Science.gov

Sample records for period surface wave

  1. Numerical Simulation of Long-period Surface Wave in Sediments

    NASA Astrophysics Data System (ADS)

    Li, Yiqiong; Yu, Yanxiang

    2016-04-01

    Studies have shown that the western Taiwan coastal plain is influenced by long-period ground motion from the 1999 Chi-Chi, Taiwan, earthquake, and engineering structures with natural vibration long-period are damaged by strong surface wave in the western coastal plain. The thick sediments in the western coastal plain are the main cause of the propagation of strong long-period ground motion. The thick sediments similar to in the western coastal plain also exist in northern China. It is necessary to research the effects of thick sediments to long-period ground motion in northern China. The numerical simulation of ground motion based on theoretical seismology is one of important means to study the ground motion. We will carry out the numerical simulation of long-period ground motion in northern China by using the existing tomographic imaging results of northern China to build underground medium model, and adopting finite fault source model for wave input. In the process of simulation, our previous developed structure-preserving algorithm, symplectic discrete singular convolution differentiator (SDSCD), is used to deal with seismic wave field propagation. Our purpose is to reveal the formation and propagation of long-period surface wave in thick sediments and grasp the amplification effect of long-period ground motion due to the thick sediments. It will lay the foundation on providing the reference for the value of the long-period spectrum during determining the ground motion parameters in seismic design. This work has been supported by the National Natural Science Foundation of China (Grant No.41204046, 42574051).

  2. Lithospheric Thickness Modeled From Long Period Surface Wave Dispersion

    NASA Astrophysics Data System (ADS)

    Pasyanos, M. E.

    2007-12-01

    The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lid velocity and lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere keels and faster upper mantle velocities under Precambrian shields and platforms are clearly observed, not only under the large cratons (West African Craton, Congo Craton, Baltic Shield, Russian Platform, Siberian Platform, Indian Shield, Kalahari Craton), but also under smaller blocks like the Tarim Basin and Yangtze Craton. There are also interesting variations within cratons like the Congo Craton. As expected, the thinnest lithospheric thickness is found under oceanic and continental rifts, and also along convergence zones. We compare our results to thermal lithospheric models of the continents, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models.

  3. Launching surface plasmon waves via vanishingly small periodic gratings.

    PubMed

    Nicholls, David P; Oh, Sang-Hyun; Johnson, Timothy W; Reitich, Fernando

    2016-03-01

    The scattering of electromagnetic waves by periodic layered media plays a crucial role in many applications in optics and photonics, in particular in nanoplasmonics for topics as diverse as extraordinary optical transmission, photonic crystals, metamaterials, and surface plasmon resonance biosensing. With these applications in mind, we focus on surface plasmon resonances excited in the context of insulator-metal structures with a periodic, corrugated interface. The object of this contribution is to study the geometric limits required to generate these fundamentally important phenomena. For this we use the robust, rapid, and highly accurate field expansions method to investigate these delicate phenomena and demonstrate how very small perturbations (e.g., a 5 nm deviation on a 530 nm period grating) can generate strong (in this instance 20%) plasmonic absorption, and vanishingly small perturbations (e.g., a 1 nm deviation on a 530 nm period grating) can generate nontrivial (in this instance 1%) plasmonic absorption. PMID:26974896

  4. Lithospheric thickness modeled from long-period surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Pasyanos, Michael E.

    2010-01-01

    The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithospheres under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.

  5. Lithospheric Thickness Modeled from Long Period Surface Wave Dispersion

    SciTech Connect

    Pasyanos, M E

    2008-05-15

    The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.

  6. Geometric effects of global lateral heterogeneity on long-period surface wave propagation

    NASA Technical Reports Server (NTRS)

    Lay, T.; Kanamori, H.

    1985-01-01

    The present investigation has the objective to document examples of anomalous long-period surface wave amplitude behavior and to provide a preliminary appraisal of the effects of global lateral heterogeneity on surface wave propagation from a ray theory perspective. Attention is given to remarkable long-period surface wave anomalies described in literature, an equidistance azimuthal plot centered on the Iranian source region, Rayleigh wave and Love wave spectra for the 256-s period arrivals for the Tabas earthquake, constrained moment tensor and fault model inversion solutions ofr Iranian earthquakes, aspects of surface wave ray tracing, and a table of Rayleigh wave amplitude anomalies for Iranian earthquakes. Surface wave ray-tracing calculations for models of global phase velocity variations proposed by Nakanishi and Anderson (1984) are found to show that large-amplitude anomalies will be observed for Love and Rayleigh waves with periods of 100-250 s.

  7. Almost Exponential Decay of Periodic Viscous Surface Waves without Surface Tension

    NASA Astrophysics Data System (ADS)

    Guo, Yan; Tice, Ian

    2013-02-01

    We consider a viscous fluid of finite depth below the air, occupying a three-dimensional domain bounded below by a fixed solid boundary and above by a free moving boundary. The fluid dynamics are governed by the gravity-driven incompressible Navier-Stokes equations, and the effect of surface tension is neglected on the free surface. The long time behavior of solutions near equilibrium has been an intriguing question since the work of Beale (Commun Pure Appl Math 34(3):359-392, 1981). This paper is the third in a series of three (Guo in Local well-posedness of the viscous surface wave problem without surface tension, Anal PDE 2012, to appear; in Decay of viscous surface waves without surface tension in horizontally infinite domains, Preprint, 2011) that answers this question. Here we consider the case in which the free interface is horizontally periodic; we prove that the problem is globally well-posed and that solutions decay to equilibrium at an almost exponential rate. In particular, the free interface decays to a flat surface. Our framework contains several novel techniques, which include: (1) a priori estimates that utilize a "geometric" reformulation of the equations; (2) a two-tier energy method that couples the boundedness of high-order energy to the decay of low-order energy, the latter of which is necessary to balance out the growth of the highest derivatives of the free interface; (3) a localization procedure that is compatible with the energy method and allows for curved lower surface geometry. Our decay estimates lead to the construction of global-in-time solutions to the surface wave problem.

  8. Silicon surface periodic structures produced by plasma flow induced capillary waves

    SciTech Connect

    Dojcinovic, I. P.; Kuraica, M. M.; Obradovic, B. M.; Puric, J.

    2006-08-14

    Silicon single crystal surface modification by the action of nitrogen quasistationary compression plasma flow generated by a magnetoplasma compressor is studied. It has been found that highly oriented silicon periodic cylindrical shape structures are produced during a single pulse surface treatment. The periodical structure formation can be related to the driven capillary waves quenched during fast cooling and resolidification phase of the plasma flow interaction with silicon surface. These waves are induced on the liquid silicon surface due to the compression plasma flow intrinsic oscillations.

  9. Elastic waves at periodically-structured surfaces and interfaces of solids

    SciTech Connect

    Every, A. G.; Maznev, A. A.

    2014-12-15

    This paper presents a simple treatment of elastic wave scattering at periodically structured surfaces and interfaces of solids, and the existence and nature of surface acoustic waves (SAW) and interfacial (IW) waves at such structures. Our treatment is embodied in phenomenological models in which the periodicity resides in the boundary conditions. These yield zone folding and band gaps at the boundary of, and within the Brillouin zone. Above the transverse bulk wave threshold, there occur leaky or pseudo-SAW and pseudo-IW, which are attenuated via radiation into the bulk wave continuum. These have a pronounced effect on the transmission and reflection of bulk waves. We provide examples of pseudo-SAW and pseudo-IW for which the coupling to the bulk wave continuum vanishes at isloated points in the dispersion relation. These supersonic guided waves correspond to embedded discrete eigenvalues within a radiation continuum. We stress the generality of the phenomena that are exhibited at widely different scales of length and frequency, and their relevance to situations as diverse as the guiding of seismic waves in mine stopes, the metrology of periodic metal interconnect structures in the semiconductor industry, and elastic wave scattering by an array of coplanar cracks in a solid.

  10. Wave scattering from a periodic dielectric surface for a general angle of incidence

    NASA Technical Reports Server (NTRS)

    Chuang, S. L.; Kong, J. A.

    1982-01-01

    Electromagnetic waves scattered from a periodic dielectric and perfectly conducting surface are studied for a general angle of incidence. It is shown that the one-dimensional corrugated surface can be solved by using two scalar functions: the components of the electric and magnetic fields along the row direction of the surface, and appropriate boundary conditions to obtain simple matrix equations. Results are compared to the case where the incident angle wave vector is perpendicular to the row direction. Numerical results demonstrate that energy conservation and reciprocity are obeyed for scattering by sinusoidal surfaces for the general case, which checks the consistency of the formalism.

  11. Application of teleseismic long-period surface waves from ambient noise in regional surface wave tomography: a case study in western USA

    NASA Astrophysics Data System (ADS)

    Yang, Yingjie

    2014-09-01

    Since the emerging of ambient noise tomography (ANT) in 2005, it has become a routine method to image the structures of crust and uppermost mantle because of its exclusive capability to extract short-period surface waves. Most of previous ANT studies focus on surface waves at periods shorter than 40/50 s. There are only a few studies of long-period surface wave tomography from ambient noise (longer than 50 s) in global scale. No tomography studies have been performed using teleseismic long-period surface waves from ambient noise in a regional scale, probably due to the two reasons that (1) energy of long-period ambient noise is weaker and it is harder to retrieve good signal-to-noise ratio long-period surface waves from portable stations with several years of ambient noise data and (2) long-period dispersion measurements from ambient noise may have larger uncertainties than those at shorter periods (<40/50 s). In this study, I investigate the feasibility of using teleseismic long-period surface waves from ambient noise in regional surface wave tomography and also evaluate the accuracy of long-period dispersion measurements at periods up to 150 s. About 300 USArray/Transportable Array (TA) stations located in the Colorado Plateau and surrounding areas and 400 teleseismic stations relative to the TA stations are selected. Clear, strong, and coherent long-period teleseismic surface waves at periods much longer than 50 s are observed in the teleseismic cross-correlations between the TA stations and the teleseismic stations. Using long-period dispersion curves from ambient noise, I generate phase velocity maps at 50-150 s periods and then compare them with phase velocity maps from teleseismic earthquake data. The results show that phase velocity maps from ambient noise data and earthquake data are similar at the 50-150 s period range, verifying the validity of using long-period surface wave from ambient noise in regional surface wave tomography.

  12. Scattering of electromagnetic waves from a periodic surface with random roughness

    NASA Technical Reports Server (NTRS)

    Yueh, H. A.; Shin, R. T.; Kong, J. A.

    1988-01-01

    Equations for the scattering of electromagnetic waves from a randomly perturbed periodic surface have been formulated using the extended boundary condition method and solved using the small perturbation method. Surface currents and scattered fields are solved for up to the second order. The results indicate that as the correlation length of the random roughness increases, the bistatic scattering patterns of the scattered fields show several beams associated with each Bragg diffraction direction of the periodic surface. The beam shape becomes broader with smaller correlation length. Results obtained using the Kirchhoff approximation are found to agree well with the present results for the hh and vv polarized backscattering coefficients for small angles of incidence.

  13. Nonlinear stability of surface waves in magnetic fluids: effect of a periodic tangential magnetic field

    NASA Astrophysics Data System (ADS)

    El-Dib, Yusry O.

    1993-04-01

    Nonlinear wave propagation on the surface between two superposed magnetic fluids stressed by a tangential periodic magnetic field is investigated using the method of multiple scales. A stability analysis reveals the existence of both nonresonant and resonant cases. From the solvability conditions, three types of nonlinear Schrodinger equation are obtained. The necessary and sufficient conditions for stability are obtained in each case. Formulae for the surface elevation are also obtained in both the non-resonant and the resonant cases. It is found from the numerical calculation that the tangential periodic magnetic field plays a dual role in the stability criterion, while the field frequency has a destabilizing influence.

  14. Shallow seismic source parameter determination using intermediate-period surface wave amplitude spectra

    NASA Astrophysics Data System (ADS)

    Fox, Benjamin D.; Selby, Neil D.; Heyburn, Ross; Woodhouse, John H.

    2012-09-01

    Estimating reliable depths for shallow seismic sources is important in both seismo-tectonic studies and in seismic discrimination studies. Surface wave excitation is sensitive to source depth, especially at intermediate and short-periods, owing to the approximate exponential decay of surface wave displacements with depth. A new method is presented here to retrieve earthquake source parameters from regional and teleseismic intermediate period (100-15 s) fundamental-mode surface wave recordings. This method makes use of advances in mapping global dispersion to allow higher frequency surface wave recordings at regional and teleseismic distances to be used with more confidence than in previous studies and hence improve the resolution of depth estimates. Synthetic amplitude spectra are generated using surface wave theory combined with a great circle path approximation, and a grid of double-couple sources are compared with the data. Source parameters producing the best-fitting amplitude spectra are identified by minimizing the least-squares misfit in logarithmic amplitude space. The F-test is used to search the solution space for statistically acceptable parameters and the ranges of these variables are used to place constraints on the best-fitting source. Estimates of focal mechanism, depth and scalar seismic moment are determined for 20 small to moderate sized (4.3 ≤Mw≤ 6.4) earthquakes. These earthquakes are situated across a wide range of geographic and tectonic locations and describe a range of faulting styles over the depth range 4-29 km. For the larger earthquakes, comparisons with other studies are favourable, however existing source determination procedures, such as the CMT technique, cannot be performed for the smaller events. By reducing the magnitude threshold at which robust source parameters can be determined, the accuracy, especially at shallow depths, of seismo-tectonic studies, seismic hazard assessments, and seismic discrimination investigations can

  15. Waveguiding and frequency selection of Lamb waves in a plate with a periodic stubbed surface

    NASA Astrophysics Data System (ADS)

    Wu, Tzung-Chen; Wu, Tsung-Tsong; Hsu, Jin-Chen

    2009-03-01

    In this paper, we numerically and experimentally study the waveguiding of Lamb modes in a thin plate with a periodic stubbed surface and propose a frequency-selection method based on the found complete band gaps of Lamb waves in the periodic structure. In the numerical simulations, we employ finite-element method to analyze the waveguiding effect of a line defect created in the periodic plate structure; and on the experimental side, we utilize a pulsed laser to generate broadband elastic-wave energy and a laser interferometer to receive the wave signals inside the line-defect waveguide. In the experiment, well-confined acoustic energy in the acoustic band gaps is observed. Furthermore, a polyline sharply bent waveguide is designed and used for the frequency selection of Lamb waves. Measurements show that acoustic energy with frequencies in the band gaps can be separated out and guided by the bent waveguiding route. The characteristics of deaf bands found in the experiment are discussed as well.

  16. Dynamics of laser ablative shock waves from one dimensional periodic structured surfaces

    NASA Astrophysics Data System (ADS)

    Paturi, Prem Kiran; Chelikani, Leela; Pinnoju, Venkateshwarlu; Acrhem Team

    2015-06-01

    Spatio-temporal evolution of Laser ablative shock waves (LASWs) from one dimensional periodic structured surfaces (1D-PSS) of Aluminum is studied using time resolved defocused shadowgraphy technique. LASWs are generated by focusing 7 ns pulses from second harmonic of Nd:YAG (532 nm, 10 Hz) laser on to 1D-PSS with sinusoidal and triangular modulations of varying periodicity. An expanded He-Ne laser (632.8 nm) is used as probe beam for shadowgraphy. Evolution of ablative shock front (SF) with 1.5 ns temporal resolution is used to measure position of the SF, its nature, density and pressure behind the SF. The effect of surface modulation on the LASW and contact front dynamics was compared to those from a flat surface (FS) of Aluminum. SWs from FS and PSS obeyed Taylor's solution for spherical and planar nature, respectively. The velocity of SF from 1D PSS had a twofold increase compared to the FS. This was further enhanced for structures whose periodicity is of the order of excitation wavelength. Variation of SF properties with varying periodicity over a range of 3.3 μm to 0.55 μm has the potential to tailor shockwaves of required parameters. The work is supported by Defence Research and Developement Organization, India through Grants-in-Aid Program. The periodic surfaces were procured with financial support from BRFST project No. NFP-MAT-A12-04.

  17. Original coupled FEM/BIE numerical model for analyzing infinite periodic surface acoustic wave transducers

    NASA Astrophysics Data System (ADS)

    Hecht, Frédéric; Ventura, Pascal; Dufilié, Pierre

    2013-08-01

    This paper proposes a new numerical coupled Finite Element Method/Boundary Integral Equations (FEM/BIE) technique which allows the 2D physical simulation of Surface Acoustic Waves (SAWs) transducers infinitely periodic in one direction. This new technique could be generalized to various periodic acoustic 2D simulations. This new method uses an original Variational Formulation (VF) which formally includes harmonic periodic boundary conditions, and, efficient boundary integral formulations allowing to account for the semi-infinite dielectric and piezoelectric spaces. In the case of the piezoelectric semi-space, the Green's functions are efficiently computed using Fahmy-Adler's method [8]. Only periodic boundary conditions are needed, which greatly simplifies the code implementation. This numerical model has been developed to analyze an Inter-Digital Transducer (IDT) with complex electrode shape (unburied, buried or raised electrodes). The use of buried electrodes in SAW transducer designs on quartz has important advantages when compared with unburied metal electrodes on the surface. One important property is the suppression of transverse waveguide modes in transducers. A second advantage is the ability to use thicker metal thereby reducing the resistive losses. Buried electrodes have also been shown to increase the quality factor of Surface Transverse Wave (STW) resonators [15]. This numerical model is a very useful tool for optimizing the electrode geometry. Analysis of raised electrodes is useful for predicting the effects of Reactive Ion Etch (RIE) on the SAW or STW electrical filter characteristics. RIE is commonly used as a frequency trimming technique for SAW or STW filters on Quartz. The first part of the paper presents the theory, and, the second part is devoted to numerical validations and numerical results.

  18. Variable-period surface-wave magnitudes: A rapid and robust estimator of seismic moments

    USGS Publications Warehouse

    Bonner, J.; Herrmann, R.; Benz, H.

    2010-01-01

    We demonstrate that surface-wave magnitudes (Ms), measured at local, regional, and teleseismic distances, can be used as a rapid and robust estimator of seismic moment magnitude (Mw). We used the Russell (2006) variable-period surface-wave magnitude formula, henceforth called Ms(VMAX), to estimate the Ms for 165 North American events with 3.2 period surface-wave observed at a local or near-regional distance seismic station after a preliminary epicentral location has been formed. Therefore, it may be used to make rapid measurements of Mw, which are needed by government agencies for early warning systems.

  19. Verification of Long Period Surface Waves from Ambient Noise and Its Application in Constructing 3D Shear Wave Structure of Lithosphere in United States

    NASA Astrophysics Data System (ADS)

    Xie, J.; Yang, Y.; Ni, S.; Zhao, K.

    2015-12-01

    In the past decade, ambient noise tomography (ANT) has become an estimated method to construct the earth's interior structures thanks to its advantage in extracting surface waves from cross-correlations of ambient noise without using earthquake data. However, most of previous ambient noise tomography studies concentrate on short and intermediate periods (<50sec) due to the dominant energy of the microseism at these periods. Studies of long period surface waves from cross-correlation of ambient noise are limited. In this study, we verify the accuracy of the long period (50-250sec) surface wave (Rayleigh wave) from ambient noise by comparing both dispersion curves and seismic waveforms from ambient noise with those from earthquake records quantitatively. After that, we calculate vertical-vertical cross-correlation functions among more than1800 USArray Transportable Array stations and extract high quality interstation phase velocity dispersion curves from them at 10-200 sec periods. Then, we adopt a finite frequency ambient noise tomography method based on Born approximation to obtain high resolution phase velocity maps using the obtained dispersion measurements at 10-150 sec periods. Afterward, we extract local dispersion curves from these dispersion maps and invert them for 1D shear wave velocity profiles at individual grids using a Bayesian Monte Carlo method. Finally, a 3D shear velocity model is constructed by assembling all the 1D Vs profiles. Our 3D model is overall similar to other models constructed using earthquake surface waves and body waves. In summary, we demonstrate that the long period surface waves can be extracted from ambient noise, and the long period dispersion measurements from ambient noise are as accurate as those from earthquake data and can be used to construct 3D lithospheric structure from surface down to lithosphere/asthenosphere depths.

  20. Evanescent waves propagation along a periodically corrugated surface and their amplification by relativistic electron beam (quasi-optical theory)

    SciTech Connect

    Ginzburg, N. S.; Malkin, A. M.; Zheleznov, I. V.; Sergeev, A. S.

    2013-06-15

    By using a quasi-optical approach, we study propagation of evanescent waves along a periodically corrugated surface and their excitation by relativistic electron beams. Under assumption of a shallow (in the scale of period) corrugation, the dispersion equation for normal waves is derived and two particular cases are studied. In the first case, the wave frequency is far from the Bragg resonance; therefore, the evanescent wave propagation can be described by using the impedance approximation with deceleration of the zeroth spatial harmonic. The second case takes place at the frequencies close to the Bragg resonance. There, the field can be represented as two counter-propagating quasi-optical wave beams, which are coupled on the corrugated surface and form an evanescent normal wave. With regard to the interaction with an electron beam, the first case corresponds to the convective instability that can be used for amplification of radiation, while the second case corresponds to the absolute instability used in surface-wave oscillators. This paper is focused on studying main features of amplifier schemes, such as the increments, electron efficiency, and formation of a self-consistent spatial structure of the radiated field. For practical applications, the feasibility of realization of relativistic surface-wave amplifiers in the submillimeter wavelength range is estimated.

  1. Advanced numerical technique for analysis of surface and bulk acoustic waves in resonators using periodic metal gratings

    NASA Astrophysics Data System (ADS)

    Naumenko, Natalya F.

    2014-09-01

    A numerical technique characterized by a unified approach for the analysis of different types of acoustic waves utilized in resonators in which a periodic metal grating is used for excitation and reflection of such waves is described. The combination of the Finite Element Method analysis of the electrode domain with the Spectral Domain Analysis (SDA) applied to the adjacent upper and lower semi-infinite regions, which may be multilayered and include air as a special case of a dielectric material, enables rigorous simulation of the admittance in resonators using surface acoustic waves, Love waves, plate modes including Lamb waves, Stonely waves, and other waves propagating along the interface between two media, and waves with transient structure between the mentioned types. The matrix formalism with improved convergence incorporated into SDA provides fast and robust simulation for multilayered structures with arbitrary thickness of each layer. The described technique is illustrated by a few examples of its application to various combinations of LiNbO3, isotropic silicon dioxide and silicon with a periodic array of Cu electrodes. The wave characteristics extracted from the admittance functions change continuously with the variation of the film and plate thicknesses over wide ranges, even when the wave nature changes. The transformation of the wave nature with the variation of the layer thicknesses is illustrated by diagrams and contour plots of the displacements calculated at resonant frequencies.

  2. Line-focus probe excitation of Scholte acoustic waves at the liquid-loaded surfaces of periodic structures

    SciTech Connect

    Every, A.G.; Vines, R.E.; Wolfe, J.P.

    1999-10-01

    A model is introduced to explain our observation of Scholte-like ultrasonic waves traveling at the water-loaded surfaces of solids with periodically varying properties. The observations pertain to two two-dimensional superlattices: a laminated solid of alternating 0.5-mm-thick layers of aluminum and a polymer, and a hexagonal array of polymer rods of lattice spacing 1 mm in an aluminum matrix. The surface waves are generated and detected by line focus acoustic lenses aligned parallel to each other, and separated by varying distances. The acoustic fields of these lenses may be considered a superposition of plain bulk waves with wave normals contained within the angular apertures of the lenses. For homogeneous solids, phase matching constraints do not allow the Scholte wave to be coupled into with an experimental configuration of this type. This is not true for a spatially periodic solid, where coupling between bulk waves and the Scholte surface wave takes place through Umklapp processes involving a change in the wave-vector component parallel to the surface by a reciprocal lattice vector. In the experiments, the source pulse is broadband, extending up to about 6 MHz, whereas the spectrum of the observed Scholte wave is peaked at around 4 and 4.5 MHz for the layered solid and hexagonal lattice, respectively. We attribute this to a resonance in the surface response of the solid, possibly associated with a critical point in the dispersion relation of the superlattice. On rotating the solid about its surface normal, the Scholte wave displays dramatic variation in phase arrival time and, to a lesser extent, also group arrival time. This variation is well accounted for by our model. {copyright} {ital 1999} {ital The American Physical Society}

  3. Aquarius sea surface salinity in the South Indian Ocean: Revealing annual-period planetary waves

    NASA Astrophysics Data System (ADS)

    Menezes, Viviane V.; Vianna, Marcio L.; Phillips, Helen E.

    2014-06-01

    A new milestone has been reached with the launch of two dedicated satellite missions to routinely measure the sea surface salinity (SSS) fields from space at global and regional scales. In the present work, a thorough analysis of the first 2 years of Aquarius SSS data in the South Indian Ocean is performed. This analysis is focused on three questions: How accurate is Aquarius SSS related to in situ data from the fresh Indonesian Throughflow and salty subtropical waters? Can Aquarius give a spatial context for the data measured by the RAMA mooring system? Are westward propagating annual-period signals described in recent model simulations reproduced by Aquarius-derived SSS? We find Aquarius observations to be highly correlated with those of Argo floats, with small disagreements occurring near oceanic fronts. Aquarius gives fresher SSS than in situ data in the tropical region due to rainfall effects, except in the eastern basin where the freshening seems to be related to sharp localized leakages of very fresh waters from the Indonesian seas that the Aquarius product is not able to properly resolve. Aquarius data are shown to reproduce quite well the annual cycle obtained from RAMA and Argo gridded data sets. The annual cycle in Aquarius is characterized by SSS propagating features with different characteristics west and east of the Ninety East Ridge. These features are strikingly different from sea surface height waves. Our results suggest that SSS annual propagation might be reflecting coupled ocean-atmosphere dynamics and surface-subsurface processes operating over the entire South Indian Ocean.

  4. Rayleigh and Wood anomalies in the diffraction of acoustic waves from the periodically corrugated surface of an elastic medium

    NASA Astrophysics Data System (ADS)

    Maradudin, A. A.; Simonsen, I.

    2016-05-01

    By the use of the Rayleigh method we have calculated the angular dependence of the reflectivity and the efficiencies of several other diffracted orders when the periodically corrugated surface of an isotropic elastic medium is illuminated by a volume acoustic wave of shear horizontal polarization. These dependencies display the signatures of Rayleigh and Wood anomalies, usually associated with the diffraction of light from a metallic grating. The Rayleigh anomalies occur at angles of incidence at which a diffracted order appears or disappears; the Wood anomalies here are caused by the excitation of the shear horizontal surface acoustic waves supported by the periodically corrugated surface of an isotropic elastic medium. The dispersion curves of these waves in both the nonradiative and radiative regions of the frequency-wavenumber plane are calculated, and used in predicting the angles of incidence at which the Wood anomalies are expected to occur.

  5. High-speed landslide mechanism extracted from long-period surface waves

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Yu, H.; Mangeney, A.; Stutzmann, E.

    2013-12-01

    Long-period seismic signals gathered at stations far from the landslide source can be used to recover the characteristics of the event. Source mechanism inversion based on the surface waves had already been done on two large volcanic debris avalanches (Montserrat, Lesser Antilles 1997 and Mount St. Helens, USA 1980), the initial flow direction, the total volume and the mean slope of the topography had been successfully extracted. We here try to apply the method to two other landslide events, our objective is to refine the source model used in the inversion, and to improve the method for a wider application. The first event is a huge landslide occurred in Yigong Bomi district (30.22N, 94.99E) in Tibet province of China on 9 April 2000. This landslide began as a sliding mass started to fall at the elevation of 5500m, when colliding with the ground, it broke up into debris, and ran for long distance. The whole process lasted about 10 minutes, about 300 million cube meters deposit formed a 60m-high dam in the Yigong river at the elevation of 2190m. The other event is the sudden failure happened at Qianjiangping village (30.97N, 110.61E) on 13 July 2003, on the bank of the Qinggan river. It is the biggest landslide in the last 20 years in the Three Gorges Reservoir area. The landslide flow brought about 20 million cube meters rock and soil masses right into the Qinggan river in a short time with a maximum sliding velocity of about 16m/s. It is a typical rocky-bedding slide, which has been compared to the 1963 Vaiont landslide in Italy. Seismic waves generated by these two events have been recorded respectively by more than 3 seismic stations from China Earthquake Networks (CEN), in the distance range between 360km and 1700km from the landslide source. We use a source model with impulse forces, derived from the schematic view of the mass traveling down the slope.We also perform waveform inversion and compare the result with the force model. The two landslides are

  6. Investigating Global 3-D Shear-Wave Anisotropy in the Earth's Mantle from Free Oscillations, Body Waves, Surface Waves and Long-period Waveforms

    NASA Astrophysics Data System (ADS)

    Moulik, P.; Ekstrom, G.

    2012-12-01

    We have developed a framework that can be used to investigate anisotropic velocity, density and anelastic heterogeneity in the Earth's mantle using a wide spectrum (0.3-50 mHz) of seismological observables. We start with the extensive dataset of surface-wave phase anomalies, long-period waveforms, and body-wave travel times collected by Kustowski et al. (2008) for the development of the global model S362ANI. The additional data included in our analysis are splitting functions of spheroidal and toroidal modes, which are analogous to phase velocity maps at low frequencies. We include in this set of observations a new dataset containing the splitting functions of 56 spheroidal fundamental modes and overtones, measured by Deuss et al. (2011, 2012) using data from large recent earthquakes. Apart from providing unique constraints on the long-wavelength elastic and density structure in the mantle, the overtone splitting data are especially sensitive to the velocity (and anisotropic) structure in the transition zone and in the deeper mantle. The detection of anisotropy, a marker of flow, in the transition zone has implications for our understanding of mantle convection. Our forward modeling of the splitting functions, like the other types of data, includes the effects of radial anisotropy (Mochizuki, 1986). We show that the upper-mantle shear-wave anisotropy of S362ANI generates a clear contribution to the splitting functions of the modes that are sensitive to the upper-mantle structure. We explore the tradeoffs between fitting the mode splitting functions and the travel-times of body waves that turn in the transition zone or in the lower mantle (e.g. SS), while observing that the waveforms and the surface wave phase-anomalies provide complementary information about the mantle. Our experiments suggest that the splitting data are sufficiently sensitive to the anisotropy in the mantle such that their inclusion may provide a better depth resolution of the anisotropic shear

  7. A secondary diffraction effect and the generation of Scholte-Stoneley acoustic wave on periodically corrugated surface

    NASA Astrophysics Data System (ADS)

    Liu, Jingfei; Declercq, Nico F.

