Science.gov

Sample records for peripheral vascular function

  1. Massage Therapy Restores Peripheral Vascular Function following Exertion

    PubMed Central

    Franklin, Nina C.; Ali, Mohamed M.; Robinson, Austin T.; Norkeviciute, Edita; Phillips, Shane A.

    2014-01-01

    Objective To determine if lower extremity exercise-induced muscle injury (EMI) reduces vascular endothelial function of the upper extremity and if massage therapy (MT) improves peripheral vascular function after EMI. Design Randomized, blinded trial with evaluations at 90 minutes, 24 hours, 48 hours, and 72 hours. Setting Clinical research center at an academic medical center and laboratory Participants Thirty-six sedentary young adults were randomly assigned to one of three groups: 1) EMI + MT (n=15; mean age ± standard error (SE): 26.6±0.3), 2) EMI only (n=10; mean age ± SE: 23.6±0.4), and 3) MT only (n=11; mean age ± SE: 25.5 ± 0.4). Intervention Participants were assigned to either EMI only (a single bout of bilateral, eccentric leg-press exercise), MT only (30-minute lower extremity massage using Swedish technique), or EMI + MT. Main outcome measures Brachial artery flow-mediated dilation (FMD) was determined by ultrasound at each time point. Nitroglycerin-induced dilation was also assessed (NTG; 0.4 mg). Results Brachial FMD increased from baseline in the EMI + MT group and the MT only group (7.38±0.18 to 9.02±0.28%, p<0.05 and 7.77±0.25 to 10.20±0.22%, p < 0.05, respectively) at 90 minutes remaining elevated until 72 hrs. In the EMI only group FMD was reduced from baseline at 24 and 48 hrs (7.78±0.14 to 6.75±0.11%, p<0.05 and 6.53±0.11, p<0.05, respectively) returning to baseline after 72 hrs. Dilations to NTG were similar over time. Conclusions Our results suggest that MT attenuates impairment of upper extremity endothelial function resulting from lower extremity EMI in sedentary young adults. PMID:24583315

  2. Association Between Peripheral Vascular Endothelial Function and Progression of Open-Angle Glaucoma.

    PubMed

    Liu, Chun-Hsiu; Su, Wei-Wen; Shie, Shian-Sen; Cheng, Shih-Tsung; Su, Cheng-Wen; Ho, Wang-Jing

    2016-03-01

    The aim of the study is to evaluate the relationship between Humphrey visual field progression and peripheral vascular endothelial function in patients with open-angle glaucoma (OAG), assessed by noninvasive endothelium-dependent flow-mediated vasodilation (FMD).Forty OAG patients, among which 22 had normal-tension glaucoma (NTG) and 18 had primary open-angle glaucoma (POAG) were enrolled. Each enrolled patient underwent a thorough ophthalmological examination including the Humphrey visual field test and measurement of FMD via high-resolution 2-dimensional ultrasonographic imaging of the brachial artery. Blood samples were evaluated for biochemistry and lipid profiles as well as levels of high-sensitivity C-reactive protein (hsCRP). The annual change of threshold sensitivity of the visual field in each test location were analyzed with pointwise linear regression. The correlation between long-term visual field progression and FMD was evaluated.A mean follow-up of 7.47 ± 1.84 years revealed a faster progression rate over the superior visual field in all 40 OAG patients (superior field -0.24 ± 0.67 dB/y, inferior field -0.10 ± 0.59 dB/y, P = 0.37). However, only the annual sensitivity change of the inferior peripheral field showed correlation with baseline FMD. There was no significant difference in the change slope of visual field between NTG and POAG patients.A correlation between baseline brachial artery FMD and visual field progression was observed in the inferior peripheral field in patients with NTG and POAG. This result suggests that peripheral vascular endothelial dysfunction may be related to glaucoma progression. PMID:26962832

  3. Effects of real and simulated weightlessness on the cardiac and peripheral vascular functions of humans: A review.

    PubMed

    Zhu, Hui; Wang, Hanqing; Liu, Zhiqiang

    2015-01-01

    Weightlessness is an extreme environment that can cause a series of adaptive changes in the human body. Findings from real and simulated weightlessness indicate altered cardiovascular functions, such as reduction in left ventricular (LV) mass, cardiac arrhythmia, reduced vascular tone and so on. These alterations induced by weightlessness are detrimental to the health, safety and working performance of the astronauts, therefore it is important to study the effects of weightlessness on the cardiovascular functions of humans. The cardiovascular functional alterations caused by weightlessness (including long-term spaceflight and simulated weightlessness) are briefly reviewed in terms of the cardiac and peripheral vascular functions. The alterations include: changes of shape and mass of the heart; cardiac function alterations; the cardiac arrhythmia; lower body vascular regulation and upper body vascular regulation. A series of conclusions are reported, some of which are analyzed, and a few potential directions are presented. PMID:26224491

  4. Peripheral artery disease is associated with severe impairment of vascular function.

    PubMed

    Kiani, Soroosh; Aasen, Jonathan G; Holbrook, Monika; Khemka, Abhishek; Sharmeen, Farhana; LeLeiko, Rebecca M; Tabit, Corey E; Farber, Alik; Eberhardt, Robert T; Gokce, Noyan; Vita, Joseph A; Hamburg, Naomi M

    2013-04-01

    Patients with peripheral artery disease (PAD) have higher cardiovascular event rates than patients with established coronary artery disease (CAD) and abnormal endothelial function predicts cardiovascular risk in PAD and CAD. We investigated the hypothesis that PAD is associated with a greater degree of impairment in vascular function than CAD. We used several non-invasive tests to evaluate endothelial function in 1320 men and women with combined PAD and CAD (n = 198), PAD alone (n = 179), CAD alone (n = 466), or controls aged > 45 years without CAD or PAD (n = 477). Patients with PAD had lower brachial artery flow-mediated dilation (5.1 ± 3.9% PAD and CAD, 5.9 ± 4.4% PAD alone) compared to patients with CAD alone (7.0 ± 4.5%) and no PAD or CAD (8.1 ± 5.1%, p < 0.0001). In multivariable models adjusting for clinical covariates and the presence of CAD, PAD remained associated with lower flow-mediated dilation (p < 0.0001). PAD was associated also with lower nitroglycerin-mediated dilation and reactive hyperemia. Patients with both PAD and CAD had a lower digital pulse amplitude tonometry (PAT) ratio in unadjusted models but not in adjusted models. Flow-mediated dilation was modestly associated with PAT ratio in patients with atherosclerotic disease (r = 0.23, p < 0.0001) but not among control participants (r = 0.008, p = 0.93). Our findings indicate that patients with PAD have greater impairment of vasodilator function and are consistent with the possibility that endothelial dysfunction may contribute to adverse cardiovascular prognosis in PAD. PMID:23509089

  5. Peripheral artery disease is associated with severe impairment of vascular function

    PubMed Central

    Kiani, Soroosh; Aasen, Jonathan G; Holbrook, Monika; Khemka, Abhishek; Sharmeen, Farhana; LeLeiko, Rebecca M; Tabit, Corey E; Farber, Alik; Eberhardt, Robert T; Gokce, Noyan; Vita, Joseph A; Hamburg, Naomi M

    2013-01-01

    Patients with peripheral artery disease (PAD) have higher cardiovascular event rates than patients with established coronary artery disease (CAD) and abnormal endothelial function predicts cardiovascular risk in PAD and CAD. We investigated the hypothesis that PAD is associated with a greater degree of impairment in vascular function than CAD. We used several non-invasive tests to evaluate endothelial function in 1320 men and women with combined PAD and CAD (n = 198), PAD alone (n = 179), CAD alone (n = 466), or controls aged > 45 years without CAD or PAD (n = 477). Patients with PAD had lower brachial artery flow-mediated dilation (5.1 ± 3.9% PAD and CAD, 5.9 ± 4.4% PAD alone) compared to patients with CAD alone (7.0 ± 4.5%) and no PAD or CAD (8.1 ± 5.1%, p < 0.0001). In multivariable models adjusting for clinical covariates and the presence of CAD, PAD remained associated with lower flow-mediated dilation (p < 0.0001). PAD was associated also with lower nitroglycerin-mediated dilation and reactive hyperemia. Patients with both PAD and CAD had a lower digital pulse amplitude tonometry (PAT) ratio in unadjusted models but not in adjusted models. Flow-mediated dilation was modestly associated with PAT ratio in patients with atherosclerotic disease (r = 0.23, p < 0.0001) but not among control participants (r = 0.008, p = 0.93). Our findings indicate that patients with PAD have greater impairment of vasodilator function and are consistent with the possibility that endothelial dysfunction may contribute to adverse cardiovascular prognosis in PAD. PMID:23509089

  6. Peripheral Vascular Disease

    MedlinePlus

    ... Information Center Back to previous page En español Aneurysms and Dissections Angina Arrhythmia Bundle Branch Block Cardiomyopathy ... blockage including peripheral artery disease or PAD Aortic aneurysms Buerger's Disease Raynaud's Phenomenon Disease of the veins ...

  7. Pretreatment imaging of peripheral vascular malformations

    PubMed Central

    Johnson, Joshua B; Cogswell, Petrice M; McKusick, Michael A; Binkovitz, Larry A; Riederer, Stephen J; Young, Phillip M

    2015-01-01

    Peripheral vascular malformations (VMs) are complex and diverse vascular lesions which require individualized pretreatment planning. Pretreatment imaging using various modalities, especially magnetic resonance imaging and time-resolved magnetic resonance angiography, is a valuable tool for classifying peripheral VMs to allow proper diagnosis, demonstrate complete extent, identify the nidus, and distinguish between low-flow and high-flow dynamics that determines the treatment approach. We discuss pretreatment imaging findings in four patients with peripheral VMs and how diagnostic imaging helped guide management. PMID:25625123

  8. Fingolimod-Associated Peripheral Vascular Adverse Effects.

    PubMed

    Russo, Margherita; Guarneri, Claudio; Mazzon, Emanuela; Sessa, Edoardo; Bramanti, Placido; Calabrò, Rocco Salvatore

    2015-10-01

    Fingolimod is the first oral disease-modifying drug approved for the treatment of multiple sclerosis. The drug is usually well tolerated, and common adverse effects include bradycardia, headache, influenza, diarrhea, back pain, increased liver enzyme levels, and cough. Fingolimod is thought to provide therapeutic benefit by preventing normal lymphocyte egress from lymphoid tissues, thus reducing the infiltration of autoaggressive lymphocytes into the central nervous system. However, because the drug acts on different sphingosine-1-phosphate receptors, it may induce several biological effects by influencing endothelial cell-cell adhesion, angiogenesis, vascular development, and cardiovascular function. We describe a patient with multiple sclerosis who, after 3 weeks of fingolimod administration, developed purplish blotches over the dorsal surface of the distal phalanges of the second and fifth digits and the middle phalanx of the fourth ray, itching, and edema on his left hand, without other evident clinical manifestations. When fingolimod therapy was discontinued, the clinical picture regressed within a few days but reappeared after a rechallenge test. Physicians should be aware of unexpected peripheral vascular adverse effects due to fingolimod use, and patients with vascular-based acropathies should be carefully screened and monitored when taking this drug. PMID:26349949

  9. Peripheral vascular imaging and intervention

    SciTech Connect

    Kim, D. ); Orron, D.E. )

    1990-01-01

    This reference addresses the entire clinical approach to the vascular system from the diagnosis of pathology to surgery or interventional radiological management. All diagnostic imaging modalities currently available are included with specific information on how to interpret various results. It features discussions of the latest therapeutic techniques, including laser angioplasty, intravascular stents, and transluminal embolization.

  10. Antithrombotic Therapy After Peripheral Vascular Intervention.

    PubMed

    Hu, Peter; Jones, Schuyler

    2016-03-01

    Cardioprotective medications and risk-factor modification are the hallmarks of treatment for all patients with peripheral artery disease (PAD). If symptoms are life-limiting and/or do not respond to conservative treatment, endovascular or surgical revascularization can be considered especially for patients with critical limb ischemia or acute limb ischemia. The rates of peripheral vascular intervention (PVI) have risen dramatically over the past few decades and much of this care have shifted from inpatient hospital settings to outpatient settings and office-based clinics. While PVI rates have surged and technology advancements have dramatically changed the face of PVI, the data behind optimal antithrombotic therapy following PVI is scant. Currently in the USA, most patients are treated with indefinite aspirin therapy and a variable duration of clopidogrel (or other P2Y12 inhibitor)-typically 1 month, 3 months, or indefinite therapy. More observational analyses and randomized clinical trials evaluating clinically relevant outcomes such as cardiovascular morbidity/mortality and the risk of bleeding are needed to guide the optimal role and duration of antithrombotic therapy post-PVI. PMID:26841788

  11. Step‐Monitored Home Exercise Improves Ambulation, Vascular Function, and Inflammation in Symptomatic Patients With Peripheral Artery Disease: A Randomized Controlled Trial

    PubMed Central

    Gardner, Andrew W.; Parker, Donald E.; Montgomery, Polly S.; Blevins, Steve M.

    2014-01-01

    Background This prospective, randomized, controlled clinical trial compared changes in primary outcome measures of claudication onset time (COT) and peak walking time (PWT), and secondary outcomes of submaximal exercise performance, daily ambulatory activity, vascular function, inflammation, and calf muscle hemoglobin oxygen saturation (StO2) in patients with symptomatic peripheral artery disease (PAD) following new exercise training using a step watch (NEXT Step) home‐exercise program, a supervised exercise program, and an attention‐control group. Methods and Results One hundred eighty patients were randomized. The NEXT Step program and the supervised exercise program consisted of intermittent walking to mild‐to‐moderate claudication pain for 12 weeks, whereas the controls performed light resistance training. Change scores for COT (P<0.001), PWT (P<0.001), 6‐minute walk distance (P=0.028), daily average cadence (P=0.011), time to minimum calf muscle StO2 during exercise (P=0.025), large‐artery elasticity index (LAEI) (P=0.012), and high‐sensitivity C‐reactive protein (hsCRP) (P=0.041) were significantly different among the 3 groups. Both the NEXT Step home program and the supervised exercise program demonstrated a significant increase from baseline in COT, PWT, 6‐minute walk distance, daily average cadence, and time to minimum calf StO2. Only the NEXT Step home group had improvements from baseline in LAEI, and hsCRP (P<0.05). Conclusions NEXT Step home exercise utilizing minimal staff supervision has low attrition, high adherence, and is efficacious in improving COT and PWT, as well as secondary outcomes of submaximal exercise performance, daily ambulatory activity, vascular function, inflammation, and calf muscle StO2 in symptomatic patients with PAD. Clinical Trial Registration URL: ClinicalTrials.gov. Unique Identifier: NCT00618670. PMID:25237048

  12. Systemic sclerosis induces pronounced peripheral vascular dysfunction characterized by blunted peripheral vasoreactivity and endothelial dysfunction.

    PubMed

    Frech, Tracy; Walker, Ashley E; Barrett-O'Keefe, Zachary; Hopkins, Paul N; Richardson, Russell S; Wray, D Walter; Donato, Anthony J

    2015-05-01

    Systemic sclerosis (SSc) vasculopathy can result in a digital ulcer (DU) and/or pulmonary arterial hypertension (PAH). We hypothesized that bedside brachial artery flow-mediated dilation (FMD) testing with duplex ultrasound could be used in SSc patients to identify features of patients at risk for DU or PAH. Thirty-eight SSc patients were compared to 52 age-matched healthy controls from the VAMC Utah Vascular Research Laboratory. Peripheral hemodynamics, arterial structure, and endothelial function were assessed by duplex ultrasound. A blood pressure cuff was applied to the forearm and 5-min ischemia was induced. Post-occlusion, brachial artery vascular reactivity (peak hyperemia/area under the curve [AUC]), shear rate, and endothelial function (FMD) were measured. SSc patients had smaller brachial artery diameters (p < 0.001) and less reactive hyperemia (p < 0.001), peak shear rate (p = 0.03), and brachial artery FMD (p < 0.001) compared with healthy controls. Brachial artery FMD was lower (p < 0.05) in SSc patients with DU. Tertile analysis suggested the 2 lower FMD tertiles (<5.40 %) had a 40-50 % chance of presenting with DU while the SSc patients with highest FMD tertile (>5.40 %) had less than 15 % chance of DU. All brachial artery FMD measurements were similar between SSc patients with and without PAH (all p > 0.05). Compared to healthy controls, SSc patients had significantly smaller brachial artery diameter and blunted peripheral vascular reactivity and endothelial function. SSc patients with DU have even greater impairments in endothelial function compared to those without DU. FMD testing has clinical utility to identify SSc patients at risk for DU. PMID:25511849

  13. [Thinking and Problems of Peripheral Vascular Disease Research].

    PubMed

    Shang De-jun

    2016-01-01

    It is necessary to study further syndrome differentiation based treatment of peripheral vascular disease. In order to improve the clinical effect and reduce the rate of amputation, early diagnosis and early intervention are important. Meanwhile, treatment of Chinese medicine should be combined with necessary surgical intervention. It should be important to supplement some details about blood stasis syndrome and activating blood and dissolving stasis therapy of peripheral vascular disease. The application of various Chinese medicine external therapies should not be ignored, especially promoting granulation and wound healing therapy. PMID:26955670

  14. The utility of digital subtraction arteriography in peripheral vascular disease.

    PubMed

    Kubal, W S; Crummy, A B; Turnipseed, W D

    1983-01-01

    Digital subtraction angiography (DSA), whether used in conjunction with intravenous or intraarterial injection techniques, has an established role in evaluation of peripheral vascular disease. Use of DSA can reduce the time, cost, and patient discomfort of the standard arteriographic study. While it is limited by field size and patient cooperation in some instances, the utility of noninvasive imaging using intravenous DSA and the added anatomic detail of intraarterial DSA for roadmapping and delineation of small distal vessels provide the basis for future integration of standard arteriographic and DSA methods in assessment of peripheral vascular disease. PMID:6228296

  15. Image-Based Evaluation of Vascular Function and Hemodynamics

    PubMed Central

    Lee, Jongmin

    2013-01-01

    The noticeable characteristics of the blood vascular structure are the inconsistent viscosity of blood and the stiffness of the vascular wall. If we can control these two factors, we can solve more problems related to hemodynamics and vascular wall function. Understanding the properties of hemodynamics and vascular wall function may provide more information applicable to clinical practice for cardiovascular disease. The bedside techniques evaluating vascular function usually measure indirect parameters. In contrast, some medical imaging techniques provide clear and direct depictions of functional cardiovascular characteristics. In this review, image-based evaluation of hemodynamic and vascular wall functions is discussed from the perspective of blood flow velocity, flow volume, flow pattern, peripheral vascular resistance, intraluminal pressure, vascular wall stress, and wall stiffness. PMID:26587430

  16. Infrared thermal imaging for detection of peripheral vascular disorders

    PubMed Central

    Bagavathiappan, S.; Saravanan, T.; Philip, John; Jayakumar, T.; Raj, Baldev; Karunanithi, R.; Panicker, T. M. R.; Korath, M. Paul; Jagadeesan, K.

    2009-01-01

    Body temperature is a very useful parameter for diagnosing diseases. There is a definite correlation between body temperature and diseases. We have used Infrared Thermography to study noninvasive diagnosis of peripheral vascular diseases. Temperature gradients are observed in the affected regions of patients with vascular disorders, which indicate abnormal blood flow in the affected region. Thermal imaging results are well correlated with the clinical findings. Certain areas on the affected limbs show increased temperature profiles, probably due to inflammation and underlying venous flow changes. In general the temperature contrast in the affected regions is about 0.7 to 1° C above the normal regions, due to sluggish blood circulation. The results suggest that the thermal imaging technique is an effective technique for detecting small temperature changes in the human body due to vascular disorders. PMID:20126565

  17. Peripheral vascular responses to fluorocarbon administration.

    PubMed

    Faithfull, N S; King, C E; Cain, S M

    1987-03-01

    To detect the local effect of hyperoxia on skeletal muscle vasculature, 2.5-ml boluses of oxygenated or deoxygenated fluorocarbon emulsion (F-O2 or F-N2) were washed through the hindlimb of anesthetized dogs at prevailing arterial pressure. Instantaneous hematocrit changes at the outflow were registered and stored in digital form with the red cells serving as the nondiffusible tracer in the resulting washout curves. A gamma density function was fitted and the gamma index (1/square root of alpha) was derived as a measure of skewness or perfusion heterogeneity. After recovery from the initial hypotensive reaction to fluorocarbon emulsion, washout curves for F-O2 and F-N2 were registered and blood samples were taken during 40 min of normoxia followed by 40 min of hypoxic hypoxia. The initial reaction to fluorocarbon significantly increased the gamma index so that the experiments began with a high index of perfusion heterogeneity in the limb vasculature. No significant difference was seen between F-O2 and F-N2 in normoxia but F-O2 maintained greater heterogeneity during hypoxia. The increased heterogeneity observed after the fluorocarbon reaction correlated highly with the severity of the hypotensive reaction which was also found to correlate inversely with the ability of the limb musculature to increase the O2 extraction ratio with onset of hypoxia. This blunting of microcirculatory reactivity to hyperoxia and hypoxia was attributed, in part, to the initial transient fluorocarbon reaction, possibly mediated by complement activation. PMID:3587075

  18. Effect of Artificial Nerve Conduit Vascularization on Peripheral Nerve in a Necrotic Bed

    PubMed Central

    Iijima, Yuki; Murayama, Akira; Takeshita, Katsushi

    2016-01-01

    Background: Several types of artificial nerve conduit have been used for bridging peripheral nerve gaps as an alternative to autologous nerves. However, their efficacy in repairing nerve injuries accompanied by surrounding tissue damage remains unclear. We fabricated a novel nerve conduit vascularized by superficial inferior epigastric (SIE) vessels and evaluated whether it could promote axonal regeneration in a necrotic bed. Methods: A 15-mm nerve conduit was implanted beneath the SIE vessels in the groin of a rat to supply it with blood vessels 2 weeks before nerve reconstruction. We removed a 13-mm segment of the sciatic nerve and then pressed a heated iron against the dorsal thigh muscle to produce a burn. The defects were immediately repaired with an autograft (n = 10), nerve conduit graft (n = 8), or vascularized nerve conduit graft (n = 8). Recovery of motor function was examined for 18 weeks after surgery. The regenerated nerves were electrophysiologically and histologically evaluated. Results: The vascularity of the nerve conduit implanted beneath the SIE vessels was confirmed histologically 2 weeks after implantation. Between 14 and 18 weeks after surgery, motor function of the vascularized conduit group was significantly better than that of the nonvascularized conduit group. Electrophysiological and histological evaluations revealed that although the improvement did not reach the level of reinnervation achieved by an autograft, the vascularized nerve conduit improved axonal regeneration more than did the conduit alone. Conclusion: Vascularization of artificial nerve conduits accelerated peripheral nerve regeneration, but further research is required to improve the quality of nerve regeneration. PMID:27257595

  19. Peripherally Inserted Central Catheters Complicated by Vascular Erosion in Neonates.

    PubMed

    Blackwood, Brian P; Farrow, Kathryn N; Kim, Stan; Hunter, Catherine J

    2016-08-01

    Peripherally inserted central catheters (PICCs) are widely used in the pediatric population, and their use continues to grow in popularity. These catheters provide a reliable source of venous access to neonatal patients but can also be the cause of life-threatening complications. There are several well-documented complications such as infections, catheter thrombosis, vascular extravasations, and fractured catheters. However, the complication of vascular erosion into the pleural space using both small and silicone-based catheters is rarely described. After obtaining institutional review board approval, we identified 4 cases to review of PICCs complicated by vascular erosions in the past 2 years. Herein, we also review the current literature of PICC complications. Getting the catheter tip as close to the atrial-caval junction as possible and confirmation of this placement are of the utmost importance. The thick wall of the vena cava near the atrium seems to be less likely to perforate; in addition, this position provides increased volume and turbulence to help dilute the hyperosmolar fluid, which seems to also be a factor in this complication. A daily screening chest x-ray in patients with upper extremity PICCs and ongoing parenteral nutrition (PN) are not necessary at this time given the overall low rate of vascular erosion and concerns regarding excessive radiation exposure in pediatric populations. However, a low threshold for chest x-ray imaging in patients with even mild respiratory symptoms in the setting of upper extremity PN is recommended. PMID:25700180

  20. Association between Bacterial Infection and Peripheral Vascular Disease: A Review.

    PubMed

    Budzyński, Jacek; Wiśniewska, Joanna; Ciecierski, Marek; Kędzia, Anna

    2016-03-01

    There are an increasing number of data showing a clinically important association between bacterial infection and peripheral artery disease (PAD). Bacteria suspected of being involved in PAD pathogenesis are: periodontal bacteria, gut microbiota, Helicobacter pylori, and Chlamydia pneumoniae. Infectious agents may be involved in the pathogenesis of atherosclerosis via activation of a systemic or local host immunological response to contamination of extravascular tissues or the vascular wall, respectively. A systemic immunological reaction may damage vascular walls in the course of autoimmunological cross-reactions between anti-pathogen antibodies and host vascular antigens (immunological mimicry), pathogen burden mechanisms (nonspecific activation of inflammatory processes in the vascular wall), and neuroendocrine-immune cross-talk. Besides activating the inflammatory pathway, bacterial infection may trigger PAD progression or exacerbation by enhancement of platelet reactivity, by a stimulatory effect on von Willebrand factor binding, factor VIII, fibrinogen, P-selectin activation, disturbances in plasma lipids, increase in oxidative stress, and resistance to insulin. Local inflammatory host reaction and induction of atherosclerotic plaque progression and/or instability result mainly from atherosclerotic plaque colonization by microorganisms. Despite these premises, the role of bacterial infection in PAD pathogenesis should still be recognized as controversial, and randomized, controlled trials are required to evaluate the outcome of periodontal or gut bacteria modification (through diet, prebiotics, and probiotics) or eradication (using antibiotics) in hard and surrogate cardiovascular endpoints. PMID:26900306

  1. Endothelial Outgrowth Cells: Function and Performance in Vascular Grafts

    PubMed Central

    Glynn, Jeremy J.

    2014-01-01

    The clinical need for vascular grafts continues to grow. Tissue engineering strategies have been employed to develop vascular grafts for patients lacking sufficient autologous vessels for grafting. Restoring a functional endothelium on the graft lumen has been shown to greatly improve the long-term patency of small-diameter grafts. However, obtaining an autologous source of endothelial cells for in vitro endothelialization is invasive and often not a viable option. Endothelial outgrowth cells (EOCs), derived from circulating progenitor cells in peripheral blood, provide an alternative cell source for engineering an autologous endothelium. This review aims at highlighting the role of EOCs in the regulation of processes that are central to vascular graft performance. To characterize EOC performance in vascular grafts, this review identifies the characteristics of EOCs, defines functional performance criteria for EOCs in vascular grafts, and summarizes the existing work in developing vascular grafts with EOCs. PMID:24004404

  2. [Sleep quality in aged patients with peripheral vascular diseases].

    PubMed

    Corrêa, Karina; Ceolim, Maria Filomena

    2008-03-01

    Peripheral vascular diseases (PVD) are prevalent among the elderly, and, due to their chronic character, result in poor quality of life and poor sleep quality. This study aimed at evaluating sleep quality of elderly people diagnosed with PVD who undergo clinical ambulatory treatment in a university hospital in Campinas, in the State of São Paulo. Subjects (n=50, aged 74 +/- 8 years old) answered the Pittsburgh Sleep Quality Index (PSQI) and provided basic demographic data and PVD history (35 subjects had arterial blockage in lower limbs). Results showed that 34 subjects presented bad sleep quality; sleep length was 5.8 (+/- 2.3) hours, and, according to 23 subjects, night sleep was frequently disturbed by pain (thrice a week or more). Eighteen subjects took analgesics; four took sleep medicines. Findings may have important implications for nurses working with PVD patients, stressing the need to take into account consequences of PVD on sleep disturbances when planning their interventions. PMID:18450142

  3. Peripheral Vascular Diagnostic Laboratory Record, Office Accounting and Research System

    PubMed Central

    Lofink, Raymond M.; Wolfson, Sidney K.; Lahoda, Edward J.

    1981-01-01

    A computerized Record, Office Accounting, and Research system (“ROAR”) has been developed for use in the Peripheral Vascular Diagnostic Laboratory of Montefiore Hospital, Pittsburgh, Pennsylvania. The interactive, menu-driven system utilizes an in-office microcomputer for maintaining patient records with a dial-up link to a time-sharing system at the University of Pittsburgh for performing research activities. Formats for internal storage, screen editing, and printed reports are easily specified to permit additions of new forms and upward-compatible versions of old forms. An on-line patient directory and an expandable library of floppy diskettes provide a large capacity of storage for permanent patient records. An interestingly simple, cost-effective, but powerful combination of three processors using commercial and custom-written software is presented.

  4. Economic evaluation of drugs in peripheral vascular disease and stroke.

    PubMed

    Drummond, M; Davies, L

    1994-01-01

    Increased pressures on health-care budgets mean that governments require good value for money from the resources devoted to health care. In many countries, measures have been introduced to increase efficiency or to contain health-care costs. These include price controls, limitations on reimbursement of health technologies, budgetary reform in health-care institutions, and the encouragement of competition. Given this changing environment, it is important that drugs and other health technologies be shown to give good value for money. The methods of economic evaluation, such as cost-benefit and cost-effectiveness analysis, can be used to assess the value of drugs and other health technologies. They have been widely applied. The economic evaluation of drugs in peripheral vascular disease and stroke would compare the cost of adding the drug with its benefits. These would include improvements in length and quality of life and the savings in treating vascular events that may be postponed, or lessened in intensity, by effective drug therapy. One study, following a clinical trial of naftidrofuryl in stroke, suggested that there would be significant reductions in costs through reductions in hospital stay if recovery was aided. Further research and a large multicenter trial are under way to confirm these findings. In peripheral artery disease there are no economic data collected alongside clinical trials. It is known, however, that the costs of leg ischemia can be significant. A study in the U.K. found that arterial construction would cost around pounds 7,750 per person (1989 prices) and amputation around pounds 11,000 per person.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7517476

  5. Peripheral vascular effects on auscultatory blood pressure measurement.

    PubMed

    Rabbany, S Y; Drzewiecki, G M; Noordergraaf, A

    1993-01-01

    Experiments were conducted to examine the accuracy of the conventional auscultatory method of blood pressure measurement. The influence of the physiologic state of the vascular system in the forearm distal to the site of Korotkoff sound recording and its impact on the precision of the measured blood pressure is discussed. The peripheral resistance in the arm distal to the cuff was changed noninvasively by heating and cooling effects and by induction of reactive hyperemia. All interventions were preceded by an investigation of their effect on central blood pressure to distinguish local effects from changes in central blood pressure. These interventions were sufficiently moderate to make their effect on central blood pressure, recorded in the other arm, statistically insignificant (i.e., changes in systolic [p < 0.3] and diastolic [p < 0.02]). Nevertheless, such alterations were found to modify the amplitude of the Korotkoff sound, which can manifest itself as an apparent change in arterial blood pressure that is readily discerned by the human ear. The increase in diastolic pressure for the cooling experiments was statistically significant (p < 0.001). Moreover, both measured systolic (p < 0.004) and diastolic (p < 0.001) pressure decreases during the reactive hyperemia experiments were statistically significant. The findings demonstrate that alteration in vascular state generates perplexing changes in blood pressure, hence confirming experimental observations by earlier investigators as well as predictions by our model studies. PMID:8463815

  6. Aging and vascular endothelial function in humans

    PubMed Central

    SEALS, Douglas R.; JABLONSKI, Kristen L.; DONATO, Anthony J.

    2012-01-01

    Advancing age is the major risk factor for the development of CVD (cardiovascular diseases). This is attributable, in part, to the development of vascular endothelial dysfunction, as indicated by reduced peripheral artery EDD (endothelium-dependent dilation) in response to chemical [typically ACh (acetylcholine)] or mechanical (intravascular shear) stimuli. Reduced bioavailability of the endothelium-synthesized dilating molecule NO (nitric oxide) as a result of oxidative stress is the key mechanism mediating reduced EDD with aging. Vascular oxidative stress increases with age as a consequence of greater production of reactive oxygen species (e.g. superoxide) without a compensatory increase in antioxidant defences. Sources of increased superoxide production include up-regulation of the oxidant enzyme NADPH oxidase, uncoupling of the normally NO-producing enzyme, eNOS (endothelial NO synthase) (due to reduced availability of the cofactor tetrahydrobiopterin) and increased mitochondrial synthesis during oxidative phosphorylation. Increased bioactivity of the potent endothelial-derived constricting factor ET-1 (endothelin-1), reduced endothelial production of/responsiveness to dilatory prostaglandins, the development of vascular inflammation, formation of AGEs (advanced glycation end-products), an increased rate of endothelial apoptosis and reduced expression of oestrogen receptor α (in postmenopausal females) also probably contribute to impaired EDD with aging. Several lifestyle and biological factors modulate vascular endothelial function with aging, including regular aerobic exercise, dietary factors (e.g. processed compared with non-processed foods), body weight/fatness, vitamin D status, menopause/oestrogen deficiency and a number of conventional and non-conventional risk factors for CVD. Given the number of older adults now and in the future, more information is needed on effective strategies for the prevention and treatment of vascular endothelial aging. PMID

  7. Pulse oximetry in the evaluation of peripheral vascular disease.

    PubMed

    Jawahar, D; Rachamalla, H R; Rafalowski, A; Ilkhani, R; Bharathan, T; Anandarao, N

    1997-08-01

    The role of pulse oximetry in the evaluation of peripheral vascular disease (PVD) was investigated. In addition, the value of elevating the limb to improve the sensitivity of detection of PVD by the pulse oximeter was also determined. Pulse oximetry reading in the toes were obtained in 40 young, healthy volunteers and in 40 randomly selected patients referred to the vascular investigation laboratory over a period of two months. All 40 healthy volunteers had normal pulse oximetry readings. Normal pulse oximetry reading in the toes was defined as > 95% O2 Sat and +/-2 of finger pulse oximetry reading. In all 40 patients, pulse oximetry readings were either normal or not detected at all. Since there was no gradation in decrease in the pulse oximetry reading with severity of disease or with elevation of the patient's lower extremity, an absent or no reading was considered as an abnormal result from the test. The frequency of abnormal pulse oximetry readings increased significantly in groups with abnormal ankle-brachial pressure index (ABPI) and also varied significantly with elevation of the patients' lower limbs. In patients with no PVD detected by Doppler (ABPI > 0.9), pulse oximetry readings were normal in all. However, in patients with moderate PVD (ABPI, 0.5-0.9), 84% of the patients' lower limbs had normal pulse oximetry readings and 16% had an abnormal reading at baseline level (flat). An additional 12% of the lower limbs in this group had an abnormal reading on elevation of the limb to 12 inches. In patients with severe PVD (ABPI < 0.5), 54% of the patients' lower limbs had an abnormal reading at baseline and an additional 23% had an abnormal reading at elevation of the limb to 12 inches. In conclusion, pulse oximetry was not a sensitive test for detecting early PVD. PMID:9269142

  8. Common Aging Signature in the Peripheral Blood of Vascular Dementia and Alzheimer's Disease.

    PubMed

    Luo, Hongbo; Han, Guangchun; Wang, Jiajia; Zeng, Fan; Li, Yuanming; Shao, Shaoju; Song, Fuhai; Bai, Zhouxian; Peng, Xing; Wang, Yan-Jiang; Shi, Xiangqun; Lei, Hongxing

    2016-08-01

    Alzheimer's disease (AD) and vascular dementia (VaD) are the two most dominant forms of dementia in elderly people. Due to the large overlap between AD and VaD in clinical observations, great controversies exist regarding the distinction and connection between these two types of senile dementia. Here for the first time, we resort to the gene expression pattern of the peripheral blood to compare AD and VaD objectively. In our previous work, we have demonstrated that the dysregulation of gene expression in AD is unique among the examined diseases including neurological diseases, cancer, and metabolic diseases. In this study, we found that the dysregulation of gene expression in AD and VaD is quite similar to each other at both functional and gene levels. Interestingly, the dysregulation started at the early stages of the diseases, namely mild cognitive impairment (MCI) and vascular cognitive impairment (VCI). We have also shown that this signature is distinctive from that of peripheral vascular diseases. Comparison with aging studies revealed that the most profound change in AD and VaD, namely ribosome, is consistent with the accelerated aging scenario. This study may have implications to the common mechanism between AD and VaD. PMID:26099307

  9. [Quality standards for ultrasonographic assessment of peripheral vascular malformations and vascular tumors. Report of the French Society for Vascular Medicine].

    PubMed

    Laroche, J-P; Becker, F; Khau-Van-Kien, A; Baudoin, P; Brisot, D; Buffler, A; Coupé, M; Jurus, C; Mestre, S; Miserey, G; Soulier-Sotto, V; Tissot, A; Viard, A; Vignes, S; Quéré, I

    2013-02-01

    THE QUALITY STANDARDS OF THE FRENCH SOCIETY OF VASCULAR MEDICINE FOR THE ULTRASONOGRAPHIC ASSESSMENT OF VASCULAR MALFORMATIONS ARE BASED ON THE TWO FOLLOWING REQUIREMENTS: Technical know-how: mastering the use of ultrasound devices and the method of examination. Medical know-how: ability to adapt the methods and scope of the examination to its clinical indication and purpose, and to rationally analyze and interpret its results. AIMS OF THE QUALITY STANDARDS: To describe an optimal method of examination in relation to the clinical question and hypothesis. To achieve consistent practice, methods, glossary, and reporting. To provide good practice reference points, and promote a high-quality process. ITEMS OF THE QUALITY STANDARDS: The three levels of examination; their clinical indications and goals. The reference standard examination (level 2), its variants according to clinical needs. The minimal content of the examination report; the letter to the referring physician (synthesis, conclusion and proposal for further investigation and/or therapeutic management). Commented glossary (anatomy, hemodynamics, semiology). Technical bases. Settings and use of ultrasound devices. Here, we discuss the methods of using ultrasonography for the assessment of peripheral vascular malformations and tumors. PMID:23312609

  10. A Case of Polyarteritis Nodosa Presenting Initially as Peripheral Vascular Disease

    PubMed Central

    Parikh, Sameer; Lu, Lee

    2008-01-01

    Polyarteritis nodosa is a rare necrotizing vasculitis that can be progressive and fatal, and its initial presenting symptom may be leg claudication due to peripheral vascular ischemia. To date, there have been fewer than ten case reports of polyarteritis nodosa presenting as peripheral vascular disease. We report a case of a 38-year-old man initially diagnosed to have premature peripheral vascular disease who presented 1 year later with symptoms consistent with giant cell arteritis and subsequently developed bowel ischemia leading to a fatal outcome. Based on the autopsy and the patient’s clinical course, the final diagnosis was polyarteritis nodosa. This case illustrates the challenges in diagnosing polyarteritis nodosa and the importance of considering vasculitis in young patients presenting with atypical presentations of diseases such as peripheral vascular disease or giant cell arteritis. PMID:18560943

  11. Exercise performance and peripheral vascular insufficiency improve with AMPK activation in high-fat diet-fed mice.

    PubMed

    Baltgalvis, Kristen A; White, Kathy; Li, Wei; Claypool, Mark D; Lang, Wayne; Alcantara, Raniel; Singh, Baljit K; Friera, Annabelle M; McLaughlin, John; Hansen, Derek; McCaughey, Kelly; Nguyen, Henry; Smith, Ira J; Godinez, Guillermo; Shaw, Simon J; Goff, Dane; Singh, Rajinder; Markovtsov, Vadim; Sun, Tian-Qiang; Jenkins, Yonchu; Uy, Gerald; Li, Yingwu; Pan, Alison; Gururaja, Tarikere; Lau, David; Park, Gary; Hitoshi, Yasumichi; Payan, Donald G; Kinsella, Todd M

    2014-04-15

    Intermittent claudication is a form of exercise intolerance characterized by muscle pain during walking in patients with peripheral artery disease (PAD). Endothelial cell and muscle dysfunction are thought to be important contributors to the etiology of this disease, but a lack of preclinical models that incorporate these elements and measure exercise performance as a primary end point has slowed progress in finding new treatment options for these patients. We sought to develop an animal model of peripheral vascular insufficiency in which microvascular dysfunction and exercise intolerance were defining features. We further set out to determine if pharmacological activation of 5'-AMP-activated protein kinase (AMPK) might counteract any of these functional deficits. Mice aged on a high-fat diet demonstrate many functional and molecular characteristics of PAD, including the sequential development of peripheral vascular insufficiency, increased muscle fatigability, and progressive exercise intolerance. These changes occur gradually and are associated with alterations in nitric oxide bioavailability. Treatment of animals with an AMPK activator, R118, increased voluntary wheel running activity, decreased muscle fatigability, and prevented the progressive decrease in treadmill exercise capacity. These functional performance benefits were accompanied by improved mitochondrial function, the normalization of perfusion in exercising muscle, increased nitric oxide bioavailability, and decreased circulating levels of the endogenous endothelial nitric oxide synthase inhibitor asymmetric dimethylarginine. These data suggest that aged, obese mice represent a novel model for studying exercise intolerance associated with peripheral vascular insufficiency, and pharmacological activation of AMPK may be a suitable treatment for intermittent claudication associated with PAD. PMID:24561866

  12. Perioperative heparin prophylaxis of deep venous thrombosis in patients with peripheral vascular disease

    SciTech Connect

    Spebar, M.J.; Collins, G.J. Jr.; Rich, N.M.; Kang, I.Y.; Clagett, G.P.; Salander, J.M.

    1981-12-01

    Perioperative low dose heparin was administered to 24 patients who were compared with 19 control patients undergoing peripheral vascular surgical procedures. This prophylactic measure was ineffective in reducing the incidence of subclinical, postoperative deep venous thrombosis, as indicated by iodine-125 fibrinogen scanning. The data suggest that patients undergoing vascular surgery will not benefit from the routine application of this prophylactic regimen.

