Science.gov

Sample records for periodontal ligament stress

  1. Histological Evaluation of Periodontal Ligament in Response to Orthodontic Mechanical Stress in Mice.

    PubMed

    Kaneko, Keiko; Matsuda, Saeka; Muraoka, Rina; Nakano, Keisuke; Iwasaki, Takami; Tomida, Mihoko; Tsujigiwa, Hidetsugu; Nagatsuka, Hitoshi; Kawakami, Toshiyuki

    2015-01-01

    The purpose of the study was to determine the cell dynamics in periodontal ligament in response to mechanical stress during orthodontic movement. Following Waldo's method, a square sheet of rubber dam was inserted in between the first and second maxillary molars in 10 ddY mice leaving the stress load for 3 hours. After 3 days and at 1 week, cell count on pressure and tension sides of the periodontal ligament was determined. Furthermore, the type of cell present after mechanical stress was identified using GFP bone marrow transplantation mouse model. Immunohistochemistry was carried out at 0 min (immediately after mechanical stress), 24 hours, 1 week, 2 weeks and 6 months. Temporal changes in the expression of GFP-positive bone marrow derived cells were examined. Moreover, double immunofluorescent staining was performed to determine the type of cell in the periodontal ligament. Cell count on the tension side tremendously increased 3 days after mechanical stress. At 1 week, spindle and round cell count increased compared to the control group. These changes were observed on both tension and pressure sides. Cell count on pressure side at 3 days (22.11+/-13.98) and at 1 week (33.23+/-11.39) was higher compared to the control group (15.26+/-8.29). On the tension side, there was a significantly increased at 3 days (35.46+/-11.85), but decreased at 1 week (29.23+/-13.89) although it is still higher compared to the control group (AD+/-SD: 10.37+/-8.69). Using GFP bone marrow transplantation mouse model, GFP positive cell count increased gradually over time in 6 months. GFP positive cells were also positive to CD31, CD68 and Runx2 suggesting that fibroblasts differentiated into osteoclasts and tissue macrophages. In conclusion, mechanical stress during orthodontic movement promoted the increase in the number of cells in the periodontal ligament on both tension and pressure sides. The increase in the number of cells in the periodontal ligament is believed to be due to the

  2. Intermittent Compressive Stress Enhanced Insulin-Like Growth Factor-1 Expression in Human Periodontal Ligament Cells

    PubMed Central

    Pumklin, Jittima; Manokawinchoke, Jeeranan; Bhalang, Kanokporn; Pavasant, Prasit

    2015-01-01

    Mechanical force was shown to promote IGF-1 expression in periodontal ligament both in vitro and in vivo. Though the mechanism of this effect has not yet been proved, here we investigated the molecular mechanism of intermittent mechanical stress on IGF-1 expression. In addition, the role of hypoxia on the intermittent compressive stress on IGF-1 expression was also examined. In this study, human periodontal ligament cells (HPDLs) were stimulated with intermittent mechanical stress for 24 hours. IGF-1 expression was examined by real-time polymerase chain reaction. Chemical inhibitors were used to determine molecular mechanisms of these effects. For hypoxic mimic condition, the CoCl2 supplementation was employed. The results showed that intermittent mechanical stress dramatically increased IGF-1 expression at 24 h. The pretreatment with TGF-β receptor I or TGF-β1 antibody could inhibit the intermittent mechanical stress-induced IGF-1 expression. Moreover, the upregulation of TGF-β1 proteins was detected in intermittent mechanical stress treated group. Correspondingly, the IGF-1 expression was upregulated upon being treated with recombinant human TGF-β1. Further, the hypoxic mimic condition attenuated the intermittent mechanical stress and rhTGF-β1-induced IGF-1 expression. In summary, this study suggests intermittent mechanical stress-induced IGF-1 expression in HPDLs through TGF-β1 and this phenomenon could be inhibited in hypoxic mimic condition. PMID:26106417

  3. Modeling stress-relaxation behavior of the periodontal ligament during the initial phase of orthodontic treatment.

    PubMed

    Romanyk, Dan L; Melenka, Garrett W; Carey, Jason P

    2013-09-01

    The periodontal ligament is the tissue that provides early tooth motion as a result of applied forces during orthodontic treatment: a force-displacement behavior characterized by an instantaneous displacement followed by a creep phase and a stress relaxation phase. Stress relaxation behavior is that which provides the long-term loading to and causes remodelling of the alveolar bone, which is responsible for the long-term permanent displacement of the tooth. In this study, the objective was to assess six viscoelastic models to predict stress relaxation behavior of rabbit periodontal ligament (PDL). Using rabbit stress relaxation data found in the literature, it was found that the modified superposition theory (MST) model best predicts the rabbit PDL behavior as compared to nonstrain-dependent and strain-dependent versions of the Burgers four-parameter and the five-parameter viscoelastic models, as well as predictions by Schapery's viscoelastic model. Furthermore, it is established that using a quadratic form for MST strain dependency provides more stable solutions than the cubic form seen in previous studies. PMID:23722595

  4. LPS from P. gingivalis and Hypoxia Increases Oxidative Stress in Periodontal Ligament Fibroblasts and Contributes to Periodontitis

    PubMed Central

    Gölz, L.; Memmert, S.; Rath-Deschner, B.; Jäger, A.; Appel, T.; Baumgarten, G.; Götz, W.; Frede, S.

    2014-01-01

    Oxidative stress is characterized by an accumulation of reactive oxygen species (ROS) and plays a key role in the progression of inflammatory diseases. We hypothesize that hypoxic and inflammatory events induce oxidative stress in the periodontal ligament (PDL) by activating NOX4. Human primary PDL fibroblasts were stimulated with lipopolysaccharide from Porphyromonas gingivalis (LPS-PG), a periodontal pathogen bacterium under normoxic and hypoxic conditions. By quantitative PCR, immunoblot, immunostaining, and a specific ROS assay we determined the amount of NOX4, ROS, and several redox systems. Healthy and inflamed periodontal tissues were collected to evaluate NOX4 and redox systems by immunohistochemistry. We found significantly increased NOX4 levels after hypoxic or inflammatory stimulation in PDL cells (P < 0.001) which was even more pronounced after combination of the stimuli. This was accompanied by a significant upregulation of ROS and catalase (P < 0.001). However, prolonged incubation with both stimuli induced a reduction of catalase indicating a collapse of the protective machinery favoring ROS increase and the progression of inflammatory oral diseases. Analysis of inflamed tissues confirmed our hypothesis. In conclusion, we demonstrated that the interplay of NOX4 and redox systems is crucial for ROS formation which plays a pivotal role during oral diseases. PMID:25374447

  5. Stress Induced in the Periodontal Ligament under Orthodontic Loading (Part I): A Finite Element Method Study Using Linear Analysis

    PubMed Central

    Hemanth, M; deoli, Shilpi; Raghuveer, H P; Rani, M S; Hegde, Chatura; Vedavathi, B

    2015-01-01

    Background: Orthodontic tooth movement is a complex procedure that occurs due to various biomechanical changes in the periodontium. Optimal orthodontic forces yield maximum tooth movement whereas if the forces fall beyond the optimal threshold it can cause deleterious effects. Among various types of tooth movements intrusion and lingual root torque are associated with causing root resoprtion, especially with the incisors. Therefore in this study, the stress patterns in the periodontal ligament (PDL) were evaluated with intrusion and lingual root torque using finite element method (FEM). Materials and Methods: A three-dimensional (3D) FEM model of the maxillary incisors was generated using SOLIDWORKS modeling software. Stresses in the PDL were evaluated with intrusive and lingual root torque movements by a 3D FEM using ANSYS software using linear stress analysis. Results: It was observed that with the application of intrusive load compressive stresses were distributed at the apex whereas tensile stress was seen at the cervical margin. With the application of lingual root torque maximum compressive stress was distributed at the apex and tensile stress was distributed throughout the PDL. Conclusion: For intrusive and lingual root torque movements stress values over the PDL was within the range of optimal stress value as proposed by Lee, with a given force system by Proffit as optimum forces for orthodontic tooth movement using linear properties. PMID:26464555

  6. Three-dimensional stress In vitro promotes the proliferation and differentiation of periodontal ligament stem cells implanted by bioactive glass.

    PubMed

    Wang, T; Li, G; Chen, J; Lin, Z; Qin, H; Ji, J

    2016-01-01

    To analyze the biological and mechanical microenvironment on the directional differentiation of periodontal ligament stem cells (PDLSCs) In vitro. PDLSCs were cultured in three-dimensional stress system In vitro for 1, 2 and 3 weeks. Methods like immunohistochemistry and flow cytometry were adopted and the proliferation and differentiation situation of PDLSCs were determined. Bioactive glass (BAG) of 0%, 10%, 20%, 30% and 40% was implanted into PDLSCs with or without three-dimensional stress for 3 weeks, respectively. The proliferation and differentiation situation of PDLSCs were determined. The mRNA levels of Alkaline phosphatase (ALP), Type I Collagen (COL I), Type II Collagen (COL II), Bone sialoprotein (BSP), Osteocalcin (OCN) and Osteopontin (OPN) were determined by semi-quantitative RT-PCR. 30% BAG and three-dimensional stress for 3 weeks promoted the proliferation and differentiation of PDLSCs mostly. PDLSCs induced by BAG and 3D force and the control all expressed the mRNA of ALP, COLⅠand COL Ⅱ. The BAG and three-dimensional stress induced PDLSCs also expressed the mRNA of BSP, OCN and OPN. BAG and three-dimensional stress indicated microenvironment In vitro can promote the proliferation and differentiation of PDLSCs. PMID:27609476

  7. Evaluating Stress Distribution Pattern in Periodontal Ligament of Maxillary Incisors during Intrusion Assessed by the Finite Element Method

    PubMed Central

    Salehi, Parisa; Gerami, Alayar; Najafi, Amirhosein; Torkan, Sepideh

    2015-01-01

    Statement of the Problem The use of miniscrews has expedited the true maxillary incisor intrusion and has minimized untoward side effects such as labial tipping. Purpose The aim of this study was to assess the stress distribution in the periodontal ligament of maxillary incisors when addressed to different models of intrusion mechanics using miniscrews by employing finite element methods. The degree of relative and absolute intrusion of maxillary incisors in different conditions was also evaluated. Materials and Method Finite element model of maxillary central incisor to first premolar was generated by assembling images obtained from a three-dimensional model of maxillary dentition. Four different conditions of intrusion mechanics were simulated with different placement sites of miniscrews as well as different points of force application. In each model, 25-g force was applied to maxillary incisors via miniscrews. Results In all four models, increased stress values were identified in the apical region of lateral incisor. Proclination of maxillary incisors was also reported in all the four models. The minimum absolute intrusion was observed when the miniscrew was placed between the lateral incisor and canine and the force was applied at right angles to the archwire, which is very common in clinical practice. Conclusion From the results yield by this study, it seems that the apical region of lateral incisor is the most susceptible region to root resorption during anterior intrusion. When the minimum flaring of maxillary incisors is required in clinical situations, it is suggested to place the miniscrew halfway between the roots of lateral incisor and canine with the force applied to the archwire between central and lateral incisor. In order to achieve maximum absolute intrusion, it is advised to place miniscrew between the roots of central and lateral incisors with the force applied at a right angle to the archwire between these two teeth. PMID:26636119

  8. Periodontal regeneration using periodontal ligament stem cell-transferred amnion.

    PubMed

    Iwasaki, Kengo; Komaki, Motohiro; Yokoyama, Naoki; Tanaka, Yuichi; Taki, Atsuko; Honda, Izumi; Kimura, Yasuyuki; Takeda, Masaki; Akazawa, Keiko; Oda, Shigeru; Izumi, Yuichi; Morita, Ikuo

    2014-02-01

    Periodontal disease is characterized by the destruction of tooth supporting tissues. Regeneration of periodontal tissues using ex vivo expanded cells has been introduced and studied, although appropriate methodology has not yet been established. We developed a novel cell transplant method for periodontal regeneration using periodontal ligament stem cell (PDLSC)-transferred amniotic membrane (PDLSC-amnion). The aim of this study was to investigate the regenerative potential of PDLSC-amnion in a rat periodontal defect model. Cultured PDLSCs were transferred onto amniotic membranes using a glass substrate treated with polyethylene glycol and photolithography. The properties of PDLSCs were investigated by flow cytometry and in vitro differentiation. PDLSC-amnion was transplanted into surgically created periodontal defects in rat maxillary molars. Periodontal regeneration was evaluated by microcomputed tomography (micro-CT) and histological analysis. PDLSCs showed mesenchymal stem cell-like characteristics such as cell surface marker expression (CD90, CD44, CD73, CD105, CD146, and STRO-1) and trilineage differentiation ability (i.e., into osteoblasts, adipocytes, and chondrocytes). PDLSC-amnion exhibited a single layer of PDLSCs on the amniotic membrane and stability of the sheet even with movement and deformation caused by surgical instruments. We observed that the PDLSC-amnion enhanced periodontal tissue regeneration as determined by micro-CT and histology by 4 weeks after transplantation. These data suggest that PDLSC-amnion has therapeutic potential as a novel cell-based regenerative periodontal therapy. PMID:24032400

  9. Fluid shear stress regulates metalloproteinase-1 and 2 in human periodontal ligament cells: involvement of extracellular signal-regulated kinase (ERK) and P38 signaling pathways.

    PubMed

    Zheng, Lisha; Huang, Yan; Song, Wei; Gong, Xianghui; Liu, Meili; Jia, Xiaolin; Zhou, Gang; Chen, Luoping; Li, Ang; Fan, Yubo

    2012-09-21

    Matrix metalloproteinase (MMP)-1, 2, with their endogenous inhibitors, tissue inhibitor of metalloproteinase (TIMP)-1, 2 are critical for extracellular matrix remodeling in human periodontal ligament (PDL) and their expression are sensitive to mechanical stresses. Shear stress as the main type of mechanical stress in tooth movement is involved in matrix turnover. However, how shear stress regulates MMPs and TIMPs system is still unclear. In this study, we investigated the effect of fluid shear stress on expression of MMP-1, 2 and TIMP-1, 2 in human PDL cells and the possible roles of mitogen-activated protein kinases in this process. Three levels of fluid shear stresses (6, 9 and 12 dyn/cm(2)) were loaded on PDL cells for 2, 4, 8 and 12h. The results indicated that fluid shear stress rearranged cytoskeleton in PDL cells. Fluid shear stress increased expression of MMP-1, 2, TIMP-1 and suppressed TIMP-2 expression. MAP kinases including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 were activated rapidly by fluid shear stress. The ERK inhibitor blocked fluid shear stress induced MMP-1 expression and P38 inhibitor reduced fluid shear stress stimulated MMP-2 expression. Our study suggested that fluid shear stress involved in PDL remodeling via regulating MMP-1, 2 and TIMP-1, 2 expression. ERK regulated fluid shear stress induced MMP-1 expression and P38 play a role in fluid shear stress induced MMP-2 upregulation. PMID:22863019

  10. Biological Events in Periodontal Ligament and Alveolar Bone Associated with Application of Orthodontic Forces

    PubMed Central

    Feller, L.; Khammissa, R. A. G.; Schechter, I.; Thomadakis, G.; Fourie, J.; Lemmer, J.

    2015-01-01

    Orthodontic force-induced stresses cause dynamic alterations within the extracellular matrix and within the cytoskeleton of cells in the periodontal ligament and alveolar bone, mediating bone remodelling, ultimately enabling orthodontic tooth movement. In the periodontal ligament and alveolar bone, the mechanically induced tensile strains upregulate the expression of osteogenic genes resulting in bone formation, while mechanically induced compressive strains mediate predominantly catabolic tissue changes and bone resorption. In this review article we summarize some of the currently known biological events occurring in the periodontal ligament and in the alveolar bone in response to application of orthodontic forces and how these facilitate tooth movement. PMID:26421314

  11. Human periodontal ligament cell sheets can regenerate periodontal ligament tissue in an athymic rat model.

    PubMed

    Hasegawa, Masateru; Yamato, Masayuki; Kikuchi, Akihiko; Okano, Teruo; Ishikawa, Isao

    2005-01-01

    Conventional periodontal regeneration methods remain insufficient to attain complete and reliable clinical regeneration of periodontal tissues. We have developed a new method of cell transplantation using cell sheet engineering and have applied it to this problem. The purpose of this study was to investigate the characteristics of human periodontal ligament (HPDL) cell sheets retrieved from culture on unique temperature-responsive culture dishes, and to examine whether these cell sheets can regenerate periodontal tissues. The HPDL cell sheets were examined histologically and biochemically, and also were transplanted into a mesial dehiscence model in athymic rats. HPDL cells were harvested from culture dishes as a contiguous cell sheet with abundant extracellular matrix and retained intact integrins that are susceptible to trypsin-EDTA treatment. In the animal study, periodontal ligament-like tissues that include an acellular cementum-like layer and fibrils anchoring into this layer were identified in all the athymic rats transplanted with HPDL cell sheets. This fibril anchoring highly resembles native periodontal ligament fibers; such regeneration was not observed in nontransplanted controls. These results suggest that this technique, based on the concept of cell sheet engineering, can be useful for periodontal tissue regeneration. PMID:15869425

  12. C/EBP β Mediates Endoplasmic Reticulum Stress Regulated Inflammatory Response and Extracellular Matrix Degradation in LPS-Stimulated Human Periodontal Ligament Cells

    PubMed Central

    Bai, Yudi; Wei, Yi; Wu, Lian; Wei, Jianhua; Wang, Xiaojing; Bai, Yuxiang

    2016-01-01

    Periodontitis is an oral inflammatory disease that not only affects the integrity of local tooth-supporting tissues but also impacts systemic health. A compositional shift in oral microbiota has been considered as the main cause of periodontitis; however, the potential mechanism has not been fully defined. Herein, we investigated the role of CCAAT/enhancer-binding protein β (C/EBP β), a member of the C/EBP family of transcription factors, in human periodontal ligament cells (hPDLCs) exposed to Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS). RT-PCR and Western blotting analysis showed that the expression of C/EBP β was significantly increased in hPDLCs stimulated with LPS stimuli. Overexpression of C/EBP β by the recombinant adenoviral vector pAd/C/EBP β markedly increased the expression of the pro-inflammatory cytokines IL-6 and IL-8, and matrix metalloproteinases (MMP)-8 and -9 in hPDLCs in response to LPS. Furthermore, the activation of endoplasmic reticulum (ER) stress was confirmed in LPS-stimulated hPDLCs by measuring the expression of the ER stress marker molecules protein kinase-like ER kinase (PERK), eIF2α, GRP78/Bip, and C/EBP homologous protein (CHOP). The ER stress inhibitor salubrinal repressed, but inducer tunicamycin enhanced, the production of IL-6, IL-8, MMP-8, and MMP-9 in hPDLCs. Additionally, ER stress inducer tunicamycin significantly increased the expression level of C/EBP β in hPDLCs. Blocking of C/EBP β by siRNA resulted in a significant decrease in the secretion of IL-6 and IL-8 and expression of MMP-8 and MMP-9 induced by tunicamycin treatment in hPDLCs. Taken together, ER stress appears to play a regulatory role in the inflammatory response and extracellular matrix (ECM) degradation in hPDLCs in response to LPS stimuli by activating C/EBP β expression. This enhances our understanding of human periodontitis pathology. PMID:27011164

  13. C/EBP β Mediates Endoplasmic Reticulum Stress Regulated Inflammatory Response and Extracellular Matrix Degradation in LPS-Stimulated Human Periodontal Ligament Cells.

    PubMed

    Bai, Yudi; Wei, Yi; Wu, Lian; Wei, Jianhua; Wang, Xiaojing; Bai, Yuxiang

    2016-01-01

    Periodontitis is an oral inflammatory disease that not only affects the integrity of local tooth-supporting tissues but also impacts systemic health. A compositional shift in oral microbiota has been considered as the main cause of periodontitis; however, the potential mechanism has not been fully defined. Herein, we investigated the role of CCAAT/enhancer-binding protein β (C/EBP β), a member of the C/EBP family of transcription factors, in human periodontal ligament cells (hPDLCs) exposed to Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS). RT-PCR and Western blotting analysis showed that the expression of C/EBP β was significantly increased in hPDLCs stimulated with LPS stimuli. Overexpression of C/EBP β by the recombinant adenoviral vector pAd/C/EBP β markedly increased the expression of the pro-inflammatory cytokines IL-6 and IL-8, and matrix metalloproteinases (MMP)-8 and -9 in hPDLCs in response to LPS. Furthermore, the activation of endoplasmic reticulum (ER) stress was confirmed in LPS-stimulated hPDLCs by measuring the expression of the ER stress marker molecules protein kinase-like ER kinase (PERK), eIF2α, GRP78/Bip, and C/EBP homologous protein (CHOP). The ER stress inhibitor salubrinal repressed, but inducer tunicamycin enhanced, the production of IL-6, IL-8, MMP-8, and MMP-9 in hPDLCs. Additionally, ER stress inducer tunicamycin significantly increased the expression level of C/EBP β in hPDLCs. Blocking of C/EBP β by siRNA resulted in a significant decrease in the secretion of IL-6 and IL-8 and expression of MMP-8 and MMP-9 induced by tunicamycin treatment in hPDLCs. Taken together, ER stress appears to play a regulatory role in the inflammatory response and extracellular matrix (ECM) degradation in hPDLCs in response to LPS stimuli by activating C/EBP β expression. This enhances our understanding of human periodontitis pathology. PMID:27011164

  14. Cyclic Tensile Stress During Physiological Occlusal Force Enhances Osteogenic Differentiation of Human Periodontal Ligament Cells via ERK1/2-Elk1 MAPK Pathway

    PubMed Central

    Li, Lu; Han, Minxuan; Li, Sheng

    2013-01-01

    Physiological occlusal force constitutively exists in the oral environment and is important for periodontal homeostasis and remodeling. Cyclic tensile stress (CTS) triggers the biological response of periodontal ligament (PDL). However, a few reports have studied the correlation between CTS during physiological occlusal force and PDL cell activities such as osteogenic differentiation. In the present study, human PDL cells (hPDLCs) were subjected to 10% elongation CTS loading at 0.5 Hz for 24 h, which represents the physiological conditions of occlusal force. Gene expression microarray was used to investigate the mechano-induced differential gene profile and pathway analysis in vitro. The osteogenic relative factors, that is, SPP1, RUNX2, and SP7, were assessed by real-time PCR and Western blot. The involvement of mitogen-activated protein kinase (MAPK) signaling pathways was investigated by Western blot with a specific inhibitor. The expressions of SPP1, RUNX2, SP7, p-ERK1/2, and p-Elk1 were up-regulated after 10% CTS exposure. However, these up-regulated expressions were prevented by ERK1/2 inhibitor U0126 in the physiological occlusal force-applied hPDLCs. These results showed that 10% CTS could enhance osteogenic differentiation of hPDLCs via ERK1/2-Elk1 MAPK pathway, indicating that CTS during physiological occlusal force is a potent agent for PDL remodeling. PMID:23781879

  15. Periodontal ligament stem cells: an update and perspectives.

    PubMed

    Chamila Prageeth Pandula, P K; Samaranayake, L P; Jin, L J; Zhang, Chengfei

    2014-05-01

    Chronic periodontitis is a serious infectious and inflammatory oral disease of humans worldwide. Conventional treatment modalities are effective for controlling periodontal disease. However, the regeneration of damaged periodontal tissues remains a major challenge in clinical practice due to the complex structure of the periodontium. Stem cell-based regenerative approaches combined with the usage of emerging biomaterials are entering a new era in periodontal regeneration. The present review updates the current knowledge of periodontal ligament stem cell-based approaches for periodontal regeneration, and elaborates on the potentials for clinical application. PMID:24610628

  16. Decellularized periodontal ligament cell sheets with recellularization potential.

    PubMed

    Farag, A; Vaquette, C; Theodoropoulos, C; Hamlet, S M; Hutmacher, D W; Ivanovski, S

    2014-12-01

    The periodontal ligament is the key tissue facilitating periodontal regeneration. This study aimed to fabricate decellularized human periodontal ligament cell sheets for subsequent periodontal tissue engineering applications. The decellularization protocol involved the transfer of intact human periodontal ligament cell sheets onto melt electrospun polycaprolactone membranes and subsequent bi-directional perfusion with NH4OH/Triton X-100 and DNase solutions. The protocol was shown to remove 92% of DNA content. The structural integrity of the decellularized cell sheets was confirmed by a collagen quantification assay, immunostaining of human collagen type I and fibronectin, and scanning electron microscopy. ELISA was used to demonstrate the presence of residual basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF) in the decellularized cell sheet constructs. The decellularized cell sheets were shown to have the ability to support recellularization by allogenic human periodontal ligament cells. This study describes the fabrication of decellularized periodontal ligament cell sheets that retain an intact extracellular matrix and resident growth factors and can support repopulation by allogenic cells. The decellularized hPDL cell sheet concept has the potential to be utilized in future "off-the-shelf" periodontal tissue engineering strategies. PMID:25270757

  17. A proposed index for residual periodontal ligament support.

    PubMed

    Abe, Yasuhiko; Taji, Tsuyoshi; Hiasa, Kyou; Tsuga, Kazuhiro; Akagawa, Yasumasa

    2010-01-01

    An index was developed to estimate the residual periodontal ligament support for individual teeth during treatment planning for partially edentulous patients. The Residual Periodontal Ligament Index (rPLI) was derived from a formula that calculates the remaining area of periodontal attachment and the Normal Periodontal Ligament Index (nPLI). To illustrate the applicability of the rPLI, the total nPLI scores of the remaining teeth corresponding to Eichner subclasses of partial edentulism were charted by assessing the average occlusal support numerically. The rPLI is proposed to be a possible suitable tool for epidemiologic research on the progression of tooth loss and the survival rate of prostheses. PMID:20859566

  18. Mechanoresponsive Properties of the Periodontal Ligament.

    PubMed

    Huang, L; Liu, B; Cha, J Y; Yuan, G; Kelly, M; Singh, G; Hyman, S; Brunski, J B; Li, J; Helms, J A

    2016-04-01

    The periodontal ligament (PDL) functions as an enthesis, a connective tissue attachment that dissipates strains created by mechanical loading. Entheses are mechanoresponsive structures that rapidly adapt to changes in their mechanical loading; here we asked which features of the PDL are sensitive to such in vivo loading. We evaluated the PDL in 4 physiologically relevant mechanical environments, focusing on mitotic activity, cell density, collagen content, osteogenic protein expression, and organization of the tissue. In addition to examining PDLs that supported teeth under masticatory loading and eruptive forces, 2 additional mechanical conditions were created and analyzed: hypoloading and experimental tooth movement. Collectively, these data revealed that the adult PDL is a remarkably quiescent tissue and that only when it is subjected to increased loads--such as those associated with mastication, eruption, and orthodontic tooth movement-does the tissue increase its rate of cell proliferation and collagen production. These data have relevance in clinical scenarios where PDL acclimatization can be exploited to optimize tooth movement. PMID:26767771

  19. Human periodontal ligament stem cells repair mental nerve injury

    PubMed Central

    Li, Bohan; Jung, Hun-Jong; Kim, Soung-Min; Kim, Myung-Jin; Jahng, Jeong Won; Lee, Jong-Ho

    2013-01-01

    Human periodontal ligament stem cells are easily accessible and can differentiate into Schwann cells. We hypothesized that human periodontal ligament stem cells can be used as an alternative source for the autologous Schwann cells in promoting the regeneration of injured peripheral nerve. To validate this hypothesis, human periodontal ligament stem cells (1 × 106) were injected into the crush-injured left mental nerve in rats. Simultaneously, autologous Schwann cells (1 × 106) and PBS were also injected as controls. Real-time reverse transcriptase polymerase chain reaction showed that at 5 days after injection, mRNA expression of low affinity nerve growth factor receptor was significantaly increased in the left trigeminal ganglion of rats with mental nerve injury. Sensory tests, histomorphometric evaluation and retrograde labeling demonstrated that at 2 and 4 weeks after injection, sensory function was significantly improved, the numbers of retrograde labeled sensory neurons and myelinated axons were significantly increased, and human periodontal ligament stem cells and autologous Schwann cells exhibited similar therapeutic effects. These findings suggest that transplantation of human periodontal ligament stem cells show a potential value in repair of mental nerve injury. PMID:25206604

  20. Periodontal Ligament Stem Cell-Mediated Treatment for Periodontitis in Miniature Swine

    PubMed Central

    Liu, Yi; Zheng, Ying; Ding, Gang; Fang, Dianji; Zhang, Chunmei; Bartold, Peter Mark; Gronthos, Stan; Shi, Songtao; Wang, Songlin

    2009-01-01

    Periodontitis is a periodontal tissue infectious disease and the most common cause for tooth loss in adults. It has been linked to many systemic disorders, such as coronary artery disease, stroke, and diabetes. At present, there is no ideal therapeutic approach to cure periodontitis and achieve optimal periodontal tissue regeneration. In this study, we explored the potential of using autologous periodontal ligament stem cells (PDLSCs) to treat periodontal defects in a porcine model of periodontitis. The periodontal lesion was generated in the first molars area of miniature pigs by the surgical removal of bone and subsequent silk ligament suture around the cervical portion of the tooth. Autologous PDLSCs were obtained from extracted teeth of the miniature pigs and then expanded ex vivo to enrich PDLSC numbers. When transplanted into the surgically created periodontal defect areas, PDLSCs were capable of regenerating periodontal tissues, leading to a favorable treatment for periodontitis. This study demonstrates the feasibility of using stem cell-mediated tissue engineering to treat periodontal diseases. PMID:18238856

  1. Biochemical markers of the periodontal ligament.

    PubMed

    Castro, Cecilia Estela; Koss, Myriam Adriana; López, María Elena

    2003-01-01

    For many years the diagnosis of Periodontal Disease has been based on clinical and radiographic methods. Other more recent methods have the objective of studying the inflammatory response of the host. That way, immunologic and biological methods determine the free mediators in the periodontal infection. The components of the gingivo-crevicular liquid or fluid are used to identify or to diagnose the active disease, to anticipate the risk of acquiring the disease and to determine its progress. For it to be clinically useful important changes should be registered the way a specific site turns active or that a previously disease affected site improves its conditions as a result of periodontal therapy. The response of the neutrophillic granulocytes play an important role in the detection of Periodontal Disease. The unspecific defense system in the gingivo-crevicular fluid can be determined through cytokines and/or interleukines that serve to identify sites at risk on the patient. In Periodontal Disease, the cytokines are not only defense mediators of the gingival sulcus fluid, but are also an indicator of tissue destruction. The liberation of high levels of lysosomal enzymes by neutrophils, proteolytic enzymes as the collagenases, or intercytoplasmatic enzymes as dehydrogenase lactate and aspartate amino transferase can equally help monitor the progress of the Periodontal Disease. PMID:14595256

  2. Influence of periodontal ligament simulation on bond strength and fracture resistance of roots restored with fiber posts

    PubMed Central

    MARCHIONATTI, Ana Maria Estivalete; WANDSCHER, Vinícius Felipe; BROCH, Juliana; BERGOLI, César Dalmolin; MAIER, Juliana; VALANDRO, Luiz Felipe; KAIZER, Osvaldo Bazzan

    2014-01-01

    Objective Considering that periodontal ligament simulation may influence the stress distribution over teeth restored with intraradicular retainers, this study aimed to assess the combined effect of mechanical cycling and periodontal ligament simulation on both the bond strength between fiber posts and root dentin and the fracture resistance of teeth restored using glass fiber posts. Material and Methods Ninety roots were randomly distributed into 3 groups (n=10) (C-MC: control; P-MC: polyether; AS-MC: addition silicone) to test bond strength and 6 groups (n=10) (C: control; P: polyether; AS: addition silicone, without mechanical cycling, and C-MC, P-MC and AS-MC with mechanical cycling) to test fracture strength, according to the material used to simulate the periodontal ligament. For the bond strength test, fiber posts were cemented, cores were built, mechanical cycling was applied (2×106 cycles, 88 N, 2.2 Hz, and 45º incline), and the teeth cut into 3 slices (2 mm), which were then subjected to the push-out test at 1 mm/min. For the fracture strength test, fiber posts were cemented, cores were built, and half of the groups received mechanical cycling, followed by the compressive strength (45° to the long axis and 1 mm/min) performed on all groups. Results Periodontal ligament simulation did not affect the bond strength (p=0.244) between post and dentin. Simulation of periodontal ligament (p=0.153) and application of mechanical cycling (p=0.97) did not affect fracture resistance. Conclusions The materials used to simulate the periodontal ligament did not affect fracture or bond strength, therefore periodontal ligament simulation using the tested materials could be considered optional in the conditions of the study. PMID:25466478

  3. Trial analysis of swine's periodontal ligament with Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Menegotto, G. F.; Grabarski, L.; Kalinowski, H. J.; Simões, J. A.

    2009-10-01

    In this work it is reported the measurement of the differential strain between the dental and bone tissues under effect of an applied load. Slices of swine mandible, containing the premolar tooth, are cut and measured in fresh condition. The strain is measured using fibre Bragg grating sensors glued to both tissues. In the measured range the results show a linear behaviour and confirm the importance of the periodontal ligament in the load transfer mechanism.

  4. Effect of vitamin C administration on hydrogen peroxide-induced cytotoxicity in periodontal ligament cells.

    PubMed

    Wu, Wenlei; Yang, Nanfei; Feng, Xiujing; Sun, Tingzhe; Shen, Pingping; Sun, Weibin

    2015-01-01

    Periodontitis is a disease, which is associated with chronic inflammation and leads to significant destruction of periodontal tissues. Periodontal ligament cells (PDLCs) constitute the largest cell population in PDL tissues and a considerable body of evidence has demonstrated an association between oxidative stress and the progression of periodontitis. However, the effects on PDLCs exposed to hydrogen peroxide (H2O2) and the molecular mechanisms by which H2O2 affects periodontitis remain to be elucidated. In the present study, the potential cytotoxic effect of H2O2 and the antioxidative function of vitamin C (Vc) in PDLCs were investigated. The results demonstrated that H2O2 treatment decreased the viability of PDLCs. The decreased PDLC viability was primarily induced by apoptosis, which was evidenced by cleaved caspases-3, caspases-9 and poly (ADP-ribose) polymerase. Following optimal Vc addition, the proapoptotic effects of H2O2 were partially antagonized. Taken together, the present study demonstrated that H2O2 primarily induced the apoptosis of PDLCs and that these adverse effects were partially rescued following treatment with Vc. These results revealed how H2O2 promotes the progression of periodontitis and provide an improved understanding of the reversal effect of antioxidant treatment. Therefore, optimal Vc administration may provide a potentially effective technique in periodontal therapy. PMID:25333298

  5. Dynamic Mechanical and Nanofibrous Topological Combinatory Cues Designed for Periodontal Ligament Engineering

    PubMed Central

    Kim, Joong-Hyun; Kang, Min Sil; Eltohamy, Mohamed; Kim, Tae-Hyun; Kim, Hae-Won

    2016-01-01

    Complete reconstruction of damaged periodontal pockets, particularly regeneration of periodontal ligament (PDL) has been a significant challenge in dentistry. Tissue engineering approach utilizing PDL stem cells and scaffolding matrices offers great opportunity to this, and applying physical and mechanical cues mimicking native tissue conditions are of special importance. Here we approach to regenerate periodontal tissues by engineering PDL cells supported on a nanofibrous scaffold under a mechanical-stressed condition. PDL stem cells isolated from rats were seeded on an electrospun polycaprolactone/gelatin directionally-oriented nanofiber membrane and dynamic mechanical stress was applied to the cell/nanofiber construct, providing nanotopological and mechanical combined cues. Cells recognized the nanofiber orientation, aligning in parallel, and the mechanical stress increased the cell alignment. Importantly, the cells cultured on the oriented nanofiber combined with the mechanical stress produced significantly stimulated PDL specific markers, including periostin and tenascin with simultaneous down-regulation of osteogenesis, demonstrating the roles of topological and mechanical cues in altering phenotypic change in PDL cells. Tissue compatibility of the tissue-engineered constructs was confirmed in rat subcutaneous sites. Furthermore, in vivo regeneration of PDL and alveolar bone tissues was examined under the rat premaxillary periodontal defect models. The cell/nanofiber constructs engineered under mechanical stress showed sound integration into tissue defects and the regenerated bone volume and area were significantly improved. This study provides an effective tissue engineering approach for periodontal regeneration—culturing PDL stem cells with combinatory cues of oriented nanotopology and dynamic mechanical stretch. PMID:26989897

  6. Characterization of stem cells from alveolar periodontal ligament.

    PubMed

    Wang, Lei; Shen, Huan; Zheng, Wei; Tang, Liang; Yang, Zhenhua; Gao, Yuan; Yang, Qingtian; Wang, Chen; Duan, Yinzhong; Jin, Yan

    2011-04-01

    Complete and predicable regeneration of complex periodontal structures, which include cementum, periodontal ligament (PDL), and alveolar bone, has been a great challenge for periodontal researchers. It is generally believed that human PDL from the root surface contains stem cells (r-PDLSCs), which can enhance cementum/PDL-like tissues regeneration in vivo. In this work, PDL was found to possess asymmetrically distributed stem cells observed by long-term bromodeoxyuridine (BrdU) labeling. Putative stem cells from human PDL on the alveolar bone surface (a-PDLSCs) were then isolated and characterized. It was shown that a-PDLSCs exhibited strong proliferation capability and expressed high percentages of mesenchymal stem cell markers. Comparatively, a-PDLSCs had higher multilineage differentiation potential than r-PDLSCs with regard to both osteogenic and adipogenic differentiation. Alkaline phosphatase activity and the expression of mineralization-related markers of a-PDLSCs were also higher than those of r-PDLSCs. In vivo, a-PDLSCs could regenerate bone/PDL-like structures and repair critical-size defects created in calvarial bone of NOD/SCID mice. Autologous PDLSC-mediated periodontal regeneration showed that a-PDLSCs could accomplish reconstruction of alveolar bone more perfectly than r-PDLSCs. Our data suggest that PDLSCs may have quite different characteristics depending on locations. a-PDLSCs may take a synergistic effect with r-PDLSCs in periodontal regeneration. PMID:21186958

  7. Evaluation of the Stress Induced in Tooth, Periodontal Ligament & Alveolar Bone with Varying Degrees of Bone Loss During Various Types of Orthodontic Tooth Movements

    PubMed Central

    Mahajan, Shalu; Verma, Santosh; Bhardwaj, Preeti; Sharma, Geeta

    2016-01-01

    Introduction The force applied on to a tooth with periodontal bone loss may generate different magnitude and pattern of stresses in the periodontium when compared to a tooth with no bone loss & under the same force system. The intensity of the forces and moment to force ratios needed to be applied during an Orthodontic treatment must be adapted to obtain the same movement as in a tooth with a healthy periodontal support. Aim Evaluation and assessment of the stress distribution during various types of Orthodontic tooth movement on application of Orthodontic force, at various levels of alveolar bone loss; & determination of the most ideal force system producing the Optimum Stress (i.e., stress within optimum range), uniformly (conducive to bodily movement of maxillary canine with varying degrees of bone loss). Materials and Methods A human maxillary canine tooth of right side was simulated by means of Finite Element Method (FEM). Five different models were constructed with bone loss ranging from 0mm in model 1, to 8mm in model 5 (progressing at 2mm per model). Ten different loading conditions were applied on these models and the stress generated was charted at various occluso-gingival levels and surfaces around the tooth. The evaluation and assessment of the stress distribution during various types of Orthodontic tooth movement on application of Orthodontic force, at various levels of alveolar bone loss was done. Results The results showed that there was a high positive correlation between the increase in bone loss & the stress generated, suggesting an elevation in the stress with advancing bone loss. Additionally, the type of tooth movement was found to be changed with bone loss. During the determination of ideal force system it was found that the centre of resistance of the canine migrated apically with bone loss and an increase in the moment to force ratio (Mc:F) was required to control the root position in these cases. Conclusion A high positive correlation

  8. Tenomodulin expression in the periodontal ligament enhances cellular adhesion.

    PubMed

    Komiyama, Yuske; Ohba, Shinsuke; Shimohata, Nobuyuki; Nakajima, Keiji; Hojo, Hironori; Yano, Fumiko; Takato, Tsuyoshi; Docheva, Denitsa; Shukunami, Chisa; Hiraki, Yuji; Chung, Ung-Il

    2013-01-01

    Tenomodulin (Tnmd) is a type II transmembrane protein characteristically expressed in dense connective tissues such as tendons and ligaments. Its expression in the periodontal ligament (PDL) has also been demonstrated, though the timing and function remain unclear. We investigated the expression of Tnmd during murine tooth eruption and explored its biological functions in vitro. Tnmd expression was related to the time of eruption when occlusal force was transferred to the teeth and surrounding tissues. Tnmd overexpression enhanced cell adhesion in NIH3T3 and human PDL cells. In addition, Tnmd-knockout fibroblasts showed decreased cell adhesion. In the extracellular portions of Tnmd, the BRICHOS domain or CS region was found to be responsible for Tnmd-mediated enhancement of cell adhesion. These results suggest that Tnmd acts on the maturation or maintenance of the PDL by positively regulating cell adhesion via its BRICHOS domain. PMID:23593173

  9. Tenomodulin Expression in the Periodontal Ligament Enhances Cellular Adhesion

    PubMed Central

    Komiyama, Yuske; Ohba, Shinsuke; Shimohata, Nobuyuki; Nakajima, Keiji; Hojo, Hironori; Yano, Fumiko; Takato, Tsuyoshi; Docheva, Denitsa; Shukunami, Chisa; Hiraki, Yuji; Chung, Ung-il

    2013-01-01

    Tenomodulin (Tnmd) is a type II transmembrane protein characteristically expressed in dense connective tissues such as tendons and ligaments. Its expression in the periodontal ligament (PDL) has also been demonstrated, though the timing and function remain unclear. We investigated the expression of Tnmd during murine tooth eruption and explored its biological functions in vitro. Tnmd expression was related to the time of eruption when occlusal force was transferred to the teeth and surrounding tissues. Tnmd overexpression enhanced cell adhesion in NIH3T3 and human PDL cells. In addition, Tnmd-knockout fibroblasts showed decreased cell adhesion. In the extracellular portions of Tnmd, the BRICHOS domain or CS region was found to be responsible for Tnmd-mediated enhancement of cell adhesion. These results suggest that Tnmd acts on the maturation or maintenance of the PDL by positively regulating cell adhesion via its BRICHOS domain. PMID:23593173

  10. A nonlinear poroelastic model for the periodontal ligament

    NASA Astrophysics Data System (ADS)

    Favino, Marco; Bourauel, Christoph; Krause, Rolf

    2016-05-01

    A coupled elastic-poroelastic model for the simulation of the PDL and the adjacent tooth is presented. A poroelastic constitutive material model for the periodontal ligament (PDL) is derived. The solid phase is modeled by means of a Fung material law, accounting for large displacements and strains. Numerical solutions are performed by means of a multigrid Newton method to solve the arising large nonlinear system. Finally, by means of numerical experiments, the biomechanical response of the PDL is studied. In particular, the effect of the hydraulic conductivity and of the mechanical parameters of a Fung potential is investigated in two realistic applications.

  11. Shikonin Inhibits Inflammatory Cytokine Production in Human Periodontal Ligament Cells.

    PubMed

    Shindo, Satoru; Hosokawa, Yoshitaka; Hosokawa, Ikuko; Ozaki, Kazumi; Matsuo, Takashi

    2016-06-01

    Shikonin, which is derived from Lithospermum erythrorhizon, a herb used in traditional medicine, has long been considered to be a useful treatment for various diseases in traditional oriental medicine. Shikonin has recently been reported to have several pharmacological properties, e.g., it has anti-microbial, anti-tumor, and anti-inflammatory effects. The aim of this study was to examine whether shikonin is able to influence the production of interleukin (IL)-6, IL-8, and/or chemokine C-C motif ligand (CCL)20, which contribute to the pathogenesis of periodontal disease, in human periodontal ligament cells (HPDLC). The production levels of IL-6, IL-8, and CCL20 in HPDLC were determined using an ELISA. Western blot analysis was used to detect nuclear factor kappa B (NF-κB) pathway activation in HPDLC. Shikonin prevented IL-1β- or tumor necrosis factor (TNF)-α-mediated IL-6, IL-8, and CCL20 production in HPDLC. Moreover, we found that shikonin suppressed the phosphorylation and degradation of inhibitor of kappa B-alpha (IκB-α) in IL-1β- or TNF-α-stimulated HPDLC. These findings suggest that shikonin could have direct beneficial effects against periodontal disease by reducing IL-6, IL-8, and CCL20 production in periodontal lesions. PMID:27072015

  12. Influence of nanotopography on periodontal ligament stem cell functions and cell sheet based periodontal regeneration

    PubMed Central

    Gao, Hui; Li, Bei; Zhao, Lingzhou; Jin, Yan

    2015-01-01

    Periodontal regeneration is an important part of regenerative medicine, with great clinical significance; however, the effects of nanotopography on the functions of periodontal ligament (PDL) stem cells (PDLSCs) and on PDLSC sheet based periodontal regeneration have never been explored. Titania nanotubes (NTs) layered on titanium (Ti) provide a good platform to study this. In the current study, the influence of NTs of different tube size on the functions of PDLSCs was observed. Afterward, an ectopic implantation model using a Ti/cell sheets/hydroxyapatite (HA) complex was applied to study the effect of the NTs on cell sheet based periodontal regeneration. The NTs were able to enhance the initial PDLSC adhesion and spread, as well as collagen secretion. With the Ti/cell sheets/HA complex model, it was demonstrated that the PDLSC sheets were capable of regenerating the PDL tissue, when combined with bone marrow mesenchymal stem cell (BMSC) sheets and HA, without the need for extra soluble chemical cues. Simultaneously, the NTs improved the periodontal regeneration result of the ectopically implanted Ti/cell sheets/HA complex, giving rise to functionally aligned collagen fiber bundles. Specifically, much denser collagen fibers, with abundant blood vessels as well as cementum-like tissue on the Ti surface, which well-resembled the structure of natural PDL, were observed in the NT5 and NT10 sample groups. Our study provides the first evidence that the nanotopographical cues obviously influence the functions of PDLSCs and improve the PDLSC sheet based periodontal regeneration size dependently, which provides new insight to the periodontal regeneration. The Ti/cell sheets/HA complex may constitute a good model to predict the effect of biomaterials on periodontal regeneration. PMID:26150714

  13. Proliferative activity in the juxtaradicular human periodontal ligament.

    PubMed

    Sayaniwas, M; Hilliges, M; Lindskog, S

    1999-08-01

    The aim of the present study was to evaluate cell proliferation, assessed by MIB 1, with respect to the type and the distribution of proliferating cells in the healthy juxtaradicular periodontal ligament (PDL) from completely formed human teeth. Immunohistochemical markers against vimentin, CD68 and S-100 were used to characterize cell type. The applicability of the immunohistochemical method on explants of human PDL was also evaluated. The results indicated that under physiological conditions, the majority of the proliferating cells in the PDL were mesenchymal cells predominantly located paravascularly in the middle third of the PDL. Furthermore, MIB 1 reacting with the Ki-67 antigen together with the avidin-biotin-complex technique was proved to be an efficient marker of cell proliferation in explants of human PDL. PMID:10815567

  14. Cytological Kinetics of Periodontal Ligament in an Experimental Occlusal Trauma Model

    PubMed Central

    Takaya, Tatsuo; Mimura, Hiroaki; Matsuda, Saeka; Nakano, Keisuke; Tsujigiwa, Hidetsugu; Tomida, Mihoko; Okafuji, Norimasa; Fujii, Takeo; Kawakami, Toshiyuki

    2015-01-01

    Using a model of experimental occlusal trauma in mice, we investigated cytological kinetics of periodontal ligament by means of histopathological, immunohistochemical, and photographical analysis methods. Periodontal ligament cells at furcation areas of molar teeth in the experimental group on day 4 showed a proliferation tendency of periodontal ligament cells. The cells with a round-shaped nucleus deeply stained the hematoxylin and increased within the day 4 specimens. Ki67 positive nuclei showed a prominent increase in the group on days 4 and 7. Green Fluorescent Protein (GFP) positivity also revealed cell movement but was slightly slow compared to Ki67. It indicated that restoration of mechanism seemed conspicuous by osteoclasts and macrophages from bone-marrow-derived cells for the periodontal ligament at the furcation area. It was suggested that the remodeling of periodontal ligament with cell acceleration was evoked from the experiment for the group on day 4 and after day 7. Periodontal ligament at the furcation area of the molar teeth in this experimental model recovered using the cells in situ and the bone-marrow-derived cells. PMID:26180510

  15. Role of nitro-oxidative stress in the pathogenesis of experimental rat periodontitis

    PubMed Central

    BOŞCA, ADINA BIANCA; MICLĂUŞ, VIOREL; ILEA, ARANKA; CÂMPIAN, RADU SEPTIMIU; RUS, VASILE; RUXANDA, FLAVIA; RAŢIU, CRISTIAN; UIFĂLEAN, ANA; PÂRVU, ALINA ELENA

    2016-01-01

    Background and aims Periodontitis is a common chronic adult condition that implicates oxidative damage to gingival tissue, periodontal ligament and alveolar bone. This study aimed at assessing the association between the nitro-oxidative stress and the periodontal tissues destructions in experimental rat periodontitis. Methods Periodontitis was induced in 15 male albino rats by repetitive lesions to the gingiva adjacent to the inferior incisors, performed daily, for 16 days. On D1, D3, D6, D8, and D16 the onset and evolution of periodontitis were monitored by clinical and histopathological examinations; blood was collected and serum nitro-oxidative stress was evaluated through total nitrites and nitrates, total oxidative status, total antioxidant capacity, and oxidative stress index. Results The results demonstrated that there was a graded and continuous increase in serum levels of total nitrites and nitrates, total oxidative status and oxidative stress index, which was consistent with the severity of periodontal destructions during periodontitis progression. However, total antioxidant capacity was not significantly influenced by the disease progression. Conclusions In experimental rat periodontitis, the systemic nitro-oxidative stress was associated with the severity of periodontal destructions assessed clinically and histopathologically. Therefore, systemic nitro-oxidative stress parameters might be used as diagnostic tools in periodontitis. PMID:27004039

  16. [Survival rate of periodontal ligament cells after extraoral storage in different media].