    2016-05-01

    When a wideband sound beam is incident onto a periodically corrugated surface, a series of diffraction related phenomena can occur. In this work, we report the observation of a secondary diffraction, which is different from those previously investigated. The search of the physical origin of this newly observed diffraction leads to the discovery of the possibility of generating Scholte-Stoneley waves, inspired by Guo, Margetan, and Thompson's work in sound backscattering from rough surfaces, through a nonconventional energy conversion mechanism: direct coupling of the incident energy with the periodic interface. This mechanism allows for the Scholte-Stoneley wave generation at any angle of incidence, which distinguishes it from the well-known energy conversion mechanism of the diffraction-related phenomena such as acoustic Wood anomaly and backward displacement in which wave generation is highly angle dependent. The findings of this work not only enrich the understanding of the interaction of sound with periodically corrugated structures but also provide a new surface wave generation method for the potential applications in nondestructive evaluation of materials.

  8. Transversally periodic solitary gravity-capillary waves.

    PubMed

    Milewski, Paul A; Wang, Zhan

    2014-01-01

    When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity-capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity-capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles. PMID:24399922

  9. Imaging the Anisotropic Shear-wave Velocity in the Earth's Mantle using Free Oscillations, Body Waves, Surface Waves and Long-period Waveforms

    NASA Astrophysics Data System (ADS)

    Moulik, P.; Ekstrom, G.

    2013-12-01

    We incorporate normal-mode splitting functions into a framework containing surface-wave phase anomalies, long-period waveforms, and body-wave travel times to investigate the three-dimensional structure of anisotropic shear-wave velocity in the Earth's mantle. In contrast with earlier studies, our modeling approach spans a wider spectrum (0.3-50 mHz) of seismological observables, jointly inverts for velocity and anisotropy apart from the discontinuity topographies, and incorporates new crustal corrections for the splitting functions that are consistent with the nonlinear corrections we employ for the waveforms. Our preferred anisotropic model, S362ANI+, an update to S362ANI, gives better fits to the recently measured splitting functions of spheroidal and toroidal modes that are modeled in this study. The splitting functions require additional isotropic variations in the transition zone and the mid mantle that are geographically distributed in the southern hemisphere. The level of agreement in the isotropic shear-velocity structure is higher between S362ANI+ and other recent studies than in the earlier generation of models. The anisotropic part of S362ANI+ is similar to S362ANI and is restricted to the upper 300 km in the mantle since only small improvements in fits are observed on adding anisotropy at depth. We also show that modeling the splitting functions reduces the tradeoffs between lateral variations in velocity and anisotropy in the lowermost mantle. Therefore, more data should be included to constrain any radial anisotropy in the transition zone and in the lower mantle.

  10. High-efficiency TEM(00) continuous-wave (Al,Ga)As epitaxial surface-emitting lasers and effect of half-wave periodic gain

    SciTech Connect

    Gourley, P.L.; Brennan, T.M.; Hammons, B.E.; Corzine, S.W.; Geels, R.S.

    1989-03-27

    This report is on room temperature, continuous-wave (c-w), photopumped operation of (Al,Ga)As surface-emitting lasers grown by molecular beam epitaxy. These monolithic semiconductor lasers comprise two multilayer semiconductor mirrors surrounding a layered active region. In the active region, GaAs quantum wells are spaced with half-wave periodicity to center on standing-wave maxima of the cavity optical field. By comparing threshold data for different lasers grown with and without half-wave periodicity, the first experimental evidence is observed for reduced c-w lasing threshold (as low as 20,000 W/sq cm) with periodic gain in an epitaxial surface-emitting laser. Up to 50 mW with high efficiency (35% total, 80% differential) and narrow spectral linewidth (2 A) have been measured. A very high-quality beam with low divergence (2.5 deg) and circular TEM(00) profile has been observed. All of these observations represent significant advances for surface-emitting laser technology.

  11. High-efficiency TEM/sub 00/ continuous-wave (Al,Ga)As epitaxial surface-emitting lasers and effect of half-wave periodic gain

    SciTech Connect

    Gourley, P.L.; Brennan, T.M.; Hammons, B.E.; Corzine, S.W.; Geels, R.S.; Yan, R.H.; Scott, J.W.; Coldren, L.A.

    1989-03-27

    We report room-temperature, continuous-wave (cw), photopumped operation of (Al,Ga)As surface-emitting lasers grown by molecular beam epitaxy. These monolithic semiconductor lasers comprise two multilayer semiconductor mirrors surrounding a layered active region. In the active region, GaAs quantum wells are spaced with half-wave periodicity to center on standing-wave maxima of the cavity optical field. By comparing threshold data for different lasers grown with and without half-wave periodicity, we observe the first experimental evidence for reduced cw lasing threshold (as low as 2 x 10/sup 4/ W/cm/sup 2/ ) with periodic gain in an epitaxial surface-emitting laser. Up to 50 mW with high efficiency (35% total, 80% differential) and narrow spectral linewidth (2 A) have been measured. A very high quality beam with low divergence (2.5/sup 0/) and circular TEM/sub 00/ profile has been observed. All of these observations represent significant advances for surface-emitting laser technology.

  12. Characteristics of surface plasmon-polariton waves excited on 2D periodically patterned columnar thin films of silver.

    PubMed

    Dutta, Jhuma; Anantha Ramakrishna, S; Lakhtakia, Akhlesh

    2016-09-01

    Periodically patterned thin films of slanted silver nanocolumns were deposited by directing a collimated vapor flux of silver toward square and hexagonal gratings of photoresist on glass substrates. Angle-resolved specular-transmittance measurements in the visible and near-infrared wavelength bands on these periodically patterned columnar thin films (CTFs) were carried out to investigate the excitation of surface plasmon-polariton (SPP) waves bound tightly to either the air/CTF or the photoresist/CTF interfaces. The orientation of the propagation vector of the incident p-polarized plane wave with respect to the morphologically significant plane of the CTFs was varied to reveal asymmetric (unidirectional) coupling of Floquet modes to SPP waves. The asymmetric coupling is maximal when the propagation vector of the incident plane wave lies wholly in the morphologically significant plane. Theoretical understanding based on the Bruggeman formalism to homogenize the silver CTFs into hyperbolic biaxial continua is able to explain the experimental observations very well. PMID:27607490

  13. High-speed landslide mechanism extracted from long-period surface waves

    NASA Astrophysics Data System (ADS)

    Zhao, Juan

    2016-04-01

    Long-period seismic signals gathered at stations far from landslide area can be used to recover the landslide source force applied on ground during the rapid sliding process. This force history is helpful to improve our ability to deduce the characteristics of the event as well as the dynamic properties of bulk motion. We use source mechanism inversion to analyse two different large landslides. Seismic waves generated by these two events have been recorded respectively by more than 5 stations, with the distance range from 69km to 1325km. The first event is the sudden failure happened at Qianjiangping village (30.97°N, 110.61°E) on 13 July 2003, on the bank of the Qinggan river. The landslide flow brought about 20 million cubic meters rock and soil masses right into the river in a short time. It moved about 250 meters in the main sliding direction of S45°E before stopped by the opposite bank. It is a typical reservoir landslide, which has been compared to the 1963 Vaiont landslide in Italy. The other event is the Xiaolin (120.64°E; 23.16°N) deep-seated landslide, located in southwestern Taiwan and had volume of about 27 million cubic meters. The landslide moved in the westward direction, divided into two streams at about the middle of the run-out, because there had been a small ridge and two valleys extended from the west side of the ridge. The deposit spreading length of this landslide is about 2300 meters. We discuss the different characteristics of the two events in both geological structure and movement mode based on the field survey. Then we show that those differences are also revealed by the source force-time functions from inversion.

  14. On neutron surface waves

    SciTech Connect

    Ignatovich, V. K.

    2009-01-15

    It is shown that neutron surface waves do not exist. The difference between the neutron wave mechanics and the wave physics of electromagnetic and acoustic processes, which allows the existence of surface waves, is analyzed.

  15. Simulations of acoustic waves bandgaps in a surface of silicon with a periodic hole structure in a thin nickel film

    NASA Astrophysics Data System (ADS)

    Graczyk, Piotr; Mroz, Boguslaw

    2014-07-01

    We have performed simulations of dispersion relations for surface acoustic waves in two-dimensional phononic crystal by the finite elements method (FEM) and by the plane wave method (PWM). Considered medium is a thin nickel layer on a silicon single crystal (001) surface. The nickel film is decorated with cylindrical holes of the depth equal to the nickel film thickness arranged in a square lattice. We have obtained full bandgaps for the surface waves propagating in the medium of particular range of filling factor and layer thickness. The width of the bandgap had reached over 500[MHz] for the sample of the lattice constant 500[nm] and is sufficient for experimental design.

  16. Theoretical investigation of surface acoustic wave propagation characteristics in periodic (AlN/ZnO)N /diamond multilayer structures

    NASA Astrophysics Data System (ADS)

    Qian, Lirong; Li, Cuiping; Li, Mingji; Wang, Fang; Yang, Baohe

    2014-11-01

    Propagation characteristics of surface acoustic wave (SAW) in periodic (AlN/ZnO)N/diamond multilayer structures were theoretically investigated using effective permittivity method. The phase velocity Vp, electromechanical coupling coefficient K2, and temperature coefficient of frequency (TCF) of the Sezawa mode are analyzed for different thicknesses-to-wavelength H/λ, thickness ratios of AlN to ZnO Rh, and periods of alternating ZnO and AlN layers N. Results show that, comparing with AlN/ZnO/diamond multilayer structure, the periodic (AlN/ZnO)N/diamond multilayer structure (N ≥ 2) shows excellent electromechanical coupling and temperature stable characteristics with significantly improved K2 and TCF. The largest coupling coefficient of 3.0% associated with a phase velocity of 5726 m/s and a TCF of -29.2 ppm/°C can be reached for Rh = 0.2 and N = 2. For a low TCF of -24.4 ppm/°C, a large coupling coefficient of 2.0% associated with a phase velocity of 7058 m/s can be obtained for Rh = 1.0 and N = 5. The simulated results can be used to design the low loss and good temperature stability SAW devices of gigahertz-band application.

  17. Periodic minimal surfaces

    NASA Astrophysics Data System (ADS)

    Mackay, Alan L.

    1985-04-01

    A minimal surface is one for which, like a soap film with the same pressure on each side, the mean curvature is zero and, thus, is one where the two principal curvatures are equal and opposite at every point. For every closed circuit in the surface, the area is a minimum. Schwarz1 and Neovius2 showed that elements of such surfaces could be put together to give surfaces periodic in three dimensions. These periodic minimal surfaces are geometrical invariants, as are the regular polyhedra, but the former are curved. Minimal surfaces are appropriate for the description of various structures where internal surfaces are prominent and seek to adopt a minimum area or a zero mean curvature subject to their topology; thus they merit more complete numerical characterization. There seem to be at least 18 such surfaces3, with various symmetries and topologies, related to the crystallographic space groups. Recently, glyceryl mono-oleate (GMO) was shown by Longley and McIntosh4 to take the shape of the F-surface. The structure postulated is shown here to be in good agreement with an analysis of the fundamental geometry of periodic minimal surfaces.

  18. Asymmetric coupling and dispersion of surface-plasmon-polariton waves on a periodically patterned anisotropic metal film

    SciTech Connect

    Dutta, Jhuma; Ramakrishna, S. Anantha; Lakhtakia, Akhlesh

    2015-01-07

    The morphology of a columnar thin film (CTF) of silver renders it an effectively biaxially anisotropic continuum. CTFs of silver deposited on one-dimensional gratings of photoresist showed strong blazing action and asymmetrically coupled optical radiation to surface-plasmon-polariton (SPP) waves propagating only along one direction supported by either the CTF/photoresist or the CTF/air interfaces. Homogenization of the CTFs using the Bruggeman formalism revealed them to display hyperbolic dispersion, and the dispersion of SPP waves was adequately described thereby.

  19. Quantifying actin wave modulation on periodic topography

    NASA Astrophysics Data System (ADS)

    Guven, Can; Driscoll, Meghan; Sun, Xiaoyu; Parker, Joshua; Fourkas, John; Carlsson, Anders; Losert, Wolfgang

    2014-03-01

    Actin is the essential builder of the cell cytoskeleton, whose dynamics are responsible for generating the necessary forces for the formation of protrusions. By exposing amoeboid cells to periodic topographical cues, we show that actin can be directionally guided via inducing preferential polymerization waves. To quantify the dynamics of these actin waves and their interaction with the substrate, we modify a technique from computer vision called ``optical flow.'' We obtain vectors that represent the apparent actin flow and cluster these vectors to obtain patches of newly polymerized actin, which represent actin waves. Using this technique, we compare experimental results, including speed distribution of waves and distance from the wave centroid to the closest ridge, with actin polymerization simulations. We hypothesize the modulation of the activity of nucleation promotion factors on ridges (elevated regions of the surface) as a potential mechanism for the wave-substrate coupling. Funded by NIH grant R01GM085574.

  20. An anisotropic shear velocity model of the Earth's mantle using normal modes, body waves, surface waves and long-period waveforms

    NASA Astrophysics Data System (ADS)

    Moulik, P.; Ekström, G.

    2014-12-01

    We use normal-mode splitting functions in addition to surface wave phase anomalies, body wave traveltimes and long-period waveforms to construct a 3-D model of anisotropic shear wave velocity in the Earth's mantle. Our modelling approach inverts for mantle velocity and anisotropy as well as transition-zone discontinuity topographies, and incorporates new crustal corrections for the splitting functions that are consistent with the non-linear corrections we employ for the waveforms. Our preferred anisotropic model, S362ANI+M, is an update to the earlier model S362ANI, which did not include normal-mode splitting functions in its derivation. The new model has stronger isotropic velocity anomalies in the transition zone and slightly smaller anomalies in the lowermost mantle, as compared with S362ANI. The differences in the mid- to lowermost mantle are primarily restricted to features in the Southern Hemisphere. We compare the isotropic part of S362ANI+M with other recent global tomographic models and show that the level of agreement is higher now than in the earlier generation of models, especially in the transition zone and the lower mantle. The anisotropic part of S362ANI+M is restricted to the upper 300 km in the mantle and is similar to S362ANI. When radial anisotropy is allowed throughout the mantle, large-scale anisotropic patterns are observed in the lowermost mantle with vSV > vSH beneath Africa and South Pacific and vSH > vSV beneath several circum-Pacific regions. The transition zone exhibits localized anisotropic anomalies of ˜3 per cent vSH > vSV beneath North America and the Northwest Pacific and ˜2 per cent vSV > vSH beneath South America. However, small improvements in fits to the data on adding anisotropy at depth leave the question open on whether large-scale radial anisotropy is required in the transition zone and in the lower mantle. We demonstrate the potential of mode-splitting data in reducing the trade-offs between isotropic velocity and

  1. Composite surface-plasmon-polariton waves guided by a thin metal layer sandwiched between a homogeneous isotropic dielectric material and a periodically multilayered isotropic dielectric material

    NASA Astrophysics Data System (ADS)

    Chiadini, Francesco; Fiumara, Vincenzo; Scaglione, Antonio; Lakhtakia, Akhlesh

    2015-01-01

    Multiple p- and s-polarized compound surface-plasmon-polariton (SPP) waves at a fixed frequency can be guided by a structure consisting of a metal layer sandwiched between a homogeneous isotropic dielectric (HID) material and a periodic multilayered isotropic dielectric (PMLID) material. For any thickness of the metal layer, at least one compound SPP wave must exist. It possesses the p-polarization state, and is strongly bound to the metal/HID interface when the metal thickness is large but to both metal/dielectric interfaces when the metal thickness is small. When the metal layer vanishes, this compound SPP wave transmutes into a Tamm wave. Additional compound SPP waves exist, depending on the thickness of the metal layer, the relative permittivity of the HID material, and the period and composition of the PMLID material. Some of these are p-polarized, the others are s-polarized. All of them differ in phase speed, attenuation rate, and field profile, even though all are excitable at the same frequency. The multiplicity and dependence of the number of compound SPP waves on the relative permittivity of the HID material when the metal layer is thin could be useful for optical sensing applications and intrachip plasmonic optical communication.

  2. Surface waves on Saturn's magnetopause

    NASA Astrophysics Data System (ADS)

    Masters, A.; Achilleos, N.; Cutler, J. C.; Coates, A. J.; Dougherty, M. K.; Jones, G. H.

    2012-05-01

    Waves on the surface of a planetary magnetopause promote energy transport into the magnetosphere, representing an important aspect of solar wind-magnetosphere coupling. At Saturn's magnetopause it has been proposed that growth of the Kelvin-Helmholtz (K-H) instability produces greater wave activity on the dawn side of the surface than on the dusk side. We test this hypothesis using data taken by the Cassini spacecraft during crossings of Saturn's magnetopause. Surface orientation perturbations are primarily controlled by the local magnetospheric magnetic field orientation, and are generally greater at dusk than at dawn. 53% of all crossings were part of a sequence of regular oscillations arising in consecutive surface normals that is strong evidence for tailward propagating surface waves, with no detectable local time asymmetry in this phenomenon. We estimate the dominant wave period to be ∼5 h at dawn and ∼3 h at dusk. The role played by the magnetospheric magnetic field, tailward wave propagation, and the dawn-dusk difference in wave period suggests that K-H instability is a major wave driving mechanism. Using linear K-H theory we estimate the dominant wavelength to be ∼10 Saturn radii (RS) and amplitude to be ∼1 RS at both dawn and dusk, giving propagation speeds of ∼30 and ∼50 km s-1 at dawn and dusk, respectively. The lack of the hypothesized dawn-dusk asymmetry in wave activity demonstrates that we need to revise our understanding of the growth of the K-H instability at Saturn's magnetopause, which will have implications for the study of other planetary magnetospheres.

  3. Periodic waves in fiber Bragg gratings

    SciTech Connect

    Chow, K. W.; Merhasin, Ilya M.; Malomed, Boris A.; Nakkeeran, K.; Senthilnathan, K.; Wai, P. K. A.

    2008-02-15

    We construct two families of exact periodic solutions to the standard model of fiber Bragg grating (FBG) with Kerr nonlinearity. The solutions are named ''sn'' and ''cn'' waves, according to the elliptic functions used in their analytical representation. The sn wave exists only inside the FBG's spectral bandgap, while waves of the cn type may only exist at negative frequencies ({omega}<0), both inside and outside the bandgap. In the long-wave limit, the sn and cn families recover, respectively, the ordinary gap solitons, and (unstable) antidark and dark solitons. Stability of the periodic solutions is checked by direct numerical simulations and, in the case of the sn family, also through the calculation of instability growth rates for small perturbations. Although, rigorously speaking, all periodic solutions are unstable, a subfamily of practically stable sn waves, with a sufficiently large spatial period and {omega}>0, is identified. However, the sn waves with {omega}<0, as well as all cn solutions, are strongly unstable.

  4. Surface Acoustic Wave Microfluidics

    NASA Astrophysics Data System (ADS)

    Yeo, Leslie Y.; Friend, James R.

    2014-01-01

    Fluid manipulations at the microscale and beyond are powerfully enabled through the use of 10-1,000-MHz acoustic waves. A superior alternative in many cases to other microfluidic actuation techniques, such high-frequency acoustics is almost universally produced by surface acoustic wave devices that employ electromechanical transduction in wafer-scale or thin-film piezoelectric media to generate the kinetic energy needed to transport and manipulate fluids placed in adjacent microfluidic structures. These waves are responsible for a diverse range of complex fluid transport phenomena - from interfacial fluid vibration and drop and confined fluid transport to jetting and atomization - underlying a flourishing research literature spanning fundamental fluid physics to chip-scale engineering applications. We highlight some of this literature to provide the reader with a historical basis, routes for more detailed study, and an impression of the field's future directions.

  5. Surface waves on Saturn's magnetopause

    NASA Astrophysics Data System (ADS)

    Masters, A.; Achilleos, N.; Cutler, J. C.; Coates, A. J.; Dougherty, M. K.

    2011-10-01

    Waves on the surface of a planetary magnetopause lead to the transport of energy into the magnetosphere, making them an important aspect of solar wind-magnetosphere coupling. In the case of Saturn's magnetosphere it has been proposed that the growth of the Kelvin-Helmholtz (K-H) instability produces greater wave activity on the dawn side of the magnetopause than on the dusk side. Here we test this hypothesis using data taken by the Cassini spacecraft during 520 magnetopause crossings. We determine the surface normal for 477 of the crossings and show that perturbations of the surface orientation are predominantly in the direction perpendicular to the local magnetospheric magnetic field, due to the stabilizing influence of magnetic tension forces. There are two most likely orientations with respect to the magnetospheric magnetic field, and 45% of the crossings were part of a clear oscillation of consecutive normals. The only local time asymmetry in the surface orientation is a greater level of normal perturbations at dusk than at dawn. These results suggest that surface waves on Saturn's magnetopause are ubiquitous, and the K-H instability is the most plausible driving mechanism. The waves generally propagate tailward, with a typical period, wavelength, speed, and amplitude of 4 hrs, 10 Saturn radii (RS), 50 km s-1, and 1 RS, respectively. The lack of the hypothesized dawn-dusk asymmetry in wave activity means that we need to revise our understanding of the growth of the K-H instability at Saturn's magnetopause, which will have implications for the study of other planetary magnetospheres.

  6. Surface wave tomography

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1984-01-01

    Vertically polarized shear wave velocity (VSV), determined primarily from fundamental mode Rayleigh waves, and the difference between the velocity of horizontally polarized shear waves (VSH) and VSV, therefore a measure of anisotropy, are shown.

  7. 3D shallow structures in the Baogutu area, Karamay, determined by eikonal tomography of short-period ambient noise surface waves

    NASA Astrophysics Data System (ADS)

    Xu, Hongrui; Luo, Yinhe; Chen, Chao; Xu, Yixian

    2016-06-01

    Eikonal tomography based on ambient noise data is one of the most effective methods to reveal shallow earth structures. By tracking surface wave phase fronts, constructing travel time surfaces, and computing the gradients of travel time surfaces to generate phase velocity maps, eikonal tomography avoids the ray tracing and matrix construction and inversion in the traditional surface wave tomography methods. In this study, we collect continuous ambient noise data recorded by a dense seismic array in Karamay, Xinjiang to construct a 3D model of shallow structures using eikonal tomography. The seismic array consists of 35 stations with shortest interstation distance close to 1 km. 890 empirical surface wave Green's functions (EGFs) between each station pair are retrieved by cross-correlating one or two months of continuous ambient noise data. From these EGFs, surface wave travel times in the frequency range of 1.8 to 4.0 Hz are measured by a frequency-time analysis technique (FTAN). Then, eikonal tomography is adopted to construct Rayleigh wave phase velocity maps and estimate the phase velocity uncertainties. Finally, we invert the obtained phase velocity dispersion curves for 1D shear velocity profiles and then assemble these 1D profiles to construct a 3D shear velocity model. Major velocity features of our 3D model are correlated well with the known geological features. A shallow east-west velocity discontinuity is observed, which clearly reflects the lithological change between Baogutu formation (C1b) and Xibeikulasi formation (C1x) of lower Carboniferous system. Low shear velocities are observed beneath the location of porphyry copper deposit (V), possibly related to stockwork fracture and hydrothermal brecciation developed during the intrusion of deep magma in forming the deposit.

  8. Surface gravity-wave lensing.

    PubMed

    Elandt, Ryan B; Shakeri, Mostafa; Alam, Mohammad-Reza

    2014-02-01

    Here we show that a nonlinear resonance between oceanic surface waves caused by small seabed features (the so-called Bragg resonance) can be utilized to create the equivalent of lenses and curved mirrors for surface gravity waves. Such gravity wave lenses, which are merely small changes to the seafloor topography and therefore are surface noninvasive, can focus or defocus the energy of incident waves toward or away from any desired focal point. We further show that for a broadband incident wave spectrum (i.e., a wave group composed of a multitude of different-frequency waves), a polychromatic topography (occupying no more than the area required for a monochromatic lens) can achieve a broadband lensing effect. Gravity wave lenses can be utilized to create localized high-energy wave zones (e.g., for wave energy harvesting or creating artificial surf zones) as well as to disperse waves in order to create protected areas (e.g., harbors or areas near important offshore facilities). In reverse, lensing of oceanic waves may be caused by natural seabed features and may explain the frequent appearance of very high amplitude waves in certain bodies of water. PMID:25353576

  9. On Irrotational Flows Beneath Periodic Traveling Equatorial Waves

    NASA Astrophysics Data System (ADS)

    Quirchmayr, Ronald

    2016-08-01

    We discuss some aspects of the velocity field and particle trajectories beneath periodic traveling equatorial surface waves over a flat bed in a flow with uniform underlying currents. The system under study consists of the governing equations for equatorial ocean waves within a non-inertial frame of reference, where Euler's equation of motion has to be suitably adjusted, in order to account for the influence of the earth's rotation.

  10. Wave Turbulence on Water Surface

    NASA Astrophysics Data System (ADS)

    Nazarenko, Sergey; Lukaschuk, Sergei

    2016-03-01

    We overview the wave turbulence approach by example of one physical system: gravity waves on the surface of an infinitely deep fluid. In the theoretical part of our review, we derive the nonlinear Hamiltonian equations governing the water-wave system and describe the premises of the weak wave turbulence theory. We outline derivation of the wave-kinetic equation and the equation for the probability density function, and most important solutions to these equations, including the Kolmogorov-Zakharov spectra corresponding to a direct and an inverse turbulent cascades, as well as solutions for non-Gaussian wave fields corresponding to intermittency. We also discuss strong wave turbulence as well as coherent structures and their interaction with random waves. We describe numerical and laboratory experiments, and field observations of gravity wave turbulence, and compare their results with theoretical predictions.

  11. Surface acoustic wave microfluidics

    PubMed Central

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S.; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2014-01-01

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering, and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting, and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next. PMID:23900527

  12. Heat waves and warm periods in Slovakia

    NASA Astrophysics Data System (ADS)

    Faško, Pavel; Bochníček, Oliver; Markovič, Ladislav; Švec, Marek

    2016-04-01

    The scenarios of climate change caused by human activity show that frequency of occurrence and extent of heat waves in the interior of Europe is increasing. Among the most exposed regions in this regard should the area of southeastern and eastern Austria and south-western Slovakia. The relatively faster increase in the number of heat waves in this area is related also to potential desertification in this region just east of the Alps, since during summer, weather fronts advancing from the west are consequently losing their original features and moderating influence. Summer weather patterns for this area should in the future more closely remind climate typical for some inland areas of southwestern, southern and southeastern Europe. A certain shift of climate zones from south to north should thus modify future climate and Slovakia. Despite the complex natural conditions the existing trends derived from results of meteorological measurements and observations are clear and they confirm warming of climate in this region. Observations and measurements in the recent years of the 21st century confirm, that heat waves are no longer rare phenomenon during summer, but are systematically appearing even in colder regions of northern Slovakia. What is very remarkable and will be necessary to pay more attention to, is the fact that these heat waves are expanding into previously unaffected areas, associated with the lack of rainfall and drought, on larger regional scale. In this study heat wave periods and individual heat events and days are statistically identified in the time series characteristics of air temperature at selected meteorological stations for the period from the mid-20th century until 2015, in case of available historical data even for longer period.

  13. The Surface Wave Dynamics Experiment (SWADE)

    NASA Technical Reports Server (NTRS)

    Mollo-Christensen, Erik; Oberholtzer, J. David

    1991-01-01

    The Surface Wave Dynamics Experiment is designed to provide the basic data needed to understand the wind-wave interactions in the open ocean. During the period of October 1990 through March 1991 two discus, four meteorological buoys, and several other specialized buoys will collect continuous in-situ data. During three intensive periods of study, several aircraft and an airship will collect synoptic data from the study area in the Atlantic east of the Wallops Flight Facility. Data from the buoys will be collected by aircraft and ARGOS data links. Instrumentation descriptions as well as preliminary data from the first intensive study period are presented.

  14. Regularity for steady periodic capillary water waves with vorticity.

    PubMed

    Henry, David

    2012-04-13

    In the following, we prove new regularity results for two-dimensional steady periodic capillary water waves with vorticity, in the absence of stagnation points. Firstly, we prove that if the vorticity function has a Hölder-continuous first derivative, then the free surface is a smooth curve and the streamlines beneath the surface will be real analytic. Furthermore, once we assume that the vorticity function is real analytic, it will follow that the wave surface profile is itself also analytic. A particular case of this result includes irrotational fluid flow where the vorticity is zero. The property of the streamlines being analytic allows us to gain physical insight into small-amplitude waves by justifying a power-series approach. PMID:22393112

  15. Multichannel analysis of surface waves

    USGS Publications Warehouse

    Park, C.B.; Miller, R.D.; Xia, J.

    1999-01-01

    The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of

  16. Resonance wave pumping with surface waves

    NASA Astrophysics Data System (ADS)

    Carmigniani, Remi; Gharib, Morteza; Violeau, Damien; Caltech-ENPC Collaboration

    2015-11-01

    The valveless impedance pump enables the production or amplification of a flow without the use of integrated mobile parts, thus delaying possible failures. It is usually composed of fluid-filled flexible tubing, closed by solid tubes. The flexible tube is pinched at an off-centered position relative to the tube ends. This generates a complex wave dynamic that results in a pumping phenomenon. It has been previously reported that pinching at intrinsic resonance frequencies of the system results in a strong pulsating flow. A case of a free surface wave pump is investigated. The resonance wave pump is composed of a rectangular tank with a submerged plate separating the water into a free surface and a recirculation rectangular section connected through two openings at each end of the tank. A paddle placed at an off-center position above the submerged plate is controlled in a heaving motion with different frequencies and amplitudes. Similar to the case of valveless impedance pump, we observed that near resonance frequencies strong pulsating flow is generated with almost no oscillations. A linear theory is developed to pseudo-analytically evaluate these frequencies. In addition, larger scale applications were simulated using Smoothed Particle Hydrodynamic codes.

  17. Periodic envelopes of waves over non-uniform depth

    NASA Astrophysics Data System (ADS)

    Rajan, Girish K.; Bayram, Saziye; Henderson, Diane M.