  13. VEGF gene therapy for coronary artery disease and peripheral vascular disease

    SciTech Connect

    Rasmussen, Henrik Sandvad; Rasmussen, Camilla Sandvad; Macko, Jennifer

    2002-06-01

    Coronary artery disease (CAD) and peripheral arterial disease (PAD) are significant medical problems worldwide. Although substantial progress has been made in prevention as well as in the treatment, particularly of CAD, there are a large number of patients, who despite maximal medical treatment have substantial symptomatology and who are not candidates for mechanical revascularization. Therapeutic angiogenesis represents a novel, conceptually appealing treatment option. Ad{sub GV}VEGF121.10 (BIOBYPASS) is an adenovector, carrying the transgene encoding for human vascular endothelial growth factor 121 (VEGF{sub 121}). A number of preclinical studies have demonstrated angiogenic activity of BIOBYPASS, not only anatomically but also functionally. Phase I clinical studies have demonstrated that intramyocardial infection of BIOBYPASS in patients with severe CAD as well as intramuscular injections of BIOBYPASS in patients with severe peripheral vascular disease (PVD) was well tolerated; furthermore, these studies provided some intriguing indications of activity, which led to initiation of major randomized Phase II 'proof-of-concept' studies. This paper provides a review of the rationale behind BIOBYPASS as well as a summary of pertinent preclinical and early clinical data.

  14. The human peripheral lymph node vascular addressin. An inducible endothelial antigen involved in lymphocyte homing.

    PubMed Central

    Michie, S. A.; Streeter, P. R.; Bolt, P. A.; Butcher, E. C.; Picker, L. J.

    1993-01-01

    The extravasation of blood-borne lymphocytes into organized lymphoid tissues and sites of chronic inflammation is directed in part by interactions of lymphocyte surface adhesion molecules, known as homing receptors, with tissue-selective endothelial ligands called vascular addressins. In mice and humans, lymphocyte L-selectin and the peripheral lymph node addressin (PNAd) form a homing receptor-endothelial ligand pair involved in lymphocyte traffic to peripheral lymph node (PLN). We have examined the tissue distribution and function of human PNAd, using monoclonal antibody MECA-79 and in vitro assays of L-selectin-dependent lymphocyte binding. We demonstrate that PNAd is expressed by human high endothelial venules (HEV) in lymphoid tissues which support lymphocyte adhesion via a PLN-associated recognition system. MECA-79 inhibits adhesion to these HEV of a cell line that binds predominantly via the PLN-homing receptor, L-selectin, but has no effect on adhesion by a mucosal HEV-binding cell line. Furthermore, MECA-79 blocks binding of human peripheral blood mononuclear cells to both PLN and tonsil HEV, but not significantly to HEV in the appendix. In addition, we demonstrate PNAd induction on venules at chronic inflammatory sites in humans, particularly sites with severe or long-standing chronic inflammatory involvement. These results confirm that PNAd functions as a PLN vascular addressin in humans, and that in addition to directing normal lymphocyte recirculation to lymph nodes and tonsils, this addressin likely participates in lymphocyte recruitment to sites of chronic inflammation. Images Figure 1 Figure 4 PMID:8256856

  15. Vascular Function in Alzheimer's Disease and Vascular Dementia.

    PubMed

    Tachibana, Hisatsugu; Washida, Kazuo; Kowa, Hisatomo; Kanda, Fumio; Toda, Tatsushi

    2016-08-01

    We investigated vascular functioning in patients with a clinical and radiological diagnosis of either Alzheimer's disease (AD) or vascular dementia (VaD) and examined a possible relationship between vascular function and cognitive status. Twenty-seven patients with AD, 23 patients with VaD, and 26 healthy control patients underwent measurements of flow-mediated dilation (FMD), ankle-brachial index (ABI), cardioankle vascular index (CAVI), and intima-media thickness (IMT). The FMD was significantly lower in patients with AD or VaD compared to controls. There were no significant differences in ABI, CAVI, or IMT among the 3 groups. A significant correlation was found between Mini-Mental State Examination (MMSE) scores and FMD. Furthermore, a multiple regression analysis revealed that FMD was significantly predicted by MMSE scores. These results suggest that endothelial involvement plays a role in AD pathogenesis, and FMD may be more sensitive than other surrogate methods (ABI, CAVI, and IMT) for detecting early-stage atherosclerosis and/or cognitive decline. PMID:27284205

  16. Exercise testing and training in patients with peripheral vascular disease and lower extremity amputation.

    PubMed

    Priebe, M; Davidoff, G; Lampman, R M

    1991-05-01

    Patients with peripheral vascular disease have a high risk of coronary artery disease. The risk is even greater when the peripheral vascular disease leads to lower extremity amputation. Exercise testing using lower extremity exercise has been the "gold standard" for screening for coronary artery disease, but many patients with peripheral vascular disease and those with amputations have difficulty doing this type of exercise. Arm exercise ergometry has been shown to be a safe and effective alternative for the detection of coronary artery disease in patients who cannot do leg exercise. This test has also been used to determine safe exercise levels and may be able to predict the ultimate level of prosthetic use in amputees. Exercise training with arm ergometry also improves cardiovascular efficiency and upper body strength in poorly conditioned patients. Studies are needed to appreciate fully the role of exercise testing and training in the recovery of these patients after amputation. PMID:1866958

  17. Simultaneous hybrid peripheral re-vascularization: early results.

    PubMed

    Yurekli, Ismail; Gokalp, Orhan; Gunes, Tevfik; Yilik, Levent; Gurbuz, Ali

    2013-10-01

    Endovascular and open surgical interventions may be combined in treatment of peripheral arterial disease. In this study, we presented our simultaneous hybrid peripheral interventions under the light of current literature data. Eleven patients who were operated for occlusive peripheral arterial disease without aneurysms between June 2008 and November 2010 at our hybrid operating room were investigated retrospectively. Generally, endovascular intervention was performed initially, and then followed by surgery. After hybrid interventions, control angiograms were held during the same session. None of the patients experienced either stent or graft occlusion during early postoperative period. Primary patency rate was found to be 100% for the postoperative first six months. Ankle-brachial indices (ABI) increased significantly during postoperative period and clinical symptoms were relieved in all patients (mean preoperative ABI: 0.43 ± 0.08, mean postoperative sixth month ABI: 0.87 ± 0.08). Peripheral hybrid interventions may be performed both in separate sessions and also simultaneously by experienced teams if an angiography device is available within the operating room. PMID:23518846

  18. High Temporal and Spatial Resolution Imaging of Peripheral Vascular Malformations

    PubMed Central

    Mostardi, Petrice M.; Young, Phillip M.; McKusick, Michael A.; Riederer, Stephen J.

    2013-01-01

    Purpose To assess the performance of a recently developed 3D time-resolved CE-MRA technique, Cartesian Acquisition with Projection-Reconstruction-like sampling (CAPR), for accurate characterization and treatment planning of vascular malformations of the periphery. Materials and Methods Twelve patient studies were performed (eight female, four male; average age, 33 years). The protocol consisted of three-dimensional (3D) time-resolved CE-MRA followed by a single late phase T1-weighted acquisition. Vascular malformations were imaged in the forearm, hand, thigh, and foot. Imaging evaluation was performed for accurate characterization of lesion type, identification of feeding and draining vessels, involvement with surrounding tissue, overall quality for diagnosis and treatment planning, and correlation with conventional angiography. Results Time-resolved CE-MRA allowed for characterization of malformation flow and type. Feeding and draining vessels were identified in all cases. Overall quality for diagnosis and treatment planning was 3.58/4.0, and correlation with conventional angiography was scored as 3.89/4.0. Conclusion The CAPR time series has been shown to portray the temporal dynamics and structure of vascular malformations as well as the normal vasculature with high quality. CAPR time-resolved imaging is able to accurately characterize high and low flow lesions, allowing for pretreatment lesion assessment and treatment planning. Delayed imaging is important to capture complete filling of very slow flow vascular malformations. PMID:22674646

  19. Central and peripheral pulmonary vascular resistance: Implications for who should undergo pulmonary thromboendarterectomy.

    PubMed

    Poullis, Mike

    2015-08-01

    Pulmonary thromboendarterectomy remains a technically challenging procedure with variable outcomes with regard to improvement in pulmonary function. Reducing the resistance to flow between the pulmonary valve and the pulmonary capillary bed is the key aim of surgery. The resistance to flow is due to the combination of resistance due to the central clot and distal capillary resistance. We hypothesise that the use of fluid mechanics in combination with modern radiology and electronic circuit theory can potentially predict who should or should not undergo a thromboendarterectomy. Electronic circuit theory of two resistors in series was utilised to demonstrate the concept of a model of a central clot and the peripheral pulmonary capillary bed. A simplified 2D model of the lungs utilising finite element analysis and Poiseuille's law was constructed for proof of principle. Modelling predicts that cardiac output and anatomical obstruction interplay and can have profound effects on the outcomes after thromboendarterectomy. Identical pulmonary artery pressures, due to differing cardiac outputs and identical anatomical obstructions due to thrombus can have very different physiological outcomes with regard to changes in pulmonary artery pressure. Modelling the pulmonary vasculature to determine central and peripheral pulmonary vascular resistance may help in predicting who should undergo pulmonary thromboendarterectomy. Mathematical modelling can potentially predict which patients have haemodynamically significant clots in their pulmonary arteries that thromboendarterectomy may potentially help in the setting of pulmonary capillary disease. PMID:25997984

  20. Exercise performance and peripheral vascular insufficiency improve with AMPK activation in high-fat diet-fed mice

    PubMed Central

    Baltgalvis, Kristen A.; White, Kathy; Li, Wei; Claypool, Mark D.; Lang, Wayne; Alcantara, Raniel; Singh, Baljit K.; Friera, Annabelle M.; McLaughlin, John; Hansen, Derek; McCaughey, Kelly; Nguyen, Henry; Smith, Ira J.; Godinez, Guillermo; Shaw, Simon J.; Goff, Dane; Singh, Rajinder; Markovtsov, Vadim; Sun, Tian-Qiang; Jenkins, Yonchu; Uy, Gerald; Li, Yingwu; Pan, Alison; Gururaja, Tarikere; Lau, David; Park, Gary; Hitoshi, Yasumichi; Payan, Donald G.

    2014-01-01

    Intermittent claudication is a form of exercise intolerance characterized by muscle pain during walking in patients with peripheral artery disease (PAD). Endothelial cell and muscle dysfunction are thought to be important contributors to the etiology of this disease, but a lack of preclinical models that incorporate these elements and measure exercise performance as a primary end point has slowed progress in finding new treatment options for these patients. We sought to develop an animal model of peripheral vascular insufficiency in which microvascular dysfunction and exercise intolerance were defining features. We further set out to determine if pharmacological activation of 5′-AMP-activated protein kinase (AMPK) might counteract any of these functional deficits. Mice aged on a high-fat diet demonstrate many functional and molecular characteristics of PAD, including the sequential development of peripheral vascular insufficiency, increased muscle fatigability, and progressive exercise intolerance. These changes occur gradually and are associated with alterations in nitric oxide bioavailability. Treatment of animals with an AMPK activator, R118, increased voluntary wheel running activity, decreased muscle fatigability, and prevented the progressive decrease in treadmill exercise capacity. These functional performance benefits were accompanied by improved mitochondrial function, the normalization of perfusion in exercising muscle, increased nitric oxide bioavailability, and decreased circulating levels of the endogenous endothelial nitric oxide synthase inhibitor asymmetric dimethylarginine. These data suggest that aged, obese mice represent a novel model for studying exercise intolerance associated with peripheral vascular insufficiency, and pharmacological activation of AMPK may be a suitable treatment for intermittent claudication associated with PAD. PMID:24561866

  1. Peripheral Retinal Vascular Patterns in Patients with Rhegmatogenous Retinal Detachment in Taiwan

    PubMed Central

    Chen, San-Ni; Hwang, Jiunn-Feng; Wu, Wen-Chuan

    2016-01-01

    This is an observational study of fluorescein angiography (FA) in consecutive patients with rhegmatogenous retinal detachment (RRD) in Changhua Christian Hospital to investigate the peripheral retinal vascular patterns in those patients. All patients had their age, sex, axial length (AXL), and refraction status (RF) recorded. According to the findings in FA of the peripheral retina, the eyes were divided into 4 groups: in group 1, there was a ramified pattern of peripheral retinal vasculature with gradual tapering; in group 2, there was an abrupt ending of peripheral vasculature with peripheral non-perfusion; in group 3, there was a curving route of peripheral vasculature forming vascular arcades or anastomosis; and in group 4, the same as in group 3, but with one or more wedge-shaped avascular notches. Comparisons of age, sex, AXL, and RF, association of breaks with lattice degeneration and retinal non-perfusion, surgical procedures utilized, and mean numbers of operations were made among the four groups. Of the 73 eyes studied, there were 13 eyes (17.8%) in group 1, 3 eyes (4.1%) in group 2, 40 eyes (54.8%) in group 3 and 17 eyes (23.3%) in group 4. Significant differences in age, AXL and RF, and association of retinal breaks to non-perfusion were noted among the four groups. Patients in group 1 had older ages, while younger ages were noted in groups 3 and 4. Eyes in group 1 had the shortest average AXL and were least myopic in contrast to the eyes in groups 3 and 4. Association of retinal breaks and retinal non-perfusion was significantly higher in groups 2, 3 and 4 than in group 1. In conclusion, peripheral vascular anomalies are common in cases with RRD. Patients with peripheral non-perfusion tend to be younger, with longer axial length and have the breaks associated with retinal non-perfusion. PMID:26909812

  2. Testosterone and Vascular Function in Aging

    PubMed Central

    Lopes, Rhéure A. M.; Neves, Karla B.; Carneiro, Fernando S.; Tostes, Rita C.

    2012-01-01

    Androgen receptors are widely distributed in several tissues, including vascular endothelial and smooth muscle cells. Through classic cytosolic androgen receptors or membrane receptors, testosterone induces genomic and non-genomic effects, respectively. Testosterone interferes with the vascular function by increasing the production of pro-inflammatory cytokines and arterial thickness. Experimental evidence indicates that sex steroid hormones, such as testosterone modulate the synthesis and bioavailability of NO and, consequently, endothelial function, which is key for a healthy vasculature. Of interest, aging itself is accompanied by endothelial and vascular smooth muscle dysfunction. Aging-associated decline of testosterone levels is accompanied by age-related diseases, such as metabolic and cardiovascular diseases, indicating that very low levels of androgens may contribute to cardiovascular dysfunction observed in these age-related disorders or, in other words, that testosterone may have beneficial effects in the cardiovascular system. However, testosterone seems to play a negative role in the severity of renal disease. In this mini-review, we briefly comment on the interplay between aging and testosterone levels, the vascular actions of testosterone and its implications for vascular aging. Renal effects of testosterone and the use of testosterone to prevent vascular dysfunction in elderly are also addressed. PMID:22514541

  3. [Vascular rehabilitation in patients with peripheral arterial disease].

    PubMed

    de Holanda, Ana; Aubourg, Marion; Dubus-Bausière, Valérie; Eveno, Dominique; Abraham, Pierre

    2013-06-01

    Lower limb peripheral arterial disease (PAD) is a frequent debilitating disease associated with a high morbidity and mortality rate. The benefit of rehabilitation in PAD patients has been largely demonstrated, both for patients that undergo amputation, and for patients with claudication. In these latter patients, rehabilitation programs rely on a variety of additional techniques or tools, among which: stretching, specific muscle proprioception, walking and a variety of other physical activities, exercise or situations adapted to community life, lower limb and respiratory physiotherapy, patient's education, support for smoking cessation and healthy nutrition, social support, etc. Whether rehabilitation is performed in specialised integrated structures or performed on a home-based basis, various clinicians are involved. Despite evidence-based proof of efficacy, rehabilitation of PAD patients with claudication is still under-used. PMID:23669319

  4. One minute oxygen uptake in peripheral ischemic vascular disease.

    PubMed Central

    Auchincloss, J H; Meade, J W; Gilbert, R; Chamberlain, B E

    1980-01-01

    Six males, ages 31-58, with ischemic vascular disease of the lower extremities, underwent treadmill testing with measurement of oxygen uptake at 45-60 seconds of exercise (VO2-45-60) as the test score. Tests were performed at 41, 123 and 164 watts of power against gravity. Depressed values were found in five subjects with aortic, iliac or common femoral disease but normal values in a subject with narrowing of the left superficial femoral artery. Reconstructive surgery resulted in normal values in four subjects retested. In three of these a calculation was made of the increased volume of oxygen uptake during the first minute of exercise associated with postsurgical improvement. The average was 430 ml, a value high enough to suggest increased aerobic metabolism of exercising muscles. PMID:7362287

  5. Increased peripheral vascular disease risk progressively constrains perfusion adaptability in the skeletal muscle microcirculation.

    PubMed

    Frisbee, Jefferson C; Butcher, Joshua T; Frisbee, Stephanie J; Olfert, I Mark; Chantler, Paul D; Tabone, Lawrence E; d'Audiffret, Alexandre C; Shrader, Carl D; Goodwill, Adam G; Stapleton, Phoebe A; Brooks, Steven D; Brock, Robert W; Lombard, Julian H

    2016-02-15

    To determine the impact of progressive elevations in peripheral vascular disease (PVD) risk on microvascular function, we utilized eight rat models spanning "healthy" to "high PVD risk" and used a multiscale approach to interrogate microvascular function and outcomes: healthy: Sprague-Dawley rats (SDR) and lean Zucker rats (LZR); mild risk: SDR on high-salt diet (HSD) and SDR on high-fructose diet (HFD); moderate risk: reduced renal mass-hypertensive rats (RRM) and spontaneously hypertensive rats (SHR); high risk: obese Zucker rats (OZR) and Dahl salt-sensitive rats (DSS). Vascular reactivity and biochemical analyses demonstrated that even mild elevations in PVD risk severely attenuated nitric oxide (NO) bioavailability and caused progressive shifts in arachidonic acid metabolism, increasing thromboxane A2 levels. With the introduction of hypertension, arteriolar myogenic activation and adrenergic constriction were increased. However, while functional hyperemia and fatigue resistance of in situ skeletal muscle were not impacted with mild or moderate PVD risk, blood oxygen handling suggested an increasingly heterogeneous perfusion within resting and contracting skeletal muscle. Analysis of in situ networks demonstrated an increasingly stable and heterogeneous distribution of perfusion at arteriolar bifurcations with elevated PVD risk, a phenomenon that was manifested first in the distal microcirculation and evolved proximally with increasing risk. The increased perfusion distribution heterogeneity and loss of flexibility throughout the microvascular network, the result of the combined effects on NO bioavailability, arachidonic acid metabolism, myogenic activation, and adrenergic constriction, may represent the most accurate predictor of the skeletal muscle microvasculopathy and poor health outcomes associated with chronic elevations in PVD risk. PMID:26702145

  6. Association between abdominal aortic diameter and peripheral vascular disease.

    PubMed

    Rajkumar, C; Bonapace, S; Starr, J; Radia, M; Bulpitt, C J

    1997-09-01

    Fifty-four elderly people 81.2 years +/- 7.4 (mean age +/- s.d., range 66-98 years) were selected. These included 20 men (78.6 +/- 6.4 years, range 70-91 years) and 34 women (82.2 +/- 7.6 years, range 66-98 years). The relationship between the size of the abdominal aorta and various cardiovascular risk indicators such as calf:-brachial systolic pressure ratio, plasma cholesterol, triglycerides, and random blood glucose were examined. Abdominal aortic diameter correlated well with calf:-brachial systolic ratio measured by Doppler method over the posterior tibial artery and taking the lowest result of the right and left side (r = -0.28, P = 0.04). This correlation tended to be stronger in men (r = -0.55, P = 0.02) compared to women (r = -0.10, P = 0.57). However, the relationship tended to be confined to the systolic pressure in the left leg, raising the hypothesis that left-sided vascular disease is better related to aortic diameter, possibly due to a difference in the effects of reflected waves between the two sides. This needs further investigation. The contrast between the sexes was seen in the absence of any significant difference in resting blood pressure and calf:brachial systolic pressure ratio between the two. This finding suggests that the sex differences in the relationship between the size of the abdominal aorta and calf:brachial systolic pressure ratio are related to intrinsic properties of the arterial wall. PMID:9364278

  7. Buflomedil. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in peripheral and cerebral vascular diseases.

    PubMed

    Clissold, S P; Lynch, S; Sorkin, E M

    1987-05-01

    Buflomedil hydrochloride is a vasoactive drug with a variety of pharmacodynamic properties. Importantly, it seems to improve nutritional blood flow in ischaemic tissue of patients with peripheral and/or cerebral vascular disease by a combination of pharmacological effects: inhibition of alpha-adrenoceptors, inhibition of platelet aggregation, improved erythrocyte deformability, nonspecific and weak calcium antagonistic effects, and oxygen sparing activity. Therapeutic trials with buflomedil in patients with peripheral vascular diseases have shown that it increases walking distances in those with intermittent claudication and heals trophic lesions and reduces rest pain in many patients with more severe vasculopathies. In open clinical trials a good to very good clinical response was achieved in 57 to 87% of those treated. In comparative studies buflomedil 600 mg/day orally was shown to be significantly superior to placebo and comparable in efficacy to pentoxifylline (oxpentifylline) and naftidrofuryl. In patients with symptoms presumed to be due to cerebrovascular insufficiencies and elderly patients with senile dementia, buflomedil 450 to 600 mg/day alleviated symptoms associated with impairment of cognitive and psychometric function and was significantly superior to placebo and slightly more effective than drugs such as cinnarizine, flunarizine and co-dergocrine mesylate. Overall, buflomedil at dosages of up to 600 mg/day has been very well tolerated and discontinuation of therapy has rarely been necessary. Thus, buflomedil would seem to be a useful adjunct to conservative treatment in patients with mild-to-moderate peripheral vascular disease and/or cerebrovascular insufficiency, and well worth a try in patients with more severe peripheral disease unable to undergo surgery. However, a few well-designed long term studies are needed to fully define its overall place in therapy. PMID:3297620

  8. Optical coherence tomography and hyperspectral imaging of vascular recovery in a model of peripheral arterial disease

    NASA Astrophysics Data System (ADS)

    Poole, Kristin M.; Sit, Wesley W.; Tucker-Schwartz, Jason M.; Duvall, Craig L.; Skala, Melissa C.

    2013-03-01

    Peripheral arterial disease (PAD) leads to an increased risk of myocardial infarction and stroke, increased mortality, and reduced quality of life. The mouse hind limb ischemia (HLI) model is the most commonly used system for studying the mechanisms of collateral vessel formation and for testing new PAD therapies, but there is a lack of techniques for acquiring physiologically-relevant, quantitative data intravitally in this model. In this work, non-invasive, quantitative optical imaging techniques were applied to the mouse HLI model over a time course. Optical coherence tomography (OCT) imaged changes in blood flow (Doppler OCT) and microvessel morphology (speckle variance OCT) through the skin of haired mice with high resolution. Hyperspectral imaging was also used to quantify blood oxygenation. In ischemic limbs, blood oxygenation in the footpad was substantially reduced after induction of ischemia followed by complete recovery by three weeks, consistent with standard measures. Three dimensional images of the vasculature distal to vessel occlusion acquired with speckle variance OCT revealed changes in OCT flow signal and vessel morphology. Taken together, OCT and hyperspectral imaging enable intravital acquisition of both functional and morphological data which fill critical gaps in understanding structure-function relationships that contribute to recovery in the mouse HLI model. Therefore, these optical imaging methods hold promise as tools for studying the mechanisms of vascular recovery and evaluating novel therapeutic treatments in preclinical studies.

  9. Microvascular perfusion heterogeneity contributes to peripheral vascular disease in metabolic syndrome.

    PubMed

    Frisbee, Jefferson C; Goodwill, Adam G; Frisbee, Stephanie J; Butcher, Joshua T; Wu, Fan; Chantler, Paul D

    2016-04-15

    A major challenge facing public health is the increased incidence and prevalence of the metabolic syndrome, a clinical condition characterized by excess adiposity, impaired glycaemic control, dyslipidaemia and moderate hypertension. The greatest concern for this syndrome is the profound increase in risk for development of peripheral vascular disease (PVD) in afflicted persons. However, ongoing studies suggest that reductions in bulk blood flow to skeletal muscle may not be the primary contributor to the premature muscle fatigue that is a hallmark of PVD. Compelling evidence has been provided suggesting that an increasingly spatially heterogeneous and temporally stable distribution of blood flow at successive arteriolar bifurcations in metabolic syndrome creates an environment where a large number of the pre-capillary arterioles have low perfusion, low haematocrit, and are increasingly confined to this state, with limited ability to adapt perfusion in response to a challenged environment. Single pharmacological interventions are unable to significantly restore function owing to a divergence in their spatial effectiveness, although combined therapeutic approaches to correct adrenergic dysfunction, elevated oxidant stress and increased thromboxane A2 improve perfusion-based outcomes. Integrated, multi-target therapeutic interventions designed to restore healthy network function and flexibility may provide for superior outcomes in subjects with metabolic syndrome-associated PVD. PMID:25384789

  10. Vascular Imaging: The Evolving Role of the Multidisciplinary Team Meeting in Peripheral Vascular Disease

    PubMed Central

    Christie, Andrew; Roditi, Giles

    2014-01-01

    This article reviews the importance of preinterventional cross-sectional imaging in the evaluation of peripheral arterial disease, as well as discussing the pros and cons of each imaging modality. The importance of a multidisciplinary team approach is emphasized. PMID:25435657

  11. Acute Changes in Peripheral Vascular Tonus and Systemic Circulation during Static Stretching.

    PubMed

    Inami, Takayuki; Baba, Reizo; Nakagaki, Akemi; Shimizu, Takuya

    2015-01-01

    This study aimed to investigate the acute effect of static stretching (SS) on peripheral vascular tonus and to clarify the effect of SS on systemic circulation. Twenty healthy young male volunteers performed a 1-min SS motion of the right triceps surae muscle, repeated five times. The peripheral vascular tonus (|d/a| ratio) was obtained using second derivatives of the photoplethysmogram readings before, during, and after SS. Heart rate and blood pressure (BP) were also measured. The |d/a| ratio and BP were transiently, but significantly, elevated during SS and returned to baseline immediately after SS. Furthermore, we observed a significant correlation between the amount of change in the |d/a| ratio and the ankle range of motion during SS (r = 0.793 to 0.832, P = 0.01). These responses may be caused by mechanical stress during SS. PMID:25833293

  12. US-guided peripheral vascular interventions, comments on the EFSUMB guidelines.

    PubMed

    Dietrich, Christoph Frank Frank; Horn, Rudolf; Morf, Susanne; Chiorean, Liliana; Dong, Yi; Cui, Xin Wu; Atkinson, Nathan; Jenssen, Christian

    2016-06-01

    Peripheral venous as well as arterial punctures have traditionally been performed on the basis of designated anatomical landmarks. However, due to patients' individual anatomy and vessel pathology and depending on individual operators' skill, this landmark approach is associated with a significant failure rate and complication risk. This review comments on the evidence-based recommendations on ultrasound (US)-guided vascular access which have been published recently within the framework of Guidelines on Interventional Ultrasound (INVUS) of the European Federation of Societies for US in Medicine and Biology (EFSUMB) from a clinical practice point of view. Part 1 of the review had its focus on general aspects of US- guidance and on central venous access, whereas part 2 refers to peripheral vascular access. PMID:27239660

  13. Poldip2 sustains vascular structure and function

    PubMed Central

    Sutliff, Roy L.; Hilenski, Lula L.; Amanso, Angélica M.; Parastatidis, Ioannis; Dikalova, Anna E.; Hansen, Laura; Datla, Srinivasa Raju; Long, James S.; El-Ali, Alexander M.; Joseph, Giji; Gleason, Rudolph L.; Taylor, W. Robert; Hart, C. Michael; Griendling, Kathy K.; Lassègue, Bernard

    2013-01-01

    Objective Based on previous evidence that polymerase delta interacting protein 2 (Poldip2) increases NADPH oxidase 4 (Nox4) activity in vascular smooth muscle cells (VSMC), we hypothesized that in vivo knockdown of Poldip2 would inhibit reactive oxygen species (ROS) production and alter vascular function. Approach and Results Because homozygous Poldip2 deletion is lethal, Poldip2+/− mice were employed. Poldip2 mRNA and protein levels were reduced by about 50% in Poldip2+/− aorta, with no change in p22phox, Nox1, Nox2 and Nox4 mRNAs. NADPH oxidase activity was also inhibited in Poldip2+/− tissue. Isolated aortas from Poldip2+/− mice demonstrated impaired phenylephrine and potassium chloride-induced contractions, increased stiffness and reduced compliance, associated with disruption of elastic lamellae and excessive extracellular matrix deposition. Collagen I secretion was elevated in cultured VSMC from Poldip2+/− mice and restored by H2O2 supplementation, suggesting that this novel function of Poldip2 is mediated by reactive oxygen species. Furthermore, Poldip2+/− mice were protected against aortic dilatation in a model of experimental aneurysm, an effect consistent with increased collagen secretion. Conclusions Poldip2 knockdown reduces H2O2 production in vivo, leading to increases in extracellular matrix, greater vascular stiffness and impaired agonist-mediated contraction. Thus, unaltered expression of Poldip2 is necessary for vascular integrity and function. PMID:23825363

  14. Diacylglycerol Kinase Inhibition and Vascular Function.

    PubMed

    Choi, Hyehun; Allahdadi, Kyan J; Tostes, Rita C A; Webb, R Clinton

    2009-01-01

    Diacylglycerol kinases (DGKs), a family of lipid kinases, convert diacylglycerol (DG) to phosphatidic acid (PA). Acting as a second messenger, DG activates protein kinase C (PKC). PA, a signaling lipid, regulates diverse functions involved in physiological responses. Since DGK modulates two lipid second messengers, DG and PA, regulation of DGK could induce related cellular responses. Currently, there are 10 mammalian isoforms of DGK that are categorized into five groups based on their structural features. These diverse isoforms of DGK are considered to activate distinct cellular functions according to extracellular stimuli. Each DGK isoform is thought to play various roles inside the cell, depending on its subcellular localization (nuclear, ER, Golgi complex or cytoplasm). In vascular smooth muscle, vasoconstrictors such as angiotensin II, endothelin-1 and norepinephrine stimulate contraction by increasing inositol trisphosphate (IP(3)), calcium, DG and PKC activity. Inhibition of DGK could increase DG availability and decrease PA levels, as well as alter intracellular responses, including calcium-mediated and PKC-mediated vascular contraction. The purpose of this review is to demonstrate a role of DGK in vascular function. Selective inhibition of DGK isoforms may represent a novel therapeutic approach in vascular dysfunction. PMID:21547002

  15. Endothelial microparticles: Sophisticated vesicles modulating vascular function

    PubMed Central

    Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R

    2015-01-01

    Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447

  16. Perceptions of Canadian vascular surgeons toward pharmacological risk reduction in patients with peripheral arterial disease.

    PubMed

    Al-Omran, Mohammed; Lindsay, Thomas F; Major, Jennifer; Jawas, Ali; Leiter, Larry A; Verma, Subodh

    2006-09-01

    Patients with peripheral arterial disease (PAD) are at a markedly higher risk of cardiovascular morbidity and mortality, with evidence indicating that risk-reduction pharmacotherapy can serve to attenuate cardiovascular events in these patients. Given the central role of vascular surgeons in the treatment of patients with PAD, we sought to determine their perceptions and knowledge of risk-reduction pharmacotherapy in patients with PAD. We conducted a cross-sectional survey of 79 Canadian vascular surgeons who attended the 2004 annual meeting of the Canadian Society for Vascular Surgery, the largest and most representative meeting of its kind in Canada. The recommended targets of low-density lipoprotein cholesterol, blood glucose, and blood pressure were known to 53.8%, 40.4%, and 57.7% of vascular surgeons, respectively. The majority of vascular surgeons (65.4%) reported screening for risk factors in <50% of cases. Although 90.4% of vascular surgeons would recommend antiplatelet therapy for PAD, only 5.8% would recommend angiotensin converting enzyme (ACE) inhibitors and 19.2% would recommend lipid-lowering therapy with statins. Eighty-four percent of Canadian vascular surgeons indicated that their self-assessment of risk reduction in PAD was average to below average, yet 90.4% of them believed that risk-reduction therapy should be recommended or initiated by vascular surgeons. Canadian vascular surgeons' perceptions toward risk reduction in PAD identify knowledge and action gaps, despite the recognition that recommending and instituting therapy is important to patient care. Given the heightened risk of cardiovascular disease in patients with PAD, these data have important implications. PMID:16871436

  17. Comparison of Angioseal and Manual Compression in Patients Undergoing Transfemoral Coronary and Peripheral Vascular Interventional Procedures

    PubMed Central

    Alshehri, Abdullah M.; Elsharawy, Mohamed

    2015-01-01

    Vascular closure devices (VCDs) were introduced in the early 1990s with the goal of limiting the time, labor, bed rest, and patient discomfort associated with manual compression (MC) for hemostasis after cardiovascular interventions. However, its advantage over MC has not been extensively studied after interventional procedures. The aim of this study was to do prospective, randomized study comparing the safety and efficacy of the Angio-Seal (AS) to that of MC in patients undergoing transfemoral coronary and peripheral vascular interventional procedure. A prospective, randomized trial was undertaken on consecutive series of patients admitted to King Fahd Hospital of the University for transfemoral coronary and peripheral vascular interventional procedures over 1 year. The study was designed to compare the hemostasis time in minutes and the incidence of vascular complications in patients receiving AS with those undergoing MC. All patients were on antiplatelets and received heparin during the procedure. During the study period, 160 patients were included, 80 in each group. There was a significant difference in mean time to hemostasis in minutes (15.83 ± 1.63 minutes for MC and 0.42 ± 0.04 minutes for the AS; p < 0.001), time to ambulation in minutes (280 ± 15 for MC and 120 for AS; p = 0.04) and in minor complications (33.8% in MC vs. AS 5%; p < 0.001). However, the major complication rate did not significantly differ between the two groups (0% in AS vs. 2.5% in MC; p = 0.15). AS was found to achieve rapid closure of the femoral access site safely in patients undergoing coronary and peripheral vascular interventional procedures under antiplatelets and systemic heparinization. PMID:26060385

  18. Arm exercise testing with myocardial scintigraphy in asymptomatic patients with peripheral vascular disease

    SciTech Connect

    Goodman, S.; Rubler, S.; Bryk, H.; Sklar, B.; Glasser, L.

    1989-04-01

    Arm exercise with myocardial scintigraphy and oxygen consumption determinations was performed by 33 men with peripheral vascular disease, 40 to 74 years of age (group 2). None had evidence of coronary disease. Nineteen age-matched male control subjects (group 1) were also tested to determine the normal endurance and oxygen consumption during arm exercise in their age group and to compare the results with those obtained during a standard treadmill performance. The maximal heart rate, systolic blood pressure, pressure rate product, and oxygen consumption were all significantly lower for arm than for leg exercise. However, there was good correlation between all these parameters for both types of exertion. The maximal heart rate, work load and oxygen consumption were greater for group 1 subjects than in patients with peripheral vascular disease despite similar activity status. None of the group 1 subjects had abnormal arm exercise ECGs, while six members of group 2 had ST segment changes. Thallium-201 scintigraphy performed in the latter group demonstrated perfusion defects in 25 patients. After nine to 29 months of follow-up, three patients who had abnormal tests developed angina and one of them required coronary bypass surgery. Arm exercise with myocardial scintigraphy may be an effective method of detecting occult ischemia in patients with peripheral vascular disease. Those with good exercise tolerance and no electrocardiographic changes or /sup 201/T1 defects are probably at lower risk for the development of cardiac complications, while those who develop abnormalities at low exercise levels may be candidates for invasive studies.

  19. Peripheral vascular reactivity and serum BDNF responses to aerobic training are impaired by the BDNF Val66Met polymorphism.

    PubMed

    Lemos, José R; Alves, Cleber R; de Souza, Sílvia B C; Marsiglia, Julia D C; Silva, Michelle S M; Pereira, Alexandre C; Teixeira, Antônio L; Vieira, Erica L M; Krieger, José E; Negrão, Carlos E; Alves, Guilherme B; de Oliveira, Edilamar M; Bolani, Wladimir; Dias, Rodrigo G; Trombetta, Ivani C

    2016-02-01

    Besides neuronal plasticity, the neurotrophin brain-derived neurotrophic factor (BDNF) is also important in vascular function. The BDNF has been associated with angiogenesis through its specific receptor tropomyosin-related kinase B (TrkB). Additionally, Val66Met polymorphism decreases activity-induced BDNF. Since BDNF and TrkB are expressed in vascular endothelial cells and aerobic exercise training can increase serum BDNF, this study aimed to test the hypotheses: 1) Serum BDNF levels modulate peripheral blood flow; 2) The Val66Met BDNF polymorphism impairs exercise training-induced vasodilation. We genotyped 304 healthy male volunteers (Val66Val, n = 221; Val66Met, n = 83) who underwent intense aerobic exercise training on a running track three times/wk for 4 mo. We evaluated pre- and post-exercise training serum BDNF and proBDNF concentration, heart rate (HR), mean blood pressure (MBP), forearm blood flow (FBF), and forearm vascular resistance (FVR). In the pre-exercise training, BDNF, proBDNF, BDNF/proBDNF ratio, FBF, and FVR were similar between genotypes. After exercise training, functional capacity (V̇o2 peak) increased and HR decreased similarly in both groups. Val66Val, but not Val66Met, increased BDNF (interaction, P = 0.04) and BDNF/proBDNF ratio (interaction, P < 0.001). Interestingly, FBF (interaction, P = 0.04) and the FVR (interaction, P = 0.01) responses during handgrip exercise (HG) improved in Val66Val compared with Val66Met, even with similar responses of HR and MBP. There were association between BDNF/proBDNF ratio and FBF (r = 0.64, P < 0.001) and FVR (r = -0.58, P < 0.001) during HG exercise. These results show that peripheral vascular reactivity and serum BDNF responses to exercise training are impaired by the BDNF Val66Met polymorphism and such responsiveness is associated with serum BDNF concentrations in healthy subjects. PMID:26603150

  20. Effects of peripheral sympathectomy on thermoregulatory vascular control in the rabbit ear.

    PubMed

    Smith, T L; Koman, L A; Gordon, E S; Holden, M B; Smith, B P

    1998-01-01

    A rabbit ear model of the human digit was utilized to determine the vascular response to peripheral sympathectomy. Vascular responses were evaluated by subjecting chronically instrumented rabbits to a cold stress before and after sympathectomy surgery. The typical response to cold stress is for ear temperatures and auricular cutaneous perfusion to decrease during the cooling phase of the test and to increase toward baseline levels during the rewarming phase after cold exposure. Following peripheral sympathectomy, ear temperatures were significantly increased during both the cooling and rewarming phase of the cold stress test although overall ear perfusion and skin perfusion were not different from sham-operated rabbits. The responses observed in the rabbit ear following peripheral sympathectomy appear to mimic those noted in patients receiving digital peripheral sympathectomies for the treatment of refractory pain and ulceration. Peripheral sympathectomy may result in clinical improvements in patients because it improves both total digital and nutritional cutaneous blood flow. Peripheral sympathectomy in normal rabbit ears does not result in altered perfusion patterns with cold exposure although ear temperature is significantly higher. This pattern of changes suggests that the distribution of extremity perfusion is altered even though overall extremity perfusion and cutaneous perfusion per se are not significantly different from sham-operated controls. Complete sympathectomy was accompanied by a persistent increase in ear temperature and a dissociation between conductance and microvascular perfusion. Auricular conductance was transiently increased and then decreased to levels below preoperative control values. Microvascular perfusion is decreased immediately following amputation/replantation and thereafter increases. PMID:9674929

  1. Exercise training improves vascular mitochondrial function.

    PubMed

    Park, Song-Young; Rossman, Matthew J; Gifford, Jayson R; Bharath, Leena P; Bauersachs, Johann; Richardson, Russell S; Abel, E Dale; Symons, J David; Riehle, Christian

    2016-04-01

    Exercise training is recognized to improve cardiac and skeletal muscle mitochondrial respiratory capacity; however, the impact of chronic exercise on vascular mitochondrial respiratory function is unknown. We hypothesized that exercise training concomitantly increases both vascular mitochondrial respiratory capacity and vascular function. Arteries from both sedentary (SED) and swim-trained (EX, 5 wk) mice were compared in terms of mitochondrial respiratory function, mitochondrial content, markers of mitochondrial biogenesis, redox balance, nitric oxide (NO) signaling, and vessel function. Mitochondrial complex I and complex I + II state 3 respiration and the respiratory control ratio (complex I + II state 3 respiration/complex I state 2 respiration) were greater in vessels from EX relative to SED mice, despite similar levels of arterial citrate synthase activity and mitochondrial DNA content. Furthermore, compared with the SED mice, arteries from EX mice displayed elevated transcript levels of peroxisome proliferative activated receptor-γ coactivator-1α and the downstream targets cytochrome c oxidase subunit IV isoform 1,isocitrate dehydrogenase(Idh)2, and Idh3a, increased manganese superoxide dismutase protein expression, increased endothelial NO synthase phosphorylation (Ser(1177)), and suppressed reactive oxygen species generation (all P< 0.05). Although there were no differences in EX and SED mice concerning endothelium-dependent and endothelium-independent vasorelaxation, phenylephrine-induced vasocontraction was blunted in vessels from EX compared with SED mice, and this effect was normalized by NOS inhibition. These training-induced increases in vascular mitochondrial respiratory capacity and evidence of improved redox balance, which may, at least in part, be attributable to elevated NO bioavailability, have the potential to protect against age- and disease-related challenges to arterial function. PMID:26825520

  2. Influence of vascular function and pulsatile hemodynamics on cardiac function.

    PubMed

    Bell, Vanessa; Mitchell, Gary F

    2015-09-01

    Interactions between cardiac and vascular structure and function normally are optimized to ensure delivery of cardiac output with modest pulsatile hemodynamic overhead. Aortic stiffening with age or disease impairs optimal ventricular-vascular coupling, increases pulsatile load, and contributes to left ventricular (LV) hypertrophy, reduced systolic function, and impaired diastolic relaxation. Aortic pulse pressure and timing of peak systolic pressure are well-known measures of hemodynamic ventricular-vascular interaction. Recent work has elucidated the importance of direct, mechanical coupling between the aorta and the heart. LV systolic contraction results in displacement of aortic and mitral annuli, thereby producing longitudinal stretch in the ascending aorta and left atrium, respectively. Force associated with longitudinal stretch increases systolic load on the LV. However, the resulting energy stored in the elastic elements of the proximal aorta during systole facilitates early diastolic LV recoil and rapid filling. This review discusses current views on hemodynamics and mechanics of ventricular-vascular coupling. PMID:26164466

  3. VASCULAR ACTIONS OF ESTROGENS: FUNCTIONAL IMPLICATIONS

    PubMed Central

    Miller, Virginia M.; Duckles, Sue P.