    PubMed

    Pongsiri, S; Schlegel, D; Zimmermann, M

    1990-01-01

    In this study 380 freshly extracted anterior teeth and premolars were stored for periods of 30 to 360 min in different types of media subsequently the residual vitality of periodontal ligament cells was assessed by means of the fluorescein diacetate reaction. It was found that after 90 min of dry storage 88% of the periodontal cells were devitalized, whereas after 180 min of storage in saliva or normal saline solution the loss of vitality was 40% or, respectively, 37%. Stored in Alpha MEM or UHT milk for 360 min 48% or, respectively, 49% of the periodontal ligament cells showed vital reaction. PMID:2135241

  17. Morinda citrifolia leaves enhance osteogenic differentiation and mineralization of human periodontal ligament cells.

    PubMed

    Boonanantanasarn, Kanitsak; Janebodin, Kajohnkiart; Suppakpatana, Prapan; Arayapisit, Tawepong; Rodsutthi, Jit-aree; Chunhabundit, Panjit; Boonanuntanasarn, Surintorn; Sripairojthikoon, Wanida

    2014-01-01

    This present study investigated the potential of Morinda citrifolia leaf aqueous extract to induce osteogenic differentiation and matrix mineralization of human periodontal ligament (hPDL) cells. Human periodontal ligament cells were cultured in complete medium, ascorbic acid with β-glycerophosphate, or Morinda citrifolia leaf aqueous extract. Morinda citrifolia leaf aqueous extract significantly increased alkaline phosphatase activity compared to culturing in complete medium or ascorbic acid with β-glycerophosphate. Matrixcontaining mineralized nodules were formed only when the cells were cultured in the presence of Morinda citrifolia leaf aqueous extract. These nodules showed positive alizarin red S staining and were rich in calcium and phosphorus according to energy dispersive X-ray analysis. In conclusion, Morinda citrifolia leaf extract promoted osteogenic differentiation and matrix mineralization in human periodontal ligament cells, a clear indication of the therapeutic potential of Morinda citrifolia leaves in bone and periodontal tissue regeneration. PMID:24682022

  18. Effect of storage media on the proliferation of periodontal ligament fibroblasts

    SciTech Connect

    Lauer, H.C.; Mueller, J.G.; Gross, J.; Horster, M.F.

    1987-07-01

    The effect of storage media, which are routinely used in replantation, upon the proliferative capacity of periodontal ligament fibroblasts, was compared with the effect of a tissue culture medium. The periodontal tissue was obtained from mandibular central incisors of White New Zealand rabbits. The experiments were performed in fibroblasts derived during second subculture. The storage media were physiologic salt solution, Ringer's solution and Rivanol; the tissue culture medium was alpha-minimum essential medium without nucleosides. The incubation period was 1 hour. (/sup 3/H)-thymidine incorporation and cell counts were taken to indicate changes in the proliferative capacity of the fibroblasts. The tissue culture experiments showed that the proliferative ability of the periodontal ligament fibroblasts was dependent upon the composition of the storage medium. Physiologic salt solution, Ringer's solution and Rivanol were unable to maintain the metabolism of the fibroblasts. alpha-MEM medium, however, was capable of stimulating proliferation of the periodontal ligament fibroblasts.

  19. Regulation of Periodontal Ligament Cell Functions by Interleukin-1β

    PubMed Central

    Agarwal, Sudha; Chandra, Charu S.; Piesco, Nicholas P.; Langkamp, Herman H.; Bowen, Lathe; Baran, Coskun

    1998-01-01

    Periodontal ligament (PDL) cells maintain the attachment of the tooth to alveolar bone. These cells reside at a site in which they are challenged frequently by bacterial products and proinflammatory cytokines, such as interleukin-1β (IL-1β), during infections. In our initial studies we observed that IL-1β down-regulates the osteoblast-like characteristics of PDL cells in vitro. Therefore, we examined the functional significance of the loss of the PDL cell’s osteoblast-like characteristics during inflammation. In this report we show that, during inflammation, IL-1β can modulate the phenotypic characteristics of PDL cells to a more functionally significant lipopolysaccharide (LPS)-responsive phenotype. In a healthy periodontium PDL cells exhibit an osteoblast-like phenotype and are unresponsive to gram-negative bacterial LPS. Treatment of PDL cells with IL-1β inhibits the expression of their osteoblast-like characteristics, as assessed by the failure to express transforming growth factor β1 (TGF-β1) and proteins associated with mineralization, such as alkaline phosphatase and osteocalcin. As a consequence of this IL-1β-induced phenotypic change, PDL cells become responsive to LPS and synthesize proinflammatory cytokines. The IL-1β-induced phenotypic changes in PDL cells were transient, as removal of IL-1β from PDL cell cultures resulted in reacquisition of their osteoblast-like characteristics and lack of LPS responsiveness. The IL-1β-induced phenotypic changes occurred at concentrations that are frequently observed in tissue exudates during periodontal inflammation (0.05 to 5 ng/ml). The results suggest that, during inflammation in vivo, IL-1β may modulate PDL cell functions, allowing PDL cells to participate directly in the disease process by assuming LPS responsiveness at the expense of their normal structural properties and functions. PMID:9488378

  20. Transcriptome Reveals Cathepsin K in Periodontal Ligament Differentiation.

    PubMed

    Yamada, S; Ozaki, N; Tsushima, K; Yamaba, S; Fujihara, C; Awata, T; Sakashita, H; Kajikawa, T; Kitagaki, J; Yamashita, M; Yanagita, M; Murakami, S

    2016-08-01

    Periodontal ligaments (PDLs) play an important role in remodeling the alveolar bond and cementum. Characterization of the periodontal tissue transcriptome remains incomplete, and an improved understanding of PDL features could aid in developing new regenerative therapies. Here, we aimed to generate and analyze a large human PDL transcriptome. We obtained PDLs from orthodontic treatment patients, isolated the RNA, and used a vector-capping method to make a complementary DNA library from >20,000 clones. Our results revealed that 58% of the sequences were full length. Furthermore, our analysis showed that genes expressed at the highest frequencies included those for collagen type I, collagen type III, and proteases. We also found 5 genes whose expressions have not been previously reported in human PDL. To access which of the highly expressed genes might be important for PDL cell differentiation, we used real-time polymerase chain reaction to measure their expression in differentiating cells. Among the genes tested, the cysteine protease cathepsin K had the highest upregulation, so we measured its relative expression in several tissues, as well as in osteoclasts, which are known to express high levels of cathepsin K. Our results revealed that PDL cells express cathepsin K at similar levels as osteoclasts, which are both expressed at higher levels than those of the other tissues tested. We also measured cathepsin K protein expression and enzyme activity during cell differentiation and found that both increased during this process. Immunocytochemistry experiments revealed that cathepsin K localizes to the interior of lysosomes. Last, we examined the effect of inhibiting cathepsin K during cell differentiation and found that cathepsin K inhibition stimulated calcified nodule formation and increased the levels of collagen type I and osteocalcin gene expression. Based on these results, cathepsin K seems to regulate collagen fiber accumulation during human PDL cell

  1. Mechano-regulation of Collagen Biosynthesis in Periodontal Ligament

    PubMed Central

    Kaku, Masaru; Yamauchi, Mitsuo

    2014-01-01

    Purpose Periodontal ligament (PDL) plays critical roles in the development and maintenance of periodontium such as tooth eruption and dissipation of masticatory force. The mechanical properties of PDL are mainly derived from fibrillar type I collagen, the most abundant extracellular component. Study selection The biosynthesis of type I collagen is a long, complex process including a number of intra- and extracellular post-translational modifications. The final modification step is the formation of covalent intra- and intermolecular cross-links that provide collagen fibrils with stability and connectivity. Results It is now clear that collagen post-translational modifications are regulated by groups of specific enzymes and associated molecules in a tissue-specific manner; and these modifications appear to change in response to mechanical force. Conclusions This review focuses on the effect of mechanical loading on collagen biosynthesis and fibrillogenesis in PDL with emphasis on the post-translational modifications of collagens, which is an important molecular aspect to understand in the field of prosthetic dentistry. PMID:25311991

  2. Effect of storage media on human periodontal ligament cell apoptosis.

    PubMed

    Chamorro, Mónica M; Regan, John D; Opperman, Lynne A; Kramer, Phillip R

    2008-02-01

    The ability of storage media to preserve periodontal ligament (PDL) cell vitality has been previously evaluated. However, the mechanisms by which different storage conditions alter the functional status of PDL cells have not been determined. The purpose of the present study was to investigate, in vitro, the level of programed cell death or apoptosis in a population of PDL cells following storage under different conditions. Primary human PDL cells were plated into 24-well-culture plates and allowed to attach for 24 h. Cells were then exposed for 1 h to milk, Hank's balanced salt solution (HBSS), Soft Wear contact lens solution or Gatorade at room temperature or on ice. Culture medium was used as a negative control. Apoptosis was evaluated at 24, 48, and 72 h after treatment on quadruplicate samples by using the ST 160 ApopTag Fluorescein Direct In Situ Detection Kit. The total number of cells and the total number of apoptotic cells were counted. The results indicated that at 24 and 72 h, PDL treated with Gatorade and the contact lens solution displayed the highest percentages of apoptotic cells when compared with the other treatment groups at room temperature. Overall, cells treated on ice showed significantly lower levels of apoptosis when compared with treatments at room temperature. In conclusion, the results indicated that apoptosis plays a major role in cell death in cells treated with Gatorade and contact lens solutions in comparison to other storage solutions and that storage on ice can inhibit programed cell death. PMID:18173658

  3. [Autotransplants instead of implants? The secret of the periodontal ligament].

    PubMed

    Barendregt, D S; Leunisse, M

    2015-11-01

    Autotransplants are often applied in the Scandinavian countries. The indication for treatment concerns especially young patients for whom teeth with open apices are moved to areas with ageneses. The great advantage is the vital periodontal ligament, by means of which these teeth are able to grow along. In Rotterdam, during the past 11 years, transplants of teeth with fully developed apices have been carried out in cases with comparable indications. Over short and long periods of time, the results have been the same as those in the published findings in the literature. The fully developed apices appear to be just as successful as the open apices. The difference with the results in the research literature concerns the indications for transplantation in particular. These are not limited to the molar region. Within the same indication, the results are better by comparison with the implants, in both the transplants with open and with closed apices. On the basis of these results, autotransplants in dentistry have become an indication for every age group and when possible, a better treatment option than implants. PMID:26569000

  4. Dental trauma involving root fracture and periodontal ligament injury: a 10-year retrospective study.

    PubMed

    Panzarini, Sônia Regina; Pedrini, Denise; Poi, Wilson Roberto; Sonoda, Celso Koogi; Brandini, Daniela Atili; Monteiro de Castro, José Carlos

    2008-01-01

    The purpose of this retrospective study was to analyze the cases of traumatic dental injuries involving root fracture and/or periodontal ligament injury (except avulsion) treated at the Discipline of Integrated Clinic, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Brazil, from January 1992 to December 2002. Clinical and radiographic records from 161 patients with 287 traumatized teeth that had sustained root fracture and/or injuries to the periodontal ligament were examined. The results of this survey revealed that subluxation (25.09%) was the most common type of periodontal ligament injury, followed by extrusive luxation (19.86%). There was a predominance of young male patients and most of them did not present systemic alterations. Among the etiologic factors, the most frequent causes were falls and bicycle accidents. Injuries on extraoral soft tissues were mostly laceration and abrasion, while gingival and lip mucosa lacerations prevailed on intraoral soft tissues injuries. Radiographically, the most common finding was an increase of the periodontal ligament space. The most commonly performed treatment was root canal therapy. Within the limits of this study, it can be concluded that traumatic dental injuries occur more frequently in young male individuals, due to falls and bicycle accidents. Subluxation was the most common type of periodontal ligament injury. Root canal therapy was the type of treatment most commonly planned and performed. PMID:18949308

  5. Effects of fluoride on proliferation and mineralization in periodontal ligament cells in vitro.

    PubMed

    Li, K Q; Jia, S S; Ma, M; Shen, H Z; Xu, L; Liu, G P; Huang, S Y; Zhang, D S

    2016-07-11

    Fluoride, which is often added to toothpaste or mouthwash in order to protect teeth from decay, may be a novel therapeutic approach for acceleration of periodontal regeneration. Therefore, we investigated the effects of fluoride on proliferation and mineralization in human periodontal ligament cells in vitro. The periodontal ligament cells were stimulated with various concentrations of NaF added into osteogenic inductive medium. Immunohistochemistry of cell identification, cell proliferation, alkaline phosphatase (ALP) activity assay, Alizarin red S staining and quantitative real-time-polymerase chain reaction (RT-PCR) were performed. Moderate concentrations of NaF (50-500 μmol/L) had pro-proliferation effects, while 500 μmol/L had the best effects. ALP activity and calcium content were significantly enhanced by 10 μmol/L NaF with osteogenic inductive medium. Quantitative RT-PCR data varied in genes as a result of different NaF concentrations and treatment periods. We conclude that moderate concentrations of NaF can stimulate proliferation and mineralization in periodontal ligament cells. These in vitro findings may provide a novel therapeutic approach for acceleration of periodontal regeneration by addition of suitable concentrations of NaF into the medication for periodontitis treatment, i.e., into periodontal packs and tissue patches. PMID:27409336

  6. Effects of fluoride on proliferation and mineralization in periodontal ligament cells in vitro

    PubMed Central

    Li, K.Q.; Jia, S.S.; Ma, M.; Shen, H.Z.; Xu, L.; Liu, G.P.; Huang, S.Y.; Zhang, D.S.

    2016-01-01

    Fluoride, which is often added to toothpaste or mouthwash in order to protect teeth from decay, may be a novel therapeutic approach for acceleration of periodontal regeneration. Therefore, we investigated the effects of fluoride on proliferation and mineralization in human periodontal ligament cells in vitro. The periodontal ligament cells were stimulated with various concentrations of NaF added into osteogenic inductive medium. Immunohistochemistry of cell identification, cell proliferation, alkaline phosphatase (ALP) activity assay, Alizarin red S staining and quantitative real-time-polymerase chain reaction (RT-PCR) were performed. Moderate concentrations of NaF (50-500 μmol/L) had pro-proliferation effects, while 500 μmol/L had the best effects. ALP activity and calcium content were significantly enhanced by 10 μmol/L NaF with osteogenic inductive medium. Quantitative RT-PCR data varied in genes as a result of different NaF concentrations and treatment periods. We conclude that moderate concentrations of NaF can stimulate proliferation and mineralization in periodontal ligament cells. These in vitro findings may provide a novel therapeutic approach for acceleration of periodontal regeneration by addition of suitable concentrations of NaF into the medication for periodontitis treatment, i.e., into periodontal packs and tissue patches. PMID:27409336

  7. Osteoblast histogenesis in periodontal ligament and tibial metaphysis during simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Fielder, Paul J.; Morey, Emily R.; Roberts, W. Eugene

    1986-01-01

    Utilizing the nuclear morphometric assay for osteoblast histogenesis, the effect of simulated weightlessness (SW) on the relative numbers of the periodontal ligament (PDL) osteoblast progenitors and on the total number of osteogenic cells was determined in rats. Weightlessness was simulated by subjecting rats to continuous 30-deg head-down posture using a modified back-harness device of Morey (1979). The response of a partially unloaded, weight-bearing bone, tibial primary spongiosa (PS), was compared to a normally loaded, nonweight-bearing PDL bone. Data indicated a similar differentiation sequence in PS and PDL, which suggests that these bones might be sensitive to the same systemic factors. Preosteoblast numbers were seen to decrease in both nonweight-bearing and weight-bearing bones during SW (compared with rats not exposed to SW), indicating the importance of systemic mediators, such as cephalad fluid shift, physiological stress, and/or growth retardation.

  8. Biomechanical behavior of bovine periodontal ligament: Experimental tests and constitutive model.

    PubMed

    Oskui, Iman Z; Hashemi, Ata; Jafarzadeh, Hamid

    2016-09-01

    A viscohyperelastic constitutive model with the use of the internal variables approach was formulated to evaluate the nonlinear elastic and time dependent anisotropic mechanical behavior of the periodontal ligament (PDL). Since the relaxation response was found to depend on the applied stretch, the adoption of the nonlinear viscous behavior in the present model was necessary. In this paper, Helmholtz free energy function was assigned to the material as the sum of hyperelastic and viscous terms which is based on the physical concept of internal variables. The constitutive model parameters were evaluated from the comparison of the proposed model and experimental data. For this purpose, tensile response of the bovine PDL samples under different stretch rates was obtained. The good correspondence between the proposed model and the experimental results confirmed the capability of the model to interpret the stretch rate behavior of the PDL. Moreover, the validity of structural model parameters was checked according to the results of the stress relaxation tests. PMID:27315371

  9. Effect of F-spondin on cementoblastic differentiation of human periodontal ligament cells

    SciTech Connect

    Kitagawa, Masae; Kudo, Yasusei; Iizuka, Shinji; Ogawa, Ikuko; Abiko, Yoshimitsu; Miyauchi, Mutsumi; Takata, Takashi . E-mail: ttakata@hiroshima-u.ac.jp

    2006-10-27

    Cementum is a mineralized tissue produced by cementoblasts covering the roots of teeth that provides for the attachment of periodontal ligament to roots and surrounding alveolar bone. To study the mechanism of proliferation and differentiation of cementoblasts is important for understanding periodontal physiology and pathology including periodontal tissue regeneration. However, the detailed mechanism of the proliferation and differentiation of human cementoblasts is still unclear. We previously established human cementoblast-like (HCEM) cell lines. We thought that comparing the transcriptional profiles of HCEM cells and human periodontal ligament (HPL) cells derived from the same teeth could be a good approach to identify genes that influence the nature of cementoblasts. We identified F-spondin as the gene demonstrating the high fold change expression in HCEM cells. Interestingly, F-spondin highly expressing HPL cells showed similar phenotype of cementoblasts, such as up-regulation of mineralized-related genes. Overall, we identified F-spondin as a promoting factor for cementoblastic differentiation.

  10. PERK-eIF2α-ATF4 pathway mediated by endoplasmic reticulum stress response is involved in osteodifferentiation of human periodontal ligament cells under cyclic mechanical force.

    PubMed

    Yang, Shuang-Yan; Wei, Fu-Lan; Hu, Li-Hua; Wang, Chun-Ling

    2016-08-01

    To prevent excess accumulation of unfolded proteins in endoplasmic reticulum (ER), eukaryotic cells have signaling pathways from the ER to the cytosol or nucleus. These processes are known as the endoplasmic reticulum stress (ERS) response. Protein kinase R like endoplasmic reticulum kinase (PERK) is a major transducer of the ERS response and it directly phosphorylate α-subunit of eukaryotic initiation factor 2 (eIF2α), resulting in translational attenuation. Phosphorylated eIF2α specifically promoted the translation of the activating transcription factor 4 (ATF4). ATF4 is a known important transcription factor which plays a pivotal role in osteoblast differentiation and bone formation. Furthermore, ATF4 is a downstream target of PERK. Studies have shown that PERK-eIF2α-ATF4 signal pathway mediated by ERS was involved in osteoblastic differentiation of osteoblasts. We have known that orthodontic tooth movement is a process of periodontal ligament cells (PDLCs) osteodifferentiation and alveolar bone remodeling under mechanical force. However, the involvement of PERK-eIF2α-ATF4 signal pathway mediated by ERS in osteogenic differentiation of PDLCs under mechanical force has not been unclear. In our study, we applied the cyclic mechanical force at 10% elongation with 0.5Hz to mimic occlusal force, and explored whether PERK-eIF2α-ATF4 signaling pathway mediated by ERS involved in osteogenic differentiation of PDLCs under mechanical force. Firstly, cyclic mechanical force will induce ERS and intensify several osteoblast marker genes (ATF4, OCN, and BSP). Next, we found that PERK overexpression increased eIF2α phosphorylation and expression of ATF4, furthermore induced BSP, OCN expression, thus it will promote osteodifferentiation of hPDLCs; mechanical force could promote this effect. However, PERK(-/-) cells showed the opposite changes, which will inhibit osteodifferentiation of hPDLCs. Taken together, our study proved that PERK-eIF2α-ATF4 signaling pathway

  11. A low-level diode laser therapy reduces the lipopolysaccharide (LPS)-induced periodontal ligament cell inflammation

    NASA Astrophysics Data System (ADS)

    Huang, T. H.; Chen, C. C.; Liu, S. L.; Lu, Y. C.; Kao, C. T.

    2014-07-01

    The purpose of this study was to investigate the cytologic effects of inflammatory periodontal ligament cells in vitro after low-level laser therapy. Human periodontal ligament cells were cultured, exposed to lipopolysaccharide and subjected to low-level laser treatment of 5 J cm-2 or 10 J cm-2 using a 920 nm diode laser. A periodontal ligament cell attachment was observed under a microscope, and the cell viability was quantified by a mitochondrial colorimetric assay. Lipopolysaccharide-treated periodontal ligament cells were irradiated with the low-level laser, and the expression levels of several inflammatory markers, iNOS, TNF-α and IL-1, and pErk kinase, were analyzed by reverse transcription polymerase chain reaction and western blot. The data were collected and analyzed by one-way analysis of variance; p < 0.05 indicated a statistically significant difference. The low-level laser treatment of periodontal ligament cells increased their ability to attach and survive. After irradiation, the expression levels of iNOS, TNF-α and IL-1 in lipopolysaccharide-exposed periodontal ligament cells decreased over time (p < 0.05). In periodontal ligament cells, low-level diode laser treatment increased the cells’ proliferative ability and decreased the expression of the examined inflammatory mediators.

  12. Cytotoxicity evaluation of root repair materials in human-cultured periodontal ligament fibroblasts

    PubMed Central

    Samyuktha, Voruganti; Ravikumar, Pabbati; Nagesh, Bolla; Ranganathan, K.; Jayaprakash, Thumu; Sayesh, Vemuri

    2014-01-01

    Aim: To evaluate the cytotoxicity of three root repair materials, mineral trioxide aggregate (MTA), Endosequence Root Repair Material and Biodentine in human periodontal ligament fibroblasts. Materials and Methods: Periodontal ligament fibroblasts were cultured from healthy premolar extracted for orthodontic purpose. Cells in the third passage were used in the study. The cultured fibroblast cells were placed in contact with root repair materials: (a) Biodentine, (b) MTA, (c) Endosequence, (d) control. The effects of these three materials on the viability of Periodontal ligament (PDL) fibroblasts were determined by trypan blue dye assay after 24 hours and 48-hour time period. Cell viability was determined using inverted phase contrast microscope. Statistical Analysis: Cell viability was compared for all the experimental groups with Wilcoxons matched pair test. Results: At the 24-hour examination period, all the materials showed increased cell viability. At 48-hour time period, there is slight decrease in cell viability. Mineral trioxide aggregate showed statistically significant increase in the cell viability when compared to other root repair materials. Conclusion: Mineral trioxide aggregate was shown to be less toxic to periodontal ligament fibroblasts than Endosequence Root Repair Material and Biodentine. PMID:25298650

  13. Domain of Dentine Sialoprotein Mediates Proliferation and Differentiation of Human Periodontal Ligament Stem Cells

    PubMed Central

    Yang, Guobin; Wang, Feng; Li, Wentong; Yang, Yuan; Guo, Feng; Gao, Qingping; Shoff, Lisa; Chen, Zhi; Gay, Isabel C.; Donly, Kevin J.; MacDougall, Mary; Chen, Shuo

    2013-01-01

    Classic embryological studies have documented the inductive role of root dentin on adjacent periodontal ligament differentiation.  The biochemical composition of root dentin includes collagens and cleavage products of dentin sialophosphoprotein (DSPP), such as dentin sialoprotein (DSP).  The high abundance of DSP in root dentin prompted us to ask the question whether DSP or peptides derived thereof would serve as potent biological matrix components to induce periodontal progenitors to further differentiate into periodontal ligament cells. Here, we test the hypothesis that domain of DSP influences cell fate. In situ hybridization and immunohistochemical analyses showed that the COOH-terminal DSP domain is expressed in mouse periodontium at various stages of root development. The recombinant COOH-terminal DSP fragment (rC-DSP) enhanced attachment and migration of human periodontal ligament stem cells (PDLSC), human primary PDL cells without cell toxicity. rC-DSP induced PDLSC cell proliferation as well as differentiation and mineralization of PDLSC and PDL cells by formation of mineralized tissue and ALPase activity. Effect of rC-DSP on cell proliferation and differentiation was to promote gene expression of tooth/bone-relate markers, transcription factors and growth factors. The results for the first time showed that rC-DSP may be one of the components of cell niche for stimulating stem/progenitor cell proliferation and differentiation and a natural scaffold for periodontal regeneration application. PMID:24400037

  14. DKK1 rescues osteogenic differentiation of mesenchymal stem cells isolated from periodontal ligaments of patients with diabetes mellitus induced periodontitis

    PubMed Central

    Liu, Qi; Hu, Cheng-Hu; Zhou, Cui-Hong; Cui, Xiao-Xia; Yang, Kun; Deng, Chao; Xia, Jia-Jia; Wu, Yan; Liu, Lu-Chuan; Jin, Yan

    2015-01-01

    Multiple studies have shown that diabetes mellitus is an established risk factor for periodontitis. Recently mesenchymal stem cells derived from periodontal ligament (PDLSCs) have been utilized to reconstruct tissues destroyed by chronic inflammation. However, impact of periodontitis with diabetes mellitus on PDLSCs and mechanisms mediating effects of complex microenvironments remain poorly understood. In this study, we found multiple differentiation potential of PDLSCs from chronic periodontitis with diabetes mellitus donors (D-PDLSCs) was damaged significantly. Inhibition of NF-κB signaling could rescue osteogenic potential of PDLSCs from simple chronic periodontitis patients (P-PDLSCs), whereas did not promote D-PDLSCs osteogenesis. In addition, we found expression of DKK1 in D-PDLSCs did not respond to osteogenic signal and decreased osteogenic potential of D-PDLSCs treated with DKK1 could be reversed. To further elucidate different character between P-PDLSCs and D-PDLSCs, we treated PDLSCs with TNF-α and advanced glycation end products (AGEs), and find out AGEs which enhance effect of TNF-α in PDLSCs might mediate special personality of D-PDLSCs. The adverse effect of AGEs in PDLSCs could be reversed when PDLSCs were treated with DKK1. These results suggested DKK1 mediating WNT signaling might be a therapy target to rescue potential of PDLSCs in periodontitis with diabetes mellitus. PMID:26278788

  15. Immunohistochemical localization of tenascin-C in rat periodontal ligament with reference to alveolar bone remodeling.

    PubMed

    Sato, Rei; Fukuoka, Hiroki; Yokohama-Tamaki, Tamaki; Kaku, Masaru; Shibata, Shunichi

    2016-03-01

    We investigated the immunohistochemical localization of tenascin-C in 8-week-old rat periodontal ligaments. Tenascin-C immunoreactivity was detected in zones along with cementum and alveolar bone, and more intensely on the resorption surface of alveolar bone than on the formation surface. On the resorbing surface, tenascin-C immunoreactivity was detected in Howship's lacunae without osteoclasts, and in the interfibrous space of the periodontal ligaments, indicating that this molecule works as an adhesion molecule between bone and fibers of periodontal ligaments. Upon experimental tooth movement by inserting elastic bands (Waldo method), the physiological resorption surface of alveolar bone under compressive force showed enhanced bone resorption and enhanced tenascin-C immunoreactivity. However, on the physiological bone formation surface under compressive force, bone resorption was seen only occasionally, and no enhanced tenascin-C immunoreactivity was noted. In an experiment involving excessive occlusal loading to rat molars, transient bone resorption occurred within interradicular septa, but no enhanced tenascin-C immunoreactivity was seen in the periodontal ligaments. These results indicate that tenascin-C works effectively on the bone resorbing surface of physiological alveolar bone remodeling sites, rather than on the non-physiological transient bone resorbing surface. Fibronectin immunoreactivity was distributed evenly in the periodontal ligaments under experimental conditions. Co-localization of tenascin-C and fibronectin immunoreactivity was observed in many regions, but mutually exclusive expression patterns were also seen in some regions, indicating that fibronectin might not be directly involved in alveolar bone remodeling, but may play a role via interaction with tenascin-C. PMID:25957016

  16. Impact of nicotine on the interplay between human periodontal ligament cells and CD4+ T cells.

    PubMed

    Ge, Xin; Liu, Ying-Feng; Wong, Yong; Wu, Li-Zheng; Tan, Ling; Liu, Fen; Wang, Xiao-Jing

    2016-09-01

    Periodontitis is a common infectious disease associated with destruction of periodontal ligaments and alveolar bones. CD4(+) T cell-mediated immune response is involved in the progression of periodontitis. Tobacco consumption increases the risk of periodontal disease. However, the impact of nicotine on the interaction between human periodontal ligament (PDL) cells and CD4(+) T cells remains unrevealed. Our study aims to investigate the effect of nicotine on PDL cells and the cocultured CD4(+) T cells. The PDL cell cultures were established by explants from healthy individuals, exposed to nicotine or α-bungarotoxin (α-BTX), and incubated solely or in combination with CD4(+) T cells. Afterwards, cell viability, secreted cytokines, and matrix metalloproteinases (MMPs) were evaluated. In monoculture of PDL cells, nicotine dramatically repressed cell viability and increased apoptosis. Meanwhile, α-BTX largely reversed the nicotine-induced apoptosis and increased viability of PDL cells. Compared with the monoculture, MMP-1, MMP-3, interleukin (IL)-1β, IL-6, IL-17, and IL-21 in supernatant of cocultures were markedly elevated after treatment with nicotine. Moreover, α-BTX significantly attenuated nicotine-triggered production of these components either in mono- or co-cultures. In addition, PDL cell-derived CXCL12 following nicotine treatment recruited CD4(+) T cells. Above all, nicotine deteriorated periodontitis partially by promoting PDL cell-CD4(+) T cell-mediated inflammatory response and matrix degradation. PMID:26553320

  17. Mechanical Strength and Viscoelastic Response of the Periodontal Ligament in Relation to Structure

    PubMed Central

    Komatsu, Koichiro

    2010-01-01

    The mechanical strength of the periodontal ligament (PDL) was first measured as force required to extract a tooth from its socket using human specimens. Thereafter, tooth-PDL-bone preparations have extensively been used for measurement of the mechanical response of the PDL. In vitro treatments of such specimens with specific enzymes allowed one to investigate into the roles of the structural components in the mechanical support of the PDL. The viscoelastic responses of the PDL may be examined by analysis of the stress-relaxation. Video polarised microscopy suggested that the collagen molecules and fibrils in the stretched fibre bundles progressively align along the deformation direction during the relaxation. The stress-relaxation process of the PDL can be well expressed by a function with three exponential decay terms. Analysis after in vitro digestion of the collagen fibres by collagenase revealed that the collagen fibre components may play an important role in the long-term relaxation component of the stress-relaxation process of the PDL. The dynamic measurements of the viscoelastic properties of the PDL have recently suggested that the PDL can absorb more energy in compression than in shear and tension. These viscoelastic mechanisms of the PDL tissue could reduce the risk of injury to the PDL. PMID:20948569

  18. Proliferation of the human periodontal ligament fibroblast by laser biostimulation: an in vitro study

    NASA Astrophysics Data System (ADS)

    Shelly, Ahuja; Shaila, Kothiwale; Kishore, Bhat

    2006-02-01

    Laser produces a monochormatic collimated and coherent radiation. In dentistry, diode lasers have been used predominantly for application which are broadly termed "Low level laser therapy (LLLT) or biostimulation (L.J. Walch 1997)". Periodontal ligament fibroblast (PDLF) have a key function in periodontal regeneration. Stimulatory effects on the proliferation of these cells could therefore be beneficial for the reestablishment of connective tissue attachment. The aim of this in vitro study was to evaluate the potential stimulatory effect of low level laser irradiation on the proliferation of PDLF.

  19. Oxidative Stress and Periodontal Disease in Obesity

    PubMed Central

    Dursun, Erhan; Akalın, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-01-01

    Abstract Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women. Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated. Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status

  20. Oxidative Stress and Periodontal Disease in Obesity.

    PubMed

    Dursun, Erhan; Akaln, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-03-01

    Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women.Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated.Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status markers

  1. Cytoskeletal binding proteins distinguish cultured dental follicle cells and periodontal ligament cells.

    PubMed

    Li, Jie; Li, Hui; Tian, Ye; Yang, Yaling; Chen, Guoqing; Guo, Weihua; Tian, Weidong

    2016-07-01

    Human dental follicle cells (DFCs) and periodontal ligament cells (PDLCs) derived from the ectomesenchymal tissue, have been shown to exhibit stem/progenitor cell properties and the ability to induce tissue regeneration. Stem cells in dental follicle differentiate into cementoblasts, periodontal ligament fibroblasts and osteoblasts, these cells form cementum, periodontal ligament and alveolar bone, respectively. While stem cells in dental follicle are a precursor to periodontal ligament fibroblasts, the molecular changes that distinguish cultured DFCs from PDLCs are still unknown. In this study, we have compared the immunophenotypic features and cell cycle status of the two cell lines. The results suggest that DFCs and PDLCs displayed similar features related to immunophenotype and cell cycle. Then we employed an isobaric tag for relative and absolute quantitation (iTRAQ) proteomics strategy to reveal the molecular differences between the two cell types. A total of 2138 proteins were identified and 39 of these proteins were consistently differentially expressed between DFCs and PDLCs. Gene ontology analyses revealed that the protein subsets expressed higher in PDLCs were related to actin binding, cytoskeletal protein binding, and structural constituent of muscle. Upon validation by real-time PCR, western blotting, and immunofluorescence staining. Tropomyosin 1 (TPM1) and caldesmon 1 (CALD1) were expressed higher in PDLCs than in DFCs. Our results suggested that PDLCs display enhanced actin cytoskeletal dynamics relative to DFCs while DFCs may exhibit a more robust antioxidant defense ability relative to PDLCs. This study expands our knowledge of the cultured DFCs and PDLCs proteome and provides new insights into possible mechanisms responsible for the different biological features observed in each cell type. PMID:26708290

  2. Generation of functional hepatocyte-like cells from human deciduous periodontal ligament stem cells

    NASA Astrophysics Data System (ADS)

    Vasanthan, Punitha; Jayaraman, Pukana; Kunasekaran, Wijenthiran; Lawrence, Anthony; Gnanasegaran, Nareshwaran; Govindasamy, Vijayendran; Musa, Sabri; Kasim, Noor Hayaty Abu

    2016-08-01

    Human deciduous periodontal ligament stem cells have been introduced for as an easily accessible source of stem cells from dental origin. Although recent studies have revealed the ability of these stem cells in multipotential attribute, their efficiency of hepatic lineage differentiation has not been addressed so far. The aim of this study is to investigate hepatic lineage fate competence of periodontal ligament stem cells through direct media induction. Differentiation of periodontal ligament stem cells into hepatocyte-like cells was conducted by the exposure of two phase media induction. First phase was performed in the presence of hepatocyte growth factors to induce a definitive endoderm formation. In the subsequent phase, the cells were treated with oncostatin M and dexamethosone followed by insulin and transferrin to generate hepatocyte-like cells. Hepatic-related characters of the generated hepatocyte-like cells were determined at both mRNA and protein level followed by functional assays. Foremost changes observed in the generation of hepatocyte-like cells were the morphological features in which these cells were transformed from fibroblastic shape to polygonal shape. Temporal expression of hepatic markers ranging from early endodermal up to late markers were detected in the hepatocyte-like cells. Crucial hepatic markers such as glycogen storage, albumin, and urea secretion were also shown. These findings exhibited the ability of periodontal ligament stem cells of dental origin to be directed into hepatic lineage fate. These cells can be regarded as an alternative autologous source in the usage of stem cell-based treatment for liver diseases.

  3. Generation of functional hepatocyte-like cells from human deciduous periodontal ligament stem cells.

    PubMed

    Vasanthan, Punitha; Jayaraman, Pukana; Kunasekaran, Wijenthiran; Lawrence, Anthony; Gnanasegaran, Nareshwaran; Govindasamy, Vijayendran; Musa, Sabri; Kasim, Noor Hayaty Abu

    2016-08-01

    Human deciduous periodontal ligament stem cells have been introduced for as an easily accessible source of stem cells from dental origin. Although recent studies have revealed the ability of these stem cells in multipotential attribute, their efficiency of hepatic lineage differentiation has not been addressed so far. The aim of this study is to investigate hepatic lineage fate competence of periodontal ligament stem cells through direct media induction. Differentiation of periodontal ligament stem cells into hepatocyte-like cells was conducted by the exposure of two phase media induction. First phase was performed in the presence of hepatocyte growth factors to induce a definitive endoderm formation. In the subsequent phase, the cells were treated with oncostatin M and dexamethosone followed by insulin and transferrin to generate hepatocyte-like cells. Hepatic-related characters of the generated hepatocyte-like cells were determined at both mRNA and protein level followed by functional assays. Foremost changes observed in the generation of hepatocyte-like cells were the morphological features in which these cells were transformed from fibroblastic shape to polygonal shape. Temporal expression of hepatic markers ranging from early endodermal up to late markers were detected in the hepatocyte-like cells. Crucial hepatic markers such as glycogen storage, albumin, and urea secretion were also shown. These findings exhibited the ability of periodontal ligament stem cells of dental origin to be directed into hepatic lineage fate. These cells can be regarded as an alternative autologous source in the usage of stem cell-based treatment for liver diseases. PMID:27379400

  4. A constitutive model for the periodontal ligament as a compressible transversely isotropic visco-hyperelastic tissue.

    PubMed

    Zhurov, Alexei I; Limbert, Georges; Aeschlimann, Daniel P; Middleton, John

    2007-06-01

    This study is devoted to the development of a non-linear anisotropic model for the human periodontal ligament (PDL). A thorough knowledge of the behaviour of the PDL is vital in understanding the mechanics of orthodontic tooth mobility, soft tissue response and proposed treatment plans. There is considerable evidence that the deformation of the PDL is the key factor determining the orthodontic tooth movement. The paper focuses on the biomechanical aspect of the behaviour of the PDL. In terms of continuous mechanics, the PDL may be treated as an anisotropic poro-visco-hyperelastic fibre-reinforced compressible material which is subject to large deformations and has an essentially non-linear behaviour. Furthermore, there are issues related to the non-linear tooth and PDL geometry. A new constitutive model for the PDL is proposed. The macroscopic continuum approach is used. The model is based on the non-linear large deformation theory, involving the Lagrangian description. The material is assumed to be compressible, visco-hyperelastic and transversely isotropic. A free-energy function is suggested that incorporates the properties. It also takes into account that the PDL behaves differently in tension and compression. The free-energy function and the associated constitutive equations involve several material parameters, which are to be evaluated from experimental strain-stress data available from the literature and the tooth movement experiments conducted by our team using novel optical motion analysis techniques. PMID:17558650

  5. Autoregulation of Periodontal Ligament Cell Phenotype and Functions by Transforming Growth Factor-β1

    PubMed Central

    Brady, T.A.; Piesco, N.P.; Buckley, M.J.; Langkamp, H.H.; Bowen, L.L.

