Science.gov

Sample records for peripheral myelinated axons

  1. Molecular domains of myelinated axons in the peripheral nervous system.

    PubMed

    Salzer, James L; Brophy, Peter J; Peles, Elior

    2008-11-01

    Myelinated axons are organized into a series of specialized domains with distinct molecular compositions and functions. These domains, which include the node of Ranvier, the flanking paranodal junctions, the juxtaparanodes, and the internode, form as the result of interactions with myelinating Schwann cells. This domain organization is essential for action potential propagation by saltatory conduction and for the overall function and integrity of the axon. PMID:18803321

  2. Peripheral Nerve Diffusion Tensor Imaging: Assessment of Axon and Myelin Sheath Integrity

    PubMed Central

    Heckel, A.; Weiler, M.; Xia, A.; Ruetters, M.; Pham, M.; Bendszus, M.; Heiland, S.; Baeumer, P.

    2015-01-01

    Purpose To investigate the potential of diffusion tensor imaging (DTI) parameters as in-vivo biomarkers of axon and myelin sheath integrity of the median nerve in the carpal tunnel as validated by correlation with electrophysiology. Methods MRI examinations at 3T including DTI were conducted on wrists in 30 healthy subjects. After manual segmentation of the median nerve quantitative analysis of fractional anisotropy (FA) as well as axial, radial and mean diffusivity (AD, RD, and MD) was carried out. Pairwise Pearson correlations with electrophysiological parameters comprising sensory nerve action potential (SNAP) and compound muscle action potential (CMAP) as markers of axon integrity, and distal motor latency (dml) and sensory nerve conduction velocity (sNCV) as markers of myelin sheath integrity were computed. The significance criterion was set at P=0.05, Bonferroni corrected for multiple comparisons. Results DTI parameters showed a distinct proximal-to-distal profile with FA, MD, and RD extrema coinciding in the center of the carpal tunnel. AD correlated with CMAP (r=0.50, p=0.04, Bonf. corr.) but not with markers of myelin sheath integrity. RD correlated with sNCV (r=-0.53, p=0.02, Bonf. corr.) but not with markers of axon integrity. FA correlated with dml (r=-0.63, p=0.002, Bonf. corr.) and sNCV (r=0.68, p=0.001, Bonf. corr.) but not with markers of axon integrity. Conclusion AD reflects axon integrity, while RD (and FA) reflect myelin sheath integrity as validated by correlation with electrophysiology. DTI parameters consistently indicate a slight decrease of structural integrity in the carpal tunnel as a physiological site of median nerve entrapment. DTI is particularly sensitive, since these findings are observed in healthy participants. Our results encourage future studies to evaluate the potential of DTI in differentiating axon from myelin sheath injury in patients with manifest peripheral neuropathies. PMID:26114630

  3. Protein 4.1B Contributes to the Organization of Peripheral Myelinated Axons

    PubMed Central

    Devaux, Jérôme; Carnaud, Michèle; Levasseur, Grégoire; Niwa-Kawakita, Michiko; Harroch, Sheila; Girault, Jean-Antoine; Giovannini, Marco; Goutebroze, Laurence

    2011-01-01

    Neurons are characterized by extremely long axons. This exceptional cell shape is likely to depend on multiple factors including interactions between the cytoskeleton and membrane proteins. In many cell types, members of the protein 4.1 family play an important role in tethering the cortical actin-spectrin cytoskeleton to the plasma membrane. Protein 4.1B is localized in myelinated axons, enriched in paranodal and juxtaparanodal regions, and also all along the internodes, but not at nodes of Ranvier where are localized the voltage-dependent sodium channels responsible for action potential propagation. To shed light on the role of protein 4.1B in the general organization of myelinated peripheral axons, we studied 4.1B knockout mice. These mice displayed a mildly impaired gait and motility. Whereas nodes were unaffected, the distribution of Caspr/paranodin, which anchors 4.1B to the membrane, was disorganized in paranodal regions and its levels were decreased. In juxtaparanodes, the enrichment of Caspr2, which also interacts with 4.1B, and of the associated TAG-1 and Kv1.1, was absent in mutant mice, whereas their levels were unaltered. Ultrastructural abnormalities were observed both at paranodes and juxtaparanodes. Axon calibers were slightly diminished in phrenic nerves and preterminal motor axons were dysmorphic in skeletal muscle. βII spectrin enrichment was decreased along the axolemma. Electrophysiological recordings at 3 post-natal weeks showed the occurrence of spontaneous and evoked repetitive activity indicating neuronal hyperexcitability, without change in conduction velocity. Thus, our results show that in myelinated axons 4.1B contributes to the stabilization of membrane proteins at paranodes, to the clustering of juxtaparanodal proteins, and to the regulation of the internodal axon caliber. PMID:21966409

  4. Reduced BACE1 activity enhances clearance of myelin debris and regeneration of axons in the injured peripheral nervous system

    PubMed Central

    Farah, Mohamed H.; Pan, Bao Han; Hoffman, Paul N.; Ferraris, Dana; Tsukamoto, Takashi; Nguyen, Thien; Wong, Philip C.; Price, Donald L.; Slusher, Barbara S.; Griffin, John W.

    2012-01-01

    β- site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is an aspartyl protease best known for its role in generating the amyloid β peptides that are present in plaques of Alzheimer's Disease. BACE1 has been an attractive target for drug development. In cultured embryonic neurons BACE1-cleaved N-terminal APP is further processed to generate a fragment that can trigger axonal degeneration, suggesting a vital role for BACE1 in axonal health. In addition, BACE1 cleaves neuregulin 1 type III, a protein critical for myelination of peripheral axons by Schwann cells during development. Here, we asked if axonal degeneration or axonal regeneration in adult nerves might be affected by inhibition or elimination of BACE1. We report that BACE1 knockout and wild-type nerves degenerated at a similar rate after axotomy and to a similar extent in the experimental neuropathies produced by administration of paclitaxel and acrylamide. These data indicate N-APP is not the sole culprit in axonal degeneration in adult nerves. Unexpectedly, however, we observed that BACE1 knockout mice had markedly enhanced clearance of axonal and myelin debris from degenerated fibers, accelerated axonal regeneration, and earlier reinnervation of neuromuscular junctions, compared to littermate controls. These observations were reproduced in part by pharmacological inhibition of BACE1. These data suggest BACE1 inhibition as a therapeutic approach to accelerate regeneration and recovery after peripheral nerve damage. PMID:21490216

  5. Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas

    NASA Technical Reports Server (NTRS)

    Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.

    1998-01-01

    Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

  6. Identifying motor and sensory myelinated axons in rabbit peripheral nerves by histochemical staining for carbonic anhydrase and cholinesterase activities

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Sanger, James R.; Matloub, Hani S.; Yousif, N. John; Bain, James L. W.

    1988-01-01

    Carbonic anhydrase (CA) and cholinesterase (CE) histochemical staining of rabbit spinal nerve roots and dorsal root ganglia demonstrated that among the reactive myeliated axons, with minor exceptions, sensory axons were CA positive and CE negative whereas motor axons were CA negative and CE positive. The high specificity was achieved by adjusting reaction conditions to stain subpopulations of myelinated axons selectively while leaving 50 percent or so unstained. Fixation with glutaraldehyde appeared necessary for achieving selectivity. Following sciatic nerve transection, the reciprocal staining pattern persisted in damaged axons and their regenerating processes which formed neuromas within the proximal nerve stump. Within the neuromas, CA-stained sensory processes were elaborated earlier and in greater numbers than CE-stained regenerating motor processes. The present results indicate that histochemical axon typing can be exploited to reveal heterogeneous responses of motor and sensory axons to injury.

  7. Polarized domains of myelinated axons.

    PubMed

    Salzer, James L

    2003-10-01

    The entire length of myelinated axons is organized into a series of polarized domains that center around nodes of Ranvier. These domains, which are crucial for normal saltatory conduction, consist of distinct multiprotein complexes of cell adhesion molecules, ion channels, and scaffolding molecules; they also differ in their diameter, organelle content, and rates of axonal transport. Juxtacrine signals from myelinating glia direct their sequential assembly. The composition, mechanisms of assembly, and function of these molecular domains will be reviewed. I also discuss similarities of this domain organization to that of polarized epithelia and present emerging evidence that disorders of domain organization and function contribute to the axonopathies of myelin and other neurologic disorders. PMID:14556710

  8. Organization and maintenance of molecular domains in myelinated axons.

    PubMed

    Buttermore, Elizabeth D; Thaxton, Courtney L; Bhat, Manzoor A

    2013-05-01

    Over a century ago, Ramon y Cajal first proposed the idea of a directionality involved in nerve conduction and neuronal communication. Decades later, it was discovered that myelin, produced by glial cells, insulated axons with periodic breaks where nodes of Ranvier (nodes) form to allow for saltatory conduction. In the peripheral nervous system (PNS), Schwann cells are the glia that can either individually myelinate the axon from one neuron or ensheath axons of many neurons. In the central nervous system (CNS), oligodendrocytes are the glia that myelinate axons from different neurons. Review of more recent studies revealed that this myelination created polarized domains adjacent to the nodes. However, the molecular mechanisms responsible for the organization of axonal domains are only now beginning to be elucidated. The molecular domains in myelinated axons include the axon initial segment (AIS), where various ion channels are clustered and action potentials are initiated; the node, where sodium channels are clustered and action potentials are propagated; the paranode, where myelin loops contact with the axolemma; the juxtaparanode (JXP), where delayed-rectifier potassium channels are clustered; and the internode, where myelin is compactly wrapped. Each domain contains a unique subset of proteins critical for the domain's function. However, the roles of these proteins in axonal domain organization are not fully understood. In this review, we highlight recent advances on the molecular nature and functions of some of the components of each axonal domain and their roles in axonal domain organization and maintenance for proper neuronal communication. PMID:23404451

  9. Myelin synthesis in the peripheral nervous system.

    PubMed

    Garbay, B; Heape, A M; Sargueil, F; Cassagne, C

    2000-06-01

    By imposing saltatory conduction on the nervous impulse, the principal role of the myelin sheath is to allow the faster propagation of action potentials along the axons which it surrounds. Peripheral nervous system (PNS) myelin is formed by the differentiation of the plasma membrane of Schwann cells. One of the biochemical characteristics that distinguishes myelin from other biological membranes is its high lipid-to-protein ratio. All the major lipid classes are represented in the myelin membrane, while several myelin-specific proteins have been identified. During development, the presence of axons is required for the initiation of myelination, but the nature of the axonal signal is still unknown. The only certainties are that this signal is synthesized by axons whose diameter is greater than 0.7 microm, and that the signal(s) include(s) a diffusible molecule. Morphological studies have provided us with information concerning the timing of myelination, the mechanism by which immature Schwann cells differentiate into a myelinating phenotype and lay down the myelin sheath around the axon, and the accumulation and the structure of the myelin membrane. The last 20 years have seen the identification and the cDNA and gene cloning of the major PNS myelin proteins, which signalled the beginning of the knock-out decade: transgenic null-mutant mice have been created for almost every protein gene. The study of these animals shows that the formation of myelin is considerably less sensitive to molecular alterations than the maintenance of myelin. During the same period, important data has been gathered concerning the synthesis and function of lipids in PNS myelin, although this field has received relatively little attention compared with that of their protein counterparts. PMID:10727776

  10. Human intraretinal myelination: Axon diameters and axon/myelin thickness ratios

    PubMed Central

    FitzGibbon, Thomas; Nestorovski, Zoran

    2013-01-01

    Purpose: Human intraretinal myelination of ganglion cell axons occurs in about 1% of the population. We examined myelin thickness and axon diameter in human retinal specimens containing myelinated retinal ganglion cell axons. Materials and Methods: Two eyes containing myelinated patches were prepared for electron microscopy. Two areas were examined in one retina and five in the second retina. Measurements were compared to normal retinal and optic nerve samples and the rabbit retina, which normally contains myelinated axons. Measurements were made using a graphics tablet. Results: Mean axon diameter of myelinated axons at all locations were significantly larger than unmyelinated axons (P ≤ 0.01). Myelinated axons within the patches were significantly larger than axons within the optic nerve (P < 0.01). The relationship between axon diameter/fiber diameter (the G-ratio) seen in the retinal sites differed from that in the nerve. G-ratios were higher and myelin thickness was positively correlated to axon diameter (P < 0.01) in the retina but negatively correlated to axon diameter in the nerve (P < 0.001). Conclusion: Intraretinally myelinated axons are larger than non-myelinated axons from the same population and suggests that glial cells can induce diameter changes in retinal axons that are not normally myelinated. This effect is more dramatic on intraretinal axons compared with the normal transition zone as axons enter the optic nerve and these changes are abnormal. Whether intraretinal myelin alters axonal conduction velocity or blocks axonal conduction remains to be clarified and these issues may have different clinical outcomes. PMID:24212308

  11. AxonSeg: Open Source Software for Axon and Myelin Segmentation and Morphometric Analysis.

    PubMed

    Zaimi, Aldo; Duval, Tanguy; Gasecka, Alicja; Côté, Daniel; Stikov, Nikola; Cohen-Adad, Julien

    2016-01-01

    Segmenting axon and myelin from microscopic images is relevant for studying the peripheral and central nervous system and for validating new MRI techniques that aim at quantifying tissue microstructure. While several software packages have been proposed, their interface is sometimes limited and/or they are designed to work with a specific modality (e.g., scanning electron microscopy (SEM) only). Here we introduce AxonSeg, which allows to perform automatic axon and myelin segmentation on histology images, and to extract relevant morphometric information, such as axon diameter distribution, axon density and the myelin g-ratio. AxonSeg includes a simple and intuitive MATLAB-based graphical user interface (GUI) and can easily be adapted to a variety of imaging modalities. The main steps of AxonSeg consist of: (i) image pre-processing; (ii) pre-segmentation of axons over a cropped image and discriminant analysis (DA) to select the best parameters based on axon shape and intensity information; (iii) automatic axon and myelin segmentation over the full image; and (iv) atlas-based statistics to extract morphometric information. Segmentation results from standard optical microscopy (OM), SEM and coherent anti-Stokes Raman scattering (CARS) microscopy are presented, along with validation against manual segmentations. Being fully-automatic after a quick manual intervention on a cropped image, we believe AxonSeg will be useful to researchers interested in large throughput histology. AxonSeg is open source and freely available at: https://github.com/neuropoly/axonseg. PMID:27594833

  12. AxonSeg: Open Source Software for Axon and Myelin Segmentation and Morphometric Analysis

    PubMed Central

    Zaimi, Aldo; Duval, Tanguy; Gasecka, Alicja; Côté, Daniel; Stikov, Nikola; Cohen-Adad, Julien

    2016-01-01

    Segmenting axon and myelin from microscopic images is relevant for studying the peripheral and central nervous system and for validating new MRI techniques that aim at quantifying tissue microstructure. While several software packages have been proposed, their interface is sometimes limited and/or they are designed to work with a specific modality (e.g., scanning electron microscopy (SEM) only). Here we introduce AxonSeg, which allows to perform automatic axon and myelin segmentation on histology images, and to extract relevant morphometric information, such as axon diameter distribution, axon density and the myelin g-ratio. AxonSeg includes a simple and intuitive MATLAB-based graphical user interface (GUI) and can easily be adapted to a variety of imaging modalities. The main steps of AxonSeg consist of: (i) image pre-processing; (ii) pre-segmentation of axons over a cropped image and discriminant analysis (DA) to select the best parameters based on axon shape and intensity information; (iii) automatic axon and myelin segmentation over the full image; and (iv) atlas-based statistics to extract morphometric information. Segmentation results from standard optical microscopy (OM), SEM and coherent anti-Stokes Raman scattering (CARS) microscopy are presented, along with validation against manual segmentations. Being fully-automatic after a quick manual intervention on a cropped image, we believe AxonSeg will be useful to researchers interested in large throughput histology. AxonSeg is open source and freely available at: https://github.com/neuropoly/axonseg. PMID:27594833

  13. Schwann cell spectrins modulate peripheral nerve myelination

    PubMed Central

    Susuki, Keiichiro; Raphael, Alya R.; Ogawa, Yasuhiro; Stankewich, Michael C.; Peles, Elior; Talbot, William S.; Rasband, Matthew N.

    2011-01-01

    During peripheral nerve development, Schwann cells ensheathe axons and form myelin to enable rapid and efficient action potential propagation. Although myelination requires profound changes in Schwann cell shape, how neuron–glia interactions converge on the Schwann cell cytoskeleton to induce these changes is unknown. Here, we demonstrate that the submembranous cytoskeletal proteins αII and βII spectrin are polarized in Schwann cells and colocalize with signaling molecules known to modulate myelination in vitro. Silencing expression of these spectrins inhibited myelination in vitro, and remyelination in vivo. Furthermore, myelination was disrupted in motor nerves of zebrafish lacking αII spectrin. Finally, we demonstrate that loss of spectrin significantly reduces both F-actin in the Schwann cell cytoskeleton and the Nectin-like protein, Necl4, at the contact site between Schwann cells and axons. Therefore, we propose αII and βII spectrin in Schwann cells integrate the neuron–glia interactions mediated by membrane proteins into the actin-dependent cytoskeletal rearrangements necessary for myelination. PMID:21518878

  14. Neuronal activity biases axon selection for myelination in vivo

    PubMed Central

    Hines, Jacob H.; Ravanelli, Andrew M.; Schwindt, Rani; Scott, Ethan K.; Appel, Bruce

    2015-01-01

    An essential feature of vertebrate neural development is ensheathment of axons with myelin, an insulating membrane formed by oligodendrocytes. Not all axons are myelinated, but mechanisms directing myelination of specific axons are unknown. Using zebrafish we show that activity-dependent secretion stabilizes myelin sheath formation on select axons. When VAMP2-dependent exocytosis is silenced in single axons, oligodendrocytes preferentially ensheath neighboring axons. Nascent sheaths formed on silenced axons are shorter in length, but when activity of neighboring axons is also suppressed, inhibition of sheath growth is relieved. Using in vivo time-lapse microscopy, we show that only 25% of oligodendrocyte processes that initiate axon wrapping are stabilized during normal development, and that initiation does not require activity. Instead, oligodendrocyte processes wrapping silenced axons are retracted more frequently. We propose that axon selection for myelination results from excessive and indiscriminate initiation of wrapping followed by refinement that is biased by activity-dependent secretion from axons. PMID:25849987

  15. FAK is required for Schwann cell spreading on immature basal lamina to coordinate the radial sorting of peripheral axons with myelination.

    PubMed

    Grove, Matthew; Brophy, Peter J

    2014-10-01

    Without Focal Adhesion Kinase (FAK), developing murine Schwann cells (SCs) proliferate poorly, sort axons inefficiently, and cannot myelinate peripheral nerves. Here we show that FAK is required for the development of SCs when their basal lamina (BL) is fragmentary, but not when it is mature in vivo. Mutant SCs fail to spread on fragmentary BL during development in vivo, and this is phenocopied by SCs lacking functional FAK on low laminin (LN) in vitro. Furthermore, SCs without functional FAK initiate differentiation prematurely, both in vivo and in vitro. In contrast to their behavior on high levels of LN, SCs lacking functional FAK grown on low LN display reduced spreading, proliferation, and indicators of contractility (i.e., stress fibers, arcs, and focal adhesions) and are primed to differentiate. Growth of SCs lacking functional FAK on increasing LN concentrations in vitro revealed that differentiation is not regulated by G1 arrest but rather by cell spreading and the level of contractile actomyosin. The importance of FAK as a critical regulator of the specific response of developing SCs to fragmentary BL was supported by the ability of adult FAK mutant SCs to remyelinate demyelinated adult nerves on mature BL in vivo. We conclude that FAK promotes the spreading and actomyosin contractility of immature SCs on fragmentary BL, thus maintaining their proliferation, and preventing differentiation until they reach high density, thereby promoting radial sorting. Hence, FAK has a critical role in the response of SCs to limiting BL by promoting proliferation and preventing premature SC differentiation. PMID:25274820

  16. Formation of compact myelin is required for maturation of the axonal cytoskeleton

    NASA Technical Reports Server (NTRS)

    Brady, S. T.; Witt, A. S.; Kirkpatrick, L. L.; de Waegh, S. M.; Readhead, C.; Tu, P. H.; Lee, V. M.

    1999-01-01

    Although traditional roles ascribed to myelinating glial cells are structural and supportive, the importance of compact myelin for proper functioning of the nervous system can be inferred from mutations in myelin proteins and neuropathologies associated with loss of myelin. Myelinating Schwann cells are known to affect local properties of peripheral axons (de Waegh et al., 1992), but little is known about effects of oligodendrocytes on CNS axons. The shiverer mutant mouse has a deletion in the myelin basic protein gene that eliminates compact myelin in the CNS. In shiverer mice, both local axonal features like phosphorylation of cytoskeletal proteins and neuronal perikaryon functions like cytoskeletal gene expression are altered. This leads to changes in the organization and composition of the axonal cytoskeleton in shiverer unmyelinated axons relative to age-matched wild-type myelinated fibers, although connectivity and patterns of neuronal activity are comparable. Remarkably, transgenic shiverer mice with thin myelin sheaths display an intermediate phenotype indicating that CNS neurons are sensitive to myelin sheath thickness. These results indicate that formation of a normal compact myelin sheath is required for normal maturation of the neuronal cytoskeleton in large CNS neurons.

  17. Nonsynaptic junctions on myelinating glia promote preferential myelination of electrically active axons

    PubMed Central

    Wake, Hiroaki; Ortiz, Fernando C.; Woo, Dong Ho; Lee, Philip R.; Angulo, María Cecilia; Fields, R. Douglas

    2015-01-01

    The myelin sheath on vertebrate axons is critical for neural impulse transmission, but whether electrically active axons are preferentially myelinated by glial cells, and if so, whether axo-glial synapses are involved, are long-standing questions of significance to nervous system development, plasticity and disease. Here we show using an in vitro system that oligodendrocytes preferentially myelinate electrically active axons, but synapses from axons onto myelin-forming oligodendroglial cells are not required. Instead, vesicular release at nonsynaptic axo-glial junctions induces myelination. Axons releasing neurotransmitter from vesicles that accumulate in axon varicosities induces a local rise in cytoplasmic calcium in glial cell processes at these nonsynaptic functional junctions, and this signalling stimulates local translation of myelin basic protein to initiate myelination. PMID:26238238

  18. Proton hopping: a proposed mechanism for myelinated axon nerve impulses.

    PubMed

    Kier, Lemont B; Tombes, Robert M

    2013-04-01

    Myelinated axon nerve impulses travel 100 times more rapidly than impulses in non-myelinated axons. Increased speed is currently believed to be due to 'hopping' or 'saltatory propagation' along the axon, but the mechanism by which impulses flow has never been adequately explained. We have used modeling approaches to simulate a role for proton hopping in the space between the plasma membrane and myelin sheath as the mechanism of nerve action-potential flow. PMID:23576345

  19. A genetic screen identifies genes essential for development of myelinated axons in zebrafish.

    PubMed

    Pogoda, Hans-Martin; Sternheim, Nitzan; Lyons, David A; Diamond, Brianne; Hawkins, Thomas A; Woods, Ian G; Bhatt, Dimple H; Franzini-Armstrong, Clara; Dominguez, Claudia; Arana, Naomi; Jacobs, Jennifer; Nix, Rebecca; Fetcho, Joseph R; Talbot, William S

    2006-10-01

    The myelin sheath insulates axons in the vertebrate nervous system, allowing rapid propagation of action potentials via saltatory conduction. Specialized glial cells, termed Schwann cells in the PNS and oligodendrocytes in the CNS, wrap axons to form myelin, a compacted, multilayered sheath comprising specific proteins and lipids. Disruption of myelinated axons causes human diseases, including multiple sclerosis and Charcot-Marie-Tooth peripheral neuropathies. Despite the progress in identifying human disease genes and other mutations disrupting glial development and myelination, many important unanswered questions remain about the mechanisms that coordinate the development of myelinated axons. To address these questions, we began a genetic dissection of myelination in zebrafish. Here we report a genetic screen that identified 13 mutations, which define 10 genes, disrupting the development of myelinated axons. We present the initial characterization of seven of these mutations, defining six different genes, along with additional characterization of mutations that we have described previously. The different mutations affect the PNS, the CNS, or both, and phenotypic analyses indicate that the genes affect a wide range of steps in glial development, from fate specification through terminal differentiation. The analysis of these mutations will advance our understanding of myelination, and the mutants will serve as models of human diseases of myelin. PMID:16875686

  20. Arrest of Myelination and Reduced Axon Growth when Schwann Cells Lack mTOR

    PubMed Central

    Sherman, Diane L.; Krols, Michiel; Wu, Lai-Man; Grove, Matthew; Nave, Klaus-Armin; Gangloff, Yann-Gaël; Brophy, Peter J.

    2014-01-01

    In developing peripheral nerves differentiating Schwann cells sort individual axons from bundles and ensheath them to generate multiple layers of myelin. In recent years there has been an increasing understanding of the extracellular and intracellular factors that initiate and stimulate Schwann cell myelination together with a growing appreciation of some of the signalling pathways involved. However, our knowledge of how Schwann cell growth is regulated during myelination is still incomplete. The mammalian target of rapamycin (mTOR) is a core kinase in two major complexes, mTORC1 and mTORC2, that regulate cell growth and differentiation in a variety of mammalian cells. Here we show that elimination of mTOR from murine Schwann cells prevented neither radial sorting nor the initiation of myelination. However, normal post-natal growth of myelinating Schwann cells, both radially and longitudinally, was highly retarded. The myelin sheath in the mutant was much thinner than normal; nevertheless, sheath thickness relative to axon diameter (g-ratio) remained constant in both wild-type and mutant nerves from P14 to P90. Although axon diameters were normal in the mutant at the initiation of myelination, further growth as myelination proceeded was retarded, and this was associated with reduced phosphorylation of neurofilaments. Consistent with thinner axonal diameters and internodal lengths, conduction velocities in mutant quadriceps nerves were also reduced. These data establish a critical role for mTOR signalling in both the longitudinal and radial growth of the myelinating Schwann cell. PMID:22302821

  1. Arrest of myelination and reduced axon growth when Schwann cells lack mTOR.

    PubMed

    Sherman, Diane L; Krols, Michiel; Wu, Lai-Man N; Grove, Matthew; Nave, Klaus-Armin; Gangloff, Yann-Gaël; Brophy, Peter J

    2012-02-01

    In developing peripheral nerves, differentiating Schwann cells sort individual axons from bundles and ensheath them to generate multiple layers of myelin. In recent years, there has been an increased understanding of the extracellular and intracellular factors that initiate and stimulate Schwann cell myelination, together with a growing appreciation of some of the signaling pathways involved. However, our knowledge of how Schwann cell growth is regulated during myelination is still incomplete. The mammalian target of rapamycin (mTOR) is a core kinase in two major complexes, mTORC1 and mTORC2, that regulate cell growth and differentiation in a variety of mammalian cells. Here we show that elimination of mTOR from murine Schwann cells prevented neither radial sorting nor the initiation of myelination. However, normal postnatal growth of myelinating Schwann cells, both radially and longitudinally, was highly retarded. The myelin sheath in the mutant was much thinner than normal; nevertheless, sheath thickness relative to axon diameter (g-ratio) remained constant in both wild-type and mutant nerves from P14 to P90. Although axon diameters were normal in the mutant at the initiation of myelination, further growth as myelination proceeded was retarded, and this was associated with reduced phosphorylation of neurofilaments. Consistent with thinner axonal diameters and internodal lengths, conduction velocities in mutant quadriceps nerves were also reduced. These data establish a critical role for mTOR signaling in both the longitudinal and radial growth of the myelinating Schwann cell. PMID:22302821

  2. Minimizing the caliber of myelinated axons by means of nodal constrictions.

    PubMed

    Johnson, Christopher; Holmes, William R; Brown, Anthony; Jung, Peter

    2015-09-01

    In myelinated axons, most of the voltage-gated ion channels are concentrated at the nodes of Ranvier, which are short gaps in the myelin sheath. This arrangement leads to saltatory conduction and a larger conduction velocity than in nonmyelinated axons. Intriguingly, axons in the peripheral nervous system that exceed about 2 μm in diameter exhibit a characteristic narrowing of the axon at nodes that results in a local reduction of the axonal cross-sectional area. The extent of constriction increases with increasing internodal axonal caliber, reaching a threefold reduction in diameter for the largest axons. In this paper, we use computational modeling to investigate the effect of nodal constrictions on axonal conduction velocity. For a fixed number of ion channels, we find that there is an optimal extent of nodal constriction which minimizes the internodal axon caliber that is required to achieve a given target conduction velocity, and we show that this is sensitive to the precise geometry of the axon and myelin sheath in the flanking paranodal regions. Thus axonal constrictions at nodes of Ranvier appear to be a biological adaptation to minimize axonal volume, thereby maximizing the spatial and metabolic efficiency of these processes, which can be a significant evolutionary constraint. We show that the optimal nodal morphologies are relatively insensitive to changes in the number of nodal sodium channels. PMID:26224772

  3. Molecular mechanisms regulating myelination in the peripheral nervous system.

    PubMed

    Pereira, Jorge A; Lebrun-Julien, Frédéric; Suter, Ueli

    2012-02-01

    Glial cells and neurons are engaged in a continuous and highly regulated bidirectional dialog. A remarkable example is the control of myelination. Oligodendrocytes in the central nervous system (CNS) and Schwann cells (SCs) in the peripheral nervous system (PNS) wrap their plasma membranes around axons to organize myelinated nerve fibers that allow rapid saltatory conduction. The functionality of this system is critical, as revealed by numerous neurological diseases that result from deregulation of the system, including multiple sclerosis and peripheral neuropathies. In this review we focus on PNS myelination and present a conceptual framework that integrates crucial signaling mechanisms with basic SC biology. We will highlight signaling hubs and overarching molecular mechanisms, including genetic, epigenetic, and post-translational controls, which together regulate the interplay between SCs and axons, extracellular signals, and the transcriptional network. PMID:22192173

  4. Optimal myelin elongation relies on YAP activation by axonal growth and inhibition by Crb3/Hippo pathway.

    PubMed

    Fernando, Ruani N; Cotter, Laurent; Perrin-Tricaud, Claire; Berthelot, Jade; Bartolami, Sylvain; Pereira, Jorge A; Gonzalez, Sergio; Suter, Ueli; Tricaud, Nicolas

    2016-01-01

    Fast nerve conduction relies on successive myelin segments that electrically isolate axons. Segment geometry-diameter and length-is critical for the optimization of nerve conduction and the molecular mechanisms allowing this optimized geometry are partially known. We show here that peripheral myelin elongation is dynamically regulated by stimulation of YAP (Yes-associated protein) transcription cofactor activity during axonal elongation and limited by inhibition of YAP activity via the Hippo pathway. YAP promotes myelin and non-myelin genes transcription while the polarity protein Crb3, localized at the tips of the myelin sheath, activates the Hippo pathway to temper YAP activity, therefore allowing for optimal myelin growth. Dystrophic Dy(2j/2j) mice mimicking human peripheral neuropathy with reduced internodal lengths have decreased nuclear YAP which, when corrected, leads to longer internodes. These data show a novel mechanism controlling myelin growth and nerve conduction, and provide a molecular ground for disease with short myelin segments. PMID:27435623

  5. Optimal myelin elongation relies on YAP activation by axonal growth and inhibition by Crb3/Hippo pathway

    PubMed Central

    Fernando, Ruani N.; Cotter, Laurent; Perrin-Tricaud, Claire; Berthelot, Jade; Bartolami, Sylvain; Pereira, Jorge A.; Gonzalez, Sergio; Suter, Ueli; Tricaud, Nicolas

    2016-01-01

    Fast nerve conduction relies on successive myelin segments that electrically isolate axons. Segment geometry—diameter and length—is critical for the optimization of nerve conduction and the molecular mechanisms allowing this optimized geometry are partially known. We show here that peripheral myelin elongation is dynamically regulated by stimulation of YAP (Yes-associated protein) transcription cofactor activity during axonal elongation and limited by inhibition of YAP activity via the Hippo pathway. YAP promotes myelin and non-myelin genes transcription while the polarity protein Crb3, localized at the tips of the myelin sheath, activates the Hippo pathway to temper YAP activity, therefore allowing for optimal myelin growth. Dystrophic Dy2j/2j mice mimicking human peripheral neuropathy with reduced internodal lengths have decreased nuclear YAP which, when corrected, leads to longer internodes. These data show a novel mechanism controlling myelin growth and nerve conduction, and provide a molecular ground for disease with short myelin segments. PMID:27435623

  6. The myelinated axon is dependent on the myelinating cell for support and maintenance: molecules involved.

    PubMed

    Edgar, J M; Garbern, J

    2004-06-01

    The myelin-forming cells, oligodendrocytes and Schwann cells, extend processes that spirally wrap axons and provide the insulation that allows rapid saltatory conduction. Recent data suggest a further role for the myelin-forming cells in axonal support and maintenance. This Mini-Review summarises some of the data that support this view and highlights the molecules involved. PMID:15139018

  7. Myelin-Associated Inhibitors in Axonal Growth After CNS Injury

    PubMed Central

    Geoffroy, Cédric G.; Zheng, Binhai

    2014-01-01

    There are multiple barriers to axonal growth after CNS injury. Myelin-associated inhibitors represent one group of barriers extrinsic to the injured neurons. Nogo, MAG and OMgp are three prototypical myelin inhibitors that signal through multiple neuronal receptors to exert growth inhibition. Targeting myelin inhibition alone modulates the compensatory sprouting of uninjured axons but the effect on the regeneration of injured axons is limited. Meanwhile, modulating sprouting, a naturally occurring repair mechanism, may be a more attainable therapeutic goal for promoting functional repair after CNS injury in the near term. PMID:24608164

  8. Myelin vs Axon Abnormalities in White Matter in Bipolar Disorder

    PubMed Central

    Lewandowski, Kathryn E; Ongür, Dost; Sperry, Sarah H; Cohen, Bruce M; Sehovic, Selma; Goldbach, Jacqueline R; Du, Fei

    2015-01-01

    White matter (WM) abnormalities are among the most commonly reported neuroimaging findings in bipolar disorder. Nonetheless, the specific nature and pathophysiology of these abnormalities remain unclear. Use of a combination of magnetization transfer ratio (MTR) and diffusion tensor spectroscopy (DTS) permits examination of myelin and axon abnormalities separately. We aimed to examine myelination and axon geometry in euthymic patients with bipolar disorder with psychosis (BDP) by combining these two complementary noninvasive MRI techniques. We applied a combined MRI approach using MTR to study myelin content and DTS to study metabolite (N-acetylaspartate, NAA) diffusion within axons in patients with BDP (n=21) and healthy controls (n=24). Data were collected from a 1 × 3 × 3-cm voxel within the right prefrontal cortex WM at 4 Tesla. Clinical and cognitive data were examined in association with MTR and DTS data. MTR was significantly reduced in BDP, suggesting reduced myelin content. The apparent diffusion coefficient of NAA did not differ from healthy controls, suggesting no changes in axon geometry in patients with BDP. These findings suggest that patients with BDP exhibit reduced myelin content, but no changes in axon geometry compared with controls. These findings are in contrast with our recent findings, using the same techniques, in patients with schizophrenia (SZ), which suggest both myelination and axon abnormalities in SZ. This difference may indicate that alterations in WM in BDP may have unique causes and may be less extensive than WM abnormalities seen in SZ. PMID:25409595

  9. Nodes of Ranvier and myelin sheath dimensions along exceptionally thin myelinated vertebrate PNS axons.

    PubMed

    Tuisku, F; Hildebrand, C

    1992-11-01

    The trigeminal alveolar branch in the lower jaw of the cichlid Tilapia mariae was examined by light and electron microscopy on single and serial sections, and by light microscopy on teased fibre preparations. The principal purpose was to find out if the exceptionally thin myelinated axons (d < 1 micron) present in this nerve possess true nodes of Ranvier, and to determine the dimensions of their myelin sheaths. This necessitated analysis of the whole size range of myelinated fibres, with respect to nodal and internodal morphology. The results show that the exceptionally thin myelinated fibres exhibit primitive nodal regions, with patches of axolemmal undercoating, and few Schwann cell processes in the node gap. This contrasts with the more complex nodal organization seen in larger trigeminal alveolar branch fibres. For the whole population of myelinated fibres the number of myelin lamellae increases rectilinearly with axon diameter, and sheath length increases with fibre diameter according to a logarithmic expression. The myelin sheaths of the exceptionally thin trigeminal alveolar branch fibres are composed of 10-20 lamellae, and extend 35-50 microns along the axon. These results show that the structural complexity of nodal regions in the trigeminal alveolar branch decreases with decreasing fibre size, that the exceptionally thin myelinated trigeminal alveolar branch fibres possess primitive nodes and that they have very short myelin sheaths. Our crude theoretical calculations suggest that these fibres might be capable of saltatory conduction. PMID:1279131

  10. Axonal Transport and Morphology: How Myelination gets Nerves into Shape

    NASA Astrophysics Data System (ADS)

    Jung, Peter; Zhao, Peng; Monsma, Paula; Brown, Tony

    2011-03-01

    The local caliber of mature axons is largely determined by neurofilament (NF) content. The axoskeleton, mainly consisting of NFs, however, is dynamic. NFs are assembled in the cell body and are transported by molecular motors on microtubule tracks along the axon at a slow rate of fractions of mm per day. We combine live cell fluorescent imaging techniques to access NF transport in myelinated and non-myelinated segments of axons with computational modeling of the active NF flow to show that a), myelination locally slows NF transport rates by regulating duty ratios and b), that the predicted increase in axon caliber agrees well with experiments. This study, for the first time, links NF kinetics directly to axonal morphology, providing a novel conceptual framework for the physical understanding of processes leading to the formation of axonal structures such as the ``Nodes of Ranvier'' as well as abnormal axonal swellings associated with neurodegenerative diseases like Amyotrophic lateral sclerosis (ALS). NSF grants # IOS-0818412(PJ) and IOS-0818653 (AB).

  11. Study of the Peripheral Nerve Fibers Myelin Structure Changes during Activation of Schwann Cell Acetylcholine Receptors

    PubMed Central

    Verdiyan, Ekaterina E.; Allakhverdiev, Elvin S.; Maksimov, Georgy V.

    2016-01-01

    In the present paper we consider a new type of mechanism by which neurotransmitter acetylcholine (ACh) regulates the properties of peripheral nerve fibers myelin. Our data show the importance of the relationship between the changes in the number of Schwann cell (SC) acetylcholine receptors (AChRs) and the axon excitation (different intervals between action potentials (APs)). Using Raman spectroscopy, an effect of activation of SC AChRs on the myelin membrane fluidity was investigated. It was found, that ACh stimulates an increase in lipid ordering degree of the myelin lipids, thus providing evidence for specific role of the “axon-SC” interactions at the axon excitation. It was proposed, that during the axon excitation, the SC membrane K+- depolarization and the Ca2+—influx led to phospholipase activation or exocytosis of intracellular membrane vesicles and myelin structure reorganization. PMID:27455410

  12. Regulating Axonal Responses to Injury: The Intersection between Signaling Pathways Involved in Axon Myelination and The Inhibition of Axon Regeneration

    PubMed Central

    Rao, Sudheendra N. R.; Pearse, Damien D.

    2016-01-01

    Following spinal cord injury (SCI), a multitude of intrinsic and extrinsic factors adversely affect the gene programs that govern the expression of regeneration-associated genes (RAGs) and the production of a diversity of extracellular matrix molecules (ECM). Insufficient RAG expression in the injured neuron and the presence of inhibitory ECM at the lesion, leads to structural alterations in the axon that perturb the growth machinery, or form an extraneous barrier to axonal regeneration, respectively. Here, the role of myelin, both intact and debris, in antagonizing axon regeneration has been the focus of numerous investigations. These studies have employed antagonizing antibodies and knockout animals to examine how the growth cone of the re-growing axon responds to the presence of myelin and myelin-associated inhibitors (MAIs) within the lesion environment and caudal spinal cord. However, less attention has been placed on how the myelination of the axon after SCI, whether by endogenous glia or exogenously implanted glia, may alter axon regeneration. Here, we examine the intersection between intracellular signaling pathways in neurons and glia that are involved in axon myelination and axon growth, to provide greater insight into how interrogating this complex network of molecular interactions may lead to new therapeutics targeting SCI. PMID:27375427

  13. Peripheral Axons of the Adult Zebrafish Maxillary Barbel Extensively Remyelinate During Sensory Appendage Regeneration

    PubMed Central

    Moore, Alex C.; Mark, Tiffany E.; Hogan, Ann K.; Topczewski, Jacek; LeClair, Elizabeth E.

    2013-01-01

    Myelination is a cellular adaptation allowing rapid conduction along axons. We have investigated peripheral axons of the zebrafish maxillary barbel (ZMB), an optically clear sensory appendage. Each barbel carries taste buds, solitary chemosensory cells, and epithelial nerve endings, all of which regenerate after amputation (LeClair and Topczewski [2010] PLoS One 5:e8737). The ZMB contains axons from the facial nerve; however, myelination within the barbel itself has not been established. Transcripts of myelin basic protein (mbp) are expressed in normal and regenerating adult barbels, indicating activity in both maintenance and repair. Myelin was confirmed in situ by using toluidine blue, an anti-MBP antibody, and transmission electron microscopy (TEM). The adult ZMB contains ~180 small-diameter axons (<2 μm), approximately 60% of which are myelinated. Developmental myelination was observed via whole-mount immunohistochemistry 4-6 weeks postfertilization, showing myelin sheaths lagging behind growing axons. Early-regenerating axons (10 days postsurgery), having no or few myelin layers, were disorganized within a fibroblast-rich collagenous scar. Twenty-eight days postsurgery, barbel axons had grown out several millimeters and were organized with compact myelin sheaths. Fiber types and axon areas were similar between normal and regenerated tissue; within 4 weeks, regenerating axons restored ~85% of normal myelin thickness. Regenerating barbels express multiple promyelinating transcription factors (sox10, oct6 = pou3f1; krox20a/b = egr2a/b) typical of Schwann cells. These observations extend our understanding of the zebrafish peripheral nervous system within a little-studied sensory appendage. The accessible ZMB provides a novel context for studying axon regeneration, Schwann cell migration, and remyelination in a model vertebrate. PMID:22592645

  14. Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury.

    PubMed

    Calvo, Margarita; Richards, Natalie; Schmid, Annina B; Barroso, Alejandro; Zhu, Lan; Ivulic, Dinka; Zhu, Ning; Anwandter, Philipp; Bhat, Manzoor A; Court, Felipe A; McMahon, Stephen B; Bennett, David L H

    2016-01-01

    Neuropathic pain following peripheral nerve injury is associated with hyperexcitability in damaged myelinated sensory axons, which begins to normalise over time. We investigated the composition and distribution of shaker-type-potassium channels (Kv1 channels) within the nodal complex of myelinated axons following injury. At the neuroma that forms after damage, expression of Kv1.1 and 1.2 (normally localised to the juxtaparanode) was markedly decreased. In contrast Kv1.4 and 1.6, which were hardly detectable in the naïve state, showed increased expression within juxtaparanodes and paranodes following injury, both in rats and humans. Within the dorsal root (a site remote from injury) we noted a redistribution of Kv1-channels towards the paranode. Blockade of Kv1 channels with α-DTX after injury reinstated hyperexcitability of A-fibre axons and enhanced mechanosensitivity. Changes in the molecular composition and distribution of axonal Kv1 channels, therefore represents a protective mechanism to suppress the hyperexcitability of myelinated sensory axons that follows nerve injury. PMID:27033551

  15. Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury

    PubMed Central

    Calvo, Margarita; Richards, Natalie; Schmid, Annina B; Barroso, Alejandro; Zhu, Lan; Ivulic, Dinka; Zhu, Ning; Anwandter, Philipp; Bhat, Manzoor A; Court, Felipe A; McMahon, Stephen B; Bennett, David LH

    2016-01-01

    Neuropathic pain following peripheral nerve injury is associated with hyperexcitability in damaged myelinated sensory axons, which begins to normalise over time. We investigated the composition and distribution of shaker-type-potassium channels (Kv1 channels) within the nodal complex of myelinated axons following injury. At the neuroma that forms after damage, expression of Kv1.1 and 1.2 (normally localised to the juxtaparanode) was markedly decreased. In contrast Kv1.4 and 1.6, which were hardly detectable in the naïve state, showed increased expression within juxtaparanodes and paranodes following injury, both in rats and humans. Within the dorsal root (a site remote from injury) we noted a redistribution of Kv1-channels towards the paranode. Blockade of Kv1 channels with α-DTX after injury reinstated hyperexcitability of A-fibre axons and enhanced mechanosensitivity. Changes in the molecular composition and distribution of axonal Kv1 channels, therefore represents a protective mechanism to suppress the hyperexcitability of myelinated sensory axons that follows nerve injury. DOI: http://dx.doi.org/10.7554/eLife.12661.001 PMID:27033551

  16. Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin.

    PubMed

    Bhat, M A; Rios, J C; Lu, Y; Garcia-Fresco, G P; Ching, W; St Martin, M; Li, J; Einheber, S; Chesler, M; Rosenbluth, J; Salzer, J L; Bellen, H J

    2001-05-01

    Myelinated fibers are organized into distinct domains that are necessary for saltatory conduction. These domains include the nodes of Ranvier and the flanking paranodal regions where glial cells closely appose and form specialized septate-like junctions with axons. These junctions contain a Drosophila Neurexin IV-related protein, Caspr/Paranodin (NCP1). Mice that lack NCP1 exhibit tremor, ataxia, and significant motor paresis. In the absence of NCP1, normal paranodal junctions fail to form, and the organization of the paranodal loops is disrupted. Contactin is undetectable in the paranodes, and K(+) channels are displaced from the juxtaparanodal into the paranodal domains. Loss of NCP1 also results in a severe decrease in peripheral nerve conduction velocity. These results show a critical role for NCP1 in the delineation of specific axonal domains and the axon-glia interactions required for normal saltatory conduction. PMID:11395000

  17. A model of tight junction function in central nervous system myelinated axons.

    PubMed

    Gow, Alexander; Devaux, Jerome

    2008-11-01

    The insulative properties of myelin sheaths in the central and peripheral nervous systems (CNS and PNS) are widely thought to derive from the high resistance and low capacitance of the constituent membranes. Although this view adequately accounts for myelin function in large diameter fibers, it poorly reflects the behavior of small fibers that are prominent in many regions of the CNS. Herein, we develop a computational model to more accurately represent conduction in small fibers. By incorporating structural features that, hitherto, have not been simulated, we demonstrate that myelin tight junctions (TJs) improve saltatory conduction by reducing current flow through the myelin, limiting axonal membrane depolarization and restraining the activation of ion channels beneath the myelin sheath. Accordingly, our simulations provide a novel view of myelin by which TJs minimize charging of the membrane capacitance and lower the membrane time constant to improve the speed and accuracy of transmission in small diameter fibers. This study establishes possible mechanisms whereby TJs affect conduction in the absence of overt perturbations to myelin architecture and may in part explain the tremor and gait abnormalities observed in Claudin 11-null mice. PMID:20102674

  18. Adenomatous polyposis coli regulates radial axonal sorting and myelination in the PNS.

    PubMed

    Elbaz, Benayahu; Traka, Maria; Kunjamma, Rejani B; Dukala, Danuta; Brosius Lutz, Amanda; Anton, E S; Barres, Ben A; Soliven, Betty; Popko, Brian

    2016-07-01

    The tumor suppressor protein adenomatous polyposis coli (APC) is multifunctional - it participates in the canonical Wnt/β-catenin signal transduction pathway as well as modulating cytoskeleton function. Although APC is expressed by Schwann cells, the role that it plays in these cells and in the myelination of the peripheral nervous system (PNS) is unknown. Therefore, we used the Cre-lox approach to generate a mouse model in which APC expression is specifically eliminated from Schwann cells. These mice display hindlimb weakness and impaired axonal conduction in sciatic nerves. Detailed morphological analyses revealed that APC loss delays radial axonal sorting and PNS myelination. Furthermore, APC loss delays Schwann cell differentiation in vivo, which correlates with persistent activation of the Wnt signaling pathway and results in perturbed extension of Schwann cell processes and disrupted lamellipodia formation. In addition, APC-deficient Schwann cells display a transient diminution of proliferative capacity. Our data indicate that APC is required by Schwann cells for their timely differentiation to mature, myelinating cells and plays a crucial role in radial axonal sorting and PNS myelination. PMID:27226321

  19. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, L. L.; Witt, A. S.; Payne, H. R.; Shine, H. D.; Brady, S. T.

    2001-01-01

    Altered axon-Schwann cell interactions in PNS myelin-deficient Trembler mice result in changed axonal transport rates, neurofilament and microtubule-associated protein phosphorylation, neurofilament density, and microtubule stability. To determine whether PNS and CNS myelination have equivalent effects on axons, neurofilaments, and microtubules in CNS, myelin-deficient shiverer axons were examined. The genetic defect in shiverer is a deletion in the myelin basic protein (MBP) gene, an essential component of CNS myelin. As a result, shiverer mice have little or no compact CNS myelin. Slow axonal transport rates in shiverer CNS axons were significantly increased, in contrast to the slowing in demyelinated PNS nerves. Even more striking were substantial changes in the composition and properties of microtubules in shiverer CNS axons. The density of axonal microtubules is increased, reflecting increased expression of tubulin in shiverer, and the stability of microtubules is drastically reduced in shiverer axons. Shiverer transgenic mice with two copies of a wild-type myelin basic protein transgene have an intermediate level of compact myelin, making it possible to determine whether the actual level of compact myelin is an important regulator of axonal microtubules. Both increased microtubule density and reduced microtubule stability were still observed in transgenic mouse nerves, indicating that signals beyond synaptogenesis and the mere presence of compact myelin are required for normal regulation of the axonal microtubule cytoskeleton.

  20. Genome-wide analysis of EGR2/SOX10 binding in myelinating peripheral nerve.

    PubMed

    Srinivasan, Rajini; Sun, Guannan; Keles, Sunduz; Jones, Erin A; Jang, Sung-Wook; Krueger, Courtney; Moran, John J; Svaren, John

    2012-08-01

    Myelin is essential for the rapidity of saltatory nerve conduction, and also provides trophic support for axons to prevent axonal degeneration. Two critical determinants of myelination are SOX10 and EGR2/KROX20. SOX10 is required for specification of Schwann cells from neural crest, and is required at every stage of Schwann cell development. Egr2/Krox20 expression is activated by axonal signals in myelinating Schwann cells, and is required for cell cycle arrest and myelin formation. To elucidate the integrated function of these two transcription factors during peripheral nerve myelination, we performed in vivo ChIP-Seq analysis of myelinating peripheral nerve. Integration of these binding data with loss-of-function array data identified a range of genes regulated by these factors. In addition, although SOX10 itself regulates Egr2/Krox20 expression, leading to coordinate activation of several major myelin genes by the two factors, there is a large subset of genes that are activated independent of EGR2. Finally, the results identify a set of SOX10-dependent genes that are expressed in early Schwann cell development, but become subsequently repressed by EGR2/KROX20. PMID:22492709

  1. Disrupted axon-glia interactions at the paranode in myelinated nerves cause axonal degeneration and neuronal cell death in the aged Caspr mutant mouse shambling.

    PubMed

    Takagishi, Yoshiko; Katanosaka, Kimiaki; Mizoguchi, Hiroyuki; Murata, Yoshiharu

    2016-07-01

    Emerging evidence suggests that axonal degeneration is a disease mechanism in various neurodegenerative diseases and that the paranodes at the nodes of Ranvier may be the initial site of pathogenesis. We investigated the pathophysiology of the disease process in the central and peripheral nervous systems of a Caspr mutant mouse, shambling (shm), which is affected by disrupted paranodal structures and impaired nerve conduction of myelinated nerves. The shm mice manifest a progressive neurological phenotype as mice age. We found extensive axonal degeneration and a loss of neurons in the central nervous system and peripheral nervous system in aged shm mice. Axonal alteration of myelinated nerves was defined by abnormal distribution and expression of neurofilaments and derangements in the status of phosphorylated and non/de-phosphorylated neurofilaments. Autophagy-related structures were also accumulated in degenerated axons and neurons. In conclusion, our results suggest that disrupted axon-glia interactions at the paranode cause the cytoskeletal alteration in myelinated axons leading to neuronal cell death, and the process involves detrimental autophagy and aging as factors that promote the pathogenesis. PMID:27255813

  2. Mutation of sec63 in zebrafish causes defects in myelinated axons and liver pathology

    PubMed Central

    Monk, Kelly R.; Voas, Matthew G.; Franzini-Armstrong, Clara; Hakkinen, Ian S.; Talbot, William S.

    2013-01-01

    SUMMARY Mutations in SEC63 cause polycystic liver disease in humans. Sec63 is a member of the endoplasmic reticulum (ER) translocon machinery, although it is unclear how mutations in SEC63 lead to liver cyst formation in humans. Here, we report the identification and characterization of a zebrafish sec63 mutant, which was discovered in a screen for mutations that affect the development of myelinated axons. Accordingly, we show that disruption of sec63 in zebrafish leads to abnormalities in myelinating glia in both the central and peripheral nervous systems. In the vertebrate nervous system, segments of myelin are separated by the nodes of Ranvier, which are unmyelinated regions of axonal membrane containing a high density of voltage-gated sodium channels. We show that sec63 mutants have morphologically abnormal and reduced numbers of clusters of voltage-gated sodium channels in the spinal cord and along peripheral nerves. Additionally, we observed reduced myelination in both the central and peripheral nervous systems, as well as swollen ER in myelinating glia. Markers of ER stress are upregulated in sec63 mutants. Finally, we show that sec63 mutants develop liver pathology. As in glia, the primary defect, detectable at 5 dpf, is fragmentation and swelling of the ER, indicative of accumulation of proteins in the lumen. At 8 dpf, ER swelling is severe; other pathological features include disrupted bile canaliculi, altered cytoplasmic matrix and accumulation of large lysosomes. Together, our analyses of sec63 mutant zebrafish highlight the possible role of ER stress in polycystic liver disease and suggest that these mutants will serve as a model for understanding the pathophysiology of this disease and other abnormalities involving ER stress. PMID:22864019

  3. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination.

    PubMed

    Lappe-Siefke, Corinna; Goebbels, Sandra; Gravel, Michel; Nicksch, Eva; Lee, John; Braun, Peter E; Griffiths, Ian R; Nave, Klaus-Armin

    2003-03-01

    Myelination of axons by oligodendrocytes enables rapid impulse propagation in the central nervous system. But long-term interactions between axons and their myelin sheaths are poorly understood. Here we show that Cnp1, which encodes 2',3'-cyclic nucleotide phosphodiesterase in oligodendrocytes, is essential for axonal survival but not for myelin assembly. In the absence of glial cyclic nucleotide phosphodiesterase, mice developed axonal swellings and neurodegeneration throughout the brain, leading to hydrocephalus and premature death. But, in contrast to previously studied myelin mutants, the ultrastructure, periodicity and physical stability of myelin were not altered in these mice. Genetically, the chief function of glia in supporting axonal integrity can thus be completely uncoupled from its function in maintaining compact myelin. Oligodendrocyte dysfunction, such as that in multiple sclerosis lesions, may suffice to cause secondary axonal loss. PMID:12590258

  4. Retardation of peripheral nerve myelination in mice treated with inhibitors of cholesterol biosynthesis. A quantitative electron microscopic study.

    PubMed

    Rawlins, F A; Uzman, B G

    1970-09-01

    The effect of two inhibitors of cholesterol biosynthesis, triparanol and AY 9944, on peripheral nerve myelination, was studied. Suckling mice were intraperitoneally injected with both drugs on 3 consecutive days and were sacrificed 6 hr after the last injection; others were suckled by an injected mother and sacrificed at 2(1/2) days of age. A single mouse which had been injected with both drugs at 1, 2, and 3 days of age was sacrificed 2 wk after the last injection. Membranous and crystalline intracytoplasmic inclusions were observed in the Schwann cells of the sciatic nerves of all the experimental animals. Both the number of unmyelinated single axons and the number of myelin lamellae around each myelinating axon in the sciatic nerves were recorded for treated mice and of mice suckled by treated mothers. The sciatic nerve of the experimental mice contained a larger proportion of unmyelinated single axons and smaller numbers of myelin lamellae around the myelinating axons, when compared with age-matched controls. The results suggest that a decrease of endogenous cholesterol in suckling mice may affect peripheral nerve myelination in two ways: by retarding the "triggering" of myelination in unmyelinated axons and by decreasing the rate of myelination already in progress. PMID:4349129

  5. Collagen VI regulates peripheral nerve myelination and function.

    PubMed

    Chen, Peiwen; Cescon, Matilde; Megighian, Aram; Bonaldo, Paolo

    2014-03-01

    Collagen VI is an extracellular matrix protein with broad distribution in several tissues. Although Col6a1 is expressed by Schwann cells, the role of collagen VI in the peripheral nervous system (PNS) is yet unknown. Here we show that Schwann cells, but not axons, contribute to collagen VI deposition in peripheral nerves. By using Col6a1-null mice, in which collagen VI deposition is compromised, we demonstrate that lack of collagen VI leads to increased myelin thickness (P<0.001) along with 60-130% up-regulation in myelin-associated proteins and disorganized C fibers in the PNS. The hypermyelination of PNS in Col6a1(-/-) mice is supported by alterations of signaling pathways involved in myelination, including increase of P-FAK, P-AKT, P-ERK1, P-ERK2, and P-p38 (4.15, 1.67, 2.47, 3.34, and 2.60-fold, respectively) and reduction of vimentin (0.49-fold), P-JNK (0.74-fold), and P-c-Jun (0.50-fold). Pathologically, Col6a1(-/-) mice display an impairment of nerve conduction velocity and motor coordination (P<0.05), as well as a delayed response to acute pain stimuli (P<0.001), indicating that lack of collagen VI causes functional defects of peripheral nerves. Altogether, these results indicate that collagen VI is a critical component of PNS contributing to the structural integrity and proper function of peripheral nerves. PMID:24277578

  6. KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction.

    PubMed

    Rash, John E; Vanderpool, Kimberly G; Yasumura, Thomas; Hickman, Jordan; Beatty, Jonathan T; Nagy, James I

    2016-04-01

    Saltatory conduction in mammalian myelinated axons was thought to be well understood before recent discoveries revealed unexpected subcellular distributions and molecular identities of the K(+)-conductance pathways that provide for rapid axonal repolarization. In this study, we visualize, identify, localize, quantify, and ultrastructurally characterize axonal KV1.1/KV1.2 channels in sciatic nerves of rodents. With the use of light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling electron microscopy, KV1.1/KV1.2 channels are localized to three anatomically and compositionally distinct domains in the internodal axolemmas of large myelinated axons, where they form densely packed "rosettes" of 9-nm intramembrane particles. These axolemmal KV1.1/KV1.2 rosettes are precisely aligned with and ultrastructurally coupled to connexin29 (Cx29) channels, also in matching rosettes, in the surrounding juxtaparanodal myelin collars and along the inner mesaxon. As >98% of transmembrane proteins large enough to represent ion channels in these specialized domains, ∼500,000 KV1.1/KV1.2 channels define the paired juxtaparanodal regions as exclusive membrane domains for the voltage-gated K(+)conductance that underlies rapid axonal repolarization in mammals. The 1:1 molecular linkage of KV1 channels to Cx29 channels in the apposed juxtaparanodal collars, plus their linkage to an additional 250,000-400,000 Cx29 channels along each inner mesaxon in every large-diameter myelinated axon examined, supports previously proposed K(+)conductance directly from juxtaparanodal axoplasm into juxtaparanodal myeloplasm in mammalian axons. With neither Cx29 protein nor myelin rosettes detectable in frog myelinated axons, these data showing axon-to-myelin linkage by abundant KV1/Cx29 channels in rodent axons support renewed consideration of an electrically active role for myelin in increasing both saltatory conduction velocity and maximum propagation frequency in

  7. An essential role of MAG in mediating axon-myelin attachment in Charcot-Marie-Tooth 1A disease

    PubMed Central

    Kinter, Jochen; Lazzati, Thomas; Schmid, Daniela; Zeis, Thomas; Erne, Beat; Lützelschwab, Roland; Steck, Andreas J.; Pareyson, Davide; Peles, Elior; Schaeren-Wiemers, Nicole

    2012-01-01

    Charcot-Marie-Tooth disease type 1A (CMT1A) is a hereditary demyelinating peripheral neuropathy caused by the duplication of the PMP22 gene. Demyelination precedes the occurrence of clinical symptoms that correlate with axonal degeneration. It was postulated that a disturbed axon-glia interface contribute to altered myelination consequently leading to axonal degeneration. In this study, we examined the expression of MAG and Necl4, two critical adhesion molecules that are present at the axon-glia interface, in sural nerve biopsies of CMT1A patients and in peripheral nerves of mice overexpressing human PMP22, an animal model for CMT1A. We show an increase in the expression of MAG and a strong decrease of Necl4 in biopsies of CMT1A patients as well as in CMT1A mice. Expression analysis revealed that MAG is strongly upregulated during peripheral nerve maturation, whereas Necl4 expression remains very low. Ablating MAG in CMT1A mice results in separation of axons from their myelin sheath. Our data show that MAG is important for axon-glia contact in a model for CMT1A, and suggest that its increased expression in CMT1A disease has a compensatory role in the pathology of the disease. Thus, we demonstrate that MAG together with other adhesion molecules such as Necl4 is important in sustaining axonal integrity. PMID:22940629

  8. Hedgehog signaling regulates myelination in the peripheral nervous system through primary cilia.

    PubMed

    Yoshimura, Kentaro; Takeda, Sen

    2012-02-01

    Myelination is an essential prerequisite for the nervous system to transmit an impulse efficiently by a saltatory conduction. In the peripheral nervous system (PNS), Schwann cells (SCs) engage in myelination. However, a detailed molecular mechanism underlying myelination still remains unclear. In this study, we hypothesized that the primary cilia of SCs are the regulators of Hedgehog (Hh) signaling-mediated myelination. To confirm our hypothesis, we used mouse dorsal root ganglion (DRG)/SC co-cultures, wherein the behavior of SCs could be analyzed by maintaining the interaction of SCs with DRG neurons. Under these conditions, SCs had primary cilia, and Hh signaling molecules accumulated on the primary cilia. When the SCs were stimulated by the addition of desert hedgehog or smoothened agonist, formation of myelin segments on the DRG axons was facilitated. On the contrary, upon administration of cyclopamine, an inhibitor of Hh signaling, myelin segments became comparable to those of controls. Of note, the ratio of SCs harboring primary cilium reached the highest point during the early phase of myelination. Furthermore, the strongest effects of Hh on myelination were encountered during the same stage. These results collectively indicate that Hh signaling regulates myelin formation through primary cilia in the PNS. PMID:22101064

  9. Nodes of Ranvier act as barriers to restrict invasion of flanking paranodal domains in myelinated axons.

    PubMed

    Thaxton, Courtney; Pillai, Anilkumar M; Pribisko, Alaine L; Dupree, Jeffrey L; Bhat, Manzoor A

    2011-01-27

    Accumulation of voltage-gated sodium (Na(v)) channels at nodes of Ranvier is paramount for action potential propagation along myelinated fibers, yet the mechanisms governing nodal development, organization, and stabilization remain unresolved. Here, we report that genetic ablation of the neuron-specific isoform of Neurofascin (Nfasc(NF¹⁸⁶)) in vivo results in nodal disorganization, including loss of Na(v) channel and ankyrin-G (AnkG) enrichment at nodes in the peripheral nervous system (PNS) and central nervous system (CNS). Interestingly, the presence of paranodal domains failed to rescue nodal organization in the PNS and the CNS. Most importantly, using ultrastructural analysis, we demonstrate that the paranodal domains invade the nodal space in Nfasc(NF¹⁸⁶) mutant axons and occlude node formation. Our results suggest that Nfasc(NF¹⁸⁶)-dependent assembly of the nodal complex acts as a molecular boundary to restrict the movement of flanking paranodal domains into the nodal area, thereby facilitating the stereotypic axonal domain organization and saltatory conduction along myelinated axons. PMID:21262464

  10. White matter involvement after TBI: Clues to axon and myelin repair capacity.

    PubMed

    Armstrong, Regina C; Mierzwa, Amanda J; Marion, Christina M; Sullivan, Genevieve M

    2016-01-01

    Impact-acceleration forces to the head cause traumatic brain injury (TBI) with damage in white matter tracts comprised of long axons traversing the brain. White matter injury after TBI involves both traumatic axonal injury (TAI) and myelin pathology that evolves throughout the post-injury time course. The axon response to initial mechanical forces and secondary insults follows the process of Wallerian degeneration, which initiates as a potentially reversible phase of intra-axonal damage and proceeds to an irreversible phase of axon fragmentation. Distal to sites of axon disconnection, myelin sheaths remain for prolonged periods, which may activate neuroinflammation and inhibit axon regeneration. In addition to TAI, TBI can cause demyelination of intact axons. These evolving features of axon and myelin pathology also represent opportunities for repair. In experimental TBI, demyelinated axons exhibit remyelination, which can serve to both protect axons and facilitate recovery of function. Myelin remodeling may also contribute to neuroplasticity. Efficient clearance of myelin debris is a potential target to attenuate the progression of chronic pathology. During the early phase of Wallerian degeneration, interventions that prevent the transition from reversible damage to axon disconnection warrant the highest priority, based on the poor regenerative capacity of axons in the CNS. Clinical evaluation of TBI will need to address the challenge of accurately detecting the extent and stage of axon damage. Distinguishing the complex white matter changes associated with axons and myelin is necessary for interpreting advanced neuroimaging approaches and for identifying a broader range of therapeutic opportunities to improve outcome after TBI. PMID:25697845

  11. Myelinated Axons in the Auricular Branch of the Human Vagus Nerve.

    PubMed

    Safi, Sami; Ellrich, Jens; Neuhuber, Winfried

    2016-09-01

    Transcutaneous stimulation of the auricular branch of the vagus nerve (ABVN) resulted in deactivation of temporal lobe structures, similar to invasive cervical vagus nerve (CVN) stimulation. Presumably, both methods stimulated myelinated afferent beta axons mediating anti-convulsive effects. How numbers of A beta axons in the human ABVN compare to those of the CVN is unknown. The ABVN, CVN, recurrent laryngeal nerve (RLN) and thoracic vagus nerve (TVN) were dissected from embalmed bodies. Numbers and calibers of myelinated axons were analyzed in semithin sections. Myelinated axons in the left and right ABVN averaged to 385 and 363, respectively. Numbers of A beta axons measuring ≥7 µm averaged to 64 and 78 on the left and right, respectively. Numbers of A beta axons in CVN were estimated by subtracting myelinated presumed motor axons in RLN from the total count of CVN. This resulted in 280 and 504 A beta axons on the left and right, respectively, concurring well with the thick myelinated axon count of the ipsilateral TVN (255 and 466, respectively). Thus, the ratio of A beta axons in the ABVN and CVN was ∼1:5 and 1:6 on the left and right side, respectively. These results indicate that transcutaneous ABVN stimulation might be a promising alternative to invasive CVN stimulation. Anat Rec, 299:1184-1191, 2016. © 2016 Wiley Periodicals, Inc. PMID:27342906

  12. Neutron scattering studies on protein dynamics using the human myelin peripheral membrane protein P2

    NASA Astrophysics Data System (ADS)

    Laulumaa, Saara; Kursula, Petri; Natali, Francesca

    2015-01-01

    Myelin is a multilayered proteolipid membrane structure surrounding selected axons in the vertebrate nervous system, which allows the rapid saltatory conduction of nerve impulses. Deficits in myelin formation and maintenance may lead to chronic neurological disease. P2 is an abundant myelin protein from peripheral nerves, binding between two apposing lipid bilayers. We studied the dynamics of the human myelin protein P2 and its mutated P38G variant in hydrated powders using elastic incoherent neutron scattering. The local harmonic vibrations at low temperatures were very similar for both samples, but the mutant protein had increased flexibility and softness close to physiological temperatures. The results indicate that a drastic mutation of proline to glycine at a functional site can affect protein dynamics, and in the case of P2, they may explain functional differences between the two proteins.

  13. Flipping the transcriptional switch from myelin inhibition to axon growth in the CNS

    PubMed Central

    Carmel, Jason B.; Young, Wise; Hart, Ronald P.

    2015-01-01

    Poor regeneration of severed axons in the central nervous system (CNS) limits functional recovery. Regeneration failure involves interplay of inhibitory environmental elements and the growth state of the neuron. To find internal changes in gene expression that might overcome inhibitory environmental cues, we compared several paradigms that allow growth in the inhibitory environment. Conditions that allow axon growth by axotomized and cultured dorsal root ganglion (DRG) neurons on CNS myelin include immaturity (the first few postnatal days), high levels of cyclic adenosine mono phosphate (cAMP), and conditioning with a peripheral nerve lesion before explant. This shift from inhibition to growth depends on transcription. Seeking to understand the transcriptome changes that allow axon growth in the CNS, we collaborated with the Marie Filbin laboratory to identify several mRNAs that are functionally relevant, as determined by gain- and loss-of-function studies. In this Perspective, we review evidence from these experiments and discuss the merits of comparing multiple regenerative paradigms to identify a core transcriptional program for CNS axon regeneration. PMID:26236189

  14. Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex.

    PubMed

    Tomassy, Giulio Srubek; Berger, Daniel R; Chen, Hsu-Hsin; Kasthuri, Narayanan; Hayworth, Kenneth J; Vercelli, Alessandro; Seung, H Sebastian; Lichtman, Jeff W; Arlotta, Paola

    2014-04-18

    Myelin is a defining feature of the vertebrate nervous system. Variability in the thickness of the myelin envelope is a structural feature affecting the conduction of neuronal signals. Conversely, the distribution of myelinated tracts along the length of axons has been assumed to be uniform. Here, we traced high-throughput electron microscopy reconstructions of single axons of pyramidal neurons in the mouse neocortex and built high-resolution maps of myelination. We find that individual neurons have distinct longitudinal distribution of myelin. Neurons in the superficial layers displayed the most diversified profiles, including a new pattern where myelinated segments are interspersed with long, unmyelinated tracts. Our data indicate that the profile of longitudinal distribution of myelin is an integral feature of neuronal identity and may have evolved as a strategy to modulate long-distance communication in the neocortex. PMID:24744380

  15. Rapid conduction and the evolution of giant axons and myelinated fibers.

    PubMed

    Hartline, D K; Colman, D R

    2007-01-01

    Nervous systems have evolved two basic mechanisms for increasing the conduction speed of the electrical impulse. The first is through axon gigantism: using axons several times larger in diameter than the norm for other large axons, as for example in the well-known case of the squid giant axon. The second is through encasing axons in helical or concentrically wrapped multilamellar sheets of insulating plasma membrane--the myelin sheath. Each mechanism, alone or in combination, is employed in nervous systems of many taxa, both vertebrate and invertebrate. Myelin is a unique way to increase conduction speeds along axons of relatively small caliber. It seems to have arisen independently in evolution several times in vertebrates, annelids and crustacea. Myelinated nerves, regardless of their source, have in common a multilamellar membrane wrapping, and long myelinated segments interspersed with 'nodal' loci where the myelin terminates and the nerve impulse propagates along the axon by 'saltatory' conduction. For all of the differences in detail among the morphologies and biochemistries of the sheath in the different myelinated animal classes, the function is remarkably universal. PMID:17208176

  16. Parameter exploration of staircase-shape extracellular stimulation for targeted stimulation of myelinated axon.

    PubMed

    Ueno, Ayako; Karashima, Akihiro; Nakao, Mitsuyuki; Katayama, Norihiro

    2011-01-01

    Spatio-temporal dynamics of a mathematical model of myelinated axon in response to staircase-shape extracellular electrical stimulation, which was developed for selective nerve stimulation, is investigated by the computer simulation. It is shown that the response is classified into four types: subthreshold response, cathodic excitation, anodal block and anodal break excitation. Based on the simulation results, simple diagrams representing the response characteristics of the axon are constructed as functions of stimulation parameters and distance between the axon and electrode. The diagram would be useful for determining simulation parameters for dynamic targeted stimulation of myelinated axon. PMID:22254459

  17. Axonal transport disruption in peripheral nerve disease

    PubMed Central

    Lloyd, Thomas E.

    2015-01-01

    Many neurodegenerative diseases and neuropathies have been proposed to be caused by a disruption of axonal transport. However, the mechanisms whereby impaired transport causes disease remain unclear. Proposed mechanisms include impairment in delivery of organelles such as mitochondria, defective retrograde neurotrophic signaling, and disruption of the synaptic vesicle cycle within the synaptic terminal. Simple model organisms such as the fruitfly, Drosophila melanogaster, allow live imaging of axonal transport to be combined with high-throughput genetic screens and are providing insights into the pathophysiology of peripheral nerve diseases. PMID:23279432

  18. Regulation of Peripheral Nerve Myelin Maintenance by Gene Repression through Polycomb Repressive Complex 2.

    PubMed

    Ma, Ki H; Hung, Holly A; Srinivasan, Rajini; Xie, Huafeng; Orkin, Stuart H; Svaren, John

    2015-06-01

    Myelination of peripheral nerves by Schwann cells requires coordinate regulation of gene repression as well as gene activation. Several chromatin remodeling pathways critical for peripheral nerve myelination have been identified, but the functions of histone methylation in the peripheral nerve have not been elucidated. To determine the role of histone H3 Lys27 methylation, we have generated mice with a Schwann cell-specific knock-out of Eed, which is an essential subunit of the polycomb repressive complex 2 (PRC2) that catalyzes methylation of histone H3 Lys27. Analysis of this mutant revealed no significant effects on early postnatal development of myelin. However, its loss eventually causes progressive hypermyelination of small-diameter axons and apparent fragmentation of Remak bundles. These data identify the PRC2 complex as an epigenomic modulator of mature myelin thickness, which is associated with changes in Akt phosphorylation. Interestingly, we found that Eed inactivation causes derepression of several genes, e.g., Sonic hedgehog (Shh) and Insulin-like growth factor-binding protein 2 (Igfbp2), that become activated after nerve injury, but without activation of a primary regulator of the injury program, c-Jun. Analysis of the activated genes in cultured Schwann cells showed that Igfbp2 regulates Akt activation. Our results identify an epigenomic pathway required for establishing thickness of mature myelin and repressing genes that respond to nerve injury. PMID:26041929

  19. A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons

    PubMed Central

    Micheva, Kristina D; Wolman, Dylan; Mensh, Brett D; Pax, Elizabeth; Buchanan, JoAnn; Smith, Stephen J; Bock, Davi D

    2016-01-01

    Myelin is best known for its role in increasing the conduction velocity and metabolic efficiency of long-range excitatory axons. Accordingly, the myelin observed in neocortical gray matter is thought to mostly ensheath excitatory axons connecting to subcortical regions and distant cortical areas. Using independent analyses of light and electron microscopy data from mouse neocortex, we show that a surprisingly large fraction of cortical myelin (half the myelin in layer 2/3 and a quarter in layer 4) ensheathes axons of inhibitory neurons, specifically of parvalbumin-positive basket cells. This myelin differs significantly from that of excitatory axons in distribution and protein composition. Myelin on inhibitory axons is unlikely to meaningfully hasten the arrival of spikes at their pre-synaptic terminals, due to the patchy distribution and short path-lengths observed. Our results thus highlight the need for exploring alternative roles for myelin in neocortical circuits. DOI: http://dx.doi.org/10.7554/eLife.15784.001 PMID:27383052

  20. Depth-sensing nano-indentation on a myelinated axon at various stages

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Chin; Liao, Jiunn-Der; Lin, Chou-Ching K.; Ju, Ming-Shaung

    2011-07-01

    A nano-mechanical characterization of a multi-layered myelin sheath structure, which enfolds an axon and plays a critical role in the transmission of nerve impulses, is conducted. Schwann cells co-cultured in vitro with PC12 cells for various co-culture times are differentiated to form a myelinated axon, which is then observed using a transmission electron microscope. Three major myelination stages, with distinct structural characteristics and thicknesses around the axon, can be produced by varying the co-culture time. A dynamic contact module and continuous depth-sensing nano-indentation are used on the myelinated structure to obtain the load-on-sample versus measured displacement curve of a multi-layered myelin sheath, which is used to determine the work required for the nano-indentation tip to penetrate the myelin sheath. By analyzing the harmonic contact stiffness versus the measured displacement profile, the results can be used to estimate the three stages of the multi-layered structure on a myelinated axon. The method can also be used to evaluate the development stages of myelination or demyelination during nerve regeneration.