    2009-01-01

    The impact of estrogen exposure in preventing or treating cardiovascular disease is controversial. But it is clear that estrogen has important effects on vascular physiology and pathophysiology, with potential therapeutic implications. Therefore, it is the goal of this review to summarize, using an integrated approach, current knowledge of the vascular effects of estrogen, both in humans and in experimental animals. Aspects of estrogen synthesis and receptors, as well as general mechanisms of estrogenic action are reviewed with an emphasis on issues particularly relevant to the vascular system. Recent understanding of the impact of estrogen on mitochondrial function suggests that the longer lifespan of women compared to men may depend in part on the ability of estrogen to decrease production of reactive oxygen species in mitochondria. Mechanisms by which estrogen increases endothelial vasodilator function, promotes angiogenesis and modulates autonomic function are summarized. Key aspects of the relevant pathophysiology of inflammation, atherosclerosis, stroke, migraine and thrombosis are reviewed concerning current knowledge of estrogenic effects. A number of emerging concepts are addressed throughout. These include the importance of estrogenic formulation and route of administration and the impact of genetic polymorphisms, either in estrogen receptors or in enzymes responsible for estrogen metabolism, on responsiveness to hormone treatment. The importance of local metabolism of estrogenic precursors and the impact of timing for initiation of treatment and its duration are also considered. While consensus opinions are emphasized, controversial views are presented in order to stimulate future research. PMID:18579753

  4. Prostacyclin synthesis stimulating plasma factor in patients with peripheral vascular disease.

    PubMed

    Strobl-Jäger, E; Fitscha, P; Kaliman, J; Sinzinger, H; Peskar, B A

    1987-08-01

    Human plasma contains a factor capable of stimulating vascular prostacyclin generation even in atherosclerotic vessels with minimal in-vitro capacity for PGI2-synthesis. The activity of this prostacyclin stimulating plasma factor (PSPF) has been reported to be elevated in renal failure and hepatic coma. We are not aware of any data as to whether this PSPF plays a role in maintaining hemostatic balance in patients with peripheral vascular lesions. Therefore, we examined 62 patients with peripheral vascular disease (PVD). This study group was subdivided into normo- and hyperlipemic subjects, patients with and without maturity onset diabetes, and plasma beta-thromboglobulin levels higher and lower than 50 ng/ml. 10 healthy sex and age matched persons served as controls. Vascular prostacyclin formation was studied in vitro after incubation of the patients' plasma and a buffer control with various tissue samples (human femoral artery, rat abdominal and thoracic aorta of healthy and of streptozotocin induced diabetic animals, swine endothelial layer and remaining tissue (media and adventitia) and cultured endothelial (EC) and smooth muscle cells (SMC) of minipig arota. In addition, 6-oxo-PFG1 alpha formation by cultured EC and SMC (minipig aorta source) after incubation with tris HCl-buffer or plasma were estimated by means of specific radioimmunoassays. In general, tissue samples and cells incubated in plasma exhibit a marked increase of in-vitro PGI2-formation as compared to buffer. No difference could be found between PSPF of CHD-patients and healthy controls. Similar findings were obtained using incubated vascular tissue and cultured cells by means of the bioassay and specific RIA, respectively. These findings indicate that the PSPF does not seem to be of any clinical relevance in hemostatic regulation in patients with advanced atherosclerosis. PMID:2958884

  5. Mechanisms of Microgravity Effect on Vascular Function

    NASA Technical Reports Server (NTRS)

    Purdy, Ralph E.

    1995-01-01

    The overall goal of the project is to characterize the effects of simulated microgravity on vascular function. Microgravity is simulated using the hindlimb unweighted (HU) rat, and the following vessels are removed from HU and paired control rats for in vitro analysis: abdominal aorta, carotid and femoral arteries, jugular and femoral veins. These vessels are cut into 3 mm long rings and mounted in tissue baths for the measurement of either isometric contraction, or relaxation of pre- contracted vessels. The isolated mesenteric vascular bed is perfused for the measurement of changes in perfusion pressure as an index of arteriolar constriction or dilation. This report presents, in addition to the statement of the overall goal of the project, a summary list of the specific hypotheses to be tested. These are followed by sections on results, conclusions, significance and plans for the next year.

  6. Treatment of a High-Risk Diabetic Patient with Peripheral Vascular Disease and Osteomyelitis.

    PubMed

    Allen, Latricia L; Kalmar, Garrett; Driver, Vickie R

    2016-06-01

    We report a case of calcaneal osteomyelitis that was surgically resected from a patient with diabetes and peripheral vascular disease. A 91-year-old male with history of type 2 diabetes, peripheral vascular disease, balloon angioplasty, and recent (2 months ago) stent of the superficial femoral artery presented to the emergency department with a left heel wound infection probed to bone. The patient reported having been on intravenous Zosyn for several months via an outside infectious disease provider for clinical suspicion of osteomyelitis, but noted no improvement. This report includes information regarding the clinical examination and imaging findings, which were used to assess this high-risk patient. Our patient underwent a partial calcanectomy and completed a 6-week course of intravenous antibiotics. The purpose of this case report is to illustrate limb preservation in a high-risk patient with compromised vascular supply who underwent a partial calcanectomy for treatment of calcaneal osteomyelitis. The patient underwent surgical resection of the calcaneus without complications and healed unremarkably with the ability to ambulate while wearing an ankle foot orthosis with a custom shoe. This report was authorized for publication as an educational report to contribute to generalizable knowledge and does not include any patient health information. PMID:27423990

  7. Increase in whole-body peripheral vascular resistance during three hours of air or oxygen prebreathing

    NASA Technical Reports Server (NTRS)

    Waligora, J. M.; Horrigan, D. J., Jr.; Conkin, J.; Dierlam, J. J.; Stanford, J., Jr.; Riddle, J. R.

    1984-01-01

    Male and female subjects prebreathed air or 100% oxygen through a mask for 3.0 hours while comfortably reclined. Blood pressures, heart rate, and cardiac output were collected before and after the prebreathe. Peripheral vascular resistance (PVR) was calculated from these parameters and increased by 29% during oxygen prebreathing and 15% during air prebreathing. The oxygen contributed substantially to the increase in PVR. Diastolic blood pressure increased by 18% during the oxygen prebreathe while stystolic blood pressure showed no change under either procedure. The increase in PVR during air prebreathing was attributed to procedural stress common to air and oxygen prebreathing.

  8. Clinical evaluation of a near-infrared tissue spectrometer in peripheral vascular disease

    NASA Astrophysics Data System (ADS)

    Cheng, Xuefeng; Mao, Jian-Min; Xu, Xiaorong; Elmandjra, Mohamed; Bush, Robin; Christenson, Linda; O'Keefe, Bill; Bry, John

    2003-07-01

    We report results of a feasibility clinical evaluation of the near-infrared Photonify Tissue Spectrometer in detection of peripheral vascular disease (PVD). In the evaluation, using a blood pressured cuff, we measure changes in oxygen saturation (StO2) during a temporary occlusion of blood inflow. We use the post-occlusive StO2 recovery rate and the time needed for 80% recovery as parameters to differentiate healthy subjects from subjects with PVD, and obtained high diagnostic accuracy in 19 subjects enrolled in the clinical evaluation. This may suggest that the tissue spectrometer could be useful in diagnosis of PVD.

  9. Catheter Securement Systems for Peripherally Inserted and Nontunneled Central Vascular Access Devices

    PubMed Central

    Krenik, Karen M.; Smith, Graham E.

    2016-01-01

    Sutureless catheter securement systems are intended to eliminate risks associated with sutures. The clinical acceptability of a novel system was investigated compared with the current method of securement for peripherally inserted central catheters (19 facilities using StatLock or sutures) or nontunneled central vascular access devices (3 facilities using StatLock or sutures or HubGuard + Sorbaview Shield). More than 94% of respondents rated the novel system as same, better, or much better than their current product. More than 82% of respondents were willing to replace their current system with the new one. PMID:27379679

  10. Vascular function and ocular involvement in sarcoidosis.

    PubMed

    Siasos, Gerasimos; Paraskevopoulos, Theodoros; Gialafos, Elias; Rapti, Aggeliki; Oikonomou, Evangelos; Zaromitidou, Marina; Mourouzis, Konstantinos; Siasou, Georgia; Gouliopoulos, Nikolaos; Tsalamandris, Sotiris; Vlasis, Konstantinos; Stefanadis, Christodoulos; Papavassiliou, Athanasios G; Tousoulis, Dimitris

    2015-07-01

    Ocular involvement occurs in sarcoidosis (Sar) patients mainly in the form of uveitis. This study was designed to determine if uveitis in Sar patients is associated with vascular impairment. We enrolled 82 Sar patients and 77, age and sex matched, control subjects (Cl). Sar patients were divided into those with ocular sarcoidosis (OS) and those without ocular sarcoidosis (WOS). Endothelial function was evaluated by flow-mediated dilation (FMD). Pulse wave velocity (PWV) was measured as an index of aortic stiffness and augmentation index (AIx) as a measure of arterial wave reflections. Although there was no significant difference in sex, age and mean arterial pressure, patients with OS compared to WOS patients and Cl subjects had impaired FMD (p<0.001), increased AIx (p=0.02) and increased PWV (p=0.001). Interestingly, impaired FMD in Sar patients was independently, from possible covariates (age, sex, smoking habits, arterial hypertension, dyslipidemia), associated with increased odds of ocular involvement (odds ratio=1.69, p=0.001). More precisely ROC curve analysis revealed that FMD had a significant diagnostic ability for the detection of OS (AUC=0.77, p<0.001) with a sensitivity of 79% and a specificity of 68% for an FMD value below 6.00%. To conclude in the present study we have shown that ocular involvement in Sar patients is associated with impaired endothelial function and increased arterial stiffness. These results strengthen the vascular theory which considers uveitis a consequence of vascular dysfunction in Sar patients and reveals a possible clinical importance of the use of endothelial function tests. PMID:25937082

  11. [Complex assessment of vasomotor function of vascular endothelium in patients with hypertension].

    PubMed

    Gel'tser, B I; Savchenko, S V; Kotel'nikov, V N; Plotnikova, I V

    2004-01-01

    Vasomotor function of vascular endothelium was studied in 62 patients with grade 1-2 hypertension with moderate and high added risk. Methods included study of brachial and middle cerebral artery endothelium dependent and independent vasodilation/vasoconstriction, measurement of plasma levels of nitric oxide metabolites (NO(n)-), endothelin-1, and antithrombin, as well as registration of their changes during vasomotor tests with calculation of integral indexes. Most patients with hypertension differed from controls by preponderance of vasoconstrictor over vasodilator reactions both in peripheral and cerebral vascular bed. At the same time patients with hypertension had pronounced dissociation between vasomotor responses of cerebral and peripheral vessels compared with subjects with normal blood pressure (p<0.05). Besides lowered basal level of NO(n)- and high concentration of endothelin-1 patients with hypertension were characterized by hyperreactivity of nitricoxidergic system, augmented lability of endothelin producing system, and impaired athrombogenecity of vascular endothelium. Complex assessment of vasomotor function of vascular endothelium by sequential vasoactive tests characterizes functional and metabolic activity of cerebral and peripheral vessels and can be used for improvement of risk stratification and monitoring of efficacy of treatment of patients with hypertension. PMID:15111971

  12. The Discovery of Novel Genomic, Transcriptomic, and Proteomic Biomarkers in Cardiovascular and Peripheral Vascular Disease: The State of the Art

    PubMed Central

    de Franciscis, Stefano; Metzinger, Laurent; Serra, Raffaele

    2016-01-01

    Cardiovascular disease (CD) and peripheral vascular disease (PVD) are leading causes of mortality and morbidity in western countries and also responsible of a huge burden in terms of disability, functional decline, and healthcare costs. Biomarkers are measurable biological elements that reflect particular physiological or pathological states or predisposition towards diseases and they are currently widely studied in medicine and especially in CD. In this context, biomarkers can also be used to assess the severity or the evolution of several diseases, as well as the effectiveness of particular therapies. Genomics, transcriptomics, and proteomics have opened new windows on disease phenomena and may permit in the next future an effective development of novel diagnostic and prognostic medicine in order to better prevent or treat CD. This review will consider the current evidence of novel biomarkers with clear implications in the improvement of risk assessment, prevention strategies, and medical decision making in the field of CD. PMID:27298828

  13. Cross-cultural adaptation and validation of the Peripheral Artery Questionnaire: Korean version for patients with peripheral vascular diseases.

    PubMed

    Lee, Ji Hyun; Cho, Kyoung Im; Spertus, John; Kim, Seong Man

    2012-08-01

    The Peripheral Artery Questionnaire (PAQ), as developed in US English, is a validated scale to evaluate the health status of patients with peripheral artery disease (PAD). The aim of this study was to translate the PAQ into Korean and to evaluate its reliability and validity. A multi-step process of forward-translation, reconciliation, consultation with the developer, back-translation and proofreading was conducted. The test-retest reliability was evaluated at a 2-week interval using the intra-class correlation coefficient (ICC). The validity was assessed by identifying associations between Korean PAQ (KPAQ) scores and Korean Health Assessment Questionnaire (KHAQ) scores. A total of 100 PAD patients were enrolled: 63 without and 37 with severe claudication. The reliability of the KPAQ was adequate, with an ICC of 0.71. There were strong correlations between KPAQ's subscales. Cronbach's alpha for the summary score was 0.94, indicating good internal consistency and congruence with the original US version. The validity was supported by a significant correlation between the total KHAQ score and KPAQ physical function, stability, symptom, social limitation and quality of life scores (r = -0.24 to -0.90; p < 0.001) as well as between the KHAQ walking subscale and the KPAQ physical function score (r = -0.55, p < 0.001). Our results indicate that the KPAQ is a reliable, valid instrument to evaluate the health status of Korean patients with PAD. PMID:22653880

  14. Enhanced Vascular PI3K/Akt-NOX Signaling Underlies the Peripheral NMDAR-Mediated Pressor Response in Conscious Rats

    PubMed Central

    McGee, Marie A.; Abdel-Rahman, Abdel A.

    2014-01-01

    The molecular mechanisms for peripheral N-Methyl-D-Aspartate receptor (NMDAR)-mediated vascular oxidative stress and pressor response are not known. We conducted integrative (in vivo) and ex vivo biochemical studies to test the hypothesis that ROS-dependent calcium influx, triggered by activation of vascular kinases, underlies the NMDAR-mediated pressor response. Pharmacological inhibition of PI3K/Akt (Wortmannin; 15 μg/kg), PKC (Chelerythrine; 5 mg/kg, i.v.), Ca2+ influx (nifedipine; 0.35 or 0.75 mg/kg) or NOX (apocynin; 5 mg/kg) attenuated the peripheral NMDAR-mediated pressor response in conscious male Sprague-Dawley rats. NMDAR activation enhanced the phosphorylation of Akt, ERK1, JNK and p38 (Western blot) and NADPH oxidase (NOX) activity in vascular tissues collected during the pressor response caused by NMDA infusion (180 μg/kg/min, 30 min). Further, ex vivo studies showed that wortmannin, chelerythrine or apocynin abrogated the NMDAR-mediated vascular NO and ROS generation and NOX activation in the vasculature. These findings implicate vascular PI3K/Akt-PKC signaling in the peripheral NMDAR-mediated increases in vascular NO and NOX activation (ROS), which ultimately lead to calcium influx and pressor response in conscious rats. PMID:24336015

  15. Peripheral limb vascular malformations: an update of appropriate imaging and treatment options of a challenging condition

    PubMed Central

    Farrant, J; Chhaya, N; Anwar, I; Marmery, H; Platts, A; Holloway, B

    2015-01-01

    Peripheral vascular malformations encompass a wide spectrum of lesions that can present as an incidental finding or produce potentially life- or limb-threatening complications. They can have intra-articular and intraosseous extensions that will result in more diverse symptomology and present greater therapeutic challenges. Developments in classification, imaging and interventional techniques have helped to improve outcome. The onus is now placed on appropriate detailed preliminary imaging, diagnosis and classification to direct management and exclude other more common mimics. Radiologists are thus playing an increasingly important role in the multidisciplinary teams charged with the care of these patients. By fully understanding the imaging characteristics and image-guided procedures available, radiologists will be armed with the tools to meet these responsibilities. This review highlights the recent advances made in imaging and the options available in interventional therapy. PMID:25525685

  16. Quantitative near-infrared spectroscopy on patients with peripheral vascular disease

    NASA Astrophysics Data System (ADS)

    Franceschini, Maria-Angela; Fantini, Sergio; Palumbo, Renato; Pasqualini, Leonella; Vaudo, Gaetano; Franceschini, Edoardo; Gratton, Enrico; Palumbo, Barbara; Innocente, Salvatore; Mannarino, Elmo

    1998-01-01

    We have used near-infrared spectroscopy to measure the hemoglobin saturation at rest and during exercise on patients affected by peripheral vascular disease (PVD). The instrument used in our study is a frequency-domain tissue oximeter which employs intensity modulated (110 MHz) laser diodes. We examined 9 subjects, 3 of which were controls and 6 were patients affected by stage II PVD. The optical probe was located on the calf muscle of the subjects. The measurement protocol consisted of: (1) baseline (approximately 5 min); (2) stationary bicycle exercise (approximately 5 min); (3) recovery (approximately 15 min). The change in hemoglobin saturation during exercise ((Delta) Y) and the recovery time after exercise (trec) were significantly greater in the PVD patients ((Delta) Y equals -21 +/- 3%, trec equals 5.9 +/- 3.8 min) than in the control subjects ((Delta) Y equals 2 +/- 3%, trec equals 0.6 +/- 0.1 min).

  17. Quantitative near-infrared spectroscopy on patients with peripheral vascular disease

    NASA Astrophysics Data System (ADS)

    Franceschini, Maria A.; Fantini, Sergio; Palumbo, Renato; Pasqualini, Leonella; Vaudo, Gaetano; Franceschini, Edoardo; Gratton, Enrico; Palumbo, Barbara; Innocente, Salvatore; Mannarino, Elmo

    1997-12-01

    We have used near-infrared spectroscopy to measure the hemoglobin saturation at rest and during exercise on patients affected by peripheral vascular disease (PVD). The instrument used in our study is a frequency-domain tissue oximeter which employs intensity modulated (110 MHz) laser diodes. We examined 9 subjects, 3 of which were controls and 6 were patients affected by stage II PVD. The optical probe was located on the calf muscle of the subjects. The measurement protocol consisted of: (1) baseline (approximately 5 min); (2) stationary bicycle exercise (approximately 5 min); (3) recovery (approximately 15 min). The change in hemoglobin saturation during exercise ((Delta) Y) and the recovery time after exercise (trec) were significantly greater in the PVD patients ((Delta) Y equals -21 +/- 3%, trec equals 5.9 +/- 3.8 min) than in the control subjects ((Delta) Y equals 2 +/- 3%, trec equals 0.6 +/- 0.1 min).

  18. Functional preservation of vascular smooth muscle tissue

    NASA Technical Reports Server (NTRS)

    Alexander, W. C.; Hutchins, P. M.; Kimzey, S. L.

    1973-01-01

    The ionic and cellular feedback relationships operating to effect the vascular decompensatory modifications were examined to reveal procedures for implementing protective measures guarding against vascular collapse when returning from a weightless environment to that of the earth's gravity. The surgical procedures for preparing the rat cremaster, and the fixation methods are described. Abstracts of publications resulting from this research are included.

  19. Serum Superoxide Dismutase Is Associated with Vascular Structure and Function in Hypertensive and Diabetic Patients

    PubMed Central

    Gómez-Marcos, Manuel A.; Blázquez-Medela, Ana M.; Gamella-Pozuelo, Luis; Recio-Rodriguez, José I.; García-Ortiz, Luis; Martínez-Salgado, Carlos

    2016-01-01

    Oxidative stress is associated with cardiac and vascular defects leading to hypertension and atherosclerosis, being superoxide dismutase (SOD) one of the main intracellular antioxidant defence mechanisms. Although several parameters of vascular function and structure have a predictive value for cardiovascular morbidity-mortality in hypertensive patients, there are no studies on the involvement of SOD serum levels with these vascular parameters. Thus, we assessed if SOD serum levels are correlated with parameters of vascular function and structure and with cardiovascular risk in hypertensive and type 2 diabetic patients. We enrolled 255 consecutive hypertensive and diabetic patients and 52 nondiabetic and nonhypertensive controls. SOD levels were measured with an enzyme-linked immunosorbent assay kit. Vascular function and structure were evaluated by pulse wave velocity, augmentation index, ambulatory arterial stiffness index, and carotid intima-media thickness. We detected negative correlations between SOD and pressure wave velocity, peripheral and central augmentation index and ambulatory arterial stiffness index, pulse pressure, and plasma HDL-cholesterol, as well as positive correlations between SOD and plasma uric acid and triglycerides. Our study shows that SOD is a marker of cardiovascular alterations in hypertensive and diabetic patients, since changes in its serum levels are correlated with alterations in vascular structure and function. PMID:26635913

  20. Serum Superoxide Dismutase Is Associated with Vascular Structure and Function in Hypertensive and Diabetic Patients.

    PubMed

    Gómez-Marcos, Manuel A; Blázquez-Medela, Ana M; Gamella-Pozuelo, Luis; Recio-Rodriguez, José I; García-Ortiz, Luis; Martínez-Salgado, Carlos

    2016-01-01

    Oxidative stress is associated with cardiac and vascular defects leading to hypertension and atherosclerosis, being superoxide dismutase (SOD) one of the main intracellular antioxidant defence mechanisms. Although several parameters of vascular function and structure have a predictive value for cardiovascular morbidity-mortality in hypertensive patients, there are no studies on the involvement of SOD serum levels with these vascular parameters. Thus, we assessed if SOD serum levels are correlated with parameters of vascular function and structure and with cardiovascular risk in hypertensive and type 2 diabetic patients. We enrolled 255 consecutive hypertensive and diabetic patients and 52 nondiabetic and nonhypertensive controls. SOD levels were measured with an enzyme-linked immunosorbent assay kit. Vascular function and structure were evaluated by pulse wave velocity, augmentation index, ambulatory arterial stiffness index, and carotid intima-media thickness. We detected negative correlations between SOD and pressure wave velocity, peripheral and central augmentation index and ambulatory arterial stiffness index, pulse pressure, and plasma HDL-cholesterol, as well as positive correlations between SOD and plasma uric acid and triglycerides. Our study shows that SOD is a marker of cardiovascular alterations in hypertensive and diabetic patients, since changes in its serum levels are correlated with alterations in vascular structure and function. PMID:26635913

  1. Peripheral vascular effects of beta-adrenoceptor blockade: comparison of two agents.

    PubMed Central

    Cooke, E D; Maltz, M B; Smith, R E; Bowcock, S A; Watkins, C J; Camm, A J

    1987-01-01

    1. The effects of atenolol (100 mg), a beta 1-adrenoceptor blocker, and bevantolol (200 mg) were compared on heart rate, blood pressure, lung function and on the peripheral circulation in normal volunteers before and after isoprenaline infusion. Recordings were obtained 2 and 24 h following a single dose and 24 h after continuous dosage for 7 days. 2. The effect of atenolol on the blockade of beta-adrenergic stimuli, as measured by the ability to reduce isoprenaline-induced tachycardia, was greater than that of bevantolol. Though both drugs achieved a similar reduction in systolic pressure there was a significantly greater reduction in diastolic pressure with bevantolol. The lung function tests gave similar results to those with other beta-adrenoceptor blockers. 3. Atenolol produced a fall in peripheral blood flow consistent with unopposed peripheral alpha-adrenoceptor stimulation. The effect of bevantolol differs from that of atenolol, an initial fall in peripheral blood flow being followed by a rapid recovery to baseline or greater. This effect may be due to partial alpha-adrenoceptor agonist activity. PMID:2889459

  2. IMPAIRED VASCULAR ENDOTHELIAL GROWTH FACTOR-A AND INFLAMMATION IN SUBJECTS WITH PERIPHERAL ARTERY DISEASE

    PubMed Central

    Gardner, Andrew W.; Parker, Donald E.; Montgomery, Polly S.; Sosnowska, Danuta; Casanegra, Ana I.; Esponda, Omar L.; Ungvari, Zoltan; Csiszar, Anna; Sonntag, William E.

    2014-01-01

    We compared apoptosis, cellular oxidative stress, and inflammation of cultured endothelial cells treated with sera from 130 subjects with peripheral artery disease (PAD) and 36 control subjects with high burden of co-morbid conditions and cardiovascular risk factors. Secondly, we compared circulating inflammatory, antioxidant capacity, and vascular biomarkers between the groups. The groups were not significantly different (p>0.05) on apoptosis, hydrogen peroxide, hydroxyl radical antioxidant capacity, and nuclear factor k-light-chain-enhancer of activated B cells. Circulating tissue necrosis factor alpha (TNFα) (p=0.016) and interleukin-8 (p=0.006) were higher in the PAD group, whereas vascular endothelial growth factor-A (VEGF-A) (p=0.023) was lower. PAD does not impair the endothelium beyond that which already occurs from co-morbid conditions and cardiovascular risk factors in subjects with claudication. However, subjects with PAD have lower circulating VEGF-A than controls, and higher circulating inflammatory parameters of TNFα and IL-8. PMID:24006146

  3. Initial trial of argon ion laser endarterectomy for peripheral vascular disease

    SciTech Connect

    Eugene, J.; Ott, R.A.; Baribeau, Y.; McColgan, S.J.; Berns, M.W.; Mason, G.R. )

    1990-08-01

    In the initial of open laser endarterectomy, 16 patients underwent 18 reconstructions for claudication (13 patients), rest pain (3 patients), and gangrene (2 patients). The mean (+/- SD) preoperative ankle arm index was 0.53 +/- 0.18. The laser endarterectomies were aorto-bi-iliac (1 patient), iliac (1 patient), superficial femoral (7 patients), profunda femoral (7 patients), and popliteal-posterior tibial (2 patients). All operations included surgical exposure, vascular control, administration of heparin, and an arteriotomy. Atheromas were dissected from arteries with argon ion laser radiation (power, 1.0 W). End points were welded with laser light. Arteries were closed primarily. The laser endarterectomies were 6 to 60 cm long and required 168 J to 2447.5 J. All patients had symptomatic relief, with a postoperative ankle arm index of 0.97 +/- 0.10. There were no arterial perforations from laser radiation. Surgical complications included early thrombosis requiring thrombectomy (3 patients) and hematoma requiring evacuation (1 patient). The laser endarterectomies have an 88% patency at 1 year. Open endarterectomy can be performed with laser radiation. A larger clinical trial is necessary to define the indications for laser endarterectomy in peripheral vascular disease.

  4. An antiangiogenic isoform of VEGF-A contributes to impaired vascularization in peripheral artery disease.

    PubMed

    Kikuchi, Ryosuke; Nakamura, Kazuto; MacLauchlan, Susan; Ngo, Doan Thi-Minh; Shimizu, Ippei; Fuster, Jose Javier; Katanasaka, Yasufumi; Yoshida, Sumiko; Qiu, Yan; Yamaguchi, Terry P; Matsushita, Tadashi; Murohara, Toyoaki; Gokce, Noyan; Bates, David O; Hamburg, Naomi M; Walsh, Kenneth

    2014-12-01

    Peripheral artery disease (PAD) generates tissue ischemia through arterial occlusions and insufficient collateral vessel formation. Vascular insufficiency in PAD occurs despite higher circulating levels of vascular endothelial growth factor A (VEGF-A), a key regulator of angiogenesis. Here we show that clinical PAD is associated with elevated levels of an antiangiogenic VEGF-A splice isoform (VEGF-A165b) and a corresponding reduction in levels of the proangiogenic VEGF-A165a splice isoform. In mice, VEGF-A165b expression was upregulated by conditions associated with impaired limb revascularization, including leptin deficiency, diet-induced obesity, genetic ablation of the secreted frizzled-related protein 5 (Sfrp5) adipokine and transgenic overexpression of Wnt5a in myeloid cells. In a mouse model of PAD, delivery of VEGF-A165b inhibited revascularization of ischemic hind limbs, whereas treatment with an isoform-specific neutralizing antibody reversed impaired revascularization caused by metabolic dysfunction or perturbations in the Wnt5a-Sfrp5 regulatory system. These results indicate that inflammation-driven expression of the antiangiogenic VEGF-A isoform can contribute to impaired collateralization in ischemic cardiovascular disease. PMID:25362254

  5. Modular peripheral functionalization of thiophene dendrons and dendrimers.

    PubMed

    Deng, Suxiang; Sriwichai, Saengrawee; Taranekar, Prasad; Krueger, Greg; Mays, Jimmy W; Advincula, Rigoberto C

    2011-08-21

    A series of thiophene dendrons and dendrimers with peripheral functional groups were designed and synthesized. Two methodologies using thiophene dendrons and dendrons as synthetic building blocks, namely, (1) periphery functionalization; (2) a combination of focal and periphery functionalization have been demonstrated. PMID:21735024

  6. Age and sex influence the balance between maximal cardiac output and peripheral vascular reserve.

    PubMed

    Ridout, Samuel J; Parker, Beth A; Smithmyer, Sandra L; Gonzales, Joaquin U; Beck, Kenneth C; Proctor, David N

    2010-03-01

    We evaluated the influence of age and sex on the relationship between central and peripheral vasodilatory capacity. Healthy men (19 younger, 12 older) and women (17 younger, 17 older) performed treadmill and knee extensor exercise to fatigue on separate days while maximal cardiac output (Q, acetylene uptake) and peak femoral blood flow (FBF, Doppler ultrasound) were measured, respectively. Maximal Q was reduced with age similarly in men (Y: 23.6 +/- 2.7 vs. O: 17.4 +/- 3.5 l/min; P < 0.05) and women (Y: 17.7 +/- 1.9 vs. O: 12.3 +/- 1.6 l/min; P < 0.05). Peak FBF was similar between younger (Y) and older (O) men (Y: 2.1 +/- 0.5 vs. O: 2.2 +/- 0.7 l/min) but was lower in older women compared with younger women (Y: 1.9 +/- 0.4 vs. O: 1.4 +/- 0.4 l/min; P < 0.05). Maximal Q was positively correlated with peak FBF in men (Y: r = 0.55, O: r = 0.74; P < 0.05) but not in women (Y: r = 0.34, O: r = 0.10). Normalization of cardiac output to appendicular muscle mass and peak FBF to quadriceps mass reduced the correlation between these variables in younger men (r = 0.30), but the significant association remained in older men (r = 0.68; P < 0.05), with no change in women. These data suggest that 1) aerobic capacity is associated with peripheral vascular reserve in men but not women, and 2) aging is accompanied by a more pronounced sex difference in this relationship. PMID:19959767

  7. [Hearing disorders in peripheral arterial vascular diseases. A contribution on hearing loss in the aged].

    PubMed

    Böhme, G

    1987-12-01

    Otologic-audiologic examination was carried out in 171 patients (aged between 37-86; average age 64) with confirmed internal angiologic peripheral arterial vascular disease. Additional findings were observed in 94 of these patients who revealed an obliteration of the internal carotid artery or cerebral ischaemic stroke. Diseases of the ear were excluded clinically and audiologically. The mean hearing loss shows a sensory-neural high-tone loss in the tone audiogram. The range of scatter increases proportionately to the increase in tone loss. If compared with the physiologic examination of geriatric patients, the total word comprehension and minimal discrimination loss in the speech audiogram point towards a pathologic impairment of hearing in old age. The total word comprehension amounts to 251.20% in the 51-60 age group, 250.40% in the persons 61-70 years of age, 180.96% for the 71-80 age group and 131.67% for those over 80 years of age. The minimal discrimination loss comprises 4.00% for the 51-60 age group, 4.19% for the 61-70 group, 21.35% for 71-80 age bracket and 35.62% for those over 80. On the strength of these findings, an arterial sclerotic vascular disease should be considered as one of the multifactorial genesis of hearing impairment in old age. Special attention should be focussed on decompensation of the total word comprehension and minimal discrimination loss before the age of eighty. This would contribute towards a differentiation of physiologic and pathologic hearing diseases in old age. PMID:3431312

  8. Fibrin Sealant Improves Hemostasis in Peripheral Vascular Surgery: A Randomized Prospective Trial

    PubMed Central

    Schenk, Worthington G.; Burks, Sandra G.; Gagne, Paul J.; Kagan, Steven A.; Lawson, Jeffrey H.; Spotnitz, William D.

    2003-01-01

    . Conclusions FS achieved more rapid hemostasis than traditional techniques in this peripheral vascular procedure. FS use appeared to be safe for this procedure. PMID:12796584

  9. Vascular precursors: origin, regulation and function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this miniseries, we discuss the phenotype, origin, and specialized microenvironment (niche) of distinct populations of stem and progenitor cells that exhibit vascular potential. Their usefulness and effectiveness for clinical therapies are also described. We have learned a great deal about post...

  10. Assessing vascular endothelial function using frequency and rank order statistics

    NASA Astrophysics Data System (ADS)

    Wu, Hsien-Tsai; Hsu, Po-Chun; Sun, Cheuk-Kwan; Liu, An-Bang; Lin, Zong-Lin; Tang, Chieh-Ju; Lo, Men-Tzung

    2013-08-01

    Using frequency and rank order statistics (FROS), this study analyzed the fluctuations in arterial waveform amplitudes recorded from an air pressure sensing system before and after reactive hyperemia (RH) induction by temporary blood flow occlusion to evaluate the vascular endothelial function of aged and diabetic subjects. The modified probability-weighted distance (PWD) calculated from the FROS was compared with the dilatation index (DI) to evaluate its validity and sensitivity in the assessment of vascular endothelial function. The results showed that the PWD can provide a quantitative determination of the structural changes in the arterial pressure signals associated with regulation of vascular tone and blood pressure by intact vascular endothelium after the application of occlusion stress. Our study suggests that the use of FROS is a reliable noninvasive approach to the assessment of vascular endothelial degeneration in aging and diabetes.

  11. A Methodological Approach to Non-invasive Assessments of Vascular Function and Morphology

    PubMed Central

    Sandoo, Aamer; Kitas, George D.

    2015-01-01

    The endothelium is the innermost lining of the vasculature and is involved in the maintenance of vascular homeostasis. Damage to the endothelium may predispose the vessel to atherosclerosis and increase the risk for cardiovascular disease. Assessments of peripheral endothelial function are good indicators of early abnormalities in the vascular wall and correlate well with assessments of coronary endothelial function. The present manuscript details the important methodological steps necessary for the assessment of microvascular endothelial function using laser Doppler imaging with iontophoresis, large vessel endothelial function using flow-mediated dilatation, and carotid atherosclerosis using carotid artery ultrasound. A discussion on the methodological considerations for each of the techniques is also presented, and recommendations are made for future research. PMID:25741637

  12. Assessment by dipyridamole-thallium-201 myocardial scintigraphy of coronary risk before peripheral vascular surgery

    SciTech Connect

    Sachs, R.N.; Tellier, P.; Larmignat, P.; Azorin, J.; Fischbein, L.; Beaudet, B.; Cadilhac, P.; Cupa, M.; De Saint Florent, G.; Vulpillat, M.

    1988-05-01

    From October 1983 to January 1985, 46 patients (38 men and 8 women; average age, 60 years; range, 37 to 83 years) underwent peripheral vascular surgery of either the internal carotid artery or the arteries of the lower limbs. Each patient had a thorough clinical examination, an ECG, and a dipyridamole-thallium-201 myocardial scan before operation. On the basis of results, they were divided into two groups: 20 patients with and 26 patients without chronic ischemic heart disease. Three major cardiac events were noted during or after a period of 1 month after surgery: There were two deaths due to cardiac ischemic events and one patient had postoperative unstable angina pectoris. These three patients were classified in the coronary group (NS). When the patients were classified on the basis of whether or not there was thallium redistribution on serial images after infusion of dipyridamole, 14 with redistribution and 32 without redistribution were noted. The three patients who had major cardiac events were in the former group (p less than 0.04). Our data suggest that patients in whom redistribution occurs have a high incidence of postoperative ischemic events. These patients should be considered for particular preoperative coronary care to avoid major postoperative cardiac events and to increase chances of survival.

  13. Edaravone promotes functional recovery after mechanical peripheral nerve injury

    PubMed Central

    Zhang, Teng; Li, Zhengwei; Dong, Jianli; Nan, Feng; Li, Tao; Yu, Qing

    2014-01-01

    Edaravone has been shown to reduce ischemia/reperfusion-induced peripheral nerve injury. However, the therapeutic effect of edaravone on peripheral nerve injury caused by mechanical factors is unknown. In the present study, we established a peripheral nerve injury model by crushing the sciatic nerve using hemostatic forceps, and then administered edaravone 3 mg/kg intraperitoneally. The sciatic functional index and superoxide dismutase activity of the sciatic nerve were increased, and the malondialdehyde level was decreased in animals in the edaravone group compared with those in the model group. Bcl-2 expression was increased, but Bax expression was decreased in anterior horn cells of the L4-6 spinal cord segments. These results indicated that edaravone has a neuroprotective effect following peripheral nerve injury caused by mechanical factors through alleviating free radical damage to cells and inhibiting lipid peroxidation, as well as regulating apoptosis-related protein expression. PMID:25374594

  14. Exercise and Vascular Function – How Much is too Much?

    PubMed Central

    Durand, Matthew J.; Gutterman, David D.

    2015-01-01

    Exercise is a powerful therapy for preventing the onset and slowing the progression of cardiovascular disease. Increased shear stress during exercise improves vascular homeostasis by both decreasing reactive oxygen species and increasing nitric oxide bioavailability in the endothelium. While these observations are well accepted as they apply to individuals at risk for cardiovascular disease, less is known about how exercise, especially intense exercise, affects vascular function in healthy individuals. This review highlights examples of how vascular function can paradoxically be impaired in otherwise healthy individuals by extreme levels of exercise, with a focus on the causative role that reactive oxygen species play in this impairment. PMID:24873760

  15. Sensitivity and specificity of QTc dispersion for identification of risk of cardiac death in patients with peripheral vascular disease.

    PubMed Central

    Darbar, D.; Luck, J.; Davidson, N.; Pringle, T.; Main, G.; McNeill, G.; Struthers, A. D.

    1996-01-01

    OBJECTIVE: To determine whether QTc dispersion, which is easily obtained from a standard electrocardiogram, can predict those patients with peripheral vascular disease who will subsequently suffer a cardiac death, despite having no cardiac symptoms or signs. DESIGN: Patients with peripheral vascular disease were followed up for five years after they had had coronary angiography, radionuclide ventriculography, and their QTc dispersion calculated from their 12 lead electrocardiogram. SUBJECTS: 49 such patients were then divided into three groups: survivors (34), cardiac death (12), and non-cardiac death (3). MAIN OUTCOME MEASURE: Survival. RESULTS: The mean (SD; range) ejection fractions were similar in all three groups: survivors 45.9 (11.0; 27.0-52.0), cardiac death 44.0 (7.90; 28.5-59.0), and non-cardiac death 45.3 (4.55; 39.0-50.0). QTc dispersion was significantly prolonged in the cardiac death group compared with in the survivors (86.3(23.9; 41.0-139) v 56.5 (25.4; 25.0-164); P = 0.002). A QTc dispersion > or = 60 ms had a 92% sensitivity and 81% specificity in predicting cardiac death, QTc dispersion in patients with diffuse coronary artery disease was significantly (P < 0.05) greater than in those with no disease or disease affecting one, two, or three vessels. CONCLUSIONS: There is a strong link between QTc dispersion and cardiac death in patients with peripheral vascular disease. QTc dispersion may therefore be a cheap and non-invasive way of assessing the risk of cardiac death in patients with peripheral vascular disease. PMID:8611874

  16. Time-of-day variation in vascular function.

    PubMed

    Rodrigo, G C; Denniff, M

    2016-08-01

    What is the topic of this review? This report looks at the role of endothelial nitric oxide signalling in the time-of-day variation in vasoconstriction of resistance vessels. What advances does it highlight? It highlights a time-of-day variation in contraction of mesenteric arteries, characterized by a reduced contractile response to either phenylephrine or high K(+) and increased relaxation in response to acetylcholine during the active period. This time-of-day variation in contraction results from a difference in endothelial nitric oxide synthase (eNOS) signalling that correlates with levels of eNOS expression, which peak during the active period and may have far reaching physiological consequences beyond regulation of blood pressure. There is a strong time-of-day variation in the vasoconstriction in response to sympathetic stimulation that may contribute to the time-of-day variation in blood pressure, which is characterized by a dip in blood pressure during the individual's rest period when sympathetic activity is low. Vasoconstriction is known to be regulated tightly by nitric oxide signalling from the endothelial cells, so we have looked at the effect of time-of-day on levels of endothelial nitric oxide synthase (eNOS) and vascular contractility. Mesenteric arteries isolated from the nocturnal rat exhibit a time-of-day variation in their contractile response to α1 -adrenoreceptor and muscarinic activation, which is characterized by a reduced vasoconstriction in response to phenylephrine and enhanced vasodilatation in response to acetylcholine during the rat's active period at night. An increase in eNOS signalling during the active period is responsible for this time-of-day difference in response to phenylephrine and acetylcholine and correlates with the large increase in eNOS expression (mRNA and protein) during the active period, possibly driven by the presence of a functioning peripheral circadian clock. This increase in eNOS signalling may function to

  17. [Peripheral, central and functional vertigo syndromes].

