Science.gov

Sample records for periplasmic s1-like nuclease

  1. Characterization of a periplasmic S1-like nuclease coded by the Mesorhizobium loti symbiosis island

    SciTech Connect

    Pimkin, Maxim; Miller, C. Glenn; Blakesley, Lauryn; Oleykowski, Catherine A.; Kodali, Nagendra S.; Yeung, Anthony T. . E-mail: AT_Yeung@fccc.edu

    2006-04-28

    DNA sequences encoding hypothetical proteins homologous to S1 nuclease from Aspergillus oryzae are found in many organisms including fungi, plants, pathogenic bacteria, and eukaryotic parasites. One of these is the M1 nuclease of Mesorhizobium loti which we demonstrate herein to be an enzymatically active, soluble, and stable S1 homolog that lacks the extensive mannosyl-glycosylation found in eukaryotic S1 nuclease homologs. We have expressed the cloned M1 protein in M. loti and purified recombinant native M1 to near homogeneity and have also isolated a homogeneous M1 carboxy-terminal hexahistidine tag fusion protein. Mass spectrometry and N-terminal Edman degradation sequencing confirmed the protein identity. The enzymatic properties of the purified M1 nuclease are similar to those of S1. At acidic pH M1 is 25 times more active on single-stranded DNA than on double-stranded DNA and 3 times more active on single-stranded DNA than on single-stranded RNA. At neutral pH the RNase activity of M1 exceeds the DNase activity. M1 nicks supercoiled RF-I plasmid DNA and rapidly cuts the phosphodiester bond across from the nick in the resultant relaxed RF-II plasmid DNA. Therefore, M1 represents an active bacterial S1 homolog in spite of great sequence divergence. The biochemical characterization of M1 nuclease supports our sequence alignment that reveals the minimal 21 amino acid residues that are necessarily conserved for the structure and functions of this enzyme family. The ability of M1 to degrade RNA at neutral pH implies previously unappreciated roles of these nucleases in biological systems.

  2. Secretion of nuclease across the outer membrane of Serratia marcescens and its energy requirements.

    PubMed Central

    Suh, Y; Benedik, M J

    1997-01-01

    Extracellular secretion of Serratia marcescens nuclease occurs as a two-step process via a periplasmic intermediate. Unlike other extracellular proteins secreted by gram-negative bacteria by the general secretory pathway, nuclease accumulates in the periplasm in its active form for an unusually long time before its export into the growth medium. The energy requirements for extracellular secretion of nuclease from the periplasm were investigated. Our results suggest that the second step of secretion across the outer membrane is dependent upon the external pH; acidic pH effectively but reversibly blocks extracellular secretion. However, electrochemical proton gradient, and possibly ATP hydrolysis, are not required for this step. We suggest that nuclease uses a novel mechanism for the second step of secretion in S. marcescens. PMID:9006020

  3. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  4. Periplasmic Screening for Artificial Metalloenzymes.

    PubMed

    Jeschek, M; Panke, S; Ward, T R

    2016-01-01

    Artificial metalloenzymes represent an attractive means of combining state-of-the-art transition metal catalysis with the benefits of natural enzymes. Despite the tremendous recent progress in this field, current efforts toward the directed evolution of these hybrid biocatalysts mainly rely on the laborious, individual purification of protein variants rendering the throughput, and hence the outcome of these campaigns feeble. We have recently developed a screening platform for the directed evolution of artificial metalloenzymes based on the streptavidin-biotin technology in the periplasm of the Gram-negative bacterium Escherichia coli. This periplasmic compartmentalization strategy comprises a number of compelling advantages, in particular with respect to artificial metalloenzymes, which lead to a drastic increase in the throughput of screening campaigns and additionally are of unique value for future in vivo applications. Therefore, we highlight here the benefits of this strategy and intend to propose a generalized guideline for the development of novel transition metal-based biocatalysts by directed evolution in order to extend the natural enzymatic repertoire. PMID:27586348

  5. Vipera lebetina venom nucleases.

    PubMed

    Trummal, Katrin; Tõnismägi, Külli; Aaspõllu, Anu; Siigur, Jüri; Siigur, Ene

    2016-09-01

    Nucleases, in particular ribo- and deoxyribonucleases, are among the least-studied snake venom enzymes. In the present study we have partially purified different nucleases from Vipera lebetina venom. The DNase activity has been proved by DNA degradation both in solution as well as in-gel (zymogram-method). In DNA-containing SDS-PAGE V. lebetina venom exhibits DNA-degrading activity in bands with molecular masses of ∼120, 30-35 and 22-25 kDa. The 120 kDa band corresponds to phosphodiesterase, a 3', 5'-exonuclease. The endonucleolytic activity of the lower-molecular-mass protein has been confirmed by plasmid degradation and the visualization of the results in agarose gel (with ethidium bromide) electrophoresis. A partial DNA sequence of putative RNase H1 has been determined from the V. lebetina venom gland cDNA library. The translated sequence is similar to the assumed RNase H1 from Crotalus adamanteus (AFJ51163). The RNA/DNA hybrid is hydrolysed by V. lebetina venom and venom fractions. The masses of tryptic peptides from the SDS-PAGE 30-35 kDa band are in concordance with the theoretical peptide masses from the respective translated sequence. For the first time RNase H1-like enzyme activity has been ascertained in snake venom, and sequencing a relevant partial transcript confirmed the identification of this enzyme. PMID:27179419

  6. Periplasmic glucans of Pseudomonas syringae pv. syringae.

    PubMed Central

    Talaga, P; Fournet, B; Bohin, J P

    1994-01-01

    We report the initial characterization of glucans present in the periplasmic space of Pseudomonas syringae pv. syringae (strain R32). These compounds were found to be neutral, unsubstituted, and composed solely of glucose. Their size ranges from 6 to 13 glucose units/mol. Linkage studies and nuclear magnetic resonance analyses demonstrated that the glucans are linked by beta-1,2 and beta-1,6 glycosidic bonds. In contrast to the periplasmic glucans found in other plant pathogenic bacteria, the glucans of P. syringae pv. syringae are not cyclic but are highly branched structures. Acetolysis studies demonstrated that the backbone consists of beta-1,2-linked glucose units to which the branches are attached by beta-1,6 linkages. These periplasmic glucans were more abundant when the osmolarity of the growth medium was lower. Thus, P. syringae pv. syringae appears to synthesize periplasmic glucans in response to the osmolarity of the medium. The structural characteristics of these glucans are very similar to the membrane-derived oligosaccharides of Escherichia coli, apart from the neutral character, which contrasts with the highly anionic E. coli membrane-derived oligosaccharides. PMID:7961404

  7. Periplasmic Proteins of the Extremophile Acidithiobacillus ferrooxidans

    PubMed Central

    Chi, An; Valenzuela, Lissette; Beard, Simon; Mackey, Aaron J.; Shabanowitz, Jeffrey; Hunt, Donald F.; Jerez, Carlos A.

    2015-01-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile capable of obtaining energy by oxidizing ferrous iron or sulfur compounds such as metal sulfides. Some of the proteins involved in these oxidations have been described as forming part of the periplasm of this extremophile. The detailed study of the periplasmic components constitutes an important area to understand the physiology and environmental interactions of microorganisms. Proteomics analysis of the periplasmic fraction of A. ferrooxidans ATCC 23270 was performed by using high resolution linear ion trap-FT MS. We identified a total of 131 proteins in the periplasm of the microorganism grown in thiosulfate. When possible, functional categories were assigned to the proteins: 13.8% were transport and binding proteins, 14.6% were several kinds of cell envelope proteins, 10.8% were involved in energy metabolism, 10% were related to protein fate and folding, 10% were proteins with unknown functions, and 26.1% were proteins without homologues in databases. These last proteins are most likely characteristic of A. ferrooxidans and may have important roles yet to be assigned. The majority of the periplasmic proteins from A. ferrooxidans were very basic compared with those of neutrophilic microorganisms such as Escherichia coli, suggesting a special adaptation of the chemolithoautotrophic bacterium to its very acidic environment. The high throughput proteomics approach used here not only helps to understand the physiology of this extreme acidophile but also offers an important contribution to the functional annotation for the available genomes of biomining microorganisms such as A. ferrooxidans for which no efficient genetic systems are available to disrupt genes by procedures such as homologous recombination. PMID:17911085

  8. Periplasmic Superoxide Dismutase in Meningococcal Pathogenicity

    PubMed Central

    Wilks, Kathryn E.; Dunn, Kate L. R.; Farrant, Jayne L.; Reddin, Karen M.; Gorringe, Andrew R.; Langford, Paul R.; Kroll, J. Simon

    1998-01-01

    Meningococcal sodC encodes periplasmic copper- and zinc-cofactored superoxide dismutase (Cu,Zn SOD) which catalyzes the conversion of the superoxide radical anion to hydrogen peroxide, preventing a sequence of reactions leading to production of toxic hydroxyl free radicals. From its periplasmic location, Cu,Zn SOD was inferred to acquire its substrate from outside the bacterial cell and was speculated to play a role in preserving meningococci from the action of microbicidal oxygen free radicals produced in the context of host defense. A sodC mutant was constructed by allelic exchange and was used to investigate the role of Cu,Zn SOD in pathogenicity. Wild-type and mutant meningococci grew at comparable rates and survived equally long in aerobic liquid culture. The mutant showed no increased sensitivity to paraquat, which generates superoxide within the cytosol, but was approximately 1,000-fold more sensitive to the toxicity of superoxide generated in solution by the xanthine/xanthine oxidase system. These data support a role for meningococcal Cu,Zn SOD in protection against exogenous superoxide. In experiments to translate this into a role in pathogenicity, wild-type and mutant organisms were used in an intraperitoneal mouse infection model. The sodC mutant was significantly less virulent. We conclude that periplasmic Cu,Zn SOD contributes to the virulence of Neisseria meningitidis, most likely by reducing the effectiveness of toxic oxygen host defenses. PMID:9423860

