and perfusion by hybrid PET/CT can result in improved diagnostic accuracy. Compared with SPECT-MPI, PET-MPI provides higher diagnostic accuracy, using lower radiation doses during a shorter examination time period for the detection of coronary artery disease. PMID:23671459

  13. Modifications of pancreatic diffusion MRI by tissue characteristics: what are we weighting for?

    PubMed

    Nissan, Noam

    2017-08-01

    Diffusion-weighted imaging holds the potential to improve the diagnosis and biological characterization of pancreatic disease, and in particular pancreatic cancer, which exhibits decreased values of the apparent diffusion coefficient (ADC). Yet, variable and overlapping ADC values have been reported for the healthy and the pathological pancreas, including for cancer and other benign conditions. This controversy reflects the complexity of probing the water-diffusion process in the pancreas, which is dependent upon multiple biological factors within this organ's unique physiological environment. In recent years, extensive studies have investigated the correlation between tissue properties including cellularity, vascularity, fibrosis, secretion and microstructure and pancreatic diffusivity. Understanding how the various physiological and pathological features and the underlying functional processes affect the diffusion measurement may serve to optimize the method for improved diagnostic gain. Therefore, the aim of the present review article is to elucidate the relationship between pancreatic tissue characteristics and diffusion MRI measurement. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Dynamic enhancement MRI of anterior lobe in pituitary dwarfism.

    PubMed

    Liu, H M; Li, Y W; Tsai, W Y; Su, C T

    1995-08-01

    We examined 23 patients with pituitary dwarfism by dynamic MRI; with a repetition time of 150 or 50 ms. The time-enhancement difference curves of selected regions in the anterior lobes were plotted. Another 48 patients with no definite clinical pituitary disfunction were examined with the same technique. We found that the intensity of maximum enhancement in both groups was similar, but the time to achieve maximum enhancement was delayed in pituitary dwarfism with or without stalk transection; the time seemed longest with stalk transection. There was little difference in enhancement between patients with multiple hormone deficiency or isolated growth hormone deficiency. Dynamic MRI of the anterior lobes may be an important functional imaging study, and our results imply that poor perfusion is a useful finding in pituitary dwarfism, especially in patients without stalk transection and normal pituitary height.

  15. Pulmonary Aspergillus chest wall involvement in chronic granulomatous disease: CT and MRI findings.

    PubMed

    Kawashima, A; Kuhlman, J E; Fishman, E K; Tempany, C M; Magid, D; Lederman, H M; Winkelstein, J A; Zerhouni, E A

    1991-01-01

    Pulmonary Aspergillus infection in patients with chronic granulomatous disease tends to involve the chest wall and consequently carries a high mortality rate. We report the findings of computed tomography (CT) and magnetic resonance imaging (MRI) in three such cases. One patient underwent both CT and MRI, one, CT only, and one, MRI only. In all three, both CT and MRI demonstrated pulmonary consolidations with direct extension to the adjacent chest wall. In both patients who were examined by CT, scans revealed permeative osteolytic changes of adjacent rib or spine compatible with osteomyelitis. In both patients who were examined by MRI, adjacent chest wall involvement was depicted on T1-weighted images and showed increased signal intensity on T2-weighted images. In one of these patients, the chest wall lesion was well defined on T2-weighted images, an appearance compatible with abscess. Epidural extension was demonstrated on MRI in the other patient, who later developed paraparesis. We suggest that CT and MRI have a complementary role in evaluating chest wall invasion by pulmonary Aspergillus infection in chronic granulomatous disease.

  16. DCE-MRI, DW-MRI, and MRS in Cancer: Challenges and Advantages of Implementing Qualitative and Quantitative Multi-parametric Imaging in the Clinic

    PubMed Central

    Winfield, Jessica M.; Payne, Geoffrey S.; Weller, Alex; deSouza, Nandita M.

    2016-01-01

    Abstract Multi-parametric magnetic resonance imaging (mpMRI) offers a unique insight into tumor biology by combining functional MRI techniques that inform on cellularity (diffusion-weighted MRI), vascular properties (dynamic contrast-enhanced MRI), and metabolites (magnetic resonance spectroscopy) and has scope to provide valuable information for prognostication and response assessment. Challenges in the application of mpMRI in the clinic include the technical considerations in acquiring good quality functional MRI data, development of robust techniques for analysis, and clinical interpretation of the results. This article summarizes the technical challenges in acquisition and analysis of multi-parametric MRI data before reviewing the key applications of multi-parametric MRI in clinical research and practice. PMID:27748710

  17. A highly stable l-alanine-based mono(aquated) Mn(ii) complex as a T1-weighted MRI contrast agent.

    PubMed

    Khannam, Mahmuda; Weyhermüller, Thomas; Goswami, Upashi; Mukherjee, Chandan

    2017-08-08

    The synthesized lithium (S)-6,6'-(1-carboxyethylazanediyl)bis(methylene)dipicolinate (Li 3 cbda) is a new chiral, alanine-based ligand bearing two picolinate functionalities. The trianionic form of the ligand [(cbda) 3- ] constitutes a seven-coordinate, water-soluble, pentagonal bipyramidal Mn(ii) complex (1). The structural analysis reveals the presence of a water coordinating site in the complex. The complex is thermodynamically very stable, and the stability is not affected by the presence of physiological anions (HCO 3 - , PO 4 3- , and F - ). The pH of the medium exerts a small effect on the stability of the complex. The r 1 relaxivity of 3.02 mM -1 s -1 is exhibited by the complex at 1.41 T, pH ∼7.4, and 25 °C. Phantom images obtained via a clinical MRI BRIVO MR355 system established concentration-dependent signal enhancement by the complex. The cytotoxicity test confirmed complex 1 as a biocompatible potential T 1 -weighted MRI contrast agent.

  18. The value of DCE-MRI in assessing histopathological and molecular biological features in induced rat epithelial ovarian carcinomas.

    PubMed

    Yuan, Su Juan; Qiao, Tian Kui; Qiang, Jin Wei; Cai, Song Qi; Li, Ruo Kun

    2017-09-26

    To investigate dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) for assessing histopathological and molecular biological features in induced rat epithelial ovarian carcinomas (EOCs). 7,12-dimethylbenz[A]anthracene (DMBA) was applied to induce EOCs in situ in 46 SD rats. Conventional MRI and DCE-MRI were performed to evaluate the morphology and perfusion features of the tumors, including the time-signal intensity curve (TIC), volume transfer constant (K trans ), rate constant (K ep ), extravascular extracellular space volume ratio (V e ) and initial area under the curve (IAUC). DCE-MRI parameters were correlated with histological grade, microvascular density (MVD), vascular endothelial growth factor (VEGF) and fraction of Ki67-positive cells and the serum level of cancer antigen 125 (CA125). Thirty-five of the 46 rats developed EOCs. DCE-MRI showed type III TIC more frequently than type II (29/35 vs. 6/35, p < 0.001) in EOCs. The two types of TIC of tumors had significant differences in the histological grade, MVD, expression of VEGF and Ki67, and the serum level of CA125 (all p < 0.01). K trans , K ep and IAUC values showed significant differences in different histological grades in overall and pairwise comparisons except for IAUC in grade 2 vs. grade 3 (all p < 0.01). There was no significant difference in V e values among the three grade groups (p > 0.05). K trans , K ep and IAUC values were positively correlated with MVD, VEGF and Ki67 expression (all p < 0.01). V e was not significantly correlated with MVD, VEGF expression, Ki67 expression and the CA125 level (all p > 0.05). TIC types and perfusion parameters of DCE-MRI can reflect tumor grade, angiogenesis and cell proliferation to some extent, thereby helping treatment planning and predicting prognosis.

  19. Multiparametric Breast MRI of Breast Cancer

    PubMed Central

    Rahbar, Habib; Partridge, Savannah C.

    2015-01-01

    Synopsis Breast MRI has increased in popularity over the past two decades due to evidence for its high sensitivity for cancer detection. Current clinical MRI approaches rely on the use of a dynamic contrast enhanced (DCE-MRI) acquisition that facilitates morphologic and semi-quantitative kinetic assessments of breast lesions. The use of more functional and quantitative parameters, such as pharmacokinetic features from high temporal resolution DCE-MRI, apparent diffusion coefficient (ADC) and intravoxel incoherent motion (IVIM) on diffusion weighted MRI, and choline concentrations on MR spectroscopy, hold promise to broaden the utility of MRI and improve its specificity. However, due to wide variations in approach among centers for measuring these parameters and the considerable technical challenges, robust multicenter data supporting their routine use is not yet available, limiting current applications of many of these tools to research purposes. PMID:26613883

  20. Monitoring peripheral perfusion and microcirculation.

    PubMed

    Dubin, Arnaldo; Henriquez, Elizabeth; Hernández, Glenn

    2018-06-01

    Microcirculatory alterations play a major role in the pathogenesis of shock. Monitoring tissue perfusion might be a relevant goal for shock resuscitation. The goal of this review was to revise the evidence supporting the monitoring of peripheral perfusion and microcirculation as goals of resuscitation. For this purpose, we mainly focused on skin perfusion and sublingual microcirculation. Although there are controversies about the reproducibility of capillary refill time in monitoring peripheral perfusion, it is a sound physiological variable and suitable for the ICU settings. In addition, observational studies showed its strong ability to predict outcome. Moreover, a preliminary study suggested that it might be a valuable goal for resuscitation. These results should be confirmed by the ongoing ANDROMEDA-SHOCK randomized controlled trial. On the other hand, the monitoring of sublingual microcirculation might also provide relevant physiological and prognostic information. On the contrary, methodological drawbacks mainly related to video assessment hamper its clinical implementation at the present time. Measurements of peripheral perfusion might be useful as goal of resuscitation. The results of the ANDROMEDA-SHOCK will clarify the role of skin perfusion as a guide for the treatment of shock. In contrast, the assessment of sublingual microcirculation mainly remains as a research tool.

  1. Hyperenteroglucagonaemia and small intestinal mucosal growth after colonic perfusion of glucose in rats.

    PubMed Central

    Miazza, B M; Al-Mukhtar, M Y; Salmeron, M; Ghatei, M A; Felce-Dachez, M; Filali, A; Villet, R; Wright, N A; Bloom, S R; Crambaud, J C

    1985-01-01

    Beside intraluminal factors, humoral agents play an important role in intestinal adaptation. Enteroglucagon, the mucosal concentration of which is maximal in the terminal ileum and colon, is the strongest candidate for the role of small intestinal mucosal growth factor. The present experiment was designed to study the role of colonic enteroglucagon in stimulating mucosal growth in rats with a normal small intestine. After eight days of glucose large bowel perfusion, enteroglucagon plasma concentrations were 120.7 +/- SEM 9.2 pmol/l, versus 60.1 +/- 6.8 in mannitol perfused control rats (p less than 0.001). Gastrin, cholecystokinin, neurotensin, pancreatic glucagon, and insulin plasma concentrations were unchanged. Crypt cell proliferation, measured by the vincristine metaphase arrest technique, increased significantly in the small intestine of glucose perfused animals (p less than 0.005-0.001) in comparison with the controls. This resulted in a greater mucosal mass in both proximal and distal small bowel: mucosal wet weight, DNA, protein and alpha D-glucosidase per unit length intestine were all significantly higher (p less than 0.05-0.001) than in mannitol perfused rats. Our data, therefore, support the hypothesis that enteroglucagon is an enterotrophic factor and stress the possible role of the colon in the regulation of small bowel trophicity. PMID:3996942

  2. Ex-vivo machine perfusion for kidney preservation.

    PubMed

    Hamar, Matyas; Selzner, Markus

    2018-06-01

    Machine perfusion is a novel strategy to decrease preservation injury, improve graft assessment, and increase organ acceptance for transplantation. This review summarizes the current advances in ex-vivo machine-based kidney preservation technologies over the last year. Ex-vivo perfusion technologies, such as hypothermic and normothermic machine perfusion and controlled oxygenated rewarming, have gained high interest in the field of organ preservation. Keeping kidney grafts functionally and metabolically active during the preservation period offers a unique chance for viability assessment, reconditioning, and organ repair. Normothermic ex-vivo kidney perfusion has been recently translated into clinical practice. Preclinical results suggest that prolonged warm perfusion appears superior than a brief end-ischemic reconditioning in terms of renal function and injury. An established standardized protocol for continuous warm perfusion is still not available for human grafts. Ex-vivo machine perfusion represents a superior organ preservation method over static cold storage. There is still an urgent need for the optimization of the perfusion fluid and machine technology and to identify the optimal indication in kidney transplantation. Recent research is focusing on graft assessment and therapeutic strategies.

  3. MRI texture analysis (MRTA) of T2-weighted images in Crohn's disease may provide information on histological and MRI disease activity in patients undergoing ileal resection.