    PubMed

    Strupp, M; Dieterich, M; Zwergal, A; Brandt, T

    2015-12-01

    Depending on the temporal course, three forms of vertigo syndrome can be differentiated: 1) vertigo attacks, e.g. benign paroxysmal positional vertigo (BPPV), Menière's disease and vestibular migraine, 2) acute spontaneous vertigo lasting for days, e.g. acute unilateral vestibulopathy, brainstem or cerebellar infarction and 3) symptoms lasting for months or years, e.g. bilateral vestibulopathy and functional vertigo. The specific therapy of the various syndromes is based on three principles: 1) physical treatment with liberatory maneuvers for BPPV and balance training for vestibular deficits, 2) pharmacotherapy, e.g. for acute unilateral vestibulopathy (corticosteroids) and Menière's disease (transtympanic administration of gentamicin or steroids and high-dose betahistine therapy); placebo-controlled pharmacotherapy studies are currently being carried out for acute unilateral vestibulopathy, vestibular paroxysmia, prophylaxis of BPPV, vestibular migraine, episodic ataxia type 2 and cerebellar ataxia; 3) psychotherapy for functional dizziness. PMID:26643594

  18. Role of Peripheral Vascular Resistance for the Association Between Major Depression and Cardiovascular Disease

    PubMed Central

    Bouzinova, Elena V.; Wiborg, Ove; Aalkjaer, Christian

    2015-01-01

    Abstract: Major depression and cardiovascular diseases are 2 of the most prevalent health problems in Western society, and an association between them is generally accepted. Although the specific mechanism behind this comorbidity remains to be elucidated, it is clear that it has a complex multifactorial character including a number of neuronal, humoral, immune, and circulatory pathways. Depression-associated cardiovascular abnormalities associate with cardiac dysfunctions and with changes in peripheral resistance. Although cardiac dysfunction in association with depression has been studied in detail, little attention was given to structural and functional changes in resistance arteries responsible for blood pressure control and tissue perfusion. This review discusses recent achievements in studies of depression-associated abnormalities in resistance arteries in humans and animal experimental models. The changes in arterial structure, contractile and relaxing functions associated with depression symptoms are discussed, and the role of these abnormalities for the pathology of major depression and cardiovascular diseases are suggested. PMID:25469807

  19. Inflammatory stimuli acutely modulate peripheral taste function.

    PubMed

    Kumarhia, Devaki; He, Lianying; McCluskey, Lynnette Phillips

    2016-06-01

    Inflammation-mediated changes in taste perception can affect health outcomes in patients, but little is known about the underlying mechanisms. In the present work, we hypothesized that proinflammatory cytokines directly modulate Na(+) transport in taste buds. To test this, we measured acute changes in Na(+) flux in polarized fungiform taste buds loaded with a Na(+) indicator dye. IL-1β elicited an amiloride-sensitive increase in Na(+) transport in taste buds. In contrast, TNF-α dramatically and reversibly decreased Na(+) flux in polarized taste buds via amiloride-sensitive and amiloride-insensitive Na(+) transport systems. The speed and partial amiloride sensitivity of these changes in Na(+) flux indicate that IL-1β and TNF-α modulate epithelial Na(+) channel (ENaC) function. A portion of the TNF-mediated decrease in Na(+) flux is also blocked by the TRPV1 antagonist capsazepine, although TNF-α further reduced Na(+) transport independently of both amiloride and capsazepine. We also assessed taste function in vivo in a model of infection and inflammation that elevates these and additional cytokines. In rats administered systemic lipopolysaccharide (LPS), CT responses to Na(+) were significantly elevated between 1 and 2 h after LPS treatment. Low, normally preferred concentrations of NaCl and sodium acetate elicited high response magnitudes. Consistent with this outcome, codelivery of IL-1β and TNF-α enhanced Na(+) flux in polarized taste buds. These results demonstrate that inflammation elicits swift changes in Na(+) taste function, which may limit salt consumption during illness. PMID:27009163

  20. The Adventitia: Essential Regulator of Vascular Wall Structure and Function

    PubMed Central

    Stenmark, Kurt R.; Yeager, Michael E.; El Kasmi, Karim C.; Nozik-Grayck, Eva; Gerasimovskaya, Evgenia V.; Li, Min; Riddle, Suzette R.; Frid, Maria G.

    2013-01-01

    The vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and is comprised of a variety of cells including fibroblasts, immunomodulatory cells (dendritic and macrophages), progenitor cells, vasa vasorum endothelial cells and pericytes, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and re-programmed to then influence tone and structure of the vessel wall, to initiate and perpetuate chronic vascular inflammation, and to act to stimulate expansion of the vasa vasorum, which can act as a conduit for continued inflammatory and progenitor cell delivery to the vessel wall. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of vascular wall function and structure from the “outside-in.” PMID:23216413

  1. The adventitia: essential regulator of vascular wall structure and function.

    PubMed

    Stenmark, Kurt R; Yeager, Michael E; El Kasmi, Karim C; Nozik-Grayck, Eva; Gerasimovskaya, Evgenia V; Li, Min; Riddle, Suzette R; Frid, Maria G

    2013-01-01

    The vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and is composed of a variety of cells, including fibroblasts, immunomodulatory cells (dendritic cells and macrophages), progenitor cells, vasa vasorum endothelial cells and pericytes, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to influence the tone and structure of the vessel wall; to initiate and perpetuate chronic vascular inflammation; and to stimulate expansion of the vasa vasorum, which can act as a conduit for continued inflammatory and progenitor cell delivery to the vessel wall. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of vascular wall function and structure from the outside in. PMID:23216413

  2. Effects of short-term endurance exercise training on vascular function in young males.

    PubMed

    Currie, Katharine D; Thomas, Scott G; Goodman, Jack M

    2009-09-01

    We investigated effects of 6 days of endurance exercise training [cycling at 65% of peak oxygen consumption (VO(2peak)) for 2 h a day on six consecutive days] on vascular function in young males. Measures of VO(2peak), arterial stiffness, calf vascular conductance and heart rate variability were obtained pre- and post-training. Indices of arterial stiffness were obtained by applanation tonometry to determine aortic augmentation index normalized to a heart rate of 75 bpm (AI(x) at 75 bpm), and central and peripheral pulse wave velocity (CPWV, PPWV). Resting and maximal calf vascular conductances were calculated from concurrent measures of blood pressure and calf blood flow using venous occlusion strain-gauge plethysmography. Time and frequency domain measures of heart rate variability were obtained from recording R-R intervals during supine and standing conditions. Both CPWV (5.9 +/- 0.8 vs. 5.4 +/- 0.8 m/s) and PPWV (9.7 +/- 0.8 vs. 8.9 +/- 1.3 m/s) were reduced following the training program. No significant changes were observed in AI(x) at 75 bpm, vascular conductance, heart rate variability or VO(2peak). These data indicate that changes in arterial stiffness independent of changes in heart rate variability or vascular conductance can be achieved in healthy young males following only 6 days of intense endurance exercise. PMID:19554346

  3. Macrophages in Vascular Inflammation: Origins and Functions.

    PubMed

    Decano, Julius L; Mattson, Peter C; Aikawa, Masanori

    2016-06-01

    Macrophages influence various processes of cardiovascular inflammation. Whether they are of embryonic or post-natal hematopoietic origin, their balance in differential activation may direct the course of inflammation. Accelerated macrophage activation and accumulation through a pro-inflammatory signaling pathway may result in extensive tissue damage, adverse repair, and worsened clinical outcomes. Attenuation of such a mechanism and/or promotion of the anti-inflammatory macrophage activation may lead to early resolution of inflammation. Elucidating multiple novel mechanisms of monocyte and macrophage activation leads to a better understanding of their roles in vascular inflammation. In turn, this begets better therapeutic target identification and biomarker discovery. Combined with increasingly sensitive and specific imaging techniques, we continue to push back early detection and monitoring to provide us with a greater window for disease modification. The potential success of cytokine-targeted therapy will be solid proof of the inflammatory hypothesis of atherothrombosis. PMID:27125207

  4. Hindlimb unweighting affects rat vascular capacitance function

    NASA Technical Reports Server (NTRS)

    Dunbar, S. L.; Tamhidi, L.; Berkowitz, D. E.; Shoukas, A. A.

    2001-01-01

    Microgravity is associated with an impaired stroke volume and, therefore, cardiac output response to orthostatic stress. We hypothesized that a decreased venous filling pressure due to increased venous compliance may be an important contributing factor in this response. We used a constant flow, constant right atrial pressure cardiopulmonary bypass procedure to measure total systemic vascular compliance (C(T)), arterial compliance (C(A)), and venous compliance (C(V)) in seven control and seven 21-day hindlimb unweighted (HLU) rats. These compliance values were calculated under baseline conditions and during an infusion of 0.2 microg*kg(-1)*min(-1) norepinephrine (NE). The change in reservoir volume, which reflects changes in unstressed vascular volume (DeltaV(0)) that occurred upon infusion of NE, was also measured. C(T) and C(V) were larger in HLU rats both at baseline and during the NE infusion (P < 0.05). Infusion of NE decreased C(T) and C(V) by 20% in both HLU and control rats (P < 0.01). C(A) was also significantly decreased in both groups of rats by NE (P < 0.01), but values of C(A) were similar between HLU and control rats both at baseline and during the NE infusion. Additionally, the NE-induced DeltaV(0) was attenuated by 53% in HLU rats compared with control rats (P < 0.05). The larger C(V) and attenuated DeltaV(0) in HLU rats could contribute to a decreased filling pressure during orthostasis and thus may partially underlie the mechanism leading to the exaggerated fall in stroke volume and cardiac output seen in astronauts during an orthostatic stress after exposure to microgravity.

  5. Effects of chronic peripheral olfactory loss on functional brain networks.

    PubMed

    Kollndorfer, K; Jakab, A; Mueller, C A; Trattnig, S; Schöpf, V

    2015-12-01

    The effects of sensory loss on central processing in various sensory systems have already been described. The olfactory system holds the special ability to be activated by a sensorimotor act, without the presentation of an odor. In this study, we investigated brain changes related to chronic peripheral smell loss. We included 11 anosmic patients (eight female, three male; mean age, 43.5 years) with smell loss after an infection of the upper respiratory tract (mean disease duration, 4.64 years) and 14 healthy controls (seven female, seven male; mean age, 30.1 years) in a functional magnetic resonance imaging experiment with a sniffing paradigm. Data were analyzed using group-independent component analysis and functional connectivity analysis. Our results revealed a spatially intact olfactory network in patients, whereas major aberrations due to peripheral loss were observed in functional connectivity through a variety of distributed brain areas. This is the first study to show the re-organization caused by the lack of peripheral input. The results of this study indicate that anosmic patients hold the ability to activate an olfaction-related functional network through the sensorimotor component of odor-perception (sniffing). The areas involved were not different from those that emerged in healthy controls. However, functional connectivity appears to be different between the two groups, with a decrease in functional connectivity in the brain in patients with chronic peripheral sensory loss. We can further conclude that the loss of the sense of smell may induce far-reaching effects in the whole brain, which lead to compensatory mechanisms from other sensory systems due to the close interconnectivity of the olfactory system with other functional networks. PMID:26415766

  6. Systemic vascular function is associated with muscular power in adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-associated loss of muscular strength and muscular power are critical determinants of loss of physical function and progression to disability in older adults. In this study, we examined the association of systemic vascular function and measures of muscle strength and power in older adults. Measu...

  7. Functional Human Vascular Network Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels.

    PubMed

    Chen, Ying-Chieh; Lin, Ruei-Zeng; Qi, Hao; Yang, Yunzhi; Bae, Hojae; Melero-Martin, Juan M; Khademhosseini, Ali

    2012-05-23

    The generation of functional, 3D vascular networks is a fundamental prerequisite for the development of many future tissue engineering-based therapies. Current approaches in vascular network bioengineering are largely carried out using natural hydrogels as embedding scaffolds. However, most natural hydrogels present a poor mechanical stability and a suboptimal durability, which are critical limitations that hamper their widespread applicability. The search for improved hydrogels has become a priority in tissue engineering research. Here, the suitability of a photopolymerizable gelatin methacrylate (GelMA) hydrogel to support human progenitor cell-based formation of vascular networks is demonstrated. Using GelMA as the embedding scaffold, it is shown that 3D constructs containing human blood-derived endothelial colony-forming cells (ECFCs) and bone marrow-derived mesenchymal stem cells (MSCs) generate extensive capillary-like networks in vitro. These vascular structures contain distinct lumens that are formed by the fusion of ECFC intracellular vacuoles in a process of vascular morphogenesis. The process of vascular network formation is dependent on the presence of MSCs, which differentiate into perivascular cells occupying abluminal positions within the network. Importantly, it is shown that implantation of cell-laden GelMA hydrogels into immunodeficient mice results in a rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, it is shown that the degree of methacrylation of the GelMA can be used to modulate the cellular behavior and the extent of vascular network formation both in vitro and in vivo. These data suggest that GelMA hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. PMID:22907987

  8. Functional Human Vascular Network Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels

    PubMed Central

    Chen, Ying-Chieh; Lin, Ruei-Zeng; Qi, Hao; Yang, Yunzhi; Bae, Hojae

    2012-01-01

    The generation of functional, 3D vascular networks is a fundamental prerequisite for the development of many future tissue engineering-based therapies. Current approaches in vascular network bioengineering are largely carried out using natural hydrogels as embedding scaffolds. However, most natural hydrogels present a poor mechanical stability and a suboptimal durability, which are critical limitations that hamper their widespread applicability. The search for improved hydrogels has become a priority in tissue engineering research. Here, the suitability of a photopolymerizable gelatin methacrylate (GelMA) hydrogel to support human progenitor cell-based formation of vascular networks is demonstrated. Using GelMA as the embedding scaffold, it is shown that 3D constructs containing human blood-derived endothelial colony-forming cells (ECFCs) and bone marrow-derived mesenchymal stem cells (MSCs) generate extensive capillary-like networks in vitro. These vascular structures contain distinct lumens that are formed by the fusion of ECFC intracellular vacuoles in a process of vascular morphogenesis. The process of vascular network formation is dependent on the presence of MSCs, which differentiate into perivascular cells occupying abluminal positions within the network. Importantly, it is shown that implantation of cell-laden GelMA hydrogels into immunodeficient mice results in a rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, it is shown that the degree of methacrylation of the GelMA can be used to modulate the cellular behavior and the extent of vascular network formation both in vitro and in vivo. These data suggest that GelMA hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. PMID:22907987

  9. Hybrid Therapy in Patients with Complex Peripheral Multifocal Steno-obstructive Vascular Disease: Two-Year Results

    SciTech Connect

    Cotroneo, Antonio Raffaele; Iezzi, Roberto Marano, Giuseppe; Fonio, Paolo; Nessi, Franco; Gandini, Giovanni

    2007-06-15

    Purpose. To report the 2-year results after hybrid (combined surgical-endovascular) therapy in patients with complex peripheral multifocal steno-obstructive vascular disease. Methods. From September 2001 through April 2003, 47 combined surgical-endovascular procedures were performed in a single session in 44 patients with peripheral occlusive artery disease. Although the common femoral artery is usually treated with open surgery, endoluminal procedures were performed upward in 23 patients (group A), distally in 18 patients (group B), and both upward and downward of the area treated with open surgery in 3 patients (group C). Patients underwent clinical assessment and color duplex ultrasonography examination at 1, 3, 6, 12, 18, and 24 months after the procedure. Results. The technical success rate was 100%. Two patients died, at 2 and 19 months after treatment, respectively, both from myocardial infarction. Primary and primary-assisted patency rates were 86.2% and 90.8% at 6 months and 79.1% and 86.1% at 24 months, respectively. Thirty-three patients remained free of symptoms, without any secondary interventions, which corresponded to a primary patency rate of 78.6% (33 of 42). Conclusion. Combined therapy simplifies and allows the one-step treatment of patients with complex peripheral multifocal steno-obstructive vascular disease that has indications for revascularization, and it provides excellent long-term patency rates.

  10. Dynamic fluorescence imaging of indocyanine green for reliable and sensitive diagnosis of peripheral vascular insufficiency.

    PubMed

    Kang, Yujung; Lee, Jungsul; Kwon, Kihwan; Choi, Chulhee

    2010-12-01

    Quantitative measurement of functional tissue perfusion is essential for early diagnosis and proper treatment of peripheral arterial occlusive disease (PAOD). We have previously demonstrated that dynamic imaging of near-infrared fluorophore indocyanine green (ICG) can be a noninvasive and sensitive tool to measure tissue perfusion. In the present study, we investigated the clinical efficacy of ICG perfusion imaging method for the diagnosis of PAOD. Total nineteen PAOD patients and age-matched controls (n=10) were evaluated for lower extremity tissue perfusion using ICG perfusion imaging. The perfusion rates of the lower extremities with severe PAOD (n=25 legs, 16.6±8.3%/min) were significantly lower than those of normal controls (38.1±17.3%/min, p<0.001). In cases of mild PAOD, the perfusion rates (n=11 legs, 18.3±10.3%/min) were also significantly lower compared to the control; while the conventional ankle-brachial index (ABI) test failed to detect mild functional impairment. These results collectively indicate that ICG perfusion imaging can be a very effective tool for diagnosis of PAOD with a superior efficacy in comparison to conventional ABI test. PMID:20637783

  11. [Search for Factors Related to Vascular Pain Expression upon Administration of Oxaliplatin into a Peripheral Vein].

    PubMed

    Takagi, Akiko; Yonemoto, Nao; Aoyama, Yuuya; Touma, Yuri; Kajiwara, Michiko; Watanabe, Kosuke; Miyazaki, Yoshiko; Koinuma, Masayoshi

    2015-07-01

    We investigated the relationship between vascular pain and various characteristics (age, sex, cancer stage, performance status [PS], height, weight, body mass index [BMI], body surface area, oxaliplatin dose, and presence and absence of the initial administration of dexamethasone) in colorectal cancer patients who were administered initial doses of oxaliplatin intravenously. The study population included 29 patients treated at Higashi Totsuka Memorial Hospital between June 2010 and April 2014. One-way analysis of variance showed that vascular pain was significantly associated with weight (p=0.015), body surface area (p=0.013), and oxaliplatin doses (p=0.0026), where the significance level was p=0.05. Logistic regression analysis and the likelihood ratio test demonstrated that the likelihood of vascular pain increased with the increase in the oxaliplatin dose. According to the cut-off value of vascular pain determined using the receiver operating characteristic (ROC) analysis, a single dose of oxaliplatin was determined to be 175 mg or more. According to the cut-off value established using the ROC analysis, a single dose of oxaliplatin at which vascular pain is expressed was determined to be 175 mg or more. At this dose, 13 patients complained of vascular pain and 8 did not. At doses less than 175 mg, none of the 8 patients complained of vascular pain. These results suggest that lowering the diluted concentration and reducing the infusion rate of intravenously administered oxaliplatin may reduce vascular pain. PMID:26197757

  12. Mineralocorticoid Receptors Modulate Vascular Endothelial Function in Human Obesity

    PubMed Central

    Hwang, Moon-Hyon; Yoo, Jeung-Ki; Luttrell, Meredith; Kim, Han-Kyul; Meade, Thomas H.; English, Mark; Segal, Mark S.; Christou, Demetra D.

    2015-01-01

    Obesity increases linearly with age and is associated with impaired vascular endothelial function and increased risk for cardiovascular disease. Mineralocorticoid receptors (MR) contribute to impaired vascular endothelial function in cardiovascular disease; however, their role in uncomplicated human obesity is unknown. Because plasma aldosterone levels are elevated in obesity and adipocytes may be a source of aldosterone, we hypothesized that MR modulate vascular endothelial function in older adults in an adiposity-dependent manner. To test this hypothesis, we administered MR blockade (Eplerenone; 100 mg/day) for 1 month in a balanced, randomized, double-blind, placebo-controlled, crossover study to 22 older adults (10 men, 55–79 years) varying widely in adiposity (body mass index: 20–45 kg/m2) but who were free from overt cardiovascular disease. We evaluated vascular endothelial function (brachial artery flow-mediated dilation [FMD] via ultrasonography) and oxidative stress (plasma F2-isoprostanes and vascular endothelial cell protein expression of nitrotyrosine and NADPH oxidase p47phox) during placebo and MR blockade. In the whole group, oxidative stress (P>0.05) and FMD did not change with MR blockade (6.39±0.67 vs. 6.23±0.73 %, P=0.7, placebo vs. Eplerenone). However, individual improvements in FMD in response to Eplerenone were associated with higher total body fat (body mass index: r=0.45, P=0.02 and DXA-derived % body fat: r=0.50, P=0.009) and abdominal fat (total: r=0.61, P=0.005, visceral: r=0.67, P=0.002 and subcutaneous: r=0.48, P=0.03). In addition, greater improvements in FMD with Eplerenone were related with higher baseline fasting glucose (r=0.53, P=0.01). MR influence vascular endothelial function in an adiposity-dependent manner in healthy older adults. PMID:23786536

  13. In vitro assessment of mouse fetal abdominal aortic vascular function

    PubMed Central

    Dilworth, Mark R.; Greenwood, Susan L.; Sibley, Colin P.; Wareing, Mark

    2014-01-01

    Fetal growth restriction (FGR) affects 3–8% of human pregnancies. Mouse models have provided important etiological data on FGR; they permit the assessment of treatment strategies on the physiological function of both mother and her developing offspring. Our study aimed to 1) develop a method to assess vascular function in fetal mice and 2) as a proof of principle ascertain whether a high dose of sildenafil citrate (SC; Viagra) administered to the pregnant dam affected fetal vascular reactivity. We developed a wire myography methodology for evaluation of fetal vascular function in vitro using the placenta-specific insulin-like growth factor II (Igf2) knockout mouse (P0; a model of FGR). Vascular function was determined in abdominal aortas isolated from P0 and wild-type (WT) fetuses at embryonic day (E) 18.5 of gestation. A subset of dams received SC 0.8 mg/ml via drinking water from E12.5; data were compared with water-only controls. Using wire myography, we found that fetal aortic rings exhibited significant agonist-induced contraction, and endothelium-dependent and endothelium-independent relaxation. Sex-specific alterations in reactivity were noted in both strains. Maternal treatment with SC significantly attenuated endothelium-dependent and endothelium-independent relaxation of fetal aortic rings. Mouse fetal abdominal aortas reproducibly respond to vasoactive agents. Study of these vessels in mouse genetic models of pregnancy complications may 1) help to delineate early signs of abnormal vascular reactivity and 2) inform whether treatments given to the mother during pregnancy may impact upon fetal vascular function. PMID:25056105

  14. Dcc Mediates Functional Assembly of Peripheral Auditory Circuits

    PubMed Central

    Kim, Young J.; Wang, Sheng-zhi; Tymanskyj, Stephen; Ma, Le; Tao, Huizhong W.; Zhang, Li I.

    2016-01-01

    Proper structural organization of spiral ganglion (SG) innervation is crucial for normal hearing function. However, molecular mechanisms underlying the developmental formation of this precise organization remain not well understood. Here, we report in the developing mouse cochlea that deleted in colorectal cancer (Dcc) contributes to the proper organization of spiral ganglion neurons (SGNs) within the Rosenthal’s canal and of SGN projections toward both the peripheral and central auditory targets. In Dcc mutant embryos, mispositioning of SGNs occurred along the peripheral auditory pathway with misrouted afferent fibers and reduced synaptic contacts with hair cells. The central auditory pathway simultaneously exhibited similar defective phenotypes as in the periphery with abnormal exit of SGNs from the Rosenthal’s canal towards central nuclei. Furthermore, the axons of SGNs ascending into the cochlear nucleus had disrupted bifurcation patterns. Thus, Dcc is necessary for establishing the proper spatial organization of SGNs and their fibers in both peripheral and central auditory pathways, through controlling axon targeting and cell migration. Our results suggest that Dcc plays an important role in the developmental formation of peripheral and central auditory circuits, and its mutation may contribute to sensorineural hearing loss. PMID:27040640

  15. Silent myocardial ischemia and infarction in diabetics with peripheral vascular disease: Assessment by dipyridamole thallium-201 scintigraphy

    SciTech Connect

    Nesto, R.W.; Watson, F.S.; Kowalchuk, G.J.; Zarich, S.W.; Hill, T.; Lewis, S.M.; Lane, S.E. )

    1990-11-01

    We investigated the incidence of silent myocardial ischemia and infarction as assessed by dipyridamole thallium scintigraphy in 30 diabetic patients with peripheral vascular disease and without clinical suspicion of coronary artery disease. Seventeen patients (57%) had thallium abnormalities, with reversible thallium defects compatible with ischemia in 14 patients (47%) and evidence of prior, clinically silent myocardial infarction in 11 patients (37%). Thallium abnormalities were most frequent in patients with concomitant hypertension and cigarette smoking (p = 0.001). These results suggest that unsuspected coronary artery disease is common in this particular group of patients with diabetes mellitus.

  16. Catheter Securement Systems for Peripherally Inserted and Nontunneled Central Vascular Access Devices: Clinical Evaluation of a Novel Sutureless Device.

    PubMed

    Krenik, Karen M; Smith, Graham E; Bernatchez, Stéphanie F

    2016-01-01

    Sutureless catheter securement systems are intended to eliminate risks associated with sutures. The clinical acceptability of a novel system was investigated compared with the current method of securement for peripherally inserted central catheters (19 facilities using StatLock or sutures) or nontunneled central vascular access devices (3 facilities using StatLock or sutures or HubGuard + Sorbaview Shield). More than 94% of respondents rated the novel system as same, better, or much better than their current product. More than 82% of respondents were willing to replace their current system with the new one. PMID:27379679

  17. Reporting standards of the Society for Vascular Surgery for endovascular treatment of chronic lower extremity peripheral artery disease: Executive summary.

    PubMed

    Stoner, Michael C; Calligaro, Keith D; Chaer, Rabih A; Dietzek, Alan M; Farber, Alik; Guzman, Raul J; Hamdan, Allen D; Landry, Greg J; Yamaguchi, Dean J

    2016-07-01

    Recommended reporting standards for lower extremity ischemia were last published by the Society for Vascular Surgery in 1997. Since that time, there has been a proliferation of endovascular therapies for the treatment of chronic peripheral arterial disease. The purpose of this document is to clarify and update these standards, specifically for reports on endovascular treatment. The document is divided into sections: Claudication Reporting, Critical Limb Ischemia Reporting, Preintervention Assessment and Nonanatomic Treatment, Intervention, Outcome Measures - Procedural, Outcome Measures - Disease Specific, and Complications. PMID:27345507

  18. Regulation of thrombosis and vascular function by protein methionine oxidation

    PubMed Central

    Gu, Sean X.; Stevens, Jeff W.

    2015-01-01

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. PMID:25900980

  19. Regulation of thrombosis and vascular function by protein methionine oxidation.

    PubMed

    Gu, Sean X; Stevens, Jeff W; Lentz, Steven R

    2015-06-18

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. PMID:25900980

  20. Role of Mitochondria in Cerebral Vascular Function: Energy Production, Cellular Protection, and Regulation of Vascular Tone.

    PubMed

    Busija, David W; Rutkai, Ibolya; Dutta, Somhrita; Katakam, Prasad V

    2016-01-01

    Mitochondria not only produce energy in the form of ATP to support the activities of cells comprising the neurovascular unit, but mitochondrial events, such as depolarization and/or ROS release, also initiate signaling events which protect the endothelium and neurons against lethal stresses via pre-/postconditioning as well as promote changes in cerebral vascular tone. Mitochondrial depolarization in vascular smooth muscle (VSM), via pharmacological activation of the ATP-dependent potassium channels on the inner mitochondrial membrane (mitoKATP channels), leads to vasorelaxation through generation of calcium sparks by the sarcoplasmic reticulum and subsequent downstream signaling mechanisms. Increased release of ROS by mitochondria has similar effects. Relaxation of VSM can also be indirectly achieved via actions of nitric oxide (NO) and other vasoactive agents produced by endothelium, perivascular and parenchymal nerves, and astroglia following mitochondrial activation. Additionally, NO production following mitochondrial activation is involved in neuronal preconditioning. Cerebral arteries from female rats have greater mitochondrial mass and respiration and enhanced cerebral arterial dilation to mitochondrial activators. Preexisting chronic conditions such as insulin resistance and/or diabetes impair mitoKATP channel relaxation of cerebral arteries and preconditioning. Surprisingly, mitoKATP channel function after transient ischemia appears to be retained in the endothelium of large cerebral arteries despite generalized cerebral vascular dysfunction. Thus, mitochondrial mechanisms may represent the elusive signaling link between metabolic rate and blood flow as well as mediators of vascular change according to physiological status. Mitochondrial mechanisms are an important, but underutilized target for improving vascular function and decreasing brain injury in stroke patients. © 2016 American Physiological Society. Compr Physiol 6:1529-1548, 2016. PMID:27347901

  1. Vascular function in diabetic individuals in association with particulate matter

    EPA Science Inventory

    Rationale: Exposure to ambient air pollution has been shown to be associated with cardiovascular effects, especially in people with chronic diseases such as diabetes. The purpose of this study was to analyze the short-term effects of air pollution on vascular function in two pane...

  2. Abnormalities of vascular structure and function in pediatric hypertension.

    PubMed

    Urbina, Elaine M

    2016-07-01

    Hypertension is associated with adverse cardiovascular (CV) events in adults. Measures of vascular structure and function, including increased carotid intima-media thickness (cIMT) and elevated arterial stiffness predict hard CV events in adulthood. Newer data suggest that abnormalities in target organ damage are occurring in adolescents and young adults with high blood pressure. In this review, we discuss the techniques for measuring vascular dysfunction in young people and the evidence linking blood pressure levels to this type of target organ damage. PMID:26275663

  3. Quantitative optical imaging of vascular response in vivo in a model of peripheral arterial disease.

    PubMed

    Poole, Kristin M; Tucker-Schwartz, Jason M; Sit, Wesley W; Walsh, Alex J; Duvall, Craig L; Skala, Melissa C

    2013-10-15

    The mouse hind limb ischemia (HLI) model is well established for studying collateral vessel formation and testing therapies for peripheral arterial disease, but there is a lack of quantitative techniques for intravitally analyzing blood vessel structure and function. To address this need, non-invasive, quantitative optical imaging techniques were developed to assess the time-course of recovery in the mouse HLI model. Hyperspectral imaging and optical coherence tomography (OCT) were used to non-invasively image hemoglobin oxygen saturation and microvessel morphology plus blood flow, respectively, in the anesthetized mouse after induction of HLI. Hyperspectral imaging detected significant increases in hemoglobin saturation in the ischemic paw as early as 3 days after femoral artery ligation (P < 0.01), and significant increases in distal blood flow were first detected with OCT 14 days postsurgery (P < 0.01). Intravital OCT images of the adductor muscle vasculature revealed corkscrew collateral vessels characteristic of the arteriogenic response to HLI. The hyperspectral imaging and OCT data significantly correlated with each other and with laser Doppler perfusion imaging (LDPI) and tissue oxygenation sensor data (P < 0.01). However, OCT measurements acquired depth-resolved information and revealed more sustained flow deficits following surgery that may be masked by more superficial measurements (LDPI, hyperspectral imaging). Therefore, intravital OCT may provide a robust biomarker for the late stages of ischemic limb recovery. This work validates non-invasive acquisition of both functional and morphological data with hyperspectral imaging and OCT. Together, these techniques provide cardiovascular researchers an unprecedented and comprehensive view of the temporal dynamics of HLI recovery in living mice. PMID:23955718

  4. Quantitative optical imaging of vascular response in vivo in a model of peripheral arterial disease

    PubMed Central

    Poole, Kristin M.; Tucker-Schwartz, Jason M.; Sit, Wesley W.; Walsh, Alex J.; Duvall, Craig L.

    2013-01-01

    The mouse hind limb ischemia (HLI) model is well established for studying collateral vessel formation and testing therapies for peripheral arterial disease, but there is a lack of quantitative techniques for intravitally analyzing blood vessel structure and function. To address this need, non-invasive, quantitative optical imaging techniques were developed to assess the time-course of recovery in the mouse HLI model. Hyperspectral imaging and optical coherence tomography (OCT) were used to non-invasively image hemoglobin oxygen saturation and microvessel morphology plus blood flow, respectively, in the anesthetized mouse after induction of HLI. Hyperspectral imaging detected significant increases in hemoglobin saturation in the ischemic paw as early as 3 days after femoral artery ligation (P < 0.01), and significant increases in distal blood flow were first detected with OCT 14 days postsurgery (P < 0.01). Intravital OCT images of the adductor muscle vasculature revealed corkscrew collateral vessels characteristic of the arteriogenic response to HLI. The hyperspectral imaging and OCT data significantly correlated with each other and with laser Doppler perfusion imaging (LDPI) and tissue oxygenation sensor data (P < 0.01). However, OCT measurements acquired depth-resolved information and revealed more sustained flow deficits following surgery that may be masked by more superficial measurements (LDPI, hyperspectral imaging). Therefore, intravital OCT may provide a robust biomarker for the late stages of ischemic limb recovery. This work validates non-invasive acquisition of both functional and morphological data with hyperspectral imaging and OCT. Together, these techniques provide cardiovascular researchers an unprecedented and comprehensive view of the temporal dynamics of HLI recovery in living mice. PMID:23955718

  5. Pressor response to intravenous tyramine is a marker of cardiac, but not vascular, adrenergic function

    NASA Technical Reports Server (NTRS)

    Meck, Janice V.; Martin, David S.; D'Aunno, Dominick S.; Waters, Wendy W.

    2003-01-01

    Intravenous injections of the indirect sympathetic amine, tyramine, are used as a test of peripheral adrenergic function. The authors measured the time course of increases in ejection fraction, heart rate, systolic and diastolic pressure, popliteal artery flow, and greater saphenous vein diameter before and after an injection of 4.0 mg/m(2) body surface area of tyramine in normal human subjects. The tyramine caused moderate, significant increases in systolic pressure and significant decreases in total peripheral resistance. The earliest changes were a 30% increase in ejection fraction and a 16% increase in systolic pressure, followed by a 60% increase in popliteal artery flow and a later 11% increase in greater saphenous vein diameter. There were no changes in diastolic pressure or heart rate. These results suggest that pressor responses during tyramine injections are primarily due to an inotropic response that increases cardiac output and pressure and causes a reflex decrease in vascular resistance. Thus, tyramine pressor tests are a measure of cardiac, but not vascular, sympathetic function.

  6. Collagen VI regulates peripheral nerve myelination and function.

    PubMed

    Chen, Peiwen; Cescon, Matilde; Megighian, Aram; Bonaldo, Paolo

    2014-03-01

    Collagen VI is an extracellular matrix protein with broad distribution in several tissues. Although Col6a1 is expressed by Schwann cells, the role of collagen VI in the peripheral nervous system (PNS) is yet unknown. Here we show that Schwann cells, but not axons, contribute to collagen VI deposition in peripheral nerves. By using Col6a1-null mice, in which collagen VI deposition is compromised, we demonstrate that lack of collagen VI leads to increased myelin thickness (P<0.001) along with 60-130% up-regulation in myelin-associated proteins and disorganized C fibers in the PNS. The hypermyelination of PNS in Col6a1(-/-) mice is supported by alterations of signaling pathways involved in myelination, including increase of P-FAK, P-AKT, P-ERK1, P-ERK2, and P-p38 (4.15, 1.67, 2.47, 3.34, and 2.60-fold, respectively) and reduction of vimentin (0.49-fold), P-JNK (0.74-fold), and P-c-Jun (0.50-fold). Pathologically, Col6a1(-/-) mice display an impairment of nerve conduction velocity and motor coordination (P<0.05), as well as a delayed response to acute pain stimuli (P<0.001), indicating that lack of collagen VI causes functional defects of peripheral nerves. Altogether, these results indicate that collagen VI is a critical component of PNS contributing to the structural integrity and proper function of peripheral nerves. PMID:24277578

  7. Functional imaging of tumor vascular network in small animal models

    NASA Astrophysics Data System (ADS)

    Kalchenko, Vyacheslav; Madar-Balakirski, Noa; Kuznetsov, Yuri; Meglinski, Igor; Harmelin, Alon

    2011-07-01

    In current report we present synchronized in vivo imaging of tumor vascular network and tumor microenvironment obtained by combined use of Dynamic Light Scattering Imaging, Spectrally Enhanced Microscopy, and Fluorescence Intravital Microscopy. Dynamic Light Scattering Imaging is used for functional imaging of the vascular network and blood microcirculation. Spectrally Enhanced Microscopy provides information regarding blood vessel topography. Fluorescence Intravital Microscopy is used for imaging of tumor microvasculature and tumor microenvironment. These well known modalities have been comprehensively validated in the past and are widely used in various bio-medical applications. As shown here, their combined application has great potential for studies of vascular biology. This multi-modal non-invasive diagnostic technique expands our current capacity to investigate blood microcirculation and tumor angiogenesis in vivo, thereby contributing to the development of cancer research and treatment.

  8. Vascular Tree Reconstruction by Minimizing A Physiological Functional Cost

    PubMed Central

    Jiang, Yifeng; Zhuang, Zhenwu; Sinusas, Albert J.; Papademetris, Xenophon

    2011-01-01

    The reconstruction of complete vascular trees from medical images has many important applications. Although vessel detection has been extensively investigated, little work has been done on how connect the results to reconstruct the full trees. In this paper, we propose a novel theoretical framework for automatic vessel connection, where the automation is achieved by leveraging constraints from the physiological properties of the vascular trees. In particular, a physiological functional cost for the whole vascular tree is derived and an efficient algorithm is developed to minimize it. The method is generic and can be applied to different vessel detection/segmentation results, e.g. the classic rigid detection method as adopted in this paper. We demonstrate the effectiveness of this method on both 2D and 3D data. PMID:21755061

  9. A Novel Protective Function of 5-Methoxytryptophan in Vascular Injury.

    PubMed

    Ho, Yen-Chun; Wu, Meng-Ling; Su, Chen-Hsuan; Chen, Chung-Huang; Ho, Hua-Hui; Lee, Guan-Lin; Lin, Wei-Shiang; Lin, Wen-Yu; Hsu, Yu-Juei; Kuo, Cheng-Chin; Wu, Kenneth K; Yet, Shaw-Fang

    2016-01-01

    5-Methoxytryptophan (5-MTP), a 5-methoxyindole metabolite of tryptophan metabolism, was recently shown to suppress inflammatory mediator-induced cancer cell proliferation and migration. However, the role of 5-MTP in vascular disease is unknown. In this study, we investigated whether 5-MTP protects against vascular remodeling following arterial injury. Measurements of serum 5-MTP levels in healthy subjects and patients with coronary artery disease (CAD) showed that serum 5-MTP concentrations were inversely correlated with CAD. To test the role of 5-MTP in occlusive vascular disease, we subjected mice to a carotid artery ligation model of neointima formation and treated mice with vehicle or 5-MTP. Compared with vehicle-treated mice, 5-MTP significantly reduced intimal thickening by 40% 4 weeks after ligation. BrdU incorporation assays revealed that 5-MTP significantly reduced VSMC proliferation both in vivo and in vitro. Furthermore, 5-MTP reduced endothelial loss and detachment, ICAM-1 and VCAM-1 expressions, and inflammatory cell infiltration in the ligated arterial wall, suggesting attenuation of endothelial dysfunction. Signaling pathway analysis indicated that 5-MTP mediated its effects predominantly via suppressing p38 MAPK signaling in endothelial and VSMCs. Our data demonstrate a novel vascular protective function of 5-MTP against arterial injury-induced intimal hyperplasia. 5-MTP might be a therapeutic target for preventing and/or treating vascular remodeling. PMID:27146795

  10. A Novel Protective Function of 5-Methoxytryptophan in Vascular Injury

    PubMed Central

    Ho, Yen-Chun; Wu, Meng-Ling; Su, Chen-Hsuan; Chen, Chung-Huang; Ho, Hua-Hui; Lee, Guan-Lin; Lin, Wei-Shiang; Lin, Wen-Yu; Hsu, Yu-Juei; Kuo, Cheng-Chin; Wu, Kenneth K.; Yet, Shaw-Fang

    2016-01-01

    5-Methoxytryptophan (5-MTP), a 5-methoxyindole metabolite of tryptophan metabolism, was recently shown to suppress inflammatory mediator-induced cancer cell proliferation and migration. However, the role of 5-MTP in vascular disease is unknown. In this study, we investigated whether 5-MTP protects against vascular remodeling following arterial injury. Measurements of serum 5-MTP levels in healthy subjects and patients with coronary artery disease (CAD) showed that serum 5-MTP concentrations were inversely correlated with CAD. To test the role of 5-MTP in occlusive vascular disease, we subjected mice to a carotid artery ligation model of neointima formation and treated mice with vehicle or 5-MTP. Compared with vehicle-treated mice, 5-MTP significantly reduced intimal thickening by 40% 4 weeks after ligation. BrdU incorporation assays revealed that 5-MTP significantly reduced VSMC proliferation both in vivo and in vitro. Furthermore, 5-MTP reduced endothelial loss and detachment, ICAM-1 and VCAM-1 expressions, and inflammatory cell infiltration in the ligated arterial wall, suggesting attenuation of endothelial dysfunction. Signaling pathway analysis indicated that 5-MTP mediated its effects predominantly via suppressing p38 MAPK signaling in endothelial and VSMCs. Our data demonstrate a novel vascular protective function of 5-MTP against arterial injury-induced intimal hyperplasia. 5-MTP might be a therapeutic target for preventing and/or treating vascular remodeling. PMID:27146795

  11. Distribution and function of peripheral alpha-adrenoceptors in the cardiovascular system.

    PubMed

    Ruffolo, R R

    1985-05-01

    alpha-Adrenoceptors may be subdivided based on their anatomical distribution within the synapse. Presynaptic alpha-adrenoceptors are generally of the alpha 2-subtype and modulate neurotransmitter liberation via a negative feedback mechanism. Postsynaptic alpha-adrenoceptors are usually of the alpha 1-subtype and mediate the response of the effector organ. Although this "anatomical" subclassification is generally applicable, many exceptions exist. A more useful classification of alpha-adrenoceptor subtypes is based on a pharmacological characterization in which selective agonists and antagonists are used. Peripheral alpha-adrenoceptors are critical in the regulation of the cardiovascular system. Postsynaptic alpha-adrenoceptors in arteries and veins represent a mixed population of alpha 1/alpha 2-adrenoceptors, with both subtypes mediating vasoconstriction. In the peripheral arterial circulation, postsynaptic vascular alpha 1-adrenoceptors are found in the adrenergic neuroeffector junction, whereas postsynaptic vascular alpha 2-adrenoceptors are located extrajunctionally. In the venous circulation, it appears that alpha 2-adrenoceptors may be predominantly junctional, whereas alpha 1-adrenoceptors may be predominantly extrajunctional. It has been proposed that junctional alpha-adrenoceptors will respond predominantly to norepinephrine liberated from sympathetic neurons, whereas extrajunctional alpha-adrenoceptors likely respond to circulating catecholamines. The functional role of extrajunctional alpha-adrenoceptors may be more important in disease states such as hypertension and congestive heart failure where circulating levels of catecholamines may be high and contribute to the maintenance of elevated vascular resistance. alpha 2-Adrenoceptors are also associated with the intima and may play a role in the release of an endogenous relaxing factor from the endothelium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2989947

  12. Mortality After Nontraumatic Major Amputation Among Patients With Diabetes and Peripheral Vascular Disease: A Systematic Review.