  1. Insulin influenced expression of myelin proteins in diabetic peripheral neuropathy.

    PubMed

    Rachana, Kuruvanthe S; Manu, Mallahalli S; Advirao, Gopal M

    2016-08-26

    Diabetic peripheral neuropathy (DPN) is one of the downstream complications of diabetes. This complication is caused by the deficiency of insulin action and subsequent hyperglycemia, but the details of their pathogenesis remain unclear. Hence, it is of critical importance to understand how such hormonal variation affects the expression of myelin proteins such as myelin basic protein (MBP) and myelin associated glycoprotein (MAG) in the peripheral nerve. An earlier report from our lab has demonstrated the expression of insulin receptors (IR) in Schwann cells (SCs) of sciatic nerve. To assess the neurotrophic role of insulin in diabetic neuropathy, we studied the expression of these myelin proteins under control, DPN and insulin treated DPN subjects at developmental stages. Further, the expression of these myelin proteins was correlated with the expression of insulin receptor. Expression of myelin proteins was significantly reduced in the diabetic model compared to normal, and upregulated in insulin treated diabetic rats. Similarly, an in vitro study was also carried out in SCs grown at high glucose and insulin treated conditions. The expression pattern of myelin proteins in SCs was comparable to that of in vivo samples. In addition, quantitative study of myelin genes by real time PCR has also showed the significant expression pattern change in the insulin treated and non-treated DPN subjects. Taken together, these results corroborate the critical importance of insulin as a neurotrophic factor in demyelinized neurons in diabetic neuropathy. PMID:27373589

  2. Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing

    PubMed Central

    Ford, Marc C.; Alexandrova, Olga; Cossell, Lee; Stange-Marten, Annette; Sinclair, James; Kopp-Scheinpflug, Conny; Pecka, Michael; Attwell, David; Grothe, Benedikt

    2015-01-01

    Action potential timing is fundamental to information processing; however, its determinants are not fully understood. Here we report unexpected structural specializations in the Ranvier nodes and internodes of auditory brainstem axons involved in sound localization. Myelination properties deviated significantly from the traditionally assumed structure. Axons responding best to low-frequency sounds had a larger diameter than high-frequency axons but, surprisingly, shorter internodes. Simulations predicted that this geometry helps to adjust the conduction velocity and timing of action potentials within the circuit. Electrophysiological recordings in vitro and in vivo confirmed higher conduction velocities in low-frequency axons. Moreover, internode length decreased and Ranvier node diameter increased progressively along the distal axon segments, which simulations show was essential to ensure precisely timed depolarization of the giant calyx of Held presynaptic terminal. Thus, individual anatomical parameters of myelinated axons can be tuned to optimize pathways involved in temporal processing. PMID:26305015

  3. Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing.

    PubMed

    Ford, Marc C; Alexandrova, Olga; Cossell, Lee; Stange-Marten, Annette; Sinclair, James; Kopp-Scheinpflug, Conny; Pecka, Michael; Attwell, David; Grothe, Benedikt

    2015-01-01

    Action potential timing is fundamental to information processing; however, its determinants are not fully understood. Here we report unexpected structural specializations in the Ranvier nodes and internodes of auditory brainstem axons involved in sound localization. Myelination properties deviated significantly from the traditionally assumed structure. Axons responding best to low-frequency sounds had a larger diameter than high-frequency axons but, surprisingly, shorter internodes. Simulations predicted that this geometry helps to adjust the conduction velocity and timing of action potentials within the circuit. Electrophysiological recordings in vitro and in vivo confirmed higher conduction velocities in low-frequency axons. Moreover, internode length decreased and Ranvier node diameter increased progressively along the distal axon segments, which simulations show was essential to ensure precisely timed depolarization of the giant calyx of Held presynaptic terminal. Thus, individual anatomical parameters of myelinated axons can be tuned to optimize pathways involved in temporal processing. PMID:26305015

  4. N-WASp is required for Schwann cell cytoskeletal dynamics, normal myelin gene expression and peripheral nerve myelination

    PubMed Central

    Jin, Fuzi; Dong, Baoxia; Georgiou, John; Jiang, Qiuhong; Zhang, Jinyi; Bharioke, Arjun; Qiu, Frank; Lommel, Silvia; Feltri, M. Laura; Wrabetz, Lawrence; Roder, John C.; Eyer, Joel; Chen, Xiequn; Peterson, Alan C.; Siminovitch, Katherine A.

    2011-01-01

    Schwann cells elaborate myelin sheaths around axons by spirally wrapping and compacting their plasma membranes. Although actin remodeling plays a crucial role in this process, the effectors that modulate the Schwann cell cytoskeleton are poorly defined. Here, we show that the actin cytoskeletal regulator, neural Wiskott-Aldrich syndrome protein (N-WASp), is upregulated in myelinating Schwann cells coincident with myelin elaboration. When N-WASp is conditionally deleted in Schwann cells at the onset of myelination, the cells continue to ensheath axons but fail to extend processes circumferentially to elaborate myelin. Myelin-related gene expression is also severely reduced in the N-WASp-deficient cells and in vitro process and lamellipodia formation are disrupted. Although affected mice demonstrate obvious motor deficits these do not appear to progress, the mutant animals achieving normal body weights and living to advanced age. Our observations demonstrate that N-WASp plays an essential role in Schwann cell maturation and myelin formation. PMID:21385763

  5. The myelin oligodendrocyte glycoprotein directly binds nerve growth factor to modulate central axon circuitry

    PubMed Central

    Mei, Feng; Greenfield, Ariele; Jahn, Sarah; Shen, Yun-An A.; Reid, Hugh H.; McKemy, David D.

    2015-01-01

    Myelin oligodendrocyte glycoprotein (MOG) is a central nervous system myelin-specific molecule expressed on the outer lamellae of myelin. To date, the exact function of MOG has remained unknown, with MOG knockout mice displaying normal myelin ultrastructure and no apparent specific phenotype. In this paper, we identify nerve growth factor (NGF) as a binding partner for MOG and demonstrate that this interaction is capable of sequestering NGF from TrkA-expressing neurons to modulate axon growth and survival. Deletion of MOG results in aberrant sprouting of nociceptive neurons in the spinal cord. Binding of NGF to MOG may offer widespread implications into mechanisms that underlie pain pathways. PMID:26347141

  6. Kif1b is essential for mRNA localization in oligodendrocytes and development of myelinated axons

    PubMed Central

    Lyons, David A.; Naylor, Stephen G.; Scholze, Anja; Talbot, William S.

    2009-01-01

    The kinesin motor protein Kif1b has previously been implicated in the axonal transport of mitochondria and synaptic vesicles1,2. More recently kif1b has been linked with susceptibility to Multiple Sclerosis (MS) 3. Here we show that Kif1b is required for the localization of myelin basic protein mRNA to processes of myelinating oligodendrocytes in zebrafish. We observe the ectopic appearance of myelin-like membrane in kif1b mutants, coincident with the ectopic localization of myelin proteins in kif1b mutant oligodendrocyte cell bodies. These observations suggest the hypothesis that oligodendrocytes localize certain mRNA molecules, namely those encoding small basic proteins such as mbp, to prevent aberrant effects of these proteins elsewhere in the cell. We also find that Kif1b is required for outgrowth of some of the longest axons in the peripheral and central nervous systems. Our data demonstrate new functions of kif1b in vivo and provide insights into its possible roles in Multiple Sclerosis. PMID:19503091

  7. SOX10 mutation with peripheral amyelination and developmental disturbance of axons.

    PubMed

    Parthey, Kathleen; Kornhuber, Malte; Kunze, Christian; Wand, Dorothea; Nolte, Kay W; Nikolin, Stefan; Weis, Joachim; Schröder, J Michael

    2012-02-01

    In this study we describe a case of a term infant with the neurological variant of Waardenburg syndrome type 4 (i.e., PCWH = peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and Hirschsprung disease, as defined in OMIM #609136) due to a novel heterozygous base exchange (c.671C>G) in exon 4 of SOX10. Magnetic resonance imaging suggested central myelin deficiency with cerebral and cerebellar hypoplasia. Hirschsprung disease was confirmed by rectal biopsy. Sural nerve biopsy revealed hypoplasia due to amyelination (with the exception of a single, small myelinated fiber) and severe reduction in the number of axons. PMID:22246888

  8. Learning deficits and agenesis of synapses and myelinated axons in phosphoinositide-3 kinase-deficient mice.

    PubMed

    Tohda, Chihiro; Nakanishi, Ruiko; Kadowaki, Makoto

    Although previous studies have reported a role for phosphoinositide-3 kinase (PI3K) in axonal definition and growth in vitro, it is not clear whether PI3K regulates axonal formation and synaptogenesis in vivo. The goal of the present study was to clarify the role of PI3K in behavioral functions and some underlying neuroanatomical structures. Immunohistochemistry, an electron-microscopic analysis and behavioral tests were carried out. Knockout mice lacking the p85alpha regulatory subunit of PI3K (p85alpha-/- mice) significantly showed learning deficits, restlessness and motivation deficit. Expression of phosphorylated Akt, which indirectly shows the activity of PI3K, was high in myelinated axons, especially in axonal bundles in the striatum of wild-type mice, but was significantly low in the striatum, cerebral cortex and the hippocampal CA3 of p85alpha-/- mice. The axonal marker protein level decreased mainly in the striatum and cerebral cortex of p85alpha-/- mice. In these two regions, myelinated axons are rich in the wild-type mice. However, the density of myelinated axons and myelin thickness were significantly low in the striatum and cerebral cortex of p85alpha-/- mice. Synaptic protein level was clearly decreased in the striatum, cerebral cortex, and hippocampus of p85alpha-/- mice when compared with wild mice. The present results suggest that PI3K plays a role in the generation and/or maintenance of synapses and myelinated axons in the brain and that deficiencies in PI3K activity result in abnormalities in several neuronal functions, including learning, restlessness and motivation. PMID:17901711

  9. Myelin loss and axonal ion channel adaptations associated with gray matter neuronal hyperexcitability.

    PubMed

    Hamada, Mustafa S; Kole, Maarten H P

    2015-05-01

    Myelination and voltage-gated ion channel clustering at the nodes of Ranvier are essential for the rapid saltatory conduction of action potentials. Whether myelination influences the structural organization of the axon initial segment (AIS) and action potential initiation is poorly understood. Using the cuprizone mouse model, we combined electrophysiological recordings with immunofluorescence of the voltage-gated Nav1.6 and Kv7.3 subunits and anchoring proteins to analyze the functional and structural properties of single demyelinated neocortical L5 axons. Whole-cell recordings demonstrated that neurons with demyelinated axons were intrinsically more excitable, characterized by increased spontaneous suprathreshold depolarizations as well as antidromically propagating action potentials ectopically generated in distal parts of the axon. Immunofluorescence examination of demyelinated axons showed that βIV-spectrin, Nav1.6, and the Kv7.3 channels in nodes of Ranvier either dissolved or extended into the paranodal domains. In contrast, while the AIS in demyelinated axons started more closely to the soma, ankyrin G, βIV-spectrin, and the ion channel expression were maintained. Structure-function analysis and computational modeling, constrained by the AIS location and realistic dendritic and axonal morphologies, confirmed that a more proximal onset of the AIS slightly reduced the efficacy of action potential generation, suggesting a compensatory role. These results suggest that oligodendroglial myelination is not only important for maximizing conduction velocity, but also for limiting hyperexcitability of pyramidal neurons. PMID:25948275

  10. Myelin Loss and Axonal Ion Channel Adaptations Associated with Gray Matter Neuronal Hyperexcitability

    PubMed Central

    Hamada, Mustafa S.

    2015-01-01

    Myelination and voltage-gated ion channel clustering at the nodes of Ranvier are essential for the rapid saltatory conduction of action potentials. Whether myelination influences the structural organization of the axon initial segment (AIS) and action potential initiation is poorly understood. Using the cuprizone mouse model, we combined electrophysiological recordings with immunofluorescence of the voltage-gated Nav1.6 and Kv7.3 subunits and anchoring proteins to analyze the functional and structural properties of single demyelinated neocortical L5 axons. Whole-cell recordings demonstrated that neurons with demyelinated axons were intrinsically more excitable, characterized by increased spontaneous suprathreshold depolarizations as well as antidromically propagating action potentials ectopically generated in distal parts of the axon. Immunofluorescence examination of demyelinated axons showed that βIV-spectrin, Nav1.6, and the Kv7.3 channels in nodes of Ranvier either dissolved or extended into the paranodal domains. In contrast, while the AIS in demyelinated axons started more closely to the soma, ankyrin G, βIV-spectrin, and the ion channel expression were maintained. Structure–function analysis and computational modeling, constrained by the AIS location and realistic dendritic and axonal morphologies, confirmed that a more proximal onset of the AIS slightly reduced the efficacy of action potential generation, suggesting a compensatory role. These results suggest that oligodendroglial myelination is not only important for maximizing conduction velocity, but also for limiting hyperexcitability of pyramidal neurons. PMID:25948275

  11. The "Lillie transition": models of the onset of saltatory conduction in myelinating axons.

    PubMed

    Young, Robert G; Castelfranco, Ann M; Hartline, Daniel K

    2013-06-01

    Almost 90 years ago, Lillie reported that rapid saltatory conduction arose in an iron wire model of nerve impulse propagation when he covered the wire with insulating sections of glass tubing equivalent to myelinated internodes. This led to his suggestion of a similar mechanism explaining rapid conduction in myelinated nerve. In both their evolution and their development, myelinating axons must make a similar transition between continuous and saltatory conduction. Achieving a smooth transition is a potential challenge that we examined in computer models simulating a segmented insulating sheath surrounding an axon having Hodgkin-Huxley squid parameters. With a wide gap under the sheath, conduction was continuous. As the gap was reduced, conduction initially slowed, owing to the increased extra-axonal resistance, then increased (the "rise") up to several times that of the unmyelinated fiber, as saltatory conduction set in. The conduction velocity slowdown was little affected by the number of myelin layers or modest changes in the size of the "node," but strongly affected by the size of the "internode" and axon diameter. The steepness of the rise of rapid conduction was greatly affected by the number of myelin layers and axon diameter, variably affected by internode length and little affected by node length. The transition to saltatory conduction occurred at surprisingly wide gaps and the improvement in conduction speed persisted to surprisingly small gaps. The study demonstrates that the specialized paranodal seals between myelin and axon, and indeed even the clustering of sodium channels at the nodes, are not necessary for saltatory conduction. PMID:23306554

  12. Different Mechanisms Regulate Expression of Zebrafish Myelin Protein Zero (P0) in Myelinating Oligodendrocytes and Its Induction following Axonal Injury*

    PubMed Central

    Bai, Qing; Parris, Ritika S.; Burton, Edward A.

    2014-01-01

    Zebrafish CNS axons regenerate robustly following injury; it is thought that CNS oligodendrocytes contribute to this response by expressing growth-promoting molecules. We characterized the mpz gene, which encodes myelin protein zero and is up-regulated in oligodendroglia following axonal injury. The 2.5-kb mpz mRNA is expressed from a single TATA box promoter. Four independent Tg(mpz:egfp) transgenic zebrafish lines, in which GFP was expressed under the mpz promoter and 10 kb of genomic 5′-flanking sequence, showed transgene expression in CNS oligodendrocytes from larval development through adulthood. Following optic nerve crush injury, the mpz:egfp transgene was strongly up-regulated in oligodendrocytes along the regenerating retinotectal projection, mirroring up-regulation of endogenous mpz mRNA. GFP-expressing oligodendroglia were significantly more abundant in the regenerating optic pathway, resulting from both transgene induction in oligodendroglial precursors and the birth of new cells. Up-regulation of the mpz:egfp transgene was not dependent on axonal regeneration, suggesting that the primary signal may be axonal loss, debris, or microglial infiltration. Deletion experiments indicated that an oligodendroglial enhancer located in the region from −6 to −10 kb with respect to the mpz transcriptional start site is dissociable from the cis-regulatory element mediating the mpz transcriptional response to axonal injury, which is located between −1 and −4 kb. These data show that different mechanisms regulate expression of zebrafish mpz in myelinating oligodendrocytes and its induction following axonal injury. The underlying molecular events could potentially be exploited to enhance axonal repair following mammalian CNS injury. The transgenic lines and cis-regulatory constructs reported here will facilitate identification of the relevant signaling pathways. PMID:25028515

  13. Polarization-dependent responses of fluorescent indicators partitioned into myelinated axons

    NASA Astrophysics Data System (ADS)

    Micu, Ileana; Brideau, Craig; Stys, Peter K.

    2012-02-01

    Myelination, i.e. the wrapping of axons in multiple layers of lipid-rich membrane, is a unique phenomenon in the nervous systems of both vertebrates and invertebrates, that greatly increases the speed and efficiency of signal transmission. In turn, disruption of axo-myelinic integrity underlies disability in numerous clinical disorders. The dependence of myelin physiology on nanometric organization of its lamellae makes it difficult to accurately study this structure in the living state. We expected that fluorescent probes might become highly oriented when partitioned into the myelin sheath, and in turn, this anisotropy could be interrogated by controlling the polarization state of the exciting laser field used for 2-photon excited fluorescence (TPEF). Live ex vivo myelinated rodent axons were labeled with a series of lipohilic and hydrophilic fluorescenct probes, and TPEF images acquired while laser polarization was varied at the sample over a broad range of ellipticities and orientations of the major angle [see Brideau, Micu & Stys, abstract this meeting]. We found that most probes exhibited strong dependence on both the major angle of polarization, and perhaps more surprisingly, on ellipticity as well. Lipophilic vs. hydrophilic probes exhibited distinctly different behavior. We propose that polarization-dependent TPEF microscopy represents a powerful tool for probing the nanostructural architecture of both myelin and axonal cytoskeleton in a domain far below the resolution limit of visible light microscopy. By selecting probes with different sizes and physicochemical properties, distinct aspects of cellular nanoarchitecture can be accurately interrogated in real-time in living tissue.

  14. Reorganization of central terminals of myelinated primary afferents in the rat dorsal horn following peripheral axotomy.

    PubMed

    Woolf, C J; Shortland, P; Reynolds, M; Ridings, J; Doubell, T; Coggeshall, R E

    1995-09-11

    We have investigated the time course and extent to which peripheral nerve lesions cause a morphological reorganization of the central terminals of choleragenoid-horseradish peroxidase (B-HRP)-labelled primary afferent fibers in the mammalian dorsal horn. Choleragenoid-horseradish peroxidase is retrogradely transported by myelinated (A) sensory axons to laminae I, III, IV and V of the normal dorsal horn of the spinal cord, leaving lamina II unlabelled. We previously showed that peripheral axotomy results in the sprouting of numerous B-HRP-labelled large myelinated sensory axons into lamina II. We show here that this spread of B-HRP-labelled axons into lamina II is detectable at 1 week, maximal by 2 weeks and persists for over 6 months postlesion. By 9 months, however, B-HRP fibers no longer appear in lamina II. The sprouting into lamina II occurs whether regeneration is allowed (crush) or prevented (section with ligation), and does not reverse at times when peripheral fibers reinnervate the periphery. We also show that 15 times more synaptic terminals in lamina II are labelled by B-HRP 2 weeks after axotomy than in the normal. We interpret this as indicating that the sprouting fibers are making synaptic contacts with postsynaptic targets. This implies that A-fiber terminal reorganization is a prominent and long-lasting but not permanent feature of peripheral axotomy. We also provide evidence that this sprouting is the consequence of a combination of an atrophic loss of central synaptic terminals and the conditioning of the sensory neurons by peripheral axotomy. The sprouting of large sensory fibers into the spinal territory where postsynaptic targets usually receive only small afferent fiber input may bear on the intractable touch-evoked pain that can follow nerve injury. PMID:7499558

  15. Chronic intermittent ethanol induced axon and myelin degeneration is attenuated by calpain inhibition.

    PubMed

    Samantaray, Supriti; Knaryan, Varduhi H; Patel, Kaushal S; Mulholland, Patrick J; Becker, Howard C; Banik, Naren L

    2015-10-01

    Chronic alcohol consumption causes multifaceted damage to the central nervous system (CNS), underlying mechanisms of which are gradually being unraveled. In our previous studies, activation of calpain, a calcium-activated neutral protease has been found to cause detrimental alterations in spinal motor neurons following ethanol (EtOH) exposure in vitro. However, it is not known whether calpain plays a pivotal role in chronic EtOH exposure-induced structural damage to CNS in vivo. To test the possible involvement of calpain in EtOH-associated neurodegenerative mechanisms the present investigation was conducted in a well-established mouse model of alcohol dependence - chronic intermittent EtOH (CIE) exposure and withdrawal. Our studies indicated significant loss of axonal proteins (neurofilament light and heavy, 50-60%), myelin proteins (myelin basic protein, 20-40% proteolipid protein, 25%) and enzyme (2', 3'-cyclic-nucleotide 3'-phosphodiesterase, 21-55%) following CIE in multiple regions of brain including hippocampus, corpus callosum, cerebellum, and importantly in spinal cord. These CIE-induced deleterious effects escalated after withdrawal in each CNS region tested. Increased expression and activity of calpain along with enhanced ratio of active calpain to calpastatin (sole endogenous inhibitor) was observed after withdrawal compared to EtOH exposure. Pharmacological inhibition of calpain with calpeptin (25 μg/kg) prior to each EtOH vapor inhalation significantly attenuated damage to axons and myelin as demonstrated by immuno-profiles of axonal and myelin proteins, and Luxol Fast Blue staining. Calpain inhibition significantly protected the ultrastructural integrity of axons and myelin compared to control as confirmed by electron microscopy. Together, these findings confirm CIE exposure and withdrawal induced structural alterations in axons and myelin, predominantly after withdrawal and corroborate calpain inhibition as a potential protective strategy against

  16. Chronic intermittent ethanol induced axon and myelin degeneration is attenuated by calpain inhibition

    PubMed Central

    Samantaray, Supriti; Knaryan, Varduhi H.; Patel, Kaushal S.; Mulholland, Patrick J.; Becker, Howard C.; Banik, Naren L.

    2015-01-01

    Chronic alcohol consumption causes multifaceted damage to the central nervous system (CNS), underlying mechanisms of which are gradually being unraveled. In our previous studies, activation of calpain, a calcium-activated neutral protease has been found to cause detrimental alterations in spinal motor neurons following ethanol (EtOH) exposure in vitro. However, it is not known whether calpain plays a pivotal role in chronic EtOH exposure-induced structural damage to CNS in vivo. To test the possible involvement of calpain in EtOH-associated neurodegenerative mechanisms the present investigation was conducted in a well-established mouse model of alcohol dependence - chronic intermittent EtOH (CIE) exposure and withdrawal. Our studies indicated significant loss of axonal proteins (neurofilament light and heavy, 50-60 %), myelin proteins (myelin basic protein, 20-40 % proteolipid protein, 25 %) and enzyme (2′, 3′-cyclic-nucleotide 3′-phosphodiesterase, 21-55 %) following CIE in multiple regions of brain including hippocampus, corpus callosum, cerebellum, and importantly in spinal cord. These CIE-induced deleterious effects escalated after withdrawal in each CNS region tested. Increased expression and activity of calpain along with enhanced ratio of active calpain to calpastatin (sole endogenous inhibitor) was observed after withdrawal compared to EtOH exposure. Pharmacological inhibition of calpain with calpeptin (25 μg/kg) prior to each EtOH vapor inhalation significantly attenuated damage to axons and myelin as demonstrated by immuno-profiles of axonal and myelin proteins, and Luxol Fast Blue staining. Calpain inhibition significantly protected the ultrastructural integrity of axons and myelin compared to control as confirmed by electron microscopy. Together, these findings confirm CIE exposure and withdrawal induced structural alterations in axons and myelin, predominantly after withdrawal and corroborate calpain inhibition as a potential protective strategy

  17. Quantitative Analysis of Myelin and Axonal Remodeling in the Uninjured Motor Network After Stroke.

    PubMed

    Lin, Ying-Chia; Daducci, Alessandro; Meskaldji, Djalel Eddine; Thiran, Jean-Philippe; Michel, Patrik; Meuli, Reto; Krueger, Gunnar; Menegaz, Gloria; Granziera, Cristina

    2015-09-01

    Contralesional brain connectivity plasticity was previously reported after stroke. This study aims at disentangling the biological mechanisms underlying connectivity plasticity in the uninjured motor network after an ischemic lesion. In particular, we measured generalized fractional anisotropy (GFA) and magnetization transfer ratio (MTR) to assess whether poststroke connectivity remodeling depends on axonal and/or myelin changes. Diffusion-spectrum imaging and magnetization transfer MRI at 3T were performed in 10 patients in acute phase, at 1 and 6 months after stroke, which was affecting motor cortical and/or subcortical areas. Ten age- and gender-matched healthy volunteers were scanned 1 month apart for longitudinal comparison. Clinical assessment was also performed in patients prior to magnetic resonance imaging (MRI). In the contralesional hemisphere, average measures and tract-based quantitative analysis of GFA and MTR were performed to assess axonal integrity and myelination along motor connections as well as their variations in time. Mean and tract-based measures of MTR and GFA showed significant changes in a number of contralesional motor connections, confirming both axonal and myelin plasticity in our cohort of patients. Moreover, density-derived features (peak height, standard deviation, and skewness) of GFA and MTR along the tracts showed additional correlation with clinical scores than mean values. These findings reveal the interplay between contralateral myelin and axonal remodeling after stroke. PMID:25296185

  18. Neuroimaging evidence of deficient axon myelination in Wolfram syndrome

    PubMed Central

    Lugar, Heather M.; Koller, Jonathan M.; Rutlin, Jerrel; Marshall, Bess A.; Kanekura, Kohsuke; Urano, Fumihiko; Bischoff, Allison N.; Shimony, Joshua S.; Hershey, Tamara; Austin, P.; Beato, B.; Bihun, E.; Doty, T.; Earhart, G.; Eisenstein, S.; Hoekel, J.; Karzon, R.; Licis, A.; Manwaring, L.; Paciorkowski, A. R.; Pepino de Gruev, Y.; Permutt, A.; Pickett, K.; Ranck, S.; Reiersen, A.; Tychsen, L.; Viehoever, A.; Wasson, J.; White, N. H.

    2016-01-01

    Wolfram syndrome is a rare autosomal recessive genetic disease characterized by insulin dependent diabetes and vision, hearing and brain abnormalities which generally emerge in childhood. Mutations in the WFS1 gene predispose cells to endoplasmic reticulum stress-mediated apoptosis and may induce myelin degradation in neuronal cell models. However, in vivo evidence of this phenomenon in humans is lacking. White matter microstructure and regional volumes were measured using magnetic resonance imaging in children and young adults with Wolfram syndrome (n = 21) and healthy and diabetic controls (n = 50). Wolfram patients had lower fractional anisotropy and higher radial diffusivity in major white matter tracts and lower volume in the basilar (ventral) pons, cerebellar white matter and visual cortex. Correlations were found between key brain findings and overall neurological symptoms. This pattern of findings suggests that reduction in myelin is a primary neuropathological feature of Wolfram syndrome. Endoplasmic reticulum stress-related dysfunction in Wolfram syndrome may interact with the development of myelin or promote degeneration of myelin during the progression of the disease. These measures may provide objective indices of Wolfram syndrome pathophysiology that will be useful in unraveling the underlying mechanisms and in testing the impact of treatments on the brain. PMID:26888576

  19. Neuroimaging evidence of deficient axon myelination in Wolfram syndrome.

    PubMed

    Lugar, Heather M; Koller, Jonathan M; Rutlin, Jerrel; Marshall, Bess A; Kanekura, Kohsuke; Urano, Fumihiko; Bischoff, Allison N; Shimony, Joshua S; Hershey, Tamara

    2016-01-01

    Wolfram syndrome is a rare autosomal recessive genetic disease characterized by insulin dependent diabetes and vision, hearing and brain abnormalities which generally emerge in childhood. Mutations in the WFS1 gene predispose cells to endoplasmic reticulum stress-mediated apoptosis and may induce myelin degradation in neuronal cell models. However, in vivo evidence of this phenomenon in humans is lacking. White matter microstructure and regional volumes were measured using magnetic resonance imaging in children and young adults with Wolfram syndrome (n = 21) and healthy and diabetic controls (n = 50). Wolfram patients had lower fractional anisotropy and higher radial diffusivity in major white matter tracts and lower volume in the basilar (ventral) pons, cerebellar white matter and visual cortex. Correlations were found between key brain findings and overall neurological symptoms. This pattern of findings suggests that reduction in myelin is a primary neuropathological feature of Wolfram syndrome. Endoplasmic reticulum stress-related dysfunction in Wolfram syndrome may interact with the development of myelin or promote degeneration of myelin during the progression of the disease. These measures may provide objective indices of Wolfram syndrome pathophysiology that will be useful in unraveling the underlying mechanisms and in testing the impact of treatments on the brain. PMID:26888576

  20. TRANSDUCED SCHWANN CELLS PROMOTE AXON GROWTH AND MYELINATION AFTER SPINAL CORD INJURY

    PubMed Central

    Golden, Kevin L.; Pearse, Damien D.; Blits, Bas; Garg, Maneesh S.; Oudega, Martin; Wood, Patrick M.; Bunge, Mary Bartlett

    2007-01-01

    We sought to directly compare growth and myelination of local and supraspinal axons by implanting into the injured spinal cord Schwann cells (SCs) transduced ex vivo with adenoviral (AdV) or lentiviral (LV) vectors encoding a bifunctional neurotrophin molecule (D15A). D15A mimics actions of both neurotrophin-3 and brain-derived neurotrophic factor. Transduced SCs were injected into the injury center one week after a moderate thoracic (T8) adult rat spinal cord contusion. D15A expression and bioactivity in vitro; D15A levels in vivo; and graft volume, SC number, implant axon number and cortico-, reticulo-, raphe-, coerulo-spinal and sensory axon growth were determined for both types of vectors employed to transduce SCs. ELISAs revealed that D15A-secreting SC implants contained significantly higher levels of neurotrophin than non-transduced SC and AdV/GFP and LV/GFP SC controls early after implantation. At 6 wk post-implantation, D15A-secreting SC grafts exhibited 5-fold increases in graft volume, SC number and myelinated axon counts and a 3-fold increase in myelinated to unmyelinated (ensheathed) axon ratios. The total number of axons within grafts of LV/GFP/D15A SCs was estimated to be over 70,000. Also 5-HT, DβH, and CGRP axon length was increased up to 5-fold within D15A grafts. In sum, despite qualitative differences using the two vectors, increased neurotrophin secretion by the implanted D15A SCs led to the presence of a significantly increased number of axons in the contusion site. These results demonstrate the therapeutic potential for utilizing neurotrophin-transduced SCs to repair the injured spinal cord. PMID:17719577

  1. Myelin Loss Does Not Lead to Axonal Degeneration in a Long-Lived Model of Chronic Demyelination

    PubMed Central

    Smith, Chelsey M.; Cooksey, Elizabeth; Duncan, Ian D.

    2014-01-01

    Current dogma suggests that chronically demyelinated axons are at risk for degeneration, with axonal loss resulting in permanent disability in myelin disease. However, the trophic role of the myelin sheath in long-term axonal survival is incompletely understood. Previous observations of the effect of dysmyelination or demyelination on axonal survival in the myelin mutants has been limited because of their short life span. In this study, we used the Long–Evans shaker (les) rat, which can live up to 9 months, to study axonal health and survival after chronic demyelination. At 2 weeks, ~29% of medium and ~47% of large fiber axons are myelinated in les spinal cord. However, by 3 months, no medium and ~<1% of large-diameter axons retain myelin. After demyelination, axons have a reduced-caliber, abnormal neurofilament distribution and an increase in mitochondrial number. However, there are no signs of axonal degeneration in les rats up to 9 months. Instead, there is a profound increase in oligodendrocytes, which were found to express BDNF, NT-3, and IGF-1. Importantly, this study provides in vivo evidence that mature glial cells produce various neurotrophic factors that may aid in the survival of axons after chronic demyelination. PMID:23392698

  2. The voltage dependence of Ih in human myelinated axons

    PubMed Central

    Howells, James; Trevillion, Louise; Bostock, Hugh; Burke, David

    2012-01-01

    HCN channels are responsible for Ih, a voltage-gated inwardly rectifying current activated by hyperpolarization. This current appears to be more active in human sensory axons than motor and may play a role in the determination of threshold. Differences in Ih are likely to be responsible for the high variability in accommodation to hyperpolarization seen in different subjects. The aim of this study was to characterise this current in human axons, both motor and sensory. Recordings of multiple axonal excitability properties were performed in 10 subjects, with a focus on the changes in threshold evoked by longer and stronger hyperpolarizing currents than normally studied. The findings confirm that accommodation to hyperpolarization is greater in sensory than motor axons in all subjects, but the variability between subjects was greater than the modality difference. An existing model of motor axons was modified to take into account the behaviour seen with longer and stronger hyperpolarization, and a mathematical model of human sensory axons was developed based on the data collected. The differences in behaviour of sensory and motor axons and the differences between different subjects are best explained by modulation of the voltage dependence, along with a modest increase of expression of the underlying conductance of Ih. Accommodation to hyperpolarization for the mean sensory data is fitted well with a value of −94.2 mV for the mid-point of activation (V0.5) of Ih as compared to −107.3 mV for the mean motor data. The variation in response to hyperpolarization between subjects is accounted for by varying this parameter for each modality (sensory: −89.2 to −104.2 mV; motor −87.3 to −127.3 mV). These voltage differences are within the range that has been described for physiological modulation of Ih function. The presence of slowly activated Ih isoforms on both motor and sensory axons was suggested by modelling a large internodal leak current and a masking of

  3. The function of RhoGTPases in axon ensheathment and myelination

    PubMed Central

    Feltri, M. Laura; Suter, Ueli; Relvas, João B.

    2008-01-01

    RhoGTPases are molecular switches that integrate extracellular signals to perform diverse cellular responses. This ability relies on the network of proteins regulating RhoGTPases activity and localization, and on the interaction of RhoGTPases with many different cellular effectors. Myelination is an ideal place for RhoGTPases regulation, as it is the result of fine orchestration of many stimuli from at least two cell types. Recent work has revealed that RhoGTPases are required for Schwann cells to sort, ensheath and myelinate axons. Here we will review recent advances showing the critical roles for RhoGTPases in various aspects of Schwann development and myelination, including the recent discovery of their involvement in Charcot-Marie-Tooth disease. Comparison with potential roles of RhoGTPases in central nervous system myelination will be drawn. PMID:18803320

  4. Lesioned corticospinal tract axons regenerate in myelin-free rat spinal cord

    SciTech Connect

    Savio, T.; Schwab, M.E. )

    1990-06-01

    In the adult central nervous system (CNS) of higher vertebrates lesioned axons seemed unable to regenerate and reach their former target regions due to influences of the CNS microenvironment. Evidence from in vitro and biochemical experiments has demonstrated the presence of inhibitory substrate components in CNS tissue, in particular in white matter. These CNS components, which strongly inhibit neurite growth, were identified as minor membrane proteins of defined molecular mass (35 and 250 kDa) in oligodendrocyte membranes and CNS myelin. Oligodendrocyte development and myelin formation can be prevented by x-irradiation of newborn rats. Here we show that in myelin-free spinal cords cortico-spinal tract fibers transected at 2 weeks of age show reelongation of many millimeters within 2-3 weeks after the lesion. In normally myelinated controls, regenerative sprouts grew less than 1.7 mm caudal to the lesion.

  5. Data supporting the role of Fyn in initiating myelination in the peripheral nervous system.

    PubMed

    Miyamoto, Yuki; Tamano, Moe; Torii, Tomohiro; Kawahara, Kazuko; Nakamura, Kazuaki; Tanoue, Akito; Takada, Shuji; Yamauchi, Junji

    2016-06-01

    Transgenic mice, which express active Fyn tyrosine kinase under the control of a glial fibrillary acidic protein promoter, have been produced. This promoter induces protein expression in the initiation stage of myelination in the peripheral nervous system (PNS) "Phosphorylation of cytohesin-1 by Fyn is required for initiation of myelination and the extent of myelination during development (Yamauchi et al., 2015 [1])". Herein we provide the data regarding myelination-related protein markers and myelin ultrastructure in transgenic mice. PMID:27115022

  6. Distribution of neurofilaments in myelinated axons of the optic nerve of goldfish (Carassius auratus L.).

    PubMed

    Matheson, D F; Diocee, M S; Roots, B I

    1980-11-01

    Neurofilaments were counted in myelinated axons of the optic nerve of goldfish which were acclimated to 5 degrees and 25 degrees C. The number of neurofilaments increases markedly with increasing axonal size; axons of less than 0.1 micrometer 2 in area contain between 25 and 60 neurofilaments, while in the larger axons of area greater than 1.0 micrometer 2 there are approximately 190. The densities of the neurofilaments in the small axons are noticeably higher than in the larger ones (507 and 160, respectively). A variety of fixation procedures i.e. osmium tetroxide (OsO4) in phosphate buffer, glutaraldehyde (4%) in phosphate buffer or in ethyleneglycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) and piperazine-N-N'-bis-(2-ethanesulphonic acid) (PIPES) and post-fixed with OsO4 had no effect on the numbers of neurofilaments relative to the size of axon. The anaesthetic MS-222 (tricaine methanesulphonate) likewise had no effect on the numbers of neurofilaments. It is proposed that temperature acclimation alters the axon diameter concomitant with an alteration in the number of neurofilaments to fit the new diameter of the axons. PMID:6253602

  7. Clinical implications of peripheral myelin protein 22 for nerve compression and neural regeneration: a review.

    PubMed

    Hui-Chou, Helen G; Hashemi, Sharyhar S; Hoke, Ahmet; Dellon, A Lee

    2011-01-01

    Peripheral myelin protein 22 (PMP22) is a major component of the peripheral myelin sheath. The PMP22 gene is located on chromosome 17p11.2, and defects in PMP22 gene have been implicated in several common inherited peripheral neuropathies. Hereditary neuropathy with liability to pressure palsies (HNPP), Charcot-Marie Tooth disease type 1A (CMT1A), Dejerine-Sottas syndrome, and congenital hypomyelinating neuropathy are all associated with defects in PMP22 gene. The disease phenotypes mirror the range of expression of PMP22 due to the corresponding genetic defect. HNPP, characterized by a milder recurrent episodic focal demyelinating neuropathy, is attributed to a deletion leading to PMP22 underexpression. On the other end of the spectrum, CMT1A leads to a more uniform demyelination and axonal loss, resulting in severe progressive distal weakness and paresthesias; it is due to a duplication at 17p11.2 leading to PMP22 overexpression. Additional point mutations result in varying phenotypes due to dysfunction of the resultant PMP22 protein. All inherited neuropathies are diagnosed with a combination of physical findings on examination, electromyography, sural nerve biopsies, and genetic testing. Treatment and management of these disorders differ depending on the underlying genetic defect, nerves involved, and resulting functional impairments. A review of current literature elucidates clinical, microsurgical implications, and management of patients with PMP22-related neuropathy. PMID:20976668

  8. Axon-Schwann cell interaction in degenerating and regenerating peripheral nerve

    SciTech Connect

    Pellegrino, R.G.

    1984-01-01

    Severance of a peripheral nerve stimulates a characteristic sequence of events in the distal stump, including the dissolution of axons and myelin and the proliferation of Schwann cells within their basal lamina. The first part of this thesis employs the cat tibial nerve to examine the relationship between the spatio-temporal pattern of Schwann cell mitosis, loss of the structural and functional properties of axolemma, synthesis of P/sub 0/, the major myelin glycoprotein, and the clearance of morphological myelin. Induction of S phase was measured by determining the uptake of /sup 3/H thymidine into trichloroacetic acid (TCA) precipitates following a 3 hour in vitro incubation in Krebs-Ringers buffer containing /sup 3/H thymidine. Nerve transection stimulated a monophasic increase in /sup 3/H thymidine uptake that peaked at 4 days post-transection throughout an 80 mm length of distal stump. Light microscope autoradiography revealed prominent incorporation into Schwann cells of myelinated fibers. Nerve transection also produced dramatic changes in the intrafascicular binding of /sup 3/H STX which binds to voltage-sensitive sodium channels STX binding fell precipitously to 20% of normal at 4 days post-transection, concurrent with the peak of /sup 3/H thymidine uptake. In conclusion, these studies suggest: (a) Schwann cells divide more or less contemporaneously throughout the distal stump; (b) changes in axons rather than myelin are likely to stimulate the Schwann cell to divide; (c) mitosis regulates other events during Wallerian degeneration, including myelin degeneration and the clearance of sodium channels from nodal axolemma.

  9. Role of ERK1/2 MAPK Signaling in the Maintenance of Myelin and Axonal Integrity in the Adult CNS

    PubMed Central

    Ishii, Akihiro; Furusho, Miki; Dupree, Jeffrey L.

    2014-01-01

    Oligodendrocytes form myelin during postnatal development and then maintain a functional myelin sheath throughout adult life. While many regulators of developmental myelination have been identified, the signal transduction mechanisms that regulate oligodendrocyte functions in adulthood are not well understood. The extracellular signal-regulated kinases-1 and -2 (ERK1/2), downstream mediators of mitogen-activated protein kinases (MAPKs), have emerged as prominent regulators of myelin formation. Here, we investigated whether these signaling molecules are also required for myelin maintenance in the adult CNS. Inducible conditional ablation of Erk1/2 in oligodendrocytes of the adult CNS resulted in a downregulation of myelin gene expression. Although myelin thickness was reduced and some axons were demyelinated, the majority of axons were wrapped by intact myelin sheaths that appeared structurally normal. However, late onset of progressive axonal degeneration, accompanied by astrogliosis, microglial activation, partial loss of oligodendrocytes, and functional impairment, occurred in the adult mice lacking ERK1/2 activity. Conditional ablation of Fibroblast Growth Factor receptors-1 and -2 (FGFR1/2) in oligodendrocytes also resulted in downregulation of myelin gene expression and development of axonal degeneration as the mice aged. Further, the level of the key transcription factor myelin gene regulatory factor (Myrf) was downregulated or upregulated in mice with genetic loss or gain of ERK1/2 function, respectively. Together, our studies demonstrate that ERK1/2-MAPK signaling is required for the long-term maintenance of myelin and axonal integrity in the adult CNS and suggest that FGFR1/2 and Myrf may, in part, contribute to signaling upstream and downstream of ERK1/2 in maintaining these oligodendrocyte functions during adulthood. PMID:25429144

  10. Role of ERK1/2 MAPK signaling in the maintenance of myelin and axonal integrity in the adult CNS.

    PubMed

    Ishii, Akihiro; Furusho, Miki; Dupree, Jeffrey L; Bansal, Rashmi

    2014-11-26

    Oligodendrocytes form myelin during postnatal development and then maintain a functional myelin sheath throughout adult life. While many regulators of developmental myelination have been identified, the signal transduction mechanisms that regulate oligodendrocyte functions in adulthood are not well understood. The extracellular signal-regulated kinases-1 and -2 (ERK1/2), downstream mediators of mitogen-activated protein kinases (MAPKs), have emerged as prominent regulators of myelin formation. Here, we investigated whether these signaling molecules are also required for myelin maintenance in the adult CNS. Inducible conditional ablation of Erk1/2 in oligodendrocytes of the adult CNS resulted in a downregulation of myelin gene expression. Although myelin thickness was reduced and some axons were demyelinated, the majority of axons were wrapped by intact myelin sheaths that appeared structurally normal. However, late onset of progressive axonal degeneration, accompanied by astrogliosis, microglial activation, partial loss of oligodendrocytes, and functional impairment, occurred in the adult mice lacking ERK1/2 activity. Conditional ablation of Fibroblast Growth Factor receptors-1 and -2 (FGFR1/2) in oligodendrocytes also resulted in downregulation of myelin gene expression and development of axonal degeneration as the mice aged. Further, the level of the key transcription factor myelin gene regulatory factor (Myrf) was downregulated or upregulated in mice with genetic loss or gain of ERK1/2 function, respectively. Together, our studies demonstrate that ERK1/2-MAPK signaling is required for the long-term maintenance of myelin and axonal integrity in the adult CNS and suggest that FGFR1/2 and Myrf may, in part, contribute to signaling upstream and downstream of ERK1/2 in maintaining these oligodendrocyte functions during adulthood. PMID:25429144

  11. Axonal neuregulin 1 type III activates NF-kappaB in Schwann cells during myelin formation.

    PubMed

    Limpert, Allison S; Carter, Bruce D

    2010-05-28

    The formation of myelin requires a series of complex signaling events initiated by the axon to surrounding glial cells, which ultimately respond by tightly wrapping the axon with layers of specialized plasma membrane thereby allowing for saltatory conduction. Activation of the transcription factor NF-kappaB in Schwann cells has been suggested to be critical for these cells to differentiate into a myelinating phenotype; however, the mechanisms by which it is activated have yet to be elucidated. Here, we demonstrate that axonal membranes are sufficient to promote NF-kappaB activation in cultured Schwann cells and identify neuregulin 1 (NRG1), specifically the membrane-bound type III isoform, as the signal responsible for activating this transcription factor. Surprisingly, neither membrane-bound type I nor the soluble NRG1 EGF domain could activate NF-kappaB, indicating that type III induces a qualitatively unique signal. The transcriptional activity of NF-kappaB was significantly enhanced by treatment with forskolin, indicating these two signals converge for maximal activation. Both ErbB2 and -3 receptors were required for transducing the NRG1 signal, because gene deletion of ErbB3 in Schwann cells or treatment with the ErbB2 selective inhibitor, PKI-166, prevented the stimulation of NF-kappaB by axonal membranes. Finally, PKI-166 blocked the activation of the transcription factor in myelinating neuron/Schwann cell co-cultures and in vivo, in developing sciatic nerves. Taken together, these data establish NRG1 type III as the activator of NF-kappaB during myelin formation. PMID:20360002

  12. The occurrence of diffuse axonal injury in the brain: associated with the accumulation and clearance of myelin debris

    PubMed Central

    Wen, Liang; Xu, Jun; Zhan, Tianxiang; Wang, Hao; Huang, Xin; Liu, Wenchao; Yang, Xiaofeng; Zhan, Renya

    2014-01-01

    The accumulation of myelin debris may be a major contributor to the inflammatory response after diffuse axonal injury. In this study, we examined the accumulation and clearance of myelin debris in a rat model of diffuse axonal injury. Oil Red O staining was performed on sections from the cerebral cortex, hippocampus and brain stem to identify the myelin debris. Seven days after diffuse axonal injury, many Oil Red O-stained particles were observed in the cerebral cortex, hippocampus and brain stem. In the cerebral cortex and hippocampus, the amount of myelin debris peaked at 14 days after injury, and decreased significantly at 28 days. In the brain stem, the amount of myelin debris peaked at 7 days after injury, and decreased significantly at 14 and 28 days. In the cortex and hippocampus, some myelin debris could still be observed at 28 days after diffuse axonal injury. Our findings suggest that myelin debris may persist in the rat central nervous system after diffuse axonal injury, which would hinder recovery. PMID:25558240

  13. alphaII-spectrin is essential for assembly of the nodes of Ranvier in myelinated axons.

    PubMed

    Voas, Matthew G; Lyons, David A; Naylor, Stephen G; Arana, Naomi; Rasband, Matthew N; Talbot, William S

    2007-03-20

    Saltatory conduction in myelinated axons requires organization of the nodes of Ranvier, where voltage-gated sodium channels are prominently localized [1]. Previous results indicate that alphaII-spectrin, a component of the cortical cytoskeleton [2], is enriched at the paranodes [3, 4], which flank the node of Ranvier, but alphaII-spectrin's function has not been investigated. Starting with a genetic screen in zebrafish, we discovered in alphaII-spectrin (alphaII-spn) a mutation that disrupts nodal sodium-channel clusters in myelinated axons of the PNS and CNS. In alphaII-spn mutants, the nodal sodium-channel clusters are reduced in number and disrupted at early stages. Analysis of chimeric animals indicated that alphaII-spn functions autonomously in neurons. Ultrastructural studies show that myelin forms in the posterior lateral line nerve and in the ventral spinal cord in alphaII-spn mutants and that the node is abnormally long; these findings indicate that alphaII-spn is required for the assembly of a mature node of the correct length. We find that alphaII-spectrin is enriched in nodes and paranodes at early stages and that the nodal expression diminishes as nodes mature. Our results provide functional evidence that alphaII-spectrin in the axonal cytoskeleton is essential for stabilizing nascent sodium-channel clusters and assembling the mature node of Ranvier. PMID:17331725

  14. Subtle Paranodal Injury Slows Impulse Conduction in a Mathematical Model of Myelinated Axons

    PubMed Central

    Babbs, Charles F.; Shi, Riyi

    2013-01-01

    This study explores in detail the functional consequences of subtle retraction and detachment of myelin around the nodes of Ranvier following mild-to-moderate crush or stretch mediated injury. An equivalent electrical circuit model for a series of equally spaced nodes of Ranvier was created incorporating extracellular and axonal resistances, paranodal resistances, nodal capacitances, time varying sodium and potassium currents, and realistic resting and threshold membrane potentials in a myelinated axon segment of 21 successive nodes. Differential equations describing membrane potentials at each nodal region were solved numerically. Subtle injury was simulated by increasing the width of exposed nodal membrane in nodes 8 through 20 of the model. Such injury diminishes action potential amplitude and slows conduction velocity from 19.1 m/sec in the normal region to 7.8 m/sec in the crushed region. Detachment of paranodal myelin, exposing juxtaparanodal potassium channels, decreases conduction velocity further to 6.6 m/sec, an effect that is partially reversible with potassium ion channel blockade. Conduction velocity decreases as node width increases or as paranodal resistance falls. The calculated changes in conduction velocity with subtle paranodal injury agree with experimental observations. Nodes of Ranvier are highly effective but somewhat fragile devices for increasing nerve conduction velocity and decreasing reaction time in vertebrate animals. Their fundamental design limitation is that even small mechanical retractions of myelin from very narrow nodes or slight loosening of paranodal myelin, which are difficult to notice at the light microscopic level of observation, can cause large changes in myelinated nerve conduction velocity. PMID:23844090

  15. Journey to the skin: Somatosensory peripheral axon guidance and morphogenesis.

    PubMed

    Wang, Fang; Julien, Donald P; Sagasti, Alvaro

    2013-01-01

    The peripheral axons of vertebrate tactile somatosensory neurons travel long distances from ganglia just outside the central nervous system to the skin. Once in the skin these axons form elaborate terminals whose organization must be regionally patterned to detect and accurately localize different kinds of touch stimuli. This review describes key studies that identified choice points for somatosensory axon growth cones and the extrinsic molecular cues that function at each of those steps. While much has been learned in the past 20 years about the guidance of these axons, there is still much to be learned about how the peripheral axons of different kinds of somatosensory neurons adopt different trajectories and form specific terminal structures. PMID:23670092

  16. Specificity of peripheral nerve regeneration: interactions at the axon level.

    PubMed

    Allodi, Ilary; Udina, Esther; Navarro, Xavier

    2012-07-01

    Peripheral nerves injuries result in paralysis, anesthesia and lack of autonomic control of the affected body areas. After injury, axons distal to the lesion are disconnected from the neuronal body and degenerate, leading to denervation of the peripheral organs. Wallerian degeneration creates a microenvironment distal to the injury site that supports axonal regrowth, while the neuron body changes in phenotype to promote axonal regeneration. The significance of axonal regeneration is to replace the degenerated distal nerve segment, and achieve reinnervation of target organs and restitution of their functions. However, axonal regeneration does not always allows for adequate functional recovery, so that after a peripheral nerve injury, patients do not recover normal motor control and fine sensibility. The lack of specificity of nerve regeneration, in terms of motor and sensory axons regrowth, pathfinding and target reinnervation, is one the main shortcomings for recovery. Key factors for successful axonal regeneration include the intrinsic changes that neurons suffer to switch their transmitter state to a pro-regenerative state and the environment that the axons find distal to the lesion site. The molecular mechanisms implicated in axonal regeneration and pathfinding after injury are complex, and take into account the cross-talk between axons and glial cells, neurotrophic factors, extracellular matrix molecules and their receptors. The aim of this review is to look at those interactions, trying to understand if some of these molecular factors are specific for motor and sensory neuron growth, and provide the basic knowledge for potential strategies to enhance and guide axonal regeneration and reinnervation of adequate target organs. PMID:22609046

  17. Peripheral nerve axons contain machinery for co-translational secretion of axonally-generated proteins.

    PubMed

    Merianda, Tanuja; Twiss, Jeffery

    2013-08-01

    The axonal compartment of developing neurons and mature peripheral nervous system (PNS) neurons has the capacity to locally synthesize proteins. Axonally-synthesized proteins have been shown to facilitate axonal pathfinding and maintenance in developing central nervous system (CNS) and PNS neurons, and to facilitate the regeneration of mature PNS neurons. RNA-profiling studies of the axons of cultured neurons have shown a surprisingly complex population of mRNAs that encode proteins for a myriad of functions. Although classic-appearing rough endoplasmic reticulum (RER), smooth endoplasmic reticulum (ER) and Golgi apparatus have not been documented in axons by ultrastructural studies, axonal RNA profiling studies show several membrane and secreted protein-encoding mRNAs whose translation products would need access to a localized secretory mechanism. We previously showed that the axons of cultured neurons contain functional equivalents of RER and Golgi apparatus. Here, we show that markers for the signal-recognition particle, RER, ER, and Golgi apparatus are present in PNS axons in vivo. Co-localization of these proteins mirrors that seen for cultured axons where locally-translated proteins are localized to the axoplasmic membrane. Moreover, nerve injury increases the levels and/or aggregation of these proteins, suggesting that the regenerating axon has an increased capacity for membrane targeting of locally synthesized proteins. PMID:23839054

  18. Japanese neuropathy patients with peripheral myelin protein-22 gene aneuploidy

    SciTech Connect

    Lebo, R.V.; Li, L.Y.; Flandermeyer, R.R.

    1994-09-01

    Peripheral myelin protein (PMP-22) gene aneuploidy results in Charcot-Marie-Tooth disease Type 1A (CMT1A) and the Hereditary Neuropathy with Liability to Pressure Palsy (HNPP) in Japanese patients as well as Caucasian Americans. Charcot-Marie-Tooth disease (CMT), the most common genetic neuropathy, results when expression of one of at least seven genes is defective. CMT1A, about half of all CMT mutations, is usually associated with a duplication spanning the peripheral myelin protein-22 gene on distal chromosome band 17p11.2. Autosomal dominant HNPP (hereditary pressure and sensory neuropathy, HPSN) results from a deletion of the CMT1A gene region. Multicolor in situ hybridization with PMP-22 gene region probe characterized HNPP deletion reliably and detected all different size duplications reported previously. In summary, 72% of 28 Japanese CMT1 (HMSNI) patients tested had the CMT1A duplication, while none of the CMT2 (HMSNII) or CMT3 (HMSNIII) patients had a duplication. Three cases of HNPP were identified by deletion of the CMT1A gene region on chromosome 17p. HNPP and CMT1A have been reported to result simultaneously from the same unequal recombination event. The lower frequency of HNPP compared to CMT1A suggests that HNPP patients have a lower reproductive fitness than CMT1A patients. This result, along with a CMT1A duplication found in an Asian Indian family, demonstrates the broad geographic distribution and high frequency of PMP-22 gene aneuploidy.

  19. Salvianolic acid B protects the myelin sheath around injured spinal cord axons.

    PubMed

    Zhu, Zhe; Ding, Lu; Qiu, Wen-Feng; Wu, Hong-Fu; Li, Rui

    2016-03-01

    Salvianolic acid B, an active pharmaceutical compound present in Salvia miltiorrhiza, exerts a neuroprotective effect in animal models of brain and spinal cord injury. Salvianolic acid B can promote recovery of neurological function; however, its protective effect on the myelin sheath after spinal cord injury remains poorly understood. Thus, in this study, in vitro tests showed that salvianolic acid B contributed to oligodendrocyte precursor cell differentiation, and the most effective dose was 20 μg/mL. For in vivo investigation, rats with spinal cord injury were intraperitoneally injected with 20 mg/kg salvianolic acid B for 8 weeks. The amount of myelin sheath and the number of regenerating axons increased, neurological function recovered, and caspase-3 expression was decreased in the spinal cord of salvianolic acid B-treated animals compared with untreated control rats. These results indicate that salvianolic acid B can protect axons and the myelin sheath, and can promote the recovery of neurological function. Its mechanism of action is likely to be associated with inhibiting apoptosis and promoting the differentiation and maturation of oligodendrocyte precursor cells. PMID:27127491

  20. Salvianolic acid B protects the myelin sheath around injured spinal cord axons

    PubMed Central

    Zhu, Zhe; Ding, Lu; Qiu, Wen-feng; Wu, Hong-fu; Li, Rui

    2016-01-01

    Salvianolic acid B, an active pharmaceutical compound present in Salvia miltiorrhiza, exerts a neuroprotective effect in animal models of brain and spinal cord injury. Salvianolic acid B can promote recovery of neurological function; however, its protective effect on the myelin sheath after spinal cord injury remains poorly understood. Thus, in this study, in vitro tests showed that salvianolic acid B contributed to oligodendrocyte precursor cell differentiation, and the most effective dose was 20 μg/mL. For in vivo investigation, rats with spinal cord injury were intraperitoneally injected with 20 mg/kg salvianolic acid B for 8 weeks. The amount of myelin sheath and the number of regenerating axons increased, neurological function recovered, and caspase-3 expression was decreased in the spinal cord of salvianolic acid B-treated animals compared with untreated control rats. These results indicate that salvianolic acid B can protect axons and the myelin sheath, and can promote the recovery of neurological function. Its mechanism of action is likely to be associated with inhibiting apoptosis and promoting the differentiation and maturation of oligodendrocyte precursor cells. PMID:27127491

  1. Fenestration nodes and the wide submyelinic space form the basis for the unusually fast impulse conduction of shrimp myelinated axons.

    PubMed

    Xu, K; Terakawa, S

    1999-08-01

    Saltatory impulse conduction in invertebrates is rare and has only been found in a few giant nerve fibres, such as the pairs of medial giant fibres with a compact multilayered myelin sheath found in shrimps (Penaeus chinensis and Penaeus japonicus) and the median giant fibre with a loose multilayered myelin sheath found in the earthworm Lumbricus terrestris. Small regions of these nerve fibres are not covered by a myelin sheath and serve as functional nodes for saltatory conduction. Remarkably, shrimp giant nerve fibres have conduction speeds of more than 200 m s-1, making them among the fastest-conducting fibres recorded, even when compared with vertebrate myelinated fibres. A common nodal structure for saltatory conduction has recently been found in the myelinated nerve fibres of the nervous systems of at least six species of Penaeus shrimp, including P. chinensis and P. japonicus. This novel node consists of fenestrated openings that are regularly spaced in the myelin sheath and are designated as fenestration nodes. The myelinated nerve fibres of the Penaeus shrimp also speed impulse conduction by broadening the gap between the axon and the myelin sheath rather than by enlarging the axon diameter as in other invertebrates. In this review, we document and discuss some of the structural and functional characteristics of the myelinated nerve fibres of Penaeus shrimp: (1) the fenestration node, which enables saltatory conduction, (2) a new type of compact multilayered myelin sheath, (3) the unique microtubular sheath that tightly surrounds the axon, (4) the extraordinarily wide space present between the microtubular sheath and the myelin sheath and (5) the main factors contributing to the fastest impulse conduction velocity so far recorded in the Animal Kingdom. PMID:10395528

  2. The onset and rate of myelination in six peripheral and autonomic nerves of the rat.

    PubMed Central

    Schäfer, K; Friede, R L

    1988-01-01

    A light and electron microscopic study was carried out of the numbers of myelinated fibres in 6 nerves of the rat for 7 age groups from birth to 73 weeks. The hypoglossal nerve and the mandibular branch of the facial nerve had short and early myelination periods, essentially complete by the second week. The glossopharyngeal nerve and the sympathetic rami communicantes myelinated late and over a protracted period. Myelination of the rami communicantes continued up to 20 weeks, followed by a marked loss of fibres in the 73 week animals. Intercostal and saphenous nerves had intermediary patterns. There was evidence of subpopulations myelinating at different times. Measurements of myelin sheath thickness showed variations of relative sheath thickness with age, between nerves and for subpopulations of nerves. Late myelination corresponded to relatively thin myelin sheaths. Statistical two-stage-density cluster analysis by computer was used for analysing complex fibre populations. The developmental changes of three subpopulations of the intercostal nerve are documented. Nerves also differed in their rates of axon growth. The increment in axon calibre was small and late for sympathetic fibres. Intercostal and facial nerve fibres had rapid axon growth with different growth rates for subpopulations. PMID:3248966

  3. Data supporting the role of Fyn in initiating myelination in the peripheral nervous system

    PubMed Central

    Miyamoto, Yuki; Tamano, Moe; Torii, Tomohiro; Kawahara, Kazuko; Nakamura, Kazuaki; Tanoue, Akito; Takada, Shuji; Yamauchi, Junji

    2016-01-01

    Transgenic mice, which express active Fyn tyrosine kinase under the control of a glial fibrillary acidic protein promoter, have been produced. This promoter induces protein expression in the initiation stage of myelination in the peripheral nervous system (PNS) “Phosphorylation of cytohesin-1 by Fyn is required for initiation of myelination and the extent of myelination during development (Yamauchi et al., 2015 [1])”. Herein we provide the data regarding myelination-related protein markers and myelin ultrastructure in transgenic mice. PMID:27115022

  4. Early axonal damage and progressive myelin pathology define the kinetics of CNS histopathology in a mouse model of multiple sclerosis.

    PubMed

    Recks, Mascha S; Stormanns, Eva R; Bader, Jonas; Arnhold, Stefan; Addicks, Klaus; Kuerten, Stefanie

    2013-10-01

    Studies of MS histopathology are largely dependent on suitable animal models. While light microscopic analysis gives an overview of tissue pathology, it falls short in evaluating detailed changes in nerve fiber morphology. The ultrastructural data presented here and obtained from studies of myelin oligodendrocyte glycoprotein (MOG):35-55-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice delineate that axonal damage and myelin pathology follow different kinetics in the disease course. While myelin pathology accumulated with disease progression, axonal damage coincided with the initial clinical disease symptoms and remained stable over time. This pattern applied both to irreversible axolysis and early axonal pathology. Notably, these histopathological patterns were reflected by the normal-appearing white matter (NAWM), suggesting that the NAWM is also in an active neurodegenerative state. The data underline the need for neuroprotection in MS and suggest the MOG model as a highly valuable tool for the assessment of different therapeutic strategies. PMID:23899992

  5. A regenerative microchannel neural interface for recording from and stimulating peripheral axons in vivo

    NASA Astrophysics Data System (ADS)

    FitzGerald, James J.; Lago, Natalia; Benmerah, Samia; Serra, Jordi; Watling, Christopher P.; Cameron, Ruth E.; Tarte, Edward; Lacour, Stéphanie P.; McMahon, Stephen B.; Fawcett, James W.

    2012-02-01

    Neural interfaces are implanted devices that couple the nervous system to electronic circuitry. They are intended for long term use to control assistive technologies such as muscle stimulators or prosthetics that compensate for loss of function due to injury. Here we present a novel design of interface for peripheral nerves. Recording from axons is complicated by the small size of extracellular potentials and the concentration of current flow at nodes of Ranvier. Confining axons to microchannels of ˜100 µm diameter produces amplified potentials that are independent of node position. After implantation of microchannel arrays into rat sciatic nerve, axons regenerated through the channels forming ‘mini-fascicles’, each typically containing ˜100 myelinated fibres and one or more blood vessels. Regenerated motor axons reconnected to distal muscles, as demonstrated by the recovery of an electromyogram and partial prevention of muscle atrophy. Efferent motor potentials and afferent signals evoked by muscle stretch or cutaneous stimulation were easily recorded from the mini-fascicles and were in the range of 35-170 µV. Individual motor units in distal musculature were activated from channels using stimulus currents in the microampere range. Microchannel interfaces are a potential solution for applications such as prosthetic limb control or enhancing recovery after nerve injury.

  6. A regenerative microchannel neural interface for recording from and stimulating peripheral axons in vivo.

    PubMed

    FitzGerald, James J; Lago, Natalia; Benmerah, Samia; Serra, Jordi; Watling, Christopher P; Cameron, Ruth E; Tarte, Edward; Lacour, Stéphanie P; McMahon, Stephen B; Fawcett, James W

    2012-02-01

    Neural interfaces are implanted devices that couple the nervous system to electronic circuitry. They are intended for long term use to control assistive technologies such as muscle stimulators or prosthetics that compensate for loss of function due to injury. Here we present a novel design of interface for peripheral nerves. Recording from axons is complicated by the small size of extracellular potentials and the concentration of current flow at nodes of Ranvier. Confining axons to microchannels of ~100 µm diameter produces amplified potentials that are independent of node position. After implantation of microchannel arrays into rat sciatic nerve, axons regenerated through the channels forming 'mini-fascicles', each typically containing ~100 myelinated fibres and one or more blood vessels. Regenerated motor axons reconnected to distal muscles, as demonstrated by the recovery of an electromyogram and partial prevention of muscle atrophy. Efferent motor potentials and afferent signals evoked by muscle stretch or cutaneous stimulation were easily recorded from the mini-fascicles and were in the range of 35-170 µV. Individual motor units in distal musculature were activated from channels using stimulus currents in the microampere range. Microchannel interfaces are a potential solution for applications such as prosthetic limb control or enhancing recovery after nerve injury. PMID:22258138

  7. BMP7 retards peripheral myelination by activating p38 MAPK in Schwann cells

    PubMed Central

    Liu, Xiaoyu; Zhao, Yahong; Peng, Su; Zhang, Shuqiang; Wang, Meihong; Chen, Yeyue; Zhang, Shan; Yang, Yumin; Sun, Cheng

    2016-01-01

    Schwann cell (SC) myelination is pivotal for the proper physiological functioning of the nervous system, but the underlying molecular mechanism remains less well understood. Here, we showed that the expression of bone morphogenetic protein 7 (BMP7) inversely correlates with myelin gene expression during peripheral myelination, which suggests that BMP7 is likely a negative regulator for myelin gene expression. Our experiments further showed that the application of BMP7 attenuates the cAMP induced myelin gene expression in SCs. Downstream pathway analysis suggested that both p38 MAPK and SMAD are activated by exogenous BMP7 in SCs. The pharmacological intervention and gene silence studies revealed that p38 MAPK, not SMAD, is responsible for BMP7-mediated suppression of myelin gene expression. In addition, c-Jun, a potential negative regulator for peripheral myelination, was up-regulated by BMP7. In vivo experiments showed that BMP7 treatment greatly impaired peripheral myelination in newborn rats. Together, our results established that BMP7 is a negative regulator for peripheral myelin gene expression and that p38 MAPK/c-Jun axis might be the main downstream target of BMP7 in this process. PMID:27491681

  8. BMP7 retards peripheral myelination by activating p38 MAPK in Schwann cells.

    PubMed

    Liu, Xiaoyu; Zhao, Yahong; Peng, Su; Zhang, Shuqiang; Wang, Meihong; Chen, Yeyue; Zhang, Shan; Yang, Yumin; Sun, Cheng

    2016-01-01

    Schwann cell (SC) myelination is pivotal for the proper physiological functioning of the nervous system, but the underlying molecular mechanism remains less well understood. Here, we showed that the expression of bone morphogenetic protein 7 (BMP7) inversely correlates with myelin gene expression during peripheral myelination, which suggests that BMP7 is likely a negative regulator for myelin gene expression. Our experiments further showed that the application of BMP7 attenuates the cAMP induced myelin gene expression in SCs. Downstream pathway analysis suggested that both p38 MAPK and SMAD are activated by exogenous BMP7 in SCs. The pharmacological intervention and gene silence studies revealed that p38 MAPK, not SMAD, is responsible for BMP7-mediated suppression of myelin gene expression. In addition, c-Jun, a potential negative regulator for peripheral myelination, was up-regulated by BMP7. In vivo experiments showed that BMP7 treatment greatly impaired peripheral myelination in newborn rats. Together, our results established that BMP7 is a negative regulator for peripheral myelin gene expression and that p38 MAPK/c-Jun axis might be the main downstream target of BMP7 in this process. PMID:27491681

  9. Activation of the unfolded protein response promotes axonal regeneration after peripheral nerve injury.

    PubMed

    Oñate, Maritza; Catenaccio, Alejandra; Martínez, Gabriela; Armentano, Donna; Parsons, Geoffrey; Kerr, Bredford; Hetz, Claudio; Court, Felipe A

    2016-01-01

    Although protein-folding stress at the endoplasmic reticulum (ER) is emerging as a driver of neuronal dysfunction in models of spinal cord injury and neurodegeneration, the contribution of this pathway to peripheral nerve damage remains poorly explored. Here we targeted the unfolded protein response (UPR), an adaptive reaction against ER stress, in mouse models of sciatic nerve injury and found that ablation of the transcription factor XBP1, but not ATF4, significantly delay locomotor recovery. XBP1 deficiency led to decreased macrophage recruitment, a reduction in myelin removal and axonal regeneration. Conversely, overexpression of XBP1s in the nervous system in transgenic mice enhanced locomotor recovery after sciatic nerve crush, associated to an improvement in key pro-regenerative events. To assess the therapeutic potential of UPR manipulation to axonal regeneration, we locally delivered XBP1s or an shRNA targeting this transcription factor to sensory neurons of the dorsal root ganglia using a gene therapy approach and found an enhancement or reduction of axonal regeneration in vivo, respectively. Our results demonstrate a functional role of specific components of the ER proteostasis network in the cellular changes associated to regeneration and functional recovery after peripheral nerve injury. PMID:26906090

  10. Activation of the unfolded protein response promotes axonal regeneration after peripheral nerve injury

    PubMed Central

    Oñate, Maritza; Catenaccio, Alejandra; Martínez, Gabriela; Armentano, Donna; Parsons, Geoffrey; Kerr, Bredford; Hetz, Claudio; Court, Felipe A.

    2016-01-01

    Although protein-folding stress at the endoplasmic reticulum (ER) is emerging as a driver of neuronal dysfunction in models of spinal cord injury and neurodegeneration, the contribution of this pathway to peripheral nerve damage remains poorly explored. Here we targeted the unfolded protein response (UPR), an adaptive reaction against ER stress, in mouse models of sciatic nerve injury and found that ablation of the transcription factor XBP1, but not ATF4, significantly delay locomotor recovery. XBP1 deficiency led to decreased macrophage recruitment, a reduction in myelin removal and axonal regeneration. Conversely, overexpression of XBP1s in the nervous system in transgenic mice enhanced locomotor recovery after sciatic nerve crush, associated to an improvement in key pro-regenerative events. To assess the therapeutic potential of UPR manipulation to axonal regeneration, we locally delivered XBP1s or an shRNA targeting this transcription factor to sensory neurons of the dorsal root ganglia using a gene therapy approach and found an enhancement or reduction of axonal regeneration in vivo, respectively. Our results demonstrate a functional role of specific components of the ER proteostasis network in the cellular changes associated to regeneration and functional recovery after peripheral nerve injury. PMID:26906090

  11. Mechanisms of distal axonal degeneration in peripheral neuropathies.

    PubMed

    Cashman, Christopher R; Höke, Ahmet

    2015-06-01

    Peripheral neuropathy is a common complication of a variety of diseases and treatments, including diabetes, cancer chemotherapy, and infectious causes (HIV, hepatitis C, and Campylobacter jejuni). Despite the fundamental difference between these insults, peripheral neuropathy develops as a combination of just six primary mechanisms: altered metabolism, covalent modification, altered organelle function and reactive oxygen species formation, altered intracellular and inflammatory signaling, slowed axonal transport, and altered ion channel dynamics and expression. All of these pathways converge to lead to axon dysfunction and symptoms of neuropathy. The detailed mechanisms of axon degeneration itself have begun to be elucidated with studies of animal models with altered degeneration kinetics, including the slowed Wallerian degeneration (Wld(S)) and Sarm knockout animal models. These studies have shown axonal degeneration to occur through a programmed pathway of injury signaling and cytoskeletal degradation. Insights into the common disease insults that converge on the axonal degeneration pathway promise to facilitate the development of therapeutics that may be effective against other mechanisms of neurodegeneration. PMID:25617478

  12. Mechanisms of Distal Axonal Degeneration in Peripheral Neuropathies

    PubMed Central

    Cashman, Christopher R.; Höke, Ahmet

    2015-01-01

    Peripheral neuropathy is a common complication of a variety of diseases and treatments, including diabetes, cancer chemotherapy, and infectious causes (HIV, hepatitis C, and Campylobacter jejuni). Despite the fundamental difference between these insults, peripheral neuropathy develops as a combination of just six primary mechanisms: altered metabolism, covalent modification, altered organelle function and reactive oxygen species formation, altered intracellular and inflammatory signaling, slowed axonal transport, and altered ion channel dynamics and expression. All of these pathways converge to lead to axon dysfunction and symptoms of neuropathy. The detailed mechanisms of axon degeneration itself have begun to be elucidated with studies of animal models with altered degeneration kinetics, including the slowed Wallerian degeneration (Wlds) and Sarmknockout animal models. These studies have shown axonal degeneration to occur througha programmed pathway of injury signaling and cytoskeletal degradation. Insights into the common disease insults that converge on the axonal degeneration pathway promise to facilitate the development of therapeutics that may be effective against other mechanisms of neurodegeneration. PMID:25617478

  13. Genetically induced adult oligodendrocyte cell death is associated with poor myelin clearance, reduced remyelination, and axonal damage.

    PubMed

    Pohl, Hartmut B F; Porcheri, Cristina; Mueggler, Thomas; Bachmann, Lukas C; Martino, Gianvito; Riethmacher, Dieter; Franklin, Robin J M; Rudin, Markus; Suter, Ueli

    2011-01-19

    Loss of oligodendrocytes is a feature of many demyelinating diseases including multiple sclerosis. Here, we have established and characterized a novel model of genetically induced adult oligodendrocyte death. Specific primary loss of adult oligodendrocytes leads to a well defined and highly reproducible course of disease development that can be followed longitudinally by magnetic resonance imaging. Histological and ultrastructural analyses revealed progressive myelin vacuolation, in parallel to disease development that includes motor deficits, tremor, and ataxia. Myelin damage and clearance were associated with induction of oligodendrocyte precursor cell proliferation, albeit with some regional differences. Remyelination was present in the mildly affected corpus callosum. Consequences of acutely induced cell death of adult oligodendrocytes included secondary axonal damage. Microglia were activated in affected areas but without significant influx of B-cells, T-helper cells, or T-cytotoxic cells. Analysis of the model on a RAG-1 (recombination activating gene-1)-deficient background, lacking functional lymphocytes, did not change the observed disease and pathology compared with immune-competent mice. We conclude that this model provides the opportunity to study the consequences of adult oligodendrocyte death in the absence of primary axonal injury and reactive cells of the adaptive immune system. Our results indicate that if the blood-brain barrier is not disrupted, myelin debris is not removed efficiently, remyelination is impaired, and axonal integrity is compromised, likely as the result of myelin detachment. This model will allow the evaluation of strategies aimed at improving remyelination to foster axon protection. PMID:21248132

  14. Exposure to As, Cd and Pb-mixture impairs myelin and axon development in rat brain, optic nerve and retina

    SciTech Connect

    Rai, Nagendra Kumar; Ashok, Anushruti; Rai, Asit; Tripathi, Sachin; Nagar, Geet Kumar; Mitra, Kalyan; Bandyopadhyay, Sanghamitra

    2013-12-01

    Arsenic (As), lead (Pb) and cadmium (Cd) are the major metal contaminants of ground water in India. We have reported the toxic effect of their mixture (metal mixture, MM), at human relevant doses, on developing rat astrocytes. Astrocyte damage has been shown to be associated with myelin disintegration in CNS. We, therefore, hypothesized that the MM would perturb myelinating white matter in cerebral cortex, optic nerve (O.N.) and retina. We observed modulation in the levels of myelin and axon proteins, such as myelin basic protein (MBP), proteolipid protein, 2′-, 3′-cyclic-nucleotide-3′-phosphodiesterase, myelin-associated glycoprotein and neurofilament (NF) in the brain of developing rats. Dose and time-dependent synergistic toxic effect was noted. The MBP- and NF-immunolabeling, as well as luxol-fast blue (LFB) staining demonstrated a reduction in the area of intact myelin-fiber, and an increase in vacuolated axons, especially in the corpus-callosum. Transmission electron microscopy (TEM) of O.N. revealed a reduction in myelin thickness and axon-density. The immunolabeling with MBP, NF, and LFB staining in O.N. supported the TEM data. The hematoxylin and eosin staining of retina displayed a decrease in the thickness of nerve-fiber, plexiform-layer, and retinal ganglion cell (RGC) count. Investigating the mechanism revealed a loss in glutamine synthetase activity in the cerebral cortex and O.N., and a fall in the brain derived neurotrophic factor in retina. An enhanced apoptosis in MBP, NF and Brn3b-containing cells justified the diminution in myelinating axons in CNS. Our findings for the first time indicate white matter damage by MM, which may have significance in neurodevelopmental-pediatrics, neurotoxicology and retinal-cell biology. - Highlights: • As, Cd and Pb-mixture, at human relevant dose, demyelinate developing rat CNS. • The attenuation in myelin and axon is synergistic. • The optic nerve and brain demonstrate reduced glutamine synthetase.

  15. Transplantation of Glial Cells Enhances Action Potential Conduction of Amyelinated Spinal Cord Axons in the Myelin-Deficient Rat

    NASA Astrophysics Data System (ADS)

    Utzschneider, David A.; Archer, David R.; Kocsis, Jeffery D.; Waxman, Stephen G.; Duncan, Ian D.

    1994-01-01

    A central issue in transplantation research is to determine how and when transplantation of neural tissue can influence the development and function of the mammalian central nervous system. Of particular interest is whether electrophysiological function in the traumatized or diseased mammalian central nervous system can be improved by the replacement of cellular elements that are missing or damaged. Although it is known that transplantation of neural tissue can lead to functional improvement in models of neurological disease characterized by neuronal loss, less is known about results of transplantation in disorders of myelin. We report here that transplantation of glial cells into the dorsal columns of neonatal myelin-deficient rat spinal cords leads to myelination and a 3-fold increase in conduction velocity. We also show that impulses can propagate into and out of the transplant region and that axons myelinated by transplanted cells do not have impaired frequency-response properties. These results demonstrate that myelination following central nervous system glial cell transplantation enhances action potential conduction in myelin-deficient axons, with conduction velocity approaching normal values.