    PubMed

    Makanyanga, Jesica; Ganeshan, Balaji; Rodriguez-Justo, Manuel; Bhatnagar, Gauraang; Groves, Ashley; Halligan, Steve; Miles, Ken; Taylor, Stuart A

    2017-02-01

    To associate MRI textural analysis (MRTA) with MRI and histological Crohn's disease (CD) activity. Sixteen patients (mean age 39.5 years, 9 male) undergoing MR enterography before ileal resection were retrospectively analysed. Thirty-six small (≤3 mm) ROIs were placed on T2-weighted images and location-matched histological acute inflammatory scores (AIS) measured. MRI activity (mural thickness, T2 signal, T1 enhancement) (CDA) was scored in large ROIs. MRTA features (mean, standard deviation, mean of positive pixels (MPP), entropy, kurtosis, skewness) were extracted using a filtration histogram technique. Spatial scale filtration (SSF) ranged from 2 to 5 mm. Regression (linear/logistic) tested associations between MRTA and AIS (small ROIs), and CDA/constituent parameters (large ROIs). Skewness (SSF = 2 mm) was associated with AIS [regression coefficient (rc) 4.27, p = 0.02]. Of 120 large ROI analyses (for each MRI, MRTA feature and SSF), 15 were significant. Entropy (SSF = 2, 3 mm) and kurtosis (SSF = 3 mm) were associated with CDA (rc 0.9, 1.0, -0.45, p = 0.006-0.01). Entropy and mean (SSF = 2-4 mm) were associated with T2 signal [odds ratio (OR) 2.32-3.16, p = 0.02-0.004], [OR 1.22-1.28, p = 0.03-0.04]. MPP (SSF = 2 mm) was associated with mural thickness (OR 0.91, p = 0.04). Kurtosis (SSF = 3 mm), standard deviation (SSF = 5 mm) were associated with decreased T1 enhancement (OR 0.59, 0.42, p = 0.004, 0.007). MRTA features may be associated with CD activity. • MR texture analysis features may be associated with Crohn's disease histological activity. • Texture analysis features may correlate with MR-dependent Crohn's disease activity scores. • The utility of MR texture analysis in Crohn's disease merits further investigation.

  4. Cochlear perfusion with a viscous fluid.

    PubMed

    Wang, Yi; Olson, Elizabeth S

    2016-07-01

    The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawn from basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner's membrane (RM), while in cochleae perfused with 0.125% and 0.25% HA RM was torn. Thus, the CAP threshold elevation was likely due to the broken RM, likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed, perhaps due to the presence and

  5. Cochlear perfusion with a viscous fluid

    PubMed Central

    Wang, Yi; Olson, Elizabeth S.

    2016-01-01

    The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawnfrom basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner’s membrane, while in cochleae perfused with 0.125% and 0.25% HA Reissner’s membrane (RM) was torn. Thus, the CAP threshold elevation was likely due to the broken of RM, which likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed

  6. Transcranial Doppler of the middle cerebral artery indicates regional gray matter cerebral perfusion.

    PubMed

    Pasha, Evan P; Tarumi, Takashi; Haley, Andreana P; Tanaka, Hirofumi

    2017-11-30

    We determined if transcranial color-coded Doppler derived hemodynamics are associated with MRI-based cerebral blood flow (CBF) in regions clinically important to dementia in healthy middle-aged adults. In 30 subjects (18m/12f; age  =  52  ±  1 years), blood flow velocity (BFV) and cerebrovascular conductance (CVC) were measured with transcranial color-coded Doppler (TCCD) at the middle cerebral artery (MCA) and cerebral blood flow (CBF) was assessed with arterial spin labeled perfusion MRI. BFV and CVC were associated with hippocampus (r  =  0.58 and r  =  0.61, both p  <  0.01) and occipitoparietal (r  =  0.50 and r  =  0.58, both p  <  0.01) CBF. CVC was further associated with posterior cingulate CBF (r  =  0.58 p  <  0.01). Independent of age and sex, BFV and CVC were associated with hippocampus (r  =  0.59 and r  =  0.55, both p  <  0.003) and occipitoparietal (r  =  0.50 and r  =  0.57, both p  <  0.01) CBF. CVC was independently associated with posterior cingulate CBF (r  =  0.38, p  =  0.049). TCCD-measured BFV and CVC of the MCA are indicators of cerebral perfusion to clinically valuable brain regions in healthy middle-aged adults. TCCD may not be a good indicator of blood flow to cerebral white matter.

  7. Assessment of the spatial pattern of colorectal tumour perfusion estimated at perfusion CT using two-dimensional fractal analysis.

    PubMed

    Goh, Vicky; Sanghera, Bal; Wellsted, David M; Sundin, Josefin; Halligan, Steve

    2009-06-01

    The aim was to evaluate the feasibility of fractal analysis for assessing the spatial pattern of colorectal tumour perfusion at dynamic contrast-enhanced CT (perfusion CT). Twenty patients with colorectal adenocarcinoma underwent a 65-s perfusion CT study from which a perfusion parametric map was generated using validated commercial software. The tumour was identified by an experienced radiologist, segmented via thresholding and fractal analysis applied using in-house software: fractal dimension, abundance and lacunarity were assessed for the entire outlined tumour and for selected representative areas within the tumour of low and high perfusion. Comparison was made with ten patients with normal colons, processed in a similar manner, using two-way mixed analysis of variance with statistical significance at the 5% level. Fractal values were higher in cancer than normal colon (p < or = 0.001): mean (SD) 1.71 (0.07) versus 1.61 (0.07) for fractal dimension and 7.82 (0.62) and 6.89 (0.47) for fractal abundance. Fractal values were lower in 'high' than 'low' perfusion areas. Lacunarity curves were shifted to the right for cancer compared with normal colon. In conclusion, colorectal cancer mapped by perfusion CT demonstrates fractal properties. Fractal analysis is feasible, potentially providing a quantitative measure of the spatial pattern of tumour perfusion.

  8. EFFECT ON PERFUSION VALUES OF SAMPLING INTERVAL OF CT PERFUSION ACQUISITIONS IN NEUROENDOCRINE LIVER METASTASES AND NORMAL LIVER

    PubMed Central

    Ng, Chaan S.; Hobbs, Brian P.; Wei, Wei; Anderson, Ella F.; Herron, Delise H.; Yao, James C.; Chandler, Adam G.

    2014-01-01

    Objective To assess the effects of sampling interval (SI) of CT perfusion acquisitions on CT perfusion values in normal liver and liver metastases from neuroendocrine tumors. Methods CT perfusion in 16 patients with neuroendocrine liver metastases were analyzed by distributed parameter modeling to yield tissue blood flow, blood volume, mean transit time, permeability, and hepatic arterial fraction, for tumor and normal liver. CT perfusion values for the reference sampling interval of 0.5s (SI0.5) were compared with those of SI datasets of 1s, 2s, 3s and 4s, using mixed-effects model analyses. Results Increases in SI beyond 1s were associated with significant and increasing departures of CT perfusion parameters from reference values at SI0.5 (p≤0.0009). CT perfusion values deviated from reference with increasing uncertainty with increasing SIs. Findings for normal liver were concordant. Conclusion Increasing SIs beyond 1s yield significantly different CT perfusion parameter values compared to reference values at SI0.5. PMID:25626401

  9. Does machine perfusion decrease ischemia reperfusion injury?

    PubMed

    Bon, D; Delpech, P-O; Chatauret, N; Hauet, T; Badet, L; Barrou, B

    2014-06-01

    In 1990's, use of machine perfusion for organ preservation has been abandoned because of improvement of preservation solutions, efficient without perfusion, easy to use and cheaper. Since the last 15 years, a renewed interest for machine perfusion emerged based on studies performed on preclinical model and seems to make consensus in case of expanded criteria donors or deceased after cardiac death donations. We present relevant studies highlighted the efficiency of preservation with hypothermic machine perfusion compared to static cold storage. Machines for organ preservation being in constant evolution, we also summarized recent developments included direct oxygenation of the perfusat. Machine perfusion technology also enables organ reconditioning during the last hours of preservation through a short period of perfusion on hypothermia, subnormothermia or normothermia. We present significant or low advantages for machine perfusion against ischemia reperfusion injuries regarding at least one primary parameter: risk of DFG, organ function or graft survival. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis.

    PubMed

    van Dijken, Bart R J; van Laar, Peter Jan; Holtman, Gea A; van der Hoorn, Anouk

    2017-10-01

    Treatment response assessment in high-grade gliomas uses contrast enhanced T1-weighted MRI, but is unreliable. Novel advanced MRI techniques have been studied, but the accuracy is not well known. Therefore, we performed a systematic meta-analysis to assess the diagnostic accuracy of anatomical and advanced MRI for treatment response in high-grade gliomas. Databases were searched systematically. Study selection and data extraction were done by two authors independently. Meta-analysis was performed using a bivariate random effects model when ≥5 studies were included. Anatomical MRI (five studies, 166 patients) showed a pooled sensitivity and specificity of 68% (95%CI 51-81) and 77% (45-93), respectively. Pooled apparent diffusion coefficients (seven studies, 204 patients) demonstrated a sensitivity of 71% (60-80) and specificity of 87% (77-93). DSC-perfusion (18 studies, 708 patients) sensitivity was 87% (82-91) with a specificity of 86% (77-91). DCE-perfusion (five studies, 207 patients) sensitivity was 92% (73-98) and specificity was 85% (76-92). The sensitivity of spectroscopy (nine studies, 203 patients) was 91% (79-97) and specificity was 95% (65-99). Advanced techniques showed higher diagnostic accuracy than anatomical MRI, the highest for spectroscopy, supporting the use in treatment response assessment in high-grade gliomas. • Treatment response assessment in high-grade gliomas with anatomical MRI is unreliable • Novel advanced MRI techniques have been studied, but diagnostic accuracy is unknown • Meta-analysis demonstrates that advanced MRI showed higher diagnostic accuracy than anatomical MRI • Highest diagnostic accuracy for spectroscopy and perfusion MRI • Supports the incorporation of advanced MRI in high-grade glioma treatment response assessment.

  11. Developing a Benchmarking Process in Perfusion: A Report of the Perfusion Downunder Collaboration

    PubMed Central

    Baker, Robert A.; Newland, Richard F.; Fenton, Carmel; McDonald, Michael; Willcox, Timothy W.; Merry, Alan F.

    2012-01-01

    Abstract: Improving and understanding clinical practice is an appropriate goal for the perfusion community. The Perfusion Downunder Collaboration has established a multi-center perfusion focused database aimed at achieving these goals through the development of quantitative quality indicators for clinical improvement through benchmarking. Data were collected using the Perfusion Downunder Collaboration database from procedures performed in eight Australian and New Zealand cardiac centers between March 2007 and February 2011. At the Perfusion Downunder Meeting in 2010, it was agreed by consensus, to report quality indicators (QI) for glucose level, arterial outlet temperature, and pCO2 management during cardiopulmonary bypass. The values chosen for each QI were: blood glucose ≥4 mmol/L and ≤10 mmol/L; arterial outlet temperature ≤37°C; and arterial blood gas pCO2 ≥ 35 and ≤45 mmHg. The QI data were used to derive benchmarks using the Achievable Benchmark of Care (ABC™) methodology to identify the incidence of QIs at the best performing centers. Five thousand four hundred and sixty-five procedures were evaluated to derive QI and benchmark data. The incidence of the blood glucose QI ranged from 37–96% of procedures, with a benchmark value of 90%. The arterial outlet temperature QI occurred in 16–98% of procedures with the benchmark of 94%; while the arterial pCO2 QI occurred in 21–91%, with the benchmark value of 80%. We have derived QIs and benchmark calculations for the management of several key aspects of cardiopulmonary bypass to provide a platform for improving the quality of perfusion practice. PMID:22730861

  12. Numerical simulation of blood flow in femoral perfusion: comparison between side-armed femoral artery perfusion and direct femoral artery perfusion.

    PubMed

    Kitamura, Shingo; Shirota, Minori; Fukuda, Wakako; Inamura, Takao; Fukuda, Ikuo

    2016-12-01

    Computational numerical analysis was performed to elucidate the flow dynamics of femoral artery perfusion. Numerical simulation of blood flow was performed from the right femoral artery in an aortic model. An incompressible Navier-Stokes equation and continuity equation were solved using computed flow dynamics software. Three different perfusion models were analyzed: a 4.0-mm cannula (outer diameter 15 French size), a 5.2-mm cannula (18 French size) and an 8-mm prosthetic graft. The cannula was inserted parallel to the femoral artery, while the graft was anastomosed perpendicular to the femoral artery. Shear stress was highest with the 4-mm cannula (172 Pa) followed by the graft (127 Pa) and the 5.2-mm cannula (99 Pa). The cannula exit velocity was high, even when the 5.2-mm cannula was used. Although side-armed perfusion with an 8-mm graft generated a high shear stress area near the point of anastomosis, flow velocity at the external iliac artery was decreased. The jet speed decreased due to the Coanda effect caused by the recirculation behind sudden expansion of diameter, and the flow velocity maintains a constant speed after the reattachment length of the flow. This study showed that iliac artery shear stress was lower with the 5.2-mm cannula than with the 4-mm cannula when used for femoral perfusion. Side-armed graft perfusion generates a high shear stress area around the anastomotic site, but flow velocity in the iliac artery is slower in the graft model than in the 5.2-mm cannula model.

  13. Dynamic MR perfusion and proton MR spectroscopic imaging in Sturge-Weber syndrome: correlation with neurological symptoms.

    PubMed

    Lin, Doris D M; Barker, Peter B; Hatfield, Laura A; Comi, Anne M

    2006-08-01

    To investigate physiological alterations in Sturge-Weber syndrome (SWS) using MR perfusion imaging (PWI) and proton spectroscopic imaging (MRSI), and their association with neurological status. Six consecutive patients with a clinically established diagnosis of SWS underwent MRI using a 1.5 Tesla scanner. The protocol consisted of conventional anatomic scans, dynamic PWI, and multislice MRSI. A pediatric neurologist evaluated the neurological scores, and the imaging results were correlated with neurological scores using nonparametric correlation analysis. Two patients had classic neuroimaging findings of unilateral cerebral atrophy with corresponding leptomeningeal enhancement and hypoperfusion (prolonged mean transit time). Two patients had bilateral disease, and two had normal symmetric perfusion. Among clinical measures, the highest correlation was between hemiparesis index and hypoperfused tissue volume (Spearman's correlation coefficient, rho = 0.943, P < 0.05). There was also a trend of correlation, although not statistically significant (P = 0.06), between the hemiparesis score and the NAA/Cr ratio in the mid to posterior centrum semiovale, lateral gray matter (GM), and splenium. In SWS, PWI indicates cerebral hypoperfusion predominantly due to impaired venous drainage, with only the most severely affected regions in some patients also showing arterial perfusion deficiency. The extent and severity of the perfusion abnormality and neuronal loss/dysfunction reflect the severity of neurological symptoms and disability, and the highest correlation is found with the degree of hemiparesis. These parameters may be useful as quantitative measures of disease burden; however, further studies in larger number of patients (and with a more homogeneous age range) are required to confirm the preliminary findings reported here.