    2016-04-01

    The envelope of narrow-banded, periodic, surface-gravity waves propagating in one dimension over water of finite, non-uniform depth may be modeled by the Djordjević and Redekopp ["On the development of packets of surface gravity waves moving over an uneven bottom," Z. Angew. Math. Phys. 29, 950-962 (1978)] equation (DRE). Here we find five approximate solutions of the DRE that are in the form of Jacobi-elliptic functions and discuss them within the framework of ocean swell. We find that in all cases, the maximum envelope-amplitude decreases/increases when the wave group propagates on water of decreasing/increasing depth. In the limit of the elliptic modulus approaching one, three of the solutions reduce to the envelope soliton solution. In the limit of the elliptic modulus approaching zero, two of the solutions reduce to an envelope-amplitude that is uniform in an appropriate reference frame.

  18. Femtosecond laser-induced periodic surface structure formation on tungsten

    SciTech Connect

    Vorobyev, A. Y.; Guo Chunlei

    2008-09-15

    In this paper, we demonstrate the generation of periodic surface structures on a technologically important material, tungsten, at both 400 and 800 nm, despite that the table values of dielectric constants for tungsten at these two wavelengths suggest the absence of surface plasmons, a wave necessary for forming periodic structures on metals. Furthermore, we find that the structure periods formed on tungsten are significantly less than the laser wavelengths. We believe that the dielectric constants of tungsten change significantly due to intense laser pulse heating and surface structuring and roughening at nanometer scales, permitting surface plasmon excitation and periodic structure formation.

  19. Watching surface waves in phononic crystals.

    PubMed

    Wright, Oliver B; Matsuda, Osamu

    2015-08-28

    In this paper, we review results obtained by ultrafast imaging of gigahertz surface acoustic waves in surface phononic crystals with one- and two-dimensional periodicities. By use of quasi-point-source optical excitation, we show how, from a series of images that form a movie of the travelling waves, the dispersion relation of the acoustic modes, their corresponding mode patterns and the position and widths of phonon stop bands can be obtained by temporal and spatio-temporal Fourier analysis. We further demonstrate how one can follow the temporal evolution of phononic eigenstates in k-space using data from phononic-crystal waveguides as an example. PMID:26217053

  20. Linear waves in two-layer fluids over periodic bottoms

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Maas, Leo

    2015-11-01

    A new, exact Floquet theory is presented for linear waves in two-layer fluids over a periodic bottom of arbitrary shape and amplitude. A method of conformal transformation is adapted. The solutions are given, in essentially analytical form, for the dispersion relation between wave frequency and generalized wavenumber (Floquet exponent), and for the waveforms of free wave modes. The dispersion relation is the analogue of the classical Lamb's equation for a two-layer fluid over a flat bottom. For internal modes the interfacial wave shows rapid modulation at the scale of its own wavelength that is comparable to bottom wavelength, whereas for surface modes it becomes a long wave carrier for modulating short waves of bottom wavelength. The approximation using a rigid-lid is given. Sample calculations are shown, including the frequencies that are Bragg resonant. Supports to JY by US National Science Foundation (Grant CBET-0845957) and a visitor's grant of the Netherlands Organisation for Scientific Research (NWO) during the period of this work, are gratefully acknowledged.

  1. Analysis of waves in the plasma guided by a periodical vane-type slow wave structure

    SciTech Connect

    Wu, T.J.; Kou, C.S.

    2005-10-01

    In this study, the dispersion relation has been derived to characterize the propagation of the waves in the plasma guided by a periodical vane-type slow wave structure. The plasma is confined by a quartz plate. Results indicate that there are two different waves in this structure. One is the plasma mode that originates from the plasma surface wave propagating along the interface between the plasma and the quartz plate, and the other is the guide mode that originally travels along the vane-type slow wave structure. In contrast to its original slow wave characteristics, the guide mode becomes a fast wave in the low-frequency portion of the passband, and there exists a cut-off frequency for the guide mode. The vane-type guiding structure has been shown to limit the upper frequency of the passband of the plasma mode, compared with that of the plasma surface wave. In addition, the passband of the plasma mode increases with the plasma density while it becomes narrower for the guide mode. The influences of the parameters of the guiding structure and plasma density on the propagation of waves are also presented.

  2. Topological charge pump by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Yi, Zheng; Shi-Ping, Feng; Shi-Jie, Yang

    2016-06-01

    Quantized electron pumping by the surface acoustic wave across barriers created by a sequence of split metal gates is interpreted from the viewpoint of topology. The surface acoustic wave serves as a one-dimensional periodical potential whose energy spectrum possesses the Bloch band structure. The time-dependent phase plays the role of an adiabatic parameter of the Hamiltonian which induces a geometrical phase. The pumping currents are related to the Chern numbers of the filled bands below the Fermi energy. Based on this understanding, we predict a novel effect of quantized but non-monotonous current plateaus simultaneously pumped by two homodromous surface acoustic waves. Project supported by the National Natural Science Foundation of China (Grant No. 11374036) and the National Basic Research Program of China (Grant No. 2012CB821403).

  3. Resonant generation of internal waves on the soft sea bed by a surface water wave

    NASA Astrophysics Data System (ADS)

    Wen, Feng

    1995-08-01

    The nonlinear response of an initially flat sea bed to a monochromatic surface progressive wave was studied using the multiple scale perturbation method. Two opposite-traveling subliminal internal ``mud'' waves are selectively excited and form a resonant triad with the surface wave. The amplitudes of the internal waves grow on a time scale much longer than the period of the surface wave. It was found that the sea bed response is critically dependent on the density ratio of water and soil, depth of water, and depth and viscosity of the saturated soil. The result of instability analysis is in qualitative agreement with the result of a wave flume experiment.

  4. Surface acoustic wave oxygen sensor

    NASA Technical Reports Server (NTRS)

    Collman, James P.; Oglesby, Donald M.; Upchurch, Billy T.; Leighty, Bradley D.; Zhang, Xumu; Herrmann, Paul C.

    1994-01-01

    A surface acoustic wave (SAW) device that responds to oxygen pressure was developed by coating a 158 MHz quartz surface acoustic wave (SAW) device with an oxygen binding agent. Two types of coatings were used. One type was prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer containing the axial ligand. A second type was prepared with an oxygen binding porphyrin solution containing excess axial ligand without a polymer matrix. In the polymer based coatings, the copolymer served to provide the axial ligand to the oxygen binding agent and as a coating matrix on the surface of the SAW device. The oxygen sensing SAW device has been shown to bind oxygen following a Langmuir isotherm and may be used to measure the equilibrium constant of the oxygen binding compound in the coating matrix.

  5. Surface wave chemical detector using optical radiation

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  6. SEISMIC SURFACE-WAVE TOMOGRAPHY OF WASTE SITES

    EPA Science Inventory

    Studies of the earth using surface waves are extensive. The early targets were crustal thickness and upper mantle structure because surface waves are well recorded on the early long period instrumentation and because the velocity contrast between the crust and mantle exhibits pro...

  7. Broadband transverse electric surface wave in silicene

    NASA Astrophysics Data System (ADS)

    Ukhtary, M. Shoufie; Nugraha, Ahmad R. T.; Hasdeo, Eddwi H.; Saito, Riichiro

    2016-08-01

    Transverse electric (TE) surface wave in silicine is theoretically investigated. The TE surface wave in silicene is found to exhibit better characteristics compared with that in graphene, in terms of a broader frequency range and more confinement to the surface which originate from the buckled structure of silicene. We found that even undoped silicene can support the TE surface wave. We expect the similar characteristics of the TE surface wave in other two-dimensional materials that have a slightly buckled honeycomb lattice.

  8. On the generation of internal wave modes by surface waves

    NASA Astrophysics Data System (ADS)

    Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian

    2016-04-01

    Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.

  9. Seasonal prediction of ocean surface waves.

    NASA Astrophysics Data System (ADS)

    Dobrynin, Mikhail; Brune, Sebastian; Fröhlich, Kristina; Bunzel, Felix; Pohlmann, Holger; Müller, Wolfgang A.; Baehr, Johanna

    2016-04-01

    Due to the short-term nature of wind, storms and surface ocean waves dynamics, the seasonal prediction of ocean wave requires a robust prediction system which can realistically represent the variably of sea level pressure and wind on a seasonal scale. The seasonal prediction system based on the mixed resolution CMIP5 version of the Max Planck Institute for Meteorology Earth System Model (MPI-ESM MR) provides a skilful seasonal prediction of sea level pressure and wind. The system is initialised every six months by reanalysis and observations in the atmospheric, ocean and sea ice components of the model. The seasonal prediction system was extended by the wave model WAM, which is running offline, using the wind re-forecast provided by the MPI-ESM MR. Our 10-member wave re-forecast over the period from 1982 to 2012 demonstrates a skilful prediction of the wave height up to 2-4 months in the Pacific, Equatorial Atlantic and Indian Ocean depending on the season. We evaluate our re-forecast by statistical metrics such as the anomaly correlation, spread-error ratio, and root-mean-square-error using the ERA-Interim forced wave reanalysis and buoys measurements as a reference.

  10. Deterministic forward scatter from surface gravity waves.

    PubMed

    Deane, Grant B; Preisig, James C; Tindle, Chris T; Lavery, Andone; Stokes, M Dale

    2012-12-01

    Deterministic structures in sound reflected by gravity waves, such as focused arrivals and Doppler shifts, have implications for underwater acoustics and sonar, and the performance of underwater acoustic communications systems. A stationary phase analysis of the Helmholtz-Kirchhoff scattering integral yields the trajectory of focused arrivals and their relationship to the curvature of the surface wave field. Deterministic effects along paths up to 70 water depths long are observed in shallow water measurements of surface-scattered sound at the Martha's Vineyard Coastal Observatory. The arrival time and amplitude of surface-scattered pulses are reconciled with model calculations using measurements of surface waves made with an upward-looking sonar mounted mid-way along the propagation path. The root mean square difference between the modeled and observed pulse arrival amplitude and delay, respectively, normalized by the maximum range of amplitudes and delays, is found to be 0.2 or less for the observation periods analyzed. Cross-correlation coefficients for modeled and observed pulse arrival delays varied from 0.83 to 0.16 depending on surface conditions. Cross-correlation coefficients for normalized pulse energy for the same conditions were small and varied from 0.16 to 0.06. In contrast, the modeled and observed pulse arrival delay and amplitude statistics were in good agreement. PMID:23231099

  11. Eurasian surface wave tomography: Group velocities

    NASA Astrophysics Data System (ADS)

    Ritzwoller, Michael H.; Levshin, Anatoli L.

    1998-03-01

    This paper presents the results of a study of the dispersion characteristics of broadband fundamental surface waves propagating across Eurasia. The study is broader band, displays denser and more uniform data coverage, and demonstrates higher resolution than previous studies of Eurasia performed on this scale. In addition, the estimated group velocity maps reveal the signatures of geological and tectonic features never before displayed in similar surface wave studies. We present group velocity maps from 20 s to 200 s period for Rayleigh waves and from 20 s to 125 s for Love waves. Broadband waveform data from about 600 events from 1988 through 1995 recorded at 83 individual stations across Eurasia have produced about 9000 paths for which individual dispersion curves have been estimated. Dispersion curves from similar paths are clustered to reduce redundancy, to identify outliers for rejection, and to assign uncertainty estimates. On average, measurement uncertainty is about 0.030-0.040 km/s and is not a strong function of frequency. Resolution is estimated from "checker-board" tests, and we show that average resolutions across Eurasia range from 5° to 7.5° but degrade at periods above about 100 s and near the periphery of the maps. The estimated maps produce a variance reduction relative to the Preliminary Reference Earth Model (PREM) of more than 90% for Rayleigh waves below 60 s period but reduce to about 70% between 80 and 200 s period. For Love waves, variance reductions are similar, being above 90% for most periods below 100 s and falling to 70% at 150 s. Synthetic experiments are presented to estimate the biases that theoretical approximations should impart to the group velocity maps, in particular source group time shifts, azimuthal anisotropy, and systematic event mislocations near subducting slabs. The most significant problems are probably caused by azimuthal anisotropy, but above 100 s the effect of source group time shifts may also be appreciable

  12. Determination of ocean surface wave shape from forward scattered sound.

    PubMed

    Walstead, Sean P; Deane, Grant B

    2016-08-01

    Forward scattered sound from the ocean surface is inverted for wave shape during three periods: low wind, mix of wind and swell, and stormy. Derived wave profiles are spatially limited to a Fresnel region at or near the nominal surface specular reflection point. In some cases, the surface wave profiles exhibit unrealistic temporal and spatial properties. To remedy this, the spatial gradient of inverted waves is constrained to a maximum slope of 0.88. Under this global constraint, only surface waves during low wind conditions result in a modeled surface multipath that accurately matches data. The power spectral density of the inverted surface wave field saturates around a frequency of 8 Hz while upward looking SONAR saturates at 1 Hz. Each shows a high frequency spectral slope of -4 that is in agreement with various empirical ocean wave spectra. The improved high frequency resolution provided by the scattering inversion indicates that it is possible to remotely gain information about high frequency components of ocean waves. The inability of the inversion algorithm to determine physically realistic surface waves in periods of high wind indicates that bubbles and out of plane scattering become important in those operating scenarios. PMID:27586711

  13. Global surface wave tomography using seismic hum.

    PubMed

    Nishida, Kiwamu; Montagner, Jean-Paul; Kawakatsu, Hitoshi

    2009-10-01

    The development of global surface wave tomography using earthquakes has been crucial to exploration of the dynamic status of Earth's deep. It is naturally believed that only large earthquakes can generate long-period seismic waves that penetrate deep enough into Earth for such exploration. The discovery of seismic hum, Earth's background free oscillations, which are randomly generated by oceanic and/or atmospheric disturbances, now provides an alternative approach. We present results of global upper-mantle seismic tomography using seismic hum and without referring to earthquakes. At periods of 100 to 400 seconds, the phase-velocity anomalies of Rayleigh waves are measured by modeling the observed cross-correlation functions between every pair of stations from among 54 globally distributed seismic stations. The anomalies are then inverted to obtain the three-dimensional S-wave velocity structure in the upper mantle. Our technique provides a new means for exploring the three-dimensional structure of the interior of terrestrial planets with an atmosphere and/or oceans, particularly Mars. PMID:19797654

  14. Nonlinear periodic space-charge waves in plasma

    SciTech Connect

    Kovalev, V. A.

    2009-05-15

    A solution is obtained in the form of coupled nonlinear periodic space-charge waves propagating in a magnetoactive plasma. The wave spectrum in the vicinity of the critical point, where the number of harmonics increases substantially, is found to fall with harmonic number as {proportional_to} s{sup -1/3}. Periodic space-charge waves are invoked to explain the zebra pattern in the radio emission from solar flares.

  15. Reflection of cylindrical surface waves.

    PubMed

    Gordon, Reuven

    2009-10-12

    The reflection of the radially polarized surface wave on a metal wire at an abrupt end is derived. This theory allows for straightforward calculation of the reflection coefficient, including the phase and the amplitude, which will prove useful to the many applications in nanoplasmonics and terahertz spectroscopy. The theory shows excellent quantitative agreement with past comprehensive numerical simulations for small wires and for predicting the minima in reflection for larger wires. Using this theory, the wavelength dependent reflection is calculated for gold rods of diameter 10 nm, 26 nm and 85 nm, from which the Fabry-Perot resonance wavelengths are found. The Fabry-Perot resonances show good agreement with experimentally measured surface plasmon resonances in nanorods. This demonstrates the predictive ability of the theory for applications involving widely-used nanorods, optical antennas and plasmonic resonators. PMID:20372593

  16. The electrostatic surface term: (I) periodic systems.

    PubMed

    Herce, Henry David; Garcia, Angel Enrique; Darden, Thomas

    2007-03-28

    The authors propose a new approach to understand the electrostatic surface contributions to the interactions of large but finite periodic distributions of charges. They present a simple method to derive and interpret the surface contribution to any electrostatic field produced by a periodic distribution of charges. They discuss the physical and mathematical interpretations of this term. They present several examples and physical details associated with the calculation of the surface term. Finally, they provide a simple derivation of the surface contribution to the virial. This term does not disappear even if tinfoil boundary conditions are applied. PMID:17411107

  17. Tunable surface plasmon wave plates.

    PubMed

    Djalalian-Assl, Amir; Cadusch, Jasper J; Balaur, Eugeniu; Aramesh, Morteza

    2016-07-01

    The highest resonant transmission through an array of holes perforated in metallic screens occurs when the dielectric constant of the substrate, the superstrate, and the hole are the same. Changes in the refractive index of the homogenous environment also produce the largest shift in resonances per refractive index unit. In this Letter, we first propose and apply a technique in realization of a freestanding bi-periodic array of holes perforated in a silver film. We then show both numerically and experimentally that shifts in (1,0) and (0,1) modes in response to changes in the refractive index of the surrounding dielectric provide a mechanism for realization of a miniaturized tunable quarter-wave plate that operates in an extraordinary optical transmission mode with a high throughput and a near unity state of circularly polarized light. PMID:27367123

  18. Surface Sediment Effects on Teleseismic P Wave Ground Displacement

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Nolet, G.; Dahlen, F. A.

    2001-12-01

    Large scatter in short-period body-wave amplitude measurements over short distances have been widely observed. "Station corrections" are essential when amplitude data are applied to determine event magnitude, and, occasionally, to explore deeper subsurface structures. In this paper, we investigated the effects of surface sediments on teleseismic P wave displacement amplitude assuming layered crust structures. Local scattering effects are ignored since we are interested in the teleseismic waves with dominant frequency well below 1 Hz. Generally, displacements are amplified as seismic waves propagate into a low-impedance sediment layer. As the wavefield interacts with a surface sediment layer, P wave reverberations de-amplify the ground displacement recorded by seismic sensors at the surface. The de-amplification effect is dependent on the period of the seismic wave. Numerical calculations show when the period of the seismic wave is much longer than P wave 2-way travel time in the surface sediment layer, it doesn't "feel" the existance of the sediment layer, which leaves amplitudes intact except for about a factor of 2 amplification effect caused by the free-surface. At shorter period, the amplification effect is approximately linearly-dependent on the period of seismic waves. When the period of seismic wave is short and within a couple of times of the P wave 2-way travel time in the sediment, the amplification effects varies greatly over a small range of seismic wave period. It indicates that surface displacement amplitude of high-frequency P wave could vary laterally up to an order of magnitude where P wave velocity in the surface weathering layer is low (less than few hundred meters per second) and lateral variations of the relative impedance are extremely large. A 7-layer 2x2 degree global crust model, {Crust2.0} (Laske et al) is used to estimate frequency-dependent station corrections in the continents and the stable period range of teleseismic P waves for

  19. Undulations from amplified low frequency surface waves

    SciTech Connect

    Coutant, Antonin; Parentani, Renaud

    2014-04-15

    We study the linear scattering of gravity waves in longitudinal inhomogeneous stationary flows. When the flow becomes supercritical, it is known that counterflow propagating shallow waves are blocked and converted into deep waves. Here we show that in the zero-frequency limit, the reflected waves are amplified in such a way that the free surface develops an undulation, i.e., a zero-frequency wave of large amplitude with nodes located at specific places. This amplification involves negative energy waves and implies that flat surfaces are unstable against incoming perturbations of arbitrary small amplitude. The relation between this instability and black hole radiation (the Hawking effect) is established.

  20. Surface acoustic wave stabilized oscillators

    NASA Technical Reports Server (NTRS)

    Parker, T. E.; Lee, D. L.; Leja, I.

    1979-01-01

    Four areas of surface acoustic wave (SAW) controlled oscillators were investigated and a number of 401.2 MHz oscillators were constructed that showed improved performance. Aging studies on SAW devices packaged in HC36/U cold weld enclosures produced frequency drifts as low as 0.4 ppm in 35 weeks and drift rates well under 0.5 ppm/year. Temperature compensation circuits have substantially improved oscillator temperature stability, with a deviation of + or - 4 ppm observed over the range -45 C to + 40 C. High efficiency amplifiers were constructed for SAW oscillators and a dc to RF efficiency of 44 percent was obtained for an RF output of 25 mW. Shock and vibration tests were made on four oscillators and all survived 500 G shock pulses unchanged. Only when white noise vibration (20 Hz to 2000 Hz) levels of 20 G's rms were applied did some of the devices fail.

  1. Swimming using surface acoustic waves.

    PubMed

    Bourquin, Yannyk; Cooper, Jonathan M

    2013-01-01

    Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs) have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel. PMID:23431358

  2. Swimming Using Surface Acoustic Waves

    PubMed Central

    Bourquin, Yannyk; Cooper, Jonathan M.

    2013-01-01

    Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs) have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel. PMID:23431358

  3. Surface acoustic wave stabilized oscillators

    NASA Technical Reports Server (NTRS)

    Parker, T. E.

    1978-01-01

    A number of 401.2 MHz surface acoustic wave (SAW) controlled oscillators were built and tested. The performance of these oscillators was evaluated for possible use as stable oscillators in communication systems. A short term frequency stability of better than 1 x 10 to the minus 9th power for one second was measured for the SAW oscillators. Long term frequency drift was measured and was found to be dependent on SAW design and packaging. Drift rates ranging from 15 ppm in twenty weeks to 2.5 ppm in twenty weeks were observed. Some further improvement was required. The temperature dependence of the saw oscillators was evaluated and it was concluded that some form of temperature compensation will be necessary to meet the requirements of some communication systems.

  4. Propagation of Lamb waves in an immersed periodically grooved plate: experimental detection of the scattered converted backward waves.

    PubMed

    Harhad, Nadia; El-Kettani, Mounsif Ech-Cherif; Djelouah, Hakim; Izbicki, Jean-Louis; Predoi, Mihai Valentin

    2014-03-01

    Guided waves propagation in immersed plates with irregular surfaces has potential application to detection and assessment of the extent, depth and pattern of the irregularity. The complexity of the problem, due to the large number of involved parameters, has limited the number of existing studies. The simplest case of irregularities of practical interest is the two-dimensional corrosion profile. Even this case is in general so complex, that one can extract several amplitude dominant periodic surfaces only by using a Fourier spectrum of the surface. Guided waves in plates, with one or both free surfaces having periodic perturbations of different shapes, have been presented in specialized literature. In this paper is studied the propagation of Lamb waves in an aluminum plate with a periodic grooved surface on only one side and immersed in water. The interaction between an incident Lamb wave and the grating gives rise to retro-converted waves. Preliminary numerical simulation by the finite element method is performed in order to obtain key parameters for the experiments. It is shown that retro-converted waves radiating into the water are detectable although their amplitudes are small. The phonon relation is verified for the leaky Lamb modes. The damping coefficients of the leaky Lamb modes in the grooved immersed plate are evaluated. PMID:24262677

  5. SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES

    SciTech Connect

    Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T.; Arregui, I.; Terradas, J.

    2012-07-10

    Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.

  6. Leaky surface electromagnetic waves on a high-index dielectric grating.

    PubMed

    Maradudin, A A; Simonsen, I; Zierau, W

    2016-05-15

    We show theoretically that the periodically corrugated surface of a high-index dielectric medium can support a leaky surface electromagnetic wave. This wave is bound to the surface in the vacuum, but radiates into the dielectric. Despite this radiative damping, the surface wave can have a long lifetime. PMID:27176969

  7. Optimal Distributed Excitation of Surface Wave Plasmas

    NASA Astrophysics Data System (ADS)

    Bowers, K. J.; Birdsall, C. K.

    2000-10-01

    Surface wave sustained plasmas are an emerging technology for next generation sources for material processing. There is promise of producing high density, uniform sheath plasmas at low neutral pressures over large target surface areas. Such plasmas are being produced by distributed arrays of slot antennas by numerous groups. However, work remains to obtain the optimal surface wave frequency and wave vector for sustaining a plasma. In this work, the optimal phase shift between slot antennas in a surface wave plasma is being sought using 2d3v PIC-MCC simulation. A long plasma loaded planar metal waveguide with a distributed exciting structure along one wall is modeled in these simulations. Of particular interest is the wave-particle interaction of electrons in the high energy tail of the velocity distribution (responsible for ionization in low pressure discharges) with driven low phase velocity (v << c) surface waves.

  8. Diffracted and head waves associated with waves on nonseparable surfaces

    NASA Technical Reports Server (NTRS)

    Barger, Raymond L.

    1992-01-01

    A theory is presented for computing waves radiated from waves on a smooth surface. With the assumption that attention of the surface wave is due only to radiation and not to dissipation in the surface material, the radiation coefficient is derived in terms of the attenuation factor. The excitation coefficient is determined by the reciprocity condition. Formulas for the shape and the spreading of the radiated wave are derived, and some sample calculations are presented. An investigation of resonant phase matching for nonseparable surfaces is presented with a sample calculation. A discussion of how such calculations might be related to resonant frequencies of nonseparable thin shell structures is included. A description is given of nonseparable surfaces that can be modeled in the vector that facilitates use of the appropriate formulas of differential geometry.

  9. Modified joint distribution of wave heights and periods

    NASA Astrophysics Data System (ADS)

    Zhang, H. D.; Guedes Soares, C.

    2016-05-01

    The modified versions of the linear theoretical model of Longuet-Higgins (1983) are derived in this work and also compared with the laboratory experiments carried out in MARINTEK. The main feature of modifications is to replace the mean frequency in the formulation with the peak frequency of the wave spectrum. These two alternative forms of joint distributions are checked in three typical random sea states characterized by the initial wave steepness. In order to further explore the properties of these models, the associated marginal distributions of wave heights and wave periods are also researched with the observed statistics and some encouraging results are obtained.

  10. Surface Wave Velocity of Crosslinked Polyacrylate Gels

    NASA Astrophysics Data System (ADS)

    Matsuoka, Tatsuro; Kinouchi, Wataru; ShinobuKoda, ShinobuKoda; Nomura, Hiroyasu

    1999-05-01

    Surface wave velocities of crosslinked polyacrylate hydrogelswere measured as a function of water content with differentcompositions of sodium polyacrylate (NaPA) and polyacrylic acid (PAA).The water content and composition dependencies of the surface wavevelocity were discussed.

  11. Light Scattering by Surface Tension Waves.

    ERIC Educational Resources Information Center

    Weisbuch, G.; Garbay, F.

    1979-01-01

    This simple and inexpensive experiment is an illustration of the physical concepts of interaction between light and surface tension waves, and provides a new method of measuring surface tension. (Author/GA)

  12. Calculating wave-generated bottom orbital velocities from surface-wave parameters

    NASA Astrophysics Data System (ADS)

    Wiberg, Patricia L.; Sherwood, Christopher R.

    2008-10-01

    Near-bed wave orbital velocities and shear stresses are important parameters in many sediment-transport and hydrodynamic models of the coastal ocean, estuaries, and lakes. Simple methods for estimating bottom orbital velocities from surface-wave statistics such as significant wave height and peak period often are inaccurate except in very shallow water. This paper briefly reviews approaches for estimating wave-generated bottom orbital velocities from near-bed velocity data, surface-wave spectra, and surface-wave parameters; MATLAB code for each approach is provided. Aspects of this problem have been discussed elsewhere. We add to this work by providing a method for using a general form of the parametric surface-wave spectrum to estimate bottom orbital velocity from significant wave height and peak period, investigating effects of spectral shape on bottom orbital velocity, comparing methods for calculating bottom orbital velocity against values determined from near-bed velocity measurements at two sites on the US east and west coasts, and considering the optimal representation of bottom orbital velocity for calculations of near-bed processes. Bottom orbital velocities calculated using near-bed velocity data, measured wave spectra, and parametric spectra for a site on the northern California shelf and one in the mid-Atlantic Bight compare quite well and are relatively insensitive to spectral shape except when bimodal waves are present with maximum energy at the higher-frequency peak. These conditions, which are most likely to occur at times when bottom orbital velocities are small, can be identified with our method as cases where the measured wave statistics are inconsistent with Donelan's modified form of the Joint North Sea Wave Project (JONSWAP) spectrum. We define the "effective" forcing for wave-driven, near-bed processes as the product of the magnitude of forcing times its probability of occurrence, and conclude that different bottom orbital velocity statistics

  13. Calculating wave-generated bottom orbital velocities from surface-wave parameters

    USGS Publications Warehouse

    Wiberg, P.L.; Sherwood, C.R.

    2008-01-01

    Near-bed wave orbital velocities and shear stresses are important parameters in many sediment-transport and hydrodynamic models of the coastal ocean, estuaries, and lakes. Simple methods for estimating bottom orbital velocities from surface-wave statistics such as significant wave height and peak period often are inaccurate except in very shallow water. This paper briefly reviews approaches for estimating wave-generated bottom orbital velocities from near-bed velocity data, surface-wave spectra, and surface-wave parameters; MATLAB code for each approach is provided. Aspects of this problem have been discussed elsewhere. We add to this work by providing a method for using a general form of the parametric surface-wave spectrum to estimate bottom orbital velocity from significant wave height and peak period, investigating effects of spectral shape on bottom orbital velocity, comparing methods for calculating bottom orbital velocity against values determined from near-bed velocity measurements at two sites on the US east and west coasts, and considering the optimal representation of bottom orbital velocity for calculations of near-bed processes. Bottom orbital velocities calculated using near-bed velocity data, measured wave spectra, and parametric spectra for a site on the northern California shelf and one in the mid-Atlantic Bight compare quite well and are relatively insensitive to spectral shape except when bimodal waves are present with maximum energy at the higher-frequency peak. These conditions, which are most likely to occur at times when bottom orbital velocities are small, can be identified with our method as cases where the measured wave statistics are inconsistent with Donelan's modified form of the Joint North Sea Wave Project (JONSWAP) spectrum. We define the 'effective' forcing for wave-driven, near-bed processes as the product of the magnitude of forcing times its probability of occurrence, and conclude that different bottom orbital velocity statistics

  14. Surface waves generated by shallow underwater explosions

    NASA Technical Reports Server (NTRS)

    Falade, A.; Holt, M.

    1978-01-01

    Surface water waves generated by surface and near surface point explosions are calculated. Taking the impulse distribution imparted at the water surface by the explosion as the overriding mechanism for transferring energy of the explosive to surface wave motion, the linearized theory of Kranzer and Keller is used to obtain the wave displacement in the far field. The impulse distribution is obtained by integrating the pressure wave over an appropriate time interval on a horizontal surface just beneath the undisturbed water surface. For surface explosions, a modified form of the similarity method first used by Collins and Holt is used to obtain the flow field. In the case of submerged explosions, the flow field is estimated by making necessary modifications to Sedov's similarity solution to account for the venting that accompanies the interaction of the leading (blast) wave with the ocean surface. Surface waves generated by a charge at six depths of placement (0.15 m, 0.30 m, 0.61 m, 0.91 m, 1.37 m, 3.05 m) are considered in addition to surface explosions. The results seem to support the existence of an upper critical depth phenomenon (of the type already established for chemical explosions) for point (nuclear) explosions.