    PubMed

    Thorud, Jakob C; Plemmons, Britton; Buckley, Clifford J; Shibuya, Naohiro; Jupiter, Daniel C

    2016-01-01

    High mortality rates have been reported after major amputations of a lower limb secondary to diabetes and peripheral vascular disease. However, the mortality rates have varied across studies. A systematic review of the 5-year mortality after nontraumatic major amputations of the lower extremity was conducted. A data search was performed of Medline using OVID, CINHAL, and Cochrane, 365 abstracts were screened, and 79 full text articles were assessed for eligibility. After review, 31 studies met the inclusion and exclusion criteria. Overall, the 5-year mortality rate was very high among patients with any amputation (major and minor combined), ranging from 53% to 100%, and in patients with major amputations, ranging from 52% to 80%. Mortality after below-the-knee amputation ranged from 40% to 82% and after above-the-knee amputation from 40% to 90%. The risk factors for increased mortality included age, renal disease, proximal amputation, and peripheral vascular disease. Although our previous systematic review of the 5-year mortality after ulceration had much lower rates of death, additional studies are warranted to determine whether amputation hastens death or is a marker for underlying disease severity. PMID:26898398

  13. The plant vascular system: evolution, development and functions.

    PubMed

    Lucas, William J; Groover, Andrew; Lichtenberger, Raffael; Furuta, Kaori; Yadav, Shri-Ram; Helariutta, Ykä; He, Xin-Qiang; Fukuda, Hiroo; Kang, Julie; Brady, Siobhan M; Patrick, John W; Sperry, John; Yoshida, Akiko; López-Millán, Ana-Flor; Grusak, Michael A; Kachroo, Pradeep

    2013-04-01

    The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essential functions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry. PMID:23462277

  14. BP and Vascular Function Following Space Flight

    NASA Technical Reports Server (NTRS)

    Hatton, Daniel C.; Yue, Qi; Chapman, Justin; Xue, Hong; Dierickx, Jacqueline; Roullet, Chantal; Roullet, Jean-Baptiste; Phanouvong, Thongchanh; Watanabe, Mitsuaki; Otsuka, Keiichi; McCarron, David A.

    1997-01-01

    Blood pressure and mesenteric resistance artery function were assessed in 9-week-old spontaneously hypertensive rats following an 18 day shuttle flight on STS-80. Blood pressure was measured twice, first in conscious animals using a tail-cuff method and then while the animals were anesthetized with 2% halothane in O2. Isolated mesenteric resistance artery responses to cumulative additions of norepinephrine, acetylcholine, sodium nitroprusside, and calcium were measured within 17 hours of landing using wire myography. Blood pressure was slightly reduced in conscious animals following flight (p=0.056) but was significantly elevated (p less than.001) above vivarium control group values in anesthetized animals. Maximal contraction of mesenteric arteries to norepinephrine was attenuated in the flight animals (p less than.001)aswasrelaxationtoacetylcholine(p less than .001)andcalcium(p less than .05). There was no difference between flight and control animals in the vessel response to sodium nitroprusside (p greater than .05). The results suggest that there may have been an increase in synthesis and release of nitric oxide in the flight animals.

  15. Markers of inflammation, Vitamin E and peripheral nervous system function

    PubMed Central

    Di Iorio, Angelo; Cherubini, Antonio; Volpato, Stefano; Sparvieri, Eleonora; Lauretani, Fulvio; Franceschi, Claudio; Senin, Umberto; Abate, Giuseppe; Paganelli, Roberto; Martin, Antonio; Andres-Lacueva, Cristina; Ferrucci, Luigi

    2009-01-01

    Background Aging of the peripheral nervous system is associated with several morphologic and functional changes, including a decrease of the nerve conduction velocity. There is evidence that these changes contribute to age-related-decline in muscle strength, sensory discrimination, and autonomic responses. The aim of this study was to characterize the decline in nerve conduction velocity in the peripheral nervous system over the aging process and to identify factors that, independent of age, affect nerve conduction velocity. Methods We measured motor nerve conduction velocity of the right superficial peroneal nerve using a standard neurophysiologic technique in a population-based sample of subjects aged between 20 and 103 years old enrolled in the InCHIANTI study. Results Average conduction velocities in the peripheral nerve decreased linearly with age in both sexes. We found that diabetes, cognitive impairment, uric acid, sIL-6R and α-tocopherol were significant predictors of nerve conduction velocity independently of the potential confounding effect of age, sex, sex × age interaction term, height, lymphocytes, neutrophils number, α1 and α2-globulin serum protein. Conclusion Our findings are consistent with the hypothesis that inflammation and inadequate antioxidant defenses are associated with accelerated decline of nerve conduction velocity over the aging process. PMID:16112778

  16. Enzymatic regulation of functional vascular networks using gelatin hydrogels

    PubMed Central

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M.; Chen, Ying-Chieh

    2015-01-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. PMID:25749296

  17. Quantitative objective assessment of peripheral nociceptive C fibre function.

    PubMed Central

    Parkhouse, N; Le Quesne, P M

    1988-01-01

    A technique is described for the quantitative assessment of peripheral nociceptive C fibre function by measurement of the axon reflex flare. Acetylcholine, introduced by electrophoresis, is used to stimulate a ring of nociceptive C fibre endings at the centre of which the increase in blood flow is measured with a laser Doppler flowmeter. This flare (neurogenic vasodilatation) has been compared with mechanically or chemically stimulated non-neurogenic cutaneous vasodilation. The flare is abolished by local anaesthetic and is absent in denervated skin. The flare has been measured on the sole of the foot of 96 healthy subjects; its size decreases with age in males, but not in females. Images PMID:3351528

  18. Arterial structure and function in vascular ageing: are you as old as your arteries?

    PubMed

    Thijssen, Dick H J; Carter, Sophie E; Green, Daniel J

    2016-04-15

    Advancing age may be the most potent independent predictor of future cardiovascular events, a relationship that is not fully explained by time-related changes in traditional cardiovascular risk factors. Since some arteries exhibit differential susceptibility to atherosclerosis, generalisations regarding the impact of ageing in humans may be overly simplistic, whereas in vivo assessment of arterial function and health provide direct insight. Coronary and peripheral (conduit, resistance and skin) arteries demonstrate a gradual, age-related impairment in vascular function that is likely to be related to a reduction in endothelium-derived nitric oxide bioavailability and/or increased production of vasoconstrictors (e.g. endothelin-1). Increased exposure and impaired ability for defence mechanisms to resist oxidative stress and inflammation, but also cellular senescence processes, may contribute to age-related changes in vascular function and health. Arteries also undergo structural changes as they age. Gradual thickening of the arterial wall, changes in wall content (i.e. less elastin, advanced glycation end-products) and increase in conduit artery diameter are observed with older age and occur similarly in central and peripheral arteries. These changes in structure have important interactive effects on artery function, with increases in small and large arterial stiffness representing a characteristic change with older age. Importantly, direct measures of arterial function and structure predict future cardiovascular events, independent of age or other cardiovascular risk factors. Taken together, and given the differential susceptibility of arteries to atherosclerosis in humans, direct measurement of arterial function and health may help to distinguish between biological and chronological age-related change in arterial health in humans. PMID:26140618

  19. Gender Differences in Bed Rest: Preliminary Analysis of Vascular Function

    NASA Technical Reports Server (NTRS)

    Platts, Steven H.; Stenger, Michael B.; Martin, David S.; Freeman-Perez, Sondra A.; Phillips, Tiffany; Ribeiro, L. Christine

    2008-01-01

    Orthostatic intolerance is a recognized consequence of spaceflight. Numerous studies have shown that women are more susceptible to orthostatic intolerance following spaceflight as well as bed rest, the most commonly used ground-based analog for spaceflight. One of the possible mechanisms proposed to account for this is a difference in vascular responsiveness between genders. We hypothesized that women and men would have differing vascular responses to 90 days of 6-degree head down tilt bed rest. Additionally, we hypothesized that vessels in the upper and lower body would respond differently, as has been shown in the animal literature. Thirteen subjects were placed in bedrest for 90 days (8 men, 5 women) at the Flight Analogs Unit, UTMB. Direct arterial and venous measurements were made with ultrasound to evaluate changes in vascular structure and function. Arterial function was assessed, in the arm and leg, during a reactive hyperemia protocol and during sublingual nitroglycerin administration to gauge the contributions of endothelial dependent and independent dilator function respectively. Venous function was assessed in dorsal hand and foot veins during the administration of pharmaceuticals to assess constrictor and dilator function. Both gender and day effects are seen in arterial dilator function to reactive hyperemia, but none are seen with nitroglycerin. There are also differences in the wall thickness in the arm vs the leg during bed rest, which return toward pre-bed rest levels by day 90. More subjects are required, especially females as there is not sufficient power to properly analyze venous function. Day 90 data are most underpowered.

  20. Impaired Right Ventricular-Pulmonary Vascular Function in Myeloproliferative Neoplasms

    PubMed Central

    Roach, Emir C.; Park, Margaret M.; Tang, W.H. Wilson; Thomas, James D.; Asosingh, Kewal; Kalaycio, Matt; Erzurum, Serpil C.; Farha, Samar

    2014-01-01

    Background Increased bone marrow hemangioblast numbers, alterations in erythroid/myeloid lineages, increased reticulin, and greater circulating bone marrow progenitor cells are present in patients with pulmonary arterial hypertension (PAH). The data suggest that myeloid progenitors contribute to the pathogenesis of PAH, but there is little data on prevalence of pulmonary vascular disease among different forms of myeloid diseases. We hypothesized that there would be a higher prevalence of pulmonary vascular disease in myeloproliferative neoplasms that have high circulating progenitor cells, such as myelofibrosis and chronic myelogenous leukemia (CML), as compared to those with low circulating progenitors, as in aplastic anemia. Methods Patients with myelofibrosis, CML and aplastic anemia who underwent echocardiographic evaluation of cardiac function in preparation for bone marrow transplantation at the Cleveland Clinic between 1997–2012 were identified using electronic medical records for demographic data, blood cell counts, and pulmonary function tests. All echocardiograms were uniformly analyzed in a blinded fashion by an advanced sonographer and cardiologist for measures of right and left ventricular function and estimation of pulmonary vascular disease. Results Gender and race distribution between disease groups were similar. Myelofibrosis [N=19] and aplastic anemia [N=30] had increased right ventricle (RV) wall thickness compared to CML [N=82] [RV Thickness (cm): aplastic anemia 0.7 ± 0.1, CML 0.5 ± 0.1 and myelofibrosis 0.7 ± 0.1; p = 0.02]. Patients with myelofibrosis had higher levels of estimated RV systolic pressure as compared to the other groups [RVSP (mmHg): aplastic anemia 29.9 ± 1.5, CML 26.2 ± 1.1 and myelofibrosis 36.7 ± 3.7; p < 0.01]. Conclusion The findings suggest an important role for myeloid progenitors in maintenance of pulmonary-vascular health, in which abnormal myeloproliferative progenitors are associated with right ventricle

  1. Microsecond-pulsed dielectric barrier discharge plasma stimulation of tissue macrophages for treatment of peripheral vascular disease

    SciTech Connect

    Miller, V. Lin, A.; Brettschneider, J.; Fridman, G.; Fridman, A.; Kako, F.; Gabunia, K.; Kelemen, S.; Autieri, M.

    2015-12-15

    Angiogenesis is the formation of new blood vessels from pre-existing vessels and normally occurs during the process of inflammatory reactions, wound healing, tissue repair, and restoration of blood flow after injury or insult. Stimulation of angiogenesis is a promising and an important step in the treatment of peripheral artery disease. Reactive oxygen species have been shown to be involved in stimulation of this process. For this reason, we have developed and validated a non-equilibrium atmospheric temperature and pressure short-pulsed dielectric barrier discharge plasma system, which can non-destructively generate reactive oxygen species and other active species at the surface of the tissue being treated. We show that this plasma treatment stimulates the production of vascular endothelial growth factor, matrix metalloproteinase-9, and CXCL 1 that in turn induces angiogenesis in mouse aortic rings in vitro. This effect may be mediated by the direct effect of plasma generated reactive oxygen species on tissue.

  2. Microsecond-pulsed dielectric barrier discharge plasma stimulation of tissue macrophages for treatment of peripheral vascular disease

    NASA Astrophysics Data System (ADS)

    Miller, V.; Lin, A.; Kako, F.; Gabunia, K.; Kelemen, S.; Brettschneider, J.; Fridman, G.; Fridman, A.; Autieri, M.

    2015-12-01

    Angiogenesis is the formation of new blood vessels from pre-existing vessels and normally occurs during the process of inflammatory reactions, wound healing, tissue repair, and restoration of blood flow after injury or insult. Stimulation of angiogenesis is a promising and an important step in the treatment of peripheral artery disease. Reactive oxygen species have been shown to be involved in stimulation of this process. For this reason, we have developed and validated a non-equilibrium atmospheric temperature and pressure short-pulsed dielectric barrier discharge plasma system, which can non-destructively generate reactive oxygen species and other active species at the surface of the tissue being treated. We show that this plasma treatment stimulates the production of vascular endothelial growth factor, matrix metalloproteinase-9, and CXCL 1 that in turn induces angiogenesis in mouse aortic rings in vitro. This effect may be mediated by the direct effect of plasma generated reactive oxygen species on tissue.

  3. Value of a 24-hour image (four-phase bone scan) in assessing osteomyelitis in patients with peripheral vascular disease

    SciTech Connect

    Alazraki, N.; Dries, D.; Datz, F.; Lawrence, P.; Greenberg, E.; Taylor, A. Jr.

    1985-07-01

    The delayed images of the four-phase /sup 99m/Tc phosphonate bone scan are compared with the delayed images of the three-phase study in patients with diabetes mellitus and/or peripheral vascular disease and suspected osteomyelitis. Three-phase bone imaging includes an immediate postinjection radionuclide angiogram, a blood-pool image, and delayed static images to 7 hr. The four-phase study adds a 24-hr static image. The scan is positive for osteomyelitis if images show progressively increasing lesion to background activity ratios over time. The results of analyzing 21 three- and four-phase bone scans in 17 patients were correlated with clinical course, cultures, and/or x-rays, gallium scans, and CT scans. The accuracy of four-phase bone imaging for diagnosing osteomyelitis was 85%; for three phase, 80%. Sensitivity for four phase was 80%; specificity was 87%. Sensitivity for three phase was 100%; specificity was 73%.

  4. Percutaneous Treatment of Peripheral Vascular Malformations in Children: Long-Term Clinical Outcome

    SciTech Connect

    Linden, Edwin van der; Otoide-Vree, Marleen; Pattynama, Peter M. T.

    2012-04-15

    Purpose: This study was designed to assess the rate of complications and clinical failure at 3 and 12 months after percutaneous treatment of vascular malformations in children. Furthermore, we describe patient satisfaction of treatment results during 5 years of follow-up. Methods: In a retrospective cohort study, we evaluated 26 patients younger than aged 19 years who were treated for symptomatic vascular malformations. Data on treatment outcomes and patient satisfactions were obtained with a precoded structured questionnaire. Patient files and imaging data were retrieved to obtain information regarding the vascular malformations and treatment. Clinical success was defined as disappearance or partial improvement of the complaints. Patient satisfaction was declared whenever patients answered in the questionnaire that they were satisfied with the treatment results. Results: Of 26 eligible patients, we included 23 (88%). The mean follow-up was 36 (range, 15-127) months. Posttreatment, 87% (20/23; 95% confidence interval (CI), 66-97%) of patients reported clinical success at 3 months. At 1, 2, 3, 4, and 5 years of follow-up this percentage was 74%, 59%, 59%, 59%, and 59%, respectively. Eleven (48%, 95% CI 27-69%) patients had experienced complications and 22% (95% CI 7-44%) had major complications, of which 5 had required additional treatment. In all, 83% (19/23) of the patients reported satisfaction with the treatment. Conclusions: Percutaneous treatment of vascular malformations improved clinical symptoms in 87% of the patients at 3 months and were sustainable for half of all patients during a 5-year follow-up period. However, major complications were seen in 22%.

  5. Non-invasive and quantitative evaluation of peripheral vascular resistances in rats by combined NMR measurements of perfusion and blood pressure using ASL and dynamic angiography.

    PubMed

    Ménard, Jacques C; Giacomini, Eric; Baligand, Céline; Fromes, Yves; Carlier, Pierre G

    2010-02-01

    The in vivo determination of peripheral vascular resistances (VR) is crucial for the assessment of arteriolar function. It requires simultaneous determination of organ perfusion (F) and arterial blood pressure (BP). A fully non-invasive method was developed to measure systolic and diastolic BP in the caudal artery of rats based on dynamic NMR angiography. A good agreement was found between the NMR approach and the gold standard techniques (linear regression slope = 0.98, R(2) = 0.96). This method and the ASL-MRI measurement of skeletal muscle perfusion were combined into one single NMR experiment to quantitatively evaluate the local vascular resistances in the calf muscle of anaesthetized rats, in vivo and non-invasively 1) at rest: VR = 7.0 +/- 1.0 mmHg x min 100 g x ml(-1), F = 13 +/- 3 ml min(-1) x 100 g(-1) and mean BP (MBP) = 88 +/- 10 mmHg; 2) under vasodilator challenge (milrinone): VR = 3.7 +/- 1.1 mmHg min x 100 g ml(-1), F = 21 +/- 4 ml min(-1) x 100 g(-1) and MBP = 75 +/- 14 mmHg; 3) under vasopressor challenge (norepinephrine): VR = 9.8 +/- 1.2 mmHg min 100 g ml(-1), F = 14 +/- 3 ml min(-1) x 100 g(-1) and MBP = 137 +/- 2 mmHg. PMID:19795372

  6. Sustained release nitrite therapy results in myocardial protection in a porcine model of metabolic syndrome with peripheral vascular disease

    PubMed Central

    Bradley, Jessica M.; Islam, Kazi N.; Polhemus, David J.; Donnarumma, Erminia; Brewster, Luke P.; Tao, Ya-Xiong; Goodchild, Traci T.

    2015-01-01

    Metabolic syndrome (MetS) reduces endothelial nitric oxide (NO) bioavailability and exacerbates vascular dysfunction in patients with preexisting vascular diseases. Nitrite, a storage form of NO, can mediate vascular function during pathological conditions when endogenous NO is reduced. The aims of the present study were to characterize the effects of severe MetS and obesity on dyslipidemia, myocardial oxidative stress, and endothelial NO synthase (eNOS) regulation in the obese Ossabaw swine (OS) model and to examine the effects of a novel, sustained-release formulation of sodium nitrite (SR-nitrite) on coronary vascular reactivity and myocardial redox status in obese OS subjected to critical limb ischemia (CLI). After 6 mo of an atherogenic diet, obese OS displayed a MetS phenotype. Obese OS had decreased eNOS functionality and NO bioavailability. In addition, obese OS exhibited increased oxidative stress and a significant reduction in antioxidant enzymes. The efficacy of SR-nitrite therapy was examined in obese OS subjected to CLI. After 3 wk of treatment, SR-nitrite (80 mg·kg−1·day−1 bid po) increased myocardial nitrite levels and eNOS function. Treatment with SR-nitrite reduced myocardial oxidative stress while increasing myocardial antioxidant capacity. Ex vivo assessment of vascular reactivity of left anterior descending coronary artery segments demonstrated marked improvement in vasoreactivity to sodium nitroprusside but not to substance P and bradykinin in SR-nitrite-treated animals compared with placebo-treated animals. In conclusion, in a clinically relevant, large-animal model of MetS and CLI, treatment with SR-nitrite enhanced myocardial NO bioavailability, attenuated oxidative stress, and improved ex vivo coronary artery vasorelaxation. PMID:25957218

  7. Biosynthesis and Functional Significance of Peripheral Node Addressin in Cancer-Associated TLO

    PubMed Central

    Weinstein, Aliyah M.; Storkus, Walter J.

    2016-01-01

    Peripheral node addressin (PNAd) marks high endothelial venules (HEV), which are crucial for the recruitment of lymphocytes into lymphoid organs in non-mucosal tissue sites. PNAd is a sulfated and fucosylated glycoprotein recognized by the prototypic monoclonal antibody, MECA-79. PNAd is the ligand for L-selectin, which is expressed on the surface of naive and central memory T cells, where it mediates leukocyte rolling on vascular endothelial surfaces. Although PNAd was first identified in the HEV of peripheral lymph nodes, recent work suggests a critical role for PNAd in the context of chronic inflammatory diseases, where it can be used as a marker for the formation of tertiary lymphoid organs (TLOs). TLO form in tissues impacted by sustained inflammation, such as the tumor microenvironment where they function as local sites of adaptive immune cell priming. This allows for specific B- and T-cell responses to be initiated or reactivated in inflamed tissues without dependency on secondary lymphoid organs. Recent studies of cancer in mice and humans have identified PNAd as a biomarker of improved disease prognosis. Blockade of PNAd or its ligand, L-selectin, can abrogate protective antitumor immunity in murine models. This review examines pathways regulating PNAd biosynthesis by the endothelial cells integral to HEV and the formation and maintenance of lymphoid structures throughout the body, particularly in the setting of cancer. PMID:27555845

  8. Biosynthesis and Functional Significance of Peripheral Node Addressin in Cancer-Associated TLO.

    PubMed

    Weinstein, Aliyah M; Storkus, Walter J

    2016-01-01

    Peripheral node addressin (PNAd) marks high endothelial venules (HEV), which are crucial for the recruitment of lymphocytes into lymphoid organs in non-mucosal tissue sites. PNAd is a sulfated and fucosylated glycoprotein recognized by the prototypic monoclonal antibody, MECA-79. PNAd is the ligand for L-selectin, which is expressed on the surface of naive and central memory T cells, where it mediates leukocyte rolling on vascular endothelial surfaces. Although PNAd was first identified in the HEV of peripheral lymph nodes, recent work suggests a critical role for PNAd in the context of chronic inflammatory diseases, where it can be used as a marker for the formation of tertiary lymphoid organs (TLOs). TLO form in tissues impacted by sustained inflammation, such as the tumor microenvironment where they function as local sites of adaptive immune cell priming. This allows for specific B- and T-cell responses to be initiated or reactivated in inflamed tissues without dependency on secondary lymphoid organs. Recent studies of cancer in mice and humans have identified PNAd as a biomarker of improved disease prognosis. Blockade of PNAd or its ligand, L-selectin, can abrogate protective antitumor immunity in murine models. This review examines pathways regulating PNAd biosynthesis by the endothelial cells integral to HEV and the formation and maintenance of lymphoid structures throughout the body, particularly in the setting of cancer. PMID:27555845

  9. Initial experience with a novel hybrid vascular graft for peripheral artery disease.

    PubMed

    Willaert, W; Claes, K; Flamme, A; Jacobs, B

    2014-03-01

    This report describes the successful use of a new hybrid vascular graft as a conduit for above knee femoropopliteal bypass surgery. The graft consists of a proximal (heparin coated) expanded polytetrafluoroethylene section but ends distally as a nitinol reinforced selfexpandable stent that is covered and constrained, allowing a sutureless distal anastamosis. With this graft the creation of above knee bypasses in situations where lesions extend to the popliteal artery behind the knee, or in cases where the above knee popliteal artery is severely calcified is still possible. This avoids the necessity of an infragenicular bypass with potentially inferior longterm patency rates, especially when no autologous venous bypass material is available. PMID:24594800

  10. Assessment of vascular function in systemic onset juvenile idiopathic arthritis.

    PubMed

    Sozeri, Betul; Atikan, Basak Yildiz; Ozdemir, Kadriye; Mir, Sevgi

    2016-07-01

    and disease duration (p = 0.003, r = 0.45). Vascular function is impaired in patients with sJIA at a very young age. Vascular dysfunction may be partly attributed to the effects of disease-related characteristics (inflammation, disease activity, and medications). PMID:27075461

  11. A Study on the Relationship between Serum Beta 2-Microglobulin Levels, Underlying Chronic Kidney Disease, and Peripheral Arterial Disease in High-Vascular-Risk Patients

    PubMed Central

    Real de Asúa, Diego; Puchades, Ramón; García-Polo, Iluminada; Suárez, Carmen

    2012-01-01

    Background Serum beta 2-microglobulin (B2M) levels have been found to be increased in patients with peripheral arterial disease (PAD), yet it is still unknown whether B2M correlates with PAD intensity. Objectives We aim to evaluate the correlation between B2M and the ankle-brachial index (ABI) values in high-vascular-risk patients. Methods This is a cross-sectional study of 63 high-vascular-risk patients admitted to the Cardiology Department or evaluated as outpatients in the Internal Medicine Department of our institution. Patients were classified into two groups according to their ABI: patients without PAD (n = 44, ABI values between 0.9 and 1.4) and patients with PAD (n = 19, ABI values lower than 0.9 or higher than 1.4). We performed univariate and multivariate analysis based on a multiple linear regression model. Results Serum B2M levels were higher in patients with pathological ABI values than in those without PAD (2.36 ± 1.13 vs. 1.80 ± 0.65 mg/L; P<0.05). We found no correlation between B2M and ABI in our total population (r = –0.12) or in patients with PAD (r = –0.09; NS for both comparisons). Age, gender, arterial hypertension, estimated glomerular filtration rate (eGFR), uric acid, total cholesterol, and LDL-cholesterol correlated with B2M in the univariate analysis. In the final linear regression model, eGFR, uric acid and total cholesterol correlated independently with B2M (P<0.01). Conclusion We found no correlation between B2M levels and ABI values in high-vascular-risk patients that could usefully help in the subsequent diagnosis of PAD. However, we observed a significant correlation between B2M and eGFR, even when renal function was only slightly impaired. PMID:24757603

  12. Functional role of connexins and pannexins in the interaction between vascular and nervous system.

    PubMed

    Gaete, Pablo S; Lillo, Mauricio A; Figueroa, Xavier F

    2014-10-01

    The microvascular network of the microcirculation works in tight communication with surrounding tissues to control blood supply and exchange of solutes. In cerebral circulation, microvascular endothelial cells constitute a selective permeability barrier that controls the environment of parenchymal brain tissue, which is known as the blood-brain barrier (BBB). Connexin- and pannexin-formed channels (gap junctions and hemichannels) play a central role in the coordination of endothelial and smooth muscle cell function and connexin-mediated signaling in endothelial cells is essential in the regulation of BBB permeability. Likewise, gap junction communication between astrocyte end-feet also contributes to maintain the BBB integrity, but the participation of hemichannels in this process cannot be discarded. Sympathetic and sensory perivascular nerves are also involved in the control and coordination of vascular function through the release of vasoconstrictor or vasodilator signals and by the regulation of gap junction communication in the vessel wall. Conversely, ATP release through pannexin-1-formed channels mediates the α1-adrenergic signaling. Furthermore, here we show that capsaicin-induced CGRP release from mesenteric perivascular sensory nerves induces pannexin-1-formed channel opening, which in turn leads to reduction of pannexin-1 and endothelial nitric oxide synthase (eNOS) expression along the time. Interestingly, blockade of CGRP receptors with CGRP8-37 increased eNOS expression by ∼5-fold, suggesting that capsaicin-sensitive sensory nerves are involved in the control of key signaling proteins for vascular function. In this review, we discuss the importance of connexin-based channels in the control of BBB integrity and the functional interaction of vascular connexins and pannexins with the peripheral nervous system. PMID:24446239

  13. Marvels, Mysteries, and Misconceptions of Vascular Compensation to Peripheral Artery Occlusion

    PubMed Central

    ZIEGLER, MATTHEW A.; DISTASI, MATTHEW R.; BILLS, RANDALL G.; MILLER, STEVEN J.; ALLOOSH, MOUHAMAD; MURPHY, MICHAEL P.; AKINGBA, A. GEORGE; STUREK, MICHAEL; DALSING, MICHAEL C.; UNTHANK, JOSEPH L.

    2010-01-01

    Peripheral arterial disease is a major health problem and there is a significant need to develop therapies to prevent its progression to claudication and critical limb ischemia. Promising results in rodent models of arterial occlusion have generally failed to predict clinical success and led to questions of their relevance. While sub-optimal models may have contributed to the lack of progress, we suggest that advancement has also been hindered by misconceptions of the human capacity for compensation and the specific vessels which are of primary importance. We present and summarize new and existing data from humans, Ossabaw miniature pigs, and rodents which provide compelling evidence that natural compensation to occlusion of a major artery (i) may completely restore perfusion, (ii) occurs in specific pre-existing small arteries, rather than the distal vasculature, via mechanisms involving flow-mediated dilation and remodeling (iii) is impaired by cardiovascular risk factors which suppress the flow-mediated mechanisms and (iv) can be restored by reversal of endothelial dysfunction. We propose that restoration of the capacity for flow-mediated dilation and remodeling in small arteries represents a largely unexplored potential therapeutic opportunity to enhance compensation for major arterial occlusion and prevent the progression to critical limb ischemia in the peripheral circulation. PMID:20141596

  14. Glycomimetic functionalized collagen hydrogels for peripheral nerve repair

    NASA Astrophysics Data System (ADS)

    Masand, Shirley Narain

    Despite the innate regenerative potential of the peripheral nervous system, functional recovery is often limited. The goal of this dissertation was to develop a clinically relevant biomaterial strategy to (1) encourage the regrowth of axons and (2) direct them down their appropriate motor tracts. To this end, we use peptide mimics of two glycans, polysialic acid (PSA) and an epitope first discovered on human natural killer cells (HNK-1), to functionalize type I collagen hydrogels. Previous studies have shown that these molecules, in their glycan and glycomimetic form, are associated with acceleration of neurite outgrowth, glial cell proliferation, and motoneuron targeting. In vitro, we demonstrated the retained functionality of the peptide glycomimetics after conjugation to a type I collagen backbone. While HNK-functionalized collagen increased motor neurite outgrowth, PSA-functionalized collagen encouraged motor and sensory neurite outgrowth and Schwann cell extension and proliferation. When we introduce these glycomimetic-functionalized collagen hydrogels into a critical gap femoral nerve model, we show that both PSA and HNK-functionalized hydrogels yielded a significant increase in functional recovery when compared to saline, native and scramble-coupled hydrogels. However, there was an interesting divergence in the morphological results: PSA-functionalized hydrogels increased axon count and HNK-functionalized hydrogels increased motoneuron targeting and myelination. We believed that these differences may be attributed to distinct mechanisms by which the glycomimetics impart their benefit. Interestingly, however, we found no synergistic gain in recovery with the use of our composite hydrogels which we speculated may be due to an inadequate dose of the individual glycomimetic. To address this possibility, we show that increasing the amount of functionalized peptide functionalized in our composite hydrogels led to increases in axon count and area of regeneration

  15. Maternal Copper Deficiency Perpetuates Altered Vascular Function in Sprague-Dawley Rat Offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the consequences of maternal Cu (Cu) deficiency on the vascular function of offspring or on perpetuation of vascular effects to a second generation. We examined vascular functional responses in mesenteric arteries from Cu-deficient Sprague-Dawley rat dams and from offspring dir...

  16. The Toll of Vascular Insufficiency: Implications for the Management of Peripheral Arterial Disease

    PubMed Central

    Xu, Jun; Sachdev, Ulka

    2016-01-01

    Peripheral artery disease (PAD) can result in limb loss within six months of diagnosis in a subset of patients who cannot undergo endovascular or surgical revascularization yet continues to maintain a marginal position in cardiovascular research. While a body of literature continues to grow describing the role of danger signaling and innate immunity in cardiac biology, the role of these pathways in the ischemic myopathy associated with PAD has not been extensively studied. The following report will review the current literature on the role of Toll-like receptor (TLR) signaling in cardiovascular biology as well as in nonischemic myopathy. While attenuation of TLR signaling has not been shown to be clinically useful in the treatment of infectious inflammation, it may show promise in the management of severe arterial insufficiency. PMID:26998496

  17. Thoracic sympathectomy for peripheral vascular disease can lead to severe bronchospasm and excessive bronchial secretions

    PubMed Central

    Goyal, Vikas Deep; Gupta, Bharti; Kumar, Sanjeev; Pal, Sanjay

    2015-01-01

    A 57-year-old male patient suffering from Buerger's disease presented with pre-gangrenous changes in right foot and ischemic symptoms in right hand. Computed tomographic angiography revealed diffuse distal disease not suitable for vascular bypass and angioplasty. Right lumbar sympathectomy was done using a retroperitoneal approach followed 1 year later by right thoracic sympathectomy using a transaxillary approach. Postoperatively, the patient had severe bronchospasm and excessive secretions in the respiratory tract resistant to theophylline and sympathomimetic group of drugs and without any clinical, laboratory and radiological evidence of infection. The patient was started on anticholinergics in anticipation that sympathectomy might have lead to unopposed cholinergic activity and the symptoms improved rapidly. The patient recovered well and was discharged on 10th post-operative day. PMID:25624604

  18. Quantitative measurement of the blood flow in peripheral vascular diseases by a new radionuclide plethysmography

    SciTech Connect

    Kawakami, K.; Mori, Y.; Mashima, Y.; Shimada, T.; Fukuoka, M.

    1985-05-01

    The purpose of the study is to introduce a new plethysmography using radionuclide (RN) for a quantitative measurement of the blood flow in the extremities following the routine RN angiography. Seventy five patients with various peripheral artery diseases have been examined. RN pletysmography was performed in the supine position 15 min. after the RN angiography using 15 mCi of Tc-99m RBC. The blood flow (F) was calculated by the equation (1) which consists of three parameters, the initial slope of the time-activity curve (dc/dt*t=0) after the venous occlusion on the thigh, changes of radio-activity (C-Co) before and after avascularization by inflation of cuff with 200 mmHg pressure at calf, and the blood volume per unit tissue volume (..beta..=Vb/V,ml/100g tissue). F (ml/min/100g) = ..beta.. (dc/dt*t=0)/C-Co. The blood flow measured simultaneously by RN plethysmography and admittance plethysmography was significantly correlated (r = 0.906,n = 16). The blood flow in 67 normal subjects was 2.78 +- 0.75 ml/min/100g. In the patients with intermittent claudication the blood flow was decreased (1.89 +- 0.75 ml/min/100g,n = 75). In the cases with poorly developed colateral circulation the blood flow markedly decreased (1.62 +- 0.29 ml/min/100g,n = 10). Increases of blood flow after exercise was small in the cases with stenosis, even in patients with collaterals. This method is very useful to evaluate quantitatively the peripheral hemodynamics following the routine RN angiographic examination.

  19. Melamine Impairs Renal and Vascular Function in Rats.

    PubMed

    Tian, Xiao Yu; Wong, Wing Tak; Lau, Chi Wai; Wang, Yi-Xiang; Cheang, Wai San; Liu, Jian; Lu, Ye; Huang, Huihui; Xia, Yin; Chen, Zhen Yu; Mok, Chuen-Shing; Lau, Chau-Ming; Huang, Yu

    2016-01-01

    Melamine incident, linked to nephrotoxicity and kidney stone in infants previously exposed to melamine-contaminated milk products, was unprecedentedly grave in China in 2008 as little was known about the mechanistic process leading to renal dysfunction in affected children. This study investigates whether neonatal ingestion of melamine leads to renal and vascular dysfunction in adulthood; and whether ingestion of melamine in pregnant rats leads to renal dysfunction in their offspring. A combination of approaches employed includes functional studies in rat renal arteries, renal blood flow measurement by functional magnetic resonance imaging, assay for pro-inflammatory and fibrotic biomarkers, immunohistochemistry, and detection of plasma and renal melamine. We provide mechanistic evidence showing for the first time that melamine reduces renal blood flow and impairs renal and vascular function associated with overexpression of inflammatory markers, transforming growth factor-β1, bone morphogenic protein 4 and cyclooxygenase-2 in kidney and renal vasculature. Melamine also induces renal inflammation and fibrosis. More importantly, melamine causes nephropathies in offsprings from pregnant rat exposed to melamine during pregnancy, as well as in neonatal rat exposed to melamine afterbirth, thus supporting the clinical observations of kidney stone and acute renal failure in infants consuming melamine-contaminated milk products. PMID:27324576

  20. The functions of TRPP2 in the vascular system

    PubMed Central

    Du, Juan; Fu, Jie; Xia, Xian-ming; Shen, Bing

    2016-01-01

    TRPP2 (polycystin-2, PC2 or PKD2), encoded by the PKD2 gene, is a non-selective cation channel with a large single channel conductance and high Ca2+ permeability. In cell membrane, TRPP2, along with polycystin-1, TRPV4 and TRPC1, functions as a mechanotransduction channel. In the endoplasmic reticulum, TRPP2 modulates intracellular Ca2+ release associated with IP3 receptors and the ryanodine receptors. Noteworthily, TRPP2 is widely expressed in vascular endothelial and smooth muscle cells of all major vascular beds, and contributes to the regulation of vessel function. The mutation of the PKD2 gene is a major cause of autosomal dominant polycystic kidney disease (ADPKD), which is not only a common genetic disease of the kidney but also a systemic disorder associated with abnormalities in the vasculature; cardiovascular complications are the leading cause of mortality and morbidity in ADPKD patients. This review provides an overview of the current knowledge regarding the TRPP2 protein and its possible role in cardiovascular function and related diseases. PMID:26725733

  1. The functions of TRPP2 in the vascular system.

    PubMed

    Du, Juan; Fu, Jie; Xia, Xian-ming; Shen, Bing

    2016-01-01

    TRPP2 (polycystin-2, PC2 or PKD2), encoded by the PKD2 gene, is a non-selective cation channel with a large single channel conductance and high Ca(2+) permeability. In cell membrane, TRPP2, along with polycystin-1, TRPV4 and TRPC1, functions as a mechanotransduction channel. In the endoplasmic reticulum, TRPP2 modulates intracellular Ca(2+) release associated with IP3 receptors and the ryanodine receptors. Noteworthily, TRPP2 is widely expressed in vascular endothelial and smooth muscle cells of all major vascular beds, and contributes to the regulation of vessel function. The mutation of the PKD2 gene is a major cause of autosomal dominant polycystic kidney disease (ADPKD), which is not only a common genetic disease of the kidney but also a systemic disorder associated with abnormalities in the vasculature; cardiovascular complications are the leading cause of mortality and morbidity in ADPKD patients. This review provides an overview of the current knowledge regarding the TRPP2 protein and its possible role in cardiovascular function and related diseases. PMID:26725733

  2. Melamine Impairs Renal and Vascular Function in Rats

    PubMed Central

    Tian, Xiao Yu; Wong, Wing Tak; Lau, Chi Wai; Wang, Yi-Xiang; Cheang, Wai San; Liu, Jian; Lu, Ye; Huang, Huihui; Xia, Yin; Chen, Zhen Yu; Mok, Chuen-Shing; Lau, Chau-Ming; Huang, Yu

    2016-01-01

    Melamine incident, linked to nephrotoxicity and kidney stone in infants previously exposed to melamine-contaminated milk products, was unprecedentedly grave in China in 2008 as little was known about the mechanistic process leading to renal dysfunction in affected children. This study investigates whether neonatal ingestion of melamine leads to renal and vascular dysfunction in adulthood; and whether ingestion of melamine in pregnant rats leads to renal dysfunction in their offspring. A combination of approaches employed includes functional studies in rat renal arteries, renal blood flow measurement by functional magnetic resonance imaging, assay for pro-inflammatory and fibrotic biomarkers, immunohistochemistry, and detection of plasma and renal melamine. We provide mechanistic evidence showing for the first time that melamine reduces renal blood flow and impairs renal and vascular function associated with overexpression of inflammatory markers, transforming growth factor-β1, bone morphogenic protein 4 and cyclooxygenase-2 in kidney and renal vasculature. Melamine also induces renal inflammation and fibrosis. More importantly, melamine causes nephropathies in offsprings from pregnant rat exposed to melamine during pregnancy, as well as in neonatal rat exposed to melamine afterbirth, thus supporting the clinical observations of kidney stone and acute renal failure in infants consuming melamine-contaminated milk products. PMID:27324576

  3. Vascular function and brain-derived neurotrophic factor: The functional capacity factor.

    PubMed

    Alomari, Mahmoud A; Khabour, Omar F; Maikano, Abubakar; Alawneh, Khaldoon

    2015-12-01

    Brain-derived neurotrophic factor (BDNF) is essential for neurocognitive function. This study aims at establishing a plausible link between level of serum BDNF, functional capacity (FC), and vascular function in 181 young (age 25.5±9.1 years old), apparently healthy adults. Fasting blood samples were drawn from participants' antecubital veins into plain glass tubes while they were in a sitting position to evaluate serum BDNF using enzyme-linked immunosorbent assay (ELISA). Mercury-in-silastic strain-gauge plethysmography was used to determine arterial function indices, blood flow and vascular resistance at rest and following 5 minutes of arterial ischemia. The 6-minute walk distance (6MWD) test was used to determine FC, according to the American Thoracic Society Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories guidelines. It was conducted in an enclosed corridor on a flat surface with a circular track 33 meters long. The walking course was demarcated with bright colored cones. The 6MWD correlated with BDNF (r=0.3, p=0.000), as well as with forearm blood inflow (r=0.5, p=0.000) and vascular resistance (r = -0.4, p=0.000). Subsequent comparison showed that BDNF and blood inflow were greater (p<0.05) while vascular resistance was less (p<0.05) in participants who achieved a longer 6MWD. Similarly, BDNF correlated with forearm blood inflow (r=0.4, p=0.000) and vascular resistance (r = -0.4, p=0.000). Subsequent comparison showed improved vascular function (p<0.05) in the participants with greater BDNF. In conclusion, these findings might suggest that improved vascular function in individuals with greater FC is mediated, at least partially, by an enhanced serum BDNF level. PMID:26285588

  4. Functional Imaging of Working Memory and Peripheral Endothelial Function in Middle-Aged Adults

    ERIC Educational Resources Information Center

    Gonzales, Mitzi M.; Tarumi, Takashi; Tanaka, Hirofumi; Sugawara, Jun; Swann-Sternberg, Tali; Goudarzi, Katayoon; Haley, Andreana P.