    2016-01-01

    During orthodontic tooth movement, mechanical forces acting on periodontal ligament (PDL) cells induce the synthesis of mediators which alter the growth, differentiation, and secretory functions of cells of the PDL. Since the cells of the PDL represent a heterogeneous population, we examined mechanically stress-induced cytokine profiles in three separate clones of human osteoblast-like PDL cells. Of the four pro-inflammatory cytokines investigated, only IL-6 and TGF-β1 were up-regulated in response to mechanical stress. However, the expression of other pro-inflammatory cytokines such as IL-1β, TNF-α, or IL-8 was not observed. To understand the consequences of the increase in TGF-β1 expression following mechanical stress, we examined the effect of TGF-β1 on PDL cell phenotype and functions. TGF-β1 was mitogenic to PDL cells at concentrations between 0.4 and 10 ng/mL. Furthermore, TGF-β1 down-regulated the osteoblast-like phenotype of PDL cells, i.e., alkaline phosphatase activity, calcium phosphate nodule formation, expression of osteocalcin, and TGF-β1, in a dose-dependent manner. Although initially TGF-β1 induced expression of type I collagen mRNA, prolonged exposure to TGF-β1 down-regulated the ability of PDL cells to express type I collagen mRNA. Our results further show that, within 4 hrs, exogenously applied TGF-β1 down-regulated IL-6 expression in a dose-dependent manner, and this inhibition was sustained over a six-day period. In summary, the data suggest that mechanically stress-induced TGF-β1 expression may be a physiological mechanism to induce mitogenesis in PDL cells while down-regulating its osteoblast-like features and simultaneously reducing the IL-6-induced bone resorption. PMID:9786634

  6. In vivo measurements and numerical analysis of the biomechanical characteristics of the human periodontal ligament.

    PubMed

    Keilig, L; Drolshagen, M; Tran, K L; Hasan, I; Reimann, S; Deschner, J; Brinkmann, K T; Krause, R; Favino, M; Bourauel, C

    2016-07-01

    The periodontal ligament is a complex tissue with respect to its biomechanical behaviour. It is important to understand the mechanical behaviour of the periodontal ligament during physiological loading in healthy patients as well as during the movement of the tooth in orthodontic treatment or in patients with periodontal disease, as these might affect the mechanical properties of the periodontal ligament (PDL). Up to now, only a limited amount of in vivo data is available concerning this issue. The aim of this study has been to determine the time dependent material properties of the PDL in an experimental in vivo study, using a novel device that is able to measure tooth displacement intraorally. Using the intraoral loading device, tooth deflections at various velocities were realised in vivo on human teeth. The in vivo investigations were performed on the upper left central incisors of five volunteers aged 21-33 years with healthy periodontal tissue. A deflection, applied at the centre of the crown, was linearly increased from 0 to 0.15mm in a loading period of between 0.1 and 5.0s. Individual numerical models were developed based on the experimental results to simulate the relationship between the applied force and tooth displacement. The numerical force/displacement curves were fitted to the experimental ones to obtain the material properties of the human PDL. For the shortest loading time of 0.1s, the experimentally determined forces were between 7.0 and 16.2N. The numerically calculated Young's modulus varied between 0.9MPa (5.0s) and 1.2MPa (0.1s). By considering the experimentally and numerically obtained force curves, forces decreased with increasing loading time. The experimental data gained in this study can be used for the further development and verification of a multiphasic constitutive law of the PDL. PMID:26395824

  7. Beneficial Effects of Adiponectin on Periodontal Ligament Cells under Normal and Regenerative Conditions

    PubMed Central

    Nokhbehsaim, Marjan; Keser, Sema; Cirelli, Joni Augusto; Jepsen, Søren; Jäger, Andreas

    2014-01-01

    Type 2 diabetes and obesity are increasing worldwide and linked to periodontitis, a chronic disease which is characterized by the irreversible destruction of the tooth-supporting tissues, that is, periodontium. The mechanisms underlying the association of diabetes mellitus and obesity with periodontal destruction and compromised periodontal healing are not well understood, but decreased plasma levels of adiponectin, as found in diabetic and obese individuals, might be a critical mechanistic link. The aim of this in vitro study was to examine the effects of adiponectin on periodontal ligament (PDL) cells under normal and regenerative conditions, and to study the regulation of adiponectin and its receptors in these cells. Adiponectin stimulated significantly the expression of growth factors and extracellular matrix, proliferation, and in vitro wound healing, reduced significantly the constitutive tumor necrosis factor-α expression, and caused a significant upregulation of its own expression. The beneficial actions of enamel matrix derivative on a number of PDL cell functions critical for periodontal regeneration were partially enhanced by adiponectin. The periodontopathogen Porphyromonas gingivalis inhibited the adiponectin expression and stimulated the expression of its receptors. In conclusion, reduced levels of adiponectin, as found in type 2 diabetes and obesity, may compromise periodontal health and healing. PMID:25121107

  8. Functional Role of HSP47 in the Periodontal Ligament Subjected to Occlusal Overload in Mice

    PubMed Central

    Mimura, Hiroaki; Takaya, Tatsuo; Matsuda, Saeka; Nakano, Keisuke; Muraoka, Rina; Tomida, Mihoko; Okafuji, Norimasa; Fujii, Takeo; Kawakami, Toshiyuki

    2016-01-01

    We carried out an experiment to induce traumatic occlusion in mice periodontal tissue and analyzed the expression of HSP47. Continuous traumatic occlusion resulted to damage and remodeling of periodontal ligament as well as increase in osteoclasts and bone resorption. Four days after traumatic occlusion, osteoclasts did not increase but Howship's lacunae became enlarged. That is, the persistent occlusal overload can destroy collagen fibers in the periodontal ligament. This was evident by the increased in HSP47 expression with the occlusal overload. HSP47 is maintained in fibroblasts for repair of damaged collagen fibers. On the other hand, osteoclasts continue to increase although the load was released. The osteoclasts that appeared on the alveolar bone surface were likely due to sustained activity. The increase in osteoclasts was estimated to occur after load application at day 4. HSP47 continued to increase until day 6 in experiment 2 but then reduced at day 10. Therefore, HSP47 appears after a period of certain activities to repair damaged collagen fibers, and the activity was returned to a state of equilibrium at day 30 with significantly diminished expression. Thus, the results suggest that HSP47 is actively involved in homeostasis of periodontal tissue subjected to occlusal overload. PMID:27076780

  9. Semaphorin 3A Induces Mesenchymal-Stem-Like Properties in Human Periodontal Ligament Cells

    PubMed Central

    Maeda, Hidefumi; Hasegawa, Daigaku; Gronthos, Stan; Bartold, Peter Mark; Menicanin, Danijela; Fujii, Shinsuke; Yoshida, Shinichiro; Tomokiyo, Atsushi; Monnouchi, Satoshi; Akamine, Akifumi

    2014-01-01

    Periodontal ligament stem cells (PDLSCs) have recently been proposed as a novel option in periodontal regenerative therapy. However, one of the issues is the difficulty of stably generating PDLSCs because of the variation of stem cell potential between donors. Here, we show that Semaphorin 3A (Sema3A) can induce mesenchymal-stem-like properties in human periodontal ligament (PDL) cells. Sema3A expression was specifically observed in the dental follicle during tooth development and in parts of mature PDL tissue in rodent tooth and periodontal tissue. Sema3A expression levels were found to be higher in multipotential human PDL cell clones compared with low-differentiation potential clones. Sema3A-overexpressing PDL cells exhibited an enhanced capacity to differentiate into both functional osteoblasts and adipocytes. Moreover, PDL cells treated with Sema3A only at the initiation of culture stimulated osteogenesis, while Sema3A treatment throughout the culture had no effect on osteogenic differentiation. Finally, Sema3A-overexpressing PDL cells upregulated the expression of embryonic stem cell markers (NANOG, OCT4, and E-cadherin) and mesenchymal stem cell markers (CD73, CD90, CD105, CD146, and CD166), and Sema3A promoted cell division activity of PDL cells. These results suggest that Sema3A may possess the function to convert PDL cells into mesenchymal-stem-like cells. PMID:24380401

  10. Chronic stress accelerates ligature-induced periodontitis by suppressing glucocorticoid receptor-α signaling.

    PubMed

    Lu, Huaixiu; Xu, Minguang; Wang, Feng; Liu, Shisen; Gu, Jing; Lin, Songshan; Zhao, Lisheng

    2016-01-01

    Periodontitis is a common chronic inflammatory disease. Recent studies have shown that chronic stress (CS) might modulate periodontal disease, but there are few models of CS-induced periodontitis, and the underlying mechanisms are unclear. The present study established a rat model of periodontitis associated with CS induced by nylon thread ligatures. The severity of periodontitis was evaluated in this model by radiographic and pathological examination. The inflammatory reaction indicated by the elevated serum levels of interleukin (IL)-1β, IL-6 and IL-8 was assessed by enzyme-linked immunosorbent assay. Toll-like receptor-4 (TLR4) and glucocorticoid receptor-α (GR-α) expressions were detected by reverse transcriptase-PCR and western blotting. Open-field tests and serum corticosterone were used to evaluate CS. The results showed that CS induced behavioral changes and increased corticosterone levels of the animals with periodontitis. CS stimulation markedly increased alveolar bone loss, periodontal pocket depth and the number of plaques. It also enhanced the inflammatory reaction. These results suggest that CS accelerated the ligature-induced pathological changes associated with periodontitis. Further analysis of the mechanisms involved showed that GR-α expression was significantly downregulated in periodontal tissues of the animals undergoing CS. Blocking GR-α signaling in lipopolysaccharide and corticosteroid-treated human periodontal ligament fibroblast cells in vitro significantly upregulated the expression of p-Akt (protein kinase B) and TLR4, promoted nuclear factor-κB activity and increased levels of IL-1β, IL-6 and IL-8. This research suggests that CS might accelerate the pathological progression of periodontitis by a GR-α signaling-mediated inflammatory response and that this may be a potential therapeutic target for the treatment of periodontal disease, particularly in patients with CS. PMID:27012709

  11. Chronic stress accelerates ligature-induced periodontitis by suppressing glucocorticoid receptor-α signaling

    PubMed Central

    Lu, Huaixiu; Xu, Minguang; Wang, Feng; Liu, Shisen; Gu, Jing; Lin, Songshan; Zhao, Lisheng

    2016-01-01

    Periodontitis is a common chronic inflammatory disease. Recent studies have shown that chronic stress (CS) might modulate periodontal disease, but there are few models of CS-induced periodontitis, and the underlying mechanisms are unclear. The present study established a rat model of periodontitis associated with CS induced by nylon thread ligatures. The severity of periodontitis was evaluated in this model by radiographic and pathological examination. The inflammatory reaction indicated by the elevated serum levels of interleukin (IL)-1β, IL-6 and IL-8 was assessed by enzyme-linked immunosorbent assay. Toll-like receptor-4 (TLR4) and glucocorticoid receptor-α (GR-α) expressions were detected by reverse transcriptase-PCR and western blotting. Open-field tests and serum corticosterone were used to evaluate CS. The results showed that CS induced behavioral changes and increased corticosterone levels of the animals with periodontitis. CS stimulation markedly increased alveolar bone loss, periodontal pocket depth and the number of plaques. It also enhanced the inflammatory reaction. These results suggest that CS accelerated the ligature-induced pathological changes associated with periodontitis. Further analysis of the mechanisms involved showed that GR-α expression was significantly downregulated in periodontal tissues of the animals undergoing CS. Blocking GR-α signaling in lipopolysaccharide and corticosteroid-treated human periodontal ligament fibroblast cells in vitro significantly upregulated the expression of p-Akt (protein kinase B) and TLR4, promoted nuclear factor-κB activity and increased levels of IL-1β, IL-6 and IL-8. This research suggests that CS might accelerate the pathological progression of periodontitis by a GR-α signaling-mediated inflammatory response and that this may be a potential therapeutic target for the treatment of periodontal disease, particularly in patients with CS. PMID:27012709

  12. Age estimation using the radiographic visibility of the periodontal ligament in lower third molars in a Portuguese population

    PubMed Central

    Sequeira, Catarina-Dourado; Teixeira, Alexandra; Afonso, Américo; Pérez-Mongiovi, Daniel

    2014-01-01

    Objectives: The mineralization of third molars has been used repeatedly as a method of forensic age estimation. However, this procedure is of little use beyond age 18, especially to determinate if an individual is older than 21 years of age; thus, the development of new approaches is essential. The visibility of the periodontal ligament has been suggested for this purpose. The aim of this work was to determine the usefulness of this methodology in a Portuguese population. Study Design: Periodontal ligament visibility was assessed in the lower third molars, using a sample of 487 orthopantomograms, 228 of which belonging to females and 259 to males, from a Portuguese population aged 17 to 31 years. A classification of four stages based on the visual phenomenon of disappearance of the periodontal ligament of fully mineralized third molars was used. For each stage, median, variance, minimal and maximal age were assessed. Results: The relationship between age and stage of periodontal ligament had a statistical significance for both sexes. In this population, stage 3 can be used to state that a male person is over 21 years-old; for females, another marker should be used. Conclusions: This technique can be useful for determining age over 21, particularly in males. Differences between studies are evident, suggesting that specific population standards should be used when applying this technique. Key words:Forensic sciences, forensic odontology, age estimation, third molar, periodontal ligament. PMID:25674324

  13. Periodontal ligament, cementum, and alveolar bone in the oldest herbivorous tetrapods, and their evolutionary significance.

    PubMed

    LeBlanc, Aaron R H; Reisz, Robert R

    2013-01-01

    Tooth implantation provides important phylogenetic and functional information about the dentitions of amniotes. Traditionally, only mammals and crocodilians have been considered truly thecodont, because their tooth roots are coated in layers of cementum for anchorage of the periodontal ligament, which is in turn attached to the bone lining the alveolus, the alveolar bone. The histological properties and developmental origins of these three periodontal tissues have been studied extensively in mammals and crocodilians, but the identities of the periodontal tissues in other amniotes remain poorly studied. Early work on dental histology of basal amniotes concluded that most possess a simplified tooth attachment in which the tooth root is ankylosed to a pedestal composed of "bone of attachment", which is in turn fused to the jaw. More recent studies have concluded that stereotypically thecodont tissues are also present in non-mammalian, non-crocodilian amniotes, but these studies were limited to crown groups or secondarily aquatic reptiles. As the sister group to Amniota, and the first tetrapods to exhibit dental occlusion, diadectids are the ideal candidates for studies of dental evolution among terrestrial vertebrates because they can be used to test hypotheses of development and homology in deep time. Our study of Permo-Carboniferous diadectid tetrapod teeth and dental tissues reveal the presence of two types of cementum, periodontal ligament, and alveolar bone, and therefore the earliest record of true thecodonty in a tetrapod. These discoveries in a stem amniote allow us to hypothesize that the ability to produce the tissues that characterize thecodonty in mammals and crocodilians is very ancient and plesiomorphic for Amniota. Consequently, all other forms of tooth implantation in crown amniotes are derived arrangements of one or more of these periodontal tissues and not simply ankylosis of teeth to the jaw by plesiomorphically retaining "bone of attachment", as

  14. Periodontal Ligament, Cementum, and Alveolar Bone in the Oldest Herbivorous Tetrapods, and Their Evolutionary Significance

    PubMed Central

    LeBlanc, Aaron R. H.; Reisz, Robert R.

    2013-01-01

    Tooth implantation provides important phylogenetic and functional information about the dentitions of amniotes. Traditionally, only mammals and crocodilians have been considered truly thecodont, because their tooth roots are coated in layers of cementum for anchorage of the periodontal ligament, which is in turn attached to the bone lining the alveolus, the alveolar bone. The histological properties and developmental origins of these three periodontal tissues have been studied extensively in mammals and crocodilians, but the identities of the periodontal tissues in other amniotes remain poorly studied. Early work on dental histology of basal amniotes concluded that most possess a simplified tooth attachment in which the tooth root is ankylosed to a pedestal composed of “bone of attachment”, which is in turn fused to the jaw. More recent studies have concluded that stereotypically thecodont tissues are also present in non-mammalian, non-crocodilian amniotes, but these studies were limited to crown groups or secondarily aquatic reptiles. As the sister group to Amniota, and the first tetrapods to exhibit dental occlusion, diadectids are the ideal candidates for studies of dental evolution among terrestrial vertebrates because they can be used to test hypotheses of development and homology in deep time. Our study of Permo-Carboniferous diadectid tetrapod teeth and dental tissues reveal the presence of two types of cementum, periodontal ligament, and alveolar bone, and therefore the earliest record of true thecodonty in a tetrapod. These discoveries in a stem amniote allow us to hypothesize that the ability to produce the tissues that characterize thecodonty in mammals and crocodilians is very ancient and plesiomorphic for Amniota. Consequently, all other forms of tooth implantation in crown amniotes are derived arrangements of one or more of these periodontal tissues and not simply ankylosis of teeth to the jaw by plesiomorphically retaining “bone of attachment

  15. Effects of Plants on Osteogenic Differentiation and Mineralization of Periodontal Ligament Cells: A Systematic Review.

    PubMed

    Costa, Cláudio Rodrigues Rezende; Amorim, Bruna Rabelo; de Magalhães, Pérola; De Luca Canto, Graziela; Acevedo, Ana Carolina; Guerra, Eliete Neves Silva

    2016-04-01

    This systematic review aimed to evaluate the effects of plants on osteogenic differentiation and mineralization of human periodontal ligament cells. The included studies were selected using five different electronic databases. The reference list of the included studies was crosschecked, and a partial gray literature search was undertaken using Google Scholar and ProQuest. The methodology of the selected studies was evaluated using GRADE. After a two-step selection process, eight studies were identified. Six different types of plants were reported in the selected studies, which were Morinda citrifolia, Aloe vera, Fructus cnidii, Zanthoxylum schinifolium, Centella asiatica, and Epimedium species. They included five types of isolated plant components: acemannan, osthole, hesperetin, asiaticoside, and icariin. In addition, some active substances of these components were identified as polysaccharides, coumarins, flavonoids, and triterpenes. The studies demonstrated the potential effects of plants on osteogenic differentiation, cell proliferation, mineral deposition, and gene and protein expression. Four studies showed that periodontal ligament cells induce mineral deposition after plant treatment. Although there are few studies on the subject, current evidence suggests that plants are potentially useful for the treatment of periodontal diseases. However, further investigations are required to confirm the promising effect of these plants in regenerative treatments. PMID:26822584

  16. Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: a combined experimental and finite element method.

    PubMed

    Huang, Huixiang; Tang, Wencheng; Yan, Bin; Wu, Bin; Cao, Dan

    2016-01-01

    The V-W exponential hyperelastic model is adopted to describe the instantaneous elastic response of the periodontal ligament (PDL). The general theoretical framework of constitutive modeling is described based on nonlinear continuum mechanics, and the elasticity tensor used to develop UMAT subroutine is formulated. Nanoindentation experiment is performed to characterize mechanical properties of an adult pig PDL specimen. Then the experiment is simulated by using the finite element (FE) analysis. Meanwhile, the optimized material parameters are identified by the inverse FE method. The good agreement between the simulated results and experimental data demonstrates that the V-W model is capable of describing the mechanical behavior of the PDL. Therefore, the model and its implementation into FE code are validated. By using the model, we simulate the tooth movement under orthodontic loading to predict the mechanical responses of the PDL. The results show that local concentrations of stress and strain in the PDL are found. PMID:25648914

  17. Surface Chemistry of Nanoscale Mineralized Collagen Regulates Periodontal Ligament Stem Cell Fate.

    PubMed

    Fu, Yu; Liu, Shuai; Cui, Sheng-Jie; Kou, Xiao-Xing; Wang, Xue-Dong; Liu, Xiao-Mo; Sun, Yue; Wang, Gao-Nan; Liu, Yan; Zhou, Yan-Heng

    2016-06-29

    The interplay between stem cells and their extracellular microenvironment is of critical importance to the stem cell-based therapeutics in regenerative medicine. Mineralized collagen is the main component of bone extracellular matrix, but the effect of interfacial properties of mineralized collagen on subsequent cellular behaviors is unclear. This study examined the role of surface chemistry of nanoscale mineralized collagen on human periodontal ligament stem cell (hPDLSC) fate decisions. The intrafibrillarly mineralized collagen (IMC), fabricated by a biomimetic bottom-up approach, showed a bonelike hierarchy with nanohydroxyapatites (HAs) periodically embedded within fibrils. The infrared spectrum of the IMC showed the presence of phosphate, carbonate, amide I and II bands; and infrared mapping displayed uniform and higher spatial distribution of mineralization in the IMC. However, the distribution of the phosphate group differed far from that of the amide I group in the extrafibrillarly mineralized collagen (EMC), in which flowerlike HA clusters randomly depositing around the surface of the fibrils. Moreover, a large quantity of extrafibrillar HAs covered up the C═O stretch and N-H in-plane bend, resulting in substantial reduction of amide I and II bands. Cell experiments demonstrated that the hPDLSCs seeded on the IMC exhibited a highly branched, osteoblast-like polygonal shape with extended pseudopodia and thick stress fiber formation; while cells on the EMC displayed a spindle shape with less branch points and thin actin fibril formation. Furthermore, the biocompatibility of EMC was much lower than that of IMC. Interestingly, even without osteogenic induction, mRNA levels of major osteogenic differentiation genes were highly expressed in the IMC during cultivation time. These data suggest that the IMC with a similar nanotopography and surface chemistry to natural mineralized collagen directs hPDLSCs toward osteoblast differentiation, providing a promising

  18. Influence of different intensities of vibration on proliferation and differentiation of human periodontal ligament stem cells

    PubMed Central

    Zhang, Chunxiang; Lu, Yanqin; Zhang, Linkun; Liu, Yang; Zhou, Yi; Chen, Yangxi

    2015-01-01

    Introduction To understand the effects of low-magnitude, high-frequency (LMHF) mechanical vibration at different intensities on human periodontal ligament stem cell (hPDLSC) proliferation and osteogenic differentiation. Material and methods The effect of vibration on hPDLSC proliferation, osteogenic differentiation, tenogenic differentiation and cytoskeleton was assessed at the cellular, genetic and protein level. Results The PDLSC proliferation was decreased after different magnitudes of mechanical vibration; however, there were no obvious senescent cells in the experimental and the static control group. Expression of osteogenesis markers was increased. The expression of alkaline phosphatase (ALP) and osteocalcin (OCN) mRNA was up-regulated at 0.1 g, 0.3 g, 0.6 g and 0.9 g magnitude, with the peak at 0.3 g. The type I collagen (Col-I) level was increased after vibration exposure at 0.1 g, 0.3 g, and 0.6 g, peaking at 0.3 g. The expression levels of both mRNA and protein of Runx2 and osterix (OSX) significantly increased at a magnitude of 0.1 g to 0.9 g, reached a peak at 0.3 g and then decreased slowly. The scleraxis, tenogenic markers, and mRNA expression decreased at 0.05 g, 0.1 g, and 0.3 g, and significantly increased at 0.6 g and 0.9 g. Compared with the static group, the F-actin stress fibers of hPDLSCs became thicker and clearer following vibration. Conclusions The LMHF mechanical vibration promotes PDLSC osteogenic differentiation and implies the existence of a magnitude-dependent effect of vibration on determining PDLSC commitment to the osteoblast lineage. Changes in the cytoskeleton of hPDLSCs after vibration may be one of the mechanisms of the biological effects. PMID:26170859

  19. [Effect of fibronectin on the synthesis of extracellular matrix proteins in periodontal ligament cells].

    PubMed

    Wan, L; Wu, Z; Zhou, Y

    1996-11-01

    Immunofluorescence staining method and fluorescence spectrophotometry were used to study the synthesis of extracellular matrix proteins in periodontal ligament cells (PDL cells) when exogenous fibronectin (FN) existed. The results showed that the right amount of exogenous FN (0.044 mumol/l) could increase the amount of type I collagen and type III collagen in PDL cells (P < 0.01), inhibit the synthesis of FN itself (P < 0.01). It suggested that exogenous FN can effect the synthesis of extracellular matrix proteins so as to promote a new connective tissue attachment formation. PMID:9592289

  20. Impact of Nanotopography and/or Functional Groups on Periodontal Ligament Cell Growth

    NASA Astrophysics Data System (ADS)

    Şaşmazel, Hilal Türkoğlu; Manolache, S.; Gümüşderelİoğlu, M.

    The main purpose of this contribution was to obtain COOH functionalities and/or nanotopographic changes on the surface of 3D, non-woven polyester fabric (NWPF) discs (12.5 mm in diameter) by using low pressure water/O2 plasma assisted treatments. The prepared discs were characterized by various methods after the plasma treatment. Periodontal ligament (PDL) fibroblasts were used in cell culture studies. The cell culture results showed that plasma treated 3D NWPF discs are favorable for PDL cell spreading, growth and viability due to the presence of functional groups and/or the nanotopography of their surfaces.

  1. Advanced glycation end products (AGEs) and their receptor (RAGE) induce apoptosis of periodontal ligament fibroblasts

    PubMed Central

    Li, D.X.; Deng, T.Z.; Lv, J.; Ke, J.

    2014-01-01

    Diabetics have an increased prevalence of periodontitis, and diabetes is one of the causative factors of severe periodontitis. Apoptosis is thought to be involved in this pathogenic relationship. The aim of this study was to investigate apoptosis in human periodontal ligament (PDL) fibroblasts induced by advanced glycation end products (AGEs) and their receptor (RAGE). We examined the roles of apoptosis, AGEs, and RAGE during periodontitis in diabetes mellitus using cultured PDL fibroblasts that were treated by AGE-modified bovine serum albumin (AGE-BSA), bovine serum albumin (BSA) alone, or given no treatment (control). Microscopy and real-time quantitative PCR indicated that PDL fibroblasts treated with AGE-BSA were deformed and expressed higher levels of RAGE and caspase 3. Cell viability assays and flow cytometry indicated that AGE-BSA reduced cell viability (69.80±5.50%, P<0.01) and increased apoptosis (11.31±1.73%, P<0.05). Hoechst 33258 staining and terminal-deoxynucleotidyl transferase-mediated nick-end labeling revealed that AGE-BSA significantly increased apoptosis of PDL fibroblasts. The results showed that the changes in PDL fibroblasts induced by AGE-BSA may explain how AGE-RAGE participates in and exacerbates periodontium destruction. PMID:25387669

  2. Advanced glycation end products (AGEs) and their receptor (RAGE) induce apoptosis of periodontal ligament fibroblasts.

    PubMed

    Li, D X; Deng, T Z; Lv, J; Ke, J

    2014-12-01

    Diabetics have an increased prevalence of periodontitis, and diabetes is one of the causative factors of severe periodontitis. Apoptosis is thought to be involved in this pathogenic relationship. The aim of this study was to investigate apoptosis in human periodontal ligament (PDL) fibroblasts induced by advanced glycation end products (AGEs) and their receptor (RAGE). We examined the roles of apoptosis, AGEs, and RAGE during periodontitis in diabetes mellitus using cultured PDL fibroblasts that were treated by AGE-modified bovine serum albumin (AGE-BSA), bovine serum albumin (BSA) alone, or given no treatment (control). Microscopy and real-time quantitative PCR indicated that PDL fibroblasts treated with AGE-BSA were deformed and expressed higher levels of RAGE and caspase 3. Cell viability assays and flow cytometry indicated that AGE-BSA reduced cell viability (69.80 ± 5.50%, P<0.01) and increased apoptosis (11.31 ± 1.73%, P<0.05). Hoechst 33258 staining and terminal-deoxynucleotidyl transferase-mediated nick-end labeling revealed that AGE-BSA significantly increased apoptosis of PDL fibroblasts. The results showed that the changes in PDL fibroblasts induced by AGE-BSA may explain how AGE-RAGE participates in and exacerbates periodontium destruction. PMID:25387669

  3. Advanced glycation end products (AGEs) and their receptor (RAGE) induce apoptosis of periodontal ligament fibroblasts.

    PubMed

    Li, D X; Deng, T Z; Lv, J; Ke, J

    2014-09-19

    Diabetics have an increased prevalence of periodontitis, and diabetes is one of the causative factors of severe periodontitis. Apoptosis is thought to be involved in this pathogenic relationship. The aim of this study was to investigate apoptosis in human periodontal ligament (PDL) fibroblasts induced by advanced glycation end products (AGEs) and their receptor (RAGE). We examined the roles of apoptosis, AGEs, and RAGE during periodontitis in diabetes mellitus using cultured PDL fibroblasts that were treated by AGE-modified bovine serum albumin (AGE-BSA), bovine serum albumin (BSA) alone, or given no treatment (control). Microscopy and real-time quantitative PCR indicated that PDL fibroblasts treated with AGE-BSA were deformed and expressed higher levels of RAGE and caspase 3. Cell viability assays and flow cytometry indicated that AGE-BSA reduced cell viability (69.80±5.50%, P<0.01) and increased apoptosis (11.31±1.73%, P<0.05). Hoechst 33258 staining and terminal-deoxynucleotidyl transferase-mediated nick-end labeling revealed that AGE-BSA significantly increased apoptosis of PDL fibroblasts. The results showed that the changes in PDL fibroblasts induced by AGE-BSA may explain how AGE-RAGE participates in and exacerbates periodontium destruction. PMID:25250588

  4. Proinflammatory Cytokines Regulate Cementogenic Differentiation of Periodontal Ligament Cells by Wnt/Ca(2+) Signaling Pathway.

    PubMed

    Han, Pingping; Lloyd, Tain; Chen, Zetao; Xiao, Yin

    2016-05-01

    Periodontal inflammation can inhibit cell differentiation of periodontal ligament cells (PDLCs), resulting in decreased bone/cementum regeneration ability. The Wnt signaling pathway, including canonical Wnt/β-catenin signaling and noncanonical Wnt/Ca(2+) signaling, plays essential roles in cell proliferation and differentiation during tooth development. However, little is still known whether noncanonical Wnt/Ca(2+) signaling cascade could regulate cementogenic/osteogenic differentiation capability of PDLCs within an inflammatory environment. Therefore, in this study, human PDLCs (hPDLCs) and their cementogenic differentiation potential were investigated in the presence of cytokines. The data demonstrated that both cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) inhibited cell proliferation, relative alkaline phosphatase activity, bone/cementum-related gene/protein expression, and canonical Wnt pathway-related gene/protein expression in hPDLCs. Interestingly, both cytokines upregulated the noncanonical Wnt/Ca(2+) signaling-related gene and protein expression in hPDLCs. When the Wnt/Ca(2+) pathway was blocked by Ca(2+)/calmodulin-dependent protein kinase II inhibitor KN93, even in the presence of IL-6 and TNF-α, cementogenesis could be stimulated in hPDLCs. Our data indicate that the Wnt/Ca(2+) pathway plays an inhibitory role on PDLC cementogenic differentiation in inflammatory microenvironments. Therefore, targeting the Wnt/Ca(2+) pathway may provide a novel therapeutic approach to improve periodontal regeneration for periodontal diseases. PMID:27074616

  5. Isolation and Characterization of Human Adult Epithelial Stem Cells from the Periodontal Ligament.

    PubMed

    Athanassiou-Papaefthymiou, M; Papagerakis, P; Papagerakis, S

    2015-11-01

    We report a novel method for the isolation of adult human epithelial stem cells (hEpiSCs) from the epithelial component of the periodontal ligament-the human epithelial cell rests of Malassez (hERM). hEpiSC-rich integrin-α6(+ve) hERM cells derived by fluorometry can be clonally expanded, can grow organoids, and express the markers of pluripotency (OCT4, NANOG, SOX2), polycomb protein RING1B, and the hEpiSC supermarker LGR5. They maintain the growth profile of their originating hERM in vitro. Subcutaneous cotransplantation with mesenchymal stem cells from the dental pulp on poly-l-lactic acid scaffolds in nude mice gave rise to perfect heterotopic ossicles in vivo with ultrastructure of dentin, enamel, cementum, and bone. These remarkable fully mineralized ossicles underscore the importance of epithelial-mesenchymal crosstalk in tissue regeneration using human progenitor stem cells, which may have already committed to lineage despite maintaining hallmarks of pluripotency. In addition, we report the clonal expansion and isolation of human LGR5(+ve) cells from the hERM in xeno-free culture conditions. The genetic profile of LGR5(+ve) cells includes both markers of pluripotency and genes important for secretory epithelial and dental epithelial cell differentiation, giving us a first insight into periodontal ligament-derived hEpiSCs. PMID:26392003

  6. Effect of cyclical forces on the periodontal ligament and alveolar bone remodeling during orthodontic tooth movement

    PubMed Central

    Kalajzic, Zana; Peluso, Elizabeth Blake; Utreja, Achint; Dyment, Nathaniel; Nihara, Jun; Xu, Manshan; Chen, Jing; Uribe, Flavio; Wadhwa, Sunil

    2014-01-01

    Objective To investigate the effect of externally applied cyclical (vibratory) forces on the rate of tooth movement, the structural integrity of the periodontal ligament, and alveolar bone remodeling. Methods Twenty-six female Sprague-Dawley rats (7 weeks old) were divided into four groups: CTRL (unloaded), VBO (molars receiving a vibratory stimulus only), TMO (molars receiving an orthodontic spring only), and TMO+VB (molars receiving an orthodontic spring and the additional vibratory stimulus). In TMO and TMO+VB groups, the rat first molars were moved mesially for 2 weeks using Nickel-Titanium coil spring delivering 25 g of force. In VBO and TMO+VB groups, cyclical forces at 0.4 N and 30 Hz were applied occlusally twice a week for 10 minutes. Microfocus X-ray computed tomography analysis and tooth movement measurements were performed on the dissected rat maxillae. Tartrate-resistant acid phosphatase staining and collagen fiber assessment were performed on histological sections. Results Cyclical forces significantly inhibited the amount of tooth movement. Histological analysis showed marked disorganization of the collagen fibril structure of the periodontal ligament during tooth movement. Tooth movement caused a significant increase in osteoclast parameters on the compression side of alveolar bone and a significant decrease in bone volume fraction in the molar region compared to controls. Conclusions Tooth movement was significantly inhibited by application of cyclical forces. PMID:23937517

  7. GGsTOP increases migration of human periodontal ligament cells in vitro via reactive oxygen species pathway.

    PubMed

    Jiang, Ying; Wang, Xiang; Li, Ying; Mu, Sen; Zhou, Shuang; Liu, Yi; Zhang, Bin

    2016-05-01

    GGsTOP is a novel and selective inhibitor of gamma-glutamyl transferase (GGT), a cell-surface enzyme that has a key role in glutathione homeostasis and the maintenance of cellular reactive oxygen species (ROS). ROS are essential for wound healing. However, little is known about the molecular mechanisms underlying the inhibition of GGT by GGsTOP in human periodontal ligament cells (hPLCs). The present study assessed GGT expression in mouse periodontal ligament tissues, GGT activity in hPLCs, and the potential physiological effect of GGsTOP on hPLC migration. Immunohistochemical analysis confirmed that GGT was widely expressed in mouse periodontal ligament tissue. Treatment with GGsTOP was associated with greater proliferation and migration of hPLCs, and higher levels of cellular ROS compared with untreated hPLCs. However, the increase in intracellular ROS was attenuated in hPLCs co‑cultured with the anti‑oxidant N‑acetylcysteine (NAC), a precursor of glutathione. The higher ROS levels associated with GGsTOP treatment were in parallel with increases in the levels of type I collagen and alpha smooth muscle actin, which was inhibited in hPLCs co‑cultured with NAC. Thus, GGsTOP may promote hPLC migration and participate in the maintenance of the periodontal ligament apparatus via the ROS pathway. PMID:27035100

  8. GGsTOP increases migration of human periodontal ligament cells in vitro via reactive oxygen species pathway

    PubMed Central

    JIANG, YING; WANG, XIANG; LI, YING; MU, SEN; ZHOU, SHUANG; LIU, YI; ZHANG, BIN

    2016-01-01

    GGsTOP is a novel and selective inhibitor of gamma-glutamyl transferase (GGT), a cell-surface enzyme that has a key role in glutathione homeostasis and the maintenance of cellular reactive oxygen species (ROS). ROS are essential for wound healing. However, little is known about the molecular mechanisms underlying the inhibition of GGT by GGsTOP in human periodontal ligament cells (hPLCs). The present study assessed GGT expression in mouse periodontal ligament tissues, GGT activity in hPLCs, and the potential physiological effect of GGsTOP on hPLC migration. Immunohistochemical analysis confirmed that GGT was widely expressed in mouse periodontal ligament tissue. Treatment with GGsTOP was associated with greater proliferation and migration of hPLCs, and higher levels of cellular ROS compared with untreated hPLCs. However, the increase in intracellular ROS was attenuated in hPLCs co-cultured with the anti-oxidant N-acetylcysteine (NAC), a precursor of glutathione. The higher ROS levels associated with GGsTOP treatment were in parallel with increases in the levels of type I collagen and alpha smooth muscle actin, which was inhibited in hPLCs co-cultured with NAC. Thus, GGsTOP may promote hPLC migration and participate in the maintenance of the periodontal ligament apparatus via the ROS pathway. PMID:27035100

  9. Escin inhibits lipopolysaccharide-induced inflammation in human periodontal ligament cells.

    PubMed

    Liu, Shutai; Wang, Huaizhou; Qiu, Caiqing; Zhang, Jing; Zhang, Taowen; Zhou, Wenjuan; Lu, Zhishan; Rausch-Fan, Xiaohui; Liu, Zhonghao

    2012-11-01

    Periodontitis is a chronic inflammatory disease associated with gram-negative subgingival microflora infection. Accumulating experimental evidence suggests that escin exerts anti-inflammatory and anti-edematous effects. This study was designed to investigate the in vitro effects of escin on the inflammatory reaction of human periodontal ligament cells (hPDLs). hPDLs were stimulated with lipopolysaccharide (LPS). The cells were treated with various concentrations of escin. The viability of hPDLs was evaluated using the MTT method. The expression of Toll-like receptor 2 (TLR2) in hPDLs and the levels of IL-1β, TNF-α and IL-6 in the supernatant were measured. Escin significantly attenuated LPS-induced cytotoxicity in a concentration-dependent manner in hPDLs. Treatment with escin partly blocked the expression of TLR2. Escin also lowered the increase of pro-inflammatory cytokines (IL-1β, TNF-α and IL-6) induced by LPS. The present findings show that escin exerts a protective effect against LPS-induced inflammation in hPDLs. It was also shown that escin is a promising medicine for the treatment of periodontitis. PMID:22895831

  10. In vitro studies on human periodontal ligament stem cell sheets enhanced by enamel matrix derivative.

    PubMed

    Wang, Zhongshan; Feng, Zhihong; Wu, Guofeng; Bai, Shizhu; Dong, Yan; Zhao, Yimin

    2016-05-01

    Numerous preclinical and clinical studies have focused on the periodontal regenerative functions of enamel matrix derivative (EMD), a heat-treated preparation derived from enamel matrix proteins (EMPs) of developing porcine teeth. In this study, periodontal ligament (PDL) stem cells (PDLSCs) were isolated, and the effects of EMD on the extracorporeal induction process and the characteristics of PDLSC sheets were investigated for their potential as a more effective stem-cell therapy. EMD-enhanced cell sheets could be induced by complete medium supplemented with 50 μg/mL vitamin C and 100 μg/mL EMD. The EMD-enhanced cell sheets appeared thicker and more compact than the normal PDLSC sheets, demonstrated more layers of cells (3-7 layers), secreted richer extracellular matrix (ECM), showed varying degrees of increases in mRNA expression of periodontal tissue-specific genes (COL I, POSTN), calcification-related genes (RUNX2, OPN, OCN) and a cementum tissue-specific gene (CAP), and possessed a better mineralization ability in terms of osteogenic differentiation in vitro. These EMD-enhanced cell sheets may represent a potential option for stem-cell therapy for PDL regeneration. PMID:26844646

  11. Allogeneic Transplantation of Periodontal Ligament-Derived Multipotent Mesenchymal Stromal Cell Sheets in Canine Critical-Size Supra-Alveolar Periodontal Defect Model.

    PubMed

    Tsumanuma, Yuka; Iwata, Takanori; Kinoshita, Atsuhiro; Washio, Kaoru; Yoshida, Toshiyuki; Yamada, Azusa; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Izumi, Yuichi

    2016-01-01

    Periodontitis is a chronic inflammatory disease that induces the destruction of tooth-supporting tissues, followed by tooth loss. Although several approaches have been applied to periodontal regeneration, complete periodontal regeneration has not been accomplished. Tissue engineering using a combination of cells and scaffolds is considered to be a viable alternative strategy. We have shown that autologous transplantation of periodontal ligament-derived multipotent mesenchymal stromal cell (PDL-MSC) sheets regenerates periodontal tissue in canine models. However, the indications for autologous cell transplantation in clinical situations are limited. Therefore, this study evaluated the safety and efficacy of allogeneic transplantation of PDL-MSC sheets using a canine horizontal periodontal defect model. Canine PDL-MSCs were labeled with enhanced green fluorescent protein (EGFP) and were cultured on temperature-responsive dishes. Three-layered cell sheets were transplanted around denuded root surfaces either autologously or allogeneically. A mixture of β-tricalcium phosphate and collagen gel was placed on the bone defects. Eight weeks after transplantation, dogs were euthanized and subjected to microcomputed tomography and histological analyses. RNA and DNA were extracted from the paraffin sections to verify the presence of EGFP at the transplantation site. Inflammatory markers from peripheral blood sera were quantified using an enzyme-linked immunosorbent assay. Periodontal regeneration was observed in both the autologous and the allogeneic transplantation groups. The allogeneic transplantation group showed particularly significant regeneration of newly formed cementum, which is critical for the periodontal regeneration. Serum levels of inflammatory markers from peripheral blood sera showed little difference between the autologous and allogeneic groups. EGFP amplicons were detectable in the paraffin sections of the allogeneic group. These results suggest that

  12. Allogeneic Transplantation of Periodontal Ligament-Derived Multipotent Mesenchymal Stromal Cell Sheets in Canine Critical-Size Supra-Alveolar Periodontal Defect Model

    PubMed Central

    Tsumanuma, Yuka; Iwata, Takanori; Kinoshita, Atsuhiro; Washio, Kaoru; Yoshida, Toshiyuki; Yamada, Azusa; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Izumi, Yuichi

    2016-01-01

    Abstract Periodontitis is a chronic inflammatory disease that induces the destruction of tooth-supporting tissues, followed by tooth loss. Although several approaches have been applied to periodontal regeneration, complete periodontal regeneration has not been accomplished. Tissue engineering using a combination of cells and scaffolds is considered to be a viable alternative strategy. We have shown that autologous transplantation of periodontal ligament-derived multipotent mesenchymal stromal cell (PDL-MSC) sheets regenerates periodontal tissue in canine models. However, the indications for autologous cell transplantation in clinical situations are limited. Therefore, this study evaluated the safety and efficacy of allogeneic transplantation of PDL-MSC sheets using a canine horizontal periodontal defect model. Canine PDL-MSCs were labeled with enhanced green fluorescent protein (EGFP) and were cultured on temperature-responsive dishes. Three-layered cell sheets were transplanted around denuded root surfaces either autologously or allogeneically. A mixture of β-tricalcium phosphate and collagen gel was placed on the bone defects. Eight weeks after transplantation, dogs were euthanized and subjected to microcomputed tomography and histological analyses. RNA and DNA were extracted from the paraffin sections to verify the presence of EGFP at the transplantation site. Inflammatory markers from peripheral blood sera were quantified using an enzyme-linked immunosorbent assay. Periodontal regeneration was observed in both the autologous and the allogeneic transplantation groups. The allogeneic transplantation group showed particularly significant regeneration of newly formed cementum, which is critical for the periodontal regeneration. Serum levels of inflammatory markers from peripheral blood sera showed little difference between the autologous and allogeneic groups. EGFP amplicons were detectable in the paraffin sections of the allogeneic group. These results suggest

  13. Healing of sites within the dog periodontal ligament after application of cold to the periodontal attachment apparatus.

    PubMed

    Tal, H; Kozlovsky, A; Pitaru, S

    1991-08-01

    The potential of periodontal ligament-derived tissues to regenerate periodontal attachment after cryosurgical trauma to the PDL in dogs was evaluated. The buccal alveolar plate of each canine tooth was exposed by a semi-lunar excision. A 3 mm thick cryoprobe, cooled to -81 degrees C, was placed on the bone 5 mm apical to the crest for 10 s. This induced cellular devitalization in the bone directly in contact with the probe and the PDL under it. The freezing-thawing cycle was repeated 3 times. Control sites were sham-operated at room temperature. Histologic sections from the center of the lesions were obtained from 1 h, 48 h and 30 d specimens. 1-h control and experimental histologic sections were similar. At 48 h post-surgery, the cellular component of the frozen PDL could not be identified and inflammatory response was minimal. The collagenous framework, however, appeared to form a continuum between the alveolar bone and cementum. Lacunae in the bone at the frozen segment were empty. The injured PDL was surrounded by normal PDL. Control specimens appeared normal. At 30 d, the PDL space in the frozen segments was populated by PDL-like tissue which did not differ significantly from the PDL coronal or apical to it. Collagen fibers appeared to be attached to the cementum on one side and to the alveolar bone on the other. Bone resorption or ankylosis was not observed in the experimental sites. It is suggested that the extracellular matrix in the devitalized area was preserved, supporting regeneration of the cryolesion. PMID:1894749

  14. Electrospun fibrous scaffolds combined with nanoscale hydroxyapatite induce osteogenic differentiation of human periodontal ligament cells.

    PubMed

    Wu, Xiaonan; Miao, Leiying; Yao, Yingfang; Wu, Wenlei; Liu, Yu; Chen, Xiaofeng; Sun, Weibin

    2014-01-01

    Periodontal repair is a complex process in which regeneration of alveolar bone is a vital component. The aim of this study was to develop a biodegradable scaffold with good biocompatibility and osteoinductive ability. Two types of composite fibrous scaffolds were produced by electrospinning, ie, type I collagen/poly(ε-caprolactone) (COL/PCL) and type I collagen/poly(ε-caprolactone)/nanoscale hydroxyapatite (COL/PCL/nHA) with an average fiber diameter of about 377 nm. After a simulated body fluid (SBF) immersion test, the COL/PCL/nHA-SBF scaffold developed a rough surface because of the calcium phosphate deposited on the fibers, suggesting that the presence of nHA promoted the mineralization potential of the scaffold. Energy dispersive X-ray spectroscopy clearly showed the calcium and phosphorus content in the COL/PCL/nHA and COL/PCL/nHA-SBF scaffolds, confirming the findings of nHA and calcium phosphate precipitation on scanning electron micrographs. Water contact analysis revealed that nHA could improve the hydrophilic nature of the COL/PCL/nHA-SBF scaffold. The morphology of periodontal ligament cells cultured on COL/PCL-SBF and COL/PCL/nHA-SBF was evaluated by scanning electron microscopy. The results showed that cells adhered to either type of scaffold and were slightly spindle-shaped in the beginning, then extended gradually with stretched filopodia, indicating an ability to fill the fiber pores. A Cell Counting Kit-8 assay showed that both scaffolds supported cell proliferation. However, real-time quantitative polymerase chain reaction analysis showed that expression of the bone-related markers, alkaline phosphatase and osteocalcin, was upregulated only on the COL/PCL/nHA-SBF scaffold, indicating that this scaffold had the ability to induce osteogenic differentiation of periodontal ligament cells. In this study, COL/PCL/nHA-SBF produced by electrospinning followed by biomimetic mineralization had combined electrospun fibers with nHA in it. This scaffold has

  15. Electrospun fibrous scaffolds combined with nanoscale hydroxyapatite induce osteogenic differentiation of human periodontal ligament cells

    PubMed Central

    Wu, Xiaonan; Miao, Leiying; Yao, Yingfang; Wu, Wenlei; Liu, Yu; Chen, Xiaofeng; Sun, Weibin

    2014-01-01

    Periodontal repair is a complex process in which regeneration of alveolar bone is a vital component. The aim of this study was to develop a biodegradable scaffold with good biocompatibility and osteoinductive ability. Two types of composite fibrous scaffolds were produced by electrospinning, ie, type I collagen/poly(ε-caprolactone) (COL/PCL) and type I collagen/poly(ε-caprolactone)/nanoscale hydroxyapatite (COL/PCL/nHA) with an average fiber diameter of about 377 nm. After a simulated body fluid (SBF) immersion test, the COL/PCL/nHA-SBF scaffold developed a rough surface because of the calcium phosphate deposited on the fibers, suggesting that the presence of nHA promoted the mineralization potential of the scaffold. Energy dispersive X-ray spectroscopy clearly showed the calcium and phosphorus content in the COL/PCL/nHA and COL/PCL/nHA-SBF scaffolds, confirming the findings of nHA and calcium phosphate precipitation on scanning electron micrographs. Water contact analysis revealed that nHA could improve the hydrophilic nature of the COL/PCL/nHA-SBF scaffold. The morphology of periodontal ligament cells cultured on COL/PCL-SBF and COL/PCL/nHA-SBF was evaluated by scanning electron microscopy. The results showed that cells adhered to either type of scaffold and were slightly spindle-shaped in the beginning, then extended gradually with stretched filopodia, indicating an ability to fill the fiber pores. A Cell Counting Kit-8 assay showed that both scaffolds supported cell proliferation. However, real-time quantitative polymerase chain reaction analysis showed that expression of the bone-related markers, alkaline phosphatase and osteocalcin, was upregulated only on the COL/PCL/nHA-SBF scaffold, indicating that this scaffold had the ability to induce osteogenic differentiation of periodontal ligament cells. In this study, COL/PCL/nHA-SBF produced by electrospinning followed by biomimetic mineralization had combined electrospun fibers with nHA in it. This scaffold has

  16. Periodontal Disease-Induced Atherosclerosis and Oxidative Stress

    PubMed Central

    Kurita-Ochiai, Tomoko; Jia, Ru; Cai, Yu; Yamaguchi, Yohei; Yamamoto, Masafumi

    2015-01-01

    Periodontal disease is a highly prevalent disorder affecting up to 80% of the global population. Recent epidemiological studies have shown an association between periodontal disease and cardiovascular disease, as oxidative stress plays an important role in chronic inflammatory diseases such as periodontal disease and cardiovascular disease. In this review, we focus on the mechanisms by which periodontopathic bacteria cause chronic inflammation through the enhancement of oxidative stress and accelerate cardiovascular disease. Furthermore, we comment on the antioxidative activity of catechin in atherosclerosis accelerated by periodontitis. PMID:26783845

  17. Adhesion and proliferation of human periodontal ligament cells on poly(2-methoxyethyl acrylate).

    PubMed

    Kitakami, Erika; Aoki, Makiko; Sato, Chikako; Ishihata, Hiroshi; Tanaka, Masaru

    2014-01-01

    Human periodontal ligament (PDL) cells obtained from extracted teeth are a potential cell source for tissue engineering. We previously reported that poly(2-methoxyethyl acrylate) (PMEA) is highly biocompatible with human blood cells. In this study, we investigated the adhesion, morphology, and proliferation of PDL cells on PMEA and other types of polymers to design an appropriate scaffold for tissue engineering. PDL cells adhered and proliferated on all investigated polymer surfaces except for poly(2-hydroxyethyl methacrylate) and poly[(2-methacryloyloxyethyl phosphorylcholine)-co-(n-butyl methacrylate)]. The initial adhesion of the PDL cells on PMEA was comparable with that on polyethylene terephthalate (PET). In addition, the PDL cells on PMEA spread well and exhibited proliferation behavior similar to that observed on PET. In contrast, platelets hardly adhered to PMEA. PMEA is therefore expected to be an excellent scaffold for tissue engineering and for culturing tissue-derived cells in a blood-rich environment. PMID:25165689

  18. Adhesion and Proliferation of Human Periodontal Ligament Cells on Poly(2-methoxyethyl acrylate)

    PubMed Central

    Aoki, Makiko; Sato, Chikako; Ishihata, Hiroshi; Tanaka, Masaru

    2014-01-01

    Human periodontal ligament (PDL) cells obtained from extracted teeth are a potential cell source for tissue engineering. We previously reported that poly(2-methoxyethyl acrylate) (PMEA) is highly biocompatible with human blood cells. In this study, we investigated the adhesion, morphology, and proliferation of PDL cells on PMEA and other types of polymers to design an appropriate scaffold for tissue engineering. PDL cells adhered and proliferated on all investigated polymer surfaces except for poly(2-hydroxyethyl methacrylate) and poly[(2-methacryloyloxyethyl phosphorylcholine)-co-(n-butyl methacrylate)]. The initial adhesion of the PDL cells on PMEA was comparable with that on polyethylene terephthalate (PET). In addition, the PDL cells on PMEA spread well and exhibited proliferation behavior similar to that observed on PET. In contrast, platelets hardly adhered to PMEA. PMEA is therefore expected to be an excellent scaffold for tissue engineering and for culturing tissue-derived cells in a blood-rich environment. PMID:25165689

  19. Cell attachment of periodontal ligament cells on commercially pure titanium at the early stage.

    PubMed

    Zhou, Bin; Cao, Yingguang; Wu, Lijuan; Yuan, Yanxiang; Zeng, Yinping

    2004-01-01

    In order to study the character of periodontal ligament cells (PDLCs) attaching on commercially pure titanium (cpTi) by morphology and metrology on the early stage (24 h), 1 x 10(5)/ml PDLCs in 2 ml culture medium were seeded on cpTi discs fixed in 24-well culture plates. Morphology of cell attachment was observed by contrast phase microscope, scanning electron microscope (SEM) and fluroscence microscopy. Cell adhesion was analyzed by MTT at 0.5, 1, 2, 4 h respectively. PDLCs could attach and spread on cpTi discs. SEM showed that PDLCs had pseudopod-like protuberance. PDLCs showed different attaching phases and reached saturation in cell number at 2 h. It was concluded that PDLCs had good biocompatibility with cpTi, and showed a regular and dynamic pattern in the process of attaching to cpTi. PMID:15315359

  20. Experimentally Determined Mechanical Properties of, and Models for, the Periodontal Ligament: Critical Review of Current Literature

    PubMed Central

    Fill, Ted S.; Carey, Jason P.; Toogood, Roger W.; Major, Paul W.