  16. Neuroactive steroid treatment modulates myelin lipid profile in diabetic peripheral neuropathy.

    PubMed

    Mitro, Nico; Cermenati, Gaia; Brioschi, Elisabetta; Abbiati, Federico; Audano, Matteo; Giatti, Silvia; Crestani, Maurizio; De Fabiani, Emma; Azcoitia, Inigo; Garcia-Segura, Luis Miguel; Caruso, Donatella; Melcangi, Roberto Cosimo

    2014-09-01

    Diabetic peripheral neuropathy causes a decrease in the levels of dihydroprogesterone and 5α-androstane-3α,17β-diol (3α-diol) in the peripheral nerves. These two neuroactive steroids exert protective effects, by mechanisms that still remain elusive. We have previously shown that the activation of Liver X Receptors improves the peripheral neuropathic phenotype in diabetic rats. This protective effect is accompanied by the restoration to control values of the levels of dihydroprogesterone and 3α-diol in peripheral nerves. In addition, activation of these receptors decreases peripheral myelin abnormalities by improving the lipid desaturation capacity, which is strongly blunted by diabetes, and ultimately restores the myelin lipid profile to non-diabetic values. On this basis, we here investigate whether dihydroprogesterone or 3α-diol may exert their protective effects by modulating the myelin lipid profile. We report that both neuroactive steroids act on the lipogenic gene expression profile in the sciatic nerve of diabetic rats, reducing the accumulation of myelin saturated fatty acids and promoting desaturation. These changes were associated with a reduction in myelin structural alterations. These findings provide evidence that dihydroprogesterone and 3α-diol are protective agents against diabetic peripheral neuropathy by regulating the de novo lipogenesis pathway, which positively influences myelin lipid profile. PMID:24607810

  17. BK Channels Localize to the Paranodal Junction and Regulate Action Potentials in Myelinated Axons of Cerebellar Purkinje Cells

    PubMed Central

    Hirono, Moritoshi; Ogawa, Yasuhiro; Misono, Kaori; Zollinger, Daniel R.; Trimmer, James S.

    2015-01-01

    In myelinated axons, K+ channels are clustered in distinct membrane domains to regulate action potentials (APs). At nodes of Ranvier, Kv7 channels are expressed with Na+ channels, whereas Kv1 channels flank nodes at juxtaparanodes. Regulation of axonal APs by K+ channels would be particularly important in fast-spiking projection neurons such as cerebellar Purkinje cells. Here, we show that BK/Slo1 channels are clustered at the paranodal junctions of myelinated Purkinje cell axons of rat and mouse. The paranodal junction is formed by a set of cell-adhesion molecules, including Caspr, between the node and juxtaparanodes in which it separates nodal from internodal membrane domains. Remarkably, only Purkinje cell axons have detectable paranodal BK channels, whose clustering requires the formation of the paranodal junction via Caspr. Thus, BK channels occupy this unique domain in Purkinje cell axons along with the other K+ channel complexes at nodes and juxtaparanodes. To investigate the physiological role of novel paranodal BK channels, we examined the effect of BK channel blockers on antidromic AP conduction. We found that local application of blockers to the axon resulted in a significant increase in antidromic AP failure at frequencies above 100 Hz. We also found that Ni2+ elicited a similar effect on APs, indicating the involvement of Ni2+-sensitive Ca2+ channels. Furthermore, axonal application of BK channel blockers decreased the inhibitory synaptic response in the deep cerebellar nuclei. Thus, paranodal BK channels uniquely support high-fidelity firing of APs in myelinated Purkinje cell axons, thereby underpinning the output of the cerebellar cortex. PMID:25948259

  18. A case of refractory IgG4-related peripheral neuropathy with severe axonal damage.

    PubMed

    Suzuki, Yu; Shiraishi, Makoto; Yamada, Koji; Doi, Masatomo; Kato, Masayuki; Hasegawa, Yasuhiro

    2016-05-31

    A 78-year-old man presented complaining of tingling and pain. Neurological examination revealed dysesthesia and hypothermesthesia below both knees and areflexia in the lower extremities. Laboratory data revealed elevated serum levels of immunoglobulin IgG4 and para-aortic, and mesenteric lymphadenopathy was evident on plain computed tomography of the abdomen. Microscopic findings of a bone marrow biopsy specimen showed occlusion of blood vessels with IgG4-positive plasma cells. IgG4-related disease was diagnosed because the bone marrow biopsy exhibited > 10 IgG4-positive plasma cells per high-power field. Treatment was initiated with prednisolone starting at 30 mg/day, but no improvement in neurological symptoms was achieved. Sural nerve biopsy demonstrated obstructive thromboangiitis with severe loss of myelin and axons. Further investigations are needed to elucidate the relationship between obstructive thromboangiitis and steroid-resistant IgG4-related peripheral neuropathy. PMID:27098901

  19. Signals that initiate myelination in the developing mammalian nervous system.

    PubMed

    Colello, R J; Pott, U

    1997-08-01

    The myelination of axons by oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system is essential for the establishment of saltatory conduction. In the absence or destruction of the myelin sheath, as seen in demyelinating diseases, impulse conduction is impeded resulting in severe sensory and motor deficits. Axon myelination is the culmination of a sequence of events that begins with the differentiation of glial cells and proceeds to the transcription and translation of myelin genes, the elaboration of a myelin sheath, and the recognition and ensheathment of axons. This review examines the regulatory mechanisms for each of these steps and compares and contrasts the role of the axon in initiating myelination in the central and peripheral nervous system. PMID:9396006

  20. Molecular anatomy and genetics of myelin proteins in the peripheral nervous system.

    PubMed Central

    Snipes, G J; Suter, U

    1995-01-01

    Myelin contains a number of proteins, the major examples of which are protein zero (Po), P2 protein, peripheral myelin protein 22 (PMP22), myelin basic proteins (MBPs), myelin-associated glycoprotein (MAG) and the recently described connexin 32 (Cx32). This list is probably still incomplete. The localisation and possible functions of these proteins are reviewed. In the past few years a number of inherited demyelinating neuropathies in mice and the human have been shown to be due to mutations affecting the genes PMP22, Po and Cx32 so that it has become possible to characterise the molecular pathology of the majority of these disorders. This has provided important insights into the relationships between the structure of myelin and the function of its constituent proteins. Images Fig. 1 PMID:7559122

  1. Functional recovery of regenerating motor axons is delayed in mice heterozygously deficient for the myelin protein P(0) gene.

    PubMed

    Rosberg, Mette Romer; Alvarez, Susana; Krarup, Christian; Moldovan, Mihai

    2013-06-01

    Mice with a heterozygous knock-out of the myelin protein P0 gene (P0+/-) develop a neuropathy similar to human Charcot-Marie-Tooth disease. They are indistinguishable from wild-types (WT) at birth and develop a slowly progressing demyelinating neuropathy. The aim of this study was to investigate whether the regeneration capacity of early symptomatic P0+/- is impaired as compared to age matched WT. Right sciatic nerves were lesioned at the thigh in 7-8 months old mice. Tibial motor axons at ankle were investigated by conventional motor conduction studies and axon excitability studies using threshold tracking. To evaluate regeneration we monitored the recovery of motor function after crush, and then compared the fiber distribution by histology. The overall motor performance was investigated using Rotor-Rod. P0+/- had reduced compound motor action potential amplitudes and thinner myelinated axons with only a borderline impairment in conduction and Rotor-Rod. Plantar muscle reinnervation occurred within 21 days in all mice. Shortly after reinnervation the conduction of P0+/- regenerated axons was markedly slower than WT, however, this difference decayed with time. Nevertheless, after 1 month, regenerated P0+/- axons had longer strength-duration time constant, larger threshold changes during hyperpolarizing electrotonus and longer relative refractory period. Their performance at Rotor-Rod remained also markedly impaired. In contrast, the number and diameter distribution of regenerating myelinated fibers became similar to regenerated WT. Our data suggest that in the presence of heterozygously P0 deficient Schwann cells, regenerating motor axons retain their ability to reinnervate their targets and remyelinate, though their functional recovery is delayed. PMID:23564290

  2. Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons.

    PubMed

    Battefeld, Arne; Tran, Baouyen T; Gavrilis, Jason; Cooper, Edward C; Kole, Maarten H P

    2014-03-01

    Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of K(v)7 potassium channels and voltage-gated sodium (Na(v)) channels in the axonal initial segment and nodes of Ranvier. The local biophysical properties of these K(v)7 channels and the functional impact of colocalization with Na(v) channels remain poorly understood. Here, we quantitatively examined K(v)7 channels in myelinated axons of rat neocortical pyramidal neurons using high-resolution confocal imaging and patch-clamp recording. K(v)7.2 and 7.3 immunoreactivity steeply increased within the distal two-thirds of the axon initial segment and was mirrored by the conductance density estimates, which increased from ~12 (proximal) to 150 pS μm(-2) (distal). The axonal initial segment and nodal M-currents were similar in voltage dependence and kinetics, carried by K(v)7.2/7.3 heterotetramers, 4% activated at the resting membrane potential and rapidly activated with single-exponential time constants (~15 ms at 28 mV). Experiments and computational modeling showed that while somatodendritic K(v)7 channels are strongly activated by the backpropagating action potential to attenuate the afterdepolarization and repetitive firing, axonal K(v)7 channels are minimally recruited by the forward-propagating action potential. Instead, in nodal domains K(v)7.2/7.3 channels were found to increase Na(v) channel availability and action potential amplitude by stabilizing the resting membrane potential. Thus, K(v)7 clustering near axonal Na(v) channels serves specific and context-dependent roles, both restraining initiation and enhancing conduction of the action potential. PMID:24599470

  3. Heteromeric Kv7.2/7.3 Channels Differentially Regulate Action Potential Initiation and Conduction in Neocortical Myelinated Axons

    PubMed Central

    Battefeld, Arne; Tran, Baouyen T.; Gavrilis, Jason; Cooper, Edward C.

    2014-01-01

    Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of Kv7 potassium channels and voltage-gated sodium (Nav) channels in the axonal initial segment and nodes of Ranvier. The local biophysical properties of these Kv7 channels and the functional impact of colocalization with Nav channels remain poorly understood. Here, we quantitatively examined Kv7 channels in myelinated axons of rat neocortical pyramidal neurons using high-resolution confocal imaging and patch-clamp recording. Kv7.2 and 7.3 immunoreactivity steeply increased within the distal two-thirds of the axon initial segment and was mirrored by the conductance density estimates, which increased from ∼12 (proximal) to 150 pS μm−2 (distal). The axonal initial segment and nodal M-currents were similar in voltage dependence and kinetics, carried by Kv7.2/7.3 heterotetramers, 4% activated at the resting membrane potential and rapidly activated with single-exponential time constants (∼15 ms at 28 mV). Experiments and computational modeling showed that while somatodendritic Kv7 channels are strongly activated by the backpropagating action potential to attenuate the afterdepolarization and repetitive firing, axonal Kv7 channels are minimally recruited by the forward-propagating action potential. Instead, in nodal domains Kv7.2/7.3 channels were found to increase Nav channel availability and action potential amplitude by stabilizing the resting membrane potential. Thus, Kv7 clustering near axonal Nav channels serves specific and context-dependent roles, both restraining initiation and enhancing conduction of the action potential. PMID:24599470

  4. The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons

    PubMed Central

    Einheber, Steven; Maurel, Patrice; Meng, Xiaosong; Rubin, Marina; Lam, Isabel; Mohandas, Narla; An, Xiuli; Shrager, Peter; Kissil, Joseph; Salzer, James L.

    2012-01-01

    Myelinated axons are organized into specialized domains critical to their function in saltatory conduction, i.e. nodes, paranodes, juxtaparanodes, and internodes. Here, we describe the distribution and role of the 4.1B protein in this organization. 4.1B is expressed by neurons, and at lower levels by Schwann cells, which also robustly express 4.1G. Immunofluorescence and immuno-EM demonstrates 4.1B is expressed subjacent to the axon membrane in all domains except the nodes. Mice deficient in 4.1B have preserved paranodes, based on marker staining and EM in contrast to the juxtaparanodes, which are substantially affected in both the PNS and CNS. The juxtaparanodal defect is evident in developing and adult nerves and is neuron-autonomous based on myelinating cocultures in which wt Schwann cells were grown with 4.1B-deficient neurons. Despite the juxtaparanodal defect, nerve conduction velocity is unaffected. Preservation of paranodal markers in 4.1B deficient mice is associated with, but not dependent on an increase of 4.1R at the axonal paranodes. Loss of 4.1B in the axon is also associated with reduced levels of the internodal proteins, Necl-1 and Necl-2, and of alpha-2 spectrin. Mutant nerves are modestly hypermyelinated and have increased numbers of Schmidt-Lanterman incisures, increased expression of 4.1G, and express a residual, truncated isoform of 4.1B. These results demonstrate that 4.1B is a key cytoskeletal scaffold for axonal adhesion molecules expressed in the juxtaparanodal and internodal domains and, unexpectedly, that it regulates myelin sheath thickness. PMID:23109359

  5. The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons.

    PubMed

    Einheber, Steven; Meng, Xiaosong; Rubin, Marina; Lam, Isabel; Mohandas, Narla; An, Xiuli; Shrager, Peter; Kissil, Joseph; Maurel, Patrice; Salzer, James L

    2013-02-01

    Myelinated axons are organized into specialized domains critical to their function in saltatory conduction, i.e., nodes, paranodes, juxtaparanodes, and internodes. Here, we describe the distribution and role of the 4.1B protein in this organization. 4.1B is expressed by neurons, and at lower levels by Schwann cells, which also robustly express 4.1G. Immunofluorescence and immuno-EM demonstrates 4.1B is expressed subjacent to the axon membrane in all domains except the nodes. Mice deficient in 4.1B have preserved paranodes, based on marker staining and EM in contrast to the juxtaparanodes, which are substantially affected in both the PNS and CNS. The juxtaparanodal defect is evident in developing and adult nerves and is neuron-autonomous based on myelinating cocultures in which wt Schwann cells were grown with 4.1B-deficient neurons. Despite the juxtaparanodal defect, nerve conduction velocity is unaffected. Preservation of paranodal markers in 4.1B deficient mice is associated with, but not dependent on an increase of 4.1R at the axonal paranodes. Loss of 4.1B in the axon is also associated with reduced levels of the internodal proteins, Necl-1 and Necl-2, and of alpha-2 spectrin. Mutant nerves are modestly hypermyelinated and have increased numbers of Schmidt-Lanterman incisures, increased expression of 4.1G, and express a residual, truncated isoform of 4.1B. These results demonstrate that 4.1B is a key cytoskeletal scaffold for axonal adhesion molecules expressed in the juxtaparanodal and internodal domains that unexpectedly regulates myelin sheath thickness. PMID:23109359

  6. Lentiviral Vector-Mediated Gradients of GDNF in the Injured Peripheral Nerve: Effects on Nerve Coil Formation, Schwann Cell Maturation and Myelination

    PubMed Central

    Eggers, Ruben; de Winter, Fred; Hoyng, Stefan A.; Roet, Kasper C. D.; Ehlert, Erich M.; Malessy, Martijn J. A.; Verhaagen, Joost; Tannemaat, Martijn R.

    2013-01-01

    Although the peripheral nerve is capable of regeneration, only a small minority of patients regain normal function after surgical reconstruction of a major peripheral nerve lesion, resulting in a severe and lasting negative impact on the quality of life. Glial cell-line derived neurotrophic factor (GDNF) has potent survival- and outgrowth-promoting effects on motoneurons, but locally elevated levels of GDNF cause trapping of regenerating axons and the formation of nerve coils. This phenomenon has been called the “candy store” effect. In this study we created gradients of GDNF in the sciatic nerve after a ventral root avulsion. This approach also allowed us to study the effect of increasing concentrations of GDNF on Schwann cell proliferation and morphology in the injured peripheral nerve. We demonstrate that lentiviral vectors can be used to create a 4 cm long GDNF gradient in the intact and lesioned rat sciatic nerve. Nerve coils were formed throughout the gradient and the number and size of the nerve coils increased with increasing GDNF levels in the nerve. In the nerve coils, Schwann cell density is increased, their morphology is disrupted and myelination of axons is severely impaired. The total number of regenerated and surviving motoneurons is not enhanced after the distal application of a GDNF gradient, but increased sprouting does result in higher number of motor axon in the distal segment of the sciatic nerve. These results show that lentiviral vector mediated overexpression of GDNF exerts multiple effects on both Schwann cells and axons and that nerve coil formation already occurs at relatively low concentrations of exogenous GDNF. Controlled expression of GDNF, by using a viral vector with regulatable GDNF expression, may be required to avoid motor axon trapping and to prevent the effects on Schwann cell proliferation and myelination. PMID:23951085

  7. Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination

    PubMed Central

    Poitelon, Y.; Bogni, S.; Matafora, V.; Della-Flora Nunes, G.; Hurley, E.; Ghidinelli, M.; Katzenellenbogen, B. S.; Taveggia, C.; Silvestri, N.; Bachi, A.; Sannino, A.; Wrabetz, L.; Feltri, M. L.

    2015-01-01

    Cell–cell interactions promote juxtacrine signals in specific subcellular domains, which are difficult to capture in the complexity of the nervous system. For example, contact between axons and Schwann cells triggers signals required for radial sorting and myelination. Failure in this interaction causes dysmyelination and axonal degeneration. Despite its importance, few molecules at the axo-glial surface are known. To identify novel molecules in axo-glial interactions, we modified the ‘pseudopodia' sub-fractionation system and isolated the projections that glia extend when they receive juxtacrine signals from axons. By proteomics we identified the signalling networks present at the glial-leading edge, and novel proteins, including members of the Prohibitin family. Glial-specific deletion of Prohibitin-2 in mice impairs axo-glial interactions and myelination. We thus validate a novel method to model morphogenesis and juxtacrine signalling, provide insights into the molecular organization of the axo-glial contact, and identify a novel class of molecules in myelination. PMID:26383514

  8. The Lin28/let-7 axis is critical for myelination in the peripheral nervous system

    PubMed Central

    Gökbuget, Deniz; Pereira, Jorge A.; Bachofner, Sven; Marchais, Antonin; Ciaudo, Constance; Stoffel, Markus; Schulte, Johannes H.; Suter, Ueli

    2015-01-01

    MicroRNAs (miRNAs) are crucial regulators of myelination in the peripheral nervous system (PNS). However, the miRNAs species involved and the underlying mechanisms are largely unknown. We found that let-7 miRNAs are highly abundant during PNS myelination and that their levels are inversely correlated to the expression of lin28 homolog B (Lin28B), an antagonist of let-7 accumulation. Sustained expression of Lin28B and consequently reduced levels of let-7 miRNAs results in a failure of Schwann cell myelination in transgenic mouse models and in cell culture. Subsequent analyses revealed that let-7 miRNAs promote expression of the myelination-driving master transcription factor Krox20 (also known as Egr2) through suppression of myelination inhibitory Notch signalling. We conclude that the Lin28B/let-7 axis acts as a critical driver of PNS myelination, in particular by regulating myelination onset, identifying this pathway also as a potential therapeutic target in demyelinating diseases. PMID:26466203

  9. The Lin28/let-7 axis is critical for myelination in the peripheral nervous system.

    PubMed

    Gökbuget, Deniz; Pereira, Jorge A; Bachofner, Sven; Marchais, Antonin; Ciaudo, Constance; Stoffel, Markus; Schulte, Johannes H; Suter, Ueli

    2015-01-01

    MicroRNAs (miRNAs) are crucial regulators of myelination in the peripheral nervous system (PNS). However, the miRNAs species involved and the underlying mechanisms are largely unknown. We found that let-7 miRNAs are highly abundant during PNS myelination and that their levels are inversely correlated to the expression of lin28 homolog B (Lin28B), an antagonist of let-7 accumulation. Sustained expression of Lin28B and consequently reduced levels of let-7 miRNAs results in a failure of Schwann cell myelination in transgenic mouse models and in cell culture. Subsequent analyses revealed that let-7 miRNAs promote expression of the myelination-driving master transcription factor Krox20 (also known as Egr2) through suppression of myelination inhibitory Notch signalling. We conclude that the Lin28B/let-7 axis acts as a critical driver of PNS myelination, in particular by regulating myelination onset, identifying this pathway also as a potential therapeutic target in demyelinating diseases. PMID:26466203

  10. Earthworm extracts facilitate PC12 cell differentiation and promote axonal sprouting in peripheral nerve injury.

    PubMed

    Chen, Chao-Tsung; Lin, Jaung-Geng; Lu, Tung-Wu; Tsai, Fuu-Jen; Huang, Chih-Yang; Yao, Chun-Hsu; Chen, Yueh-Sheng

    2010-01-01

    The present study provides in vitro and in vivo evaluations of earthworm (Pheretima aspergilum) on peripheral nerve regeneration. In the in vitro study, we found the earthworm (EW) water extracts caused a marked enhancement of the nerve growth factor-mediated neurite outgrowth from PC12 cells as well as the expressions of growth associated protein 43 and synapsin I. In the in vivo study, silicone rubber chambers filled with EW extracts were used to bridge a 10 mm sciatic nerve defect in rats. Eight weeks after implantation, the group receiving EW extracts had a much higher success percentage of regeneration (90%) compared to the control (60%) receiving the saline. In addition, quantitative histology of the successfully regenerated nerves revealed that myelinated axons in EW group at 31.25 microg/ml was significantly more than those in the controls (p < 0.05). These results showed that EW extracts can be a potential growth-promoting factor on regenerating peripheral nerves. PMID:20503471

  11. Localization of active sites along the myelinated goldfish Mauthner axon: morphological and pharmacological evidence for saltatory conduction.

    PubMed

    Funch, P G; Wood, M R; Faber, D S

    1984-09-01

    Injections of Lucifer Yellow (LY) and horseradish peroxidase (HRP) were made within the myelin sheath of the goldfish Mauthner axon to determine the domains of individual oligodendrocytes. Long segments of the myelin sheath were stained with both markers. The lengths and locations of these sheath segments were analyzed in whole mount preparations (LY) or in reconstructions of serial vibratome sections (HRP). The termination sites of individual myelin sheaths, relative to gross anatomical landmarks of the brain, were consistent within and between all fish studied. In particular, the average locations of the termination sites were separated by 2.2 to 2.6 mm and corresponded to the brain regions where active site foci have been previously localized electrophysiologically. Individual sheath segments generally spanned the entire distance between adjacent active sites. The node-internode-node structure of the Mauthner axon that is suggested by these findings was further tested by ejecting tetrodotoxin (TTX) at various discrete rostral-caudal locations just outside the fiber. Large all-or-nothing components of the antidromic action potential were rapidly blocked (within seconds) only when the TTX ejections were made within a few hundred micrometers of the active site foci. The amplitudes of these blocked components are also consistent with predictions based upon previous electrophysiological analyses which demonstrated an active site spacing of 2.2 to 2.6 mm, a space constant of 5.0 mm, and a safety factor of 6 for impulse propagation. It is concluded from these morphological, pharmacological, and electrophysiological observations that the Mauthner axon possesses nodes separated by 2.2 to 2.6 mm and that a single oligodendrocyte spans an internodal region. Although nodal ultrastructure remains to be described, these results rule out the possibility that each of the short (approximately 50 micron), closely spaced (average separation = 155 micron) axon collaterals is a site

  12. Optogenetic Control of Targeted Peripheral Axons in Freely Moving Animals

    PubMed Central

    Iyer, Shrivats M.; Deisseroth, Karl; Delp, Scott L.

    2013-01-01

    Optogenetic control of the peripheral nervous system (PNS) would enable novel studies of motor control, somatosensory transduction, and pain processing. Such control requires the development of methods to deliver opsins and light to targeted sub-populations of neurons within peripheral nerves. We report here methods to deliver opsins and light to targeted peripheral neurons and robust optogenetic modulation of motor neuron activity in freely moving, non-transgenic mammals. We show that intramuscular injection of adeno-associated virus serotype 6 enables expression of channelrhodopsin (ChR2) in motor neurons innervating the injected muscle. Illumination of nerves containing mixed populations of axons from these targeted neurons and from neurons innervating other muscles produces ChR2-mediated optogenetic activation restricted to the injected muscle. We demonstrate that an implanted optical nerve cuff is well-tolerated, delivers light to the sciatic nerve, and optically stimulates muscle in freely moving rats. These methods can be broadly applied to study PNS disorders and lay the groundwork for future therapeutic application of optogenetics. PMID:23991144

  13. Effects of halothane and enflurane on firing threshold of frog myelinated axons.

    PubMed Central

    Butterworth, J F; Raymond, S A; Roscoe, R F

    1989-01-01

    1. Firing thresholds and conduction latencies of single myelinated axons in frog sciatic nerves were monitored during impulse activity in vitro. Resting threshold and the activity dependence of threshold were studied as a function of the concentration of two inhalational anaesthetic agents, halothane and enflurane. 2. At concentrations comparable to those obtained during general anaesthesia both agents produced biphasic effects on the resting threshold. A step increase in the partial pressure of anaesthetic was followed first by a transient lowering of threshold, then by a slow rise to a steady-state level above the original baseline. Step decreases in anaesthetic were followed by transient rises before threshold dropped. Transients lasted 20-30 min. During these threshold transients, the average latency of impulse conduction changed monotonically. The prolongation of latency following an increase in anaesthetic was progressive, reaching steady state concurrently with threshold (20 min to greater than 1 h). 3. The anaesthetics reduced the long-lasting increased threshold ('depression') which normally follows repetitive impulse activity in axon membrane. 4. These actions of halothane at concentrations of 0.25-2.7% (0.14-1.54 mM) and enflurane at concentrations of 0.62-3.08% (0.35-1.73 mM) on resting threshold and on the activity-dependent increase in threshold increased monotonically with anaesthetic concentration. 5. The effects on excitability at steady state are consistent with block of voltage-dependent Na+ and K+ channels by these inhalational agents. Reduced depression may occur because the anaesthetics reduce the net ion transfer per impulse, slowing the substrate-driven Na+-K+-ATPase and thereby reducing electrogenic hyper-polarization. 6. The finding that general anaesthetics inhibit depression at clinically relevant concentrations supports the possibility that general anaesthesia is produced by inhibition of processes that modulate excitability of nerve

  14. NT-3 promotes proprioceptive axon regeneration when combined with activation of the mTor intrinsic growth pathway but not with reduction of myelin extrinsic inhibitors.

    PubMed

    Liu, Yingpeng; Kelamangalath, Lakshmi; Kim, Hyukmin; Han, Seung Baek; Tang, Xiaoqing; Zhai, Jinbin; Hong, Jee W; Lin, Shen; Son, Young-Jin; Smith, George M

    2016-09-01

    Although previous studies have identified several strategies to stimulate regeneration of CNS axons, extensive regeneration and functional recovery have remained a major challenge, particularly for large diameter myelinated axons. Within the CNS, myelin is thought to inhibit axon regeneration, while modulating activity of the mTOR pathway promotes regeneration of injured axons. In this study, we examined NT-3 mediated regeneration of sensory axons through the dorsal root entry zone in a triple knockout of myelin inhibitory proteins or after activation of mTOR using a constitutively active (ca) Rheb in DRG neurons to determine the influence of environmental inhibitory or activation of intrinsic growth pathways could enhance NT-3-mediate regeneration. Loss of myelin inhibitory proteins showed modest enhancement of sensory axon regeneration. In mTOR studies, we found a dramatic age related decrease in the mTOR activation as determined by phosphorylation of the downstream marker S6 ribosomal subunit. Expression of caRheb within adult DRG neurons in vitro increased S6 phosphorylation and doubled the overall length of neurite outgrowth, which was reversed in the presence of rapamycin. In adult female rats, combined expression of caRheb in DRG neurons and NT-3 within the spinal cord increased regeneration of sensory axons almost 3 fold when compared to NT-3 alone. Proprioceptive assessment using a grid runway indicates functionally significant regeneration of large-diameter myelinated sensory afferents. Our results indicate that caRheb-induced increase in mTOR activation enhances neurotrophin-3 induced regeneration of large-diameter myelinated axons. PMID:27264357

  15. The cytoskeletal adapter protein 4.1G organizes the internodes in peripheral myelinated nerves

    PubMed Central

    Ivanovic, Aleksandra; Horresh, Ido; Golan, Neev; Spiegel, Ivo; Sabanay, Helena; Frechter, Shahar; Ohno, Shinichi; Terada, Nobuo; Möbius, Wiebke; Rosenbluth, Jack; Brose, Nils

    2012-01-01

    Myelinating Schwann cells regulate the localization of ion channels on the surface of the axons they ensheath. This function depends on adhesion complexes that are positioned at specific membrane domains along the myelin unit. Here we show that the precise localization of internodal proteins depends on the expression of the cytoskeletal adapter protein 4.1G in Schwann cells. Deletion of 4.1G in mice resulted in aberrant distribution of both glial adhesion molecules and axonal proteins that were present along the internodes. In wild-type nerves, juxtaparanodal proteins (i.e., Kv1 channels, Caspr2, and TAG-1) were concentrated throughout the internodes in a double strand that flanked paranodal junction components (i.e., Caspr, contactin, and NF155), and apposes the inner mesaxon of the myelin sheath. In contrast, in 4.1G−/− mice, these proteins “piled up” at the juxtaparanodal region or aggregated along the internodes. These findings suggest that protein 4.1G contributes to the organization of the internodal axolemma by targeting and/or maintaining glial transmembrane proteins along the axoglial interface. PMID:22291039

  16. Gamma-Diketone central neuropathy: quantitative analyses of cytoskeletal components in myelinated axons of the rat rubrospinal tract.

    PubMed

    Lopachin, Richard M; Jortner, Bernard S; Reid, Maria L; Monir, Alim

    2005-12-01

    Loss of axon caliber is a primary component of gamma-diketone neuropathy [LoPachin RM, DeCaprio AP. gamma-Diketone central neuropathy: axon atrophy and the role of cytoskeletal protein adduction. Toxicol Appl Pharmacol 2004;199:20-34]. It is possible that this effect is mediated by changes in the density of cytoskeletal components and corresponding spatial relationships. To examine this possibility, morphometric methods were used to quantify the effects of 2,5-hexanedione (HD) intoxication on neurofilament-microtubule densities and nearest neighbor distances in myelinated rubrospinal axons. Rats were exposed to HD at one of two daily dose-rates (175 or 400 mg/kg per day, gavage) until a moderate level of neurotoxicity was achieved (99 or 21 days of intoxication, respectively) as determined by gait analysis and measurements of hindlimb grip strength. Results indicate that, regardless of dose-rate, HD intoxication did not cause changes in axonal neurofilament (NF) density, but did significantly increase microtubule (MT) density. No consistent alterations in interneurofilament or NF-MT distances were detected by ultrastructural morphometric analyses. These data suggest that the axon atrophy induced by HD was not mediated by major disruptions of stationary cytoskeletal organization. Recent biochemical studies of spinal cord from HD intoxicated rats showed that, although the NF protein content in the stationary cytoskeleton (polymer fraction) was not affected, the mobile subunit pool was depleted substantially [LoPachin RM, He D, Reid ML, Opanashuk LA. 2,5-Hexanedione-induced changes in the monomeric neurofilament protein content of rat spinal cord fractions. Toxicol Appl Pharmacol 2004;198:61-73]. The stability of the polymer fraction during HD intoxication is consistent with the absence of significant ultrastructural modifications noted in the present study. Together, these findings implicate loss of mobile NF proteins as the primary mechanism of axon atrophy. PMID

  17. Peripheral myelin of Xenopus laevis: role of electrostatic and hydrophobic interactions in membrane compaction.

    PubMed

    Luo, XiaoYang; Cerullo, Jana; Dawli, Tamara; Priest, Christina; Haddadin, Zaid; Kim, Angela; Inouye, Hideyo; Suffoletto, Brian P; Avila, Robin L; Lees, Jonathan P B; Sharma, Deepak; Xie, Bo; Costello, Catherine E; Kirschner, Daniel A

    2008-04-01

    P0 glycoprotein is the major structural protein of peripheral nerve myelin where it is thought to modulate inter-membrane adhesion at both the extracellular apposition, which is labile upon changes in pH and ionic strength, and the cytoplasmic apposition, which is resistant to such changes. Most studies on P0 have focused on structure-function correlates in higher vertebrates. Here, we focused on its role in the structure and interactions of frog (Xenopus laevis) myelin, where it exists primarily in a dimeric form. As part of our study, we deduced the full sequence of X. laevis P0 (xP0) from its cDNA. The xP0 sequence was found to be similar to P0 sequences of higher vertebrates, suggesting that a common mechanism of PNS myelin compaction via P0 interaction might have emerged through evolution. As previously reported for mouse PNS myelin, a similar change of extracellular apposition in frog PNS myelin as a function of pH and ionic strength was observed, which can be explained by a conformational change of P0 due to protonation-deprotonation of His52 at P0's putative adhesive interface. On the other hand, the cytoplasmic apposition in frog PNS myelin, like that in the mouse, remained unchanged at different pH and ionic strength. The contribution of hydrophobic interactions to stabilizing the cytoplasmic apposition was tested by incubating sciatic nerves with detergents. Dramatic expansion at the cytoplasmic apposition was observed for both frog and mouse, indicating a common hydrophobic nature at this apposition. Urea also expanded the cytoplasmic apposition of frog myelin likely owing to denaturation of P0. Removal of the fatty acids that attached to the single Cys residue in the cytoplasmic domain of P0 did not change PNS myelin structure of either frog or mouse, suggesting that the P0-attached fatty acyl chain does not play a significant role in PNS myelin compaction and stability. These results help clarify the present understanding of P0's adhesion role and the

  18. Perinatal chronic hypoxia induces cortical inflammation, hypomyelination, and peripheral myelin-specific T cell autoreactivity.

    PubMed

    Ortega, Sterling B; Kong, Xiagmei; Venkataraman, Ramgopal; Savedra, Allen Michael; Kernie, Steven G; Stowe, Ann M; Raman, Lakshmi

    2016-01-01

    pCH is an important risk factor for brain injury and long-term morbidity in children, occurring during the developmental stages of neurogenesis, neuronal migration, and myelination. We show that a rodent model of pCH results in an early decrease in mature myelin. Although pCH does increase progenitor oligodendrocytes in the developing brain, BrdU labeling revealed a loss in dividing progenitor oligodendrocytes, indicating a defect in mature cell replacement and myelinogenesis. Mice continued to exhibited hypomyelination, concomitant with long-term impairment of motor function, weeks after cessation of pCH. The implication of a novel neuroimmunologic interplay, pCH also induced a significant egress of infiltrating CD4 T cells into the developing brain. This pCH-mediated neuroinflammation included oligodendrocyte-directed autoimmunity, with an increase in peripheral myelin-specific CD4 T cells. Thus, both the loss of available, mature, myelin-producing glial cells and an active increase in autoreactive, myelin-specific CD4 T cell infiltration into pCH brains may contribute to early pCH-induced hypomyelination in the developing CNS. The elucidation of potential mechanisms of hypoxia-driven autoimmunity will expand our understanding of the neuroimmune axis during perinatal CNS disease states that may contribute to long-term functional disability. PMID:26038434

  19. Channeling of developing rat corticospinal tract axons by myelin-associated neurite growth inhibitors

    SciTech Connect

    Schwab, M.E.; Schnell, L. )

    1991-03-01

    CNS myelin contains 2 membrane proteins that are potent inhibitors of neurite growth (NI-35 and NI-250). Because myelin formation starts at different times in different regions and tracts of the CNS, this inhibitory property of myelin could serve boundary and guidance functions for late-growing fiber tracts. In the rat, the corticospinal tract (CST) grows into and down the spinal cord during the first 10 postnatal days, in close proximity to the sensory tracts fasciculus cuneatus and gracilis. Immunofluorescence for myelin constituents showed that, in the rostral half of the spinal cord, the myelinating tissue of these ascending tracts surrounds the growing, myelin-free CST in a channellike fashion. Elimination of oligodendrocytes by x-irradiation of the newborn rats, or application of antibody IN-1, which neutralizes the inhibitory substrate property of CNS myelin, resulted in significant anatomical aberration of CST fibers. In particular, the tract was larger in cross-section, and aberrant CST fibers and fascicles intermixed with the neighboring sensory ascending tracts. These results assign an important channeling and guard-rail function to the oligodendrocyte-associated neurite growth inhibitors for the developing CST in the rat spinal cord.

  20. Axons provide the secretory machinery for trafficking of voltage-gated sodium channels in peripheral nerve.

    PubMed

    González, Carolina; Cánovas, José; Fresno, Javiera; Couve, Eduardo; Court, Felipe A; Couve, Andrés

    2016-02-16

    The regulation of the axonal proteome is key to generate and maintain neural function. Fast and slow axoplasmic waves have been known for decades, but alternative mechanisms to control the abundance of axonal proteins based on local synthesis have also been identified. The presence of the endoplasmic reticulum has been documented in peripheral axons, but it is still unknown whether this localized organelle participates in the delivery of axonal membrane proteins. Voltage-gated sodium channels are responsible for action potentials and are mostly concentrated in the axon initial segment and nodes of Ranvier. Despite their fundamental role, little is known about the intracellular trafficking mechanisms that govern their availability in mature axons. Here we describe the secretory machinery in axons and its contribution to plasma membrane delivery of sodium channels. The distribution of axonal secretory components was evaluated in axons of the sciatic nerve and in spinal nerve axons after in vivo electroporation. Intracellular protein trafficking was pharmacologically blocked in vivo and in vitro. Axonal voltage-gated sodium channel mRNA and local trafficking were examined by RT-PCR and a retention-release methodology. We demonstrate that mature axons contain components of the endoplasmic reticulum and other biosynthetic organelles. Axonal organelles and sodium channel localization are sensitive to local blockade of the endoplasmic reticulum to Golgi transport. More importantly, secretory organelles are capable of delivering sodium channels to the plasma membrane in isolated axons, demonstrating an intrinsic capacity of the axonal biosynthetic route in regulating the axonal proteome in mammalian axons. PMID:26839409

  1. Peptide Mimetic of the S100A4 Protein Modulates Peripheral Nerve Regeneration and Attenuates the Progression of Neuropathy in Myelin Protein P0 Null Mice

    PubMed Central

    Moldovan, Mihai; Pinchenko, Volodymyr; Dmytriyeva, Oksana; Pankratova, Stanislava; Fugleholm, Kåre; Klingelhofer, Jorg; Bock, Elisabeth; Berezin, Vladimir; Krarup, Christian; Kiryushko, Darya

    2013-01-01

    We recently found that S100A4, a member of the multifunctional S100 protein family, protects neurons in the injured brain and identified two sequence motifs in S100A4 mediating its neurotrophic effect. Synthetic peptides encompassing these motifs stimulated neuritogenesis and survival in vitro and mimicked the S100A4-induced neuroprotection in brain trauma. Here, we investigated a possible function of S100A4 and its mimetics in the pathologies of the peripheral nervous system (PNS). We found that S100A4 was expressed in the injured PNS and that its peptide mimetic (H3) affected the regeneration and survival of myelinated axons. H3 accelerated electrophysiological, behavioral and morphological recovery after sciatic nerve crush while transiently delaying regeneration after sciatic nerve transection and repair. On the basis of the finding that both S100A4 and H3 increased neurite branching in vitro, these effects were attributed to the modulatory effect of H3 on initial axonal sprouting. In contrast to the modest effect of H3 on the time course of regeneration, H3 had a long-term neuroprotective effect in the myelin protein P0 null mice, a model of dysmyelinating neuropathy (Charcot-Marie-Tooth type 1 disease), where the peptide attenuated the deterioration of nerve conduction, demyelination and axonal loss. From these results, S100A4 mimetics emerge as a possible means to enhance axonal sprouting and survival, especially in the context of demyelinating neuropathies with secondary axonal loss, such as Charcot-Marie-Tooth type 1 disease. Moreover, our data suggest that S100A4 is a neuroprotectant in PNS and that other S100 proteins, sharing high homology in the H3 motif, may have important functions in PNS pathologies. PMID:23508572

  2. Physiological properties of dystrophic mouse spinal root axons.

    PubMed

    Rasminsky, M

    1982-01-01

    In the spinal root axons of dystrophic mice conduction of nerve impulses is slow and either saltatory or continuous, presumably corresponding to areas of myelination and amyelination respectively. These abnormally myelinated axons contain foci of hyperexcitability manifested by spontaneous ectopic excitation, ephaptic excitation and autoexcitation. Similar phenomena in demyelinated central and peripheral nerve fibres may underly positive neurological symptomatology in human peripheral and central demyelinating diseases (Rasminsky 1981, 1982). PMID:6962064

  3. Structure and localization of the gene encoding human peripheral myelin protein 2 (PMP2)

    SciTech Connect

    Hayasaka, Kiyoshi; Himoro, Masato; Takada, Goro ); Takahashi, Ei-Ichi ); Minoshima, Shinsei; Shimizu, Nobuyoshi )

    1993-11-01

    Peripheral myelin protein 2 (PMP2) is a small, basic, and cytoplasmic lipid-binding protein of peripheral myelin. In this paper, the authors describe the cloning, characterization, and chromosomal mapping of the human PMP2 gene. The gene is about 8 kb long and consists of four exons. All exon-intron junction sequences conform to the GT/AG rule. The 5[prime]-flanking region of the gene has a TA-rich element (TATA-like box) and a single defined transcription initiation site detected by the primer extension method. The gene for human PMP2 was assigned to chromosome 8q21.3-q22.1 by spot hybridization of flow-sorted human chromosomes and fluorescence in situ hybridization. 29 refs., 4 figs., 1 tab.

  4. Human umbilical cord Wharton's jelly-derived oligodendrocyte precursor-like cells for axon and myelin sheath regeneration★

    PubMed Central

    Chen, Hong; Zhang, Yan; Yang, Zhijun; Zhang, Hongtian

    2013-01-01

    Human umbilical mesenchymal stem cells from Wharton's jelly of the umbilical cord were induced to differentiate into oligodendrocyte precursor-like cells in vitro. Oligodendrocyte precursor cells were transplanted into contused rat spinal cords. Immunofluorescence double staining indicated that transplanted cells survived in injured spinal cord, and differentiated into mature and immature oligodendrocyte precursor cells. Biotinylated dextran amine tracing results showed that cell transplantation promoted a higher density of the corticospinal tract in the central and caudal parts of the injured spinal cord. Luxol fast blue and toluidine blue staining showed that the volume of residual myelin was significantly increased at 1 and 2 mm rostral and caudal to the lesion epicenter after cell transplantation. Furthermore, immunofluorescence staining verified that the newly regenerated myelin sheath was derived from the central nervous system. Basso, Beattie and Bresnahan testing showed an evident behavioral recovery. These results suggest that human umbilical mesenchymal stem cell-derived oligodendrocyte precursor cells promote the regeneration of spinal axons and myelin sheaths. PMID:25206380

  5. Calibration of the stereological estimation of the number of myelinated axons in the rat sciatic nerve: A multicenter study

    PubMed Central

    Kaplan, S.; Geuna, S.; Ronchi, G.; Ulkay, M.B.; von Bartheld, C.S.

    2010-01-01

    Several sources of variability can affect stereological estimates. Here we measured the impact of potential sources of variability on numerical stereological estimates of myelinated axons in the adult rat sciatic nerve. Besides biological variation, parameters tested included two variations of stereological methods (unbiased counting frame versus 2D-disector), two sampling schemes (few large versus frequent small sampling boxes), and workstations with varying degrees of sophistication. All estimates were validated against exhaustive counts of the same nerve cross sections to obtain calibrated true numbers of myelinated axons (gold standard). In addition, we quantified errors in particle identification by comparing light microscopic and electron microscopic images of selected consecutive sections. Biological variation was 15.6%. There was no significant difference between the two stereological approaches or workstations used, but sampling schemes with few large samples yielded larger differences (20.7%±3.7% SEM) of estimates from true values, while frequent small samples showed significantly smaller differences (12.7%±1.9% SEM). Particle identification was accurate in 94% of cases (range: 89–98%). The most common identification error was due to profiles of Schwann cell nuclei mimicking profiles of small myelinated nerve fibers. We recommend sampling frequent small rather than few large areas, and conclude that workstations with basic stereological equipment are sufficient to obtain accurate estimates. Electron microscopic verification showed that particle misidentification had a surprisingly variable and large impact of up to 11%, corresponding to 2/3 of the biological variation (15.6%). Thus, errors in particle identification require further attention, and we provide a simple nerve fiber recognition test to assist investigators with self-testing and training. PMID:20064555

  6. Immunohistochemical, Ultrastructural and Functional Analysis of Axonal Regeneration through Peripheral Nerve Grafts Containing Schwann Cells Expressing BDNF, CNTF or NT3

    PubMed Central

    Godinho, Maria João; Teh, Lip; Pollett, Margaret A.; Goodman, Douglas; Hodgetts, Stuart I.; Sweetman, Iain; Walters, Mark; Verhaagen, Joost; Plant, Giles W.; Harvey, Alan R.

    2013-01-01

    We used morphological, immunohistochemical and functional assessments to determine the impact of genetically-modified peripheral nerve (PN) grafts on axonal regeneration after injury. Grafts were assembled from acellular nerve sheaths repopulated ex vivo with Schwann cells (SCs) modified to express brain-derived neurotrophic factor (BDNF), a secretable form of ciliary neurotrophic factor (CNTF), or neurotrophin-3 (NT3). Grafts were used to repair unilateral 1 cm defects in rat peroneal nerves and 10 weeks later outcomes were compared to normal nerves and various controls: autografts, acellular grafts and grafts with unmodified SCs. The number of regenerated βIII-Tubulin positive axons was similar in all grafts with the exception of CNTF, which contained the fewest immunostained axons. There were significantly lower fiber counts in acellular, untransduced SC and NT3 groups using a PanNF antibody, suggesting a paucity of large caliber axons. In addition, NT3 grafts contained the greatest number of sensory fibres, identified with either IB4 or CGRP markers. Examination of semi- and ultra-thin sections revealed heterogeneous graft morphologies, particularly in BDNF and NT3 grafts in which the fascicular organization was pronounced. Unmyelinated axons were loosely organized in numerous Remak bundles in NT3 grafts, while the BDNF graft group displayed the lowest ratio of umyelinated to myelinated axons. Gait analysis revealed that stance width was increased in rats with CNTF and NT3 grafts, and step length involving the injured left hindlimb was significantly greater in NT3 grafted rats, suggesting enhanced sensory sensitivity in these animals. In summary, the selective expression of BDNF, CNTF or NT3 by genetically modified SCs had differential effects on PN graft morphology, the number and type of regenerating axons, myelination, and locomotor function. PMID:23950907

  7. Axonal Elongation into Peripheral Nervous System ``Bridges'' after Central Nervous System Injury in Adult Rats

    NASA Astrophysics Data System (ADS)

    David, Samuel; Aguayo, Albert J.

    1981-11-01

    The origin, termination, and length of axonal growth after focal central nervous system injury was examined in adult rats by means of a new experimental model. When peripheral nerve segments were used as ``bridges'' between the medulla and spinal cord, axons from neurons at both these levels grew approximately 30 millimeters. The regenerative potential of these central neurons seems to be expressed when the central nervous system glial environment is changed to that of the peripheral nervous system.

  8. N,N-diethyldithiocarbamate produces copper accumulation, lipid peroxidation, and myelin injury in rat peripheral nerve.

    PubMed

    Tonkin, Elizabeth G; Valentine, Holly L; Milatovic, Dejan M; Valentine, William M

    2004-09-01

    Previous studies have demonstrated the ability of the dithiocarbamate, disulfiram, to produce a peripheral neuropathy in humans and experimental animals and have also provided evidence that N,N-diethyldithiocarbamate (DEDC) is a proximate toxic species of disulfiram. The ability of DEDC to elevate copper levels in the brain suggests that it may also elevate levels of copper in peripheral nerve, possibly leading to oxidative stress and lipid peroxidation from redox cycling of copper. The study presented here investigates the potential of DEDC to promote copper accumulation and lipid peroxidation in peripheral nerve. Rats were administered either DEDC or deionized water by ip osmotic pumps and fed a normal diet or diet containing elevated copper, and the levels of metals, isoprostanes, and the severity of lesions in peripheral nerve and brain were assessed by ICP-AES/AAS, GC/MS, and light microscopy, respectively. Copper was the only metal that demonstrated any significant compound-related elevations relative to controls, and total copper was increased in both brain and peripheral nerve in animals administered DEDC on both diets. In contrast, lesions and elevated F2-isoprostanes were significantly increased only in peripheral nerve for the rats administered DEDC on both diets. Autometallography staining of peripheral nerve was consistent with increased metal content along the myelin sheath, but in brain, focal densities were observed, and a periportal distribution occurred in liver. These data are consistent with the peripheral nervous system being more sensitive to DEDC-mediated demyelination and demonstrate the ability of DEDC to elevate copper levels in peripheral nerve. Additionally lipid peroxidation appears to either be a contributing event in the development of demyelination, possibly through an increase of redox active copper, or a consequence of the myelin injury. PMID:15187237

  9. Electrical Stimulation Promotes Peripheral Axon Regeneration By Enhanced Neuronal Neurotrophin Signaling

    PubMed Central

    English, Arthur W.; Schwartz, Gail; Meador, William; Sabatier, Manning J.; Mulligan, Amanda

    2016-01-01

    Electrical stimulation of cut peripheral nerves at the time of their surgical repair results in an enhancement of axon regeneration. Regeneration of axons through nerve allografts was used to evaluate whether this effect is due to an augmentation of cell autonomous neurotrophin signaling in the axons or signaling from neurotrophins produced in the surrounding environment. In the thy-1-YFP-H mouse, a single one hour application of electrical stimulation at the time of surgical repair of the cut common fibular nerve results in a significant increase in the proportion of YFP+ dorsal root ganglion neurons that were also immunoreactive for BDNF or trkB as well as an increase in the length of regenerating axons through allografts from wild type litter mates, both one and two weeks later. Axon growth through allografts from neurotrophin-4/5 knockout mice or grafts made acellular by repeated cycles of freezing and thawing is normally very poor, but electrical stimulation results in a growth of axons through these grafts which is similar to that observed through grafts from wild type mice after electrical stimulation. When cut nerves in NT-4/5 knockout mice were electrically stimulated, no enhancement of axon regeneration was found. Electrical stimulation thus produces a potent enhancement of the regeneration of axons in cut peripheral nerves which is independent of neurotrophin production by cells in their surrounding environment but is dependent on stimulation of trkB and its ligands in the regenerating axons themselves. PMID:17443780

  10. Bone Marrow-Derived Mesenchymal Stem Cells Improve Diabetic Neuropathy by Direct Modulation of Both Angiogenesis and Myelination in Peripheral Nerves

    PubMed Central

    Han, Ji Woong; Choi, Dabin; Lee, Min Young; Huh, Yang Hoon; Yoon, Young-sup

    2016-01-01

    Recent evidence has suggested that diabetic neuropathy (DN) is pathophysiologically related to both impaired angiogenesis and a deficiency of neurotrophic factors in the nerves. It is widely known that vascular and neural growths are intimately associated. Mesenchymal stem cells (MSCs) promote angiogenesis in ischemic diseases and have neuroprotective effects, particularly on Schwann cells. Accordingly, we investigated whether DN could be improved by local transplantation of MSCs by augmenting angiogenesis and neural regeneration such as remyelination. In sciatic nerves of streptozotocin (STZ)-induced diabetic rats, motor and sensory nerve conduction velocities (NCVs) and capillary density were reduced, and axonal atrophy and demyelination were observed. After injection of bone marrow-derived MSCs (BM-MSCs) into hindlimb muscles, NCVs were restored to near-normal levels. Histological examination demonstrated that injected MSCs were preferentially and durably engrafted in the sciatic nerves, and a portion of the engrafted MSCs were distinctively localized close to vasa nervora of sciatic nerves. Furthermore, vasa nervora increased in density, and the ultrastructure of myelinated fibers in nerves was observed to be restored. Real-time RT-PCR experiments showed that gene expression of multiple factors involved in angiogenesis, neural function, and myelination were increased in the MSC-injected nerves. These findings suggest that MSC transplantation improved DN through direct peripheral nerve angiogenesis, neurotrophic effects, and restoration of myelination. PMID:25975801

  11. Dynamics of axonal mRNA transport and implications for peripheral nerve regeneration

    PubMed Central

    Yoo, Soonmoon; van Niekerk, Erna A.; Merianda, Tanuja T.; Twiss, Jeffery L.

    2009-01-01

    Locally generating new proteins in subcellular regions provides means to spatially and temporally modify protein content in polarized cells. Recent years have seen resurgence of the concept that axonal processes of neurons can locally synthesize proteins. Experiments from a number of groups have now shown that axonal protein synthesis helps to initiate growth, provides a means to respond to guidance cues, and generates retrograde signaling complexes. Additionally, there is increasing evidence that locally synthesized proteins provide functions beyond injury responses and growth in the mature peripheral nervous system. A key regulatory event in this translational regulation is moving the mRNA templates into the axonal compartment. Transport of mRNAs into axons is a highly regulated and specific process that requires interaction of RNA binding proteins with specific cis-elements or structures within the mRNAs. mRNAs are transported in ribonucleoprotein particles that interact with microtubule motor proteins for long-range axonal transport and likely use microfilaments for short-range movement in the axons. The mature axon is able to recruit mRNAs into translation with injury and possibly other stimuli suggesting that mRNAs can be stored in a dormant state in the distal axon until needed. Axotomy triggers a shift in the populations of mRNAs localized to axons indicating a dynamic regulation of the specificity of the axonal transport machinery. In this review, we discuss how axonal mRNA transport and localization are regulated to achieve specific changes in axonal RNA content in response to axonal stimuli. PMID:19699200

  12. Myelination: Both Mindful and Mindless?

    PubMed

    Appel, Bruce

    2016-06-01

    The amount of myelin that forms on individual axons can vary considerably. Recent work, including a new study, indicates that myelin profiles on distinct subclasses of axons might be determined by diverse mechanisms. PMID:27269724

  13. Schwann cell mitochondrial metabolism supports long-term axonal survival and peripheral nerve function

    PubMed Central

    Viader, Andreu; Golden, Judith P.; Baloh, Robert H.; Schmidt, Robert E.; Hunter, Daniel A.; Milbrandt, Jeffrey

    2011-01-01

    Mitochondrial dysfunction is a common cause of peripheral neuropathies. While the role of neuron and axonal mitochondria in peripheral nerve disease is well appreciated, whether Schwann cell (SC) mitochondrial deficits contribute to peripheral neuropathies is unclear. Here we examine how SC mitochondrial dysfunction affects axonal survival and contributes to the decline of peripheral nerve function by generating mice with SC-specific mitochondrial deficits. These mice (Tfam-SCKOs) were produced through the tissue-specific deletion of the mitochondrial transcription factor A gene (Tfam), which is essential for mitochondrial DNA (mtDNA) transcription and maintenance. Tfam-SCKOs were viable but, as they aged, they developed a progressive peripheral neuropathy characterized by nerve conduction abnormalities as well as extensive muscle denervation. Morphological examination of Tfam-SCKO nerves revealed early preferential loss of small unmyelinated fibers followed by prominent demyelination and degeneration of larger-caliber axons. Tfam-SCKOs displayed sensory and motor deficits consistent with this pathology. Remarkably, the severe mtDNA depletion and respiratory chain abnormalities in Tfam-SCKO mice did not affect SC proliferation or survival. Mitochondrial function in SCs is therefore essential for maintenance of axonal survival and normal peripheral nerve function, suggesting that SC mitochondrial dysfunction contributes to human peripheral neuropathies. PMID:21752989

  14. Growth of White Matter in the Adolescent Brain: Myelin or Axon?

    ERIC Educational Resources Information Center

    Paus, Tomas

    2010-01-01

    White matter occupies almost half of the human brain. It contains axons connecting spatially segregated modules and, as such, it is essential for the smooth flow of information in functional networks. Structural maturation of white matter continues during adolescence, as reflected in age-related changes in its volume, as well as in its…

  15. Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice

    NASA Astrophysics Data System (ADS)

    Imitola, Jaime; Côté, Daniel; Rasmussen, Stine; Xie, X. Sunney; Liu, Yingru; Chitnis, Tanuja; Sidman, Richard L.; Lin, Charles. P.; Khoury, Samia J.

    2011-02-01

    Myelin loss and axonal degeneration predominate in many neurological disorders; however, methods to visualize them simultaneously in live tissue are unavailable. We describe a new imaging strategy combining video rate reflectance and fluorescence confocal imaging with coherent anti-Stokes Raman scattering (CARS) microscopy tuned to CH2 vibration of myelin lipids, applied in live tissue of animals with chronic experimental autoimmune encephalomyelitis (EAE). Our method allows monitoring over time of demyelination and neurodegeneration in brain slices with high spatial resolution and signal-to-noise ratio. Local areas of severe loss of lipid signal indicative of demyelination and loss of the reflectance signal from axons were seen in the corpus callosum and spinal cord of EAE animals. Even in myelinated areas of EAE mice, the intensity of myelin lipid signals is significantly reduced. Using heterozygous knock-in mice in which green fluorescent protein replaces the CX3CR1 coding sequence that labels central nervous system microglia, we find areas of activated microglia colocalized with areas of altered reflectance and CARS signals reflecting axonal injury and demyelination. Our data demonstrate the use of multimodal CARS microscopy for characterization of demyelinating and neurodegenerative pathology in a mouse model of multiple sclerosis, and further confirm the critical role of microglia in chronic inflammatory neurodegeneration.

  16. Myocilin mediates myelination in the peripheral nervous system through ErbB2/3 signaling.

    PubMed

    Kwon, Heung Sun; Johnson, Thomas V; Joe, Myung Kuk; Abu-Asab, Mones; Zhang, Jun; Chan, Chi Chao; Tomarev, Stanislav I

    2013-09-13

    The glaucoma-associated gene, myocilin, is expressed in ocular and non-ocular tissues including the peripheral nervous system, but its functions in these tissues remain poorly understood. We demonstrate that in sciatic nerve, myocilin is expressed in Schwann cells with high concentrations at the nodes of Ranvier. There, myocilin interacts with gliomedin, neurofascin, and NrCAM, which are essential for node formation and function. Treatment of isolated dorsal root ganglion cultures with myocilin stimulates clustering of the nodal proteins neurofascin and sodium channel Nav1.2. Sciatic nerves of myocilin null mice express reduced levels of several myelin-associated and basal membrane proteins compared with those of wild-type littermates. They also demonstrate reduced myelin sheath thickness and partial disorganization of the nodes. Myocilin signaling through ErbB2/3 receptors may contribute to these observed effects. Myocilin binds to ErbB2/ErbB3, activates these receptors, and affects the downstream PI3K-AKT signaling pathway. These data implicate a role for myocilin in the development and/or maintenance of myelination and nodes of Ranvier in sciatic nerve. PMID:23897819

  17. Rescue of peripheral and CNS axon defects in mice lacking NMNAT2.

    PubMed

    Gilley, Jonathan; Adalbert, Robert; Yu, Gang; Coleman, Michael P

    2013-08-14

    NMNAT2 is an NAD(+)-synthesizing enzyme with an essential axon maintenance role in primary culture neurons. We have generated an Nmnat2 gene trap mouse to examine the role of NMNAT2 in vivo. Homozygotes die perinatally with a severe peripheral nerve/axon defect and truncated axons in the optic nerve and other CNS regions. The cause appears to be limited axon extension, rather than dying-back degeneration of existing axons, which was previously proposed for the NMNAT2-deficient Blad mutant mouse. Neurite outgrowth in both PNS and CNS neuronal cultures consistently stalls at 1-2 mm, similar to the length of truncated axons in the embryos. Crucially, this suggests an essential role for NMNAT2 during axon growth. In addition, we show that the Wallerian degeneration slow protein (Wld(S)), a more stable, aberrant NMNAT that can substitute the axon maintenance function of NMNAT2 in primary cultures, can also correct developmental defects associated with NMNAT2 deficiency. This is dose-dependent, with extension of life span to at least 3 months by homozygous levels of Wld(S) the most obvious manifestation. Finally, we propose that endogenous mechanisms also compensate for otherwise limiting levels of NMNAT2. This could explain our finding that conditional silencing of a single Nmnat2 allele triggers substantial degeneration of established neurites, whereas similar, or greater, reduction of NMNAT2 in constitutively depleted neurons is compatible with normal axon growth and survival. A requirement for NMNAT2 for both axon growth and maintenance suggests that reduced levels could impair axon regeneration as well as axon survival in aging and disease. PMID:23946398

  18. Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy.

    PubMed

    Horie, Hidenori; Kadoya, Toshihiko; Hikawa, Naoshi; Sango, Kazunori; Inoue, Hiroko; Takeshita, Kaori; Asawa, Reiko; Hiroi, Tomoko; Sato, Manami; Yoshioka, Tohru; Ishikawa, Yoshihiro

    2004-02-25

    Various neurotrophic factors that promote axonal regeneration have been investigated in vivo, but the signals that prompt neurons to send out processes in peripheral nerves after axotomy are not well understood. Previously, we have shown oxidized galectin-1 (GAL-1/Ox) promotes initial axonal growth after axotomy in peripheral nerves. However, the mechanism by which GAL-1/Ox promotes axonal regeneration remains unclear and is the subject of the present study. To identify possible target cells of GAL-1/Ox, a fluorescently labeled recombinant human GAL-1/Ox (rhGAL-1/Ox) was incubated with DRG neurons, Schwann cells, and intraperitoneal macrophages from adult rats. Only the cell surfaces of intraperitoneal macrophages bound the rhGAL-1/Ox, suggesting that these cells possess a receptor for GAL-1/Ox. Experiments examining tyrosine phosphorylation revealed that rhGAL-1/Ox stimulated changes in signal transduction pathways in these macrophages. These changes caused macrophages to secrete an axonal growth-promoting factor. This was demonstrated when conditioned media of macrophages stimulated with rhGAL-1/Ox in 48 hr culture strongly enhanced axonal regeneration from transected-nerve sites of DRG explants. Furthermore, activated macrophage-conditioned media also improved Schwann cell migration from the transected-nerve sites. From these results, we propose that axonal regeneration occurs in axotomized peripheral nerves as a result of cytosolic reduced galectin-1 being released from Schwann cells and injured axons, which then becomes oxidized in the extracellular space. Oxidized galectin-1 then stimulates macrophages to secrete a factor that promotes axonal growth and Schwann cell migration, thus enhancing peripheral nerve regeneration. PMID:14985427

  19. Uptake of nerve growth factor along peripheral and spinal axons of primary sensory neurons

    SciTech Connect

    Richardson, P.M.; Riopelle, R.J.

    1984-07-01

    To investigate the distribution of nerve growth factor (NGF) receptors on peripheral and central axons, (/sup 125/I)NGF was injected into the sciatic nerve or spinal cord of adult rats. Accumulation of (/sup 125/I)NGF in lumbar dorsal root ganglia was monitored by gamma emission counting and radioautography. (/sup 125/I)NGF, injected endoneurially in small quantities, was taken into sensory axons by a saturable process and was transported retrogradely to their cell bodies at a maximal rate of 2.5 to 7.5 mm/hr. Because very little (/sup 125/I)NGF reached peripheral terminals, the results were interpreted to indicate that receptors for NGF are present on nonterminal segments of sensory axons. The specificity and high affinity of NGF uptake were illustrated by observations that negligible amounts of gamma activity accumulated in lumbar dorsal root ganglia after comparable intraneural injection of (/sup 125/I) cytochrome C or (/sup 125/I)oxidized NGF. Similar techniques were used to demonstrate avid internalization and retrograde transport of (/sup 125/I)NGF by intraspinal axons arising from dorsal root ganglia. Following injection of (/sup 125/I)NGF into lumbar or cervical regions of the spinal cord, neuronal perikarya were clearly labeled in radioautographs of lumbar dorsal root ganglia. Sites for NGF uptake on primary sensory neurons in the adult rat are not restricted to peripheral axon terminals but are extensively distributed along both peripheral and central axons. Receptors on axons provide a mechanism whereby NGF supplied by glia could influence neuronal maintenance or axonal regeneration.

  20. Accelerating axonal growth promotes motor recovery after peripheral nerve injury in mice

    PubMed Central

    Ma, Chi Him Eddie; Omura, Takao; Cobos, Enrique J.; Latrémolière, Alban; Ghasemlou, Nader; Brenner, Gary J.; van Veen, Ed; Barrett, Lee; Sawada, Tomokazu; Gao, Fuying; Coppola, Giovanni; Gertler, Frank; Costigan, Michael; Geschwind, Dan; Woolf, Clifford J.

    2011-01-01

    Although peripheral nerves can regenerate after injury, proximal nerve injury in humans results in minimal restoration of motor function. One possible explanation for this is that injury-induced axonal growth is too slow. Heat shock protein 27 (Hsp27) is a regeneration-associated protein that accelerates axonal growth in vitro. Here, we have shown that it can also do this in mice after peripheral nerve injury. While rapid motor and sensory recovery occurred in mice after a sciatic nerve crush injury, there was little return of motor function after sciatic nerve transection, because of the delay in motor axons reaching their target. This was not due to a failure of axonal growth, because injured motor axons eventually fully re-extended into muscles and sensory function returned; rather, it resulted from a lack of motor end plate reinnervation. Tg mice expressing high levels of Hsp27 demonstrated enhanced restoration of motor function after nerve transection/resuture by enabling motor synapse reinnervation, but only within 5 weeks of injury. In humans with peripheral nerve injuries, shorter wait times to decompression surgery led to improved functional recovery, and, while a return of sensation occurred in all patients, motor recovery was limited. Thus, absence of motor recovery after nerve damage may result from a failure of synapse reformation after prolonged denervation rather than a failure of axonal growth. PMID:21965333

  1. Adaptive myelination from fish to man.

    PubMed

    Baraban, Marion; Mensch, Sigrid; Lyons, David A

    2016-06-15

    Myelinated axons with nodes of Ranvier are an evolutionary elaboration common to essentially all jawed vertebrates. Myelin made by Schwann cells in our peripheral nervous system and oligodendrocytes in our central nervous system has been long known to facilitate rapid energy efficient nerve impulse propagation. However, it is now also clear, particularly in the central nervous system, that myelin is not a simple static insulator but that it is dynamically regulated throughout development and life. New myelin sheaths can be made by newly differentiating oligodendrocytes, and mature myelin sheaths can be stimulated to grow again in the adult. Furthermore, numerous studies in models from fish to man indicate that neuronal activity can affect distinct stages of oligodendrocyte development and the process of myelination itself. This begs questions as to how these effects of activity are mediated at a cellular and molecular level and whether activity-driven adaptive myelination is a feature common to all myelinated axons, or indeed all oligodendrocytes, or is specific to cells or circuits with particular functions. Here we review the recent literature on this topic, elaborate on the key outstanding questions in the field, and look forward to future studies that incorporate investigations in systems from fish to man that will provide further insight into this fundamental aspect of nervous system plasticity. This article is part of a Special Issue entitled SI: Myelin Evolution. PMID:26498877

  2. Small-molecule trkB agonists promote axon regeneration in cut peripheral nerves

    PubMed Central

    English, Arthur W.; Liu, Kevin; Nicolini, Jennifer M.; Mulligan, Amanda M.; Ye, Keqiang

    2013-01-01

    Treatments with two-small molecule tropomyosin receptor kinase B (trkB) ligands, 7,8 dihydroxyflavone (7,8 DHF) and deoxygedunin, were evaluated for their ability to promote the regeneration of cut axons in injured peripheral nerves in mice in which sensory and motor axons are marked by YFP. Peripheral nerves were cut and repaired with grafts from strain-matched, nonfluorescent donors and secured in place with fibrin glue. Lengths of profiles of regenerating YFP+ axons were measured 2 wk later from confocal images. Axon regeneration was enhanced when the fibrin glue contained dilutions of 500-nM solution of either small-molecule trkB agonist. In mice in which the neurotrophin receptor trkB is knocked out selectively in neurons, axon regeneration is very weak, and topical treatment with 7,8 DHF had no effect on axon regeneration. Similar treatments with deoxygedunin had only a modest effect. In conditional BDNF knockout mice, topical treatments with either 7,8 DHF or deoxygedunin resulted in a reversal of the poor regeneration found in controls and produced significant enhancement of regeneration. In WT mice treated with 2 wk of daily i.p. injections of either 7,8 DHF or deoxygedunin (5 mg/kg), regenerating axon profiles were nearly twice as long as in controls. Restoration of direct muscle responses evoked by sciatic nerve stimulation to pretransection levels over an 8-wk survival period was found only in the treated mice. Treatments with either small-molecule trkB agonist enhanced axon regeneration and muscle reinnervation after peripheral nerve injuries. PMID:24043773

  3. Small-molecule trkB agonists promote axon regeneration in cut peripheral nerves.

    PubMed

    English, Arthur W; Liu, Kevin; Nicolini, Jennifer M; Mulligan, Amanda M; Ye, Keqiang

    2013-10-01

    Treatments with two-small molecule tropomyosin receptor kinase B (trkB) ligands, 7,8 dihydroxyflavone (7,8 DHF) and deoxygedunin, were evaluated for their ability to promote the regeneration of cut axons in injured peripheral nerves in mice in which sensory and motor axons are marked by YFP. Peripheral nerves were cut and repaired with grafts from strain-matched, nonfluorescent donors and secured in place with fibrin glue. Lengths of profiles of regenerating YFP(+) axons were measured 2 wk later from confocal images. Axon regeneration was enhanced when the fibrin glue contained dilutions of 500-nM solution of either small-molecule trkB agonist. In mice in which the neurotrophin receptor trkB is knocked out selectively in neurons, axon regeneration is very weak, and topical treatment with 7,8 DHF had no effect on axon regeneration. Similar treatments with deoxygedunin had only a modest effect. In conditional BDNF knockout mice, topical treatments with either 7,8 DHF or deoxygedunin resulted in a reversal of the poor regeneration found in controls and produced significant enhancement of regeneration. In WT mice treated with 2 wk of daily i.p. injections of either 7,8 DHF or deoxygedunin (5 mg/kg), regenerating axon profiles were nearly twice as long as in controls. Restoration of direct muscle responses evoked by sciatic nerve stimulation to pretransection levels over an 8-wk survival period was found only in the treated mice. Treatments with either small-molecule trkB agonist enhanced axon regeneration and muscle reinnervation after peripheral nerve injuries. PMID:24043773

  4. The Cytoskeletal Adaptor Protein Band 4.1B is Required for the Maintenance of Paranodal Axo-Glial Septate Junctions in Myelinated Axons

    PubMed Central

    Buttermore, Elizabeth D.; Dupree, Jeffrey L.; Cheng, JrGang; An, Xiuli; Tessarollo, Lino; Bhat, Manzoor A.

    2011-01-01

    Precise targeting and maintenance of axonal domains in myelinated axons is essential for saltatory conduction. Caspr and Caspr2, which localize at paranodal and juxtaparanodal domains, contain binding sites for the cytoskeletal adaptor protein 4.1B. The exact role of 4.1B in the organization and maintenance of axonal domains is still not clear. Here we report the generation and characterization of 4.1B null mice. We show that loss of 4.1B in the PNS results in mislocalization of Caspr at paranodes and destabilization of paranodal axo-glial septate junctions (AGSJs) as early as postnatal day 30. In the CNS, Caspr localization is progressively disrupted and ultrastructural analysis showed paranodal regions that were completely devoid of AGSJs, with axolemma separated from the myelin loops, and loops coming off the axolemma. Most importantly, our phenotypic analysis of previously generated 4.1B mutants, used in Horresh et al. (2010), showed that Caspr localization was not affected in the PNS, even after one year; and 4.1R was neither expressed, nor enriched at the paranodes. Furthermore, ultrastructural analysis of these 4.1B mutants showed destabilization of CNS AGSJs at about one year. We also discovered that the 4.1B locus is differentially expressed in the PNS and CNS, and generates multiple splice isoforms in the PNS, suggesting 4.1B may function differently in the PNS versus CNS. Together, our studies provide direct evidence that 4.1B plays a pivotal role in interactions between the paranodal AGSJs and axonal cytoskeleton, and that 4.1B is critically required for long-term maintenance of axonal domains in myelinated axons. PMID:21632923

  5. The cytoskeletal adaptor protein band 4.1B is required for the maintenance of paranodal axoglial septate junctions in myelinated axons.

    PubMed

    Buttermore, Elizabeth D; Dupree, Jeffrey L; Cheng, JrGang; An, Xiuli; Tessarollo, Lino; Bhat, Manzoor A

    2011-06-01

    Precise targeting and maintenance of axonal domains in myelinated axons is essential for saltatory conduction. Caspr and Caspr2, which localize at paranodal and juxtaparanodal domains, contain binding sites for the cytoskeletal adaptor protein 4.1B. The exact role of 4.1B in the organization and maintenance of axonal domains is still not clear. Here, we report the generation and characterization of 4.1B-null mice. We show that loss of 4.1B in the PNS results in mislocalization of Caspr at paranodes and destabilization of paranodal axoglial septate junctions (AGSJs) as early as postnatal day 30. In the CNS, Caspr localization is progressively disrupted and ultrastructural analysis showed paranodal regions that were completely devoid of AGSJs, with axolemma separated from the myelin loops, and loops coming off the axolemma. Most importantly, our phenotypic analysis of previously generated 4.1B mutants, used in the study by Horresh et al. (2010), showed that Caspr localization was not affected in the PNS, even after 1 year; and 4.1R was neither expressed, nor enriched at the paranodes. Furthermore, ultrastructural analysis of these 4.1B mutants showed destabilization of CNS AGSJs at ∼ 1 year. We also discovered that the 4.1B locus is differentially expressed in the PNS and CNS, and generates multiple splice isoforms in the PNS, suggesting 4.1B may function differently in the PNS versus CNS. Together, our studies provide direct evidence that 4.1B plays a pivotal role in interactions between the paranodal AGSJs and axonal cytoskeleton, and that 4.1B is critically required for long-term maintenance of axonal domains in myelinated axons. PMID:21632923

  6. Short-term peripheral nerve stimulation ameliorates axonal dysfunction after spinal cord injury

    PubMed Central

    Kiernan, Matthew C.; Macefield, Vaughan G.; Lee, Bonne B.; Lin, Cindy S.-Y.