  9. Lateral diffusion of proteins in the periplasm of Escherichia coli.

    PubMed Central

    Brass, J M; Higgins, C F; Foley, M; Rugman, P A; Birmingham, J; Garland, P B

    1986-01-01

    We have introduced biologically active, fluorescently labeled maltose-binding protein into the periplasmic space of Escherichia coli and measured its lateral diffusion coefficient by the fluorescence photobleaching recovery method. Diffusion of this protein in the periplasm was found to be surprisingly low (lateral diffusion coefficient, 0.9 X 10(-10) cm2 s-1), about 1,000-fold lower than would be expected for diffusion in aqueous medium and almost 100-fold lower than for an equivalent-size protein in the cytoplasm. Galactose-binding protein, myoglobin, and cytochrome c were also introduced into the periplasm and had diffusion coefficients identical to that determined for the maltose-binding protein. For all proteins nearly 100% recovery of fluorescence was obtained after photobleaching, indicating that the periplasm is a single contiguous compartment surrounding the cell. These data have considerable implications for periplasmic structure and for the role of periplasmic proteins in transport and chemotaxis. Images PMID:3005237

  10. Periplasmic Structure in Saccharomyces rouxii (Boutroux), an Osmophil

    PubMed Central

    Arnold, Wilfred N.; Garrison, Robert G.; Boyd, Karen S.

    1974-01-01

    Electron micrographs of ultrathin sections of S. rouxii displayed electrondense, membrane-circumscribed structures between the protoplasmic membrane and the cell wall. These periplasmic bodies were numerous in cells from a 3-day culture and absent or rare in older cells. Periplasmic bodies were fewer and smaller (flattened) in specimens grown in a medium fortified with 10% sucrose; they were not detected in cells grown in 20% sucrose. A brief treatment with ethyl acetate caused the periplasmic bodies of young cells to become electron light. Periplasmic bodies were most prevalent in the regions of the bud scars and were often accommodated within large invaginations in the protoplasmic membrane. In general, conditions which favor the prevalence and electron density of periplasmic bodies are those which also mask the activity of β-fructofuranosidase in this species. Images PMID:4451363

  11. Protein quality control in the bacterial periplasm.

    PubMed

    Merdanovic, Melisa; Clausen, Tim; Kaiser, Markus; Huber, Robert; Ehrmann, Michael

    2011-01-01

    Protein quality control involves sensing and treatment of defective or incomplete protein structures. Misfolded or mislocalized proteins trigger dedicated signal transduction cascades that upregulate the production of protein quality-control factors. Corresponding proteases and chaperones either degrade or repair damaged proteins, thereby reducing the level of aggregation-prone molecules. Because the periplasm of gram-negative bacteria is particularly exposed to environmental changes and respective protein-folding stresses connected with the presence of detergents, low or high osmolarity of the medium, elevated temperatures, and the host's immune response, fine-tuned protein quality control systems are essential for survival under these unfavorable conditions. This review discusses recent advances in the identification and characterization of the key cellular factors and the emerging general principles of the underlying molecular mechanisms. PMID:21639788

  12. Quantitative Microplate Assay for Real-Time Nuclease Kinetics

    PubMed Central

    Langel, Ülo

    2016-01-01

    Utilizing the phenomenon of nucleases exposing oligonucleotide phosphate backbones to phosphatases we present a novel quantitative method for kinetics of nuclease catalysis. Inorganic phosphate released from nuclease products by phosphatases could be quantified in real-time by a fluorescent sensor of inorganic phosphate. Two different nucleases were employed, showing the versatility of this assay for multiple turnover label-free nuclease studies. PMID:27101307

  13. Mouse genome engineering using designer nucleases.

    PubMed

    Hermann, Mario; Cermak, Tomas; Voytas, Daniel F; Pelczar, Pawel

    2014-01-01

    Transgenic mice carrying site-specific genome modifications (knockout, knock-in) are of vital importance for dissecting complex biological systems as well as for modeling human diseases and testing therapeutic strategies. Recent advances in the use of designer nucleases such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system for site-specific genome engineering open the possibility to perform rapid targeted genome modification in virtually any laboratory species without the need to rely on embryonic stem (ES) cell technology. A genome editing experiment typically starts with identification of designer nuclease target sites within a gene of interest followed by construction of custom DNA-binding domains to direct nuclease activity to the investigator-defined genomic locus. Designer nuclease plasmids are in vitro transcribed to generate mRNA for microinjection of fertilized mouse oocytes. Here, we provide a protocol for achieving targeted genome modification by direct injection of TALEN mRNA into fertilized mouse oocytes. PMID:24747757

  14. Structure and Metal Loading of a Soluble Periplasm Cuproprotein*

    PubMed Central

    Waldron, Kevin J.; Firbank, Susan J.; Dainty, Samantha J.; Pérez-Rama, Mónica; Tottey, Steve; Robinson, Nigel J.

    2010-01-01

    A copper-trafficking pathway was found to enable Cu2+ occupancy of a soluble periplasm protein, CucA, even when competing Zn2+ is abundant in the periplasm. Here, we solved the structure of CucA (a new cupin) and found that binding of Cu2+, but not Zn2+, quenches the fluorescence of Trp165, which is adjacent to the metal site. Using this fluorescence probe, we established that CucA becomes partly occupied by Zn2+ following exposure to equimolar Zn2+ and Cu2+. Cu2+-CucA is more thermodynamically stable than Zn2+-CucA but k(Zn→Cu)exchange is slow, raising questions about how the periplasm contains solely the Cu2+ form. We discovered that a copper-trafficking pathway involving two copper transporters (CtaA and PacS) and a metallochaperone (Atx1) is obligatory for Cu2+-CucA to accumulate in the periplasm. There was negligible CucA protein in the periplasm of ΔctaA cells, but the abundance of cucA transcripts was unaltered. Crucially, ΔctaA cells overaccumulate low Mr copper complexes in the periplasm, and purified apoCucA can readily acquire Cu2+ from ΔctaA periplasm extracts, but in vivo apoCucA fails to come into contact with these periplasmic copper pools. Instead, copper traffics via a cytoplasmic pathway that is coupled to CucA translocation to the periplasm. PMID:20702411

  15. Structure and metal loading of a soluble periplasm cuproprotein.

    PubMed

    Waldron, Kevin J; Firbank, Susan J; Dainty, Samantha J; Pérez-Rama, Mónica; Tottey, Steve; Robinson, Nigel J

    2010-10-15

    A copper-trafficking pathway was found to enable Cu(2+) occupancy of a soluble periplasm protein, CucA, even when competing Zn(2+) is abundant in the periplasm. Here, we solved the structure of CucA (a new cupin) and found that binding of Cu(2+), but not Zn(2+), quenches the fluorescence of Trp(165), which is adjacent to the metal site. Using this fluorescence probe, we established that CucA becomes partly occupied by Zn(2+) following exposure to equimolar Zn(2+) and Cu(2+). Cu(2+)-CucA is more thermodynamically stable than Zn(2+)-CucA but k((Zn→Cu)exchange) is slow, raising questions about how the periplasm contains solely the Cu(2+) form. We discovered that a copper-trafficking pathway involving two copper transporters (CtaA and PacS) and a metallochaperone (Atx1) is obligatory for Cu(2+)-CucA to accumulate in the periplasm. There was negligible CucA protein in the periplasm of ΔctaA cells, but the abundance of cucA transcripts was unaltered. Crucially, ΔctaA cells overaccumulate low M(r) copper complexes in the periplasm, and purified apoCucA can readily acquire Cu(2+) from ΔctaA periplasm extracts, but in vivo apoCucA fails to come into contact with these periplasmic copper pools. Instead, copper traffics via a cytoplasmic pathway that is coupled to CucA translocation to the periplasm. PMID:20702411

  16. Nuclease digestion studies of chromatin structure

    SciTech Connect

    Deutsch, S.M.

    1987-01-01

    Micrococcal nuclease, which preferentially cleaves linker DNA in chromatin, was immobilized by covalent attachment to CNBr-activated agarose beads and used to study the accessibility of linker DNA in chromatin fibers prepared from chicken erythrocyte nuclei. This immobilized nuclease was able to cleave chromatin fibers into the typical pattern of fragments corresponding to multiples of mononucleosomes. Cleavage from only the ends of the fibers was ruled out by examining the products of cleavage of fibers end-labelled with /sup 35/P. Comparison of the rate of digestion by immobilized and soluble micrococcal nuclease indicated that the fiber structure does not significantly affect access to linker DNA. The absence of an effect of reducing temperatures on the rate of digestion of fibers, as compared to short oligonucleosomes, indicated that breathing motions to allow access to the fiber interior were not required for cleavage of linker DNA.

  17. Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases.