  14. Reduced Cerebrovascular Reactivity and Increased Resting Cerebral Perfusion in Rats Exposed to a Cafeteria Diet.

    PubMed

    Gomez-Smith, Mariana; Janik, Rafal; Adams, Conner; Lake, Evelyn M; Thomason, Lynsie A M; Jeffers, Matthew S; Stefanovic, Bojana; Corbett, Dale

    2018-02-10

    To better understand the effects of a diet high in fat, sugar, and sodium on cerebrovascular function, Sprague Dawley rats were chronically exposed to a Cafeteria diet. Resting cerebral perfusion and cerebrovascular reactivity was quantified using continuous arterial spin labeling (CASL) magnetic resonance imaging (MRI). In addition, structural changes to the cerebrovasculature and susceptibility to ischemic lesion were examined. Compared to control animals fed standard chow (SD), Cafeteria diet (CAF) rats exhibited increased resting brain perfusion in the hippocampus and reduced cerebrovascular reactivity in response to 10% inspired CO 2 challenges in both the hippocampus and the neocortex. CAF rats switched to chow for one month (SWT) exhibited improved resting perfusion in the hippocampus as well as improved cerebrovascular reactivity in the neocortex. However, the diet switch did not correct cerebrovascular reactivity in the hippocampus. These changes were not accompanied by alterations in the structural integrity of the cerebral microvasculature, examined using rat endothelial cell antigen-1 (RECA-1) and immunoglobulin G (IgG) immunostaining. Also, the extent of tissue damage induced by endothelin-1 injection into sensorimotor cortex was not affected by the Cafeteria diet. These results demonstrate that short-term consumption of an ultra-processed diet reduces cerebrovascular reactivity. This effect persists after dietary normalization despite recovery of peripheral symptomatology. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Recombinant antibody production by perfusion cultures of rCHO cells in a depth filter perfusion system.

    PubMed

    Lee, Joon Chul; Chang, Ho Nam; Oh, Duk Jae

    2005-01-01

    Recombinant Chinese hamster ovary cells, producing recombinant antibody against the human platelet, were cultivated in a depth filter perfusion system (DFPS). When perfusion cultures with working volume of 1 L were operated at perfusion rates of 5/d and 6/d, volumetric antibody productivities reached values 28 and 34 times higher than that of batch suspension culture in Erlenmeyer flasks and 43 and 53 times higher than that of batch culture in a controlled stirred tank reactor, respectively. Perfusion cultures in the DFPS showed stable antibody production over the whole culture period of up to 20 days. In the DFPS, inoculated cells in suspension were entrapped in a few hours within the depth filter matrix by medium circulation and retained there until the void space of the filter matrix was saturated by the cultured cells. After cells in the depth filter matrix reached saturation, overgrown viable cells at a perfusion rate of 5/d or 6/d were continuously collected into waste medium at a density of 2-4 x 10(5) cells/mL, which resulted in stable operation at high perfusion rates, maintaining values of process parameters such as glucose/lactate concentration, pH, and dissolved oxygen concentration. Because the DFPS overcomes most drawbacks observed with conventional perfusion systems, it is preferable to be used as a key culture system to produce monoclonal antibody stably for a long culture period.

  16. Diagnostic problems in case of twin pregnancies: US vs. MRI study.

    PubMed

    Bekiesinska-Figatowska, Monika; Herman-Sucharska, Izabela; Romaniuk-Doroszewska, Anna; Jaczynska, Renata; Furmanek, Mariusz; Bragoszewska, Hanna

    2013-09-01

    To present an experience with twin pregnancies underlining the impact of magnetic resonance imaging (MRI) on diagnosis and management. There were 17 cases of twin pregnancies: nine monochorionic [including four monochorionic diamniotic and five monochorionic monoamniotic (conjoined twins)] and eight dichorionic. The MRI examinations were performed between 19 and 39 weeks of gestational age in two centers using 1.5 T scanners (GE Signa Excite and GE Signa HDxt; GE Healthcare, Waukesha, WI, USA), always after ultrasound (US). In the first period of our activity, SSFSE sequence in T2-weighted images (SSFSE/T2WI) was the main diagnostic tool supported by TSE or GRE T1-weighted images (T1WI). After upgrading the scanners, diffusion-weighted imaging (DWI), steady-state free precession (FIESTA), and echoplanar GRE imaging (EPIGRE) became available. In 11 cases (64.7%), MRI was superior to US and supplied additional information, including two cases in which pathology of the second twin suspected on US was ruled out on the basis of MRI. In six cases (35.3%) MRI confirmed US diagnosis and brought no new data. MRI offers more detailed assessment of fetal pathology in cases of twin pregnancies, including conjoined twins, in which sonographic evaluation is more difficult than in single cases.

  17. Microvascular Perfusion Changes following Transarterial Hepatic Tumor Embolization

    PubMed Central

    Johnson, Carmen Gacchina; Sharma, Karun V.; Levy, Elliot B.; Woods, David L.; Morris, Aaron H.; Bacher, John D.; Lewis, Andrew L.; Wood, Bradford J.; Dreher, Matthew R.

    2015-01-01

    Purpose To quantify changes in tumor microvascular (< 1 mm) perfusion relative to commonly used angiographic endpoints. Materials and Methods Rabbit Vx2 liver tumors were embolized with 100–300-µm LC Bead particles to endpoints of substasis or complete stasis (controls were not embolized). Microvascular perfusion was evaluated by delivering two different fluorophore-conjugated perfusion markers (ie, lectins) through the catheter before embolization and 5 min after reaching the desired angiographic endpoint. Tumor microvasculature was labeled with an anti-CD31 antibody and analyzed with fluorescence microscopy for perfusion marker overlap/mismatch. Data were analyzed by analysis of variance and post hoc test (n = 3–5 per group; 18 total). Results Mean microvascular density was 70 vessels/mm2 ± 17 (standard error of the mean), and 81% ± 1 of microvasculature (ie, CD31+ structures) was functionally perfused within viable Vx2 tumor regions. Embolization to the extent of substasis eliminated perfusion in 37% ± 9 of perfused microvessels (P > .05 vs baseline), whereas embolization to the extent of angiographic stasis eliminated perfusion in 56% ± 8 of perfused microvessels. Persistent microvascular perfusion following embolization was predominantly found in the tumor periphery, adjacent to normal tissue. Newly perfused microvasculature was evident following embolization to substasis but not when embolization was performed to complete angiographic stasis. Conclusions Nearly half of tumor microvasculature remained patent despite embolization to complete angiographic stasis. The observed preservation of tumor microvasculature perfusion with angiographic endpoints of substasis and stasis may have implications for tumor response to embolotherapy. PMID:26321051

  18. Dynamic contrast-enhanced (DCE) MRI derived kinetic perfusion indices may help predicting seizure control in single calcified neurocysticercosis.

    PubMed

    Singh, Alok Kumar; Garg, Ravindra Kumar; Gupta, Rakesh Kumar; Malhotra, Hardeep Singh; Agrawal, Gaurav Raj; Husain, Nuzhat; Pandey, Chandra Mani; Sahoo, Prativa; Kumar, Neeraj

    2018-06-01

    The factors responsible for seizure recurrence in patients with Solitary calcified neurocysticercosis (NCC) are not well understood. Blood brain barrier (BBB) breach may be associated with seizure recurrence. Dynamic contrast enhanced (DCE) MRI derived indices k ep, k trans and v e are useful in quantifying BBB permeability. In this study, we assessed the possible role of DCE-MRI and matrix metalloproteinases (MMP)-9 levels in predicting seizure recurrence. In this prospective-observational study, patients with new-onset seizures and a solitary calcified NCC were included. DCE-MRI was done to quantify BBB integrity. DCE-MRI parameters were measured as k ep , k trans and v e . MMP-9 levels were estimated. Patients were followed for 1 year, when DCE-MRI and MMP-9 levels were repeated. Patients were classified into two groups on the basis of seizure recurrence, which was defined as the recurrence of an episode of seizure at least 1 week after the initiation of the anti-epileptic drugs. Logistic regression analysis was done. At 1-year of follow up, 8 out of 32 patients had seizure recurrence. Baseline DCE-MRI derived k ep (p = 0.015) and MMP-9 levels (p = 0.019) were significantly higher in the seizure "recurrence" group compared with the "no recurrence" group. On within-group analysis, a significant increase in k ep (p = 0.012), v e (p = 0.012), and MMP-9 levels (p = 0.017) was observed in the seizure "recurrence" group while a decrease was seen in v e and MMP-9 levels in the "no recurrence" group. Higher values of DCE-MRI indices and MMP-9 levels, with a corresponding trend in the follow-up, can be useful in predicting lesions with a higher propensity for seizure recurrence. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Using iron oxide nanoparticles to diagnose CNS inflammatory diseases and PCNSL.

    PubMed

    Farrell, Brian T; Hamilton, Bronwyn E; Dósa, Edit; Rimely, Endre; Nasseri, Morad; Gahramanov, Seymur; Lacy, Cynthia A; Frenkel, Eugene P; Doolittle, Nancy D; Jacobs, Paula M; Neuwelt, Edward A

    2013-07-16

    The study goal was to assess the benefits and potential limitations in the use of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles in the MRI diagnosis of CNS inflammatory diseases and primary CNS lymphoma. Twenty patients with presumptive or known CNS lesions underwent MRI study. Eighteen patients received both gadolinium-based contrast agents (GBCAs) and 1 of 2 USPIO contrast agents (ferumoxytol and ferumoxtran-10) 24 hours apart, which allowed direct comparative analysis. The remaining 2 patients had only USPIO-enhanced MRI because of a renal contraindication to GBCA. Conventional T1- and T2-weighted MRI were acquired before and after contrast administration in all patients, and perfusion MRI for relative cerebral blood volume (rCBV) assessment was obtained in all 9 patients receiving ferumoxytol. USPIO-enhanced MRI showed an equal number of enhancing brain lesions in 9 of 18 patients (50%), more enhancing lesions in 2 of 18 patients (11%), and fewer enhancing lesions in 3 of 18 patients (17%) compared with GBCA-enhanced MRI. Four of 18 patients (22%) showed no MRI enhancement. Dynamic susceptibility-weighted contrast-enhanced perfusion MRI using ferumoxytol showed low rCBV (ratio <1.0) in 3 cases of demyelination or inflammation, modestly elevated rCBV in 5 cases of CNS lymphoma or lymphoproliferative disorder (range: 1.3-4.1), and no measurable disease in one case. This study showed that USPIO-enhanced brain MRI can be useful in the diagnosis of CNS inflammatory disorders and lymphoma, and is also useful for patients with renal compromise at risk of nephrogenic systemic fibrosis who are unable to receive GBCA.

  20. [Contrast-enhanced Ultrasound in Diagnostic Imaging of Muscle Injuries: Perfusion Imaging in the Early Arterial Phase].

    PubMed

    Hotfiel, T; Carl, H D; Swoboda, B; Engelhardt, M; Heinrich, M; Strobel, D; Wildner, D

    2016-03-01

    Ultrasound is a standard procedure widely used in the diagnostic investigation of muscle injuries and widely described in the literature. Its advantages include rapid availability, cost effectiveness and the possibility to perform a real-time dynamic examination with the highest possible spatial resolution. In the diagnostic work-up of minor lesions (muscle stiffness, muscle strain), plain ultrasound has so far been inferior to MRI. The case presented by us is an example of the possibilities offered by contrast-enhanced ultrasound (CEUS) in the imaging of muscle injuries compared with plain B-mode image ultrasound and MRI imaging of the affected region. This case report is about a high-performance football player who sustained a muscle injury. He underwent an ultrasound examination (S 2000, 9L4 Probe, Siemens, Germany), which was performed simultaneously in the conventional and contrast-enhanced mode at the level of the lesion. An intravenous bolus injection of 4.8 ml of intravascular contrast agent (SonoVue(®), Bracco, Italy) was given via a cubital intravenous line. After that, the distribution of contrast agent was visualised in the early arterial phase. In addition, a plain magnetic resonance imaging scan of both thighs was performed for reference. On conventional ultrasound, the lesion was not clearly distinguishable from neighbouring tissue, whereas contrast-enhanced ultrasound demonstrated a well delineated, circumscribed area of impaired perfusion with hypoenhancement compared with the surrounding muscles at the clinical level of the lesion in the arterial wash-in phase (0-30 sec, after intravenous administration). The MRI scan revealed an edema signal with perifascial fluid accumulation in the corresponding site. The use of intravascular contrast agent enabled the sensitive detection of a minor injury by ultrasound for the first time. An intramuscular edema seen in the MRI scan showed a functional arterial perfusion impairment on ultrasound, which was

  1. Prevalence of ECG changes during adenosine stress and its association with perfusion defect on myocardial perfusion scintigraphy.