    2015-01-01

    There is accumulating evidence that peripheral motor axons deteriorate following spinal cord injury (SCI). Secondary axonal dysfunction can exacerbate muscle atrophy, contribute to peripheral neuropathies and neuropathic pain, and lead to further functional impairment. In an attempt to ameliorate the adverse downstream effects that developed following SCI, we investigated the effects of a short-term peripheral nerve stimulation (PNS) program on motor axonal excitability in 22 SCI patients. Axonal excitability studies were undertaken in the median and common peroneal nerves (CPN) bilaterally before and after a 6-wk unilateral PNS program. PNS was delivered percutaneously over the median nerve at the wrist and CPN around the fibular head, and the compound muscle action potential (CMAP) from the abductor pollicis brevis and tibialis anterior was recorded. Stimulus intensity was above motor threshold, and pulses (450 μs) were delivered at 100 Hz with a 2-s on/off cycle for 30 min 5 days/wk. SCI patients had consistently high thresholds with a reduced CMAP consistent with axonal loss; in some patients the peripheral nerves were completely inexcitable. Nerve excitability studies revealed profound changes in membrane potential, with a “fanned-in” appearance in threshold electrotonus, consistent with membrane depolarization, and significantly reduced superexcitability during the recovery cycle. These membrane dysfunctions were ameliorated after 6 wk of PNS, which produced a significant hyperpolarizing effect. The contralateral, nonstimulated nerves remained depolarized. Short-term PNS reversed axonal dysfunction following SCI, may provide an opportunity to prevent chronic changes in axonal and muscular function, and may improve rehabilitation outcomes. PMID:25787956

  7. Short-term peripheral nerve stimulation ameliorates axonal dysfunction after spinal cord injury.

    PubMed

    Lee, Michael; Kiernan, Matthew C; Macefield, Vaughan G; Lee, Bonne B; Lin, Cindy S-Y

    2015-05-01

    There is accumulating evidence that peripheral motor axons deteriorate following spinal cord injury (SCI). Secondary axonal dysfunction can exacerbate muscle atrophy, contribute to peripheral neuropathies and neuropathic pain, and lead to further functional impairment. In an attempt to ameliorate the adverse downstream effects that developed following SCI, we investigated the effects of a short-term peripheral nerve stimulation (PNS) program on motor axonal excitability in 22 SCI patients. Axonal excitability studies were undertaken in the median and common peroneal nerves (CPN) bilaterally before and after a 6-wk unilateral PNS program. PNS was delivered percutaneously over the median nerve at the wrist and CPN around the fibular head, and the compound muscle action potential (CMAP) from the abductor pollicis brevis and tibialis anterior was recorded. Stimulus intensity was above motor threshold, and pulses (450 μs) were delivered at 100 Hz with a 2-s on/off cycle for 30 min 5 days/wk. SCI patients had consistently high thresholds with a reduced CMAP consistent with axonal loss; in some patients the peripheral nerves were completely inexcitable. Nerve excitability studies revealed profound changes in membrane potential, with a "fanned-in" appearance in threshold electrotonus, consistent with membrane depolarization, and significantly reduced superexcitability during the recovery cycle. These membrane dysfunctions were ameliorated after 6 wk of PNS, which produced a significant hyperpolarizing effect. The contralateral, nonstimulated nerves remained depolarized. Short-term PNS reversed axonal dysfunction following SCI, may provide an opportunity to prevent chronic changes in axonal and muscular function, and may improve rehabilitation outcomes. PMID:25787956

  8. The tumour suppressor LKB1 regulates myelination through mitochondrial metabolism

    PubMed Central

    Pooya, Shabnam; Liu, Xiaona; Kumar, V.B. Sameer; Anderson, Jane; Imai, Fumiyasu; Zhang, Wujuan; Ciraolo, Georgianne; Ratner, Nancy; Setchell, Kenneth D.R.; Yoshida, Yutaka; Jankowski, Michael P.; Dasgupta, Biplab

    2015-01-01

    A prerequisite to myelination of peripheral axons by Schwann cells (SCs) is SC differentiation, and recent evidence indicates that reprogramming from a glycolytic to oxidative metabolism occurs during cellular differentiation. Whether this reprogramming is essential for SC differentiation, and the genes that regulate this critical metabolic transition are unknown. Here we show that the tumour suppressor Lkb1 is essential for this metabolic transition and myelination of peripheral axons. Hypomyelination in the Lkb1-mutant nerves and muscle atrophy lead to hindlimb dysfunction and peripheral neuropathy. Lkb1-null SCs failed to optimally activate mitochondrial oxidative metabolism during differentiation. This deficit was caused by Lkb1-regulated diminished production of the mitochondrial Krebs cycle substrate citrate, a precursor to cellular lipids. Consequently, myelin lipids were reduced in Lkb1-mutant mice. Restoring citrate partially rescued Lkb1-mutant SC defects. Thus, Lkb1-mediated metabolic shift during SC differentiation increases mitochondrial metabolism and lipogenesis, necessary for normal myelination. PMID:25256100

  9. How Schwann Cells Sort Axons: New Concepts.

    PubMed

    Feltri, M Laura; Poitelon, Yannick; Previtali, Stefano Carlo

    2016-06-01

    Peripheral nerves contain large myelinated and small unmyelinated (Remak) fibers that perform different functions. The choice to myelinate or not is dictated to Schwann cells by the axon itself, based on the amount of neuregulin I-type III exposed on its membrane. Peripheral axons are more important in determining the final myelination fate than central axons, and the implications for this difference in Schwann cells and oligodendrocytes are discussed. Interestingly, this choice is reversible during pathology, accounting for the remarkable plasticity of Schwann cells, and contributing to the regenerative potential of the peripheral nervous system. Radial sorting is the process by which Schwann cells choose larger axons to myelinate during development. This crucial morphogenetic step is a prerequisite for myelination and for differentiation of Remak fibers, and is arrested in human diseases due to mutations in genes coding for extracellular matrix and linkage molecules. In this review we will summarize progresses made in the last years by a flurry of reverse genetic experiments in mice and fish. This work revealed novel molecules that control radial sorting, and contributed unexpected ideas to our understanding of the cellular and molecular mechanisms that control radial sorting of axons. PMID:25686621

  10. Association and release of the major intrinsic membrane glycoprotein from peripheral nerve myelin.

    PubMed Central

    Poduslo, J F; Yao, J K

    1985-01-01

    Hypo-osmotic homogenization of the endoneurium from the adult-rat sciatic nerve and subsequent evaluation of the 197 000 g aqueous supernatant by sodium dodecyl sulphate pore-gradient electrophoresis (SDS-p.g.e.) revealed a release of the major glycoprotein (P0) (29 000 Mr) from peripheral nerve myelin. Immunological verification of the presence of this asparagine-linked glycoprotein in the aqueous supernatant was obtained by immune overlay after SDS-p.g.e. and electrophoretic transfer to nitrocellulose using anti-P0 gamma-globulin followed by autoradiographic detection with 125I-protein A. A comparison of successive hypo- and iso-osmotic extractions of the endoneurium revealed that the hypo-osmotic extraction released increasing amounts of P0 into the supernatant fraction, whereas the iso-osmotic treatment revealed lower levels of P0 extracted from the myelin and lesser amounts with each successive extraction. Three successive hypo-osmotic extractions resulted in a 2.0-, 2.9-, and 9.5-fold increase in the amount of P0 released compared with the successive iso-osmotic extractions. Although these results suggest that this major myelin glycoprotein has properties similar to those of extrinsic membrane proteins, temperature-dependent phase-partitioning experiments with Triton X-114 revealed that this glycoprotein is recovered in the detergent-enriched lower phase. These results indicate that this major myelin glycoprotein is an amphipathic integral membrane protein with a distinct hydrophobic domain and yet has solubility characteristics typical of an extrinsic membrane protein. P0 labelled in vitro with [3H]mannose could be immunoprecipitated from the aqueous supernatant with anti-P0 gamma-globulin by centrifugation at 197000g without the addition of second antibody or protein A. Analysis of such an immune precipitate after incorporation in vitro with [14C]acetate to label endoneurial lipids revealed that all major endoneurial lipid classes contained radioactive

  11. Structural and dynamical properties of reconstituted myelin sheaths in the presence of myelin proteins MBP and P2 studied by neutron scattering.

    PubMed

    Knoll, Wiebke; Peters, Judith; Kursula, Petri; Gerelli, Yuri; Ollivier, Jacques; Demé, Bruno; Telling, Mark; Kemner, Ewout; Natali, Francesca

    2014-01-21

    The myelin sheath is a tightly packed, multilayered membrane structure wrapped around selected nerve axons in the central and the peripheral nervous system. Because of its electrical insulation of the axons, which allows fast, saltatory nerve impulse conduction, myelin is crucial for the proper functioning of the vertebrate nervous system. A subset of myelin-specific proteins is well-defined, but their influence on membrane dynamics, i.e. myelin stability, has not yet been explored in detail. We investigated the structure and the dynamics of reconstituted myelin membranes on a pico- to nanosecond timescale, influenced by myelin basic protein (MBP) and myelin protein 2 (P2), using neutron diffraction and quasi-elastic neutron scattering. A model for the scattering function describing molecular lipid motions is suggested. Although dynamical properties are not affected significantly by MBP and P2 proteins, they act in a highly synergistic manner influencing the membrane structure. PMID:24651633

  12. Arf6 mediates Schwann cell differentiation and myelination.

    PubMed

    Torii, Tomohiro; Miyamoto, Yuki; Yamamoto, Masahiro; Ohbuchi, Katsuya; Tsumura, Hideki; Kawahara, Kazuko; Tanoue, Akito; Sakagami, Hiroyuki; Yamauchi, Junji

    2015-09-25

    During development of the peripheral nervous system (PNS), Schwann cells wrap neuronal axons, becoming the myelin sheaths that help axonal functions. While the intercellular signals controlling the myelination process between Schwann cells and peripheral neurons are well studied, the transduction of these signals in Schwann cells still remains elusive. Here, we show that Arf6, an Arf protein of the small GTPase family, is involved in promoting the myelination process. Knockdown of Arf6 with the small-interfering (si)RNA in primary Schwann cells markedly decreases dibutyl-cyclic AMP-induced myelin marker protein expression, indicating that Arf6 plays a role in differentiation-like phenotypic changes. To obtain in vivo evidence, we generated small-hairpin (sh)RNA transgenic mice targeting Arf6 for Schwann cells. Transgenic mice exhibited reduced myelin thickness compared to littermate controls, consistent with the defective myelin formation observed in the transgenic mouse-derived Schwann cell and neuronal culture system. Transgenic mice also exhibited decreased phosphorylation of myelination-related signaling molecules such as Akt kinase cascade proteins as well as downregulation of myelin marker proteins. These results suggest that signaling through Arf6 is required for Schwann cell myelination, adding Arf6 to the list of intracellular signaling molecules involved in the myelination process. PMID:26277388

  13. Lithium Enhances Axonal Regeneration in Peripheral Nerve by Inhibiting Glycogen Synthase Kinase 3β Activation

    PubMed Central

    Su, Huanxing; Yuan, Qiuju; Qin, Dajiang; Yang, Xiaoying; So, Kwok-Fai; Wu, Wutian

    2014-01-01

    Brachial plexus injury often involves traumatic root avulsion resulting in permanent paralysis of the innervated muscles. The lack of sufficient regeneration from spinal motoneurons to the peripheral nerve (PN) is considered to be one of the major causes of the unsatisfactory outcome of various surgical interventions for repair of the devastating injury. The present study was undertaken to investigate potential inhibitory signals which influence axonal regeneration after root avulsion injury. The results of the study showed that root avulsion triggered GSK-3β activation in the injured motoneurons and remaining axons in the ventral funiculus. Systemic application of a clinical dose of lithium suppressed activated GSK-3β in the lesioned spinal cord to the normal level and induced extensive axonal regeneration into replanted ventral roots. Our study suggests that GSK-3β activity is involved in negative regulation for axonal elongation and regeneration and lithium, the specific GSK-3β inhibitor, enhances motoneuron regeneration from CNS to PNS. PMID:24967390

  14. Detection and processing of peripheral myelin protein PMP22 in cultured Schwann cells.

    PubMed

    Pareek, S; Suter, U; Snipes, G J; Welcher, A A; Shooter, E M; Murphy, R A

    1993-05-15

    Peripheral myelin protein, 22 kDa (PMP22), is a myelin molecule associated with Schwann cells in peripheral nerves (Snipes, G. J., Suter, U., Welcher, A. A., and Shooter, E. M. (1992) J. Cell Biol. 117, 225-238). Mutations affecting the PMP22 gene have been implicated in the trembler mutation in mice (Suter, U., Welcher, A. A., Ozcelik, T., Snipes, G. J., Kosaras, B., Francke, U., Billings-Gagliardi, S., Sidman, R. L., and Shooter, E. M. (1992) Nature 356, 241-244; Suter, U., Moskow, J. J., Welcher, A. A., Snipes, G. J., Kosaras, B., Sidman, R. L., Buchberg, A. M., and Shooter, E. M. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 4382-4386) and Charcot-Marie-Tooth Disease in humans (Patel, P. I., Roa, B. B., Welcher, A. A., Schoener-Scott, R., Trask, B. J., Pentao, L., Snipes, G. J., Garcia, C. A., Francke, U., Shooter, E. M., Lupski, J. R., and Suter, U. (1992) Nature genet. 1, 159-165). In this report, we have studied PMP22 production in cultured rat Schwann cells. Schwann cells contain a 1.8-kilobase mRNA transcript coding for PMP22, and its production is up-regulated in vitro by forskolin. Metabolic labeling combined with immunoprecipitation methods using antibodies raised against synthetic peptides of PMP22 reveal that Schwann cells generate the protein from an 18-kDa precursor form which is post-translationally modified by N-linked glycosylation. A second molecule (molecular mass, 48 kDa) that reacted with PMP22 antibodies was also detected in Schwann cells but is not related chemically to PMP22 as determined by pulse-chase labeling. Metabolic labeling of rat sciatic nerve and Western blot analyses of purified rat sciatic nerve myelin reveal that deglycosylation of PMP22 gives rise to an 18-kDa protein similar in size to that in Schwann cells. These results indicate that cultured Schwann cells may provide a good model in which to investigate the production and function of PMP22 and to establish the cellular basis for the protein's involvement in inherited

  15. Increased Cx32 expression in spinal cord TrkB oligodendrocytes following peripheral axon injury.

    PubMed

    Coulibaly, Aminata P; Isaacson, Lori G

    2016-08-01

    Following injury to motor axons in the periphery, retrograde influences from the injury site lead to glial cell plasticity in the vicinity of the injured neurons. Following the transection of peripherally located preganglionic axons of the cervical sympathetic trunk (CST), a population of oligodendrocyte (OL) lineage cells expressing full length TrkB, the cognate receptor for brain derived neurotrophic factor (BDNF), is significantly increased in number in the spinal cord. Such robust plasticity in OL lineage cells in the spinal cord following peripheral axon transection led to the hypothesis that the gap junction communication protein connexin 32 (Cx32), which is specific to OL lineage cells, was influenced by the injury. Following CST transection, Cx32 expression in the spinal cord intermediolateral cell column (IML), the location of the parent cell bodies, was significantly increased. The increased Cx32 expression was localized specifically to TrkB OLs in the IML, rather than other cell types in the OL cell lineage, with the population of Cx32/TrkB cells increased by 59%. Cx32 expression in association with OPCs was significantly decreased at one week following the injury. The results of this study provide evidence that peripheral axon injury can differentially affect the gap junction protein expression in OL lineage cells in the adult rat spinal cord. We conclude that the retrograde influences originating from the peripheral injury site elicit dramatic changes in the CNS expression of Cx32, which in turn may mediate the plasticity of OL lineage cells observed in the spinal cord following peripheral axon injury. PMID:27246301

  16. Effect of acclimation temperature on the axon and fiber diameter spectra and thickness of myelin of fibers of the optic nerve of goldfish.

    PubMed

    Matheson, D F; Roots, B I

    1988-07-01

    The optic nerves of common goldfish acclimated to 5 and 25 degrees C were fixed with glutaraldehyde in either phosphate buffer or PIPES with EGTA, post-fixed with osmium tetroxide, and examined by electron microscopy. The axon diameter spectra, from axons measured in electron micrographs and those measured on the electron microscope screen, differ noticeably with acclimation temperature. At the lower temperature, there is a definite shift toward the occurrence of larger fibers compared with the spectrum of the 25 degrees C fish. Although the number of fibers assessed is small compared with the total number in the goldfish nerve, these results confirm our previous study. These findings could be attributed to an increase in the number of new fibers during the acclimation to the higher temperature. We discuss this possibility and on the available evidence find it unlikely. Other changes in the axon and fiber are also seen with acclimation temperature. The axon to fiber diameter ratio, made directly from the electron micrographs, shows that axons from the nerves of the higher acclimation temperature fish possess consistently thicker myelin sheaths than are found for axons in nerves of the lower temperature fish. This finding is also in agreement with results obtained by us from measurements independent of each other. PMID:3391258

  17. Peripheral Myelin Protein 22 is Regulated Post-Transcriptionally by miRNA-29a

    PubMed Central

    Verrier, Jonathan D.; Lau, Pierre; Hudson, Lynn; Murashov, Alexander K.; Renne, Rolf; Notterpek, Lucia

    2009-01-01

    Peripheral myelin protein 22 (PMP22) is a dose-sensitive, disease-associated protein primarily expressed in myelinating Schwann cells. Either reduction or overproduction of PMP22 can result in hereditary neuropathy, suggesting a requirement for correct protein expression for peripheral nerve biology. PMP22 is post-transcriptionally regulated and the 3′untranslated region (3′UTR) of the gene exerts a negative effect on translation. MicroRNAs (miRNAs) are small regulatory molecules that function at a post-transcriptional level by targeting the 3′UTR in a reverse complementary manner. We used cultured Schwann cells to demonstrate that alterations in the miRNA biogenesis pathway affect PMP22 levels, and endogenous PMP22 is subjected to miRNA regulation. GW-body formation, the proposed cytoplasmic site for miRNA-mediated repression, and Dicer expression, an RNase III family ribonuclease involved in miRNA biogenesis, are co-regulated with the differentiation state of Schwann cells. Furthermore, the levels of Dicer inversely correlate with PMP22, while the inhibition of Dicer leads to elevated PMP22. Microarray analysis of actively-proliferating and differentiated Schwann cells, in conjunction with bioinformatics programs, identified several candidate PMP22-targeting miRNAs. Here we demonstrate that miR-29a binds and inhibits PMP22 reporter expression through a specific miRNA seed binding region. Over-expression of miR-29a enhances the association of PMP22 RNA with Argonaute 2, a protein involved in miRNA function, and reduces the steady-state levels of PMP22. In contrast, inhibition of endogenous miR-29a relieves the miRNA-mediated repression of PMP22. Correlation analyses of miR-29 and PMP22 in sciatic nerves reveal an inverse relationship, both developmentally and in post-crush injury. These results identify PMP22 as a target of miRNAs and suggest that myelin gene expression by Schwann cells is regulated by miRNAs. PMID:19170179

  18. Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering.

    PubMed

    Wu, Yaobin; Wang, Ling; Guo, Baolin; Shao, Yongpin; Ma, Peter X

    2016-05-01

    Myelination of Schwann cells (SCs) is critical for the success of peripheral nerve regeneration, and biomaterials that can promote SCs' neurotrophin secretion as scaffolds are beneficial for nerve repair. Here we present a biomaterials-approach, specifically, a highly tunable conductive biodegradable flexible polyurethane by polycondensation of poly(glycerol sebacate) and aniline pentamer, to significantly enhance SCs' myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. SCs are cultured on these conductive polymer films, and the biocompatibility of these films and their ability to enhance myelin gene expressions and sustained neurotrophin secretion are successfully demonstrated. The mechanism of SCs' neurotrophin secretion on conductive films is demonstrated by investigating the relationship between intracellular Ca(2+) level and SCs' myelination. Furthermore, the neurite growth and elongation of PC12 cells are induced by adding the neurotrophin medium suspension produced from SCs-laden conductive films. These data suggest that these conductive degradable polyurethanes that enhance SCs' myelin gene expressions and sustained neurotrophin secretion perform great potential for nerve regeneration applications. PMID:26897537

  19. Gamma-diketone axonopathy: analyses of cytoskeletal motors and highways in CNS myelinated axons.

    PubMed

    Zhang, Lihai; Gavin, Terrence; DeCaprio, Anthony P; LoPachin, Richard M

    2010-09-01

    2,5-Hexanedione (HD) intoxication is associated with axon atrophy that might be responsible for the characteristic gait abnormalities, hindlimb skeletal muscle weakness and other neurological deficits that accompany neurotoxicity. Although previous mechanistic research focused on neurofilament triplet proteins (NFL, NFM, NFH), other cytoskeletal targets are possible. Therefore, to identify potential non-NF protein targets, we characterized the effects of HD on protein-protein interactions in cosedimentation assays using microtubules and NFs prepared from spinal cord of rats intoxicated at different daily dose rates (175 and 400 mg/kg/day). Results indicate that HD did not alter the presence of alpha- or beta-tubulins in these preparations, nor were changes noted in the distribution of either anterograde (KIF1A, KIF3, KIF5) or retrograde (dynein) molecular motors. The cosedimentation of dynactin, a dynein-associated protein, also was not affected. Immunoblot analysis of microtubule-associated proteins (MAPs) in microtubule preparations revealed substantial reductions (45-80%) in MAP1A, MAP1B heavy chain, MAP2, and tau regardless of HD dose rate. MAP1B light chain content was not altered. Finally, HD intoxication did not influence native NF protein content in either preparation. As per previous research, microtubule and NF preparations were enriched in high-molecular weight NF species. However, these NF derivatives were common to both HD and control samples, suggesting a lack of pathognomonic relevance. These data indicate that, although motor proteins were not affected, HD selectively impaired MAP-microtubule binding, presumably through adduction of lysine residues that mediate such interactions. Given their critical role in cytoskeletal physiology, MAPs could represent a relevant target for the induction of gamma-diketone axonopathy. PMID:20554699

  20. γ-Diketone Axonopathy: Analyses of Cytoskeletal Motors and Highways in CNS Myelinated Axons

    PubMed Central

    Zhang, Lihai; Gavin, Terrence; DeCaprio, Anthony P.; LoPachin, Richard M.

    2010-01-01

    2,5-Hexanedione (HD) intoxication is associated with axon atrophy that might be responsible for the characteristic gait abnormalities, hindlimb skeletal muscle weakness and other neurological deficits that accompany neurotoxicity. Although previous mechanistic research focused on neurofilament triplet proteins (NFL, NFM, NFH), other cytoskeletal targets are possible. Therefore, to identify potential non-NF protein targets, we characterized the effects of HD on protein-protein interactions in cosedimentation assays using microtubules and NFs prepared from spinal cord of rats intoxicated at different daily dose rates (175 and 400 mg/kg/day). Results indicate that HD did not alter the presence of α- or β-tubulins in these preparations, nor were changes noted in the distribution of either anterograde (KIF1A, KIF3, KIF5) or retrograde (dynein) molecular motors. The cosedimentation of dynactin, a dynein-associated protein, also was not affected. Immunoblot analysis of microtubule-associated proteins (MAPs) in microtubule preparations revealed substantial reductions (45–80%) in MAP1A, MAP1B heavy chain, MAP2, and tau regardless of HD dose rate. MAP1B light chain content was not altered. Finally, HD intoxication did not influence native NF protein content in either preparation. As per previous research, microtubule and NF preparations were enriched in high–molecular weight NF species. However, these NF derivatives were common to both HD and control samples, suggesting a lack of pathognomonic relevance. These data indicate that, although motor proteins were not affected, HD selectively impaired MAP-microtubule binding, presumably through adduction of lysine residues that mediate such interactions. Given their critical role in cytoskeletal physiology, MAPs could represent a relevant target for the induction of γ-diketone axonopathy. PMID:20554699

  1. Abnormal Schwann cell/axon interactions in the Trembler-J mouse

    PubMed Central

    ROBERTSON, A. M.; KING, R. H. M.; MUDDLE, J. R.; THOMAS, P. K.

    1997-01-01

    The Trembler-J (TrJ) mouse has a point mutation in the gene coding for peripheral myelin protein 22 (PMP22). Disturbances in PMP22 are associated with abnormal myelination in a range of inherited peripheral neuropathies both in mice and humans. PMP22 is produced mainly by Schwann cells in the peripheral nervous system where it is localised to compact myelin. The function of PMP22 is unclear but its low abundance (∼5% of total myelin protein) means that it is unlikely to play a structural role. Its inclusion in a recently discovered family of proteins suggests a function in cell proliferation/differentiation and possibly in adhesion. Nerves from TrJ and the allelic Trembler (Tr) mouse are characterised by abnormally thin myelin for the size of the axon and an increased number of Schwann cells. We report ultrastructural evidence of abnormal Schwann cell-axon interactions. Schwann cell nuclei have been found adjacent to the nodes of Ranvier whereas in normal animals they are located near the centre of the internodes. In some fibres the terminal myelin loops faced outwards into the extracellular space instead of turning inwards and terminating on the axon. In severely affected nerves many axons were only partially surrounded by Schwann cell cytoplasm. All these features suggest a failure of Schwann cell–axon recognition or interaction. In addition to abnormalities related to abnormal myelination there was significant axonal loss in the dorsal roots. PMID:9147228

  2. Knockdown of Peripheral Myelin Protein 22 Inhibits the Progression of Chronic Myeloid Leukemia.

    PubMed

    Liu, Hui; Cao, Hui-qin; Ta, Jin-bao; Zhang, Wen; Liu, Yu-hong

    2014-01-01

    We aimed to explore the underlying mechanism of peripheral myelin protein 22 (PMP22) in the development of chronic myeloid leukemia (CML). The level of PMP22 expression in CD34(+) cells isolated from CML patients' bone marrow samples (BMMCs) and peripheral blood samples (PBMCs) was determined by RT-PCR. In addition, PMP22-siRNA and scrambled control siRNA were transfected into human CML cell line K562 with Lipofectamine 2000 reagent. Cell viability and apoptosis were, respectively, determined by MTT assay and flow cytometry. Besides, the level of caspase 3 and Bcl-xL was then detected using Western blot. The level of PMP22 expression in CML patients' CD34(+) cells isolated from both PBMCs and BMMCs was significantly higher than the control group. PMP22 expression in K562 cells was successfully knocked down by siRNA. MTT analysis showed that knockdown of PMP22 inhibited the proliferation of CML cells. Flow cytometry showed that knockdown of PMP22 promoted the apoptosis of CML cells. Besides, Bcl-xL expression markedly decreased, while the expression of caspase 3 in CML cells significantly increased after knockdown of PMP22 expression. Our findings indicate that high expression of PMP22 may promote cell proliferation and inhibit cell apoptosis via upregulation of Bcl-xL or inhibition of caspase 3 activation, and thus may contribute to the development of CML. PMP22 may serve as a novel therapeutic target for the treatment of CML. PMID:26629937

  3. Axon-Schwann cell interactions during peripheral nerve regeneration in zebrafish larvae

    PubMed Central

    2014-01-01

    Background Peripheral nerve injuries can severely affect the way that animals perceive signals from the surrounding environment. While damage to peripheral axons generally has a better outcome than injuries to central nervous system axons, it is currently unknown how neurons re-establish their target innervations to recover function after injury, and how accessory cells contribute to this task. Here we use a simple technique to create reproducible and localized injury in the posterior lateral line (pLL) nerve of zebrafish and follow the fate of both neurons and Schwann cells. Results Using pLL single axon labeling by transient transgene expression, as well as transplantation of glial precursor cells in zebrafish larvae, we individualize different components in this system and characterize their cellular behaviors during the regenerative process. Neurectomy is followed by loss of Schwann cell differentiation markers that is reverted after nerve regrowth. We show that reinnervation of lateral line hair cells in neuromasts during pLL nerve regeneration is a highly dynamic process with promiscuous yet non-random target recognition. Furthermore, Schwann cells are required for directional extension and fasciculation of the regenerating nerve. We provide evidence that these cells and regrowing axons are mutually dependant during early stages of nerve regeneration in the pLL. The role of ErbB signaling in this context is also explored. Conclusion The accessibility of the pLL nerve and the availability of transgenic lines that label this structure and their synaptic targets provides an outstanding in vivo model to study the different events associated with axonal extension, target reinnervation, and the complex cellular interactions between glial cells and injured axons during nerve regeneration. PMID:25326036

  4. Molecular characterization of myelin protein zero in Xenopus laevis peripheral nerve

    NASA Astrophysics Data System (ADS)

    Xie, Bo; Luo, Xiaoyang; Zhao, Cheng; Priest, Christina Marie; Chan, Shiu-Yung; O'Connor, Peter B.; Kirschner, Daniel A.; Costello, Catherine E.

    2007-12-01

    Myelin protein zero (P0), a glycosylated single-pass transmembrane protein, is essential in the formation and maintenance of peripheral nervous system (PNS) compact myelin. P0 in Xenopus (xP0) exists primarily as a dimeric form that remains stable after various physical and chemical treatments. In exploring the nature of the interactions underlying the dimer stability, we found that xP0 dimer dissociated into monomer during continuous elution gel electrophoresis and conventional SDS-PAGE, indicating that the dimer is stabilized by non-covalent interactions. Furthermore, as some of the gel-purified monomer re-associated into dimer on SDS-PAGE gels, there is likely a dynamic equilibrium between xP0 dimer and monomer in vivo. Because the carbohydrate and fatty acyl moieties may be crucial for the adhesion role of P0, we used sensitive mass spectrometry approaches to elucidate the detailed N-glycosylation and S-acylation profiles of xP0. Asn92 was determined to be the single, fully-occupied glycosylation site of xP0, and a total of 12 glycans was detected that exhibited new structural features compared with those observed from P0 in other species: (1) the neutral glycans were composed mainly of high mannose and hybrid types; (2) 5 of 12 were acidic glycans, among which three were sialylated and the other two were sulfated; (3) none of the glycans had core fucosylation; and (4) no glucuronic acid, hence no HNK-1 epitope, was detected. The drastically different carbohydrate structures observed here support the concept of the species-specific variation in N-glycosylation of P0. Cys152 was found to be acylated with stearoyl (C18:0), whereas palmitoyl (C16:0) is the corresponding predominant fatty acyl group on P0 from higher vertebrates. We propose that the unique glycosylation and acylation patterns of Xenopus P0 may underlie its unusual dimerization behavior. Our results should shed light on the understanding of the phylogenetic development of P0's adhesion role in PNS

  5. The acquisition of myelin: An evolutionary perspective.

    PubMed

    Zalc, B

    2016-06-15

    It has been postulated that the emergence of vertebrates was made possible by the acquisition of neural crest cells, which then led to the development of evolutionarily advantageous complex head structures (Gans and Northcutt, 1983). In this regard the contribution of one important neural crest derivative-the peripheral myelin sheath-to the success of the vertebrates has to be pointed out. Without this structure, the vertebrates, as we know them, simply could not exist. After briefly reviewing the major functions of the myelin sheath we will ask and provide tentative answers to the following three questions: when during evolution has myelin first appeared? Where has myelin initially appeared: in the CNS or in the PNS? Was it necessary to acquire a new cell type to form a myelin sheath? Careful examination of fossils lead us to conclude that myelin was acquired 425 MY ago by placoderms, the earliest hinge-jaw fishes. I argue that the acquisition of myelin during evolution has been a necessary prerequisite to permit gigantism of gnathostome species, including the sauropods. I propose that this acquisition occurred simultaneously in the PNS and CNS and that myelin forming cells are the descendants of ensheathing glia, already present in invertebrates, that have adapted their potential to synthesize large amount of membrane in response to axonal requirements. This article is part of a Special Issue entitled SI: Myelin Evolution. PMID:26367449

  6. Schwann cell myelination.

    PubMed

    Salzer, James L

    2015-08-01

    Myelinated nerve fibers are essential for the rapid propagation of action potentials by saltatory conduction. They form as the result of reciprocal interactions between axons and Schwann cells. Extrinsic signals from the axon, and the extracellular matrix, drive Schwann cells to adopt a myelinating fate, whereas myelination reorganizes the axon for its role in conduction and is essential for its integrity. Here, we review our current understanding of the development, molecular organization, and function of myelinating Schwann cells. Recent findings into the extrinsic signals that drive Schwann cell myelination, their cognate receptors, and the downstream intracellular signaling pathways they activate will be described. Together, these studies provide important new insights into how these pathways converge to activate the transcriptional cascade of myelination and remodel the actin cytoskeleton that is critical for morphogenesis of the myelin sheath. PMID:26054742

  7. Peripheral nerve: from the microscopic functional unit of the axon to the biomechanically loaded macroscopic structure.

    PubMed

    Topp, Kimberly S; Boyd, Benjamin S

    2012-01-01

    Peripheral nerves are composed of motor and sensory axons, associated ensheathing Schwann cells, and organized layers of connective tissues that are in continuity with the tissues of the central nervous system. Nerve fiber anatomy facilitates conduction of electrical impulses to convey information over a distance, and the length of these polarized cells necessitates regulated axonal transport of organelles and structural proteins for normal cell function. Nerve connective tissues serve a protective function as the limb is subjected to the stresses of myriad limb positions and postures. Thus, the tissues are uniquely arranged to control the local nerve fiber environment and modulate physical stresses. In this brief review, we describe the microscopic anatomy and physiology of peripheral nerve and the biomechanical properties that enable nerve to withstand the physical stresses of everyday life. PMID:22133662

  8. Unravelling crucial biomechanical resilience of myelinated peripheral nerve fibres provided by the Schwann cell basal lamina and PMP22

    PubMed Central

    Rosso, Gonzalo; Liashkovich, Ivan; Gess, Burkhard; Young, Peter; Kun, Alejandra; Shahin, Victor

    2014-01-01

    There is an urgent need for the research of the close and enigmatic relationship between nerve biomechanics and the development of neuropathies. Here we present a research strategy based on the application atomic force and confocal microscopy for simultaneous nerve biomechanics and integrity investigations. Using wild-type and hereditary neuropathy mouse models, we reveal surprising mechanical protection of peripheral nerves. Myelinated peripheral wild-type fibres promptly and fully recover from acute enormous local mechanical compression while maintaining functional and structural integrity. The basal lamina which enwraps each myelinated fibre separately is identified as the major contributor to the striking fibre's resilience and integrity. In contrast, neuropathic fibres lacking the peripheral myelin protein 22 (PMP22), which is closely connected with several hereditary human neuropathies, fail to recover from light compression. Interestingly, the structural arrangement of the basal lamina of Pmp22−/− fibres is significantly altered compared to wild-type fibres. In conclusion, the basal lamina and PMP22 act in concert to contribute to a resilience and integrity of peripheral nerves at the single fibre level. Our findings and the presented technology set the stage for a comprehensive research of the links between nerve biomechanics and neuropathies. PMID:25446378

  9. Peripheral axon crush elevates transport of p75NTR in the central projection of sensory neurones of rats.

    PubMed

    Delcroix, Jean-Dominique; Patel, Jyoti; Averill, Sharon; Tomlinson, David R; Priestley, John V; Fernyhough, Paul

    2003-11-20

    The effect of peripheral axon crush on the axonal transport of the neurotrophin receptors, p75(NTR) and trkA, was studied in dorsal roots of adult rats. Lumbar dorsal roots were crushed for 3-6 h to cause accumulation of p75(NTR) and trkA. Immunohistochemistry showed the presence of the NGF receptors in axons, indicating retrograde and anterograde axonal transport in the dorsal root. Western blots confirmed that the time course of accumulation of p75(NTR) was consistent with fast axonal transport. However, trkA accumulation was too low to indicate significant levels of axonal transport. Sciatic nerve crush induced a 2-fold increase (P<0.05) in the bidirectional axonal transport of p75(NTR) in the dorsal root while trkA transport remained below detectable levels. PMID:14623136

  10. Central changes in primary afferent fibers following peripheral nerve lesions.

    PubMed

    Coggeshall, R E; Lekan, H A; Doubell, T P; Allchorne, A; Woolf, C J

    1997-04-01

    Cutting or crushing rat sciatic nerve does not significantly reduce the number of central myelinated sensory axons in the dorsal roots entering the fourth and fifth lumbar segments even over very extended periods of time. Unmyelinated axons were reduced by approximately 50%, but only long after sciatic nerve lesions (four to eight months), and reinnervation of the peripheral target did not rescue these axons. This indicates that a peripheral nerve lesion sets up a slowly developing but major shift towards large afferent fiber domination of primary afferent input into the spinal cord. In addition, since myelinated axons are never lost, this is good evidence that the cells that give rise to these fibers are also not lost. If this is the case, this would indicate that adult primary sensory neurons with myelinated axons do not depend on peripheral target innervation for survival. PMID:9130791

  11. Sex differences in morphometric aspects of the peripheral nerves and related diseases

    PubMed Central

    Moriyama, Hiroshi; Hayashi, Shogo; Inoue, Yuriko; Itoh, Masahiro; Otsuka, Naruhito

    2016-01-01

    BACKGROUND: The elucidation of the relationship between the morphology of the peripheral nerves and the diseases would be valuable in developing new medical treatments on the assumption that characteristics of the peripheral nerves in females are different from those in males. METHODS: We used 13 kinds of the peripheral nerve. The materials were obtained from 10 Japanese female and male cadavers. We performed a morphometric analysis of nerve fibers. We estimated the total number of myelinated axons, and calculated the average transverse area and average circularity ratio of myelinated axons in the peripheral nerves. RESULTS: There was no statistically significant difference in the total number, average transverse area, or average circularity ratio of myelinated axons between the female and male specimens except for the total number of myelinated axons in the vestibular nerve and the average circularity ratio of myelinated axons in the vagus nerve. CONCLUSIONS: The lower number of myelinated axons in the female vestibular nerve may be one of the reasons why vestibular disorders have a female preponderance. Moreover, the higher average circularity ratio of myelinated axons in the male vagus nerve may be one reason why vagus nerve activity to modulate pain has a male preponderance. PMID:27589511

  12. Galactosphingolipids and axono-glial interaction in myelin of the central nervous system.

    PubMed

    Bosio, A; Büssow, H; Adam, J; Stoffel, W

    1998-05-01

    The myelin of central and peripheral nervous system of UDP-galactose-ceramide galactosyltransferase deficient mice (cgt-/-) is completely depleted of its major lipid constituents, galactocerebrosides and sulfatides. The deficiency of these glycolipids affects the biophysical properties of the myelin sheath and causes the loss of the rapid saltatory conduction velocity of myelinated axons. With the onset of myelination, null mutant cgt-/- mice develop fatal neurological defects. CNS and PNS analysis of cgt-/- mice revealed (1) hypomyelination of axons of the spinal cord and optic nerves, but no apoptosis of oligodendrocytes, (2) redundant myelin in younger mice leading to vacuolated nerve fibers in cgt-/- mice, (3) the occurrence of multiple myelinated CNS axons, and (4) severely distorted lateral loops in CNS paranodes. The loss of saltatory conduction is not associated with a randomization of voltage-gated sodium channels in the axolemma of PNS fibers. We conclude that cerebrosides (GalC) and sulfatides (sGalC) play a major role in CNS axono-glial interaction. A close axono-glial contact is not a prerequisite for the spiraling and compaction process of myelin. Axonal sodium channels remain clustered at the nodes of Ranvier independent of the change in the physical properties of myelin membrane devoid of galactosphingolipids. Increased intracellular concentrations of free ceramides do not trigger apoptosis of oligodendrocytes. PMID:9560463

  13. High frequency of mutations in codon 98 of the peripheral myelin protein Po gene in 20 French CMT1 patients

    SciTech Connect

    Rougher, H.; LeGuern, E. Gouider, R.

    1996-03-01

    Charcot-Marie-Tooth disease, characterized by distal muscle weakness and amyotrophy, decreased or absent tendon reflexes, and high arched feet, is the most common inherited peripheral neuropathy, with a prevalence of 1 in 2,500. Two types of CMT have been distinguished on the basis of nerve conduction velocities. CMT type 1 is the most frequent, with markedly slowed velocities ({<=}40 m/s) associated with hypertrophic onion bulb changes on nerve biopsy. Autosomal dominant CMT1 is genetically heterogeneous: CMT1A is caused by a 1.5-Mb duplication in 17p11.2 and, more rarely, by a point mutation in tha PMP22 (peripheral myelin protein, 22 kD) gene located in the duplicated region; CMT1B results from mutations in the Po (peripheral myelin protein zero) gene in 1q22-23. Forty-five percent (7/16) of the published mutations associated with CMT1 occur in exon 3 of Po. In order to determine the cause of CMT1 in 20 unrelated patients without 17p11.2 duplications, mutations were sought in exon 3 of Po with three techniques: nonradioactive SSCP, automated sequencing, and PCR enzymatic restriction. 18 refs., 2 figs.

  14. Neuron-glia signaling and the protection of axon function by Schwann cells.

    PubMed

    Quintes, Susanne; Goebbels, Sandra; Saher, Gesine; Schwab, Markus H; Nave, Klaus-Armin

    2010-03-01

    The interaction between neurons and glial cells is a feature of all higher nervous systems. In the vertebrate peripheral nervous system, Schwann cells ensheath and myelinate axons thereby allowing rapid saltatory conduction and ensuring axonal integrity. Recently, some of the key molecules in neuron-Schwann cell signaling have been identified. Neuregulin-1 (NRG1) type III presented on the axonal surface determines the myelination fate of axons and controls myelin sheath thickness. Recent observations suggest that NRG1 regulates myelination via the control of Schwann cell cholesterol biosynthesis. This concept is supported by the finding that high cholesterol levels in Schwann cells are a rate-limiting factor for myelin protein production and transport of the major myelin protein P0 from the endoplasmic reticulum into the growing myelin sheath. NRG1 type III activates ErbB receptors on the Schwann cell, which leads to an increase in intracellular PIP3 levels via the PI3-kinase pathway. Surprisingly, enforced elevation of PIP3 levels by inactivation of the phosphatase PTEN in developing and mature Schwann cells does not entirely mimic NRG1 type III stimulated myelin growth, but predominantly causes focal hypermyelination starting at Schmidt-Lanterman incisures and nodes of Ranvier. This indicates that the glial transduction of pro-myelinating signals has to be under tight and life-long control to preserve integrity of the myelinated axon. Understanding the cross talk between neurons and Schwann cells will help to further define the role of glia in preserving axonal integrity and to develop therapeutic strategies for peripheral neuropathies such as CMT1A. PMID:20433601

  15. Atomic resolution view into the structure–function relationships of the human myelin peripheral membrane protein P2

    SciTech Connect

    Ruskamo, Salla; Yadav, Ravi P.; Sharma, Satyan; Lehtimäki, Mari; Laulumaa, Saara; Aggarwal, Shweta; Simons, Mikael; Bürck, Jochen; Ulrich, Anne S.; Juffer, André H.; Kursula, Inari; Kursula, Petri

    2014-01-01

    The structure of the human myelin peripheral membrane protein P2 has been refined at 0.93 Å resolution. In combination with functional experiments in vitro, in vivo and in silico, the fine details of the structure–function relationships in P2 are emerging. P2 is a fatty acid-binding protein expressed in vertebrate peripheral nerve myelin, where it may function in bilayer stacking and lipid transport. P2 binds to phospholipid membranes through its positively charged surface and a hydrophobic tip, and accommodates fatty acids inside its barrel structure. The structure of human P2 refined at the ultrahigh resolution of 0.93 Å allows detailed structural analyses, including the full organization of an internal hydrogen-bonding network. The orientation of the bound fatty-acid carboxyl group is linked to the protonation states of two coordinating arginine residues. An anion-binding site in the portal region is suggested to be relevant for membrane interactions and conformational changes. When bound to membrane multilayers, P2 has a preferred orientation and is stabilized, and the repeat distance indicates a single layer of P2 between membranes. Simulations show the formation of a double bilayer in the presence of P2, and in cultured cells wild-type P2 induces membrane-domain formation. Here, the most accurate structural and functional view to date on P2, a major component of peripheral nerve myelin, is presented, showing how it can interact with two membranes simultaneously while going through conformational changes at its portal region enabling ligand transfer.

  16. An RNA binding protein promotes axonal integrity in peripheral neurons by destabilizing REST.

    PubMed

    Cargnin, Francesca; Nechiporuk, Tamilla; Müllendorff, Karin; Stumpo, Deborah J; Blackshear, Perry J; Ballas, Nurit; Mandel, Gail

    2014-12-10

    The RE1 Silencing Transcription Factor (REST) acts as a governor of the mature neuronal phenotype by repressing a large consortium of neuronal genes in non-neuronal cells. In the developing nervous system, REST is present in progenitors and downregulated at terminal differentiation to promote acquisition of mature neuronal phenotypes. Paradoxically, REST is still detected in some regions of the adult nervous system, but how REST levels are regulated, and whether REST can still repress neuronal genes, is not known. Here, we report that homeostatic levels of REST are maintained in mature peripheral neurons by a constitutive post-transcriptional mechanism. Specifically, using a three-hybrid genetic screen, we identify the RNA binding protein, ZFP36L2, associated previously only with female fertility and hematopoiesis, and show that it regulates REST mRNA stability. Dorsal root ganglia in Zfp36l2 knock-out mice, or wild-type ganglia expressing ZFP36L2 shRNA, show higher steady-state levels of Rest mRNA and protein, and extend thin and disintegrating axons. This phenotype is due, at least in part, to abnormally elevated REST levels in the ganglia because the axonal phenotype is attenuated by acute knockdown of REST in Zfp36l2 KO DRG explants. The higher REST levels result in lower levels of target genes, indicating that REST can still fine-tune gene expression through repression. Thus, REST levels are titrated in mature peripheral neurons, in part through a ZFP36L2-mediated post-transcriptional mechanism, with consequences for axonal integrity. PMID:25505318

  17. Dynamics and mechanisms of CNS myelination.

    PubMed

    Bercury, Kathryn K; Macklin, Wendy B

    2015-02-23

    Vertebrate myelination is an evolutionary advancement essential for motor, sensory, and higher-order cognitive function. CNS myelin, a multilamellar differentiation of the oligodendrocyte plasma membrane, ensheaths axons to facilitate electrical conduction. Myelination is one of the most pivotal cell-cell interactions for normal brain development, involving extensive information exchange between differentiating oligodendrocytes and axons. The molecular mechanisms of myelination are discussed, along with new perspectives on oligodendrocyte plasticity and myelin remodeling of the developing and adult CNS. PMID:25710531

  18. Neutron scattering from myelin revisited: bilayer asymmetry and water-exchange kinetics

    SciTech Connect

    Denninger, Andrew R.; Demé, Bruno; Cristiglio, Viviana; LeDuc, Géraldine; Feller, W. Bruce; Kirschner, Daniel A.

    2014-12-01

    The structure of internodal myelin in the rodent central and peripheral nervous systems has been determined using neutron diffraction. The kinetics of water exchange in these tissues is also described. Rapid nerve conduction in the central and peripheral nervous systems (CNS and PNS, respectively) of higher vertebrates is brought about by the ensheathment of axons with myelin, a lipid-rich, multilamellar assembly of membranes. The ability of myelin to electrically insulate depends on the regular stacking of these plasma membranes and on the presence of a number of specialized membrane-protein assemblies in the sheath, including the radial component, Schmidt–Lanterman incisures and the axo–glial junctions of the paranodal loops. The disruption of this fine-structure is the basis for many demyelinating neuropathies in the CNS and PNS. Understanding the processes that govern myelin biogenesis, maintenance and destabilization requires knowledge of myelin structure; however, the tight packing of internodal myelin and the complexity of its junctional specializations make myelin a challenging target for comprehensive structural analysis. This paper describes an examination of myelin from the CNS and PNS using neutron diffraction. This investigation revealed the dimensions of the bilayers and aqueous spaces of myelin, asymmetry between the cytoplasmic and extracellular leaflets of the membrane, and the distribution of water and exchangeable hydrogen in internodal multilamellar myelin. It also uncovered differences between CNS and PNS myelin in their water-exchange kinetics.

  19. Myelin Avoids the JAM.

    PubMed

    Follis, Rose M; Carter, Bruce D

    2016-08-17

    In this issue of Neuron, Redmond et al. (2016) identify junction adhesion molecule 2 (JAM2) as an inhibitor of somatodendritic myelination in spinal cord neurons, thereby elucidating how myelin forms on axons but avoids dendrites and cell bodies. PMID:27537479

  20. Tuning PAK Activity to Rescue Abnormal Myelin Permeability in HNPP.

    PubMed

    Hu, Bo; Arpag, Sezgi; Zhang, Xuebao; Möbius, Wiebke; Werner, Hauke; Sosinsky, Gina; Ellisman, Mark; Zhang, Yang; Hamilton, Audra; Chernoff, Jonathan; Li, Jun

    2016-09-01

    Schwann cells in the peripheral nervous systems extend their membranes to wrap axons concentrically and form the insulating sheath, called myelin. The spaces between layers of myelin are sealed by myelin junctions. This tight insulation enables rapid conduction of electric impulses (action potentials) through axons. Demyelination (stripping off the insulating sheath) has been widely regarded as one of the most important mechanisms altering the action potential propagation in many neurological diseases. However, the effective nerve conduction is also thought to require a proper myelin seal through myelin junctions such as tight junctions and adherens junctions. In the present study, we have demonstrated the disruption of myelin junctions in a mouse model (Pmp22+/-) of hereditary neuropathy with liability to pressure palsies (HNPP) with heterozygous deletion of Pmp22 gene. We observed a robust increase of F-actin in Pmp22+/- nerve regions where myelin junctions were disrupted, leading to increased myelin permeability. These abnormalities were present long before segmental demyelination at the late phase of Pmp22+/- mice. Moreover, the increase of F-actin levels correlated with an enhanced activity of p21-activated kinase (PAK1), a molecule known to regulate actin polymerization. Pharmacological inhibition of PAK normalized levels of F-actin, and completely prevented the progression of the myelin junction disruption and nerve conduction failure in Pmp22+/- mice. Our findings explain how abnormal myelin permeability is caused in HNPP, leading to impaired action potential propagation in the absence of demyelination. We call it "functional demyelination", a novel mechanism upstream to the actual stripping of myelin that is relevant to many demyelinating diseases. This observation also provides a potential therapeutic approach for HNPP. PMID:27583434

  1. Copper accumulation and lipid oxidation precede inflammation and myelin lesions in N,N-diethyldithiocarbamate peripheral myelinopathy

    SciTech Connect

    Viquez, Olga M.; Valentine, Holly L.; Amarnath, Kalyani; Milatovic, Dejan; Valentine, William M.

    2008-05-15

    Dithiocarbamates have a wide spectrum of applications in industry, agriculture and medicine with new applications being actively investigated. One adverse effect of dithiocarbamates is the neurotoxicity observed in humans and experimental animals. Results from previous studies have suggested that dithiocarbamates elevate copper and promote lipid oxidation within myelin membranes. In the current study, copper levels, lipid oxidation, protein oxidative damage and markers of inflammation were monitored as a function of N,N-diethyldithiocarbamate (DEDC) exposure duration in an established model for DEDC-mediated myelinopathy in the rat. Intra-abdominal administration of DEDC was performed using osmotic pumps for periods of 2, 4, and 8 weeks. Metals in brain, liver and tibial nerve were measured using ICP-MS and lipid oxidation assessed through HPLC measurement of malondialdehyde in tibial nerve, and GC/MS measurement of F{sub 2} isoprostanes in sciatic nerve. Protein oxidative injury of sciatic nerve proteins was evaluated through quantification of 4-hydroxynonenal protein adducts using immunoassay, and inflammation monitored by quantifying levels of IgGs and activated macrophages using immunoassay and immunohistochemistry methods, respectively. Changes in these parameters were then correlated to the onset of structural lesions, determined by light and electron microscopy, to delineate the temporal relationship of copper accumulation and oxidative stress in peripheral nerve to the onset of myelin lesions. The data provide evidence that DEDC mediates lipid oxidation and elevation of total copper in peripheral nerve well before myelin lesions or activated macrophages are evident. This relationship is consistent with copper-mediated oxidative stress contributing to the myelinopathy.

  2. Atomic resolution view into the structure–function relationships of the human myelin peripheral membrane protein P2

    PubMed Central

    Ruskamo, Salla; Yadav, Ravi P.; Sharma, Satyan; Lehtimäki, Mari; Laulumaa, Saara; Aggarwal, Shweta; Simons, Mikael; Bürck, Jochen; Ulrich, Anne S.; Juffer, André H.; Kursula, Inari; Kursula, Petri

    2014-01-01

    P2 is a fatty acid-binding protein expressed in vertebrate peripheral nerve myelin, where it may function in bilayer stacking and lipid transport. P2 binds to phospholipid membranes through its positively charged surface and a hydrophobic tip, and accommodates fatty acids inside its barrel structure. The structure of human P2 refined at the ultrahigh resolution of 0.93 Å allows detailed structural analyses, including the full organization of an internal hydrogen-bonding network. The orientation of the bound fatty-acid carboxyl group is linked to the protonation states of two coordinating arginine residues. An anion-binding site in the portal region is suggested to be relevant for membrane interactions and conformational changes. When bound to membrane multilayers, P2 has a preferred orientation and is stabilized, and the repeat distance indicates a single layer of P2 between membranes. Simulations show the formation of a double bilayer in the presence of P2, and in cultured cells wild-type P2 induces membrane-domain formation. Here, the most accurate structural and functional view to date on P2, a major component of peripheral nerve myelin, is presented, showing how it can interact with two membranes simultaneously while going through conformational changes at its portal region enabling ligand transfer. PMID:24419389

  3. Familial multiple symmetric lipomatosis with peripheral neuropathy.

    PubMed

    Chalk, C H; Mills, K R; Jacobs, J M; Donaghy, M

    1990-08-01

    We describe coexisting peripheral neuropathy and multiple symmetric lipomatosis in 4 of 7 siblings. The absence of either condition in 3 other generations of this family suggests autosomal recessive inheritance. None of the affected siblings were alcoholic, a factor some have proposed to explain the frequent occurrence of peripheral neuropathy in sporadic multiple symmetric lipomatosis. Serum lipid studies, including apoprotein A levels, were normal. Sural nerve biopsy from 1 patient showed nerve fiber loss, predominantly affecting large myelinated fibers. The relationship between myelin sheath thickness and axon diameter was normal, arguing that this neuropathy is not due to primary axonal atrophy. PMID:2166247

  4. In vivo expression of the Arf6 Guanine-nucleotide exchange factor cytohesin-1 in mice exhibits enhanced myelin thickness in nerves.

    PubMed

    Torii, Tomohiro; Miyamoto, Yuki; Onami, Naoko; Tsumura, Hideki; Nemoto, Noriko; Kawahara, Katsumasa; Kato, Minoru; Kotera, Jun; Nakamura, Kazuaki; Tanoue, Akito; Yamauchi, Junji

    2013-10-01

    The myelin sheath consists of a unique multiple layer structure that acts as an insulator between neuronal axons to enhance the propagation of the action potential. In neuropathies such as demyelinating or dismyelinating diseases, chronic demyelination and defective remyelination occur repeatedly, leading to more severe neuropathy. As yet, little is known about the possibility of drug target-specific medicine for such diseases. In the developing peripheral nervous system (PNS), myelin sheaths form as Schwann cells wrap individual axons. It is thought that the development of a drug promoting myelination by Schwann cells would provide effective therapy against peripheral nerve disorders: to test such treatment, genetically modified mice overexpressing the drug target molecules are needed. We previously identified an Arf6 activator, the guanine-nucleotide exchange factor cytohesin-1, as the signaling molecule controlling myelination of peripheral axons by Schwann cells; yet, the important issue of whether cytohesin-1 itself promotes myelin thickness in vivo has remained unclear. Herein, we show that, in mouse PNS nerves, Schwann cell-specific expression of wild-type cytohesin-1 exhibits enhanced myelin thickness. Downstream activation of Arf6 is also seen in these transgenic mice, revealing the involvement of the cytohesin-1 and Arf6 signaling unit in promoting myelination. These results suggest that cytohesin-1 may be a candidate for the basis of a therapy for peripheral neuropathies through its enhancement of myelin thickness. PMID:23636892

  5. High-resolution live imaging reveals axon-glia interactions during peripheral nerve injury and repair in zebrafish.

    PubMed

    Xiao, Yan; Faucherre, Adèle; Pola-Morell, Laura; Heddleston, John M; Liu, Tsung-Li; Chew, Teng-Leong; Sato, Fuminori; Sehara-Fujisawa, Atsuko; Kawakami, Koichi; López-Schier, Hernán

    2015-06-01

    Neural damage is a devastating outcome of physical trauma. The glia are one of the main effectors of neuronal repair in the nervous system, but the dynamic interactions between peripheral neurons and Schwann cells during injury and regeneration remain incompletely characterized. Here, we combine laser microsurgery, genetic analysis, high-resolution intravital imaging and lattice light-sheet microscopy to study the interaction between Schwann cells and sensory neurons in a zebrafish model of neurotrauma. We found that chronic denervation by neuronal ablation leads to Schwann-cell death, whereas acute denervation by axonal severing does not affect the overall complexity and architecture of the glia. Neuronal-circuit regeneration begins when Schwann cells extend bridging processes to close the injury gap. Regenerating axons grow faster and directionally after the physiological clearing of distal debris by the Schwann cells. This might facilitate circuit repair by ensuring that axons are guided through unoccupied spaces within bands of Büngner towards their original peripheral target. Accordingly, in the absence of Schwann cells, regenerating axons are misrouted, impairing the re-innervation of sensory organs. Our results indicate that regenerating axons use haptotaxis as a directional cue during the reconstitution of a neural circuit. These findings have implications for therapies aimed at neurorepair, which will benefit from preserving the architecture of the peripheral glia during periods of denervation. PMID:26035865

  6. High-resolution live imaging reveals axon-glia interactions during peripheral nerve injury and repair in zebrafish

    PubMed Central

    Xiao, Yan; Faucherre, Adèle; Pola-Morell, Laura; Heddleston, John M.; Liu, Tsung-Li; Chew, Teng-Leong; Sato, Fuminori; Sehara-Fujisawa, Atsuko; Kawakami, Koichi; López-Schier, Hernán

    2015-01-01

    ABSTRACT Neural damage is a devastating outcome of physical trauma. The glia are one of the main effectors of neuronal repair in the nervous system, but the dynamic interactions between peripheral neurons and Schwann cells during injury and regeneration remain incompletely characterized. Here, we combine laser microsurgery, genetic analysis, high-resolution intravital imaging and lattice light-sheet microscopy to study the interaction between Schwann cells and sensory neurons in a zebrafish model of neurotrauma. We found that chronic denervation by neuronal ablation leads to Schwann-cell death, whereas acute denervation by axonal severing does not affect the overall complexity and architecture of the glia. Neuronal-circuit regeneration begins when Schwann cells extend bridging processes to close the injury gap. Regenerating axons grow faster and directionally after the physiological clearing of distal debris by the Schwann cells. This might facilitate circuit repair by ensuring that axons are guided through unoccupied spaces within bands of Büngner towards their original peripheral target. Accordingly, in the absence of Schwann cells, regenerating axons are misrouted, impairing the re-innervation of sensory organs. Our results indicate that regenerating axons use haptotaxis as a directional cue during the reconstitution of a neural circuit. These findings have implications for therapies aimed at neurorepair, which will benefit from preserving the architecture of the peripheral glia during periods of denervation. PMID:26035865

  7. In vivo optical microscopy of peripheral nerve myelination with polarization sensitive-optical coherence tomography.

    PubMed

    Henry, Francis P; Wang, Yan; Rodriguez, Carissa L R; Randolph, Mark A; Rust, Esther A Z; Winograd, Jonathan M; de Boer, Johannes F; Park, B Hyle

    2015-04-01

    Assessing nerve integrity and myelination after injury is necessary to provide insight for treatment strategies aimed at restoring neuromuscular function. Currently, this is largely done with electrical analysis, which lacks direct quantitative information. In vivo optical imaging with sufficient imaging depth and resolution could be used to assess the nerve microarchitecture. In this study, we examine the use of polarization sensitive-optical coherence tomography (PS-OCT) to quantitatively assess the sciatic nerve microenvironment through measurements of birefringence after applying a nerve crush injury in a rat model. Initial loss of function and subsequent recovery were demonstrated by calculating the sciatic function index (SFI). We found that the PS-OCT phase retardation slope, which is proportional to birefringence, increased monotonically with the SFI. Additionally, histomorphometric analysis of the myelin thickness and g-ratio shows that the PS-OCT slope is a good indicator of myelin health and recovery after injury. These results demonstrate that PS-OCT is capable of providing nondestructive and quantitative assessment of nerve health after injury and shows promise for continued use both clinically and experimentally in neuroscience. PMID:25858593

  8. In vivo optical microscopy of peripheral nerve myelination with polarization sensitive-optical coherence tomography

    PubMed Central

    Henry, Francis P.; Wang, Yan; Rodriguez, Carissa L. R.; Randolph, Mark A.; Rust, Esther A. Z.; Winograd, Jonathan M.; de Boer, Johannes F.; Park, B. Hyle

    2015-01-01

    Abstract. Assessing nerve integrity and myelination after injury is necessary to provide insight for treatment strategies aimed at restoring neuromuscular function. Currently, this is largely done with electrical analysis, which lacks direct quantitative information. In vivo optical imaging with sufficient imaging depth and resolution could be used to assess the nerve microarchitecture. In this study, we examine the use of polarization sensitive-optical coherence tomography (PS-OCT) to quantitatively assess the sciatic nerve microenvironment through measurements of birefringence after applying a nerve crush injury in a rat model. Initial loss of function and subsequent recovery were demonstrated by calculating the sciatic function index (SFI). We found that the PS-OCT phase retardation slope, which is proportional to birefringence, increased monotonically with the SFI. Additionally, histomorphometric analysis of the myelin thickness and g-ratio shows that the PS-OCT slope is a good indicator of myelin health and recovery after injury. These results demonstrate that PS-OCT is capable of providing nondestructive and quantitative assessment of nerve health after injury and shows promise for continued use both clinically and experimentally in neuroscience. PMID:25858593

  9. In vivo imaging of cell behaviors and F-actin reveals LIM-HD transcription factor regulation of peripheral versus central sensory axon development

    PubMed Central

    2011-01-01

    Background Development of specific neuronal morphology requires precise control over cell motility processes, including axon formation, outgrowth and branching. Dynamic remodeling of the filamentous actin (F-actin) cytoskeleton is critical for these processes; however, little is known about the mechanisms controlling motile axon behaviors and F-actin dynamics in vivo. Neuronal structure is specified in part by intrinsic transcription factor activity, yet the molecular and cellular steps between transcription and axon behavior are not well understood. Zebrafish Rohon-Beard (RB) sensory neurons have a unique morphology, with central axons that extend in the spinal cord and a peripheral axon that innervates the skin. LIM homeodomain (LIM-HD) transcription factor activity is required for formation of peripheral RB axons. To understand how neuronal morphogenesis is controlled in vivo and how LIM-HD transcription factor activity differentially regulates peripheral versus central axons, we used live imaging of axon behavior and F-actin distribution in vivo. Results We used an F-actin biosensor containing the actin-binding domain of utrophin to characterize actin rearrangements during specific developmental processes in vivo, including axon initiation, consolidation and branching. We found that peripheral axons initiate from a specific cellular compartment and that F-actin accumulation and protrusive activity precede peripheral axon initiation. Moreover, disruption of LIM-HD transcriptional activity has different effects on the motility of peripheral versus central axons; it inhibits peripheral axon initiation, growth and branching, while increasing the growth rate of central axons. Our imaging revealed that LIM-HD transcription factor activity is not required for F-actin based protrusive activity or F-actin accumulation during peripheral axon initiation, but can affect positioning of F-actin accumulation and axon formation. Conclusion Our ability to image the dynamics of

  10. DDIT4/REDD1/RTP801 is a novel negative regulator of Schwann cell myelination.

    PubMed

    Noseda, Roberta; Belin, Sophie; Piguet, Françoise; Vaccari, Ilaria; Scarlino, Stefania; Brambilla, Paola; Martinelli Boneschi, Filippo; Feltri, Maria Laura; Wrabetz, Lawrence; Quattrini, Angelo; Feinstein, Elena; Huganir, Richard L; Bolino, Alessandra

    2013-09-18

    Signals that promote myelination must be tightly modulated to adjust myelin thickness to the axonal diameter. In the peripheral nervous system, axonal neuregulin 1 type III promotes myelination by activating erbB2/B3 receptors and the PI3K/AKT/mTOR pathway in Schwann cells. Conversely, PTEN (phosphatase and tensin homolog on chromosome 10) dephosphorylates PtdIns(3,4,5)P3 and negatively regulates the AKT pathway and myelination. Recently, the DLG1/SAP97 scaffolding protein was described to interact with PTEN to enhance PIP3 dephosphorylation. Here we now report that nerves from mice with conditional inactivation of Dlg1 in Schwann cells display only a transient increase in myelin thickness during development, suggesting that DLG1 is a transient negative regulator of myelination. Instead, we identified DDIT4/RTP801/REDD1 as a sustained negative modulator of myelination. We show that DDIT4 is expressed in Schwann cells and its maximum expression level precedes the peak of AKT activation and of DLG1 activity in peripheral nerves. Moreover, loss of DDIT4 expression both in vitro and in vivo in Ddit4-null mice provokes sustained hypermyelination and enhanced mTORC1 activation, thus suggesting that this molecule is a novel negative regulator of PNS myelination. PMID:24048858

  11. Oligodendrocytes expressing exclusively the DM20 isoform of the proteolipid protein gene: myelination and development.

    PubMed

    Spörkel, Olaf; Uschkureit, Thomas; Büssow, Heinrich; Stoffel, Wilhelm

    2002-01-01

    Oligodendroglia and Schwann cells synthesize myelin-specific proteins and lipids for the assembly of the highly organized myelin membrane of the motor-sensory axons in the central (CNS) and peripheral nervous system (PNS), respectively, allowing rapid saltatory conduction. The isoforms of the main myelin proteins, the peripheral myelin basic isoproteins (MBP) and the integral proteolipid proteins, PLP and DM20, arise from alternative splicing. Activation of a cryptic splice site in exon III of plp leads to the deletion of 105 bp encoding the PLP-specific 35 amino acid residues within the cytosolic loop 3 of the four-transmembrane domain (TMD) integral membrane protein. To study the different proposed functions of DM20 during the development of oligodendrocytes and in myelination, we targeted the plp locus in embryonic stem cells by homologous recombination by a construct, which allows solely the expression of the DM20 specific exon III sequence. The resulting dm20(only) mouse line expresses exclusively DM20 isoprotein, which is functionally assembled into the membrane, forming a highly ordered and tightly compacted myelin sheath. The truncated cytosolic loop devoid of the PLP-specific 35 amino acid residues, including two thioester groups, had no impact on the periodicity of CNS myelin. In contrast to the PLP/DM20-deficient mouse, mutant CNS of dm20(only) mice showed no axonal swellings and neurodegeneration but a slow punctuated disintegration of the compact layers of the myelin sheath and a rare oligodendrocyte death developing with aging. PMID:11746780

  12. N- and L-Type Voltage-Gated Calcium Channels Mediate Fast Calcium Transients in Axonal Shafts of Mouse Peripheral Nerve

    PubMed Central

    Barzan, Ruxandra; Pfeiffer, Friederike; Kukley, Maria

    2016-01-01

    In the peripheral nervous system (PNS) a vast number of axons are accommodated within fiber bundles that constitute peripheral nerves. A major function of peripheral axons is to propagate action potentials along their length, and hence they are equipped with Na+ and K+ channels, which ensure successful generation, conduction and termination of each action potential. However little is known about Ca2+ ion channels expressed along peripheral axons and their possible functional significance. The goal of the present study was to test whether voltage-gated Ca2+ channels (VGCCs) are present along peripheral nerve axons in situ and mediate rapid activity-dependent Ca2+ elevations under physiological circumstances. To address this question we used mouse sciatic nerve slices, Ca2+ indicator Oregon Green BAPTA-1, and 2-photon Ca2+ imaging in fast line scan mode (500 Hz). We report that transient increases in intra-axonal Ca2+ concentration take place along peripheral nerve axons in situ when axons are stimulated electrically with single pulses. Furthermore, we show for the first time that Ca2+ transients in peripheral nerves are fast, i.e., occur in a millisecond time-domain. Combining Ca2+ imaging and pharmacology with specific blockers of different VGCCs subtypes we demonstrate that Ca2+ transients in peripheral nerves are mediated mainly by N-type and L-type VGCCs. Discovery of fast Ca2+ entry into the axonal shafts through VGCCs in peripheral nerves suggests that Ca2+ may be involved in regulation of action potential propagation and/or properties in this system, or mediate neurotransmitter release along peripheral axons as it occurs in the optic nerve and white matter of the central nervous system (CNS). PMID:27313508

  13. Fibrin glue repair leads to enhanced axonal elongation during early peripheral nerve regeneration in an in vivo mouse model

    PubMed Central

    Koulaxouzidis, Georgios; Reim, Gernot; Witzel, Christian

    2015-01-01

    Microsurgical suturing is the gold standard of nerve coaptation. Although literature on the usefulness of fibrin glue as an alternative is becoming increasingly available, it remains contradictory. Furthermore, no data exist on how both repair methods might influence the morphological aspects (arborization; branching) of early peripheral nerve regeneration. We used the sciatic nerve transplantation model in thy-1 yellow fluorescent protein mice (YFP; n = 10). Pieces of nerve (1cm) were grafted from YFP-negative mice (n = 10) into those expressing YFP. We performed microsuture coaptations on one side and used fibrin glue for repair on the contralateral side. Seven days after grafting, the regeneration distance, the percentage of regenerating and arborizing axons, the number of branches per axon, the coaptation failure rate, the gap size at the repair site and the time needed for surgical repair were all investigated. Fibrin glue repair resulted in regenerating axons travelling further into the distal nerve. It also increased the percentage of arborizing axons. No coaptation failure was detected. Gap sizes were comparable in both groups. Fibrin glue significantly reduced surgical repair time. The increase in regeneration distance, even after the short period of time, is in line with the results of others that showed faster axonal regeneration after fibrin glue repair. The increase in arborizing axons could be another explanation for better functional and electrophysiological results after fibrin glue repair. Fibrin glue nerve coaptation seems to be a promising alternative to microsuture repair. PMID:26330844

  14. Novel Roles for Osteopontin and Clusterin in Peripheral Motor and Sensory Axon Regeneration

    PubMed Central

    Mi, Ruifa; Connor, Emmalynn; Reed, Nicole; Vyas, Alka; Alspalter, Manula; Coppola, Giovanni; Geschwind, Daniel H.; Brushart, Thomas M.

    2014-01-01

    Previous studies demonstrated that Schwann cells (SCs) express distinct motor and sensory phenotypes, which impact the ability of these pathways to selectively support regenerating neurons. In the present study, unbiased microarray analysis was used to examine differential gene expression in denervated motor and sensory pathways in rats. Several genes that were significantly upregulated in either denervated sensory or motor pathways were identified and two secreted factors were selected for further analysis: osteopontin (OPN) and clusterin (CLU) which were upregulated in denervated motor and sensory pathways, respectively. Sciatic nerve transection induced upregulation of OPN and CLU and expression of both returned to baseline levels with ensuing regeneration. In vitro analysis using exogenously applied OPN induced outgrowth of motor but not sensory neurons. CLU, however, induced outgrowth of sensory neurons, but not motor neurons. To assess the functional importance of OPN and CLU, peripheral nerve regeneration was examined in OPN and CLU−/− mice. When compared with OPN+/+ mice, motor neuron regeneration was reduced in OPN−/− mice. Impaired regeneration through OPN−/− peripheral nerves grafted into OPN+/+ mice indicated that loss of OPN in SCs was responsible for reduced motor regeneration. Sensory neuron regeneration was impaired in CLU−/− mice following sciatic nerve crush and impaired regeneration nerve fibers through CLU−/− nerve grafts transplanted into CLU+/+ mice indicated that reduced sensory regeneration is likely due to SC-derived CLU. Together, these studies suggest unique roles for SC-derived OPN and CLU in regeneration of peripheral motor and sensory axons. PMID:24478351

  15. Analysis of Gpr126 function defines distinct mechanisms controlling the initiation and maturation of myelin

    PubMed Central

    Glenn, Thomas D.; Talbot, William S.

    2013-01-01

    In peripheral nerves, Schwann cells form the myelin sheath, which allows the efficient propagation of action potentials along axons. The transcription factor Krox20 regulates the initiation of myelination in Schwann cells and is also required to maintain mature myelin. The adhesion G protein-coupled receptor (GPCR) Gpr126 is essential for Schwann cells to initiate myelination, but previous studies have not addressed the role of Gpr126 signaling in myelin maturation and maintenance. Through analysis of Gpr126 in zebrafish, we define two distinct mechanisms controlling the initiation and maturation of myelin. We show that gpr126 mutant Schwann cells elaborate mature myelin sheaths and maintain krox20 expression for months, provided that the early signaling defect is bypassed by transient elevation of cAMP. At the onset of myelination, Gpr126 and protein kinase A (PKA) function as a switch that allows Schwann cells to initiate krox20 expression and myelination. After myelination is initiated, krox20 expression is maintained and myelin maturation proceeds independently of Gpr126 signaling. Transgenic analysis indicates that the Krox20 cis-regulatory myelinating Schwann cell element (MSE) becomes active at the onset of myelination and that this activity is dependent on Gpr126 signaling. Activity of the MSE declines after initiation, suggesting that other elements are responsible for maintaining krox20 expression in mature nerves. We also show that elevated cAMP does not initiate myelination in the absence of functional Neuregulin 1 (Nrg1) signaling. These results indicate that the mechanisms regulating the initiation of myelination are distinct from those mediating the maturation and maintenance of myelin. PMID:23804499

  16. Involvement of both sodium influx and potassium efflux in ciguatoxin-induced nodal swelling of frog myelinated axons.

    PubMed

    Mattei, César; Molgó, Jordi; Benoit, Evelyne

    2014-10-01

    Ciguatoxins, mainly produced by benthic dinoflagellate Gambierdiscus species, are responsible for a complex human poisoning known as ciguatera. Previous pharmacological studies revealed that these toxins activate voltage-gated Na+ channels. In frog nodes of Ranvier, ciguatoxins induce spontaneous and repetitive action potentials (APs) and increase axonal volume that may explain alterations of nerve functioning in intoxicated humans. The present study aimed determining the ionic mechanisms involved in Pacific ciguatoxin-1B (P-CTX-1B)-induced membrane hyperexcitability and subsequent volume increase in frog nodes of Ranvier, using electrophysiology and confocal microscopy. The results reveal that P-CTX-1B action is not dependent on external Cl- ions since it was not affected by substituting Cl- by methylsulfate ions. In contrast, substitution of external Na+ by Li+ ions suppressed spontaneous APs and prevented nodal swelling. This suggests that P-CTX-1B-modified Na+ channels are not selective to Li+ ions and/or are blocked by these ions, and that Na+ influx through Na+ channels opened during spontaneous APs is required for axonal swelling. The fact that the K+ channel blocker tetraethylammonium modified, but did not suppress, spontaneous APs and greatly reduced nodal swelling induced by P-CTX-1B indicates that K+ efflux might also be involved. This is supported by the fact that P-CTX-1B, when tested in the presence of both tetraethylammonium and the K+ ionophore valinomycin, produced the characteristic nodal swelling. It is concluded that, during the action of P-CTX-1B, water movements responsible for axonal swelling depend on both Na+ influx and K+ efflux. These results pave the way for further studies regarding ciguatera treatment. PMID:24950451

  17. Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination.

    PubMed

    Miyamoto, Yuki; Torii, Tomohiro; Takada, Shuji; Ohno, Nobuhiko; Saitoh, Yurika; Nakamura, Kazuaki; Ito, Akihito; Ogata, Toru; Terada, Nobuo; Tanoue, Akito; Yamauchi, Junji

    2015-10-01

    During early development of the peripheral nervous system, Schwann cell precursors proliferate, migrate, and differentiate into premyelinating Schwann cells. After birth, Schwann cells envelop neuronal axons with myelin sheaths. Although some molecular mechanisms underlying myelination by Schwann cells have been identified, the whole picture remains unclear. Here we show that signaling through Tyro3 receptor tyrosine kinase and its binding partner, Fyn nonreceptor cytoplasmic tyrosine kinase, is involved in myelination by Schwann cells. Impaired formation of myelin segments is observed in Schwann cell neuronal cultures established from Tyro3-knockout mouse dorsal root ganglia (DRG). Indeed, Tyro3-knockout mice exhibit reduced myelin thickness. By affinity chromatography, Fyn was identified as the binding partner of the Tyro3 intracellular domain, and activity of Fyn is down-regulated in Tyro3-knockout mice, suggesting that Tyro3, acting through Fyn, regulates myelination. Ablating Fyn in mice results in reduced myelin thickness. Decreased myelin formation is observed in cultures established from Fyn-knockout mouse DRG. Furthermore, decreased kinase activity levels and altered expression of myelination-associated transcription factors are observed in these knockout mice. These results suggest the involvement of Tyro3 receptor and its binding partner Fyn in Schwann cell myelination. This constitutes a newly recognized receptor-linked signaling mechanism that can control Schwann cell myelination. PMID:26224309

  18. Long-term daily vibration exposure alters current perception threshold (CPT) sensitivity and myelinated axons in a rat-tail model of vibration-induced injury.

    PubMed

    Krajnak, Kristine; Raju, Sandya G; Miller, G Roger; Johnson, Claud; Waugh, Stacey; Kashon, Michael L; Riley, Danny A

    2016-01-01

    Repeated exposure to hand-transmitted vibration through the use of powered hand tools may result in pain and progressive reductions in tactile sensitivity. The goal of the present study was to use an established animal model of vibration-induced injury to characterize changes in sensory nerve function and cellular mechanisms associated with these alterations. Sensory nerve function was assessed weekly using the current perception threshold test and tail-flick analgesia test in male Sprague-Dawley rats exposed to 28 d of tail vibration. After 28 d of exposure, Aβ fiber sensitivity was reduced. This reduction in sensitivity was partly attributed to structural disruption of myelin. In addition, the decrease in sensitivity was also associated with a reduction in myelin basic protein and 2',3'- cyclic nucleotide phosphodiasterase (CNPase) staining in tail nerves, and an increase in circulating calcitonin gene-related peptide (CGRP) concentrations. Changes in Aβ fiber sensitivity and CGRP concentrations may serve as early markers of vibration-induced injury in peripheral nerves. It is conceivable that these markers may be utilized to monitor sensorineural alterations in workers exposed to vibration to potentially prevent additional injury. PMID:26852665

  19. High-resolution fluorescence microscopy of myelin without exogenous probes.

    PubMed

    Christensen, Pia Crone; Brideau, Craig; Poon, Kelvin W C; Döring, Axinia; Yong, V Wee; Stys, Peter K

    2014-02-15

    Myelin is a critical element of the central and peripheral nervous systems of all higher vertebrates. Any disturbance in the integrity of the myelin sheath interferes with the axon's ability to conduct action potentials. Thus, the study of myelin structure and biochemistry is critically important. Accurate and even staining of myelin is often difficult because of its lipid-rich nature and multiple tight membrane wraps, hindering penetration of immunoprobes. Here we show a method of visualizing myelin that is fast, inexpensive and reliable using the cross-linking fixative glutaraldehyde that produces strong, broad-spectrum auto-fluorescence in fixed tissue. Traditionally, effort is generally aimed at eliminating this auto-fluorescence. However, we show that this intrinsic signal, which is very photostable and particularly strong in glutaraldehyde-fixed myelin, can be exploited to visualize this structure to produce very detailed images of myelin morphology. We imaged fixed rodent tissues from the central and peripheral nervous systems using spectral confocal microscopy to acquire high-resolution 3-dimensional images spanning the visual range of wavelengths (400-750 nm). Mathematical post-processing allows accurate and unequivocal separation of broadband auto-fluorescence from exogenous fluorescent probes such as DAPI and fluorescently-tagged secondary antibodies. We additionally show the feasibility of immunohistochemistry with antigen retrieval, which allows co-localization of proteins of interest together with detailed myelin morphology. The lysolecithin model of de- and remyelination is shown as an example of a practical application of this technique, which can be routinely applied when high-resolution microscopy of central or peripheral myelinated tracts is required. PMID:24188810

  20. Electrical stimulation accelerates axonal and functional peripheral nerve regeneration across long gaps.

    PubMed

    Haastert-Talini, Kirsten; Schmitte, Ruth; Korte, Nele; Klode, Dorothee; Ratzka, Andreas; Grothe, Claudia

    2011-04-01

    Short-term low-frequency electrical stimulation (ESTIM) of proximal peripheral nerve stumps prior to end-to-end coaptation or tubular bridging of small distances has been reported to increase preferential motor reinnervation and functional motor recovery in animal models and human patients undergoing carpal tunnel release surgery. We investigated the effects of ESTIM on regeneration across rat sciatic nerve gaps, which exceed distances that allow spontaneous regeneration. Three different reconstruction approaches were combined with ESTIM in the experimental groups. Nerve gaps (13 mm) were bridged using (I) nerve autotransplantation, (II) transplantation of differentially filled silicone tubes, or (III) transplantation of tubular grafts containing fibroblast growth factor-2 overexpressing Schwann cells (SCs) for gene therapy. The regeneration outcome was followed for up to 8 weeks, and functionally as well as histomorphometrically analyzed in comparison to non-stimulated control groups. Combining ESTIM with nerve autotransplantation significantly increased the nerve fiber density in the regenerated nerve, and the grade of functional recovery as detected by electrodiagnostic recordings from the gastrocnemius muscle. The combination of ESTIM with transplantation of naïve SCs increased the regeneration of gap-bridging nerve tissue. Although macroscopic tissue regeneration was not further improved after combining ESTIM with FGF-2(21/23-kD) gene therapy, the latter resulted in a high rate of regenerated nerves that functionally reconnected to the target muscle. Based on our results, brief ESTIM shows high potential to accelerate axonal as well as functional (motor and sensory) outcomes in the clinical setting of peripheral nerve gap reconstruction in human patients. PMID:21265597

  1. What Is the Optimal Value of the g-Ratio for Myelinated Fibers in the Rat CNS? A Theoretical Approach

    PubMed Central

    Chomiak, Taylor; Hu, Bin

    2009-01-01

    Background The biological process underlying axonal myelination is complex and often prone to injury and disease. The ratio of the inner axonal diameter to the total outer diameter or g-ratio is widely utilized as a functional and structural index of optimal axonal myelination. Based on the speed of fiber conduction, Rushton was the first to derive a theoretical estimate of the optimal g-ratio of 0.6 [1]. This theoretical limit nicely explains the experimental data for myelinated axons obtained for some peripheral fibers but appears significantly lower than that found for CNS fibers. This is, however, hardly surprising given that in the CNS, axonal myelination must achieve multiple goals including reducing conduction delays, promoting conduction fidelity, lowering energy costs, and saving space. Methodology/Principal Findings In this study we explore the notion that a balanced set-point can be achieved at a functional level as the micro-structure of individual axons becomes optimized, particularly for the central system where axons tend to be smaller and their myelin sheath thinner. We used an intuitive yet novel theoretical approach based on the fundamental biophysical properties describing axonal structure and function to show that an optimal g-ratio can be defined for the central nervous system (≈0.77). Furthermore, by reducing the influence of volume constraints on structural design by about 40%, this approach can also predict the g-ratio observed in some peripheral fibers (≈0.6). Conclusions/Significance These results support the notion of optimization theory in nervous system design and construction and may also help explain why the central and peripheral systems have evolved different g-ratios as a result of volume constraints. PMID:19915661

  2. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    ERIC Educational Resources Information Center

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  3. Immunohistological demonstration of CaV3.2 T-type voltage-gated calcium channel expression in soma of dorsal root ganglion neurons and peripheral axons of rat and mouse.