    PubMed

    Ishida, Kentaro; Gee, Peter; Hotta, Akitsu

    2015-01-01

    Programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and clustered regularly interspersed short palindromic repeats associated protein-9 (CRISPR-Cas9), hold tremendous potential for applications in the clinical setting to treat genetic diseases or prevent infectious diseases. However, because the accuracy of DNA recognition by these nucleases is not always perfect, off-target mutagenesis may result in undesirable adverse events in treated patients such as cellular toxicity or tumorigenesis. Therefore, designing nucleases and analyzing their activity must be carefully evaluated to minimize off-target mutagenesis. Furthermore, rigorous genomic testing will be important to ensure the integrity of nuclease modified cells. In this review, we provide an overview of available nuclease designing platforms, nuclease engineering approaches to minimize off-target activity, and methods to evaluate both on- and off-target cleavage of CRISPR-Cas9. PMID:26501275

  18. Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases

    PubMed Central

    Ishida, Kentaro; Gee, Peter; Hotta, Akitsu

    2015-01-01

    Programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and clustered regularly interspersed short palindromic repeats associated protein-9 (CRISPR-Cas9), hold tremendous potential for applications in the clinical setting to treat genetic diseases or prevent infectious diseases. However, because the accuracy of DNA recognition by these nucleases is not always perfect, off-target mutagenesis may result in undesirable adverse events in treated patients such as cellular toxicity or tumorigenesis. Therefore, designing nucleases and analyzing their activity must be carefully evaluated to minimize off-target mutagenesis. Furthermore, rigorous genomic testing will be important to ensure the integrity of nuclease modified cells. In this review, we provide an overview of available nuclease designing platforms, nuclease engineering approaches to minimize off-target activity, and methods to evaluate both on- and off-target cleavage of CRISPR-Cas9. PMID:26501275

  19. The Intimin periplasmic domain mediates dimerisation and binding to peptidoglycan.

    PubMed

    Leo, Jack C; Oberhettinger, Philipp; Chaubey, Manish; Schütz, Monika; Kühner, Daniel; Bertsche, Ute; Schwarz, Heinz; Götz, Friedrich; Autenrieth, Ingo B; Coles, Murray; Linke, Dirk

    2015-01-01

    Intimin and Invasin are prototypical inverse (Type Ve) autotransporters and important virulence factors of enteropathogenic Escherichia coli and Yersinia spp. respectively. In addition to a C-terminal extracellular domain and a β-barrel transmembrane domain, both proteins also contain a short N-terminal periplasmic domain that, in Intimin, includes a lysin motif (LysM), which is thought to mediate binding to peptidoglycan. We show that the periplasmic domain of Intimin does bind to peptidoglycan both in vitro and in vivo, but only under acidic conditions. We were able to determine a dissociation constant of 0.8 μM for this interaction, whereas the Invasin periplasmic domain, which lacks a LysM, bound only weakly in vitro and failed to bind peptidoglycan in vivo. We present the solution structure of the Intimin LysM, which has an additional α-helix conserved within inverse autotransporter LysMs but lacking in others. In contrast to previous reports, we demonstrate that the periplasmic domain of Intimin mediates dimerisation. We further show that dimerisation and peptidoglycan binding are general features of LysM-containing inverse autotransporters. Peptidoglycan binding by the periplasmic domain in the infection process may aid in resisting mechanical and chemical stress during transit through the gastrointestinal tract. PMID:25353290

  20. Folding LacZ in the periplasm of Escherichia coli.

    PubMed

    Dwyer, Robert S; Malinverni, Juliana C; Boyd, Dana; Beckwith, Jon; Silhavy, Thomas J

    2014-09-01

    Targeted, translational LacZ fusions provided the initial support for the signal sequence hypothesis in prokaryotes and allowed for selection of the mutations that identified the Sec translocon. Many of these selections relied on the fact that expression of targeted, translational lacZ fusions like malE-lacZ and lamB-lacZ42-1 causes lethal toxicity as folded LacZ jams the translocation pore. However, there is another class of targeted LacZ fusions that do not jam the translocon. These targeted, nonjamming fusions also show toxic phenotypes that may be useful for selecting mutations in genes involved in posttranslocational protein folding and targeting; however, they have not been investigated to the same extent as their jamming counterparts. In fact, it is still unclear whether LacZ can be fully translocated in these fusions. It may be that they simply partition into the inner membrane where they can no longer participate in folding or assembly. In the present study, we systematically characterize the nonjamming fusions and determine their ultimate localization. We report that LacZ can be fully translocated into the periplasm, where it is toxic. We show that this toxicity is likely due to LacZ misfolding and that, in the absence of the periplasmic disulfide bond catalyst DsbA, LacZ folds in the periplasm. Using the novel phenotype of periplasmic β-galactosidase activity, we show that the periplasmic chaperone FkpA contributes to LacZ folding in this nonnative compartment. We propose that targeted, nonjamming LacZ fusions may be used to further study folding and targeting in the periplasm of Escherichia coli. PMID:25002543

  1. Osmoregulated periplasmic glucans synthesis gene family of Shigella flexneri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osmoregulated periplasmic glucans (OPGs) of foodborne enteropathogen Shigella flexneri were characterized. OPGs were composed of 100 percent glucose with 2-linked glucose as the most abundant residue with terminal glucose, 2-linked and 2,6-linked glucose also present in high quantities. Most dominan...

  2. Origins of Programmable Nucleases for Genome Engineering.

    PubMed

    Chandrasegaran, Srinivasan; Carroll, Dana

    2016-02-27

    Genome engineering with programmable nucleases depends on cellular responses to a targeted double-strand break (DSB). The first truly targetable reagents were the zinc finger nucleases (ZFNs) showing that arbitrary DNA sequences could be addressed for cleavage by protein engineering, ushering in the breakthrough in genome manipulation. ZFNs resulted from basic research on zinc finger proteins and the FokI restriction enzyme (which revealed a bipartite structure with a separable DNA-binding domain and a non-specific cleavage domain). Studies on the mechanism of cleavage by 3-finger ZFNs established that the preferred substrates were paired binding sites, which doubled the size of the target sequence recognition from 9 to 18bp, long enough to specify a unique genomic locus in plant and mammalian cells. Soon afterwards, a ZFN-induced DSB was shown to stimulate homologous recombination in cells. Transcription activator-like effector nucleases (TALENs) that are based on bacterial TALEs fused to the FokI cleavage domain expanded this capability. The fact that ZFNs and TALENs have been used for genome modification of more than 40 different organisms and cell types attests to the success of protein engineering. The most recent technology platform for delivering a targeted DSB to cellular genomes is that of the RNA-guided nucleases, which are based on the naturally occurring Type II prokaryotic CRISPR-Cas9 system. Unlike ZFNs and TALENs that use protein motifs for DNA sequence recognition, CRISPR-Cas9 depends on RNA-DNA recognition. The advantages of the CRISPR-Cas9 system-the ease of RNA design for new targets and the dependence on a single, constant Cas9 protein-have led to its wide adoption by research laboratories around the world. These technology platforms have equipped scientists with an unprecedented ability to modify cells and organisms almost at will, with wide-ranging implications across biology and medicine. However, these nucleases have also been shown to cut

  3. Targeting DNA Double-Strand Breaks with TAL Effector Nucleases

    PubMed Central

    Christian, Michelle; Cermak, Tomas; Doyle, Erin L.; Schmidt, Clarice; Zhang, Feng; Hummel, Aaron; Bogdanove, Adam J.; Voytas, Daniel F.

    2010-01-01

    Engineered nucleases that cleave specific DNA sequences in vivo are valuable reagents for targeted mutagenesis. Here we report a new class of sequence-specific nucleases created by fusing transcription activator-like effectors (TALEs) to the catalytic domain of the FokI endonuclease. Both native and custom TALE-nuclease fusions direct DNA double-strand breaks to specific, targeted sites. PMID:20660643

  4. Genome Editing in Mice Using TALE Nucleases.

    PubMed

    Wefers, Benedikt; Brandl, Christina; Ortiz, Oskar; Wurst, Wolfgang; Kühn, Ralf

    2016-01-01

    Gene engineering for generating targeted mouse mutants is a key technology for biomedical research. Using TALENs as sequence-specific nucleases to induce targeted double-strand breaks, the mouse genome can be directly modified in zygotes in a single step without the need for embryonic stem cells. By embryo microinjection of TALEN mRNAs and targeting vectors, knockout and knock-in alleles can be generated fast and efficiently. In this chapter we provide protocols for the application of TALENs in mouse zygotes. PMID:26443225

  5. Periplasmal Physics: The Rotational Dynamics of Spirochetal Flagella

    NASA Astrophysics Data System (ADS)

    Huber, Greg

    2012-02-01

    Spirochetes are distinguished by the location of their flagella, which reside within the periplasm: the tiny space between the bacterial cell wall and the outer membrane. In Borrelia burgdorferi/ (the causative agent of Lyme Disease), rotation of the flagella leads to cellular undulations that drive swimming. Exactly how these shape changes arise due to the forces and torques acting between the flagella and the cell body is unknown. By applying low-Reynolds number hydrodynamic theory to the motion of an elastic flagellum rotating in the periplasm, we show that the flagella are most likely separated from the bacterial cell wall by a lubricating layer of fluid. We obtain analytical solutions for the force and torque on the rotating flagellum through lubrication analysis, as well as through scaling analysis, and find results are in close agreement numerical simulations. (Joint work with J. Yang and C.W. Wolgemuth.)