    2011-01-01

    Introduction. This review is intended to highlight and discuss discrepancies in the literature of the periodontal ligament's (PDL) mechanical properties and the various experimental approaches used to measure them. Methods. Searches were performed on biomechanical and orthodontic publications (in databases: Compendex, EMBASE, MEDLINE, PubMed, ScienceDirect, and Scopus). Results. The review revealed that significant variations exist, some on the order of six orders of magnitude, in the PDL's elastic constants and mechanical properties. Possible explanations may be attributable to different experimental approaches and assumptions. Conclusions. The discrepancies highlight the need for further research into PDL properties under various clinical and experimental loading conditions. Better understanding of the PDL's biomechanical behavior under physiologic and traumatic loading conditions might enhance the understanding of the PDL's biologic reaction in health and disease. Providing a greater insight into the response of the PDL would be instrumental to orthodontists and engineers for designing more predictable, and therefore more efficacious, orthodontic appliances. PMID:21772924

  1. Combined effects of proinflammatory cytokines and intermittent cyclic mechanical strain in inhibiting osteogenicity in human periodontal ligament cells.

    PubMed

    Sun, Chaofan; Chen, Lijiao; Shi, Xinlian; Cao, Zhensheng; Hu, Bibo; Yu, Wenbin; Ren, Manman; Hu, Rongdang; Deng, Hui

    2016-09-01

    Mechanical strain plays an important role in bone formation and resorption during orthodontic tooth movement. The mechanism has not been fully studied, and the process becomes complex with increased amounts of periodontal patients seeking orthodontic care. Our aims were to elucidate the combined effects of proinflammatory cytokines and intermittent cyclic strain (ICS) on the osteogenic capacity of human periodontal ligament cells. Cultured human periodontal ligament cells were exposed to proinflammatory cytokines (interleukin-1β 5 ng/mL and tumor necrosis factor-α 10 ng/mL) for 1 and 5 days, and ICS (0.5 Hz, 12% elongation) was applied for 4 h per day. The autocrine of inflammatory cytokines was measured by enzyme-linked immunosorbent assay. The expression of osteoblast markers runt-related transcription factor 2 and rabbit collagen type I was determined using real-time polymerase chain reaction and Western blot. The osteogenic capacity was also detected by alkaline phosphatase (ALP) staining, ALP activity, and alizarin red staining. We demonstrated that ICS impaired the osteogenic capacity of human periodontal ligament cells when incubated with proinflammatory cytokines, as evidenced by the low expression of ALP staining, low ALP activity, reduced alizarin red staining, and reduced osteoblast markers. These data, for the first time, suggest that ICS has a negative effect on the inductive inhibition of osteogenicity in human PDL cells mediated by proinflammatory cytokines. PMID:27357508

  2. Force-induced Adrb2 in Periodontal Ligament Cells Promotes Tooth Movement

    PubMed Central

    Cao, H.; Kou, X.; Yang, R.; Liu, D.; Wang, X.; Song, Y.; Feng, L.; He, D.; Gan, Y.; Zhou, Y.

    2014-01-01

    The sympathetic nervous system (SNS) regulates bone resorption through β-2 adrenergic receptor (Adrb2). In orthodontic tooth movement (OTM), mechanical force induces and regulates alveolar bone remodeling. Compressive force-associated osteoclast differentiation and alveolar bone resorption are the rate-limiting steps of tooth movement. However, whether mechanical force can activate Adrb2 and thus contribute to OTM remains unknown. In this study, orthodontic nickel-titanium springs were applied to the upper first molars of rats and Adrb1/2-/- mice to confirm the role of SNS and Adrb2 in OTM. The results showed that blockage of SNS activity in the jawbones of rats by means of superior cervical ganglion ectomy reduced OTM distance from 860 to 540 μm after 14 d of force application. In addition, the injection of nonselective Adrb2 agonist isoproterenol activated the downstream signaling of SNS to accelerate OTM from 300 to 540 μm after 7 d of force application. Adrb1/2-/- mice showed significantly reduced OTM distance (19.5 μm) compared with the wild-type mice (107.6 μm) after 7 d of force application. Histopathologic analysis showed that the number of Adrb2-positive cells increased in the compressive region of periodontal ligament after orthodontic force was applied on rats. Mechanistically, mechanical compressive force upregulated Adrb2 expression in primary-cultured human periodontal ligament cells (PDLCs) through the elevation of intracellular Ca2+ concentration. Activation of Adrb2 in PDLCs increased the RANKL/OPG ratio and promoted the peripheral blood mononuclear cell differentiation to osteoclasts in the cocultured system. Upregulation of Adrb2 in PDLCs promoted osteoclastogenesis, which accelerated OTM through Adrb2-enhanced bone resorption. In summary, this study suggests that mechanical force-induced Adrb2 activation in PDLCs contributes to SNS-regulated OTM. PMID:25252876

  3. Cyclic stretch and compression forces alter microRNA-29 expression of human periodontal ligament cells.

    PubMed

    Chen, Yinghua; Mohammed, Arshad; Oubaidin, Maysaa; Evans, Carla A; Zhou, Xiaofeng; Luan, Xianghong; Diekwisch, Thomas G H; Atsawasuwan, Phimon

    2015-07-15

    MicroRNAs (miRs) play an important role in the development and remodeling of tissues through the regulation of large cohorts of extracellular matrix (ECM) genes. The purpose of the present study was to determine the response of miR-29 family expression to loading forces and their effects on ECM gene expression in periodontal ligament cells, the key effector cell population during orthodontic tooth movement. In a comparison between miRs from human periodontal ligament cells (PDLCs) and alveolar bone cells (ABCs) from healthy human subjects, the ABC cohort of miRs was substantially greater than the corresponding PDLC cohort. Cyclic mechanical stretch forces at 12% deformation at 0.1Hz for 24h decreased expression of miR-29 family member miRs about 0.5 fold while 2g/cm(2) compression force for 24h increased miR-29 family member expression in PDLCs 1.8-4 folds. Cyclic stretch up-regulated major ECM genes in PDLCs, such as COL1A1, COL3A1 and COL5A1, while the compression force resulted in a down-regulation of these ECM genes. Direct interactions of miR-29 and Col1a1, Col3a1 and Col5a1 were confirmed using a dual luciferase reporter gene assay. In addition, transient transfection of a miR-29b mimic in mouse PDLCs down-regulated Col1a1, Col3a1 and Col5a1 while the transfection of miR-29b inhibitor up-regulated these genes compared to control transfection indicating that these target ECM genes directly responded to the altered level of miR-29b. These results provided a possible explanation for the effects of the miR-29 family on loaded PDLCS and their roles in extracellular matrix gene expression. PMID:25827718

  4. In vitro viability of human periodontal ligament cells in green tea extract

    PubMed Central

    Ghasempour, Maryam; Moghadamnia, Ali Akbar; Abedian, Zeynab; Amir, Mahdi Pour; Feizi, Farideh; Gharekhani, Samane

    2015-01-01

    Context: Delayed replantation of avulsed teeth may be successful if the majority of periodontal ligament cells (PDL) survive. A proper transport medium is required when immediate replantation is not possible. Green tea extract (GTE) may be effective in preserving the cells because of its special properties. Aims: This study was done to evaluate the potential of GTE in periodontal ligament cells preservation. Materials and Methods: Fifty-four extracted human teeth with closed apices were randomly divided into three groups each with 18 teeth as follow: GTE, water (negative control), and Hank's balanced salt solution (HBSS) (positive control). The specimens were immersed in the media for 1, 3, and 15 hours at 4°C (n = 6) and treated with collagenase 1A for 45 minutes. Cell viability was determined using the trypan blue exclusion technique. Statistical Analysis: Data were analyzed by one-way analysis of variance (ANOVA), post hoc Tukey and paired t-test at significance level of P < 0.05. Results: Means (standard deviation, SD) of viable cells in HBSS, water, and GTE were estimated 348.33 ± 88.49, 101 ± 14.18, and 310.56 ± 56.97 at 1 hours; 273.4 ± 44.80, 64.16 ± 16.44, and 310.2 ± 11.21 at 3 hours; and 373.72 ± 67.81, 14.41 ± 2.88 and 315.24 ± 34.48 at 15 hours; respectively. No significant differences were found between HBSS and GTE at all the time intervals. Both these solutions could preserve the cells more than water significantly. Conclusion: GTE and HBSS were equally effective in preserving the cells and were significantly superior to water. PMID:25657527

  5. Influence of E-smoking liquids on human periodontal ligament fibroblasts

    PubMed Central

    2014-01-01

    Introduction Over the last years, electronic cigarettes (ECs) have become more popular, particularly in individuals who want to give up smoking tobacco. The aim of the present study was to assess the influence of the different e-smoking liquids on the viability and proliferation of human periodontal ligament fibroblasts. Method and materials For this study six test solutions with components from ECs were selected: lime-, hazelnut- and menthol-flavored liquids, nicotine, propylene glycol, and PBS as control group. The fibroblasts were incubated up to 96 h with the different liquids, and cell viability was measured by using the PrestoBlue® reagent, the ATP detection and the migration assay. Fluorescence staining was carried out to visualize cell growth and morphology. Data were statistically analyzed by two-tailed one-way ANOVA. Results The cell viability assay showed that the proliferation rates of the cells incubated with nicotine or the various flavored liquids of the e-cigarettes were reduced in comparison to the controls, though not all reductions were statistically significant. After an incubation of 96 h with the menthol-flavored liquid the fibroblasts were statistically significant reduced (p < 0.001). Similar results were found for the detection of ATP in fibroblasts; the incubation with menthol-flavored liquids (p < 0.001) led to a statistically significant reduction. The cell visualization tests confirmed these findings. Conclusion Within its limits, the present in vitro study demonstrated that menthol additives of e-smoking have a harmful effect on human periodontal ligament fibroblasts. This might indicate that menthol additives should be avoided for e-cigarettes. PMID:25224853

  6. The use of platelet-rich fibrin combined with periodontal ligament and jaw bone mesenchymal stem cell sheets for periodontal tissue engineering.

    PubMed

    Wang, Zhong-Shan; Feng, Zhi-Hong; Wu, Guo-Feng; Bai, Shi-Zhu; Dong, Yan; Chen, Fa-Ming; Zhao, Yi-Min

    2016-01-01

    Periodontal regeneration involves the restoration of at least three unique tissues: cementum, periodontal ligament tissue (PDL) and alveolar bone tissue. Here, we first isolated human PDL stem cells (PDLSCs) and jaw bone mesenchymal stem cells (JBMSCs). These cells were then induced to form cell sheets using an ascorbic acid-rich approach, and the cell sheet properties, including morphology, thickness and gene expression profile, were compared. Platelet-rich fibrin (PRF) derived from human venous blood was then fabricated into bioabsorbable fibrin scaffolds containing various growth factors. Finally, the in vivo potential of a cell-material construct based on PDLSC sheets, PRF scaffolds and JBMSC sheets to form periodontal tissue was assessed in a nude mouse model. In this model, PDLSC sheet/PRF/JBMSC sheet composites were placed in a simulated periodontal space comprising human treated dentin matrix (TDM) and hydroxyapatite (HA)/tricalcium phosphate (TCP) frameworks. Eight weeks after implantation, the PDLSC sheets tended to develop into PDL-like tissues, while the JBMSC sheets tended to produce predominantly bone-like tissues. In addition, the PDLSC sheet/PRF/JBMSC sheet composites generated periodontal tissue-like structures containing PDL- and bone-like tissues. Further improvements in this cell transplantation design may have the potential to provide an effective approach for future periodontal tissue regeneration. PMID:27324079

  7. The use of platelet-rich fibrin combined with periodontal ligament and jaw bone mesenchymal stem cell sheets for periodontal tissue engineering

    PubMed Central

    Wang, Zhong-Shan; Feng, Zhi-Hong; Wu, Guo-Feng; Bai, Shi-Zhu; Dong, Yan; Chen, Fa-Ming; Zhao, Yi-Min

    2016-01-01

    Periodontal regeneration involves the restoration of at least three unique tissues: cementum, periodontal ligament tissue (PDL) and alveolar bone tissue. Here, we first isolated human PDL stem cells (PDLSCs) and jaw bone mesenchymal stem cells (JBMSCs). These cells were then induced to form cell sheets using an ascorbic acid-rich approach, and the cell sheet properties, including morphology, thickness and gene expression profile, were compared. Platelet-rich fibrin (PRF) derived from human venous blood was then fabricated into bioabsorbable fibrin scaffolds containing various growth factors. Finally, the in vivo potential of a cell-material construct based on PDLSC sheets, PRF scaffolds and JBMSC sheets to form periodontal tissue was assessed in a nude mouse model. In this model, PDLSC sheet/PRF/JBMSC sheet composites were placed in a simulated periodontal space comprising human treated dentin matrix (TDM) and hydroxyapatite (HA)/tricalcium phosphate (TCP) frameworks. Eight weeks after implantation, the PDLSC sheets tended to develop into PDL-like tissues, while the JBMSC sheets tended to produce predominantly bone-like tissues. In addition, the PDLSC sheet/PRF/JBMSC sheet composites generated periodontal tissue-like structures containing PDL- and bone-like tissues. Further improvements in this cell transplantation design may have the potential to provide an effective approach for future periodontal tissue regeneration. PMID:27324079

  8. Significant Type I and Type III Collagen Production from Human Periodontal Ligament Fibroblasts in 3D Peptide Scaffolds without Extra Growth Factors

    PubMed Central

    Kumada, Yoshiyuki; Zhang, Shuguang

    2010-01-01

    We here report the development of two peptide scaffolds designed for periodontal ligament fibroblasts. The scaffolds consist of one of the pure self-assembling peptide scaffolds RADA16 through direct coupling to short biologically active motifs. The motifs are 2-unit RGD binding sequence PRG (PRGDSGYRGDS) and laminin cell adhesion motif PDS (PDSGR). RGD and laminin have been previously shown to promote specific biological activities including periodontal ligament fibroblasts adhesion, proliferation and protein production. Compared to the pure RADA16 peptide scaffold, we here show that these designer peptide scaffolds significantly promote human periodontal ligament fibroblasts to proliferate and migrate into the scaffolds (for ∼300 µm/two weeks). Moreover these peptide scaffolds significantly stimulated periodontal ligament fibroblasts to produce extracellular matrix proteins without using extra additional growth factors. Immunofluorescent images clearly demonstrated that the peptide scaffolds were almost completely covered with type I and type III collagens which were main protein components of periodontal ligament. Our results suggest that these designer self-assembling peptide nanofiber scaffolds may be useful for promoting wound healing and especially periodontal ligament tissue regeneration. PMID:20421985

  9. In vitro Osteogenic impulse effect of Dexamethasone on periodontal ligament stem cells

    PubMed Central

    Roozegar, Mohamad Ali; Mohammadi, Tayebeh Malek; Havasian, Mohamad Reza; Panahi, Jafar; Hashemian, Amirreza; Amraei, Mansur; Hoshmand, Behzad

    2015-01-01

    Periodontium is a complex organ composed of mineralized epithelial and connective tissue. Dexamethasone could stimulate proliferation of osteoblast and fibroblasts. This study aimed to assess the osteogenic effect of dexamethasone on periodental ligament (PDL) stem cells. PDL stem cells were collected from periodontal ligament tissue of root of extracted premolar of young and healthy people. The stem cells were cultured in α-MEM Medium in three groups, one group with basic medium contains (α- MEM and FBS 10 % and 50 mmol of β_ gelisrophosphat and L_ ascorbic acid µg/ml), the second group: basic medium with dexamethasone and the third one: basic medium without any osteogenic stimulant. Mineralization of cellular layer was analyzed with Alizarin red stain method. Osteogenic analysis was done by Alkaline phosphates and calcium test. These analysis indicated that the amount of intra-cellular calcium and alkaline phosphates in the Dexamethasone group was far more than the control and basic group (P<0.05). The results of Alizarin red stain indicated more mineralization of cultured cells in Dexamethasone group (P<0.05). The study results showed that Dexamethasone has significant osteogenic effect on PDL stem cells and further studies are recommended to evaluate its effect on treatment of bone disorders. PMID:25848170

  10. Bilayered construct for simultaneous regeneration of alveolar bone and periodontal ligament.

    PubMed

    Sundaram, M Nivedhitha; Sowmya, S; Deepthi, S; Bumgardener, Joel D; Jayakumar, R

    2016-05-01

    Periodontitis is an inflammatory disease that causes destruction of tooth-supporting tissues and if left untreated leads to tooth loss. Current treatments have shown limited potential for simultaneous regeneration of the tooth-supporting tissues. To recreate the complex architecture of the periodontium, we developed a bilayered construct consisting of poly(caprolactone) (PCL) multiscale electrospun membrane (to mimic and regenerate periodontal ligament, PDL) and a chitosan/2wt % CaSO4 scaffold (to mimic and regenerate alveolar bone). Scanning electron microscopy results showed the porous nature of the scaffold and formation of beadless electrospun multiscale fibers. The fiber diameter of microfiber and nanofibers was in the range of 10 ± 3 µm and 377 ± 3 nm, respectively. The bilayered construct showed better protein adsorption compared to the control. Osteoblastic differentiation of human dental follicle stem cells (hDFCs) on chitosan/2wt % CaSO4 scaffold showed maximum alkaline phosphatase at seventh day followed by a decline thereafter when compared to chitosan control scaffold. Fibroblastic differentiation of hDFCs was confirmed by the expression of PLAP-1 and COL-1 proteins which were more prominent on PCL multiscale membrane in comparison to control membranes. Overall these results show that the developed bilayered construct might serve as a good candidate for the simultaneous regeneration of the alveolar bone and PDL. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 761-770, 2016. PMID:26153674

  11. Evaluation of the resolving potency of a novel reconstruction filter on periodontal ligament space with dental cone-beam CT: a quantitative phantom study

    NASA Astrophysics Data System (ADS)

    Houno, Yuuki; Hishikawa, Toshimitsu; Gotoh, Ken-ichi; Naitoh, Munetaka; Ariji, Eiichiro; Kodera, Yoshie

    2014-03-01

    Diagnosis of the alveolar bone condition is important for the treatment planning of periodontal disease. Especially the determination of periodontal ligament space is the most important remark because it represents the periodontal tissue support for tooth retention. However, owing to the image blur of the current cone-beam CT (CBCT) imaging technique, the periodontal ligament space is difficult to visualize. In this study, we developed an original periodontal ligament phantom (PLP) and evaluated the image quality of simulated periodontal ligament space using a novel reconstruction filter for CBCT that emphasized high frequency component. PLP was composed from two resin blocks of different materials, the bone equivalent block and the dentine equivalent block. They were assembled to make continuously changing space from 0.0 to 1.0 millimeter that mimics periodontal ligament space. PLP was placed in water and the image was obtained by using Alphard-3030 dental cone-beam CT (Asahi Roentgen Industry Co., Ltd.). Then we reconstructed the projection data with a novel reconstruction filter. The axial images were compared with conventional reconstructed images. In novel filter reconstruction images, 0.4 millimeter of the space width was steadily detected by calculation of pixel value, on the other hand 0.6 millimeter was in conventional images. With our method, the resolving potency of conebeam CT images was improved.

  12. Recombinant human bone morphogenetic protein-9 potently induces osteogenic differentiation of human periodontal ligament fibroblasts.

    PubMed

    Fuchigami, Sawako; Nakamura, Toshiaki; Furue, Kirara; Sena, Kotaro; Shinohara, Yukiya; Noguchi, Kazuyuki

    2016-04-01

    To accomplish effective periodontal regeneration for periodontal defects, several regenerative methods using growth and differentiation factors, including bone morphogenetic proteins (BMPs), have been developed. Bone morphogenetic protein-9 exhibits the most potent osteogenic activity of this growth factor family. However, it is unclear whether exogenous BMP-9 can induce osteogenic differentiation in human periodontal ligament (PDL) fibroblasts. Here, we examined the effects of recombinant human (rh) BMP-9 on osteoblastic differentiation in human PDL fibroblasts in vitro, compared with rhBMP-2. Recombinant human BMP-9 potently induced alkaline phosphatase (ALP) activity, mineralization, and increased expression of runt-related transcription factor-2/core binding factor alpha 1 (RUNX2/CBFA1), osterix, inhibitor of DNA binding/differentiation-1 (ID1), osteopontin, and bone sialoprotein genes, compared with rhBMP-2. The levels of rhBMP-9-induced osterix and ALP mRNA were significantly reduced in activin receptor-like kinase-1 and -2 small interfering RNA (siRNA)-transfected human PDL fibroblasts. Recombinant human BMP-9-induced ALP activity was not inhibited by noggin, in contrast to rhBMP-2 induced ALP activity, which was. Phosphorylation of SMAD1/5/8 in human PDL fibroblasts was induced by addition of rhBMP-9. Recombinant human BMP-9-induced ALP activity was suppressed by SB203580, SP600125, and U0126, which are inhibitors of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK1/2), respectively. Our data suggest that rhBMP-9 is a potent inducer of the differentiation of human PDL fibroblasts into osteoblast-like cells and that this may be mediated by the SMAD and mitogen-activated protein kinase (p38, ERK1/2, and JNK) pathways. PMID:26879145

  13. Simvastatin induces the osteogenic differentiation of human periodontal ligament stem cells.

    PubMed

    Zhao, Bing-jiao; Liu, Yue-hua

    2014-10-01

    Periodontal ligament stem cells (PDLSCs) are considered as potential mesenchymal stem cell sources for future clinical applications in periodontal regeneration therapy. Simvastation, widely used for lowering serum cholesterol, is known to have a bone stimulatory effect. However, it is not clear whether simvastation affects the differentiation of PDLSCs. This study examined the effects of simvastatin on human PDLSCs in vitro and in vivo. Using the limiting dilution technique, human PDLSCs were isolated and expanded. PDLSCs were cultured with simvastatin (0.01-10 μM), and the proliferation was measured. The osteogenic differentiation was characterized by alkaline phosphatase (ALP) activity and Alizarin Red-S staining for calcium deposition. The gene expression levels of osteogenic markers were evaluated by RT-PCR. In addition, PDLSCs were transplanted into nude mice with ceramic bovine bone powders as carriers to observe the capacity of mineralized tissue formation in vivo. Simvastatin at concentrations <1 μM did not suppress the proliferation of PDLSCs. After the administration of 0.1 μM simvastatin, the expression of ALP, bone sialoprotein, and bone morphogenetic protein-2 genes were significantly upregulated, and the ALP activity and mineralized nodule formation were significantly higher in the simvastatin-treated cells than the control cells. In addition, the in vivo transplantation results showed that simvastatin treatment promoted the degree of mineralized tissue formation. Collectively, simvastatin has positive effects on osteogenic differentiation of human PDLSCs in vitro and in vivo. This suggests that simvastatin might be a useful osteogenic induction agent for periodontal bone regeneration. PMID:24112098

  14. An electron microscopic radioautographic study of collagen secretion in periodontal ligament fibroblasts of the mouse: I. Normal fibroblasts

    SciTech Connect

    Cho, M.I.; Garant, P.R.

    1981-12-01

    Analysis of electron microscopic radioautographs revealed a maximum labeling with /sup 3/H-proline of rough endoplasmic reticulum (RER) at 3 minutes, Golgi saccules 1 and 2 at 10 minutes, Golgi saccules type 3 at 20 minutes, and presecretory and secretory granules at 30 minutes. Labeling of the extra-cellular collagen matrix occurred at 30 minutes and increased with time. These observations suggest that pro-a-chains of collagen in periodontal ligament fibroblasts are synthesized in the RER and transported to the Golgi apparatus within 10 minutes. These chains then undergo parallel alignment in Golgi saccules type 2 and form segment-long-spacing-like crystallites in Golgi saccules type 3 between 10 and 20 minutes. The peak labeling of presecretory granules and mature secretory granules in small amounts at 30 minutes and the rapid increase in labeling of extracellular collagen matrix which begins at 30 minutes, indicates that the formation of secretory granules requires approximately 30 minutes and that a rapid system of secretory granule translocation exists in periodontal ligament fibroblasts. This evidence further supports the previously published morphologic evidence for a microtubule-dependent system of collagen secretion in periodontal ligament fibroblasts (Cho and Garant, 1981b).

  15. A micromechanically-based, three-dimensional interface finite element for the modelling of the periodontal ligament.

    PubMed

    Genna, Francesco

    2006-08-01

    Some ideas are presented for the implementation of an interface finite element capable to model in 3-dimensions several mechanical features of the periodontal ligament. Such an element is based on a simple 2-cable micromechanical model, able to reproduce the periodontal ligament stiffness and strength under any loading condition, including the pure torsion of a tooth. A single cable represents a sufficiently populated sample of collagen fibres, each with an initially crimped geometry; a single collagen fibre can provide a mechanical response, in tension, only when it is completely uncoiled. The macroscopic interface behaviour is obtained by statistical integrations over the uncoiled length of each collagen fibre, up to the fibre failure. Such a model can reproduce the periodontal ligament anisotropy due to the variable fibre orientation along the tooth root, its different behaviour in tension/compression/shear, its different behaviour for extrusive/intrusive loading, and so forth. Some numerical examples illustrate the potentialities of this interface element, quite simple in essence but rather complete from an engineering viewpoint. PMID:17144047

  16. [Oxidative stress and antioxitant therapy of chronic periodontitis].

    PubMed

    Shen, Y X; Guo, S J; Wu, Y F

    2016-07-01

    Chronic periodontitis is a progressive, infectious inflammation disease, caused by the dysbiosis of oral resident flora, leading to the destruction of periodontium. The onset of pathogenic microorganisms is the etiological factor of periodontitis, while the immuno-inflammatory response affects the progression of the disease. Under chronic periodontitis, oxidative stress occurs when excessive reactive oxygen species are produced and exceed the compensative capacity of the organism. Oxidative stress leads to the destruction of periodontium, in a direct way(damaging the biomolecule) or an indirect way(enhancing the produce of inflammatory cytokine and destructive enzymes). Therefore, as the antagonist of the reactive oxygen species, antioxidants may be helpful to treat the chronic periodontitis. This paper reviewed relevant literatures about the destructive role of excessive reactive oxygen species and protective role of antioxidants in chronic periodontitis. PMID:27480437

  17. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    SciTech Connect

    Sawada, Keigo; Takedachi, Masahide; Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki; Lee, Chun Man; Okura, Hanayuki; Matsuyama, Akifumi; Kitamura, Masahiro; Murakami, Shinya

    2015-08-14

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation.

  18. α11β1 Integrin-Dependent Regulation of Periodontal Ligament Function in the Erupting Mouse Incisor

    PubMed Central

    Popova, Svetlana N.; Barczyk, Malgorzata; Tiger, Carl-Fredrik; Beertsen, Wouter; Zigrino, Paola; Aszodi, Attila; Miosge, Nicolai; Forsberg, Erik; Gullberg, Donald

    2007-01-01

    The fibroblast integrin α11β1 is a key receptor for fibrillar collagens. To study the potential function of α11 in vivo, we generated a null allele of the α11 gene. Integrin α11−/− mice are viable and fertile but display dwarfism with increased mortality, most probably due to severely defective incisors. Mutant incisors are characterized by disorganized periodontal ligaments, whereas molar ligaments appear normal. The primary defect in the incisor ligament leads to halted tooth eruption. α11β1-defective embryonic fibroblasts displayed severe defects in vitro, characterized by (i) greatly reduced cell adhesion and spreading on collagen I, (ii) reduced ability to retract collagen lattices, and (iii) reduced cell proliferation. Analysis of matrix metalloproteinase in vitro and in vivo revealed disturbed MMP13 and MMP14 synthesis in α11−/− cells. We show that α11β1 is the major receptor for collagen I on mouse embryonic fibroblasts and suggest that α11β1 integrin is specifically required on periodontal ligament fibroblasts for cell migration and collagen reorganization to help generate the forces needed for axial tooth movement. Our data show a unique role for α11β1 integrin during tooth eruption. PMID:17420280

  19. Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells

    NASA Astrophysics Data System (ADS)

    Kado, T.; Hidaka, T.; Aita, H.; Endo, K.; Furuichi, Y.

    2012-12-01

    A simple chemical modification method was developed to immobilize cell-adhesive molecules on a titanium surface to improve its compatibility with human periodontal ligament cells (HPDLCs).The polished titanium disk was immersed in 1% (v/v) p-vinylbenzoic acid solution for 2 h to introduce carboxyl groups onto the surface. After rinsing with distilled deionized water, the titanium disk was dipped into 1.47% 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide solution containing 0.1 mg/ml Gly-Arg-Gly-Asp-Ser (GRGDS), human plasma fibronectin (pFN), or type I collagen from calf skin (Col) to covalently immobilize the cell-adhesive molecules on the titanium surface via formation of peptide bonds. X-ray photoelectron spectroscopy analyses revealed that cell-adhesive molecules were successfully immobilized on the titanium surfaces. The Col-immobilized titanium surface revealed higher values regarding nano rough characteristics than the as-polished titanium surface under scanning probe microscopy. The number of HPDLCs attached to both the pFN- and Col-immobilized titanium surfaces was twice that attached to the as-polished titanium surfaces. The cells were larger with the cellular processes that stretched to a greater extent on the pFN- and Col-immobilized titanium surfaces than on the as-polished titanium surface (p < 0.05). HPDLCs on the Col-immobilized titanium surfaces showed more extensive expression of vinculin at the tips of cell projections and more contiguously along the cell outline than on the as-polished, GRGDS-immobilized and pFN-immobilized titanium surfaces. It was concluded that cell-adhesive molecules successfully immobilized on the titanium surface and improved the compatibility of the surface with HPDLCs. The Col-immobilized titanium surface could be used for forming ligament-like tissues around titanium dental implants.

  20. Immunolocalization of lubricin in the rat periodontal ligament during experimental tooth movement.

    PubMed

    Leonardi, Rosalia; Loreto, Carla; Talic, Nabeel; Caltabiano, Rosario; Musumeci, Giuseppe

    2012-11-01

    Lubricin is a protein which contributes to the boundary lubrication, facilitating low friction levels at the interfacing surfaces of joints. In tendons and ligaments it facilitates the relative movement of collagen bundles. Its expression is affected by mechanical signals and cytokines. During application of orthodontic forces to teeth, there is a transduction of mechanical forces to the cells of the periodontal ligament (PDL), which triggers several biological reactions causing the synthesis of prostaglandins, cytokines and growth factors. The aim of the present study was to examine the immunolocalization of lubricin and to evaluate if it is time-dependently and differentially detected within the PDL following the application of orthodontic forces to create areas of compression and tension. This was achieved by placing elastic bands between the maxillary first and second molars of 16 male Sprague-Dawley rats (each weighing 120-200g) for 12 and 24h. The molar-bearing segments were dissected and processed for histological and immunohistochemical examination. Binding of a monoclonal antibody was used to evaluate lubricin localization using an indirect streptavidin/biotin immunperoxidase technique. Lubricin, was constitutively expressed in the PDL of rat molars. After the experimental force was applied to the tooth, lubricin was down-regulated, on both sides (compression and tension) of the PDL, in a time-dependent fashion, although to a different extent, being at any time more expressed on the tension side. Furthermore, in every sample, almost all PDL cells in the adjacent tooth cementum and alveolar bone, were more heavily immunolabeled by lubricin antibody, contrary to those located in the central portion of the PDL. Lubricin expression therefore seems related to PDL remodeling and tooth displacement following the application of an orthodontic force, and it appears that lubricin may play an important role during tooth movement. PMID:22209395

  1. Soluble CD14 Enhances the Response of Periodontal Ligament Stem Cells to P. gingivalis Lipopolysaccharide

    PubMed Central

    Andrukhov, Oleh; Andrukhova, Olena; Özdemir, Burcu; Haririan, Hady; Müller-Kern, Michael; Moritz, Andreas; Rausch-Fan, Xiaohui

    2016-01-01

    Periodontal ligament stem cells (PDLSCs) are lacking membrane CD14, which is an important component of lipopolysaccharide (LPS) signaling through toll-like receptor (TLR) 4. In the present study we investigated the effect of soluble CD14 on the response of human PDLSCs to LPS of Porphyromonas (P.) gingivalis. Human PDLSCs (hPDLSCs) were stimulated with P. gingivalis LPS in the presence or in the absence of soluble CD14 (sCD14) and the production of interleukin (IL)-6, chemokine C-X-C motif ligand 8 (CXCL8), and chemokine C-C motif ligand 2 (CCL2) was measured. The response to P. gingivalis LPS was compared with that to TLR4 agonist Escherichia coli LPS and TLR2-agonist Pam3CSK4. The response of hPDLSCs to both P. gingivalis LPS and E. coli LPS was significantly enhanced by sCD14. In the absence of sCD14, no significant difference in the hPDLSCs response to two kinds of LPS was observed. These responses were significantly lower compared to that to Pam3CSK4. In the presence of sCD14, the response of hPdLSCs to P. gingivalis LPS was markedly higher than that to E. coli LPS and comparable with that to Pam3CSK4. The response of hPdLSCs to bacterial LPS is strongly augmented by sCD14. Local levels of sCD14 could be an important factor for modulation of the host response against periodontal pathogens. PMID:27504628

  2. MicroRNA expression profile of human periodontal ligament cells under the influence of Porphyromonas gingivalis LPS.

    PubMed

    Du, Anqing; Zhao, Sen; Wan, LingYun; Liu, TianTao; Peng, Zaoxia; Zhou, ZiYu; Liao, Zhengyu; Fang, Huan

    2016-07-01

    Periodontitis is a chronic inflammatory disease which is caused by bacterial infection and leads to the destruction of periodontal tissues and resorption of alveolar bone. Thus, special attention should be paid to the mechanism under lipopolysaccharide (LPS)-induced periodontitis because LPS is the major cause of periodontitis. However, to date, miRNA expression in the LPS-induced periodontitis has not been well characterized. In this study, we investigated miRNA expression patterns in LPS-treated periodontal ligament cells (PDLCs). Through miRNA array and differential analysis, 22 up-regulated miRNAs and 28 down-regulated miRNAs in LPS-treated PDLCs were identified. Seven randomly selected up-regulated (miR-21-5p, 498, 548a-5p) and down-regulated (miR-495-3p, 539-5p, 34c-3p and 7a-2-3p) miRNAs were examined by qRT-PCR, and the results proved the accuracy of the miRNA array. Moreover, targets of these deregulated miRNAs were analysed using the miRWalk database. Database for Annotation, Visualization and Integration Discovery software were performed to analyse the Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes pathway of differential expression miRNAs, and the results shown that Toll-like receptor signalling pathway, cAMP signalling pathway, transforming growth factor-beta signalling pathway, mitogen-activated protein kinase (MAPK) signalling pathway and other pathways were involved in the molecular mechanisms underlying LPS-induced periodontitis. In conclusion, this study provides clues for enhancing our understanding of the mechanisms and roles of miRNAs as key regulators of LPS-induced periodontitis. PMID:26987780

  3. Effects of hypoxia on the proliferation, mineralization and ultrastructure of human periodontal ligament fibroblasts in vitro

    PubMed Central

    ZHANG, HAI-YUAN; LIU, RUI; XING, YONG-JUN; XU, PING; LI, YAN; LI, CHEN-JUN

    2013-01-01

    This study aimed to investigate the effects of hypoxia on the proliferation, mineralization and ultrastructure of human periodontal ligament fibroblasts (HPLFs) at various times in vitro in order to further study plateau-hypoxia-induced periodontal disease. HPLFs (fifth passage) cultured by the tissue culture method were assigned to the slight (5% O2), middle (2% O2), and severe hypoxia (1% O2) groups and the control (21% O2) group, respectively. At 12, 24, 48 and 72 h, the proliferation and alkaline phosphatase (ALP) activities were detected. The ultrastructure of the severe hypoxia group was observed. HPLFs grew more rapidly with an increase in the degree of hypoxia at 12 and 24 h, and significant levels of proliferation (P<0.05) were observed in the severe hypoxia group at 24 h. Cell growth was restrained with an increase in the degree of hypoxia at 48 and 72 h, and the restrictions were clear (P<0.05) in the middle and severe hypoxia groups. ALP activity was restrained with increasing hypoxia at each time point. The restrictions were marked (P<0.05) in the severe hypoxia group at 24 h and in the middle and severe hypoxia groups at 48 and 72 h. However, the restriction was more marked (P<0.05) in the severe hypoxia group at 72 h. An increase was observed in the number of mitochondria and rough endoplasmic reticula (RER), with slightly expanded but complete membrane structures, in the severe hypoxia group at 24 h. At 48 h, the number of mitochondria and RER decreased as the mitochondria increased in size. Furthermore, mitochondrial cristae appeared to be vague, and a RER structural disorder was observed. At 72 h, the number of mitochondria and RER decreased further when the mitochondrial cristae were broken, vacuolar degeneration occurred, and the RER particles were reduced while the number of lysosomes increased. HPLF proliferation and mineralization was restrained. Additionally, HPLF structure was broken for a relatively long period of time in the middle and

  4. Low-Intensity Pulsed Ultrasound Stimulation Facilitates Osteogenic Differentiation of Human Periodontal Ligament Cells

    PubMed Central

    Hu, Bo; Zhang, Yuanyuan; Zhou, Jie; Li, Jing; Deng, Feng; Wang, Zhibiao; Song, Jinlin

    2014-01-01

    Human periodontal ligament cells (hPDLCs) possess stem cell properties, which play a key role in periodontal regeneration. Physical stimulation at appropriate intensities such as low-intensity pulsed ultrasound (LIPUS) enhances cell proliferation and osteogenic differentiation of mesechymal stem cells. However, the impacts of LIPUS on osteogenic differentiation of hPDLCs in vitro and its molecular mechanism are unknown. This study was undertaken to investigate the effects of LIPUS on osteogenic differentiation of hPDLCs. HPDLCs were isolated from premolars of adolescents for orthodontic reasons, and exposed to LIPUS at different intensities to determine an optimal LIPUS treatment dosage. Dynamic changes of alkaline phosphatase (ALP) activities in the cultured cells and supernatants, and osteocalcin production in the supernatants after treatment were analyzed. Runx2 and integrin β1 mRNA levels were assessed by reverse transcription polymerase chain reaction analysis after LIPUS stimulation. Blocking antibody against integrinβ1 was used to assess the effects of integrinβ1 inhibitor on LIPUS-induced ALP activity, osteocalcin production as well as calcium deposition. Our data showed that LIPUS at the intensity of 90 mW/cm2 with 20 min/day was more effective. The ALP activities in lysates and supernatants of LIPUS-treated cells started to increase at days 3 and 7, respectively, and peaked at day 11. LIPUS treatment significantly augmented the production of osteocalcin after day 5. LIPUS caused a significant increase in the mRNA expression of Runx2 and integrin β1, while a significant decline when the integrinβ1 inhibitor was used. Moreover, ALP activity, osteocalcin production as well as calcium nodules of cells treated with both daily LIPUS stimulation and integrinβ1 antibody were less than those in the LIPUS-treated group. In conclusion, LIPUS promotes osteogenic differentiation of hPDLCs, which is associated with upregulation of Runx2 and integrin β1, which

  5. Ultrastructure of cementum and periodontal ligament after continuous intrusion in humans: a transmission electron microscopy study.

    PubMed

    Faltin, R M; Faltin, K; Sander, F G; Arana-Chavez, V E

    2001-02-01

    An ultrastructural study of the cementum and periodontal ligament (PDL) changes after continuous intrusion with two different and controlled forces in humans was carried out. Twelve first upper premolars, at stage 10 of Nolla, orthodontically indicated for extraction from six patients (mean age 15.3) were used. They were divided into three experimental groups, distributed intra-individually as follows: control (not moved), continuously intruded for 4 weeks with 50 or 100 cN force, utilizing a precise biomechanical model with nickel titanium super-elastic wires (NiTi-SE), which were developed and calibrated individually. The teeth were extracted, fixed, decalcified, and conventionally processed for examination in a Jeol 100 CX II transmission electron microscope. Evident signs of degeneration of cell structures, vascular components, and extracellular matrix (EM) of cementum and PDL were observed in all the intruded teeth, with more severe changes towards an apical direction and in proportion to the magnitude of force applied. Resorptive areas and an irregular root surface of the intruded teeth were noticed, according to the same pattern described above. Concomitant, areas of repair were also revealed in the cementum and PDL although the magnitude of forces remained the same throughout the experimental period. Thus, a reduction of continuous force magnitude should be considered to preserve the integrity of tissues. PMID:11296509

  6. Bioactivity of periodontal ligament stem cells on sodium titanate coated with graphene oxide

    PubMed Central

    Zhou, Qi; Yang, Pishan; Li, Xianlei; Liu, Hong; Ge, Shaohua

    2016-01-01

    As a biocompatible and low cytotoxic nanomaterial, graphene oxide (GO) has captured tremendous interests in tissue engineering. However, little is known about the behavior of dental stem cells on GO. This study was to evaluate the bioactivity of human periodontal ligament stem cells (PDLSCs) on GO coated titanium (GO-Ti) substrate in vitro as compared to sodium titanate (Na-Ti) substrate. By scanning electron microscope (SEM), confocal laser scanning microscope (CLSM), methylthiazol tetrazolium (MTT) assay, alkaline phosphatase (ALP) activity, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis, we investigated the attachment, morphology, proliferation and osteogenic differentiation of PDLSCs on these two substrates. When seeded on GO-Ti substrate, PDLSCs exhibited significantly higher proliferation rate, ALP activity and up-regulated gene expression level of osteogenesis-related markers of collagen type I (COL-I), ALP, bone sialoprotein (BSP), runt related transcription factor 2 (Runx2) and osteocalcin (OCN) compared with those on Na-Ti substrate. Moreover, GO promoted the protein expression of BSP, Runx2 and OCN. These findings suggest that the combination of GO and PDLSCs provides a promising construct for regenerative dentistry. PMID:26763307

  7. Indirect longitudinal cytotoxicity of root canal sealers on L929 cells and human periodontal ligament fibroblasts.

    PubMed

    Araki, K; Suda, H; Spångberg, L S

    1994-02-01

    The cytotoxicity of two root canal sealers was evaluated in vitro. The powder components of both sealers, mainly zinc, were the same. The liquid for one sealer, Canals, was clove oil (included eugenol in more than 80%) and other materials. For the other, Canals-N, the liquid was composed of higher fatty acids and glycol. The experiments included two cell lines, heteroploid L929 mouse fibroblasts and diploid human periodontal ligament fibroblasts. Cytotoxicity was assessed using the radiochromium release method with 4-h exposure time. The assay involved using insert chambers in multiwell arrays to produce indirect contact of materials with the cell monolayer at a controlled distance of approximately 1 mm. This model also allowed for the longitudinal study of the same material sample to assess time-dependent changes in toxicity. Freshly mixed Canals was highly toxic (p < 0.01) to both cell lines. On and after 24 h of setting no toxicity was detected. At no time could cytotoxicity be observed when experimenting with Canals-N. These results indicate that both materials have a low content of water diffusible toxic components. Substituting eugenol can further decrease the toxicity of the sealer. PMID:8006567

  8. SSEA-4 is a marker of human deciduous periodontal ligament stem cells.

    PubMed

    Fukushima, H; Kawanabe, N; Murata, S; Ishihara, Y; Yanagita, T; Balam, T A; Yamashiro, T

    2012-10-01

    Although human deciduous teeth are an ideal source of adult stem cells, no method for identifying deciduous periodontal ligament (D-PDL) stem cells has so far been developed. In the present study, we investigated whether stage-specific embryonic antigen (SSEA)-4 is a marker that could be used to isolate D-PDL stem cells. The isolated D-PDL cells met the minimum criteria for mesenchymal stem cells (MSCs): They showed plastic adherence, specific-surface antigen expression, and multipotent differentiation potential. SSEA-4+ D-PDL cells were detected in vitro and in vivo. A flow cytometric analysis demonstrated that 22.7% of the D-PDL cells were positive for SSEA-4. SSEA-4+ clonal D-PDL cells displayed multilineage differentiation potential: They were able to differentiate into adipocytes, osteoblasts, and chondrocytes in vitro. A clonal assay demonstrated that 61.5% of the SSEA-4+ D-PDL cells had adipogenic, osteogenic, and chondrogenic potential. Our present study demonstrated that SSEA-4+ D-PDL cells are a subset of multipotent stem cells. Hence, SSEA-4 is a specific marker that can be used to identify D-PDL stem cells. PMID:22895512

  9. The Biomechanical Function of Periodontal Ligament Fibres in Orthodontic Tooth Movement

    PubMed Central

    McCormack, Steven W.; Witzel, Ulrich; Watson, Peter J.; Fagan, Michael J.; Gröning, Flora

    2014-01-01

    Orthodontic tooth movement occurs as a result of resorption and formation of the alveolar bone due to an applied load, but the stimulus responsible for triggering orthodontic tooth movement remains the subject of debate. It has been suggested that the periodontal ligament (PDL) plays a key role. However, the mechanical function of the PDL in orthodontic tooth movement is not well understood as most mechanical models of the PDL to date have ignored the fibrous structure of the PDL. In this study we use finite element (FE) analysis to investigate the strains in the alveolar bone due to occlusal and orthodontic loads when PDL is modelled as a fibrous structure as compared to modelling PDL as a layer of solid material. The results show that the tension-only nature of the fibres essentially suspends the tooth in the tooth socket and their inclusion in FE models makes a significant difference to both the magnitude and distribution of strains produced in the surrounding bone. The results indicate that the PDL fibres have a very important role in load transfer between the teeth and alveolar bone and should be considered in FE studies investigating the biomechanics of orthodontic tooth movement. PMID:25036099

  10. Periodontal ligament injection in the dog primary dentition: spread of local anaesthetic solution.

    PubMed

    Tagger, E; Tagger, M; Sarnat, H; Mass, E

    1994-09-01

    The spread of local anaesthetic solution administered with a pressure syringe has not been studied as extensively in young animals having primary or mixed dentitions as in adult animals. The purpose of this investigation was to study the distribution of local anaesthetic solution injected into the periodontal ligament of young dogs. India ink was added to carpules containing 2% lidocaine and 1:100,000 epinephrine, and the spread of solution was examined macroscopically and microscopically. Injections were made with a pressure syringe (Ligmaject) at 58 sites mesial and distal to primary teeth in five dogs aged 3-9 months. Three dogs were killed within 12 hours, the other two after 5 days. Spread of the ink was studied in non-decalcified slabs, in three-dimensional cleared specimens, and in histological sections. The solution usually reached the alveolar bone crest, seeped under the periosteum and alongside vascular channels into bone marrow, reaching natural cavities such as the crypts of tooth buds and the mandibular canal. The ink did not penetrate into the enamel organ or contact the permanent tooth buds. The solution appeared to spread along the path of least resistance, governed by the intricacies of anatomical structures and fascial planes. Therefore the risk of mechanical damage to permanent tooth germs appears to be minimal. PMID:7811670

  11. ABCG2 Is a Selectable Marker for Enhanced Multilineage Differentiation Potential in Periodontal Ligament Stem Cells

    PubMed Central

    Szepesi, Áron; Matula, Zsolt; Szigeti, Anna; Várady, György; Szabó, Gyula; Uher, Ferenc; Sarkadi, Balázs

    2015-01-01

    Periodontal ligament stem cells (PDLSCs) provide an important source for tissue regeneration and may become especially useful in the formation of osteogenic seeds. PDLSCs can be cultured, expanded, and differentiated in vitro; thus, they may be applied in the long-term treatment of the defects in the dental regions. Here we studied numerous potential markers allowing the selection of human PDLSCs with a maximum differentiation potential. We followed the expression of the ATP-binding cassette subfamily G member 2 (ABCG2) membrane transporter protein and isolated ABCG2-expressing cells by using a monoclonal antibody, recognizing the transporter at the cell surface in intact cells. The expression of the ABCG2 protein, corresponding to the so-called side-population phenotype in various tissue-derived stem cells, was found to be a useful marker for the selection of PDLSCs with enhanced osteogenic, chondrogenic, and adipogenic differentiation. These findings may have important applications in achieving efficient dental tissue regeneration by using stem cells from extracted teeth. PMID:25101689

  12. In vitro phagocytosis of exogenous collagen by fibroblasts from the periodontal ligament: an electron microscopic study.