    2010-01-01

    The current study examined the relationship between a prognostic indicator of vascular health, flow-mediated dilation (FMD), and working memory-related brain activation in healthy middle-aged adults. Forty-two participants underwent functional magnetic resonance imaging while completing a 2-Back working memory task. Brachial artery…

  5. Load dependence of changes in forearm and peripheral vascular resistance after acute leg exercise in man.

    PubMed

    Piepoli, M; Isea, J E; Pannarale, G; Adamopoulos, S; Sleight, P; Coats, A J

    1994-07-15

    1. It is known that acute exercise is often followed by a reduction in arterial blood pressure. Little is known about the time course of the recovery of the blood pressure or the influence of the intensity of the exercise on this response. Controversy exists, in particular, concerning the changes in peripheral resistance that occur during this period. 2. Eight normal volunteers performed, in random order on separate days, voluntary upright bicycle exercise of three different intensities (maximal, moderate and minimal load) and, on another day, a control period of sitting on a bicycle. They were monitored for 60 min after each test. 3. Diastolic pressure fell after maximal exercise at 5 min (-15.45 mmHg) and 60 min (-9.45 mmHg), compared with the control day. Systolic and mean pressure also fell (non-significantly) after 45 min; heart rate was significantly elevated for the whole hour of recovery (at 60 min, +7.23 beats min-1). No changes in post-exercise blood pressure and heart rate were observed on the days of moderate and minimal exercises. 4. An increase in cardiac index was observed after maximal exercise compared with control (at 60 min, 2.6 +/- 0.3 vs. 1.9 +/- 0.2 l min-1 m-2). This was entirely accounted for by the persistent increase in heart rate, with no significant alteration in stroke volume after exercise on any day.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7965851

  6. Results of a Peripheral Cutting Balloon Prospective Multicenter European Registry in Hemodialysis Vascular Access

    SciTech Connect

    Peregrin, Jan H. Rocek, Miloslav

    2007-04-15

    Purpose. To report initial experience with the Peripheral Cutting Balloon (PCB) in treatment of failing hemodialysis shunts. Methods. A total of 190 patients (95 men, 95 women; average age 64.4 {+-} 11.9 years, range 32-87 years) who were treated with the PCB for pressure-resistant stenosis, restenosis or failed percutaneous transluminal angioplasty (PTA) in the venous limb of an arteriovenous shunt were followed in seven European centers using a simple registry. The group consisted of 109 de novo lesions (57%) and 79 restenotic lesions (43%). Results. Technical success was achieved in 88.9% of cases. Primary patency was as follows (the results for whole group and simultaneous results for de novo lesions and restenoses are presented): 1 month (140 patients followed): 94%, 98%, and 93%; 3 months (116 patients followed): 93%, 98%, and 92%; 6 months (40 patients followed): 85%, 92%, and 79%; 12 months (27 patients followed): 74%, 87%, and 48%. No complication occurred. Patients experienced an equal or lower level of pain during the procedure compared with conventional PTA. Conclusion. The PCB proved to be successful in dilating pressure-resistant stenoses. We cannot conclude whether PCB angioplasty can lower the restenosis rate in hemodialysis access lesions, but the long-term patency for de novo lesions is high. A further randomized study is advisable.

  7. Short-Term Exposure to Air Pollution and Digital Vascular Function

    PubMed Central

    Ljungman, Petter L.; Wilker, Elissa H.; Rice, Mary B.; Schwartz, Joel; Gold, Diane R.; Koutrakis, Petros; Vita, Joseph A.; Mitchell, Gary F.; Vasan, Ramachandran S.; Benjamin, Emelia J.; Mittleman, Murray A.; Hamburg, Naomi M.

    2014-01-01

    We investigated associations between ambient air pollution and microvessel function measured by peripheral arterial tonometry between 2003 and 2008 in the Framingham Heart Study Offspring and Third Generation Cohorts. We measured particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5), black carbon, sulfates, particle number, nitrogen oxides, and ozone by using fixed monitors, and we determined moving averages for 1–7 days preceding vascular testing. We examined associations between these exposures and hyperemic response to ischemia and baseline pulse amplitude, a measure of arterial tone (n = 2,369). Higher short-term exposure to air pollutants, including PM2.5, black carbon, and particle number was associated with higher baseline pulse amplitude. For example, higher 3-day average PM2.5 exposure was associated with 6.3% higher baseline pulse amplitude (95% confidence interval: 2.0, 10.9). However, there were no consistent associations between the air pollution exposures assessed and hyperemic response. Our findings in a community-based sample exposed to relatively low pollution levels suggest that short-term exposure to ambient particulate pollution is not associated with vasodilator response, but that particulate air pollution is associated with baseline pulse amplitude, suggesting potentially adverse alterations in baseline vascular tone or compliance. PMID:25100647

  8. Cytolytic effector function is present in resting peripheral T lymphocytes.

    PubMed

    Geisberg, M; Dupont, B

    1992-11-01

    Antigen-specific cytotoxic killer lymphocytes (CTLs) represent one of the major effector functions of the immune system. It is well established that, as a consequence of TCR recognition of the antigen-bearing target cell, resting T lymphocytes develop into fully active antigen-specific CTLs. In contrast, natural killer (NK) cells are immediately lytic upon contact with an appropriate target cell. The lytic machinery of CTLs and NK cells is thought to include the contents of their cytoplasmic granules, in particular the pore-forming protein perforin. Here we report direct cytolytic activity by resting peripheral CD3+CD8+ T cells as a result of TCR-CD3 binding to the target cell; the murine OKT3 hybridoma (anti-human CD3) was used as a target. The cytotoxicity was more pronounced in the CD8+CD45RO+ population, which contains 'memory' T cells, than in the reciprocal CD8+CD45RA+ subset; CD8+CD4- mature thymocytes were non-cytotoxic. The cytolytic potential of these populations correlated with the presence or absence of perforin. The results demonstrate that the cytolytic machinery of T cells develops post-thymically and can be immediately triggered by TCR-CD3 stimulation. PMID:1472478

  9. Silymarin improves vascular function of aged ovariectomized rats.

    PubMed

    Demirci, Buket; Dost, Turhan; Gokalp, Filiz; Birincioglu, Mustafa

    2014-06-01

    Both aging and estrogen depletion lead to endothelial dysfunction, which is the main reason of many cardiovascular diseases. Previous reports have shown that cell protective effect of silymarin (SM) depends on its antioxidant and phytoestrogenic properties. We investigated the effect of SM on vascular stiffness of aged menopausal rats and the involvement of estrogenic activity in this effect. Isolated rat aortas were obtained from 22-month-old rats, after 18 months of ovariectomy (OVX) follow-up. Each ring was incubated in tissue bath either with SM (50 mg/L) and 17β-estradiol (10 μM, E2) or in the presence of SM/fulvestrant (50 mg/L, 10 μM). Endothelium-intact rings were precontracted with phenylephrine (0.001-30 μM) or high potassium (40 mM); endothelium-dependent/independent relaxant responses were obtained using acetylcholine (0.001-30 μM) and sodium nitroprusside (0.0001-3 μM), respectively. While phenylephrine sensitivity was significantly increased in OVX rats, relaxations were significantly less in aged OVX rats compared with young rats. In spite of the presence of estrogen antagonist, immediate SM treatment restored the endothelial function and vascular tone better than estrogen replacement. Additionally, as a complementary and alternative medicine, it does not cause estrogenic side effects when taken acutely. PMID:24123505

  10. Radionuclide angiography and blood pool imaging to assess skin ulcer healing prognosis in patients with peripheral vascular disease

    SciTech Connect

    Alazraki, N.; Lawrence, P.F.; Syverud, J.B.

    1984-01-01

    Several non-invasive diagnostic techniques including segmental limb blood pressures, skin fluoresence, and photo plethysmography, have been evaluated as predictors of skin ulcer healing in patients with peripheral vascular disease, but none are widely used. Using 20mCi of Tc-99m phosphate compounds, four phase bone scans were obtained, including (1) radionuclide angiogram (2) blood pool image (3) 2 hour and 4-6 hour static images and (4) 24 hour static delayed images. The first two phases were used to assess vacularity to the region of distal extremity ulceration; the last two phases evaluated presence or absence of osteomyelitis. Studies were performed in 30 patients with non-healing ulcers of the lower extremities. Perfusion to the regions of ulceration on images was graded as normal, increased, or reduced with respect to the opposite (presumed normal) limb or some other normal reference area. Hypervascular response was interpreted as good prognosis for healing unless osteomyelitis was present. Clinicians followed patients for 14 days to assess limb healing with optimum care. If there was no improvement, angiography and/or surgery (reconstructive surgery, sympathectomy, or amputation) was done. Results showed: sensitivity for predicting ulcer healing was 94%, specificity 89%. Patients who failed to heal their ulcers showed reduced perfusion, no hypervascular response, or osteomyelitis. Microcirculatory adequacy for ulcer healing appear predictable by this technique.

  11. Electrospray MS/MS reveals extensive and nonspecific oxidation of cholesterol esters in human peripheral vascular lesions[S

    PubMed Central

    Hutchins, Patrick M.; Moore, Ernest E.; Murphy, Robert C.

    2011-01-01

    Although LDL is rendered proatherogenic by various experimental treatments (e.g., acetylation), the exact structural changes that drive LDL transformation in vivo remain enigmatic. Among the many hypothesized targets of oxidative modification are cholesterol esters (CE). This family of neutral lipids, which carries a highly unsaturated pool of fatty acyl groups, is the main component of both LDL particles and atherosclerotic plaques. Tandem mass spectrometry (MS/MS) was employed to reveal abundant and diverse oxidized CEs (oxCE), including novel oxidation products, within human peripheral vascular lesions. These oxCE species composed up to 40% of the total CE pool, with cholesteryl linoleate being oxidized to the greatest extent. Imaging mass spectrometry studies showed that oxCE was entirely confined within the plaque, along with unmodified CE and triacylglyceride (TAG). Interestingly, we found no evidence for TAG oxidation, although polyunsaturated species were abundant. Enzymatic oxidation of cholesteryl linoleate by 15-lipoxygenase (15-LO), an enzyme often invoked in CE oxidation, initially results in a regio- and stereospecific product. Analysis of intact cholesteryl hydroxyoctadecadienoate isomers in human atheromata revealed no regio- or stereospecificity, indicating 15-LO was either not a major source of oxCE or nonenzymatic processes had eroded any product specificity. PMID:21885431

  12. Nifedipine in semi-solid formulations for topical use in peripheral vascular disease: preparation, characterization, and permeation assay.

    PubMed

    Santis, Ana Karla; de Freitas, Zaida Maria Faria; Ricci-Junior, Eduardo; de Brito-Gitirana, Lycia; Fonseca, Laís Bastos; Santos, Elisabete Pereira

    2013-07-01

    Nifedipine (NFD) has been used for the treatment of cutaneous lesions caused by peripheral vascular disease and diabetic ulcers. NFD was formulated at 8% in three semi-solid formulations: Polaxamer 407 Lecithin Organogel (PLO), PLO plus Transcutol(®), and an oil-in-water (o/w) emulsion. In vitro release and permeation tests were carried out using a synthetic (cellulose acetate) or natural membrane (pig ear skin), respectively, mounted in a Franz-type diffusion cell at 37°C in a constant water bath. As a receptor solution, isotonic phosphate buffer at pH 7.4 was used. All samples were analyzed by high-performance liquid chromatography by employing a previously validated method. The drug flow values were 6.126 ± 0.288, 4.030 ± 0.081, and 6.660 ± 0.254 μg/cm(2)/h for PLO, PLO plus Transcutol(®), and o/w emulsion, respectively. The three formulations did not show significant differences in drug flow, considering p > 0.05. Furthermore, their penetration profiles in both the epidermis and dermis were statistically different. Thus, the incorporation of NFD in PLO, PLO plus Transcutol(®), and o/w emulsion changed the drug thermodynamic activity, as expected. In addition, Transcutol(®) increased the solubility of NFD in the formulation and promoted its penetration in both the epidermis and dermis. PMID:22901029

  13. Reporting standards of the Society for Vascular Surgery for endovascular treatment of chronic lower extremity peripheral artery disease.

    PubMed

    Stoner, Michael C; Calligaro, Keith D; Chaer, Rabih A; Dietzek, Alan M; Farber, Alik; Guzman, Raul J; Hamdan, Allen D; Landry, Greg J; Yamaguchi, Dean J

    2016-07-01

    Peripheral arterial disease (PAD) represents a spectrum from asymptomatic stenosis to limb-threatening ischemia. The last decade has seen a tremendous increase in the variety of endovascular devices and techniques to treat occlusive disease. Like many evolving technologies, the literature surrounding therapy for endovascular arterial disease consists of mixed-quality manuscripts without clear standardization. Accordingly, critical evaluation of the reported results may be problematic. As such, providers and their patients make treatment decisions without the full benefit of a comparative effectiveness framework. The purpose of this document is to provide a summary for the reporting of endovascular revascularization techniques in the setting of chronic disease. Much of the work in this document is based on prior publications and standards proposed by the Society for Vascular Surgery. We have also made recommendations based on current literature and have attempted to acknowledge shortcomings and areas for future research. The various sections contain summaries of required reporting standards and should serve as a guide for the design of clinical trials and as reference for journal editors and reviewers when considering scientific work pertaining to endovascular therapy for chronic lower extremity arterial disease. An Appendix is provided with commonly used abbreviations in this document. PMID:27345516

  14. Physiologically Modeled Pulse Dynamics to Improve Function in In Vitro-Endothelialized Small-Diameter Vascular Grafts.

    PubMed

    Uzarski, Joseph S; Cores, Jhon; McFetridge, Peter S

    2015-11-01

    The lack of a functional endothelium on small-diameter vascular grafts leads to intimal hyperplasia and thrombotic occlusion. Shear stress conditioning through controlled hydrodynamics within in vitro perfusion bioreactors has shown promise as a mechanism to drive endothelial cell (EC) phenotype from an activated, pro-inflammatory wound state toward a quiescent functional state that inhibits responses that lead to occlusive failure. As part of an overall design strategy to engineer functional vascular grafts, we present a novel two-phase shear conditioning approach to improve graft endothelialization. Axial rotation was first used to seed uniform EC monolayers onto the lumenal surface of decellularized scaffolds derived from the human umbilical vein. Using computer-controlled perfusion circuits, a flow-ramping paradigm was applied to adapt endothelia to arterial levels of fluid shear stress and pressure without graft denudation. The effects of constant pulse frequencies (CF) on EC quiescence were then compared with pulse frequencies modeled from temporal fluctuations in blood flow observed in vivo, termed physiologically modeled pulse dynamics (PMPD). Constructs exposed to PMPD for 72 h expressed a more functional transcriptional profile, lower metabolic activity (39.8% ± 8.4% vs. 62.5% ± 11.5% reduction, p = 0.012), and higher nitric oxide production (80.42 ± 23.93 vs. 48.75 ± 6.93 nmol/10(5) cells, p = 0.028) than those exposed to CF. By manipulating in vitro flow conditions to mimic natural physiology, endothelialized vascular grafts can be stimulated to express a nonactivated phenotype that would better inhibit peripheral cell adhesion and smooth muscle cell hyperplasia, conditions that typically lead to occlusive failure. Development of robust, functional endothelia on vascular grafts by modulation of environmental conditions within perfusion bioreactors may ultimately improve clinical outcomes in vascular bypass grafting. PMID:25996580

  15. Immunomodulation of vascular endothelium. 1. Ultrastructural changes following ultraviolet B irradiation of peripheral veins

    SciTech Connect

    Marin, M.L.; Gordon, R.E.; Hardy, M.A.; Reemtsma, K.; Benvenisty, A.I. )

    1990-02-01

    Immunologic function of endothelial cells is especially important in consideration of vein allografting for arterial reconstruction and in organ allotransplantation. Ultraviolet B radiation (UVB) has previously been shown to modulate graft immunogenicity, and to alter cell surface receptor function. In this study, superficial epigastric veins were UVB irradiated with 10, 24, 40, 80, and 150 mJ/cm2 while control veins were not irradiated; all specimens were examined for endothelial ultrastructural changes. Veins were perfuse-fixed at 1, 3, 7, 14, and 28 days after irradiation, and were evaluated by transmission electron microscopy and scanning electron microscopy. Control veins had a normal appearing endothelial lining, composed of elongated, attenuated endothelial cells. Veins irradiated with more than 24 mJ/cm2 displayed injured endothelial cells characterized by altered microvilli, defects in the cell surface, and a change in cell shape. The degree of cell damage correlated closely with increasing UVB dose. At doses of 80 mJ/cm2 or greater there was moderate to severe endothelial cell separation from the underlying basement membrane and an increase in cellular lysosomes. The effects of UVB were maximal at 3 days with virtual recovery in resurfacing of all specimens with endothelium 28 days after irradiation. These data suggest that UVB has a dose-dependent effect on venous endothelium that is morphologically reversible with time. Cell membrane changes seen following exposure to UVB may contribute to altered cell surface receptor function.

  16. Relationships between retinal arteriole anatomy and aortic geometry and function and peripheral resistance in hypertensives.

    PubMed

    Rosenbaum, David; Kachenoura, Nadjia; Koch, Edouard; Paques, Michel; Cluzel, Philippe; Redheuil, Alban; Girerd, Xavier

    2016-07-01

    Microvascular remodeling and large artery stiffness are key determinants of cardiovascular hemodynamics and can now be studied with new non-invasive methods. Our objective was to study the relationships between retinal arteriole anatomy and aortic geometry and function and peripheral resistance (total peripheral resistance (TPR)) in hypertensives. In 80 subjects (age 52±13 years; 53% males; including 23 normotensives and 57 hypertensives, among which 29 were uncontrolled hypertensives), we used: (1) the new non-invasive RTX1 adaptive optics (AO) camera (Imagine Eyes, Orsay, France) to measure the wall-to-lumen ratio (WLR) on retinal microvasculature; (2) cardiovascular magnetic resonance (CMR) imaging to assess aortic stiffness, geometry and cardiac output; and (3) the validated SphymoCor Xcel device to measure central blood pressure (BP) and carotido-femoral pulse wave velocity (Cf-PWV). TPR was calculated as the central mean BP/cardiac output ratio. WLR and TPR were significantly higher and aortic distensibility was significantly lower in hypertensives. Aortic dilation and arch elongation were found in uncontrolled hypertensives. In the univariate analysis, WLR was positively correlated with central BP (P<0.001), TPR (P<0.001) and Cf-PWV (P<0.05), and it was negatively correlated with aortic distensibility (P=0.003); however, it was not correlated with age or cardiovascular risk factors. The multivariate analysis indicated that WLR was associated with TPR (P=0.002) independent of age, BMI, gender, antihypertensive treatments, aortic diameter and central SBP. As expected, age was the major correlate of ascending aorta distensibility and Cf-PWV. New non-invasive vascular imaging methods are complementary for the detection of the deleterious effects of aging or high BP on large and small arteries. AO examination could represent a useful tool for the study and follow-up of microvasculature anatomical changes. PMID:27009576

  17. ELIMINATION OF VITAMIN D RECEPTOR IN VASCULAR ENDOTHELIAL CELLS ALTERS VASCULAR FUNCTION

    PubMed Central

    Ni, Wei; Watts, Stephanie W.; Ng, Michael; Chen, Songcang; Glenn, Denis J.; Gardner, David G.

    2014-01-01

    Vitamin D deficiency has been associated with cardiovascular dysfunction. We evaluated the role of the vitamin D receptor (VDR) in vascular endothelial function, a marker of cardiovascular health, at baseline and in the presence of angiotensin II, using an endothelial-specific knockout of the murine VDR gene. In the absence of endothelial VDR, acetylcholine-induced aortic relaxation was significantly impaired (maximal relaxation, endothelial-specific VDR knockout =58% vs. control=73%, p<0.05). This was accompanied by a reduction in eNOS expression and phospho-vasodilator-stimulated phosphoprotein levels in aortae from the endothelial-specific VDR knockout vs. control mice. While blood pressure levels at baseline were comparable at 12 and 24 weeks of age, the endothelial VDR knockout mice demonstrated increased sensitivity to the hypertensive effects of angiotensin II compared to control mice (after 1-week infusion: knockout = 155±15 mmHg vs. control = 133±7 mmHg, p<0.01; after 2-week infusion: knockout = 164±9 mmHg vs. control = 152±13 mmHg, p<0.05). By the end of two weeks, angiotensin II infusion-induced, hypertrophy-sensitive myocardial gene expression was higher in endothelial-specific VDR knockout mice (fold change compared to saline-infused control mice, ANP: knockout mice = 3.12 vs. control= 1.7, p<0.05; BNP: knockout mice= 4.72 vs. control= 2.68, p<0.05). These results suggest that endothelial VDR plays an important role in endothelial cell function and blood pressure control and imply a potential role for VDR agonists in the management of cardiovascular disease associated with endothelial dysfunction. PMID:25201890

  18. Vascular endothelial function of patients with stable coronary artery disease

    PubMed Central

    Wang, Zhe; Yang, Xinchun; Cai, Jun; Shi, Hui; Zhong, Guangzhen; Chi, Hongjie

    2015-01-01

    Objectives: To evaluate vascular endothelial function and contributing factors in coronary heart disease (CHD) patients. Methods: One hundred twenty six CHD outpatients were randomly recruited. Reactive hyperemia index (RHI) <1.67 indicates endothelial dysfunction. Correlation between RHI and different biochemical parameters was evaluated. Results: RHI in patients receiving statins treatment was significantly higher than patients without statins treatment (P<0.05). RHI in patients with more than 3 risk factors for CHD was also markedly lower than that in patients with ≤2 risk factors (P<0.05). Patients with lesions at several branches of coronary artery had a markedly lower RHI when compared with those with coronary lesions at a single branch (P<0.05). For patients without statins treatment, RHI increased significantly after statins treatment for 1 month (P=0.01). In patients with endothelial dysfunction, FBG, HbA1C, hs-CRP and Hcy were significantly higher than those in patients with normal endothelial function (P<0.05 for all). Smokers with CHD had a remarkably lower RHI when compared with non-smokers (P<0.05). Conclusions: Smoking, FBG, HbA1C, Hcy and hs-CRP are significantly associated with endothelial dysfunction. Endothelial dysfunction is also related to the numbers of risk factors for CHD, degree of coronary lesions and statins. Statins treatment may significantly improve the endothelial function of CHD patients. PMID:26150839

  19. Urinary Albumin Excretion and Vascular Function in Rheumatoid Arthritis.

    PubMed

    Pieringer, Herwig; Brummaier, Tobias; Piringer, Bettina; Auer-Hackenberg, Lorenz; Hartl, Andreas; Puchner, Rudolf; Pohanka, Erich; Schmid, Michael

    2016-03-01

    Rheumatoid arthritis (RA) is associated with significant cardiovascular (CV) morbidity and mortality. Increased urinary albumin excretion is a marker of CV risk. There are only few data on urinary albumin excretion in RA patients. Aim of the present study was to investigate urinary albumin excretion in RA patients and analyze, whether there is an association between urinary albumin excretion and vascular function as measured by the augmentation index (AIx). In a total of 341 participants (215 with RA, 126 without RA) urinary albumin-creatinine ratio (ACR) was determined and the AIx was measured. The Kolmogorov-Smirnov-test was used to cluster patient groups whose distributions of ACR can be considered to be equal. A crude analysis showed a median ACR of 6.6 mg/g in the RA group and 5.7 mg/g in patients without RA (P > 0.05). In order to account for diabetes (DM) we formed 4 distinct patient groups. Group 1: RA-/DM- (n = 74); group 2: RA+/DM- (n = 195); group 3: RA-/DM+ (n = 52); group 4: RA+/DM+ (n = 20). Clustering of these groups revealed two distinct patient groups: those without RA and DM, and those with either RA or DM or both. The latter group showed statistically significant higher ACR (median 8.1 mg/g) as the former (median 4.5 mg/g). We found no significant correlation between AIx and ACR. Urinary albumin excretion in patients with RA or DM or both is higher than in subjects without RA and DM. This can be seen as a sign of vascular alteration and increased CV risk in these patients. PMID:26955238

  20. Urinary Albumin Excretion and Vascular Function in Rheumatoid Arthritis

    PubMed Central

    2016-01-01

    Rheumatoid arthritis (RA) is associated with significant cardiovascular (CV) morbidity and mortality. Increased urinary albumin excretion is a marker of CV risk. There are only few data on urinary albumin excretion in RA patients. Aim of the present study was to investigate urinary albumin excretion in RA patients and analyze, whether there is an association between urinary albumin excretion and vascular function as measured by the augmentation index (AIx). In a total of 341 participants (215 with RA, 126 without RA) urinary albumin-creatinine ratio (ACR) was determined and the AIx was measured. The Kolmogorov-Smirnov-test was used to cluster patient groups whose distributions of ACR can be considered to be equal. A crude analysis showed a median ACR of 6.6 mg/g in the RA group and 5.7 mg/g in patients without RA (P > 0.05). In order to account for diabetes (DM) we formed 4 distinct patient groups. Group 1: RA-/DM- (n = 74); group 2: RA+/DM- (n = 195); group 3: RA-/DM+ (n = 52); group 4: RA+/DM+ (n = 20). Clustering of these groups revealed two distinct patient groups: those without RA and DM, and those with either RA or DM or both. The latter group showed statistically significant higher ACR (median 8.1 mg/g) as the former (median 4.5 mg/g). We found no significant correlation between AIx and ACR. Urinary albumin excretion in patients with RA or DM or both is higher than in subjects without RA and DM. This can be seen as a sign of vascular alteration and increased CV risk in these patients. PMID:26955238

  1. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity

    PubMed Central

    2012-01-01

    Background This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF) modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity. In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) and cholinergic nerves (ChAT) was studied one week after one or two intravesical instillations of the growth factor. To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG) neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. Results In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment) reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation) caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na+ channels (VGSC) in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. Conclusions For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a key modulator of

  2. ALDOSTERONE DYSREGULATION WITH AGING PREDICTS RENAL-VASCULAR FUNCTION AND CARDIO-VASCULAR RISK

    PubMed Central

    Brown, Jenifer M.; Underwood, Patricia C.; Ferri, Claudio; Hopkins, Paul N.; Williams, Gordon H.; Adler, Gail K.; Vaidya, Anand

    2014-01-01

    Aging and abnormal aldosterone regulation are both associated with vascular disease. We hypothesized that aldosterone dysregulation influences the age-related risk of renal- and cardio-vascular disease. We conducted an analysis of 562 subjects who underwent detailed investigations under conditions of liberal and restricted dietary sodium intake (1,124 visits) in a Clinical Research Center. Aldosterone regulation was characterized by the ratio of maximal suppression-to-stimulation (supine serum aldosterone on a liberal sodium diet divided by the same measure on a restricted sodium diet). We previously demonstrated that higher levels of this Sodium-modulated Aldosterone Suppression-Stimulation Index (SASSI) indicate greater aldosterone dysregulation. Renal plasma flow (RPF) was determined via p-aminohippurate clearance to assess basal renal hemodynamics, and the renal-vascular responses to dietary sodium manipulation and angiotensin II (AngII) infusion. Cardiovascular risk was calculated using the Framingham Risk Score. In univariate linear regression, older age (β= -4.60, p<0.0001) and higher SASSI (β= -58.63, p=0.001) predicted lower RPF and a blunted RPF response to sodium loading and AngII infusion. We observed a continuous, independent, multivariate-adjusted interaction between age and SASSI, where the inverse relationship between SASSI and RPF was most apparent with older age (p<0.05). Higher SASSI and lower RPF independently predicted higher Framingham Risk Score (p<0.0001) and together displayed an additive effect. Aldosterone regulation and age may interact to mediate renal-vascular disease. Our findings suggest that the combination of aldosterone dysregulation and renal-vascular dysfunction could additively increase the risk of future cardiovascular outcomes; therefore, aldosterone dysregulation may represent a modifiable mechanism of age-related vascular disease. PMID:24664291

  3. Review of gestational diabetes mellitus effects on vascular structure and function.

    PubMed

    Jensen, Louise A; Chik, Constance L; Ryan, Edmond A

    2016-05-01

    Vascular dysfunction has been described in women with a history of gestational diabetes mellitus. Furthermore, previous gestational diabetes mellitus increases the risk of developing Type 2 diabetes mellitus, a risk factor for cardiovascular disease. Factors contributing to vascular changes remain uncertain. The aim of this review was to summarize vascular structure and function changes found to occur in women with previous gestational diabetes mellitus and to identify factors that contribute to vascular dysfunction. A systematic search of electronic databases yielded 15 publications from 1998 to March 2014 that met the inclusion criteria. Our review confirmed that previous gestational diabetes mellitus contributes to vascular dysfunction, and the most consistent risk factor associated with previous gestational diabetes mellitus and vascular dysfunction was elevated body mass index. Heterogeneity existed across studies in determining the relationship of glycaemic levels and insulin resistance to vascular dysfunction. PMID:26940821

  4. Efficacy and Safety of a Novel Vascular Closure Device (Glubran 2 Seal) After Diagnostic and Interventional Angiography in Patients with Peripheral Arterial Occlusive Disease

    SciTech Connect

    Del Corso, Andrea; Bargellini, Irene Cicorelli, Antonio; Perrone, Orsola; Leo, Michele; Lunardi, Alessandro; Alberti, Aldo; Tomei, Francesca; Cioni, Roberto; Ferrari, Mauro; Bartolozzi, Carlo

    2013-04-15

    To prospectively evaluate safety and efficacy of a novel vascular closure device (Glubran 2 Seal) after peripheral angiography in patients with peripheral arterial occlusive disease (PAOD). From December 2010 to June 2011, all consecutive patients with PAOD undergoing peripheral angiography were prospectively enrolled onto the study after percutaneous antegrade or retrograde puncture of the common femoral artery. After angiography, the Glubran 2 Seal device was used to achieve hemostasis. The following data were registered: technical success and manual compression duration, patients' discomfort (scale 0-5), operators' technical difficulty (scale 0-5), and vascular complications. The site of hemostasis was evaluated by clinical inspection and color-coded Duplex ultrasound performed 1 day and 1 month after the procedure. One hundred seventy-eight patients were enrolled (112 male, mean age 70.8 years) with a total of 206 puncture sites, including 104 (50.5 %) antegrade accesses. The device was successful in 198(96.1 %) of 206 procedures, with 8 cases of manual compression lasting longer than 5 min (maximum 20 min). No major vascular complications were observed, resulting in 100 % procedural success. Minor complications occurred in seven procedures (3.4 %), including two cases of pseudoaneurysms, successfully treated by ultrasound-guided glue injection. The mean {+-} standard deviation score for patients' discomfort was 0.9 {+-} 0.7, whereas the mean score for operators' difficulty was 1.2 {+-} 0.9. In patients with PAOD, the Glubran 2 Seal represents a simple, painless, and efficient vascular closure device, able to achieve hemostasis both in antegrade and retrograde accesses.

  5. Grape polyphenols do not affect vascular function in healthy men.

    PubMed

    van Mierlo, Linda A J; Zock, Peter L; van der Knaap, Henk C M; Draijer, Richard

    2010-10-01

    Data suggest that polyphenol-rich products may improve endothelial function and other cardiovascular health risk factors. Grape and wine contain high amounts of polyphenols, but effects of these polyphenols have hardly been investigated in isolation in randomized controlled studies. Our objective in this study was to test the chronic effect of polyphenol-rich solids derived from either a wine grape mix or grape seed on flow-mediated dilation (FMD). Blood pressure and other vascular function measures, platelet function, and blood lipids were secondary outcomes. Thirty-five healthy males were randomized in a double-blind, placebo-controlled crossover study consisting of three 2-wk intervention periods separated by 1-wk washout periods. The test products, containing 800 mg of polyphenols, were consumed as capsules. At the end of each intervention period, effects were measured after consumption of a low-fat breakfast (~751 kJ, 25% fat) and a high-fat lunch (~3136 kJ, 78% fat). After the low-fat breakfast, the treatments did not significantly affect FMD. The absolute difference after the wine grape solid treatment was -0.4% (95% CI = -1.8 to 0.9; P = 0.77) and after grape seed solids, 0.2% (95% CI = -1.2 to 1.5; P = 0.94) compared with after the placebo treatment. FMD effects after the high-fat lunch and effects on secondary outcomes also showed no consistent differences between both of the grape solids and placebo treatment. In conclusion, consumption of grape polyphenols has no major impact on FMD in healthy men. Future studies should address whether grape polyphenols can improve FMD and other cardiovascular health risk factors in populations with increased cardiovascular risk. PMID:20702747

  6. Regulation of Vascular and Renal Function by Metabolite Receptors.

    PubMed

    Peti-Peterdi, János; Kishore, Bellamkonda K; Pluznick, Jennifer L

    2016-01-01

    To maintain metabolic homeostasis, the body must be able to monitor the concentration of a large number of substances, including metabolites, in real time and to use that information to regulate the activities of different metabolic pathways. Such regulation is achieved by the presence of sensors, termed metabolite receptors, in various tissues and cells of the body, which in turn convey the information to appropriate regulatory or positive or negative feedback systems. In this review, we cover the unique roles of metabolite receptors in renal and vascular function. These receptors play a wide variety of important roles in maintaining various aspects of homeostasis-from salt and water balance to metabolism-by sensing metabolites from a wide variety of sources. We discuss the role of metabolite sensors in sensing metabolites generated locally, metabolites generated at distant tissues or organs, or even metabolites generated by resident microbes. Metabolite receptors are also involved in various pathophysiological conditions and are being recognized as potential targets for new drugs. By highlighting three receptor families-(a) citric acid cycle intermediate receptors, (b) purinergic receptors, and PMID:26667077

  7. Functional CB1 cannabinoid receptors in human vascular endothelial cells.

    PubMed Central

    Liu, J; Gao, B; Mirshahi, F; Sanyal, A J; Khanolkar, A D; Makriyannis, A; Kunos, G

    2000-01-01

    Cannabinoid CB1 receptor mRNA was detected using reverse transcription-polymerase chain reaction (RT-PCR) in endothelial cells from human aorta and hepatic artery and in the ECV304 cell line derived from human umbilical vein endothelial cells. CB1 receptor-binding sites were detected by the high-affinity antagonist radioligand [(125)I]AM-251. In ECV304 cells, both the highly potent synthetic cannabinoid agonist HU-210 and the endogenous ligand anandamide induce activation of mitogen-activated protein (MAP) kinase, and the effect of HU-210 was completely blocked, whereas the effect of anandamide was partially inhibited by SR141716A, a selective CB1 receptor antagonist. Transfection of ECV304 cells with CB1 receptor antisense, but not sense, oligonucleotides caused the same pattern of inhibition as SR141716A. This provides more definitive evidence for the involvement of CB1 receptors in MAP kinase activation and suggests that anandamide may also activate MAP kinase via an additional, CB1 receptor-independent, SR141716A-resistant mechanism. The MAP kinase activation by anandamide in ECV304 cells requires genistein-sensitive tyrosine kinases and protein kinase C (PKC), and anandamide also activates p38 kinase and c-Jun kinase. These findings indicate that CB1 receptors located in human vascular endothelium are functionally coupled to the MAP kinase cascade. Activation of protein kinase cascades by anandamide may be involved in the modulation of endothelial cell growth and proliferation. PMID:10698714

  8. Functional properties of ion channels and transporters in tumour vascularization

    PubMed Central

    Fiorio Pla, Alessandra; Munaron, Luca

    2014-01-01

    Vascularization is crucial for solid tumour growth and invasion, providing metabolic support and sustaining metastatic dissemination. It is now accepted that ion channels and transporters play a significant role in driving the cancer growth at all stages. They may represent novel therapeutic, diagnostic and prognostic targets for anti-cancer therapies. On the other hand, although the expression and role of ion channels and transporters in the vascular endothelium is well recognized and subject of recent reviews, only recently has their involvement in tumour vascularization been recognized. Here, we review the current literature on ion channels and transporters directly involved in the angiogenic process. Particular interest will be focused on tumour angiogenesis in vivo as well as in the different steps that drive this process in vitro, such as endothelial cell proliferation, migration, adhesion and tubulogenesis. Moreover, we compare the ‘transportome’ system of tumour vascular network with the physiological one. PMID:24493751

  9. Childhood Obesity Associates Haemodynamic and Vascular Changes That Result in Increased Central Aortic Pressure with Augmented Incident and Reflected Wave Components, without Changes in Peripheral Amplification.

    PubMed

    Castro, Juan M; García-Espinosa, Victoria; Curcio, Santiago; Arana, Maite; Chiesa, Pedro; Giachetto, Gustavo; Zócalo, Yanina; Bia, Daniel

    2016-01-01

    The aims were to determine if childhood obesity is associated with increased central aortic blood pressure (BP) and to characterize haemodynamic and vascular changes associated with BP changes in obese children and adolescents by means of analyzing changes in cardiac output (stroke volume, SV), arterial stiffness (aortic pulse wave velocity, PWV), peripheral vascular resistances (PVR), and net and relative contributions of reflected waves to the aortic pulse wave amplitude. We included 117 subjects (mean/range age: 10 (5-15) years, 49 females), who were obese (OB) or had normal weight (NW). Peripheral and central aortic BP, PWV, and pulse wave-derived parameters (augmentation index, amplitude of forward and backward components) were measured with tonometry (SphygmoCor) and oscillometry (Mobil-O-Graph). With independence of the presence of dyslipidemia, hypertension, or sedentarism, the aortic systolic and pulse BP were higher in OB than in NW subjects. The increase in central BP could not be explained by the elevation in the relative contribution of reflections to the aortic pressure wave and higher PVR or by an augmented peripheral reflection coefficient. Instead, the rise in central BP could be explained by an increase in the amplitude of both incident and reflect wave components associated to augmented SV and/or PWV. PMID:26881081

  10. Childhood Obesity Associates Haemodynamic and Vascular Changes That Result in Increased Central Aortic Pressure with Augmented Incident and Reflected Wave Components, without Changes in Peripheral Amplification

    PubMed Central

    Castro, Juan M.; García-Espinosa, Victoria; Curcio, Santiago; Arana, Maite; Chiesa, Pedro; Giachetto, Gustavo; Zócalo, Yanina; Bia, Daniel

    2016-01-01

    The aims were to determine if childhood obesity is associated with increased central aortic blood pressure (BP) and to characterize haemodynamic and vascular changes associated with BP changes in obese children and adolescents by means of analyzing changes in cardiac output (stroke volume, SV), arterial stiffness (aortic pulse wave velocity, PWV), peripheral vascular resistances (PVR), and net and relative contributions of reflected waves to the aortic pulse wave amplitude. We included 117 subjects (mean/range age: 10 (5–15) years, 49 females), who were obese (OB) or had normal weight (NW). Peripheral and central aortic BP, PWV, and pulse wave-derived parameters (augmentation index, amplitude of forward and backward components) were measured with tonometry (SphygmoCor) and oscillometry (Mobil-O-Graph). With independence of the presence of dyslipidemia, hypertension, or sedentarism, the aortic systolic and pulse BP were higher in OB than in NW subjects. The increase in central BP could not be explained by the elevation in the relative contribution of reflections to the aortic pressure wave and higher PVR or by an augmented peripheral reflection coefficient. Instead, the rise in central BP could be explained by an increase in the amplitude of both incident and reflect wave components associated to augmented SV and/or PWV. PMID:26881081

  11. Schwann cell mitochondrial metabolism supports long-term axonal survival and peripheral nerve function

    PubMed Central

    Viader, Andreu; Golden, Judith P.; Baloh, Robert H.; Schmidt, Robert E.; Hunter, Daniel A.; Milbrandt, Jeffrey

    2011-01-01

    Mitochondrial dysfunction is a common cause of peripheral neuropathies. While the role of neuron and axonal mitochondria in peripheral nerve disease is well appreciated, whether Schwann cell (SC) mitochondrial deficits contribute to peripheral neuropathies is unclear. Here we examine how SC mitochondrial dysfunction affects axonal survival and contributes to the decline of peripheral nerve function by generating mice with SC-specific mitochondrial deficits. These mice (Tfam-SCKOs) were produced through the tissue-specific deletion of the mitochondrial transcription factor A gene (Tfam), which is essential for mitochondrial DNA (mtDNA) transcription and maintenance. Tfam-SCKOs were viable but, as they aged, they developed a progressive peripheral neuropathy characterized by nerve conduction abnormalities as well as extensive muscle denervation. Morphological examination of Tfam-SCKO nerves revealed early preferential loss of small unmyelinated fibers followed by prominent demyelination and degeneration of larger-caliber axons. Tfam-SCKOs displayed sensory and motor deficits consistent with this pathology. Remarkably, the severe mtDNA depletion and respiratory chain abnormalities in Tfam-SCKO mice did not affect SC proliferation or survival. Mitochondrial function in SCs is therefore essential for maintenance of axonal survival and normal peripheral nerve function, suggesting that SC mitochondrial dysfunction contributes to human peripheral neuropathies. PMID:21752989

  12. Conventional and Functional MR Imaging of Peripheral Nerve Sheath Tumors: Initial Experience

    PubMed Central

    Demehri, S.; Belzberg, A.; Blakeley, J.; Fayad, L.M.