  6. Monomeric site-specific nucleases for genome editing

    PubMed Central

    Kleinstiver, Benjamin P.; Wolfs, Jason M.; Kolaczyk, Tomasz; Roberts, Alanna K.; Hu, Sherry X.; Edgell, David R.

    2012-01-01

    Targeted manipulation of complex genomes often requires the introduction of a double-strand break at defined locations by site-specific DNA endonucleases. Here, we describe a monomeric nuclease domain derived from GIY-YIG homing endonucleases for genome-editing applications. Fusion of the GIY-YIG nuclease domain to three-member zinc-finger DNA binding domains generated chimeric GIY-zinc finger endonucleases (GIY-ZFEs). Significantly, the I-TevI-derived fusions (Tev-ZFEs) function in vitro as monomers to introduce a double-strand break, and discriminate in vitro and in bacterial and yeast assays against substrates lacking a preferred 5′-CNNNG-3′ cleavage motif. The Tev-ZFEs function to induce recombination in a yeast-based assay with activity on par with a homodimeric Zif268 zinc-finger nuclease. We also fused the I-TevI nuclease domain to a catalytically inactive LADGLIDADG homing endonuclease (LHE) scaffold. The monomeric Tev-LHEs are active in vivo and similarly discriminate against substrates lacking the 5′-CNNNG-3′ motif. The monomeric Tev-ZFEs and Tev-LHEs are distinct from the FokI-derived zinc-finger nuclease and TAL effector nuclease platforms as the GIY-YIG domain alleviates the requirement to design two nuclease fusions to target a given sequence, highlighting the diversity of nuclease domains with distinctive biochemical properties suitable for genome-editing applications. PMID:22566637

  7. Venturing into the New Science of Nucleases.

    PubMed

    Tolarová, Markéta; McGrath, John A; Tolar, Jakub

    2016-04-01

    Gene editing with zinc finger nucleases, transcription activator-like effector nucleases, clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated proteins system, or meganucleases can, in principle, mediate any genome modification. Recent studies have shown that COL7A1 mutations in cells of patients with recessive dystrophic epidermolysis bullosa can be corrected by homology-directed DNA repair. PMID:27012560

  8. Engineered apoptotic nucleases for chromatin research.

    PubMed

    Xiao, Fei; Widlak, Piotr; Garrard, William T

    2007-01-01

    We have created new genomics tools for chromatin research by genetically engineering the human and mouse major apoptotic nucleases that are responsible for internucleosomal DNA cleavage, DNA fragmentation factor (DFF). Normally, in its inactive form, DFF is a heterodimer composed of a 45-kDa chaperone inhibitor subunit (DFF45 or ICAD), and a 40-kDa latent endonuclease subunit (DFF40 or CAD). Upon caspase-3 cleavage of DFF45, DFF40 forms active endonuclease homo-oligomers. Although Saccharomyces cerevisiae lacks DFF, expression of caspase-3 is lethal in this organism, but expression of the highly sequence-specific tobacco etch virus protease (TEVP) is harmless. Therefore, we inserted TEVP cleavage sites immediately downstream of the two caspase-3 cleavage sites within DFF45, generating a novel form of DFF (DFF-T) whose nuclease activity proved to be exclusively under the control of TEVP. We demonstrate that co-expression of TEVP and DFF-T under galactose control results in nucleosomal DNA laddering and cell death in S. cerevisiae. We also created synthetic DFF genes with optimized codons for high-level expression in Eschericia coli or S. cerevisiae. We further demonstrate the excellence of the synthetic gene products for in vitro mapping of the nucleosome positions and hypersensitive sites in specific genes such as the yeast PHO5. PMID:17626049

  9. Effect of irradiation and endogenous nucleases on rat liver chromatin

    SciTech Connect

    Gelderblom, D.; Smit, B.J.; Boehm, L.

    1984-08-01

    The assessment of the consequences of irradiation on chromatin is complicated by endogenous nucleases. Isolation and prolonged storage of rat liver nuclei in buffers containing divalent metal ions activates these enzymes and promotes the degradation of chromatin. Irradiation of rat liver nuclei to dose levels of 20,000 rad under conditions in which endogenous nucleases are inhibited and analysis of the irradiated chromatin by sucrose density gradient centrifugation gave no evidence for monosomes or oligosomes. When chromatin from irradiated nuclei was digested with micrococcal nuclease, the levels of monosomes and oligosomes were identical to those of micrococcal nuclease digests of unirradiated control nuclei. These results suggest that irradiation results in neither a direct fragmentation of linkers nor the sensitization of linkers for subsequent cleavage by micrococcal nuclease.

  10. Electrostatic effects in unfolded staphylococcal nuclease

    PubMed Central

    Fitzkee, Nicholas C.; García-Moreno E, Bertrand

    2008-01-01

    Structure-based calculations of pK a values and electrostatic free energies of proteins assume that electrostatic effects in the unfolded state are negligible. In light of experimental evidence showing that this assumption is invalid for many proteins, and with increasing awareness that the unfolded state is more structured and compact than previously thought, a detailed examination of electrostatic effects in unfolded proteins is warranted. Here we address this issue with structure-based calculations of electrostatic interactions in unfolded staphylococcal nuclease. The approach involves the generation of ensembles of structures representing the unfolded state, and calculation of Coulomb energies to Boltzmann weight the unfolded state ensembles. Four different structural models of the unfolded state were tested. Experimental proton binding data measured with a variant of nuclease that is unfolded under native conditions were used to establish the validity of the calculations. These calculations suggest that weak Coulomb interactions are an unavoidable property of unfolded proteins. At neutral pH, the interactions are too weak to organize the unfolded state; however, at extreme pH values, where the protein has a significant net charge, the combined action of a large number of weak repulsive interactions can lead to the expansion of the unfolded state. The calculated pK a values of ionizable groups in the unfolded state are similar but not identical to the values in small peptides in water. These studies suggest that the accuracy of structure-based calculations of electrostatic contributions to stability cannot be improved unless electrostatic effects in the unfolded state are calculated explicitly. PMID:18227429

  11. Holo- And Apo- Structures of Bacterial Periplasmic Heme Binding Proteins

    SciTech Connect

    Ho, W.W.; Li, H.; Eakanunkul, S.; Tong, Y.; Wilks, A.; Guo, M.; Poulos, T.L.

    2009-06-01

    An essential component of heme transport in Gram-negative bacterial pathogens is the periplasmic protein that shuttles heme between outer and inner membranes. We have solved the first crystal structures of two such proteins, ShuT from Shigella dysenteriae and PhuT from Pseudomonas aeruginosa. Both share a common architecture typical of Class III periplasmic binding proteins. The heme binds in a narrow cleft between the N- and C-terminal binding domains and is coordinated by a Tyr residue. A comparison of the heme-free (apo) and -bound (holo) structures indicates little change in structure other than minor alterations in the heme pocket and movement of the Tyr heme ligand from an 'in' position where it can coordinate the heme iron to an 'out' orientation where it points away from the heme pocket. The detailed architecture of the heme pocket is quite different in ShuT and PhuT. Although Arg{sup 228} in PhuT H-bonds with a heme propionate, in ShuT a peptide loop partially takes up the space occupied by Arg{sup 228}, and there is no Lys or Arg H-bonding with the heme propionates. A comparison of PhuT/ShuT with the vitamin B{sub 12}-binding protein BtuF and the hydroxamic-type siderophore-binding protein FhuD, the only two other structurally characterized Class III periplasmic binding proteins, demonstrates that PhuT/ShuT more closely resembles BtuF, which reflects the closer similarity in ligands, heme and B{sub 12}, compared with ligands for FhuD, a peptide siderophore.

  12. Copper, zinc superoxide dismutase in Escherichia coli: periplasmic localization.

    PubMed

    Benov, L; Chang, L Y; Day, B; Fridovich, I

    1995-06-01

    Cu,ZnSOD purified from Escherichia coli has been used to raise antibodies in rabbits. The resultant antiserum was found to recognize a single band on Western blots of SDS-polyacrylamide gel electropherograms, and that single band coincided with the position of the Cu,ZnSOD. Ultrathin sections of fixed E. coli were treated with the antibody followed by protein A bearing 10-nm gold particles. Electron microscopy revealed that Cu,ZnSOD was largely localized in the periplasm in polar bays. PMID:7786035

  13. Dynamic periplasmic chaperone reservoir facilitates biogenesis of outer membrane proteins.

    PubMed

    Costello, Shawn M; Plummer, Ashlee M; Fleming, Patrick J; Fleming, Karen G

    2016-08-16

    Outer membrane protein (OMP) biogenesis is critical to bacterial physiology because the cellular envelope is vital to bacterial pathogenesis and antibiotic resistance. The process of OMP biogenesis has been studied in vivo, and each of its components has been studied in isolation in vitro. This work integrates parameters and observations from both in vivo and in vitro experiments into a holistic computational model termed "Outer Membrane Protein Biogenesis Model" (OMPBioM). We use OMPBioM to assess OMP biogenesis mathematically in a global manner. Using deterministic and stochastic methods, we are able to simulate OMP biogenesis under varying genetic conditions, each of which successfully replicates experimental observations. We observe that OMPs have a prolonged lifetime in the periplasm where an unfolded OMP makes, on average, hundreds of short-lived interactions with chaperones before folding into its native state. We find that some periplasmic chaperones function primarily as quality-control factors; this function complements the folding catalysis function of other chaperones. Additionally, the effective rate for the β-barrel assembly machinery complex necessary for physiological folding was found to be higher than has currently been observed in vitro. Overall, we find a finely tuned balance between thermodynamic and kinetic parameters maximizes OMP folding flux and minimizes aggregation and unnecessary degradation. In sum, OMPBioM provides a global view of OMP biogenesis that yields unique insights into this essential pathway. PMID:27482090