    PubMed Central

    Svoboda, E L; Brunette, D M; Melcher, A H

    1979-01-01

    There have been numerous electron microscopic reports of apparent phagocytosis of collagen by fibroblasts and other cells in vivo. We have developed an in vitro system which, to the best of our knowledge, will permit for the first time the study of regulatory mechanisms governing phagocytosis and digestion of collagen fibres. Cells were cultured from explants of monkey periodontal ligament, subcultured, and grown to confluence in alpha-MEM plus 15% fetal calf serum plus antibiotics. The confluent cells were then cultured together with minced rat tail tendon collagen in alpha-MEM lacking proline, lysine, glycine and fetal calf serum for up to 7 days, after which they were processed for electron microscopy. Intracellular collagen profiles could be seen in cultured cells that were associated with exogenous collagen fibrils as early as 24 hours after addition of the collagen. Through electron microscopic examination of serial sections of the culture, we have demonstrated: (1) that fibroblasts can phagocytose collagen; (2) that the observed intracellular collagen is not the result of aggregation of endogenous synthesized collagen; (3) that it is not possible to base a decision as to whether a collagen fibril has been phagocytosed in whole or in part by the type of vesicle with which it is associated; (4) that cleavage of collagen into small pieces may not be a necessary prelude to its phagocytosis. Images Fig. 1 Fig. 2 Fig. 4 (cont.) Fig. 4 Fig. 6 (cont.) Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:108237

  13. The role of the fluid phase in the viscous response of bovine periodontal ligament.

    PubMed

    Bergomi, Marzio; Cugnoni, Joël; Botsis, John; Belser, Urs C; Anselm Wiskott, H W

    2010-04-19

    The mechanical response of the periodontal ligament (PDL) is complex. This tissue responds as a hyperelastic solid when pulled in tension while demonstrating a viscous behavior under compression. This intricacy is reflected in the tissue's morphology, which comprises fibers, glycosaminoglycans, a jagged interface with the surrounding porous bone and an extensive vascular network. In the present study we offer an analysis of the viscous behavior and the interplay between the fibrous matrix and its fluid phase. Cylindrical specimens comprising layers of dentine, PDL and bone were extracted from bovine first molars and affixed to a tensile-compressive loading machine. The viscous properties of the tissue were analyzed (1) by subjecting the specimens to sinusoidal displacements at various frequencies and (2) by cycling the specimens in 'fully saturated' and in 'partially dry' conditions. Both modes assisted in determining the contribution of the fluid phase to the mechanical response. It was concluded that: (1) PDL showed pseudo-plastic viscous features for cyclic compressive loading, (2) these viscous features essentially resulted from interactions between the porous matrix and unbound fluid content of the tissue. Removing the liquid from the PDL largely eliminates its damping effect in compression. PMID:20185135

  14. Effects of non-thermal atmospheric plasma on human periodontal ligament mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Miletić, M.; Mojsilović, S.; Okić Đorđević, I.; Maletić, D.; Puač, N.; Lazović, S.; Malović, G.; Milenković, P.; Petrović, Z. Lj; Bugarski, D.

    2013-08-01

    Here we investigate the influences of non-thermal atmospheric plasma on human mesenchymal stem cells isolated from periodontal ligament (hPDL-MSCs). A specially redesigned plasma needle was used as the source of low-temperature plasma and its effects on different hPDL-MSC functions were investigated. Cell cultures were obtained from extracted normal impacted third molars and characterized for their phenotype and multi-potential differentiation. The hPDL-MSCs possessed all the typical MSC properties, including clonogenic ability, high proliferation rate, specific phenotype and multilineage differentiation. The data regarding the interaction of plasma with hPDL-MSCs demonstrated that plasma treatment inhibited the migration of hPDL-MSCs and induced some detachment, while not affecting their viability. Additionally, plasma significantly attenuated hPDL-MSCs' proliferation, but promoted their osteogenic differentiation. The results of this study indicated that a non-thermal plasma offers specific activity with non-destructive properties that can be advantageous for future dental applications.

  15. Nuclear morphometric analysis of osteoblast precursor cells in periodontal ligament, SL-3 rats

    NASA Technical Reports Server (NTRS)

    Roberts, W. E.; Fielder, P. J.; Rosenoer, L. M.; Maese, A. C.; Gonsalves, M. R.; Morey, E. R.; Morey-Holton, E. R. (Principal Investigator)

    1987-01-01

    Five small (55 days old, 196 +/- 5 g) (mean +/- SE) and five large (83 days old, 382 +/- 4 g) Sprague-Dawley strain, specific pathogen-free rats were exposed to a 7-day spaceflight and 12-h postflight recovery period. As measured in 3-micron sections, periodontal ligament (PDL) fibroblastlike cells were classified according to nuclear size: A + A' (40-79), B (80-119), C (120-169), and D (greater than or equal to 170 microns 3). Since the histogenesis sequence is A----A'----C----D----osteoblast, the relative incidence of A + A' to C + D is an osteogenic index. No difference in A + A' or C + D cells in small rats may reflect partial recovery of preosteoblast formation (A----C) during the 12-h postflight period. Large flight rats demonstrated increased numbers of A + A', indicating an inhibition of preosteoblast formation (A----C). At least in the older group, a 7-day flight is adequate to reduce PDL osteogenic potential (inhibition in PDL osteoblast differentiation and/or specific attrition of C + D cells) that does not recover by 12-h postflight.

  16. Differential Properties of Human ALP+ Periodontal Ligament Stem Cells vs Their ALP- Counterparts

    PubMed Central

    Tran, Quynh T; El-Ayachi, Ikbale; Bhatti, Fazal-Ur-Rehman; Bahabri, Rayan; Al-Habib, Mey; Huang, George TJ

    2015-01-01

    Characterizing subpopulations of stem cells is important to understand stem cell properties. Tissue-nonspecific alkaline phosphatase (ALP) is associated with mineral tissue forming cells as well as stem cells. Information regarding ALP subpopulation of human periodontal ligament stem cells (hPDLSCs) is limited. In the present study, we examined ALP+ and ALP− hPDLSC subpopulations, their surface markers STRO-1 and CD146, and the expression of stemness genes at various cell passages. We found that ALP+ subpopulation had higher levels of STRO-1 (30.6 ± 5.6%) and CD146 (90.4 ± 3.3%) compared to ALP− (STRO-1: 0.5 ± 0.1%; CD146: 75.3 ± 7.2%). ALP+ cells expressed significantly higher levels of stemness associated genes, NANOG, OCT4 and SOX than ALP− cells at low cell passages of 2-3 (p<0.05). ALP+ and ALP− cells had similar osteogenic, chondrogenic and neurogenic potential while ALP−, not ALP+ cells, lacked adipogenic potential. Upon continuous culturing and passaging, ALP+ continued to express higher stemness genes and STRO-1 and CD146 than ALP− cells at ≥passage 19. Under conditions (over-confluence and vitamin C treatment) when ALP+ subpopulation was increased, the stemness gene levels of ALP+ was no longer significantly higher than those in ALP− cells. In conclusion, ALP+ hPDLSCs possess differential properties from their ALP− counterparts. PMID:26807329

  17. Neurogenesis of neural crest-derived periodontal ligament stem cells by EGF and bFGF.

    PubMed

    Fortino, Veronica R; Chen, Ren-Shiang; Pelaez, Daniel; Cheung, Herman S

    2014-04-01

    Neuroregenerative medicine is an ever-growing field in which regeneration of lost cells/tissues due to a neurodegenerative disease is the ultimate goal. With the scarcity of available replacement alternatives, stem cells provide an attractive source for regenerating neural tissue. While many stem cell sources exist, including: mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells, the limited cellular potency, technical difficulties, and ethical considerations associated with these make finding alternate sources a desirable goal. Periodontal ligament stem cells (PDLSCs) derived from the neural crest were induced into neural-like cells using a combination of epidermal growth factor, and basic fibroblast growth factor. Morphological changes were evident in our treated group, seen under both light microscopy and scanning electron microscopy. A statistically significant increase in the expression of neuron-specific β-tubulin III and the neural stem/progenitor cell marker nestin, along with positive immunohistochemical staining for glial fibrillary acidic protein, demonstrated the success of our treatment in inducing both neuronal and glial phenotypes. Positive staining for synaptophysin demonstrated neural connections and electrophysiological recordings indicated that when subjected to whole-cell patch clamping, our treated cells displayed inward currents conducted through voltage-gated sodium (Na(+) ) channels. Taken together, our results indicate the success of our treatment in inducing PDLSCs to neural-like cells. The ease of sourcing and expansion, their embryologic neural crest origin, and the lack of ethical implications in their use make PDLSCs an attractive source for use in neuroregenerative medicine. PMID:24105823

  18. Evaluation of Periodontal Ligament Cell Viability in Three Different Storage Media: An in Vitro Study

    PubMed Central

    Sharma, Sanjay; Reddy, Y. G.; Mittal, Rakesh; Agarwal, Vishal; Singh, Chanchal; Singh, Amandeep

    2015-01-01

    Objectives: This study was undertaken to evaluate the viability of periodontal ligament (PDL) cells of avulsed teeth in three different storage media. Materials and Methods: Forty-five premolars extracted for orthodontic therapeutic purposes were randomly and equally divided into three groups based on storage media used [Group I: milk (control); Group II: aloe vera (experimental); Group III: egg white (experimental)]. Following extractions, the teeth were placed in one of the three different storage media for 30 minutes, following which the scrapings of the PDL from these teeth were collected in Falcon tubes containing collagenase enzyme in 2.5 mL of phosphate buffered saline. The tubes were subsequently incubated for 30 minutes and centrifuged for five minutes at 800 rpm. The obtained PDL cells were stained with Trypan Blue and were observed under optical microscope. The percentage of viable cells was calculated. Results: Aloe vera showed the highest percentage of viable cells (114.3±8.0), followed by egg white (100.9±6.3) and milk (101.1±7.3). Conclusion: Within the limitations of this study, it appears that aloe vera maintains PDL cell viability better than egg white or milk. PMID:26877742

  19. Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells

    PubMed Central

    Xiong, Jimin; Menicanin, Danijela; Marino, Victor

    2016-01-01

    The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein “spots” were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population. PMID:27579043

  20. Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells.

    PubMed

    Xiong, Jimin; Menicanin, Danijela; Zilm, Peter S; Marino, Victor; Bartold, P Mark; Gronthos, Stan

    2016-01-01

    The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein "spots" were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population. PMID:27579043

  1. Comparative Gene-Expression Analysis of the Dental Follicle and Periodontal Ligament in Humans

    PubMed Central

    Kim, Seong-Oh; Song, Je-Seon; Lee, Jae-Ho; Lee, Syng-Ill; Jung, Han-Sung; Choi, Byung-Jai

    2013-01-01

    The human dental follicle partially differentiates into the periodontal ligament (PDL), but their biological functions are different. The gene-expression profiles of the dental follicle and PDL were compared using the cDNA microarray technique. Microarray analysis identified 490 genes with a twofold or greater difference in expression, 365 and 125 of which were more abundant in the dental follicle and PDL, respectively. The most strongly expressed genes in the dental follicle were those related to bone development and remodeling (EGFL6, MMP8, FRZB, and NELL1), apoptosis and chemotaxis (Nox4, CXCL13, and CCL2), and tooth and embryo development (WNT2, PAX3, FGF7, AMBN, AMTN, and SLC4A4), while in the PDL it was the tumor-suppressor gene WIF1. Genes related to bone development and remodeling (STMN2, IBSP, BMP8A, BGLAP, ACP5, OPN, BMP3, and TM7SF4) and wound healing (IL1, IL8, MMP3, and MMP9) were also more strongly expressed in the PDL than in the dental follicle. In selected genes, a comparison among cDNA microarray, real-time reverse-transcription polymerase chain reaction, and immunohistochemical staining confirmed similar relative gene expressions. The gene-expression profiles presented here identify candidate genes that may enable differentiation between the dental follicle and PDL. PMID:24376796

  2. Bone repair by periodontal ligament stem cellseeded nanohydroxyapatite-chitosan scaffold

    PubMed Central

    Ge, Shaohua; Zhao, Ning; Wang, Lu; Yu, Meijiao; Liu, Hong; Song, Aimei; Huang, Jing; Wang, Guancong; Yang, Pishan

    2012-01-01

    Background A nanohydroxyapatite-coated chitosan scaffold has been developed in recent years, but the effect of this composite scaffold on the viability and differentiation of periodontal ligament stem cells (PDLSCs) and bone repair is still unknown. This study explored the behavior of PDLSCs on a new nanohydroxyapatite-coated genipin-chitosan conjunction scaffold (HGCCS) in vitro as compared with an uncoated genipin-chitosan framework, and evaluated the effect of PDLSC-seeded HGCCS on bone repair in vivo. Methods Human PDLSCs were cultured and identified, seeded on a HGCCS and on a genipin-chitosan framework, and assessed by scanning electron microscopy, confocal laser scanning microscopy, MTT, alkaline phosphatase activity, and quantitative real-time polymerase chain reaction at different time intervals. Moreover, PDLSC-seeded scaffolds were used in a rat calvarial defect model, and new bone formation was assessed by hematoxylin and eosin staining at 12 weeks postoperatively. Results PDLSCs were clonogenic and positive for STRO-1. They had the capacity to undergo osteogenic and adipogenic differentiation in vitro. When seeded on HGCCS, PDLSCs exhibited significantly greater viability, alkaline phosphatase activity, and upregulated the bone-related markers, bone sialoprotein, osteopontin, and osteocalcin to a greater extent compared with PDLSCs seeded on the genipin-chitosan framework. The use of PDLSC-seeded HGCCS promoted calvarial bone repair. Conclusion This study demonstrates the potential of HGCCS combined with PDLSCs as a promising tool for bone regeneration. PMID:23091383

  3. A histopathological study of the role of periodontal ligament tissue in root resorption in the rat.

    PubMed

    Shiraishi, C; Hara, Y; Abe, Y; Ukai, T; Kato, I

    2001-02-01

    Whether periodontal ligament (PDL) tissue is capable of inducing root resorption was examined. The distal root of the rat molar was sectioned at the furcation and the PDL tissue removed from the root (non-PDL group, n=40). The distal root with the PDL intact was also prepared (PDL-intact group, n=40). The roots were transplanted into the dorsal skin of the rat. On the 1st, 3rd, 5th, 7th, 10th, 14th, 21st or 28th day after transplantation, the roots were removed together with surrounding dorsal subcutaneous tissue and were fixed, demineralized and embedded in paraffin. Serial sections from each block were stained with haematoxylin and eosin or by the tartrate-resistant acid phosphatase (TRAP) method to observe root-resorbing cell formation. Cyclo-oxygenase-2 (COX2) was also detected immunohistologically to examine prostaglandin E(2) production. On the 7th day after transplantation, multinucleated root-resorbing cells with TRAP were observed in the PDL-intact group. The number of TRAP-positive cells peaked on the 10th day after transplantation. COX2-positive cells were observed in PDL during the early experimental stages. No root resorption was seen in the non-PDL group. These results suggest that PDL tissue is involved in the formation of root-resorbing cells and root resorption. PMID:11163317

  4. Bioactivity of periodontal ligament stem cells on sodium titanate coated with graphene oxide.

    PubMed

    Zhou, Qi; Yang, Pishan; Li, Xianlei; Liu, Hong; Ge, Shaohua

    2016-01-01

    As a biocompatible and low cytotoxic nanomaterial, graphene oxide (GO) has captured tremendous interests in tissue engineering. However, little is known about the behavior of dental stem cells on GO. This study was to evaluate the bioactivity of human periodontal ligament stem cells (PDLSCs) on GO coated titanium (GO-Ti) substrate in vitro as compared to sodium titanate (Na-Ti) substrate. By scanning electron microscope (SEM), confocal laser scanning microscope (CLSM), methylthiazol tetrazolium (MTT) assay, alkaline phosphatase (ALP) activity, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis, we investigated the attachment, morphology, proliferation and osteogenic differentiation of PDLSCs on these two substrates. When seeded on GO-Ti substrate, PDLSCs exhibited significantly higher proliferation rate, ALP activity and up-regulated gene expression level of osteogenesis-related markers of collagen type I (COL-I), ALP, bone sialoprotein (BSP), runt related transcription factor 2 (Runx2) and osteocalcin (OCN) compared with those on Na-Ti substrate. Moreover, GO promoted the protein expression of BSP, Runx2 and OCN. These findings suggest that the combination of GO and PDLSCs provides a promising construct for regenerative dentistry. PMID:26763307

  5. The biomechanical function of periodontal ligament fibres in orthodontic tooth movement.

    PubMed

    McCormack, Steven W; Witzel, Ulrich; Watson, Peter J; Fagan, Michael J; Gröning, Flora

    2014-01-01

    Orthodontic tooth movement occurs as a result of resorption and formation of the alveolar bone due to an applied load, but the stimulus responsible for triggering orthodontic tooth movement remains the subject of debate. It has been suggested that the periodontal ligament (PDL) plays a key role. However, the mechanical function of the PDL in orthodontic tooth movement is not well understood as most mechanical models of the PDL to date have ignored the fibrous structure of the PDL. In this study we use finite element (FE) analysis to investigate the strains in the alveolar bone due to occlusal and orthodontic loads when PDL is modelled as a fibrous structure as compared to modelling PDL as a layer of solid material. The results show that the tension-only nature of the fibres essentially suspends the tooth in the tooth socket and their inclusion in FE models makes a significant difference to both the magnitude and distribution of strains produced in the surrounding bone. The results indicate that the PDL fibres have a very important role in load transfer between the teeth and alveolar bone and should be considered in FE studies investigating the biomechanics of orthodontic tooth movement. PMID:25036099

  6. microRNA-21 Mediates Stretch-Induced Osteogenic Differentiation in Human Periodontal Ligament Stem Cells

    PubMed Central

    Liu, Dongxu; Feng, Cheng; Zhang, Fan; Yang, Shuangyan; Hu, Yijun; Ding, Gang

    2015-01-01

    microRNAs (miRNAs) are short 20- to 22-nucleotide noncoding RNAs that negatively regulate the expression of target genes at the post-transcriptional level. The expression of specific miRNAs and their roles in the osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) exposed to mechanical stretch remain unclear. Here, we found that stretch induced both osteogenic differentiation and the differential expression of miR-21 in PDLSCs. Furthermore, we identified activin receptor type IIB (ACVR2B) as a target gene of miR-21. Luciferase reporter assays showed that miR-21 interacts directly with the 3′-untranslated repeat sequence of ACVR2B mRNA. Mechanical stretch suppressed ACVR2B protein levels in PDLSCs, and this suppressive effect was modulated when endogenous miR-21 levels were either enhanced or inhibited. Both stretch and the expression of miR-21 altered endogenous ACVR2B protein levels and thus the osteogenic differentiation of PDLSCs. In addition, gain- and loss of function of ACVR2B mediated the osteogenic differentiation of PDLSCs. This study demonstrates that miR-21 is a mechanosensitive gene that plays an important role in the osteogenic differentiation of PDLSCs exposed to stretch. PMID:25203845

  7. GCN5 modulates osteogenic differentiation of periodontal ligament stem cells through DKK1 acetylation in inflammatory microenvironment

    PubMed Central

    Li, Bei; Sun, Jin; Dong, Zhiwei; Xue, Peng; He, Xiaoning; Liao, Li; Yuan, Lin; Jin, Yan

    2016-01-01

    Periodontal ligament stem cells (PDLSCs) from periodontitis patients showed defective osteogenic differentiation. However, the mechanism of impaired osteogenic differentiation of PDLSCs in inflammatory microenvironments is still unclear. In this study, we found that inflammation in the microenvironment resulted in downregulation of histone acetyltransferase GCN5 expression and lack of GCN5 caused decreased osteogenic differentiation of PDLSCs. Previous study showed activated Wnt/β-cateinin pathway of PDLSCs resulted in defective osteogenic differentiation. Here we found knockdown of GCN5 decreased the expression of DKK1, an inhibitor of Wnt/β-cateinin pathway, thus activated Wnt/β-catenin pathway of PDLSCs. Mechanistically, GCN5 regulated DKK1 expression by acetylation of Histone H3 lysine 9 (H3K9) and Histone H3 lysine 14 (H3K14) at its promoter region. Interestingly, we found that in vivo injection of aspirin rescued the periodontitis of rats through inhibiting inflammation and upregulating GCN5 expression. Furthermore, aspirin treatment of PDLSCs upregulated GCN5 expression and increased osteogenic differentiation of PDLSCs. In conclusion, GCN5 plays a protective role in periodontitis through acetylation of DKK1 and applying drugs targeting GCN5, such as aspirin, could be a new approach for periodontitis treatment. PMID:27216891

  8. GCN5 modulates osteogenic differentiation of periodontal ligament stem cells through DKK1 acetylation in inflammatory microenvironment.

    PubMed

    Li, Bei; Sun, Jin; Dong, Zhiwei; Xue, Peng; He, Xiaoning; Liao, Li; Yuan, Lin; Jin, Yan

    2016-01-01

    Periodontal ligament stem cells (PDLSCs) from periodontitis patients showed defective osteogenic differentiation. However, the mechanism of impaired osteogenic differentiation of PDLSCs in inflammatory microenvironments is still unclear. In this study, we found that inflammation in the microenvironment resulted in downregulation of histone acetyltransferase GCN5 expression and lack of GCN5 caused decreased osteogenic differentiation of PDLSCs. Previous study showed activated Wnt/β-cateinin pathway of PDLSCs resulted in defective osteogenic differentiation. Here we found knockdown of GCN5 decreased the expression of DKK1, an inhibitor of Wnt/β-cateinin pathway, thus activated Wnt/β-catenin pathway of PDLSCs. Mechanistically, GCN5 regulated DKK1 expression by acetylation of Histone H3 lysine 9 (H3K9) and Histone H3 lysine 14 (H3K14) at its promoter region. Interestingly, we found that in vivo injection of aspirin rescued the periodontitis of rats through inhibiting inflammation and upregulating GCN5 expression. Furthermore, aspirin treatment of PDLSCs upregulated GCN5 expression and increased osteogenic differentiation of PDLSCs. In conclusion, GCN5 plays a protective role in periodontitis through acetylation of DKK1 and applying drugs targeting GCN5, such as aspirin, could be a new approach for periodontitis treatment. PMID:27216891

  9. Stress and periodontal disease: The link and logic!!

    PubMed Central

    Goyal, Sachin; Gupta, Garima; Thomas, Betsy; Bhat, K. M.; Bhat, G. S.

    2013-01-01

    Stress is an equated response to constant adverse stimuli. At one point or another everybody suffers from stress. Stress is compatible with good health, being necessary to cope with the challenges of everyday life. Problems start when the stress response is inappropriate to the intensity of the challenge. Psychological stress can down regulate the cellular immune response. Communication between the central nervous system and the immune system occurs via a complex network of bidirectional signals linking the nervous, endocrine, and immune systems. Stress disrupts the homeostasis of this network, which in turn, alters immune function. Direct association between periodontal disease and stress remains to be proven, which is partly due to lack of an adequate animal models and difficulty to quantifying the amount and duration of stress and also there are many factors influencing the incidence and severity of periodontal disease. Nevertheless, more recent studies indicate that psychosocial stress represents a risk indicator for periodontal disease and should be addressed before and during treatment. This paper discusses how stress may modulate host response to bacteria and influence the course and progression of periodontal disease. PMID:24459366

  10. Thymosin Beta-4 Suppresses Osteoclastic Differentiation and Inflammatory Responses in Human Periodontal Ligament Cells

    PubMed Central

    Lee, Sang-Im; Yi, Jin-Kyu; Bae, Won-Jung; Lee, Soojung; Cha, Hee-Jae; Kim, Eun-Cheol

    2016-01-01

    Background Recent reports suggest that thymosin beta-4 (Tβ4) is a key regulator for wound healing and anti-inflammation. However, the role of Tβ4 in osteoclast differentiation remains unclear. Purpose The purpose of this study was to evaluate Tβ4 expression in H2O2-stimulated human periodontal ligament cells (PDLCs), the effects of Tβ4 activation on inflammatory response in PDLCs and osteoclastic differentiation in mouse bone marrow-derived macrophages (BMMs), and identify the underlying mechanism. Methods Reverse transcription-polymerase chain reactions and Western blot analyses were used to measure mRNA and protein levels, respectively. Osteoclastic differentiation was assessed in mouse bone marrow-derived macrophages (BMMs) using conditioned medium (CM) from H2O2-treated PDLCs. Results Tβ4 was down-regulated in H2O2-exposed PDLCs in dose- and time-dependent manners. Tβ4 activation with a Tβ4 peptide attenuated the H2O2-induced production of NO and PGE2 and up-regulated iNOS, COX-2, and osteoclastogenic cytokines (TNF-α, IL-1β, IL-6, IL-8, and IL-17) as well as reversed the effect on RANKL and OPG in PDLCs. Tβ4 peptide inhibited the effects of H2O2 on the activation of ERK and JNK MAPK, and NF-κB in PDLCs. Furthermore, Tβ4 peptide inhibited osteoclast differentiation, osteoclast-specific gene expression, and p38, ERK, and JNK phosphorylation and NF-κB activation in RANKL-stimulated BMMs. In addition, H2O2 up-regulated Wnt5a and its cell surface receptors, Frizzled and Ror2 in PDLCs. Wnt5a inhibition by Wnt5a siRNA enhanced the effects of Tβ4 on H2O2-mediated induction of pro-inflammatory cytokines and osteoclastogenic cytokines as well as helping osteoclastic differentiation whereas Wnt5a activation by Wnt5a peptide reversed it. Conclusion In conclusion, this study demonstrated, for the first time, that Tβ4 was down-regulated in ROS-stimulated PDLCs as well as Tβ4 activation exhibited anti-inflammatory effects and anti-osteoclastogenesis in vitro

  11. Inclusion of the periodontal ligament in studies on the biomechanical behavior of fiber post-retained restorations: An in vitro study and three-dimensional finite element analysis.

    PubMed

    González-Lluch, Carmen; Rodríguez-Cervantes, Pablo-Jesús; Forner, Leopoldo; Barjau, Amaya

    2016-03-01

    Endodontically treated teeth are known to have reduced structural strength. Periodontal ligament may influence fracture resistance. The purpose of this study was to assess the influence of including the periodontal ligament in biomechanical studies about endodontically treated and restored teeth. Forty human maxillary central incisors were treated endodontically and randomly divided into four groups: non-crowned (with and without an artificial ligament) and crowned (with and without an artificial ligament) with glass-ceramic crowns. All groups received prefabricated glass-fiber posts and a composite resin core. Specimens were tested, under a flexural-compressive load, until failure occurred. The failure mode was registered for all specimens. The failure loads were recorded and analyzed using an analysis of variance test (p < 0.05). These results were compared with those predicted by a finite element model. The analysis of variance did not show significant differences between the use of crown on the failure load (p = 0.331) and the use of periodontal ligament (p = 0.185). A cohesive mode in crown appeared in crowned teeth and in core in non-crowned groups. For non-crowned teeth, adhesive failure occurred along the cement-enamel junction with a slight tendency in specimens without periodontal ligament. Furthermore, an unfavorable failure mode affects partially the root with no differences regarding non-crown specimens. In crowned teeth, the tendency was an adhesive failure along the cement-enamel junction. The model predicted a distribution of the safety factor consistent with these results. This study showed that inclusion of periodontal ligament is not particularly important on biomechanical behavior of post-retained restorations. However, we recommend its inclusion in fatigue studies. PMID:26893228

  12. Porphyromonas gingivalis GroEL Induces Osteoclastogenesis of Periodontal Ligament Cells and Enhances Alveolar Bone Resorption in Rats

    PubMed Central

    Lin, Feng-Yen; Hsiao, Fung-Ping; Huang, Chun-Yao; Shih, Chun-Ming; Tsao, Nai-Wen; Tsai, Chien-Sung; Yang, Shue-Fen; Chang, Nen-Chung; Hung, Shan-Ling; Lin, Yi-Wen

    2014-01-01

    Porphyromonas gingivalis is a major periodontal pathogen that contains a variety of virulence factors. The antibody titer to P. gingivalis GroEL, a homologue of HSP60, is significantly higher in periodontitis patients than in healthy control subjects, suggesting that P. gingivalis GroEL is a potential stimulator of periodontal disease. However, the specific role of GroEL in periodontal disease remains unclear. Here, we investigated the effect of P. gingivalis GroEL on human periodontal ligament (PDL) cells in vitro, as well as its effect on alveolar bone resorption in rats in vivo. First, we found that stimulation of PDL cells with recombinant GroEL increased the secretion of the bone resorption-associated cytokines interleukin (IL)-6 and IL-8, potentially via NF-κB activation. Furthermore, GroEL could effectively stimulate PDL cell migration, possibly through activation of integrin α1 and α2 mRNA expression as well as cytoskeletal reorganization. Additionally, GroEL may be involved in osteoclastogenesis via receptor activator of nuclear factor κ-B ligand (RANKL) activation and alkaline phosphatase (ALP) mRNA inhibition in PDL cells. Finally, we inoculated GroEL into rat gingiva, and the results of microcomputed tomography (micro-CT) and histomorphometric assays indicated that the administration of GroEL significantly increased inflammation and bone loss. In conclusion, P. gingivalis GroEL may act as a potent virulence factor, contributing to osteoclastogenesis of PDL cells and resulting in periodontal disease with alveolar bone resorption. PMID:25058444

  13. Oxidative Stress: A Link between Diabetes Mellitus and Periodontal Disease

    PubMed Central

    Mezei, Tibor; Popsor, Sorin; Monea, Monica

    2014-01-01

    Objective. To investigate oxidative stress (OS) and histological changes that occur in the periodontium of subjects with type 2 diabetes mellitus without signs of periodontal disease and to establish if oxidative stress is a possible link between diabetes mellitus and periodontal changes. Materials and Methods. Tissue samples from ten adult patients with type 2 diabetes mellitus (T2D) and eight healthy adults were harvested. The specimens were examined by microscope using standard hematoxylin-eosin stain, at various magnifications, and investigated for tissue levels of malondialdehyde (MDA) and glutathione (GSH). Results. Our results showed that periodontal tissues in patients with T2D present significant inflammation, affecting both epithelial and connective tissues. Mean MDA tissue levels were 3.578 ± 0.60 SD in diabetics versus 0.406 ± 0.27 SD in controls (P < 0.0001), while mean GSH tissue levels were 2.48 ± 1.02 SD in diabetics versus 9.7875 ± 2.42 SD in controls (P < 0.0001). Conclusion. Diabetic subjects had higher MDA levels in their periodontal tissues, suggesting an increased lipid peroxidation in T2D, and decreased GSH tissue levels, suggesting an alteration of the local antioxidant defense mechanism. These results are in concordance with the histological changes that we found in periodontal tissues of diabetic subjects, confirming the hypothesis of OS implication, as a correlation between periodontal disease incidence and T2D. PMID:25525432

  14. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation.

    PubMed

    Lei, Ming; Li, Kun; Li, Bei; Gao, Li-Na; Chen, Fa-Ming; Jin, Yan

    2014-08-01

    Mesenchymal stem cells (MSCs) isolated from human postnatal dental pulp and periodontal ligament (PDL) tissues can give rise to multilineage differentiation in vitro and generate related dental tissues in vivo. However, the cell properties of human dental pulp stem cells (DPSCs) and PDL stem cells (PDLSCs) after in vivo implantation remain largely unidentified. In this study, cells were re-isolated from in vivo-generated dental pulp-like and PDL-like tissues (termed re-DPCs and re-PDLCs, respectively) as a result of ectopic transplantation of human DPSC and PDLSC sheets. The cell characteristics in terms of colony-forming ability, cell surface antigens and multi-differentiation potentials were all evaluated before and after implantation. It was found that re-DPCs and re-PDLCs were of human and mesenchymal origin and positive for MSC markers such as STRO-1, CD146, CD29, CD90 and CD105; and, to some extent, re-DPCs could maintain their colony forming abilities. Moreover, both cell types were able to form mineral deposits and differentiate into adipocytes and chondrocytes; however, quantitative analysis and related gene expression determination showed that the osteo-/chondro-differentiation capabilities of re-DPCs and re-PDLCs were significantly reduced compared to those of DPSCs and PDLSCs, respectively (P < 0.05); re-PDLCs showed a greater reduction potential than re-DPCs. We conclude that DPSCs and PDLSCs may maintain their MSC characteristics after in vivo implantation and, compared to PDLSCs, DPSCs appear much more stable under in vivo conditions. These findings provide additional cellular and molecular evidence that supports expanding the use of dental tissue-derived stem cells in cell therapy and tissue engineering. PMID:24824581

  15. The plastic nature of the human bone-periodontal ligament-tooth fibrous joint.

    PubMed

    Ho, Sunita P; Kurylo, Michael P; Grandfield, Kathryn; Hurng, Jonathan; Herber, Ralf-Peter; Ryder, Mark I; Altoe, Virginia; Aloni, Shaul; Feng, Jian Q; Webb, Samuel; Marshall, Grayson W; Curtis, Donald; Andrews, Joy C; Pianetta, Piero

    2013-12-01

    This study investigates bony protrusions within a narrowed periodontal ligament space (PDL-space) of a human bone-PDL-tooth fibrous joint by mapping structural, biochemical, and mechanical heterogeneity. Higher resolution structural characterization was achieved via complementary atomic force microscopy (AFM), nano-transmission X-ray microscopy (nano-TXM), and microtomography (MicroXCT™). Structural heterogeneity was correlated to biochemical and elemental composition, illustrated via histochemistry and microprobe X-ray fluorescence analysis (μ-XRF), and mechanical heterogeneity evaluated by AFM-based nanoindentation. Results demonstrated that the narrowed PDL-space was due to invasion of bundle bone (BB) into PDL-space. Protruded BB had a wider range with higher elastic modulus values (2-8GPa) compared to lamellar bone (0.8-6GPa), and increased quantities of Ca, P and Zn as revealed by μ-XRF. Interestingly, the hygroscopic 10-30μm interface between protruded BB and lamellar bone exhibited higher X-ray attenuation similar to cement lines and lamellae within bone. Localization of the small leucine rich proteoglycan biglycan (BGN) responsible for mineralization was observed at the PDL-bone interface and around the osteocyte lacunae. Based on these results, it can be argued that the LB-BB interface was the original site of PDL attachment, and that the genesis of protruded BB identified as protrusions occurred as a result of shift in strain. We emphasize the importance of bony protrusions within the context of organ function and that additional study is warranted. PMID:24063947

  16. The Plastic Nature of the Human Bone-Periodontal Ligament-Tooth Fibrous Joint

    PubMed Central

    Ho, Sunita P.; Kurylo, Michael P.; Grandfield, Kathryn; Hurng, Jonathan; Herber, Ralf-Peter; Ryder, Mark I.; Altoe, Virginia; Aloni, Shaul; Feng, Jian Q. (Jerry); Webb, Samuel; Marshall, Grayson W.; Curtis, Donald; Andrews, Joy C.; Pianetta, Piero

    2014-01-01

    This study investigates bony protrusions within a narrowed periodontal ligament space (PDL-space) of a human bone-PDL-tooth fibrous joint by mapping structural, biochemical, and mechanical heterogeneity. Higher resolution structural characterization was achieved via complementary atomic force microscopy (AFM), nano transmission X-ray microscopy (nano-TXM), and micro tomography (Micro XCT™). Structural heterogeneity was correlated to biochemical and elemental composition, illustrated via histochemistry and microprobe X-ray fluorescence analysis (μ-XRF), and mechanical heterogeneity evaluated by AFM-based nanoindentation. Results demonstrated that the narrowed PDL-space was due to invasion of bundle bone (BB) into PDL-space. Protruded BB had a wider range with higher elastic modulus values (2-8 GPa) compared to lamellar bone (0.8-6 GPa), and increased quantities of Ca, P and Zn as revealed by μ-XRF. Interestingly, the hygroscopic 10-30 μm interface between protruded BB and lamellar bone exhibited higher X-ray attenuation similar to cement lines and lamellae within bone. Localization of the small leucine rich proteoglycan biglycan (BGN) responsible for mineralization was observed at the PDL-bone interface and around the osteocyte lacunae. Based on these results, it can be argued that the LB-BB interface was the original site of PDL attachment, and that the genesis of protruded BB identified as protrusions occurred as a result of shift in strain. We emphasize the importance of bony protrusions within the context of organ function and that additional study is warranted. PMID:24063947

  17. Effects of laser therapy on the proliferation of human periodontal ligament stem cells.

    PubMed

    Soares, Diego Moura; Ginani, Fernanda; Henriques, Águida Gomes; Barboza, Carlos Augusto Galvão

    2015-04-01

    Low-level laser irradiation (LLLI) stimulates the proliferation of a variety of cell types. However, very little is known about the effect of laser therapy on dental stem cells. The aim of the present study was to evaluate the effect of LLLI (660 nm, 30 mW) on the proliferation rate of human periodontal ligament stem cells (hPDLSC), obtained from two healthy permanent third molars extracted due to surgical indication. Culture cells were either irradiated or not (control) with an InGaAIP diode laser at 0 and 48 h, using two different energy densities (0.5 J/cm², 16 s and 1.0 J/cm², 33 s). Cell proliferation was evaluated by the Trypan blue exclusion method and by measuring mitochondrial activity using the MTT-based cytotoxicity assay at intervals of 0, 24, 48, and 72 h after the first laser application. An energy density of 1.0 J/cm² improved the cell proliferation in comparison to the other groups (control and laser 0.5 J/cm²) at 48 and 72 h. The group irradiated with 1.0 J/cm² presented significantly higher MTT activity at 48 and 72 h when compared to the energy density of 0.5 J/cm². It can be concluded that LLLI using infrared light and an energy density of 1.0 J/cm² has a positive stimulatory effect on the proliferation of hPDLSC. PMID:24013624

  18. Inhibition of Histone Deacetylases Enhances the Osteogenic Differentiation of Human Periodontal Ligament Cells.

    PubMed

    Huynh, Nam Cong-Nhat; Everts, Vincent; Pavasant, Prasit; Ampornaramveth, Ruchanee Salingcarnboriboon

    2016-06-01

    One of the characteristics of periodontal ligament (PDL) cells is their plasticity. Yet, the underlying mechanisms responsible for this phenomenon are unknown. One possible mechanism might be related to epigenetics, since histone deacetylases (HDACs) have been shown to play a role in osteoblast differentiation. This study was aimed to investigate the role of HDACs in osteogenic differentiation of human PDL (hPDL) cells. HDAC inhibitor trichostatin A (TSA) had no effect on cell viability as was assessed by MTT assay. Osteogenic and adipogenic differentiation was analyzed by gene expression, ALP activity and mineral deposition. Western blotting was used to investigate the effect of TSA on histone acetylation and protein expression. In the presence of the HDAC inhibitor osteogenic differentiation was induced; osteoblast-related gene expression was increased significantly. ALP activity and mineral nodule formation were also enhanced. Inhibition of HDACs did not induce differentiation into the adipocyte lineage. hPDL highly expressed HDACs of both class I (HDAC 1, 2, 3) and class II (HDAC 4, 6). During osteogenic differentiation HDAC 3 expression gradually decreased. This was apparent in the absence and presence of the inhibitor. The level of acetylated Histone H3 was increased during osteogenic differentiation. Inhibition of HDAC activity induced hyperacetylation of Histone H3, therefore, demonstrating Histone H3 as a candidate target molecule for HDAC inhibition. In conclusion, hPDL cells express a distinguished series of HDACs and these enzymes appear to be involved in osteogenic differentiation. This finding suggests a potential application of TSA for bone regeneration therapy by hPDL cells. PMID:27043246

  19. Functional differences in mesenchymal stromal cells from human dental pulp and periodontal ligament.

    PubMed

    Vasandan, Anoop Babu; Shankar, Shilpa Rani; Prasad, Priya; Sowmya Jahnavi, Vulugundam; Bhonde, Ramesh Ramachandra; Jyothi Prasanna, Susarla

    2014-02-01

    Clinically reported reparative benefits of mesenchymal stromal cells (MSCs) are majorly attributed to strong immune-modulatory abilities not exactly shared by fibroblasts. However, MSCs remain heterogeneous populations, with unique tissue-specific subsets, and lack of clear-cut assays defining therapeutic stromal subsets adds further ambiguity to the field. In this context, in-depth evaluation of cellular characteristics of MSCs from proximal oro-facial tissues: dental pulp (DPSCs) and periodontal ligament (PDLSCs) from identical donors provides an opportunity to evaluate exclusive niche-specific influences on multipotency and immune-modulation. Exhaustive cell surface profiling of DPSCs and PDLSCs indicated key differences in expression of mesenchymal (CD105) and pluripotent/multipotent stem cell-associated cell surface antigens: SSEA4, CD117, CD123 and CD29. DPSCs and PDLSCs exhibited strong chondrogenic potential, but only DPSCs exhibited adipogenic and osteogenic propensities. PDLSCs expressed immuno-stimulatory/immune-adhesive ligands like HLA-DR and CD50, upon priming with IFNγ, unlike DPSCs, indicating differential response patterns to pro-inflammatory cytokines. Both DPSCs and PDLSCs were hypo-immunogenic and did not elicit robust allogeneic responses despite exposure to IFNγ or TNFα. Interestingly, only DPSCs attenuated mitogen-induced lympho-proliferative responses and priming with either IFNγ or TNFα enhanced immuno-modulation capacity. In contrast, primed or unprimed PDLSCs lacked the ability to suppress polyclonal T cell blast responses. This study indicates that stromal cells from even topographically related tissues do not necessarily share identical MSC properties and emphasizes the need for a thorough functional testing of MSCs from diverse sources with respect to multipotency, immune parameters and response to pro-inflammatory cytokines before translational usage. PMID:24393246

  20. Comparative Gene Expression Analysis of the Human Periodontal Ligament in Deciduous and Permanent Teeth

    PubMed Central

    Kim, Seong-Oh; Jeon, Mijeong; Choi, Byung-Jai; Jung, Han-Sung; Moon, Seok Jun; Park, Wonse; Choi, Hyung-Jun

    2013-01-01

    There are histological and functional differences between human deciduous and permanent periodontal ligament (PDL) tissues. The aim of this study was to determine the differences between these two types of tissue at the molecular level by comparing their gene expression patterns. PDL samples were obtained from permanent premolars (n = 38) and anterior deciduous teeth (n = 31) extracted from 40 healthy persons. Comparative cDNA microarray analysis revealed several differences in gene expression between the deciduous and permanent PDL tissues. These findings were verified by qRT-PCR (quantitative reverse-transcription–polymerase chain reaction) analysis, and the areas where genes are expressed were revealed by immunohistochemical staining. The expressions of 21 genes were up-regulated in deciduous relative to PDL tissues, and those of 30 genes were up-regulated in permanent relative to deciduous PDL tissues. The genes that were up-regulated in deciduous PDL tissues were those involved in the formation of the extracellular matrix (LAMC2, LAMB3, and COMP), tissue development (IGF2BP, MAB21L2, and PAX3), and inflammatory or immune reactions leading to tissue degradation (IL1A, CCL21, and CCL18). The up-regulated genes in permanent PDL tissues were related to tissue degradation (IL6 and ADAMTS18), myocontraction (PDE3B, CASQ2, and MYH10), and neurological responses (FOS, NCAM2, SYT1, SLC22A3, DOCK3, LRRTM1, LRRTM3, PRSS12, and ARPP21). The analysis of differential gene expressions between deciduous and permanent PDL tissues aids our understanding of histological and functional differences between them at the molecular level. PMID:23593441

  1. Effects of Activin A on the phenotypic properties of human periodontal ligament cells.

    PubMed

    Sugii, Hideki; Maeda, Hidefumi; Tomokiyo, Atsushi; Yamamoto, Naohide; Wada, Naohisa; Koori, Katsuaki; Hasegawa, Daigaku; Hamano, Sayuri; Yuda, Asuka; Monnouchi, Satoshi; Akamine, Akifumi

    2014-09-01

    Periodontal ligament (PDL) tissue plays an important role in tooth preservation by structurally maintaining the connection between the tooth root and the bone. The mechanisms involved in the healing and regeneration of damaged PDL tissue, caused by bacterial infection, caries and trauma, have been explored. Accumulating evidence suggests that Activin A, a member of the transforming growth factor-β (TGF-β) superfamily and a dimer of inhibinβa, contributes to tissue healing through cell proliferation, migration, and differentiation of various target cells. In bone, Activin A has been shown to exert an inhibitory effect on osteoblast maturation and mineralization. However, there have been no reports examining the expression and function of Activin A in human PDL cells (HPDLCs). Thus, we aimed to investigate the biological effects of Activin A on HPDLCs. Activin A was observed to be localized in HPDLCs and rat PDL tissue. When PDL tissue was surgically damaged, Activin A and IL-1β expression increased and the two proteins were shown to be co-localized around the lesion. HPDLCs treated with IL-1β or TNF-α also up-regulated the expression of the gene encoding inhibinβa. Activin A promoted chemotaxis, migration and proliferation of HPDLCs, and caused an increase in fibroblastic differentiation of these cells while down-regulating their osteoblastic differentiation. These osteoblastic inhibitory effects of Activin A, however, were only noted during the early phase of HPDLC osteoblastic differentiation, with later exposures having no effect on differentiation. Collectively, our results suggest that Activin A could be used as a therapeutic agent for healing and regenerating PDL tissue in response to disease, trauma or surgical reconstruction. PMID:24928494

  2. Neurogenesis of Neural Crest Derived Periodontal Ligament Stem Cells by EGF and bFGF

    PubMed Central

    Fortino, Veronica R.; Chen, Ren-Shiang; Pelaez, Daniel; Cheung, Herman S.