  15. Ultrasonic geometrical characterization of periodically corrugated surfaces.

    PubMed

    Liu, Jingfei; Declercq, Nico F

    2013-04-01

    Accurate characterization of the characteristic dimensions of a periodically corrugated surface using ultrasonic imaging technique is investigated both theoretically and experimentally. The possibility of accurately characterizing the characteristic dimensions is discussed. The condition for accurate characterization and the quantitative relationship between the accuracy and its determining parameters are given. The strategies to avoid diffraction effects instigated by the periodical nature of a corrugated surface are also discussed. Major causes of erroneous measurements are theoretically discussed and experimentally illustrated. A comparison is made between the presented results and the optical measurements, revealing acceptable agreement. This work realistically exposes the capability of the proposed ultrasonic technique to accurately characterize the lateral and vertical characteristic dimensions of corrugated surfaces. Both the general principles developed theoretically as well as the proposed practical techniques may serve as useful guidelines to peers. PMID:23294990

  16. Isotropic and anisotropic surface wave cloaking techniques

    NASA Astrophysics Data System (ADS)

    McManus, T. M.; La Spada, L.; Hao, Y.

    2016-04-01

    In this paper we compare two different approaches for surface waves cloaking. The first technique is a unique application of Fermat’s principle and requires isotropic material properties, but owing to its derivation is limited in its applicability. The second technique utilises a geometrical optics approximation for dealing with rays bound to a two dimensional surface and requires anisotropic material properties, though it can be used to cloak any smooth surface. We analytically derive the surface wave scattering behaviour for both cloak techniques when applied to a rotationally symmetric surface deformation. Furthermore, we simulate both using a commercially available full-wave electromagnetic solver and demonstrate a good level of agreement with their analytically derived solutions. Our analytical solutions and simulations provide a complete and concise overview of two different surface wave cloaking techniques.

  17. Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.

    NASA Technical Reports Server (NTRS)

    Tuan, H.-S.; Chang, C.-P.

    1972-01-01

    A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.

  18. Surface wave sensitivity: mode summation versus adjoint SEM

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Liu, Qinya; Tromp, Jeroen

    2011-12-01

    We compare finite-frequency phase and amplitude sensitivity kernels calculated based on frequency-domain surface wave mode summation and a time-domain adjoint method. The adjoint calculations involve a forward wavefield generated by an earthquake and an adjoint wavefield generated at a seismic receiver. We determine adjoint sources corresponding to frequency-dependent phase and amplitude measurements made using a multitaper technique, which may be applied to any single-taper measurement, including box car windowing. We calculate phase and amplitude sensitivity kernels using an adjoint method based on wave propagation simulations using a spectral element method (SEM). Sensitivity kernels calculated using the adjoint SEM are in good agreement with kernels calculated based on mode summation. In general, the adjoint SEM is more computationally expensive than mode summation in global studies. The advantage of the adjoint SEM lies in the calculation of sensitivity kernels in 3-D earth models. We compare surface wave sensitivity kernels computed in 1-D and 3-D reference earth models and show that (1) lateral wave speed heterogeneities may affect the geometry and amplitude of surface wave sensitivity; (2) sensitivity kernels of long-period surface waves calculated in 1-D model PREM and 3-D models S20RTS+CRUST2.0 and FFSW1+CRUST2.0 do not show significant differences, indicating that the use of a 1-D reference model is adequate in global inversions of long-period surface waves (periods of 50 s and longer); and (3) the differences become significant for short-period Love waves when mode coupling is sensitive to large differences in reference crustal structure. Finally, we show that sensitivity kernels in anelastic earth models may be calculated in purely elastic earth models provided physical dispersion is properly accounted for.

  19. Nonlinear sharpening during superposition of surface waves

    NASA Astrophysics Data System (ADS)

    Chalikov, Dmitry; Babanin, Alexander V.

    2016-08-01

    Two-dimensional direct wave model is used for demonstration of the role of reversible interactions which probably is the main process leading to breaking. One-dimensional model was used for performing of thousands of exact short-term simulations of evolution of two superposed wave trains with different steepness, and wavenumbers were performed to investigate the effect of wave crests merging. Nonlinear sharpening of the merging crests is demonstrated. It is suggested that such effect may be responsible for appearance of the typical sharp crests of surface waves, as well as for wave breaking.

  20. Nonlinear sharpening during superposition of surface waves

    NASA Astrophysics Data System (ADS)

    Chalikov, Dmitry; Babanin, Alexander V.

    2016-06-01

    Two-dimensional direct wave model is used for demonstration of the role of reversible interactions which probably is the main process leading to breaking. One-dimensional model was used for performing of thousands of exact short-term simulations of evolution of two superposed wave trains with different steepness, and wavenumbers were performed to investigate the effect of wave crests merging. Nonlinear sharpening of the merging crests is demonstrated. It is suggested that such effect may be responsible for appearance of the typical sharp crests of surface waves, as well as for wave breaking.

  1. Solitary and periodic waves in two-fluid magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Gavrikov, M. B.; Kudryashov, N. A.; Petrov, B. A.; Savelyev, V. V.; Sinelshchikov, D. I.

    2016-09-01

    A system of equations of two-fluid magnetohydrodynamics is studied. An ordinary differential equation describing traveling waves in an ideal cold quasi-neutral plasma is obtained in the case of quasi-stationary electromagnetic field. The Painlevé analysis of this equation is carried out and the general solution of the equation is constructed in terms of the Weierstrass elliptic function. Solitary and periodic wave solutions for the components of magnetic field are found and analyzed.

  2. Reflections concerning triply-periodic minimal surfaces

    PubMed Central

    Schoen, Alan H.

    2012-01-01

    In recent decades, there has been an explosion in the number and variety of embedded triply-periodic minimal surfaces (TPMS) identified by mathematicians and materials scientists. Only the rare examples of low genus, however, are commonly invoked as shape templates in scientific applications. Exact analytic solutions are now known for many of the low genus examples. The more complex surfaces are readily defined with numerical tools such as Surface Evolver software or the Landau–Ginzburg model. Even though table-top versions of several TPMS have been placed within easy reach by rapid prototyping methods, the inherent complexity of many of these surfaces makes it challenging to grasp their structure. The problem of distinguishing TPMS, which is now acute because of the proliferation of examples, has been addressed by Lord & Mackay (Lord & Mackay 2003 Curr. Sci. 85, 346–362). PMID:24098851

  3. Localization of flexural waves in a disordered periodic piezoelectric beam

    NASA Astrophysics Data System (ADS)

    Chen, A.-Li; Li, Feng-Ming; Wang, Yue-Sheng

    2007-07-01

    Localization of bending waves in a disordered periodic piezoelectric beam is studied in this paper. The equation of the wave motion for a piezoelectric beam is derived on the assumption of an Euler-Bernoulli beam, and the harmonic solution is presented. The transfer matrix between two consecutive unit cells in the structures is obtained by using the continuity conditions. The expression of the localization factor is given by Wolf's algorithm. Numerical examples are presented and the effects of several disordered parameters on the localization factor are analyzed. The results show that piezoelectricity has obvious effects on the passbands and stopbands of the periodic piezoelectric beam. The behavior of wave propagation and localization in disordered periodic piezoelectric beams can be altered by tuning different structural parameters.

  4. Compressional and torsional wave amplitudes in rods with periodic structures

    NASA Astrophysics Data System (ADS)

    Morales, A.; Flores, J.; Gutierrez, L.; Mendez-Sanchez, R. A.

    2002-11-01

    To measure and detect elastic waves in metallic rods a low-frequency electromagnetic-acoustic transducer has been developed. Frequencies range from a few hertz up to hundreds of kilohertz. With appropriate configuration of the transducer, compressional or torsional waves can be selectively excited or detected. Although the transducer can be used in many different situations, it has been tested and applied to a locally periodic rod, which consists of a finite number of unit cells. The measured wave amplitudes are compared with theoretical ones, obtained with the one-dimensional transfer matrix method, and excellent agreement is obtained. copyright 2002 Acoustical Society of America.

  5. Analytical Solution for Waves in Planets with Atmospheric Superrotation. II. Lamb, Surface, and Centrifugal Waves

    NASA Astrophysics Data System (ADS)

    Peralta, J.; Imamura, T.; Read, P. L.; Luz, D.; Piccialli, A.; López-Valverde, M. A.

    2014-07-01

    This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere.

  6. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. II. LAMB, SURFACE, AND CENTRIFUGAL WAVES

    SciTech Connect

    Peralta, J.; López-Valverde, M. A.; Imamura, T.; Read, P. L.; Luz, D.; Piccialli, A.

    2014-07-01

    This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere.

  7. Periodic Wave of Epidemic Spreading in Community Networks

    NASA Astrophysics Data System (ADS)

    Zhou, Yin-Zuo; Liu, Zong-Hua; Zhou, Jie

    2007-02-01

    It was reported by Cummings et al. [Nature 427 (2004) 344] that there are periodic waves in the spatiotemporal data of epidemics. For understanding the mechanism, we study the epidemic spreading on community networks by both the SIS model and the SIRS model. We find that with the increase of infection rate, the number of total infected nodes may be stabilized at a fixed point, oscillatory waves, and periodic cycles. Moreover, the epidemic spreading in the SIS model can be explained by an analytic map.

  8. Gravitational waves from periodic three-body systems.

    PubMed

    Dmitrašinović, V; Suvakov, Milovan; Hudomal, Ana

    2014-09-01

    Three bodies moving in a periodic orbit under the influence of Newtonian gravity ought to emit gravitational waves. We have calculated the gravitational radiation quadrupolar waveforms and the corresponding luminosities for the 13+11 recently discovered three-body periodic orbits in Newtonian gravity. These waves clearly allow one to distinguish between their sources: all 13+11 orbits have different waveforms and their luminosities (evaluated at the same orbit energy and body mass) vary by up to 13 orders of magnitude in the mean, and up to 20 orders of magnitude for the peak values. PMID:25238346

  9. Polarimetric thermal emission from periodic water surfaces

    NASA Technical Reports Server (NTRS)

    Yueh, S. H.; Nghiem, S. V.; Kwok, R.; Wilson, W. J.; Li, F. K.; Johnson, J. T.; Kong, J. A.

    1993-01-01

    Experimental results and theoretical calculations are presented to study the polarimetric emission from water surfaces with directional features. For our ground-based Ku-band radiometer measurements, a water pool was constructed on the roof of a building in the Jet Propulsion Laboratory, and a fiberglass surface with periodic corrugations in one direction was impressed on the top of the water surface to create a stationary water surface underneath it. It is observed that the measured Stokes parameters of corrugated fiberglass-covered water surfaces are functions of azimuth angles and agree very well with the theoretical calculations. The theory, after being verified by the experimental data, was then used to calculate the Stokes parameters of periodic surfaces without fiberglass surface layer and with rms height of the order of wind-generated water ripples. The magnitudes of the azimuthal variation of the calculated emissivities at horizontal and vertical polarizations corresponding to the first two Stokes parameters are found to be comparable to the values measured by airborne radiometers and SSM/I. In addition, the third Stokes parameter not shown in the literature is seen to have approximately twice the magnitude of the azimuth variation of either T(sub h) or T(sub v), which may make it more sensitive to the row direction, while less susceptive to noises because the atmospheric and system noises tend to be unpolarized and are expected to be cancelled out when the third Stokes parameter is derived as the difference of two or three power measurements, as indicated by another experiment carried out at a swimming pool with complicated surroundings. The results indicate that passive polarimetry is a potential technology in the remote sensing of ocean wind vector which is a crucial component in the understanding of global climate change. Issues related to the application of microwave passive polarimetry to ocean wind are also discussed.

  10. Surface wave dispersion from small vertical scatterers

    NASA Astrophysics Data System (ADS)

    van Wijk, K.; Levshin, A. L.

    2004-10-01

    Heterogeneity in the subsurface creates conflicting types of dispersion of seismic waves. A laboratory and numerical experiment show that multiple scattering of elastic waves from isolated heterogeneities near the surface not only attenuates, but also delays coherent events. Because scattering off these impedance contrasts is frequency dependent, multiple scattering is a source of dispersion. If ignored, multiple scattering dispersion could be erroneously attributed to a model with horizontal homogeneous layers of different wave speeds.

  11. Free-surface wave-induced separation

    SciTech Connect

    Zhang, Z.J.; Stern, F.

    1996-09-01

    Free-surface wave-induced separation is studied for a surface-piercing NACA 0024 foil over a range of Froude numbers (0, .2, .37, .55) through computational fluid dynamics of the unsteady Reynolds-averaged Navier-Stokes and the continuity equations with the Baldwin-Lomax turbulence model, exact nonlinear kinematic and approximate dynamic free-surface boundary conditions, and a body/free-surface conforming grid. The flow conditions and uncertainty analysis are discussed. A topological rule for a surface-piercing body is derived and verified. Steady-flow results are presented and analyzed with regard to the wave and viscous flow and the nature of the separation.

  12. Nonlinear Generation of Vorticity by Surface Waves.

    PubMed

    Filatov, S V; Parfenyev, V M; Vergeles, S S; Brazhnikov, M Yu; Levchenko, A A; Lebedev, V V

    2016-02-01

    We demonstrate that waves excited on a fluid surface produce local surface rotation owing to hydrodynamic nonlinearity. We examine theoretically the effect and obtain an explicit formula for the vertical vorticity in terms of the surface elevation. Our theoretical predictions are confirmed by measurements of surface motion in a cell with water where surface waves are excited by vertical and harmonic shaking the cell. The experimental data are in good agreement with the theoretical predictions. We discuss physical consequences of the effect. PMID:26894714

  13. Surface Gravity Waves: Resonance in a Fish Tank

    NASA Astrophysics Data System (ADS)

    Sinick, Scott J.; Lynch, John J.

    2010-05-01

    In this work, an inexpensive 10-gallon glass aquarium was used to study wave motion in water. The waves travel at speeds comparable to a person walking (˜1 m/s). The scale of the motion allows for distances to be measured with a meterstick and for times to be measured with a stopwatch. For a wide range of water depths, standing waves were excited by hand using strips of Styrofoam. Several resonant modes were studied starting with the fundamental. Experimental values of wave speed were obtained from measurements of wavelength and period of oscillation. Theoretical values of wave speed were calculated using the surface gravity wave dispersion relation. The agreement between experiment and theory was usually better than 0.5%. The aquarium was a winner in the Apparatus Competition (Low Cost Category) during the AAPT 2006 Summer Meeting at Syracuse University.

  14. Reconstructing surface wave profiles from reflected acoustic pulses.

    PubMed

    Walstead, Sean P; Deane, Grant B

    2013-05-01

    Surface wave shapes are determined by analyzing underwater reflected acoustic signals. The acoustic signals (of nominal frequency 200 kHz) are forward scattered from the underside of surface waves that are generated in a wave tank and scaled to model smooth ocean swell. An inverse processing algorithm is designed and implemented to reconstruct the surface displacement profiles of the waves over one complete period. The inverse processing uses the surface scattered pulses collected at the receiver, an initial wave profile (two are considered), and a broadband forward scattering model based on Kirchhoff's diffraction formula to iteratively adjust the surface until it is considered optimized or reconstructed. Two physical length scales over which information can be known about the surface are confirmed. An outer length scale, the Fresnel zone surrounding each specular reflection point, is the only region where optimized surfaces resulting from each initial profile converge within a resolution set by the inner length scale, a quarter-wavelength of the acoustic pulse. The statistical confidence of each optimized surface is also highest within a Fresnel zone. Future design considerations are suggested such as an array of receivers that increases the region of surface reconstruction by a factor of 2 to 3. PMID:23654368

  15. Traveling surface spin-wave resonance spectroscopy using surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Gowtham, P. G.; Moriyama, T.; Ralph, D. C.; Buhrman, R. A.

    2015-12-01

    Coherent gigahertz-frequency surface acoustic waves (SAWs) traveling on the surface of a piezoelectric crystal can, via the magnetoelastic interaction, resonantly excite traveling surface spin waves in an adjacent thin-film ferromagnet. These excited surface spin waves, traveling with a definite in-plane wave-vector q ∥ enforced by the SAW, can be detected by measuring changes in the electro-acoustical transmission of a SAW delay line. Here, we provide a demonstration that such measurements constitute a precise and quantitative technique for spin-wave spectroscopy, providing a means to determine both isotropic and anisotropic contributions to the spin-wave dispersion and damping. We demonstrate the effectiveness of this spectroscopic technique by measuring the spin-wave properties of a Ni thin film for a large range of wave vectors, | q ∥ | = 2.5 × 104-8 × 104 cm-1, over which anisotropic dipolar interactions vary from being negligible to quite significant.

  16. Piezoelectric tube rotation effect owing to surface acoustic wave excitation

    NASA Astrophysics Data System (ADS)

    Biryukov, Sergey V.; Sotnikov, Andrei; Schmidt, Hagen

    2016-03-01

    It is shown experimentally that a macroscopic cylindrical solid shaped like a piezoelectric tube can be rotated due to the excitation of surface acoustic waves (SAWs) with different amplitudes propagating in opposite directions along the solid's surface. A unidirectional SAW transducer covering the whole cylindrical surface has been used for ac voltage excitation of waves with unequal amplitudes in both directions. The pattern of such a transducer consists of a periodic comb structure with two electrodes of different width per period. An external torque is not applied to the tube and, from the outside, its movement looks like a motion under the action of an internal force. The observed mechanical response of the piezoelectric cylindrical tube to excitation of waves is due to an angular momentum of SAWs, the value of which has been directly calculated from experimental results.

  17. Excitation of Bloch-like surface waves in quasi-crystals and aperiodic dielectric multilayers.

    PubMed

    Koju, Vijay; Robertson, William M

    2016-07-01

    The existence of Bloch surface waves in periodic dielectric multilayer structures with a surface defect is well known. Not yet recognized is that quasi-crystals and aperiodic dielectric multilayers can also support Bloch-like surface waves. In this work, we numerically show the excitation of Bloch-like surface waves in Fibonacci quasi-crystals and Thue-Morse aperiodic dielectric multilayers using the prism coupling method. We report improved surface electric field intensity and penetration depth of Bloch-like surface waves in the air side in such structures compared to their periodic counterparts. PMID:27367064

  18. Resonances and surface waves in bounded plasmas

    SciTech Connect

    Bowers, K.J.; Qui, D.W.; Smith, H.B.; Birdsall, C.K.

    1999-07-01

    Surface waves provide a promising means of creating large, area plasmas. These waves can uniformly distribute the excitation energy and while presenting a small resistance and zero reactance to the driving source. Experimentally and in the simulations, the electron temperature is low (like 1--3 eV) as is the plasma potential (like 10 Te). The use of surface waves experimentally, and now industrially, to sustain large area plasma sources with device size is comparable to free space wavelength have motivated the authors to refine the theories of [1] and [2] to be fully electromagnetic. The wave dispersion predicted by the electromagnetic theory differs from the predictions of the prior theories and the results illuminate limitations of the electrostatic model. The use of surface waves have also motivated them to explore the mechanisms by which surface waves heat the plasma. In the 1d electrostatic simulations high velocity electron bunches are formed in the sheaths and are alternatively accelerated from each sheath into the bulk plasma each RF cycle. They speculate similar mechanisms provide the ionization in surface wave discharges. They also see in these simulations the plasma makes an abrupt transition from capacitively coupled to resistively coupled and the series resonance locks onto the drive frequency; these abrupt transitions resemble mode-jumping seen experimentally in large area sources. Furthermore, the density profile of the plasma tracks the drive frequency while in the resonant mode giving a new mechanism by which the plasma parameters can be controlled. They are currently investigating the effect of the driving electrode shape has on these resonances and conducting 2d simulations of a large area surface wave source to explore the ignition of surface wave devices and how the plasma fills in the device.

  19. Periodic intermediate long wave equation: the undressing method

    SciTech Connect

    Lebedev, D.R.; Radul, A.O.

    1987-08-01

    The periodic equation of a two-layer liquid (periodic intermediate long wave equation) is studied by the undressing method using formal Volterra operators. The method is used to construct an infinite series of conservation laws; higher equations of the two-layer liquid are written down in Hamiltonian form; it is shown that the conservation laws are preserved by the higher equations; and an involution theorem is proved.

  20. Wave impedances of drill strings and other periodic media

    NASA Astrophysics Data System (ADS)

    Drumheller, Douglas S.

    2002-12-01

    It is commonly known that wave reflections are caused by abrupt spatial variations in the physical parameter called wave impedance. When a material contains a spatially periodic distribution of wave impedances some very interesting and complex wave propagation phenomena will occur. Two examples of such periodic structures immediately come to mind: the first is a sandwiched structure of two types of plates, say for example, identical layers of thin steel plates interspersed with identical thick aluminum plates; and the second is a large number of identical long thin pipes that are connected from end to end with identical short heavy threaded couplings. The pipe assembly is our primary concern here because it represents the drill string, used worldwide to drill for natural energy resources. We want to understand how waves propagate through drill strings because we want to use them as a means of communication. But while the second structure is our primary concern, it is the study of the first structure, composed of layers, that is the truly historical problem and the source of much of our understanding of this rich set of wave physics. Traditionally, wave propagation in periodic media has been studied as an eigenvalue problem. The eigenvalues themselves yield information about phase velocities, group velocities, passbands, and stopbands. Most often the analysis has stopped there and the eigenvectors have been ignored. Here we turn our attention to the eigenvectors, using them to evaluate the impedance of the periodic structure with particular emphasis on the periodic drill string. As you might expect the impedance of the drill string is a complex number, which is evaluated from a very complicated expression. However, we have discovered that the impedance at two physical locations along the length of each piece of drill pipe in the drill string always reduces to a real number. This is immensely important because it allows us to match the impedance of the drill string

  1. Propagation of SH waves in an infinite/semi-infinite piezoelectric/piezomagnetic periodically layered structure.

    PubMed

    Pang, Yu; Liu, Yu-Shan; Liu, Jin-Xi; Feng, Wen-Jie

    2016-04-01

    In this paper, SH bulk/surface waves propagating in the corresponding infinite/semi-infinite piezoelectric (PE)/piezomagnetic (PM) and PM/PE periodically layered composites are investigated by two methods, the stiffness matrix method and the transfer matrix method. For a semi-infinite PE/PM or PM/PE medium, the free surface is parallel to the layer interface. Both PE and PM materials are assumed to be transversely isotropic solids. Dispersion equations are derived by the stiffness/transfer matrix methods, respectively. The effects of electric-magnetic (ME) boundary conditions at the free surface and the layer thickness ratios on dispersion curves are considered in detail. Numerical examples show that the results calculated by the two methods are the same. The dispersion curves of SH surface waves are below the bulk bands or inside the frequency gaps. The ratio of the layer thickness has an important effect not only on the bulk bands but also on the dispersion curves of SH surface waves. Electric and magnetic boundary conditions, respectively, determine the dispersion curves of SH surface waves for the PE/PM and PM/PE semi-infinite structures. The band structures of SH bulk waves are consistent for the PE/PM and PM/PE structures, however, the dispersive behaviors of SH surface waves are indeed different for the two composites. The realization of the above-mentioned characteristics of SH waves will make it possible to design PE/PM acoustic wave devices with periodical structures and achieve the better performance. PMID:26836289

  2. Highly Nonlinear Wave Propagation in Elastic Woodpile Periodic Structures

    NASA Astrophysics Data System (ADS)

    Kim, E.; Li, F.; Chong, C.; Theocharis, G.; Yang, J.; Kevrekidis, P. G.

    2015-03-01

    In the present work, we experimentally implement, numerically compute with, and theoretically analyze a configuration in the form of a single column woodpile periodic structure. Our main finding is that a Hertzian, locally resonant, woodpile lattice offers a test bed for the formation of genuinely traveling waves composed of a strongly localized solitary wave on top of a small amplitude oscillatory tail. This type of wave, called a nanopteron, is not only motivated theoretically and numerically, but is also visualized experimentally by means of a laser Doppler vibrometer. This system can also be useful for manipulating stress waves at will, for example, to achieve strong attenuation and modulation of high-amplitude impacts without relying on damping in the system.

  3. Large-amplitude waves in a gas disk. I. Stationary periodic waves

    SciTech Connect

    Abramyan, M.G.; Mikhailova, E.A.; Morozov, A.G.

    1986-07-01

    The exact nonlinear equation of short-wave perturbations of a rotating gas disk has been solved numerically. Nonlinear periodic waves whose amplitude for fixed propagation velocity is bounded above were obtained. The limiting value of the amplitude increases with increasing wave velocity. The results are used to estimate the parameters of the ''3-kpc arm'' and ''135-km/sec feature'' of the Galaxy and the fine structure of Saturn's rings.

  4. Solitary wave dynamics in shallow water over periodic topography.

    PubMed

    Nakoulima, Ousseynou; Zahibo, Narcisse; Pelinovsky, Efim; Talipova, Tatiana; Kurkin, Andrey

    2005-09-01

    The problem of long-wave scattering by piecewise-constant periodic topography is studied both for a linear solitary-like wave pulse, and for a weakly nonlinear solitary wave [Korteweg-de Vries (KdV) soliton]. If the characteristic length of the topographic irregularities is larger than the pulse length, the solution of the scattering problem is obtained analytically for a leading wave in the framework of linear shallow-water theory. The wave decrement in the case of the small height of the topographic irregularities is proportional to delta2, where delta is the relative height of the topographic obstacles. An analytical approximate solution is also obtained for the weakly nonlinear problem when the length of the irregularities is larger than the characteristic nonlinear length scale. In this case, the Korteweg-de Vries equation is solved for each piece of constant depth by using the inverse scattering technique; the solutions are matched at each step by using linear shallow-water theory. The weakly nonlinear solitary wave decays more significantly than the linear solitary pulse. Solitary wave dynamics above a random seabed is also discussed, and the results obtained for random topography (including experimental data) are in reasonable agreement with the calculations for piecewise topography. PMID:16253002

  5. Surface waves propagating on a turbulent flow

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Pablo; Aumaître, Sébastien

    2016-02-01

    We study the propagation of monochromatic surface waves on a turbulent flow of liquid metal, when the waves are much less energetic than the background flow. Electromagnetic forcing drives quasi-two-dimensional turbulence with strong vertical vorticity. To isolate the surface-wave field, we remove the surface deformation induced by the background turbulent flow using coherent-phase averaging at the wave frequency. We observe a significant increase in wavelength, when the latter is smaller than the forcing length scale. This phenomenon has not been reported before and can be explained by multiple random wave deflections induced by the turbulent velocity gradients. The shift in wavelength thus provides an estimate of the fluctuations in deflection angle. Local measurements of the wave frequency far from the wavemaker do not reveal such systematic behavior, although a small shift is visible. Finally, we quantify the damping enhancement induced by the turbulent flow and compare it to the existing theoretical predictions. Most of them suggest that the damping increases as the square of the Froude number, whereas our experimental data show a linear increase with the Froude number. We interpret this linear relationship as a balance between the time for a wave to cross a turbulent structure and the turbulent mixing time. The larger the ratio of these two times, the more energy is extracted from the wave. We conclude with possible mechanisms for energy exchange.

  6. Surface waves of Min-proteins

    NASA Astrophysics Data System (ADS)

    Fischer-Friedrich, Elisabeth; Nguyen van yen, Romain; Kruse, Karsten

    2007-03-01

    In the bacterium Escherichia coli, the Min-proteins show pronounced pole-to-pole oscillations. They are functional for suppressing cell division at the cell ends, leaving the center as the only possible site for division. Analyzing different models of Min-protein dynamics in a bacterial geometry, we find waves on the cytoplasmic membrane. Interestingly, the surface wave solutions of different models belong to different symmetry classes. We suggest that experiments on Min-protein surface waves in vitro are helpful in distinguishing between different classes of models of Min-protein dynamics.

  7. Mechanical surface waves accompany action potential propagation.

    PubMed

    El Hady, Ahmed; Machta, Benjamin B

    2015-01-01

    Many diverse studies have shown that a mechanical displacement of the axonal membrane accompanies the electrical pulse defining the action potential (AP). We present a model for these mechanical displacements as arising from the driving of surface wave modes in which potential energy is stored in elastic properties of the neuronal membrane and cytoskeleton while kinetic energy is carried by the axoplasmic fluid. In our model, these surface waves are driven by the travelling wave of electrical depolarization characterizing the AP, altering compressive electrostatic forces across the membrane. This driving leads to co-propagating mechanical displacements, which we term Action Waves (AWs). Our model allows us to estimate the shape of the AW that accompanies any travelling wave of voltage, making predictions that are in agreement with results from several experimental systems. Our model can serve as a framework for understanding the physical origins and possible functional roles of these AWs. PMID:25819404

  8. Surface acoustic wave dust deposition monitor

    DOEpatents

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  9. Mechanical surface waves accompany action potential propagation

    NASA Astrophysics Data System (ADS)

    El Hady, Ahmed; Machta, Benjamin B.

    2015-03-01

    Many diverse studies have shown that a mechanical displacement of the axonal membrane accompanies the electrical pulse defining the action potential (AP). We present a model for these mechanical displacements as arising from the driving of surface wave modes in which potential energy is stored in elastic properties of the neuronal membrane and cytoskeleton while kinetic energy is carried by the axoplasmic fluid. In our model, these surface waves are driven by the travelling wave of electrical depolarization characterizing the AP, altering compressive electrostatic forces across the membrane. This driving leads to co-propagating mechanical displacements, which we term Action Waves (AWs). Our model allows us to estimate the shape of the AW that accompanies any travelling wave of voltage, making predictions that are in agreement with results from several experimental systems. Our model can serve as a framework for understanding the physical origins and possible functional roles of these AWs.