  14. Dissecting the Escherichia coli periplasmic chaperone network using differential proteomics

    PubMed Central

    Vertommen, Didier; Silhavy, Thomas J.; Collet, Jean-Francois

    2013-01-01

    β-barrel proteins, or outer membrane proteins (OMPs), perform many essential functions in Gram-negative bacteria, but questions remain about the mechanism by which they are assembled into the outer membrane (OM). In Escherichia coli, β-barrels are escorted across the periplasm by chaperones, most notably SurA and Skp. However, the contributions of these two chaperones to the assembly of the OM proteome remained unclear. We used differential proteomics to determine how the elimination of Skp and SurA affects the assembly of many OMPs. We have shown that removal of Skp has no impact on the levels of the 63 identified OM proteins. However, depletion of SurA in the skp strain has a marked impact on the OM proteome, diminishing the levels of almost all β-barrel proteins. Our results are consistent with a model in which SurA plays a primary chaperone role in E. coli. Furthermore, they suggest that while no OMPs prefer the Skp chaperone pathway in wild-type cells, most can use Skp efficiently when SurA is absent. Our data, which provide a unique glimpse into the protein content of the non-viable surA skp mutant, clarify the roles of the periplasmic chaperones in E. coli. PMID:22589188

  15. Catalytic activity of nuclease P1: Experiment and theory

    SciTech Connect

    Miller, J.H.; Falcone, J.M.; Shibata, M.; Box, H.C.

    1994-10-01

    Nuclease P1 from Penicillium citrinum is a zinc dependent glyco-enzyme that recognizes single stranded DNA and RNA as substrates and hydrolyzes the phosphate ester bond. Nuclease Pl seems to recognize particular conformations of the phosphodiester backbone and shows significant variation in the rate of hydrolytic activity depending upon which nucleosides are coupled by the phosphodiester bond. The efficiency of nuclease Pl in hydrolyzing the phosphodiester bonds of a substrate can be altered by modifications to one of the substrate bases induced by ionizing radiation or oxidative stress. Measurements have been made of the effect of several radiation induced lesions on the catalytic rate of nuclease Pl. A model of the structure of the enzyme has been constructed in order to better understand the binding and activity of this enzyme on various ssDNA substrates.

  16. GENOME EDITING IN HUMAN CELLS USING CRISPR/CAS NUCLEASES

    PubMed Central

    Wyvekens, Nicolas; Tsai, Shengdar; Joung, J. Keith

    2016-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has been broadly adopted for highly efficient genome editing in a variety of model organisms and human cell types. Unlike previous genome editing technologies such as Zinc Finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs), the CRISPR/Cas technology does not require complex protein engineering and can be utilized by any researcher proficient in basic molecular biology and cell culture techniques. Here we describe protocols for design and cloning of vectors expressing single or multiplex gRNAs, for transient transfection of human cell lines, and for quantitation of mutation frequencies by T7 Endonuclease I assay. These protocols also include guidance for using two improvements that increase the specificity of CRISPR/Cas nucleases: truncated gRNAs and dimeric RNA-guided FokI nucleases. PMID:26423589

  17. The foldon substructure of staphylococcal nuclease.

    PubMed

    Bédard, Sabrina; Mayne, Leland C; Peterson, Ronald W; Wand, A Joshua; Englander, S Walter

    2008-02-29

    To search for submolecular foldon units, the spontaneous reversible unfolding and refolding of staphylococcal nuclease under native conditions was studied by a kinetic native-state hydrogen exchange (HX) method. As for other proteins, it appears that staphylococcal nuclease is designed as an assembly of well-integrated foldon units that may define steps in its folding pathway and may regulate some other functional properties. The HX results identify 34 amide hydrogens that exchange with solvent hydrogens under native conditions by way of large transient unfolding reactions. The HX data for each hydrogen measure the equilibrium stability (Delta G(HX)) and the kinetic unfolding and refolding rates (k(op) and k(cl)) of the unfolding reaction that exposes it to exchange. These parameters separate the 34 identified residues into three distinct HX groupings. Two correspond to clearly defined structural units in the native protein, termed the blue and red foldons. The remaining HX grouping contains residues, not well separated by their HX parameters alone, that represent two other distinct structural units in the native protein, termed the green and yellow foldons. Among these four sets, a last unfolding foldon (blue) unfolds with a rate constant of 6 x 10(-6) s(-1) and free energy equal to the protein's global stability (10.0 kcal/mol). It represents part of the beta-barrel, including mutually H-bonding residues in the beta 4 and beta 5 strands, a part of the beta 3 strand that H-bonds to beta 5, and residues at the N-terminus of the alpha2 helix that is capped by beta 5. A second foldon (green), which unfolds and refolds more rapidly and at slightly lower free energy, includes residues that define the rest of the native alpha2 helix and its C-terminal cap. A third foldon (yellow) defines the mutually H-bonded beta1-beta2-beta 3 meander, completing the native beta-barrel, plus an adjacent part of the alpha1 helix. A final foldon (red) includes residues on remaining

  18. Analysis of the periplasmic proteome of Pseudomonas aeruginosa, a metabolically versatile opportunistic pathogen.

    PubMed

    Imperi, Francesco; Ciccosanti, Fabiola; Perdomo, Ariel Basulto; Tiburzi, Federica; Mancone, Carmine; Alonzi, Tonino; Ascenzi, Paolo; Piacentini, Mauro; Visca, Paolo; Fimia, Gian Maria

    2009-04-01

    The Gram-negative bacterium Pseudomonas aeruginosa is a main cause of infection in hospitalized, burned, immunocompromised, and cystic fibrosis patients. Many processes essential for P. aeruginosa pathogenesis, e.g., nutrient uptake, antibiotic resistance, and virulence, take place in the cell envelope and depend on components residing in the periplasmic space. Recent high-throughput studies focused on P. aeruginosa membrane compartments. However, the composition and dynamics of its periplasm remain largely uncharacterized. Here, we report a detailed description of the periplasmic proteome of the wild-type P. aeruginosa strain PAO1 by 2-DE and MALDI-TOF/TOF analysis. Three extraction methods were compared at proteome level in order to achieve the most reliable and comprehensive periplasmic protein map. A total of 495 spots representing 395 different proteins were identified. Most of the high intensity spots corresponded to periplasmic proteins, while cytoplasmic contaminants were mainly detected among faint spots. The majority of the identified periplasmic proteins is involved in transport, cell-envelope integrity, and protein folding control. Notably, more than 30% still has an unpredicted function. This work provides the first overview of the P. aeruginosa periplasm and offers the basis for future studies on periplasmic proteome changes occurring during P. aeruginosa adaptation to different environments and/or antibiotic treatments. PMID:19333994

  19. Degradation versus aggregation of misfolded maltose-binding protein in the periplasm of Escherichia coli.

    PubMed

    Betton, J M; Sassoon, N; Hofnung, M; Laurent, M

    1998-04-10

    The periplasmic fates of misfolded MalE31, a defective folding mutant of the maltose-binding protein, were determined by manipulating two cellular activities affecting the protein folding pathway in host cells: (i) the malEp promoter activity, which is controlled by the transcriptional activator MalT, and (ii) the DegP and Protease III periplasmic proteolytic activity. At a low level of expression, the degradation of misfolded MalE31 was partially impaired in cells lacking DegP or Protease III. At a high level of expression, misfolded MalE31 rapidly formed periplasmic inclusion bodies and thus escaped degradation. However, the manipulated host cell activities did not enhance the production of periplasmic, soluble MalE31. A kinetic competition between folding, aggregation, and degradation is proposed as a general model for the biogenesis of periplasmic proteins. PMID:9535871

  20. ARTEMIS nuclease facilitates apoptotic chromatin cleavage.

    PubMed

    Britton, Sébastien; Frit, Philippe; Biard, Denis; Salles, Bernard; Calsou, Patrick

    2009-10-15

    One hallmark of apoptosis is DNA degradation that first appears as high molecular weight fragments followed by extensive internucleosomal fragmentation. During apoptosis, the DNA-dependent protein kinase (DNA-PK) is activated. DNA-PK is involved in the repair of DNA double-strand breaks (DSB) and its catalytic subunit is associated with the nuclease ARTEMIS. Here, we report that, on initiation of apoptosis in human cells by agents causing DNA DSB or by staurosporine or other agents, ARTEMIS binds to apoptotic chromatin together with DNA-PK and other DSB repair proteins. ARTEMIS recruitment to chromatin showed a time and dose dependency. It required DNA-PK protein kinase activity and was blocked by antagonizing the onset of apoptosis with a pan-caspase inhibitor or on overexpression of the antiapoptotic BCL2 protein. In the absence of ARTEMIS, no defect in caspase-3, poly(ADP-ribose) polymerase-1, and XRCC4 cleavage or in H2AX phosphorylation was observed and DNA-PK catalytic subunit was still phosphorylated on S2056 in response to staurosporine. However, DNA fragmentation including high molecular weight fragmentation was delayed in ARTEMIS-deficient cells compared with cells expressing ARTEMIS. In addition, ARTEMIS enhanced the kinetics of MLL gene cleavage at a breakage cluster breakpoint that is frequently translocated in acute or therapy-related leukemias. These results show a facilitating role for ARTEMIS at least in early, site-specific chromosome breakage during apoptosis. PMID:19808974