    2013-01-01

    Neuroregenerative medicine is an ever-growing field in which regeneration of lost cells/tissues due to a neurodegenerative disease is the ultimate goal. With the scarcity of available replacement alternatives, stem cells provide an attractive source for regenerating neural tissue. While many stem cell sources exist, including: mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs), the limited cellular potency, technical difficulties, and ethical considerations associated with these make finding alternate sources a desirable goal. Periodontal ligament stem cells (PDLSCs) derived from the neural crest were induced into neural-like cells using a combination of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). Morphological changes were evident in our treated group, seen under both light microscopy and scanning electron microscopy (SEM). A statistically significant increase in the expression of neuron-specific β-tubulin III and the neural stem/progenitor cell marker nestin, along with positive immunohistochemical staining for glial fibrillary acidic protein (GFAP), demonstrated the success of our treatment in inducing both neuronal and glial phenotypes. Positive staining for synaptophysin demonstrated neural connections and electrophysiological recordings indicated that when subjected to whole cell patch clamping, our treated cells displayed inward currents conducted through voltage-gated sodium (Na+) channels. Taken together, our results indicate the success of our treatment in inducing PDLSCs to neural-like cells. The ease of sourcing and expansion, their embryologic neural crest origin, and the lack of ethical implications in their use make PDLSCs an attractive source for use in neuroregenerative medicine. PMID:24105823

  3. Bone morphogenetic protein 7 induces cementogenic differentiation of human periodontal ligament-derived mesenchymal stem cells.

    PubMed

    Torii, D; Tsutsui, T W; Watanabe, N; Konishi, K

    2016-01-01

    Bone morphogenetic protein 7 (BMP-7) is a multifunctional differentiation factor that belongs to the transforming growth factor superfamily. BMP-7 induces gene expression of protein tyrosine phosphatase-like, member A/cementum attachment protein (PTPLA/CAP) and cementum protein 1 (CEMP1), both of which are markers of cementoblasts and cementocytes. In the previous study, we reported that BMP-7 treatment enhanced PTPLA/CAP and CEMP1 expression in both normal and immortal human periodontal ligament (PDL) cells. To elucidate the molecular mechanisms of the gene expression of these molecules, in this study, we identified a functional transcription activator binding region in the promoter region of PTPLA/CAP and CEMP1 that is responsive to BMP signals. Here, we report that some short motifs termed GC-rich Smad-binding elements (GC-SBEs) that are located in the human PTPLA/CAP promoter and CEMP1 promoter are BMP-7 responsive as analyzed with luciferase promoter assays. On the other hand, we found that transcription of Sp7/Osterix and PTPLA/CAP was up-regulated after 1 week of BMP-7 treatment on purified normal human PDL cells as a result of gene expression microarray analysis. Furthermore, transcription of Sp7/Osterix, runt-related transcription factor 2 (RUNX2), and alkaline phosphatase (ALP) was up-regulated after 2 weeks of BMP-7 treatment, whereas gene expression of osteo/odontogenic markers such as integrin-binding sialoprotein (IBSP), collagen, type I, alpha 1 (COL1A1), dentin matrix acidic phosphoprotein 1 (DMP1), and dentin sialophosphoprotein (DSPP) was not up-regulated in purified normal or immortal human PDL cells as a result of qRT-PCR. The results suggest that BMP-7 mediates cementogenesis via GC-SBEs in human PDL cells and that its molecular mechanism is different from that for osteo/odontogenesis. PMID:25464857

  4. DNA Demethylation Rescues the Impaired Osteogenic Differentiation Ability of Human Periodontal Ligament Stem Cells in High Glucose

    PubMed Central

    Liu, Zhi; Chen, Tian; Sun, Wenhua; Yuan, Zongyi; Yu, Mei; Chen, Guoqing; Guo, Weihua; Xiao, Jingang; Tian, Weidong

    2016-01-01

    Diabetes mellitus, characterized by abnormally high blood glucose levels, gives rise to impaired bone remodeling. In response to high glucose (HG), the attenuated osteogenic differentiation capacity of human periodontal ligament stem cells (hPDLSCs) is associated with the loss of alveolar bone. Recently, DNA methylation was reported to affect osteogenic differentiation of stem cells in pathological states. However, the intrinsic mechanism linking DNA methylation to osteogenic differentiation ability in the presence of HG is still unclear. In this study, we found that diabetic rats with increased DNA methylation levels in periodontal ligaments exhibited reduced bone mass and density. In vitro application of 5-aza-2′-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, to decrease DNA methylation levels in hPDLSCs, rescued the osteogenic differentiation capacity of hPDLSCs under HG conditions. Moreover, we demonstrated that the canonical Wnt signaling pathway was activated during this process and, under HG circumstances, the 5-aza-dC-rescued osteogenic differentiation capacity was blocked by Dickkopf-1, an effective antagonist of the canonical Wnt signaling pathway. Taken together, these results demonstrate for the first time that suppression of DNA methylation is able to facilitate the osteogenic differentiation capacity of hPDLSCs exposed to HG, through activation of the canonical Wnt signaling pathway. PMID:27273319

  5. Comparative in vitro study of the effectiveness of Green tea extract and common storage media on periodontal ligament fibroblast viability

    PubMed Central

    Adeli, Fahimeh; Zabihi, Ebrahim; Abedian, Zeinab; Gharekhani, Samane; Pouramir, Mahdi; Khafri, Soraya; Ghasempour, Maryam

    2016-01-01

    Objective: Green tea extract (GTE) was shown to be effective in preserving periodontal ligament fibroblasts (PDLFs) of avulsed teeth. This study aimed at determining the potential of GTE in preserving the viability of PDLFs comparing with different storage media. Materials and Methods: Periodontal ligament cells were obtained from freshly extracted healthy impacted third molars and cultured in Dulbecco's Modified Eagle Medium (DMEM). Cell viability was determined by storing the cells in seven media; DMEM, tap water, Hank's balanced salt solution (HBSS), whole milk, hypotonic sucrose solution, GTE, and GTE + sucrose for 1, 2, 4, and 24 h at 37°C using tetrazolium salt-based colorimetric (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide) assay. Statistical analysis was performed by one-way analysis of variance and post hoc tests. Results: GTE showed significantly higher protective effect than HBSS at 2, 4, and 24 h (P = 0.009, P = 0.02, P = 0.016), DMED at 2 h (P = 0.003), and milk at 4 h (P = 0.039). Conclusion: Although with undesirable osmolality and pH, GTE had a good ability in preserving the PDLFs comparing with other studied media. PMID:27403063

  6. DNA Demethylation Rescues the Impaired Osteogenic Differentiation Ability of Human Periodontal Ligament Stem Cells in High Glucose.

    PubMed

    Liu, Zhi; Chen, Tian; Sun, Wenhua; Yuan, Zongyi; Yu, Mei; Chen, Guoqing; Guo, Weihua; Xiao, Jingang; Tian, Weidong

    2016-01-01

    Diabetes mellitus, characterized by abnormally high blood glucose levels, gives rise to impaired bone remodeling. In response to high glucose (HG), the attenuated osteogenic differentiation capacity of human periodontal ligament stem cells (hPDLSCs) is associated with the loss of alveolar bone. Recently, DNA methylation was reported to affect osteogenic differentiation of stem cells in pathological states. However, the intrinsic mechanism linking DNA methylation to osteogenic differentiation ability in the presence of HG is still unclear. In this study, we found that diabetic rats with increased DNA methylation levels in periodontal ligaments exhibited reduced bone mass and density. In vitro application of 5-aza-2'-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, to decrease DNA methylation levels in hPDLSCs, rescued the osteogenic differentiation capacity of hPDLSCs under HG conditions. Moreover, we demonstrated that the canonical Wnt signaling pathway was activated during this process and, under HG circumstances, the 5-aza-dC-rescued osteogenic differentiation capacity was blocked by Dickkopf-1, an effective antagonist of the canonical Wnt signaling pathway. Taken together, these results demonstrate for the first time that suppression of DNA methylation is able to facilitate the osteogenic differentiation capacity of hPDLSCs exposed to HG, through activation of the canonical Wnt signaling pathway. PMID:27273319

  7. Proinflammatory and Oxidative Stress Markers in Patients with Periodontal Disease

    PubMed Central

    Borges Jr., Ivan; Moreira, Emília Addison Machado; Filho, Danilo Wilhem; de Oliveira, Tiago Bittencourt; da Silva, Marcelo Barreto Spirelle; Fröde, Tânia Silvia

    2007-01-01

    Objective. To evaluate the involvement of proinflammatory and oxidative stress markers in gingival tissue in individuals with chronic periodontitis. Subject and methods. Eighteen subjects were divided in two groups: experimental (age 52.9±5.0) and control (age 51.1±9.6). The activities of enzymatic antioxidants such as catalase, glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase, nonenzymatic antioxidants: total glutathione and reduced glutathione, oxidized glutathione (GSSG), thiobarbituric acid reactive substances (TBARS), and myeloperoxidase activity (MPO) were evaluated in gingival tissues from interproximal sites. Statistical differences between groups were determined by independent Student t test and P<.05. Results. Individuals with periodontal disease exhibited a significant increase in the activities of MPO, GPx, GST, and also in TBARS and GSSG levels in gingival tissue compared to the control group (P<.05). Conclusion. The results of the present work showed an important correlation between oxidative stress biomarkers and periodontal disease. PMID:18288271

  8. Effect of temperature and storage media on human periodontal ligament fibroblast viability.

    PubMed

    Souza, Beatriz Dulcineia Mendes; Lückemeyer, Débora Denardin; Felippe, Wilson Tadeu; Simões, Cláudia Maria Oliveira; Felippe, Mara Cristina Santos

    2010-06-01

    Many solutions have been examined as possible storage media for avulsed teeth. The purpose of this study was to compare the effectiveness of several storage media to preserve cultured periodontal ligament fibroblasts (PDLF) under different temperatures. The media tested were: sterile Hank's balanced salt solution (sHBSS), non-sterile HBSS (nHBSS), skimmed milk, Save-A-Tooth((R)), Minimum Essential Medium (MEM) and water (negative control). MEM at 37 degrees C was used as positive control. PDLF were obtained from explants of extracted healthy human teeth. Plates containing confluent PDLF were soaked in the various media for 3, 6, 24, 48 and 72 h at 37 degrees C and 20 degrees C. After incubation, viability of the cells was determined using the tetrazolium salt-based colorimetric (MTT) assay and the Trypan Blue exclusion test after 6, 24, 48 and 72 h of incubation at 20 degrees C. The results were analyzed statistically using Kruskal-Wallis, Scheffé and Mann-Whitney (alpha = 5%) tests. Results from the MTT assay at 37 degrees C and 20 degrees C showed that skimmed milk was the best storage medium for up to 24 and 48 h, respectively, followed by nHBSS and sHBSS. Results from the Trypan Blue exclusion test showed that the best storage media were milk, sHBSS and nHBSS, with no statistical differences, for any time period. The Save-A-Tooth((R)) had a detrimental effect on cells after 24 h. The influence of temperature on the effectiveness of the storage media tested showed at 20 degrees C a decreasing order of efficacy as follows: milk > sHBSS and nHBSS > MEM > Save-A-Tooth((R)) > water while at 37 degrees C it was: MEM > nHBSS > milk > sHBSS > Save-A-Tooth((R)) > water. In conclusion, incubation temperature altered the effectiveness of the storage media and skimmed milk at 20 degrees C was better than HBSS in maintaining PDLF viability. PMID:20572843

  9. Biomechanics of a Bone-Periodontal Ligament-Tooth Fibrous Joint

    PubMed Central

    Lin, Jeremy D.; Özcoban, Hüseyin; Greene, Janelle; Jang, Andrew T.; Djomehri, Sabra; Fahey, Kevin; Hunter, Luke; Schneider, Gerold A; Ho, Sunita P.

    2013-01-01

    This study investigates bone-tooth association under compression to identify strain amplified sites within the bone-periodontal ligament (PDL)-tooth fibrous joint. Our results indicate that the biomechanical response of the joint is due to a combinatorial response of constitutive properties of organic, inorganic, and fluid components. Second maxillary molars within intact maxillae (N=8) of 5-month-old rats were loaded with a μ-XCT-compatible in situ loading device at various permutations of displacement rates (0.2, 0.5, 1.0, 1.5, 2.0 mm/min) and peak reactionary load responses (5, 10, 15, 20 N). Results indicated a nonlinear biomechanical response of the joint, in which the observed reactionary load rates were directly proportional to displacement rates (velocities). No significant differences in peak reactionary load rates at a displacement rate of 0.2 mm/min were observed. However, for displacement rates greater than 0.2 mm/min, an increasing trend in reactionary rate was observed for every peak reactionary load with significant increases at 2.0 mm/min. Regardless of displacement rates, two distinct behaviors were identified with stiffness (S) and reactionary load rate (LR) values at a peak load of 5 N (S5 N=290–523 N/mm) being significantly lower than those at 10 N (LR5 N=1–10 N/s) and higher (S10N–20 N=380–684 N/mm; LR10N–20 N=1–19 N/s). Digital image correlation revealed the possibility of a screw-like motion of the tooth into the PDL-space, i.e., predominant vertical displacement of 35 μm at 5 N, followed by a slight increase to 40 μm at 10 N and 50 μm at 20 N of the tooth and potential tooth rotation at loads above 10 N. Narrowed and widened PDL spaces as a result of tooth displacement indicated areas of increased apparent strain within the complex. We propose that such highly strained regions are “hot spots” that can potentiate local tissue adaptation under physiological loading and adverse tissue adaptation under pathological loading

  10. Synthetic integrin-binding peptides promote adhesion and proliferation of human periodontal ligament cells in vitro.

    PubMed

    Grzesik, W J; Ivanov, B; Robey, F A; Southerland, J; Yamauchi, M

    1998-08-01

    Periodontal ligament (PDL) cells have been shown to express several integrins (alphav, alpha5, beta1, beta3) that use RGD (arginine-glycine-aspartic Acid)-dependent mechanisms for the recognition and binding of their ligands. The objective of this study was to evaluate the effects of certain integrin-binding cyclic and linear synthetic RGD-containing peptides on PDL cells' adhesion, proliferation, and de novo protein synthesis in vitro. Fifth passages of normal human PDL cells established from teeth extracted from patients (ages 12 to 14) for orthodontic reasons were used for all experiments. Synthetic peptides containing the EPRGDNYR sequence in two different spatial conformations (linear and cyclic) were covalently attached to bovine serum albumin (BSA). Type I collagen, EPRGDNYR-BSA conjugates, 1:1 mixtures of type I collagen and conjugates, as well as BSA (a negative control) were coated on bacteriological plastic and evaluated for their attachment-promoting activities. In addition, the effects of these substrates on cell proliferation were evaluated by [3H]thymidine incorporation by the PDL cells. For attachment and spreading, the cyclic forms of EPRGDNYR-BSA conjugate and type I collagen were most potent, followed by linear EPRGDNYR-BSA conjugate. The effects of all collagen/conjugate mixtures were equivalent to that of type I collagen except for the collagen/linear EPRGDNYR-BSA mixture, which was less potent. The cyclic EPRGDNYR-BSA conjugate was the most effective substrate to stimulate cell proliferation, and it was followed in potency by the linear peptide-BSA conjugate. Collagen alone did not stimulate [3H]thymidine incorporation above the control level. Mixtures of collagen with all of the conjugates showed stimulatory effects similar to that of the cyclic peptide-BSA conjugate. No significant differences in de novo protein synthesis were detected. These results suggest that the synthetic RGD-containing peptides attached to a carrier are potent ligands

  11. Effects of human relaxin on orthodontic tooth movement and periodontal ligaments in rats

    PubMed Central

    Madan, Monica S.; Liu, Zee J.; Gu, Gao M.; King, Gregory J.

    2010-01-01

    Introduction The rate-limiting step in orthodontic treatment is often the rapidity with which teeth move. Using biological agents to modify the rate of tooth movement has been shown to be effective in animals. Relaxin is a hormone present in both males and females. Its main action is to increase the turnover of fibrous connective tissues. Thus, relaxin might increase the amount and rate of tooth movement through its effect on the periodontal ligament (PDL). The purpose of this study was to measure the effect of relaxin on orthodontic tooth movement and PDL structures. Methods Bilateral orthodontic appliances designed to tip maxillary molars mesially with a force of 40 cN were placed in 96 rats. At day 0, the animals were randomized to either relaxin or vehicle treatment. Twelve rats in each group were killed at 2, 4, 7, and 9 days after appliance activation. Cephalograms were taken at appliance placement and when the rats were killed. Tooth movement was measured cephalometrically in relation to palatal implants. Fractal analysis and visual analog scale assessments were used to evaluate the effect of relaxin on PDL fiber organization at the tension sites in histologic sections. The in-vitro testing for PDL mechanical strength and tooth mobility was performed by using tissue from an additional 20 rats that had previously received the same relaxin or vehicle treatments for 1 or 3 days (n = 5). Results Both groups had statistically significant tooth movement as functions of time. However, relaxin did not stimulate significantly greater or more rapid tooth movement. Fractal and visual analog scale analyses implied that relaxin reduced PDL fiber organization. In-vitro mechanical testing and tooth mobility assessments indicated that the PDL of the mandibular incisors in the relaxin-treated rats had reduced yield load, strain, and stiffness. Moreover, the range of tooth mobility of the maxillary first molars increased to 130% to 170%, over vehicle-treated rats at day 1

  12. Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix.

    PubMed

    Ma, Yufei; Ji, Yuan; Huang, Guoyou; Ling, Kai; Zhang, Xiaohui; Xu, Feng

    2015-01-01

    Periodontitis is an inflammatory disease negatively affecting up to 15% of adults worldwide. Periodontal ligament stem cells (PDLSCs) hold great promises for periodontal tissue regeneration, where it is necessary to find proper extracellular matrix (ECM) materials (e.g., composition, concentration). In this study, we proposed a bioprinting-based approach to generate nano-liter sized three-dimensional (3D) cell-laden hydrogel array with gradient of ECM components, through controlling the volume ratio of two hydrogels, such as gelatin methacrylate (GelMA) and poly(ethylene glycol) (PEG) dimethacrylate. The resulting cell-laden array with a gradient of GelMA/PEG composition was used to screen human PDLSC response to ECM. The behavior (e.g., cell viability, spreading) of human PDLSCs in GelMA/PEG array were found to be depended on the volume ratios of GelMA/PEG, with cell viability and spreading area decreased along with increasing the ratio of PEG. The developed approach would be useful for screening cell-biomaterial interaction in 3D and promoting regeneration of functional tissue. PMID:26696269

  13. Melatonin Inhibits CXCL10 and MMP-1 Production in IL-1β-Stimulated Human Periodontal Ligament Cells.

    PubMed

    Hosokawa, Ikuko; Hosokawa, Yoshitaka; Shindo, Satoru; Ozaki, Kazumi; Matsuo, Takashi

    2016-08-01

    Melatonin is a hormone that is mainly secreted by the pineal gland and exhibits a wide spectrum of activities, including antioxidant functions. Melatonin has been detected in gingival crevicular fluid. However, the role of melatonin in periodontal tissue is still uncertain. The aim of this study was to examine the effects of melatonin on inflammatory mediator expression in human periodontal ligament cells (HPDLC). Interleukin (IL)-1β induced CXC chemokine ligand (CXCL)10, matrix metalloproteinase (MMP)-1, and tissue inhibitors of metalloproteinase (TIMP)-1 production in HPDLC. Melatonin decreased CXCL10 and MMP-1 production and increased TIMP-1 production in IL-1β-stimulated HPDLC. Western blot analysis showed that melatonin inhibited p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase (JNK) phosphorylation, and IkB-α degradation and phosphorylation in IL-1β-stimulated HPDLC. These results suggest that melatonin might inhibit Th1 cell migration by reducing CXCL10 production. Moreover, melatonin might inhibit soft tissue destruction by decreasing MMP-1 production in periodontal lesions. PMID:27271323

  14. Changes in the masticatory muscles, periodontal tissues, and the pharyngeal ring in Wistar rats in chronic psychophysical stress.

    PubMed

    Antonova, I N

    2008-11-01

    Experimental studies performed on 120 male Wistar rats using morphometric and histological methods demonstrated changes in oral cavity tissues on exposure to chronic psychophysical stress (dosed swimming). The masticatory muscles showed foci of non-infective inflammation, dystrophic changes in muscle fibers, and contractures. The periodontal ligament showed impairments to the microcirculation with congestion of the venous bed, local bleeding into the tissue, changes in the directions of bundles of collagen fibers, and deformation of bundles. The tissues of the pharyngeal ring showed decreases in lymphocyte content, progressive loosening of connective tissue, and decreases in non-degranulated mast cell numbers, as compared with controls. The intensity of these changes depended on the level of physical loading and the individual adaptive capacity of the animals. These structural changes in the tissues may be the etiopathogenetic basis of the development of chronic inflammatory periodontal diseases. PMID:18975112

  15. Oxidative Stress Parameters in Saliva and Its Association with Periodontal Disease and Types of Bacteria

    PubMed Central

    Almerich-Silla, Jose Manuel; Montiel-Company, Jose María; Pastor, Sara; Serrano, Felipe; Puig-Silla, Miriam; Dasí, Francisco

    2015-01-01

    Objective. To determine the association between oxidative stress parameters with periodontal disease, bleeding, and the presence of different periodontal bacteria. Methods. A cross-sectional study in a sample of eighty-six patients, divided into three groups depending on their periodontal status. Thirty-three with chronic periodontitis, sixteen with gingivitis, and thirty-seven with periodontal healthy as control. Oxidative stress biomarkers (8-OHdG and MDA), total antioxidant capacity (TAOC), and the activity of two antioxidant enzymes (GPx and SOD) were determined in saliva. Subgingival plaque samples were obtained from the deepest periodontal pocket and PCR was used to determine the presence of the 6 fimA genotypes of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia, and Treponema denticola. Results. Periodontal disease was found to be associated with increased oxidative stress parameter levels. These levels rose according to the number and type of different periodontal bacteria found in the periodontal pockets. The presence of different types of periodontal bacteria is predictive independent variables in linear regresion models of oxidative stress parameters as dependent variable, above all 8-OHdG. Conclusions. Oxidative stress parameter levels are correlated with the presence of different types of bacteria. Determination of these levels and periodontal bacteria could be a potent tool for controlling periodontal disease development. PMID:26494938

  16. Matrix metalloproteinases regulate extracellular levels of SDF-1/CXCL12, IL-6 and VEGF in hydrogen peroxide-stimulated human periodontal ligament fibroblasts.

    PubMed

    Cavalla, Franco; Osorio, Constanza; Paredes, Rodolfo; Valenzuela, María Antonieta; García-Sesnich, Jocelyn; Sorsa, Timo; Tervahartiala, Taina; Hernández, Marcela

    2015-05-01

    Periodontitis is a highly prevalent infectious disease characterized by the progressive inflammatory destruction of tooth-supporting structures, leading to tooth loss. The underling molecular mechanisms of the disease are incompletely understood, precluding the development of more efficient screening, diagnostic and therapeutic approaches. We investigated the interrelation of three known effector mechanisms of the cellular response to periodontal infection, namely reactive oxygen species (ROS), matrix metalloproteinases (MMPs) and cytokines in primary cell cultures of human periodontal ligament fibroblast (hPDLF). We demonstrated that ROS increase the activity/levels of gelatinolytic MMPs, and stimulate cytokine secretion in hPDLF. Additionally, we proved that MMPs possesses immune modulatory capacity, regulating the secreted levels of cytokines in ROS-stimulated hPDLF cultures. This evidence provides further insight in the molecular pathogenesis of periodontitis, contributing to the future development of more effective therapies. PMID:25748833

  17. Policaprolactone/polyvinylpyrrolidone/siloxane hybrid materials: Synthesis and in vitro delivery of diclofenac and biocompatibility with periodontal ligament fibroblasts.

    PubMed

    Peña, José A; Gutiérrez, Sandra J; Villamil, Jean C; Agudelo, Natalia A; Pérez, León D

    2016-01-01

    In this paper, we report the synthesis of polycaprolactone (PCL) based hybrid materials containing hydrophilic domains composed of N-vinylpyrrolidone (VP), and γ-methacryloxypropyltrimethoxysilane (MPS). The hybrid materials were obtained by RAFT copolymerization of N-vinylpyrrolidone and MPS using a pre-formed dixanthate-end-functionalized PCL as macro-chain transfer agent, followed by a post-reaction crosslinking step. The composition of the samples was determined by elemental and thermogravimetric analyses. Differential scanning calorimetry and X-ray diffraction indicated that the crystallinity of PCL decreases in the presence of the hydrophilic domains. Scanning electron microscopy images revealed that the samples present an interconnected porous structure on the swelling. Compared to PCL, the hybrid materials presented low water contact angle values and higher elastic modulus. These materials showed controlled release of diclofenac, and biocompatibility with human periodontal ligament fibroblasts. PMID:26478287

  18. Effects of Naringin on Proliferation and Osteogenic Differentiation of Human Periodontal Ligament Stem Cells In Vitro and In Vivo

    PubMed Central

    Yin, Lihua; Cheng, Wenxiao; Qin, Zishun; Yu, Hongdou; Yu, Zhanhai; Zhong, Mei; Sun, Kemo; Zhang, Wei

    2015-01-01

    This study is to explore the osteogenesis potential of the human periodontal ligament stem cells (hPDLSCs) induced by naringin in vitro and in vitro. The results confirmed that 1 μM naringin performs the best effect and a collection of bone-related genes (RUNX2, COL1A2, OPN, and OCN) had significantly higher expression levels compared to the control group. Furthermore, a typical trabecular structure was observed in vivo, surrounded by a large amount of osteoblasts. These results demonstrated that naringin, at a concentration of 1 μM, can efficiently promote the proliferation and differentiation of hPDLSCs both in vitro and in vivo. PMID:26078764

  19. A Biofilm Pocket Model to Evaluate Different Non-Surgical Periodontal Treatment Modalities in Terms of Biofilm Removal and Reformation, Surface Alterations and Attachment of Periodontal Ligament Fibroblasts

    PubMed Central

    Hägi, Tobias T.; Klemensberger, Sabrina; Bereiter, Riccarda; Nietzsche, Sandor; Cosgarea, Raluca; Flury, Simon; Lussi, Adrian; Sculean, Anton; Eick, Sigrun

    2015-01-01

    Background and Aim There is a lack of suitable in vitro models to evaluate various treatment modalities intending to remove subgingival bacterial biofilm. Consequently, the aims of this in vitro-study were: a) to establish a pocket model enabling mechanical removal of biofilm and b) to evaluate repeated non-surgical periodontal treatment with respect to biofilm removal and reformation, surface alterations, tooth hard-substance-loss, and attachment of periodontal ligament (PDL) fibroblasts. Material and Methods Standardized human dentin specimens were colonized by multi-species biofilms for 3.5 days and subsequently placed into artificially created pockets. Non-surgical periodontal treatment was performed as follows: a) hand-instrumentation with curettes (CUR), b) ultrasonication (US), c) subgingival air-polishing using erythritol (EAP) and d) subgingival air-polishing using erythritol combined with chlorhexidine digluconate (EAP-CHX). The reduction and recolonization of bacterial counts, surface roughness (Ra and Rz), the caused tooth substance-loss (thickness) as well as the attachment of PDL fibroblasts were evaluated and statistically analyzed by means of ANOVA with Post-Hoc LSD. Results After 5 treatments, bacterial reduction in biofilms was highest when applying EAP-CHX (4 log10). The lowest reduction was found after CUR (2 log10). Additionally, substance-loss was the highest when using CUR (128±40 µm) in comparison with US (14±12 µm), EAP (6±7 µm) and EAP-CHX (11±10) µm). Surface was roughened when using CUR and US. Surfaces exposed to US and to EAP attracted the highest numbers of PDL fibroblasts. Conclusion The established biofilm model simulating a periodontal pocket combined with interchangeable placements of test specimens with multi-species biofilms enables the evaluation of different non-surgical treatment modalities on biofilm removal and surface alterations. Compared to hand instrumentation the application of ultrasonication and of air

  20. Microscopic evaluation of the effect of different storage media on the periodontal ligament of surgically extracted human teeth.

    PubMed

    de Sousa, Hugo Alexandre; de Alencar, Ana Helena G; Bruno, Kely Firmino; Batista, Aline Carvalho; de Carvalho, Antônio César Perri

    2008-12-01

    The objective of this study was to microscopically evaluate the human periodontal ligament adhered to extracted teeth, after extra-alveolar period of 1 h using, as storage media, pasteurized milk (group I), chicken egg white (group II) and artificial saliva (group III). Forty intact premolars were selected, with indication of tooth extraction for orthodontic reasons. After the extraction of 30 teeth, they were maintained dried on a gauze at room temperature for 10 min, and then immersed in the selected storage media. After the established time, the teeth were washed with saline solution and placed in 10.0% buffered formalin. Ten teeth were extracted and immediately immersed in 10.0% neutral formalin (group IV). Thereafter, they were submitted to histological processing. After fixation and decalcification, the specimens were cut at the cervical, medium and apical thirds, inserted in paraffin and serially sectioned, with 6-mum thickness. They were stained by hematoxylin-eosin and analyzed under light microscopy. According to the results of quantitative analysis, there was no statistically significant difference in the number of cells per mm(2) between groups I, II and III. The qualitative analysis showed similar results in relation to the organization of collagen fibers and the number of cells in groups I and II, but group III displayed a higher disorganization of the collagen fibers and also a higher reduction in the number of cells. Based on these results, it was concluded that the quality of periodontal ligament was affected by the storage media, when compared with the control group. There was a statistically significant difference in the number of cells per mm(2) between the control group and groups I, II and III. There was no significant statistical difference in the number of cells per mm(2) between groups I, II and III. PMID:19021655

  1. Morphological changes in the rat periodontal ligament and its vascularity after experimental tooth movement using superelastic forces.

    PubMed

    Noda, Koji; Nakamura, Yoshiki; Kogure, Kyotaro; Nomura, Yoshiaki

    2009-02-01

    The aim of this study was to statistically assess the morphological changes of the rat periodontal ligament (PDL) and its vascularity in relation to varied magnitudes of superelastic force in experimental tooth movement using nickel-titanium (NiTi) alloy wire. Forces of 0.8, 1.6, 4, 8, and 18 g were applied to the upper first molars of five groups of 10-week-old male Wistar rats (300-320 g) for 1, 7, 14, 21, and 28 days. A control group with no orthodontic appliance application was assessed in accordance with the five experimental periods. The specimens were observed under light microscopy, processed by computer imaging, and analysed statistically with Tukey's HSD non-parametric test. One day after the start of the experiment, a few blood vessels could be seen in the compressed PDL with forces of 0.8 and 1.6 g. The cross-sectional areas of blood vessels (CAV) and periodontal ligament (CAPL) in the experimental groups where a force of over 4 g was applied were significantly smaller than those where 0.8 and 1.6 g forces were used, and in the control group. On day 7, large CAV were seen in the 1.6, 4, and 8 g groups. On day 28, the 8 and 18 g groups showed significantly larger CAPL than the 0.8, 4 g, or control groups. The findings suggest that a light continuous force, under 1.6 g, maintains the vascular structure during experimental tooth movement. In contrast, a heavy continuous force over 4 g causes the vascular structure to be absent in the early stages of tooth movement, but a dynamic regeneration of the PDL with vascularity and expansion follows. PMID:19073960

  2. Predicting the holistic force-displacement relation of the periodontal ligament: in-vitro experiments and finite element analysis

    PubMed Central

    2014-01-01

    Background The biomechanical property of the periodontal ligament (PDL) is important in orthodontics and prosthodontics. The objective of this study was to evaluate the feasibility of measuring the biomechanical behavior of the periodontal ligament using micro-computed tomography (micro-CT). Methods A custom-made apparatus measured the force and displacement of a porcine PDL specimen within the micro-CT environment. Synchronized computed tomography (CT) images were used to obtain the deformation and displacement of the entire specimen and to reconstruct the three-dimensional mesh model. To match the experimental results, finite element analysis was then applied to simulate the biomechanical response of the PDL. The mechanical model of the PDL was assumed as the hyperelastic material in this study. Results The volume variations of the tooth and the alveolar bone were less than 1%, which implies that tooth displacement was caused mostly by displacement of the PDL. Only translational displacement was observed with each load step because the transformation matrix acquired from the CT image registration was identical. The force-displacement curve revealed the nonlinear behavior of the PDL. There was a high correlation between the experimental displacement results and the simulation displacement results. The numerical results (based on the assumption that the PDL is the hyperelastic material) showed good agreement with the experimental results. Conclusions Nondestructive measurements by micro-CT obtained the biomechanical behavior of the PDL. Using the hyperelastic characteristic as the constitutive model can properly predict the force-displacement relation of the PDL after loading. This study provided a feasible approach for measuring the biomechanical behavior of the PDL for further dental application. PMID:25077405

  3. Effects of IL-10 and glucose on expression of OPG and RANKL in human periodontal ligament fibroblasts

    PubMed Central

    Zhang, L.; Ding, Y.; Rao, G.Z.; Miao, D.

    2016-01-01

    The effects of interleukin-10 (IL-10) and glucose on mRNA and protein expression of osteoprotegerin (OPG), and its ligand, receptor activator of nuclear factor-κB ligand (RANKL), were investigated in human periodontal ligament fibroblasts (HPDLFs). Primary HPDLFs were treated with different concentrations of IL-10 (0, 1, 10, 25, 50, and 100 ng/mL) or glucose (0, 5.5, 10, 20, 30, and 40 mmol/L). Changes in mRNA and protein expression were examined using the reverse-transcription polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. After IL-10 treatment, mRNA and protein levels of OPG were increased, while mRNA and protein levels of RANKL were decreased (P<0.05), both in a concentration-dependent manner. Glucose stimulation had the opposite concentration-dependent effect to that of IL-10 on OPG and RANKL expression. IL-10 upregulated OPG expression and downregulated RANKL expression, whereas high glucose upregulated RANKL and downregulated OPG in HDPLFs. Abnormal levels of IL-10 and glucose may contribute to the pathogenesis of periodontal disease. PMID:27074164

  4. Comparison of Periodontal Ligament Injection and Inferior Alveolar Nerve Block in Mandibular Primary Molars Pulpotomy: A Randomized Control Trial

    PubMed Central

    Haghgoo, Roza; Taleghani, Ferial

    2015-01-01

    Background: Inferior alveolar nerve block is a common technique for anesthesia of the primary mandibular molars. A number of disadvantages have been shown to be associated with this technique. Periodontal ligament (PDL) injection could be considered as an alternative to inferior alveolar nerve block. The aim of this study was to evaluate the effectiveness of PDL injection in the anesthesia of primary molar pulpotomy with mandibular block. Methods: This study was performed using a sequential double-blind randomized trial design. 80 children aged 3-7 years old who required pulpotomy in symmetrical mandibular primary molars were selected. The teeth of these children were anesthetized with periodontal injection on one side of the mandible and block on the other. Pulpotomy was performed on each patient during the same appointment. Signs of discomfort, including hand and body tension and eye movement, the verbal complaint and crying (SEM scale), were evaluated by a dental assistant who was blinded to the treatment allocation of the patients. Finally, the data were analyzed using the exact Fisher test and Pearson Chi-squared exact test. Results: Success rate was 88/75 and 91/25 in the PDL injection and nerve block groups, respectively. There was no statistically significant difference between the two techniques (P = 0.250). Conclusion: Results showed that PDL injection can be used as an alternative to nerve block in pulpotomy of the mandibular primary molars. PMID:26028895

  5. ET-1 Promotes Differentiation of Periodontal Ligament Stem Cells into Osteoblasts through ETR, MAPK, and Wnt/β-Catenin Signaling Pathways under Inflammatory Microenvironment

    PubMed Central

    Liang, Li; Zhou, Wei; Yang, Nan; Yu, Jifeng; Liu, Hongchen

    2016-01-01

    Periodontitis is a kind of chronic inflammatory disease that affects the tooth-supporting tissues. ET-1 is related to periodontitis and involved in the regulation of cytokines, but the mechanisms remain unclear. The aim of this study is to investigate how ET-1 affects proinflammatory cytokine expression and differentiation in human periodontal ligament stem cells (PDLSCs). PDLSCs were isolated from the periodontal ligament tissues of periodontitis patients and then treated with ET-1 (1, 10, or 100 nM) for 12 h, 24 h, or 72 h. The osteogenic potential of PDLSCs was tested using ALP staining. TNF-α, IL-1β, and IL-6 levels were evaluated by ELISA and western blot. Runx2, OCN, and COL1 mRNA and western levels were detected by RT-PCR and western blot, respectively. To examine the signaling pathways and molecular mechanisms involved in ET-1-mediated cytokine expression and osteogenic differentiation, ETR pathway, MAPKs pathway, Wnt/β-catenin pathway, and Wnt/Ca2+ pathway were detected by RT-PCR and western blot, respectively. ET-1 promoted differentiation of PDLSCs into osteoblasts by increasing secretion of TNF-α, IL-1β, and IL-6 in a dose- and time-dependent manner. ET-1 also increased expression of Runx2, OCN, and COL1. ET-1 promotes differentiation of PDLSCs into osteoblasts through ETR, MAPK, and Wnt/β-catenin signaling pathways under inflammatory microenvironment. PMID:26884650

  6. Anterior cruciate ligament assessment using arthrometry and stress imaging.

    PubMed

    Rohman, Eric M; Macalena, Jeffrey A

    2016-06-01

    Arthrometry and stress imaging are useful clinical tools for the objective assessment of anterior cruciate ligament (ACL) integrity. They are most frequently used for the diagnosis of a complete ACL tear when other workup is equivocal, in conjunction with history and clinical exam findings. Other applications include the diagnosis of partial ACL tears, injury prognosis, and post-operative monitoring. However, further studies are needed to validate these uses. Many different devices and techniques exist for objective examination, which have been compared in recent literature. Reliability and validity measures of these methods vary, and often depend upon examiner familiarity and skill. The KT series of devices is the current gold standard for arthrometry, although the newer robotic GNRB device shows promising early results. Newer methods of data interpretation have been developed for stress imaging, and portable technology may impact this field further. PMID:26984335

  7. Grp78 Is Critical for Amelogenin-Induced Cell Migration in a Multipotent Clonal Human Periodontal Ligament Cell Line.

    PubMed

    Toyoda, Kyosuke; Fukuda, Takao; Sanui, Terukazu; Tanaka, Urara; Yamamichi, Kensuke; Atomura, Ryo; Maeda, Hidefumi; Tomokiyo, Atsushi; Taketomi, Takaharu; Uchiumi, Takeshi; Nishimura, Fusanori

    2016-02-01

    Periodontal ligament stem cells (PDLSCs) are known to play a pivotal role in regenerating the periodontium. Amelogenin, which belongs to a family of extracellular matrix (ECM) proteins, is a potential bioactive molecule for periodontal regenerative therapy. However, its downstream target molecules and/or signaling patterns are still unknown. Our recent proteomic study identified glucose-regulated protein 78 (Grp78) as a new amelogenin-binding protein. In this study, we demonstrate, for the first time, the cellular responses induced by the biological interaction between amelogenin and Grp78 in the human undifferentiated PDL cell line 1-17, which possesses the most typical characteristics of PDLSCs. Confocal co-localization experiments revealed the internalization of recombinant amelogenin (rM180) via binding to cell surface Grp78, and the endocytosis was inhibited by the silencing of Grp78 in 1-17 cells. Microarray analysis indicated that rM180 and Grp78 regulate the expression profiles of cell migration-associated genes in 1-17 cells. Moreover, Grp78 overexpression enhanced rM180-induced cell migration and adhesion without affecting cell proliferation, while silencing of Grp78 diminished these activities. Finally, binding of rM180 to Grp78 promoted the formation of lamellipodia, and the simultaneous activation of Rac1 was also demonstrated by NSC23766, a widely accepted Rac1 inhibitor. These results suggest that Grp78 is essential for enhancing amelogenin-induced migration in 1-17 cells. The biological interaction of amelogenin with Grp78 offers significant therapeutic potential for understanding the biological components and specific functions involved in the signal transduction of amelogenin-induced periodontal tissue regeneration. PMID:26147472

  8. Enterococcus faecalis lipoteichoic acid suppresses Aggregatibacter actinomycetemcomitans lipopolysaccharide-induced IL-8 expression in human periodontal ligament cells.

    PubMed

    Im, Jintaek; Baik, Jung Eun; Kim, Kyoung Whun; Kang, Seok-Seong; Jeon, Jun Ho; Park, Ok-Jin; Kim, Hyun Young; Kum, Kee-Yeon; Yun, Cheol-Heui; Han, Seung Hyun

    2015-08-01

    Periodontitis is caused by multi-bacterial infection and Aggregatibacter actinomycetemcomitans and Enterococcus faecalis are closely associated with inflammatory periodontal diseases. Although lipopolysaccharide (LPS) of A. actinomycetemcomitans (Aa.LPS) and lipoteichoic acid of E. faecalis (Ef.LTA) are considered to be major virulence factors evoking inflammatory responses, their combinatorial effect on the induction of chemokines has not been investigated. In this study, we investigated the interaction between Aa.LPS and Ef.LTA on IL-8 expression in human periodontal ligament (PDL) cells. Aa.LPS, but not Ef.LTA, substantially induced IL-8 expression at the protein and mRNA levels. Interestingly, Ef.LTA suppressed Aa.LPS-induced IL-8 expression without affecting the binding of Aa.LPS to Toll-like receptor (TLR) 4. Ef.LTA reduced Aa.LPS-induced phosphorylation of mitogen-activated protein kinases, including ERK, JNK and p38 kinase. Furthermore, Ef.LTA inhibited the Aa.LPS-induced transcriptional activities of the activating protein 1, CCAAT/enhancer-binding protein and nuclear factor-kappa B transcription factors, all of which are known to regulate IL-8 gene expression. Ef.LTA augmented the expression of IL-1 receptor-associated kinase-M (IRAK-M), a negative regulator of TLR intracellular signaling pathways, in the presence of Aa.LPS at both the mRNA and protein levels. Small interfering RNA silencing IRAK-M reversed the attenuation of Aa.LPS-induced IL-8 expression by Ef.LTA. Collectively, these results suggest that Ef.LTA down-regulates Aa.LPS-induced IL-8 expression in human PDL cells through up-regulation of the negative regulator IRAK-M. PMID:25840438

  9. Six1 is required for mouse dental follicle cell and human periodontal ligament-derived cell proliferation.

    PubMed

    Kawasaki, Tatsuki; Takahashi, Masanori; Yajima, Hiroshi; Mori, Yoshiyuki; Kawakami, Kiyoshi

    2016-08-01

    The periodontal ligament (PDL) is a connective tissue that attaches the tooth cementum to the alveolar bone and is derived from dental follicle cells (DFCs). The DFCs form fibroblasts, osteoblasts, cementoblasts, and PDL stem cells (PDLSCs). We previously reported homeobox transcription factor Six1 expression in mouse DFCs. However, the role of Six1 in periodontal tissue development is largely unknown. In this study, we analyzed SIX1 expression in mouse periodontal tissue cells during postnatal development and adulthood. We also addressed the role of SIX1 in mouse periodontium development and in human cultured PDL-derived cells (PDLCs). In mouse development, SIX1 production was abundant in DFCs and PDL cells by 2 weeks, but it was greatly diminished in the PDL at 4 weeks and in adults. Although the SIX1-positive cell distribution was sparse in the adult PDL, SIX1-positive cells were observed with low expression levels. We used 5-ethynyl-2'-deoxyuridine (EdU) for cell labeling to reveal numerous EdU/SIX1-double positive cells at 2 weeks; however, a few EdU-positive cells remained at 4 weeks. The proportion of DFCs that incorporated EdU was significantly lower in Six1-deficient mice compared with wild-type mice at E18.5. In human PDLCs, SIX1 was intensely expressed, and SIX1-knockdown using siRNA reduced proliferating PDLCs. Our results suggest that SIX1 is a key proliferation regulator in mouse DFCs and human PDLCs, which provides novel insight into Six family gene function in mammals. PMID:27241908

  10. Chronic Periodontitis in Type 2 Diabetes Mellitus: Oxidative Stress as a Common Factor in Periodontal Tissue Injury

    PubMed Central

    Patil, Vijayetha P.; Gokhale, Neeraja; Acharya, Anirudh; Kangokar, Praveenchandra

    2016-01-01

    Introduction The prevalence of periodontitis is significantly higher among people with poorly controlled diabetes mellitus. Majority of tissue destruction in periodontitis is considered to be the result of an aberrant inflammatory/immune response to microbial plaque and involve prolonged release of reactive oxygen species (ROS). There is increased evidence for compromised antioxidant capacity in periodontal tissues and fluids which may be an added factor for tissue damage in periodontitis. Aim To study the possible role of Reactive oxygen species (ROS) and antioxidant status in blood among chronic periodontitis patients with and without Type 2 Diabetes mellitus. Materials and Methods The study comprised of total 100 subjects among which 25 were normal healthy controls, 25 were gingivitis patients, 25 were chronic periodontitis patients (CP) and 25 were having chronic periodontitis with type 2 diabetes (CP with DM). ROS levels were determined as MDA (Malondialdehyde) and antioxidant status as plasma total antioxidant capacity (TAC), vitamin C and erythrocyte Superoxide dismutase (SOD) and catalase activity. Results There was significant increase in MDA levels in all the patient groups compared with healthy controls (p<0.05). The decrease in TAC, Vitamin C and SOD levels among CP with DM patients as compared to controls was highly significant (p<0.01). There was a positive correlation between the probing pocket depth and MDA levels among periodontitis patients with diabetes (r=0.566, p=0.003). Conclusion There is increased oxidative stress in chronic periodontitis with and without type 2 diabetes indicating a common factor involvement in tissue damage. More severe tissue destruction in periodontitis is associated with excessive ROS generation which is positively correlated in type 2 diabetic subjects. PMID:27190790

  11. Evaluation of Qualitative Changes in Simulated Periodontal Ligament and Alveolar Bone Using a Noncontact Electromagnetic Vibration Device with a Laser Displacement Sensor

    PubMed Central

    Kobayashi, Hiroshi; Hayashi, Makoto; Yamaoka, Masaru; Yasukawa, Takuya; Ibi, Haruna; Ogiso, Bunnai

    2016-01-01

    Evaluating periodontal tissue condition is an important diagnostic parameter in periodontal disease. Noncontact electromagnetic vibration device (NEVD) was previously developed to monitor this condition using mechanical parameters. However, this system requires accelerometer on the target tooth. This study assessed application of laser displacement sensor (LDS) to NEVD without accelerometer using experimental tooth models. Tooth models consisted of cylindrical rod, a tissue conditioner, and polyurethane or polyurethane foam to simulate tooth, periodontal ligament, and alveolar bone, respectively. Tissue conditioner was prepared by mixing various volumes of liquid with powder. Mechanical parameters (resonant frequency, elastic modulus, and coefficient of viscosity) were assessed using NEVD with the following methods: Group A, measurement with accelerometer; Group B, measurement with LDS in the presence of accelerometer; and Group C, measurement with LDS in the absence of accelerometer. Mechanical parameters significantly decreased with increasing liquid volume. Significant differences were also observed between the polyurethane and polyurethane foam models. Meanwhile, no statistically significant differences were observed between Groups A and B; however, most mechanical parameters in Group C were significantly larger and more distinguishable than those of Groups A and B. LDS could measure mechanical parameters more accurately and clearly distinguished the different periodontal ligament and alveolar bone conditions. PMID:27274995

  12. Evaluation of Qualitative Changes in Simulated Periodontal Ligament and Alveolar Bone Using a Noncontact Electromagnetic Vibration Device with a Laser Displacement Sensor.