    PubMed

    Taywade, Sameer K; Ramaiah, Vijayaraghavan L; Basavaraja, Harish; Venkatasubramaniam, Parameswaran R; Selvakumar, Job

    2017-04-01

    Myocardial perfusion scintigraphy (MPS) is a valuable, noninvasive imaging modality in the evaluation of patients with coronary artery disease. Adenosine stress may occasionally be associated with ECG changes. This study evaluated the strength of association between adenosine stress-related ECG changes and perfusion defects on Tc-MPS. 117 (mean age: 61.25±9.27 years; sex: men 87, women 30) patients with known/suspected coronary artery disease underwent adenosine stress MPS. ECG was monitored continuously during adenosine stress for ST-depression. On the basis of the summed difference score, reversible perfusion defects were categorized as follows: normal: less than 4, mild: 4-8, moderate: 9-13, and severe: more than 13. ST-depression was observed in 27/117 (23.1%) and reversible perfusion defects were observed in 18/27 (66.66%) patients. 2/27, 6/27, and 10/27 patients had mild, moderate, and severe ischemia, respectively. 9/27 patients had normal perfusion. ECG changes and perfusion defects showed a moderate strength of association (correlation coefficient r=0.35, P=0.006). The sensitivity, specificity, positive predictive value, and negative predictive value of ECG findings for prediction of ischemia were 35.29, 86.36, 67.67, and 63.33%, respectively. ECG changes during adenosine stress are not uncommon. It shows a moderate strength of association with reversible perfusion defects. ECG changes during adenosine merit critical evaluation of MPS findings.

  2. Anatomic study of the canine stifle using low-field magnetic resonance imaging (MRI) and MRI arthrography.

    PubMed

    Pujol, Esteban; Van Bree, Henri; Cauzinille, Laurent; Poncet, Cyrill; Gielen, Ingrid; Bouvy, Bernard

    2011-06-01

    To investigate the use of low-field magnetic resonance imaging (MRI) and MR arthrography in normal canine stifles and to compare MRI images to gross dissection. Descriptive study. Adult canine pelvic limbs (n=17). Stifle joints from 12 dogs were examined by orthopedic and radiographic examination, synovial fluid analysis, and MRI performed using a 0.2 T system. Limbs 1 to 7 were used to develop the MR and MR arthrography imaging protocol. Limbs 8-17 were studied with the developed MR and MR arthrography protocol and by gross dissection. Three sequences were obtained: T1-weighted spin echo (SE) in sagittal, dorsal, and transverse plane; T2-weighted SE in sagittal plane and T1-gradient echo in sagittal plane. Specific bony and soft tissue structures were easily identifiable with the exception of articular cartilage. The cranial and caudal cruciate ligaments were identified. Medial and lateral menisci were seen as wedge-shaped hypointense areas. MR arthrography permitted further delineation of specific structures. MR images corresponded with gross dissection morphology. With the exception of poor delineation of articular cartilage, a low-field MRI and MR arthrography protocol provides images of adequate quality to assess the normal canine stifle joint. © Copyright 2011 by The American College of Veterinary Surgeons.

  3. Amiodarone causes acute oxidant lung injury in ventilated and perfused rabbit lungs.

    PubMed

    Kennedy, T P; Gordon, G B; Paky, A; McShane, A; Adkinson, N F; Peters, S P; Friday, K; Jackman, W; Sciuto, A M; Gurtner, G H

    1988-07-01

    Amiodarone (ADR), a new antiarrhythmic drug for life-threatening cardiac arrhythmias, causes pneumonitis or lung fibrosis in a sizeable minority of patients. The cause of lung damage is not known. We have shown that infusion of 10 mg amiodarone into the inflow circuit of ventilated and perfused rabbit lungs causes immediate increase in pulmonary artery pressure (mean +/- SEM) (from 13.6 +/- 1.2 to 40.6 +/- 9.5 mm Hg, p less than 0.01) and pulmonary edema with marked increase in the pulmonary generation of thromboxane and leukotrienes C4 and/or D4. Albumin (2 g%) in the perfusate prevents any increase in lung perfusion pressure or edema formation. When lung perfusion pressure increase is blocked with the combined cyclooxygenase and lipoxygenase inhibitor enolicam sodium (CG5391B, 35 microM in perfusate), significant lung edema still occurs after amiodarone, indicating that amiodarone causes increased alveolar-capillary membrane permeability. Addition of catalase (100 U/ml) or superoxide dismutase and catalase (100 U/ml each) to perfusate fails to protect from amiodarone lung injury. Immediate infusion of amiodarone (10 mg) into lungs ventilated with room air (ADR + RA) causes an increase in lung weight gain from baseline (delta W) of 5.7 +/- 1.5 g/min. Compared with ADR + RA, ventilation of lungs with 4% O2 (delta W = 0.7 +/- 0.3 g/min, p less than 0.05), pretreatment of rabbits for 3 days with butylated hydroxyanisole (BHA, 100 mg/kg/day i.p., delta W = 0.05 +/- 0.02 g/min, p less than 0.01), pretreatment of rabbits for 3 days with vitamin E (Vit E, 300 U/day orally, delta W = 0.6 +/- 0.2 g/min, p less than 0.05), or addition of N-acetylcysteine to the lung perfusate (NAC, 5 mM, delta W = 0.1 +/- 0.08 g/min, p less than 0.01) all protect from lung edema formation after amiodarone. Amiodarone (100 mg) also caused a marked increase in luminol-enhanced lung chemiluminescence, lung production of superoxide anion (O2-), and tissue levels of lung glutathione disulfide

  4. Preclinical Feasibility of a Technology Framework for MRI-guided Iliac Angioplasty

    PubMed Central

    Rube, Martin A.; Fernandez-Gutierrez, Fabiola; Cox, Benjamin F.; Holbrook, Andrew B.; Houston, J. Graeme; White, Richard D.; McLeod, Helen; Fatahi, Mahsa; Melzer, Andreas

    2015-01-01

    Purpose Interventional MRI has significant potential for image guidance of iliac angioplasty and related vascular procedures. A technology framework with in-room image display, control, communication and MRI-guided intervention techniques was designed and tested for its potential to provide safe, fast and efficient MRI-guided angioplasty of the iliac arteries. Methods A 1.5T MRI scanner was adapted for interactive imaging during endovascular procedures using new or modified interventional devices such as guidewires and catheters. A perfused vascular phantom was used for testing. Pre-, intra- and post-procedural visualization and measurement of vascular morphology and flow was implemented. A detailed analysis of X-Ray fluoroscopic angiography workflow was conducted and applied. Two interventional radiologists and one physician in training performed 39 procedures. All procedures were timed and analyzed. Results MRI-guided iliac angioplasty procedures were successfully performed with progressive adaptation of techniques and workflow. The workflow, setup and protocol enabled a reduction in table time for a dedicated MRI-guided procedure to 6 min 33 s with a mean procedure time of 9 min 2 s, comparable to the mean procedure time of 8 min 42 s for the standard X-Ray guided procedure. Conclusions MRI-guided iliac vascular interventions were found to be feasible and practical using this framework and optimized workflow. In particular the real-time flow analysis was found to be helpful for pre- and post-interventional assessments. Design optimization of the catheters and in vivo experiments are required before clinical evaluation. PMID:25102933

  5. Reduced CMRO₂ and cerebrovascular reserve in patients with severe intracranial arterial stenosis: a combined multiparametric qBOLD oxygenation and BOLD fMRI study.

    PubMed

    Bouvier, Julien; Detante, Olivier; Tahon, Florence; Attye, Arnaud; Perret, Thomas; Chechin, David; Barbieux, Marianne; Boubagra, Kamel; Garambois, Katia; Tropres, Irène; Grand, Sylvie; Barbier, Emmanuel L; Krainik, Alexandre

    2015-02-01

    Multiparametric quantitative blood oxygenation level dependent (mqBOLD) magnetic resonance Imaging (MRI) approach allows mapping tissular oxygen saturation (StO2 ) and cerebral metabolic rate of oxygen (CMRO2 ). To identify hemodynamic alteration related to severe intracranial arterial stenosis (SIAS), functional MRI of cerebrovascular reserve (CVR BOLD fMRI) to hypercapnia has been proposed. Diffusion imaging suggests chronic low grade ischemia in patients with impaired CVR. The aim of the present study was to evaluate how oxygen parameters (StO2 and CMRO2 ), assessed with mqBOLD approach, correlate with CVR in patients (n = 12) with SIAS and without arterial occlusion. The perfusion (dynamic susceptibility contrast), oxygenation, and CVR were compared. The MRI protocol conducted at 3T lasted approximately 1 h. Regions of interest measures on maps were delineated on segmented gray matter (GM) of middle cerebral artery territories. We have shown that decreased CVR is spatially associated with decreased CMRO2 in GM of patients with SIAS. Further, the degree of ipsilateral CVR reduction was well-correlated with the amplitude of the CMRO2 deficit. The altered CMRO2 suggests the presence of a moderate ischemia explained by both a decrease in perfusion and in CVR. CVR and mqBOLD method may be helpful in the selection of patients with SIAS to advocate for medical therapy or percutaneous transluminal angioplasty-stenting. © 2014 Wiley Periodicals, Inc.

  6. Decreased cerebral perfusion in Duchenne muscular dystrophy patients.

    PubMed

    Doorenweerd, Nathalie; Dumas, Eve M; Ghariq, Eidrees; Schmid, Sophie; Straathof, Chiara S M; Roest, Arno A W; Wokke, Beatrijs H; van Zwet, Erik W; Webb, Andrew G; Hendriksen, Jos G M; van Buchem, Mark A; Verschuuren, Jan J G M; Asllani, Iris; Niks, Erik H; van Osch, Matthias J P; Kan, Hermien E

    2017-01-01

    Duchenne muscular dystrophy is caused by dystrophin gene mutations which lead to the absence of the protein dystrophin. A significant proportion of patients suffer from learning and behavioural disabilities, in addition to muscle weakness. We have previously shown that these patients have a smaller total brain and grey matter volume, and altered white matter microstructure compared to healthy controls. Patients with more distal gene mutations, predicted to affect dystrophin isoforms Dp140 and Dp427, showed greater grey matter reduction. Now, we studied if cerebral blood flow in Duchenne muscular dystrophy patients is altered, since cerebral expression of dystrophin also occurs in vascular endothelial cells and astrocytes associated with cerebral vasculature. T1-weighted anatomical and pseudo-continuous arterial spin labeling cerebral blood flow images were obtained from 26 patients and 19 age-matched controls (ages 8-18 years) on a 3 tesla MRI scanner. Group comparisons of cerebral blood flow were made with and without correcting for grey matter volume using partial volume correction. Results showed that patients had a lower cerebral blood flow than controls (40.0 ± 6.4 and 47.8 ± 6.3 mL/100 g/min respectively, p = 0.0002). This reduction was independent of grey matter volume, suggesting that they are two different aspects of the pathophysiology. Cerebral blood flow was lowest in patients lacking Dp140. There was no difference in CBF between ambulant and non-ambulant patients. Only three patients showed a reduced left ventricular ejection fraction. No correlation between cerebral blood flow and age was found. Our results indicate that cerebral perfusion is reduced in Duchenne muscular dystrophy patients independent of the reduced grey matter volume. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Pancreas transplants: Evaluation using perfusion scintigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuni, C.C.; du Cret, R.P.; Boudreau, R.J.

    1989-07-01

    To determine the value of scintigraphic perfusion studies in evaluating pancreas transplant patients, we reviewed 56 of these studies in 22 patients who had 27 transplants. Seventeen patients underwent two or more studies. The perfusion studies were performed with 20 mCi (740 MBq) of 99mTc-DTPA injected as a bolus followed by eight to 16 serial 2-sec images and a 500,000-count immediate static image. Images were evaluated for (1) the time and intensity of pancreatic peak radioactivity relative to the time and intensity of the iliac arterial peak; (2) relative pancreatic to iliac arterial intensity on the static image; and (3)more » size, homogeneity, and definition of the pancreas. Clinical diagnoses at the time of scintigraphy of normal function (n = 36), rejection (n = 13), pancreatitis (n = 6), or arterial thrombosis (n = 1) were based on insulin requirement, urine amylase, serum glucose, serum amylase, response to therapy, cultures, CT, MR, sonography, scintigraphy with 67Ga or 111In-WBCs, percutaneous drainage results, angiography, surgery, and pathologic examination of resected transplants. Three 99mTc-DTPA perfusion studies showed no pancreatic perfusion, four showed decreasing perfusion on serial studies, and five showed progressive loss of definition of the pancreas on serial studies. Of the three patients with no detectable perfusion, one had a normally functioning transplant, one had arterial thrombosis with transplant infarction, and one had severe rejection with minimal function. Decreasing perfusion was associated with rejection in three patients and pancreatitis in one. Decreasing definition was seen in four patients with rejection and one with pancreatitis. We conclude that perfusion scintigraphy is useful, primarily when performed serially, although nonspecific for evaluating pancreas transplants.« less

  8. Vicarious audiovisual learning in perfusion education.

    PubMed

    Rath, Thomas E; Holt, David W

    2010-12-01

    Perfusion technology is a mechanical and visual science traditionally taught with didactic instruction combined with clinical experience. It is difficult to provide perfusion students the opportunity to experience difficult clinical situations, set up complex perfusion equipment, or observe corrective measures taken during catastrophic events because of patient safety concerns. Although high fidelity simulators offer exciting opportunities for future perfusion training, we explore the use of a less costly low fidelity form of simulation instruction, vicarious audiovisual learning. Two low fidelity modes of instruction; description with text and a vicarious, first person audiovisual production depicting the same content were compared. Students (n = 37) sampled from five North American perfusion schools were prospectively randomized to one of two online learning modules, text or video.These modules described the setup and operation of the MAQUET ROTAFLOW stand-alone centrifugal console and pump. Using a 10 question multiple-choice test, students were assessed immediately after viewing the module (test #1) and then again 2 weeks later (test #2) to determine cognition and recall of the module content. In addition, students completed a questionnaire assessing the learning preferences of today's perfusion student. Mean test scores from test #1 for video learners (n = 18) were significantly higher (88.89%) than for text learners (n = 19) (74.74%), (p < .05). The same was true for test #2 where video learners (n = 10) had an average score of 77% while text learners (n = 9) scored 60% (p < .05). Survey results indicated video learners were more satisfied with their learning module than text learners. Vicarious audiovisual learning modules may be an efficacious, low cost means of delivering perfusion training on subjects such as equipment setup and operation. Video learning appears to improve cognition and retention of learned content and may play an important role in how we

  9. Assessment of vessel permeability by combining dynamic contrast-enhanced and arterial spin labeling MRI.

    PubMed

    Liu, Ho-Ling; Chang, Ting-Ting; Yan, Feng-Xian; Li, Cheng-He; Lin, Yu-Shi; Wong, Alex M

    2015-06-01

    The forward volumetric transfer constant (K(trans)), a physiological parameter extracted from dynamic contrast-enhanced (DCE) MRI, is weighted by vessel permeability and tissue blood flow. The permeability × surface area product per unit mass of tissue (PS) in brain tumors was estimated in this study by combining the blood flow obtained through pseudo-continuous arterial spin labeling (PCASL) and K(trans) obtained through DCE MRI. An analytical analysis and a numerical simulation were conducted to understand how errors in the flow and K(trans) estimates would propagate to the resulting PS. Fourteen pediatric patients with brain tumors were scanned on a clinical 3-T MRI scanner. PCASL perfusion imaging was performed using a three-dimensional (3D) fast-spin-echo readout module to determine blood flow. DCE imaging was performed using a 3D spoiled gradient-echo sequence, and the K(trans) map was obtained with the extended Tofts model. The numerical analysis demonstrated that the uncertainty of PS was predominantly dependent on that of K(trans) and was relatively insensitive to the flow. The average PS values of the whole tumors ranged from 0.006 to 0.217 min(-1), with a mean of 0.050 min(-1) among the patients. The mean K(trans) value was 18% lower than the PS value, with a maximum discrepancy of 25%. When the parametric maps were compared on a voxel-by-voxel basis, the discrepancies between PS and K(trans) appeared to be heterogeneous within the tumors. The PS values could be more than two-fold higher than the K(trans) values for voxels with high K(trans) levels. This study proposes a method that is easy to implement in clinical practice and has the potential to improve the quantification of the microvascular properties of brain tumors. Copyright © 2015 John Wiley & Sons, Ltd.