  1. Protein diffusion in the periplasm of E. coli under osmotic stress.

    PubMed

    Sochacki, Kem A; Shkel, Irina A; Record, M Thomas; Weisshaar, James C

    2011-01-01

    The physical and mechanical properties of the cell envelope of Escherichia coli are poorly understood. We use fluorescence recovery after photobleaching to measure diffusion of periplasmic green fluorescent protein and probe the fluidity of the periplasm as a function of external osmotic conditions. For cells adapted to growth in complete medium at 0.14-1.02 Osm, the mean diffusion coefficient increases from 3.4 μm² s⁻¹ to 6.6 μm² s⁻¹ and the distribution of D(peri) broadens as growth osmolality increases. This is consistent with a net gain of water by the periplasm, decreasing its biopolymer volume fraction. This supports a model in which the turgor pressure drops primarily across the thin peptidoglycan layer while the cell actively maintains osmotic balance between periplasm and cytoplasm, thus avoiding a substantial pressure differential across the cytoplasmic membrane. After sudden hyperosmotic shock (plasmolysis), the cytoplasm loses water as the periplasm gains water. Accordingly, increases threefold. The fluorescence recovery after photobleaching is complete and homogeneous in all cases, but in minimal medium, the periplasm is evidently thicker at the cell tips. For the relevant geometries, Brownian dynamics simulations in model cytoplasmic and periplasmic volumes provide analytical formulae for extraction of accurate diffusion coefficients from readily measurable quantities. PMID:21190653

  2. Function of periplasmic copper-zinc superoxide dismutase in Caulobacter crescentus.

    PubMed

    Steinman, H M

    1993-02-01

    Caulobacter crescentus is one of a small number of bacterial species that contain a periplasmic copper-zinc superoxide dismutase (CuZnSOD). A C. crescentus mutant, with the CuZnSOD gene interrupted by a promoterless cat gene, was constructed and characterized to analyze CuZnSOD function. Periplasmic SOD does not protect against oxyradical damage in the cytosol or play a major role in maintaining the integrity of the cell envelope. Studies of the effect of sodium citrate on plating efficiency suggest that CuZnSOD protects a periplasmic or membrane function(s) requiring magnesium or calcium. PMID:8432713

  3. Hybrid nanosensor for colorimetric and ultrasensitive detection of nuclease contaminations

    NASA Astrophysics Data System (ADS)

    Cecere, Paola; Valentini, Paola; Pompa, Pier Paolo

    2016-04-01

    Nucleases are ubiquitous enzymes that degrade DNA or RNA, thus they can prejudice the good outcome of molecular biology experiments involving nucleic acids. We propose a colorimetric test for the naked-eye detection of nuclease contaminations. The system uses an hybrid nanosensor, based on gold nanoparticles functionalized with DNA probes. Our assay is rapid, instrument-free, simple and low-cost. Moreover, it reaches sensitivity equal or better than those of commercial kits, and presents a lot of advantageous aspects. Therefore, it is very competitive, with a real market potential. This test will be relevant in routine process monitoring in scientific laboratories, and in quality control in clinical laboratories and industrial processes, allowing the simultaneous detection of nucleases with different substrate specificities and large-scale screening.

  4. Direct Metal Transfer between Periplasmic Proteins Identifies a Bacterial Copper Chaperone†

    PubMed Central

    Bagai, Ireena; Rensing, Christopher; Blackburn, Ninian J.; McEvoy, Megan M.

    2008-01-01

    Transition metals require exquisite handling within cells to ensure that cells are not harmed by an excess of free metal species. In gram-negative bacteria, copper is only required in low amounts in the periplasm, not in the cytoplasm, so a key aspect of protection under excess metal conditions is to export copper from the periplasm. Additional protection could be conferred by a periplasmic chaperone in order to limit the free metal species prior to export. Using isothermal titration calorimetry, we have demonstrated that two periplasmic proteins, CusF and CusB, of the E. coli Cu(I)/Ag(I) efflux system undergo a metal dependent interaction. Through the development of a novel X-ray absorption spectroscopy approach using selenomethionine labeling to distinguish the metal sites of the two proteins, we have demonstrated transfer of Cu(I) occurs between CusF and CusB. The interaction between these proteins is highly specific, as a homolog of CusF with 51% sequence identity and similar affinity for metal, did not function in metal transfer. These experiments establish a metallochaperone activity for CusF in the periplasm of gram-negative bacteria, serving to protect the periplasm from metal-mediated damage. PMID:18847219

  5. Periplasmic production of native human proinsulin as a fusion to E. coli ecotin.

    PubMed

    Malik, Ajamaluddin; Jenzsch, Marco; Lübbert, Andreas; Rudolph, Rainer; Söhling, Brigitte

    2007-09-01

    Native proinsulin belongs to the class of the difficult-to-express proteins in Escherichia coli. Problems mainly arise due to its small size, a high proteolytic decay, and the necessity to form a native disulfide pattern. In the present study, human proinsulin was produced in the periplasm of E. coli as a fusion to ecotin, which is a small periplasmic protein of 16 kDa encoded by the host, containing one disulfide bond. The fusion protein was secreted to the periplasm and native proinsulin was determined by ELISA. Cultivation parameters were studied in parallel batch mode fermentations using E. coli BL21(DE3)Gold as a host. After improvement of fed-batch high density fermentation conditions, 153 mg fusion protein corresponding to 51.5mg native proinsulin was obtained per L. Proteins were extracted from the periplasm by osmotic shock treatment. The fusion protein was purified in one step by ecotin affinity chromatography on immobilized trypsinogen. After thrombin cleavage of the fusion protein, the products were separated by Ni-NTA chromatography. Proinsulin was quantified by ELISA and characterized by mass spectrometry. To evaluate the influence of periplasmic proteases, the amount of ecotin-proinsulin was determined in E. coli BL21(DE3)Gold and in a periplasmic protease deficient strain, E. coli SF120. PMID:17509894

  6. c-Type Cytochrome Assembly Is a Key Target of Copper Toxicity within the Bacterial Periplasm

    PubMed Central

    Durand, Anne; Azzouzi, Asma; Bourbon, Marie-Line; Steunou, Anne-Soisig; Liotenberg, Sylviane; Maeshima, Akinori; Astier, Chantal; Argentini, Manuela; Saito, Shingo

    2015-01-01

    ABSTRACT In the absence of a tight control of copper entrance into cells, bacteria have evolved different systems to control copper concentration within the cytoplasm and the periplasm. Central to these systems, the Cu+ ATPase CopA plays a major role in copper tolerance and translocates copper from the cytoplasm to the periplasm. The fate of copper in the periplasm varies among species. Copper can be sequestered, oxidized, or released outside the cells. Here we describe the identification of CopI, a periplasmic protein present in many proteobacteria, and show its requirement for copper tolerance in Rubrivivax gelatinosus. The ΔcopI mutant is more susceptible to copper than the Cu+ ATPase copA mutant. CopI is induced by copper, localized in the periplasm and could bind copper. Interestingly, copper affects cytochrome c membrane complexes (cbb3 oxidase and photosystem) in both ΔcopI and copA-null mutants, but the causes are different. In the copA mutant, heme and chlorophyll synthesis are affected, whereas in ΔcopI mutant, the decrease is a consequence of impaired cytochrome c assembly. This impact on c-type cytochromes would contribute also to the copper toxicity in the periplasm of the wild-type cells when they are exposed to high copper concentrations. PMID:26396241

  7. A triple-color fluorescent probe for multiple nuclease assays.

    PubMed

    Xu, Qinfeng; Zhang, Yihong; Zhang, Chun-yang

    2015-06-01

    We develop a triple-color fluorescent probe which may function as a lab-on-a-DNA-molecule for simultaneous detection of multiple exonucleases/restriction endonucleases. This triple-color fluorescent probe can be further applied for the discrimination of seven exonucleases and four cell lines as well as the screening of various nuclease inhibitors. PMID:25940190

  8. Use of the human hepcidin gene to build a positive-selection vector for periplasmic expression in Escherichia coli.

    PubMed

    Haustant, Jérome; Sil, Annesha; Maillo-Rius, Christopher; Hocquellet, Agnès; Costaglioli, Patricia; Garbay, Bertrand; Dieryck, Wilfrid

    2016-05-01

    Recombinant proteins are often produced in the periplasm of Escherichia coli because this facilitates the purification process. The oxidizing environment favors the formation of disulfide bridges. We showed that the periplasmic expression of the human hormone hepcidin 25 (Hep25) fused to the maltose-binding protein (MBP) resulted in cell death. This toxicity was not observed when MBP-Hep25 accumulated in the bacterial cytoplasm, or when Hep25 was addressed to the periplasm without the MBP tag. We then modified the periplasmic expression vector pMALp2E to create pMALp2EH, a positive-selection vector with Hep25 as counterselection gene. PMID:26873403

  9. Cloning and Expression of Recombinant Human Endostatin in Periplasm of Escherichia coli Expression System

    PubMed Central

    Mohajeri, Abbas; Pilehvar-Soltanahmadi, Yones; Pourhassan-Moghaddam, Mohammad; Abdolalizadeh, Jalal; Karimi, Pouran; Zarghami, Nosratollah