    PubMed

    Rose, K E; Lunardi, N; Boscolo, A; Dong, X; Erisir, A; Jevtovic-Todorovic, V; Todorovic, S M

    2013-10-10

    Previous behavioral studies have revealed that CaV3.2 T-type calcium channels support peripheral nociceptive transmission and electrophysiological studies have established the presence of T-currents in putative nociceptive sensory neurons of dorsal root ganglion (DRG). To date, however, the localization pattern of this key nociceptive channel in the soma and peripheral axons of these cells has not been demonstrated due to lack of isoform-selective anti-CaV3.2 antibodies. In the present study a new polyclonal CaV3.2 antibody is used to localize CaV3.2 expression in rodent DRG neurons using different staining techniques including confocal and electron microscopy (EM). Confocal microscopy of both acutely dissociated cells and short-term cultures demonstrated strong immunofluorescence of anti-CaV3.2 antibody that was largely confined to smaller diameter DRG neurons where it co-localized with established immuno-markers of unmyelinated nociceptors, such as, CGRP, IB4 and peripherin. In contrast, a smaller proportion of these CaV3.2-labeled DRG cells also co-expressed neurofilament 200 (NF200), a marker of myelinated sensory neurons. In the rat sciatic nerve preparation, confocal microscopy demonstrated anti-CaV3.2 immunofluorescence which was co-localized with both peripherin and NF200. Further, EM revealed immuno-gold labeling of CaV3.2 preferentially in association with unmyelinated sensory fibers from mouse sciatic nerve. Finally, we demonstrated the expression of CaV3.2 channels in peripheral nerve endings of mouse hindpaw skin as shown by co-localization with Mrgpd-GFP-positive fibers. The CaV3.2 expression within the soma and peripheral axons of nociceptive sensory neurons further demonstrates the importance of this channel in peripheral pain transmission. PMID:23867767

  4. Neutron scattering from myelin revisited: bilayer asymmetry and water-exchange kinetics

    PubMed Central

    Denninger, Andrew R.; Demé, Bruno; Cristiglio, Viviana; LeDuc, Géraldine; Feller, W. Bruce; Kirschner, Daniel A.

    2014-01-01

    Rapid nerve conduction in the central and peripheral nervous systems (CNS and PNS, respectively) of higher vertebrates is brought about by the ensheathment of axons with myelin, a lipid-rich, multilamellar assembly of membranes. The ability of myelin to electrically insulate depends on the regular stacking of these plasma membranes and on the presence of a number of specialized membrane-protein assemblies in the sheath, including the radial component, Schmidt–Lanterman incisures and the axo–glial junctions of the paranodal loops. The disruption of this fine-structure is the basis for many demyelinating neuropathies in the CNS and PNS. Understanding the processes that govern myelin biogenesis, maintenance and destabilization requires knowledge of myelin structure; however, the tight packing of internodal myelin and the complexity of its junctional specializations make myelin a challenging target for comprehensive structural analysis. This paper describes an examination of myelin from the CNS and PNS using neutron diffraction. This investigation revealed the dimensions of the bilayers and aqueous spaces of myelin, asymmetry between the cytoplasmic and extracellular leaflets of the membrane, and the distribution of water and exchangeable hydrogen in internodal multilamellar myelin. It also uncovered differences between CNS and PNS myelin in their water-exchange kinetics. PMID:25478838

  5. Schwann cell myelination requires integration of laminin activities.

    PubMed

    McKee, Karen K; Yang, Dong-Hua; Patel, Rajesh; Chen, Zu-Lin; Strickland, Sidney; Takagi, Junichi; Sekiguchi, Kiyotoshi; Yurchenco, Peter D

    2012-10-01

    Laminins promote early stages of peripheral nerve myelination by assembling basement membranes (BMs) on Schwann cell surfaces, leading to activation of β1 integrins and other receptors. The BM composition, structural bonds and ligands needed to mediate this process, however, are not well understood. Mice hypomorphic for laminin γ1-subunit expression that assembled endoneurial BMs with reduced component density exhibited an axonal sorting defect with amyelination but normal Schwann cell proliferation, the latter unlike the null. To identify the basis for this, and to dissect participating laminin interactions, LAMC1 gene-inactivated dorsal root ganglia were treated with recombinant laminin-211 and -111 lacking different architecture-forming and receptor-binding activities, to induce myelination. Myelin-wrapping of axons by Schwann cells was found to require higher laminin concentrations than either proliferation or axonal ensheathment. Laminins that were unable to polymerize through deletions that removed critical N-terminal (LN) domains, or that lacked cell-adhesive globular (LG) domains, caused reduced BMs and almost no myelination. Laminins engineered to bind weakly to α6β1 and/or α7β1 integrins through their LG domains, even though they could effectively assemble BMs, decreased myelination. Proliferation depended upon both integrin binding to LG domains and polymerization. Collectively these findings reveal that laminins integrate scaffold-forming and cell-adhesion activities to assemble an endoneurial BM, with myelination and proliferation requiring additional α6β1/α7β1-laminin LG domain interactions, and that a high BM ligand/structural density is needed for efficient myelination. PMID:22767514

  6. Myelin basic protein and myelin protein 2 act synergistically to cause stacking of lipid bilayers.

    PubMed

    Suresh, Swetha; Wang, Chaozhan; Nanekar, Rahul; Kursula, Petri; Edwardson, J Michael

    2010-04-27

    Saltatory conduction of nerve impulses along axonal membranes depends on the presence of a multilayered membrane, myelin, that wraps around the axon. Myelin basic protein (MBP) and myelin protein 2 (P2) are intimately involved in the generation of the myelin sheath. They are also implicated in a number of neurological diseases, including autoimmune diseases of both the central and peripheral nervous systems. Here, we have used atomic force microsopy (AFM) to study the effects of MBP and P2 on lipid bilayers. MBP in association with a mica substrate appeared unstructured, and tended to coat the mica surface in the form of a monolayer. In contrast, P2 appeared as discrete particles, with molecular volumes consistent with the formation of both monomers and dimers. Either MBP or P2, at micromolar concentrations, caused stacking of brain lipid bilayers. This stacking effect was significantly potentiated when both proteins were added together. Bilayers composed of phosphatidylcholine (PC) and phosphatidylserine (PS) were stacked by MBP, provided that cholesterol was also present; in contrast, P2 did not stack PC/PS/cholesterol bilayers. Hence, the bilayer stacking effects of the two proteins have different lipid requirements. PMID:20334434

  7. Increased Axonal Ribosome Numbers Is an Early Event in the Pathogenesis of Amyotrophic Lateral Sclerosis

    PubMed Central

    Verheijen, Mark H. G.; Peviani, Marco; Hendricusdottir, Rita; Bell, Erin M.; Lammens, Martin; Smit, August B.; Bendotti, Caterina; van Minnen, Jan

    2014-01-01

    Myelinating glia cells support axon survival and functions through mechanisms independent of myelination, and their dysfunction leads to axonal degeneration in several diseases. In amyotrophic lateral sclerosis (ALS), spinal motor neurons undergo retrograde degeneration, and slowing of axonal transport is an early event that in ALS mutant mice occurs well before motor neuron degeneration. Interestingly, in familial forms of ALS, Schwann cells have been proposed to slow disease progression. We demonstrated previously that Schwann cells transfer polyribosomes to diseased and regenerating axons, a possible rescue mechanism for disease-induced reductions in axonal proteins. Here, we investigated whether elevated levels of axonal ribosomes are also found in ALS, by analysis of a superoxide dismutase 1 (SOD1)G93A mouse model for human familial ALS and a patient suffering from sporadic ALS. In both cases, we found that the disorder was associated with an increase in the population of axonal ribosomes in myelinated axons. Importantly, in SOD1G93A mice, the appearance of axonal ribosomes preceded the manifestation of behavioral symptoms, indicating that upregulation of axonal ribosomes occurs early in the pathogenesis of ALS. In line with our previous studies, electron microscopy analysis showed that Schwann cells might serve as a source of axonal ribosomes in the disease-compromised axons. The early appearance of axonal ribosomes indicates an involvement of Schwann cells early in ALS neuropathology, and may serve as an early marker for disease-affected axons, not only in ALS, but also for other central and peripheral neurodegenerative disorders. PMID:24498056

  8. Myelin glycolipids and their functions.

    PubMed

    Stoffel, W; Bosio, A

    1997-10-01

    During myelination, oligodendrocytes in the CNS and Schwann cells in the PNS synthesise myelin-specific proteins and lipids for the assembly of the axon myelin sheath. A dominant class of lipids in the myelin bilayer are the glycolipids, which include galactocerebroside (GalC), galactosulfatide (sGalC) and galactodiglyceride (GalDG). A promising approach for unravelling the roles played by various lipids in the myelin membrane involves knocking out the genes encoding important enzymes in lipid biosynthesis. The recent ablation of the ceramide galactosyltransferase ( cgt) gene in mice is the first example. The cgt gene encodes a key enzyme in glycolipid biosynthesis. Its absence causes glycolipid deficiency in the lipid bilayer, breakdown of axon insulation and loss of saltatory conduction. Additional knock-out studies should provide important insights into the various functions of glycolipids in myelinogenesis and myelin structure. PMID:9384539

  9. A leucine-to-proline mutation in the putative first transmembrane domain of the 22-kDa peripheral myelin protein in the trembler-J mouse.

    PubMed

    Suter, U; Moskow, J J; Welcher, A A; Snipes, G J; Kosaras, B; Sidman, R L; Buchberg, A M; Shooter, E M

    1992-05-15

    Peripheral myelin protein PMP-22 is a potential growth-regulating myelin protein that is expressed by Schwann cells and predominantly localized in compact peripheral myelin. A point mutation in the Pmp-22 gene of inbred trembler (Tr) mice was identified and proposed to be responsible for the Tr phenotype, which is characterized by paralysis of the limbs as well as tremors and transient seizures. In support of this hypothesis, we now report the fine mapping of the Pmp-22 gene to the immediate vicinity of the Tr locus on mouse chromosome 11. Furthermore, we have found a second point mutation in the Pmp-22 gene of trembler-J (TrJ) mice, which results in the substitution of a leucine residue by a proline residue in the putative first transmembrane region of the PMP-22 polypeptide. Tr and TrJ were previously mapped genetically as possible allelic mutations giving rise to similar, but not identical, phenotypes. This finding is consistent with the discovery of two different mutations in physicochemically similar domains of the PMP-22 protein. Our results strengthen the hypothesis that mutations in the Pmp-22 gene can lead to heterogeneous forms of peripheral neuropathies and offer clues toward possible explanations for the dominant inheritance of these disorders. PMID:1374899

  10. Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury.

    PubMed

    Gey, Manuel; Wanner, Renate; Schilling, Corinna; Pedro, Maria T; Sinske, Daniela; Knöll, Bernd

    2016-08-01

    Axon injury in the peripheral nervous system (PNS) induces a regeneration-associated gene (RAG) response. Atf3 (activating transcription factor 3) is such a RAG and ATF3's transcriptional activity might induce 'effector' RAGs (e.g. small proline rich protein 1a (Sprr1a), Galanin (Gal), growth-associated protein 43 (Gap43)) facilitating peripheral axon regeneration. We provide a first analysis of Atf3 mouse mutants in peripheral nerve regeneration. In Atf3 mutant mice, facial nerve regeneration and neurite outgrowth of adult ATF3-deficient primary dorsal root ganglia neurons was decreased. Using genome-wide transcriptomics, we identified a neuropeptide-encoding RAG cluster (vasoactive intestinal peptide (Vip), Ngf, Grp, Gal, Pacap) regulated by ATF3. Exogenous administration of neuropeptides enhanced neurite growth of Atf3 mutant mice suggesting that these molecules might be effector RAGs of ATF3's pro-regenerative function. In addition to the induction of growth-promoting molecules, we present data that ATF3 suppresses growth-inhibiting molecules such as chemokine (C-C motif) ligand 2. In summary, we show a pro-regenerative ATF3 function during PNS nerve regeneration involving transcriptional activation of a neuropeptide-encoding RAG cluster. ATF3 is a general injury-inducible factor, therefore ATF3-mediated mechanisms identified herein might apply to other cell and injury types. PMID:27581653

  11. Targeted axonal import (TAxI) peptide delivers functional proteins into spinal cord motor neurons after peripheral administration.

    PubMed

    Sellers, Drew L; Bergen, Jamie M; Johnson, Russell N; Back, Heidi; Ravits, John M; Horner, Philip J; Pun, Suzie H

    2016-03-01

    A significant unmet need in treating neurodegenerative disease is effective methods for delivery of biologic drugs, such as peptides, proteins, or nucleic acids into the central nervous system (CNS). To date, there are no operative technologies for the delivery of macromolecular drugs to the CNS via peripheral administration routes. Using an in vivo phage-display screen, we identify a peptide, targeted axonal import (TAxI), that enriched recombinant bacteriophage accumulation and delivered protein cargo into spinal cord motor neurons after intramuscular injection. In animals with transected peripheral nerve roots, TAxI delivery into motor neurons after peripheral administration was inhibited, suggesting a retrograde axonal transport mechanism for delivery into the CNS. Notably, TAxI-Cre recombinase fusion proteins induced selective recombination and tdTomato-reporter expression in motor neurons after intramuscular injections. Furthermore, TAxI peptide was shown to label motor neurons in the human tissue. The demonstration of a nonviral-mediated delivery of functional proteins into the spinal cord establishes the clinical potential of this technology for minimally invasive administration of CNS-targeted therapeutics. PMID:26888285

  12. Targeted axonal import (TAxI) peptide delivers functional proteins into spinal cord motor neurons after peripheral administration

    PubMed Central

    Sellers, Drew L.; Bergen, Jamie M.; Johnson, Russell N.; Back, Heidi; Ravits, John M.; Horner, Philip J.; Pun, Suzie H.

    2016-01-01

    A significant unmet need in treating neurodegenerative disease is effective methods for delivery of biologic drugs, such as peptides, proteins, or nucleic acids into the central nervous system (CNS). To date, there are no operative technologies for the delivery of macromolecular drugs to the CNS via peripheral administration routes. Using an in vivo phage-display screen, we identify a peptide, targeted axonal import (TAxI), that enriched recombinant bacteriophage accumulation and delivered protein cargo into spinal cord motor neurons after intramuscular injection. In animals with transected peripheral nerve roots, TAxI delivery into motor neurons after peripheral administration was inhibited, suggesting a retrograde axonal transport mechanism for delivery into the CNS. Notably, TAxI-Cre recombinase fusion proteins induced selective recombination and tdTomato-reporter expression in motor neurons after intramuscular injections. Furthermore, TAxI peptide was shown to label motor neurons in the human tissue. The demonstration of a nonviral-mediated delivery of functional proteins into the spinal cord establishes the clinical potential of this technology for minimally invasive administration of CNS-targeted therapeutics. PMID:26888285

  13. Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury

    PubMed Central

    Gey, Manuel; Wanner, Renate; Schilling, Corinna; Pedro, Maria T.; Sinske, Daniela

    2016-01-01

    Axon injury in the peripheral nervous system (PNS) induces a regeneration-associated gene (RAG) response. Atf3 (activating transcription factor 3) is such a RAG and ATF3's transcriptional activity might induce ‘effector’ RAGs (e.g. small proline rich protein 1a (Sprr1a), Galanin (Gal), growth-associated protein 43 (Gap43)) facilitating peripheral axon regeneration. We provide a first analysis of Atf3 mouse mutants in peripheral nerve regeneration. In Atf3 mutant mice, facial nerve regeneration and neurite outgrowth of adult ATF3-deficient primary dorsal root ganglia neurons was decreased. Using genome-wide transcriptomics, we identified a neuropeptide-encoding RAG cluster (vasoactive intestinal peptide (Vip), Ngf, Grp, Gal, Pacap) regulated by ATF3. Exogenous administration of neuropeptides enhanced neurite growth of Atf3 mutant mice suggesting that these molecules might be effector RAGs of ATF3's pro-regenerative function. In addition to the induction of growth-promoting molecules, we present data that ATF3 suppresses growth-inhibiting molecules such as chemokine (C-C motif) ligand 2. In summary, we show a pro-regenerative ATF3 function during PNS nerve regeneration involving transcriptional activation of a neuropeptide-encoding RAG cluster. ATF3 is a general injury-inducible factor, therefore ATF3-mediated mechanisms identified herein might apply to other cell and injury types. PMID:27581653

  14. Axonal and Schwann Cell BACE1 Is Equally Required for Remyelination of Peripheral Nerves

    PubMed Central

    Hu, Xiangyou; Hu, Jinxuan; Dai, Lu; Trapp, Bruce

    2015-01-01

    Inhibition of β-site APP cleaving enzyme 1 (BACE1) is being pursued as a therapeutic target for treating patients with Alzheimer's disease because BACE1 is the sole β-secretase for generating β-amyloid peptide. Knowledge regarding the other cellular functions of BACE1 is therefore critical for the safe use of BACE1 inhibitors in human patients. BACE1 deficiency in mice causes hypomyelination during development and impairs remyelination in injured sciatic nerves. Since BACE1 is expected to be ubiquitously expressed, we asked whether axonal or Schwann cell BACE1 is required for optimal remyelination. By swapping sciatic nerve segments from BACE1-null mice with the corresponding wild-type nerve segments or vice versa, we tested how a deficiency of BACE1 in Schwann cells or axons affects remyelination. Our results show that BACE1 in axons and Schwann cells is similarly important for remyelination of regenerated axons. Nerve injury induces BACE1 transcription and protein levels are elevated in Schwann cells. Expression of type I neuregulin 1 (Nrg1), rather than type III Nrg1, was induced by Schwann cells, and the abolished Nrg1 cleavage in BACE1-null Schwann cells contributed to decreased remyelination of regenerated axons. Hence, this study is the first to demonstrate the equal importance of axonal and Schwann cell BACE1 for remyelination of injured nerves. PMID:25740511

  15. Axonal and Schwann cell BACE1 is equally required for remyelination of peripheral nerves.

    PubMed

    Hu, Xiangyou; Hu, Jinxuan; Dai, Lu; Trapp, Bruce; Yan, Riqiang

    2015-03-01

    Inhibition of β-site APP cleaving enzyme 1 (BACE1) is being pursued as a therapeutic target for treating patients with Alzheimer's disease because BACE1 is the sole β-secretase for generating β-amyloid peptide. Knowledge regarding the other cellular functions of BACE1 is therefore critical for the safe use of BACE1 inhibitors in human patients. BACE1 deficiency in mice causes hypomyelination during development and impairs remyelination in injured sciatic nerves. Since BACE1 is expected to be ubiquitously expressed, we asked whether axonal or Schwann cell BACE1 is required for optimal remyelination. By swapping sciatic nerve segments from BACE1-null mice with the corresponding wild-type nerve segments or vice versa, we tested how a deficiency of BACE1 in Schwann cells or axons affects remyelination. Our results show that BACE1 in axons and Schwann cells is similarly important for remyelination of regenerated axons. Nerve injury induces BACE1 transcription and protein levels are elevated in Schwann cells. Expression of type I neuregulin 1 (Nrg1), rather than type III Nrg1, was induced by Schwann cells, and the abolished Nrg1 cleavage in BACE1-null Schwann cells contributed to decreased remyelination of regenerated axons. Hence, this study is the first to demonstrate the equal importance of axonal and Schwann cell BACE1 for remyelination of injured nerves. PMID:25740511

  16. A Novel Fluorescent Probe That Is Brain Permeable and Selectively Binds to Myelin

    PubMed Central

    Wu, Chunying; Tian, Donghua; Feng, Yue; Polak, Paul; Wei, Jingjun; Sharp, Adam; Stankoff, Bruno; Lubetzki, Catherine; Zalc, Bernard; Mufson, Elliott J.; Gould, Robert M.; Feinstein, Douglas L.; Wang, Yanming

    2011-01-01

    SUMMARY Myelin is a multilayered glial cell membrane that forms segmented sheaths around large-caliber axons of both the central nervous system (CNS) and peripheral nervous system (PNS). Myelin covering insures rapid and efficient transmission of nerve impulses. Direct visual assessment of local changes of myelin content in vivo could greatly facilitate diagnosis and therapeutic treatments of myelin-related diseases. Current histologic probes for the visualization of myelin are based on antibodies or charged histochemical reagents that do not enter the brain. We have developed a series of chemical compounds including (E,E)-1,4-bis(4′-aminostyryl)-2-dimethoxy-benzene termed BDB and the subject of this report, which readily penetrates the blood–brain barrier and selectively binds to the myelin sheath in brain. BDB selectively stains intact myelinated regions in wild-type mouse brain, which allows for delineation of cuprizone-induced demyelinating lesions in mouse brain. BDB can be injected IV into the brain and selectively detect demyelinating lesions in cuprizone-treated mice in situ. These studies justified further investigation of BDB as a potential myelin-imaging probe to monitor myelin pathology in vivo. PMID:16709728

  17. Arf6 guanine-nucleotide exchange factor cytohesin-2 regulates myelination in nerves.

    PubMed

    Torii, Tomohiro; Ohno, Nobuhiko; Miyamoto, Yuki; Kawahara, Kazuko; Saitoh, Yurika; Nakamura, Kazuaki; Takashima, Shou; Sakagami, Hiroyuki; Tanoue, Akito; Yamauchi, Junji

    2015-05-01

    In postnatal development of the peripheral nervous system (PNS), Schwann cells differentiate to insulate neuronal axons with myelin sheaths, increasing the nerve conduction velocity. To produce the mature myelin sheath with its multiple layers, Schwann cells undergo dynamic morphological changes. While extracellular molecules such as growth factors and cell adhesion ligands are known to regulate the myelination process, the intracellular molecular mechanism underlying myelination remains unclear. In this study, we have produced Schwann cell-specific conditional knockout mice for cytohesin-2, a guanine-nucleotide exchange factor (GEF) specifically activating Arf6. Arf6, a member of the Ras-like protein family, participates in various cellular functions including cell morphological changes. Cytohesin-2 knockout mice exhibit decreased Arf6 activity and reduced myelin thickness in the sciatic nerves, with decreased expression levels of myelin protein zero (MPZ), the major myelin marker protein. These results are consistent with those of experiments in which Schwann cell-neuronal cultures were treated with pan-cytohesin inhibitor SecinH3. On the other hand, the numbers of Ki67-positive cells in knockout mice and controls are comparable, indicating that cytohesin-2 does not have a positive effect on cell numbers. Thus, signaling through cytohesin-2 is required for myelination by Schwann cells, and cytohesin-2 is added to the list of molecules known to underlie PNS myelination. PMID:25824033

  18. Nuc-ErbB3 regulates H3K27me3 levels and HMT activity to establish epigenetic repression during peripheral myelination.

    PubMed

    Ness, Jennifer K; Skiles, Amanda A; Yap, Eng-Hui; Fajardo, Eduardo J; Fiser, Andras; Tapinos, Nikos

    2016-06-01

    Nuc-ErbB3 an alternative transcript from the ErbB3 locus binds to a specific DNA motif and associates with Schwann cell chromatin. Here we generated a nuc-ErbB3 knockin mouse that lacks nuc-ErbB3 expression in the nucleus without affecting the neuregulin-ErbB3 receptor signaling. Nuc-ErbB3 knockin mice exhibit hypermyelination and aberrant myelination at the paranodal region. This phenotype is attributed to de-repression of myelination associated gene transcription following loss of nuc-ErbB3 and histone H3K27me3 promoter occupancy. Nuc-ErbB3 knockin mice exhibit reduced association of H3K27me3 with myelination-associated gene promoters and increased RNA Pol-II rate of transcription of these genes. In addition, nuc-ErbB3 directly regulates levels of H3K27me3 in Schwann cells. Nuc-ErbB3 knockin mice exhibit significant decrease of histone H3K27me3 methyltransferase (HMT) activity and reduced levels of H3K27me3. Collectively, nuc-ErbB3 is a master transcriptional repressor, which regulates HMT activity to establish a repressive chromatin landscape on promoters of genes during peripheral myelination. PMID:27017927

  19. The history of myelin.

    PubMed

    Boullerne, Anne Isabelle

    2016-09-01

    Andreas Vesalius is attributed the discovery of white matter in the 16th century but van Leeuwenhoek is arguably the first to have observed myelinated fibers in 1717. A globular myelin theory followed, claiming all elements of the nervous system except for Fontana's primitive cylinder with outer sheath in 1781. Remak's axon revolution in 1836 relegated myelin to the unknown. Ehrenberg described nerve tubes with double borders in 1833, and Schwann with nuclei in 1839, but the medullary sheath acquired its name of myelin, coined by Virchow, only in 1854. Thanks to Schultze's osmium specific staining in 1865, myelin designates the structure known today. The origin of myelin though was baffling. Only after Ranvier discovered a periodic segmentation, which came to us as nodes of Ranvier, did he venture suggesting in 1872 that the nerve internode was a fatty cell secreting myelin in cytoplasm. Ranvier's hypothesis was met with high skepticism, because nobody could see the cytoplasm, and the term Schwann cell very slowly emerged into the vocabulary with von Lenhossék in 1895. When Cajal finally admitted the concept of Schwann cell internode in 1912, he still firmly believed myelin was secreted by the axon. Del Río-Hortega re-discovered oligodendrocytes in 1919 (after Robertson in 1899) and named them oligodendroglia in 1921, thereby antagonizing Cajal for discovering a second cell type in his invisible third element. Penfield had to come to del Río-Hortega's rescue in 1924 for oligodendrocytes to be accepted. They jointly hypothesized myelin could be made by oligodendrocytes, considered the central equivalent of Schwann cells. Meanwhile myelin birefringence properties observed by Klebs in 1865 then Schmidt in 1924 confirmed its high fatty content, ascertained by biochemistry by Thudichum in 1884. The 20th century saw X-ray diffraction developed by Schmitt, who discovered in 1935 the crystal-like organization of this most peculiar structure, and devised the g

  20. Influence of myelin proteins on the structure and dynamics of a model membrane with emphasis on the low temperature regime

    NASA Astrophysics Data System (ADS)

    Knoll, W.; Peters, J.; Kursula, P.; Gerelli, Y.; Natali, F.

    2014-11-01

    Myelin is an insulating, multi-lamellar membrane structure wrapped around selected nerve axons. Increasing the speed of nerve impulses, it is crucial for the proper functioning of the vertebrate nervous system. Human neurodegenerative diseases, such as multiple sclerosis, are linked to damage to the myelin sheath through demyelination. Myelin exhibits a well defined subset of myelin-specific proteins, whose influence on membrane dynamics, i.e., myelin flexibility and stability, has not yet been explored in detail. In a first paper [W. Knoll, J. Peters, P. Kursula, Y. Gerelli, J. Ollivier, B. Demé, M. Telling, E. Kemner, and F. Natali, Soft Matter 10, 519 (2014)] we were able to spotlight, through neutron scattering experiments, the role of peripheral nervous system myelin proteins on membrane stability at room temperature. In particular, the myelin basic protein and peripheral myelin protein 2 were found to synergistically influence the membrane structure while keeping almost unchanged the membrane mobility. Further insight is provided by this work, in which we particularly address the investigation of the membrane flexibility in the low temperature regime. We evidence a different behavior suggesting that the proton dynamics is reduced by the addition of the myelin basic protein accompanied by negligible membrane structural changes. Moreover, we address the importance of correct sample preparation and characterization for the success of the experiment and for the reliability of the obtained results.

  1. Influence of myelin proteins on the structure and dynamics of a model membrane with emphasis on the low temperature regime

    SciTech Connect

    Knoll, W.; Peters, J.; Kursula, P.; Gerelli, Y.; Natali, F.

    2014-11-28

    Myelin is an insulating, multi-lamellar membrane structure wrapped around selected nerve axons. Increasing the speed of nerve impulses, it is crucial for the proper functioning of the vertebrate nervous system. Human neurodegenerative diseases, such as multiple sclerosis, are linked to damage to the myelin sheath through demyelination. Myelin exhibits a well defined subset of myelin-specific proteins, whose influence on membrane dynamics, i.e., myelin flexibility and stability, has not yet been explored in detail. In a first paper [W. Knoll, J. Peters, P. Kursula, Y. Gerelli, J. Ollivier, B. Demé, M. Telling, E. Kemner, and F. Natali, Soft Matter 10, 519 (2014)] we were able to spotlight, through neutron scattering experiments, the role of peripheral nervous system myelin proteins on membrane stability at room temperature. In particular, the myelin basic protein and peripheral myelin protein 2 were found to synergistically influence the membrane structure while keeping almost unchanged the membrane mobility. Further insight is provided by this work, in which we particularly address the investigation of the membrane flexibility in the low temperature regime. We evidence a different behavior suggesting that the proton dynamics is reduced by the addition of the myelin basic protein accompanied by negligible membrane structural changes. Moreover, we address the importance of correct sample preparation and characterization for the success of the experiment and for the reliability of the obtained results.

  2. The acquisition of myelin: a success story.

    PubMed

    Zalc, Bernard

    2006-01-01

    The myelin sheath, and hence the myelin-forming cells (i.e. Schwann cells in the PNS and oligodendrocytes in the CNS), have been a crucial acquisition of vertebrates. The major function of myelin is to increase the velocity of propagation of nerve impulses. Invertebrate axons are ensheathed by glial cells, but do not have a compact myelin. As a consequence, action potentials along invertebrate axons propagate at about 1 m/s, or less. This is sufficient, however, for the survival of small animals (between 0.1 and 30cm). Among invertebrates, only the cephalopods are larger. By increasing their axonal diameter to 1 mm or more, cephalopods have been able to increase the speed of propagation of action potentials and therefore adapt nerve conduction to their larger body size. However, due to the physical constraint imposed by the skull and vertebrae, vertebrates had to find an alternative solution. This was achieved by introducing the myelin sheath, which leads action potentials to propagate at speeds of 50-100m/s without increasing the diameter of their axons. Not all vertebrate axons, however, are myelinated. In the protovertebrates (lancelets, hagfishes, lampreys), which belong to the agnathes (jawless fishes), axons are not ensheathed by myelin. Among living vertebrates, the most ancient myelinated species are the cartilaginous fishes (sharks, rays), suggesting that acquisition of myelin is concomitant with the acquisition of a hinged-jaw, i.e. the gnathostoma. The close association between the apparition of a hinged-jaw and the myelin sheath has led to speculation that among the devonian fishes that have disappeared today, the jawless conodonts and ostracoderms were not myelinated, and that myelin was first acquired by the oldest gnathostomes: the placoderms. I also question where myelin first appeared: the PNS, the CNS or both? I provide evidence that, in fact, it is not the type of myelin-forming cell that is crucial, but the appearance of axonal signals

  3. The slow Wallerian degeneration gene, WldS, inhibits axonal spheroid pathology in gracile axonal dystrophy mice.

    PubMed

    Mi, Weiqian; Beirowski, Bogdan; Gillingwater, Thomas H; Adalbert, Robert; Wagner, Diana; Grumme, Daniela; Osaka, Hitoshi; Conforti, Laura; Arnhold, Stefan; Addicks, Klaus; Wada, Keiji; Ribchester, Richard R; Coleman, Michael P

    2005-02-01

    Axonal dystrophy is the hallmark of axon pathology in many neurodegenerative disorders of the CNS, including Alzheimer's disease, Parkinson's disease and stroke. Axons can also form larger swellings, or spheroids, as in multiple sclerosis and traumatic brain injury. Some spheroids are terminal endbulbs of axon stumps, but swellings may also occur on unbroken axons and their role in axon loss remains uncertain. Similarly, it is not known whether spheroids and axonal dystrophy in so many different CNS disorders arise by a common mechanism. These surprising gaps in current knowledge result largely from the lack of experimental methods to manipulate axon pathology. The slow Wallerian degeneration gene, Wld(S), delays Wallerian degeneration after injury, and also delays 'dying-back' in peripheral nervous system disorders, revealing a mechanistic link between two forms of axon degeneration traditionally considered distinct. We now report that Wld(S) also inhibits axonal spheroid pathology in gracile axonal dystrophy (gad) mice. Both gracile nucleus (P < 0.001) and cervical gracile fascicle (P = 0.001) contained significantly fewer spheroids in gad/Wld(S) mice, and secondary signs of axon pathology such as myelin loss were also reduced. Motor nerve terminals at neuromuscular junctions continued to degenerate in gad/Wld(S) mice, consistent with previous observations that Wld(S) has a weaker effect on synapses than on axons, and probably contributing to the fact that Wld(S) did not alleviate gad symptoms. Wld(S) acts downstream of the initial pathogenic events to block gad pathology, suggesting that its effect on axonal swelling need not be specific to this disease. We conclude that axon degeneration mechanisms are more closely related than previously thought and that a link exists in gad between spheroid pathology and Wallerian degeneration that could hold for other disorders. PMID:15644421

  4. Purinergic signaling mediated by P2X7 receptors controls myelination in sciatic nerves.

    PubMed

    Faroni, A; Smith, R J P; Procacci, P; Castelnovo, L F; Puccianti, E; Reid, A J; Magnaghi, V; Verkhratsky, A

    2014-10-01

    Adenosine-5'-triphosphate, the physiological ligand of P2X receptors, is an important factor in peripheral nerve development. P2X7 receptor is expressed in Schwann cells (SCs), but the specific effects of P2X7 purinergic signaling on peripheral nerve development, myelination, and function are largely unknown. In this study, sciatic nerves from P2X7 knockout mice were analyzed for altered expression of myelin-associated proteins and for alterations in nerve morphology. Immunohistochemical analyses revealed that, in the wild-type peripheral nerves, the P2X7 receptor was localized mainly in myelinating SCs, with only a few immunopositive nonmyelinating SCs. Complete absence of P2X7 receptor protein was confirmed in the sciatic nerves of the knockout mice by Western blot and immunohistochemistry. Western blot analysis revealed that expression levels of the myelin proteins protein zero and myelin-associated glycoprotein are reduced in P2X7 knockout nerves. In accordance with the molecular results, transmission electron microscopy analyses revealed that P2X7 knockout nerves possess significantly more unmyelinated axons, contained in a higher number of Remak bundles. The myelinating/nonmyelinating SC ratio was also decreased in knockout mice, and we found a significantly increased number of irregular fibers compared with control nerves. Nevertheless, the myelin thickness in the knockout was unaltered, suggesting a stronger role for P2X7 in determining SC maturation than in myelin formation. In conclusion, we present morphological and molecular evidence of the importance of P2X7 signaling in peripheral nerve maturation and in determining SC commitment to a myelinating phenotype. PMID:24903685

  5. Mechanisms of sodium channel clustering and its influence on axonal impulse conduction.

    PubMed

    Freeman, Sean A; Desmazières, Anne; Fricker, Desdemona; Lubetzki, Catherine; Sol-Foulon, Nathalie

    2016-02-01

    The efficient propagation of action potentials along nervous fibers is necessary for animals to interact with the environment with timeliness and precision. Myelination of axons is an essential step to ensure fast action potential propagation by saltatory conduction, a process that requires highly concentrated voltage-gated sodium channels at the nodes of Ranvier. Recent studies suggest that the clustering of sodium channels can influence axonal impulse conduction in both myelinated and unmyelinated fibers, which could have major implications in disease, particularly demyelinating pathology. This comprehensive review summarizes the mechanisms governing the clustering of sodium channels at the peripheral and central nervous system nodes and the specific roles of their clustering in influencing action potential conduction. We further highlight the classical biophysical parameters implicated in conduction timing, followed by a detailed discussion on how sodium channel clustering along unmyelinated axons can impact axonal impulse conduction in both physiological and pathological contexts. PMID:26514731

  6. Intact sciatic myelinated primary afferent terminals collaterally sprout in the adult rat dorsal horn following section of a neighbouring peripheral nerve.

    PubMed

    Doubell, T P; Mannion, R J; Woolf, C J

    1997-03-31

    Peripheral nerve section induces sprouting of the central terminals of axotomized myelinated primary afferents outside their normal dorsoventral termination zones in lamina I, III, and IV of the dorsal horn into lamina II, an area that normally only receives unmyelinated C-fiber input. This axotomy-induced regenerative sprouting is confined to the somatotopic boundaries of the injured nerve in the spinal cord. We examined whether intact myelinated sciatic afferents are able to sprout novel terminals into neighbouring areas of the dorsal horn in the adult rat following axotomy of two test nerves, either the posterior cutaneous nerve of the thigh or the saphenous nerve. These peripheral nerves have somatotopically organized terminal areas in the dorsal horn that overlap in some areas and are contiguous in others, with that of the sciatic central terminal field. Two weeks after cutting either the posterior cutaneous or the saphenous nerve, intact sciatic myelinated fibers labelled with the B fragment of cholera toxin conjugated to horseradish peroxidase (B-HRP) sprouted into an area of lamina II normally only innervated by the adjacent injured test nerve. This collateral sprouting was strictly limited, however, to those particular areas of the dorsal horn where the A-fiber terminal field of the control sciatic and the C-fiber terminal field of the injured test nerve overlapped in the dorsoventral plane. No mediolateral sprouting was seen into those areas of neuropil solely innervated by the test nerve. We conclude that intact myelinated primary afferents do have the capacity to collaterally sprout, but that any resultant somatotopic reorganization of central projections is limited to the dorsoventral plane. These changes may contribute to sensory hypersensitivity at the edges of denervated skin. PMID:9073085

  7. A Coin-Like Peripheral Small Cell Lung Carcinoma Associated with Acute Paraneoplastic Axonal Guillain-Barre-Like Syndrome

    PubMed Central

    Jung, Ioan; Gurzu, Simona; Balasa, Rodica; Motataianu, Anca; Contac, Anca Otilia; Halmaciu, Ioana; Popescu, Septimiu; Simu, Iunius

    2015-01-01

    Abstract A 65-year-old previously healthy male heavy smoker was hospitalized with a 2-week history of progressive muscle weakness in the lower and upper extremities. After 10 days of hospitalization, urinary sphincter incompetence and fecal incontinence were added and tetraparesis was established. The computer-tomography scan examination revealed a massive right hydrothorax and multifocal solid acinar structures with peripheral localization in the left lung, which suggested pulmonary cancer. Bone marrow metastases were also suspected. Based on the examination results, the final diagnosis was acute paraneoplastic axonal Guillain-Barre-like syndrome. The patient died 3 weeks after hospitalization. At autopsy, bronchopneumonia and a right hydrothorax were confirmed. Several 4 to 5-mm-sized round peripherally located white nodules were identified in the left lung, without any central tumor mass. Under microscope, a coin-shaped peripheral/subpleural small cell carcinoma was diagnosed, with generalized bone metastases. A huge thrombus in the abdominal aorta and acute pancreatitis was also seen at autopsy. This case highlights the difficulty of diagnosis of lung carcinomas and the necessity of a complex differential diagnosis of severe progressive ascending neuropathies. This is the 6th reported case of small cell lung cancer-associated acute Guillain-Barre-like syndrome and the first report about an association with a coin-like peripheral pattern. PMID:26039124

  8. A coin-like peripheral small cell lung carcinoma associated with acute paraneoplastic axonal Guillain-Barre-like syndrome.

    PubMed

    Jung, Ioan; Gurzu, Simona; Balasa, Rodica; Motataianu, Anca; Contac, Anca Otilia; Halmaciu, Ioana; Popescu, Septimiu; Simu, Iunius

    2015-06-01

    A 65-year-old previously healthy male heavy smoker was hospitalized with a 2-week history of progressive muscle weakness in the lower and upper extremities. After 10 days of hospitalization, urinary sphincter incompetence and fecal incontinence were added and tetraparesis was established. The computer-tomography scan examination revealed a massive right hydrothorax and multifocal solid acinar structures with peripheral localization in the left lung, which suggested pulmonary cancer. Bone marrow metastases were also suspected. Based on the examination results, the final diagnosis was acute paraneoplastic axonal Guillain-Barre-like syndrome. The patient died 3 weeks after hospitalization. At autopsy, bronchopneumonia and a right hydrothorax were confirmed. Several 4 to 5-mm-sized round peripherally located white nodules were identified in the left lung, without any central tumor mass. Under microscope, a coin-shaped peripheral/subpleural small cell carcinoma was diagnosed, with generalized bone metastases. A huge thrombus in the abdominal aorta and acute pancreatitis was also seen at autopsy. This case highlights the difficulty of diagnosis of lung carcinomas and the necessity of a complex differential diagnosis of severe progressive ascending neuropathies. This is the 6th reported case of small cell lung cancer-associated acute Guillain-Barre-like syndrome and the first report about an association with a coin-like peripheral pattern. PMID:26039124

  9. Gliomedin mediates Schwann cell-axon interaction and the molecular assembly of the nodes of Ranvier.

    PubMed

    Eshed, Yael; Feinberg, Konstantin; Poliak, Sebastian; Sabanay, Helena; Sarig-Nadir, Offra; Spiegel, Ivo; Bermingham, John R; Peles, Elior

    2005-07-21

    Accumulation of Na(+) channels at the nodes of Ranvier is a prerequisite for saltatory conduction. In peripheral nerves, clustering of these channels along the axolemma is regulated by myelinating Schwann cells through a yet unknown mechanism. We report the identification of gliomedin, a glial ligand for neurofascin and NrCAM, two axonal immunoglobulin cell adhesion molecules that are associated with Na+ channels at the nodes of Ranvier. Gliomedin is expressed by myelinating Schwann cells and accumulates at the edges of each myelin segment during development, where it aligns with the forming nodes. Eliminating the expression of gliomedin by RNAi, or the addition of a soluble extracellular domain of neurofascin to myelinating cultures, which caused the redistribution of gliomedin along the internodes, abolished node formation. Furthermore, a soluble gliomedin induced nodal-like clusters of Na+ channels in the absence of Schwann cells. We propose that gliomedin provides a glial cue for the formation of peripheral nodes of Ranvier. PMID:16039564

  10. Paranodal dysmyelination in peripheral nerves of Trembler mice.

    PubMed

    Rosenbluth, Jack; Bobrowski-Khoury, Natasha

    2014-04-01

    Subtle defects in paranodes of myelinated nerve fibers can cause significant physiological malfunction. We have investigated myelinated fibers in the peripheral nervous system (PNS) of the Trembler mouse, a model of CMT-1A neuropathy, for evidence of such defects. Ultrastructural analysis shows that the "transverse bands," which attach the myelin sheath to the axon at the paranodal axoglial junction, are grossly diminished in number in Trembler nerve fibers. Although paranodes often appear to be greatly elongated, it is only a short region immediately adjacent to the node of Ranvier that displays transverse bands. Where transverse bands are missing, the junctional gap widens, thus reducing resistance to short circuiting of nodal action currents during saltatory conduction and increasing the likelihood that axonal K(+) channels under the myelin sheath will be activated. In addition, we find evidence that structural domains in Trembler axons are incompletely differentiated, consistent with diminution in nodal Na channel density, which could further compromise conduction. Deficiency of transverse bands may also increase susceptibility to disruption of the paranodal junction and retraction of the myelin sheath. We conclude that Trembler PNS myelinated fibers display subtle defects in paranodal and nodal regions that could contribute significantly to conduction defects and increased risk of myelin detachment. PMID:24446165

  11. Signaling through ERK1/2 controls myelin thickness during myelin repair in the adult central nervous system.

    PubMed

    Fyffe-Maricich, Sharyl L; Schott, Alexandra; Karl, Molly; Krasno, Janet; Miller, Robert H

    2013-11-20

    Oligodendrocytes, the myelin-forming cells of the CNS, exquisitely tailor the thickness of individual myelin sheaths to the diameter of their target axons to maximize the speed of action potential propagation, thus ensuring proper neuronal connectivity and function. Following demyelinating injuries to the adult CNS, newly formed oligodendrocytes frequently generate new myelin sheaths. Following episodes of demyelination such as those that occur in patients with multiple sclerosis, however, the matching of myelin thickness to axon diameter fails leaving remyelinated axons with thin myelin sheaths potentially compromising function and leaving axons vulnerable to damage. How oligodendrocytes determine the appropriate thickness of myelin for an axon of defined size during repair is unknown and identifying the signals that regulate myelin thickness has obvious therapeutic implications. Here, we show that sustained activation of extracellular-regulated kinases 1 and 2 (ERK1/2) in oligodendrocyte lineage cells results in accelerated myelin repair after injury, and is sufficient for the generation of thick myelin sheaths around remyelinated axons in the adult mouse spinal cord. Our findings suggest a model where ERK1/2 MAP kinase signaling acts as a myelin thickness rheostat that instructs oligodendrocytes to generate axon-appropriate quantities of myelin. PMID:24259565

  12. Cholesterol: a novel regulatory role in myelin formation.

    PubMed

    Saher, Gesine; Quintes, Susanne; Nave, Klaus-Armin

    2011-02-01

    Myelin consists of tightly compacted membranes that form an insulating sheath around axons. The function of myelin for rapid saltatory nerve conduction is dependent on its unique composition, highly enriched in glycosphingolipids and cholesterol. Cholesterol emerged as the only integral myelin component that is essential and rate limiting for the development of CNS and PNS myelin. Experiments with conditional mouse mutants that lack cholesterol biosynthesis in oligodendrocytes revealed that only minimal changes of the CNS myelin lipid composition are tolerated. In Schwann cells of the PNS, protein trafficking and myelin compaction depend on cholesterol. In this review, the authors summarize the role of cholesterol in myelin biogenesis and myelin disease. PMID:21343408

  13. Low-density Lipoprotein Receptor-related Proteins in a Novel Mechanism of Axon Guidance and Peripheral Nerve Regeneration.

    PubMed

    Landowski, Lila M; Pavez, Macarena; Brown, Lachlan S; Gasperini, Robert; Taylor, Bruce V; West, Adrian K; Foa, Lisa

    2016-01-15

    The low-density lipoprotein receptor-related protein receptors 1 and 2 (LRP1 and LRP2) are emerging as important cell signaling mediators in modulating neuronal growth and repair. We examined whether LRP1 and LRP2 are able to mediate a specific aspect of neuronal growth: axon guidance. We sought to identify LRP1 and LRP2 ligands that could induce axonal chemoattraction, which might have therapeutic potential. Using embryonic sensory neurons (rat dorsal root ganglia) in a growth cone turning assay, we tested a range of LRP1 and LRP2 ligands for the ability to guide growth cone navigation. Three ligands were chemorepulsive: α-2-macroglobulin, tissue plasminogen activator, and metallothionein III. Conversely, only one LRP ligand, metallothionein II, was found to be chemoattractive. Chemoattraction toward a gradient of metallothionein II was calcium-dependent, required the expression of both LRP1 and LRP2, and likely involves further co-receptors such as the tropomyosin-related kinase A (TrkA) receptor. The potential for LRP-mediated chemoattraction to mediate axonal regeneration was examined in vivo in a model of chemical denervation in adult rats. In these in vivo studies, metallothionein II was shown to enhance epidermal nerve fiber regeneration so that it was complete within 7 days compared with 14 days in saline-treated animals. Our data demonstrate that both LRP1 and LRP2 are necessary for metallothionein II-mediated chemotactic signal transduction and that they may form part of a signaling complex. Furthermore, the data suggest that LRP-mediated chemoattraction represents a novel, non-classical signaling system that has therapeutic potential as a disease-modifying agent for the injured peripheral nervous system. PMID:26598525

  14. In vivo testing of a 3D bifurcating microchannel scaffold inducing separation of regenerating axon bundles in peripheral nerves

    NASA Astrophysics Data System (ADS)

    Stoyanova, Irina I.; van Wezel, Richard J. A.; Rutten, Wim L. C.

    2013-12-01

    Artificial nerve guidance channels enhance the regenerative effectiveness in an injured peripheral nerve but the existing design so far has been limited to basic straight tubes simply guiding the growth to bridge the gap. Hence, one of the goals in development of more effective neuroprostheses is to create bidirectional highly selective neuro-electronic interface between a prosthetic device and the severed nerve. A step towards improving selectivity for both recording and stimulation have been made with some recent in vitro studies which showed that three-dimensional (3D) bifurcating microchannels can separate neurites growing on a planar surface and bring them into contact with individual electrodes. Since the growing axons in vivo have the innate tendency to group in bundles surrounded by connective tissue, one of the big challenges in neuro-prosthetic interface design is how to overcome it. Therefore, we performed experiments with 3D bifurcating guidance scaffolds implanted in the sciatic nerve of rats to test if this new channel architecture could trigger separation pattern of ingrowth also in vivo. Our results showed that this new method enabled the re-growth of neurites into channels with gradually diminished width (80, 40 and 20 µm) and facilitated the separation of the axonal bundles with 91% success. It seems that the 3D bifurcating scaffold might contribute towards conveying detailed neural control and sensory feedback to users of prosthetic devices, and thus could improve the quality of their daily life.

  15. Mesenchymal stem cells attenuate peripheral neuronal degeneration in spinocerebellar ataxia type 1 knockin mice.

    PubMed

    Mieda, Tokue; Suto, Nana; Iizuka, Akira; Matsuura, Serina; Iizuka, Haku; Takagishi, Kenji; Nakamura, Kazuhiro; Hirai, Hirokazu

    2016-03-01

    Spinocerebellar ataxia type 1 (SCA1) is a devastating neurodegenerative disorder in which an abnormally expanded polyglutamine tract is inserted into causative ataxin-1 proteins. We have previously shown that SCA1 knockin (SCA1-KI) mice over 6 months of age exhibit a degeneration of motor neuron axons and their encasing myelin sheaths, as reported in SCA1 patients. We examined whether axon degeneration precedes myelin degeneration or vice versa in SCA1-KI mice and then attempted to mitigate motor neuron degeneration by intrathecally administering mesenchymal stem cells (MSCs). Temporal examination of the diameters of motor neuron axons and their myelin sheaths revealed a decrease in diameter of the axon but not of the myelin sheaths in SCA1-KI mice as early as 1 month of age, which suggests secondary degeneration of the myelin sheaths. We injected MSCs into the intrathecal space of SCA1-KI mice at 1 month of age, which resulted in a significant suppression of degeneration of both motor neuron axons and myelin sheaths, even 6 months after the MSC injection. Thus, MSCs effectively suppressed peripheral nervous system degeneration in SCA1-KI mice. It has not yet been clarified how clinically administered MSCs exhibit significant therapeutic effects in patients with SCA1. The morphological evidence presented in this current mouse study might explain the mechanisms that underlie the therapeutic effects of MSCs that are observed in patients with SCA1. PMID:26707550

  16. gp130 cytokines are positive signals triggering changes in gene expression and axon outgrowth in peripheral neurons following injury

    PubMed Central

    Zigmond, Richard E.

    2012-01-01

    Adult peripheral neurons, in contrast to adult central neurons, are capable of regeneration after axonal damage. Much attention has focused on the changes that accompany this regeneration in two places, the distal nerve segment (where phagocytosis of axonal debris, changes in the surface properties of Schwann cells, and induction of growth factors and cytokines occur) and the neuronal cell body (where dramatic changes in cell morphology and gene expression occur). The changes in the axotomized cell body are often referred to as the “cell body response.” The focus of the current review is a family of cytokines, the glycoprotein 130 (gp130) cytokines, which produce their actions through a common gp130 signaling receptor and which function as injury signals for axotomized peripheral neurons, triggering changes in gene expression and in neurite outgrowth. These cytokines play important roles in the responses of sympathetic, sensory, and motor neurons to injury. The best studied of these cytokines in this context are leukemia inhibitory factor (LIF) and interleukin (IL)-6, but experiments with conditional gp130 knockout animals suggest that other members of this family, not yet determined, are also involved. The primary gp130 signaling pathway shown to be involved is the activation of Janus kinase (JAK) and the transcription factors Signal Transducers and Activators of Transcription (STAT), though other downstream pathways such as mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) may also play a role. gp130 signaling may involve paracrine, retrograde, and autocrine actions of these cytokines. Recent studies suggest that manipulation of this cytokine system can also stimulate regeneration by injured central neurons. PMID:22319466

  17. A system and method to interface with multiple groups of axons in several fascicles of peripheral nerves

    PubMed Central

    Thota, Anil K.; Kuntaegowdanahalli, Sathyakumar; Starosciak, Amy K.; Abbas, James J.; Orbay, Jorge; Horch, Kenneth W.; Jung, Ranu

    2014-01-01

    Background Several neural interface technologies that stimulate and/or record from groups of axons have been developed. The longitudinal intrafascicular electrode (LIFE) is a fine wire that can provide access to a discrete population of axons within a peripheral nerve fascicle. Some applications require, or would benefit greatly from, technology that could provide access to multiple discrete sites in several fascicles. New Method The distributed intrafascicular multi-electrode (DIME) lead was developed to deploy multiple LIFEs to several fascicles. It consists of several (e.g. six) LIFEs that are coiled and placed in a sheath for strength and durability, with a portion left uncoiled to allow insertion at distinct sites. We have also developed a multi-lead multi-electrode (MLME) management system that includes a set of sheaths and procedures for fabrication and deployment. Results A prototype with 3 DIME leads was fabricated and tested in a procedure in a cadaver arm. The leads were successfully routed through skin and connective tissue and the deployment procedures were utilized to insert the LIFEs into fascicles of two nerves. Comparison with Existing Method(s) Most multi-electrode systems use a single-lead, multi-electrode design. For some applications, this design may be limited by the bulk of the multi-contact array and/or by the spatial distribution of the electrodes. Conclusion We have designed a system that can be used to access multiple sets of discrete groups of fibers that are spatially distributed in one or more fascicles of peripheral nerves. This system may be useful for neural-enabled prostheses or other applications. PMID:25092497

  18. Delaying the onset of treadmill exercise following peripheral nerve injury has different effects on axon regeneration and motoneuron synaptic plasticity

    PubMed Central

    Brandt, Jaclyn; Evans, Jonathan T.; Mildenhall, Taylor; Mulligan, Amanda; Konieczny, Aimee; Rose, Samuel J.

    2015-01-01

    Transection of a peripheral nerve results in withdrawal of synapses from motoneurons. Some of the withdrawn synapses are restored spontaneously, but those containing the vesicular glutamate transporter 1 (VGLUT1), and arising mainly from primary afferent neurons, are withdrawn permanently. If animals are exercised immediately after nerve injury, regeneration of the damaged axons is enhanced and no withdrawal of synapses from injured motoneurons can be detected. We investigated whether delaying the onset of exercise until after synapse withdrawal had occurred would yield similar results. In Lewis rats, the right sciatic nerve was cut and repaired. Reinnervation of the soleus muscle was monitored until a direct muscle (M) response was observed to stimulation of the tibial nerve. At that time, rats began 2 wk of daily treadmill exercise using an interval training protocol. Both M responses and electrically-evoked H reflexes were monitored weekly for an additional seven wk. Contacts made by structures containing VGLUT1 or glutamic acid decarboxylase (GAD67) with motoneurons were studied from confocal images of retrogradely labeled cells. Timing of full muscle reinnervation was similar in both delayed and immediately exercised rats. H reflex amplitude in delayed exercised rats was only half that found in immediately exercised animals. Unlike immediately exercised animals, motoneuron contacts containing VGLUT1 in delayed exercised rats were reduced significantly, relative to intact rats. The therapeutic window for application of exercise as a treatment to promote restoration of synaptic inputs onto motoneurons following peripheral nerve injury is different from that for promoting axon regeneration in the periphery. PMID:25632080

  19. Delaying the onset of treadmill exercise following peripheral nerve injury has different effects on axon regeneration and motoneuron synaptic plasticity.

    PubMed

    Brandt, Jaclyn; Evans, Jonathan T; Mildenhall, Taylor; Mulligan, Amanda; Konieczny, Aimee; Rose, Samuel J; English, Arthur W

    2015-04-01

    Transection of a peripheral nerve results in withdrawal of synapses from motoneurons. Some of the withdrawn synapses are restored spontaneously, but those containing the vesicular glutamate transporter 1 (VGLUT1), and arising mainly from primary afferent neurons, are withdrawn permanently. If animals are exercised immediately after nerve injury, regeneration of the damaged axons is enhanced and no withdrawal of synapses from injured motoneurons can be detected. We investigated whether delaying the onset of exercise until after synapse withdrawal had occurred would yield similar results. In Lewis rats, the right sciatic nerve was cut and repaired. Reinnervation of the soleus muscle was monitored until a direct muscle (M) response was observed to stimulation of the tibial nerve. At that time, rats began 2 wk of daily treadmill exercise using an interval training protocol. Both M responses and electrically-evoked H reflexes were monitored weekly for an additional seven wk. Contacts made by structures containing VGLUT1 or glutamic acid decarboxylase (GAD67) with motoneurons were studied from confocal images of retrogradely labeled cells. Timing of full muscle reinnervation was similar in both delayed and immediately exercised rats. H reflex amplitude in delayed exercised rats was only half that found in immediately exercised animals. Unlike immediately exercised animals, motoneuron contacts containing VGLUT1 in delayed exercised rats were reduced significantly, relative to intact rats. The therapeutic window for application of exercise as a treatment to promote restoration of synaptic inputs onto motoneurons following peripheral nerve injury is different from that for promoting axon regeneration in the periphery. PMID:25632080

  20. Effect of Axon Misdirection on Recovery of Electromyographic Activity and Kinematics after Peripheral Nerve Injury

    PubMed Central

    Sabatier, Manning J.; To, Bao Ngoc; Nicolini, Jennifer; English, Arthur W.

    2011-01-01

    In this study, patterns of activity in the soleus (Sol) and tibialis anterior (TA) muscles and hindlimb kinematics were evaluated during slope walking in rats after transection and surgical repair either of the entire sciatic nerve (Sci group) or of its two branches separately, the tibial and common fibular nerves (T/CF group). With the latter method, axons from the tibial and common fibular nerves could not reinnervate targets of the other nerve branch after injury, reducing the opportunity for misdirection. Activity in the TA shifted from the swing phase in intact rats to nearly the entire step cycle in both injured groups. Since these changes occur without misdirection of regenerating axons, they are interpreted as centrally generated. Sol activity was changed from reciprocal to that of TA in intact rats to coactivate with TA, but only in the Sci group rats. In the T/CF group rats, Sol activity was not altered from that observed in intact rats. Despite effects of injury that limited foot movements, hindlimb kinematics were conserved during downslope walking in both injury groups and during level walking in the T/CF group. During level walking in the Sci group and during upslope walking in both groups of injured rats, the ability to compensate for the effects of the nerve injury was less effective and resulted in longer limb lengths held at more acute angles throughout the step cycle. Changes in limb movements occur irrespective of axon misdirection and reflect compensatory changes in the outputs of the neural circuits that drive locomotion. PMID:21411964

  1. Peripheral myelin protein 22 gene duplication with atypical presentations: a new example of the wide spectrum of Charcot-Marie-Tooth 1A disease.

    PubMed

    Mathis, Stéphane; Corcia, Philippe; Tazir, Meriem; Camu, William; Magdelaine, Corinne; Latour, Philippe; Biberon, Julien; Guennoc, Anne-Marie; Richard, Laurence; Magy, Laurent; Funalot, Benoît; Vallat, Jean-Michel

    2014-06-01

    Charcot-Marie-Tooth type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP) are both autosomal-dominant disorders linked to peripheral myelin anomalies. CMT1A is associated with a Peripheral Myelin Protein 22 (PMP22) duplication, whereas HNPP is due to a PMP22 deletion on chromosome 17. In spite of this crucial difference, we report three observations of patients with the 1.4 megabase CMT1A duplication and atypical presentation (electrophysiological, clinical or pathological): a 10 year-old girl with tomaculous lesions on nerve biopsy; a 26 year-old woman with recurrent paresthesiae and block conduction on the electrophysiological study; a 46 year-old woman with transient recurrent nerve palsies mimicking HNPP. These observations highlight the wide spectrum of CMT1A and the overlap between CMT1A and HNPP (both linked to the PMP22 gene), and finally illustrate the complexity of the genotype-phenotype correlations in Charcot-Marie-Tooth diseases. PMID:24792522

  2. CNS myelin sheath is stochastically built by homotypic fusion of myelin membranes within the bounds of an oligodendrocyte process.

    PubMed

    Szuchet, Sara; Nielsen, Lauren L; Domowicz, Miriam S; Austin, Jotham R; Arvanitis, Dimitrios L

    2015-04-01

    Myelin - the multilayer membrane that envelops axons - is a facilitator of rapid nerve conduction. Oligodendrocytes form CNS myelin; the prevailing hypothesis being that they do it by extending a process that circumnavigates the axon. It is pertinent to ask how myelin is built because oligodendrocyte plasma membrane and myelin are compositionally different. To this end, we examined oligodendrocyte cultures and embryonic avian optic nerves by electron microscopy, immuno-electron microscopy and three-dimensional electron tomography. The results support three novel concepts. Myelin membranes are synthesized as tubules and packaged into "myelinophore organelles" in the oligodendrocyte perikaryon. Myelin membranes are matured in and transported by myelinophore organelles within an oligodendrocyte process. The myelin sheath is generated by myelin membrane fusion inside an oligodendrocyte process. These findings abrogate the dogma of myelin resulting from a wrapping motion of an oligodendrocyte process and open up new avenues in the quest for understanding myelination in health and disease. PMID:25682762

  3. Treatment Modality Affects Allograft-Derived Schwann Cell Phenotype and Myelinating Capacity

    PubMed Central

    Hayashi, Ayato; Moradzadeh, Arash; Tong, Alice; Wei, Cindy; Tuffaha, Sami H.; Hunter, Daniel A.; Tung, Thomas H.; Parsadanian, Alexander; Mackinnon, Susan E.; Myckatyn, Terence M.

    2009-01-01

    We used peripheral nerve allografts, already employed clinically to reconstruct devastating peripheral nerve injuries, to study Schwann cell (SC) plasticity in adult mice. By modulating the allograft treatment modality we were able to study migratory, denervated, rejecting, and reinnervated phenotypes in transgenic mice whose SCs expressed GFP under regulatory elements of either the S100β (S100-GFP) or nestin (Nestin-GFP) promoters. Well-differentiated SCs strongly expressed S100-GFP, while Nestin-GFP expression was stimulated by denervation, and in some cases, axons were constitutively labeled with CFP to enable in vivo imaging. Serial imaging of these mice demonstrated that untreated allografts were rejected within 20 days. Cold preserved (CP) allografts required an initial phase of SC migration that preceded axonal regeneration thus delaying myelination and maturation of the SC phenotype. Mice immunosuppressed with FK506 demonstrated mild subacute rejection, but the most robust regeneration of myelinated and unmyelinated axons and motor endplate reinnervation. While characterized by fewer regenerating axons, mice treated with the co-stimulatory blockade (CSB) agents anti-CD40L mAb and CTLAIg-4 demonstrated virtually no graft rejection during the 28 day experiment, and had significant increases in myelination, connexin-32 expression, and Akt phosphorylation compared with any other group. These results indicate that even with SC rejection, nerve regeneration can occur to some degree, particularly with FK506 treatment. However, we found that co-stimulatory blockade facilitate optimal myelin formation and maturation of SCs as indicated by protein expression of myelin basic protein (MBP), connexin-32 and phospho-Akt. PMID:18514192

  4. Autoimmune peripheral neuropathies.

    PubMed

    Bourque, Pierre R; Chardon, Jodi Warman; Massie, Rami

    2015-09-20

    Peripheral nervous system axons and myelin have unique potential protein, proteolipid, and ganglioside antigenic determinants. Despite the existence of a blood-nerve barrier, both humoral and cellular immunity can be directed against peripheral axons and myelin. Molecular mimicry may be triggered at the systemic level, as was best demonstrated in the case of bacterial oligosaccharides. The classification of immune neuropathy has been expanded to take into account specific syndromes that share unique clinical, electrophysiological, prognostic and serological features. Guillain-Barré syndrome encompasses a classical syndrome of acute demyelinating polyradiculoneuropathy and many variants: axonal motor and sensory, axonal motor, Miller-Fisher, autonomic, and sensory. Similarly, chronic immune neuropathy is composed of classic chronic inflammatory demyelinating polyradiculoneuropathy and variants characterized as multifocal (motor or sensorimotor), sensory, distal symmetric, and syndromes associated with monoclonal gammopathy. Among putative biomarkers, myelin associated glycoprotein and several anti-ganglioside autoantibodies have shown statistically significant associations with specific neuropathic syndromes. Currently, the strongest biomarker associations are those linking Miller-Fisher syndrome with anti-GQ1b, multifocal motor neuropathy with anti-GM1, and distal acquired symmetric neuropathy with anti-MAG antibodies. Many other autoantibody associations have been proposed, but presently lack sufficient specificity and sensitivity to qualify as biomarkers. This field of research has contributed to the antigenic characterization of motor and sensory functional systems, as well as helping to define immune neuropathic syndromes with widely different clinical presentation, prognosis and response to therapy. Serologic biomarkers are likely to become even more relevant with the advent of new targeted forms of immunotherapy, such as monoclonal antibodies. PMID:25748038

  5. The molecular physiology of the axo-myelinic synapse.

    PubMed

    Micu, Ileana; Plemel, Jason R; Lachance, Celia; Proft, Juliane; Jansen, Andrew J; Cummins, Karen; van Minnen, Jan; Stys, Peter K

    2016-02-01

    Myelinated axons efficiently transmit information over long distances. The apposed myelin sheath confers favorable electrical properties, but restricts access of the axon to its extracellular milieu. Therefore, axonal metabolic support may require specific axo-myelinic communication. Here we explored activity-dependent glutamate-mediated signaling from axon to myelin. 2-Photon microscopy was used to image Ca(2+) changes in myelin in response to electrical stimulation of optic nerve axons ex vivo. We show that optic nerve myelin responds to axonal action potentials by a rise in Ca(2+) levels mediated by GluN2D and GluN3A-containing NMDA receptors. Glutamate is released from axons in a vesicular manner that is tetanus toxin-sensitive. The Ca(2+) source for vesicular fusion is provided by ryanodine receptors on axonal Ca(2+) stores, controlled by L-type Ca(2+) channels that sense depolarization of the internodal axolemma. Genetic ablation of GluN2D and GluN3A subunits results in greater lability of the compact myelin. Our results support the existence of a novel synapse between the axon and its myelin, suggesting a means by which traversing action potentials can signal the overlying myelin sheath. This may be an important physiological mechanism by which an axon can signal companion glia for metabolic support or adjust properties of its myelin in a dynamic manner. The axo-myelinic synapse may contribute to learning, while its disturbances may play a role in the pathophysiology of central nervous system disorders such as schizophrenia, where subtle abnormalities of myelinated white matter tracts have been shown in the human, or to frank demyelinating disorders such as multiple sclerosis. PMID:26515690

  6. Muscle Ciliary Neurotrophic Factor Receptor α Promotes Axonal Regeneration and Functional Recovery Following Peripheral Nerve Lesion

    PubMed Central

    Lee, Nancy; Spearry, Rachel P.; Leahy, Kendra M.; Robitz, Rachel; Trinh, Dennis S.; Mason, Carter O.; Zurbrugg, Rebekah J.; Batt, Myra K.; Paul, Richard J.; Maclennan, A. John

    2014-01-01

    Ciliary neurotrophic factor (CNTF) administration maintains, protects, and promotes the regeneration of both motor neurons (MNs) and skeletal muscle in a wide variety of models. Expression of CNTF receptor α (CNTFRα), an essential CNTF receptor component, is greatly increased in skeletal muscle following neuromuscular insult. Together the data suggest that muscle CNTFRα may contribute to neuromuscular maintenance, protection, and/or regeneration in vivo. To directly address the role of muscle CNTFRα, we selectively-depleted it in vivo by using a “floxed” CNTFRα mouse line and a gene construct (mlc1f-Cre) that drives the expression of Cre specifically in skeletal muscle. The resulting mice were challenged with sciatic nerve crush. Counting of nerve axons and retrograde tracing of MNs indicated that muscle CNTFRα contributes to MN axonal regeneration across the lesion site. Walking track analysis indicated that muscle CNTFRα is also required for normal recovery of motor function. However, the same muscle CNTFRα depletion unexpectedly had no detected effect on the maintenance or regeneration of the muscle itself, even though exogenous CNTF has been shown to affect these functions. Similarly, MN survival and lesion-induced terminal sprouting were unaffected. Therefore, muscle CNTFRα is an interesting new example of a muscle growth factor receptor that, in vivo under physiological conditions, contributes much more to neuronal regeneration than to the maintenance or regeneration of the muscle itself. This novel form of muscle–neuron interaction also has implications in the therapeutic targeting of the neuromuscular system in MN disorders and following nerve injury. PMID:23504871

  7. Disruption of myelin leads to ectopic expression of K(V)1.1 channels with abnormal conductivity of optic nerve axons in a cuprizone-induced model of demyelination.

    PubMed

    Bagchi, Bandita; Al-Sabi, Ahmed; Kaza, Seshu; Scholz, Dimitri; O'Leary, Valerie B; Dolly, J Oliver; Ovsepian, Saak V

    2014-01-01

    The molecular determinants of abnormal propagation of action potentials along axons and ectopic conductance in demyelinating diseases of the central nervous system, like multiple sclerosis (MS), are poorly defined. Widespread interruption of myelin occurs in several mouse models of demyelination, rendering them useful for research. Herein, considerable myelin loss is shown in the optic nerves of cuprizone-treated demyelinating mice. Immuno-fluorescence confocal analysis of the expression and distribution of voltage-activated K⁺ channels (K(V)1.1 and 1.2 α subunits) revealed their spread from typical juxta-paranodal (JXP) sites to nodes in demyelinated axons, albeit with a disproportionate increase in the level of K(V)1.1 subunit. Functionally, in contrast to monophasic compound action potentials (CAPs) recorded in controls, responses derived from optic nerves of cuprizone-treated mice displayed initial synchronous waveform followed by a dispersed component. Partial restoration of CAPs by broad spectrum (4-aminopyridine) or K(V)1.1-subunit selective (dendrotoxin K) blockers of K⁺ currents suggest enhanced K(V)1.1-mediated conductance in the demyelinated optic nerve. Biophysical profiling of K⁺ currents mediated by recombinant channels comprised of different K(V)1.1 and 1.2 stoichiometries revealed that the enrichment of K(V)1 channels K(V)1.1 subunit endows a decrease in the voltage threshold and accelerates the activation kinetics. Together with the morphometric data, these findings provide important clues to a molecular basis for temporal dispersion of CAPs and reduced excitability of demyelinated optic nerves, which could be of potential relevance to the patho-physiology of MS and related disorders. PMID:24498366

  8. What is myelin?

    PubMed

    Hartline, Daniel K

    2008-05-01

    The evolution of a character is better appreciated if examples of convergent emergence of the same character are available for comparison. Three instances are known among invertebrates of the evolution of axonal sheaths possessing the functional properties and many of the structural properties of vertebrate myelin. Comparison of these invertebrate myelins raises the question of what structural features must a sheath possess in order to produce the two principal functional characteristics of impulse speed enhancement and energy savings. This essay reviews the features recognized by early workers as pertaining to myelin in vertebrate and invertebrate alike: osmiophilia, negative birefringence and saltatory conduction. It then examines common features revealed by the advent of electron microscopy: multiplicity of lipid membranes, condensation of those membranes, specialized marginal seals, and nodes. Next it examines the robustness of these features as essential components of a speed-enhancing sheath. Features that are not entirely essential for speed enhancement include membrane compaction, spiral wrapping of layers, glial cell involvement, non-active axonal membrane, and even nodes and perinodal sealing. This permissiveness is discussed in relation to the possible evolutionary origin of myelin. PMID:19737435

  9. Demyelination increases axonal stationary mitochondrial size and the speed of axonal mitochondrial transport

    PubMed Central

    Kiryu-Seo, Sumiko; Ohno, Nobuhiko; Kidd, Grahame J.; Komuro, Hitoshi; Trapp, Bruce D.

    2010-01-01

    Axonal degeneration contributes to permanent neurological disability in inherited and acquired diseases of myelin. Mitochondrial dysfunction has been proposed as a major contributor to this axonal degeneration. It remains to be determined, however, if myelination, demyelination or remyelination alter the size and distribution of axonal mitochondrial stationary sites or the rates of axonal mitochondrial transport. Using live myelinated rat dorsal root ganglion (DRG) cultures, we investigated whether myelination and lysolecithin-induced demyelination affect axonal mitochondria. Myelination increased the size of axonal stationary mitochondrial sites by 2.3 fold. Following demyelination, the size of axonal stationary mitochondrial sites was increased by an additional 2.2 fold and the transport velocity of motile mitochondria was increased by 47%. These measures returned to the levels of myelinated axons following remyelination. Demyelination induced activating transcription factor (ATF) 3 in DRG neurons. Knockdown of neuronal ATF3 by shRNA abolished the demyelination-induced increase in axonal mitochondrial transport and increased nitrotyrosine immunoreactivity in axonal mitochondria, suggesting that neuronal ATF3 expression and increased mitochondrial transport protect demyelinated axons from oxidative damage. In response to insufficient ATP production, demyelinated axons increase the size of stationary mitochondrial sites and thereby balance ATP production with the increased energy needs of nerve conduction. PMID:20463228

  10. Axolemmal abnormalities in myelin mutants.

    PubMed

    Rosenbluth, J

    1990-01-01

    Evidence is reviewed that the paranodal axoglial junction plays important roles in the differentiation and function of myelinated axons. In myelin-deficient axons, ion flux across the axolemma is greater than that in myelinated fibers because a larger proportion of the axolemma is active during continuous, as opposed to saltatory, conduction. In addition, older myelin-deficient rats that have developed spontaneous seizures display small foci of node-like E-face particle accumulations in CNS axons as well as more diffuse regions of increased particle density and number. Assuming that the E-face particles represent sodium channels, such regions could underlie high sodium current density during activity, low threshold for excitation, and increased extracellular potassium accumulation. Depending on the degree of spontaneous channel opening, they could also represent sites of spontaneous generation of activity. The appearance of seizures and their gradual increase in frequency and severity could represent an increase in the number of such regions. In addition, diminution in the dimensions of the extracellular space during maturation would result in increased extracellular resistance, which, together with increasing axonal diameter, would tend to increase the likelihood of ephaptic interaction among neighboring axons as well as the likelihood of extracellular potassium rises to levels that could cause spontaneous activity. PMID:2268117

  11. Dynamics of the Peripheral Membrane Protein P2 from Human Myelin Measured by Neutron Scattering—A Comparison between Wild-Type Protein and a Hinge Mutant

    PubMed Central

    Laulumaa, Saara; Nieminen, Tuomo; Lehtimäki, Mari; Aggarwal, Shweta; Simons, Mikael; Koza, Michael M.; Vattulainen, Ilpo; Kursula, Petri; Natali, Francesca

    2015-01-01

    Myelin protein P2 is a fatty acid-binding structural component of the myelin sheath in the peripheral nervous system, and its function is related to its membrane binding capacity. Here, the link between P2 protein dynamics and structure and function was studied using elastic incoherent neutron scattering (EINS). The P38G mutation, at the hinge between the β barrel and the α-helical lid, increased the lipid stacking capacity of human P2 in vitro, and the mutated protein was also functional in cultured cells. The P38G mutation did not change the overall structure of the protein. For a deeper insight into P2 structure-function relationships, information on protein dynamics in the 10 ps to 1 ns time scale was obtained using EINS. Values of mean square displacements mainly from protein H atoms were extracted for wild-type P2 and the P38G mutant and compared. Our results show that at physiological temperatures, the P38G mutant is more dynamic than the wild-type P2 protein, especially on a slow 1-ns time scale. Molecular dynamics simulations confirmed the enhanced dynamics of the mutant variant, especially within the portal region in the presence of bound fatty acid. The increased softness of the hinge mutant of human myelin P2 protein is likely related to an enhanced flexibility of the portal region of this fatty acid-binding protein, as well as to its interactions with the lipid bilayer surface requiring conformational adaptations. PMID:26068118

  12. The RNA binding and transport proteins staufen and fragile X mental retardation protein are expressed by rat primary afferent neurons and localize to peripheral and central axons.