    2015-01-01

    BACKGROUND AND PURPOSE Differentiating benign from malignant peripheral nerve sheath tumors can be very challenging using conventional MR imaging. Our aim was to test the hypothesis that conventional and functional MR imaging can accurately diagnose malignancy in patients with indeterminate peripheral nerve sheath tumors. MATERIALS AND METHODS This institutional review board–approved, Health Insurance Portability and Accountability Act–compliant study retrospectively reviewed 61 consecutive patients with 80 indeterminate peripheral nerve sheath tumors. Of these, 31 histologically proved peripheral nerve sheath tumors imaged with conventional (unenhanced T1, fluid-sensitive, contrast-enhanced T1-weighted sequences) and functional MR imaging (DWI/apparent diffusion coefficient mapping, dynamic contrast-enhanced MR imaging) were included. Two observers independently assessed anatomic (size, morphology, signal) and functional (ADC values, early arterial enhancement by dynamic contrast-enhanced MR) features to determine interobserver agreement. The accuracy of MR imaging for differentiating malignant from benign was also determined by receiver operating characteristic analysis. RESULTS Of 31 peripheral nerve sheath tumors, there were 9 malignant (9%) and 22 benign ones (81%). With anatomic sequences, average tumor diameter (6.3 ± 1.8 versus 3.9 ± 2.3 mm, P = .009), ill-defined/infiltrative margins (77% versus 32%; P = .04), and the presence of peritumoral edema (66% versus 23%, P = .01) were different for malignant peripheral nerve sheath tumors and benign peripheral nerve sheath tumors. With functional sequences, minimum ADC (0.47 ± 0.32 × 10−3 mm2/s versus 1.08 ± 0.26 × 10−3 mm2/s; P [H11021] .0001) and the presence of early arterial enhancement (50% versus 11%; P = .03) were different for malignant peripheral nerve sheath tumors and benign peripheral nerve sheath tumors. The minimum ADC (area under receiver operating characteristic curve was 0.89; 95

  13. Vascular Endothelial Growth Factor Modulates Skeletal Myoblast Function

    PubMed Central

    Germani, Antonia; Di Carlo, Anna; Mangoni, Antonella; Straino, Stefania; Giacinti, Cristina; Turrini, Paolo; Biglioli, Paolo; Capogrossi, Maurizio C.

    2003-01-01

    Vascular endothelial growth factor (VEGF) expression is enhanced in ischemic skeletal muscle and is thought to play a key role in the angiogenic response to ischemia. However, it is still unknown whether, in addition to new blood vessel growth, VEGF modulates skeletal muscle cell function. In the present study immunohistochemical analysis showed that, in normoperfused mouse hindlimb, VEGF and its receptors Flk-1 and Flt-1 were expressed mostly in quiescent satellite cells. Unilateral hindlimb ischemia was induced by left femoral artery ligation. At day 3 and day 7 after the induction of ischemia, Flk-1 and Flt-1 were expressed in regenerating muscle fibers and VEGF expression by these fibers was markedly enhanced. Additional in vitro experiments showed that in growing medium both cultured satellite cells and myoblast cell line C2C12 expressed VEGF and its receptors. Under these conditions, Flk-1 receptor exhibited constitutive tyrosine phosphorylation that was increased by VEGF treatment. During myogenic differentiation Flk-1 and Flt-1 were down-regulated. In a modified Boyden Chamber assay, VEGF enhanced C2C12 myoblasts migration approximately fivefold. Moreover, VEGF administration to differentiating C2C12 myoblasts prevented apoptosis, while inhibition of VEGF signaling either with selective VEGF receptor inhibitors (SU1498 and CB676475) or a neutralizing Flk-1 antibody, enhanced cell death approximately 3.5-fold. Finally, adenovirus-mediated VEGF165 gene transfer inhibited ischemia-induced apoptosis in skeletal muscle. These results support a role for VEGF in myoblast migration and survival, and suggest a novel autocrine role of VEGF in skeletal muscle repair during ischemia. PMID:14507649

  14. Mimicking Form and Function of Native Small Diameter Vascular Conduits Using Mulberry and Non-mulberry Patterned Silk Films.

    PubMed

    Gupta, Prerak; Kumar, Manishekhar; Bhardwaj, Nandana; Kumar, Jadi Praveen; Krishnamurthy, C S; Nandi, Samit Kumar; Mandal, Biman B

    2016-06-29

    Autologous graft replacement as a strategy to treat diseased peripheral small diameter (≤6 mm) blood vessel is often challenged by prior vein harvesting. To address this issue, we fabricated native-tissue mimicking multilayered small diameter vascular graft (SDVG) using mulberry (Bombyx mori) and Indian endemic non-mulberry (Antheraea assama and Philosamia ricini) silk. Patterned silk films were fabricated on microgrooved PDMS mold, casted by soft lithography. The biodegradable patterned film templates with aligned cell sheets were rolled onto an inert mandrel to mimic vascular conduit. The hemocompatible and mechanically strong non-mulberry films with RGD motif supported ∼1.2 folds greater proliferation of vascular cells with aligned anchorage. Elicitation of minimal immune response on subcutaneous implantation of the films in mice was complemented by ∼45% lower TNF α secretion by in vitro macrophage culture post 7 days. Pattern-induced alignment favored the functional contractile phenotype of smooth muscle cells (SMCs), expressing the signature markers-calponin, α-smooth muscle actin (α-SMA), and smooth muscle myosin heavy chain (SM-MHC). Endothelial cells (ECs) exhibited a typical punctuated pattern of von Willebrand factor (vWF). Deposition of collagen and elastin by the SMCs substantiated the aptness of the graft with desired biomechanical attributes. Furthermore, the burst strength of the fabricated conduit was in the range of ∼915-1260 mmHg, a prerequisite to withstand physiological pressure. This novel fabrication approach may eliminate the need of maturation in a pulsatile bioreactor for obtaining functional cellular phenotype. This work is thereby an attestation to the immense prospects of exploring non-mulberry silk for bioengineering a multilayered vascular conduit similar to a native vessel in "form and function", befitting for in vivo transplantation. PMID:27269821

  15. Two Serious Complications of Peripherally Inserted Central Catheters Indicating the Need to Formalize Training for Placing Central Venous Vascular Access Devices.

    PubMed

    Gerling, Volker; Feenstra, Nico

    2016-02-15

    Peripherally inserted central catheters are being used in increasing numbers. Common (thrombosis, infection, phlebitis, malfunction, or disconnection) and rare complications (pericardial tamponade) have been well explored. We describe 2 serious complications that resolved without sequelae. Both complications occurred in the context of limited provider competence. We conclude that vascular access is more than "just" placing a catheter; it can have serious clinical impact and has evolved into a specialist skill. With increasing use of intravascular catheters, the need for a formalized training becomes urgent. PMID:26517231

  16. Impairment of endothelial progenitor cell function and vascularization capacity by aldosterone in mice and humans

    PubMed Central

    Thum, Thomas; Schmitter, Kerstin; Fleissner, Felix; Wiebking, Volker; Dietrich, Bernd; Widder, Julian D.; Jazbutyte, Virginija; Hahner, Stefanie; Ertl, Georg; Bauersachs, Johann

    2011-01-01

    Aims Hyperaldosteronism is associated with vascular injury and increased cardiovascular events. Bone marrow-derived endothelial progenitor cells (EPCs) play an important role in endothelial repair and vascular homeostasis. We hypothesized that hyperaldosteronism impairs EPC function and vascularization capacity in mice and humans. Methods and results We characterized the effects of aldosterone and mineralocorticoid receptor (MR) blockade on EPC number and function as well as vascularization capacity and endothelial function. Treatment of human EPC with aldosterone induced translocation of the MR and impaired multiple cellular functions of EPC, such as differentiation, migration, and proliferation in vitro. Impaired EPC function was rescued by pharmacological blockade or genetic ablation of the MR. Aldosterone protein kinase A (PKA) dependently increased reactive oxygen species formation in EPC. Aldosterone infusion in mice impaired EPC function, EPC homing to vascular structures and vascularization capacity in a MR-dependent but blood pressure-independent manner. Endothelial progenitor cells from patients with primary hyperaldosteronism compared with controls of similar age displayed reduced migratory potential. Impaired EPC function was associated with endothelial dysfunction. MR blockade in patients with hyperaldosteronism improved EPC function and arterial stiffness. Conclusion Endothelial progenitor cells express a MR that mediates functional impairment by PKA-dependent increase of reactive oxygen species. Normalization of EPC function may represent a novel mechanism contributing to the beneficial effects of MR blockade in cardiovascular disease prevention and treatment. PMID:20926363

  17. Microfluidic Capture of Endothelial Colony-Forming Cells from Human Adult Peripheral Blood: Phenotypic and Functional Validation In Vivo

    PubMed Central

    Lin, Ruei-Zeng; Hatch, Adam; Antontsev, Victor G.; Murthy, Shashi K.

    2015-01-01

    Introduction: Endothelial colony-forming cells (ECFCs) are endothelial progenitors that circulate in peripheral blood and are currently the subject of intensive investigation due to their therapeutic potential. However, in adults, ECFCs comprise a very small subset among circulating cells, which makes their isolation a challenge. Materials and Methods: Currently, the standard method for ECFC isolation relies on the separation of mononuclear cells and erythrocyte lysis, steps that are time consuming and known to increase cell loss. Alternatively, we previously developed a novel disposable microfluidic platform containing antibody-functionalized degradable hydrogel coatings that is ideally suited for capturing low-abundance circulating cells from unprocessed blood. In this study, we reasoned that this microfluidic approach could effectively isolate rare ECFCs by virtue of their CD34 expression. Results: We conducted preclinical experiments with peripheral blood from four adult volunteers and demonstrated that the actual microfluidic capture of circulating CD34+ cells from unprocessed blood was compatible with the subsequent differentiation of these cells into ECFCs. Moreover, the ECFC yield obtained with the microfluidic system was comparable to that of the standard method. Importantly, we unequivocally validated the phenotypical and functional properties of the captured ECFCs, including the ability to form microvascular networks following transplantation into immunodeficient mice. Discussion: We showed that the simplicity and versatility of our microfluidic system could be very instrumental for ECFC isolation while preserving their therapeutic potential. We anticipate our results will facilitate additional development of clinically suitable microfluidic devices by the vascular therapeutic and diagnostic industry. PMID:25091645

  18. Systemic Vascular Function Is Associated with Muscular Power in Older Adults

    PubMed Central

    Heffernan, Kevin S.; Chalé, Angela; Hau, Cynthia; Cloutier, Gregory J.; Phillips, Edward M.; Warner, Patrick; Nickerson, Heather; Reid, Kieran F.; Kuvin, Jeffrey T.; Fielding, Roger A.

    2012-01-01

    Age-associated loss of muscular strength and muscular power is a critical determinant of loss of physical function and progression to disability in older adults. In this study, we examined the association of systemic vascular function and measures of muscle strength and power in older adults. Measures of vascular endothelial function included brachial artery flow-mediated dilation (FMD) and the pulse wave amplitude reactive hyperemia index (PWA-RHI). Augmentation index (AIx) was taken as a measure of systemic vascular function related to arterial stiffness and wave reflection. Measures of muscular strength included one repetition maximum (1RM) for a bilateral leg press. Peak muscular power was measured during 5 repetitions performed as fast as possible for bilateral leg press at 40% 1RM. Muscular power was associated with brachial FMD (r = 0.43, P < 0.05), PWA-RHI (r = 0.42, P < 0.05), and AIx (r = −0.54, P < 0.05). Muscular strength was not associated with any measure of vascular function. In conclusion, systemic vascular function is associated with lower-limb muscular power but not muscular strength in older adults. Whether loss of muscular power with aging contributes to systemic vascular deconditioning or vascular dysfunction contributes to decrements in muscular power remains to be determined. PMID:22966457

  19. In vivo characterization of regenerative peripheral nerve interface function

    NASA Astrophysics Data System (ADS)

    Ursu, Daniel C.; Urbanchek, Melanie G.; Nedic, Andrej; Cederna, Paul S.; Gillespie, R. Brent

    2016-04-01

    Objective. Regenerative peripheral nerve interfaces (RPNIs) are neurotized free autologous muscle grafts equipped with electrodes to record myoelectric signals for prosthesis control. Viability of rat RPNI constructs have been demonstrated using evoked responses. In vivo RPNI characterization is the next critical step for assessment as a control modality for prosthetic devices. Approach. Two RPNIs were created in each of two rats by grafting portions of free muscle to the ends of divided peripheral nerves (peroneal in the left and tibial in the right hind limb) and placing bipolar electrodes on the graft surface. After four months, we examined in vivo electromyographic signal activity and compared these signals to muscular electromyographic signals recorded from autologous muscles in two rats serving as controls. An additional group of two rats in which the autologous muscles were denervated served to quantify cross-talk in the electrode recordings. Recordings were made while rats walked on a treadmill and a motion capture system tracked the hind limbs. Amplitude and periodicity of signals relative to gait were quantified, correlation between electromyographic and motion recording were assessed, and a decoder was trained to predict joint motion. Main Results. Raw RPNI signals were active during walking, with amplitudes of 1 mVPP, and quiet during standing, with amplitudes less than 0.1 mVPP. RPNI signals were periodic and entrained with gait. A decoder predicted bilateral ankle motion with greater than 80% reliability. Control group signal activity agreed with literature. Denervated group signals remained quiescent throughout all evaluations. Significance. In vivo myoelectric RPNI activity encodes neural activation patterns associated with gait. Signal contamination from muscles adjacent to the RPNI is minimal, as demonstrated by the low amplitude signals obtained from the Denervated group. The periodicity and entrainment to gait of RPNI recordings suggests the

  20. The plant vascular system: Evolution, development and functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of ...

  1. Imaging of vascular dynamics within the foot using dynamic diffuse optical tomography to diagnose peripheral arterial disease

    NASA Astrophysics Data System (ADS)

    Khalil, M. A.; Kim, H. K.; Hoi, J. W.; Kim, I.; Dayal, R.; Shrikande, G.; Hielscher, A. H.

    2013-03-01

    Peripheral Arterial Disease (PAD) is the narrowing of the functional area of the artery generally due to atherosclerosis. It affects between 8-12 million people in the United States and if untreated this can lead to ulceration, gangrene and ultimately amputation. The current diagnostic method for PAD is the ankle-brachial index (ABI). The ABI is a ratio of the patient's systolic blood pressure in the foot to that of the brachial artery in the arm, a ratio below 0.9 is indicative of affected vasculature. However, this method is ineffective in patients with calcified arteries (diabetic and end-stage renal failure patients), which falsely elevates the ABI recording resulting in a false negative reading. In this paper we present our results in a pilot study to deduce optical tomography's ability to detect poor blood perfusion in the foot. We performed an IRB approved 30 patient study, where we imaged the feet of the enrolled patients during a five stage dynamic imaging sequence. The patients were split up into three groups: 10 healthy subjects, 10 PAD patients and 10 PAD patients with diabetes and they were imaged while applying a pressure cuff to their thigh. Differences in the magnitude of blood pooling in the foot and rate at which the blood pools in the foot are all indicative of arterial disease.

  2. Dual-mode imaging of cutaneous tissue oxygenation and vascular function.

    PubMed

    Xu, Ronald X; Huang, Kun; Qin, Ruogu; Huang, Jiwei; Xu, Jeff S; Ding, Liya; Gnyawali, Urmila S; Gordillo, Gayle M; Gnyawali, Surya C; Sen, Chandan K

    2010-01-01

    Accurate assessment of cutaneous tissue oxygenation and vascular function is important for appropriate detection, staging, and treatment of many health disorders such as chronic wounds. We report the development of a dual-mode imaging system for non-invasive and non-contact imaging of cutaneous tissue oxygenation and vascular function. The imaging system integrated an infrared camera, a CCD camera, a liquid crystal tunable filter and a high intensity fiber light source. A Labview interface was programmed for equipment control, synchronization, image acquisition, processing, and visualization. Multispectral images captured by the CCD camera were used to reconstruct the tissue oxygenation map. Dynamic thermographic images captured by the infrared camera were used to reconstruct the vascular function map. Cutaneous tissue oxygenation and vascular function images were co-registered through fiduciary markers. The performance characteristics of the dual-mode image system were tested in humans. PMID:21178967

  3. Peripheral monocytes are functionally altered and invade the CNS in ALS patients.

    PubMed

    Zondler, Lisa; Müller, Kathrin; Khalaji, Samira; Bliederhäuser, Corinna; Ruf, Wolfgang P; Grozdanov, Veselin; Thiemann, Meinolf; Fundel-Clemes, Katrin; Freischmidt, Axel; Holzmann, Karlheinz; Strobel, Benjamin; Weydt, Patrick; Witting, Anke; Thal, Dietmar R; Helferich, Anika M; Hengerer, Bastian; Gottschalk, Kay-Eberhard; Hill, Oliver; Kluge, Michael; Ludolph, Albert C; Danzer, Karin M; Weishaupt, Jochen H

    2016-09-01

    Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease affecting primarily the upper and lower motor neurons. A common feature of all ALS cases is a well-characterized neuroinflammatory reaction within the central nervous system (CNS). However, much less is known about the role of the peripheral immune system and its interplay with CNS resident immune cells in motor neuron degeneration. Here, we characterized peripheral monocytes in both temporal and spatial dimensions of ALS pathogenesis. We found the circulating monocytes to be deregulated in ALS regarding subtype constitution, function and gene expression. Moreover, we show that CNS infiltration of peripheral monocytes correlates with improved motor neuron survival in a genetic ALS mouse model. Furthermore, application of human immunoglobulins or fusion proteins containing only the human Fc, but not the Fab antibody fragment, increased CNS invasion of peripheral monocytes and delayed the disease onset. Our results underline the importance of peripheral monocytes in ALS pathogenesis and are in agreement with a protective role of monocytes in the early phase of the disease. The possibility to boost this beneficial function of peripheral monocytes by application of human immunoglobulins should be evaluated in clinical trials. PMID:26910103

  4. Tie1 controls angiopoietin function in vascular remodeling and inflammation.

    PubMed

    Korhonen, Emilia A; Lampinen, Anita; Giri, Hemant; Anisimov, Andrey; Kim, Minah; Allen, Breanna; Fang, Shentong; D'Amico, Gabriela; Sipilä, Tuomas J; Lohela, Marja; Strandin, Tomas; Vaheri, Antti; Ylä-Herttuala, Seppo; Koh, Gou Young; McDonald, Donald M; Alitalo, Kari; Saharinen, Pipsa

    2016-09-01

    The angiopoietin/Tie (ANG/Tie) receptor system controls developmental and tumor angiogenesis, inflammatory vascular remodeling, and vessel leakage. ANG1 is a Tie2 agonist that promotes vascular stabilization in inflammation and sepsis, whereas ANG2 is a context-dependent Tie2 agonist or antagonist. A limited understanding of ANG signaling mechanisms and the orphan receptor Tie1 has hindered development of ANG/Tie-targeted therapeutics. Here, we determined that both ANG1 and ANG2 binding to Tie2 increases Tie1-Tie2 interactions in a β1 integrin-dependent manner and that Tie1 regulates ANG-induced Tie2 trafficking in endothelial cells. Endothelial Tie1 was essential for the agonist activity of ANG1 and autocrine ANG2. Deletion of endothelial Tie1 in mice reduced Tie2 phosphorylation and downstream Akt activation, increased FOXO1 nuclear localization and transcriptional activation, and prevented ANG1- and ANG2-induced capillary-to-venous remodeling. However, in acute endotoxemia, the Tie1 ectodomain that is responsible for interaction with Tie2 was rapidly cleaved, ANG1 agonist activity was decreased, and autocrine ANG2 agonist activity was lost, which led to suppression of Tie2 signaling. Tie1 cleavage also occurred in patients with hantavirus infection. These results support a model in which Tie1 directly interacts with Tie2 to promote ANG-induced vascular responses under noninflammatory conditions, whereas in inflammation, Tie1 cleavage contributes to loss of ANG2 agonist activity and vascular stability. PMID:27548530

  5. Antenatal Hypoxia and Pulmonary Vascular Function and Remodeling

    PubMed Central

    Papamatheakis, Demosthenes G.; Blood, Arlin B.; Kim, Joon H.; Wilson, Sean M.

    2015-01-01

    This review provides evidence that antenatal hypoxia, which represents a significant and worldwide problem, causes prenatal programming of the lung. A general overview of lung development is provided along with some background regarding transcriptional and signaling systems of the lung. The review illustrates that antenatal hypoxic stress can induce a continuum of responses depending on the species examined. Fetuses and newborns of certain species and specific human populations are well acclimated to antenatal hypoxia. However, antenatal hypoxia causes pulmonary vascular disease in fetuses and newborns of most mammalian species and humans. Disease can range from mild pulmonary hypertension, to severe vascular remodeling and dangerous elevations in pressure. The timing, length, and magnitude of the intrauterine hypoxic stress are important to disease development, however there is also a genetic-environmental relationship that is not yet completely understood. Determining the origins of pulmonary vascular remodeling and pulmonary hypertension and their associated effects is a challenging task, but is necessary in order to develop targeted therapies for pulmonary hypertension in the newborn due to antenatal hypoxia that can both treat the symptoms and curtail or reverse disease progression. PMID:24063380

  6. Vascular and cognitive functions associated with cardiovascular disease in the elderly

    PubMed Central

    Cohen, Ronald A.; Poppas, Athena; Forman, Daniel E.; Hoth, Karin F.; Haley, Andreana P.; Gunstad, John; Jefferson, Angela L.; Tate, David F.; Paul, Robert H.; Sweet, Lawrence H.; Ono, Mokato; Jerskey, Beth A.; Gerhard-Herman, Marie

    2009-01-01

    This study examines the relationship between systemic vascular function, neurocognitive performance, and structural brain abnormalities on magnetic resonance imaging (MRI) among geriatric outpatients with treated, stable cardiovascular disease and no history of neurological illness (n = 88, ages 56–85 years). Vascular function was assessed by cardiac ejection fraction and output, sequential systolic and diastolic blood pressures, flow mediated brachial artery reactivity (BAR), and carotid intima media thickness (IMT). White matter hyperintensities (WMH) on MRI were quantified and examined relative to cognitive and vascular function. Principal component analysis revealed two primary vascular components: one associated with cardiac function, the other with atherosclerotic burden/endothelial dysfunction. Both factors were significantly associated with cognitive function and WMH volume. Reduced systolic variability and increased IMT were most strongly related to reduced attention, executive function, and information-processing speed. These findings suggest the possibility that systemic vascular indices may provide proxy measures of cerebrovascular dysfunction and reinforce the importance of achieving greater understanding of interaction between systemic vascular disease and brain dysfunction among elderly people with cardiovascular disease. PMID:18608677

  7. A single portion of blueberry (Vaccinium corymbosum L) improves protection against DNA damage but not vascular function in healthy male volunteers.

    PubMed

    Del Bó, Cristian; Riso, Patrizia; Campolo, Jonica; Møller, Peter; Loft, Steffen; Klimis-Zacas, Dorothy; Brambilla, Ada; Rizzolo, Anna; Porrini, Marisa

    2013-03-01

    It has been suggested that anthocyanin-rich foods may exert antioxidant effects and improve vascular function as demonstrated mainly in vitro and in the animal model. Blueberries are rich sources of anthocyanins and we hypothesized that their intake could improve cell protection against oxidative stress and affect endothelial function in humans. The aim of the study was to investigate the effect of one portion (300 g) of blueberries on selected markers of oxidative stress and antioxidant protection (endogenous and oxidatively induced DNA damage) and of vascular function (changes in peripheral arterial tone and plasma nitric oxide levels) in male subjects. In a randomized cross-over design, separated by a wash out period ten young volunteers received one portion of blueberries ground by blender or one portion of a control jelly. Before and after consumption (at 1, 2, and 24 hours), blood samples were collected and used to evaluate anthocyanin absorption (through mass spectrometry), endogenous and H(2)O(2)-induced DNA damage in blood mononuclear cells (through the comet assay), and plasma nitric oxide concentrations (through a fluorometric assay). Peripheral arterial function was assessed by means of Endo-PAT 2000. Blueberries significantly reduced (P < .01) H(2)O(2)-induced DNA damage (-18%) 1 hour after blueberry consumption compared to control. No significant differences were observed for endogenous DNA damage, peripheral arterial function and nitric oxide levels after blueberry intake. In conclusion, one portion of blueberries seems sufficient to improve cell antioxidant defense against DNA damage, but further studies are necessary to understand their role on vascular function. PMID:23507228

  8. Interference with PPARγ Function in Smooth Muscle Causes Vascular Dysfunction and Hypertension

    PubMed Central

    Halabi, Carmen M.; Beyer, Andreas M.; de Lange, Willem J.; Keen, Henry L.; Baumbach, Gary L.; Faraci, Frank M.; Sigmund, Curt D.

    2008-01-01

    Summary Peroxisome proliferator-activated receptor-γ (PPARγ) is a ligand activated transcription factor playing a critical role in metabolism. Thiazolidinediones, high affinity PPARγ ligands used clinically to treat type-II diabetes, have been reported to lower blood pressure and provide other cardiovascular benefits. Some mutations in PPARγ cause type-II diabetes and severe hypertension. We tested the hypothesis that PPARγ in vascular muscle plays a role in the regulation of vascular tone and blood pressure. Transgenic mice expressing dominant negative mutations in PPARγ under the control of a smooth muscle-specific promoter exhibit a loss of responsiveness to nitric oxide and striking alterations in contractility in the aorta, hypertrophy and inward remodeling in the cerebral microcirculation, and systolic hypertension. These results identify PPARγ as pivotal in vascular muscle as a regulator of vascular structure, vascular function and blood pressure, potentially explaining some of the cardioprotective effects of thiazolidinediones. PMID:18316027

  9. Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding

    PubMed Central

    Qiu, Juhui; Zheng, Yiming; Hu, Jianjun; Liao, Donghua; Gregersen, Hans; Deng, Xiaoyan; Fan, Yubo; Wang, Guixue

    2014-01-01

    Vascular smooth muscle cells (VSMCs) have critical functions in vascular diseases. Haemodynamic factors are important regulators of VSMC functions in vascular pathophysiology. VSMCs are physiologically active in the three-dimensional matrix and interact with the shear stress sensor of endothelial cells (ECs). The purpose of this review is to illustrate how haemodynamic factors regulate VSMC functions under two-dimensional conditions in vitro or three-dimensional co-culture conditions in vivo. Recent advances show that high shear stress induces VSMC apoptosis through endothelial-released nitric oxide and low shear stress upregulates VSMC proliferation and migration through platelet-derived growth factor released by ECs. This differential regulation emphasizes the need to construct more actual environments for future research on vascular diseases (such as atherosclerosis and hypertension) and cardiovascular tissue engineering. PMID:24152813

  10. Peripheral blood lymphocyte phenotype and function in multiple sclerosis.

    PubMed Central

    Hughes, P J; Compston, D A

    1988-01-01

    T suppressor cell function and phenotype are abnormal in patients with multiple sclerosis, especially during the chronic progressive phase but the sub-populations defined by mitogen stimulation and serological methods may not be identical. In this study, involving 45 patients with multiple sclerosis and 33 controls, there was no correlation between T suppressor function and CD8 cell phenotype in patients with multiple sclerosis or in controls. These phenotypic and functional studies cannot therefore be used interchangeably in the assessment of patients with multiple sclerosis since they provide different information about lymphocyte subpopulations. PMID:2976082

  11. Regulation of macrophage development and function in peripheral tissues

    PubMed Central

    Lavin, Yonit; Mortha, Arthur; Rahman, Adeeb; Merad, Miriam

    2015-01-01

    Macrophages are immune cells of haematopoietic origin that provide crucial innate immune defence and have tissue-specific functions in the regulation and maintenance of organ homeostasis. Recent studies of macrophage ontogeny, as well as transcriptional and epigenetic identity, have started to reveal the decisive role of the tissue stroma in the regulation of macrophage function. These findings suggest that most macrophages seed the tissues during embryonic development and functionally specialize in response to cytokines and metabolites that are released by the stroma and drive the expression of unique transcription factors. In this Review, we discuss how recent insights into macrophage ontogeny and macrophage–stroma interactions contribute to our understanding of the crosstalk that shapes macrophage function and the maintenance of organ integrity. PMID:26603899

  12. Association between smoking status and the parameters of vascular structure and function in adults: results from the EVIDENT study

    PubMed Central

    2013-01-01

    Background The present study analyses the relation between smoking status and the parameters used to assess vascular structure and function. Methods This cross-sectional, multi-centre study involved a random sample of 1553 participants from the EVIDENT study. Measurements: The smoking status, peripheral augmentation index and ankle-brachial index were measured in all participants. In a small subset of the main population (265 participants), the carotid intima-media thickness and pulse wave velocity were also measured. Results After controlling for the effect of age, sex and other risk factors, present smokers have higher values of carotid intima-media thickness (p = 0.011). Along the same lines, current smokers have higher values of pulse wave velocity and lower mean values of ankle-brachial index but without statistical significance in both cases. Conclusions Among the parameters of vascular structure and function analysed, only the IMT shows association with the smoking status, after adjusting for confounders. PMID:24289208

  13. Creating Perfused Functional Vascular Channels Using 3D Bio-Printing Technology

    PubMed Central

    Lee, Vivian K.; Kim, Diana Y.; Ngo, Haygan; Lee, Young; Seo, Lan; Yoo, Seung-Schik; Vincent, Peter A.; Dai, Guohao

    2014-01-01

    We developed a methodology using 3D bio-printing technology to create a functional in vitro vascular channel with perfused open lumen using only cells and biological matrices. The fabricated vasculature has a tight, confluent endothelium lining, presenting barrier function for both plasma protein and high-molecular weight dextran molecule. The fluidic vascular channel is capable of supporting the viability of tissue up to 5mm in distance at 5 million cells/mL density under the physiological flow condition. In static-cultured vascular channels, active angiogenic sprouting from the vessel surface was observed whereas physiological flow strongly suppressed this process. Gene expression analysis were reported in this study to show the potential of this vessel model in vascular biology research. The methods have great potential in vascularized tissue fabrication using 3D bio-printing technology as the vascular channel is simultaneously created while cells and matrix are printed around the channel in desired 3D patterns. It can also serve as a unique experimental tool for investigating fundamental mechanisms of vascular remodeling with extracellular matrix and maturation process under 3D flow condition. PMID:24965886

  14. Creating perfused functional vascular channels using 3D bio-printing technology.

    PubMed

    Lee, Vivian K; Kim, Diana Y; Ngo, Haygan; Lee, Young; Seo, Lan; Yoo, Seung-Schik; Vincent, Peter A; Dai, Guohao

    2014-09-01

    We developed a methodology using 3D bio-printing technology to create a functional in vitro vascular channel with perfused open lumen using only cells and biological matrices. The fabricated vasculature has a tight, confluent endothelium lining, presenting barrier function for both plasma protein and high-molecular weight dextran molecule. The fluidic vascular channel is capable of supporting the viability of tissue up to 5 mm in distance at 5 million cells/mL density under the physiological flow condition. In static-cultured vascular channels, active angiogenic sprouting from the vessel surface was observed whereas physiological flow strongly suppressed this process. Gene expression analysis was reported in this study to show the potential of this vessel model in vascular biology research. The methods have great potential in vascularized tissue fabrication using 3D bio-printing technology as the vascular channel is simultaneously created while cells and matrix are printed around the channel in desired 3D patterns. It can also serve as a unique experimental tool for investigating fundamental mechanisms of vascular remodeling with extracellular matrix and maturation process under 3D flow condition. PMID:24965886

  15. Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model.

    PubMed

    Roh, Jason D; Nelson, Gregory N; Brennan, Matthew P; Mirensky, Tamar L; Yi, Tai; Hazlett, Tyrone F; Tellides, George; Sinusas, Albert J; Pober, Jordan S; Saltzman, W M; Kyriakides, Themis R; Breuer, Christopher K

    2008-04-01

    The development of neotissue in tissue engineered vascular grafts remains poorly understood. Advances in mouse genetic models have been highly informative in the study of vascular biology, but have been inaccessible to vascular tissue engineers due to technical limitations on the use of mouse recipients. To this end, we have developed a method for constructing sub-1mm internal diameter (ID) biodegradable scaffolds utilizing a dual cylinder chamber molding system and a hybrid polyester sealant scaled for use in a mouse model. Scaffolds constructed from either polyglycolic acid or poly-l-lactic acid nonwoven felts demonstrated sufficient porosity, biomechanical profile, and biocompatibility to function as vascular grafts. The scaffolds implanted as either inferior vena cava or aortic interposition grafts in SCID/bg mice demonstrated excellent patency without evidence of thromboembolic complications or aneurysm formation. A foreign body immune response was observed with marked macrophage infiltration and giant cell formation by post-operative week 3. Organized vascular neotissue, consisting of endothelialization, medial generation, and collagen deposition, was evident within the internal lumen of the scaffolds by post-operative week 6. These results present the ability to create sub-1mm ID biodegradable tubular scaffolds that are functional as vascular grafts, and provide an experimental approach for the study of vascular tissue engineering using mouse models. PMID:18164056

  16. Association of digital vascular function with cardiovascular risk factors: a population study

    PubMed Central

    Kuznetsova, Tatiana; Van Vlierberghe, Eline; Knez, Judita; Szczesny, Gregory; Thijs, Lutgarde; Jozeau, Dominique; Balestra, Costantino; D'hooge, Jan; Staessen, Jan A

    2014-01-01

    Objectives Vasodilation of the peripheral arteries during reactive hyperaemia depends in part on release of nitric oxide from endothelial cells. Previous studies mainly employed a fingertip tonometric device to derive pulse wave amplitude (PWA) and PWA hyperaemic changes. An alternative approach is based on photoplethysmography (PPG). We sought to evaluate the correlates of digital PPG PWA hyperaemic responses as a measure of peripheral vascular function. Design The Flemish Study on Environment, Genes and Health Outcomes (FLEMENGHO) is a population-based cohort study. Setting Respondents were examined at one centre in northern Belgium. Participants For this analysis, our sample consisted of 311 former participants (53.5% women; mean age 52.6 years; 43.1% hypertensive), who were examined from January 2010 until March 2012 (response rate 85.1%). Primary outcome measures Using a fingertip PPG device, we measured digital PWA at baseline and at 30 s intervals for 4 min during reactive hyperaemia induced by a 5 min forearm cuff occlusion. We performed stepwise regression to identify correlates of the hyperaemic response ratio for each 30 s interval after cuff deflation. Results The maximal hyperaemic response was detected in the 30–60 s interval. The explained variance for the PPG PWA ratio ranged from 9.7% at 0–30 s interval to 22.5% at 60–90 s time interval. The hyperaemic response at each 30 s interval was significantly higher in women compared with men (p≤0.001). The PPG PWA changes at 0–90 s intervals decreased with current smoking (p≤0.0007) and at 0–240 s intervals decreased with higher body mass index (p≤0.035). These associations with sex, current smoking and body mass index were mutually independent. Conclusions Our study is the first to implement the new PPG technique to measure digital PWA hyperaemic changes in a general population. Hyperaemic response, as measured by PPG, is inversely associated with traditional

  17. Vascular quality of care pilot study: how admission to a vascular surgery service affects evidence-based pharmacologic risk factor modification in patients with lower extremity peripheral arterial disease

    PubMed Central

    Steenhof, Naomi; Le Piane, Francesca; Leblanc, Kori; Eisenberg, Naomi R; Kwan, Yvonne; Malmberg, Christine; Papadopoulos, Alexandra; Roche-Nagle, Graham

    2014-01-01

    Background Peripheral arterial disease (PAD) guidelines recommend aggressive risk factor modification to improve cardiovascular outcomes. Recommended pharmacologic therapies include antiplatelets, angiotensin converting enzyme (ACE) inhibitors, and HMG-CoA-reductase inhibitors (statins). Purpose We studied the degree to which patient admission to a vascular surgery service increased the use of these therapies. Patients and methods The authors conducted a retrospective chart review of 150 patients with PAD admitted to the vascular surgery service at a large Canadian tertiary care hospital. The use of recommended pharmacologic therapies at the time of admission and discharge were compared. A multidisciplinary clinical team established criteria by which patients were deemed ineligible to receive any of the recommended therapies. Angiotensin receptor blockers (ARBs) were considered an alternative to ACE inhibitors. Results Prior to hospital admission, 64% of patients were on antiplatelet therapy, 67% were on an ACE inhibitor or ARB, and 71% were on a statin. At the time of discharge, 91% of patients were on an antiplatelet (or not, with an acceptable reason), 77% were on an ACE inhibitor or an ARB (or not, with an acceptable reason), and 85% were on a statin (or not, with an acceptable reason). While new prescriptions were largely responsible for improved guideline adherence with antiplatelets and statins, most of the apparent improvement in ACE inhibitor and ARB use was the result of identifying an acceptable reason for not having them prescribed. Conclusion This hypothesis generating pilot study supports the findings of others that there is suboptimal prescription of pharmacologic risk reduction therapies in the PAD population. Admission to a vascular service increases these rates. Nevertheless, some patients are still not receiving evidence-based treatment at discharge even after consideration of acceptable reasons. Strategies are needed to improve PAD guideline

  18. Increased Expression of Tissue Factor and Receptor for Advanced Glycation End Products in Peripheral Blood Mononuclear Cells of Patients With Type 2 Diabetes Mellitus with Vascular Complications

    PubMed Central

    Buchs, A. E.; Kornberg, A.; Zahavi, M.; Aharoni, D.; Zarfati, C.; Rapoport, M. J.

    2004-01-01

    The aim of the study was to determine the correlation between the expression of tissue factor (TF) and the receptor for advanced glycation end products (RAGEs) and vascular complications in patients with longstanding uncontrolled type 2 diabetes (T2D). TF and RAGE mRNAs as well as TF antigen and activity were investigated in 21 T2D patients with and without vascular complications. mRNA expression was assessed by reverse transcriptase–polymerase chain reaction (RT-PCR) in nonstimulated and advanced glycation end product (AGE) albumin–stimulated peripheral blood mononuclear cells (PBMCs). TF antigen expression was determined by enzyme-linked immunosorbent assay (ELISA) and TF activity by a modified prothrombin time assay. Basal RAGE mRNA expression was 0.2 ± 0.06 in patients with complications and 0.05 ± 0.06 patients without complications (P = .004). Stimulation did not cause any further increase in either group. TF mRNA was 0.58 ± 0.29 in patients with complications and 0.21 ± 0.18 in patients without complications (P = .003). Stimulation resulted in a nonsignificant increase in both groups. Basal TF activity (U/106 PBMCs) was 18.4 ± 13.2 in patients with complications and 6.96 ± 5.2 in patients without complications (P = .003). It increased 3-fold in both groups after stimulation (P = .001). TF antigen (pg/106 PBMCs) was 33.7 ± 28.6 in patients with complications, 10.4 ± 7.8 in patients without complications (P = .02). Stimulation tripled TF antigen in both groups of patients (P = .001). The RAGE/TF axis is up-regulated inT2Dpatients with vascular complications as compared to patients without complications. This suggests a role for this axis in the pathogenesis of vascular complications in T2D. PMID:15203887

  19. Characterization of peripheral blood and pulmonary leukocyte function in healthy foals.

    PubMed

    Flaminio, M J; Rush, B R; Davis, E G; Hennessy, K; Shuman, W; Wilkerson, M J

    2000-03-15

    Studies in infants and foals indicate an age-dependent maturation of peripheral lymphocyte subsets. The age-dependent relationship for maturation of cellular immune responses, such as phagocytosis and lymphocyte responses of the peripheral and pulmonary-derived leukocytes, has not been characterized in foals. Lymphocyte subpopulations, mitogen stimulation response of lymphocytes, lymphokine-activated killing cell activity, phagocytosis and oxidative burst activity, and serum immunoglobulin (Ig) classes G and M concentrations were determined in developing foals. This study illustrates age-dependent changes in immunoglobulin class concentrations, lymphocyte subsets, and EqMHC Class II expression in cells of the peripheral blood and lungs of developing neonatal-to-weanling foals. The increase in peripheral blood and BAL B-lymphocytes and serum immunoglobulins in developing foals suggests expansion of immune cell populations during a time in which environmental pathogen exposure is great. General immune function, mitogenic responses, LAK cell activity, opsonized phagocytosis, and oxidative burst activity of newborns was similar to the adult horse. Total immune-cell numbers, rather than function, seemed to be the limiting factor in the development of the equine neonatal immune system. There was an age-related percent increase in the appearance of pulmonary lymphocytes, but a percent decrease in macrophages. Although development of the respiratory immune system follows changes in the peripheral blood, cellular expansion, activation, and migration may occur at a slower pace, making the respiratory environment susceptible to pathogens prior to optimal immune system maturity. PMID:10713340

  20. Potassium Channels in Peripheral Pain Pathways: Expression, Function and Therapeutic Potential

    PubMed Central

    Du, Xiaona; Gamper, Nikita

    2013-01-01

    Electrical excitation of peripheral somatosensory nerves is a first step in generation of most pain signals in mammalian nervous system. Such excitation is controlled by an intricate set of ion channels that are coordinated to produce a degree of excitation that is proportional to the strength of the external stimulation. However, in many disease states this coordination is disrupted resulting in deregulated peripheral excitability which, in turn, may underpin pathological pain states (i.e. migraine, neuralgia, neuropathic and inflammatory pains). One of the major groups of ion channels that are essential for controlling neuronal excitability is potassium channel family and, hereby, the focus of this review is on the K+ channels in peripheral pain pathways. The aim of the review is threefold. First, we will discuss current evidence for the expression and functional role of various K+ channels in peripheral nociceptive fibres. Second, we will consider a hypothesis suggesting that reduced functional activity of K+ channels within peripheral nociceptive pathways is a general feature of many types of pain. Third, we will evaluate the perspectives of pharmacological enhancement of K+ channels in nociceptive pathways as a strategy for new analgesic drug design. PMID:24396338

  1. Modular Small Diameter Vascular Grafts with Bioactive Functionalities

    PubMed Central

    Neufurth, Meik; Wang, Xiaohong; Tolba, Emad; Dorweiler, Bernhard; Schröder, Heinz C.; Link, Thorben; Diehl-Seifert, Bärbel; Müller, Werner E. G.