    2016-01-01

    Purpose: Recombinant human endostatin (rhEs) is an angiogenesis inhibitor which is used as a specific drug in the treatment of non-small-cell lung cancer. In the current research, we developed an efficient method for expressing soluble form of the rhEs protein in the periplasmic space of Escherichia coli via fusing with pelB signal peptide. Methods: The human endostatin (hEs) gene was amplified using synthetic (hEs) gene as a template; then, cloned and expressed under T7 lac promoter. IPTG was used as an inducer for rhEs expression. Next, the osmotic shock was used to extraction of protein from the periplasmic space. The presence of rhEs in the periplasmic space was approved by SDS-PAGE and Western blotting. Results: The results show the applicability of pelB fusion protein system usage for secreting rhEs in the periplasm of E. coli in the laboratory scale. The rhEs represents approximately 35 % (0.83mg/l) of the total cell protein. Conclusion: The present study apparently is the first report of codon-optimized rhEs expression as a fusion with pelB signal peptide. The results presented the successful secretion of soluble rhEs to the periplasmic space. PMID:27478780

  10. Engineered Escherichia coli with Periplasmic Carbonic Anhydrase as a Biocatalyst for CO2 Sequestration

    PubMed Central

    Jo, Byung Hoon; Kim, Im Gyu; Seo, Jeong Hyun; Kang, Dong Gyun

    2013-01-01

    Carbonic anhydrase is an enzyme that reversibly catalyzes the hydration of carbon dioxide (CO2). It has been suggested recently that this remarkably fast enzyme can be used for sequestration of CO2, a major greenhouse gas, making this a promising alternative for chemical CO2 mitigation. To promote the economical use of enzymes, we engineered the carbonic anhydrase from Neisseria gonorrhoeae (ngCA) in the periplasm of Escherichia coli, thereby creating a bacterial whole-cell catalyst. We then investigated the application of this system to CO2 sequestration by mineral carbonation, a process with the potential to store large quantities of CO2. ngCA was highly expressed in the periplasm of E. coli in a soluble form, and the recombinant bacterial cell displayed the distinct ability to hydrate CO2 compared with its cytoplasmic ngCA counterpart and previously reported whole-cell CA systems. The expression of ngCA in the periplasm of E. coli greatly accelerated the rate of calcium carbonate (CaCO3) formation and exerted a striking impact on the maximal amount of CaCO3 produced under conditions of relatively low pH. It was also shown that the thermal stability of the periplasmic enzyme was significantly improved. These results demonstrate that the engineered bacterial cell with periplasmic ngCA can successfully serve as an efficient biocatalyst for CO2 sequestration. PMID:23974145

  11. Relationship of Treponema denticola periplasmic flagella to irregular cell morphology.

    PubMed Central

    Ruby, J D; Li, H; Kuramitsu, H; Norris, S J; Goldstein, S F; Buttle, K F; Charon, N W

    1997-01-01

    Treponema denticola is an anaerobic, motile, oral spirochete associated with periodontal disease. We found that the periplasmic flagella (PFs), which are located between the outer membrane sheath and cell cylinder, influence its morphology in a unique manner. In addition, the protein composition of the PFs was found to be quite complex and similar to those of other spirochetes. Dark-field microscopy revealed that most wild-type cells had an irregular twisted morphology, with both planar and helical regions, and a minority of cells had a regular right-handed helical shape. High-voltage electron microscopy indicated that the PFs, especially in those regions of the cell which were planar, wrapped around the cell body axis in a right-handed sense. In those regions of the cell which were helical or irregular, the PFs tended to lie along the cell axis. The PFs caused the cell to form the irregular shape, as two nonmotile, PF-deficient mutants (JR1 and HL51) were no longer irregular but were right-handed helices. JR1 was isolated as a spontaneously occurring nonmotile mutant, and HL51 was isolated as a site-directed mutant in the flagellar hook gene flgE. Consistent with these results is the finding that wild-type cells with their outer membrane sheath removed were also right-handed helices similar in shape to JR1 and HL51. Purified PFs were analyzed by two-dimensional gel electrophoresis, and several protein species were identified. Western blot analysis using antisera to Treponema pallidum PF proteins along with N-terminal amino acid sequence analysis indicated T. denticola PFs are composed of one class A sheath protein of 38 kDa (FlaA) and three class B proteins of 35 kDa (FlaB1 and FlaB2) and one of 34 kDa (FlaB3). The N-terminal amino acid sequences of the FlaA and FlaB proteins of T. denticola were most similar to those of T. pallidum and Treponema phagedenis. Because these proteins were present in markedly reduced amounts or were absent in HL51, PF synthesis is

  12. The multifunctional SNM1 gene family: not just nucleases

    PubMed Central

    Yan, Yiyi; Akhter, Shamima; Zhang, Xiaoshan; Legerski, Randy

    2010-01-01

    The archetypical member of the SNM1 gene family was discovered 30 years ago in the budding yeast Saccharomyces cerevisiae. This small but ubiquitous gene family is characterized by metallo-β-lactamase and β-CASP domains, which together have been demonstrated to comprise a nuclease activity. Three mammalian members of this family, SNM1A, SNM1B/Apollo and Artemis, have been demonstrated to play surprisingly divergent roles in cellular metabolism. These pathways include variable (diversity) joining recombination, nonhomologous end-joining of double-strand breaks, DNA damage and mitotic cell cycle checkpoints, telomere maintenance and protein ubiquitination. Not all of these functions are consistent with a model in which these proteins act only as nucleases, and indicate that the SNM1 gene family encodes multifunctional products that can act in diverse biochemical pathways. In this article we discuss the various functions of SNM1A, SNM1B/Apollo and Artemis. PMID:20528238

  13. Functional Specificity of Extracellular Nucleases of Shewanella oneidensis MR-1

    PubMed Central

    Heun, Magnus; Binnenkade, Lucas; Kreienbaum, Maximilian

    2012-01-01

    Bacterial species such as Shewanella oneidensis MR-1 require extracellular nucleolytic activity for the utilization of extracellular DNA (eDNA) as a source of nutrients and for the turnover of eDNA as a structural matrix component during biofilm formation. We have previously characterized two extracellular nucleases of S. oneidensis MR-1, ExeM and ExeS. Although both are involved in biofilm formation, they are not specifically required for the utilization of eDNA as a nutrient. Here we identified and characterized EndA, a third extracellular nuclease of Shewanella. The heterologously overproduced and purified protein was highly active and rapidly degraded linear and supercoiled DNAs of various origins. Divalent metal ions (Mg2+ or Mn2+) were required for function. endA is cotranscribed with phoA, an extracellular phosphatase, and is not upregulated upon phosphostarvation. Deletion of endA abolished both extracellular degradation of DNA by S. oneidensis MR-1 and the ability to use eDNA as a sole source of phosphorus. PhoA is not strictly required for the exploitation of eDNA as a nutrient. The activity of EndA prevents the formation of large cell aggregates during planktonic growth. However, in contrast to the findings for ExeM, endA deletion had only minor effects on biofilm formation. The findings strongly suggest that the extracellular nucleases of S. oneidensis exert specific functions required under different conditions. PMID:22492434

  14. Phylogenomic analysis of the GIY-YIG nuclease superfamily

    PubMed Central

    Dunin-Horkawicz, Stanislaw; Feder, Marcin; Bujnicki, Janusz M

    2006-01-01

    Background The GIY-YIG domain was initially identified in homing endonucleases and later in other selfish mobile genetic elements (including restriction enzymes and non-LTR retrotransposons) and in enzymes involved in DNA repair and recombination. However, to date no systematic search for novel members of the GIY-YIG superfamily or comparative analysis of these enzymes has been reported. Results We carried out database searches to identify all members of known GIY-YIG nuclease families. Multiple sequence alignments together with predicted secondary structures of identified families were represented as Hidden Markov Models (HMM) and compared by the HHsearch method to the uncharacterized protein families gathered in the COG, KOG, and PFAM databases. This analysis allowed for extending the GIY-YIG superfamily to include members of COG3680 and a number of proteins not classified in COGs and to predict that these proteins may function as nucleases, potentially involved in DNA recombination and/or repair. Finally, all old and new members of the GIY-YIG superfamily were compared and analyzed to infer the phylogenetic tree. Conclusion An evolutionary classification of the GIY-YIG superfamily is presented for the very first time, along with the structural annotation of all (sub)families. It provides a comprehensive picture of sequence-structure-function relationships in this superfamily of nucleases, which will help to design experiments to study the mechanism of action of known members (especially the uncharacterized ones) and will facilitate the prediction of function for the newly discovered ones. PMID:16646971

  15. Protection of expressed immunoglobulin genes against nuclease cleavage.

    PubMed Central

    Weischet, W O; Glotov, B O; Zachau, H G

    1983-01-01

    Fragmentation of the actively transcribed kappa immunoglobulin gene in mouse myeloma nuclei with micrococcal nuclease and the restriction nuclease Bsp RI reveals a chromatin structure without the regularity of repeating nucleosomes found in bulk chromatin. Such regularity is restored about 2.2 kb 3' of the coding region. An only moderately increased micrococcal nuclease sensitivity and a 65% average protection of the Bsp RI sites indicates a DNA-protein interaction in the transcribed region which is not very different from that of an inactive gene. As determined by indirect endlabeling the frequency of Bsp RI cleavage both, after very mild and exhaustive digestion, varied moderately from site to site along the gene. In addition, it was not in each case the same at analogous sites on both alleles which are both transcribed. Thus, the experiments demonstrate differences between the chromatin structures of the genes which may be related to regulatory phenomena and thereby corroborate earlier findings made with DNAase I. Images PMID:6304636