    PubMed

    Price, T J; Flores, C M; Cervero, F; Hargreaves, K M

    2006-09-15

    Neuronal proteins have been traditionally viewed as being derived solely from the soma; however, accumulating evidence indicates that dendritic and axonal sites are capable of a more autonomous role in terms of new protein synthesis. Such extra-somal translation allows for more rapid, on-demand regulation of neuronal structure and function than would otherwise be possible. While mechanisms of dendritic RNA transport have been elucidated, it remains unclear how RNA is trafficked into the axon for this purpose. Primary afferent neurons of the dorsal root (DRG) and trigeminal (TG) ganglia have among the longest axons in the neuraxis and such axonal protein synthesis would be advantageous, given the greater time involved for protein trafficking to occur via axonal transport. Therefore, we hypothesized that these primary sensory neurons might express proteins involved in RNA transport. Rat DRG and TG neurons expressed staufen (stau) 1 and 2 (detected at the mRNA level) and stau2 and fragile x mental retardation protein (FMRP; detected at the protein level). Stau2 mRNA was also detected in human TG neurons. Stau2 and FMRP protein were localized to the sciatic nerve and dorsal roots by immunohistochemistry and to dorsal roots by Western blot. Stau2 and FMRP immunoreactivities colocalized with transient receptor potential channel type 1 immunoreactivity in sensory axons of the sciatic nerve and dorsal root, suggesting that these proteins are being transported into the peripheral and central terminals of nociceptive sensory axons. Based on these findings, we propose that stau2 and FMRP proteins are attractive candidates to subserve RNA transport in sensory neurons, linking somal transcriptional events to axonal translation. PMID:16809002

  13. Phylogenetic development of myelin glycosphingolipids.

    PubMed

    Kishimoto, Y

    1986-12-15

    Myelin is a highly specialized membrane, which enwraps axons and facilitates saltatory nerve conduction in vertebrates. Galactocerebroside and its sulfate ester, sulfatide, are highly localized in myelin. To understand the role played by these galactosphingolipids we investigated the changes of these myelin-specific compounds during the course of the evolution of myelin. We found that urodele nerve myelin lacks alpha-hydroxy fatty acid-containing galactosphingolipids. Our morphological and physiological studies of urodele nerves indicated that these hydroxy fatty acid-containing galactosphingolipids probably contribute to fast nerve conduction. Also it is suspected that they are involved in the regulation of the thickness of myelin in relation to the size of the axon. In another study, we discovered that glucocerebroside, which has glucose instead of galactose as its carbohydrate component, is abundantly present in the myelin-like sheath membrane of crustacean nerves. Subsequently, the phylogenetic study indicated that galactocerebrosides were limited to the nervous system of deuterostomes, while all protostome nerves contain glucocerebrosides. The role of glucocerebrosides in multilayered membranes and in the conduction velocity of the protostome nervous system is discussed. PMID:3549016

  14. A silver impregnation utilizing only reagent-grade chemicals for visualization of peripheral axons and fibroblasts.

    PubMed

    Novotny, G E; Mertens, I

    1998-02-01

    A silver impregnation procedure is described that enables the representation of numerous tissue components. It especially visualizes nerves and fibroblasts, which may be clearly distinguished from other tissue elements. Since it can be performed on thick sections, three-dimensional analysis of nerve terminations and fibroblasts in the tissues can be performed. The results are illustrated with the innervation of the rat snout and human labial sweat glands for nerves, and with bovine and pathological human material for fibroblasts. Axons are visualized as thin, sinuous black structures, sometimes, as in the case of autonomic efferents, with varicosities. Fibroblasts are revealed in their total extent by the darker staining of their nuclei and cytoplasm compared with that of the surrounding collagen. Cell processes can thus be followed for long distances, and may be seen to approach other cells. Previously published methods for the visualization of nerves and fibroblasts depended upon the use of commercial formalin, which is subject to the manufacturers' modifications. The method presented here uses exclusively analytical-grade reagents and distilled water. It is also less dependent than other methods on the fixation protocol. PMID:9503660

  15. Myelination: actin disassembly leads the way

    PubMed Central

    Samanta, Jayshree; Salzer, James L.

    2016-01-01

    The mechanisms that drive the spiral wrapping of the myelin sheath around axons are poorly understood. Two papers in this issue of Developmental Cell demonstrate that actin disassembly, rather than actin assembly, predominates during oligodendrocyte maturation and is critical for the genesis of the central myelin sheath. PMID:26218317

  16. The transcriptome of mouse central nervous system myelin

    PubMed Central

    Thakurela, Sudhir; Garding, Angela; Jung, Ramona B.; Müller, Christina; Goebbels, Sandra; White, Robin; Werner, Hauke B.; Tiwari, Vijay K.

    2016-01-01

    Rapid nerve conduction in the CNS is facilitated by insulation of axons with myelin, a specialized oligodendroglial compartment distant from the cell body. Myelin is turned over and adapted throughout life; however, the molecular and cellular basis of myelin dynamics remains elusive. Here we performed a comprehensive transcriptome analysis (RNA-seq) of myelin biochemically purified from mouse brains at various ages and find a surprisingly large pool of transcripts enriched in myelin. Further computational analysis showed that the myelin transcriptome is closely related to the myelin proteome but clearly distinct from the transcriptomes of oligodendrocytes and brain tissues, suggesting a highly selective incorporation of mRNAs into the myelin compartment. The mRNA-pool in myelin displays maturation-dependent dynamic changes of composition, abundance, and functional associations; however ageing-dependent changes after 6 months were minor. We suggest that this transcript pool enables myelin turnover and the local adaptation of individual pre-existing myelin sheaths. PMID:27173133

  17. The transcriptome of mouse central nervous system myelin.

    PubMed

    Thakurela, Sudhir; Garding, Angela; Jung, Ramona B; Müller, Christina; Goebbels, Sandra; White, Robin; Werner, Hauke B; Tiwari, Vijay K

    2016-01-01

    Rapid nerve conduction in the CNS is facilitated by insulation of axons with myelin, a specialized oligodendroglial compartment distant from the cell body. Myelin is turned over and adapted throughout life; however, the molecular and cellular basis of myelin dynamics remains elusive. Here we performed a comprehensive transcriptome analysis (RNA-seq) of myelin biochemically purified from mouse brains at various ages and find a surprisingly large pool of transcripts enriched in myelin. Further computational analysis showed that the myelin transcriptome is closely related to the myelin proteome but clearly distinct from the transcriptomes of oligodendrocytes and brain tissues, suggesting a highly selective incorporation of mRNAs into the myelin compartment. The mRNA-pool in myelin displays maturation-dependent dynamic changes of composition, abundance, and functional associations; however ageing-dependent changes after 6 months were minor. We suggest that this transcript pool enables myelin turnover and the local adaptation of individual pre-existing myelin sheaths. PMID:27173133

  18. Rer1 and calnexin regulate endoplasmic reticulum retention of a peripheral myelin protein 22 mutant that causes type 1A Charcot-Marie-Tooth disease

    PubMed Central

    Hara, Taichi; Hashimoto, Yukiko; Akuzawa, Tomoko; Hirai, Rika; Kobayashi, Hisae; Sato, Ken

    2014-01-01

    Peripheral myelin protein 22 (PMP22) resides in the plasma membrane and is required for myelin formation in the peripheral nervous system. Many PMP22 mutants accumulate in excess in the endoplasmic reticulum (ER) and lead to the inherited neuropathies of Charcot-Marie-Tooth (CMT) disease. However, the mechanism through which PMP22 mutants accumulate in the ER is unknown. Here, we studied the quality control mechanisms for the PMP22 mutants L16P and G150D, which were originally identified in mice and patients with CMT. We found that the ER-localised ubiquitin ligase Hrd1/SYVN1 mediates ER-associated degradation (ERAD) of PMP22(L16P) and PMP22(G150D), and another ubiquitin ligase, gp78/AMFR, mediates ERAD of PMP22(G150D) as well. We also found that PMP22(L16P), but not PMP22(G150D), is partly released from the ER by loss of Rer1, which is a Golgi-localised sorting receptor for ER retrieval. Rer1 interacts with the wild-type and mutant forms of PMP22. Interestingly, release of PMP22(L16P) from the ER was more prominent with simultaneous knockdown of Rer1 and the ER-localised chaperone calnexin than with the knockdown of each gene. These results suggest that CMT disease-related PMP22(L16P) is trapped in the ER by calnexin-dependent ER retention and Rer1-mediated early Golgi retrieval systems and partly degraded by the Hrd1-mediated ERAD system. PMID:25385046

  19. CNS Myelination Requires Cytoplasmic Dynein Function

    PubMed Central

    Yang, Michele L.; Shin, Jimann; Kearns, Christina A.; Langworthy, Melissa M.; Snell, Heather; Walker, Macie B.; Appel, Bruce

    2014-01-01

    Background Cytoplasmic dynein provides the main motor force for minus-end-directed transport of cargo on microtubules. Within the vertebrate central nervous system (CNS), proliferation, neuronal migration and retrograde axon transport are among the cellular functions known to require dynein. Accordingly, mutations of DYNC1H1, which encodes the heavy chain subunit of cytoplasmic dynein, have been linked to developmental brain malformations and axonal pathologies. Oligodendrocytes, the myelinating glial cell type of the CNS, migrate from their origins to their target axons and subsequently extend multiple long processes that ensheath axons with specialized insulating membrane. These processes are filled with microtubules, which facilitate molecular transport of myelin components. However, whether oligodendrocytes require cytoplasmic dynein to ensheath axons with myelin is not known. Results We identified a mutation of zebrafish dync1h1 in a forward genetic screen that caused a deficit of oligodendrocytes. Using in vivo imaging and gene expression analyses, we additionally found evidence that dync1h1 promotes axon ensheathment and myelin gene expression. Conclusions In addition to its well known roles in axon transport and neuronal migration, cytoplasmic dynein contributes to neural development by promoting myelination. PMID:25488883

  20. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery.

    PubMed

    Mazarakis, N D; Azzouz, M; Rohll, J B; Ellard, F M; Wilkes, F J; Olsen, A L; Carter, E E; Barber, R D; Baban, D F; Kingsman, S M; Kingsman, A J; O'Malley, K; Mitrophanous, K A

    2001-09-15

    In this report it is demonstrated for the first time that rabies-G envelope of the rabies virus is sufficient to confer retrograde axonal transport to a heterologous virus/vector. After delivery of rabies-G pseudotyped equine infectious anaemia virus (EIAV) based vectors encoding a marker gene to the rat striatum, neurons in regions distal from but projecting to the injection site, such as the dopaminergic neurons of the substantia nigra pars compacta, become transduced. This retrograde transport to appropriate distal neurons was also demonstrated after delivery to substantia nigra, hippocampus and spinal cord and did not occur when vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped vectors were delivered to these sites. In addition, peripheral administration of rabies-G pseudotyped vectors to the rat gastrocnemius muscle leads to gene transfer in motoneurons of lumbar spinal cord. In contrast the same vector pseudotyped with VSV-G transduced muscle cells surrounding the injection site, but did not result in expression in any cells in the spinal cord. Long-term expression was observed after gene transfer in the nervous system and a minimal immune response which, together with the possibility of non-invasive administration, greatly extends the utility of lentiviral vectors for gene therapy of human neurological disease. PMID:11590128

  1. Cholecalciferol (Vitamin D3) Improves Myelination and Recovery after Nerve Injury

    PubMed Central

    Chabas, Jean-Francois; Stephan, Delphine; Marqueste, Tanguy; Garcia, Stephane; Lavaut, Marie-Noelle; Nguyen, Catherine; Legre, Regis; Khrestchatisky, Michel

    2013-01-01

    Previously, we demonstrated i) that ergocalciferol (vitamin D2) increases axon diameter and potentiates nerve regeneration in a rat model of transected peripheral nerve and ii) that cholecalciferol (vitamin D3) improves breathing and hyper-reflexia in a rat model of paraplegia. However, before bringing this molecule to the clinic, it was of prime importance i) to assess which form – ergocalciferol versus cholecalciferol – and which dose were the most efficient and ii) to identify the molecular pathways activated by this pleiotropic molecule. The rat left peroneal nerve was cut out on a length of 10 mm and autografted in an inverted position. Animals were treated with either cholecalciferol or ergocalciferol, at the dose of 100 or 500 IU/kg/day, or excipient (Vehicle), and compared to unlesioned rats (Control). Functional recovery of hindlimb was measured weekly, during 12 weeks, using the peroneal functional index. Ventilatory, motor and sensitive responses of the regenerated axons were recorded and histological analysis was performed. In parallel, to identify the genes regulated by vitamin D in dorsal root ganglia and/or Schwann cells, we performed an in vitro transcriptome study. We observed that cholecalciferol is more efficient than ergocalciferol and, when delivered at a high dose (500 IU/kg/day), cholecalciferol induces a significant locomotor and electrophysiological recovery. We also demonstrated that cholecalciferol increases i) the number of preserved or newly formed axons in the proximal end, ii) the mean axon diameter in the distal end, and iii) neurite myelination in both distal and proximal ends. Finally, we found a modified expression of several genes involved in axogenesis and myelination, after 24 hours of vitamin supplementation. Our study is the first to demonstrate that vitamin D acts on myelination via the activation of several myelin-associated genes. It paves the way for future randomised controlled clinical trials for peripheral nerve or

  2. In vivo stimulation of early peripheral axon regeneration by N-propionylmannosamine in the presence of polysialyltransferase ST8SIA2.

    PubMed

    Koulaxouzidis, Georgios; Reutter, Werner; Hildebrandt, Herbert; Stark, G Björn; Witzel, Christian

    2015-09-01

    The key enzyme of sialic acid (Sia) biosynthesis is the bifunctional UDP-N-acetylglucosamine 2-epimerase/ManNAc kinase (GNE/MNK). It metabolizes the physiological precursor ManNAc and N-acyl modified analogues such as N-propionylmannosamine (ManNProp) to the respective modified sialic acid. Polysialic acid (polySia) is a crucial compound for several functions in the nervous system and is synthesized by the polysialyltransferases ST8SIA2 and ST8SIA4. PolySia can be modified in vitro and in vivo by metabolic glycoengineering of the N-acyl side chain of Sia. In vitro studies show that the application of ManNProp increases neurite outgrowth and accelerates the re-establishment of functional synapses. In this study, we investigate in vivo how ManNProp application might benefit peripheral nerve regeneration. In mice expressing axonal fluorescent proteins (thy-1-YFP), we transected the sciatic nerve and then replaced part of it with a sciatic nerve graft from non-expressing mice (wild-type mice or St8sia2(-/-) mice). Analyses conducted 5 days after grafting showed that systemic application of ManNProp (200 mg/kg, twice a day, i.p.), but not of physiological ManNAc (1 g/kg, twice a day, i.p.), significantly increased the extent of axonal elongation, the number of arborizing axons and the number of branches per regenerating axon within the grafts from wild-type mice, but not in those from St8sia2(-/-) mice. The results demonstrate that the application of ManNProp has beneficial effects on early peripheral nerve regeneration and indicate that the stimulation of axon growth depends on ST8SIA2 activity in the nerve graft. PMID:25850639

  3. Crystal structure of the extracellular domain of human myelin protein zero

    SciTech Connect

    Liu, Zhigang; Wang, Yong; Yedidi, Ravikiran S.; Brunzelle, Joseph S.; Kovari, Iulia A.; Sohi, Jasloveleen; Kamholz, John; Kovari, Ladislau C.

    2012-03-27

    different mutations in the MPZ gene leading to peripheral neuropathy in patients have been reported worldwide (http://www.molgen. ua.ac.be/CMTMutations). All identified mutations resulting in a change or deletion of amino acid residues in MPZ give rise to neuropathy with the exception of R215L, which instead causes a benign polymorphism. Furthermore, more detailed analysis has classified the MPZ mutations into two major groups. In the first group, the mutations disrupt the intracellular processing of MPZ and are primarily associated with early onset neuropathy. It has been proposed that the mutated MPZ is trapped inside the cell rather than being transported to the plasma membrane. However, other evidence suggests that the mutated MPZ protein is expressed on the plasma membrane, but dominant-negatively disrupts the structure of myelin. In the second group, the MPZ mutations are associated with late onset neuropathy as these mutations cause only mild demyelination. The underlying mechanism is elusive with the hypothesis being that the second group of mutations cause minor abnormalities in the myelin sheath that over time may lead to aberrant Schwann cell-axon interactions and subsequently to axonal degeneration. The crystal structure of the extracellular domain of human MPZ (hP0ex) fused with maltose binding protein (MBP) is reported at 2.1 {angstrom} resolution. While the crystal structure of rat MPZ extracellular domain (rP0ex) is available, the crystal structure of the human counterpart is useful for the analysis of the two homologs as well as a comparison between the two species. The hP0ex molecule reveals subtle structural variations between two homologs allowing comparison of the human myelin protein zero to that of the rat protein. The alignment of these homologs is shown in Figure 1(a).

  4. In vitro myelin formation using embryonic stem cells

    PubMed Central

    Kerman, Bilal E.; Kim, Hyung Joon; Padmanabhan, Krishnan; Mei, Arianna; Georges, Shereen; Joens, Matthew S.; Fitzpatrick, James A. J.; Jappelli, Roberto; Chandross, Karen J.; August, Paul; Gage, Fred H.

    2015-01-01

    Myelination in the central nervous system is the process by which oligodendrocytes form myelin sheaths around the axons of neurons. Myelination enables neurons to transmit information more quickly and more efficiently and allows for more complex brain functions; yet, remarkably, the underlying mechanism by which myelination occurs is still not fully understood. A reliable in vitro assay is essential to dissect oligodendrocyte and myelin biology. Hence, we developed a protocol to generate myelinating oligodendrocytes from mouse embryonic stem cells and established a myelin formation assay with embryonic stem cell-derived neurons in microfluidic devices. Myelin formation was quantified using a custom semi-automated method that is suitable for larger scale analysis. Finally, early myelination was followed in real time over several days and the results have led us to propose a new model for myelin formation. PMID:26015546

  5. Diversity Matters: A Revised Guide to Myelination.

    PubMed

    Tomassy, Giulio Srubek; Dershowitz, Lori Bowe; Arlotta, Paola

    2016-02-01

    The evolutionary success of the vertebrate nervous system is largely due to a unique structural feature--the myelin sheath, a fatty envelope that surrounds the axons of neurons. By increasing the speed by which electrical signals travel along axons, myelin facilitates neuronal communication between distant regions of the nervous system. We review the cellular and molecular mechanisms that regulate the development of myelin as well as its homeostasis in adulthood. We discuss how finely tuned neuron-oligodendrocyte interactions are central to myelin formation during development and in the adult, and how these interactions can have profound implications for the plasticity of the adult brain. We also speculate how the functional diversity of both neurons and oligodendrocytes may impact on the myelination process in both health and disease. PMID:26442841

  6. Early ultrastructural defects of axons and axon-glia junctions in mice lacking expression of Cnp1.

    PubMed

    Edgar, Julia M; McLaughlin, Mark; Werner, Hauke B; McCulloch, Mailis C; Barrie, Jennifer A; Brown, Angus; Faichney, Andrew Blyth; Snaidero, Nicolas; Nave, Klaus-Armin; Griffiths, Ian R

    2009-12-01

    Most axons in the central nervous system (CNS) are surrounded by a multilayered myelin sheath that promotes fast, saltatory conduction of electrical impulses. By insulating the axon, myelin also shields the axoplasm from the extracellular milieu. In the CNS, oligodendrocytes provide support for the long-term maintenance of myelinated axons, independent of the myelin sheath. Here, we use electron microscopy and morphometric analyses to examine the evolution of axonal and oligodendroglial changes in mice deficient in 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and in mice deficient in both CNP and proteolipid protein (PLP/DM20). We show that CNP is necessary for the formation of a normal inner tongue process of oligodendrocytes that myelinate small diameter axons. We also show that axonal degeneration in Cnp1 null mice is present very early in postnatal life. Importantly, compact myelin formed by transplanted Cnp1 null oligodendrocytes induces the same degenerative changes in shiverer axons that normally are dysmyelinated but structurally intact. Mice deficient in both CNP and PLP develop a more severe axonal phenotype than either single mutant, indicating that the two oligodendroglial proteins serve distinct functions in supporting the myelinated axon. These observations support a model in which the trophic functions of oligodendrocytes serve to offset the physical shielding of axons by myelin membranes. PMID:19459211

  7. Evaluation of neuroprotection by melatonin against adverse effects of prenatal exposure to a nonsteroidal anti-inflammatory drug during peripheral nerve development.

    PubMed

    Keskin, Ilknur; Kaplan, Suleyman; Kalkan, Serpil; Sutcu, Mustafa; Ulkay, M Basak; Esener, O Burak

    2015-04-01

    The potential ability of melatonin to protect against impairment of the fetal peripheral nerve system due to maternal consumption of diclofenac sodium (DS) was investigated. Eighty-four pregnant rats were divided into seven groups: control (CONT), saline administered (PS), DS administered (DS), DS with low-dose melatonin administered (DS+MLT10), DS with high-dose melatonin administered (DS+MLT50), low-dose melatonin administered (MLT10), and high-dose melatonin administered (MLT50). After the pregnancy, six male newborn rats from each group were sacrificed at 4 and 20 weeks of age. Their right sciatic nerves were harvested, and nerve fibers were evaluated using stereological techniques. Mean numbers of myelinated axons, axon cross-section areas and the mean thickness of the myelin sheet were estimated. Four-week-old prenatally DS-exposed rats had significantly fewer axons, a smaller myelinated axonal area, and a thinner myelin sheath compared to CONT group (p<0.05). Although melatonin at both doses significantly increased axon numbers, only a high dose of melatonin increased the diameter of those axons (p<0.05). At 20-weeks of age, myelinated axon number in the DS group was not only significantly lower than all other groups (p<0.05) but also the cross-sectional area of these axons was smaller than all other groups (p<0.05). There were no differences between the groups regarding the mean thickness of the myelin sheet. The current study indicates that prenatal exposure to DS decreases the number and the diameter of sciatic nerve axons and that melatonin prophylaxis can prevent these effects. PMID:25485952

  8. Subcellular patterning: axonal domains with specialized structure and function

    PubMed Central

    Normand, Elizabeth A.; Rasband, Matthew N.

    2015-01-01

    Myelinated axons are patterned into discrete and often repeating domains responsible for the efficient and rapid transmission of electrical signals. These domains include nodes of Ranvier and axon initial segments. Disruption of axonal patterning leads to nervous system dysfunction. In this review we introduce the concept of subcellular patterning as applied to axons and discuss how these patterning events depend on both intrinsic, cytoskeletal mechanisms, and extrinsic, myelinating-glia dependent mechanisms. PMID:25710532

  9. Delayed nerve stimulation promotes axon-protective neurofilament phosphorylation, accelerates immune cell clearance and enhances remyelination in vivo in focally demyelinated nerves.

    PubMed

    McLean, Nikki A; Popescu, Bogdan F; Gordon, Tessa; Zochodne, Douglas W; Verge, Valerie M K

    2014-01-01

    Rapid and efficient axon remyelination aids in restoring strong electrochemical communication with end organs and in preventing axonal degeneration often observed in demyelinating neuropathies. The signals from axons that can trigger more effective remyelination in vivo are still being elucidated. Here we report the remarkable effect of delayed brief electrical nerve stimulation (ES; 1 hour @ 20 Hz 5 days post-demyelination) on ensuing reparative events in a focally demyelinated adult rat peripheral nerve. ES impacted many parameters underlying successful remyelination. It effected increased neurofilament expression and phosphorylation, both implicated in axon protection. ES increased expression of myelin basic protein (MBP) and promoted node of Ranvier re-organization, both of which coincided with the early reappearance of remyelinated axons, effects not observed at the same time points in non-stimulated demyelinated nerves. The improved ES-associated remyelination was accompanied by enhanced clearance of ED-1 positive macrophages and attenuation of glial fibrillary acidic protein expression in accompanying Schwann cells, suggesting a more rapid clearance of myelin debris and return of Schwann cells to a nonreactive myelinating state. These benefits of ES correlated with increased levels of brain derived neurotrophic factor (BDNF) in the acute demyelination zone, a key molecule in the initiation of the myelination program. In conclusion, the tremendous impact of delayed brief nerve stimulation on enhancement of the innate capacity of a focally demyelinated nerve to successfully remyelinate identifies manipulation of this axis as a novel therapeutic target for demyelinating pathologies. PMID:25310564

  10. Myelin and macrophages in the PNS: An intimate relationship in trauma and disease.

    PubMed

    Klein, Dennis; Martini, Rudolf

    2016-06-15

    Macrophages of the peripheral nervous system belong to the so-called tissue macrophages, with multiple functions during injury and disease. Their origin during ontogeny has not yet been completely resolved, but it is clear that upon injury and disease conditions, they are supplemented by hematopoietic derivatives. In the peripheral nervous system, the most abundantly investigated scenario in which resident and infiltrating macrophages are involved is the so-called "Wallerian degeneration", a complex degenerative process where macrophages exhibit mostly beneficial functions by phagocytosing myelin and axonal remnants. Of special interest is the implication of macrophages in inflammatory nerve diseases, like acute Guillain-Barré syndromes and its permanent variant, chronic inflammatory demyelinating polyneuropathy, where macrophages are supposed to be substantial (co-)mediators of the diseases. In inherited peripheral neuropathies nerve macrophages possess a clear disease-amplifying function. In the corresponding animal models, a coordinated interplay between mutant Schwann cells, macrophages, endoneurial fibroblasts and the target structure, myelin, emerged. Along this process, a newly discovered disease mechanism mediated by macrophages is the dedifferentiation of myelinating Schwann cells. As macrophages are amplifiers of the genetically-mediated, non-curable diseases, targeting the mechanisms of their activation might be a promising strategy to treat these disorders. This article is part of a Special Issue entitled SI: Myelin Evolution. PMID:26631844

  11. Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair.

    PubMed

    Quintes, Susanne; Brinkmann, Bastian G; Ebert, Madlen; Fröb, Franziska; Kungl, Theresa; Arlt, Friederike A; Tarabykin, Victor; Huylebroeck, Danny; Meijer, Dies; Suter, Ueli; Wegner, Michael; Sereda, Michael W; Nave, Klaus-Armin

    2016-08-01

    Schwann cell development and peripheral nerve myelination require the serial expression of transcriptional activators, such as Sox10, Oct6 (also called Scip or Pou3f1) and Krox20 (also called Egr2). Here we show that transcriptional repression, mediated by the zinc-finger protein Zeb2 (also known as Sip1), is essential for differentiation and myelination. Mice lacking Zeb2 in Schwann cells develop a severe peripheral neuropathy, caused by failure of axonal sorting and virtual absence of myelin membranes. Zeb2-deficient Schwann cells continuously express repressors of lineage progression. Moreover, genes for negative regulators of maturation such as Sox2 and Ednrb emerge as Zeb2 target genes, supporting its function as an 'inhibitor of inhibitors' in myelination control. When Zeb2 is deleted in adult mice, Schwann cells readily dedifferentiate following peripheral nerve injury and become repair cells. However, nerve regeneration and remyelination are both perturbed, demonstrating that Zeb2, although undetectable in adult Schwann cells, has a latent function throughout life. PMID:27294512

  12. Generalized peripheral neuropathy in a dental technician exposed to methyl methacrylate monomer

    SciTech Connect

    Donaghy, M.; Rushworth, G.; Jacobs, J.M. )

    1991-07-01

    A 58-year-old dental prosthetic technician developed generalized sensorimotor peripheral neuropathy. Neurophysiologic studies showed a generalized sensorimotor neuropathy of axonal degeneration type. Examination of a sural nerve biopsy showed a moderately severe axonal neuropathy with loss of large myelinated fibers and unmyelinated axons. There was evidence of slow ongoing degeneration and considerable fiber regeneration. Electron microscopy showed increased numbers of filaments in a few fibers. These findings show resemblances to the nerve changes caused by another acrylic resin, acrylamide. They suggest that the neuropathy may have been caused by 30 years of occupational cutaneous and inhalational exposure to methyl methacrylate monomer since they excluded other recognized causes of neuropathy.

  13. Propylene oxide causes central-peripheral distal axonopathy in rats

    SciTech Connect

    Ohnishi, A.; Yamamoto, T.; Murai, Y.; Hayashida, Y.; Hori, H.; Tanaka, I.

    1988-09-01

    In Wistar rats subjected daily to a 6-hr exposure of propylene oxide (PO) at a concentration of 1,500 ppm (5 times a wk for 7 wk), ataxia developed in the hindlegs. Myelinated fibers in hindleg nerves and in the fasciculus gracilis showed axonal degeneration, sparing the nerve cell body of the first sacral dorsal root ganglion and myelinated fibers of the first sacral dorsal and ventral roots. These pathologic findings are compatible with central-peripheral distal axonopathy. This is apparently the first animal model of PO neuropathy to be verified histologically.

  14. Functional phylogenetic analysis of LGI proteins identifies an interaction motif crucial for myelination.

    PubMed

    Kegel, Linde; Jaegle, Martine; Driegen, Siska; Aunin, Eerik; Leslie, Kris; Fukata, Yuko; Watanabe, Masahiko; Fukata, Masaki; Meijer, Dies

    2014-04-01

    The cellular interactions that drive the formation and maintenance of the insulating myelin sheath around axons are only partially understood. Leucine-rich glioma-inactivated (LGI) proteins play important roles in nervous system development and mutations in their genes have been associated with epilepsy and amyelination. Their function involves interactions with ADAM22 and ADAM23 cell surface receptors, possibly in apposing membranes, thus attenuating cellular interactions. LGI4-ADAM22 interactions are required for axonal sorting and myelination in the developing peripheral nervous system (PNS). Functional analysis revealed that, despite their high homology and affinity for ADAM22, LGI proteins are functionally distinct. To dissect the key residues in LGI proteins required for coordinating axonal sorting and myelination in the developing PNS, we adopted a phylogenetic and computational approach and demonstrate that the mechanism of action of LGI4 depends on a cluster of three amino acids on the outer surface of the LGI4 protein, thus providing a structural basis for the mechanistic differences in LGI protein function in nervous system development and evolution. PMID:24715463

  15. NKCC1 Activation Is Required for Myelinated Sensory Neurons Regeneration through JNK-Dependent Pathway.

    PubMed

    Mòdol, Laura; Santos, Daniel; Cobianchi, Stefano; González-Pérez, Francisco; López-Alvarez, Víctor; Navarro, Xavier

    2015-05-13

    After peripheral nerve injury, axons are able to regenerate, although specific sensory reinnervation and functional recovery are usually worse for large myelinated than for small sensory axons. The mechanisms that mediate the regeneration of different sensory neuron subpopulations are poorly known. The Na(+)-K(+)-Cl(-) cotransporter 1 (NKCC1) is particularly relevant in setting the intracellular chloride concentration. After axotomy, increased NKCC1 phosphorylation has been reported to be important for neurite outgrowth of sensory neurons; however, the mechanisms underlying its effects are still unknown. In the present study we used in vitro and in vivo models to assess the differential effects of blocking NKCC1 activity on the regeneration of different types of dorsal root ganglia (DRGs) neurons after sciatic nerve injury in the rat. We observed that blocking NKCC1 activity by bumetanide administration induces a selective effect on neurite outgrowth and regeneration of myelinated fibers without affecting unmyelinated DRG neurons. To further study the mechanism underlying NKCC1 effects, we also assessed the changes in mitogen-activated protein kinase (MAPK) signaling under NKCC1 modulation. The inhibition of NKCC1 activity in vitro and in vivo modified pJNK1/2/3 expression in DRG neurons. Together, our study identifies a mechanism selectively contributing to myelinated axon regeneration, and point out the role of Cl(-) modulation in DRG neuron regeneration and in the activation of MAPKs, particularly those belonging to the JNK family. PMID:25972170

  16. Complement protein C1q modulates neurite outgrowth in vitro and spinal cord axon regeneration in vivo.

    PubMed

    Peterson, Sheri L; Nguyen, Hal X; Mendez, Oscar A; Anderson, Aileen J

    2015-03-11

    Traumatic injury to CNS fiber tracts is accompanied by failure of severed axons to regenerate and results in lifelong functional deficits. The inflammatory response to CNS trauma is mediated by a diverse set of cells and proteins with varied, overlapping, and opposing effects on histological and behavioral recovery. Importantly, the contribution of individual inflammatory complement proteins to spinal cord injury (SCI) pathology is not well understood. Although the presence of complement components increases after SCI in association with axons and myelin, it is unknown whether complement proteins affect axon growth or regeneration. We report a novel role for complement C1q in neurite outgrowth in vitro and axon regrowth after SCI. In culture, C1q increased neurite length on myelin. Protein and molecular assays revealed that C1q interacts directly with myelin associated glycoprotein (MAG) in myelin, resulting in reduced activation of growth inhibitory signaling in neurons. In agreement with a C1q-outgrowth-enhancing mechanism in which C1q binding to MAG reduces MAG signaling to neurons, complement C1q blocked both the growth inhibitory and repulsive turning effects of MAG in vitro. Furthermore, C1q KO mice demonstrated increased sensory axon turning within the spinal cord lesion after SCI with peripheral conditioning injury, consistent with C1q-mediated neutralization of MAG. Finally, we present data that extend the role for C1q in axon growth and guidance to include the sprouting patterns of descending corticospinal tract axons into spinal gray matter after dorsal column transection SCI. PMID:25762679

  17. Complement Protein C1q Modulates Neurite Outgrowth In Vitro and Spinal Cord Axon Regeneration In Vivo

    PubMed Central

    Peterson, Sheri L.; Nguyen, Hal X.; Mendez, Oscar A.

    2015-01-01

    Traumatic injury to CNS fiber tracts is accompanied by failure of severed axons to regenerate and results in lifelong functional deficits. The inflammatory response to CNS trauma is mediated by a diverse set of cells and proteins with varied, overlapping, and opposing effects on histological and behavioral recovery. Importantly, the contribution of individual inflammatory complement proteins to spinal cord injury (SCI) pathology is not well understood. Although the presence of complement components increases after SCI in association with axons and myelin, it is unknown whether complement proteins affect axon growth or regeneration. We report a novel role for complement C1q in neurite outgrowth in vitro and axon regrowth after SCI. In culture, C1q increased neurite length on myelin. Protein and molecular assays revealed that C1q interacts directly with myelin associated glycoprotein (MAG) in myelin, resulting in reduced activation of growth inhibitory signaling in neurons. In agreement with a C1q-outgrowth-enhancing mechanism in which C1q binding to MAG reduces MAG signaling to neurons, complement C1q blocked both the growth inhibitory and repulsive turning effects of MAG in vitro. Furthermore, C1q KO mice demonstrated increased sensory axon turning within the spinal cord lesion after SCI with peripheral conditioning injury, consistent with C1q-mediated neutralization of MAG. Finally, we present data that extend the role for C1q in axon growth and guidance to include the sprouting patterns of descending corticospinal tract axons into spinal gray matter after dorsal column transection SCI. PMID:25762679

  18. Label-free photoacoustic microscopy of peripheral nerves

    NASA Astrophysics Data System (ADS)

    Matthews, Thomas Paul; Zhang, Chi; Yao, Da-Kang; Maslov, Konstantin; Wang, Lihong V.

    2014-01-01

    Peripheral neuropathy is a common neurological problem that affects millions of people worldwide. Diagnosis and treatment of this condition are often hindered by the difficulties in making objective, noninvasive measurements of nerve fibers. Photoacoustic microscopy (PAM) has the ability to obtain high resolution, specific images of peripheral nerves without exogenous contrast. We demonstrated the first proof-of-concept imaging of peripheral nerves using PAM. As validated by both standard histology and photoacoustic spectroscopy, the origin of photoacoustic signals is myelin, the primary source of lipids in the nerves. An extracted sciatic nerve sandwiched between two layers of chicken tissue was imaged by PAM to mimic the in vivo case. Ordered fibrous structures inside the nerve, caused by the bundles of myelin-coated axons, could be observed clearly. With further technical improvements, PAM can potentially be applied to monitor and diagnose peripheral neuropathies.

  19. Label-free photoacoustic microscopy of peripheral nerves

    PubMed Central

    Matthews, Thomas Paul; Zhang, Chi; Yao, Da-Kang; Maslov, Konstantin; Wang, Lihong V.

    2014-01-01

    Abstract. Peripheral neuropathy is a common neurological problem that affects millions of people worldwide. Diagnosis and treatment of this condition are often hindered by the difficulties in making objective, noninvasive measurements of nerve fibers. Photoacoustic microscopy (PAM) has the ability to obtain high resolution, specific images of peripheral nerves without exogenous contrast. We demonstrated the first proof-of-concept imaging of peripheral nerves using PAM. As validated by both standard histology and photoacoustic spectroscopy, the origin of photoacoustic signals is myelin, the primary source of lipids in the nerves. An extracted sciatic nerve sandwiched between two layers of chicken tissue was imaged by PAM to mimic the in vivo case. Ordered fibrous structures inside the nerve, caused by the bundles of myelin-coated axons, could be observed clearly. With further technical improvements, PAM can potentially be applied to monitor and diagnose peripheral neuropathies. PMID:24395587

  20. Aging-associated changes in motor axon voltage-gated Na(+) channel function in mice.

    PubMed

    Moldovan, Mihai; Rosberg, Mette Romer; Alvarez, Susana; Klein, Dennis; Martini, Rudolf; Krarup, Christian

    2016-03-01

    Accumulating myelin abnormalities and conduction slowing occur in peripheral nerves during aging. In mice deficient of myelin protein P0, severe peripheral nervous system myelin damage is associated with ectopic expression of Nav1.8 voltage-gated Na(+) channels on motor axons aggravating the functional impairment. The aim of the present study was to investigate the effect of regular aging on motor axon function with particular emphasis on Nav1.8. We compared tibial nerve conduction and excitability measures by threshold tracking in 12 months (mature) and 20 months (aged) wild-type (WT) mice. With aging, deviations during threshold electrotonus were attenuated and the resting current-threshold slope and early refractoriness were increased. Modeling indicated that, in addition to changes in passive membrane properties, motor fibers in aged WT mice were depolarized. An increased Nav1.8 isoform expression was found by immunohistochemistry. The depolarizing excitability features were absent in Nav1.8 null mice, and they were counteracted in WT mice by a Nav1.8 blocker. Our data suggest that alteration in voltage-gated Na(+) channel isoform expression contributes to changes in motor axon function during aging. PMID:26923409

  1. Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy.

    PubMed

    Turcotte, Raphaël; Rutledge, Danette J; Bélanger, Erik; Dill, Dorothy; Macklin, Wendy B; Côté, Daniel C

    2016-01-01

    Myelin plays an essential role in the nervous system and its disruption in diseases such as multiple sclerosis may lead to neuronal death, thus causing irreversible functional impairments. Understanding myelin biology is therefore of fundamental and clinical importance, but no tools currently exist to describe the fine spatial organization of myelin sheaths in vivo. Here we demonstrate intravital quantification of the myelin molecular structure using a microscopy method based on polarization-resolved coherent Raman scattering. Developmental myelination was imaged noninvasively in live zebrafish. Longitudinal imaging of individual axons revealed changes in myelin organization beyond the diffraction limit. Applied to promyelination drug screening, the method uniquely enabled the identification of focal myelin regions with differential architectures. These observations indicate that the study of myelin biology and the identification of therapeutic compounds will largely benefit from a method to quantify the myelin molecular organization in vivo. PMID:27538357

  2. Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy

    PubMed Central

    Turcotte, Raphaël; Rutledge, Danette J.; Bélanger, Erik; Dill, Dorothy; Macklin, Wendy B.; Côté, Daniel C.

    2016-01-01

    Myelin plays an essential role in the nervous system and its disruption in diseases such as multiple sclerosis may lead to neuronal death, thus causing irreversible functional impairments. Understanding myelin biology is therefore of fundamental and clinical importance, but no tools currently exist to describe the fine spatial organization of myelin sheaths in vivo. Here we demonstrate intravital quantification of the myelin molecular structure using a microscopy method based on polarization-resolved coherent Raman scattering. Developmental myelination was imaged noninvasively in live zebrafish. Longitudinal imaging of individual axons revealed changes in myelin organization beyond the diffraction limit. Applied to promyelination drug screening, the method uniquely enabled the identification of focal myelin regions with differential architectures. These observations indicate that the study of myelin biology and the identification of therapeutic compounds will largely benefit from a method to quantify the myelin molecular organization in vivo. PMID:27538357

  3. Astrocytes phagocytose focal dystrophies from shortening myelin segments in the optic nerve of Xenopus laevis at metamorphosis

    PubMed Central

    Mills, Elizabeth A.; Davis, Chung-ha O.; Bushong, Eric A.; Boassa, Daniela; Kim, Keun-Young; Ellisman, Mark H.; Marsh-Armstrong, Nicholas

    2015-01-01

    Oligodendrocytes can adapt to increases in axon diameter through the addition of membrane wraps to myelin segments. Here, we report that myelin segments can also decrease their length in response to optic nerve (ON) shortening during Xenopus laevis metamorphic remodeling. EM-based analyses revealed that myelin segment shortening is accomplished by focal myelin-axon detachments and protrusions from otherwise intact myelin segments. Astrocyte processes remove these focal myelin dystrophies using known phagocytic machinery, including the opsonin milk fat globule-EGF factor 8 (Mfge8) and the downstream effector ras-related C3 botulinum toxin substrate 1 (Rac1). By the end of metamorphic nerve shortening, one-quarter of all myelin in the ON is enwrapped or internalized by astrocytes. As opposed to the removal of degenerating myelin by macrophages, which is usually associated with axonal pathologies, astrocytes selectively remove large amounts of myelin without damaging axons during this developmental remodeling event. PMID:26240339

  4. Astrocytes phagocytose focal dystrophies from shortening myelin segments in the optic nerve of Xenopus laevis at metamorphosis.

    PubMed

    Mills, Elizabeth A; Davis, Chung-ha O; Bushong, Eric A; Boassa, Daniela; Kim, Keun-Young; Ellisman, Mark H; Marsh-Armstrong, Nicholas

    2015-08-18

    Oligodendrocytes can adapt to increases in axon diameter through the addition of membrane wraps to myelin segments. Here, we report that myelin segments can also decrease their length in response to optic nerve (ON) shortening during Xenopus laevis metamorphic remodeling. EM-based analyses revealed that myelin segment shortening is accomplished by focal myelin-axon detachments and protrusions from otherwise intact myelin segments. Astrocyte processes remove these focal myelin dystrophies using known phagocytic machinery, including the opsonin milk fat globule-EGF factor 8 (Mfge8) and the downstream effector ras-related C3 botulinum toxin substrate 1 (Rac1). By the end of metamorphic nerve shortening, one-quarter of all myelin in the ON is enwrapped or internalized by astrocytes. As opposed to the removal of degenerating myelin by macrophages, which is usually associated with axonal pathologies, astrocytes selectively remove large amounts of myelin without damaging axons during this developmental remodeling event. PMID:26240339

  5. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination

    PubMed Central

    Bonin, Sawyer R.; Gibeault, Sabrina; De Repentigny, Yves; Kothary, Rashmi

    2016-01-01

    Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as was myelin basic

  6. Effects of pyrethroid molecules on rat nerves in vitro: potential to reverse temperature-sensitive conduction block of demyelinated peripheral axons

    PubMed Central

    Lees, George

    1998-01-01

    Prolongation of action potentials by cooling or pharmacological treatment can restore conduction in demyelinated axons. We have assessed the ability of pyrethroids (in vitro) to modify action potential kinetics and to reverse conduction block in lesioned peripheral nerve. Fast Na+ currents were isolated in mammalian neuroblastoma (NIE115). Pyrethroids (4 μM) concurrently slowed inactivation and produced a spectrum of pronounced tail currents: s-bioallethrin (duration 12.2±7 ms), permethrin (24.2±3 ms) and deltamethrin (2230±100 ms). Deltamethrin (5 μM) effected a slowly developing depression of compound action potential (CAP) amplitude in peroneal nerve trunks (P<0.05). Permethrin produced no net effect on CAP amplitude, area or repolarization time. s-Bioallethrin (5 μM) enhanced CAP area, time for 90% repolarization and induced regenerative activity in a subpopulation of axons. Tibial nerve trunks were demyelinated by lysolecithin (2 μl) injection: 6–14 days later, slowly-conducting axons in the CAP (and peri-axonal microelectrode recordings) were selectively blocked by warming to 37°C. At 37°C, s-bioallethrin (45 min, 5 μM) produced much greater after-potentials in lesioned nerves than in uninjected controls: area (P<0.05) and relative amplitude ratios (P<0.0001) were significantly altered. In 3 of 4 cells (single-unit recording), s-bioallethrin restored conduction through axons exhibiting temperature-dependent block by raising blocking temperature (by 1.5 to >3°C) and reducing refractory period. s-Bioallethrin induced temperature-dependent regenerative activity only in a sub-population of axons even after prolonged superfusion (>1 h). It was concluded that pyrethroids differentially alter Na+ current kinetics and action potential kinetics. The effects of s-bioallethrin are consistent with reversal of conduction block by demyelinated axons but regenerative/ectopic firing even in normal cells is likely to underpin its acknowledged

  7. Organization of Ion Channels in the Myelinated Nerve Fiber

    NASA Astrophysics Data System (ADS)

    Waxman, Stephen G.; Murdoch Ritchie, J.

    1985-06-01

    The functional organization of the mammalian myelinated nerve fiber is complex and elegant. In contrast to nonmyelinated axons, whose membranes have a relatively uniform structure, the mammalian myelinated axon exhibits a high degree of regional specialization that extends to the location of voltage-dependent ion channels within the axon membrane. Sodium and potassium channels are segregated into complementary membrane domains, with a distribution reflecting that of the overlying Schwann or glial cells. This complexity of organization has important implications for physiology and pathophysiology, particularly with respect to the development of myelinated fibers.

  8. A unified cell biological perspective on axon–myelin injury

    PubMed Central

    2014-01-01

    Demyelination and axon loss are pathological hallmarks of the neuroinflammatory disorder multiple sclerosis (MS). Although we have an increasingly detailed understanding of how immune cells can damage axons and myelin individually, we lack a unified view of how the axon–myelin unit as a whole is affected by immune-mediated attack. In this review, we propose that as a result of the tight cell biological interconnection of axons and myelin, damage to either can spread, which might convert a local inflammatory disease process early in MS into the global progressive disorder seen during later stages. This mode of spreading could also apply to other neurological disorders. PMID:25092654

  9. Prolonged myelination in human neocortical evolution

    PubMed Central

    Miller, Daniel J.; Duka, Tetyana; Stimpson, Cheryl D.; Schapiro, Steven J.; Baze, Wallace B.; McArthur, Mark J.; Fobbs, Archibald J.; Sousa, André M. M.; Šestan, Nenad; Wildman, Derek E.; Lipovich, Leonard; Kuzawa, Christopher W.; Hof, Patrick R.; Sherwood, Chet C.

    2012-01-01

    Nerve myelination facilitates saltatory action potential conduction and exhibits spatiotemporal variation during development associated with the acquisition of behavioral and cognitive maturity. Although human cognitive development is unique, it is not known whether the ontogenetic progression of myelination in the human neocortex is evolutionarily exceptional. In this study, we quantified myelinated axon fiber length density and the expression of myelin-related proteins throughout postnatal life in the somatosensory (areas 3b/3a/1/2), motor (area 4), frontopolar (prefrontal area 10), and visual (areas 17/18) neocortex of chimpanzees (N = 20) and humans (N = 33). Our examination revealed that neocortical myelination is developmentally protracted in humans compared with chimpanzees. In chimpanzees, the density of myelinated axons increased steadily until adult-like levels were achieved at approximately the time of sexual maturity. In contrast, humans displayed slower myelination during childhood, characterized by a delayed period of maturation that extended beyond late adolescence. This comparative research contributes evidence crucial to understanding the evolution of human cognition and behavior, which arises from the unfolding of nervous system development within the context of an enriched cultural environment. Perturbations of normal developmental processes and the decreased expression of myelin-related molecules have been related to psychiatric disorders such as schizophrenia. Thus, these species differences suggest that the human-specific shift in the timing of cortical maturation during adolescence may have implications for vulnerability to certain psychiatric disorders. PMID:23012402

  10. Prolonged myelination in human neocortical evolution.

    PubMed

    Miller, Daniel J; Duka, Tetyana; Stimpson, Cheryl D; Schapiro, Steven J; Baze, Wallace B; McArthur, Mark J; Fobbs, Archibald J; Sousa, André M M; Sestan, Nenad; Wildman, Derek E; Lipovich, Leonard; Kuzawa, Christopher W; Hof, Patrick R; Sherwood, Chet C

    2012-10-01

    Nerve myelination facilitates saltatory action potential conduction and exhibits spatiotemporal variation during development associated with the acquisition of behavioral and cognitive maturity. Although human cognitive development is unique, it is not known whether the ontogenetic progression of myelination in the human neocortex is evolutionarily exceptional. In this study, we quantified myelinated axon fiber length density and the expression of myelin-related proteins throughout postnatal life in the somatosensory (areas 3b/3a/1/2), motor (area 4), frontopolar (prefrontal area 10), and visual (areas 17/18) neocortex of chimpanzees (N = 20) and humans (N = 33). Our examination revealed that neocortical myelination is developmentally protracted in humans compared with chimpanzees. In chimpanzees, the density of myelinated axons increased steadily until adult-like levels were achieved at approximately the time of sexual maturity. In contrast, humans displayed slower myelination during childhood, characterized by a delayed period of maturation that extended beyond late adolescence. This comparative research contributes evidence crucial to understanding the evolution of human cognition and behavior, which arises from the unfolding of nervous system development within the context of an enriched cultural environment. Perturbations of normal developmental processes and the decreased expression of myelin-related molecules have been related to psychiatric disorders such as schizophrenia. Thus, these species differences suggest that the human-specific shift in the timing of cortical maturation during adolescence may have implications for vulnerability to certain psychiatric disorders. PMID:23012402

  11. Development of early postnatal peripheral nerve abnormalities in Trembler-J and PMP22 transgenic mice

    PubMed Central

    ROBERTSON, A. M.; HUXLEY, C.; KING, R. H. M.; THOMAS, P. K.

    1999-01-01

    Mutations in the gene for peripheral myelin protein 22 (PMP22) are associated with peripheral neuropathy in mice and humans. Although PMP22 is strongly expressed in peripheral nerves and is localised largely to the myelin sheath, a dual role has been suggested as 2 differentially expressed promoters have been found. In this study we compared the initial stages of postnatal development in transgenic mouse models which have, in addition to the murine pmp22 gene, 7 (C22) and 4 (C61) copies of the human PMP22 gene and in homozygous and heterozygous Trembler-J (TrJ) mice, which have a point mutation in the pmp22 gene. The number of axons that were singly ensheathed by Schwann cells was the same in all groups indicating that PMP22 does not function in the initial ensheathment and separation of axons. At both P4 and P12 all mutants had an increased proportion of fibres that were incompletely surrounded by Schwann cell cytoplasm indicating that this step is disrupted in PMP22 mutants. C22 and homozygous TrJ animals could be distinguished by differences in the Schwann cell morphology at the initiation of myelination. In homozygous TrJ animals the Schwann cell cytoplasm had failed to make a full turn around the axon whereas in the C22 strain most fibres had formed a mesaxon. It is concluded that PMP22 functions in the initiation of myelination and probably involves the ensheathment of the axon by the Schwann cell, and the extension of this cell along the axon. Abnormalities may result from a failure of differentiation but more probably from defective interactions between the axon and the Schwann cell. PMID:10580849

  12. Reversible acute axonal polyneuropathy associated with Wernicke-Korsakoff syndrome: impaired physiological nerve conduction due to thiamine deficiency?

    PubMed

    Ishibashi, S; Yokota, T; Shiojiri, T; Matunaga, T; Tanaka, H; Nishina, K; Hirota, H; Inaba, A; Yamada, M; Kanda, T; Mizusawa, H

    2003-05-01

    Acute axonal polyneuropathy and Wernicke-Korsakoff encephalopathy developed simultaneously in three patients. Nerve conduction studies (NCS) detected markedly decreased compound muscle action potentials (CMAPs) and sensory nerve action potentials (SNAPs) with minimal conduction slowing; sympathetic skin responses (SSRs) were also notably decreased. Sural nerve biopsies showed only mild axonal degeneration with scattered myelin ovoid formation. The symptoms of neuropathy lessened within two weeks after an intravenous thiamine infusion. CMAPs, SNAPs, and SSRs also increased considerably. We suggest that this is a new type of peripheral nerve impairment: physiological conduction failure with minimal conduction delay due to thiamine deficiency. PMID:12700319

  13. Molecular mechanisms of acrolein-mediated myelin destruction in CNS trauma and disease

    PubMed Central

    Shi, Riyi; Page, Jessica; Tully, Melissa

    2016-01-01

    Myelin is a critical component of the nervous system facilitating efficient propagation of electrical signals and thus communication between the central and peripheral nervous systems and organ systems they innervate throughout the body. In instances of neurotrauma and neurodegenerative disease, injury to myelin is a prominent pathological feature responsible for conduction deficits and leaves axons vulnerable to damage from noxious compounds. Although the pathological mechanisms underlying myelin loss have yet to be fully characterized, oxidative stress appears to play a prominent role. Specifically, acrolein, a neurotoxic aldehyde that is both a product and instigator of oxidative stress, has been observed in studies to elicit demyelination through calcium-independent and -dependent mechanisms and also by affecting glutamate uptake and promoting excitotoxicity. Furthermore, pharmacological scavenging of acrolein has demonstrated a neuroprotective effect in animal disease models by conserving myelin structural integrity and alleviating functional deficits. This evidence is indicative that acrolein may be a key culprit of myelin damage while acrolein scavenging could potentially be a promising therapeutic approach for patients suffering from nervous system trauma and disease. PMID:25879847

  14. Peripheral Neuropathy in Rats Exposed to Dichloroacetate

    PubMed Central

    Calcutt, Nigel A.; Lopez, Veronica L.; Bautista, Arjel D.; Mizisin, Leah M.; Torres, Brenda R.; Shroads, Albert L.; Mizisin, Andrew P.; Stacpoole, Peter W.

    2009-01-01

    The use of dichloroacetate (DCA) for treating patients with mitochondrial diseases is limited by the induction of peripheral neuropathy. The mechanisms of DCA-induced neuropathy are not known. Oral DCA treatment (50–500 mg/kg/day for up to 16 weeks) induced tactile allodynia in both juvenile and adult rats; concurrent thermal hypoalgesia developed at higher doses. Both juvenile and adult rats treated with DCA developed nerve conduction slowing that was more pronounced in adult rats. No overt axonal or glial cell abnormalities were identified in peripheral nerves or spinal cord of any DCA-treated rats but morphometric analysis identified a reduction of mean axonal caliber of peripheral nerve myelinated fibers. DCA treatment also caused accumulation of oxidative stress markers in the nerves. These data indicate that behavioral, functional and structural indices of peripheral neuropathy may be induced in both juvenile and adult rats treated with DCA at doses similar to those in clinical use. DCA-induced peripheral neuropathy primarily afflicts axons and involves both metabolic and structural disorders. The DCA-treated rat may provide insight into the pathogenesis of peripheral neuropathy and facilitate development of adjuvant therapeutics to prevent this disorder that currently restricts the clinical use of DCA. PMID:19680144

  15. Glial regulation of the axonal membrane at nodes of Ranvier.

    PubMed

    Schafer, Dorothy P; Rasband, Matthew N

    2006-10-01

    Action potential conduction in myelinated nerve fibers depends on a polarized axonal membrane. Voltage-gated Na(+) and K(+) channels are clustered at nodes of Ranvier and mediate the transmembrane currents necessary for rapid saltatory conduction. Paranodal junctions flank nodes and function as attachment sites for myelin and as paracellular and membrane protein diffusion barriers. Common molecular mechanisms, directed by myelinating glia, are used to establish these axonal membrane domains. Initially, heterophilic interactions between glial and axonal cell adhesion molecules define the locations where nodes or paranodes form. Subsequently, within each domain, axonal cell adhesion molecules are stabilized and retained through interactions with cytoskeletal and scaffolding proteins, including ankyrins and spectrins. PMID:16945520

  16. Quantitative and qualitative analysis of Wallerian degeneration using restricted axonal labelling in YFP-H mice.

    PubMed

    Beirowski, Bogdan; Berek, Livia; Adalbert, Robert; Wagner, Diana; Grumme, Daniela S; Addicks, Klaus; Ribchester, Richard R; Coleman, Michael P

    2004-03-15

    We investigated the usefulness of YFP-H transgenic mice [Neuron 28 (2000) 41] which express yellow fluorescent protein (YFP) in a restricted subset of neurons to study Wallerian degeneration in the PNS. Quantification of YFP positive axons and myelin basic protein (MBP) immunocytochemistry revealed that YFP was randomly distributed to approximately 3% of myelinated motor and sensory fibres. Axotomy-induced Wallerian degeneration appeared as fragmentation of fluorescent signals in individual YFP positive axons with a morphology and timing similar to Wallerian degeneration observed by more traditional methods. In YFP-H transgenic mice co-expressing a high dosage of WldS, a chimeric gene that protects from Wallerian degeneration [Nat Neurosci. 4 (2001) 1199], axonal fragmentation in distal tibial nerves after sciatic nerve axotomy was approximately 10 times delayed. Considerable retardations of Wallerian degeneration using the same transgenic expression system were also observed in cultures of nerve explants, enabling in vitro real-time imaging of axonal fragmentation. Remarkably, single YFP-labelled axons could be traced in peripheral nerves for unusually long distances of up to 2.9 cm exploiting confocal fluorescence imaging. Altogether transgenic YFP-H mice prove to be a valuable tool to study mechanisms of Wallerian degeneration in vivo and in vitro. PMID:15102500

  17. Signals to promote myelin formation and repair

    PubMed Central

    Taveggia, Carla; Feltri, Maria Laura; Wrabetz, Lawrence

    2011-01-01

    The myelin sheath wraps large axons in both the CNS and the PNS, and is a key determinant of efficient axonal function and health. Myelin is targeted in a series of diseases, notably multiple sclerosis (MS). In MS, demyelination is associated with progressive axonal damage, which determines the level of patient disability. Few treatments are available for combating myelin damage in MS and related disorders. These treatments, which largely comprise anti-inflammatory drugs, only show limited efficacy in subsets of patients. More-effective treatment of myelin disorders will probably result from early intervention with combinatorial therapies that target inflammation and other processes—for example, signaling pathways that promote remyelination. Indeed, evidence suggests that such pathways might be impaired in pathology and, hence, contribute to the failure of remyelination in such diseases. In this article, we review the molecular basis of signaling pathways that regulate myelination in the CNS and PNS with a focus on differentiation of myelinating glia. We also discuss factors such as extracellular molecules that act as modulators of these pathways. Finally, we consider the few preclinical and clinical trials of agents that augment this signaling. PMID:20404842

  18. Axonal degeneration affects muscle density in older men and women

    PubMed Central

    Lauretani, Fulvio; Bandinelli, Stefania; Bartali, Benedetta; Di Iorio, Angelo; Giacomini, Vittoria; Corsi, Anna Maria; Guralnik, Jack M.; Ferrucci, Luigi

    2009-01-01

    Using data from InCHIANTI, a prospective population-based survey of older persons, we examined the relationship of peroneal nerve conduction velocity (NCV, a measure of nerve myelination) and compound muscle action potential (CMAP, a measure of axonal degeneration) with calf muscle mass and density, two complementary measures of sarcopenia. NCV and CMAP were assessed by surface electroneurography of the right peroneal nerve conducted in 1162 participants, 515 men and 647 women, age 21–96 years, free of major neurological diseases. Cross-sectional muscle area and calf muscle density were measured using peripheral quantitative computerized tomography (pQCT). Both nerve and muscle parameters declined with age although in most cases the decline was not linear. In both sexes, CMAP, but not NCV, was independently and significantly associated with calf muscle density. These findings suggest that intrinsic changes in the muscle tissue are partially caused by a reduction in the number of motor axons. PMID:16085338

  19. Axonal degeneration affects muscle density in older men and women.

    PubMed

    Lauretani, Fulvio; Bandinelli, Stefania; Bartali, Benedetta; Di Iorio, Angelo; Giacomini, Vittoria; Corsi, Anna Maria; Guralnik, Jack M; Ferrucci, Luigi

    2006-08-01

    Using data from InCHIANTI, a prospective population-based survey of older persons, we examined the relationship of peroneal nerve conduction velocity (NCV, a measure of nerve myelination) and compound muscle action potential (CMAP, a measure of axonal degeneration) with calf muscle mass and density, two complementary measures of sarcopenia. NCV and CMAP were assessed by surface electroneurography of the right peroneal nerve conducted in 1162 participants, 515 men and 647 women, age 21-96 years, free of major neurological diseases. Cross-sectional muscle area and calf muscle density were measured using peripheral quantitative computerized tomography (pQCT). Both nerve and muscle parameters declined with age although in most cases the decline was not linear. In both sexes, CMAP, but not NCV, was independently and significantly associated with calf muscle density. These findings suggest that intrinsic changes in the muscle tissue are partially caused by a reduction in the number of motor axons. PMID:16085338

  20. Variation of the neurofilament medium KSP repeat sub-domain across mammalian species: implications for altering axonal structure.

    PubMed

    Barry, D M; Carpenter, C; Yager, C; Golik, B; Barry, K J; Shen, H; Mikse, O; Eggert, L S; Schulz, D J; Garcia, M L

    2010-01-01

    The evolution of larger mammals resulted in a corresponding increase in peripheral nerve length. To ensure optimal nervous system functionality and survival, nerve conduction velocities were likely to have increased to maintain the rate of signal propagation. Increases of conduction velocities may have required alterations in one of the two predominant properties that affect the speed of neuronal transmission: myelination or axonal diameter. A plausible mechanism to explain faster conduction velocities was a concomitant increase in axonal diameter with evolving axonal length. The carboxy terminal tail domain of the neurofilament medium subunit is a determinant of axonal diameter in large caliber myelinated axons. Sequence analysis of mammalian orthologs indicates that the neurofilament medium carboxy terminal tail contains a variable lysine-serine-proline (KSP) repeat sub-domain flanked by two highly conserved sub-domains. The number of KSP repeats within this region of neurofilament medium varies among species. Interestingly, the number of repeats does not change within a species, suggesting that selective pressure conserved the number of repeats within a species. Mapping KSP repeat numbers onto consensus phylogenetic trees reveals independent KSP expansion events across several mammalian clades. Linear regression analyses identified three subsets of mammals, one of which shows a positive correlation in the number of repeats with head-body length. For this subset of mammals, we hypothesize that variations in the number of KSP repeats within neurofilament medium carboxy terminal tail may have contributed to an increase in axonal caliber, increasing nerve conduction velocity as larger mammals evolved. PMID:20008369

  1. Electron tomography of paranodal septate-like junctions and the associated axonal and glial cytoskeletons in the central nervous system.

    PubMed

    Nans, Andrea; Einheber, Steven; Salzer, James L; Stokes, David L

    2011-03-01

    The polarized domains of myelinated axons are specifically organized to maximize the efficiency of saltatory conduction. The paranodal region is directly adjacent to the node of Ranvier and contains specialized septate-like junctions that provide adhesion between axons and glial cells and that constitute a lateral diffusion barrier for nodal components. To complement and extend earlier studies on the peripheral nervous system, electron tomography was used to image paranodal regions from the central nervous system (CNS). Our three-dimensional reconstructions revealed short filamentous linkers running directly from the septate-like junctions to neurofilaments, microfilaments, and organelles within the axon. The intercellular spacing between axons and glia was measured to be 7.4 ± 0.6 nm, over twice the value previously reported in the literature (2.5-3.0 nm). Averaging of individual junctions revealed a bifurcated structure in the intercellular space that is consistent with a dimeric complex of cell adhesion molecules composing the septate-like junction. Taken together, these findings provide new insight into the structural organization of CNS paranodes and suggest that, in addition to providing axo-glial adhesion, cytoskeletal linkage to the septate-like junctions may be required to maintain axonal domains and to regulate organelle transport in myelinated axons. PMID:21259318

  2. Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction.

    PubMed

    Patzig, Julia; Erwig, Michelle S; Tenzer, Stefan; Kusch, Kathrin; Dibaj, Payam; Möbius, Wiebke; Goebbels, Sandra; Schaeren-Wiemers, Nicole; Nave, Klaus-Armin; Werner, Hauke B

    2016-01-01

    Myelination of axons facilitates rapid impulse propagation in the nervous system. The axon/myelin-unit becomes impaired in myelin-related disorders and upon normal aging. However, the molecular cause of many pathological features, including the frequently observed myelin outfoldings, remained unknown. Using label-free quantitative proteomics, we find that the presence of myelin outfoldings correlates with a loss of cytoskeletal septins in myelin. Regulated by phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2)-levels, myelin septins (SEPT2/SEPT4/SEPT7/SEPT8) and the PI(4,5)P2-adaptor anillin form previously unrecognized filaments that extend longitudinally along myelinated axons. By confocal microscopy and immunogold-electron microscopy, these filaments are localized to the non-compacted adaxonal myelin compartment. Genetic disruption of these filaments in Sept8-mutant mice causes myelin outfoldings as a very specific neuropathology. Septin filaments thus serve an important function in scaffolding the axon/myelin-unit, evidently a late stage of myelin maturation. We propose that pathological or aging-associated diminishment of the septin/anillin-scaffold causes myelin outfoldings that impair the normal nerve conduction velocity. PMID:27504968

  3. Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction

    PubMed Central

    Patzig, Julia; Erwig, Michelle S; Tenzer, Stefan; Kusch, Kathrin; Dibaj, Payam; Möbius, Wiebke; Goebbels, Sandra; Schaeren-Wiemers, Nicole; Nave, Klaus-Armin; Werner, Hauke B

    2016-01-01

    Myelination of axons facilitates rapid impulse propagation in the nervous system. The axon/myelin-unit becomes impaired in myelin-related disorders and upon normal aging. However, the molecular cause of many pathological features, including the frequently observed myelin outfoldings, remained unknown. Using label-free quantitative proteomics, we find that the presence of myelin outfoldings correlates with a loss of cytoskeletal septins in myelin. Regulated by phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2)-levels, myelin septins (SEPT2/SEPT4/SEPT7/SEPT8) and the PI(4,5)P2-adaptor anillin form previously unrecognized filaments that extend longitudinally along myelinated axons. By confocal microscopy and immunogold-electron microscopy, these filaments are localized to the non-compacted adaxonal myelin compartment. Genetic disruption of these filaments in Sept8-mutant mice causes myelin outfoldings as a very specific neuropathology. Septin filaments thus serve an important function in scaffolding the axon/myelin-unit, evidently a late stage of myelin maturation. We propose that pathological or aging-associated diminishment of the septin/anillin-scaffold causes myelin outfoldings that impair the normal nerve conduction velocity. DOI: http://dx.doi.org/10.7554/eLife.17119.001 PMID:27504968

  4. The scales and tales of myelination: using zebrafish and mouse to study myelinating glia.

    PubMed

    Ackerman, Sarah D; Monk, Kelly R

    2016-06-15

    Myelin, the lipid-rich sheath that insulates axons to facilitate rapid conduction of action potentials, is an evolutionary innovation of the jawed-vertebrate lineage. Research efforts aimed at understanding the molecular mechanisms governing myelination have primarily focused on rodent models; however, with the advent of the zebrafish model system in the late twentieth century, the use of this genetically tractable, yet simpler vertebrate for studying myelination has steadily increased. In this review, we compare myelinating glial cell biology during development and regeneration in zebrafish and mouse and enumerate the advantages and disadvantages of using each model to study myelination. This article is part of a Special Issue entitled SI: Myelin Evolution. PMID:26498880

  5. Adipose-Derived Stem Cells Stimulate Regeneration of Peripheral Nerves: BDNF Secreted by These Cells Promotes Nerve Healing and Axon Growth De Novo

    PubMed Central

    Lopatina, Tatiana; Kalinina, Natalia; Karagyaur, Maxim; Stambolsky, Dmitry; Rubina, Kseniya; Revischin, Alexander; Pavlova, Galina; Parfyonova, Yelena; Tkachuk, Vsevolod

    2011-01-01

    Transplantation of adipose-derived mesenchymal stem cells (ASCs) induces tissue regeneration by accelerating the growth of blood vessels and nerve. However, mechanisms by which they accelerate the growth of nerve fibers are only partially understood. We used transplantation of ASCs with subcutaneous matrigel implants (well-known in vivo model of angiogenesis) and model of mice limb reinnervation to check the influence of ASC on nerve growth. Here we show that ASCs stimulate the regeneration of nerves in innervated mice's limbs and induce axon growth in subcutaneous matrigel implants. To investigate the mechanism of this action we analyzed different properties of these cells and showed that they express numerous genes of neurotrophins and extracellular matrix proteins required for the nerve growth and myelination. Induction of neural differentiation of ASCs enhances production of brain-derived neurotrophic factor (BDNF) as well as ability of these cells to induce nerve fiber growth. BDNF neutralizing antibodies abrogated the stimulatory effects of ASCs on the growth of nerve sprouts. These data suggest that ASCs induce nerve repair and growth via BDNF production. This stimulatory effect can be further enhanced by culturing the cells in neural differentiation medium prior to transplantation. PMID:21423756

  6. The axon as a physical structure in health and acute trauma.

    PubMed

    Kirkcaldie, Matthew T K; Collins, Jessica M

    2016-10-01

    The physical structure of neurons - dendrites converging on the soma, with an axon conveying activity to distant locations - is uniquely tied to their function. To perform their role, axons need to maintain structural precision in the soft, gelatinous environment of the central nervous system and the dynamic, flexible paths of nerves in the periphery. This requires close mechanical coupling between axons and the surrounding tissue, as well as an elastic, robust axoplasm resistant to pinching and flattening, and capable of sustaining transport despite physical distortion. These mechanical properties arise primarily from the properties of the internal cytoskeleton, coupled to the axonal membrane and the extracellular matrix. In particular, the two large constituents of the internal cytoskeleton, microtubules and neurofilaments, are braced against each other and flexibly interlinked by specialised proteins. Recent evidence suggests that the primary function of neurofilament sidearms is to structure the axoplasm into a linearly organised, elastic gel. This provides support and structure to the contents of axons in peripheral nerves subject to bending, protecting the relatively brittle microtubule bundles and maintaining them as transport conduits. Furthermore, a substantial proportion of axons are myelinated, and this thick jacket of membrane wrappings alters the form, function and internal composition of the axons to which it is applied. Together these structures determine the physical properties and integrity of neural tissue, both under conditions of normal movement, and in response to physical trauma. The effects of traumatic injury are directly dependent on the physical properties of neural tissue, especially axons, and because of axons' extreme structural specialisation, post-traumatic effects are usually characterised by particular modes of axonal damage. The physical realities of axons in neural tissue are integral to both normal function and their response to

  7. Binary Imaging Analysis for Comprehensive Quantitative Assessment of Peripheral Nerve

    PubMed Central

    Hunter, Daniel A.; Moradzadeh, Arash; Whitlock, Elizabeth L.; Brenner, Michael J.; Myckatyn, Terence M.; Wei, Cindy H.; Tung, Thomas H.H.; Mackinnon, Susan E.

    2007-01-01

    Quantitative histomorphometry is the current gold standard for objective measurement of nerve architecture and its components. Many methods still in use rely heavily upon manual techniques that are prohibitively time consuming, predisposing to operator fatigue, sampling error, and overall limited reproducibility. More recently, investigators have attempted to combine the speed of automated morphometry with the accuracy of manual and semi-automated methods. Systematic refinements in binary imaging analysis techniques combined with an algorithmic approach allow for more exhaustive characterization of nerve parameters in the surgically relevant injury paradigms of regeneration following crush, transection, and nerve gap injuries. The binary imaging method introduced here uses multiple bitplanes to achieve reproducible, high throughput quantitative assessment of peripheral nerve. Number of myelinated axons, myelinated fiber diameter, myelin thickness, fiber distributions, myelinated fiber density, and neural debris can be quantitatively evaluated with stratification of raw data by nerve component. Results of this semi-automated method are validated by comparing values against those obtained with manual techniques. The use of this approach results in more rapid, accurate, and complete assessment of myelinated axons than manual techniques. PMID:17675163

  8. Dynamic regulation of Schwann cell enhancers after peripheral nerve injury.

    PubMed

    Hung, Holly A; Sun, Guannan; Keles, Sunduz; Svaren, John

    2015-03-13

    Myelination of the peripheral nervous system is required for axonal function and long term stability. After peripheral nerve injury, Schwann cells transition from axon myelination to a demyelinated state that supports neuronal survival and ultimately remyelination of axons. Reprogramming of gene expression patterns during development and injury responses is shaped by the actions of distal regulatory elements that integrate the actions of multiple transcription factors. We used ChIP-seq to measure changes in histone H3K27 acetylation, a mark of active enhancers, to identify enhancers in myelinating rat peripheral nerve and their dynamics after demyelinating nerve injury. Analysis of injury-induced enhancers identified enriched motifs for c-Jun, a transcription factor required for Schwann cells to support nerve regeneration. We identify a c-Jun-bound enhancer in the gene for Runx2, a transcription factor induced after nerve injury, and we show that Runx2 is required for activation of other induced genes. In contrast, enhancers that lose H3K27ac after nerve injury are enriched for binding sites of the Sox10 and early growth response 2 (Egr2/Krox20) transcription factors, which are critical determinants of Schwann cell differentiation. Egr2 expression is lost after nerve injury, and many Egr2-binding sites lose H3K27ac after nerve injury. However, the majority of Egr2-bound enhancers retain H3K27ac, indicating that other transcription factors maintain active enhancer status after nerve injury. The global epigenomic changes in H3K27ac deposition pinpoint dynamic changes in enhancers that mediate the effects of transcription factors that control Schwann cell myelination and peripheral nervous system responses to nerve injury. PMID:25614629

  9. Myelinated fibers of the mouse spinal cord after a 30-day space flight.

    PubMed

    Povysheva, T V; Rezvyakov, P N; Shaimardanova, G F; Nikolskii, E E; Islamov, R R; Chelyshev, Yu A; Grygoryev, A I

    2016-07-01

    Myelinated fibers and myelin-forming cells in the spinal cord at the L3-L5 level were studied in C57BL/6N mice that had spent 30 days in space. Signs of destruction of myelin in different areas of white matter, reduction of the thickness of myelin sheath and axon diameter, decreased number of myelin-forming cells were detected in "flight" mice. The stay of mice in space during 30 days had a negative impact on the structure of myelinated fibers and caused reduced expression of the markers myelin-forming cells. These findings can complement the pathogenetic picture of the development of hypogravity motor syndrome. PMID:27595822

  10. Proposed evolutionary changes in the role of myelin.

    PubMed

    Stiefel, Klaus M; Torben-Nielsen, Benjamin; Coggan, Jay S

    2013-01-01

    Myelin is the multi-layered lipid sheet periodically wrapped around neuronal axons. It is most frequently found in vertebrates. Myelin allows for saltatory action potential (AP) conduction along axons. During this form of conduction, the AP travels passively along the myelin-covered part of the axon, and is recharged at the intermittent nodes of Ranvier. Thus, myelin can reduce the energy load needed and/or increase the speed of AP conduction. Myelin first evolved during the Ordovician period. We hypothesize that myelin's first role was mainly energy conservation. During the later "Mesozoic marine revolution," marine ecosystems changed toward an increase in marine predation pressure. We hypothesize that the main purpose of myelin changed from energy conservation to conduction speed increase during this Mesozoic marine revolution. To test this hypothesis, we optimized models of myelinated axons for a combination of AP conduction velocity and energy efficiency. We demonstrate that there is a trade-off between these objectives. We then compared the simulation results to empirical data and conclude that while the data are consistent with the theory, additional measurements are necessary for a complete evaluation of the proposed hypothesis. PMID:24265603

  11. Proposed evolutionary changes in the role of myelin

    PubMed Central

    Stiefel, Klaus M.; Torben-Nielsen, Benjamin; Coggan, Jay S.