    PubMed

    Kobayashi, Hiroshi; Hayashi, Makoto; Yamaoka, Masaru; Yasukawa, Takuya; Ibi, Haruna; Ogiso, Bunnai

    2016-01-01

    Evaluating periodontal tissue condition is an important diagnostic parameter in periodontal disease. Noncontact electromagnetic vibration device (NEVD) was previously developed to monitor this condition using mechanical parameters. However, this system requires accelerometer on the target tooth. This study assessed application of laser displacement sensor (LDS) to NEVD without accelerometer using experimental tooth models. Tooth models consisted of cylindrical rod, a tissue conditioner, and polyurethane or polyurethane foam to simulate tooth, periodontal ligament, and alveolar bone, respectively. Tissue conditioner was prepared by mixing various volumes of liquid with powder. Mechanical parameters (resonant frequency, elastic modulus, and coefficient of viscosity) were assessed using NEVD with the following methods: Group A, measurement with accelerometer; Group B, measurement with LDS in the presence of accelerometer; and Group C, measurement with LDS in the absence of accelerometer. Mechanical parameters significantly decreased with increasing liquid volume. Significant differences were also observed between the polyurethane and polyurethane foam models. Meanwhile, no statistically significant differences were observed between Groups A and B; however, most mechanical parameters in Group C were significantly larger and more distinguishable than those of Groups A and B. LDS could measure mechanical parameters more accurately and clearly distinguished the different periodontal ligament and alveolar bone conditions. PMID:27274995

  13. Periodontitis

    MedlinePlus

    ... fall out. Periodontitis is the primary cause of tooth loss in adults. This disorder is uncommon in ... damage of the tissues and bone surrounding the tooth. Because plaque contains bacteria, infection is likely, and ...

  14. The impact of antioxidant agents complimentary to periodontal therapy on oxidative stress and periodontal outcomes: A systematic review.

    PubMed

    Muniz, Francisco Wilker Mustafa Gomes; Nogueira, Sergiana Barbosa; Mendes, Francisco Lucas Vasconcelos; Rösing, Cassiano Kuchenbecker; Moreira, Maria Mônica Studart Mendes; de Andrade, Geanne Matos; Carvalho, Rosimary de Sousa

    2015-09-01

    There is significant evidence linking chronic periodontitis (CP) and oxidative stress (OS). CP is a multifactorial infecto-inflammatory disease caused by the interaction of microbial agents present in the biofilm associated with host susceptibility and environmental factors. OS is a condition that arises when there is an imbalance between the levels of free radicals (FR) and its antioxidant defences. Antioxidants, defined as substances that are able to delay or prevent the oxidation of a substrate, exist in all bodily tissues and fluids, and their function is to protect against FR. This systematic review assessed the effects of the complimentary use of antioxidant agents to periodontal therapy in terms of oxidative stress/antioxidants. Only randomised, controlled, double-blind or blind studies were included. The majority of the included studies were performed in chronic periodontitis patients. Lycopene, vitamin C, vitamin E, capsules with fruits/vegetables/berry and dietary interventions were the antioxidant approaches employed. Only the studies that used lycopene and vitamin E demonstrated statistically significant improvement when compared to a control group in terms of periodontal parameters. However, oxidative stress outcomes did not follow the same pattern throughout the studies. It may be concluded that the use of some antioxidants has the potential to improve periodontal clinical parameters. The role of antioxidant/oxidative stress parameters needs further investigations. PMID:26067357

  15. Distinction Between Cell Proliferation and Apoptosis Signals Regulated by Brain-Derived Neurotrophic Factor in Human Periodontal Ligament Cells and Gingival Epithelial Cells.

    PubMed

    Kashiwai, Kei; Kajiya, Mikihito; Matsuda, Shinji; Ouhara, Kazuhisa; Takeda, Katsuhiro; Takata, Takashi; Kitagawa, Masae; Fujita, Tsuyoshi; Shiba, Hideki; Kurihara, Hidemi

    2016-07-01

    Previously, we reported that brain-derived neurotrophic factor (BDNF) enhances periodontal tissue regeneration by inducing periodontal ligament cell proliferation in vivo. In addition, the down growth of gingival epithelial cells, which comprises a major obstacle to the regeneration, was not observed. However, the underlying molecular mechanism is still unclear. Therefore, this study aimed to investigate the effect of BDNF on cell proliferation and apoptosis in human periodontal ligament (HPL) cells and human gingival epithelial cells (OBA9 cells) and to explore the molecular mechanism in vitro. HPL cells dominantly expressed a BDNF receptor, TrkB, and BDNF increased cell proliferation and ERK phosphorylation. However, its proliferative effect was diminished by a MEK1/2 inhibitor (U0126) and TrkB siRNA transfection. Otherwise, OBA9 cells showed a higher expression level of p75, which is a pan-neurotrophin receptor, than that of HPL cells. BDNF facilitated not cell proliferation but cell apoptosis and JNK phosphorylation in OBA9 cells. A JNK inhibitor (SP600125) and p75 siRNA transfection attenuated the BDNF-induced cell apoptosis. Moreover, OBA9 cells pretreated with SP600125 or p75 siRNA showed cell proliferation by BDNF stimulation, though it was reduced by U0126 and TrkB siRNA. Interestingly, overexpression of p75 in HPL cells upregulated cell apoptosis and JNK phosphorylation by BDNF treatment. These results indicated that TrkB-ERK signaling regulates BDNF-induced cell proliferation, whereas p75-JNK signaling plays roles in cell apoptotic and cytostatic effect of BDNF. Overall, BDNF activates periodontal ligament cells proliferation and inhibits the gingival epithelial cells growth via the distinct pathway. J. Cell. Biochem. 117: 1543-1555, 2016. © 2015 Wiley Periodicals, Inc. PMID:26581032

  16. Transdifferentiation of periodontal ligament-derived stem cells into retinal ganglion-like cells and its microRNA signature

    PubMed Central

    Ng, Tsz Kin; Yung, Jasmine S. Y.; Choy, Kwong Wai; Cao, Di; Leung, Christopher K. S.; Cheung, Herman S.; Pang, Chi Pui

    2015-01-01

    Retinal diseases are the leading causes of irreversible visual impairment and blindness in the developed countries. Human retina has limited regenerative power to replace cell loss. Stem cell replacement therapy has been proposed as a viable option. Previously, we have induced human adult periodontal ligament stem cells (PDLSCs) to the retinal lineage. In this study, we modified our induction protocol to direct human adult PDLSCs into retinal ganglion-like cells and determined the microRNA (miRNA) signature of this transdifferentiation process. The differentiated PDLSCs demonstrated the characteristics of functional neurons as they expressed neuronal and retinal ganglion cell markers (ATOH7, POU4F2, β-III tubulin, MAP2, TAU, NEUROD1 and SIX3), formed synapses and showed glutamate-induced calcium responses as well as spontaneous electrical activities. The global miRNA expression profiling identified 44 upregulated and 27 downregulated human miRNAs after retinal induction. Gene ontology analysis of the predicted miRNA target genes confirmed the transdifferentiation is closely related to neuronal differentiation processes. Furthermore, the expressions of 2 miRNA-targeted candidates, VEGF and PTEN, were significantly upregulated during the induction process. This study identified the transdifferentiation process of human adult stem cells into retinal ganglion-like cells and revealed the involvement of both genetic and miRNA regulatory mechanisms. PMID:26549845

  17. Osteogenesis differentiation of human periodontal ligament cells by CO2 laser-treatment stimulating macrophages via BMP2 signalling pathway

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Hui; Chen, Yi-Jyun; Hung, Chi-Jr; Huang, Tsui-Hsien; Kao, Chia-Tze; Shie, Ming-You

    2014-11-01

    Immune reactions play an important role in determining the biostimulation of bone formation, either in new bone formation or inflammatory fibrous tissue encapsulation. Macrophage cell, the important effector cells in the immune reaction, which are indispensable for osteogenesis and their heterogeneity and plasticity, render macrophages a primer target for immune system modulation. However, there are very few studies about the effects of macrophage cells on laser treatment-regulated osteogenesis. In this study, we used CO2 laser as a model biostimulation to investigate the role of macrophage cells on the CO2 laser stimulated osteogenesis. Bone morphogenetic protein 2 (BMP2) was also significantly up regulated by the CO2 laser stimulation, indicating that macrophage may participate in the CO2 laser stimulated osteogenesis. Interestingly, when laser treatment macrophage-conditioned medium were applied to human periodontal ligament cells (hPDLs), the osteogenesis differentiation of hPDLs was significantly enhanced, indicating the important role of macrophages in CO2 laser-induced osteogenesis. These findings provided valuable insights into the mechanism of CO2 laser-stimulated osteogenic differentiation, and a strategy to optimize the evaluation system for the in vitro osteogenesis capacity of laser treatment.

  18. Effect of the simulated periodontal ligament on cast post-and-core removal using an ultrasonic device

    PubMed Central

    BRITO-JUNIOR, Manoel; BRAGA, Neilor Mateus Antunes; RODRIGUES, Danilo Costa; CAMILO, Carla Cristina; FARIA-E-SILVA, André Luis

    2010-01-01

    Objective The aim of this study was to evaluate the effect of simulated periodontal ligament (SPDL) on custom cast dowel and core removal by ultrasonic vibration. Material and Methods Thirty-two human maxillary canines were included in resin cylinders with or without SPDL made from polyether impression material. In order to allow tensile testing, the roots included in resin cylinders with SPDL were fixed to cylinders with two stainless steel wires. Post-holes were prepared by standardizing the length at 8 mm and root canal impressions were made with self-cured resin acrylic. Cast dowel and core sets were fabricated and luted with Panavia F resin cement. Half of the samples were submitted to ultrasonic vibration before the tensile test. Data were analyzed statistically by two-way ANOVA and Tukey's post-hoc tests (p<0.05). Results The ultrasonic vibration reduced the tensile strength of the samples directly included in resin cylinders. There was no difference between the values, whether or not ultrasonic vibration was used, when the PDL was simulated. However, the presence of SPDL affected the tensile strength values even when no ultrasonic vibration was applied. Conclusion Simulation of PDL has an effect on both ultrasonic vibration and tensile testing. PMID:21085812

  19. Expression and Presence of OPG and RANKL mRNA and Protein in Human Periodontal Ligament with Orthodontic Force

    PubMed Central

    Otero, Liliana; García, Dabeiba Adriana; Wilches-Buitrago, Liseth

    2016-01-01

    OBJECTIVE The objective of this study is to investigate the expression and concentration of ligand receptor activator of NFkB (RANKL) and osteoprotegerin (OPG) in human periodontal ligament (hPDL) with orthodontic forces of different magnitudes. METHODS Right premolars in 32 patients were loaded with 4oz or 7oz of orthodontic force for 7 days. Left first premolars were not loaded. After 7 days, premolars were extracted for treatment as indicated. OPG and RANKL mRNA expressions were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR), and ELISA was used to assess OPG and RANKL protein concentration in compression and tension sides of PDL. Data were subjected to analysis of variance and Tukey tests. RESULTS There was statistically significant difference in RANKL concentration on comparing control teeth with tension and compression sides of the experimental teeth (P < 0.0001). The expression of mRNA RANKL was increased in the tension and compression sides with 4oz (P < 0.0001). OPG did not show statistically significant association with any group. Changes in RANKL/OPG protein ratio in experimental and control groups showed statistically significant difference (P < 0.0001). CONCLUSIONS RANKL protein levels are elevated in hPDL loaded with orthodontic forces, suggesting that RANKL protein contributes to bone modeling in response to the initial placement of orthodontic force. PMID:26823650

  20. An electron microscopic radioautographic study of collagen secretion in periodontal ligament fibroblasts of the mouse: II. Colchicine-treated fibroblasts

    SciTech Connect

    Cho, M.I.; Garant, P.R.

    1981-12-01

    Colchicine administered intravenously depolymerized microtubules and disrupted the normal organization of the Golgi apparatus in periodontal ligament fibroblasts. Radioautography with /sup 3/H-proline indicated that collagen secretion was completely inhibited during a period of approximately 4 hours following the onset of the colchicine effect. During this period of secretory inhibition, labeled collagen precursors were present within a variety of dense bodies, primarily located in a juxtanuclear location replacing the normal Golgi complex. The time course of /sup 3/H-proline labeling from 2 to 8 hours suggested that small, newly formed dense bodies fused to form larger dense bodies and pleomorphic structures (zebra bodies), within which collagen precursors appeared to undergo partial polymerization. Autophagosomes, many labeled with /sup 3/H-proline, also increased in number after colchicine administration. A gradual decline in /sup 3/H-proline label occurred from 4 to 24 hours, presumably due to exocytosis of dense bodies or by the digestion of labeled collagen precursors within autophagosomes. These results support the concept that an intact microtubular network is essential for the organized transport of collagen precursors, from the rough endoplasmic reticulum to the Golgi apparatus, and the eventual transport and exocytosis of collagen secretory granules.

  1. In situ Compressive Loading and Correlative Noninvasive Imaging of the Bone-periodontal Ligament-tooth Fibrous Joint

    PubMed Central

    Jang, Andrew T.; Lin, Jeremy D.; Seo, Youngho; Etchin, Sergey; Merkle, Arno; Fahey, Kevin; Ho, Sunita P.

    2014-01-01

    This study demonstrates a novel biomechanics testing protocol. The advantage of this protocol includes the use of an in situ loading device coupled to a high resolution X-ray microscope, thus enabling visualization of internal structural elements under simulated physiological loads and wet conditions. Experimental specimens will include intact bone-periodontal ligament (PDL)-tooth fibrous joints. Results will illustrate three important features of the protocol as they can be applied to organ level biomechanics: 1) reactionary force vs. displacement: tooth displacement within the alveolar socket and its reactionary response to loading, 2) three-dimensional (3D) spatial configuration and morphometrics: geometric relationship of the tooth with the alveolar socket, and 3) changes in readouts 1 and 2 due to a change in loading axis, i.e. from concentric to eccentric loads. Efficacy of the proposed protocol will be evaluated by coupling mechanical testing readouts to 3D morphometrics and overall biomechanics of the joint. In addition, this technique will emphasize on the need to equilibrate experimental conditions, specifically reactionary loads prior to acquiring tomograms of fibrous joints. It should be noted that the proposed protocol is limited to testing specimens under ex vivo conditions, and that use of contrast agents to visualize soft tissue mechanical response could lead to erroneous conclusions about tissue and organ-level biomechanics. PMID:24638035

  2. The blood vessel system in the periodontal ligament of the equine cheek teeth--part I: The spatial arrangement in layers.

    PubMed

    Masset, Alexandra; Staszyk, Carsten; Gasse, Hagen

    2006-11-01

    Corrosion casts of blood vessels in the periodontium of cheek teeth from eight horses were observed three-dimensionally with a dissection microscope. Selected specimens were examined in a scanning electron microscope. Periodontal blood vessels communicated with those from the gingiva, the alveolar bone, and the apical region. In the upper jaw, there were anastomoses with the blood vessels of the mucosa of the maxillary sinus. The periodontal vascular system was organized in two or three layers. The peripheral layer was mainly composed of large venules, the inner one consisted of capillaries. In the intermediate layer, blood vessels were post-capillary venules. This layer was developed only in horses under 10 years of age. In all layers the vascular orientation was mainly occluso-apical, this was defined as the standard pattern. There were many variations displayed in different courses of certain blood vessels. The vascular organization is discussed with regard to the specialized functions of the periodontal ligament (PDL). The wide vessels of the outer layer are thought to play a mechanical role as part of a shock absorbing system. The capillaries of the inner layer meet nutritional requirements. The disappearance of the intermediate layer in horses older than 10 years is taken as an adaptation to the remodelling of the PDL. Modifications in the standard pattern of vascular arrangements are also interpreted as adaptations to life-long changes in the periodontal space. Anastomoses between the periodontal vasculature and the blood vessels of the maxillary sinus indicate that periodontal disease may be transferred into the sinus. PMID:17140145

  3. Effects of Intermittent Administration of Parathyroid Hormone (1-34) on Bone Differentiation in Stromal Precursor Antigen-1 Positive Human Periodontal Ligament Stem Cells

    PubMed Central

    Wang, Xiaoxiao; Wang, Yanlan; Dai, Xubin; Chen, Tianyu; Yang, Fanqiao; Dai, Shuangye; Ou, Qianmin; Wang, Yan; Lin, Xuefeng

    2016-01-01

    Periodontitis is the most common cause of tooth loss and bone destruction in adults worldwide. Human periodontal ligament stem cells (hPDLSCs) may represent promising new therapeutic biomaterials for tissue engineering applications. Stromal precursor antigen-1 (STRO-1) has been shown to have roles in adherence, proliferation, and multipotency. Parathyroid hormone (PTH) has been shown to enhance proliferation in osteoblasts. Therefore, in this study, we aimed to compare the functions of STRO-1(+) and STRO-1(−) hPDLSCs and to investigate the effects of PTH on the osteogenic capacity of STRO-1(+) hPDLSCs in order to evaluate their potential applications in the treatment of periodontitis. Our data showed that STRO-1(+) hPDLSCs expressed higher levels of the PTH-1 receptor (PTH1R) than STRO-1(−) hPDLSCs. In addition, intermittent PTH treatment enhanced the expression of PTH1R and osteogenesis-related genes in STRO-1(+) hPDLSCs. PTH-treated cells also exhibited increased alkaline phosphatase activity and mineralization ability. Therefore, STRO-1(+) hPDLSCs represented a more promising cell resource for biomaterials and tissue engineering applications. Intermittent PTH treatment improved the capacity for STRO-1(+) hPDLSCs to repair damaged tissue and ameliorate the symptoms of periodontitis. PMID:27069479

  4. The mechanical function of the periodontal ligament in the macaque mandible: a validation and sensitivity study using finite element analysis

    PubMed Central

    Panagiotopoulou, Olga; Kupczik, Kornelius; Cobb, Samuel N

    2011-01-01

    Whilst the periodontal ligament (PDL) acts as an attachment tissue between bone and tooth, hypotheses regarding the role of the PDL as a hydrodynamic damping mechanism during intraoral food processing have highlighted its potential importance in finite element (FE) analysis. Although experimental and constitutive models have correlated the mechanical function of the PDL tissue with its anisotropic, heterogeneous, viscoelastic and non-linear elastic nature, in many FE simulations the PDL is either present or absent, and when present is variably modelled. In addition, the small space the PDL occupies and the inability to visualize the PDL tissue using μCT scans poses issues during FE model construction and so protocols for the PDL thickness also vary. In this paper we initially test and validate the sensitivity of an FE model of a macaque mandible to variations in the Young's modulus and the thickness of the PDL tissue. We then tested the validity of the FE models by carrying out experimental strain measurements on the same mandible in the laboratory using laser speckle interferometry. These strain measurements matched the FE predictions very closely, providing confidence that material properties and PDL thickness were suitably defined. The FE strain results across the mandible are generally insensitive to the absence and variably modelled PDL tissue. Differences are only found in the alveolar region adjacent to the socket of the loaded tooth. The results indicate that the effect of the PDL on strain distribution and/or absorption is restricted locally to the alveolar bone surrounding the teeth and does not affect other regions of the mandible. PMID:20584094

  5. Secretome Profiling of Periodontal Ligament from Deciduous and Permanent Teeth Reveals a Distinct Expression Pattern of Laminin Chains

    PubMed Central

    Giovani, Priscila A.; Salmon, Cristiane R.; Martins, Luciane; Paes Leme, Adriana F.; Rebouças, Pedro; Puppin Rontani, Regina M.; Mofatto, Luciana S.; Sallum, Enilson A.; Nociti, Francisco H.; Kantovitz, Kamila R.

    2016-01-01

    It has been suggested that there are histological and functional distinctions between the periodontal ligament (PDL) of deciduous (DecPDL) and permanent (PermPDL) teeth. Thus, we hypothesized that DecPDL and PermPDL display differences in the constitutive expression of genes/proteins involved with PDL homeostasis. Primary PDL cell cultures were obtained for DecPDL (n = 3) and PermPDL (n = 3) to allow us to perform label-free quantitative secretome analysis. Although a highly similar profile was found between DecPDL and PermPDL cells, comparative secretome analysis evidenced that one of the most stickling differences involved cell adhesion molecules, including laminin subunit gamma 1 (LAMC1) and beta 2 (LAMB2). Next, total RNA and protein extracts were obtained from fresh PDL tissues of deciduous (n = 6) and permanent (n = 6) teeth, and Western blotting and qPCR analysis were used to validate our in vitro findings. Western blot analysis confirmed that LAMC1 was increased in DecPDL fresh tissues (p<0.05). Furthermore, qPCR data analysis revealed that mRNA levels for laminin subunit beta 1 (LAMB1), beta 3 (LAMB3), LAMC1, and gamma 2 (LAMC2) were higher in DecPDL fresh tissues, whereas transcripts for LAMB2 were increased in PermPDL (p<0.05). In conclusion, the differential expression of laminin chains in DecPDL and PermPDL suggests an involvement of laminin-dependent pathways in the control of physiological differences between them. PMID:27149379

  6. Signaling by Mechanical Strain Involves Transcriptional Regulation of Proinflammatory Genes in Human Periodontal Ligament Cells In Vitro

    PubMed Central

    LONG, P.; LIU, F.; PIESCO, N. P.; KAPUR, R.; AGARWAL, S.

    2016-01-01

    Intracellular signals generated by mechanical strain profoundly affect the metabolic function of osteoblast-like periodontal ligament (PDL) cells, which reside between the tooth and alveolar bone. In response to applied mechanical forces, PDL cells synthesize bone-resorptive cytokines to induce bone resorption at sites exposed to compressive forces and deposit bone at sites exposed to tensile forces in an environment primed for catabolic processes. The intracellular mechanisms that regulate this bone remodeling remain unclear. Here, in an in vitro model system, we show that tensile strain is a critical determinant of PDL-cell metabolic functions. Equibiaxial tensile strain (TENS), when applied at low magnitudes, acts as a potent antagonist of interleukin (IL)-1β actions and suppresses transcriptional regulation of multiple proinflammatory genes. This is evidenced by the fact that TENS at low magnitude: (i) inhibits recombinant human (rh)IL-1β-dependent induction of cyclooxygenase-2 (COX-2) mRNA expression and production of prostaglandin estradiol (PGE2); (ii) inhibits rhIL-1β-dependent induction matrix metalloproteinase-1 (MMP-1) and MMP-3 synthesis by suppressing their mRNA expression; (iii) abrogates rhIL-1β-induced suppression of tissue inhibitor of metalloprotease-II (TIMP-II) expression; and (iv) reverses IL-1β-dependent suppression of osteocalcin and alkaline phosphatase synthesis. Nevertheless, these actions of TENS were observed only in the presence of IL-1β, as TENS alone failed to affect any of the aforementioned responses. The present findings are the first to show that intra-cellular signals generated by low-magnitude mechanical strain interfere with one or more critical step(s) in the signal transduction cascade of rhIL-1β upstream of mRNA expression, while concurrently promoting the expression of osteogenic proteins in PDL cells. PMID:11934644

  7. Effects of cryopreservation with a newly-developed magnetic field programmed freezer on periodontal ligament cells and pulp tissues.

    PubMed

    Abedini, S; Kaku, M; Kawata, T; Koseki, H; Kojima, S; Sumi, H; Motokawa, M; Fujita, T; Ohtani, J; Ohwada, N; Tanne, K

    2011-06-01

    The purpose of this study was to evaluate the effects of long-term cryopreservation on the isolated human periodontal ligament cells (PDL) and pulp tissues. In the first part of study, 10 freshly extracted teeth were selected and divided into two groups. In the cryopreserved group, the teeth were frozen for 5 years using a programmed freezer combined with a magnetic field, known as Cells Alive System "CAS". As for the control group, freshly extracted teeth were used. In each group, extracted PDL tissues were cultured and gene expression and protein concentration of collagen type I, alkaline-phosphatase (ALP) and vascular endothelial growth factor (VEGF) was compared between the two groups. In the second part, pulp tissues were obtained from 10 mature and immature third molars which were freshly extracted or cryopreserved for three months. Expression of VEGF and nerve growth factor (NGF) mRNAs and the protein concentration in the supernatant were investigated. Results indicated that long-term cryopreservation with the use of CAS freezer cannot affect the growth rate and characteristics of PDL cells. There was no significant difference in VEGF expression and VEGF and NGF protein concentration of pulp cells derived from cryopreserved teeth with immature apex and control group with mature root formation. Finally, proper PDL regeneration and appropriate apexogenesis after transplanting magnetically cryopreserved immature tooth was clinically confirmed. These findings demonstrate that teeth banking with the use of magnetic field programmed freezer can be available for future autotransplantation as a treatment modality for replacing missing teeth. PMID:21397593

  8. Periodontal Treatment Elevates Carotid Wall Shear Stress in the Medium Term.

    PubMed

    Carallo, Claudio; Franceschi, Maria Serena De; Tripolino, Cesare; Iovane, Claudio; Catalano, Serena; Giudice, Amerigo; Crispino, Antonio; Figliuzzi, Michele; Irace, Concetta; Fortunato, Leonzio; Gnasso, Agostino

    2015-10-01

    Periodontal disease is associated with endothelial dysfunction of the brachial artery and hemodynamic alterations of the common carotid artery. Periodontal therapy improves endothelial function. It is not known if it is able also to improve the hemodynamics of the carotid artery. The aim of the current study was to evaluate the efficacy of 2 different periodontal treatments on carotid hemodynamics: scaling and root planing (SRP) alone or together with low-level laser therapy (LLLT). Forty patients were recruited and randomly treated with SRP (n = 20) or SRP + LLLT (n = 20). Periodontal indices (plaque, gingival, and probing depth indices) were measured before and 5 months after treatment. Blood viscosity, common carotid wall shear stress, circumferential wall tension, and Peterson elastic modulus were evaluated before, soon after and 5 months after treatment. It was found that the periodontal indices improved in both groups, but significantly more so for SRP + LLLT than for SRP (decrease in gingival index 69.3% versus 45.4%, respectively, P = 0.04). In the SRP + LLLT group, after a transient reduction by 5% immediately after therapy, shear stress increased by 11% after 5 months. In SRP only group, however, shear stress variations were less marked. No significant changes were found for the other hemodynamic parameters in either of the groups. Periodontal disease treatment by SRP + LLLT can therefore be said to improve common carotid wall shear stress. This suggests a possible mechanism by which the treatment of periodontal disease has beneficial effects on the cardiovascular system. PMID:26496285

  9. Muscle Spindle Traffic in Functionally Unstable Ankles During Ligamentous Stress

    PubMed Central

    Needle, Alan R.; Charles B. (Buz), Swanik; Farquhar, William B.; Thomas, Stephen J.; Rose, William C.; Kaminski, Thomas W.

    2013-01-01

    Context: Ankle sprains are common in athletes, with functional ankle instability (FAI) developing in approximately half of cases. The relationship between laxity and FAI has been inconclusive, suggesting that instability may be caused by insufficient sensorimotor function and dynamic restraint. Research has suggested that deafferentation of peripheral mechanoreceptors potentially causes FAI; however, direct evidence confirming peripheral sensory deficits has been elusive because previous investigators relied upon subjective proprioceptive tests. Objective: To develop a method for simultaneously recording peripheral sensory traffic, joint forces, and laxity and to quantify differences between healthy ankles and those with reported instability. Design: Case-control study. Setting: University laboratory. Patients or Other Participants: A total of 29 participants (age = 20.9 ± 2.2 years, height = 173.1 ± 8.9 cm, mass = 74.5 ± 12.7 kg) stratified as having healthy (HA, n = 19) or unstable ankles (UA, n = 10). Intervention(s): Sensory traffic from muscle spindle afferents in the peroneal nerve was recorded with microneurography while anterior (AP) and inversion (IE) stress was applied to ligamentous structures using an ankle arthrometer under test and sham conditions. Main Outcome Measure(s): Laxity (millimeters or degrees) and amplitude of sensory traffic (percentage) were determined at 0, 30, 60, 90, and 125 N of AP force and at 0, 1, 2, 3, and 4 Nm of IE torque. Two-factor repeated-measures analyses of variance were used to determine differences between groups and conditions. Results: No differences in laxity were observed between groups (P > .05). Afferent traffic increased with increased force and torque in test trials (P < .001). The UA group displayed decreased afferent activity at 30 N of AP force compared with the HA group (HA: 30.2% ± 9.9%, UA: 17.1% ± 16.1%, P < .05). Conclusions: The amplitude of sensory traffic increased simultaneously with greater

  10. Occupational Stress, Salivary Cortisol, and Periodontal Disease: A Clinical and Laboratory Study

    PubMed Central

    Atri, Mansi; Srivastava, Dhirendra; Kharbanda, Jitin; Bugalia, Anupriya; Yousuf, Asif; Anup, N

    2015-01-01

    Background: Periodontitis is a multifactorial disease, commonly associated with most of the lifestyle diseases. In the recent years, the association between periodontitis with occupational stress has evolved in various studies in many developed settings. This study aims at studying the prevalence of periodontal disease and its relationship with job stress among industrial labor workers covered under Employee’s State Insurance Corporation Scheme. Materials and Methods: The study included 180 subjects who were informed about the research goals, and also requested to sign consents. The questionnaire included parts from the generic job stress questionnaire from the National Institute of Job Stress and Health. Dental examinations based on community periodontal index protocol were done using WHO probe. Participants with moderate to severe periodontitis (score 3, 4) were informed about the salivary cortisol test. The saliva samples were collected and transported to the lab. Data were entered in EPI info 3.1.1 and analyzed in SPSS 14. The Chi-square analysis was done to measure association, and logistic regression analysis was done to identify the independent association of job stress to periodontitis. Results: The study shows that 48% of the participants reported to have job stress, and 55% had periodontitis. The mean salivary cortisol level was 3.42 ng/dl. The results also indicated a higher odds of having low levels of salivary cortisol among those who reported job stress. Bi-variant regression analyses show the relationship of periodontitis with job stress to be much higher on controlling for other risk factors. The odds of having periodontitis in relation to positive job stress were 6 times higher than those who did not have positive job stress. Conclusions: This study shows a high prevalence of job stress related periodontitis among industrial workers in India. This research recommends the health and labor ministry to improve access to dental care especially in

  11. A three-dimensional constitutive model for the stress relaxation of articular ligaments.

    PubMed

    Davis, Frances M; De Vita, Raffaella

    2014-06-01

    A new nonlinear constitutive model for the three-dimensional stress relaxation of articular ligaments is proposed. The model accounts for finite strains, anisotropy, and strain-dependent stress relaxation behavior exhibited by these ligaments. The model parameters are identified using published uniaxial stress-stretch and stress relaxation data on human medial collateral ligaments (MCLs) subjected to tensile tests in the fiber and transverse to the fiber directions (Quapp and Weiss in J Biomech Eng Trans ASME 120:757-763, 1998; Bonifasi-Lista et al. in J Orthop Res 23(1):67-76, 2005). The constitutive equation is then used to predict the nonlinear elastic and stress relaxation response of ligaments subjected to shear deformations in the fiber direction and transverse to the fiber direction, and an equibiaxial extension. A direct comparison with stress relaxation data collected by subjecting human MCLs to shear deformation in the fiber direction is presented in order to demonstrate the predictive capabilities of the model. PMID:23990018

  12. The effect of calcitriol on high mobility group box 1 expression in periodontal ligament cells during orthodontic tooth movement in rats.

    PubMed

    Cui, Jian; Li, Juan; Wang, Wei; Han, Xiuchun; Du, Juan; Sun, Jing; Feng, Wei; Liu, Bo; Liu, Hongrui; Amizuka, Norio; Li, Minqi

    2016-04-01

    High mobility group box 1 (HMGB1) is a late inflammatory cytokine that plays an important role in periodontal tissue remodeling during orthodontic tooth movement. Calcitriol (1,25-dihydroxyvitamin D3 [1α,25 (OH)2D3]) is a systemic calcium-regulating hormone shown to downregulate expression of multiple proinflammatory cytokines in human periodontal ligament cells in response to orthodontic force. The purpose of this study was to investigate the effect of 1α,25(OH)2D3 on the expression of HMGB1 in periodontal ligament (PDL) cells during orthodontic tooth movement. Seven-week-old male Wistar rats were used for experimentation. Tooth movement was assessed using a nickel-titanium coil spring to apply mechanical loading to the tooth for 5 days. This was followed by administration of either 1α,25(OH)2D3 or normal saline by gavage every other day for up to 28 days. Immunohistochemistry was used to analyze the expression of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6 and HMGB1. After discontinuation of orthodontic force, expression of the early inflammatory cytokines IL-6 and TNF-α were time-dependently reduced in the 1α,25(OH)2D3 group compared with the control group at each time point. Similarly, expression of HMGB1 was decreased over time in both the 1α,25(OH)2D3 and normal saline groups, and 1α,25(OH)2D3 administration enhanced this decline. These findings indicate that administration of 1α,25(OH)2D3 might provide a favorable microenvironment for orthodontic tooth movement by downregulating expression of HMGB1 in PDL cells. PMID:26956363

  13. Effect of Cimetidine on Nitro-Oxidative Stress in a Rat Model of Periodontitis

    PubMed Central

    CULIC, CARINA; PARVU, ALINA ELENA; ALB, SANDU FLORIN; ALB, CAMELIA; POP, ANGELA

    2014-01-01

    Background and aims Periodontitis is a chronic inflammation that involves nitro-oxidative stress with damaging periodontal structural effects. We aimed to evaluate the consequences of low-dose cimetidine on nitro-oxidative stress in periodontitis. Methods A rat model of ligature-induced periodontitis was used. After two weeks, the periodontitis groups were treated with cimetidine, aminoguanidine, N-nitro-L-arginine methyl ester and trolox for one week. On day 21, blood was drawn and the serum analyzed for measurement of total nitrites and nitrates, total oxidative status, total antioxidant response, and oxidative stress index. Results Cimetidine had an inhibitory effect on the synthesis of nitric oxide (p=0.001), total oxidative status (p=0.01) and oxidative stress index (p=0.01). Total antioxidant reactivity was increased by cimetidine (p=0.01). The effects of cimetidine were almost like those of aminoguanidine, NG-nitro-L-arginine methyl ester, and trolox. Conclusions Low-dose cimetidine can be used as adjunctive host modulatory therapy in chronic periodontitis because it reduces nitro-oxidative stress. PMID:26528020

  14. Ibandronate promotes osteogenic differentiation of periodontal ligament stem cells by regulating the expression of microRNAs

    SciTech Connect

    Zhou, Qiang; Zhao, Zhi-Ning; Cheng, Jing-Tao; Zhang, Bin; Xu, Jie; Huang, Fei; Zhao, Rui-Ni; Chen, Yong-Jin

    2011-01-07

    Research highlights: {yields} Ibandronate significantly promote the proliferation of PDLSC cells. {yields} Ibandronate enhanced the expression of ALP, COL-1, OPG, OCN, Runx2. {yields} The expression of a class of miRNAs, e.g., miR-18a, miR-133a, miR-141 and miR-19a, was significantly modified in PDLSC cells cultured with ibandronate. {yields} Ibandronate regulates the expression of diverse bone formation-related genes via miRNAs in PDLSCs. {yields} Ibandronate can suppress the activity of osteoclast while promoting the proliferation of osteoblast by regulating the expression of microRNAs. -- Abstract: Bisphosphonates (BPs) have a profound effect on bone resorption and are widely used to treat osteoclast-mediated bone diseases. They suppress bone resorption by inhibiting the activity of mature osteoclasts and/or the formation of new osteoclasts. Osteoblasts may be an alternative target for BPs. Periodontal ligament stem cells (PDLSCs) exhibit osteoblast-like features and are capable of differentiating into osteoblasts or cementoblasts. This study aimed to determine the effects of ibandronate, a nitrogen-containing BP, on the proliferation and the differentiation of PDLSCs and to identify the microRNAs (miRNAs) that mediate these effects. The PDLSCs were treated with ibandronate, and cell proliferation was measured using the MTT (3-dimethylthiazol-2,5-diphenyltetrazolium bromide) assay. The expression of genes and miRNAs involved in osteoblastic differentiation was assayed using quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). Ibandronate promoted the proliferation of PDLSCs and enhanced the expression of alkaline phosphatase (ALP), type I collagen (COL-1), osteoprotegerin (OPG), osteocalcin (OCN), and Runx2. The expression of miRNAs, including miR-18a, miR-133a, miR-141 and miR-19a, was significantly altered in the PDLSCs cultured with ibandronate. In PDLSCs, ibandronate regulates the expression of diverse bone formation

  15. In vitro models of periodontal cells: a comparative study of long-term gingival, periodontal ligament and alveolar bone cell cultures in the presence of beta-glycerophosphate and dexamethasone.

    PubMed

    Cabral, Maria Cristina Trigo; Costa, Maria Adelina; Fernandes, Maria Helena

    2007-06-01

    Human gingival (HG), periodontal ligament (HPL) and alveolar bone (HAB) cells (first subculture) were cultured (10(4) cells/cm2) for 35 days in alpha-Minimal Essential Medium supplemented with 10% fetal bovine serum in the presence of (i) ascorbic acid (AA, 50 microg/mL), (ii) AA + beta-glycerophosphate (betaGP, 10 mM) and (iii) AA + betaGP + dexamethasone (Dex, 10 nM). Cultures were assessed for cell attachment and spreading, cell proliferation, alkaline phosphatase (ALP) and acid phosphatase (ACP) activities and matrix mineralization. HG cell cultures presented a high proliferation rate, a low ability to synthesize ALP and ACP and the formation of a non-mineralized extracellular matrix, regardless the experimental situation. HPL cell cultures were very sensitive to the culture conditions and showed a high proliferation rate, synthesis of moderate levels of ALP and ACP and a modest matrix mineralization in the presence of AA + betaGP + Dex. HAB cell cultures presented a growth rate lower than that of HG and HPL cells, a high ALP activity and comparatively low levels of ACP, and the ready formation of a heavy mineralized matrix in the presence of betaGP. In the three periodontal cell cultures, Dex enhanced cell proliferation and expression of osteoblastic markers. Results showed that betaGP and Dex allowed the modulation of the cell proliferation/differentiation behavior within the proposed physiological and regenerative capabilities of these periodontal cells. PMID:17268872

  16. Comparison of Coconut Water and Jordanian Propolis on Survival of Bench-dried Periodontal Ligament Cells: An in vitro Cell Culture Study

    PubMed Central

    Al-Jundi, Suhad; Mhaidat, Nizar

    2013-01-01

    ABSTRACT Aim: The aim of this study is to assess and compare the efficacy of Jordanian propolis and full concentration mature coconut water in their ability to preserve periodontal ligament (PDL) cell viability after exposure of PDL cells to up to 120 minutes dry storage. Materials and methods: PDL cells were obtained from sound permanent first molars which were cultured in Dulbecco's Modified Eagles Medium (DMEM). Cultures were subjected to 0, 30, 45, 60, 90 and 120 minutes dry storage times then incubated with 100% mature coconut water, Jordanian propolis and DMEM for 45 minutes at room temperature (18-26°C). Untreated cells served as controls at each dry storage time tested. PDL cell viability was assessed by MTT assay. Statistical analysis of data was accomplished by using one-way analysis of variance complemented by Tukey test and the level of significance was 5% ( p < 0.05). Results: Up to 60 minutes dry storage, no significant improvement on the percentage of viable cells was found from soaking in all tested media. On the other hand, soaking in mature coconut water only resulted in higher percentages of viable cells at >60 minutes dry storage. However, this improvement was not significant (p > 0.05). Conclusion: Avulsed teeth which have been left dry for <45 minutes should be replanted immediately, whereas avulsed teeth which have been left dry for >45 minutes may benefit from soaking for 45 minutes in mature coconut water. How to cite this article: Al-Haj Ali SN, Al-Jundi S, Mhaidat N. Comparison of Coconut Water and Jordanian Propolis on Survival of Bench-dried Periodontal Ligament Cells: An in vitro Cell Culture Study. Int J Clin Pediatr Dent 2013;6(3):161-165. PMID:25206215

  17. Periodontal Treatment Elevates Carotid Wall Shear Stress in the Medium Term

    PubMed Central

    Carallo, Claudio; Franceschi, Maria Serena De; Tripolino, Cesare; Iovane, Claudio; Catalano, Serena; Giudice, Amerigo; Crispino, Antonio; Figliuzzi, Michele; Irace, Concetta; Fortunato, Leonzio; Gnasso, Agostino

    2015-01-01

    Abstract Periodontal disease is associated with endothelial dysfunction of the brachial artery and hemodynamic alterations of the common carotid artery. Periodontal therapy improves endothelial function. It is not known if it is able also to improve the hemodynamics of the carotid artery. The aim of the current study was to evaluate the efficacy of 2 different periodontal treatments on carotid hemodynamics: scaling and root planing (SRP) alone or together with low-level laser therapy (LLLT). Forty patients were recruited and randomly treated with SRP (n = 20) or SRP + LLLT (n = 20). Periodontal indices (plaque, gingival, and probing depth indices) were measured before and 5 months after treatment. Blood viscosity, common carotid wall shear stress, circumferential wall tension, and Peterson elastic modulus were evaluated before, soon after and 5 months after treatment. It was found that the periodontal indices improved in both groups, but significantly more so for SRP + LLLT than for SRP (decrease in gingival index 69.3% versus 45.4%, respectively, P = 0.04). In the SRP + LLLT group, after a transient reduction by 5% immediately after therapy, shear stress increased by 11% after 5 months. In SRP only group, however, shear stress variations were less marked. No significant changes were found for the other hemodynamic parameters in either of the groups. Periodontal disease treatment by SRP + LLLT can therefore be said to improve common carotid wall shear stress. This suggests a possible mechanism by which the treatment of periodontal disease has beneficial effects on the cardiovascular system. PMID:26496285

  18. EFFECT OF UNBROKEN LIGAMENTS ON STRESS CORROSION CRACKING BEHAVIOR OF ALLOY 82H WELDS

    SciTech Connect

    Mills, W.J. and Brown, C.M.

    2003-02-20

    Previously reported stress corrosion cracking (SCC) rates for Alloy 82H gas-tungsten-arc welds tested in 360 C water showed tremendous variability. The excessive data scatter was attributed to the variations in microstructure, mechanical properties and residual stresses that are common in welds. In the current study, however, re-evaluation of the SCC data revealed that the large data scatter was an anomaly due to erroneous crack growth rates inferred from crack mouth opening displacement (CMOD) measurements. Apparently, CMOD measurements provided reasonably accurate SCC rates for some specimens, but grossly overestimated rates in others. The overprediction was associated with large unbroken ligaments that often form in welds in the wake of advancing crack fronts. When ligaments were particularly large, they prevented crack mouth deflection, so apparent crack incubation times (i.e. period of time before crack advance commences) based on CMOD measurements were unrealistically long. During the final states of testing, ligaments began to separate allowing the crack mouth to open rather quickly. This behavior was interpreted as a rapid crack advance, but it actually reflects the ligament separation rate, not the SCC rate. Revised crack growth rates obtained in this study exhibit substantially less scatter than that previously reported. The effects of crack orientation and fatigue flutter loading on SCC rates in 82H welds are also discussed.

  19. Periodontitis in Rats Induces Systemic Oxidative Stress That Is Controlled by Bone-Targeted Antiresorptives

    PubMed Central

    Oktay, Sehkar; Chukkapalli, Sasanka S.; Rivera-Kweh, Mercedes F.; Velsko, Irina M.; Holliday, L. Shannon; Kesavalu, Lakshmyya

    2015-01-01

    Background Periodontitis is a chronic, polymicrobial inflammatory disease that degrades connective tissue and alveolar bone and results in tooth loss. Oxidative stress has been linked to the onset of periodontal tissue breakdown and systemic inflammation, and the success of antiresorptive treatments will rely on how effectively they can ameliorate periodontal disease–induced oxidative stress during oral infection. Methods Rats were infected with polybacterial inoculum consisting of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, as an oral lavage every other week for 12 weeks. Daily subcutaneous injections of enoxacin, bisenoxacin, alendronate, or doxycycline were administered for 6 weeks after 6 weeks of polybacterial infection in rats. The serum levels of oxidative stress parameters and antioxidant enzymes, including glutathione peroxidase, superoxide dismutase, and catalase, were evaluated in each of the infected, treated, and sham-infected rats. Results Rats infected with the periodontal pathogens displayed a five-fold increase in the oxidative stress index compared with controls as a result of increased levels of serum oxidants and decreases in total antioxidant activity. The overall decrease in antioxidant activity occurred despite increases in three important antioxidant enzymes, suggesting an imbalance between antioxidant macromolecules/small molecules production and antioxidant enzyme levels. Surprisingly, the bone-targeted antiresorptives bis-enoxacin and alendronate inhibited increases in oxidative stress caused by periodontitis. Bis-enoxacin, which has both antiresorptive and antibiotic activities, was more effective than alendronate, which acts only as an antiresorptive. Conclusion To the best of the authors’ knowledge, this is the first study to demonstrate that the increased oxidative stress induced by periodontal infection in rats can be ameliorated by bone-targeted antiresorptives. PMID:25101489

  20. Overexpression of X chromosome-linked inhibitor of apoptosis by inhibiting microRNA-24 protects periodontal ligament cells against hydrogen peroxide-induced cell apoptosis.

    PubMed

    Liu, C; Chen, Z; Wang, J; Hu, H

    2016-01-01

    Hydrogen peroxide (H2O2), a common oral clinical drug for the tooth bleaching, induces severe cell apoptosis of periodontal ligament cells (PDLCs). The excessive cell apoptosis of PDLCs impairs periodontal tissue damage and repair. However, the underlying mechanism is incompletely understood. Here, we showed that microRNA-24 (miR-24) played an important role in regulating H2O2-induced cell apoptosis of PDLCs. We found that miR-24 expression was increased in PDLCs in response to H2O2 treatment. Down-regulation of miR-24 obviously rescued H2O2-induced cell apoptosis in PDLCs. By bioinformatic analysis, X chromosome-linked inhibitor of apoptosis (XIAP) was identified as a candidate target gene of miR-24, which was further verified by the dual-luciferase reporter assay. Furthermore, the protein expression level of phosphatase and tensin homolog deleted on chromosome ten was significantly decreased by miR-24 silencing, whereas the phosphorylation of Akt was remarkably increased by miR-24 silencing. In addition, the gene silencing of XIAP significantly reduced Akt activity and blocked the protective effect of the miR-24 inhibitor against H2O2-induced cell apoptosis. Overall, our findings suggest that miR-24 plays an important role in regulating the cell survival of PDLCs through targeting XIAP. PMID:27188727

  1. Stress Sonography of the Ulnar Collateral Ligament of the Elbow in Professional Baseball Pitchers

    PubMed Central

    Ciccotti, Michael G.; Atanda, Alfred; Nazarian, Levon N.; Dodson, Christopher C.; Holmes, Laurens; Cohen, Steven B.