  10. MRI with and without a high-density EEG cap--what makes the difference?

    PubMed

    Klein, Carina; Hänggi, Jürgen; Luechinger, Roger; Jäncke, Lutz

    2015-02-01

    Besides the benefit of combining electroencephalography (EEG) and magnetic resonance imaging (MRI), much effort has been spent to develop algorithms aimed at successfully cleaning the EEG data from MRI-related gradient and ballistocardiological artifacts. However, there are also studies showing a negative influence of the EEG on MRI data quality. Therefore, in the present study, we focused for the first time on the influence of the EEG on morphometric measurements of T1-weighted MRI data (voxel- and surfaced-based morphometry). Here, we demonstrate a strong influence of the EEG on cortical thickness, surface area, and volume as well as subcortical volumes due to local EEG-related inhomogeneities of the static magnetic (B0) and the gradient field (B1). In a second step, we analyzed the signal-to-noise ratios for both the anatomical and the functional data when recorded simultaneously with EEG and MRI and compared them to the ratios of the MRI data without simultaneous EEG measurements. These analyses revealed consistently lower signal-to-noise ratios for anatomical as well as functional MRI data during simultaneous EEG registration. In contrast, further analyses of T2*-weighted images provided reliable results independent of whether including the individuals' T1-weighted image with or without the EEG cap in the fMRI preprocessing stream. Based on our findings, we strongly recommend against using the structural images obtained during simultaneous EEG-MRI recordings for further anatomical data analysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Gliomas: Application of Cumulative Histogram Analysis of Normalized Cerebral Blood Volume on 3 T MRI to Tumor Grading

    PubMed Central

    Kim, Hyungjin; Choi, Seung Hong; Kim, Ji-Hoon; Ryoo, Inseon; Kim, Soo Chin; Yeom, Jeong A.; Shin, Hwaseon; Jung, Seung Chai; Lee, A. Leum; Yun, Tae Jin; Park, Chul-Kee; Sohn, Chul-Ho; Park, Sung-Hye

    2013-01-01

    Background Glioma grading assumes significant importance in that low- and high-grade gliomas display different prognoses and are treated with dissimilar therapeutic strategies. The objective of our study was to retrospectively assess the usefulness of a cumulative normalized cerebral blood volume (nCBV) histogram for glioma grading based on 3 T MRI. Methods From February 2010 to April 2012, 63 patients with astrocytic tumors underwent 3 T MRI with dynamic susceptibility contrast perfusion-weighted imaging. Regions of interest containing the entire tumor volume were drawn on every section of the co-registered relative CBV (rCBV) maps and T2-weighted images. The percentile values from the cumulative nCBV histograms and the other histogram parameters were correlated with tumor grades. Cochran’s Q test and the McNemar test were used to compare the diagnostic accuracies of the histogram parameters after the receiver operating characteristic curve analysis. Using the parameter offering the highest diagnostic accuracy, a validation process was performed with an independent test set of nine patients. Results The 99th percentile of the cumulative nCBV histogram (nCBV C99), mean and peak height differed significantly between low- and high-grade gliomas (P = <0.001, 0.014 and <0.001, respectively) and between grade III and IV gliomas (P = <0.001, 0.001 and <0.001, respectively). The diagnostic accuracy of nCBV C99 was significantly higher than that of the mean nCBV (P = 0.016) in distinguishing high- from low-grade gliomas and was comparable to that of the peak height (P = 1.000). Validation using the two cutoff values of nCBV C99 achieved a diagnostic accuracy of 66.7% (6/9) for the separation of all three glioma grades. Conclusion Cumulative histogram analysis of nCBV using 3 T MRI can be a useful method for preoperative glioma grading. The nCBV C99 value is helpful in distinguishing high- from low-grade gliomas and grade IV from III gliomas. PMID:23704910

  12. Diffusion MRI: literature review in salivary gland tumors.

    PubMed

    Attyé, A; Troprès, I; Rouchy, R-C; Righini, C; Espinoza, S; Kastler, A; Krainik, A

    2017-07-01

    Surgical resection is currently the best treatment for salivary gland tumors. A reliable magnetic resonance imaging mapping, encompassing tumor grade, location, and extension may assist safe and effective tumor resection and provide better information for patients regarding potential risks and morbidity after surgical intervention. However, direct examination of the tumor grade and extension using conventional morphological MRI remains difficult, often requiring contrast media injection and complex algorithms on perfusion imaging to estimate the degree of malignancy. In addition, contrast-enhanced MRI technique may be problematic due to the recently demonstrated gadolinium accumulation in the dentate nucleus of the cerebellum. Significant developments in magnetic resonance diffusion imaging, involving voxel-based quantitative analysis through the measurement of the apparent diffusion coefficient, have enhanced our knowledge on the different histopathological salivary tumor grades. Other diffusion imaging-derived techniques, including high-order tractography models, have recently demonstrated their usefulness in assessing the facial nerve location in parotid tumor context. All of these imaging techniques do not require contrast media injection. Our review starts by outlining the physical basis of diffusion imaging, before discussing findings from diagnostic studies testing its usefulness in assessing salivary glands tumors with diffusion MRI. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Hypothermic machine perfusion in kidney transplantation.

    PubMed

    De Deken, Julie; Kocabayoglu, Peri; Moers, Cyril

    2016-06-01

    This article summarizes novel developments in hypothermic machine perfusion (HMP) as an organ preservation modality for kidneys recovered from deceased donors. HMP has undergone a renaissance in recent years. This renewed interest has arisen parallel to a shift in paradigms; not only optimal preservation of an often marginal quality graft is required, but also improved graft function and tools to predict the latter are expected from HMP. The focus of attention in this field is currently drawn to the protection of endothelial integrity by means of additives to the perfusion solution, improvement of the HMP solution, choice of temperature, duration of perfusion, and machine settings. HMP may offer the opportunity to assess aspects of graft viability before transplantation, which can potentially aid preselection of grafts based on characteristics such as perfusate biomarkers, as well as measurement of machine perfusion dynamics parameters. HMP has proven to be beneficial as a kidney preservation method for all types of renal grafts, most notably those retrieved from extended criteria donors. Large numbers of variables during HMP, such as duration, machine settings and additives to the perfusion solution are currently being investigated to improve renal function and graft survival. In addition, the search for biomarkers has become a focus of attention to predict graft function posttransplant.

  14. Comparison of 7T and 3T MRI in patients with moyamoya disease.

    PubMed

    Oh, Byeong Ho; Moon, Hyeong Cheol; Baek, Hyeon Man; Lee, Youn Joo; Kim, Sang Woo; Jeon, Young Jai; Lee, Gun Seok; Kim, Hong Rae; Choi, Jai Ho; Min, Kyung Soo; Lee, Mou Seop; Kim, Young Gyu; Kim, Dong Ho; Kim, Won Seop; Park, Young Seok

    2017-04-01

    Magnetic resonance imaging and magnetic resonance angiography (MRI/MRA) are widely used for evaluating the moyamoya disease (MMD). This study compared the diagnostic accuracy of 7Tesla (T) and 3T MRI/MRA in MMD. In this case control study, 12 patients [median age: 34years; range (10-66years)] with MMD and 12 healthy controls [median age: 25years; range (22-59years)] underwent both 7T and 3T MRI/MRA. To evaluate the accuracy of MRI/MRA in MMD, five criteria were compared between imaging systems of 7T and 3T: Suzuki grading system, internal carotid artery (ICA) diameter, ivy sign, flow void of the basal ganglia on T2-weighted images, and high signal intensity areas of the basal ganglia on time-of-flight (TOF) source images. No difference was observed between 7T and 3T MRI/MRA in Suzuki stage, ICA diameter, and ivy sign score; while, 7T MRI/MRA showed a higher detection rate in the flow void on T2-weighted images and TOF source images (p<0.001). Receiver operating characteristic curves of both T2 and TOF criteria showed that 7T MRI/MRA had higher sensitivity and specificity than 3T MRI/MRA. Our findings indicate that 7T MRI/MRA is superior to 3T MRI/MRA for the diagnosis of MMD in point of detecting the flow void in basal ganglia by T2-weighted and TOF images. Copyright © 2016. Published by Elsevier Inc.

  15. Cerebral Perfusion Changes in Post-Concussion Syndrome: A Prospective Controlled Cohort Study

    PubMed Central

    Marcil, Lorenzo D.; Dewey, Deborah; Carlson, Helen L.; MacMaster, Frank P.; Brooks, Brian L.; Lebel, R. Marc

    2017-01-01

    Abstract The biology of post-concussive symptoms is unclear. Symptoms are often increased during activities, and have been linked to decreased cerebrovascular reactivity and perfusion. The aim of this study was to examine cerebral blood flow (CBF) in children with different clinical recovery patterns following mild traumatic brain injury (mTBI). This was a prospective controlled cohort study of children with mTBI (ages 8 to 18 years) who were symptomatic with post-concussive symptoms at one month post-injury (symptomatic, n = 27) and children who had recovered quickly (asymptomatic, n = 24). Pseudo continuous arterial spin labeling magnetic resonance imaging (MRI) was used to quantify CBF. The mTBI groups were imaged at 40 days post-injury. Global and regional CBF were compared with healthy controls of similar age and sex but without a history of mTBI (n = 21). Seventy-two participants (mean age: 14.1 years) underwent neuroimaging. Significant differences in CBF were found: global CBF was higher in the symptomatic group and lower in the asymptomatic group compared with controls, (F(2,69) 9.734; p < 0.001). Post-injury symptom score could be predicted by pre-injury symptoms and CBF in presence of mTBI (adjusted R2 = 0.424; p < 0.001). Altered patterns of cerebral perfusion are seen following mTBI and are associated with the recovery trajectory. Symptomatic children have higher CBF. Children who “recovered” quickly, have decreased CBF suggesting that clinical recovery precedes the cerebral recovery. Further longitudinal studies are required to determine if these perfusion patterns continue to change over time. PMID:27554429

  16. Ex vivo lung perfusion.

    PubMed

    Reeb, Jeremie; Cypel, Marcelo

    2016-03-01

    Lung transplantation is an established life-saving therapy for patients with end-stage lung disease. Unfortunately, greater success in lung transplantation is hindered by a shortage of lung donors and the relatively poor early-, mid-, and long-term outcomes associated with severe primary graft dysfunction. Ex vivo lung perfusion has emerged as a modern preservation technique that allows for a more accurate lung assessment and improvement in lung quality. This review outlines the: (i) rationale behind the method; (ii) techniques and protocols; (iii) Toronto ex vivo lung perfusion method; (iv) devices available; and (v) clinical experience worldwide. We also highlight the potential of ex vivo lung perfusion in leading a new era of lung preservation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Imaging discrepancies between magnetic resonance imaging and brain perfusion single-photon emission computed tomography in the diagnosis of Alzheimer's disease, and verification with amyloid positron emission tomography.