  10. Frequency shift of the Bragg and Non-Bragg backscattering from periodic water wave.

    PubMed

    Wen, Biyang; Li, Ke

    2016-01-01

    Doppler effect is used to measure the relative speed of a moving target with respect to the radar, and is also used to interpret the frequency shift of the backscattering from the ocean wave according to the water-wave phase velocity. The widely known relationship between the Doppler shift and the water-wave phase velocity was deduced from the scattering measurements data collected from actual sea surface, and has not been verified under man-made conditions. Here we show that this ob- served frequency shift of the scattering data from the Bragg and Non-Bragg water wave is not the Doppler shift corresponding to the water-wave phase velocity as commonly believed, but is the water-wave frequency and its integral multiple frequency. The power spectrum of the backscatter from the periodic water wave consists of serials discrete peaks, which is equally spaced by water wave frequency. Only when the water-wave length is the integer multiples of the Bragg wave, and the radar range resolution is infinite, does the frequency shift of the backscattering mathematically equal the Doppler shift according to the water-wave phase velocity. PMID:27531469

  11. Frequency shift of the Bragg and Non-Bragg backscattering from periodic water wave

    PubMed Central

    Wen, Biyang; Li, Ke

    2016-01-01

    Doppler effect is used to measure the relative speed of a moving target with respect to the radar, and is also used to interpret the frequency shift of the backscattering from the ocean wave according to the water-wave phase velocity. The widely known relationship between the Doppler shift and the water-wave phase velocity was deduced from the scattering measurements data collected from actual sea surface, and has not been verified under man-made conditions. Here we show that this ob- served frequency shift of the scattering data from the Bragg and Non-Bragg water wave is not the Doppler shift corresponding to the water-wave phase velocity as commonly believed, but is the water-wave frequency and its integral multiple frequency. The power spectrum of the backscatter from the periodic water wave consists of serials discrete peaks, which is equally spaced by water wave frequency. Only when the water-wave length is the integer multiples of the Bragg wave, and the radar range resolution is infinite, does the frequency shift of the backscattering mathematically equal the Doppler shift according to the water-wave phase velocity. PMID:27531469

  12. Structure of the airflow above surface waves

    NASA Astrophysics Data System (ADS)

    Buckley, Marc; Veron, Fabrice

    2016-04-01

    Weather, climate and upper ocean patterns are controlled by the exchanges of momentum, heat, mass, and energy across the ocean surface. These fluxes are, in turn, influenced by the small-scale physics at the wavy air-sea interface. We present laboratory measurements of the fine-scale airflow structure above waves, achieved in over 15 different wind-wave conditions, with wave ages Cp/u* ranging from 1.4 to 66.7 (where Cp is the peak phase speed of the waves, and u* the air friction velocity). The experiments were performed in the large (42-m long) wind-wave-current tank at University of Delaware's Air-Sea Interaction laboratory (USA). A combined Particle Image Velocimetry and Laser Induced Fluorescence system was specifically developed for this study, and provided two-dimensional airflow velocity measurement as low as 100 um above the air-water interface. Starting at very low wind speeds (U10~2m/s), we directly observe coherent turbulent structures within the buffer and logarithmic layers of the airflow above the air-water interface, whereby low horizontal velocity air is ejected away from the surface, and higher velocity fluid is swept downward. Wave phase coherent quadrant analysis shows that such turbulent momentum flux events are wave-phase dependent. Airflow separation events are directly observed over young wind waves (Cp/u*<3.7) and counted using measured vorticity and surface viscous stress criteria. Detached high spanwise vorticity layers cause intense wave-coherent turbulence downwind of wave crests, as shown by wave-phase averaging of turbulent momentum fluxes. Mean wave-coherent airflow motions and fluxes also show strong phase-locked patterns, including a sheltering effect, upwind of wave crests over old mechanically generated swells (Cp/u*=31.7), and downwind of crests over young wind waves (Cp/u*=3.7). Over slightly older wind waves (Cp/u* = 6.5), the measured wave-induced airflow perturbations are qualitatively consistent with linear critical layer

  13. Cross-correlation search for periodic gravitational waves

    SciTech Connect

    Dhurandhar, Sanjeev; Mukhopadhyay, Himan; Krishnan, Badri; Whelan, John T.

    2008-04-15

    In this paper we study the use of cross correlations between multiple gravitational wave (GW) data streams for detecting long-lived periodic signals. Cross-correlation searches between data from multiple detectors have traditionally been used to search for stochastic GW signals, but recently they have also been used in directed searches for periodic GWs. Here we further adapt the cross-correlation statistic for periodic GW searches by taking into account both the nonstationarity and the long-term-phase coherence of the signal. We study the statistical properties and sensitivity of this search and its relation to existing periodic wave searches, and describe the precise way in which the cross-correlation statistic interpolates between semicoherent and fully coherent methods. Depending on the maximum duration over which we wish to preserve phase coherence, the cross-correlation statistic can be tuned to go from a standard cross-correlation statistic using data from distinct detectors, to the semicoherent time-frequency methods with increasing coherent time baselines, and all the way to a full coherent search. This leads to a unified framework for studying periodic wave searches and can be used to make informed trade-offs between computational cost, sensitivity, and robustness against signal uncertainties.

  14. Acoustic nonlinear periodic waves in pair-ion plasmas

    NASA Astrophysics Data System (ADS)

    Mahmood, Shahzad; Kaladze, Tamaz; Ur-Rehman, Hafeez

    2013-09-01

    Electrostatic acoustic nonlinear periodic (cnoidal) waves and solitons are investigated in unmagnetized pair-ion plasmas consisting of same mass and oppositely charged ion species with different temperatures. Using reductive perturbation method and appropriate boundary conditions, the Korteweg-de Vries (KdV) equation is derived. The analytical solutions of both cnoidal wave and soliton solutions are discussed in detail. The phase plane plots of cnoidal and soliton structures are shown. It is found that both compressive and rarefactive cnoidal wave and soliton structures are formed depending on the temperature ratio of positive and negative ions in pair-ion plasmas. In the special case, it is revealed that the amplitude of soliton may become larger than it is allowed by the nonlinear stationary wave theory which is equal to the quantum tunneling by particle through a potential barrier effect. The serious flaws in the earlier published results by Yadav et al., [PRE 52, 3045 (1995)] and Chawla and Misra [Phys. Plasmas 17, 102315 (2010)] of studying ion acoustic nonlinear periodic waves are also pointed out.

  15. Analysis of spurious bulk waves in ball surface wave device.

    PubMed

    Ishikawa, Satoru; Cho, Hideo; Tsukahara, Yusuke; Nakaso, Noritaka; Yamanaka, Kazushi

    2003-01-01

    We analyzed the acoustic waves propagating in a sphere to establish a useful guideline for the design of NDE apparatus and ball surface acoustic wave (SAW) device exploiting the diffraction-free propagation of SAW on a sphere. First, we calculated the laser-generated acoustic displacements both under ablation condition and under thermoelastic condition and verified experimentally the validity of the calculation. Next, the acoustic waves excited by out-of-plane stress and those excited by in-plane stress were compared. The results showed that when the out-of-plane stress was applied, the relative amplitudes of the bulk waves to that of the SAW were larger and the number of bulk waves was larger than that when the in-plane stress was applied, while the SAW had similar waveforms in each case. The ratio of the relative amplitude of the bulk waves for the out-of-plane stress and the in-plane stress was 3.1:1 at phi(1)=90 degrees and 1.67:1 at phi(1)=0 degrees. The large amplitude for the out-of-plane stress can be explained by wide directivities of bulk waves. Consequently, we found that it is necessary for ball SAW device to select a piezoelectric material and form of interdigital transducer so that the in-plane stress becomes dominant. PMID:12464407

  16. The Surface Wave Dynamics Experiment (SWADE)

    NASA Technical Reports Server (NTRS)

    Long, S. R.; Oberholtzer, J. D.; Wright, C. W.; Shirk, H. G.

    1988-01-01

    SWADE was developed to study the dynamics of the wave field development in the open ocean with the following specific objectives: (1) to understand the development of the wave directional spectrum under various conditions; (2) to determine the effect of waves on the air/sea transfers of momentum, heat, and mass; (3) to determine breaking distributions as a function of sea state, wind, and boundary stability; and (4) to provide data and analyses for ERS-1 validation. The experiment is designed for the winter of 1990 to 1991. Four buoys will be deployed for 6 months starting October 1990 and ending March 1991. During that time period, three intensive periods of 2 weeks duration each will be selected for frequent aircraft flights for wave data collection to satisfy scientific studies, as well as ERS-1 validation needs.

  17. Surface Wave Tomography of the Region Between Korea and Taiwan

    NASA Astrophysics Data System (ADS)

    Cho, K.; Lee, S.

    2010-12-01

    Surface wave tomography of the region between Korea and Taiwan has been investigated by inverting the path-averaged group-velocity dispersion characteristic curves of surface waves obtained from big events and ambient noise. 219 seismograms from 19 events of magnitude greater than 6.0 that occurred in Taiwan from 1999 to 2007 have been recorded at three-component broadband seismic stations of Korea Institute of Geosciences and Mineral Resources-Korea Earthquake Research Center(KIGAM-KERC) and ambient noise signals during 2004 and 2005 have been recorded at three-component broadband velocity and accelerometer stations of Korea Meteorological Administration(KMA) seismic network. 1928 Green’s functions have been obtained from very long ambient noise signals by seismic interferometry. Horizontal components of big event seismograms and ambient noise Green's functions have been rotated along great circle path to obtain Rayleigh-and Love-waves. In periods between 5 and 100 sec, group velocities of Rayleigh-and Love-waves have been computed using multiple filter technique(MFT). The tomographic inversion technique used has inverted all periods simultaneously to provide a smooth dispersion curve as a function of period and a smooth spatial image. Surface wave tomography inverted from the path-averaged group velocity data provides detailed tectonic information of East China Sea.

  18. Weak compressibility of surface wave turbulence

    NASA Astrophysics Data System (ADS)

    Vucelja, Marija; Fouxon, Itzhak; Falkovich, Gregory

    2010-11-01

    Clustering of matter on the surface of lakes and pools and of oil slicks and seaweed on the sea surface is well-known empirically but there is no theory that describes it. Since surface flows are always compressible, such a theory should be based on the description of the development of density of inhomogeneities in a compressible flow. We studied the growth of small-scale inhomogeneities in the density of particles floating in weakly nonlinear small-amplitude surface waves. Despite the small amplitude, the accumulated effect of the long-time evolution may produce a strongly inhomogeneous distribution of the floaters: density fluctuations grow exponentially with a small but finite exponent. We have shown that the exponent is of sixth or higher order in wave amplitude. As a result, the inhomogeneities do not form within typical time scales of the natural environment. Thus the turbulence of surface waves is weakly compressible and alone it cannot be a realistic mechanism of the clustering of matter on liquid surfaces. However if besides waves there are also currents, the interplay of waves with currents, might be in some cases responsible for the patchiness of the floaters.

  19. Drift laws for spiral waves on curved anisotropic surfaces.

    PubMed

    Dierckx, Hans; Brisard, Evelien; Verschelde, Henri; Panfilov, Alexander V

    2013-07-01

    Rotating spiral waves organize spatial patterns in chemical, physical, and biological excitable systems. Factors affecting their dynamics, such as spatiotemporal drift, are of great interest for particular applications. Here, we propose a quantitative description for spiral wave dynamics on curved surfaces which shows that for a wide class of systems, including the Belousov-Zhabotinsky reaction and anisotropic cardiac tissue, the Ricci curvature scalar of the surface is the main determinant of spiral wave drift. The theory provides explicit equations for spiral wave drift direction, drift velocity, and the period of rotation. Depending on the parameters, the drift can be directed to the regions of either maximal or minimal Ricci scalar curvature, which was verified by direct numerical simulations. PMID:23944539

  20. Drift laws for spiral waves on curved anisotropic surfaces

    NASA Astrophysics Data System (ADS)

    Dierckx, Hans; Brisard, Evelien; Verschelde, Henri; Panfilov, Alexander V.

    2013-07-01

    Rotating spiral waves organize spatial patterns in chemical, physical, and biological excitable systems. Factors affecting their dynamics, such as spatiotemporal drift, are of great interest for particular applications. Here, we propose a quantitative description for spiral wave dynamics on curved surfaces which shows that for a wide class of systems, including the Belousov-Zhabotinsky reaction and anisotropic cardiac tissue, the Ricci curvature scalar of the surface is the main determinant of spiral wave drift. The theory provides explicit equations for spiral wave drift direction, drift velocity, and the period of rotation. Depending on the parameters, the drift can be directed to the regions of either maximal or minimal Ricci scalar curvature, which was verified by direct numerical simulations.

  1. Surface plasma wave excitation via laser irradiated overdense plasma foil

    SciTech Connect

    Kumar, Pawan; Tripathi, V. K.

    2012-04-09

    A laser irradiated overdense plasma foil is seen to be susceptible to parametric excitation of surface plasma wave (SPW) and ion acoustic wave (IAW) on the ion plasma period time scale. The SPW is localised near the front surface of the foil while IAW extends upto the rear. The evanescent laser field and the SPW exert a ponderomotive force on electrons driving the IAW. The density perturbation associated with the latter beats with the laser induced oscillatory electron velocity to drive the SPW. At relativistic laser intensity, the growth rate is of the order of ion plasma frequency.

  2. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets

    NASA Astrophysics Data System (ADS)

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, Youngpak

    2015-09-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  3. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.

    PubMed

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-01-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials. PMID:26354891

  4. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets

    PubMed Central

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-01-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet–height and diameter– and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials. PMID:26354891

  5. Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide

    NASA Astrophysics Data System (ADS)

    Kong, Gu Sheng; Ma, Hui Feng; Cai, Ben Geng; Cui, Tie Jun

    2016-07-01

    The plasmonic waveguide made of uniform corrugated metallic strip can support and guide spoof surface plasmon polaritons (SSPPs) with high confinements. Here, we propose periodically-modulated plasmonic waveguide composed of non-uniform corrugated metallic strip to convert SSPPs to radiating waves, in which the main beam of radiations can steer continuously as the frequency changes. To increase the radiation efficiency of the periodically-modulated plasmonic waveguide at the broadside, an asymmetrical plasmonic waveguide is further presented to reduce the reflections and realize continuous leaky-wave scanning. Both numerical simulations and experimental results show that the radiation efficiency can be improved greatly and the main beam of leaky-wave radiations can steer from the backward quadrant to the forward quadrant, passing through the broadside direction, which generally is difficult to be realized by the common leaky-wave antennas.

  6. Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide

    PubMed Central

    Kong, Gu Sheng; Ma, Hui Feng; Cai, Ben Geng; Cui, Tie Jun

    2016-01-01

    The plasmonic waveguide made of uniform corrugated metallic strip can support and guide spoof surface plasmon polaritons (SSPPs) with high confinements. Here, we propose periodically-modulated plasmonic waveguide composed of non-uniform corrugated metallic strip to convert SSPPs to radiating waves, in which the main beam of radiations can steer continuously as the frequency changes. To increase the radiation efficiency of the periodically-modulated plasmonic waveguide at the broadside, an asymmetrical plasmonic waveguide is further presented to reduce the reflections and realize continuous leaky-wave scanning. Both numerical simulations and experimental results show that the radiation efficiency can be improved greatly and the main beam of leaky-wave radiations can steer from the backward quadrant to the forward quadrant, passing through the broadside direction, which generally is difficult to be realized by the common leaky-wave antennas. PMID:27404740

  7. Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide.

    PubMed

    Kong, Gu Sheng; Ma, Hui Feng; Cai, Ben Geng; Cui, Tie Jun

    2016-01-01

    The plasmonic waveguide made of uniform corrugated metallic strip can support and guide spoof surface plasmon polaritons (SSPPs) with high confinements. Here, we propose periodically-modulated plasmonic waveguide composed of non-uniform corrugated metallic strip to convert SSPPs to radiating waves, in which the main beam of radiations can steer continuously as the frequency changes. To increase the radiation efficiency of the periodically-modulated plasmonic waveguide at the broadside, an asymmetrical plasmonic waveguide is further presented to reduce the reflections and realize continuous leaky-wave scanning. Both numerical simulations and experimental results show that the radiation efficiency can be improved greatly and the main beam of leaky-wave radiations can steer from the backward quadrant to the forward quadrant, passing through the broadside direction, which generally is difficult to be realized by the common leaky-wave antennas. PMID:27404740

  8. Trends and Periodicities In Nighttime Lf Radio Wave Reflection Heights

    NASA Astrophysics Data System (ADS)

    Kürschner, D.; Jacobi, Ch.

    The nighttime reflection height of low-frequency (LF) radio waves at oblique inci- dence is measured at Collm Observatory using 1.8 kHz sideband phase comparisons of the sky-wave and the ground wave of a commercial 177 kHz LF transmitter. The measurements have been carried out continuously since 1983, now allowing the anal- ysis of trends and regular variations of the reflection height. In the time series is found a) a long-term negative trend and b) a solar cycle dependence, both confirming ear- lier measurements and theoretical estimations. Moreover, a significant oscillation of quasi-biennial period is visible in LF reflection heights, indicating a reaction of the midlatitude mesosphere/lower thermosphere region on the equatorial QBO.

  9. Atmospheric boundary layer over steep surface waves

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Sergeev, Daniil A.; Druzhinin, Oleg; Kandaurov, Alexander A.; Ermakova, Olga S.; Ezhova, Ekaterina V.; Esau, Igor; Zilitinkevich, Sergej

    2014-08-01

    Turbulent air-sea interactions coupled with the surface wave dynamics remain a challenging problem. The needs to include this kind of interaction into the coupled environmental, weather and climate models motivate the development of a simplified approximation of the complex and strongly nonlinear interaction processes. This study proposes a quasi-linear model of wind-wave coupling. It formulates the approach and derives the model equations. The model is verified through a set of laboratory (direct measurements of an airflow by the particle image velocimetry (PIV) technique) and numerical (a direct numerical simulation (DNS) technique) experiments. The experiments support the central model assumption that the flow velocity field averaged over an ensemble of turbulent fluctuations is smooth and does not demonstrate flow separation from the crests of the waves. The proposed quasi-linear model correctly recovers the measured characteristics of the turbulent boundary layer over the waved water surface.

  10. Surface-wave Tomography In Fennoscandia

    NASA Astrophysics Data System (ADS)

    Bruneton, M.; Pedersen, H. A.; Farra, V.; Sstwg

    During the SVEKALAPKO deep seismic experiment, the central part of the Baltic Shield, in southern Finland, was covered by a two-dimensional regular grid of 45 broad-band stations, which operated for six to eight months. This exceptional stations distribution offers the possibility to undertake a high precision surface-wave tomogra- phy. P-wave and surface-wave tomography are complementary as the later one gives an image in shear-wave velocity with a better vertical resolution. The first step of interpreting the surface-waves data set consists of calculating the best 1D model. We selected 26 high quality events and for each one we fit a dispersive plane wave to the measured arrival times of the fundamental mode Rayleigh wave recorded by all stations of the array. The output of this procedure is the average phase-velocity dispersion curve. This dispersion curve can be inverted to give a class of shear-wave velocity models with depth using a Monte-Carlo algorithm. We developed a technic based on paraxial ray tracing to obtain 2D phase-velocity maps as a function of frequency which can subsequently be inverted for the 3D struc- ture. The inversion for phase-velocities is iterative and it uses the average dispersion curve measured previously as a starting model. The major improvement of our method compared to previous ray tracing studies is that we jointly invert for the velocity model under the array and the shape of incoming wave fronts, therefore reducing artifacts due to structure outside the study region.

  11. Dynamics of mechanical waves in periodic grapheme nanoribbon assemblies

    PubMed Central

    2011-01-01

    We simulate the natural frequencies and the acoustic wave propagation characteristics of graphene nanoribbons (GNRs) of the type (8,0) and (0,8) using an equivalent atomistic-continuum FE model previously developed by some of the authors, where the C-C bonds thickness and average equilibrium lengths during the dynamic loading are identified through the minimisation of the system Hamiltonian. A molecular mechanics model based on the UFF potential is used to benchmark the hybrid FE models developed. The acoustic wave dispersion characteristics of the GNRs are simulated using a Floquet-based wave technique used to predict the pass-stop bands of periodic mechanical structures. We show that the thickness and equilibrium lengths do depend on the specific vibration and dispersion mode considered, and that they are in general different from the classical constant values used in open literature (0.34 nm for thickness and 0.142 nm for equilibrium length). We also show the dependence of the wave dispersion characteristics versus the aspect ratio and edge configurations of the nanoribbons, with widening band-gaps that depend on the chirality of the configurations. The thickness, average equilibrium length and edge type have to be taken into account when nanoribbons are used to design nano-oscillators and novel types of mass sensors based on periodic arrangements of nanostructures. PACS 62.23.Kn · 62.25.Fg · 62.25.Jk PMID:21711495

  12. Mesoscopic stability and sedimentation waves in settling periodic arrays.

    PubMed

    Felderhof, B U

    2003-11-01

    The stability of a periodic array of particles settling in a viscous incompressible fluid under the influence of gravity is investigated in the framework of the point sedimentation model. The simple cubic array is unstable, but the body-centered and face-centered cubic arrays with gravity directed along one of the crystal axes are mesoscopically stable, i.e., they are stable except for very long wavelength in a certain domain of directions of the wave vector. In such mesoscopically stable arrays the instability is suppressed in periodic boundary conditions for systems smaller than a maximum size. In a stable finite system the particles perform small motions about the positions of the regular array, and sedimentation waves propagate through the system. PMID:14682796

  13. Parametrically driven surface waves on viscous ferrofluids

    NASA Astrophysics Data System (ADS)

    Müller, Hanns Walter

    1998-11-01

    Standing waves on the surface of a ferrofluid in a normal magnetic field can be excited by a vertical vibration of the container. A stability theory for the onset of these parametrically driven waves is developed, taking viscous dissipation and finite depth effects into account. It will be shown that a careful choice of the filling level permits the normal and anomalous dispersion branches to be measured. Furthermore it will be demonstrated that the parametric driving mechanism may lead to a delay of the Rosensweig instability. A bicritical situation can be achieved when Rosensweig and Faraday waves interact.

  14. Nonlocalized modulation of periodic reaction diffusion waves: The Whitham equation

    NASA Astrophysics Data System (ADS)

    Johnson, Mathew A.; Noble, Pascal; Rodrigues, L. Miguel; Zumbrun, Kevin

    2013-02-01

    In a companion paper, we established nonlinear stability with detailed diffusive rates of decay of spectrally stable periodic traveling-wave solutions of reaction diffusion systems under small perturbations consisting of a nonlocalized modulation plus a localized ( L 1) perturbation. Here, we determine time-asymptotic behavior under such perturbations, showing that solutions consist of a leading order of a modulation whose parameter evolution is governed by an associated Whitham averaged equation.

  15. Local field enhancement on metallic periodic surface structures produced by femtosecond laser pulses

    SciTech Connect

    Ionin, Andrei A; Kudryashov, Sergei I; Ligachev, A E; Makarov, Sergei V; Mel'nik, N N; Rudenko, A A; Seleznev, L V; Sinitsyn, D V; Khmelnitskii, R A

    2013-04-30

    Periodic surface structures on aluminium are produced by femtosecond laser pulses for efficient excitation of surface electromagnetic waves using a strong objective (NA = 0.5). The local electromagnetic field enhancement on the structures is measured using the technique of surface-enhanced Raman scattering from pyridine molecules. (extreme light fields and their applications)

  16. Nonlinear, stationary electrostatic ion cyclotron waves: Exact solutions for solitons, periodic waves, and wedge shaped waveforms

    SciTech Connect

    McKenzie, J. F.; Doyle, T. B.; Rajah, S. S.

    2012-11-15

    The theory of fully nonlinear stationary electrostatic ion cyclotron waves is further developed. The existence of two fundamental constants of motion; namely, momentum flux density parallel to the background magnetic field and energy density, facilitates the reduction of the wave structure equation to a first order differential equation. For subsonic waves propagating sufficiently obliquely to the magnetic field, soliton solutions can be constructed. Importantly, analytic expressions for the amplitude of the soliton show that it increases with decreasing wave Mach number and with increasing obliquity to the magnetic field. In the subsonic, quasi-parallel case, periodic waves exist whose compressive and rarefactive amplitudes are asymmetric about the 'initial' point. A critical 'driver' field exists that gives rise to a soliton-like structure which corresponds to infinite wavelength. If the wave speed is supersonic, periodic waves may also be constructed. The aforementioned asymmetry in the waveform arises from the flow being driven towards the local sonic point in the compressive phase and away from it in the rarefactive phase. As the initial driver field approaches the critical value, the end point of the compressive phase becomes sonic and the waveform develops a wedge shape. This feature and the amplitudes of the compressive and rarefactive portions of the periodic waves are illustrated through new analytic expressions that follow from the equilibrium points of a wave structure equation which includes a driver field. These expressions are illustrated with figures that illuminate the nature of the solitons. The presently described wedge-shaped waveforms also occur in water waves, for similar 'transonic' reasons, when a Coriolis force is included.

  17. Estimation of scalar moments from explosion-generated surface waves

    SciTech Connect

    Stevens, J.L.

    1985-04-01

    Rayleigh waves from underground nuclear explosions are used to estimate scaler moments for 40 Nevada Test Site (NTS) explosions and 18 explosions at the Soviet East Kazakh test site. The Rayleigh wave spectrum is written as a product of functions that depend on the elastic structure of the travel path, the elastic structure of the source region and the Q structure of the path. Results are used to examine the worldwide variability of each factor and the resulting variability of surface wave amplitudes. The path elastic structure and Q structure are found by inversion of Rayleigh wave phase and group velocities and spectral amplitudes. The Green's function derived from this structure is used to estimate the moments of explosions observed along the same path. This procedure produces more consistent amplitude estimates than conventional magnitude measurements. Network scatter in log moment is typically 0.1. In contrast with time-domain amplitudes, the elastic structure of the travel path causes little variability in spectral amplitudes. When the mantle Q is constrained to a value of approximately 100 at depths greater than 120 km, the inversion for Q and moment produces moments that remain constant with distance. Based on the best models available, surface waves from NTS explosions should be larger than surface waves from East Kazakh explosions with the same moment. Estimated scaler moments for the largest East Kazakh explosions since 1976 are smaller than the estimated moments for the largest NTS explosions for the same time period.

  18. Modelling Ocean Surface Waves in Polar Regions

    NASA Astrophysics Data System (ADS)

    Hosekova, Lucia; Aksenov, Yevgeny; Coward, Andrew; Bertino, Laurent; Williams, Timothy; Nurser, George A. J.

    2015-04-01

    In the Polar Oceans, the surface ocean waves break up sea ice cover and create the Marginal Ice Zone (MIZ), an area between the sea-ice free ocean and pack ice characterized by highly fragmented ice. This band of sea ice cover is undergoing dramatic changes due to sea ice retreat, with up to a 39% widening in the Arctic Ocean reported over the last three decades and projections predicting a continuing increase. The surface waves, sea ice and ocean interact in the MIZ through multiple complex feedbacks and processes which are not accounted for in any of the present-day climate models. To address this issue, we present a model development which implements surface ocean wave effects in the global Ocean General Circulation Model NEMO, coupled to the CICE sea ice model. Our implementation takes into account a number of physical processes specific to the MIZ dynamics. Incoming surface waves are attenuated due to reflection and energy dissipation induced by the presence of ice cover, which is in turn fragmented in response to external stresses. This process generates a distribution of floe sizes and impacts the dynamics of sea ice by the means of combined rheology that takes into account floe collisions and allows for a more realistic representation of the MIZ. We present results from the NEMO OGCM at 1 degree resolution with a wave-ice interaction module described above. The module introduces two new diagnostics previously unavailable in GCM's: surface wave spectra in sea ice covered areas, and floe size distribution due to wave-induced fragmentation. We discuss the impact of these processes on the ocean and sea ice state, including ocean circulation, mixing, stratification and the role of the MIZ in the ocean variability. The model predictions for the floe sizes in the summer Arctic Ocean range from 60 m in the inner MIZ to a few tens of meters near the open ocean, which agrees with estimates from the satellites. The extent of the MIZ throughout the year is also in

  19. Surface acoustic wave propagation in graphene film

    SciTech Connect

    Roshchupkin, Dmitry Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry; Ortega, Luc; Zizak, Ivo; Erko, Alexei; Tynyshtykbayev, Kurbangali; Insepov, Zinetula

    2015-09-14

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  20. A Periodic Dielectric Resonator Structure for Terahertz Wave Amplification

    NASA Astrophysics Data System (ADS)

    Fawole, Olutosin; Tabib-Azar, Massood

    2014-03-01

    We present a periodic Slow Wave Structure (SWS) that consists of an arrangement of closely spaced cylindrical resonators with low dielectric constant. In this compact arrangement, coupling between resonators was via evanescent field coupling. This arrangement contrasts earlier infinite high dielectric constant SWSs with widely spaced resonators coupled via magnetic dipole moments. The presented periodic structure is an alternative to the metallic slow wave structures that have been proposed for TWT THz amplifiers. The fabricated low frequency (8 GHz) prototype of our structure consists of an array of cylindrical resonators with dielectric constant 9.2, diameter 12 mm, and height 6.35 mm. Slow waves, which setup a TE01δ-like electric field mode in each resonator, propagate in the structure when then the structure was excited with a microstrip line. We will present detailed simulation and experimental results of this prototype at the conference. Furthermore, efforts to scale the SWS to THz frequency and to interact the SWS with high-energy particle beams will be presented.

  1. Madden Julian Oscillation impacts on global ocean surface waves

    NASA Astrophysics Data System (ADS)

    Marshall, Andrew G.; Hendon, Harry H.; Durrant, Tom H.; Hemer, Mark A.

    2015-12-01

    We assess the impact of the tropical Madden Julian Oscillation (MJO) on global ocean wind waves using 30 years of wave data from a wave model hindcast that is forced with high resolution surface winds from the NCEP-CFSR reanalysis. We concentrate on the boreal winter season when the MJO has its greatest amplitude and is potentially a source of predictable wave impacts at intra-seasonal lead times. Statistically significant anomalies in significant wave height (Hs), peak wave period (Tp) and zonal wave energy flux (CgE) are found to covary with the intra-seasonal variation of surface zonal wind induced by the MJO as it traverses eastward from the western tropical Indian Ocean to the eastern tropical Pacific. Tp varies generally out of phase with Hs over the life cycle of the MJO, indicating that these MJO-wave anomalies are locally wind-generated rather than remotely generated by ocean swell. Pronounced Hs anomalies develop on the northwest shelf of Australia, where the MJO is known to influence sea level and surface temperatures, and in the western Caribbean Sea and Guatemalan-Panama Seas with enhanced wave anomalies apparent in the vicinity of the Tehuantepec and Papagayo gaps. Significant wave anomalies are also detected in the North Pacific and North Atlantic oceans in connection with the MJO teleconnection to the extratropics via atmospheric wave propagation. The impact in the north Atlantic stems from induction of the high phase of the North Atlantic Oscillation (NAO) about 1 week after MJO convection traverses the Indian Ocean, and the low phase of the NAO about one week after suppressed convection traverses the Indian Ocean. Strong positive Hs anomalies maximize on the Northern European coast in the positive NAO phase and vice versa for the negative NAO phase. The MJO also influences the occurrence of daily low (below the 5th percentile) and high (above the 95th percentile) wave conditions across the tropics and in the North Pacific and North Atlantic

  2. Active micromixer using surface acoustic wave streaming

    DOEpatents

    Branch; Darren W. , Meyer; Grant D. , Craighead; Harold G.