    2014-01-01

    Background An injury to the ulnar collateral ligament (UCL) of the elbow is potentially career threatening for elite baseball pitchers. Stress ultrasound (US) of the elbow allows for evaluation of both the UCL and the ulnohumeral joint space at rest and with stress. Hypothesis Stress US can identify morphological and functional UCL changes and may predict the risk of a UCL injury in elite pitchers. Study Design Cross-sectional study; Level of evidence, 3. Methods A total of 368 asymptomatic professional baseball pitchers underwent preseason stress US of their dominant and non-dominant elbows over a 10-year period (2002-2012). Stress US examinations were performed in 30° of flexion at rest and with 150 N of valgus stress by a single musculoskeletal radiologist. Ligament thickness, ulnohumeral joint space width, and ligament abnormalities (hypoechoic foci and calcifications) were documented. Results There were 736 stress US studies. The mean UCL thickness in the dominant elbow (6.15 mm) was significantly greater than that in the nondominant elbow (4.82 mm) (P < .0001). The mean stressed ulnohumeral joint space width in the dominant elbow (4.56 mm) was significantly greater than that in the nondominant elbow (3.72 mm) (P < .02). In the dominant arm, hypoechoic foci and calcifications were both significantly more prevalent (28.0% vs 3.5% and 24.9% vs 1.6%, respectively; P < .001). In the 12 players who incurred a UCL injury, there were nonsignificant (P > .05) increases in baseline ligament thickness, ulnohumeral joint space gapping with stress, and incidence of hypoechoic foci and calcifications. More than 1 stress US examination was performed in 131 players, with a mean increase of 0.78 mm in joint space gapping with subsequent evaluations. Conclusion Stress US indicates that the UCL in the dominant elbow of elite pitchers is thicker, is more likely to have hypoechoic foci and/or calcifications, and has increased laxity with valgus stress over time. PMID:24473498

  2. Oxidative Stress and Dietary Fat Type in Relation to Periodontal Disease.

    PubMed

    Varela-López, Alfonso; Quiles, José L; Cordero, Mario; Giampieri, Francesca; Bullón, Pedro

    2015-01-01

    Oxidative stress is one of the main factors studied to explain the pathophysiological mechanisms of inflammatory conditions, such as periodontitis. In this respect, nutrition may be of great importance. Actually, research on nutrients' effects on periodontal diseases has expanded to include those influencing the redox status, which correlates to the inflammatory process. Dietary fat or lipids are often blamed as the major source of excess energy. Consequently, when caloric intake exceeds energy expenditure, the resultant substrate-induced increase in citric acid cycle activity generates an excess of reactive oxygen species (ROS). In addition, dietary fatty acid intake influences in relative fatty acid composition of biological membranes determining its susceptibility to oxidative alterations. From this standpoint, here, we reviewed studies analyzing the dietary fat role in periodontal disease. Research data suggest that periodontal health could be achieved by main dietary strategies which include substitution of saturated fats with monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), particularly n-3 PUFA. Maybe in the future, we should analyze the diet and provide some advice to periodontitis patients to improve treatment outcomes. PMID:26783708

  3. Oxidative Stress and Dietary Fat Type in Relation to Periodontal Disease

    PubMed Central

    Varela-López, Alfonso; Quiles, José L.; Cordero, Mario; Giampieri, Francesca; Bullón, Pedro

    2015-01-01

    Oxidative stress is one of the main factors studied to explain the pathophysiological mechanisms of inflammatory conditions, such as periodontitis. In this respect, nutrition may be of great importance. Actually, research on nutrients’ effects on periodontal diseases has expanded to include those influencing the redox status, which correlates to the inflammatory process. Dietary fat or lipids are often blamed as the major source of excess energy. Consequently, when caloric intake exceeds energy expenditure, the resultant substrate-induced increase in citric acid cycle activity generates an excess of reactive oxygen species (ROS). In addition, dietary fatty acid intake influences in relative fatty acid composition of biological membranes determining its susceptibility to oxidative alterations. From this standpoint, here, we reviewed studies analyzing the dietary fat role in periodontal disease. Research data suggest that periodontal health could be achieved by main dietary strategies which include substitution of saturated fats with monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), particularly n-3 PUFA. Maybe in the future, we should analyze the diet and provide some advice to periodontitis patients to improve treatment outcomes. PMID:26783708

  4. Assessment of cellular materials generated by co-cultured 'inflamed' and healthy periodontal ligament stem cells from patient-matched groups.

    PubMed

    Tang, Hao-Ning; Xia, Yu; Xu, Jie; Tian, Bei-Min; Zhang, Xi-Yu; Chen, Fa-Ming

    2016-08-01

    Recently, stem cells derived from the'inflamed' periodontal ligament (PDL) tissue of periodontally diseased teeth (I-PDLSCs) have been increasingly suggested as a more readily accessible source of cells for regenerative therapies than those derived from healthy PDL tissue (H-PDLSCs). However, substantial evidence indicates that I-PDLSCs exhibit impaired functionalities compared with H-PDLSCs. In this study, patient-matched I-PDLSCs and H-PDLSCs were co-cultured at various ratios. Cellular materials derived from these cultures were investigated regarding their osteogenic potential in vitro and capacity to form new bone following in vivo transplantation. While patient-matched I-PDLSCs and H-PDLSCs could co-exist in co-culture systems, the proportion of I-PDLSCs tended to increase during in vitro incubation. Compared with H-PDLSC monoculture, the presence of I-PDLSCs in the co-cultures appeared to enhance the overall cell proliferation. Although not completely rescued, the osteogenic and regenerative potentials of the cellular materials generated by co-cultured I-PDLSCs and H-PDLSCs were significantly improved compared with those derived from I-PDLSC monocultures. Notably, cells in co-cultures containing either 50% I-PDLSCs plus 50% H-PDLSCs or 25% I-PDLSCs plus 75% H-PDLSCs expressed osteogenesis-related proteins and genes at levels similar to those expressed in H-PDLSC monocultures (P>0.05). Irrespective of the percentage of I-PDLSCs, robust cellular materials were obtained from co-cultures with 50% or more H-PDLSCs, which exhibited equivalent potential to form new bone in vivo compared with sheets generated by H-PDLSC monocultures. These data suggest that the co-culture of I-PDLSCs with patient-matched H-PDLSCs is a practical and effective method for increasing the overall osteogenic and regenerative potentials of resultant cellular materials. PMID:27237095

  5. FGF-2 induces the proliferation of human periodontal ligament cells and modulates their osteoblastic phenotype by affecting Runx2 expression in the presence and absence of osteogenic inducers

    PubMed Central

    AN, SHAOFENG; HUANG, XIANGYA; GAO, YAN; LING, JUNQI; HUANG, YIHUA; XIAO, YIN

    2015-01-01

    The exact phenotype of human periodontal ligament cells (hPDLCs) remains a controversial area. Basic fibroblast growth factor (FGF-2) exhibits various functions and its effect on hPDLCs is also controversial. Therefore, the present study examined the effect of FGF-2 on the growth and osteoblastic phenotype of hPDLCs with or without osteogenic inducers (dexamethasone and β-glycerophosphate). FGF-2 was added to defined growth culture medium and osteogenic inductive culture medium. Cell proliferation, osteogenic differentiation and mineralization were measured. The selected differentiation markers, Runx2, collagen type I, α1 (Col1a1), osteocalcin (OCN) and epidermal growth factor receptor (EGFR), were investigated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Runx2 and OCN protein expression was measured by western blotting. FGF-2 significantly increased the proliferation of hPDLCs, but did not affect alkaline phosphatase activity. RT-qPCR analysis revealed enhanced mRNA expression of Runx2, OCN and EGFR, but suppressed Col1a1 gene expression in the absence of osteogenic inducers, whereas all these gene levels had no clear trend in their presence. The Runx2 protein expression was clearly increased, but the OCN protein level showed no evident trend. The mineralization assay demonstrated that FGF-2 inhibited mineralized matrix deposition with osteogenic inducers. These results suggested that FGF-2 induces the growth of immature hPDLCs, which is a competitive inhibitor of epithelial downgrowth, and suppresses their differentiation into mineralized tissue by affecting Runx2 expression. Therefore, this may lead to the acceleration of periodontal regeneration. PMID:26133673

  6. Nuclear factor-κB modulates osteogenesis of periodontal ligament stem cells through competition with β-catenin signaling in inflammatory microenvironments.

    PubMed

    Chen, X; Hu, C; Wang, G; Li, L; Kong, X; Ding, Y; Jin, Y

    2013-01-01

    Inflammation can influence multipotency and self-renewal of mesenchymal stem cells (MSCs), resulting in their awakened bone-regeneration ability. Human periodontal ligament tissue-derived MSCs (PDLSCs) have been isolated, and their differentiation potential was found to be defective due to β-catenin signaling indirectly regulated by inflammatory microenvironments. Nuclear factor-κB (NF-κB) is well studied in inflammation by many different groups. The role of NF-κB needs to be studied in PDLSCs, although genetic evidences have recently shown that NF-κB inhibits osteoblastic bone formation in mice. However, the mechanism as to how inflammation leads to the modulation of β-catenin and NF-κB signaling remains unclear. In this study, we investigated β-catenin and NF-κB signaling through regulation of glycogen synthase kinase 3β activity (GSK-3β, which modulates β-catenin and NF-κB signaling) using a specific inhibitor LiCl and a phosphatidylinositol 3-kinase (PI3K) inhibitor LY 294002. We identified that NF-κB signaling might be more important for the regulation of osteogenesis in PDLSCs from periodontitis compared with β-catenin. BAY 11-7082 (an inhibitor of NF-κB) could inhibit phosphorylation of p65 and partly rescue the differentiation potential of PDLSCs in inflammation. Our data indicate that NF-κB has a central role in regulating osteogenic differentiation of PDLSCs in inflammatory microenvironments. Given the molecular mechanisms of NF-κB in osteogenic differentiation governed by inflammation, it can be said that NF-κB helps in improving stem cell-mediated inflammatory bone disease therapy. PMID:23449446

  7. Nuclear factor-κB modulates osteogenesis of periodontal ligament stem cells through competition with β-catenin signaling in inflammatory microenvironments

    PubMed Central

    Chen, X; Hu, C; Wang, G; Li, L; Kong, X; Ding, Y; Jin, Y

    2013-01-01

    Inflammation can influence multipotency and self-renewal of mesenchymal stem cells (MSCs), resulting in their awakened bone-regeneration ability. Human periodontal ligament tissue-derived MSCs (PDLSCs) have been isolated, and their differentiation potential was found to be defective due to β-catenin signaling indirectly regulated by inflammatory microenvironments. Nuclear factor-κB (NF-κB) is well studied in inflammation by many different groups. The role of NF-κB needs to be studied in PDLSCs, although genetic evidences have recently shown that NF-κB inhibits osteoblastic bone formation in mice. However, the mechanism as to how inflammation leads to the modulation of β-catenin and NF-κB signaling remains unclear. In this study, we investigated β-catenin and NF-κB signaling through regulation of glycogen synthase kinase 3β activity (GSK-3β, which modulates β-catenin and NF-κB signaling) using a specific inhibitor LiCl and a phosphatidylinositol 3-kinase (PI3K) inhibitor LY 294002. We identified that NF-κB signaling might be more important for the regulation of osteogenesis in PDLSCs from periodontitis compared with β-catenin. BAY 11-7082 (an inhibitor of NF-κB) could inhibit phosphorylation of p65 and partly rescue the differentiation potential of PDLSCs in inflammation. Our data indicate that NF-κB has a central role in regulating osteogenic differentiation of PDLSCs in inflammatory microenvironments. Given the molecular mechanisms of NF-κB in osteogenic differentiation governed by inflammation, it can be said that NF-κB helps in improving stem cell-mediated inflammatory bone disease therapy. PMID:23449446

  8. The Effect of Propolis As A Biological Storage Media on Periodontal Ligament Cell Survival in An Avulsed Tooth: An In Vitro Study

    PubMed Central

    Ahangari, Zohreh; Alborzi, Samiye; Yadegari, Zahra; Dehghani, Fatemeh; Ahangari, Leila; Naseri, Mandana

    2013-01-01

    Objective: Both the length of extra-alveolar time and type of storage media are significant factors that can affect the long-term prognosis of replanted teeth. This study aims to compare propolis 50%, propolis 10%, Hank’s balanced salt solution (HBSS), milk and egg white on periodontal ligament (PDL) cell survival for different time points. Materials and Methods: : In this in vitro experimental study, we divided 60 extracted teeth without any periodontal diseases into five experimental and two control groups that consisted each experimental group with 10 and each control group with 5 teeth. The storage times were one and three hours for each media. The controls corresponded to 0-minute (positive) and 12-hour (negative) dry time. Rinsing in the experimental media, the teeth were treated with dispase and collagenase for one hour. Cell viability was determined by using trypan blue exclusion. Statistical analysis of the data was accomplished by using two-way analysis of variance (ANOVA) complemented by the Tukey’s HSD post-hoc. Results: Within one hour, there was no significant difference between the two propolis groups, however these two groups had significantly more viable PDL cells compared to the other experimental media (p<0.05). The results of the three-hour group showed that propolis 10% was significantly better than egg white, whereas both propolis 10% and 50% were significantly better than milk (p<0.05). Conclusion: Based on PDL cell viability, propolis could be recommended as a suitable biological storage media for avulsed teeth. PMID:24027666

  9. Effect of labiolingual inclination of a maxillary central incisor and surrounding alveolar bone loss on periodontal stress: A finite element analysis

    PubMed Central

    Choi, Sung-Hwan; Kim, Young-Hoon; Lee, Kee-Joon

    2016-01-01

    Objective The aim of this study was to investigate whether labial tooth inclination and alveolar bone loss affect the moment per unit of force (Mt/F) in controlled tipping and consequent stresses on the periodontal ligament (PDL). Methods Three-dimensional models (n = 20) of maxillary central incisors were created with different labial inclinations (5°, 10°, 15°, and 20°) and different amounts of alveolar bone loss (0, 2, 4, and 6 mm). The Mt/F necessary for controlled tipping (Mt/Fcont) and the principal stresses on the PDL were calculated for each model separately in a finite element analysis. Results As labial inclination increased, Mt/Fcont and the length of the moment arm decreased. In contrast, increased alveolar bone loss caused increases in Mt/Fcont and the length of the moment arm. When Mt/F was near Mt/Fcont, increases in Mt/F caused compressive stresses to move from a predominantly labial apical region to a palatal apical position, and tensile stresses in the labial area moved from a cervical position to a mid-root position. Although controlled tipping was applied to the incisors, increases in alveolar bone loss and labial tooth inclination caused increases in maximum compressive and tensile stresses at the root apices. Conclusions Increases in alveolar bone loss and labial tooth inclination caused increases in stresses that might cause root resorption at the root apex, despite the application of controlled tipping to the incisors. PMID:27226961

  10. Evaluation and comparison of efficacy of three different storage media, coconut water, propolis, and oral rehydration solution, in maintaining the viability of periodontal ligament cells

    PubMed Central

    Sanghavi, Tulsi; Shah, Nimisha; Parekh, Vaishali; Singbal, Kiran

    2013-01-01

    Background: Two of the most critical factors affecting the prognosis of an avulsed tooth after replantation are extra oral dry time and the storage medium in which the tooth is placed before treatment is rendered. However, the ability of a storage/transport medium to support cell viability can be more important than the extra oral time to prevent ankylosis and replacement resorption. Aim: Purpose of this study was evaluation and comparison of efficacy of a new storage medium, oral rehydration solution (ORS) with coconut water, and propolis in maintaining the viability of periodontal ligament (PDL) cells by using a collagenase-dispase assay. Materials and Methods: 40 teeth were selected with intact crown which were advised for Orthodontic extraction having healthy PDL. Teeth were then randomly divided into three experimental storage solution groups. Other 10 were divided into positive and negative control groups (5 each). Statistical Analysis and Result: The results were statistically analyzed with analysis of variance and multiple range by using post hoc tests. The results of the prevailing study indicated that coconut water group demonstrated a significantly higher number of viable PDL cells than propolis 50%, and ORS. There was no significant difference between coconut water and propolis 50% groups. PMID:23349581

  11. Production of polymeric micelles by microfluidic technology for combined drug delivery: application to osteogenic differentiation of human periodontal ligament mesenchymal stem cells (hPDLSCs).

    PubMed

    Capretto, L; Mazzitelli, S; Colombo, G; Piva, R; Penolazzi, L; Vecchiatini, R; Zhang, X; Nastruzzi, C

    2013-01-20

    The current paper reports the production of polymeric micelles (PMs), based on pluronic block-copolymers, as drug carriers, precisely controlling the cellular delivery of drugs with various physico-chemical characteristics. PMs were produced with a microfluidic platform to exploit further control on the size characteristic of the PMs. PMs were designed for the co-delivery of dexamethasone (Dex) and ascorbyl-palmitate (AP) to in vitro cultured human periodontal ligament mesenchymal stem cells (hPDLSCs) for the combined induction of osteogenic differentiation. Mixtures of block-copolymers and drugs in organic, water miscible solvent, were conveniently converted in PMs within microfluidic channel leveraging the fast mixing at the microscale. Our results demonstrated that the drugs can be efficiently co-encapsulated in PMs and that different production parameters can be adjusted in order to modulate the PM characteristics. The comparative analysis of PM produced by microfluidic and conventional procedures confirmed that the use of microfluidics platforms allowed the production of PMs in a robust manner with improved controllability, reproducibility, smaller size and polydispersity. Finally, the analysis of the effect of PMs, containing Dex and AP, on the osteogenic differentiation of hPDLSCs is reported. The data demonstrated the effectiveness and safety of PM treatment on hPDLSC. In conclusion, this report indicates that microfluidic approach represents an innovative and useful method for PM controlled preparation, warrant further evaluation as general methodology for the production of colloidal systems for the simultaneous drug delivery. PMID:22884778

  12. Addition of BMP-2 or BMP-6 to dexamethasone, ascorbic acid, and β-glycerophosphate may not enhance osteogenic differentiation of human periodontal ligament cells.

    PubMed

    Khanna-Jain, Rashi; Agata, Hideki; Vuorinen, Annukka; Sándor, George K B; Suuronen, Riitta; Miettinen, Susanna

    2010-12-01

    This study was designed to investigate the potential merits of the combined use of bone morphogenetic protein (BMP)-2 or BMP-6 and osteogenic supplements (OS) [dexamethasone, ascorbic acid (AA), and β-glycerophosphate] on osteogenic differentiation of periodontal ligament cells (PDLCs). Osteogenic differentiation was evaluated by quantitative alkaline phosphatase (ALP) assay, alizarin red staining, quantitative calcium assay, and the qRT-PCR analysis for the expression of collagen type I, runt-related transcription factor-2, osteopontin (OPN), and osteocalcin in PDLCs. Culture with BMP-2 or BMP-6+AA increased ALP activity of PDLCs, suggesting their osteo-inductive effects. However, longer duration of culture showed neither of the BMPs induced in vitro mineralization. In contrast, OS were able to increase ALP activity and OPN expressions, and also induced in vitro mineralization. The mineralization ability was not enhanced by the addition of BMP-2 or BMP-6. These findings suggest that the addition of BMP-2 or BMP-6 to OS may not enhance an osteogenic differentiation of hPDLCs. PMID:20569096

  13. Fabrication of Core-Shell PEI/pBMP2-PLGA Electrospun Scaffold for Gene Delivery to Periodontal Ligament Stem Cells.

    PubMed

    Xie, Qiao; Jia, Lie-Ni; Xu, Hong-Yu; Hu, Xiang-Gang; Wang, Wei; Jia, Jun

    2016-01-01

    Bone tissue engineering is the most promising technology for enhancing bone regeneration. Scaffolds loaded with osteogenic factors improve the therapeutic effect. In this study, the bioactive PEI (polyethylenimine)/pBMP2- (bone morphogenetic protein-2 plasmid-) PLGA (poly(D, L-lactic-co-glycolic acid)) core-shell scaffolds were prepared using coaxial electrospinning for a controlled gene delivery to hPDLSCs (human periodontal ligament stem cells). The pBMP2 was encapsulated in the PEI phase as a core and PLGA was employed to control pBMP2 release as a shell. First, the scaffold characterization and mechanical properties were evaluated. Then the gene release behavior was analyzed. Our results showed that pBMP2 was released at high levels in the first few days, with a continuous release behavior in the next 28 days. At the same time, PEI/pBMP2 showed high transfection efficiency. Moreover, the core-shell electrospun scaffold showed BMP2 expression for a much longer time (more than 28 days) compared with the single axial electrospun scaffold, as evaluated by qRT-PCR and western blot after culturing with hPDLSCs. These results suggested that the core-shell PEI/pBMP2-PLGA scaffold fabricated by coaxial electrospinning had a good gene release behavior and showed a prolonged expression time with a high transfection efficiency. PMID:27313626

  14. Fabrication of Core-Shell PEI/pBMP2-PLGA Electrospun Scaffold for Gene Delivery to Periodontal Ligament Stem Cells

    PubMed Central

    Xie, Qiao; Jia, Lie-ni; Xu, Hong-yu; Hu, Xiang-gang; Wang, Wei; Jia, Jun

    2016-01-01

    Bone tissue engineering is the most promising technology for enhancing bone regeneration. Scaffolds loaded with osteogenic factors improve the therapeutic effect. In this study, the bioactive PEI (polyethylenimine)/pBMP2- (bone morphogenetic protein-2 plasmid-) PLGA (poly(D, L-lactic-co-glycolic acid)) core-shell scaffolds were prepared using coaxial electrospinning for a controlled gene delivery to hPDLSCs (human periodontal ligament stem cells). The pBMP2 was encapsulated in the PEI phase as a core and PLGA was employed to control pBMP2 release as a shell. First, the scaffold characterization and mechanical properties were evaluated. Then the gene release behavior was analyzed. Our results showed that pBMP2 was released at high levels in the first few days, with a continuous release behavior in the next 28 days. At the same time, PEI/pBMP2 showed high transfection efficiency. Moreover, the core-shell electrospun scaffold showed BMP2 expression for a much longer time (more than 28 days) compared with the single axial electrospun scaffold, as evaluated by qRT-PCR and western blot after culturing with hPDLSCs. These results suggested that the core-shell PEI/pBMP2-PLGA scaffold fabricated by coaxial electrospinning had a good gene release behavior and showed a prolonged expression time with a high transfection efficiency. PMID:27313626

  15. Effects of decellularized matrices derived from periodontal ligament stem cells and SHED on the adhesion, proliferation and osteogenic differentiation of human dental pulp stem cells in vitro.

    PubMed

    Heng, Boon Chin; Zhu, Shaoyue; Xu, Jianguang; Yuan, Changyong; Gong, Ting; Zhang, Chengfei

    2016-04-01

    A major bottleneck to the therapeutic applications of dental pulp stem cells (DPSC) are their limited proliferative capacity ex vivo and tendency to undergo senescence. This may be partly due to the sub-optimal in vitro culture milieu, which could be improved by an appropriate extracellular matrix substratum. This study therefore examined decellularized matrix (DECM) from stem cells derived from human exfoliated deciduous teeth (SHED) and periodontal ligament stem cells (PDLSC), as potential substrata for DPSC culture. Both SHED-DECM and PDLSC-DECM promoted rapid adhesion and spreading of newly-seeded DPSC compared to bare polystyrene (TCPS), with vinculin immunocytochemistry showing expression of more focal adhesions by newly-adherent DPSC cultured on DECM versus TCPS. Culture of DPSC on SHED-DECM and PDLSC-DECM yielded higher proliferation of cell numbers compared to TCPS. The qRT-PCR data showed significantly higher expression of nestin by DPSC cultured on DECM versus the TCPS control. Osteogenic differentiation of DPSC was enhanced by culturing on PDLSC-DECM and SHED-DECM versus TCPS, as demonstrated by alizarin red S staining for mineralized calcium deposition, alkaline phosphatase assay and qRT-PCR analysis of key osteogenic marker expression. Hence, both SHED-DECM and PDLSC-DECM could enhance the ex vivo culture of DPSC under both non-inducing and osteogenic-inducing conditions. PMID:26796232

  16. Evaluation of Osteogenic and Cementogenic Potential of Periodontal Ligament Fibroblast Spheroids Using a Three-Dimensional In Vitro Model of Periodontium

    PubMed Central

    Berahim, Zurairah; Moharamzadeh, Keyvan; Jowett, Adrian K.; Rawlinson, Andrew

    2015-01-01

    The aim of this study was to develop a three-dimensional in vitro model of periodontium to investigate the osteogenic and cementogenic differentiation potential of the periodontal ligament fibroblast (PDLF) spheroids within a dentin-membrane complex. PDLFs were cultured in both spheroid forms and monolayers and were seeded onto two biological collagen-based and synthetic membranes. Cell-membrane composites were then transferred onto dentin slices with fibroblasts facing the dentin surface and further cultured for 20 days. The composites were then processed for histology and immunohistochemical analyses for osteocalcin, Runx2, periostin, and cementum attachment protein (CAP). Both membranes seeded with PDLF-derived cells adhered to dentin and fibroblasts were present at the dentin interface and spread within both membranes. All membrane-cell-dentine composites showed positive staining for osteocalcin, Runx2, and periostin. However, CAP was not expressed by any of the tissue composites. It can be concluded that PDLFs exhibited some osteogenic potential when cultured in a 3D matrix in the presence of dentin as shown by the expression of osteocalcin. However the interaction of cells and dentin in this study was unable to stimulate cementum formation. The type of membrane did not have a significant effect upon differentiation, but fibroblast seeded-PGA membrane demonstrated better attachment to dentin than the collagen membrane. PMID:26633971

  17. Tooth periodontal ligament: Direct 3D microCT visualization of the collagen network and how the network changes when the tooth is loaded.

    PubMed

    Naveh, Gili R S; Brumfeld, Vlad; Shahar, Ron; Weiner, Steve

    2013-02-01

    The periodontal ligament (PDL), a soft tissue connecting the tooth and the bone, is essential for tooth movement, bone remodeling and force dissipation. A collagenous network that connects the tooth root surface to the alveolar jaw bone is one of the major components of the PDL. The organization of the collagenous component and how it changes under load is still poorly understood. Here using a state-of-the-art custom-made loading apparatus and a humidified environment inside a microCT, we visualize the PDL collagenous network of a fresh rat molar in 3D at 1 μm voxel size without any fixation or contrasting agents. We demonstrate that the PDL collagen network is organized in sheets. The spaces between sheets vary thus creating dense and sparse networks. Upon vertical loading, the sheets in both networks are stretched into well aligned arrays. The sparse network is located mainly in areas which undergo compressive loading as the tooth moves towards the bone, whereas the dense network functions mostly in tension as the tooth moves further from the bone. This new visualization method can be used to study other non-mineralized or partially mineralized tissues, and in particular those that are subjected to mechanical loads. The method will also be valuable for characterizing diseased tissues, as well as better understanding the phenotypic expressions of genetic mutants. PMID:23110851

  18. Relationship among Periodontal Disease, Insulin Resistance, Salivary Cortisol, and Stress Levels during Pregnancy.

    PubMed

    Seraphim, Ana Paula Castilho Garcia; Chiba, Fernando Yamamoto; Pereira, Renato Felipe; Mattera, Maria Sara de Lima Coutinho; Moimaz, Suzely Adas Saliba; Sumida, Doris Hissako

    2016-01-01

    Pregnancy is a period involving important metabolic changes that enable the maintenance of the mother's health and development of the fetus. This study aimed to assess the relationship among periodontal disease, insulin resistance, salivary cortisol concentration and level of perceived stress in pregnant women. This was a cross-sectional study. The sample comprised 96 pregnant women between the fifth and seventh month of pregnancy registered at the Basic Health Units of the Unified Health System (SUS). The periodontal condition was assessed after obtainment free and informed consent from the participants. Participants were divided into three groups: control subjects with a healthy periodontal condition (CN; n=46), patients with gingivitis (GI; n=26), and patients with periodontitis (PI; n=24). Saliva and blood samples were collected for evaluation of salivary cortisol concentration, glycemia, insulinemia and Homeostasis Model Assessment-Insulin Resistance index. A validated survey for the assessment of perceived stress levels was also performed. PI group showed significantly higher (p<0.05) blood glucose levels (CN: 4.43±0.05; GI: 4.46±0.04; PI: 4.68±0.08), insulinemia (CN: 6.93±0.45; GI: 8.87±0.79; PI: 12.77±1.30), insulin resistance (CN: 1.40±0.10; GI: 1.81±0.18; PI: 2.66±0.29) compared with the CN and GI groups. The levels of perceived stress were higher (p<0.05) in PI and GI groups when compared to CN group (CN: 20.5±1.26; GI: 25.8±1.95; PI: 26.6±1.36). There was no significant difference in the concentration of salivary cortisol between the groups (CN: 11.13±0.58; GI: 11.96±0.74; PI: 11.47±0.74). It was concluded that there is a relationship between higher levels of perceived stress, insulin resistance and the occurrence of periodontal disease during pregnancy. This study emphasizes the importance of preventing periodontitis in order to avoid insulin resistance and stress during pregnancy since these can cause systemic complications for the

  19. Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review.

    PubMed

    Greabu, Maria; Totan, Alexandra; Miricescu, Daniela; Radulescu, Radu; Virlan, Justina; Calenic, Bogdan

    2016-01-01

    In the past years, biomedical research has recognized hydrogen sulfide (H₂S) not only as an environmental pollutant but also, along with nitric oxide and carbon monoxide, as an important biological gastransmitter with paramount roles in health and disease. Current research focuses on several aspects of H₂S biology such as the biochemical pathways that generate the compound and its functions in human pathology or drug synthesis that block or stimulate its biosynthesis. The present work addresses the knowledge we have to date on H₂S production and its biological roles in the general human environment with a special focus on the oral cavity and its involvement in the initiation and development of periodontal diseases. PMID:26805896

  20. Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review

    PubMed Central

    Greabu, Maria; Totan, Alexandra; Miricescu, Daniela; Radulescu, Radu; Virlan, Justina; Calenic, Bogdan

    2016-01-01

    In the past years, biomedical research has recognized hydrogen sulfide (H2S) not only as an environmental pollutant but also, along with nitric oxide and carbon monoxide, as an important biological gastransmitter with paramount roles in health and disease. Current research focuses on several aspects of H2S biology such as the biochemical pathways that generate the compound and its functions in human pathology or drug synthesis that block or stimulate its biosynthesis. The present work addresses the knowledge we have to date on H2S production and its biological roles in the general human environment with a special focus on the oral cavity and its involvement in the initiation and development of periodontal diseases. PMID:26805896

  1. Rare Periodontal Ligament Drainage for Periapical Inflammation of an Adjacent Tooth: A Case Report and Review of the Literature

    PubMed Central

    Guo, Hongmei; Lu, Wei; Han, Qianqian; Li, Shubo; Yang, Pishan

    2014-01-01

    Aim. To report a case with an unusual drainage route of periapical inflammation exiting through the gingival sulcus of an adjacent vital tooth and review probable factors determining the diversity of the discharge routes of periapical inflammation. Summary. An 18-year-old male patient presented with periodontal abscess of tooth 46, which was found to be caused by a periapical cyst with an acute abscess of tooth 45. During endodontic surgery, a rarely reported drainage route for periapical inflammation via the gingival sulcus of an adjacent vital tooth was observed for the first time. Complete periodontal healing of the deep pocket of tooth 46 and hiding of the periapical cyst of tooth 45 followed after root canal treatment and periapical surgery with Bio-Oss Collagen implantation on tooth 45. The drainage routes of periapical inflammation are multivariate and the diversity of drainage pathways of periapical inflammation is mainly related to factors such as gravity, barriers against inflammation, and the causative tooth itself. PMID:25587462

  2. [Comparison of gene expression profile of cementoblasts with periodontal ligament cells in mouse mandible with laser capture microdissection].

    PubMed

    Yokoyama, Yoshiko

    2008-03-01

    Cementum is an essential tissue to maintain tooth function and should be closely correlated to tooth root development and periodontal tissue regeneration. However, detailed features of the periodontium including cementum and specific markers for cementoblasts are unknown. Moreover, the molecular mechanism of periodontal tissue development, homeostasis and regeneration remains unknown. Previous studies have usually examined cementum or periodontalligament (PDL) tissue obtained by manual curettage, resulting in difficulties in isolating pure cementum or PDL. We employed laser capture microdissection (LCM) to isolate cementoblasts and PDL cells from undecalcified frozen sections of murine mandible and to obtain RNA of good quality for subsequent genetic analysis. Over 500 cementoblasts and PDL cells were separately laser captured under microscopy. A bioanalyzer detected peaks of 18S and 28S rRNA both in the laser-dissected cementoblasts and in PDL cells, suggesting that the RNA was of sufficient quality. The RNA samples were amplified due to their small amount and a comparative analysis of mRNA expression by GeneChip showed that about 2,000 genes were differentially expressed between cementoblasts and PDL cells. Both cementoblast-positive and PDL cell-negative genes were serially analyzed by quantitative RT-PCR using RNA samples obtained from mandibles and femurs. Several genes were expressed at higher levels in the mandible than in the femur, suggesting that some might be cementoblast-specific markers. We established a novel experimental system with which to isolate target tissues from single cells in undecalcified frozen sections and to obtain intact RNA. These methodologies could be useful for further investigation of mineralized tissues and to explore tissue-specific factors. PMID:18421948

  3. The effect of the coumarin-like derivative osthole on the osteogenic properties of human periodontal ligament and jaw bone marrow mesenchymal stem cell sheets.

    PubMed

    Gao, Li-Na; An, Ying; Lei, Ming; Li, Bei; Yang, Hao; Lu, Hong; Chen, Fa-Ming; Jin, Yan

    2013-12-01

    Cell sheet engineering is a scaffold-free delivery concept that has been shown to improve mesenchymal stem cell-mediated regeneration of injured or pathologically damaged periodontal tissues in preclinical studies and several clinical trials. However, the best strategy for cell sheet production remains to be identified. The aim of this study was to investigate the biological effects of osthole, a coumarin-like derivative extracted from Chinese herbs, on the cell sheet formation and osteogenic properties of human periodontal ligament stem cells (PDLSCs) and jaw bone marrow mesenchymal stem cells (JBMMSCs). Patient-matched PDLSCs and JBMMSCs were isolated, and an appropriate concentration of osthole for cell culture was screened for both cell types in terms of cell proliferation and alkaline phosphatase (ALP) activity. Next, the best mode of osthole stimulation for inducing the formation of sheets by each cell type was selected by evaluating the amount of their extracellular matrix (ECM) protein production as well as osteogenic-related gene expression. Furthermore, both PDLSC and JBMMSC sheets obtained from each optimized technique were transplanted subcutaneously into nude mice to evaluate their capacity for ectopic bone regeneration. The results revealed that 10(-5) m/L osthole significantly enhanced the proliferation of both PDLSCs and JBMMSCs (P < 0.05), although for JBMMSCs, there was no concentration-related change among the four established osthole groups (P > 0.05). In addition, 10(-5) m/L osthole was the best concentration to promote the ALP activities of both cells (P < 0.01). Based on both the production of ECM proteins (collagen type I, integrin β1, and fibronectin) and the expression of osteogenic genes (ALP, Runt-related transcription factor 2 (RUNX2), and osteocalcin (OCN)), the provision of 10(-5) m/L osthole throughout the entire culture stage (10 days) for PDLSCs or at the early stage (first 3 days) for JBMMSCs was the most effective osthole

  4. Characterization of the Enhanced Bone Regenerative Capacity of Human Periodontal Ligament Stem Cells Engineered to Express the Gene Encoding Bone Morphogenetic Protein 2

    PubMed Central

    Jung, Im-Hee; Lee, Si-Ho; Jun, Choong-Man; Oh, Namsik

    2014-01-01

    Human periodontal ligament stem cells (hPDLSCs) are considered an appropriate cell source for therapeutic strategies. The aims of this study were to investigate the sustainability of bone morphogenetic protein 2 (BMP2) secretion and the bone regenerative capacity of hPDLSCs that had been genetically modified to express the gene encoding BMP2 (BMP2). hPDLSCs isolated from healthy third molars were transduced using replication-deficient recombinant adenovirus (rAd) encoding BMP2 (hPDLSCs/rAd-BMP2), and the cellular characteristics and osteogenic potentials of hPDLSCs/rAd-BMP2 were analyzed both in vitro and in vivo. hPDLSCs/rAd-BMP2 successfully secreted BMP2, formed colonies, and expressed immunophenotypes similar to their nontransduced counterparts. As to their osteogenic potential, hPDLSCs/rAd-BMP2 formed greater mineralized nodules and exhibited significantly higher levels of expression of BMP2 and the gene encoding alkaline phosphatase, and formed more and better quality bone than other hPDLSC-containing or recombinant human BMP2-treated groups, being localized at the initial site until 8 weeks. The findings of the present study demonstrate that hPDLSCs/rAd-BMP2 effectively promote osteogenesis not only in vitro but also in vivo. The findings also suggest that hPDLSCs can efficiently carry and deliver BMP2, and that hPDLSCs/rAd-BMP2 could be used in an attractive novel therapeutic approach for the regeneration of deteriorated bony defects. PMID:24494708

  5. Engineering the periodontal ligament in hyaluronan-gelatin-type I collagen constructs: upregulation of apoptosis and alterations in gene expression by cyclic compressive strain.

    PubMed

    Saminathan, Aarthi; Sriram, Gopu; Vinoth, Jayasaleen Kumar; Cao, Tong; Meikle, Murray C

    2015-02-01

    To engineer constructs of the periodontal ligament (PDL), human PDL cells were incorporated into a matrix of hyaluronan, gelatin, and type I collagen (COLI) in sample holders (13×1 mm) of six-well Biopress culture plates. The loading dynamics of the PDL were mimicked by applying a cyclic compressive strain of 33.4 kPa (340.6 gm/cm(2)) to the constructs for 1.0 s every 60 s, for 6, 12, and 24 h in a Flexercell FX-4000C Strain Unit. Compression significantly increased the number of nonviable cells and increased the expression of several apoptosis-related genes, including initiator and executioner caspases. Of the 15 extracellular matrix genes screened, most were upregulated at some point after 6-12 h deformation, but all were downregulated at 24 h, except for MMPs1-3 and CTGF. In culture supernatants, matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinases-1 (TIMP-1) protein levels were upregulated at 24 h; receptor activator of nuclear kappa factor B (RANKL), osteoprotegerin (OPG) and fibroblast growth factor-2 (FGF-2) were unchanged; and connective tissue growth factor (CTGF) not detected. The low modulus of elasticity of the constructs was a disadvantage-future mechanobiology studies and tissue engineering applications will require constructs with much higher stiffness. Since the major structural protein of the PDL is COLI, a more rational approach would be to permeabilize preformed COLI scaffolds with PDL-populated matrices. PMID:25181942

  6. Bone Regeneration Potential of Stem Cells Derived from Periodontal Ligament or Gingival Tissue Sources Encapsulated in RGD-Modified Alginate Scaffold

    PubMed Central

    Chen, Chider; Xu, Xingtian; Akiyama, Kentaro; Ansari, Sahar; Zadeh, Homayoun H.; Shi, Songtao

    2014-01-01

    Mesenchymal stem cells (MSCs) provide an advantageous alternative therapeutic option for bone regeneration in comparison to current treatment modalities. However, delivering MSCs to the defect site while maintaining a high MSC survival rate is still a critical challenge in MSC-mediated bone regeneration. Here, we tested the bone regeneration capacity of periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs) encapsulated in a novel RGD- (arginine-glycine-aspartic acid tripeptide) coupled alginate microencapsulation system in vitro and in vivo. Five-millimeter-diameter critical-size calvarial defects were created in immunocompromised mice and PDLSCs and GMSCs encapsulated in RGD-modified alginate microspheres were transplanted into the defect sites. New bone formation was assessed using microcomputed tomography and histological analyses 8 weeks after transplantation. Results confirmed that our microencapsulation system significantly enhanced MSC viability and osteogenic differentiation in vitro compared with non-RGD-containing alginate hydrogel microspheres with larger diameters. Results confirmed that PDLSCs were able to repair the calvarial defects by promoting the formation of mineralized tissue, while GMSCs showed significantly lower osteogenic differentiation capability. Further, results revealed that RGD-coupled alginate scaffold facilitated the differentiation of oral MSCs toward an osteoblast lineage in vitro and in vivo, as assessed by expression of osteogenic markers Runx2, ALP, and osteocalcin. In conclusion, these results for the first time demonstrated that MSCs derived from orofacial tissue encapsulated in RGD-modified alginate scaffold show promise for craniofacial bone regeneration. This treatment modality has many potential dental and orthopedic applications. PMID:24070211

  7. Novel application of human periodontal ligament stem cells and water-soluble chitin for collagen tissue regeneration: in vitro and in vivo investigations.

    PubMed

    Jung, Im Hee; Park, Jung Chul; Kim, Jane C; Jeon, Dong Won; Choi, Seong Ho; Cho, Kyoo Sung; Im, Gun Il; Kim, Byung Soo; Kim, Chang Sung

    2012-03-01

    Human periodontal ligament stem cells (hPDLSCs) have been proposed as an alternative to conventional cosmetic fillers because they display an innate ability to synthesize collagen. The aims of this study were to determine the effects of water-soluble chitin (WSC) on the proliferation and migration of hPDLSCs, and to quantify collagen synthesis in vitro and in vivo compared with human adipose-derived stem cell (hADSC)s. hPDLSCs were isolated from healthy extracted teeth, and the cell proliferation and cell migration capacities of untreated hPDLSCs (control group) and WSC-treated hPDLSCs (test group) were compared. Insoluble/soluble collagen synthesis were also assessed, and collagen related markers were evaluated including lysyl oxidase (LOX), lysyl oxidase like (LOXL)1, LOXL2, and hydroxyproline. In vivo collagen formation was examined by transplanting hyaluronic acid as a cell carrier into the subcutaneous pockets of immunocompromised mice in the control and test groups; histology and immunohistochemistry analyses were performed 4 (n=4) and 8 (n=4) weeks later. There was a dose-dependent enhancement of hPDLSCs proliferation in the test group, and a concomitant reduction in cell migration. The amount of insoluble collagen formed was greater in the test group than in the control group (p<0.05), whereas soluble collagen formation was significantly reduced in the test group (p<0.05). The histology and immunohistochemistry results revealed that the amount of collagen formed in vivo was greater in WSC-treated hPDLSCs than in the control cells at 4 and 8 weeks (p<0.05), and histometric analysis at 8 weeks revealed that enhancement of collagen formation by hPDLSCs was greater than by hADSCs. These results indicate that WSC modulates the properties of hPDLSCs, rendering them more suitable for cosmetic soft-tissue augmentation. PMID:21981356

  8. Preparation of the fast setting and degrading Ca-Si-Mg cement with both odontogenesis and angiogenesis differentiation of human periodontal ligament cells.

    PubMed

    Chen, Yi-Wen; Hsu, Tuan-Ti; Wang, Kan; Shie, Ming-You

    2016-03-01

    Develop a fast setting and controllable degrading magnesium-calcium silicate cement (Mg-CS) by sol-gel, and establish a mechanism using Mg ions to stimulate human periodontal ligament cells (hPDLs) are two purposes of this study. We have used the diametral tensile strength measurement to obtain the mechanical strength and stability of Mg-CS cement; in addition, the cement degradation properties is realized by measuring the releasing amount of Si and Mg ions in the simulated body fluid. The other cell characteristics of hPDLs, such as proliferation, differentiation and mineralization were examined while hPDLs were cultured on specimen surfaces. This study found out the degradation rate of Mg-CS cements depends on the Mg content in CS. Regarding in vitro bioactivity; the CS cements were covered with abundant clusters of apatite spherulites after immersion of 24h, while less apatite spherulites were formatted on the Mg-rich cement surfaces. In addition, the authors also explored the effects of Mg ions on the odontogenesis and angiogenesis differentiation of hPDLs in comparison with CS cement. The proliferation, alkaline phosphatase, odontogenesis-related genes (DSPP and DMP-1), and angiogenesis-related protein (vWF and ang-1) secretion of hPDLs were significantly stimulated when the Mg content of the specimen was increased. The results in this study suggest that Mg-CS materials with this modified composition could stimulate hPDLs behavior and can be good bioceramics for bone substitutes and hard tissue regeneration applications as they stimulate odontogenesis/angiogenesis. PMID:26706543

  9. Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold.

    PubMed

    Moshaverinia, Alireza; Chen, Chider; Xu, Xingtian; Akiyama, Kentaro; Ansari, Sahar; Zadeh, Homayoun H; Shi, Songtao

    2014-02-01

    Mesenchymal stem cells (MSCs) provide an advantageous alternative therapeutic option for bone regeneration in comparison to current treatment modalities. However, delivering MSCs to the defect site while maintaining a high MSC survival rate is still a critical challenge in MSC-mediated bone regeneration. Here, we tested the bone regeneration capacity of periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs) encapsulated in a novel RGD- (arginine-glycine-aspartic acid tripeptide) coupled alginate microencapsulation system in vitro and in vivo. Five-millimeter-diameter critical-size calvarial defects were created in immunocompromised mice and PDLSCs and GMSCs encapsulated in RGD-modified alginate microspheres were transplanted into the defect sites. New bone formation was assessed using microcomputed tomography and histological analyses 8 weeks after transplantation. Results confirmed that our microencapsulation system significantly enhanced MSC viability and osteogenic differentiation in vitro compared with non-RGD-containing alginate hydrogel microspheres with larger diameters. Results confirmed that PDLSCs were able to repair the calvarial defects by promoting the formation of mineralized tissue, while GMSCs showed significantly lower osteogenic differentiation capability. Further, results revealed that RGD-coupled alginate scaffold facilitated the differentiation of oral MSCs toward an osteoblast lineage in vitro and in vivo, as assessed by expression of osteogenic markers Runx2, ALP, and osteocalcin. In conclusion, these results for the first time demonstrated that MSCs derived from orofacial tissue encapsulated in RGD-modified alginate scaffold show promise for craniofacial bone regeneration. This treatment modality has many potential dental and orthopedic applications. PMID:24070211

  10. THE ROLE OF STRESS IN PERIODONTAL DISEASE PROGRESSION IN OLDER ADULTS

    PubMed Central

    Salazar, Christian R.

    2016-01-01

    Periodontal disease is characterized by chronic inflammation of the gingiva (gum tissues) caused by infection with anaerobic bacteria. In older adults, progression of disease can lead to tooth loss, inadequate nutritional intake, and a higher risk of other chronic conditions such as cardiovascular disease and diabetes mellitus. As the proportion of older adults continues to grow over time and rates of tooth loss decline, prevalence and severity of periodontal disease will increase. While much is known about risk factors for disease onset, gaps remain in our understanding of factors that could influence disease progression. Over the past few decades, stress has been implicated as a contributory factor. This review critically examines the epidemiological and laboratory evidence and describes a conceptual framework that could help move the research forward.