    PubMed

    Yokoyama, Shunichi; Kajiya, Yoriko; Yoshinaga, Takuma; Tani, Atsushi; Hirano, Hirofumi

    2014-06-01

    In the diagnosis of Alzheimer's disease (AD), discrepancies are often observed between magnetic resonance imaging (MRI) and brain perfusion single-photon emission computed tomography (SPECT) findings. MRI, brain perfusion SPECT, and amyloid positron emission tomography (PET) findings were compared in patients with mild cognitive impairment or early AD to clarify the discrepancies between imaging modalities. Several imaging markers were investigated, including the cortical average standardized uptake value ratio on amyloid PET, the Z-score of a voxel-based specific regional analysis system for AD on MRI, periventricular hyperintensity grade, deep white matter hyperintense signal grade, number of microbleeds, and three indicators of the easy Z-score imaging system for a specific SPECT volume-of-interest analysis. Based on the results of the regional analysis and the three indicators, we classified patients into four groups and then compared the results of amyloid PET, periventricular hyperintensity grade, deep white matter hyperintense signal grade, and the numbers of microbleeds among the groups. The amyloid deposition was the highest in the group that presented typical AD findings on both the regional analysis and the three indicators. The two groups that showed an imaging discrepancy between the regional analysis and the three indicators demonstrated intermediate amyloid deposition findings compared with the typical and atypical groups. The patients who showed hippocampal atrophy on the regional analysis and atypical AD findings using the three indicators were approximately 60% amyloid-negative. The mean periventricular hyperintensity grade was highest in the typical group. Patients showing discrepancies between MRI and SPECT demonstrated intermediate amyloid deposition findings compared with patients who showed typical or atypical findings. Strong white matter signal abnormalities on MRI in patients who presented typical AD findings provided further evidence for

  18. Rigid-body motion correction of the liver in image reconstruction for golden-angle stack-of-stars DCE MRI.

    PubMed

    Johansson, Adam; Balter, James; Cao, Yue

    2018-03-01

    Respiratory motion can affect pharmacokinetic perfusion parameters quantified from liver dynamic contrast-enhanced MRI. Image registration can be used to align dynamic images after reconstruction. However, intra-image motion blur remains after alignment and can alter the shape of contrast-agent uptake curves. We introduce a method to correct for inter- and intra-image motion during image reconstruction. Sixteen liver dynamic contrast-enhanced MRI examinations of nine subjects were performed using a golden-angle stack-of-stars sequence. For each examination, an image time series with high temporal resolution but severe streak artifacts was reconstructed. Images were aligned using region-limited rigid image registration within a region of interest covering the liver. The transformations resulting from alignment were used to correct raw data for motion by modulating and rotating acquired lines in k-space. The corrected data were then reconstructed using view sharing. Portal-venous input functions extracted from motion-corrected images had significantly greater peak signal enhancements (mean increase: 16%, t-test, P <  0.001) than those from images aligned using image registration after reconstruction. In addition, portal-venous perfusion maps estimated from motion-corrected images showed fewer artifacts close to the edge of the liver. Motion-corrected image reconstruction restores uptake curves distorted by motion. Motion correction also reduces motion artifacts in estimated perfusion parameter maps. Magn Reson Med 79:1345-1353, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Value of Endorectal MRI in Romanian Men for High Risk of Prostate Cancer: MRI Findings Compared with Saturation Biopsy.

    PubMed

    Lebovici, A; Sfrangeu, S A; Caraiani, C; Lucan, C; Suciu, M; Elec, F; Iacob, Gh; Buruian, M

    2015-01-01

    To evaluate the potentials of T2 weighted (T2W)MRI and diffusion weighted (DW) MRI for prostate cancer(PCa) detection, local staging and treatment planning in high-risk group. Endorectal MRI was performed in 17 Romanian men (median age: 66 years; range: 58 75 years), prostate specific antigen (PSA) serum levels (median: 20 ng mL; range: 8.6 100 ng mL) with positive findings for PCa(median Gleason score: 8; range: 7 - 9). Imaging findings were compared to standarised 20-core transperineal saturation biopsy. The prostate was divided into 16 standart sectors(10 posterior and 6 anterior). Overall, prostate cancer was detected in 16 patients(94%) on DW-MRI alone and in all 17 patients (100%) on T2W-MRI alone, and on combined imaging. On T2W-MRI165 sectors out of 272 were suspicious for PCa and 124 (75%)were cancer positive. On DW-MRI 126 sectors out of 272 were suspicious for PCa and 118 (95%) were cancer positive. On the combined imaging approach 134 sectors out of 272 were suspicious for PCa and 126 (94%) were cancer positive. This resulted in diagnostic accuracies per sector of 76% for T2WMRI, 86% for DW-MRI and 89% for combined imaging. Multifocal PCa was confirmed both on MR imaging and by biopsy in 8 of the 17 men (47%) Extra capsular extension(ECE) or seminal vesicles invasion (SVI) was highly suspected in 8 (47%) respectively 7 (41%) of the 17 patients. 6 patients(35%) presented both ECE and SVI. MRI findings were taken into account for treatment planning and none of these patients underwent radical prostatectomy and instead was treated with palliative cryotherapy, radiotherapy and hormone therapy. Endorectal MRI is highly accurate in PCa detection in the high-risk group and seems to have an important role in local staging and treatment planning for Romanian population. Celsius.

  20. MRI of plaque characteristics and relationship with downstream perfusion and cerebral infarction in patients with symptomatic middle cerebral artery stenosis.

    PubMed

    Lu, Shan-Shan; Ge, Song; Su, Chun-Qiu; Xie, Jun; Mao, Jian; Shi, Hai-Bin; Hong, Xun-Ning

    2017-10-30

    Intracranial plaque characteristics are associated with stroke events. Differences in plaque features may explain the disconnect between stenosis severity and the presence of ischemic stroke. To investigate the relationship between plaque characteristics and downstream perfusion changes, and their contribution to the occurrence of cerebral infarction beyond luminal stenosis. Case control. Forty-six patients with symptomatic middle cerebral artery (MCA) stenosis (with acute cerebral infarction, n = 30; without acute cerebral infarction, n = 16). 3.0T with 3D turbo spin echo sequence (3D-SPACE). Luminal stenosis grade, plaque features including lesion T 2 and T 1 hyperintense components, plaque enhancement grade, and plaque distribution were assessed. Brain perfusion was evaluated on mean transient time maps based on the Alberta Stroke Program Early CT score (MTT-ASPECTS). Plaque features, grade of luminal stenosis, and MTT-ASPECTS were compared between two groups. The association between plaque features and MTT-ASPECTS were assessed using Spearman's correlation analysis. Multivariate logistic regression and receiver operating characteristic (ROC) curves were constructed to assess the effect of significant variables alone and their combination in determining the occurrence of cerebral infarction. Stronger enhanced plaques were associated with downstream lower MTT-ASPECTS (P = 0.010). Plaque enhancement grade (P = 0.039, odds ratio [OR] 5.9, 95% confidence interval [CI] 1.1-32) and MTT-ASPECTS (P = 0.003, OR 2.6, 95% CI 1.4-4.7) were associated with a recent cerebral infarction, whereas luminal stenosis grade was not (P = 0.128). The combination of MTT-ASPECTS and plaque enhancement grade provided incremental information beyond luminal stenosis grade alone. The area under the receiver operating characteristic curve (AUC) improved from 0.535 to 0.921 (P < 0.05). Strongly enhanced plaques are associated with a higher likelihood of downstream

  1. Diffusion-weighted-preparation (D-prep) MRI as a future extension of SPECT/CT based surgical planning for sentinel node procedures in the head and neck area?

    PubMed

    Buckle, Tessa; KleinJan, Gijs H; Engelen, Thijs; van den Berg, Nynke S; DeRuiter, Marco C; van der Heide, Uulke; Valdes Olmos, Renato A; Webb, Andrew; van Buchem, Mark A; Balm, Alfons J; van Leeuwen, Fijs W B

    2016-09-01

    Even when guided by SPECT/CT planning of nodal resection in the head-and-neck area is challenging due to the many critical anatomical structures present within the surgical field. In this study the potential of a (SPECT/)MRI-based surgical planning method was explored. Hereby MRI increases the identification of SNs within clustered lymph nodes (LNs) and vital structures located adjacent to the SN (such as cranial nerve branches). SPECT/CT and pathology reports from 100 head-and-neck melanoma and 40 oral cavity cancer patients were retrospectively assessed for SN locations in levels I-V and degree of nodal clustering. A diffusion-weighted-preparation magnetic resonance neurography (MRN) sequence was used in eight healthy volunteers to detect LNs and peripheral nerves. In 15% of patients clustered nodes were retrospectively shown to be present at the location where the SN was identified on SPECT/CT (level IIA: 37.2%, level IIB: 21.6% and level III: 15.5%). With MRN, improved LN delineation enabled discrimination of individual LNs within a cluster. Uniquely, this MRI technology also provided insight in LN distribution (23.2±4 LNs per subject) and size (range 21-372mm(3)), and enabled non-invasive assessment of anatomical variances in the location of the LNs and facial nerves. Diffusion-weighted-preparation MRN enabled improved delineation of LNs and their surrounding delicate anatomical structures in the areas that most often harbor SNs in the head-and-neck. Based on our findings a combined SPECT/MRI approach is envisioned for future surgical planning of complex SN resections in this region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Haralick textural features on T2 -weighted MRI are associated with biochemical recurrence following radiotherapy for peripheral zone prostate cancer.

    PubMed

    Gnep, Khémara; Fargeas, Auréline; Gutiérrez-Carvajal, Ricardo E; Commandeur, Frédéric; Mathieu, Romain; Ospina, Juan D; Rolland, Yan; Rohou, Tanguy; Vincendeau, Sébastien; Hatt, Mathieu; Acosta, Oscar; de Crevoisier, Renaud

    2017-01-01

    To explore the association between magnetic resonance imaging (MRI), including Haralick textural features, and biochemical recurrence following prostate cancer radiotherapy. In all, 74 patients with peripheral zone localized prostate adenocarcinoma underwent pretreatment 3.0T MRI before external beam radiotherapy. Median follow-up of 47 months revealed 11 patients with biochemical recurrence. Prostate tumors were segmented on T 2 -weighted sequences (T 2 -w) and contours were propagated onto the coregistered apparent diffusion coefficient (ADC) images. We extracted 140 image features from normalized T 2 -w and ADC images corresponding to first-order (n = 6), gradient-based (n = 4), and second-order Haralick textural features (n = 130). Four geometrical features (tumor diameter, perimeter, area, and volume) were also computed. Correlations between Gleason score and MRI features were assessed. Cox regression analysis and random survival forests (RSF) were performed to assess the association between MRI features and biochemical recurrence. Three T 2 -w and one ADC Haralick textural features were significantly correlated with Gleason score (P < 0.05). Twenty-eight T 2 -w Haralick features and all four geometrical features were significantly associated with biochemical recurrence (P < 0.05). The most relevant features were Haralick features T 2 -w contrast, T 2 -w difference variance, ADC median, along with tumor volume and tumor area (C-index from 0.76 to 0.82; P < 0.05). By combining these most powerful features in an RSF model, the obtained C-index was 0.90. T 2 -w Haralick features appear to be strongly associated with biochemical recurrence following prostate cancer radiotherapy. 3 J. Magn. Reson. Imaging 2017;45:103-117. © 2016 International Society for Magnetic Resonance in Medicine.

  3. T(2)-weighted microMRI and evoked potential of the visual system measurements during the development of hypomyelinated transgenic mice.

    PubMed

    Martin, Melanie; Reyes, Samuel D; Hiltner, Timothy D; Givogri, M Irene; Tyszka, J Michael; Fisher, Robin; Campagnoni, Anthony T; Fraser, Scott E; Jacobs, Russell E; Readhead, Carol

    2007-02-01

    Our objective was to follow the course of a dysmyelinating disease followed by partial recovery in transgenic mice using non-invasive high-resolution (117 x 117 x 70 microm) magnetic resonance (microMRI) and evoked potential of the visual system (VEP) techniques. We used JOE (for J37 golli overexpressing) transgenic mice engineered to overexpress golli J37, a product of the Golli-mbp gene complex, specifically in oligodendrocytes. Individual JOE transgenics and their unaffected siblings were followed from 21 until 75-days-old using non-invasive in vivo VEPs and 3D T2-weighted microMRI on an 11.7 T scanner, performing what we believe is the first longitudinal study of its kind. The microMRI data indicated clear, global hypomyelination during the period of peak myelination (21-42 days), which was partially corrected at later ages (>60 days) in the JOE mice compared to controls. These microMRI data correlated well with [Campagnoni AT (1995) "Molecular biology of myelination". In: Ransom B, Kettenmann H (eds) Neuroglia--a Treatise. Oxford University Press, London, pp 555-570] myelin staining, [Campagnoni AT, Macklin WB (1988) Cellular and molecular aspects of myelin protein gene-expression. Mol Neurobiol 2:41-89] a transient intention tremor during the peak period of myelination, which abated at later ages, and [Lees MB, Brostoff SW (1984) Proteins in myelin. In: Morell (ed) Myelin. Plenum Press, New York and London, pp 197-224] VEPs which all indicated a significant delay of CNS myelin development and persistent hypomyelination in JOE mice. Overall these non-invasive techniques are capable of spatially resolving the increase in myelination in the normally developing and developmentally delayed mouse brain.

  4. Cerebral perfusion abnormalities in therapy-resistant epilepsy in childhood: comparison between EEG, MRI and 99Tcm-ECD brain SPET.

    PubMed

    Vattimo, A; Burroni, L; Bertelli, P; Volterrani, D; Vella, A

    1996-01-01

    We performed 99Tcm-ethyl cysteinate dimer (ECD) interictal single photon emission tomography (SPET) in 26 children with severe therapy-resistant epilepsy. All the children underwent a detailed clinical examination, an electroencephalogram (EEG) investigation and brain magnetic resonance imaging (MRI). In 21 of the 26 children, SPET demonstrated brain blood flow abnormalities, in 13 cases in the same territories that showed EEG alterations. MRI showed structural lesions in 6 of the 26 children, while SPET imaging confirmed these abnormalities in only 5 children. The lesion not detected on SPET was shown to be 3 mm thick on MRI. Five symptomatic patients had normal SPET. In one of these patients, the EEG findings were normal and MRI revealed a small calcific nodule (4 mm thick); in the others, the EEG showed non-focal but diffuse abnormalities. These data confirm that brain SPET is sensitive in detecting and localizing hypoperfused areas that could be associated with epileptic foci in this group of patients, even when the MRI image is normal.

  5. Differentiating between visual hallucination-free dementia with Lewy bodies and corticobasal syndrome on the basis of neuropsychology and perfusion single-photon emission computed tomography.