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  3. Cylindrical standing surface waves in superfluid helium

    SciTech Connect

    Atkin, R.J.; Fox, N.

    1987-02-01

    A theoretical analysis is given of the resonant frequencies of standing surface waves produced in a cylinder filled with superfluid /sup 4/He. In particular, it is shown that a heat transfer coefficient involved in a recently proposed empirical boundary condition can be related to the Kapitza resistance.

  4. Control of Periodic Variations in Saturn's Magnetosphere By Compressional Waves

    NASA Astrophysics Data System (ADS)

    Jia, X.; Kivelson, M.

    2014-12-01

    Many of the periodic variations observed in Saturn's magnetosphere can be linked directly to the presence of a rotating pattern of field-aligned currents that link the northern and southern ionospheres with each other and with the magnetosphere. Such a current system is incorporated in a magnetohydrodynamic simulation that has previously been shown to reproduce many of the observed periodic properties of the system (Jia et al., 2012; Jia and Kivelson, 2012). Here the simulation is used to investigate a range of phenomena that can be attributed to the effects of compressional waves launched from the rotating current sources. The compressional waves are found to drive the flapping of the plasma sheet and the expansion and contraction of the magnetopause in each rotation period. Because the compressional perturbations weaken as they rotate from morning to evening around the day side of the magnetosphere, the boundary develops a strong morning-evening asymmetry. A fit to the shape is provided that may be useful in further investigation of magnetopause properties, but there is already evidence of the proposed asymmetry in the Cassini observations of Clarke et al. [2010].

  5. Control of periodic variations in Saturn's magnetosphere by compressional waves

    NASA Astrophysics Data System (ADS)

    Kivelson, Margaret Galland; Jia, Xianzhe

    2014-10-01

    Many of the periodic variations observed in Saturn's magnetosphere can be linked directly to the presence of a rotating pattern of field-aligned currents that link the northern and southern ionospheres with each other and with the magnetosphere. Such a current system is incorporated in a magnetohydrodynamic simulation that has previously been shown to reproduce many of the observed periodic properties of the system. Here the simulation is used to investigate a range of phenomena that can be attributed to the effects of compressional waves launched from the rotating current sources. The compressional waves are found to drive the flapping of the plasma sheet and the expansion and contraction of the magnetopause in each rotation period. Because the compressional perturbations weaken as they rotate from morning to evening around the dayside of the magnetosphere, the boundary develops a strong morning-evening asymmetry. A fit to the shape is provided that may be useful in further investigation of magnetopause properties, but there is already evidence of the proposed asymmetry in the observations of Clarke et al. (2010a).

  6. Average wave function method for gas-surface scattering

    NASA Astrophysics Data System (ADS)

    Singh, Harjinder; Dacol, Dalcio K.; Rabitz, Herschel

    1986-02-01

    The average wave function method (AWM) is applied to scattering of a gas off a solid surface. The formalism is developed for both periodic as well as disordered surfaces. For an ordered lattice an explicit relation is derived for the Bragg peaks along with a numerical illustration. Numerical results are presented for atomic clusters on a flat hard wall with a Gaussian-like potential at each atomic scattering site. The effect of relative lateral displacement of two clusters upon the scattering pattern is shown. The ability of AWM to accommodate disorder through statistical averaging over cluster configurations is illustrated. Enhanced uniform backscattering is observed with increasing roughness on the surface.

  7. Mechanical Surface Waves Accompany Action Potential Propagation

    NASA Astrophysics Data System (ADS)

    Machta, Benjamin; El Hady, Ahmed

    2015-03-01

    The action potential (AP) is the basic mechanism by which information is transmitted along neuronal axons. Although the excitable nature of axons is understood to be primarily electrical, many experimental studies have shown that a mechanical displacement of the axonal membrane co-propagates with the electrical signal. While the experimental evidence for co-propagating mechanical waves is diverse and compelling, there is no consensus for their physical underpinnings. We present a model in which these mechanical displacements arise from the driving of mechanical surface waves, in which potential energy is stored in elastic deformations of the neuronal membrane and cytoskeleton while kinetic energy is stored in the movement of the axoplasmic fluid. In our model these surface waves are driven by the traveling wave of electrical depolarization that characterizes the AP, altering the electrostatic forces across the membrane as it passes. Our model allows us to predict the shape of the displacement that should accompany any traveling wave of voltage, including the well-characterized AP. We expect our model to serve as a framework for understanding the physical origins and possible functional roles of these AWs in neurobiology. See Arxiv/1407.7600

  8. High resolution surface wave dispersion studies in China

    SciTech Connect

    Jones, L.E.; Patton, H.J.

    1997-11-01

    The Los Alamos National Laboratory regional calibration project is actively assembling a database of surface-wave dispersion information for China and surrounding areas. As part of the effort to characterize surface wave dispersion in China, we integrate prior long period results from the University of Colorado with our shorter period dispersion measurements in a high resolution survey of key monitoring areas. Focusing on western China initially, we employ broadband data recorded on CDSN stations, and regional events (m{sub b} 4 and above). Our approach is twofold, employing path specific calibration of key stations and well-recorded reference events, and tomographic inference to provide group velocity curves for regions with sparse station distribution and little seismic activity. Initial dispersion studies at Chinese stations WMQ and LZH show substantial azimuthal variation in dispersion, reinforcing the need for careful determination of source regions for path-specific calibration.

  9. Magnetoelastic surface waves in auxetic structure

    NASA Astrophysics Data System (ADS)

    Maruszewski, B.; Drzewiecki, A.; Starosta, R.

    2010-06-01

    In modern technologies searching materials of peculiar features is of a fundamental interest for many researchers and engineers. Negative Poisson's ratio materials and structures expand transversely when stretching axially. Nowadays, there is an increasing interest in the development of these novel materials called auxetics. We are interested not only in their mechanical properties, but also in their interaction with external physical fields, e.g. electromagnetic field. It is expected that magnetoelastic surface waves propagation has essential meaning in many other physical and biomechanical applications. The paper aims at investigating propagation of magnetoelastic surface waves along an auxetic elastic halfspace in the presence of an external magnetic field of various orientations related to the limiting plane. Dispersion and existence conditions of those waves have been calculated and analyzed in order to present new features of described interactions. It has occurred that the dispersion properties in the case of the Rayleigh-like magnetoelastic surface waves are significantly different for the auxetic material compared to materials of positive Poisson's ratio.

  10. Do cyanobacteria swim using traveling surface waves?

    PubMed Central

    Ehlers, K M; Samuel, A D; Berg, H C; Montgomery, R

    1996-01-01

    Bacteria that swim without the benefit of flagella might do so by generating longitudinal or transverse surface waves. For example, swimming speeds of order 25 microns/s are expected for a spherical cell propagating longitudinal waves of 0.2 micron length, 0.02 micron amplitude, and 160 microns/s speed. This problem was solved earlier by mathematicians who were interested in the locomotion of ciliates and who considered the undulations of the envelope swept out by ciliary tips. A new solution is given for spheres propagating sinusoidal waveforms rather than Legendre polynomials. The earlier work is reviewed and possible experimental tests are suggested. Images Fig. 1 PMID:8710872

  11. Writing magnetic patterns with surface acoustic waves

    SciTech Connect

    Li, Weiyang; Buford, Benjamin; Jander, Albrecht; Dhagat, Pallavi

    2014-05-07

    A novel patterning technique that creates magnetization patterns in a continuous magnetostrictive film with surface acoustic waves is demonstrated. Patterns of 10 μm wide stripes of alternating magnetization and a 3 μm dot of reversed magnetization are written using standing and focusing acoustic waves, respectively. The magnetization pattern is size-tunable, erasable, and rewritable by changing the magnetic field and acoustic power. This versatility, along with its solid-state implementation (no moving parts) and electronic control, renders it as a promising technique for application in magnetic recording, magnonic signal processing, magnetic particle manipulation, and spatial magneto-optical modulation.

  12. Unit cell finite element modelling for ultrasonic scattering from periodic surfaces

    NASA Astrophysics Data System (ADS)

    Choi, W.; Skelton, E.; Lowe, M. J. S.; Craster, R.

    2013-01-01

    Ultrasound wave scattering from the rough surfaces of defects is an important consideration for the qualification of safety-critical inspections because some species of fabrication and service-induced defects are rough. Whereas the surfaces of flat defects only reflect specularly, an incident wave reflects over a range of angles when the surface is rough. This affects the inspection performance because the coefficient of the specular reflection is reduced, while the detection of reflections at other angles becomes possible. An infinite periodic surface is a simple form of rough surface, which has been well investigated since Rayleigh, and can be useful to provide general insight into the nature of the wave scattering. Furthermore, in the context of scattering from cracks, the study of an infinite surface enables examination of the reflections from the surface and behavior at the surface without the presence of the crack tip diffraction fields. In this paper, an infinite periodic surface is modelled by a unit cell FE model with cyclic symmetric boundary conditions, allowing the model to be small, and elastic wave scattering from the surface is simulated in the time domain. This cell model is demonstrated using the commercial FE package ABAQUS and examples of the scattered wave results are compared with large FE model results.

  13. Spin wave damping in periodic and quasiperiodic magnonic structures

    NASA Astrophysics Data System (ADS)

    Rychły, J.; Kłos, J. W.; Krawczyk, M.

    2016-05-01

    We investigated the lifetime of spin wave (SW) eigenmodes in periodic and quasiperiodic sequences of Py and Co wires. These materials differ significantly in damping coefficients, therefore, the spatial distribution of the mode’s amplitude within the structure is important for the lifetime of collective SW excitations. Modes of the lower frequencies prefer to concentrate in Py wires, because of the lower ferromagnetic resonance (FMR) frequency for this material. This inhomogeneous distribution of amplitude of modes (with lower amplitude in material of higher damping and with higher amplitude in material of lower damping) is preferable for extending the lifetime of the collective excitations beyond the volume average of lifetimes for solid materials. We established the relation between the profile of the mode and its lifetime for periodic and quasiperiodic structures. We also performed comparative studies in order to find the differences resulting from complexity of the structure and enhancement of localization in the quasiperiodic system on the lifetime of SWs.

  14. Diffusive transport of waves in a periodic waveguide

    NASA Astrophysics Data System (ADS)

    Barra, Felipe; Pagneux, Vincent; Zuñiga, Jaime

    2012-01-01

    We study the propagation of waves in quasi-one-dimensional finite periodic systems whose classical (ray) dynamics is diffusive. By considering a random matrix model for a chain of L identical chaotic cavities, we show that its average conductance as a function of L displays an ohmic behavior even though the system has no disorder. This behavior, with an average conductance decay N/L, where N is the number of propagating modes in the leads that connect the cavities, holds for 1≪L≲N. After this regime, the average conductance saturates at a value of O(N) given by the average number of propagating Bloch modes of the infinite chain. We also study the weak localization correction and conductance distribution, and characterize its behavior as the system undergoes the transition from diffusive to Bloch ballistic. These predictions are tested in a periodic cosine waveguide.

  15. Long-Period ULF Wave Activity in the Cusp Region

    NASA Astrophysics Data System (ADS)

    Pilipenko, V.; Belakhovsky, V.; Engebretson, M. J.; Kozlovsky, A.

    2013-12-01

    We compare simultaneous observations of long-period ULF wave activity from the Svalbard/IMAGE and Greenland fluxgate magnetometer profiles covering the expected cusp geomagnetic latitudes. Irregular Pulsations at Cusp Latitudes (IPCL) and narrow-band Pc5 waves are found to be a ubiquitous element of ULF activity in the dayside high-latitude region. To identify the ionospheric projections of the cusp, we use the width of the return signal of the SuperDARN radar covering the Svalbard archipelago, predictions of empirical cusp models, and augmented whenever possible by DMSP identification of magnetospheric boundary domains. The meridional spatial structure of IPCL/Pc5 pulsation spectral power has been found to have a localized latitudinal peak, but not under the cusp proper as was previously thought, but several degrees southward from the equatorward cusp boundary. Possible mechanisms and their relevance to observational data are discussed. The occurrence of IPCL and Pc5 waves in the dayside boundary layers is a challenge to modelers, because so far their mechanism has not been firmly identified.

  16. Periodic gravitational waves from small cosmic string loops

    NASA Astrophysics Data System (ADS)

    Dubath, Florian; Rocha, Jorge V.

    2007-07-01

    We consider a population of small, high-velocity cosmic string loops. We assume the typical length of these loops is determined by the gravitational radiation scale and use the results of Polchinski and Rocha which pointed out their highly relativistic nature. A study of the gravitational wave emission from such a population is carried out. The large Lorentz boost involved causes the lowest harmonics of the loops to fall within the frequency band of the Laser Interferometer Gravitational Wave Observatory detector. Because of this feature the gravitational waves emitted by such loops can be detected in a periodic search rather than in burst or stochastic analysis. It is shown that, for interesting values of the string tension (10-10≲Gμ≲10-8), the detector can observe loops at reasonably high redshifts and that detection is, in principle, possible. We compute the number of expected observations produced by such a process. For a 10 h search we find that this number is of order O(10-4). This is a consequence of the low effective number density of the loops traveling along the line of sight. However, small probabilities of reconnection and longer observation times can improve the result.

  17. Isomorphic surface acoustic waves on multilayer structures

    NASA Astrophysics Data System (ADS)

    Hunt, William D.

    2001-03-01

    There has been growing interest in recent years over the investigation of bulk acoustic waves (BAWs) which propagate along certain directions in anisotropic crystals with a minimum of diffraction. One application of these BAWs is for multichannel acousto-optic devices. The fact that the beams propagate with the minimum diffraction implies that the channels in such a device can be closely packed. Since surface acoustic waves (SAWs) are constrained to be within roughly one acoustic wavelength from the surface, the possibility exists to deposit thin films of isotropic or anisotropic material on the substrate and embue the aggregate multilayer structure with properties not present in the beginning substrate material. The characteristic investigated in this article is the velocity anisotropy which, as is known, predominates SAW diffraction. Specifically, we present a method whereby self-collimating SAWs can be generated on surfaces even though the substrate material itself does not exhibit this behavior. We discuss the particular case of a ZnO layer on (001)-cut <110>-propagating GaAs for which a fair amount of slowness surface data exists. Finally, using angular spectrum of plane waves diffraction theory, we present data which substantiate the claim that self-collimating can more accurately be viewed as isomorphic because the SAW beam profile can propagate without changing its shape.

  18. Surface wave propagation across the USArray

    NASA Astrophysics Data System (ADS)

    Foster, A. E.; Ekstrom, G.; Hjorleifsdottir, V.

    2010-12-01

    We present Love and Rayleigh wave phase-velocity models at discrete periods between 25 and 100 s from the inversion of phase measurements. Phase measurements are made on an updated set of USArray TA data using a two-station method that has been corrected for the estimated wavefront arrival angle. Arrival angles are estimated using a “mini-array” method, which additionally calculates the local phase velocity for each event recorded in a mini array. By minimizing the misfit between observed and predicted phase within the mini array, we find the best-fit local phase velocity, which is then used to predict the phase in a grid search for apparent source locations. The trial sources have fixed epicentral distance but varied arrival angles with respect to the mini array, and the optimal apparent source corresponds to the arrival angle. Correcting the two-station method for the arrival angle produces small (around 1%) changes in phase velocity. In the inversion results, these changes are most significant along the Pacific coast at shorter periods, as a result of refraction at the ocean-continent transition. The local phase-velocity estimates are combined to make independent phase-velocity models for comparison with the inversion results. For Rayleigh waves at all periods, the two models have similar size, location, and strength of anomalies. Higher noise levels in Love wave data are apparent in both models; they show similar velocities and large anomalies, but smaller anomalies are below the noise levels at short periods. Still, the overall quality and quantity of data available allow us to investigate the errors associated with the two-station method, and the effect the duration and complexity of wave propagation has on these errors. We examine the consistency of wave propagation using the estimated arrival angles for multiple events recorded at the same stations. This is repeated with synthetic events, calculated using the spectral element method of Komatitsch and

  19. Mathematical aspects of surface water waves

    NASA Astrophysics Data System (ADS)

    Craig, Walter; Wayne, Clarence E.

    2007-06-01

    The theory of the motion of a free surface over a body of water is a fascinating subject, with a long history in both applied and pure mathematical research, and with a continuing relevance to the enterprises of mankind having to do with the sea. Despite the recent advances in the field (some of which we will hear about during this Workshop on Mathematical Hydrodynamics at the Steklov Institute), and the current focus of the mathematical community on the topic, many fundamental mathematical questions remain. These have to do with the evolution of surface water waves, their approximation by model equations and by computer simulations, the detailed dynamics of wave interactions, such as would produce rogue waves in an open ocean, and the theory (partially probabilistic) of approximating wave fields over large regions by averaged `macroscopic' quantities which satisfy essentially kinetic equations of motion. In this note we would like to point out open problems and some of the directions of current research in the field. We believe that the introduction of new analytical techniques and novel points of view will play an important rôle in the future development of the area.

  20. Third Stokes parameter emission from a periodic water surface

    NASA Technical Reports Server (NTRS)

    Johnson, J. T.; Kong, J. A.; Shin, R. T.; Staelin, D. H.; Oneill, K.; Lohanick, A.

    1991-01-01

    An experiment in which the third Stokes parameter thermal emission from a periodic water surface was measured is documented. This parameter is shown to be related to the direction of periodicity of the periodic surface and to approach brightnesses of up to 30 K at X band for the surface used in the experiment. The surface actually analyzed was a 'two-layer' periodic surface; the theory of thermal emission from such a surface is derived and the theoretical results are found to be in good agreement with the experimental measurements. These results further the idea of using the third Stokes parameter emission as an indicator of wind direction over the ocean.

  1. Demonstration of sawtooth period control with EC waves in KSTAR plasma

    DOE PAGESBeta

    Jeong, J. H.; Bae, Y. S.; Joung, M.; Kim, D.; Goodman, T. P.; Sauter, O.; Sakamoto, K.; Kajiwara, K.; Oda, Y.; Kwak, J. G.; et al

    2015-03-12

    The sawtooth period control in tokamak is important issue in recent years because the sawtooth crash can trigger TM/NTM instabilities and drive plasmas unstable. The control of sawtooth period by the modification of local current profile near the q=1 surface using ECCD has been demonstrated in a number of tokamaks [1, 2] including KSTAR. As a result, developing techniques to control the sawtooth period as a way of controlling the onset of NTM has been an important area of research in recent years [3]. In 2012 KSTAR plasma campaign, the sawtooth period control is carried out by the different depositionmore » position of EC waves across the q=1 surface. The sawtooth period is shortened by on-axis co-ECCD (destabilization), and the stabilization of the sawtooth is also observed by off-axis co-ECCD at outside q=1 surface. In 2013 KSTAR plasma campaign, the sawtooth locking experiment with periodic forcing of 170 GHz EC wave is carried out to control the sawtooth period. The optimal target position which lengthens the sawtooth period is investigated by performing a scan of EC beam deposition position nearby q=1 surface at the toroidal magnetic field of 2.9 T and plasma current of 0.7 MA. The sawtooth locking by the modulated EC beam is successfully demonstrated as in [3-5] with the scan of modulation-frequency and duty-ratio at the low beta (βN~0.5) plasma. In this paper, the sawteeth behavior by the location of EC beam and the preliminary result of the sawtooth locking experiments in KSTAR will be presented.« less

  2. Demonstration of sawtooth period control with EC waves in KSTAR plasma

    SciTech Connect

    Jeong, J. H.; Bae, Y. S.; Joung, M.; Kim, D.; Goodman, T. P.; Sauter, O.; Sakamoto, K.; Kajiwara, K.; Oda, Y.; Kwak, J. G.; Namkung, W.; Cho, M. H.; Park, H.; Hosea, J.; Ellis, R.

    2015-03-12

    The sawtooth period control in tokamak is important issue in recent years because the sawtooth crash can trigger TM/NTM instabilities and drive plasmas unstable. The control of sawtooth period by the modification of local current profile near the q=1 surface using ECCD has been demonstrated in a number of tokamaks [1, 2] including KSTAR. As a result, developing techniques to control the sawtooth period as a way of controlling the onset of NTM has been an important area of research in recent years [3]. In 2012 KSTAR plasma campaign, the sawtooth period control is carried out by the different deposition position of EC waves across the q=1 surface. The sawtooth period is shortened by on-axis co-ECCD (destabilization), and the stabilization of the sawtooth is also observed by off-axis co-ECCD at outside q=1 surface. In 2013 KSTAR plasma campaign, the sawtooth locking experiment with periodic forcing of 170 GHz EC wave is carried out to control the sawtooth period. The optimal target position which lengthens the sawtooth period is investigated by performing a scan of EC beam deposition position nearby q=1 surface at the toroidal magnetic field of 2.9 T and plasma current of 0.7 MA. The sawtooth locking by the modulated EC beam is successfully demonstrated as in [3-5] with the scan of modulation-frequency and duty-ratio at the low beta (βN~0.5) plasma. In this paper, the sawteeth behavior by the location of EC beam and the preliminary result of the sawtooth locking experiments in KSTAR will be presented.

  3. Demonstration of sawtooth period control with EC waves in KSTAR plasma

    NASA Astrophysics Data System (ADS)

    Jeong, J. H.; Bae, Y. S.; Joung, M.; Kim, D.; Goodman, T. P.; Sauter, O.; Sakamoto, K.; Kajiwara, K.; Oda, Y.; Kwak, J. G.; Namkung, W.; Cho, M. H.; Park, H.; Hosea, J.; Ellis, R.

    2015-03-01

    The sawtooth period control in tokamak is important issue in recent years because the sawtooth crash can trigger TM/NTM instabilities and drive plasmas unstable. The control of sawtooth period by the modification of local current profile near the q=1 surface using ECCD has been demonstrated in a number of tokamaks [1, 2] including KSTAR. As a result, developing techniques to control the sawtooth period as a way of controlling the onset of NTM has been an important area of research in recent years [3]. In 2012 KSTAR plasma campaign, the sawtooth period control is carried out by the different deposition position of EC waves across the q=1 surface. The sawtooth period is shortened by on-axis co-ECCD (destabilization), and the stabilization of the sawtooth is also observed by off-axis co-ECCD at outside q=1 surface. In 2013 KSTAR plasma campaign, the sawtooth locking experiment with periodic forcing of 170 GHz EC wave is carried out to control the sawtooth period. The optimal target position which lengthens the sawtooth period is investigated by performing a scan of EC beam deposition position nearby q=1 surface at the toroidal magnetic field of 2.9 T and plasma current of 0.7 MA. The sawtooth locking by the modulated EC beam is successfully demonstrated as in [3-5] with the scan of modulation-frequency and duty-ratio at the low beta (βN~0.5) plasma. In this paper, the sawteeth behavior by the location of EC beam and the preliminary result of the sawtooth locking experiments in KSTAR will be presented.

  4. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  5. Exciton transport by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Rudolph, J.; Hey, R.; Santos, P. V.

    2007-05-01

    Long-range acoustic transport of excitons in GaAs quantum wells (QWs) is demonstrated. The mobile strain field of a surface acoustic wave creates a dynamic lateral type I modulation of the conduction and valence bands in a double-quantum-well (DQW) structure. This mobile potential modulation transports long-living indirect excitons in the DQW over several hundreds of μm.

  6. On the accuracy of long-period Rayleigh waves extracted from ambient noise

    NASA Astrophysics Data System (ADS)

    Xie, Jun; Yang, Yingjie; Ni, Sidao

    2016-04-01

    The aim of this paper is to assess the accuracy of the long-period (50-250 s) surface waves extracted from cross-correlation functions (CCF) of ambient noise. First, we compare the waveforms and travel times of a ground-truth earthquake and CCFs from ambient noise with those of synthetic seismograms from earthquake source parameters and a surface load of vertical force, and then quantify the accuracy using a double difference method. Second, we compare Rayleigh wave phase velocity dispersion measurements from ambient noise and those from earthquake data in both global and regional studies. Through these comparisons, we conclude that both the dispersion curves and waveforms from noise data are consistent with their counterparts from earthquake data in the long-period band. The long-period surface waves from ambient noise are as accurate as those from earthquake data, and can be included in both global and regional ambient noise tomography and provide complementary data to constrain the lithospheric and asthenospheric structures.

  7. Surface-Wave Tomography in Fennoscandia

    NASA Astrophysics Data System (ADS)

    Bruneton, M.; Pedersen, H. A.; Farra, V.

    2002-12-01

    We developed a technique based on paraxial ray tracing to obtain 2D phase-velocity maps as a function of frequency which can subsequently be inverted for the 3D structure. The major improvement of our method compared to previous ray tracing studies is that we jointly invert for the velocity model under the array and the shape of incoming wave fronts, therefore reducing artifacts due to structure outside the study region. The stabilisation of the inversion was performed by imposing a smoothness criteria to the wavefronts and to the phase-velocity map. The method was applied to data from the SVEKALAPKO deep seismic experiment, where the central part of the Baltic Shield, in southern Finland, was covered by a regular two-dimensional grid of 46 broad-band stations which operated for six to eight months. This exceptional stations distribution offers the possibility to undertake a high precision surface-wave tomography. P-wave and surface-wave tomography are complementary as the latter one gives an image of absolute shear-wave velocites with a relatively good vertical resolution. We first selected 69 high quality events with the best possible azimuthal distribution. The arrival times of the fundamental-mode Rayleigh waves as a function of frequency were measured using Wiener filtering. A selection of the data was performed using a minimum signal to noise ratio of 4 and a minimum coherency of 0.95 between the signals recorded by different stations. To obtain an average dispersion curve for the region between 10 and 200 seconds we inverted the data imposing the phase-velocity to be quasi constant. This dispersion curve was subsequently inverted for the average shear-wave velocity structure as a function of depth. This average structure shows a lithospheric mantle faster than global average models at all resolved depths. The inversion of the same data set was also conducted using weaker constraints to obtain the lateral variations of the phase-velocity at each frequency

  8. Ultrafast microfluidics using surface acoustic waves

    PubMed Central

    Yeo, Leslie Y.; Friend, James R.

    2009-01-01

    We demonstrate that surface acoustic waves (SAWs), nanometer amplitude Rayleigh waves driven at megahertz order frequencies propagating on the surface of a piezoelectric substrate, offer a powerful method for driving a host of extremely fast microfluidic actuation and micro∕bioparticle manipulation schemes. We show that sessile drops can be translated rapidly on planar substrates or fluid can be pumped through microchannels at 1–10 cm∕s velocities, which are typically one to two orders quicker than that afforded by current microfluidic technologies. Through symmetry-breaking, azimuthal recirculation can be induced within the drop to drive strong inertial microcentrifugation for micromixing and particle concentration or separation. Similar micromixing strategies can be induced in the same microchannel in which fluid is pumped with the SAW by merely changing the SAW frequency to rapidly switch the uniform through-flow into a chaotic oscillatory flow by exploiting superpositioning of the irradiated sound waves from the sidewalls of the microchannel. If the flow is sufficiently quiescent, the nodes of the transverse standing wave that arises across the microchannel also allow for particle aggregation, and hence, sorting on nodal lines. In addition, the SAW also facilitates other microfluidic capabilities. For example, capillary waves excited at the free surface of a sessile drop by the SAW underneath it can be exploited for micro∕nanoparticle collection and sorting at nodal points or lines at low powers. At higher powers, the large accelerations off the substrate surface as the SAW propagates across drives rapid destabilization of the drop free surface giving rise to inertial liquid jets that persist over 1–2 cm in length or atomization of the entire drop to produce 1–10 μm monodispersed aerosol droplets, which can be exploited for ink-jet printing, mass spectrometry interfacing, or pulmonary drug delivery. The atomization of polymer∕protein solutions

  9. Broadband surface-wave transformation cloak

    PubMed Central

    Xu, Su; Xu, Hongyi; Gao, Hanhong; Jiang, Yuyu; Yu, Faxin; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng; Sun, Handong; Zhang, Baile

    2015-01-01

    Guiding surface electromagnetic waves around disorder without disturbing the wave amplitude or phase is in great demand for modern photonic and plasmonic devices, but is fundamentally difficult to realize because light momentum must be conserved in a scattering event. A partial realization has been achieved by exploiting topological electromagnetic surface states, but this approach is limited to narrow-band light transmission and subject to phase disturbances in the presence of disorder. Recent advances in transformation optics apply principles of general relativity to curve the space for light, allowing one to match the momentum and phase of light around any disorder as if that disorder were not there. This feature has been exploited in the development of invisibility cloaks. An ideal invisibility cloak, however, would require the phase velocity of light being guided around the cloaked object to exceed the vacuum speed of light—a feat potentially achievable only over an extremely narrow band. In this work, we theoretically and experimentally show that the bottlenecks encountered in previous studies can be overcome. We introduce a class of cloaks capable of remarkable broadband surface electromagnetic waves guidance around ultrasharp corners and bumps with no perceptible changes in amplitude and phase. These cloaks consist of specifically designed nonmagnetic metamaterials and achieve nearly ideal transmission efficiency over a broadband frequency range from 0+ to 6 GHz. This work provides strong support for the application of transformation optics to plasmonic circuits and could pave the way toward high-performance, large-scale integrated photonic circuits. PMID:26056299

  10. Broadband surface-wave transformation cloak.

    PubMed

    Xu, Su; Xu, Hongyi; Gao, Hanhong; Jiang, Yuyu; Yu, Faxin; Joannopoulos, John D; Soljačić, Marin; Chen, Hongsheng; Sun, Handong; Zhang, Baile

    2015-06-23

    Guiding surface electromagnetic waves around disorder without disturbing the wave amplitude or phase is in great demand for modern photonic and plasmonic devices, but is fundamentally difficult to realize because light momentum must be conserved in a scattering event. A partial realization has been achieved by exploiting topological electromagnetic surface states, but this approach is limited to narrow-band light transmission and subject to phase disturbances in the presence of disorder. Recent advances in transformation optics apply principles of general relativity to curve the space for light, allowing one to match the momentum and phase of light around any disorder as if that disorder were not there. This feature has been exploited in the development of invisibility cloaks. An ideal invisibility cloak, however, would require the phase velocity of light being guided around the cloaked object to exceed the vacuum speed of light--a feat potentially achievable only over an extremely narrow band. In this work, we theoretically and experimentally show that the bottlenecks encountered in previous studies can be overcome. We introduce a class of cloaks capable of remarkable broadband surface electromagnetic waves guidance around ultrasharp corners and bumps with no perceptible changes in amplitude and phase. These cloaks consist of specifically designed nonmagnetic metamaterials and achieve nearly ideal transmission efficiency over a broadband frequency range from 0(+) to 6 GHz. This work provides strong support for the application of transformation optics to plasmonic circuits and could pave the way toward high-performance, large-scale integrated photonic circuits. PMID:26056299

  11. Anomalous shear wave delays and surface wave velocities at Yellowstone Caldera, Wyoming

    SciTech Connect

    Daniel, R.G.; Boore, D.M.