    2013-01-01

    Myelin is the multi-layered lipid sheet periodically wrapped around neuronal axons. It is most frequently found in vertebrates. Myelin allows for saltatory action potential (AP) conduction along axons. During this form of conduction, the AP travels passively along the myelin-covered part of the axon, and is recharged at the intermittent nodes of Ranvier. Thus, myelin can reduce the energy load needed and/or increase the speed of AP conduction. Myelin first evolved during the Ordovician period. We hypothesize that myelin's first role was mainly energy conservation. During the later “Mesozoic marine revolution,” marine ecosystems changed toward an increase in marine predation pressure. We hypothesize that the main purpose of myelin changed from energy conservation to conduction speed increase during this Mesozoic marine revolution. To test this hypothesis, we optimized models of myelinated axons for a combination of AP conduction velocity and energy efficiency. We demonstrate that there is a trade-off between these objectives. We then compared the simulation results to empirical data and conclude that while the data are consistent with the theory, additional measurements are necessary for a complete evaluation of the proposed hypothesis. PMID:24265603

  12. Inhibitory Injury Signaling Represses Axon Regeneration After Dorsal Root Injury.

    PubMed

    Mar, Fernando M; Simões, Anabel R; Rodrigo, Inês S; Sousa, Mónica M

    2016-09-01

    Following injury to peripheral axons, besides increased cyclic adenosine monophosphate (cAMP), the positive injury signals extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and signal transducer and activator of transcription 3 (STAT-3) are locally activated and retrogradely transported to the cell body, where they induce a pro-regenerative program. Here, to further understand the importance of injury signaling for successful axon regeneration, we used dorsal root ganglia (DRG) neurons that have a central branch without regenerative capacity and a peripheral branch that regrows after lesion. Although injury to the DRG central branch (dorsal root injury (DRI)) activated ERK, JNK, and STAT-3 and increased cAMP levels, it did not elicit gain of intrinsic growth capacity nor the ability to overcome myelin inhibition, as occurred after peripheral branch injury (sciatic nerve injury (SNI)). Besides, gain of growth capacity after SNI was independent of ERK and cAMP. Antibody microarrays of dynein-immunoprecipitated axoplasm from rats with either DRI or SNI revealed a broad differential activation and transport of signals after each injury type and further supported that ERK, JNK, STAT-3, and cAMP signaling pathways are minor contributors to the differential intrinsic axon growth capacity of both injury models. Increased levels of inhibitory injury signals including GSK3β and ROCKII were identified after DRI, not only in axons but also in DRG cell bodies. In summary, our work shows that activation and transport of positive injury signals are not sufficient to promote increased axon growth capacity and that differential modulation of inhibitory molecules may contribute to limited regenerative response. PMID:26298667

  13. Bridging peripheral nerves using a deacetyl chitin conduit combined with short-term electrical stimulation.

    PubMed

    Zhang, Zhongli; Li, Xin; Zuo, Songjie; Xin, Jie; Zhang, Peixun

    2014-05-15

    Previous studies have demonstrated that deacetyl chitin conduit nerve bridging or electrical stimulation can effectively promote the regeneration of the injured peripheral nerve. We hypothesized that the combination of these two approaches could result in enhanced regeneration. Rats with right sciatic nerve injury were subjected to deacetyl chitin conduit bridging combined with electrical stimulation (0.1 ms, 3 V, 20 Hz, for 1 hour). At 6 and 12 weeks after treatment, nerve conduction velocity, myelinated axon number, fiber diameter, axon diameter and the thickness of the myelin sheath in the stimulation group were better than in the non-stimulation group. The results indicate that deacetyl chitin conduit bridging combined with temporary electrical stimulation can promote peripheral nerve repair. PMID:25206762

  14. Functional Delay of Myelination of Auditory Delay Lines in the Nucleus Laminaris of the Barn Owl

    PubMed Central

    Cheng, Shih-Min; Carr, Catherine E.

    2012-01-01

    In the barn owl, maps of interaural time difference (ITD) are created in the nucleus laminaris (NL) by interdigitating axons that act as delay lines. Adult delay line axons are myelinated, and this myelination is timely, coinciding with the attainment of adult head size, and stable ITD cues. The proximal portions of the axons become myelinated in late embryonic life, but the delay line portions of the axon in NL remain unmyelinated until the first postnatal week. Myelination of the delay lines peaks at the third week posthatch, and myelinating oligodendrocyte density approaches adult levels by one month, when the head reaches its adult width. Migration of oligodendrocyte progenitors into NL and the subsequent onset of myelination may be restricted by a glial barrier in late embryonic stages and the first posthatch week, since the loss of tenascin-C immunoreactivity in NL is correlated with oligodendrocyte progenitor migration into NL. PMID:17918244

  15. Coculture of Primary Motor Neurons and Schwann Cells as a Model for In Vitro Myelination

    PubMed Central

    Hyung, Sujin; Yoon Lee, Bo; Park, Jong-Chul; Kim, Jinseok; Hur, Eun-Mi; Francis Suh, Jun-Kyo

    2015-01-01

    A culture system that can recapitulate myelination in vitro will not only help us better understand the mechanism of myelination and demyelination, but also find out possible therapeutic interventions for treating demyelinating diseases. Here, we introduce a simple and reproducible myelination culture system using mouse motor neurons (MNs) and Schwann cells (SCs). Dissociated motor neurons are plated on a feeder layer of SCs, which interact with and wrap around the axons of MNs as they differentiate in culture. In our MN-SC coculture system, MNs survived over 3 weeks and extended long axons. Both viability and axon growth of MNs in the coculture were markedly enhanced as compared to those of MN monoculture. Co-labeling of myelin basic proteins (MBPs) and neuronal microtubules revealed that SC formed myelin sheaths by wrapping around the axons of MNs. Furthermore, using the coculture system we found that treatment of an antioxidant substance coenzyme Q10 (Co-Q10) markedly facilitated myelination. PMID:26456300

  16. CLUSTERED K+ CHANNEL COMPLEXES IN AXONS

    PubMed Central

    Rasband, Matthew N.

    2010-01-01

    Voltage-gated K+ (Kv) channels regulate diverse neuronal properties including action potential threshold, amplitude, and duration, frequency of firing, neurotransmitter release, and resting membrane potential. In axons, Kv channels are clustered at a variety of functionally important sites including axon initial segments, juxtaparanodes of myelinated axons, nodes of Ranvier, and cerebellar basket cell terminals. These channels are part of larger protein complexes that include cell adhesion molecules and scaffolding proteins. These interacting proteins play important roles in recruiting K+ channels to distinct axonal domains. Here, I review the composition, functions, and mechanism of localization of these K+ channel complexes in axons. PMID:20816921

  17. Myelin-associated glycoprotein gene mutation causes Pelizaeus-Merzbacher disease-like disorder.

    PubMed

    Lossos, Alexander; Elazar, Nimrod; Lerer, Israela; Schueler-Furman, Ora; Fellig, Yakov; Glick, Benjamin; Zimmerman, Bat-El; Azulay, Haim; Dotan, Shlomo; Goldberg, Sharon; Gomori, John M; Ponger, Penina; Newman, J P; Marreed, Hodaifah; Steck, Andreas J; Schaeren-Wiemers, Nicole; Mor, Nofar; Harel, Michal; Geiger, Tamar; Eshed-Eisenbach, Yael; Meiner, Vardiella; Peles, Elior

    2015-09-01

    Pelizaeus-Merzbacher disease is an X-linked hypomyelinating leukodystrophy caused by mutations or rearrangements in PLP1. It presents in infancy with nystagmus, jerky head movements, hypotonia and developmental delay evolving into spastic tetraplegia with optic atrophy and variable movement disorders. A clinically similar phenotype caused by recessive mutations in GJC2 is known as Pelizaeus-Merzbacher-like disease. Both genes encode proteins associated with myelin. We describe three siblings of a consanguineous family manifesting the typical infantile-onset Pelizaeus-Merzbacher disease-like phenotype slowly evolving into a form of complicated hereditary spastic paraplegia with mental retardation, dysarthria, optic atrophy and peripheral neuropathy in adulthood. Magnetic resonance imaging and spectroscopy were consistent with a demyelinating leukodystrophy. Using genetic linkage and exome sequencing, we identified a homozygous missense c.399C>G; p.S133R mutation in MAG. This gene, previously associated with hereditary spastic paraplegia, encodes myelin-associated glycoprotein, which is involved in myelin maintenance and glia-axon interaction. This mutation is predicted to destabilize the protein and affect its tertiary structure. Examination of the sural nerve biopsy sample obtained in childhood in the oldest sibling revealed complete absence of myelin-associated glycoprotein accompanied by ill-formed onion-bulb structures and a relatively thin myelin sheath of the affected axons. Immunofluorescence, cell surface labelling, biochemical analysis and mass spectrometry-based proteomics studies in a variety of cell types demonstrated a devastating effect of the mutation on post-translational processing, steady state expression and subcellular localization of myelin-associated glycoprotein. In contrast to the wild-type protein, the p.S133R mutant was retained in the endoplasmic reticulum and was subjected to endoplasmic reticulum-associated protein degradation by the

  18. Electrophysiology of Axonal Constrictions

    NASA Astrophysics Data System (ADS)

    Johnson, Christopher; Jung, Peter; Brown, Anthony

    2013-03-01

    Axons of myelinated neurons are constricted at the nodes of Ranvier, where they are directly exposed to the extracellular space and where the vast majority of the ion channels are located. These constrictions are generated by local regulation of the kinetics of neurofilaments the most important cytoskeletal elements of the axon. In this paper we discuss how this shape affects the electrophysiological function of the neuron. Specifically, although the nodes are short (about 1 μm) in comparison to the distance between nodes (hundreds of μm) they have a substantial influence on the conduction velocity of neurons. We show through computational modeling that nodal constrictions (all other features such as numbers of ion channels left constant) reduce the required fiber diameter for a given target conduction velocity by up to 50% in comparison to an unconstricted axon. We further show that the predicted optimal fiber morphologies closely match reported fiber morphologies. Supported by The National Science Foundation (IOS 1146789)

  19. Prolonged Subdural Infusion of Kynurenic Acid Is Associated with Dose-Dependent Myelin Damage in the Rat Spinal Cord

    PubMed Central

    Dabrowski, Wojciech; Kwiecien, Jacek M.; Rola, Radoslaw; Klapec, Michal; Stanisz, Greg J.; Kotlinska-Hasiec, Edyta; Oakden, Wendy; Janik, Rafal; Coote, Margaret; Frey, Benicio N.; Turski, Waldemar A.

    2015-01-01

    Background Kynurenic acid (KYNA) is the end stage metabolite of tryptophan produced mainly by astrocytes in the central nervous system (CNS). It has neuroprotective activities but can be elevated in the neuropsychiatric disorders. Toxic effects of KYNA in the CNS are unknown. The aim of this study was to assess the effect of the subdural KYNA infusion on the spinal cord in adult rats. Methods A total of 42 healthy adult rats were randomly assigned into six groups and were infused for 7 days with PBS (control) or 0.0002 pmol/min, 0.01 nmol/min, 0.1 nmol/min, 1 nmol/min, and 10 nmol/min of KYNA per 7 days. The effect of KYNA on spinal cord was determined using histological and electron microscopy examination. Myelin oligodendrocyte glycoprotein (MOG) was measured in the blood serum to assess a degree of myelin damage. Result In all rats continuous long-lasting subdural KYNA infusion was associated with myelin damage and myelin loss that was increasingly widespread in a dose-depended fashion in peripheral, sub-pial areas. Damage to myelin sheaths was uniquely related to the separation of lamellae at the intraperiod line. The damaged myelin sheaths and areas with complete loss of myelin were associated with limited loss of scattered axons while vast majority of axons in affected areas were morphologically intact. The myelin loss-causing effect of KYNA occurred with no necrosis of oligodendrocytes, with locally severe astrogliosis and no cellular inflammatory response. Additionally, subdural KYNA infusion increased blood MOG concentration. Moreover, the rats infused with the highest doses of KYNA (1 and 10 nmol/min) demonstrated adverse neurological signs including weakness and quadriplegia. Conclusions We suggest, that subdural infusion of high dose of KYNA can be used as an experimental tool for the study of mechanisms of myelin damage and regeneration. On the other hand, the administration of low, physiologically relevant doses of KYNA may help to discover the role

  20. Myelinated mouse nerves studied by X-ray phase contrast zoom tomography.

    PubMed

    Bartels, M; Krenkel, M; Cloetens, P; Möbius, W; Salditt, T

    2015-12-01

    We have used X-ray phase contrast tomography to resolve the structure of uncut, entire myelinated optic, saphenous and sciatic mouse nerves. Intrinsic electron density contrast suffices to identify axonal structures. Specific myelin labeling by an osmium tetroxide stain enables distinction between axon and surrounding myelin sheath. Utilization of spherical wave illumination enables zooming capabilities which enable imaging of entire sciatic internodes as well as identification of sub-structures such as nodes of Ranvier and Schmidt-Lanterman incisures. PMID:26546551

  1. Pathogenesis of axonal dystrophy and demyelination in αA-crystallin-expressing transgenic mice

    PubMed Central

    Van Rijk, AF; Sweers, MAM; Merkx, GFM; Lammens, M; Bloemendal, H

    2003-01-01

    We recently described a transgenic mouse strain overexpressing hamster αA-crystallin, a small heat shock protein, under direction of the hamster vimentin promoter. As a result myelin was degraded and axonal dystrophy in both central nervous system (especially spinal cord) and peripheral nervous system occurred. Homozygous transgenic mice developed hind limb paralysis after 8 weeks of age and displayed progressive loss of myelin and axonal dystrophy in both the central and peripheral nervous system with ongoing age. Pathologically the phenotype resembled, to a certain extent, neuroaxonal dystrophy. The biochemical findings presented in this paper (activity of the enzymes superoxide dismutase, catalase and transglutamase, myelin protein zero expression levels and blood sugar levels) confirm this pathology and exclude other putative pathologies like Amyothrophic Lateral Sclerosis and Hereditary Motor and Sensory Neuropathy. Consequently, an excessive cytoplasmic accumulation of the transgenic protein or a disturbance of the normal metabolism are considered to cause the observed neuropathology. Therefore, extra-ocular αA-crystallin-expressing transgenic mice may serve as a useful animal model to study neuroaxonal dystrophy. PMID:12801283

  2. Axonal retraction and regeneration induced by N,N-diethyldithiocarbamate (DEDTC) in the central nervous system.

    PubMed

    Junyent, Fèlix; Utrera, Juana; Auladell, Carme

    2006-12-01

    Dithiocarbamates (DTCs), such as disulfiram, have been used in aversion therapy for alcoholism even though an inherent toxicity is induced, which is related mainly to peripheral neuropathy and is associated with behavioural and neurological complications. At anatomical and histopathological levels, DTCs affect structural elements in nervous tissue, such as axonal degeneration and alterations in the cytoskeletal proteins of astrocytes. Therefore, given the axonal effects of DTCs and to gain further insight into axonal growth and axonal pathfinding in the central nervous system (CNS), here we established an in vivo experimental model of mouse development. Daily intraperitoneal injections of N,N-diethyldithiocarbamate (DEDTC), the first metabolite of disulfiram, were given from postnatal day 2 (P2) until P15. From P16 until P30, animals were not treated. Treatment induced considerable physiological alterations, such as growth delay, throughout postnatal development. Moreover, by immunohistochemistry techniques, we observed important alterations in the cytoskeletal glial protein at early stages of postnatal development. At later stages (P15), the immunoreactivity pattern detected by an antibody against axonal neurofilaments (anti-NF-H) showed alteration in the axonal distribution pattern followed by drastic axonal loss at P22, data that were corroborated using an anti-MBP (myelin basic protein) antibody. Using an antibody against the beta amyloid precursor protein (APP), we detected axonal injury. Furthermore, given that we observed axonal re-growth in adulthood in the in vivo model presented, we propose that this model would be a good system in which to identify new strategies for inducing regenerative growth in neural diseases in which axonal regeneration is blocked. PMID:17156377

  3. ATP-Mediated Compositional Change in Peripheral Myelin Membranes: A Comparative Raman Spectroscopy and Time-Of-Flight Secondary Ion Mass Spectrometry Study

    PubMed Central

    Kutuzov, Nikolay; Gulin, Alexander; Lyaskovskiy, Vladimir; Nadtochenko, Victor; Maksimov, Georgy

    2015-01-01

    In the present paper we addressed a mechanism of the myelin reorganization initiated by extracellular ATP and adenosine in sciatic nerves of the frog Rana temporaria. In combination with Raman microspectroscopy, allowing noninvasive live-cell measurements, we employed time-of-flight secondary ion mass spectrometry (TOF-SIMS) to follow the underlying changes in chemical composition of myelin membranes triggered by the purinergic agents. The simultaneous increase in lipid ordering degree, decrease in membrane fluidity and the degree of fatty acid unsaturation were induced by both ATP and adenosine. Mass spectrometry measurements revealed that ATP administration also led to the marked elevation of membrane cholesterol and decrease of phosphotidylcholine amounts. Vesicular lipid transport pathways are considered as possible mechanisms of compositional and structural changes of myelin. PMID:26544552

  4. Charcot-Marie-Tooth disease: a novel Tyr145Ser mutation in the myelin protein zero (MPZ, P0) gene causes different phenotypes in homozygous and heterozygous carriers within one family.

    PubMed

    Leal, Alejandro; Berghoff, Corinna; Berghoff, Martin; Del Valle, Gerardo; Contreras, Carlos; Montoya, Olga; Hernández, Erick; Barrantes, Ramiro; Schlötzer-Schrehardt, Ursula; Neundörfer, Bernhard; Reis, André; Rautenstrauss, Bernd; Heuss, Dieter

    2003-08-01

    Charcot-Marie-Tooth disease type 1B (CMT 1B) is caused by mutations in the gene coding for peripheral myelin protein zero (MPZ, P0) that plays a fundamental role in adhesion and compaction of peripheral myelin. Here we report a Costa Rican family with a hereditary peripheral neuropathy due to a novel Tyr145Ser MPZ mutation. Four family members were heterozygously affected; two siblings of two heterozygous carriers were homozygous for this mutation. On neurological examination the heterozygous parents and their homozygous children both showed distal sensory deficits. The mother and the siblings displayed impaired deep tendon reflexes and mild sensory ataxia. The homozygous individuals were more severely affected with an earlier age of onset, distal motor weakness, and pupillary abnormalities. Electrophysiological studies revealed both signs of demyelination and axonal nerve degeneration. The sural nerve biopsy of one sibling showed thinly myelinated nerve fibers, onion bulb formation, and clusters of regenerating fibers. On electron microscopy axonal degeneration and decompaction of inner myelin layers were found. This Costa Rican family shows phenotypic variability depending on the homozygous or heterozygous state of the Tyr145Ser mutation carriers. PMID:12845552

  5. Action potentials induce uniform calcium influx in mammalian myelinated optic nerves.

    PubMed

    Zhang, Chuan-Li; Wilson, J Adam; Williams, Justin; Chiu, Shing Yan

    2006-08-01

    The myelin sheath enables saltatory conduction by demarcating the axon into a narrow nodal region for excitation and an extended, insulated internodal region for efficient spread of passive current. This anatomical demarcation produces a dramatic heterogeneity in ionic fluxes during excitation, a classical example being the restriction of Na influx at the node. Recent studies have revealed that action potentials also induce calcium influx into myelinated axons of mammalian optic nerves. Does calcium influx in myelinated axons show spatial heterogeneity during nerve excitation? To address this, we analyzed spatial profiles of axonal calcium transients during action potentials by selectively staining axons with calcium indicators and subjected the data to theoretical analysis with parameters for axial calcium diffusion empirically determined using photolysis of caged compounds. The results show surprisingly that during action potentials, calcium influx occurs uniformly along an axon of a fully myelinated mouse optic nerve. PMID:16835363

  6. Roles of channels and receptors in the growth cone during PNS axonal regeneration.

    PubMed

    Shim, Sangwoo; Ming, Guo-li

    2010-05-01

    Neurons in the peripheral nervous system (PNS) are known to maintain a regenerative capacity and will normally regenerate their axons within a permissive growth environment. The success of regeneration in the PNS largely depends on maintenance of the supportive basal lamina membrane, efficient removal of axonal and myelin debris by macrophages and Schwann cells, expression of neurotrophic factors by Schwann cells, and up-regulation of the intrinsic growth program in PNS neurons. The PNS regenerative process is well characterized through initial Wallerian degeneration followed by axonal sprouting, formation of neuronal growth cones, active axonal growth to the target, and finally sensory and motor functional recovery. The initiation and maintenance of active growth cones during peripheral nerve regeneration recapitulate many aspects of early neural development and are achieved through the activation of complex signaling cascades, involving various receptors, channels, cytoplasmic signaling cascades, as well as transcriptional and translational programs. This review focuses on roles of cell surface ion channels and receptors in the growth cone during Wallerian degeneration and axon regeneration in the PNS. PMID:19833126

  7. Myelin regeneration in multiple sclerosis: targeting endogenous stem cells.

    PubMed

    Huang, Jeffrey K; Fancy, Stephen P J; Zhao, Chao; Rowitch, David H; Ffrench-Constant, Charles; Franklin, Robin J M

    2011-10-01

    Regeneration of myelin sheaths (remyelination) after central nervous system demyelination is important to restore saltatory conduction and to prevent axonal loss. In multiple sclerosis, the insufficiency of remyelination leads to the irreversible degeneration of axons and correlated clinical decline. Therefore, a regenerative strategy to encourage remyelination may protect axons and improve symptoms in multiple sclerosis. We highlight recent studies on factors that influence endogenous remyelination and potential promising pharmacological targets that may be considered for enhancing central nervous system remyelination. PMID:21904791

  8. The origin of the myelination program in vertebrates.

    PubMed

    Zalc, B; Goujet, D; Colman, D

    2008-06-24

    The myelin sheath was a transformative vertebrate acquisition, enabling great increases in impulse propagation velocity along axons. Not all vertebrates possess myelinated axons, however, and when myelin first appeared in the vertebrate lineage is an important open question. It has been suggested that the dual, apparently unrelated acquisitions of myelin and the hinged jaw were actually coupled in evolution [1,2]. If so, it would be expected that myelin was first acquired during the Devonian period by the oldest jawed fish, the placoderms [3]. Although myelin itself is not retained in the fossil record, within the skulls of fossilized Paleozoic vertebrate fish are exquisitely preserved imprints of cranial nerves and the foramina they traversed. Examination of these structures now suggests how the nerves functioned in vivo. In placoderms, the first hinge-jawed fish, oculomotor nerve diameters remained constant, but nerve lengths were ten times longer than in the jawless osteostraci. We infer that to accommodate this ten-fold increase in length, while maintaining a constant diameter, the oculomotor system in placoderms must have been myelinated to function as a rapidly conducting motor pathway. Placoderms were the first fish with hinged jaws and some can grow to formidable lengths, requiring a rapid conduction system, so it is highly likely that they were the first organisms with myelinated axons in the craniate lineage. PMID:18579089

  9. Remodeling myelination: implications for mechanisms of neural plasticity

    PubMed Central

    Chang, Kae-Jiun; Redmond, Stephanie A; Chan, Jonah R

    2016-01-01

    One of the most significant paradigm shifts in membrane remodeling is the emerging view that membrane transformation is not exclusively controlled by cytoskeletal rearrangement, but also by biophysical constraints, adhesive forces, membrane curvature and compaction. One of the most exquisite examples of membrane remodeling is myelination. The advent of myelin was instrumental in advancing the nervous system during vertebrate evolution. With more rapid and efficient communication between neurons, faster and more complex computations could be performed in a given time and space. Our knowledge of how myelin-forming oligodendrocytes select and wrap axons has been limited by insufficient spatial and temporal resolution. By virtue of recent technological advances, progress has clarified longstanding controversies in the field. Here we review insights into myelination, from target selection to axon wrapping and membrane compaction, and discuss how understanding these processes has unexpectedly opened new avenues of insight into myelination-centered mechanisms of neural plasticity. PMID:26814588

  10. Strategies for myelin regeneration: lessons learned from development

    PubMed Central

    Bhatt, Abhay; Fan, Lir-Wan; Pang, Yi

    2014-01-01

    Myelin regeneration is indispensably important for patients suffering from several central nervous system (CNS) disorders such as multiple sclerosis (MS) and spinal cord injury (SCI), because it is not only essential for restoring neurophysiology, but also protects denuded axons for secondary degeneration. Understanding the cellular and molecular mechanisms underlying remyelination is critical for the development of remyelination-specific therapeutic approaches. As remyelination shares certain common mechanisms with developmental myelination, knowledge from study of developmental myelination contributes greatly to emerging myelin regeneration therapies, best evidenced as the recently developed human anti-Nogo receptor interacting protein-1 (LINGO-1) monoclonal antibodies to treat MS patients in clinical trials. PMID:25221590

  11. Acute anoxic changes in peripheral nerve: anatomic and physiologic correlations

    PubMed Central

    Punsoni, Michael; Drexler, Steven; Palaia, Thomas; Stevenson, Matthew; Stecker, Mark M

    2015-01-01

    Introduction The response of the peripheral nerve to anoxia is modulated by many factors including glucose and temperature. The purposes of this article are to demonstrate the effects of these factors on the pathological changes induced by anoxia and to compare the electrophysiologic changes and pathological changes in the same nerves. Methods Sciatic nerves were harvested from rats and placed in a perfusion apparatus where neurophysiologic responses could be recorded continuously during a 16 h experiment. After the experiment, light microscopy and electron microscopy were performed. Results Light microscopic images showed mild changes from anoxia at normoglycemia. Hypoglycemic anoxia produced massive axonal swelling while hyperglycemic anoxia produced apparent changes in the myelin. Anoxic changes were not uniform in all axons. Electron microscopy showed only minor disruptions of the cytoskeleton with anoxia during normoglycemia. At the extremes of glucose concentration especially with hyperglycemia, there was a more severe disruption of intermediate filaments and loss of axonal structure with anoxia. Hypothermia protected axons from the effect of anoxia and produced peak axonal swelling in the 17–30°C range. Conclusions The combination of hyperglycemia or hypoglycemia and anoxia produces extremely severe axonal disruption. Changes in axonal diameter are complex and are influenced by many factors. PMID:26221572

  12. Verapamil inhibits scar formation after peripheral nerve repair in vivo

    PubMed Central

    Han, A-chao; Deng, Jing-xiu; Huang, Qi-shun; Zheng, Huai-yuan; Zhou, Pan; Liu, Zhi-wei; Chen, Zhen-bing

    2016-01-01

    The calcium channel blocker, verapamil, has been shown to reduce scar formation by inhibiting fibroblast adhesion and proliferation in vitro. It was not clear whether topical application of verapamil after surgical repair of the nerve in vivo could inhibit the formation of excessive scar tissue. In this study, the right sciatic nerve of adult Sprague-Dawley rats was transected and sutured with No. 10-0 suture. The stoma was wrapped with gelfoam soaked with verapamil solution for 4 weeks. Compared with the control group (stoma wrapped with gelfoam soaked with physiological saline), the verapamil application inhibited the secretion of extracellular matrix from fibroblasts in vivo, suppressed type I and III collagen secretion and increased the total number of axons and the number of myelinated axons. These findings suggest that verapamil could reduce the formation of scar tissue and promote axon growth after peripheral nerve repair. PMID:27127494

  13. Evolution of myelin ultrastructure and the major structural myelin proteins.

    PubMed

    Inouye, Hideyo; Kirschner, Daniel A

    2016-06-15

    Myelin sheaths, as the specialized tissue wrapping the nerve fibers in the central and peripheral nervous systems (CNS and PNS), are responsible for rapid conduction of electrical signals in these fibers. We compare the nerve myelin sheaths of different phylogenetic origins-including mammal, rodent, bird, reptile, amphibian, lungfish, teleost, and elasmobranch-with respect to periodicities and inter-membrane separations at their cytoplasmic and extracellular appositions, and correlate these structural parameters with biochemical composition. P0 glycoprotein and P0-like proteins are present in PNS of terrestrial species or land vertebrates (Tetrapod) and in CNS and PNS of aquatic species. Proteolipid protein (PLP) is a major component only in the CNS myelin of terrestrial species and is involved in compaction of the extracellular apposition. The myelin structures of aquatic garfish and lungfish, which contain P0-like protein both in CNS and PNS, are similar to those of terrestrial species, indicating that they may be transitional organisms between water and land species. This article is part of a Special Issue entitled SI: Myelin Evolution. PMID:26519753

  14. Peripheral prostaglandin E2 prolongs the sensitization of nociceptive dorsal root ganglion neurons possibly by facilitating the synthesis and anterograde axonal trafficking of EP4 receptors.

    PubMed

    St-Jacques, Bruno; Ma, Weiya

    2014-11-01

    Prostaglandin E2 (PGE2), a well-known pain mediator enriched in inflamed tissues, plays a pivotal role in the genesis of chronic pain conditions such as inflammatory and neuropathic pain. PGE2-prolonged sensitization of nociceptive dorsal root ganglion (DRG) neurons (nociceptors) may contribute to the transition from acute to chronic pain. However, the underlying cellular mechanisms are poorly understood. In this study, we tested the hypothesis that facilitating synthesis and anterograde axonal trafficking of EP receptors contribute to PGE2-prolonged nociceptor sensitization. Intraplantar (i.pl.) injection of a stabilized PGE2 analog, 16,16 dimethyl PGE2 (dmPGE2), in a dose- and time-dependent manner, not only elicited primary tactile allodynia which lasted for 1d, but also prolonged tactile allodynia evoked by a subsequent i.pl. injection of dmPGE2 from 1d to 4d. Moreover, the duration of tactile allodynia was progressively prolonged following multiple sequential i.pl. injections of dmPGE2. Co-injection of the selective EP1 or EP4 receptor antagonist, the inhibitors of cAMP, PKA, PKC, PKCε or PLC as well as an interleukin-6 (IL-6) neutralizing antiserum differentially blocked primary tactile allodynia elicited by the 1st dmPGE2 and the prolonged tactile allodynia evoked by the 2nd dmPGE2, suggesting the involvement of these signaling events in dmPGE2-induced nociceptor activation and sensitization. Co-injection of a selective COX2 inhibitor or two EP4 antagonists prevented or shortened inflammagen-prolonged nociceptor sensitization. I.pl. injection of dmPGE2 or carrageenan time-dependently increased EP4 levels in L4-6 DRG neurons and peripheral nerves. EP4 was expressed in almost half of IB4-binding nociceptors of L4-6 DRG. Taken together, our data suggest that stimulating the synthesis and anterograde axonal trafficking to increase EP4 availability at the axonal terminals of nociceptors is likely a novel mechanism underlying PGE2-prolonged nociceptor

  15. Neurobiological assessment of regenerative electrodes for bidirectional interfacing injured peripheral nerves.

    PubMed

    Lago, Natalia; Udina, Esther; Ramachandran, Anup; Navarro, Xavier

    2007-06-01

    Regenerative electrodes are designed to interface regenerated axons from a sectioned peripheral nerve. Applicability of regenerative electrodes depends on biocompatibility, success of axonal regeneration, secondary nerve damage, and adequacy of interface electronics. Polyimide sieve electrodes with 281 holes were chronically implanted in the severed sciatic nerve of 30 rats. Regeneration was successful in all the animals, with increasing numbers of regenerated myelinated fibers from 2 to 6 mo. However, constrictive axonopathy affected a few cases from 6 to 12 mo. postimplantation. A second electrode design with 571 holes and 27 ring electrodes was developed. The number of regenerated axons increased thanks to the larger open area. Recordings were obtained from a low proportion of electrodes on the sieve in response to distal stimulation. Difficulties for recording impulses with regenerative electrodes include the small size of regenerated axons, changes in membrane excitability and in target reconnection. PMID:17554832

  16. Spider Silk Constructs Enhance Axonal Regeneration and Remyelination in Long Nerve Defects in Sheep

    PubMed Central

    Radtke, Christine; Allmeling, Christina; Waldmann, Karl-Heinz; Reimers, Kerstin; Thies, Kerstin; Schenk, Henning C.; Hillmer, Anja; Guggenheim, Merlin; Brandes, Gudrun; Vogt, Peter M.

    2011-01-01

    Background Surgical reapposition of peripheral nerve results in some axonal regeneration and functional recovery, but the clinical outcome in long distance nerve defects is disappointing and research continues to utilize further interventional approaches to optimize functional recovery. We describe the use of nerve constructs consisting of decellularized vein grafts filled with spider silk fibers as a guiding material to bridge a 6.0 cm tibial nerve defect in adult sheep. Methodology/Principal Findings The nerve constructs were compared to autologous nerve grafts. Regeneration was evaluated for clinical, electrophysiological and histological outcome. Electrophysiological recordings were obtained at 6 months and 10 months post surgery in each group. Ten months later, the nerves were removed and prepared for immunostaining, electrophysiological and electron microscopy. Immunostaining for sodium channel (NaV 1.6) was used to define nodes of Ranvier on regenerated axons in combination with anti-S100 and neurofilament. Anti-S100 was used to identify Schwann cells. Axons regenerated through the constructs and were myelinated indicating migration of Schwann cells into the constructs. Nodes of Ranvier between myelin segments were observed and identified by intense sodium channel (NaV 1.6) staining on the regenerated axons. There was no significant difference in electrophysiological results between control autologous experimental and construct implantation indicating that our construct are an effective alternative to autologous nerve transplantation. Conclusions/Significance This study demonstrates that spider silk enhances Schwann cell migration, axonal regrowth and remyelination including electrophysiological recovery in a long-distance peripheral nerve gap model resulting in functional recovery. This improvement in nerve regeneration could have significant clinical implications for reconstructive nerve surgery. PMID:21364921

  17. Exclusive expression of the Rab11 effector SH3TC2 in Schwann cells links integrin-α6 and myelin maintenance to Charcot-Marie-Tooth disease type 4C.

    PubMed

    Vijay, Sauparnika; Chiu, Meagan; Dacks, Joel B; Roberts, Rhys C

    2016-07-01

    Charcot-Marie-Tooth disease type 4C (CMT4C) is one of the commonest autosomal recessive inherited peripheral neuropathies and is associated with mutations in the Rab11 effector, SH3TC2. Disruption of the SH3TC2-Rab11 interaction is the molecular abnormality underlying this disease. However, why SH3TC2 mutations cause an isolated demyelinating neuropathy remains unanswered. Here we show that SH3TC2 is an exclusive Schwann cell protein expressed late in myelination and is downregulated following denervation suggesting a functional role in myelin sheath maintenance. We support our data with an evolutionary cell biological analysis showing that the SH3TC2 gene, and its paralogue SH3TC1, are derived from an ancestral homologue, the duplication of which occurred in the common ancestor of jawed vertebrates, coincident with the appearance of Schwann cells and peripheral axon myelination. Furthermore, we report that SH3TC2 associates with integrin-α6, suggesting that aberrant Rab11-dependent endocytic trafficking of this critical laminin receptor in myelinated Schwann cells is connected to the demyelination seen in affected nerves. Our study therefore highlights the inherent evolutionary link between SH3TC2 and peripheral nerve myelination, pointing also towards a molecular mechanism underlying the specific demyelinating neuropathy that characterizes CMT4C. PMID:27068304

  18. Alpha-synuclein pathology and axonal degeneration of the peripheral motor nerves innervating pharyngeal muscles in Parkinson disease.

    PubMed

    Mu, Liancai; Sobotka, Stanislaw; Chen, Jingming; Su, Hungxi; Sanders, Ira; Adler, Charles H; Shill, Holly A; Caviness, John N; Samanta, Johan E; Beach, Thomas G

    2013-02-01

    Parkinson disease (PD) is a neurodegenerative disease primarily characterized by cardinal motor manifestations and CNS pathology. Current drug therapies can often stabilize these cardinal motor symptoms, and attention has shifted to the other motor and nonmotor symptoms of PD that are resistant to drug therapy. Dysphagia in PD is perhaps the most important drug-resistant symptom because it leads to aspiration and pneumonia, the leading cause of death. Here, we present direct evidence for degeneration of the pharyngeal motor nerves in PD. We examined the cervical vagal nerve (cranial nerve X), pharyngeal branch of nerve X, and pharyngeal plexus innervating the pharyngeal muscles in 14 postmortem specimens, that is, from 10 patients with PD and 4 age-matched control subjects. Synucleinopathy in the pharyngeal nerves was detected using an immunohistochemical method for phosphorylated α-synuclein. Alpha-synuclein aggregates were revealed in nerve X and the pharyngeal branch of nerve X, and immunoreactive intramuscular nerve twigs and axon terminals within the neuromuscular junctions were identified in all of the PD patients but in none of the controls. These findings indicate that the motor nervous system of the pharynx is involved in the pathologic process of PD. Notably, PD patients who have had dysphagia had a higher density of α-synuclein aggregates in the pharyngeal nerves than those without dysphagia. These findings indicate that motor involvement of the pharynx in PD is one of the factors leading to oropharyngeal dysphagia commonly seen in PD patients. PMID:23334595

  19. Diabetic Schwann cells suffer from nerve growth factor and neurotrophin-3 underproduction and poor associability with axons.

    PubMed

    Dey, Indranil; Midha, Nisha; Singh, Geeta; Forsyth, Amanda; Walsh, Sarah K; Singh, Bhagat; Kumar, Ranjan; Toth, Cory; Midha, Rajiv

    2013-12-01

    Schwann cells (SCs) are integral to peripheral nerve biology, contributing to saltatory conduction along axons, nerve and axon development, and axonal regeneration. SCs also provide a microenvironment favoring neural regeneration partially due to production of several neurotrophic factors. Dysfunction of SCs may also play an important role in the pathogenesis of peripheral nerve diseases such as diabetic peripheral neuropathy where hyperglycemia is often considered pathogenic. In order to study the impact of diabetes mellitus (DM) upon the regenerative capacity of adult SCs, we investigated the differential production of the neurotrophic factors nerve growth factor (NGF) and neurotrophin-3 (NT3) by SCs harvested from the sciatic nerves of murine models of type 1 DM (streptozotocin treated C57BL/6J mice) and type 2 DM (LepR(-/-) or db/db mice) or non-diabetic cohorts. In vitro, SCs from diabetic and control mice were maintained under similar hyperglycemic and euglycemic conditions respectively. Mature SCs from diabetic mice produced lower levels of NGF and NT3 under hyperglycemic conditions when compared to SCs in euglycemia. In addition, SCs from both DM and non-DM mice appear to be incapable of insulin production, but responded to exogenous insulin with greater proliferation and heightened myelination potentiation. Moreover, SCs from diabetic animals showed poorer association with co-cultured axons. Hyperglycemia had significant impact upon SCs, potentially contributing to the pathogenesis of diabetic peripheral neuropathy. PMID:24123456

  20. Oligodendroglial membrane dynamics in relation to myelin biogenesis.

    PubMed

    Ozgen, Hande; Baron, Wia; Hoekstra, Dick; Kahya, Nicoletta

    2016-09-01

    In the central nervous system, oligodendrocytes synthesize a specialized membrane, the myelin membrane, which enwraps the axons in a multilamellar fashion to provide fast action potential conduction and to ensure axonal integrity. When compared to other membranes, the composition of myelin membranes is unique with its relatively high lipid to protein ratio. Their biogenesis is quite complex and requires a tight regulation of sequential events, which are deregulated in demyelinating diseases such as multiple sclerosis. To devise strategies for remedying such defects, it is crucial to understand molecular mechanisms that underlie myelin assembly and dynamics, including the ability of specific lipids to organize proteins and/or mediate protein-protein interactions in healthy versus diseased myelin membranes. The tight regulation of myelin membrane formation has been widely investigated with classical biochemical and cell biological techniques, both in vitro and in vivo. However, our knowledge about myelin membrane dynamics, such as membrane fluidity in conjunction with the movement/diffusion of proteins and lipids in the membrane and the specificity and role of distinct lipid-protein and protein-protein interactions, is limited. Here, we provide an overview of recent findings about the myelin structure in terms of myelin lipids, proteins and membrane microdomains. To give insight into myelin membrane dynamics, we will particularly highlight the application of model membranes and advanced biophysical techniques, i.e., approaches which clearly provide an added value to insight obtained by classical biochemical techniques. PMID:27141942

  1. Remyelination reporter reveals prolonged refinement of spontaneously regenerated myelin

    PubMed Central

    Powers, Berit E.; Sellers, Drew L.; Lovelett, Emilie A.; Cheung, Willy; Aalami, Sheida P.; Zapertov, Nikolai; Maris, Don O.; Horner, Philip J.

    2013-01-01

    Neurological diseases and trauma often cause demyelination, resulting in the disruption of axonal function and integrity. Endogenous remyelination promotes recovery, but the process is not well understood because no method exists to definitively distinguish regenerated from preexisting myelin. To date, remyelinated segments have been defined as anything abnormally short and thin, without empirical data to corroborate these morphological assumptions. To definitively identify regenerated myelin, we used a transgenic mouse with an inducible membrane-bound reporter and targeted Cre recombinase expression to a subset of glial progenitor cells after spinal cord injury, yielding remarkably clear visualization of spontaneously regenerated myelin in vivo. Early after injury, the mean length of sheaths regenerated by Schwann cells and oligodendrocytes (OLs) was significantly shorter than control, uninjured myelin, confirming past assumptions. However, OL-regenerated sheaths elongated progressively over 6 mo to approach control values. Moreover, OL-regenerated myelin thickness was not significantly different from control myelin at most time points after injury. Thus, many newly formed OL sheaths were neither thinner nor shorter than control myelin, vitiating accepted dogmas of what constitutes regenerated myelin. We conclude that remyelination, once thought to be static, is dynamic and elongates independently of axonal growth, in contrast to stretch-based mechanisms proposed in development. Further, without clear identification, past assessments have underestimated the extent and quality of regenerated myelin. PMID:23431182

  2. Inhibition of calpains fails to improve regeneration through a peripheral nerve conduit.

    PubMed

    Hausner, Thomas; Marvaldi, Letizia; Márton, Gábor; Pajer, Krisztián; Hopf, Rudolf; Schmidhammer, Robert; Hausott, Barbara; Redl, Heinz; Nógrádi, Antal; Klimaschewski, Lars

    2014-04-30

    Intramuscular injection of the calpain inhibitor leupeptin promotes peripheral nerve regeneration in primates (Badalamente et al., 1989 [13]), and direct positive effects of leupeptin on axon outgrowth were observed in vitro (Hausott et al., 2012 [12]). In this study, we applied leupeptin (2mg/ml) directly to collagen-filled nerve conduits in the rat sciatic nerve transection model. Analysis of myelinated axons and retrogradely labeled motoneurons as well as functional 'CatWalk' video analysis did not reveal significant differences between vehicle controls and leupeptin treated animals. Therefore, leupeptin does not improve nerve regeneration via protease inhibition in regrowing axons or in surrounding Schwann cells following a single application to a peripheral nerve conduit suggesting indirect effects on motor endplate integrity if applied systemically. PMID:24631569

  3. Fbxw7 Limits Myelination by Inhibiting mTOR Signaling

    PubMed Central

    Kearns, Christina A.; Ravanelli, Andrew M.; Cooper, Kirsten

    2015-01-01

    An important characteristic of vertebrate CNS development is the formation of specific amounts of insulating myelin membrane on axons. CNS myelin is produced by oligodendrocytes, glial cells that extend multiple membrane processes to wrap multiple axons. Recent data have shown that signaling mediated by the mechanistic target of rapamycin (mTOR) serine/threonine kinase promotes myelination, but factors that regulate mTOR activity for myelination remain poorly defined. Through a forward genetic screen in zebrafish, we discovered that mutation of fbxw7, which encodes the substrate recognition subunit of a SCF ubiquitin ligase that targets proteins for degradation, causes hypermyelination. Among known Fbxw7 targets is mTOR. Here, we provide evidence that mTOR signaling activity is elevated in oligodendrocyte lineage cells of fbxw7 mutant zebrafish larvae. Both genetic and pharmacological inhibition of mTOR function suppressed the excess myelin gene expression resulting from loss of Fbxw7 function, indicating that mTOR is a functionally relevant target of Fbxw7 in oligodendrocytes. fbxw7 mutant larvae wrapped axons with more myelin membrane than wild-type larvae and oligodendrocyte-specific expression of dominant-negative Fbxw7 produced longer myelin sheaths. Our data indicate that Fbxw7 limits the myelin-promoting activity of mTOR, thereby serving as an important brake on developmental myelination. SIGNIFICANCE STATEMENT Myelin, a specialized, proteolipid-rich membrane that ensheaths and insulates nerve fibers, facilitates the rapid conduction of electrical impulses over long distances. Abnormalities in myelin formation or maintenance result in intellectual and motor disabilities, raising a need for therapeutic strategies designed to promote myelination. The mTOR kinase is a powerful driver of myelination, but the mechanisms that regulate mTOR function in myelination are not well understood. Our studies reveal that Fbxw7, a subunit of a ubiquitin ligase that targets

  4. Regulation of conduction time along axons.

    PubMed

    Seidl, A H

    2014-09-12

    Timely delivery of information is essential for proper functioning of the nervous system. Precise regulation of nerve conduction velocity is needed for correct exertion of motor skills, sensory integration and cognitive functions. In vertebrates, the rapid transmission of signals along nerve fibers is made possible by the myelination of axons and the resulting saltatory conduction in between nodes of Ranvier. Myelin is a specialization of glia cells and is provided by oligodendrocytes in the central nervous system. Myelination not only maximizes conduction velocity, but also provides a means to systematically regulate conduction times in the nervous system. Systematic regulation of conduction velocity along axons, and thus systematic regulation of conduction time in between neural areas, is a common occurrence in the nervous system. To date, little is understood about the mechanism that underlies systematic conduction velocity regulation and conduction time synchrony. Node assembly, internode distance (node spacing) and axon diameter - all parameters determining the speed of signal propagation along axons - are controlled by myelinating glia. Therefore, an interaction between glial cells and neurons has been suggested. This review summarizes examples of neural systems in which conduction velocity is regulated by anatomical variations along axons. While functional implications in these systems are not always clear, recent studies on the auditory system of birds and mammals present examples of conduction velocity regulation in systems with high temporal precision and a defined biological function. Together these findings suggest an active process that shapes the interaction between axons and myelinating glia to control conduction velocity along axons. Future studies involving these systems may provide further insight into how specific conduction times in the brain are established and maintained in development. Throughout the text, conduction velocity is used for the

  5. Entrapment in anti myelin-associated glycoprotein neuropathy.

    PubMed

    Faber, Catharina G; Notermans, Nicolette C; Wokke, John H J; Franssen, Hessel

    2009-04-01

    Anti-myelin associated glycoprotein (MAG) neuropathy is a chronic disorder in which IgM antibodies react with Schwann cell glycoproteins, including MAG and peripheral myelin protein 22 (PMP22). Nerve conduction studies show features of axon loss and predominantly distal slowing consistent with demyelination. Because a genetic loss of PMP22 function yields hereditary neuropathy with liability to pressure palsies (HNPP), loss of PMP22 function due to anti- MAG antibodies may result in increased sensitivity to entrapment. We investigated this by performing standardized electrophysiological studies in 16 patients with anti-MAG neuropathy and 16 disease controls with genetically confirmed HNPP. Disproportionate slowing relative to adjacent segments occurred in similar proportions of patients with anti-MAG neuropathy and HNPP, and was of the same magnitude in each group. Affected were the elbow, carpal tunnel and the wrist-hand segments of the median and ulnar nerves. However, in anti-MAG neuropathy as compared to HNPP, absolute values of distal motor latencies and conduction velocities outside entrapment sites were slower and amplitudes were lower. In conclusion, increased sensitivity for entrapment may occur in anti-MAG neuropathy and contribute to part of the nerve damage. PMID:19306083

  6. Blockade of Nogo receptor ligands promotes functional regeneration of sensory axons after dorsal root crush.

    PubMed

    Harvey, Pamela A; Lee, Daniel H S; Qian, Fang; Weinreb, Paul H; Frank, Eric

    2009-05-13

    A major impediment for regeneration of axons within the CNS is the presence of multiple inhibitory factors associated with myelin. Three of these factors bind to the Nogo receptor, NgR, which is expressed on axons. Administration of exogenous blockers of NgR or NgR ligands promotes the regeneration of descending axonal projections after spinal cord hemisection. A more detailed analysis of CNS regeneration can be made by examining the growth of specific classes of sensory axons into the spinal cord after dorsal root crush injury. In this study, we assessed whether administration of a soluble peptide fragment of the NgR (sNgR) that binds to and blocks all three NgR ligands can promote regeneration after brachial dorsal root crush in adult rats. Intraventricular infusion of sNgR for 1 month results in extensive regrowth of myelinated sensory axons into the white and gray matter of the dorsal spinal cord, but unmyelinated sensory afferents do not regenerate. In concert with the anatomical growth of sensory axons into the cord, there is a gradual restoration of synaptic function in the denervated region, as revealed by extracellular microelectrode recordings from the spinal gray matter in response to stimulation of peripheral nerves. These positive synaptic responses are correlated with substantial improvements in use of the forelimb, as assessed by paw preference, paw withdrawal to tactile stimuli and the ability to grasp. These results suggest that sNgR may be a potential therapy for restoring sensory function after injuries to sensory roots. PMID:19439606

  7. Support of Nerve Conduction by Respiring Myelin Sheath: Role of Connexons.

    PubMed

    Ravera, Silvia; Bartolucci, Martina; Adriano, Enrico; Garbati, Patrizia; Ferrando, Sara; Ramoino, Paola; Calzia, Daniela; Morelli, Alessandro; Balestrino, Maurizio; Panfoli, Isabella

    2016-05-01

    Recently, we have demonstrated that myelin conducts an extramitochondrial oxidative phosphorylation, hypothesizing a novel supportive role for myelin in favor of the axon. We have also hypothesized that the ATP produced in myelin could be transferred thought gap junctions. In this work, by biochemical, immunohistochemical, and electrophysiological techniques, the existence of a connection among myelin to the axon was evaluated, to understand how ATP could be transferred from sheath to the axoplasm. Data confirm a functional expression of oxidative phosphorylation in isolated myelin. Moreover, WB and immunohistochemistry on optic nerve slices show that connexins 32 and 43 are present in myelin and colocalize with myelin basic protein. Interestingly, addition of carbenoxolone or oleamide, two gap junction blockers, causes a decrease in oxidative metabolism in purified myelin, but not in mitochondria. Similar effects were observed on conduction speed in hippocampal Schaffer collateral, in the presence of oleamide. Confocal analysis of optic nerve slices showed that lucifer yellow (that only passes through aqueous pores) signal was found in both the sheath layers and the axoplasma. In the presence of oleamide, but not with oleic acid, signal significantly decreased in the sheath and was lost inside the axon. This suggests the existence of a link among myelin and axons. These results, while supporting the idea that ATP aerobically synthesized in myelin sheath could be transferred to the axoplasm through gap junctions, shed new light on the function of the sheath. PMID:26033217

  8. Individual Neuronal Subtypes Exhibit Diversity in CNS Myelination Mediated by Synaptic Vesicle Release.

    PubMed

    Koudelka, Sigrid; Voas, Matthew G; Almeida, Rafael G; Baraban, Marion; Soetaert, Jan; Meyer, Martin P; Talbot, William S; Lyons, David A

    2016-06-01

    Regulation of myelination by oligodendrocytes in the CNS has important consequences for higher-order nervous system function (e.g., [1-4]), and there is growing consensus that neuronal activity regulates CNS myelination (e.g., [5-9]) through local axon-oligodendrocyte synaptic-vesicle-release-mediated signaling [10-12]. Recent analyses have indicated that myelination along axons of distinct neuronal subtypes can differ [13, 14], but it is not known whether regulation of myelination by activity is common to all neuronal subtypes or only some. This limits insight into how specific neurons regulate their own conduction. Here, we use a novel fluorescent fusion protein reporter to study myelination along the axons of distinct neuronal subtypes over time in zebrafish. We find that the axons of reticulospinal and commissural primary ascending (CoPA) neurons are among the first myelinated in the zebrafish CNS. To investigate how activity regulates myelination by different neuronal subtypes, we express tetanus toxin (TeNT) in individual reticulospinal or CoPA neurons to prevent synaptic vesicle release. We find that the axons of individual tetanus toxin expressing reticulospinal neurons have fewer myelin sheaths than controls and that their myelin sheaths are 50% shorter than controls. In stark contrast, myelination along tetanus-toxin-expressing CoPA neuron axons is entirely normal. These results indicate that while some neuronal subtypes modulate myelination by synaptic vesicle release to a striking degree in vivo, others do not. These data have implications for our understanding of how different neurons regulate myelination and thus their own function within specific neuronal circuits. PMID:27161502

  9. Diminished Schwann cell repair responses underlie age-associated impaired axonal regeneration

    PubMed Central

    Painter, Michio W.; Brosius Lutz, Amanda; Cheng, Yung-Chih; Latremoliere, Alban; Duong, Kelly; Miller, Christine M.; Posada, Sean; Cobos, Enrique J.; Zhang, Alice X.; Wagers, Amy J.; Havton, Leif A.; Barres, Ben; Omura, Takao

    2014-01-01

    SUMMARY The regenerative capacity of the peripheral nervous system declines with age. Why this occurs, however, is unknown. We demonstrate that 24-month old mice exhibit an impairment of functional recovery after nerve injury compared to 2-month old animals. We find no difference in the intrinsic growth capacity between aged and young sensory neurons in vitro nor in their ability to activate growth-associated transcriptional programs after injury. Instead, using age-mismatched nerve transplants in vivo, we show that the extent of functional recovery depends on the age of the nerve graft, and not the age of the host. Molecular interrogation of the sciatic nerve reveals that aged Schwann cells (SCs) fail to rapidly activate a transcriptional repair program after injury. Functionally, aged SCs exhibit impaired de-differentiation, myelin clearance and macrophage recruitment. These results suggest that the age-associated decline in axonal regeneration results from diminished Schwann cell plasticity, leading to slower myelin clearance. PMID:25033179

  10. Diminished Schwann cell repair responses underlie age-associated impaired axonal regeneration.

    PubMed

    Painter, Michio W; Brosius Lutz, Amanda; Cheng, Yung-Chih; Latremoliere, Alban; Duong, Kelly; Miller, Christine M; Posada, Sean; Cobos, Enrique J; Zhang, Alice X; Wagers, Amy J; Havton, Leif A; Barres, Ben; Omura, Takao; Woolf, Clifford J

    2014-07-16

    The regenerative capacity of the peripheral nervous system declines with age. Why this occurs, however, is unknown. We demonstrate that 24-month-old mice exhibit an impairment of functional recovery after nerve injury compared to 2-month-old animals. We find no difference in the intrinsic growth capacity between aged and young sensory neurons in vitro or in their ability to activate growth-associated transcriptional programs after injury. Instead, using age-mismatched nerve transplants in vivo, we show that the extent of functional recovery depends on the age of the nerve graft, and not the age of the host. Molecular interrogation of the sciatic nerve reveals that aged Schwann cells (SCs) fail to rapidly activate a transcriptional repair program after injury. Functionally, aged SCs exhibit impaired dedifferentiation, myelin clearance, and macrophage recruitment. These results suggest that the age-associated decline in axonal regeneration results from diminished Schwann cell plasticity, leading to slower myelin clearance. PMID:25033179

  11. CNS Myelin Sheath Lengths Are an Intrinsic Property of Oligodendrocytes

    PubMed Central

    Bechler, Marie E.; Byrne, Lauren; ffrench-Constant, Charles

    2015-01-01

    Summary Since Río-Hortega’s description of oligodendrocyte morphologies nearly a century ago, many studies have observed myelin sheath-length diversity between CNS regions [1–3]. Myelin sheath length directly impacts axonal conduction velocity by influencing the spacing between nodes of Ranvier. Such differences likely affect neural signal coordination and synchronization [4]. What accounts for regional differences in myelin sheath lengths is unknown; are myelin sheath lengths determined solely by axons or do intrinsic properties of different oligodendrocyte precursor cell populations affect length? The prevailing view is that axons provide molecular cues necessary for oligodendrocyte myelination and appropriate sheath lengths. This view is based upon the observation that axon diameters correlate with myelin sheath length [1, 5, 6], as well as reports that PNS axonal neuregulin-1 type III regulates the initiation and properties of Schwann cell myelin sheaths [7, 8]. However, in the CNS, no such instructive molecules have been shown to be required, and increasing in vitro evidence supports an oligodendrocyte-driven, neuron-independent ability to differentiate and form initial sheaths [9–12]. We test this alternative signal-independent hypothesis—that variation in internode lengths reflects regional oligodendrocyte-intrinsic properties. Using microfibers, we find that oligodendrocytes have a remarkable ability to self-regulate the formation of compact, multilamellar myelin and generate sheaths of physiological length. Our results show that oligodendrocytes respond to fiber diameters and that spinal cord oligodendrocytes generate longer sheaths than cortical oligodendrocytes on fibers, co-cultures, and explants, revealing that oligodendrocytes have regional identity and generate different sheath lengths that mirror internodes in vivo. PMID:26320951

  12. Regeneration of diabetic axons is enhanced by selective knockdown of the PTEN gene.

    PubMed

    Singh, Bhagat; Singh, Vandana; Krishnan, Anand; Koshy, Kurien; Martinez, Jose A; Cheng, Chu; Almquist, Chris; Zochodne, Douglas W

    2014-04-01

    Diabetes mellitus renders both widespread and localized irreversible damage to peripheral axons while imposing critical limitations on their ability to regenerate. A major failure of regenerative capacity thereby imposes a 'double hit' in diabetic patients who frequently develop focal neuropathies such as carpal tunnel syndrome in addition to generalized diffuse polyneuropathy. The mechanisms of diabetic neuron regenerative failure have been speculative and few approaches have offered therapeutic opportunities. In this work we identify an unexpected but major role for PTEN upregulation in diabetic peripheral neurons in attenuating axon regrowth. In chronic diabetic neuropathy models in mice, we identified significant PTEN upregulation in peripheral sensory neurons of messenger RNA and protein compared to littermate controls. In vitro, sensory neurons from these mice responded to PTEN knockdown with substantial rises in neurite outgrowth and branching. To test regenerative plasticity in a chronic diabetic model with established neuropathy, we superimposed an additional focal sciatic nerve crush injury and assessed morphological, electrophysiological and behavioural recovery. Knockdown of PTEN in dorsal root ganglia ipsilateral to the side of injury was achieved using a unique form of non-viral short interfering RNA delivery to the ipsilateral nerve injury site and paw. In comparison with scrambled sequence control short interfering RNA, PTEN short interfering RNA improved several facets of regeneration: recovery of compound muscle action potentials, reflecting numbers of reconnected motor axons to endplates, conduction velocities of both motor and sensory axons, reflecting their maturation during regrowth, numbers and calibre of regenerating myelinated axons distal to the injury site, reinnervation of the skin by unmyelinated epidermal axons and recovery of mechanical sensation. Collectively, these findings identify a novel therapeutic approach, potentially

  13. CNS myelin wrapping is driven by actin disassembly.

    PubMed

    Zuchero, J Bradley; Fu, Meng-Meng; Sloan, Steven A; Ibrahim, Adiljan; Olson, Andrew; Zaremba, Anita; Dugas, Jason C; Wienbar, Sophia; Caprariello, Andrew V; Kantor, Christopher; Leonoudakis, Dmitri; Leonoudakus, Dmitri; Lariosa-Willingham, Karen; Kronenberg, Golo; Gertz, Karen; Soderling, Scott H; Miller, Robert H; Barres, Ben A

    2015-07-27

    Myelin is essential in vertebrates for the rapid propagation of action potentials, but the molecular mechanisms driving its formation remain largely unknown. Here we show that the initial stage of process extension and axon ensheathment by oligodendrocytes requires dynamic actin filament assembly by the Arp2/3 complex. Unexpectedly, subsequent myelin wrapping coincides with the upregulation of actin disassembly proteins and rapid disassembly of the oligodendrocyte actin cytoskeleton and does not require Arp2/3. Inducing loss of actin filaments drives oligodendrocyte membrane spreading and myelin wrapping in vivo, and the actin disassembly factor gelsolin is required for normal wrapping. We show that myelin basic protein, a protein essential for CNS myelin wrapping whose role has been unclear, is required for actin disassembly, and its loss phenocopies loss of actin disassembly proteins. Together, these findings provide insight into the molecular mechanism of myelin wrapping and identify it as an actin-independent form of mammalian cell motility. PMID:26166300

  14. Social Experience-Dependent Myelination: An Implication for Psychiatric Disorders

    PubMed Central

    Toritsuka, Michihiro; Kishimoto, Toshifumi

    2015-01-01

    Myelination is one of the strategies to promote the conduction velocity of axons in order to adjust to evolving environment in vertebrates. It has been shown that myelin formation depends on genetic programing and experience, including multiple factors, intracellular and extracellular molecules, and neuronal activities. Recently, accumulating studies have shown that myelination in the central nervous system changes more dynamically in response to neuronal activities and experience than expected. Among experiences, social experience-dependent myelination draws attention as one of the critical pathobiologies of psychiatric disorders. In this review, we summarize the mechanisms of neuronal activity-dependent and social experience-dependent myelination and discuss the contribution of social experience-dependent myelination to the pathology of psychiatric disorders. PMID:26078885

  15. Bioenergetic deficits in peripheral nerve sensory axons during chemotherapy-induced neuropathic pain resulting from peroxynitrite-mediated post-translational nitration of mitochondrial superoxide dismutase

    PubMed Central

    Janes, Kali; Doyle, Timothy; Bryant, Leesa; Esposito, Emanuela; Cuzzocrea, Salvatore; Ryerse, Jan; Bennett, Gary J.; Salvemini, Daniela

    2016-01-01

    Many of the widely used anticancer drugs induce dose-limiting peripheral neuropathies that undermine their therapeutic efficacy. Animal models of chemotherapy-induced painful peripheral neuropathy (CIPN) evoked by a variety of drug classes, including taxanes, vinca alkaloids, platinum-complexes, and proteasome-inhibitors, suggest that the common underlying mechanism in the development of these neuropathies is mitotoxicity in primary nerve sensory axons (PNSAs) arising from reduced mitochondrial bioenergetics [eg adenosine triphosphate (ATP) production deficits due to compromised respiratory complex I and II activity]. The causative mechanisms of this mitotoxicity remain poorly defined. However, peroxynitrite, an important pro-nociceptive agent, has been linked to mitotoxicity in several disease states and may also drive the mitotoxicity associated with CIPN. Our findings reveal that the development of mechano-hypersensitivity induced by paclitaxel, oxaliplatin, and bortezomib was prevented by administration of the peroxynitrite decomposition catalyst Mn(III) 5,10,15,20-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTE-2-PyP5+) without interfering with their anti-tumor effects. Peak CIPN was associated with the nitration and inactivation of superoxide dismutase in the mitochondria, but not in the cytosol, as well as a significant decrease in ATP production within the PNSAs; all of these events were attenuated by MnTE-2-PyP5+. Our results provide continued support for the role of mitotoxicity in the development of CIPN across chemotherapeutic drug classes, and identify peroxynitrite as a key mediator in these processes, thereby providing the rationale towards development of “peroxynitrite-targeted” therapeutics for CIPN. PMID:23891899

  16. CFTR-deficient pigs display peripheral nervous system defects at birth

    PubMed Central

    Reznikov, Leah R.; Dong, Qian; Chen, Jeng-Haur; Moninger, Thomas O.; Park, Jung Min; Zhang, Yuzhou; Hildebrand, Michael S.; Smith, Richard J. H.; Randak, Christoph O.; Stoltz, David A.; Welsh, Michael J.

    2013-01-01

    Peripheral nervous system abnormalities, including neuropathy, have been reported in people with cystic fibrosis. These abnormalities have largely been attributed to secondary manifestations of the disease. We tested the hypothesis that disruption of the cystic fibrosis transmembrane conductance regulator (CFTR) gene directly influences nervous system function by studying newborn CFTR−/− pigs. We discovered CFTR expression and activity in Schwann cells, and loss of CFTR caused ultrastructural myelin sheath abnormalities similar to those in known neuropathies. Consistent with neuropathic changes, we found increased transcripts for myelin protein zero, a gene that, when mutated, can cause axonal and/or demyelinating neuropathy. In addition, axon density was reduced and conduction velocities of the trigeminal and sciatic nerves were decreased. Moreover, in vivo auditory brainstem evoked potentials revealed delayed conduction of the vestibulocochlear nerve. Our data suggest that loss of CFTR directly alters Schwann cell function and that some nervous system defects in people with cystic fibrosis are likely primary. PMID:23382208

  17. CFTR-deficient pigs display peripheral nervous system defects at birth.

    PubMed

    Reznikov, Leah R; Dong, Qian; Chen, Jeng-Haur; Moninger, Thomas O; Park, Jung Min; Zhang, Yuzhou; Du, Jianyang; Hildebrand, Michael S; Smith, Richard J H; Randak, Christoph O; Stoltz, David A; Welsh, Michael J

    2013-02-19

    Peripheral nervous system abnormalities, including neuropathy, have been reported in people with cystic fibrosis. These abnormalities have largely been attributed to secondary manifestations of the disease. We tested the hypothesis that disruption of the cystic fibrosis transmembrane conductance regulator (CFTR) gene directly influences nervous system function by studying newborn CFTR(-/-) pigs. We discovered CFTR expression and activity in Schwann cells, and loss of CFTR caused ultrastructural myelin sheath abnormalities similar to those in known neuropathies. Consistent with neuropathic changes, we found increased transcripts for myelin protein zero, a gene that, when mutated, can cause axonal and/or demyelinating neuropathy. In addition, axon density was reduced and conduction velocities of the trigeminal and sciatic nerves were decreased. Moreover, in vivo auditory brainstem evoked potentials revealed delayed conduction of the vestibulocochlear nerve. Our data suggest that loss of CFTR directly alters Schwann cell function and that some nervous system defects in people with cystic fibrosis are likely primary. PMID:23382208

  18. Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism.

    PubMed

    Saab, Aiman S; Tzvetavona, Iva D; Trevisiol, Andrea; Baltan, Selva; Dibaj, Payam; Kusch, Kathrin; Möbius, Wiebke; Goetze, Bianka; Jahn, Hannah M; Huang, Wenhui; Steffens, Heinz; Schomburg, Eike D; Pérez-Samartín, Alberto; Pérez-Cerdá, Fernando; Bakhtiari, Davood; Matute, Carlos; Löwel, Siegrid; Griesinger, Christian; Hirrlinger, Johannes; Kirchhoff, Frank; Nave, Klaus-Armin

    2016-07-01

    Oligodendrocytes make myelin and support axons metabolically with lactate. However, it is unknown how glucose utilization and glycolysis are adapted to the different axonal energy demands. Spiking axons release glutamate and oligodendrocytes express NMDA receptors of unknown function. Here we show that the stimulation of oligodendroglial NMDA receptors mobilizes glucose transporter GLUT1, leading to its incorporation into the myelin compartment in vivo. When myelinated optic nerves from conditional NMDA receptor mutants are challenged with transient oxygen-glucose deprivation, they show a reduced functional recovery when returned to oxygen-glucose but are indistinguishable from wild-type when provided with oxygen-lactate. Moreover, the functional integrity of isolated optic nerves, which are electrically silent, is extended by preincubation with NMDA, mimicking axonal activity, and shortened by NMDA receptor blockers. This reveals a novel aspect of neuronal energy metabolism in which activity-dependent glutamate release enhances oligodendroglial glucose uptake and glycolytic support of fast spiking axons. PMID:27292539

  19. Dimethyl Fumarate Ameliorates Lewis Rat Experimental Autoimmune Neuritis and Mediates Axonal Protection

    PubMed Central

    Pitarokoili, Kalliopi; Ambrosius, Björn; Meyer, Daniela; Schrewe, Lisa; Gold, Ralf

    2015-01-01

    Background Dimethyl fumarate is an immunomodulatory and neuroprotective drug, approved recently for the treatment of relapsing-remitting multiple sclerosis. In view of the limited therapeutic options for human acute and chronic polyneuritis, we used the animal model of experimental autoimmune neuritis in the Lewis rat to study the effects of dimethyl fumarate on autoimmune inflammation and neuroprotection in the peripheral nervous system. Methods and Findings Experimental autoimmune neuritis was induced by immunization with the neuritogenic peptide (amino acids 53–78) of P2 myelin protein. Preventive treatment with dimethyl fumarate given at 45 mg/kg twice daily by oral gavage significantly ameliorated clinical neuritis by reducing demyelination and axonal degeneration in the nerve conduction studies. Histology revealed a significantly lower degree of inflammatory infiltrates in the sciatic nerves. In addition, we detected a reduction of early signs of axonal degeneration through a reduction of amyloid precursor protein expressed in axons of the peripheral nerves. This reduction correlated with an increase of nuclear factor (erythroid derived 2)-related factor 2 positive axons, supporting the neuroprotective potential of dimethyl fumarate. Furthermore, nuclear factor (erythroid derived 2)-related factor 2 expression in Schwann cells was only rarely detected and there was no increase of Schwann cells death during EAN. Conclusions We conclude that immunmodulatory and neuroprotective dimethyl fumarate may represent an innovative therapeutic option in human autoimmune neuropathies. PMID:26618510

  20. Methylcobalamin Facilitates Collateral Sprouting of Donor Axons and Innervation of Recipient Muscle in End-to-Side Neurorrhaphy in Rats

    PubMed Central

    Liao, Wen-Chieh; Wang, Yueh-Jan; Huang, Min-Chuan; Tseng, Guo-Fang

    2013-01-01

    Using ulnar nerve as donor and musculocutaneous nerve as recipient we found earlier that end-to-side neurorrhaphy resulted in weak functional reinnervation after lengthy survival. End-to-side neurorrhaphy however is the sole choice of nerve repair at times and has the advantage of conserving donor nerve function. Here, we investigated whether myelination-enhancing agent methylcobalamin and motoneuron trophic factor pleiotrophin enhances the recovery after end-to-side neurorrhaphy. Methylcobalamin significantly increased the expression of growth associated protein 43 and S100 protein and βIII tubulin in musculocutaneous nerve 1 month after neurorrhaphy suggesting the ingrowth of ulnar axonal sprouts in reactive Schwann cell environment. Upper limb functional test, compound muscle action potential measurements, motor end plate counts, and axon and myelin analyses showed that methylcobalamin treatment alone or with pleiotrophin improved the recovery significantly, 3 and 6 months post-surgery. There were fewer axons, closer in number to that of the intact recipient nerve, found in the distal repaired nerve of the methylcobalamin-treated than that of the vehicle control, suggesting that methylcobalamin facilitates axonal maturation and eliminates supernumerary sprouts. In conclusion, our results showed that methylcobalamin does indeed enhance the recovery of peripheral nerve repaired in end-to-side configuration. PMID:24098787

  1. Giant axonal neuropathy: MRS findings.

    PubMed

    Alkan, Alpay; Kutlu, Ramazan; Sigirci, Ahmet; Baysal, Tamer; Altinok, Tayfun; Yakinci, Cengiz

    2003-10-01

    Giant axonal neuropathy (GAN) is a rare genetic disease of childhood involving the central and peripheral nervous systems. Axonal loss with several giant axons filled with neurofilaments is the main histopathological feature of peripheral nerve biopsies in this disease. Routine neuroimaging studies reveal diffuse hyperintensities in cerebral and cerebellar white matter. In this case report, the authors present the brain magnetic resonance spectroscopic features (normal N-acetylaspartate/creatine and increased choline/creatine and myoinositol/creatine ratios), which might indicate the absence of neuroaxonal loss and the presence of significant demyelination and glial proliferation in white matter, of an 11-year-old boy diagnosed with GAN. PMID:14569833

  2. Contribution of glycogen in supporting axon conduction in the peripheral and central nervous systems: the role of lactate

    PubMed Central

    Chambers, Tom W.; Daly, Timothy P.; Hockley, Adam; Brown, Angus M.

    2014-01-01

    The role of glycogen in the central nervous system is intimately linked with the glycolytic pathway. Glycogen is synthesized from glucose, the primary substrate for glycolysis, and degraded to glucose-6-phosphate. The metabolic cost of shunting glucose via glycogen exceeds that of simple phosphorylation of glucose to glucose-6-phosphate by hexokinase; thus, there must be a metabolic advantage in utilizing this shunt pathway. The dogmatic view of glycogen as a storage depot persists, based on initial descriptions of glycogen supporting neural function in the face of aglycemia. The variable latency to conduction failure, dependent upon tissue glycogen levels, provided convincing evidence of the role played by glycogen in supporting neural function. Glycogen is located predominantly in astrocytes in the central nervous system, thus for glycogen to benefit neural elements, intercellular metabolic communication must exist in the form of astrocyte to neuron substrate transfer. Experimental evidence supports a model where glycogen is metabolized to lactate in astrocytes, with cellular expression of monocarboxylate transporters and enzymes appropriately located for lactate shuttling between astrocytes and neural elements, where lactate acts as a substrate for oxidative metabolism. Biosensor recordings have demonstrated a significant steady concentration of lactate present on the periphery of both central white matter and peripheral nerve under unstimulated baseline conditions, indicating continuous cellular efflux of lactate to the interstitium. The existence of this lactate pool argues we must reexamine the “on demand” shuttling of lactate between cellular elements, and suggests continuous lactate efflux surplus to immediate neural requirements. PMID:25505379

  3. Association of TAG-1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers.

    PubMed

    Traka, Maria; Goutebroze, Laurence; Denisenko, Natalia; Bessa, Maria; Nifli, Artemisia; Havaki, Sophia; Iwakura, Yoichiro; Fukamauchi, Fumihiko; Watanabe, Kazutada; Soliven, Betty; Girault, Jean-Antoine; Karagogeos, Domna

    2003-09-15

    Myelination results in a highly segregated distribution of axonal membrane proteins at nodes of Ranvier. Here, we show the role in this process of TAG-1, a glycosyl-phosphatidyl-inositol-anchored cell adhesion molecule. In the absence of TAG-1, axonal Caspr2 did not accumulate at juxtaparanodes, and the normal enrichment of shaker-type K+ channels in these regions was severely disrupted, in the central and peripheral nervous systems. In contrast, the localization of protein 4.1B, an axoplasmic partner of Caspr2, was only moderately altered. TAG-1, which is expressed in both neurons and glia, was able to associate in cis with Caspr2 and in trans with itself. Thus, a tripartite intercellular protein complex, comprised of these two proteins, appears critical for axo-glial contacts at juxtaparanodes. This complex is analogous to that described previously at paranodes, suggesting that similar molecules are crucial for different types of axo-glial interactions. PMID:12975355

  4. Association of TAG-1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers

    PubMed Central

    Traka, Maria; Goutebroze, Laurence; Denisenko, Natalia; Bessa, Maria; Nifli, Artemisia; Havaki, Sophia; Iwakura, Yoichiro; Fukamauchi, Fumihiko; Watanabe, Kazutada; Soliven, Betty; Girault, Jean-Antoine; Karagogeos, Domna

    2003-01-01

    Myelination results in a highly segregated distribution of axonal membrane proteins at nodes of Ranvier. Here, we show the role in this process of TAG-1, a glycosyl-phosphatidyl-inositol–anchored cell adhesion molecule. In the absence of TAG-1, axonal Caspr2 did not accumulate at juxtaparanodes, and the normal enrichment of shaker-type K+ channels in these regions was severely disrupted, in the central and peripheral nervous systems. In contrast, the localization of protein 4.1B, an axoplasmic partner of Caspr2, was only moderately altered. TAG-1, which is expressed in both neurons and glia, was able to associate in cis with Caspr2 and in trans with itself. Thus, a tripartite intercellular protein complex, comprised of these two proteins, appears critical for axo–glial contacts at juxtaparanodes. This complex is analogous to that described previously at paranodes, suggesting that similar molecules are crucial for different types of axo–glial interactions. PMID:12975355

  5. The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination.

    PubMed

    Hussain, Rashad; Ghoumari, Abdel M; Bielecki, Bartosz; Steibel, Jérôme; Boehm, Nelly; Liere, Philippe; Macklin, Wendy B; Kumar, Narender; Habert, René; Mhaouty-Kodja, Sakina; Tronche, François; Sitruk-Ware, Regine; Schumacher, Michael; Ghandour, M Said

    2013-01-01

    Myelin regeneration is a major therapeutic goal in demyelinating diseases, and the failure to remyelinate rapidly has profound consequences for the health of axons and for brain function. However, there is no efficient treatment for stimulating myelin repair, and current therapies are limited to anti-inflammatory agents. Males are less likely to develop multiple sclerosis than females, but often have a more severe disease course and reach disability milestones at an earlier age than females, and these observations have spurred interest in the potential protective effects of androgens. Here, we demonstrate that testosterone treatment efficiently stimulates the formation of new myelin and reverses myelin damage in chronic demyelinated brain lesions, resulting from the long-term administration of cuprizone, which is toxic for oligodendrocytes. In addition to the strong effect of testosterone on myelin repair, the number of activated astrocytes and microglial cells returned to low control levels, indicating a reduction of neuroinflammatory responses. We also identify the neural androgen receptor as a novel therapeutic target for myelin recovery. After the acute demyelination of cerebellar slices in organotypic culture, the remyelinating actions of testosterone could be mimicked by 5α-dihydrotestosterone, a metabolite that is not converted to oestrogens, and blocked by the androgen receptor antagonist flutamide. Testosterone treatment also failed to promote remyelination after chronic cuprizone-induced demyelination in mice with a non-functional androgen receptor. Importantly, testosterone did not stimulate the formation of new myelin sheaths after specific knockout of the androgen receptor in neurons and macroglial cells. Thus, the neural brain androgen receptor is required for the remyelination effect of testosterone, whereas the presence of the receptor in microglia and in peripheral tissues is not sufficient to enhance remyelination. The potent synthetic

  6. c-Jun activation in Schwann cells protects against loss of sensory axons in inherited neuropathy

    PubMed Central

    Hantke, Janina; Carty, Lucy; Wagstaff, Laura J.; Turmaine, Mark; Wilton, Daniel K.; Quintes, Susanne; Koltzenburg, Martin; Baas, Frank; Mirsky, Rhona

    2014-01-01

    Charcot–Marie–Tooth disease type 1A is the most frequent inherited peripheral neuropathy. It is generally due to heterozygous inheritance of a partial chromosomal duplication resulting in over-expression of PMP22. A key feature of Charcot–Marie–Tooth disease type 1A is secondary death of axons. Prevention of axonal loss is therefore an important target of clinical intervention. We have previously identified a signalling mechanism that promotes axon survival and prevents neuron death in mechanically injured peripheral nerves. This work suggested that Schwann cells respond to injury by activating/enhancing trophic support for axons through a mechanism that depends on upregulation of the transcription factor c-Jun in Schwann cells, resulting in the sparing of axons that would otherwise die. As c-Jun orchestrates Schwann cell support for distressed neurons after mechanical injury, we have now asked: do Schwann cells also activate a c-Jun dependent neuron-supportive programme in inherited demyelinating disease? We tested this by using the C3 mouse model of Charcot–Marie–Tooth disease type 1A. In line with our previous findings in humans with Charcot–Marie–Tooth disease type 1A, we found that Schwann cell c-Jun was elevated in (uninjured) nerves of C3 mice. We determined the impact of this c-Jun activation by comparing C3 mice with double mutant mice, namely C3 mice in which c-Jun had been conditionally inactivated in Schwann cells (C3/Schwann cell-c-Jun−/− mice), using sensory-motor tests and electrophysiological measurements, and by counting axons in proximal and distal nerves. The results indicate that c-Jun elevation in the Schwann cells of C3 nerves serves to prevent loss of myelinated sensory axons, particularly in distal nerves, improve behavioural symptoms, and preserve F-wave persistence. This suggests that Schwann cells have two contrasting functions in Charcot–Marie–Tooth disease type 1A: on the one hand they are the genetic source of

  7. Microfluidic control of axonal guidance

    NASA Astrophysics Data System (ADS)

    Gu, Ling; Black, Bryan; Ordonez, Simon; Mondal, Argha; Jain, Ankur; Mohanty, Samarendra

    2014-10-01

    The precision of axonal pathfinding and the accurate formation of functional neural circuitry are crucial for an organism during development as well as during adult central and peripheral nerve regeneration. While chemical cues are believed to be primarily responsible for axonal pathfinding, we hypothesize that forces due to localized fluid flow may directly affect neuronal guidance during early organ development. Here, we report direct evidence of fluid flow influencing axonal migration, producing turning angles of up to 90°. Microfluidic flow simulations indicate that an axon may experience significant bending force due to cross-flow, which may contribute to the observed axonal turning. This method of flow-based guidance was successfully used to fasciculate one advancing axon onto another, showcasing the potential of this technique to be used for the formation of in vitro neuronal circuits.