    PubMed

    Misch, Michael R; Mitchell, Sara; Francis, Philip L; Sherborn, Kayla; Meradje, Katayoun; McNeely, Alicia A; Honjo, Kie; Zhao, Jiali; Scott, Christopher Jm; Caldwell, Curtis B; Ehrlich, Lisa; Shammi, Prathiba; MacIntosh, Bradley J; Bilbao, Juan M; Lang, Anthony E; Black, Sandra E; Masellis, Mario

    2014-01-01

    Dementia with Lewy bodies (DLB) and Corticobasal Syndrome (CBS) are atypical parkinsonian disorders with fronto-subcortical and posterior cognitive dysfunction as common features. While visual hallucinations are a good predictor of Lewy body pathology and are rare in CBS, they are not exhibited in all cases of DLB. Given the clinical overlap between these disorders, neuropsychological and imaging markers may aid in distinguishing these entities. Prospectively recruited case-control cohorts of CBS (n =31) and visual hallucination-free DLB (n =30), completed neuropsychological and neuropsychiatric measures as well as brain perfusion single-photon emission computed tomography and structural magnetic resonance imaging (MRI). Perfusion data were available for forty-two controls. Behavioural, perfusion, and cortical volume and thickness measures were compared between the groups to identify features that serve to differentiate them. The Lewy body with no hallucinations group performed more poorly on measures of episodic memory compared to the corticobasal group, including the delayed and cued recall portions of the California Verbal Learning Test (F (1, 42) =23.1, P <0.001 and F (1, 42) =14.0, P =0.001 respectively) and the delayed visual reproduction of the Wechsler Memory Scale-Revised (F (1, 36) =9.7, P =0.004). The Lewy body group also demonstrated reduced perfusion in the left occipital pole compared to the corticobasal group (F (1,57) =7.4, P =0.009). At autopsy, the Lewy body cases all demonstrated mixed dementia with Lewy bodies, Alzheimer's disease and small vessel arteriosclerosis, while the corticobasal cases demonstrated classical corticobasal degeneration in five, dementia with agyrophilic grains + corticobasal degeneration + cerebral amyloid angiopathy in one, Progressive Supranuclear Palsy in two, and Frontotemporal Lobar Degeneration-Ubiquitin/TAR DNA-binding protein 43 proteinopathy in one. MRI measures were not significantly different between the

  6. MRI measurement of angiogenesis and the therapeutic effect of acute marrow stromal cell administration on traumatic brain injury.

    PubMed

    Li, Lian; Chopp, Michael; Ding, Guang Liang; Qu, Chang Sheng; Li, Qing Jiang; Lu, Mei; Wang, Shiyang; Nejad-Davarani, Siamak P; Mahmood, Asim; Jiang, Quan

    2012-11-01

    Using magnetic resonance imaging (MRI), the present study was undertaken to investigate the therapeutic effect of acute administration of human bone marrow stromal cells (hMSCs) on traumatic brain injury (TBI) and to measure the temporal profile of angiogenesis after the injury with or without cell intervention. Male Wistar rats (300 to 350 g, n=18) subjected to controlled cortical impact TBI were intravenously injected with 1 mL of saline (n=9) or hMSCs in suspension (n=9, 3 × 10(6) hMSCs) 6 hours after TBI. In-vivo MRI acquisitions of T2-weighted imaging, cerebral blood flow (CBF), three-dimensional (3D) gradient echo imaging, and blood-to-brain transfer constant (Ki) of contrast agent were performed on all animals 2 days after injury and weekly for 6 weeks. Sensorimotor function and spatial learning were evaluated. Volumetric changes in the trauma-induced brain lesion and the lateral ventricles were tracked and quantified using T2 maps, and hemodynamic alteration and blood-brain barrier permeability were monitored by CBF and Ki, respectively. Our data show that transplantation of hMSCs 6 hours after TBI leads to reduced cerebral atrophy, early and enhanced cerebral tissue perfusion and improved functional outcome compared with controls. The hMSC treatment increases angiogenesis in the injured brain, which may promote neurologic recovery after TBI.

  7. Cerebral microbleeds, cognitive impairment, and MRI in patients with diabetes mellitus.

    PubMed

    Zhou, Hong; Yang, Juan; Xie, Peihan; Dong, Yulan; You, Yong; Liu, Jincai

    2017-07-01

    Cerebral microbleeds (CMBs), a typical imaging manifestation marker of sporadic cerebral small vessel disease, play a critical role in vascular cognitive impairment, which is often accompanied by diabetes mellitus (DM). Hence, CMBs may, in part, be responsible for the occurrence and development of cognitive impairment in patients with diabetes. Novel magnetic resonance imaging (MRI) sequences, such as susceptibility-weighted imaging and T2*-weighted gradient-echo, have the capability of noninvasively revealing CMBs in the brain. Moreover, a correlation between CMBs and cognitive impairment in patients with diabetes has been suggested in applications of functional MRI (fMRI). Since pathological changes in the brain occur prior to observable decline in cognitive function, neuroimaging may help predict the progression of cognitive impairment in diabetic patients. In this article, we review the detection of CMBs using MRI in diabetic patients exhibiting cognitive impairment. Future studies should emphasize the development and establishment of a novel MRI protocol, including fMRI, for diabetic patients with cognitive impairment to detect CMBs. A reliable MRI protocol would also be helpful in understanding the pathological mechanisms of cognitive impairment in this important patient population. Copyright © 2017. Published by Elsevier B.V.

  8. Retrograde Cerebral Perfusion Results in Better Perfusion to the Striatum Than the Cerebral Cortex During Deep Hypothermic Circulatory Arrest: A Microdialysis Study.

    PubMed

    Liang, Meng-Ya; Chen, Guang-Xian; Tang, Zhi-Xian; Rong, Jian; Yao, Jian-ping; Wu, Zhong-Kai

    2016-03-01

    It remains controversial whether contemporary cerebral perfusion techniques, utilized during deep hypothermic circulatory arrest (DHCA), establish adequate perfusion to deep structures in the brain. This study aimed to investigate whether selective antegrade cerebral perfusion (SACP) or retrograde cerebral perfusion (RCP) can provide perfusion equally to various anatomical positions in the brain using metabolic evidence obtained from microdialysis. Eighteen piglets were randomly assigned to 40 min of circulatory arrest (CA) at 18°C without cerebral perfusion (DHCA group, n = 6) or with SACP (SACP group, n = 6) or RCP (RCP group, n = 6). Microdialysis parameters (glucose, lactate, pyruvate, and glutamate) were measured every 30 min in cortex and striatum. After 3 h of reperfusion, brain tissue was harvested for Western blot measurement of α-spectrin. After 40 min of CA, the DHCA group showed marked elevations of lactate and glycerol and a reduction in glucose in the microdialysis perfusate (all P < 0.05). The changes in glucose, lactate, and glycerol in the perfusate and α-spectrin expression in brain tissue were similar between cortex and striatum in the SACP group (all P > 0.05). In the RCP group, the cortex exhibited lower glucose, higher lactate, and higher glycerol in the perfusate and higher α-spectrin expression in brain tissue compared with the striatum (all P < 0.05). Glutamate showed no difference between cortex and striatum in all groups (all P > 0.05). In summary, SACP provided uniform and continuous cerebral perfusion to most anatomical sites in the brain, whereas RCP resulted in less sufficient perfusion to the cortex but better perfusion to the striatum. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. fMRI Reactivity to High-Calorie Food Pictures Predicts Short- and Long-Term Outcome in a Weight-Loss Program

    PubMed Central

    Murdaugh, Donna L.; Cox, James E.; Cook, Edwin W.; Weller, Rosalyn E.

    2011-01-01

    Behavioral studies have suggested that food cues have stronger motivating effects in obese than in normal-weight individuals, which may be a risk factor underlying obesity. Previous cross-sectional neuroimaging studies have suggested that this difference is mediated by increased reactivity to food cues in parts of the reward system in obese individuals. To date, however, only a few prospective neuroimaging studies have been conducted to examine whether individual differences in brain activation elicited by food cues can predict differences in weight change. We used functional magnetic resonance imaging (fMRI) to investigate activation in reward-system as well as other brain regions in response to viewing high-calorie food vs. control pictures in 25 obese individuals before and after a 12-week psychosocial weight-loss treatment and at 9-mo follow-up. In those obese individuals who were least successful in losing weight during the treatment, we found greater pre-treatment activation to high-calorie food vs. control pictures in brain regions implicated in reward-system processes, such as the nucleus accumbens, anterior cingulate, and insula. We found similar correlations with weight loss in brain regions implicated by other studies in vision and attention, such as superior occipital cortex, inferior and superior parietal lobule, and prefrontal cortex. Furthermore, less successful weight maintenance at 9-mo follow-up was predicted by greater post-treatment activation in such brain regions as insula, ventral tegmental area, putamen, and fusiform gyrus. In summary, we found that greater activation in brain regions mediating motivational and attentional salience of food cues in obese individuals at the start of a weight-loss program was predictive of less success in the program and that such activation following the program predicted poorer weight control over a 9-mo follow-up period. PMID:22332246

  10. 1.5 versus 3 versus 7 Tesla in abdominal MRI: A comparative study.

    PubMed

    Laader, Anja; Beiderwellen, Karsten; Kraff, Oliver; Maderwald, Stefan; Wrede, Karsten; Ladd, Mark E; Lauenstein, Thomas C; Forsting, Michael; Quick, Harald H; Nassenstein, Kai; Umutlu, Lale

    2017-01-01

    The aim of this study was to investigate and compare the feasibility as well as potential impact of altered magnetic field properties on image quality and potential artifacts of 1.5 Tesla, 3 Tesla and 7 Tesla non-enhanced abdominal MRI. Magnetic Resonance (MR) imaging of the upper abdomen was performed in 10 healthy volunteers on a 1.5 Tesla, a 3 Tesla and a 7 Tesla MR system. The study protocol comprised a (1) T1-weighted fat-saturated spoiled gradient-echo sequence (2D FLASH), (2) T1-weighted fat-saturated volumetric interpolated breath hold examination sequence (3D VIBE), (3) T1-weighted 2D in and opposed phase sequence, (4) True fast imaging with steady-state precession sequence (TrueFISP) and (5) T2-weighted turbo spin-echo (TSE) sequence. For comparison reasons field of view and acquisition times were kept comparable for each correlating sequence at all three field strengths, while trying to achieve the highest possible spatial resolution. Qualitative and quantitative analyses were tested for significant differences. While 1.5 and 3 Tesla MRI revealed comparable results in all assessed features and sequences, 7 Tesla MRI yielded considerable differences in T1 and T2 weighted imaging. Benefits of 7 Tesla MRI encompassed an increased higher spatial resolution and a non-enhanced hyperintense vessel signal at 7 Tesla, potentially offering a more accurate diagnosis of abdominal parenchymatous and vasculature disease. 7 Tesla MRI was also shown to be more impaired by artifacts, including residual B1 inhomogeneities, susceptibility and chemical shift artifacts, resulting in reduced overall image quality and overall image impairment ratings. While 1.5 and 3 Tesla T2w imaging showed equivalently high image quality, 7 Tesla revealed strong impairments in its diagnostic value. Our results demonstrate the feasibility and overall comparable imaging ability of T1-weighted 7 Tesla abdominal MRI towards 3 Tesla and 1.5 Tesla MRI, yielding a promising diagnostic potential for

  11. 1.5 versus 3 versus 7 Tesla in abdominal MRI: A comparative study

    PubMed Central

    Beiderwellen, Karsten; Kraff, Oliver; Maderwald, Stefan; Wrede, Karsten; Ladd, Mark E.; Lauenstein, Thomas C.; Forsting, Michael; Quick, Harald H.; Nassenstein, Kai; Umutlu, Lale

    2017-01-01

    Objectives The aim of this study was to investigate and compare the feasibility as well as potential impact of altered magnetic field properties on image quality and potential artifacts of 1.5 Tesla, 3 Tesla and 7 Tesla non-enhanced abdominal MRI. Materials and methods Magnetic Resonance (MR) imaging of the upper abdomen was performed in 10 healthy volunteers on a 1.5 Tesla, a 3 Tesla and a 7 Tesla MR system. The study protocol comprised a (1) T1-weighted fat-saturated spoiled gradient-echo sequence (2D FLASH), (2) T1-weighted fat-saturated volumetric interpolated breath hold examination sequence (3D VIBE), (3) T1-weighted 2D in and opposed phase sequence, (4) True fast imaging with steady-state precession sequence (TrueFISP) and (5) T2-weighted turbo spin-echo (TSE) sequence. For comparison reasons field of view and acquisition times were kept comparable for each correlating sequence at all three field strengths, while trying to achieve the highest possible spatial resolution. Qualitative and quantitative analyses were tested for significant differences. Results While 1.5 and 3 Tesla MRI revealed comparable results in all assessed features and sequences, 7 Tesla MRI yielded considerable differences in T1 and T2 weighted imaging. Benefits of 7 Tesla MRI encompassed an increased higher spatial resolution and a non-enhanced hyperintense vessel signal at 7 Tesla, potentially offering a more accurate diagnosis of abdominal parenchymatous and vasculature disease. 7 Tesla MRI was also shown to be more impaired by artifacts, including residual B1 inhomogeneities, susceptibility and chemical shift artifacts, resulting in reduced overall image quality and overall image impairment ratings. While 1.5 and 3 Tesla T2w imaging showed equivalently high image quality, 7 Tesla revealed strong impairments in its diagnostic value. Conclusions Our results demonstrate the feasibility and overall comparable imaging ability of T1-weighted 7 Tesla abdominal MRI towards 3 Tesla and 1

  12. Isotropic 3-D T2-weighted spin-echo for abdominal and pelvic MRI in children.

    PubMed

    Dias, Sílvia Costa; Ølsen, Oystein E

    2012-11-01

    MRI has a fundamental role in paediatric imaging. The T2-weighted fast/turbo spin-echo sequence is important because it has high signal-to-noise ratio compared to gradient-echo sequences. It is usually acquired as 2-D sections in one or more planes. Volumetric spin-echo has until recently only been possible with very long echo times due to blurring of the soft-tissue contrast with long echo trains. A new 3-D spin-echo sequence uses variable flip angles to overcome this problem. It may reproduce useful soft-tissue contrast, with improved spatial resolution. Its isotropic capability allows subsequent reconstruction in standard, curved or arbitrary planes. It may be particularly useful for visualisation of small lesions, or if large lesions distort the usual anatomical relations. We present clinical examples, describe the technical parameters and discuss some potential artefacts and optimisation of image quality.