    1982-04-10

    To investigate the effects of a geothermal area on the propagation of intermediate-period (1--30 s) teleseismic body waves and surface waves, a specially designed portable seismograph system was operated in Yellowstone Caldera, Wyoming. Travel time residuals, relative to a station outside the caldera, of up to 2 s for compressional phases are in agreement with short-period residuals for P phases measured by other investigators. Travel time delays for shear arrivals in the intermediate-period band range from 2 to 9 s and decrease with increasing dT/d..delta... Measured Rayleigh wave phase velocities are extremely low, ranging from 3.2 km/s at 27-s period to 2.0 km/s at 7-s period; the estimated uncertainty associated with these values is 15%. We propose a model for compressional and shear velocities and Poisson's ratio beneath the Yellowstone caldera which fits the teleseismic body and surface wave data: it consists of a highly anomalous crust with an average shear velocity of 3.0 km/s overlying an upper mantle with average velocity of 4.1 km/s. The high average value of Poisson's ratio in the crust (0.34) suggests the presence of fluids there; Poisson's ratio in the mantle between 40 and approximately 200 km is more nearly normal (0.29) than in the crust. A discrepancy between normal values of Poisson's ratio in the crust calculated from short-period data and high values calculated from teleseismic data can be resolved by postulating a viscoelastic crustal model with frequency-dependent shear velocity and attenuation.

  12. Polymer Surface Melting Mediated by Capillary Waves

    NASA Astrophysics Data System (ADS)

    Herminghaus, Stephan; Seemann, Ralf; Landfester, Katharina

    2004-07-01

    Nuclear magnetic resonance investigations of atactic polystyrene emulsions yield direct evidence that the polymer surface exhibits a rather well-defined molten layer. Its thickness d grows continuously as the temperature is increased towards the bulk glass transition, according to d∝(Tg-T)-1. This is precisely what was recently predicted by a simple continuum model considering viscoelastic surface waves. Furthermore, this model is capable of explaining the frequently reported depression of the glass transition temperature in thin polymer films, and thus suggests a quite simple mechanism to underlie all these effects.

  13. Computing periodic gravity waves on water by using moving composite overlapping grids

    SciTech Connect

    Petersson, N.A. . Department of Mathematics)

    1993-11-01

    The composite overlapping grid method is applied to compute periodic gravity waves on water of finite constant depth. One component grid is made to follow the free surface while the remaining components are independent of the location of the surface. A pseudo-arclength continuation method is used to compute the solution as function of the phase velocity of the wave. The type of equation associated with some grid points and the number of equations in the discretized problem will change when the surface moves. The author expounds a stable way of switching the composite grid during the continuation procedure that works close to limit points. An adaptive technique is also developed to efficiently resolve the solution where sharp gradients develop. The aim of the research described here is to develop an accurate method that can be easily extended to compute the subcritical flow around an underwater obstacle, where they feel that the existing methods still need improvement.

  14. Illusions and Cloaks for Surface Waves

    PubMed Central

    McManus, T. M.; Valiente-Kroon, J. A.; Horsley, S. A. R.; Hao, Y.

    2014-01-01

    Ever since the inception of Transformation Optics (TO), new and exciting ideas have been proposed in the field of electromagnetics and the theory has been modified to work in such fields as acoustics and thermodynamics. The most well-known application of this theory is to cloaking, but another equally intriguing application of TO is the idea of an illusion device. Here, we propose a general method to transform electromagnetic waves between two arbitrary surfaces. This allows a flat surface to reproduce the scattering behaviour of a curved surface and vice versa, thereby giving rise to perfect optical illusion and cloaking devices, respectively. The performance of the proposed devices is simulated using thin effective media with engineered material properties. The scattering of the curved surface is shown to be reproduced by its flat analogue (for illusions) and vice versa for cloaks. PMID:25145953

  15. Scattering of electromagnetic waves from a randomly perturbed quasiperiodic surface

    NASA Technical Reports Server (NTRS)

    Shin, R. T.; Kong, J. A.

    1984-01-01

    Electromagnetic-wave scattering by a quasi-periodic surface with random perturbations (as in the remote sensing of plowed fields) is investigated analytically, applying the Kirchhoff approximation and modeling the plowed fields by means of Gaussian random variation, sinusoidal variation, and Gaussian random variation about the spatial frequency. Coherent and incoherent bistatic scattering coefficients are derived in closed form by evaluating the physical-optics integral and shown to be proportional, in the geometric-optics limit, to the occurrence probability of slopes which reflect the incident wave specularly in the direction of the scattered wave. Backscattering cross sections are plotted as functions of incidence angle for a number of cases, demonstrating the strong effect of row direction.

  16. Megaquakes, prograde surface waves and urban evolution

    NASA Astrophysics Data System (ADS)

    Lomnitz, C.; Castaños, H.

    2013-05-01

    Cities grow according to evolutionary principles. They move away from soft-ground conditions and avoid vulnerable types of structures. A megaquake generates prograde surface waves that produce unexpected damage in modern buildings. The examples (Figs. 1 and 2) were taken from the 1985 Mexico City and the 2010 Concepción, Chile megaquakes. About 400 structures built under supervision according to modern building codes were destroyed in the Mexican earthquake. All were sited on soft ground. A Rayleigh wave will cause surface particles to move as ellipses in a vertical plane. Building codes assume that this motion will be retrograde as on a homogeneous elastic halfspace, but soft soils are intermediate materials between a solid and a liquid. When Poisson's ratio tends to ν→0.5 the particle motion turns prograde as it would on a homogeneous fluid halfspace. Building codes assume that the tilt of the ground is not in phase with the acceleration but we show that structures on soft ground tilt into the direction of the horizontal ground acceleration. The combined effect of gravity and acceleration may destabilize a structure when it is in resonance with its eigenfrequency. Castaños, H. and C. Lomnitz, 2013. Charles Darwin and the 1835 Chile earthquake. Seismol. Res. Lett., 84, 19-23. Lomnitz, C., 1990. Mexico 1985: the case for gravity waves. Geophys. J. Int., 102, 569-572. Malischewsky, P.G. et al., 2008. The domain of existence of prograde Rayleigh-wave particle motion. Wave Motion 45, 556-564.; Figure 1 1985 Mexico megaquake--overturned 15-story apartment building in Mexico City ; Figure 2 2010 Chile megaquake Overturned 15-story R-C apartment building in Concepción

  17. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves.

    PubMed

    Sun, Shulin; He, Qiong; Xiao, Shiyi; Xu, Qin; Li, Xin; Zhou, Lei

    2012-05-01

    The arbitrary control of electromagnetic waves is a key aim of photonic research. Although, for example, the control of freely propagating waves (PWs) and surface waves (SWs) has separately become possible using transformation optics and metamaterials, a bridge linking both propagation types has not yet been found. Such a device has particular relevance given the many schemes of controlling electromagnetic waves at surfaces and interfaces, leading to trapped rainbows, lensing, beam bending, deflection, and even anomalous reflection/refraction. Here, we demonstrate theoretically and experimentally that a specific gradient-index meta-surface can convert a PW to a SW with nearly 100% efficiency. Distinct from conventional devices such as prism or grating couplers, the momentum mismatch between PW and SW is compensated by the reflection-phase gradient of the meta-surface, and a nearly perfect PW-SW conversion can happen for any incidence angle larger than a critical value. Experiments in the microwave region, including both far-field and near-field characterizations, are in excellent agreement with full-wave simulations. Our findings may pave the way for many applications, including high-efficiency surface plasmon couplers, anti-reflection surfaces, light absorbers, and so on. PMID:22466746

  18. Surface wave phase velocities from 2-D surface wave tomography studies in the Anatolian plate

    NASA Astrophysics Data System (ADS)

    Arif Kutlu, Yusuf; Erduran, Murat; Çakır, Özcan; Vinnik, Lev; Kosarev, Grigoriy; Oreshin, Sergey

    2014-05-01

    We study the Rayleigh and Love surface wave fundamental mode propagation beneath the Anatolian plate. To examine the inter-station phase velocities a two-station method is used along with the Multiple Filter Technique (MFT) in the Computer Programs in Seismology (Herrmann and Ammon, 2004). The near-station waveform is deconvolved from the far-station waveform removing the propagation effects between the source and the station. This method requires that the near and far stations are aligned with the epicentre on a great circle path. The azimuthal difference of the earthquake to the two-stations and the azimuthal difference between the earthquake and the station are restricted to be smaller than 5o. We selected 3378 teleseismic events (Mw >= 5.7) recorded by 394 broadband local stations with high signal-to-noise ratio within the years 1999-2013. Corrected for the instrument response suitable seismogram pairs are analyzed with the two-station method yielding a collection of phase velocity curves in various period ranges (mainly in the range 25-185 sec). Diffraction from lateral heterogeneities, multipathing, interference of Rayleigh and Love waves can alter the dispersion measurements. In order to obtain quality measurements, we select only smooth portions of the phase velocity curves, remove outliers and average over many measurements. We discard these average phase velocity curves suspected of suffering from phase wrapping errors by comparing them with a reference Earth model (IASP91 by Kennett and Engdahl, 1991). The outlined analysis procedure yields 3035 Rayleigh and 1637 Love individual phase velocity curves. To obtain Rayleigh and Love wave travel times for a given region we performed 2-D tomographic inversion for which the Fast Marching Surface Tomography (FMST) code developed by N. Rawlinson at the Australian National University was utilized. This software package is based on the multistage fast marching method by Rawlinson and Sambridge (2004a, 2004b). The

  19. Shear wave velocity and attenuation structure for the shallow crust of the southern Korean peninsula from short period Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Jung, Heeok; Jang, Yong-seok; Lee, Jung Mo; Moon, Wooil M.; Baag, Chang-Eob; Kim, Ki Young; Jo, Bong Gon

    2007-01-01

    We analyzed the short period Rayleigh waves from the first crustal-scale seismic refraction experiment in the Korean peninsula, KCRUST2002, to determine the shear wave velocity and attenuation structure of the uppermost 1 km of the crust in different tectonic zones of the Korean peninsula and to examine if this can be related to the surface geology of the study area. The experiment was conducted with two large explosive sources along a 300-km long profile in 2002. The seismic traces, recorded on 170 vertical-component, 2-Hz portable seismometers, show distinct Rayleigh waves in the period range between 0.2 s and 1.2 s, which are easily recognizable up to 30-60 km from the sources. The seismic profiles, which traverse three tectonic regions (Gyeonggi massif, Okcheon fold belt and Yeongnam massif), were divided into five subsections based on tectonic boundaries as well as lithology. Group and phase velocities for the five subsections obtained by a continuous wavelet transform method and a slant stack method, respectively, were inverted for the shear wave models. We obtained shear wave velocity models up to a depth of 1.0 km. Overall, the shear wave velocity of the Okcheon fold belt is lower than that of the Gyeonggi and Yeongnam massifs by ˜ 0.4 km/s in the shallowmost 0.2 km and by 0.2 km/s at depths below 0.2 km. Attenuation coefficients, determined from the decay of the fundamental mode Rayleigh waves, were used to obtain the shear wave attenuation structures for three subsections (one for each of the three different tectonic regions). We obtained an average value of Qβ- 1 in the upper 0.5 km for each subsection. Qβ- 1 for the Okcheon fold belt (˜ 0.026) is approximately three times larger than Qβ- 1 for the massif areas (˜ 0.008). The low shear wave velocity in the Okcheon fold belt is consistent with the high attenuation in this region.

  20. Calculations of the heights, periods, profile parameters, and energy spectra of wind waves

    NASA Technical Reports Server (NTRS)

    Korneva, L. A.

    1975-01-01

    Sea wave behavior calculations require the precalculation of wave elements as well as consideration of the spectral functions of ocean wave formation. The spectrum of the random wave process is largely determined by the distribution of energy in the actual wind waves observed on the surface of the sea as expressed in statistical and spectral characteristics of the sea swell.

  1. A Lithospheric Study of Eastern Asia Using Surface Wave Dispersion

    NASA Astrophysics Data System (ADS)

    Pasyanos, M. E.; Walter, W. R.; Flanagan, M. P.

    2003-12-01

    We have continued our study of surface-wave group-velocity dispersion across Eastern Asia in the vicinity of the Korean Peninsula, Yellow Sea, and Sea of Japan. We primarily use seismic data from permanent stations in South Korea, China, Japan, Taiwan and Russia. We also use data from several IRIS PASSCAL deployments in China and North Korea. We measure group-velocity using multiple narrow-band filters on deconvolved displacement data. We use a conjugate gradient method to perform a high-resolution group-velocity tomography over the region. Our current results include Rayleigh wave inversions for periods from 10 to 100 seconds. There is an excellent correspondence between the group velocities and tectonic structure, including large sedimentary features and crustal thickness variations. At long periods (> 50 sec), we find that the inversion has features associated with the subduction of the Pacific and Philippine Plates under the Eurasian continent, including the effects of the subducting slab and magmatic arc. We use the group-velocity results to model the shear-velocity structure of the crust and upper mantle across the region. We employ a grid-search technique to fit the Rayleigh wave group-velocities over the whole period range. This does a very good job at retrieving features in the crust and uppermost mantle. Deeper features in the mantle, however, are harder to model directly using this method. To resolve these features, we will be forwarding modeling the structure by constructing several models of the subduction zone. We will then be testing the various models by comparing the group velocities predicted by the models to the observed group velocities along cross-sections. Preliminary results indicate that the magmatic arc has the largest affect on the long period surface waves, with the subducting slab being a much subtler feature.

  2. Metasurface transformation for surface wave control.

    PubMed

    Martini, E; Mencagli, M; Maci, S

    2015-08-28

    Metasurfaces (MTSs) constitute a class of thin metamaterials used for controlling plane waves and surface waves (SWs). At microwave frequencies, they are constituted by a metallic texture with elements of sub-wavelength size printed on thin grounded dielectric substrates. These structures support the propagation of SWs. By averaging the tangential fields, the MTSs can be characterized through homogenized isotropic or anisotropic boundary conditions, which can be described through a homogeneous equivalent impedance. This impedance can be spatially modulated by locally changing the size/orientation of the texture elements. This allows for a deformation of the SW wavefront which addresses the local wavevector along not-rectilinear paths. The effect of the MTS modulation can be analysed in the framework of transformation optics. This article reviews theory and implementation of this MTS transformation and shows some examples at microwave frequencies. PMID:26217056

  3. On the accuracy of long-period Rayleigh waves extracted from ambient noise

    NASA Astrophysics Data System (ADS)

    Xie, Jun; Yang, Yingjie; Ni, Sidao

    2016-07-01

    The aim of this paper is to assess the accuracy of the long-period (50-250 s) surface waves extracted from cross-correlation functions (CCF) of ambient noise. First, we compare waveforms of Empirical Green's functions (EGF) converted from CCF with their synthetics, and also compare seismograms from a ground truth earthquake with their synthetics, through numerical simulations using a common 3-D model. We then quantify the accuracy of EGFs by comparing two sets of time-shifts between the observed waveforms and the synthetics: one set for the ground truth earthquake and the other set for EGFs. Second, we compare Rayleigh wave phase velocity dispersion measurements from ambient noise and those from earthquake data in both global and regional studies. Through these comparisons, we conclude that both the dispersion curves and waveforms from noise data are consistent with their counterparts from earthquake data in the long-period band. The long-period surface waves from ambient noise are as accurate as those from earthquake data, and can be included in both global and regional ambient noise tomography and provide complementary data to constrain the lithospheric and asthenospheric structures.

  4. Solar energy converter using surface plasma waves

    NASA Technical Reports Server (NTRS)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  5. The use of the virtual source technique in computing scattering from periodic ocean surfaces.

    PubMed

    Abawi, Ahmad T

    2011-08-01

    In this paper the virtual source technique is used to compute scattering of a plane wave from a periodic ocean surface. The virtual source technique is a method of imposing boundary conditions using virtual sources, with initially unknown complex amplitudes. These amplitudes are then determined by applying the boundary conditions. The fields due to these virtual sources are given by the environment Green's function. In principle, satisfying boundary conditions on an infinite surface requires an infinite number of sources. In this paper, the periodic nature of the surface is employed to populate a single period of the surface with virtual sources and m surface periods are added to obtain scattering from the entire surface. The use of an accelerated sum formula makes it possible to obtain a convergent sum with relatively small number of terms (∼40). The accuracy of the technique is verified by comparing its results with those obtained using the integral equation technique. PMID:21877782

  6. Stratification effects on nonlinear elastic surface waves

    NASA Astrophysics Data System (ADS)

    Parker, D. F.

    1988-01-01

    On a homogeneous elastic half-space, linear surface waves are nondispersive. In each direction, waves having any profile travel without distortion. Nonlinearity causes intermodulation between the various wavelengths so that the signal distorts. Even when nonlinearity is small, sinusoidal profiles do not remain approximately sinusoidal. The absence of dispersion means that profiles suffer cumulative distortion, until the surface slope and strain become locally unbounded. Although this behaviour is typical of many signals, there are some signals for which intermodulation is constructive. These signals can travel coherently over large distances. For seismological applications, it is important to study the effects due to stratification. Dependence of the material constants on depth modifies the nonlinear evolution equations previously derived for homogeneous media. It has a smaller effect on higher frequencies than on lower frequencies. An approximate theory for short wavelength (high frequency) signals is introduced. Calculations show that when nonlinearity is no more important than dispersion, initially sinusoidal profiles propagate with surface slope remaining finite. When dispersion is small compared to nonlinearity, certain sharp peaked profiles can travel large distances while suffering little distortion.

  7. Holography with standing surface plasma waves

    NASA Technical Reports Server (NTRS)

    Cowan, J. J.

    1974-01-01

    Holography with standing surface plasma waves, where both reference and object beams propagate in opposite directions, has been investigated using an Al reflection grating coated with evaporated As2S3 layers. The image, which appears only for p-polarization and at certain critical angles, is enhanced by the Lippman-Bragg effect and by an increase in intensity over ordinary holography approximately equal to the absolute value of the real part of the dielectric constant for Al. Also considered is holography with object light alone in photoresist layers, using the beam-splitting properties of the grating.

  8. Scattered surface wave energy in the seismic coda

    USGS Publications Warehouse

    Zeng, Y.

    2006-01-01

    One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.

  9. QUASI-PERIODIC FAST-MODE WAVE TRAINS WITHIN A GLOBAL EUV WAVE AND SEQUENTIAL TRANSVERSE OSCILLATIONS DETECTED BY SDO/AIA

    SciTech Connect

    Liu Wei; Nitta, Nariaki V.; Aschwanden, Markus J.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D.; Ofman, Leon

    2012-07-01

    We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called EIT wave) occurring on the limb. These wave trains, running ahead of the lateral coronal mass ejection (CME) front of 2-4 times slower, coherently travel to distances {approx}> R{sub Sun }/2 along the solar surface, with initial velocities up to 1400 km s{sup -1} decelerating to {approx}650 km s{sup -1}. The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The wave trains have a dominant 2 minute periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by {approx}50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME-caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the primary (outer) fast component of a global EUV wave, running ahead of the secondary (inner) slow component of CME-caused restructuring.

  10. Quasi-periodic Fast-mode Wave Trains Within a Global EUV Wave and Sequential Transverse Oscillations Detected by SDO-AIA

    NASA Technical Reports Server (NTRS)

    Liu, Wei; Ofman, Leon; Nitta, Nariaki; Aschwanden, Markus J.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D.

    2012-01-01

    We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called EIT wave) occurring on the limb. These wave trains, running ahead of the lateral coronal mass ejection (CME) front of 2-4 times slower, coherently travel to distances greater than approximately solar radius/2 along the solar surface, with initial velocities up to 1400 kilometers per second decelerating to approximately 650 kilometers per second. The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The wave trains have a dominant 2 minute periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by approximately 50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME-caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the primary (outer) fast component of a global EUV wave, running ahead of the secondary (inner) slow component of CME-caused restructuring.

  11. Communication: A combined periodic density functional and incremental wave-function-based approach for the dispersion-accounting time-resolved dynamics of {sup 4}He nanodroplets on surfaces: {sup 4}He/graphene

    SciTech Connect

    Lara-Castells, María Pilar de; Stoll, Hermann; Civalleri, Bartolomeo; Causà, Mauro; Voloshina, Elena; Mitrushchenkov, Alexander O.; Pi, Martí

    2014-10-21

    In this work we propose a general strategy to calculate accurate He–surface interaction potentials. It extends the dispersionless density functional approach recently developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] to adsorbate-surface interactions by including periodic boundary conditions. We also introduce a scheme to parametrize the dispersion interaction by calculating two- and three-body dispersion terms at coupled cluster singles and doubles and perturbative triples (CCSD(T)) level via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. The performance of the composite approach is tested on {sup 4}He/graphene by determining the energies of the low-lying selective adsorption states, finding an excellent agreement with the best available theoretical data. Second, the capability of the approach to describe dispersionless correlation effects realistically is used to extract dispersion effects in time-dependent density functional simulations on the collision of {sup 4}He droplets with a single graphene sheet. It is found that dispersion effects play a key role in the fast spreading of the {sup 4}He nanodroplet, the evaporation-like process of helium atoms, and the formation of solid-like helium structures. These characteristics are expected to be quite general and highly relevant to explain experimental measurements with the newly developed helium droplet mediated deposition technique.

  12. Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality

    SciTech Connect

    Wang, Bingnan

    2009-01-01

    Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based

  13. Enhanced Singular Wave Reactor for Surface Power

    NASA Astrophysics Data System (ADS)

    Popa-Simil, L.

    The "CANDLE" (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor) also known as singular wave reactor has many significant advantages related to elimination of the need for enrichment. The use of micro-hetero structured fuel, generically called "cer-liq-mesh" will further improve burnup up to 90%. In spite it has typically large dimensions, being heavy to be transported in space, in a single piece, but because it will deliver energy in hundreds MW level for about 100 years per charge using natural Uranium or Thorium as fuel available on the planet's surface, and because it can be assembled locally becomes a very attractive option for self sustainable power cycles. The "cer-liq-mesh" fuel based singular wave reactor is smaller, less than ¼ from the size of "Candle" reactor, and has a very high burnup reducing the fuel cycle drastically. It can be transported by parts, with extremely small probability of over-unity criticality accident and be assembled to run on the surface. This represents a better option for extraterrestrial applications; in spite it requires a more complicated fuel fabrication that pays back in a simplified fuel cycle and minimum waste.

  14. Multiple-grid frequency-selective surfaces as periodically loaded structures

    NASA Astrophysics Data System (ADS)

    Orta, R.; Tascone, R.; Zich, R.

    1988-04-01

    An novel approach to the analysis of multiple-grid frequency-selective surfaces (FSS) is presented. In this case, the multiple grid FSS is thought of as a periodically loaded structure where the unit cell consists of a grid with its adjacent layers. The Bloch wave passband and stopband are used to create the transmission and reflection bands.

  15. Developing a Short-Period, Fundamental-Mode Rayleigh-Wave Attenuation Model for Asia

    NASA Astrophysics Data System (ADS)

    Yang, X.; Levshin, A. L.; Barmin, M. P.; Ritzwoller, M. H.

    2008-12-01

    We are developing a 2D, short-period (12 - 22 s), fundamental-mode Rayleigh-wave attenuation model for Asia. This model can be used to invert for a 3D attenuation model of the Earth's crust and upper mantle as well as to implement more accurate path corrections in regional surface-wave magnitude calculations. The prerequisite for developing a reliable Rayleigh-wave attenuation model is the availability of accurate fundamental-mode Rayleigh-wave amplitude measurements. Fundamental-mode Rayleigh-wave amplitudes could be contaminated by a variety of sources such as multipathing, focusing and defocusing, body wave, higher-mode surface wave, and other noise sources. These contaminations must be reduced to the largest extent possible. To achieve this, we designed a procedure by taking advantage of certain Rayleigh-wave characteristics, such as dispersion and elliptical particle motion, for accurate amplitude measurements. We first analyze the dispersion of the surface-wave data using a spectrogram. Based on the characteristics of the data dispersion, we design a phase-matched filter by using either a manually picked dispersion curve, or a group-velocity-model predicted dispersion curve, or the dispersion of the data, and apply the filter to the seismogram. Intelligent filtering of the seismogram and windowing of the resulting cross-correlation based on the spectrogram analysis and the comparison between the phase-match filtered data spectrum, the raw-data spectrum and the theoretical source spectrum effectively reduces amplitude contaminations and results in reliable amplitude measurements in many cases. We implemented these measuring techniques in a graphic-user-interface tool called Surface Wave Amplitude Measurement Tool (SWAMTOOL). Using the tool, we collected and processed waveform data for 200 earthquakes occurring throughout 2003-2006 inside and around Eurasia. The records from 135 broadband stations were used. After obtaining the Rayleigh-wave amplitude

  16. Nozzleless Spray Cooling Using Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Ang, Kar Man; Yeo, Leslie; Friend, James; Hung, Yew Mun; Tan, Ming Kwang

    2015-11-01

    Due to its reliability and portability, surface acoustic wave (SAW) atomization is an attractive approach for the generation of monodispersed microdroplets in microfluidics devices. Here, we present a nozzleless spray cooling technique via SAW atomization with key advantage of downward scalability by simply increasing the excitation frequency. With generation of micron size droplets through surface destabilization using SAW, the clogging issues commonly encountered by spraying nozzle can be neutralized. Using deionised water, cooling is improved when the atomization rate is increased and the position of the device is optimized such that the atomized droplets can be easily seeded into the upstream of the flow circulation. Cooling is further improved with the use of nanofluids; a suspension of nanoparticles in water. By increasing nanoparticle mass concentration from 1% to 3%, cooling is enhanced due to the deposition and formation of nanoparticle clusters on heated surface and eventually increase the surface area. However, further increase the concentration to 10% reduces the cooling efficiency due to drastic increase in viscosity μ that leads to lower atomization rate which scales as ṁ ~μ - 1 / 2 .

  17. Wave extraction with portable high-frequency surface wave radar OSMAR-S

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Roarty, Hugh; Wen, Biyang

    2014-12-01

    High frequency surface wave radar (HFSWR) has now gained more and more attention in real-time monitoring of sea surface states such as current, waves and wind. Normally a small-aperture antenna array is preferred to a large-aperture one due to the easiness and low cost to set up. However, the large beam-width and the corresponding incorrect division of the first- and second-order Doppler spectral regions often lead to big errors in wave height and period estimations. Therefore, for the HFSWR with a compact cross-loop/monopole antenna (CMA), a new algorithm involving improved beam-forming (BF) and spectral division techniques is proposed. On one hand, the cross-spectrum of the output sequence by the conventional beam-forming (CBF) with all the three elements and the output with only the two loops is used in place of the CMA output self-spectrum to achieve a decreased beam-width; on the other hand, the better null seeking process is included to improve the division accuracy of the first- and second-order regions. The algorithm is used to reprocess the data collected by the portable HFSWR OSMAR-S during the Sailing Competition of the 16th Asian Games held in Shanwei in November 2010, and the improvements of both the correlation coefficients and root-mean-square (RMS) errors between the wave height and period estimations and in situ buoy measurements are obvious. The algorithm has greatly enhanced the capabilities of OSMAR-S in wave measurements.

  18. Stability of periodic traveling waves in the Aliev-Panfilov reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Gani, M. Osman; Ogawa, Toshiyuki

    2016-04-01

    We study the two-component Aliev-Panfilov reaction-diffusion system of cardiac excitation. It is known that the model exhibits spiral wave instability in two-dimensional spatial domains. In order to describe the spiral wave instability, it is important to understand periodic traveling wave instability resulting from the model. We determine the existence and stability of periodic traveling waves in the model. In addition, we calculate the stability boundary between stable and unstable periodic traveling waves in a two-dimensional parameter plane. It is observed that the periodic traveling waves express instability by a stability change of Eckhaus type. As a result, a stable wave bifurcates to an oscillating periodic traveling wave. We describe these phenomena by calculating the essential spectra of the waves. Furthermore, we study the stability of the waves as a function of the gaps between two nullclines. In two dimensions, we determine the spiral wave instability based on the stability boundary of the periodic traveling waves.

  19. Orbital stability of periodic waves in the class of reduced Ostrovsky equations

    NASA Astrophysics Data System (ADS)

    Johnson, Edward R.; Pelinovsky, Dmitry E.

    2016-09-01

    Periodic travelling waves are considered in the class of reduced Ostrovsky equations that describe low-frequency internal waves in the presence of rotation. The reduced Ostrovsky equations with either quadratic or cubic nonlinearities can be transformed to integrable equations of the Klein-Gordon type by means of a change of coordinates. By using the conserved momentum and energy as well as an additional conserved quantity due to integrability, we prove that small-amplitude periodic waves are orbitally stable with respect to subharmonic perturbations, with period equal to an integer multiple of the period of the wave. The proof is based on construction of a Lyapunov functional, which is convex at the periodic wave and is conserved in the time evolution. We also show numerically that convexity of the Lyapunov functional holds for periodic waves of arbitrary amplitudes.

  20. A study of a plume induced separation shock wave, including effects of periodic plume unsteadiness

    NASA Technical Reports Server (NTRS)

    Doughty, J. O.