  8. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves

    PubMed Central

    Gomez-Sanchez, Jose A.; Carty, Lucy; Iruarrizaga-Lejarreta, Marta; Palomo-Irigoyen, Marta; Varela-Rey, Marta; Griffith, Megan; Hantke, Janina; Macias-Camara, Nuria; Azkargorta, Mikel; Aurrekoetxea, Igor; De Juan, Virginia Gutiérrez; Jefferies, Harold B.J.; Aspichueta, Patricia; Elortza, Félix; Aransay, Ana M.; Martínez-Chantar, María L.; Baas, Frank; Mato, José M.; Mirsky, Rhona

    2015-01-01

    Although Schwann cell myelin breakdown is the universal outcome of a remarkably wide range of conditions that cause disease or injury to peripheral nerves, the cellular and molecular mechanisms that make Schwann cell–mediated myelin digestion possible have not been established. We report that Schwann cells degrade myelin after injury by a novel form of selective autophagy, myelinophagy. Autophagy was up-regulated by myelinating Schwann cells after nerve injury, myelin debris was present in autophagosomes, and pharmacological and genetic inhibition of autophagy impaired myelin clearance. Myelinophagy was positively regulated by the Schwann cell JNK/c-Jun pathway, a central regulator of the Schwann cell reprogramming induced by nerve injury. We also present evidence that myelinophagy is defective in the injured central nervous system. These results reveal an important role for inductive autophagy during Wallerian degeneration, and point to potential mechanistic targets for accelerating myelin clearance and improving demyelinating disease. PMID:26150392

  9. Peripheral Facial Nerve Axotomy in Mice Causes Sprouting of Motor Axons Into Perineuronal Central White Matter: Time Course and Molecular Characterization

    PubMed Central

    Makwana, Milan; Werner, Alexander; Acosta-Saltos, Alejandro; Gonitel, Roman; Pararajasingham, Abirami; Ruff, Crystal; Rumajogee, Prakasham; Cuthill, Dan; Galiano, Mathias; Bohatschek, Marion; Wallace, Adam S; Anderson, Patrick N; Mayer, Ulrike; Behrens, Axel; Raivich, Gennadij

    2010-01-01

    Generation of new axonal sprouts plays an important role in neural repair. In the current study, we examined the appearance, composition and effects of gene deletions on intrabrainstem sprouts following peripheral facial nerve axotomy. Axotomy was followed by the appearance of galanin+ and calcitonin gene-related peptide (CGRP)+ sprouts peaking at day 14, matching both large, neuropeptide+ subpopulations of axotomized facial motoneurons, but with CGRP+ sprouts considerably rarer. Strong immunoreactivity for vesicular acetylcholine transporter (VAChT) and retrogradely transported MiniRuby following its application on freshly cut proximal facial nerve stump confirmed their axotomized motoneuron origin; the sprouts expressed CD44 and alpha7beta1 integrin adhesion molecules and grew apparently unhindered along neighboring central white matter tracts. Quantification of the galanin+ sprouts revealed a stronger response following cut compared with crush (day 7–14) as well as enhanced sprouting after recut (day 8 + 6 vs. 14; 14 + 8 vs. 22), arguing against delayed appearance of sprouting being the result of the initial phase of reinnervation. Sprouting was strongly diminished in brain Jun-deficient mice but enhanced in alpha7 null animals that showed apparently compensatory up-regulation in beta1, suggesting important regulatory roles for transcription factors and the sprout-associated adhesion molecules. Analysis of inflammatory stimuli revealed a 50% reduction 12–48 hours following systemic endotoxin associated with neural inflammation and a tendency toward more sprouts in TNFR1/2 null mutants (P = 10%) with a reduced inflammatory response, indicating detrimental effects of excessive inflammation. Moreover, the study points to the usefulness of the facial axotomy model in exploring physiological and molecular stimuli regulating central sprouting. J. Comp. Neurol. 518:699–721, 2010. © 2009 Wiley-Liss, Inc. PMID:20034058

  10. Localization of E-cadherin in peripheral glia after nerve injury and repair.

    PubMed

    Hasegawa, M; Seto, A; Uchiyama, N; Kida, S; Yamashima, T; Yamashita, J

    1996-04-01

    Peripheral nerve injury results in histological and histochemical changes in neurons and glia. We have recently found that Ca(2+)-dependent cell adhesion molecule E-cadherin plays an important role in the selective fasciculation of a particular subset of unmyelinated sensory fibers. In the present immunohistochemical and immunoblot analyses, the temporal profile of the subcellular expression of this molecule in spinal nerves was examined after crushing, transecting, or ligaturing the sciatic nerve in mice with special attention paid to E-cadherin expression in glial cells. After axotomy of the sciatic nerve, distal axons of the proximal stump and the fibers of the distal stump degenerated, but E-cadherin was still detectable at the outer mesaxons of the myelinated axons as long as they remained morphologically intact. Subsequently, Schwann cells proliferated and migrated to form Schwann cell columns (Büngner's bands) as initial responses to denervation, and expressed E-cadherin at their site of contact with each other and later with sprouting axons. At the initial stage of myelin formation, slender processes of a single Schwann cell interdigitated with an enveloped axons, and expressed E-cadherin at the contact site elaborated by a single Schwann cell. Immunoblot analysis on day 7 revealed that E-cadherin was detected in both the proximal nerve segments and the regenerative distal segments, but was negative in the degenerative distal segments. On the basis of present data, it is suggested that E-cadherin might be involved in the stabilization of the peripheral glial network which provides the guidance of sprouting axons and myelination. PMID:8786402

  11. Multiple functions of the paranodal junction of myelinated nerve fibers.

    PubMed

    Rosenbluth, Jack

    2009-11-15

    Myelin sheaths include an extraordinary structure, the "paranodal axoglial junction" (PNJ), which attaches the sheath to the axon at each end of each myelin segment. Its size is enormous and its structure unique. Here we review past and current studies showing that this junction can serve multiple functions in maintaining reliable saltatory conduction. The present evidence points to three functions in particular. 1) It seals the myelin sheath to the axon to prevent major shunting of nodal action currents beneath the myelin sheath while still leaving a narrow channel interconnecting the internodal periaxonal space with the perinodal space. This pathway represents a potential route through which juxtaparanodal and internodal channels can influence nodal activity and through which nutrients, such as glucose, and other metabolites can diffuse to and from the internodal periaxonal space. 2) It serves as a mechanism for maintaining discrete, differentiated axolemmal domains at and around the node of Ranvier by acting as a barrier to the lateral movement of ion channel complexes within the axolemma, thus concentrating voltage-gated sodium channels at the node and segregating fast voltage-gated potassium channels to the juxtaparanode under the myelin sheath. 3) It attaches the myelin sheath to the axon on either side of the node and can thus maintain nodal dimensions in the face of mechanical stresses associated with stretch or other local factors that might cause disjunction. It is therefore the likely means for maintaining constancy of nodal surface area and electrical parameters essential for consistency in conduction. PMID:19224642

  12. Transmission-line model for myelinated nerve fiber.

    PubMed

    Einziger, P; Livshitz, L; Mizrahi, J

    2005-01-01

    Herein, the well-known cable equation for non-myelinated axon model is extended analytically for myelinated axon formulation. The classical cable equation is thereby modified into a linear second order ordinary differential equation with periodic coefficient, known as Hill's equation. Hill's equation exhibits periodic solutions, known as Floquet's modes. The Floquet's modes are recognized as the nerve fiber activation modes, which are conventionally associated with the nonlinear Hodgkin-Huxley formulation. They can also be incorporated in our linear model. PMID:17281168

  13. Fusimotor axons in the kitten.

    PubMed

    Gregory, J E; Proske, U

    1986-11-01

    In kittens 1- to 23-days old growth of axons in the soleus nerve has been studied using the structural parameters nerve length, internodal length, and axonal diameter. In addition, single functional fusimotor axons were isolated in lumbosacral ventral roots, and the responses of muscle spindles in soleus were studied during fusimotor stimulation. While nerve length over the soleus nerve to lumbar spinal root increased from 41 to 76 mm during the 22 days, mean internodal length increased from 250 to 410 microns. Mean axon diameter increased from 2.1 to 4.1 microns. In the youngest animals values for both internodal length and axon diameter were distributed uniformly about the mean. From day 11 onward the distributions became bimodal, including a growing number of new axons in the small-myelinated range. Filaments of ventral root were isolated that on repetitive stimulation had a specific excitatory effect on the discharge of muscle spindles. The responses could be attributed to axons that were not associated with measurable tension and were therefore likely to be fusimotor fibers. Measurements of the conduction velocity of skeletomotor and fusimotor axons showed that conduction speed increased progressively with age for both groups, but the rate of increase was more than three times faster in the most rapidly conducting skeletomotor axons compared with the fusimotor axons. The distribution of conduction velocities for fusimotor fibers showed two peaks, one in the range typical for conduction in unmyelinated fibers, 0.5-1.0 m/s, the second at 3-4 m/s. The small number of values in the range of 1-2 m/s was attributed to the process of myelination. It is suggested that conduction speed increases discontinuously over this part of the range as impulse conduction changes from continuous propagation to saltatory transmission. Eighteen fusimotor axons could be classified as having either a static or a dynamic action on spindle discharge. Repetitive stimulation of fusimotor

  14. Evolution of the CNS myelin gene regulatory program.

    PubMed

    Li, Huiliang; Richardson, William D

    2016-06-15

    Myelin is a specialized subcellular structure that evolved uniquely in vertebrates. A myelinated axon conducts action potentials many times faster than an unmyelinated axon of the same diameter; for the same conduction speed, the unmyelinated axon would need a much larger diameter and volume than its myelinated counterpart. Hence myelin speeds information transfer and saves space, allowing the evolution of a powerful yet portable brain. Myelination in the central nervous system (CNS) is controlled by a gene regulatory program that features a number of master transcriptional regulators including Olig1, Olig2 and Myrf. Olig family genes evolved from a single ancestral gene in non-chordates. Olig2, which executes multiple functions with regard to oligodendrocyte identity and development in vertebrates, might have evolved functional versatility through post-translational modification, especially phosphorylation, as illustrated by its evolutionarily conserved serine/threonine phospho-acceptor sites and its accumulation of serine residues during more recent stages of vertebrate evolution. Olig1, derived from a duplicated copy of Olig2 in early bony fish, is involved in oligodendrocyte development and is critical to remyelination in bony vertebrates, but is lost in birds. The origin of Myrf orthologs might be the result of DNA integration between an invading phage or bacterium and an early protist, producing a fusion protein capable of self-cleavage and DNA binding. Myrf seems to have adopted new functions in early vertebrates - initiation of the CNS myelination program as well as the maintenance of mature oligodendrocyte identity and myelin structure - by developing new ways to interact with DNA motifs specific to myelin genes. This article is part of a Special Issue entitled SI: Myelin Evolution. PMID:26474911

  15. Correlation of peripheral innervation density and dorsal horn map scale.

    PubMed

    Wang, L; Millecchia, R; Brown, P B

    1997-08-01

    Dorsal horn map scale and peripheral innervation density were compared to test a hypothesized linear relationship. In anesthetized cats, low-threshold mechanoreceptive peripheral nerve innervation fields (IFs) were measured by outlining areas of skin from which action potentials could be elicited in cutaneous nerves. The same nerves were processed histologically and used to count myelinated axons. Innervation density for each nerve was calculated as number of axons divided by IF area. Single units were recorded throughout the hindlimb representation, in laminae III and IV. These data, combined with single-unit data from other animals and with cell counts in laminae III and IV, permitted estimation of numbers of cells whose receptive field centers fell in contiguous 1-cm bands from tips of toes to proximal thigh. A similar estimate was performed with the use of the nerve innervation data, so that peripheral innervation densities and map scales for the different 1-cm bands of skin could be compared. Correlation between the two was quite high (r = 0.8), and highly significant (P = 2.5 x 10(-7)). These results are consistent with a proposed developmental model in which map scale, peripheral innervation density, and reciprocal of dorsal horn cell receptive field size are mutually proportional, as a result of developmental mechanisms that produce constant divergence and convergence between primary afferent axons and dorsal horn cells. PMID:9307105

  16. Characterization of the Shark Myelin Po Protein

    PubMed Central

    Rotenstein, L.; Herath, K.; Gould, R.M.; de Bellard, M.E.

    2008-01-01

    Myelin, the insulating sheath made by extensive plasma membrane wrappings is dependent on the presence of highly adhesive molecules that keep the two sides of the membrane in tight contact. The Po glycoprotein (Po) is the major component of the peripheral nervous system (PNS) myelin of mammals. The exact role that Po protein has played in the evolution of myelin is still unclear, but several phylogenetic observations point to it as a crucial component in the development of myelin as a multi-lamellar membrane structure. Sharks, which appeared in evolution about 400 million years ago, are the first fully myelinated organisms. In this study we set out to investigate the expression pattern of shark myelin Po as a way of understanding how it might have played a role in the evolution of myelin in the central nervous system. We found that shark have more than two isoforms (32, 28 and 25kD), and that some of these might not be fully functional because they lack the domains known for Po homophilic adhesion. PMID:18635929

  17. The structural correlate of saltatory conduction along the Mauthner axon in the tench (Tinca tinca L.): identification of nodal equivalents at the axon collaterals.

    PubMed

    Yasargil, G M; Greeff, N G; Luescher, H R; Akert, K; Sandri, C

    1982-12-20

    The spiny collaterals of the Mauthner axon were reinvestigated in the tench (Tinca tinca L.) with the electron microscope and special staining procedures. These collaterals, as demonstrated by intraaxonal labelling with lucifer yellow, are more or less regularly spaced (100-300 micrometers) and make synaptic contacts with processes of spinal motoneurons and interneurons. The unmyelinated tips of the collaterals are further characterized by the following structural features: (1) an electron-dense undercoating of the axolemma, (2) a positive Prussian blue reaction of the inner surface of the axolemma following ferric ion-ferrocyanide staining (Waxman and Quick, '78a), (3) expanded extracellular spaces which react specifically to inorganic phosphate, metallic ions, and diaminobenzidine. All these properties are known to be shared by the axolemma of central and peripheral nodes of Ranvier. Previous studies from this laboratory have shown that the nerve impulse is propagated along the Mauthner axon in a saltatory mode. Since classical nodal gaps could not be identified within the myelin sheath of this giant fiber, it is concluded on the basis of the present findings that the unmyelinated tips of the spiny collaterals represent nodal equivalents, and thus provide the morphological substrate for the saltatory propagation of the nerve impulse along the Mauthner axon. The typical latency steps, as demonstrated in the latency plot of the longitudinal current signals (Greeff and Yasargil, '80), and the distances between the identified membrane specializations at the axon collaterals are consistent with this conclusion. PMID:7161418

  18. Neurofascins are required to establish axonal domains for saltatory conduction.

    PubMed

    Sherman, Diane L; Tait, Steven; Melrose, Shona; Johnson, Richard; Zonta, Barbara; Court, Felipe A; Macklin, Wendy B; Meek, Stephen; Smith, Andrew J H; Cottrell, David F; Brophy, Peter J

    2005-12-01

    Voltage-gated sodium channels are concentrated in myelinated nerves at the nodes of Ranvier flanked by paranodal axoglial junctions. Establishment of these essential nodal and paranodal domains is determined by myelin-forming glia, but the mechanisms are not clear. Here, we show that two isoforms of Neurofascin, Nfasc155 in glia and Nfasc186 in neurons, are required for the assembly of these specialized domains. In Neurofascin-null mice, neither paranodal adhesion junctions nor nodal complexes are formed. Transgenic expression of Nfasc155 in the myelinating glia of Nfasc-/- nerves rescues the axoglial adhesion complex by recruiting the axonal proteins Caspr and Contactin to the paranodes. However, in the absence of Nfasc186, sodium channels remain diffusely distributed along the axon. Our study shows that the two major Neurofascins play essential roles in assembling the nodal and paranodal domains of myelinated axons; therefore, they are essential for the transition to saltatory conduction in developing vertebrate nerves. PMID:16337912

  19. The formation of axonal caliber and nodes of Ranvier

    NASA Astrophysics Data System (ADS)

    Li, Yinyun; Jung, Peter; Brown, Anthony

    2013-03-01

    A remarkable feature of myelinated neurons is that their axons are constricted at the nodes of Ranvier. These are the locations where axons are directly exposed to the extracellular space and where the vast majority of the ion channels are located. These constrictions emerge during development and have been observed to reduce axonal cross sectional area by factors of more than 10. Combining fluorescent imaging methods with computational modeling, we describe how the nervous system regulates the local caliber of its axons through the regulation of the transport kinetics of its most important cytoskeletal elements, the neurofilaments, matching axon caliber and shape to its physiologic function. National Science Foundation IOS 1146789

  20. Changed distribution of sodium channels along demyelinated axons.

    PubMed

    England, J D; Gamboni, F; Levinson, S R; Finger, T E

    1990-09-01

    Voltage-gated sodium channels are largely localized to the nodes of Ranvier in myelinated axons, providing a physiological basis for saltatory conduction. What happens to these channels in demyelinated axons is not known with certainty. Experimentally demyelinated axons were examined by using a well-characterized, polyclonal antibody directed against sodium channels. Immunocytochemical and radioimmunoassay data were consistent with the distribution of an increased number of sodium channels along segments of previously internodal axon. These findings affirm the plasticity of sodium channels in demyelinated axolemma and may be relevant to understanding how axons recover conduction after demyelination. PMID:2168559

  1. Experimental diabetes in neonatal mice induces early peripheral sensorimotor neuropathy.

    PubMed

    Ariza, L; Pagès, G; García-Lareu, B; Cobianchi, S; Otaegui, P J; Ruberte, J; Chillón, M; Navarro, X; Bosch, A

    2014-08-22

    Animal models of diabetes do not reach the severity of human diabetic neuropathy but relatively mild neurophysiological deficits and minor morphometric changes. The lack of degenerative neuropathy in diabetic rodent models seems to be a consequence of the shorter length of the axons or the shorter animal life span. Diabetes-induced demyelination needs many weeks or even months before it can be evident by morphometrical analysis. In mice myelination of the peripheral nervous system starts at the prenatal period and it is complete several days after birth. Here we induced experimental diabetes to neonatal mice and we evaluated its effect on the peripheral nerve 4 and 8 weeks after diabetes induction. Neurophysiological values showed a decline in sensory nerve conduction velocity at both time-points. Morphometrical analysis of the tibial nerve demonstrated a decrease in the number of myelinated fibers, fiber size and myelin thickness at both time-points studied. Moreover, aldose reductase and poly(ADP-ribose) polymerase activities were increased even if the amount of the enzyme was not affected. Thus, type 1 diabetes in newborn mice induces early peripheral neuropathy and may be a good model to assay pharmacological or gene therapy strategies to treat diabetic neuropathy. PMID:24846610

  2. Inefficient clearance of myelin debris by microglia impairs remyelinating processes

    PubMed Central

    Lampron, Antoine; Larochelle, Antoine; Laflamme, Nathalie; Préfontaine, Paul; Plante, Marie-Michèle; Sánchez, Maria Gabriela; Yong, V. Wee; Stys, Peter K.; Tremblay, Marie-Ève

    2015-01-01

    An imbalance between remyelinating and demyelinating rates underlies degenerative processes in demyelinating diseases such as multiple sclerosis. An optimal therapeutic strategy would be to stimulate remyelination while limiting demyelination. Although accumulation of myelin debris impairs remyelination, the mechanisms regulating the clearance of such debris by mononuclear phagocytic cells are poorly understood. We demonstrate that after cuprizone intoxication, CCR2-dependent infiltration of mouse bone marrow–derived cells is abundant in demyelinating areas, but that these cells do not impact demyelination. However, in CX3CR1-deficient mice, the clearance of myelin debris by microglia was blocked greatly, affecting the integrity of the axon and myelin sheaths and thus preventing proper remyelination. These results highlight the crucial role played by CX3CR1 in myelin removal and show that there can be no efficient remyelination after a primary demyelinating insult if myelin clearance by microglia is impaired. PMID:25779633

  3. CSF myelin basic protein

    MedlinePlus

    CSF myelin basic protein is a test to measure the level of myelin basic protein (MBP) in the cerebrospinal fluid (CSF). The CSF ... less than 4 ng/mL of myelin basic protein in the CSF. Normal value ranges may vary ...

  4. Induction of myelination in the central nervous system by electrical activity.

    PubMed Central

    Demerens, C; Stankoff, B; Logak, M; Anglade, P; Allinquant, B; Couraud, F; Zalc, B; Lubetzki, C

    1996-01-01

    The oligodendrocyte is the myelin-forming cell in the central nervous system. Despite the close interaction between axons and oligodendrocytes, there is little evidence that neurons influence myelinogenesis. On the contrary, newly differentiated oligodendrocytes, which mature in culture in the total absence of neurons, synthesize the myelin-specific constituents of oligodendrocytes differentiated in vivo and even form myelin-like figures. Neuronal electrical activity may be required, however, for the appropriate formation of the myelin sheath. To investigate the role of electrical activity on myelin formation, we have used highly specific neurotoxins, which can either block (tetrodotoxin) or increase (alpha-scorpion toxin) the firing of neurons. We show that myelination can be inhibited by blocking the action potential of neighboring axons or enhanced by increasing their electrical activity, clearly linking neuronal electrical activity to myelinogenesis. Images Fig. 1 Fig. 2 Fig. 3 PMID:8790426

  5. Axo-Glia Interaction Preceding CNS Myelination Is Regulated by Bidirectional Eph-Ephrin Signaling

    PubMed Central

    Linneberg, Cecilie; Harboe, Mette

    2015-01-01

    In the central nervous system, myelination of axons is required to ensure fast saltatory conduction and for survival of neurons. However, not all axons are myelinated, and the molecular mechanisms involved in guiding the oligodendrocyte processes toward the axons to be myelinated are not well understood. Only a few negative or positive guidance clues that are involved in regulating axo-glia interaction prior to myelination have been identified. One example is laminin, known to be required for early axo-glia interaction, which functions through α6β1 integrin. Here, we identify the Eph-ephrin family of guidance receptors as novel regulators of the initial axo-glia interaction, preceding myelination. We demonstrate that so-called forward and reverse signaling, mediated by members of both Eph and ephrin subfamilies, has distinct and opposing effects on processes extension and myelin sheet formation. EphA forward signaling inhibits oligodendrocyte process extension and myelin sheet formation, and blocking of bidirectional signaling through this receptor enhances myelination. Similarly, EphB forward signaling also reduces myelin membrane formation, but in contrast to EphA forward signaling, this occurs in an integrin-dependent manner, which can be reversed by overexpression of a constitutive active β1-integrin. Furthermore, ephrin-B reverse signaling induced by EphA4 or EphB1 enhances myelin sheet formation. Combined, this suggests that the Eph-ephrin receptors are important mediators of bidirectional signaling between axons and oligodendrocytes. It further implies that balancing Eph-ephrin forward and reverse signaling is important in the selection process of axons to be myelinated. PMID:26354550

  6. Axo-Glia Interaction Preceding CNS Myelination Is Regulated by Bidirectional Eph-Ephrin Signaling.

    PubMed

    Linneberg, Cecilie; Harboe, Mette; Laursen, Lisbeth S

    2015-01-01

    In the central nervous system, myelination of axons is required to ensure fast saltatory conduction and for survival of neurons. However, not all axons are myelinated, and the molecular mechanisms involved in guiding the oligodendrocyte processes toward the axons to be myelinated are not well understood. Only a few negative or positive guidance clues that are involved in regulating axo-glia interaction prior to myelination have been identified. One example is laminin, known to be required for early axo-glia interaction, which functions through α6β1 integrin. Here, we identify the Eph-ephrin family of guidance receptors as novel regulators of the initial axo-glia interaction, preceding myelination. We demonstrate that so-called forward and reverse signaling, mediated by members of both Eph and ephrin subfamilies, has distinct and opposing effects on processes extension and myelin sheet formation. EphA forward signaling inhibits oligodendrocyte process extension and myelin sheet formation, and blocking of bidirectional signaling through this receptor enhances myelination. Similarly, EphB forward signaling also reduces myelin membrane formation, but in contrast to EphA forward signaling, this occurs in an integrin-dependent manner, which can be reversed by overexpression of a constitutive active β1-integrin. Furthermore, ephrin-B reverse signaling induced by EphA4 or EphB1 enhances myelin sheet formation. Combined, this suggests that the Eph-ephrin receptors are important mediators of bidirectional signaling between axons and oligodendrocytes. It further implies that balancing Eph-ephrin forward and reverse signaling is important in the selection process of axons to be myelinated. PMID:26354550

  7. Zebrafish as a model to investigate CNS myelination.

    PubMed

    Preston, Marnie A; Macklin, Wendy B

    2015-02-01

    Myelin plays a critical role in proper neuronal function by providing trophic and metabolic support to axons and facilitating energy-efficient saltatory conduction. Myelination is influenced by numerous molecules including growth factors, hormones, transmembrane receptors and extracellular molecules, which activate signaling cascades that drive cellular maturation. Key signaling molecules and downstream signaling cascades controlling myelination have been identified in cell culture systems. However, in vitro systems are not able to faithfully replicate the complex in vivo signaling environment that occurs during development or following injury. Currently, it remains time-consuming and expensive to investigate myelination in vivo in rodents, the most widely used model for studying mammalian myelination. As such, there is a need for alternative in vivo myelination models, particularly ones that can test molecular mechanisms without removing oligodendrocyte lineage cells from their native signaling environment or disrupting intercellular interactions with other cell types present during myelination. Here, we review the ever-increasing role of zebrafish in studies uncovering novel mechanisms controlling vertebrate myelination. These innovative studies range from observations of the behavior of single cells during in vivo myelination as well as mutagenesis- and pharmacology-based screens in whole animals. Additionally, we discuss recent efforts to develop novel models of demyelination and oligodendrocyte cell death in adult zebrafish for the study of cellular behavior in real time during repair and regeneration of damaged nervous systems. PMID:25263121

  8. Human central nervous system myelin inhibits neurite outgrowth.

    PubMed

    Ng, W P; Cartel, N; Roder, J; Roach, A; Lozano, A

    1996-05-13

    In vitro and animal studies have identified molecules in mammalian CNS myelin which inhibit neuritic extension and which may be responsible, at least in part, for the lack of axonal regeneration after injury in the injured brain, optic nerve and spinal cord. To determine whether such inhibitory activity may be present in human CNS myelin, we used a bioassay to characterize neurite outgrowth on this substrate. Human CNS myelin strongly inhibited neuritic outgrowth from newborn rat dorsal root ganglion neurons and NG-108-15 cells, a neuroblastoma-glioma hybrid cell line. Similar but less potent inhibitory activity was identified in human gray matter. The CNS myelin inhibition of neuritic outgrowth appeared to be dependent on direct contact between the myelin substrate and neurites. The inhibitory activity in human CNS myelin closely resembled that described in adult rodents. Inhibition of neurite growth by human CNS myelin in this in vitro bioassay mirrors the lack of regeneration in vivo and can be used as a model to develop strategies designed to enhance axonal regeneration and neural recovery. PMID:8782892

  9. Cdon, a cell surface protein, mediates oligodendrocyte differentiation and myelination.

    PubMed

    Wang, Li-Chun; Almazan, Guillermina

    2016-06-01

    During central nervous system development, oligodendrocyte progenitors (OLPs) establish multiple branched processes and axonal contacts to initiate myelination. A complete understanding of the molecular signals implicated in cell surface interaction to initiate myelination/remyelination is currently lacking. The objective of our study was to assess whether Cdon, a cell surface protein that was shown to participate in muscle and neuron cell development, is involved in oligodendrocyte (OLG) differentiation and myelination. Here, we demonstrate that endogenous Cdon protein is expressed in OLPs, increasing in the early differentiation stages and decreasing in mature OLGs. Immunocytochemistry of endogenous Cdon showed localization on both OLG cell membranes and cellular processes exhibiting puncta- or varicosity-like structures. Cdon knockdown with siRNA decreased protein levels by 62% as well as two myelin-specific proteins, MBP and MAG. Conversely, overexpression of full-length rat Cdon increased myelin proteins in OLGs. The complexity of OLGs branching and contact point numbers with axons were also increased in Cdon overexpressing cells growing alone or in coculture with dorsal root ganglion neurons (DRGNs). Furthermore, myelination of DRGNs was decreased when OLPs were transfected with Cdon siRNA. Altogether, our results suggest that Cdon participates in OLG differentiation and myelination, most likely in the initial stages of development. GLIA 2016;64:1021-1033. PMID:26988125

  10. Making myelin basic protein -from mRNA transport to localized translation.

    PubMed

    Müller, Christina; Bauer, Nina M; Schäfer, Isabelle; White, Robin

    2013-01-01

    In the central nervous system (CNS) of most vertebrates, oligodendrocytes enwrap neuronal axons with extensions of their plasma membrane to form the myelin sheath. Several proteins are characteristically found in myelin of which myelin basic protein (MBP) is the second most abundant one after proteolipid protein. The lack of functional MBP in rodents results in a severe hypomyelinated phenotype in the CNS demonstrating its importance for myelin synthesis. Mbp mRNA is transported from the nucleus to the plasma membrane and is translated locally at the axon-glial contact site. Axonal properties such as diameter or electrical activity influence the degree of myelination. As oligodendrocytes can myelinate many axonal segments with varying properties, localized MBP translation represents an important part of a rapid and axon-tailored synthesis machinery. MBP's ability to compact cellular membranes may be problematic for the integrity of intracellular membranous organelles and can also explain why MBP is transported in oligodendrocytes in the form of an mRNA rather than as a protein. Here we review the recent findings regarding intracellular transport and signaling mechanisms leading to localized translation of Mbp mRNA in oligodendrocytes. More detailed insights into the MBP synthesis pathway are important for a better understanding of the myelination process and may foster the development of remyelination therapies for demyelinating diseases. PMID:24098271

  11. Myelin Membrane Assembly Is Driven by a Phase Transition of Myelin Basic Proteins Into a Cohesive Protein Meshwork

    PubMed Central

    Aggarwal, Shweta; Snaidero, Nicolas; Pähler, Gesa; Frey, Steffen; Sánchez, Paula; Zweckstetter, Markus; Janshoff, Andreas; Schneider, Anja; Weil, Marie-Theres; Schaap, Iwan A. T.; Görlich, Dirk; Simons, Mikael

    2013-01-01

    Rapid conduction of nerve impulses requires coating of axons by myelin. To function as an electrical insulator, myelin is generated as a tightly packed, lipid-rich multilayered membrane sheath. Knowledge about the mechanisms that govern myelin membrane biogenesis is required to understand myelin disassembly as it occurs in diseases such as multiple sclerosis. Here, we show that myelin basic protein drives myelin biogenesis using weak forces arising from its inherent capacity to phase separate. The association of myelin basic protein molecules to the inner leaflet of the membrane bilayer induces a phase transition into a cohesive mesh-like protein network. The formation of this protein network shares features with amyloid fibril formation. The process is driven by phenylalanine-mediated hydrophobic and amyloid-like interactions that provide the molecular basis for protein extrusion and myelin membrane zippering. These findings uncover a physicochemical mechanism of how a cytosolic protein regulates the morphology of a complex membrane architecture. These results provide a key mechanism in myelin membrane biogenesis with implications for disabling demyelinating diseases of the central nervous system. PMID:23762018

  12. Myelin membrane assembly is driven by a phase transition of myelin basic proteins into a cohesive protein meshwork.

    PubMed

    Aggarwal, Shweta; Snaidero, Nicolas; Pähler, Gesa; Frey, Steffen; Sánchez, Paula; Zweckstetter, Markus; Janshoff, Andreas; Schneider, Anja; Weil, Marie-Theres; Schaap, Iwan A T; Görlich, Dirk; Simons, Mikael

    2013-01-01

    Rapid conduction of nerve impulses requires coating of axons by myelin. To function as an electrical insulator, myelin is generated as a tightly packed, lipid-rich multilayered membrane sheath. Knowledge about the mechanisms that govern myelin membrane biogenesis is required to understand myelin disassembly as it occurs in diseases such as multiple sclerosis. Here, we show that myelin basic protein drives myelin biogenesis using weak forces arising from its inherent capacity to phase separate. The association of myelin basic protein molecules to the inner leaflet of the membrane bilayer induces a phase transition into a cohesive mesh-like protein network. The formation of this protein network shares features with amyloid fibril formation. The process is driven by phenylalanine-mediated hydrophobic and amyloid-like interactions that provide the molecular basis for protein extrusion and myelin membrane zippering. These findings uncover a physicochemical mechanism of how a cytosolic protein regulates the morphology of a complex membrane architecture. These results provide a key mechanism in myelin membrane biogenesis with implications for disabling demyelinating diseases of the central nervous system. PMID:23762018

  13. Sonic hedgehog and neurotrophin-3 increase oligodendrocyte numbers and myelination after spinal cord injury

    PubMed Central

    Goodman, Ashley G.; Kukushliev, Todor V.; Hassani, Donna M.; Cummings, Brian J.; Anderson, Aileen J.; Shea, Lonnie D.

    2014-01-01

    Spinal cord injury (SCI) results in loss of sensory and motor function below the level of injury and has limited available therapies. Multiple channel bridges have been investigated as a means to create a permissive environment for regeneration, with channels supporting axonal growth through the injury. Bridges support robust axon growth with myelination of the axons, and herein we investigated the cell types that are myelinating the axons and whether trophic factors can enhance myelination. Lentivirus encoding for neurotrophin-3 (NT3), sonic hedgehog (SHH) and the combination of these factors was delivered from bridges implanted into a lateral hemisection defect at T9/T10 in mice, and the response of endogenous progenitor cells within the spinal cord was investigated. Relative to control, the localized sustained expression of these factors significantly increased growth of regenerating axons into the bridge and enhanced axon myelination 8 weeks after injury. SHH decreased Sox2+ cells and increased Olig2+ cells, whereas NT3 alone or in combination with SHH enhanced GFAP+ and Olig2+ cells relative to control. For delivery of lentivirus encoding for either factor, we identified cells at various stages of differentiation along the oligodendrocyte lineage (e.g., O4+, GalC+). Expression of NT3 enhanced myelination primarily by infiltrating Schwann cells, whereas SHH over-expression substantially increased myelination by oligodendrocytes. Gene delivery represents a promising tool to direct activation and differentiation of endogenous progenitor cells for applications in regenerative medicine. PMID:24873988

  14. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia.

    PubMed

    Micu, I; Jiang, Q; Coderre, E; Ridsdale, A; Zhang, L; Woulfe, J; Yin, X; Trapp, B D; McRory, J E; Rehak, R; Zamponi, G W; Wang, W; Stys, P K

    2006-02-23

    Central nervous system myelin is a specialized structure produced by oligodendrocytes that ensheaths axons, allowing rapid and efficient saltatory conduction of action potentials. Many disorders promote damage to and eventual loss of the myelin sheath, which often results in significant neurological morbidity. However, little is known about the fundamental mechanisms that initiate myelin damage, with the assumption being that its fate follows that of the parent oligodendrocyte. Here we show that NMDA (N-methyl-d-aspartate) glutamate receptors mediate Ca2+ accumulation in central myelin in response to chemical ischaemia in vitro. Using two-photon microscopy, we imaged fluorescence of the Ca2+ indicator X-rhod-1 loaded into oligodendrocytes and the cytoplasmic compartment of the myelin sheath in adult rat optic nerves. The AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)/kainate receptor antagonist NBQX completely blocked the ischaemic Ca2+ increase in oligodendroglial cell bodies, but only modestly reduced the Ca2+ increase in myelin. In contrast, the Ca2+ increase in myelin was abolished by broad-spectrum NMDA receptor antagonists (MK-801, 7-chlorokynurenic acid, d-AP5), but not by more selective blockers of NR2A and NR2B subunit-containing receptors (NVP-AAM077 and ifenprodil). In vitro ischaemia causes ultrastructural damage to both axon cylinders and myelin. NMDA receptor antagonism greatly reduced the damage to myelin. NR1, NR2 and NR3 subunits were detected in myelin by immunohistochemistry and immunoprecipitation, indicating that all necessary subunits are present for the formation of functional NMDA receptors. Our data show that the mature myelin sheath can respond independently to injurious stimuli. Given that axons are known to release glutamate, our finding that the Ca2+ increase was mediated in large part by activation of myelinic NMDA receptors suggests a new mechanism of axo-myelinic signalling. Such a mechanism may represent a

  15. Motoneurons of the adult marmoset can grow axons and reform motor endplates through a peripheral nerve bridge joining the locally injured cervical spinal cord to the denervated biceps brachii muscle.

    PubMed

    Emery, E; Rhrich-Haddout, F; Kassar-Duchossoy, L; Lyoussi, B; Tadié, M; Horvat, J C

    2000-12-15

    Reconnection of the injured spinal cord (SC) of the marmoset with the denervated biceps brachii muscle (BB) was obtained by using a peripheral nerve (PN) bridge. In 13 adult males, a 45 mm segment of the peroneal nerve was removed: one end was implanted unilaterally into the cervical SC of the same animal (autograft), determining a local injury, although the other end was either directly inserted into the BB (Group A) or, alternatively, sutured to its transected motor nerve, the musculocutaneous nerve (Group B). From 2-4 months post-surgery, eight out of the 10 surviving animals responded by a contraction of the BB to electrical stimulations of the PN bridge. All ten were then processed for a morphological study. As documented by retrograde axonal tracing studies using horse radish peroxidase or Fast Blue (FB), a mean number of 314 (Group A) or 45 (Group B) spinal neurons, mainly located close to the site of injury and grafting, re-expressed a capacity to grow and extend axons into the PN bridge. Most of these regenerated axons were able to grow up to the BB and form or reform functional motor endplates. Many of the spinal neurons that were retrogradely labeled with FB simultaneously displayed immunoreactivity for choline acetyl-transferase and consequently were assumed to be motoneurons. Reinnervation and regeneration of the BB were documented by methods revealing axon terminals, endplates and myofibrillary ATPase activity. Our results indicate that motoneurons of the focally injured SC of a small-sized primate can, following the example of the adult rat, re-establish a lost motor function by extending new axons all the way through a PN bridge connected to a denervated skeletal muscle. PMID:11107167

  16. Saltatory conduction in unmyelinated axons: clustering of Na+ channels on lipid rafts enables micro-saltatory conduction in C-fibers

    PubMed Central

    Neishabouri, Ali; Faisal, A. Aldo

    2014-01-01

    The action potential (AP), the fundamental signal of the nervous system, is carried by two types of axons: unmyelinated and myelinated fibers. In the former the action potential propagates continuously along the axon as established in large-diameter fibers. In the latter axons the AP jumps along the nodes of Ranvier—discrete, anatomically specialized regions which contain very high densities of sodium ion (Na+) channels. Therefore, saltatory conduction is thought as the hallmark of myelinated axons, which enables faster and more reliable propagation of signals than in unmyelinated axons of same outer diameter. Recent molecular anatomy showed that in C-fibers, the very thin (0.1 μm diameter) axons of the peripheral nervous system, Nav1.8 channels are clustered together on lipid rafts that float in the cell membrane. This localized concentration of Na+ channels resembles in structure the ion channel organization at the nodes of Ranvier, yet it is currently unknown whether this translates into an equivalent phenomenon of saltatory conduction or related-functional benefits and efficiencies. Therefore, we modeled biophysically realistic unmyelinated axons with both conventional and lipid-raft based organization of Na+ channels. We find that APs are reliably conducted in a micro-saltatory fashion along lipid rafts. Comparing APs in unmyelinated fibers with and without lipid rafts did not reveal any significant difference in either the metabolic cost or AP propagation velocity. By investigating the efficiency of AP propagation over Nav1.8 channels, we find however that the specific inactivation properties of these channels significantly increase the metabolic cost of signaling in C-fibers. PMID:25352785

  17. Differential motor and sensory functional recovery in male but not female adult rats is associated with remyelination rather than axon regeneration after sciatic nerve crush.

    PubMed

    Tong, Ling-Ling; Ding, You-Quan; Jing, Hong-Bo; Li, Xuan-Yang; Qi, Jian-Guo

    2015-05-01

    Peripheral nerve functional recovery after injuries relies on both axon regeneration and remyelination. Both axon regeneration and remyelination require intimate interactions between regenerating neurons and their accompanying Schwann cells. Previous studies have shown that motor and sensory neurons are intrinsically different in their regeneration potentials. Moreover, denervated Schwann cells accompanying myelinated motor and sensory axons have distinct gene expression profiles for regeneration-associated growth factors. However, it is unknown whether differential motor and sensory functional recovery exists. If so, the particular one among axon regeneration and remyelination responsible for this difference remains unclear. Here, we aimed to establish an adult rat sciatic nerve crush model with the nonserrated microneedle holders and measured rat motor and sensory functions during regeneration. Furthermore, axon regeneration and remyelination was evaluated by morphometric analysis of electron microscopic images on the basis of nerve fiber classification. Our results showed that Aα fiber-mediated motor function was successfully recovered in both male and female rats. Aδ fiber-mediated sensory function was partially restored in male rats, but completely recovered in female littermates. For both male and female rats, the numbers of regenerated motor and sensory axons were quite comparable. However, remyelination was diverse among myelinated motor and sensory nerve fibers. In detail, Aβ and Aδ fibers incompletely remyelinated in male, but not female rats, whereas Aα fibers fully remyelinated in both sexes. Our result indicated that differential motor and sensory functional recovery in male but not female adult rats is associated with remyelination rather than axon regeneration after sciatic nerve crush. PMID:25830493

  18. Saltatory conduction in unmyelinated axons: clustering of Na(+) channels on lipid rafts enables micro-saltatory conduction in C-fibers.

    PubMed

    Neishabouri, Ali; Faisal, A Aldo

    2014-01-01

    THE ACTION POTENTIAL (AP), THE FUNDAMENTAL SIGNAL OF THE NERVOUS SYSTEM, IS CARRIED BY TWO TYPES OF AXONS: unmyelinated and myelinated fibers. In the former the action potential propagates continuously along the axon as established in large-diameter fibers. In the latter axons the AP jumps along the nodes of Ranvier-discrete, anatomically specialized regions which contain very high densities of sodium ion (Na(+)) channels. Therefore, saltatory conduction is thought as the hallmark of myelinated axons, which enables faster and more reliable propagation of signals than in unmyelinated axons of same outer diameter. Recent molecular anatomy showed that in C-fibers, the very thin (0.1 μm diameter) axons of the peripheral nervous system, Nav1.8 channels are clustered together on lipid rafts that float in the cell membrane. This localized concentration of Na(+) channels resembles in structure the ion channel organization at the nodes of Ranvier, yet it is currently unknown whether this translates into an equivalent phenomenon of saltatory conduction or related-functional benefits and efficiencies. Therefore, we modeled biophysically realistic unmyelinated axons with both conventional and lipid-raft based organization of Na(+) channels. We find that APs are reliably conducted in a micro-saltatory fashion along lipid rafts. Comparing APs in unmyelinated fibers with and without lipid rafts did not reveal any significant difference in either the metabolic cost or AP propagation velocity. By investigating the efficiency of AP propagation over Nav1.8 channels, we find however that the specific inactivation properties of these channels significantly increase the metabolic cost of signaling in C-fibers. PMID:25352785

  19. Schwann cell myelination of the myelin deficient rat spinal cord following X-irradiation

    SciTech Connect

    Duncan, I.D.; Hammang, J.P.; Gilmore, S.A.

    1988-01-01

    The myelin-deficient (md) rat is an X-linked myelin mutant that has an abnormality of oligodendrocytes and a severe paucity of myelin throughout the CNS. This lack of myelin makes it an ideal model in which to study the cellular interactions that occur when foreign myelinating cells are induced in the milieu of this nonmyelinated CNS. In this study, Schwann cells were induced in the lumbosacral spinal cord by exposing it to radiation, a technique demonstrated repeatedly in other nonmutant strains of rats. Md rats and their age-matched littermates were irradiated (3,000 to 4,000 R) at 3 days of age and perfused 16-22 days later after pulse labeling with tritiated thymidine. In the md rat, Schwann cell invasion progressed from the area of the spinal cord-nerve root junction and extended into the dorsal columns and adjacent gray matter. Autoradiographic evidence revealed that many of these cells incorporated 3H-thymidine, indicating that they were undergoing proliferation. Ultrastructural observations showed that there was an integration of these intraspinal Schwann cells with the cells normally occurring in this environment, i.e., oligodendrocytes and astrocytes. The extent of migration and division of Schwann cells, as well as their interactions with glial cells, were similar to those seen in the nonmutant irradiated littermates. These studies provide conclusive evidence that md rat axons are normal with respect to their ability to provide trophic and mitogenic signals to myelinating cells.

  20. Evaluating dermal myelinated nerve fibers in skin biopsy

    PubMed Central

    Myers, M. Iliza; Peltier, Amanda C.; Li, Jun

    2012-01-01

    Although there has been extensive research on small, unmyelinated fibers in the skin, little research has investigated dermal myelinated fibers in comparison. Glabrous, non-hairy skin contains mechanoreceptors that afford a vantage point for observation of myelinated fibers that have previously been seen only with invasively obtained nerve biopsies. This review discusses current morphometric and molecular expression data of normative and pathogenic glabrous skin obtained by various processing and analysis methods for cutaneous myelinated fibers. Recent publications have shed light on the role of glabrous skin biopsy in identifying signs of peripheral neuropathy and as a potential biomarker of distal myelin and mechanoreceptor integrity. The clinical relevance of a better understanding of the role of dermal myelinated nerve terminations in peripheral neuropathy will be addressed in light of recent publications in the growing field of skin biopsy. PMID:23192899

  1. Specificity of motor axon regeneration: a comparison of recovery following biodegradable conduit small gap tubulization and epineurial neurorrhaphy

    PubMed Central

    Yu, Youlai; Zhang, Peixun; Yin, Xiaofeng; Han, Na; Kou, Yuhui; Jiang, Baoguo

    2015-01-01

    Functional recovery is often unsatisfactory after lesions in the peripheral nervous system despite the strong potential for regeneration and advances in microsurgical techniques. Axonal regeneration in mixed nerve into inappropriate pathways is a major contributing factor to this failure. In this study, the rat femoral nerve model of transection and surgical repair was used to evaluate the specificity of motor axon regeneration as well as functional and morphological recovery using biodegradable conduit small gap tubulization compared to epineurial neurorrhaphy. 12 weeks after nerve repair, the specificity was assessed using the retrograde neurotracers TB and DiI to backlabel motor neurons that regenerate axons into muscle and cutaneous pathways. To evaluate the functional recovery of the quadriceps muscle, the quadriceps muscle forces were examined. The quadriceps muscle and myelinated axons were assessed using electrophysiology and histology. The results showed that the specificity of motor axon regeneration (preferential reinnervation) was significantly higher when the nerve transection was treated by biodegradable conduit small gap tubulization and there was no significant difference between the two suture methods with respect to the functional and morphological recovery. This study demonstrated that the quicker and easier biodegradable conduit small gap tubulization may get more accurate reinnervation than traditional epineurial neurorrhaphy and produced functional and morphological recovery equal to traditional epineurial neurorrhaphy. PMID:25755828

  2. Mutant Huntingtin Downregulates Myelin Regulatory Factor-Mediated Myelin Gene Expression and Affects Mature Oligodendrocytes

    PubMed Central

    Huang, Brenda; Wei, Wenjie; Wang, Guohao; Gaertig, Marta A.; Feng, Yue; Wang, Wei; Li, Xiao-Jiang; Li, Shihua

    2015-01-01

    SUMMARY Growing evidence indicates that non-neuronal mutant huntingtin toxicity plays an important role in Huntington’s disease (HD); however, whether and how mutant huntingtin affects oligodendrocytes, which are vitally important for neural function and axonal integrity, remain unclear. We first verified the presence of mutant huntingtin in oligodendrocytes in HD140Q knock-in mice. We then established transgenic mice (PLP-150Q) that selectively express mutant huntingtin in oligodendrocytes. PLP-150Q mice show progressive neurological symptoms and early death, as well as age-dependent demyelination and reduced expression of myelin genes that are downstream of myelin regulatory factor (MYRF or MRF), a transcriptional regulator that specifically activates and maintains the expression of myelin genes in mature oligodendrocytes. Consistently, mutant huntingtin binds abnormally to MYRF and affects its transcription activity. Our findings suggest that dysfunction of mature oligodendrocytes is involved in HD pathogenesis and may also make a good therapeutic target. PMID:25789755

  3. Mutant huntingtin downregulates myelin regulatory factor-mediated myelin gene expression and affects mature oligodendrocytes.

    PubMed

    Huang, Brenda; Wei, WenJie; Wang, Guohao; Gaertig, Marta A; Feng, Yue; Wang, Wei; Li, Xiao-Jiang; Li, Shihua

    2015-03-18

    Growing evidence indicates that non-neuronal mutant huntingtin toxicity plays an important role in Huntington's disease (HD); however, whether and how mutant huntingtin affects oligodendrocytes, which are vitally important for neural function and axonal integrity, remains unclear. We first verified the presence of mutant huntingtin in oligodendrocytes in HD140Q knockin mice. We then established transgenic mice (PLP-150Q) that selectively express mutant huntingtin in oligodendrocytes. PLP-150Q mice show progressive neurological symptoms and early death, as well as age-dependent demyelination and reduced expression of myelin genes that are downstream of myelin regulatory factor (MYRF or MRF), a transcriptional regulator that specifically activates and maintains the expression of myelin genes in mature oligodendrocytes. Consistently, mutant huntingtin binds abnormally to MYRF and affects its transcription activity. Our findings suggest that dysfunction of mature oligodendrocytes is involved in HD pathogenesis and may also make a good therapeutic target. PMID:25789755

  4. No evidence for chronic demyelination in spared axons following spinal cord injury in a mouse

    PubMed Central

    Lasiene, Jurate; Shupe, Larry; Perlmutter, Steve; Horner, Philip

    2008-01-01

    The pattern of remyelination after traumatic spinal cord injury remains elusive, with animal and human studies reporting partial to complete demyelination followed by incomplete remyelination. In the present study, we found that spared rubrospinal tract (RST) axons of passage traced with actively transported dextrans and examined caudally to the lesion twelve weeks after mouse spinal cord contusion injury were fully remyelinated. Spared axons exhibited a marginally reduced myelin thickness and significantly shorter internodes. Contactin-associated protein (CASPR) and Kv1.2 channels were used to identify internodes and paranodal protein distribution properties were used as an index of myelin integrity. This is the first time the CNS myelin internode length was measured in a mouse. To better understand the significance of shortened internodes and thinner myelin in spared axons, we modeled conduction properties using McIntyre’s et al. model of myelinated axons. Mathematical modeling predicted a 21% decrease in the conduction velocity of remyelinated RST axons due to shortened internodes. To determine whether demyelination could be present on axons exhibiting a pathological transport system we utilized the retroviral reporter system. Virally delivered GFP unveiled a small population of dystrophic RST axons that persist chronically with evident demyelination or abnormal remyelination. Collectively these data show that lasting demyelination in spared axons is rare and that remyelination of axons of passage occurs in the chronically injured mouse spinal cord. PMID:18400887

  5. Radial glia inhibit peripheral glial infiltration into the spinal cord at motor exit point transition zones.

    PubMed

    Smith, Cody J; Johnson, Kimberly; Welsh, Taylor G; Barresi, Michael J F; Kucenas, Sarah

    2016-07-01

    In the mature vertebrate nervous system, central and peripheral nervous system (CNS and PNS, respectively) GLIA myelinate distinct motor axon domains at the motor exit point transition zone (MEP TZ). How these cells preferentially associate with and myelinate discrete, non-overlapping CNS versus PNS axonal segments, is unknown. Using in vivo imaging and genetic cell ablation in zebrafish, we demonstrate that radial glia restrict migration of PNS glia into the spinal cord during development. Prior to development of radial glial endfeet, peripheral cells freely migrate back and forth across the MEP TZ. However, upon maturation, peripherally located cells never enter the CNS. When we ablate radial glia, peripheral glia ectopically migrate into the spinal cord during developmental stages when they would normally be restricted. These findings demonstrate that radial glia contribute to both CNS and PNS development and control the unidirectional movement of glial cell types across the MEP TZ early in development. GLIA 2016. GLIA 2016;64:1138-1153. PMID:27029762

  6. Schwann Cell Myelination Requires Timely and Precise Targeting of P0 Protein

    PubMed Central

    Yin, X.; Kidd, G.J.; Wrabetz, L.; Feltri, M.L.; Messing, A.; Trapp, B.D.

    2000-01-01

    This report investigated mechanisms responsible for failed Schwann cell myelination in mice that overexpress P0 (P0tg), the major structural protein of PNS myelin. Quantitative ultrastructural immunocytochemistry established that P0 protein was mistargeted to abaxonal, periaxonal, and mesaxon membranes in P0tg Schwann cells with arrested myelination. The extracellular leaflets of P0-containing mesaxon membranes were closely apposed with periodicities of compact myelin. The myelin-associated glycoprotein was appropriately sorted in the Golgi apparatus and targeted to periaxonal membranes. In adult mice, occasional Schwann cells myelinated axons possibly with the aid of endocytic removal of mistargeted P0. These results indicate that P0 gene multiplication causes P0 mistargeting to mesaxon membranes, and through obligate P0 homophilic adhesion, renders these dynamic membranes inert and halts myelination. PMID:10704450

  7. Myelin Recovery in Multiple Sclerosis: The Challenge of Remyelination

    PubMed Central

    Podbielska, Maria; Banik, Naren L.; Kurowska, Ewa; Hogan, Edward L.

    2013-01-01

    Multiple sclerosis (MS) is the most common demyelinating and an autoimmune disease of the central nervous system characterized by immune-mediated myelin and axonal damage, and chronic axonal loss attributable to the absence of myelin sheaths. T cell subsets (Th1, Th2, Th17, CD8+, NKT, CD4+CD25+ T regulatory cells) and B cells are involved in this disorder, thus new MS therapies seek damage prevention by resetting multiple components of the immune system. The currently approved therapies are immunoregulatory and reduce the number and rate of lesion formation but are only partially effective. This review summarizes current understanding of the processes at issue: myelination, demyelination and remyelination—with emphasis upon myelin composition/architecture and oligodendrocyte maturation and differentiation. The translational options target oligodendrocyte protection and myelin repair in animal models and assess their relevance in human. Remyelination may be enhanced by signals that promote myelin formation and repair. The crucial question of why remyelination fails is approached is several ways by examining the role in remyelination of available MS medications and avenues being actively pursued to promote remyelination including: (i) cytokine-based immune-intervention (targeting calpain inhibition), (ii) antigen-based immunomodulation (targeting glycolipid-reactive iNKT cells and sphingoid mediated inflammation) and (iii) recombinant monoclonal antibodies-induced remyelination. PMID:24961530

  8. The Polarity Protein Pals1 Regulates Radial Sorting of Axons

    PubMed Central

    Zollinger, Daniel R.; Chang, Kae-Jiun; Baalman, Kelli; Kim, Seonhee

    2015-01-01

    Myelin is essential for rapid and efficient action potential propagation in vertebrates. However, the molecular mechanisms regulating myelination remain incompletely characterized. For example, even before myelination begins in the PNS, Schwann cells must radially sort axons to form 1:1 associations. Schwann cells then ensheathe and wrap axons, and establish polarized, subcellular domains, including apical and basolateral domains, paranodes, and Schmidt-Lanterman incisures. Intriguingly, polarity proteins, such as Pals1/Mpp5, are highly enriched in some of these domains, suggesting that they may regulate the polarity of Schwann cells and myelination. To test this, we generated mice with Schwann cells and oligodendrocytes that lack Pals1. During early development of the PNS, Pals1-deficient mice had impaired radial sorting of axons, delayed myelination, and reduced nerve conduction velocities. Although myelination and conduction velocities eventually recovered, polyaxonal myelination remained a prominent feature of adult Pals1-deficient nerves. Despite the enrichment of Pals1 at paranodes and incisures of control mice, nodes of Ranvier and paranodes were unaffected in Pals1-deficient mice, although we measured a significant increase in the number of incisures. As in other polarized cells, we found that Pals1 interacts with Par3 and loss of Pals1 reduced levels of Par3 in Schwann cells. In the CNS, loss of Pals1 affected neither myelination nor the establishment of polarized membrane domains. These results demonstrate that Schwann cells and oligodendrocytes use distinct mechanisms to control their polarity, and that radial sorting in the PNS is a key polarization event that requires Pals1. SIGNIFICANCE STATEMENT This paper reveals the role of the canonical polarity protein Pals1 in radial sorting of axons by Schwann cells. Radial sorting is essential for efficient and proper myelination and is disrupted in some types of congenital muscular dystrophy. PMID:26203142

  9. Proteolipid Protein Is Required for Transport of Sirtuin 2 into CNS Myelin

    PubMed Central

    Werner, Hauke B.; Kuhlmann, Katja; Shen, Siming; Uecker, Marina; Schardt, Anke; Dimova, Kalina; Orfaniotou, Foteini; Dhaunchak, Ajit; Brinkmann, Bastian G.; Möbius, Wiebke; Guarente, Lenny; Casaccia-Bonnefil, Patrizia; Jahn, Olaf; Nave, Klaus-Armin

    2009-01-01

    Mice lacking the expression of proteolipid protein (PLP)/DM20 in oligodendrocytes provide a genuine model for spastic paraplegia (SPG-2). Their axons are well myelinated but exhibit impaired axonal transport and progressive degeneration, which is difficult to attribute to the absence of a single myelin protein. We hypothesized that secondary molecular changes in PLPnull myelin contribute to the loss of PLP/DM20-dependent neuroprotection and provide more insight into glia-axonal interactions in this disease model. By gel-based proteome analysis, we identified >160 proteins in purified myelin membranes, which allowed us to systematically monitor the CNS myelin proteome of adult PLPnull mice, before the onset of disease. We identified three proteins of the septin family to be reduced in abundance, but the nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase sirtuin 2 (SIRT2) was virtually absent. SIRT2 is expressed throughout the oligodendrocyte lineage, and immunoelectron microscopy revealed its association with myelin. Loss of SIRT2 in PLPnull was posttranscriptional, suggesting that PLP/DM20 is required for its transport into the myelin compartment. Because normal SIRT2 activity is controlled by the NAD+/NADH ratio, its function may be coupled to the axo-glial metabolism and the long-term support of axons by oligodendrocytes. PMID:17634366

  10. The evolution of vertebrate and invertebrate myelin: a theoretical computational study.

    PubMed

    Castelfranco, Ann M; Hartline, Daniel K

    2015-06-01

    Multilayered, lipid-rich myelin increases nerve impulse conduction velocity, contributes to compact nervous systems, and reduces metabolic costs of neural activity. Based on the hypothesis that increased impulse conduction velocity provides a selective advantage that drives the evolution of myelin, we simulated a sequence of plausible intermediate stages of myelin evolution, each of which providing an enhancement of conduction speed. We started with the expansion of insulating glial coverage, which led first to a single layer of myelin surrounding the axon and then to multiple myelin wraps with well-organized nodes. The myelinated fiber was modeled at three levels of complexity as the hypothesized evolutionary progression became more quantitatively exacting: 1) representing the fiber as a mathematically-tractable uniform active cylinder with the effect of myelination approximated by changing its specific capacitance (C(m)); 2) representing it as a chain of simple, cable-model compartments having alternating nodal and internodal parameters subject to optimization, and 3) representing it in a double cable model with the axon and myelin sheath treated separately. Conduction velocity was optimized at each stage. To maintain optimal conduction velocities, increased myelin coverage of axonal surface must be accompanied by an increase in channel density at the evolving nodes, but along with increases in myelin thickness, a reduction in overall average channel density must occur. Leakage under the myelin sheath becomes more of a problem with smaller fiber diameters, which may help explain the tendency for myelin to occur preferentially in larger nerve fibers in both vertebrates and invertebrates. PMID:25832903

  11. Transfer of myelin-reactive th17 cells impairs endogenous remyelination in the central nervous system of cuprizone-fed mice.

    PubMed

    Baxi, Emily G; DeBruin, Joseph; Tosi, Dominique M; Grishkan, Inna V; Smith, Matthew D; Kirby, Leslie A; Strasburger, Hayley J; Fairchild, Amanda N; Calabresi, Peter A; Gocke, Anne R

    2015-06-01

    Multiple sclerosis (MS) is a demyelinating disease of the CNS characterized by inflammation and neurodegeneration. Animal models that enable the study of remyelination in the context of ongoing inflammation are greatly needed for the development of novel therapies that target the pathological inhibitory cues inherent to the MS plaque microenvironment. We report the development of an innovative animal model combining cuprizone-mediated demyelination with transfer of myelin-reactive CD4(+) T cells. Characterization of this model reveals both Th1 and Th17 CD4(+) T cells infiltrate the CNS of cuprizone-fed mice, with infiltration of Th17 cells being more efficient. Infiltration correlates with impaired spontaneous remyelination as evidenced by myelin protein expression, immunostaining, and ultrastructural analysis. Electron microscopic analysis further reveals that demyelinated axons are preserved but reduced in caliber. Examination of the immune response contributing to impaired remyelination highlights a role for peripheral monocytes with an M1 phenotype. This study demonstrates the development of a novel animal model that recapitulates elements of the microenvironment of the MS plaque and reveals an important role for T cells and peripheral monocytes in impairing endogenous remyelination in vivo. This model could be useful for testing putative MS therapies designed to enhance remyelination in the setting of active inflammation, and may also facilitate modeling the pathophysiology of denuded axons, which has been a challenge in rodents because they typically remyelinate very quickly. PMID:26041928

  12. Potassium channel blockers as an effective treatment to restore impulse conduction in injured axons.

    PubMed

    Shi, Riyi; Sun, Wenjing

    2011-02-01

    Most axons in the vertebral central nervous system are myelinated by oligodendrocytes. Myelin protects and insulates neuronal processes, enabling the fast, saltatory conduction unique to myelinated axons. Myelin disruption resulting from trauma and biochemical reaction is a common pathological event in spinal cord injury and chronic neurodegenerative diseases. Myelin damage-induced axonal conduction block is considered to be a significant contributor to the devastating neurological deficits resulting from trauma and illness. Potassium channels are believed to play an important role in axonal conduction failure in spinal cord injury and multiple sclerosis. Myelin damage has been shown to unmask potassium channels, creating aberrant potassium currents that inhibit conduction. Potassium channel blockade reduces this ionic leakage and improves conduction. The present review was mainly focused on the development of this technique of restoring axonal conduction and neurological function of demyelinated axons. The drug 4-aminopyridine has recently shown clinical success in treating multiple sclerosis symptoms. Further translational research has also identified several novel potassium channel blockers that may prove effective in restoring axonal conduction. PMID:21270902

  13. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair.

    PubMed

    Domingues, Helena S; Portugal, Camila C; Socodato, Renato; Relvas, João B

    2016-01-01

    Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair. PMID:27551677

  14. Functional organization of an Mbp enhancer exposes striking transcriptional regulatory diversity within myelinating glia.

    PubMed

    Dionne, Nancy; Dib, Samar; Finsen, Bente; Denarier, Eric; Kuhlmann, Tanja; Drouin, Régen; Kokoeva, Maia; Hudson, Thomas J; Siminovitch, Kathy; Friedman, Hana C; Peterson, Alan C

    2016-01-01

    In mammals, large caliber axons are ensheathed by myelin, a glial specialization supporting axon integrity and conferring accelerated and energy-efficient action potential conduction. Myelin basic protein (MBP) is required for normal myelin elaboration with maximal mbp transcription in oligodendrocytes requiring the upstream M3 enhancer. To further characterize the mechanism regulating mbp transcription, we defined M3 structure/function relationships by evaluating its evolutionary conservation, DNA footprints and the developmental programing conferred in mice by M3 derivatives. Multiple M3 regulatory element combinations were found to drive expression in oligodendrocytes and Schwann cells with a minimal 129 bp sequence conferring expression in oligodendrocytes throughout myelin elaboration, maintenance and repair. Unexpectedly, M3 derivatives conferred markedly different spatial and temporal expression programs thus illuminating striking transcriptional heterogeneity within post-mitotic oligodendrocytes. Finally, one M3 derivative engaged only during primary myelination, not during adult remyelination, demonstrating that transcriptional regulation in the two states is not equivalent. PMID:26507463

  15. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair

    PubMed Central

    Domingues, Helena S.; Portugal, Camila C.; Socodato, Renato; Relvas, João B.

    2016-01-01

    Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair. PMID:27551677

  16. Focal axonal swellings and associated ultrastructural changes attenuate conduction velocity in central nervous system axons: a computer modeling study.

    PubMed

    Kolaric, Katarina V; Thomson, Gemma; Edgar, Julia M; Brown, Angus M

    2013-08-01

    The constancy of action potential conduction in the central nervous system (CNS) relies on uniform axon diameter coupled with fidelity of the overlying myelin providing high-resistance, low capacitance insulation. Whereas the effects of demyelination on conduction have been extensively studied/modeled, equivalent studies on the repercussions for conduction of axon swelling, a common early pathological feature of (potentially reversible) axonal injury, are lacking. The recent description of experimentally acquired morphological and electrical properties of small CNS axons and oligodendrocytes prompted us to incorporate these data into a computer model, with the aim of simulating the effects of focal axon swelling on action potential conduction. A single swelling on an otherwise intact axon, as occurs in optic nerve axons of Cnp1 null mice caused a small decrease in conduction velocity. The presence of single swellings on multiple contiguous internodal regions (INR), as likely occurs in advanced disease, caused qualitatively similar results, except the dimensions of the swellings required to produce equivalent attenuation of conduction were significantly decreased. Our simulations of the consequences of metabolic insult to axons, namely, the appearance of multiple swollen regions, accompanied by perturbation of overlying myelin and increased axolemmal permeability, contained within a single INR, revealed that conduction block occurred when the dimensions of the simulated swellings were within the limits of those measured experimentally, suggesting that multiple swellings on a single axon could contribute to axonal dysfunction, and that increased axolemmal permeability is the decisive factor that promotes conduction block. PMID:24303138

  17. Focal axonal swellings and associated ultrastructural changes attenuate conduction velocity in central nervous system axons: a computer modeling study

    PubMed Central

    Kolaric, Katarina V; Thomson, Gemma; Edgar, Julia M; Brown, Angus M

    2013-01-01

    The constancy of action potential conduction in the central nervous system (CNS) relies on uniform axon diameter coupled with fidelity of the overlying myelin providing high-resistance, low capacitance insulation. Whereas the effects of demyelination on conduction have been extensively studied/modeled, equivalent studies on the repercussions for conduction of axon swelling, a common early pathological feature of (potentially reversible) axonal injury, are lacking. The recent description of experimentally acquired morphological and electrical properties of small CNS axons and oligodendrocytes prompted us to incorporate these data into a computer model, with the aim of simulating the effects of focal axon swelling on action potential conduction. A single swelling on an otherwise intact axon, as occurs in optic nerve axons of Cnp1 null mice caused a small decrease in conduction velocity. The presence of single swellings on multiple contiguous internodal regions (INR), as likely occurs in advanced disease, caused qualitatively similar results, except the dimensions of the swellings required to produce equivalent attenuation of conduction were significantly decreased. Our simulations of the consequences of metabolic insult to axons, namely, the appearance of multiple swollen regions, accompanied by perturbation of overlying myelin and increased axolemmal permeability, contained within a single INR, revealed that conduction block occurred when the dimensions of the simulated swellings were within the limits of those measured experimentally, suggesting that multiple swellings on a single axon could contribute to axonal dysfunction, and that increased axolemmal permeability is the decisive factor that promotes conduction block. PMID:24303138

  18. MHC-I and PirB Upregulation in the Central and Peripheral Nervous System following Sciatic Nerve Injury

    PubMed Central

    Bombeiro, André Luis; Thomé, Rodolfo; Oliveira Nunes, Sérgio Luiz; Monteiro Moreira, Bárbara; Verinaud, Liana; de Oliveira, Alexandre Leite Rodrigues

    2016-01-01

    Major histocompatibility complex class one (MHC-I) antigen-presenting molecules participate in central nervous system (CNS) synaptic plasticity, as does the paired immunoglobulin-like receptor B (PirB), an MHC-I ligand that can inhibit immune-cells and bind to myelin axon growth inhibitors. Based on the dual roles of both molecules in the immune and nervous systems, we evaluated their expression in the central and peripheral nervous system (PNS) following sciatic nerve injury in mice. Increased PirB and MHC-I protein and gene expression is present in the spinal cord one week after nerve transection, PirB being mostly expressed in the neuropile region. In the crushed nerve, MHC-I protein levels increased 2 weeks after lesion (wal) and progressively decreased over the next eight weeks. The same kinetics were observed for infiltrating cytotoxic T lymphocytes (CTLs) but not for PirB expression, which continuously increased. Both MHC-I and PirB were found in macrophages and Schwann cells but rarely in axons. Interestingly, at 8 wal, PirB was mainly restricted to the myelin sheath. Our findings reinforce the participation of MHC-I and PirB in CNS plasticity events. In contrast, opposing expression levels of these molecules were found in the PNS, so that MHC-I and PirB seem to be mostly implicated in antigen presentation to CTLs and axon myelination, respectively. PMID:27551751

  19. MHC-I and PirB Upregulation in the Central and Peripheral Nervous System following Sciatic Nerve Injury.

    PubMed

    Bombeiro, André Luis; Thomé, Rodolfo; Oliveira Nunes, Sérgio Luiz; Monteiro Moreira, Bárbara; Verinaud, Liana; Oliveira, Alexandre Leite Rodrigues de

    2016-01-01

    Major histocompatibility complex class one (MHC-I) antigen-presenting molecules participate in central nervous system (CNS) synaptic plasticity, as does the paired immunoglobulin-like receptor B (PirB), an MHC-I ligand that can inhibit immune-cells and bind to myelin axon growth inhibitors. Based on the dual roles of both molecules in the immune and nervous systems, we evaluated their expression in the central and peripheral nervous system (PNS) following sciatic nerve injury in mice. Increased PirB and MHC-I protein and gene expression is present in the spinal cord one week after nerve transection, PirB being mostly expressed in the neuropile region. In the crushed nerve, MHC-I protein levels increased 2 weeks after lesion (wal) and progressively decreased over the next eight weeks. The same kinetics were observed for infiltrating cytotoxic T lymphocytes (CTLs) but not for PirB expression, which continuously increased. Both MHC-I and PirB were found in macrophages and Schwann cells but rarely in axons. Interestingly, at 8 wal, PirB was mainly restricted to the myelin sheath. Our findings reinforce the participation of MHC-I and PirB in CNS plasticity events. In contrast, opposing expression levels of these molecules were found in the PNS, so that MHC-I and PirB seem to be mostly implicated in antigen presentation to CTLs and axon myelination, respectively. PMID:27551751

  20. The protein kinase A regulatory subunit R1A (Prkar1a) plays critical roles in peripheral nerve development.

    PubMed

    Guo, Li; Lee, Audrey A; Rizvi, Tilat A; Ratner, Nancy; Kirschner, Lawrence S

    2013-11-13

    Signaling through cAMP has been implicated in Schwann cell (SC) proliferation and myelination, but the signaling pathway components downstream of cAMP required for SC function remain unknown. Protein kinase A (PKA) is a potential downstream effector of cAMP. Here, we induced loss of Prkar1a, the gene encoding the type 1A regulatory subunit of PKA, in SC to study its role in nerve development; loss of Prkar1a is predicted to elevate PKA activity. Conditional Prkar1a knock-out in mouse SC (Prkar1a-SCKO) resulted in a dramatic and persistent axonal sorting defect, and unexpectedly decreased SC proliferation in Prkar1a-SCKO nerves in vivo. Effects were cell autonomous as they were recapitulated in vitro in Prkar1a-SCKO SC, which showed elevated PKA activity. In the few SCs sorted into 1:1 relationships with axons in vivo, SC myelination was premature in Prkar1a-SCKO nerves, correlating with global increase in the cAMP-regulated transcription factor Oct-6 and expression of myelin basic protein. These data reveal a previously unknown role of PKA in axon sorting, an unexpected inhibitory role of PKA on SC cell proliferation in vivo and define the importance of Prkar1a in peripheral nerve development. PMID:24227708

  1. Oligodendroglia and Myelin in Neurodegenerative Diseases: More Than Just Bystanders?

    PubMed

    Ettle, Benjamin; Schlachetzki, Johannes C M; Winkler, Jürgen

    2016-07-01

    Oligodendrocytes, the myelinating cells of the central nervous system, mediate rapid action potential conduction and provide trophic support for axonal as well as neuronal maintenance. Their progenitor cell population is widely distributed in the adult brain and represents a permanent cellular reservoir for oligodendrocyte replacement and myelin plasticity. The recognition of oligodendrocytes, their progeny, and myelin as contributing factors for the pathogenesis and the progression of neurodegenerative disease has recently evolved shaping our understanding of these disorders. In the present review, we aim to highlight studies on oligodendrocytes and their progenitors in neurodegenerative diseases. We dissect oligodendroglial biology and illustrate evolutionary aspects in regard to their importance for neuronal functionality and maintenance of neuronal circuitries. After covering recent studies on oligodendroglia in different neurodegenerative diseases mainly in view of their function as myelinating cells, we focus on the alpha-synucleinopathy multiple system atrophy, a prototypical disorder with a well-defined oligodendroglial pathology. PMID:25966971

  2. Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy

    PubMed Central

    Hu, Chun-Rui; Zhang, Delong; Slipchenko, Mikhail N.; Cheng, Ji-Xin; Hu, Bing

    2014-01-01

    Abstract. The myelin sheath plays an important role as the axon in the functioning of the neural system, and myelin degradation is a hallmark pathology of multiple sclerosis and spinal cord injury. Electron microscopy, fluorescent microscopy, and magnetic resonance imaging are three major techniques used for myelin visualization. However, microscopic observation of myelin in living organisms remains a challenge. Using a newly developed stimulated Raman scattering microscopy approach, we report noninvasive, label-free, real-time in vivo imaging of myelination by a single-Schwann cell, maturation of a single node of Ranvier, and myelin degradation in the transparent body of the Xenopus laevis tadpole. PMID:25104411

  3. Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Hu, Chun-Rui; Zhang, Delong; Slipchenko, Mikhail N.; Cheng, Ji-Xin; Hu, Bing

    2014-08-01

    The myelin sheath plays an important role as the axon in the functioning of the neural system, and myelin degradation is a hallmark pathology of multiple sclerosis and spinal cord injury. Electron microscopy, fluorescent microscopy, and magnetic resonance imaging are three major techniques used for myelin visualization. However, microscopic observation of myelin in living organisms remains a challenge. Using a newly developed stimulated Raman scattering microscopy approach, we report noninvasive, label-free, real-time in vivo imaging of myelination by a single-Schwann cell, maturation of a single node of Ranvier, and myelin degradation in the transparent body of the Xenopus laevis tadpole.

  4. Plasmalogen phospholipids protect internodal myelin from oxidative damage.

    PubMed

    Luoma, Adrienne M; Kuo, Fonghsu; Cakici, Ozgur; Crowther, Michelle N; Denninger, Andrew R; Avila, Robin L; Brites, Pedro; Kirschner, Daniel A

    2015-07-01

    Reactive oxygen species (ROS) are implicated in a range of degenerative conditions, including aging, neurodegenerative diseases, and neurological disorders. Myelin is a lipid-rich multilamellar sheath that facilitates rapid nerve conduction in vertebrates. Given the high energetic demands and low antioxidant capacity of the cells that elaborate the sheaths, myelin is considered intrinsically vulnerable to oxidative damage, raising the question whether additional mechanisms prevent structural damage. We characterized the structural and biochemical basis of ROS-mediated myelin damage in murine tissues from both central nervous system (CNS) and peripheral nervous system (PNS). To determine whether ROS can cause structural damage to the internodal myelin