  13. Myocardial perfusion and left ventricular function indices assessed by gated myocardial perfusion SPECT in methamphetamine abusers.

    PubMed

    Dadpour, Bita; Dabbagh Kakhki, Vahid R; Afshari, Reza; Dorri-Giv, Masoumeh; Mohajeri, Seyed A R; Ghahremani, Somayeh

    2016-12-01

    Methamphetamine (MA) is associated with alterations of cardiac structure and function, although it is less known. In this study, we assessed possible abnormality in myocardial perfusion and left ventricular function using gated myocardial perfusion SPECT. Fifteen patients with MA abuse, on the basis of Diagnostic and Statistical Manual of Mental Disorders, 4th ed. (DSM-IV) MA dependency determined by Structured Clinical Interview for DSM-IV, underwent 2-day dipyridamole stress/rest Tc-sestamibi gated myocardial perfusion SPECT. An average daily dose of MA use was 0.91±1.1 (0.2-4) g. The duration of MA use was 3.4±2.1 (1-7) years. In visual and semiquantitative analyses, all patients had normal gated myocardial perfusion SPECT, with no perfusion defects. In all gated SPECT images, there was no abnormality in left ventricular wall motion and thickening. All summed stress scores and summed rest scores were below 3. Calculated left ventricular functional indices including the end-diastolic volume, end-systolic volume, and left ventricular ejection fraction were normal. Many cardiac findings because of MA mentioned in previous reports are less likely because of significant epicardial coronary artery stenosis.

  14. The potential of multiparametric MRI of the breast

    PubMed Central

    Pinker, Katja; Helbich, Thomas H

    2017-01-01

    MRI is an essential tool in breast imaging, with multiple established indications. Dynamic contrast-enhanced MRI (DCE-MRI) is the backbone of any breast MRI protocol and has an excellent sensitivity and good specificity for breast cancer diagnosis. DCE-MRI provides high-resolution morphological information, as well as some functional information about neoangiogenesis as a tumour-specific feature. To overcome limitations in specificity, several other functional MRI parameters have been investigated and the application of these combined parameters is defined as multiparametric MRI (mpMRI) of the breast. MpMRI of the breast can be performed at different field strengths (1.5–7 T) and includes both established (diffusion-weighted imaging, MR spectroscopic imaging) and novel MRI parameters (sodium imaging, chemical exchange saturation transfer imaging, blood oxygen level-dependent MRI), as well as hybrid imaging with positron emission tomography (PET)/MRI and different radiotracers. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the underlying oncogenic processes of cancer development and progression and can provide additional specificity. This article will review the current and emerging functional parameters for mpMRI of the breast for improved diagnostic accuracy in breast cancer. PMID:27805423

  15. Variation in Perfusion Strategies for Neonatal and Infant Aortic Arch Repair: Contemporary Practice in the STS Congenital Heart Surgery Database.

    PubMed

    Meyer, David B; Jacobs, Jeffrey P; Hill, Kevin; Wallace, Amelia S; Bateson, Brian; Jacobs, Marshall L

    2016-09-01

    Regional cerebral perfusion (RCP) is used as an adjunct or alternative to deep hypothermic circulatory arrest (DHCA) for neonates and infants undergoing aortic arch repair. Clinical studies have not demonstrated clear superiority of either strategy, and multicenter data regarding current use of these strategies are lacking. We sought to describe the variability in contemporary practice patterns for use of these techniques. The Society of Thoracic Surgeons Congenital Heart Surgery Database (2010-2013) was queried to identify neonates and infants whose index operation involved aortic arch repair with cardiopulmonary bypass. Perfusion strategy was classified as isolated DHCA, RCP (with less than or equal to ten minutes of DHCA), or mixed (RCP with more than ten minutes of DHCA). Data were analyzed for the entire cohort and stratified by operation subgroups. Overall, 4,523 patients (105 centers) were identified; median age seven days (interquartile range: 5.0-13.0). The most prevalent perfusion strategy was RCP (43%). Deep hypothermic circulatory arrest and mixed perfusion accounted for 32% and 16% of cases, respectively. In all, 59% of operations involved some period of RCP. Regional cerebral perfusion was the most prevalent perfusion strategy for each operation subgroup. Neither age nor weight was associated with perfusion strategy, but reoperations were less likely to use RCP (31% vs 45%, P < .001). The combined duration of RCP and DHCA in the RCP group was longer than the DHCA time in the DHCA group (45 vs 36 minutes, P < .001). There is considerable variability in practice regarding perfusion strategies for arch repair in neonates and infants. In contemporary practice, RCP is the most prevalent perfusion strategy for these procedures. Use of DHCA is also common. Further investigation is warranted to ascertain possible relative merits of the various perfusion techniques. © The Author(s) 2016.

  16. MRI assessment of whole-brain structural changes in aging.

    PubMed

    Guo, Hui; Siu, William; D'Arcy, Ryan Cn; Black, Sandra E; Grajauskas, Lukas A; Singh, Sonia; Zhang, Yunting; Rockwood, Kenneth; Song, Xiaowei

    2017-01-01

    One of the central features of brain aging is the accumulation of multiple age-related structural changes, which occur heterogeneously in individuals and can have immediate or potential clinical consequences. Each of these deficits can coexist and interact, producing both independent and additive impacts on brain health. Many of the changes can be visualized using MRI. To collectively assess whole-brain structural changes, the MRI-based Brain Atrophy and Lesion Index (BALI) has been developed. In this study, we validate this whole-brain health assessment approach using several clinical MRI examinations. Data came from three independent studies: the Alzheimer's Disease Neuroimaging Initiative Phase II (n=950; women =47.9%; age =72.7±7.4 years); the National Alzheimer's Coordinating Center (n=722; women =55.1%; age =72.7±9.9 years); and the Tianjin Medical University General Hospital Research database on older adults (n=170; women =60.0%; age =62.9±9.3 years). The 3.0-Tesla MRI scans were evaluated using the BALI rating scheme on the basis of T1-weighted (T1WI), T2-weighted (T2WI), T2-weighted fluid-attenuated inversion recovery (T2-FLAIR), and T2*-weighted gradient-recalled echo (T2*GRE) images. Atrophy and lesion changes were commonly seen in each MRI test. The BALI scores based on different sequences were highly correlated (Spearman r 2 >0.69; P <0.00001). They were associated with age ( r 2 >0.29; P <0.00001) and differed by cognitive status ( χ 2 >26.48, P <0.00001). T2-FLAIR revealed a greater level of periventricular ( χ 2 =29.09) and deep white matter ( χ 2 =26.65, P <0.001) lesions than others, but missed revealing certain dilated perivascular spaces that were seen in T2WI ( P <0.001). Microhemorrhages occurred in 15.3% of the sample examined and were detected using only T2*GRE. The T1WI- and T2WI-based BALI evaluations consistently identified the burden of aging and dementia-related decline of structural brain health. Inclusion of additional MRI tests

  17. Comprehensive Assessment of Coronary Artery Disease by Using First-Pass Analysis Dynamic CT Perfusion: Validation in a Swine Model.

    PubMed

    Hubbard, Logan; Lipinski, Jerry; Ziemer, Benjamin; Malkasian, Shant; Sadeghi, Bahman; Javan, Hanna; Groves, Elliott M; Dertli, Brian; Molloi, Sabee

    2018-01-01

    Purpose To retrospectively validate a first-pass analysis (FPA) technique that combines computed tomographic (CT) angiography and dynamic CT perfusion measurement into one low-dose examination. Materials and Methods The study was approved by the animal care committee. The FPA technique was retrospectively validated in six swine (mean weight, 37.3 kg ± 7.5 [standard deviation]) between April 2015 and October 2016. Four to five intermediate-severity stenoses were generated in the left anterior descending artery (LAD), and 20 contrast material-enhanced volume scans were acquired per stenosis. All volume scans were used for maximum slope model (MSM) perfusion measurement, but only two volume scans were used for FPA perfusion measurement. Perfusion measurements in the LAD, left circumflex artery (LCx), right coronary artery, and all three coronary arteries combined were compared with microsphere perfusion measurements by using regression, root-mean-square error, root-mean-square deviation, Lin concordance correlation, and diagnostic outcomes analysis. The CT dose index and size-specific dose estimate per two-volume FPA perfusion measurement were also determined. Results FPA and MSM perfusion measurements (P FPA and P MSM ) in all three coronary arteries combined were related to reference standard microsphere perfusion measurements (P MICRO ), as follows: P FPA_COMBINED = 1.02 P MICRO_COMBINED + 0.11 (r = 0.96) and P MSM_COMBINED = 0.28 P MICRO_COMBINED + 0.23 (r = 0.89). The CT dose index and size-specific dose estimate per two-volume FPA perfusion measurement were 10.8 and 17.8 mGy, respectively. Conclusion The FPA technique was retrospectively validated in a swine model and has the potential to be used for accurate, low-dose vessel-specific morphologic and physiologic assessment of coronary artery disease. © RSNA, 2017.

  18. GPU-Accelerated Voxelwise Hepatic Perfusion Quantification

    PubMed Central

    Wang, H; Cao, Y

    2012-01-01

    Voxelwise quantification of hepatic perfusion parameters from dynamic contrast enhanced (DCE) imaging greatly contributes to assessment of liver function in response to radiation therapy. However, the efficiency of the estimation of hepatic perfusion parameters voxel-by-voxel in the whole liver using a dual-input single-compartment model requires substantial improvement for routine clinical applications. In this paper, we utilize the parallel computation power of a graphics processing unit (GPU) to accelerate the computation, while maintaining the same accuracy as the conventional method. Using CUDA-GPU, the hepatic perfusion computations over multiple voxels are run across the GPU blocks concurrently but independently. At each voxel, non-linear least squares fitting the time series of the liver DCE data to the compartmental model is distributed to multiple threads in a block, and the computations of different time points are performed simultaneously and synchronically. An efficient fast Fourier transform in a block is also developed for the convolution computation in the model. The GPU computations of the voxel-by-voxel hepatic perfusion images are compared with ones by the CPU using the simulated DCE data and the experimental DCE MR images from patients. The computation speed is improved by 30 times using a NVIDIA Tesla C2050 GPU compared to a 2.67 GHz Intel Xeon CPU processor. To obtain liver perfusion maps with 626400 voxels in a patient’s liver, it takes 0.9 min with the GPU-accelerated voxelwise computation, compared to 110 min with the CPU, while both methods result in perfusion parameters differences less than 10−6. The method will be useful for generating liver perfusion images in clinical settings. PMID:22892645

  19. Effects of laser acupuncture on blood perfusion rate

    NASA Astrophysics Data System (ADS)

    Wang, Xian-ju; Zeng, Chang-chun; Liu, Han-ping; Liu, Song-hao; Liu, Liang-gang

    2006-09-01

    Based on Pennes equation, the influences of the intensity and the impulse frequency of laser acupuncture on the point tissues' blood flow perfusion rate are discussed. We find that the blood perfusion rate of point tissue increases with the intensity of laser acupuncture increasing. After impulse laser acupuncture the point tissue blood perfusion rate increase little, but after continuum laser acupuncture the point tissues blood perfusion rate increase much.

  20. Measurement of lower limb alignment: there are within-person differences between weight-bearing and non-weight-bearing measurement modalities.

    PubMed

    Schoenmakers, Daphne A L; Feczko, Peter Z; Boonen, Bert; Schotanus, Martijn G M; Kort, Nanne P; Emans, Pieter J

    2017-11-01

    Previous studies have compared weight-bearing mechanical leg axis (MLA) measurements to non-weight-bearing measurement modalities. Most of these studies compared mean or median values and did not analyse within-person differences between measurements. This study evaluates the within-person agreement of MLA measurements between weight-bearing full-length radiographs (FLR) and non-weight-bearing measurement modalities (computer-assisted surgery (CAS) navigation or MRI). Two independent observers measured the MLA on pre- and postoperative weight-bearing FLR in 168 patients. These measurements were compared to non-weight-bearing measurements obtained by CAS navigation or MRI. Absolute differences in individual subjects were calculated to determine the agreement between measurement modalities. Linear regression was used to evaluate the possibility that other independent variables impact the differences in measurements. A difference was found in preoperative measurements between FLR and CAS navigation (mean of 2.5° with limit of agreement (1.96 SD) of 6.4°), as well as between FLR and MRI measurements (mean of 2.4° with limit of agreement (1.96 SD) of 6.9°). Postoperatively, the mean difference between MLA measured on FLR compared to CAS navigation was 1.5° (limit of agreement (1.96 SD) of 4.6°). Linear regression analysis showed that weight-bearing MLA measurements vary significantly from non-weight-bearing MLA measurements. Differences were more severe in patients with mediolateral instability (p = 0.010), age (p = 0.049) and ≥3° varus or valgus alignment (p = 0.008). The clinical importance of this study lies in the finding that there are within-person differences between weight-bearing and non-weight-bearing measurement modalities. This has implications for preoperative planning, performing total knee arthroplasty (TKA), and clinical follow-up after TKA surgery using CAS navigation or patient-specific instrumentation. III.