    1976-01-01

    A wind tunnel investigation was conducted to study the flow field in which separation is caused by an expanding plume, with emphasis on effects associated with periodic unsteadiness in the plume. The separation shock was photographed with high speed motion pictures, from which mean shock position and excursion data were reported. Pressure fluctuations were measured beneath the separation shock. A response of the separation shock to plume periodic unsteadiness was identified, and the magnitude of a corresponding transfer function was defined. Small harmonic effects in plume response to periodic unsteadiness were noted. The stabilizing effect of a lateral surface protuberance near the separation shock wave was investigated. The protuberance configuration was a lateral circular cylinder, and various diameters, all less than the boundary layer thickness, were employed.

  1. Methods for the extraction of long-period ocean wave parameters from narrow beam HF radar sea echo

    NASA Astrophysics Data System (ADS)

    Lipa, Belinda; Barrick, Donald

    1980-07-01

    This paper describes inversion methods for HF radar sea echo Doppler spectra, giving parameters of the ocean wave spectrum in the important long-wavelength region. Radar spectra exhibiting very narrow spikes in the higher-order structure adjacent to the first-order lines are indicative of ocean wave components with a single dominant wavelength. In the simplest method of interpretation these components are assumed to be unidirectional; in this case we show how to extract wave period, direction, and rms wave height. If this simple model does not provide a good fit to the data or if the radar side bands have the form of broad peaks, we use a model for the wave spectrum with a cardioid distribution in direction and a Gaussian distribution in wave frequency. Parameters identifiable from this model include the rms wave height, dominant direction and period, and the angular spread in the direction and frequency distributions. In normal surface wave experiments the major source of error or noise is the random surface height of the sea; we describe the resulting statistics of the radar spectrum and trace the propagation of uncertainty to the derived ocean parameters.

  2. P-wave and surface wave survey for permafrost analysis in alpine regions

    NASA Astrophysics Data System (ADS)

    Godio, A.; Socco, L. V.; Garofalo, F.; Arato, A.; Théodule, A.

    2012-04-01

    In various high mountain environments the estimate of mechanical properties of slope and sediments are relevant for the link of the geo-mechanical properties with the climate change effects. Two different locations were selected to perform seismic and georadar surveying, the Tsanteleina glacier (Gran Paradiso) and the Blue Lake in Val d'Ayas in the massif of Monterosa. The analysis of the seismic and GPR lines allowed to characterize the silty soil (top layer) and underlying bedrock. We applied seismic survey in time lapse mode to check the presence of "active" layer and estimate the mechanical properties of the moraines material and their sensitivity to the permafrost changes. Mechanical properties of sediments and moraines in glacial areas are related to the grain-size, the compaction of the material subjected to the past glacial activity, the presence of frozen materials and the reactivity of the permafrost to the climate changes. The test site of Tsanteleina has been equipped with sensors to monitor the temperature of soil and air and with time domain reflectometry to estimate the soil moisture and the frozen and thawing cycle of the uppermost material. Seismic reflections from the top of the permafrost layer are difficult to identify as they are embedded in the source-generated noise. Therefore we estimate seismic velocities from the analysis of traveltime refraction tomography and the analysis of surface wave. This approach provides information on compressional and shear waves using a single acquisition layout and a hammer acts as source. This reduces the acquisition time in complex logistical condition especially in winter period. The seismic survey was performed using 48 vertical geophones with 2 m spacing. The survey has been repeated in two different periods: summer 2011 and winter 2011. Common offset reflection lines with a 200 MHz GPR system (in summer) permitted to investigate the sediments and obtain information on the subsoil layering. The processing

  3. Raising Photoemission Efficiency with Surface Acoustic Waves

    SciTech Connect

    A. Afanasev, F. Hassani, C.E. Korman, V.G. Dudnikov, R.P. Johnson, M. Poelker, K.E.L. Surles-Law

    2012-07-01

    We are developing a novel technique that may help increase the efficiency and reduce costs of photoelectron sources used at electron accelerators. The technique is based on the use of Surface Acoustic Waves (SAW) in piezoelectric materials, such as GaAs, that are commonly used as photocathodes. Piezoelectric fields produced by the traveling SAW spatially separate electrons and holes, reducing their probability of recombination, thereby enhancing the photoemission quantum efficiency of the photocathode. Additional advantages could be increased polarization provided by the enhanced mobility of charge carriers that can be controlled by the SAW and the ionization of optically-generated excitons resulting in the creation of additional electron-hole pairs. It is expected that these novel features will reduce the cost of accelerator operation. A theoretical model for photoemission in the presence of SAW has been developed, and experimental tests of the technique are underway.

  4. Numerical simulation of surface waves instability on a homogeneous grid

    NASA Astrophysics Data System (ADS)

    Korotkevich, Alexander O.; Dyachenko, Alexander I.; Zakharov, Vladimir E.

    2016-05-01

    We performed full-scale numerical simulation of instability of weakly nonlinear waves on the surface of deep fluid. We show that the instability development leads to chaotization and formation of wave turbulence. Instability of both propagating and standing waves was studied. We separately studied pure capillary wave, that was unstable due to three-wave interactions and pure gravity waves, that were unstable due to four-wave interactions. The theoretical description of instabilities in all cases is included in the article. The numerical algorithm used in these and many other previous simulations performed by the authors is described in detail.

  5. Rayleigh and Love wave phase velocity maps of Iceland from combined ambient noise and teleseismic surface wave analysis.

    NASA Astrophysics Data System (ADS)

    Harmon, N.

    2014-12-01

    Iceland is one of the few regions where ridge-plume interaction can be examined with a terrestrial seismic array. Velocity structure from broadband surface wave dispersion measurements can be used to constrain the complicated crustal and upper mantle structure caused by the plume enhanced rifting activity. Here I use data from the ICEMELT and HOTSPOT arrays on Iceland to generate phase velocity dispersion maps of both Rayleigh and Love waves from ambient noise cross correlation and teleseismic events. I invert Rayleigh and Love wave dispersion observed from ambient noise for tomographic velocity structure. For teleseismic Rayleigh waves I use the two-plane wave approximation array-based method of Forsyth and Li [2005]. I also develop and adapt this method for teleseismic Love waves. This requires additional preprocessing of the data to estimate the amplitude and phase for teleseismic Love waves. Specifically, for each station, the vertical component phase observation of the fundamental mode Rayleigh is used to predict and remove the horizontal components of Rayleigh waves. Then I invert for the maximum amplitude and apparent back azimuth at each period of interest of the Love wave from the transverse and radial components. The amplitude and phase measurement is then inverted for phase velocity structure using a modified version of the two plane-wave approximation. Preliminary results indicate a low velocity region at short periods (8-15 s) in both the Rayleigh and Love wave phase velocity maps beneath the active volcanic centers in the middle of the island. At longer periods (20-125 s) a low velocity region is visible beneath central Iceland. The velocity minimum is located to the north of Iceland in the Rayleigh wave maps. These observations are consistent with previous studies in the region.

  6. New Hybridized Surface Wave Approach for Geotechnical Modeling of Shear Wave Velocity at Strong Motion Recording Stations

    NASA Astrophysics Data System (ADS)

    Kayen, R.; Carkin, B.; Minasian, D.

    2006-12-01

    Strong motion recording (SMR) networks often have little or no shear wave velocity measurements at stations where characterization of site amplification and site period effects is needed. Using the active Spectral Analysis of Surface Waves (SASW) method, and passive H/V microtremor method we have investigated nearly two hundred SMR sites in California, Alaska, Japan, Australia, China and Taiwan. We are conducting these studies, in part, to develop a new hybridized method of site characterization that utilizes a parallel array of harmonic-wave sources for active-source SASW, and a single long period seismometer for passive-source microtremor measurement. Surface wave methods excel in their ability to non-invasively and rapidly characterize the variation of ground stiffness properties with depth below the surface. These methods are lightweight, inexpensive to deploy, and time-efficient. They have been shown to produce accurate and deep soil stiffness profiles. By placing and wiring shakers in a large parallel circuit, either side-by-side on the ground or in a trailer-mounted array, a strong in-phase harmonic wave can be produced. The effect of arraying many sources in parallel is to increase the amplitude of waves received at far-away spaced seismometers at low frequencies so as to extend the longest wavelengths of the captured dispersion curve. The USGS system for profiling uses this concept by arraying between two and eight electro-mechanical harmonic-wave shakers. With large parallel arrays of vibrators, a dynamic force in excess of 1000 lb can be produced to vibrate the ground and produce surface waves. We adjust the harmonic wave through a swept-sine procedure to profile surface wave dispersion down to a frequency of 1 Hz and out to surface wave-wavelengths of 200-1000 meters, depending on the site stiffness. The parallel-array SASW procedure is augmented using H/V microtremor data collected with the active source turned off. Passive array microtremor data

  7. Surface Alfven Wave Contribution to Coronal Heating in a Wave-Driven Solar Wind Model

    NASA Astrophysics Data System (ADS)

    Evans, Rebekah M.; Opher, M.; Oran, R.; Sokolov, I. V.

    2010-05-01

    We present results from the development of a solar wind model driven by Alfven waves with realistic damping mechanisms. We investigate the contribution of surface Alfven wave damping to the heating of the corona and acceleration of the solar wind. These waves are present and damp in regions of strong gradients in density or magnetic field (e.g., the border between open and closed magnetic fields). Recently Oran et al. (2009) implemented a first principle solar wind model driven by a spectrum of Alfven waves into the Space Weather Modeling Framework. The wave transport equation, including wave advection and dissipation, is coupled to the MHD equations for the wind. The waves contribute to the momentum and energy of the wind through the action of wave pressure. Here we extend this model to include surface Alfven wave damping as a dissipation mechanism, considering waves with frequencies lower than those damped in the chromosphere and on the order of those dominating the heliosphere (0.0001 to 100 Hz.) We demonstrate the influence of the damping by quantifying the differences between a solution that includes surface Alfven wave damping and one driven solely by Alfven wave pressure. We relate to possible observational signatures of heat transfer by surface Alfven wave damping. This work is the first to study surface Alfven waves self-consistently as an energy driven for the solar wind in a 4D (three in space and one in frequency) environment. This work is supported by the NSF CAREER Grant.

  8. Nonlinear surface acoustic waves in cubic crystals

    NASA Astrophysics Data System (ADS)

    Kumon, Ronald Edward

    Model equations developed by Hamilton, Il'inskii, and Zabolotskaya [J. Acoust. Soc. Am. 105, 639-651 (1999)] are used to perform theoretical and numerical studies of nonlinear surface acoustic waves in a variety of nonpiezoelectric cubic crystals. The basic theory underlying the model equations is outlined, quasilinear solutions of the equations are derived, and expressions are developed for the shock formation distance and nonlinearity coefficient. A time-domain equation corresponding to the frequency-domain model equations is derived and shown to reduce to a time-domain equation introduced previously for Rayleigh waves [E. A. Zabolotskaya, J. Acoust. Soc. Am. 91, 2569-2575 (1992)]. Numerical calculations are performed to predict the evolution of initially monofrequency surface waves in the (001), (110), and (111) planes of the crystals RbCl, KCl, NaCl, CaF2, SrF2, BaF2, C (diamond), Si, Ge, Al, Ni, Cu in the moverline 3m point group, and the crystals Cs-alum, NH4- alum, and K-alum in the moverline 3 point group. The calculations are based on measured second- and third- order elastic constants taken from the literature. Nonlinearity matrix elements which describe the coupling strength of harmonic interactions are shown to provide a powerful tool for characterizing waveform distortion. Simulations in the (001) and (110) planes show that in certain directions the velocity waveform distortion may change in sign, generation of one or more harmonies may be suppressed and shock formation postponed, or energy may be transferred rapidly to the highest harmonics and shock formation enhanced. Simulations in the (111) plane show that the nonlinearity matrix elements are generally complex-valued, which may lead to asymmetric distortion and the appearance of low frequency oscillations near the peaks and shocks in the velocity waveforms. A simple transformation based on the phase of the nonlinearity matrix is shown to provide a reasonable approximation of asymmetric waveform

  9. Surface spin-electron acoustic waves in magnetically ordered metals

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.; Kuz'menkov, L. S.

    2016-05-01

    Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma, we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area, the dispersion branches are located close to each other. In this area, there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuir waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the spin-electron acoustic waves.

  10. Frequency and wavelength prediction of ultrasonic induced liquid surface waves.

    PubMed

    Mahravan, Ehsan; Naderan, Hamid; Damangir, Ebrahim

    2016-12-01

    A theoretical investigation of parametric excitation of liquid free surface by a high frequency sound wave is preformed, using potential flow theory. Pressure and velocity distributions, resembling the sound wave, are applied to the free surface of the liquid. It is found that for impinging wave two distinct capillary frequencies will be excited: One of them is the same as the frequency of the sound wave, and the other is equal to the natural frequency corresponding to a wavenumber equal to the horizontal wavenumber of the sound wave. When the wave propagates in vertical direction, mathematical formulation leads to an equation, which has resonance frequency equal to half of the excitation frequency. This can explain an important contradiction between the frequency and the wavelength of capillary waves in the two cases of normal and inclined interaction of the sound wave and the free surface of the liquid. PMID:27566141

  11. Characteristics of offshore extreme wind-waves detected by surface drifters with a low-cost GPS wave sensor

    NASA Astrophysics Data System (ADS)

    Komatsu, Kosei

    Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, mo-mentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious dis-asters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal re-gions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and di-rection sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by

  12. Analytical Solution of Thermal Wave Models on Skin Tissue Under Arbitrary Periodic Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Fazlali, R.; Ahmadikia, H.

    2013-01-01

    Modeling and understanding the heat transfer in biological tissues is important in medical thermal therapeutic applications. The biothermomechanics of skin involves interdisciplinary features, such as bioheat transfer, biomechanics, and burn damage. The hyperbolic thermal wave model of bioheat transfer and the parabolic Pennes bioheat transfer equations with blood perfusion and metabolic heat generation are applied for the skin tissue as a finite and semi-infinite domain when the skin surface temperature is suddenly exposed to a source of an arbitrary periodic temperature. These equations are solved analytically by Laplace transform methods. The thermal wave model results indicate that a non-Fourier model has predicted the thermal behavior correctly, compared to that of previous experiments. The results of the thermal wave model show that when the first thermal wave moves from the first boundary, the temperature profiles for finite and semi-infinite domains of skin become separated for these phenomena; the discrepancy between these profiles is negligible. The accuracy of the obtained results is validated through comparisons with existing numerical results. The results demonstrate that the non-Fourier model is significant in describing the thermal behavior of skin tissue.

  13. Broadband attenuation of Lamb waves through a periodic array of thin rectangular junctions

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Pennec, Yan; Marchal, Rémi; Bonello, Bernard; Djafari-Rouhani, Bahram

    2014-10-01

    We study theoretically subwavelength physical phenomena, such as resonant transmission and broadband sound shielding for Lamb waves propagating in an acoustic metamaterial made of a thin plate drilled with one or two row(s) of rectangular holes. The resonances and antiresonances of periodically arranged rectangular junctions separated by holes are investigated as a function of the geometrical parameters of the junctions. With one and two row(s) of holes, high frequency specific features in the transmission coefficient are explained in terms of a coupling of incident waves with both Fabry-Perot oscillations inside the junctions and induced surface acoustic waves between the homogeneous part of the plate and the row of holes. With two rows of holes, low frequency peaks and dips appear in the transmission spectrum. The choice of the distance between the two rows of holes allows the realization of a broadband low frequency acoustic shielding with attenuation over 99% for symmetric waves in a wide low frequency range and over 90% for antisymmetric ones. The origin of the transmission gap is discussed in terms of localized modes of the "H" element made by the junctions, connecting the two homogeneous parts of the plate.

  14. Surface acoustic wave (SAW) vibration sensors.

    PubMed

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit. PMID:22247694

  15. Surface Acoustic Wave (SAW) Vibration Sensors

    PubMed Central

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit. PMID:22247694

  16. Surface Wave Simulation and Processing with MatSeis

    SciTech Connect

    THOMPSON,BEVERLY D.; CHAEL,ERIC P.; YOUNG,CHRISTOPHER J.; WALTER,WILLIAM R.; PASYANOS,MICHAEL E.

    2000-08-07

    In order to exploit the information on surface wave propagation that is stored in large seismic event datasets, Sandia and Lawrence Livermore National Laboratories have developed a MatSeis interface for performing phase-matched filtering of Rayleigh arrivals. MatSeis is a Matlab-based seismic processing toolkit which provides graphical tools for analyzing seismic data from a network of stations. Tools are available for spectral and polarization measurements, as well as beam forming and f-k analysis with array data, to name just a few. Additionally, one has full access to the Matlab environment and any functions available there. Previously the authors reported the development of new MatSeis tools for calculating regional discrimination measurements. The first of these performs Lg coda analysis as developed by Mayeda and coworkers at Lawrence Livermore National Laboratory. A second tool measures regional phase amplitude ratios for an event and compares the results to ratios from known earthquakes and explosions. Release 1.5 of MatSeis includes the new interface for the analysis of surface wave arrivals. This effort involves the use of regionalized dispersion models from a repository of surface wave data and the construction of phase-matched filters to improve surface wave identification, detection, and magnitude calculation. The tool works as follows. First, a ray is traced from source to receiver through a user-defined grid containing different group velocity versus period values to determine the composite group velocity curve for the path. This curve is shown along with the upper and lower group velocity bounds for reference. Next, the curve is used to create a phase-matched filter, apply the filter, and show the resultant waveform. The application of the filter allows obscured Rayleigh arrivals to be more easily identified. Finally, after screening information outside the range of the phase-matched filter, an inverse version of the filter is applied to obtain a

  17. From plane waves to local Gaussians for the simulation of correlated periodic systems.

    PubMed

    Booth, George H; Tsatsoulis, Theodoros; Chan, Garnet Kin-Lic; Grüneis, Andreas

    2016-08-28

    We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of the basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller-Plesset perturbation theory. PMID:27586908

  18. Quasi-periodic wave solutions with asymptotic analysis to the Saweda-Kotera-Kadomtsev-Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Xu, Mei-Juan; Tian, Shou-Fu; Tu, Jian-Min; Ma, Pan-Li; Zhang, Tian-Tian

    2015-08-01

    In this paper, the (2+1)-dimensional Saweda-Kotera-Kadomtsev-Petviashvili (SK-KP) equation is investigated, which can be used to describe certain situations from the fluid mechanics, ocean dynamics and plasma physics. With the aid of generalized Bell's polynomials, the Hirota's bilinear equation and N-soliton solution are explicitly constructed to the SK-KP equation, respectively. Based on the Riemann theta function, a direct and lucid way is presented to explicitly construct quasi-periodic wave solutions for the SK-KP equation. The two-periodic waves admit two independent spatial periods in two independent horizontal directions, which are a direct generalization of one-periodic waves. Finally, the relationships between soliton solutions and periodic wave solutions are strictly established, which implies the asymptotic behaviors of the periodic waves under a limited procedure.

  19. Direct observation of negative-index microwave surface waves.

    PubMed

    Dockrey, J A; Horsley, S A R; Hooper, I R; Sambles, J R; Hibbins, A P

    2016-01-01

    Waves propagating in a negative-index material have wave-front propagation (wavevector, k) opposite in direction to that of energy flow (Poynting vector, S). Here we present an experimental realisation at microwave frequencies of an analogous surface wave phenomenon whereby a metasurface supports a surface mode that has two possible wavevector eigenstates within a narrow band of frequencies: one that supports surface waves with positive mode index, and another that supports surface waves with negative mode index. Phase sensitive measurements of the near-field of surface waves across the metasurface show the contrasting spatial evolution of the two eigenstates, providing a unique opportunity to directly observe the negative-index phenomenon. PMID:26903284

  20. Direct observation of negative-index microwave surface waves

    NASA Astrophysics Data System (ADS)

    Dockrey, J. A.; Horsley, S. A. R.; Hooper, I. R.; Sambles, J. R.; Hibbins, A. P.

    2016-02-01

    Waves propagating in a negative-index material have wave-front propagation (wavevector, k) opposite in direction to that of energy flow (Poynting vector, S). Here we present an experimental realisation at microwave frequencies of an analogous surface wave phenomenon whereby a metasurface supports a surface mode that has two possible wavevector eigenstates within a narrow band of frequencies: one that supports surface waves with positive mode index, and another that supports surface waves with negative mode index. Phase sensitive measurements of the near-field of surface waves across the metasurface show the contrasting spatial evolution of the two eigenstates, providing a unique opportunity to directly observe the negative-index phenomenon.

  1. Direct observation of negative-index microwave surface waves

    PubMed Central

    Dockrey, J. A.; Horsley, S. A. R.; Hooper, I. R.; Sambles, J. R.; Hibbins, A. P.

    2016-01-01

    Waves propagating in a negative-index material have wave-front propagation (wavevector, k) opposite in direction to that of energy flow (Poynting vector, S). Here we present an experimental realisation at microwave frequencies of an analogous surface wave phenomenon whereby a metasurface supports a surface mode that has two possible wavevector eigenstates within a narrow band of frequencies: one that supports surface waves with positive mode index, and another that supports surface waves with negative mode index. Phase sensitive measurements of the near-field of surface waves across the metasurface show the contrasting spatial evolution of the two eigenstates, providing a unique opportunity to directly observe the negative-index phenomenon. PMID:26903284

  2. Time-space Variability of Weekly to Monthly Period Equatorial Waves in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Durland, T.; Farrar, J. T.

    2015-12-01

    Data from satellite altimetry are used to characterize wavelike variability in the tropical Pacific Ocean at periods of days to two months. This period band is of interest because the space-time scales of oceanic equatorial waves at these frequencies have historically made adequate observation of the variability difficult. These waves have zonal scales that are very large (exceeding 3000 km) and meridional scales that are relatively short (~100 km), making in situ measurements difficult, and the short temporal scales pose challenges for observation with satellite altimeters because the wave periods are short compared to orbit repeat periods. As a result, there has been relatively little progress since the early 1980s in characterizing and understanding these equatorial inertia-gravity and mixed Rossby-gravity waves. In this analysis, we seek to exploit the long zonal length scales of these high-frequency equatorial waves in an analysis of satellite scatterometer and altimeter data to shed new light on the properties and dynamics of these waves. At periods of 2-14 days, there is clear evidence for the presence of several basin-scale equatorial wave modes, including mixed Rossby-gravity waves and inertia-gravity waves associated with baroclinic modes one and two. Here, we focus on equatorial Kelvin waves and mixed Rossby-gravity waves forced in the western Pacific, and examine their variability in time and space and their relation to wind.

  3. Reconstruction of arbitrary surface wave fields by refraction global method in a wave tank

    NASA Astrophysics Data System (ADS)

    Garcia, Heynert; Ludu, Andrei

    2015-11-01

    We use a new photographic procedure and design to construct reliable system for measurement and analysis of various surface water waves in a wave tank, including rogue and tsunami-like waves. The image of a grid placed at the bottom of the tank (3 feet maximum depth) is deformed by the surface waves and recorded on one or two cameras placed above the water. The measurement of the height and slope of the surface waves is determined by inverse refraction calculations plus the calibration information at four grouped points from capacitive level gauges. This research was supported by ERAU INTERNAL STUDENT RESEARCH AWARD.

  4. Nanoscale Periodic Modulations on Sodium Chloride Induced by Surface Charges

    SciTech Connect

    Clark, Kendal W; Qin, Shengyong; Zhang, Xiaoguang; Li, An-Ping

    2012-01-01

    The sodium chloride surface is one of the most common platforms for the study of catalysts, thin film growth, and atmospheric aerosols. Here we report a nanoscale periodic modulation pattern on the surface of a cleaved NaCl single crystal, revealed by non-contact atomic force microscopy with a tuning fork sensor. The surface pattern shows two orthogonal domains, extending over the entire cleavage surface. The spatial modulations exhibit a characteristic period of 5.4 nm, along 110 crystallographic directions of the NaCl. The modulations are robust in vacuum, not affected by the tip-induced electric field or gentle annealing (<300 C); however, they are eliminated after exposure to water and an atomically flat surface can be recovered by subsequent thermal annealing after water exposure. A strong electrostatic charging is revealed on the cleavage surface which may facilitate the formation of the observed metastable surface reconstruction.

  5. Role of surface electromagnetic waves in metamaterial absorbers.

    PubMed

    Chen, Wen-Chen; Cardin, Andrew; Koirala, Machhindra; Liu, Xianliang; Tyler, Talmage; West, Kevin G; Bingham, Christopher M; Starr, Tatiana; Starr, Anthony F; Jokerst, Nan M; Padilla, Willie J

    2016-03-21

    Metamaterial absorbers have been demonstrated across much of the electromagnetic spectrum and exhibit both broad and narrow-band absorption for normally incident radiation. Absorption diminishes for increasing angles of incidence and transverse electric polarization falls off much more rapidly than transverse magnetic. We unambiguously demonstrate that broad-angle TM behavior cannot be associated with periodicity, but rather is due to coupling with a surface electromagnetic mode that is both supported by, and well described via the effective optical constants of the metamaterial where we achieve a resonant wavelength that is 19.1 times larger than the unit cell. Experimental results are supported by simulations and we highlight the potential to modify the angular response of absorbers by tailoring the surface wave. PMID:27136864

  6. Anti-plane transverse waves propagation in nanoscale periodic layered piezoelectric structures.

    PubMed

    Chen, A-Li; Yan, Dong-Jia; Wang, Yue-Sheng; Zhang, Chuanzeng

    2016-02-01

    In this paper, anti-plane transverse wave propagation in nanoscale periodic layered piezoelectric structures is studied. The localization factor is introduced to characterize the wave propagation behavior. The transfer matrix method based on the nonlocal piezoelectricity continuum theory is used to calculate the localization factor. Additionally, the stiffness matrix method is applied to compute the wave transmission spectra. A cut-off frequency is found, beyond which the elastic waves cannot propagate through the periodic structure. The size effect or the influence of the ratio of the internal to external characteristic lengths on the cut-off frequency and the wave propagation behavior are investigated and discussed. PMID:26518526

  7. Transformation of second sound into surface waves in superfluid helium

    SciTech Connect

    Khalatnikov, I.M.; Kolmakov, G.V.; Pokrovsky, V.L.

    1995-05-01

    The Hamiltonian theory of superfluid liquid with a free boundary is developed. Nonlinear amplitudes of parametric Cherenkov radiation of a surface wave by second sound and the inner decay of second sound waves are found. Threshold amplitudes of second sound waves for these two processes are determined. 4 refs.

  8. Viscoelastic representation of surface waves in patchy saturated poroelastic media

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Xu, Yixian; Xia, Jianghai; Ping, Ping; Zhang, Shuangxi

    2014-08-01

    Wave-induced flow is observed as the dominated factor for P wave propagation at seismic frequencies. This mechanism has a mesoscopic scale nature. The inhomogeneous unsaturated patches are regarded larger than the pore size, but smaller than the wavelength. Surface wave, e.g., Rayleigh wave, which propagates along the free surface, generated by the interfering of body waves is also affected by the mesoscopic loss mechanisms. Recent studies have reported that the effect of the wave-induced flow in wave propagation shows a relaxation behavior. Viscoelastic equivalent relaxation function associated with the wave mode can describe the kinetic nature of the attenuation. In this paper, the equivalent viscoelastic relaxation functions are extended to take into account the free surface for the Rayleigh surface wave propagation in patchy saturated poroelastic media. Numerical results for the frequency-dependent velocity and attenuation and the time-dependent dynamical responses for the equivalent Rayleigh surface wave propagation along an interface between vacuum and patchy saturated porous media are reported in the low-frequency range (0.1-1,000 Hz). The results show that the dispersion and attenuation and kinetic characteristics of the mesoscopic loss effect for the surface wave can be effectively represented in the equivalent viscoelastic media. The simulation of surface wave propagation within mesoscopic patches requires solving Biot's differential equations in very small grid spaces, involving the conversion of the fast P wave energy diffusion into the Biot slow wave. This procedure requires a very large amount of computer consumption. An efficient equivalent approach for this patchy saturated poroelastic media shows a more convenient way to solve the single phase viscoelastic differential equations.

  9. A new algorithm for three-dimensional joint inversion of body wave and surface wave data and its application to the Southern California plate boundary region

    NASA Astrophysics Data System (ADS)

    Fang, Hongjian; Zhang, Haijiang; Yao, Huajian; Allam, Amir; Zigone, Dimitri; Ben-Zion, Yehuda; Thurber, Clifford; van der Hilst, Robert D.

    2016-05-01

    We introduce a new algorithm for joint inversion of body wave and surface wave data to get better 3-D P wave (Vp) and S wave (Vs) velocity models by taking advantage of the complementary strengths of each data set. Our joint inversion algorithm uses a one-step inversion of surface wave traveltime measurements at different periods for 3-D Vs and Vp models without constructing the intermediate phase or group velocity maps. This allows a more straightforward modeling of surface wave traveltime data with the body wave arrival times. We take into consideration the sensitivity of surface wave data with respect to Vp in addition to its large sensitivity to Vs, which means both models are constrained by two different data types. The method is applied to determine 3-D crustal Vp and Vs models using body wave and Rayleigh wave data in the Southern California plate boundary region, which has previously been studied with both double-difference tomography method using body wave arrival times and ambient noise tomography method with Rayleigh and Love wave group velocity dispersion measurements. Our approach creates self-consistent and unique models with no prominent gaps, with Rayleigh wave data resolving shallow and large-scale features and body wave data constraining relatively deeper structures where their ray coverage is good. The velocity model from the joint inversion is consistent with local geological structures and produces better fits to observed seismic waveforms than the current Southern California Earthquake Center (SCEC) model.

  10. Surface electromagnetic wave equations in a warm magnetized quantum plasma

    SciTech Connect

    Li, Chunhua; Yang, Weihong; Wu, Zhengwei; Chu, Paul K.

    2014-07-15

    Based on the single-fluid plasma model, a theoretical investigation of surface electromagnetic waves in a warm quantum magnetized inhomogeneous plasma is presented. The surface electromagnetic waves are assumed to propagate on the plane between a vacuum and a warm quantum magnetized plasma. The quantum magnetohydrodynamic model includes quantum diffraction effect (Bohm potential), and quantum statistical pressure is used to derive the new dispersion relation of surface electromagnetic waves. And the general dispersion relation is analyzed in some special cases of interest. It is shown that surface plasma oscillations can be propagated due to quantum effects, and the propagation velocity is enhanced. Furthermore, the external magnetic field has a significant effect on surface wave's dispersion equation. Our work should be of a useful tool for investigating the physical characteristic of surface waves and physical properties of the bounded quantum plasmas.