    2015-01-01

    We report the fabrication of a novel type of artificial small diameter blood vessels, termed biomimetic tissue-engineered blood vessels (bTEBV), with a modular composition. They are composed of a hydrogel scaffold consisting of two negatively charged natural polymers, alginate and a modified chitosan, N,O-carboxymethyl chitosan (N,O-CMC). Into this biologically inert scaffold two biofunctionally active biopolymers are embedded, inorganic polyphosphate (polyP) and silica, as well as gelatin which exposes the cell recognition signal, Arg-Gly-Asp (RGD). These materials can be hardened by exposure to Ca2+ through formation of Ca2+ bridges between the polyanions, alginate, N,O-CMC, and polyP (alginate-Ca2+-N,O-CMC-polyP). The bTEBV are formed by pressing the hydrogel through an extruder into a hardening solution, containing Ca2+. In this universal scaffold of the bTEBV biomaterial, polycations such as poly(l-Lys), poly(d-Lys) or a His/Gly-tagged RGD peptide (three RGD units) were incorporated, which promote the adhesion of endothelial cells to the vessel surface. The mechanical properties of the biopolymer material (alginate-Ca2+-N,O-CMC-polyP-silica) revealed a hardness (elastic modulus) of 475 kPa even after a short incubation period in CaCl2 solution. The material of the artificial vascular grafts (bTEBVs with an outer size 6 mm and 1.8 mm, and an inner diameter 4 mm and 0.8 mm, respectively) turned out to be durable in 4-week pulsatile flow experiments at an alternating pressure between 25 and 100 mbar (18.7 and 75.0 mm Hg). The burst pressure of the larger (smaller) vessels was 850 mbar (145 mbar). Incorporation of polycationic poly(l-Lys), poly(d-Lys), and especially the His/Gly-tagged RGD peptide, markedly increased the adhesion of human, umbilical vein/vascular endothelial cells, EA.HY926 cells, to the surface of the hydrogel. No significant effect of the polyP samples on the clotting of human plasma is measured. We propose that the metabolically degradable

  2. Gpr116 Receptor Regulates Distinctive Functions in Pneumocytes and Vascular Endothelium.

    PubMed

    Niaudet, Colin; Hofmann, Jennifer J; Mäe, Maarja A; Jung, Bongnam; Gaengel, Konstantin; Vanlandewijck, Michael; Ekvärn, Elisabet; Salvado, M Dolores; Mehlem, Annika; Al Sayegh, Sahar; He, Liqun; Lebouvier, Thibaud; Castro-Freire, Marco; Katayama, Kan; Hultenby, Kjell; Moessinger, Christine; Tannenberg, Philip; Cunha, Sara; Pietras, Kristian; Laviña, Bàrbara; Hong, JongWook; Berg, Tove; Betsholtz, Christer

    2015-01-01

    Despite its known expression in both the vascular endothelium and the lung epithelium, until recently the physiological role of the adhesion receptor Gpr116/ADGRF5 has remained elusive. We generated a new mouse model of constitutive Gpr116 inactivation, with a large genetic deletion encompassing exon 4 to exon 21 of the Gpr116 gene. This model allowed us to confirm recent results defining Gpr116 as necessary regulator of surfactant homeostasis. The loss of Gpr116 provokes an early accumulation of surfactant in the lungs, followed by a massive infiltration of macrophages, and eventually progresses into an emphysema-like pathology. Further analysis of this knockout model revealed cerebral vascular leakage, beginning at around 1.5 months of age. Additionally, endothelial-specific deletion of Gpr116 resulted in a significant increase of the brain vascular leakage. Mice devoid of Gpr116 developed an anatomically normal and largely functional vascular network, surprisingly exhibited an attenuated pathological retinal vascular response in a model of oxygen-induced retinopathy. These data suggest that Gpr116 modulates endothelial properties, a previously unappreciated function despite the pan-vascular expression of this receptor. Our results support the key pulmonary function of Gpr116 and describe a new role in the central nervous system vasculature. PMID:26394398

  3. Gpr116 Receptor Regulates Distinctive Functions in Pneumocytes and Vascular Endothelium

    PubMed Central

    Niaudet, Colin; Vanlandewijck, Michael; Ekvärn, Elisabet; Salvado, M. Dolores; Mehlem, Annika; Al Sayegh, Sahar; He, Liqun; Lebouvier, Thibaud; Castro-Freire, Marco; Katayama, Kan; Hultenby, Kjell; Moessinger, Christine; Tannenberg, Philip; Cunha, Sara; Pietras, Kristian; Laviña, Bàrbara; Hong, JongWook; Berg, Tove; Betsholtz, Christer

    2015-01-01

    Despite its known expression in both the vascular endothelium and the lung epithelium, until recently the physiological role of the adhesion receptor Gpr116/ADGRF5 has remained elusive. We generated a new mouse model of constitutive Gpr116 inactivation, with a large genetic deletion encompassing exon 4 to exon 21 of the Gpr116 gene. This model allowed us to confirm recent results defining Gpr116 as necessary regulator of surfactant homeostasis. The loss of Gpr116 provokes an early accumulation of surfactant in the lungs, followed by a massive infiltration of macrophages, and eventually progresses into an emphysema-like pathology. Further analysis of this knockout model revealed cerebral vascular leakage, beginning at around 1.5 months of age. Additionally, endothelial-specific deletion of Gpr116 resulted in a significant increase of the brain vascular leakage. Mice devoid of Gpr116 developed an anatomically normal and largely functional vascular network, surprisingly exhibited an attenuated pathological retinal vascular response in a model of oxygen-induced retinopathy. These data suggest that Gpr116 modulates endothelial properties, a previously unappreciated function despite the pan-vascular expression of this receptor. Our results support the key pulmonary function of Gpr116 and describe a new role in the central nervous system vasculature. PMID:26394398

  4. Peripheral Chemoreceptors: Function and Plasticity of the Carotid Body

    PubMed Central

    Kumar, Prem; Prabhakar, Nanduri R.

    2014-01-01

    The discovery of the sensory nature of the carotid body dates back to the beginning of the 20th century. Following these seminal discoveries, research into carotid body mechanisms moved forward progressively through the 20th century, with many descriptions of the ultrastructure of the organ and stimulus-response measurements at the level of the whole organ. The later part of 20th century witnessed the first descriptions of the cellular responses and electrophysiology of isolated and cultured type I and type II cells, and there now exist a number of testable hypotheses of chemotransduction. The goal of this article is to provide a comprehensive review of current concepts on sensory transduction and transmission of the hypoxic stimulus at the carotid body with an emphasis on integrating cellular mechanisms with the whole organ responses and highlighting the gaps or discrepancies in our knowledge. It is increasingly evident that in addition to hypoxia, the carotid body responds to a wide variety of blood-borne stimuli, including reduced glucose and immune-related cytokines and we therefore also consider the evidence for a polymodal function of the carotid body and its implications. It is clear that the sensory function of the carotid body exhibits considerable plasticity in response to the chronic perturbations in environmental O2 that is associated with many physiological and pathological conditions. The mechanisms and consequences of carotid body plasticity in health and disease are discussed in the final sections of this article. PMID:23728973

  5. Ciguatoxin reduces regenerative capacity of axotomized peripheral neurons and delays functional recovery in pre-exposed mice after peripheral nerve injury

    PubMed Central

    Au, Ngan Pan Bennett; Kumar, Gajendra; Asthana, Pallavi; Tin, Chung; Mak, Yim Ling; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie

    2016-01-01

    Ciguatera fish poisoning (CFP) results from consumption of tropical reef fish containing ciguatoxins (CTXs). Pacific (P)-CTX-1 is among the most potent known CTXs and the predominant source of CFP in the endemic region responsible for the majority of neurological symptoms in patients. Chronic and persistent neurological symptoms occur in some CFP patients, which often result in incomplete functional recovery for years. However, the direct effects of exposure to CTXs remain largely unknown. In present study, we exposed mice to CTX purified from ciguatera fish sourced from the Pacific region. P-CTX-1 was detected in peripheral nerves within hours and persisted for two months after exposure. P-CTX-1 inhibited axonal regrowth from axotomized peripheral neurons in culture. P-CTX-1 exposure reduced motor function in mice within the first two weeks of exposure before returning to baseline levels. These pre-exposed animals exhibited delayed sensory and motor functional recovery, and irreversible motor deficits after peripheral nerve injury in which formation of functional synapses was impaired. These findings are consistent with reduced muscle function, as assessed by electromyography recordings. Our study provides strong evidence that the persistence of P-CTX-1 in peripheral nerves reduces the intrinsic growth capacity of peripheral neurons, resulting in delayed functional recovery after injury. PMID:27229176

  6. Ciguatoxin reduces regenerative capacity of axotomized peripheral neurons and delays functional recovery in pre-exposed mice after peripheral nerve injury.

    PubMed

    Au, Ngan Pan Bennett; Kumar, Gajendra; Asthana, Pallavi; Tin, Chung; Mak, Yim Ling; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie

    2016-01-01

    Ciguatera fish poisoning (CFP) results from consumption of tropical reef fish containing ciguatoxins (CTXs). Pacific (P)-CTX-1 is among the most potent known CTXs and the predominant source of CFP in the endemic region responsible for the majority of neurological symptoms in patients. Chronic and persistent neurological symptoms occur in some CFP patients, which often result in incomplete functional recovery for years. However, the direct effects of exposure to CTXs remain largely unknown. In present study, we exposed mice to CTX purified from ciguatera fish sourced from the Pacific region. P-CTX-1 was detected in peripheral nerves within hours and persisted for two months after exposure. P-CTX-1 inhibited axonal regrowth from axotomized peripheral neurons in culture. P-CTX-1 exposure reduced motor function in mice within the first two weeks of exposure before returning to baseline levels. These pre-exposed animals exhibited delayed sensory and motor functional recovery, and irreversible motor deficits after peripheral nerve injury in which formation of functional synapses was impaired. These findings are consistent with reduced muscle function, as assessed by electromyography recordings. Our study provides strong evidence that the persistence of P-CTX-1 in peripheral nerves reduces the intrinsic growth capacity of peripheral neurons, resulting in delayed functional recovery after injury. PMID:27229176

  7. Structural and Functional Changes of Peripheral Muscles in Copd Patients

    PubMed Central

    Rabinovich, Roberto A; Vilaró, Jordi

    2010-01-01

    Purpose of Review The purpose of this review is to identify new advances in our understanding of skeletal muscle dysfunction in patients with COPD. Recent findings Recent studies have confirmed the relevance of muscle dysfunction as an independent prognosis factor in COPD. Animal studies have shed light on the molecular mechanisms governing skeletal muscle hypertrophy/atrophy. Recent evidence in patients with COPD highlighted the contribution of protein breakdown and mitochondrial dysfunction as pathogenic mechanisms leading to muscle dysfunction in these patients. Summary Chronic Obstructive Pulmonary Disease (COPD) is a debilitating disease impacting negatively on health status and the functional capacity of patients. COPD goes beyond the lungs and incurs significant systemic effects among which muscle dysfunction/wasting in one of the most important. Muscle dysfunction is a prominent contributor to exercise limitation, healthcare utilization and an independent predictor of morbidity and mortality. Gaining more insight into the molecular mechanisms leading to muscle dysfunction/wasting is key for the development of new and tailored therapeutic strategies to tackle skeletal muscle dysfunction/wasting in COPD patients. PMID:20071991

  8. Genetic Pathways of Vascular Calcification

    PubMed Central

    Bowman, Marion A. Hofmann; McNally, Elizabeth M.

    2012-01-01

    Vascular calcification is an independent risk factor for cardiovascular disease. Arterial calcification of the aorta, coronary, carotid and peripheral arteries becomes more prevalent with age. Genomewide association studies have identified regions of the genome linked to vascular calcification, and these same regions are linked to myocardial infarction risk. The 9p21 region linked to vascular disease and inflammation also associates with vascular calcification. In addition to these common variants, rare genetic defects can serve as primary triggers of accelerated and premature calcification. Infancy-associated calcific disorders are caused by loss of function mutations in ENPP1 an enzyme that produces extracellular pyrophosphate. Adult onset vascular calcification is linked to mutations NTE5, another enzyme that regulates extracellular phosphate metabolism. Common conditions that secondarily enhance vascular calcification include atherosclerosis, metabolic dysfunction, diabetes, and impaired renal clearance. Oxidative stress and vascular inflammation, along with biophysical properties, converge with these predisposing factors to promote soft tissue mineralization. Vascular calcification is accompanied by an osteogenic profile, and this osteogenic conversion is seen within the vascular smooth muscle itself as well as the matrix. Herein we will review the genetic causes of medial calcification in the smooth muscle layer, focusing on recent discoveries of gene mutations that regulate extracellular matrix phosphate production and the role of S100 proteins as promoters of vascular calcification. PMID:23040839

  9. Percutaneous transluminal rotational atherectomy in the treatment of peripheral vascular disease using a transluminal endatherectomy catheter (TEC): Initial results and angiographic follow-up

    SciTech Connect

    Rilinger, Norbert; Goerich, Johannes; Scharrer-Pamler, Reinhard; Vogel, Jochen; Tomczak, Reinhard; Merkle, Elmar; Sokiranski, Roman; Brambs, Hans-Juergen

    1997-07-15

    Purpose. To evaluate the clinical results of percutaneous transluminal rotational atherectomy in the treatment of peripheral vascular disease. Methods. Rotational atherectomy was performed in 39 patients aged 39-87 years (mean 66.6 years). A total of 71 lesions (43 stenoses and 28 occlusions) were treated in 40 limbs. Additional balloon angioplasty was required in 54% of lesions. Fifteen patients (37.5%) presented in Fontaine stage II, 10 patients (25%) in Fontaine stage III and 15 patients (37.5%) in Fontaine stage IV. Rotational atherectomy at 750 rpm was carried out over a 0.014-inch guidewire with continuous aspiration into a vacuum, bottle. Follow-up angiography and color flow Doppler examinations were performed in 22 patients (23 limbs) after a mean period of 6 months (range 2-14 months). Results. There was one primary technical failure. In 36 of 40 lesions there was a good angiographic result with residual stenoses in less than 30%. In 70 lesions treated by rotational atherectomy, however, 54% showed residual stenoses of 30%-50% and these cases required additional balloon angioplasty. The mean ankle-brachial index improved significantly (p<0.001), from 0.49 before the procedure to 1.01 after the procedure. A single distal embolus, related to primary recanalization, occurred and there were two large inguinal hematomas. Cumulative clinical patency after 6 months was 83.8% and cumulative angiographic patency after 6 months was 79.1%. Conclusion. Percutaneous rotational atherectomy is a promising approach for the treatment of chronic peripheral vascular disease. Further prospective, randomized studies are necessary to compare percutaneous transluminal angioplasty with this new technical approach.

  10. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cranberry juice contains polyphenolic compounds that could improve endothelial function and reduce cardiovascular disease risk. The objective was to examine the effects of cranberry juice on vascular function in subjects with coronary artery disease. We completed an acute pilot study with no placebo...

  11. Alcohol and cardiovascular disease--modulation of vascular cell function.

    PubMed

    Cahill, Paul A; Redmond, Eileen M

    2012-04-01

    Alcohol is a commonly used drug worldwide. Epidemiological studies have identified alcohol consumption as a factor that may either positively or negatively influence many diseases including cardiovascular disease, certain cancers and dementia. Often there seems to be a differential effect of various drinking patterns, with frequent moderate consumption of alcohol being salutary and binge drinking or chronic abuse being deleterious to one's health. A better understanding of the cellular and molecular mechanisms mediating the many effects of alcohol consumption is beginning to emerge, as well as a clearer picture as to whether these effects are due to the direct actions of alcohol itself, or caused in part by its metabolites, e.g., acetaldehyde, or by incidental components present in the alcoholic beverage (e.g., polyphenols in red wine). This review will discuss evidence to date as to how alcohol (ethanol) might affect atherosclerosis that underlies cardiovascular and cerebrovascular disease, and the putative mechanisms involved, focusing on vascular endothelial and smooth muscle cell effects. PMID:22606372

  12. Age-dependent changes in Ca2+ homeostasis in peripheral neurones: implications for changes in function.

    PubMed

    Buchholz, John N; Behringer, Erik J; Pottorf, William J; Pearce, William J; Vanterpool, Conwin K

    2007-06-01

    Calcium ions represent universal second messengers within neuronal cells integrating multiple cellular functions, such as release of neurotransmitters, gene expression, proliferation, excitability, and regulation of cell death or apoptotic pathways. The magnitude, duration and shape of stimulation-evoked intracellular calcium ([Ca2+]i) transients are determined by a complex interplay of mechanisms that modulate stimulation-evoked rises in [Ca2+]i that occur with normal neuronal function. Disruption of any of these mechanisms may have implications for the function and health of peripheral neurones during the aging process. This review focuses on the impact of advancing age on the overall function of peripheral adrenergic neurones and how these changes in function may be linked to age-related changes in modulation of [Ca2+]i regulation. The data in this review suggest that normal aging in peripheral autonomic neurones is a subtle process and does not always result in dramatic deterioration in their function. We present studies that support the idea that in order to maintain cell viability peripheral neurones are able to compensate for an age-related decline in the function of at least one of the neuronal calcium-buffering systems, smooth endoplasmic reticulum calcium ATPases, by increased function of other calcium-buffering systems, namely, the mitochondria and plasmalemma calcium extrusion. Increased mitochondrial calcium uptake may represent a 'weak point' in cellular compensation as this over time may contribute to cell death. In addition, we present more recent studies on [Ca2+]i regulation in the form of the modulation of release of calcium from smooth endoplasmic reticulum calcium stores. These studies suggest that the contribution of the release of calcium from smooth endoplasmic reticulum calcium stores is altered with age through a combination of altered ryanodine receptor levels and modulation of these receptors by neuronal nitric oxide containing neurones

  13. Peripheral Blood-Derived Mesenchymal Stromal Cells Promote Angiogenesis via Paracrine Stimulation of Vascular Endothelial Growth Factor Secretion in the Equine Model.

    PubMed

    Bussche, Leen; Van de Walle, Gerlinde R

    2014-12-01

    Mesenchymal stromal cells (MSCs) have received much attention as a potential treatment of ischemic diseases, including ischemic tissue injury and cardiac failure. The beneficial effects of MSCs are thought to be mediated by their ability to provide proangiogenic factors, creating a favorable microenvironment that results in neovascularization and tissue regeneration. To study this in more detail and to explore the potential of the horse as a valuable translational model, the objectives of the present study were to examine the presence of angiogenic stimulating factors in the conditioned medium (CM) of peripheral blood-derived equine mesenchymal stromal cells (PB-MSCs) and to study their in vitro effect on angiogenesis-related endothelial cell (EC) behavior, including proliferation and vessel formation. Our salient findings were that CM from PB-MSCs contained significant levels of several proangiogenic factors. Furthermore, we found that CM could induce angiogenesis in equine vascular ECs and confirmed that endothelin-1, insulin growth factor binding protein 2, interleukin-8, and platelet-derived growth factor-AA, but not urokinase-type plasminogen activator, were responsible for this enhanced EC network formation by increasing the expression level of vascular endothelial growth factor-A, an important angiogenesis stimulator. PMID:25313202

  14. Abnormal Vascular Function and Hypertension in Mice Deficient in Estrogen Receptor β

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Bian, Zhao; Lu, Ping; Karas, Richard H.; Bao, Lin; Cox, Daniel; Hodgin, Jeffrey; Shaul, Philip W.; Thorén, Peter; Smithies, Oliver; Gustafsson, Jan-Åke; Mendelsohn, Michael E.

    2002-01-01

    Blood vessels express estrogen receptors, but their role in cardiovascular physiology is not well understood. We show that vascular smooth muscle cells and blood vessels from estrogen receptor β (ERβ)-deficient mice exhibit multiple functional abnormalities. In wild-type mouse blood vessels, estrogen attenuates vasoconstriction by an ERβ-mediated increase in inducible nitric oxide synthase expression. In contrast, estrogen augments vasoconstriction in blood vessels from ERβ-deficient mice. Vascular smooth muscle cells isolated from ERβ-deficient mice show multiple abnormalities of ion channel function. Furthermore, ERβ-deficient mice develop sustained systolic and diastolic hypertension as they age. These data support an essential role for ERβ in the regulation of vascular function and blood pressure.

  15. [Endovascular versus conventional vascular surgery - old-fashioned thinking? : Part 2: carotid artery stenosis and peripheral arterial occlusive disease].

    PubMed

    Debus, E S; Manzoni, D; Behrendt, C-A; Heidemann, F; Grundmann, R T

    2016-04-01

    Endovascular therapy has widely replaced conventional open vascular surgical reconstruction. For this reason, both techniques were widely considered to be competing approaches. Evidence-based data from randomized prospective trials, meta-analyses and clinical registries, however, demonstrated that both techniques should be used to complement each other. It became increasingly more evident that the use of either procedure depends on the underlying disease and the anatomical conditions, whereby a combination of both (hybrid approach) may be the preferred option in certain situations. This review focuses on the treatment of patients with carotid artery stenosis, intermittent claudication, critical limb ischemia and acute limb ischemia. PMID:26801751

  16. Functional defects of peripheral regulatory T lymphocytes in patients with progressive vitiligo.

    PubMed

    Ben Ahmed, M; Zaraa, I; Rekik, R; Elbeldi-Ferchiou, A; Kourda, N; Belhadj Hmida, N; Abdeladhim, M; Karoui, O; Ben Osman, A; Mokni, M; Louzir, H

    2012-01-01

    Auto-reactive cytotoxic T lymphocytes play a key role in the progressive loss or destruction of melanocytes in vitiligo but the mechanism underlying the loss of self-tolerance is unknown. A deregulation of regulatory T-cell biology has recently been suggested. The analysis of the suppressive effects of peripheral T regulatory cells in vitiligo patients revealed a functional defect in seven of 15 cases. This defect was strongly correlated with disease activity. The evaluation of the percentage of peripheral regulatory T lymphocytes did not reveal any intrinsic quantitative defect. Yet, a decrease in the percentage of such cells was noted in patients with progressive forms, suggesting a recruitment of regulatory T cells from the peripheral blood to the site of injury. This was further corroborated by the significant increase of Forkhead box P3 expression in the vitiliginous skin of patients. Our data support the involvement of a functional defect of peripheral regulatory T cells in the pathogenesis of vitiligo and open new possibilities to advance therapeutic approaches. PMID:21985183

  17. Maternal Hyperleptinemia Is Associated with Male Offspring’s Altered Vascular Function and Structure in Mice

    PubMed Central

    Pollock, Kelly E.; Talton, Omonseigho O.; Foote, Christopher A.; Reyes-Aldasoro, Constantino C.; Wu, Ho-Hsiang; Ji, Tieming; Martinez-Lemus, Luis A.; Schulz, Laura C.

    2016-01-01

    Children of mothers with gestational diabetes have greater risk of developing hypertension but little is known about the mechanisms by which this occurs. The objective of this study was to test the hypothesis that high maternal concentrations of leptin during pregnancy, which are present in mothers with gestational diabetes and/or obesity, alter blood pressure, vascular structure and vascular function in offspring. Wildtype (WT) offspring of hyperleptinemic, normoglycemic, Leprdb/+ dams were compared to genotype matched offspring of WT-control dams. Vascular function was assessed in male offspring at 6, and at 31 weeks of age after half the offspring had been fed a high fat, high sucrose diet (HFD) for 6 weeks. Blood pressure was increased by HFD but not affected by maternal hyperleptinemia. On a standard diet, offspring of hyperleptinemic dams had outwardly remodeled mesenteric arteries and an enhanced vasodilatory response to insulin. In offspring of WT but not Leprdb/+ dams, HFD induced vessel hypertrophy and enhanced vasodilatory responses to acetylcholine, while HFD reduced insulin responsiveness in offspring of hyperleptinemic dams. Offspring of hyperleptinemic dams had stiffer arteries regardless of diet. Therefore, while maternal hyperleptinemia was largely beneficial to offspring vascular health under a standard diet, it had detrimental effects in offspring fed HFD. These results suggest that circulating maternal leptin concentrations may interact with other factors in the pre- and post -natal environments to contribute to altered vascular function in offspring of diabetic pregnancies. PMID:27187080

  18. Differential and synergistic effects of mechanical stimulation and growth factor presentation on vascular wall function

    PubMed Central

    Liang, Mao-Shih; Koobatian, Maxwell T.; Lei, Pedro; Swartz, Daniel D.; Andreadis, Stelios T.

    2013-01-01

    We investigated the hypothesis that immobilizing TGF-β1 within fibrin hydrogels may act in synergy with cyclic mechanical stimulation to enhance the properties of vascular grafts. To this end, we engineered a fusion TGF-β1 protein that can covalently anchor to fibrin during polymerization upon the action of factor XIII. We also developed a 24-well based bioreactor in which vascular constructs can be mechanically stimulated by distending the silastic mandrel in the middle of each well. TGF-β1 was either conjugated to fibrin or supplied in the culture medium and the fibrin based constructs were cultured statically for a week followed by cyclic distention for another week. The tissues were examined for myogenic differentiation, vascular reactivity, mechanical properties and ECM content. Our results showed that some aspects of vascular function were differentially affected by growth factor presentation vs. pulsatile force application, while others were synergistically enhanced by both. Overall, this two-prong biomimetic approach improved ECM secretion, vascular reactivity and mechanical properties of vascular constructs. These findings may be applied in other tissue engineering applications such as cartilage, tendon or cardiac regeneration where growth factors TGF-β1 and mechano-stimulation play critical roles. PMID:23810080

  19. [Progress in research on function and mechanism of cardiac vascular system of taurine].

    PubMed

    Hua, Hao-ming; Ito, Takashi; Qiu, Zhi-gang; Azuma, Junichi

    2005-05-01

    The function for cardiac vascular system of taurine is extensive, and the mechanism is complicated. Taurine protects the cells from the cell injury caused by ischemia etc. Through repressing apoptosis, prevents endothelial dysfunction caused by hyperglycemia, hypercholesterolemia, smoking and homocysteine; suppresses the proliferation and calcification in vascular smooth muscle cells, promotes metabolization and excretion of cholesterol in the animal models of hyperlipemia, and confers the resistance to an oxidant, hypochlorous acid, produced by neutrophil on cells, and taurine chrolamine to inhibit activation of NF-kappaB, which might be associated with anti-atherosclerotic effect. Taurine mainly acts inside the cell. However, taurine transport system becomes aberrant in pathological myocardial and vascular tissue. In addition, taurine improves cardiovascular function in fructose-induced hypertension and an iron-overload murine animal models. PMID:16075725

  20. Supplementary motor area deactivation impacts the recovery of hand function from severe peripheral nerve injury

    PubMed Central

    Lu, Ye-chen; Liu, Han-qiu; Hua, Xu-yun; Shen, Yun-dong; Xu, Wen-dong; Xu, Jian-guang; Gu, Yu-dong

    2016-01-01

    Although some patients have successful peripheral nerve regeneration, a poor recovery of hand function often occurs after peripheral nerve injury. It is believed that the capability of brain plasticity is crucial for the recovery of hand function. The supplementary motor area may play a key role in brain remodeling after peripheral nerve injury. In this study, we explored the activation mode of the supplementary motor area during a motor imagery task. We investigated the plasticity of the central nervous system after brachial plexus injury, using the motor imagery task. Results from functional magnetic resonance imaging showed that after brachial plexus injury, the motor imagery task for the affected limbs of the patients triggered no obvious activation of bilateral supplementary motor areas. This result indicates that it is difficult to excite the supplementary motor areas of brachial plexus injury patients during a motor imagery task, thereby impacting brain remodeling. Deactivation of the supplementary motor area is likely to be a serious problem for brachial plexus injury patients in terms of preparing, initiating and executing certain movements, which may be partly responsible for the unsatisfactory clinical recovery of hand function. PMID:27212933

  1. Epoxyeicosatrienoic Acids and 20-Hydroxyeicosatetraenoic Acid on Endothelial and Vascular Function.

    PubMed

    Imig, J D

    2016-01-01

    Endothelial and vascular smooth cells generate cytochrome P450 (CYP) arachidonic acid metabolites that can impact endothelial cell function and vascular homeostasis. The objective of this review is to focus on the physiology and pharmacology of endothelial CYP metabolites. The CYP pathway produces two types of eicosanoid products: epoxyeicosatrienoic acids (EETs), formed by CYP epoxygenases, and hydroxyeicosatetraenoic acids (HETEs), formed by CYP hydroxylases. Advances in CYP enzymes, EETs, and 20-HETE by pharmacological and genetic means have led to a more complete understanding of how these eicosanoids impact on endothelial cell function. Endothelial-derived EETs were initially described as endothelial-derived hyperpolarizing factors. It is now well recognized that EETs importantly contribute to numerous endothelial cell functions. On the other hand, 20-HETE is the predominant CYP hydroxylase synthesized by vascular smooth muscle cells. Like EETs, 20-HETE acts on endothelial cells and impacts importantly on endothelial and vascular function. An important aspect for EETs and 20-HETE endothelial actions is their interactions with hormonal and paracrine factors. These include interactions with the renin-angiotensin system, adrenergic system, puringeric system, and endothelin. Alterations in CYP enzymes, 20-HETE, or EETs contribute to endothelial dysfunction and cardiovascular diseases such as ischemic injury, hypertension, and atherosclerosis. Recent advances have led to the development of potential therapeutics that target CYP enzymes, 20-HETE, or EETs. Thus, future investigation is required to obtain a more complete understanding of how CYP enzymes, 20-HETE, and EETs regulate endothelial cell function. PMID:27451096

  2. Generation of a functional liver tissue mimic using adipose stromal vascular fraction cell-derived vasculatures

    PubMed Central

    Nunes, S. S.; Maijub, J. G.; Krishnan, L.; Ramakrishnan, V. M.; Clayton, L. R.; Williams, S. K.; Hoying, J. B.; Boyd, N. L.

    2013-01-01

    One of the major challenges in cell implantation therapies is to promote integration of the microcirculation between the implanted cells and the host. We used adipose-derived stromal vascular fraction (SVF) cells to vascularize a human liver cell (HepG2) implant. We hypothesized that the SVF cells would form a functional microcirculation via vascular assembly and inosculation with the host vasculature. Initially, we assessed the extent and character of neovasculatures formed by freshly isolated and cultured SVF cells and found that freshly isolated cells have a higher vascularization potential. Generation of a 3D implant containing fresh SVF and HepG2 cells formed a tissue in which HepG2 cells were entwined with a network of microvessels. Implanted HepG2 cells sequestered labeled LDL delivered by systemic intravascular injection only in SVF-vascularized implants demonstrating that SVF cell-derived vasculatures can effectively integrate with host vessels and interface with parenchymal cells to form a functional tissue mimic. PMID:23828203

  3. Percutaneous intravascular US as adjunct to catheter-based interventions: preliminary experience in patients with peripheral vascular disease.

    PubMed

    Isner, J M; Rosenfield, K; Losordo, D W; Kelly, S; Palefski, P; Langevin, R E; Razvi, S; Pastore, J O; Kosowsky, B D

    1990-04-01

    Catheter-based ultrasound (US) transducers may be introduced into the vascular system to record high-resolution images of the vessel wall and lumen. The potential advantages and existing liabilities of percutaneous intravascular US as an adjunct to transluminal vascular recanalization were investigated. A 6.6-F braided, polyethylene catheter enclosing a rotary drive shaft with a single-element, 20-MHz transducer at the distal tip was used in 17 patients undergoing percutaneous transluminal (balloon) angioplasty (PTA) alone (10 patients), PTA with implantation of an endovascular stent (two patients), atherectomy alone (two patients), or laser angioplasty with PTA and/or atherectomy (three patients). The arteries treated and examined included the common iliac in five patients, the external iliac in two, the superficial femoral in nine, and a vein graft-arterial anastomosis in one. In 14 cases PTA was employed as sole or adjunctive therapy; plaque cracks were clearly delineated with intravascular US in all 14 (100%) and dissections were observed in 11 (78%). Plaque-arterial wall disruption was less prominent in the arteries treated with mechanical atherectomy. The results of laser angioplasty reflected the adjunctive modality employed. After stent implantation, serial intravascular US documented effacement of PTA-induced plaque cracks and/or dissections. Intravascular US also aided in the quantitative assessment of luminal cross-sectional areas after the procedures (19.0-51.8 mm2). The observations recorded in this preliminary group of 17 patients illustrate the potential utility of intravascular US as an adjunct to conventional angiography in patients undergoing percutaneous revascularization. PMID:2138342

  4. Age-related changes in the function and structure of the peripheral sensory pathway in mice.

    PubMed

    Canta, Annalisa; Chiorazzi, Alessia; Carozzi, Valentina Alda; Meregalli, Cristina; Oggioni, Norberto; Bossi, Mario; Rodriguez-Menendez, Virginia; Avezza, Federica; Crippa, Luca; Lombardi, Raffaella; de Vito, Giuseppe; Piazza, Vincenzo; Cavaletti, Guido; Marmiroli, Paola

    2016-09-01

    This study is aimed at describing the changes occurring in the entire peripheral nervous system sensory pathway along a 2-year observation period in a cohort of C57BL/6 mice. The neurophysiological studies evidenced significant differences in the selected time points corresponding to childhood, young adulthood, adulthood, and aging (i.e., 1, 7, 15, and 25 months of age), with a parabolic course as function of time. The pathological assessment allowed to demonstrate signs of age-related changes since the age of 7 months, with a remarkable increase in both peripheral nerves and dorsal root ganglia at the subsequent time points. These changes were mainly in the myelin sheaths, as also confirmed by the Rotating-Polarization Coherent-Anti-stokes-Raman-scattering microscopy analysis. Evident changes were also present at the morphometric analysis performed on the peripheral nerves, dorsal root ganglia neurons, and skin biopsies. This extensive, multimodal characterization of the peripheral nervous system changes in aging provides the background for future mechanistic studies allowing the selection of the most appropriate time points and readouts according to the investigation aims. PMID:27459934

  5. Peripheral nerve: from the microscopic functional unit of the axon to the biomechanically loaded macroscopic structure.

    PubMed

    Topp, Kimberly S; Boyd, Benjamin S

    2012-01-01

    Peripheral nerves are composed of motor and sensory axons, associated ensheathing Schwann cells, and organized layers of connective tissues that are in continuity with the tissues of the central nervous system. Nerve fiber anatomy facilitates conduction of electrical impulses to convey information over a distance, and the length of these polarized cells necessitates regulated axonal transport of organelles and structural proteins for normal cell function. Nerve connective tissues serve a protective function as the limb is subjected to the stresses of myriad limb positions and postures. Thus, the tissues are uniquely arranged to control the local nerve fiber environment and modulate physical stresses. In this brief review, we describe the microscopic anatomy and physiology of peripheral nerve and the biomechanical properties that enable nerve to withstand the physical stresses of everyday life. PMID:22133662

  6. Promoting plasticity in the spinal cord with chondroitinase improves functional recovery after peripheral nerve repair.

    PubMed

    Galtrey, Clare M; Asher, Richard A; Nothias, Fatiha; Fawcett, James W

    2007-04-01

    Functional recovery after peripheral nerve repair in humans is often disappointing. A major reason for this is the inaccuracy of re-innervation of muscles and sensory structures. We hypothesized that promoting plasticity in the spinal cord, through digestion of chondroitin sulphate proteoglycans (CSPGs) with chondroitinase ABC (ChABC), might allow the CNS to compensate for inaccurate peripheral re-innervation and improve functional recovery. The median and ulnar nerves were injured and repaired to produce three grades of inaccuracy of peripheral re-innervation by (i) crush of both nerves; (ii) correct repair of median to median and ulnar to ulnar; and (iii) crossover of the median and ulnar nerves. Mapping of the motor neuron pool of the flexor carpi radialis muscle showed precise re-innervation after nerve crush, inaccurate regeneration after correct repair, more inaccurate after crossover repair. Recovery of forelimb function, assessed by skilled paw reaching, grip strength and sensory testing varied with accuracy of re-innervation. This was not due to differences in the number of regenerated axons. Single injections of ChABC into the spinal cord led to long-term changes in the extracellular matrix, with hyaluronan and neurocan being removed and not fully replaced after 8 weeks. ChABC treatment produce increased sprouting visualized by MAP1BP staining and improved functional recovery in skilled paw reaching after correct repair and in grip strength after crossover repair. There was no hyperalgesia. Enhanced plasticity in the spinal cord, therefore, allows the CNS to compensate for inaccurate motor and sensory re-innervation of the periphery, and may be a useful adjunct therapy to peripheral nerve repair. PMID:17255150

  7. The role of mechanotransduction on vascular smooth muscle myocytes cytoskeleton and contractile function

    PubMed Central

    Ye, George J.C.; Nesmith, Alexander P.; Parker, Kevin Kit

    2016-01-01

    Smooth muscle exhibits a highly organized structural hierarchy that extends over multiple spatial scales to perform a wide range of functions at the cellular, tissue, and organ levels. Early efforts primarily focused on understanding vascular smooth muscle function through biochemical signaling. However, accumulating evidence suggests that mechanotransduction, the process through which cells convert mechanical stimuli into biochemical cues, is requisite for regulating contractility. Cytoskeletal proteins that comprise the extracellular, intercellular, and intracellular domains are mechanosensitive and can remodel their structure and function in response to external mechanical cues. Pathological stimuli such as malignant hypertension can act through the same mechanotransductive pathways to induce maladaptive remodeling, leading to changes in cellular shape and loss of contractile function. In both health and disease, the cytoskeletal architecture integrates the mechanical stimuli and mediates structural and functional remodeling in the vascular smooth muscle. PMID:25125187

  8. Does high-density lipoprotein protect vascular function in healthy pregnancy?

    PubMed

    Sulaiman, Wan N Wan; Caslake, Muriel J; Delles, Christian; Karlsson, Helen; Mulder, Monique T; Graham, Delyth; Freeman, Dilys J

    2016-04-01

    The maternal adaptation to pregnancy includes hyperlipidaemia, oxidative stress and chronic inflammation. In non-pregnant individuals, these processes are usually associated with poor vascular function. However, maternal vascular function is enhanced in pregnancy. It is not understood how this is achieved in the face of the adverse metabolic and inflammatory environment. Research into cardiovascular disease demonstrates that plasma HDL (high-density lipoprotein), by merit of its functionality rather than its plasma concentration, exerts protective effects on the vascular endothelium. HDL has vasodilatory, antioxidant, anti-thrombotic and anti-inflammatory effects, and can protect against endothelial cell damage. In pregnancy, the plasma HDL concentration starts to rise at 10 weeks of gestation, peaking at 20 weeks. The initial rise in plasma HDL occurs around the time of the establishment of the feto-placental circulation, a time when the trophoblast plugs in the maternal spiral arteries are released, generating oxidative stress. Thus there is the intriguing possibility that new HDL of improved function is synthesized around the time of the establishment of the feto-placental circulation. In obese pregnancy and, to a greater extent, in pre-eclampsia, plasma HDL levels are significantly decreased and maternal vascular function is reduced. Wire myography studies have shown an association between the plasma content of apolipoprotein AI, the major protein constituent of HDL, and blood vessel relaxation. These observations lead us to hypothesize that HDL concentration, and function, increases in pregnancy in order to protect the maternal vascular endothelium and that in pre-eclampsia this fails to occur. PMID:26888561

  9. [Primary Study on Noninvasive Detection of Vascular Function Based on Finger Temperature Change].

    PubMed

    Dong, Qing; Li, Xia; Wan, Yungao; Lu, Gaoquan; Wang, Xinxin; Zhang, Kuan

    2016-02-01

    By studying the relationship between fingertip temperature changes and arterial function during vascular reactivity test, we established a new non-invasive method for detecting vascular function, in order to provide an assistance for early diagnosis and prevention of cardiovascular diseases. We customized three modules respectively for blood occlusion, measurement of finger temperature and blood oxygen acquisition, and then we established the hardware of data acquisition system. And the software was programmed with Labview. Healthy subjects [group A, n = 24, (44.6 ± 9.0) years] and subjects with cardiovascular diseases [group B, n = 33, (57.2 ± 9.9) years)] were chosen for the study. Subject's finger temperature, blood oxygen and occlusion pressure of block side during and after unilateral arm brachial artery occlusion were recorded, as well as some other regular physiological indexes. By time-domain analysis, we extracted 12 parameters from fingertip temperature signal, including the initial temperature (Ti), temperature rebound (TR), the time of the temperature recovering to initial status (RIt) and other parameters from the finger temperature signal. We in the experiment also measured other regular physiological body mass index (BMI), systolic blood pressure (SBP), diastiolic blood pressure (DBP) and so on. Results showed that 8 parameters difference between the two group of data were significant. based on the statistical results. A discriminant function of vascular function status was established afterwards. We found in the study that the changes of finger temperature during unilateral arms brachial artery occlusion and open were closely related to vascular function. We hope that the method presented in this article could lay a foundation of early detection of vascular function. PMID:27382755

  10. Beyond the brain-Peripheral kisspeptin signaling is essential for promoting endometrial gland development and function.

    PubMed

    León, Silvia; Fernadois, Daniela; Sull, Alexandra; Sull, Judith; Calder, Michele; Hayashi, Kanako; Bhattacharya, Moshmi; Power, Stephen; Vilos, George A; Vilos, Angelos G; Tena-Sempere, Manuel; Babwah, Andy V

    2016-01-01

    Uterine growth and endometrial gland formation (adenogenesis) and function, are essential for fertility and are controlled by estrogens and other regulators, whose nature and physiological relevance are yet to be elucidated. Kisspeptin, which signals via Kiss1r, is essential for fertility, primarily through its central control of the hypothalamic-pituitary-ovarian axis, but also likely through peripheral actions. Using genetically modified mice, we addressed the contributions of central and peripheral kisspeptin signaling in regulating uterine growth and adenogenesis. Global ablation of Kiss1 or Kiss1r dramatically suppressed uterine growth and almost fully prevented adenogenesis. However, while uterine growth was fully rescued by E2 treatment of Kiss1(-/-) mice and by genetic restoration of kisspeptin signaling in GnRH neurons in Kiss1r(-/-) mice, functional adenogenesis was only marginally restored. Thus, while uterine growth is largely dependent on ovarian E2-output via central kisspeptin signaling, peripheral kisspeptin signaling is indispensable for endometrial adenogenesis and function, essential aspects of reproductive competence. PMID:27364226