  16. Safety evaluation of nuclease P1 from Penicillium citrinum.

    PubMed

    Okado, Nobuo; Hasegawa, Kazushige; Mizuhashi, Fukutaro; Lynch, Barry S; Vo, Trung D; Roberts, Ashley S

    2016-02-01

    Nuclease P1 has been widely used in the food industry to enhance or create flavor. One commercial source of this enzyme is Penicillium citrinum, an anamorphic mesophilic fungus with a long history of safe use in Europe and Asia as a fermentation organism used in the production of ribonucleases. Given the intended use in food for human consumption, and noting its potential presence at trace levels in finished products, a series of safety studies including an in vitro Ames and chromosome aberration assay, an in vivo rat erythrocyte micronucleus assay and a 90-day oral toxicity study in rats were conducted. No mutagenic activity was observed in the Ames assay. Equivocal activity in the chromosome aberration assay was not replicated in the micronucleus assay at doses of up to 1007 mg total organic solids (TOS)/kg body weight (bw)/day. Following oral administration of nuclease P1 at dosages of 10.1, 101 or 1007 mg TOS/kg bw/day to Sprague-Dawley rats, no adverse effects on any study parameter were observed. The no-observed-adverse-effect level was considered to be 1007 mg TOS/kg bw/day. The results of the genotoxicity studies and subchronic rat study support the safe use in food production of nuclease P1 produced from P. citrinum. PMID:26686996

  17. Nanoplasmonic molecular ruler for nuclease activity and DNAfootprinting

    SciTech Connect

    Chen, Fanqing Frank; Liu, Gang L.; Yin, Yadong; Gerion, Daniele; Kunchakarra, Siri; Mukherjee, Bipasha; Jett, Stephen D.; Bear, David G.; Alivisatos, Paul; Lee, Luke P.

    2006-08-15

    We have constructed a nanoplasmonic molecular ruler, which can perform label-free and real-time monitoring of DNA length changes and perform DNA footprinting. The ruler was created by tethering double-stranded DNA to single Au nanoparticles. The scattering spectra of Au-DNA nanoconjugates showed red-shifted peak plasmon resonance wavelength dependent on DNA length, which can be measured with sub-nanometer axial resolution, averaging {approx}1.24 nm peak wavelength shift per DNA base pair. The spectra of individual Au-DNA nanoconjugates in the presence of nuclease showed a time-resolved dependence on the reaction dynamics, allowing quantitative, kinetic and real-time measurement of nuclease activity. The ruler was further developed into a new DNA footprinting platform. We showed the specific binding of a protein to DNA and the accurate mapping of its footprint. This work promises a very fast and convenient platform for mapping DNA-protein interactions, for nuclease activity monitoring, and for other DNA size-based methods.

  18. Initiation of DNA damage responses through XPG-related nucleases.

    PubMed

    Kuntz, Karen; O'Connell, Matthew J

    2013-01-23

    Lesion-specific enzymes repair different forms of DNA damage, yet all lesions elicit the same checkpoint response. The common intermediate required to mount a checkpoint response is thought to be single-stranded DNA (ssDNA), coated by replication protein A (RPA) and containing a primer-template junction. To identify factors important for initiating the checkpoint response, we screened for genes that, when overexpressed, could amplify a checkpoint signal to a weak allele of chk1 in fission yeast. We identified Ast1, a novel member of the XPG-related family of endo/exonucleases. Ast1 promotes checkpoint activation caused by the absence of the other XPG-related nucleases, Exo1 and Rad2, the homologue of Fen1. Each nuclease is recruited to DSBs, and promotes the formation of ssDNA for checkpoint activation and recombinational repair. For Rad2 and Exo1, this is independent of their S-phase role in Okazaki fragment processing. This XPG-related pathway is distinct from MRN-dependent responses, and each enzyme is critical for damage resistance in MRN mutants. Thus, multiple nucleases collaborate to initiate DNA damage responses, highlighting the importance of these responses to cellular fitness. PMID:23211746

  19. The periplasmic alpha-carbonic anhydrase activity of Helicobacter pylori is essential for acid acclimation.

    PubMed

    Marcus, Elizabeth A; Moshfegh, Amiel P; Sachs, George; Scott, David R

    2005-01-01

    The role of the periplasmic alpha-carbonic anhydrase (alpha-CA) (HP1186) in acid acclimation of Helicobacter pylori was investigated. Urease and urea influx through UreI have been shown to be essential for gastric colonization and for acid survival in vitro. Intrabacterial urease generation of NH3 has a major role in regulation of periplasmic pH and inner membrane potential under acidic conditions, allowing adequate bioenergetics for survival and growth. Since alpha-CA catalyzes the conversion of CO2 to HCO3-, the role of CO2 in periplasmic buffering was studied using an alpha-CA deletion mutant and the CA inhibitor acetazolamide. Western analysis confirmed that alpha-CA was bound to the inner membrane. Immunoblots and PCR confirmed the absence of the enzyme and the gene in the alpha-CA knockout. In the mutant or in the presence of acetazolamide, there was an approximately 3 log10 decrease in acid survival. In acid, absence of alpha-CA activity decreased membrane integrity, as observed using membrane-permeant and -impermeant fluorescent DNA dyes. The increase in membrane potential and cytoplasmic buffering following urea addition to wild-type organisms in acid was absent in the alpha-CA knockout mutant and in the presence of acetazolamide, although UreI and urease remained fully functional. At low pH, the elevation of cytoplasmic and periplasmic pH with urea was abolished in the absence of alpha-CA activity. Hence, buffering of the periplasm to a pH consistent with viability depends not only on NH3 efflux from the cytoplasm but also on the conversion of CO2, produced by urease, to HCO3- by the periplasmic alpha-CA. PMID:15629943

  20. Periplasmic Acid Stress Increases Cell Division Asymmetry (Polar Aging) of Escherichia coli

    PubMed Central

    Clark, Michelle W.; Yie, Anna M.; Eder, Elizabeth K.; Dennis, Richard G.; Basting, Preston J.; Martinez, Keith A.; Jones, Brian D.; Slonczewski, Joan L.

    2015-01-01

    Under certain kinds of cytoplasmic stress, Escherichia coli selectively reproduce by distributing the newer cytoplasmic components to new-pole cells while sequestering older, damaged components in cells inheriting the old pole. This phenomenon is termed polar aging or cell division asymmetry. It is unknown whether cell division asymmetry can arise from a periplasmic stress, such as the stress of extracellular acid, which is mediated by the periplasm. We tested the effect of periplasmic acid stress on growth and division of adherent single cells. We tracked individual cell lineages over five or more generations, using fluorescence microscopy with ratiometric pHluorin to measure cytoplasmic pH. Adherent colonies were perfused continually with LBK medium buffered at pH 6.00 or at pH 7.50; the external pH determines periplasmic pH. In each experiment, cell lineages were mapped to correlate division time, pole age and cell generation number. In colonies perfused at pH 6.0, the cells inheriting the oldest pole divided significantly more slowly than the cells inheriting the newest pole. In colonies perfused at pH 7.50 (near or above cytoplasmic pH), no significant cell division asymmetry was observed. Under both conditions (periplasmic pH 6.0 or pH 7.5) the cells maintained cytoplasmic pH values at 7.2–7.3. No evidence of cytoplasmic protein aggregation was seen. Thus, periplasmic acid stress leads to cell division asymmetry with minimal cytoplasmic stress. PMID:26713733

  1. Osmoregulated Periplasmic Glucans (OPGs) of Salmonella enterica serovars Typhimurium are needed for optimal growth under nutrient limiting- hypoosmotic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osmoregulated periplasmic glucans (OPGs) are major periplasmic constituents of gram negative bacteria. Synthesis of OPGs is regulated by the osmolarity of the growth medium. The role of OPGs has been postulated in plant-symbiotic as well as pathogenic microorganisms. On the other hand, opg mutant...

  2. The nuclease FAN1 is involved in DNA crosslink repair in Arabidopsis thaliana independently of the nuclease MUS81

    PubMed Central

    Herrmann, Natalie J.; Knoll, Alexander; Puchta, Holger

    2015-01-01

    Fanconi anemia is a severe genetic disorder. Mutations in one of several genes lead to defects in DNA crosslink (CL) repair in human cells. An essential step in CL repair is the activation of the pathway by the monoubiquitination of the heterodimer FANCD2/FANCI, which recruits the nuclease FAN1 to the CL site. Surprisingly, FAN1 function is not conserved between different eukaryotes. No FAN1 homolog is present in Drosophila and Saccharomyces cerevisiae. The FAN1 homolog in Schizosaccharomyces pombe is involved in CL repair; a homolog is present in Xenopus but is not involved in CL repair. Here we show that a FAN1 homolog is present in plants and it is involved in CL repair in Arabidopsis thaliana. Both the virus-type replication-repair nuclease and the ubiquitin-binding ubiquitin-binding zinc finger domains are essential for this function. FAN1 likely acts upstream of two sub-pathways of CL repair. These pathways are defined by the Bloom syndrome homolog RECQ4A and the ATPase RAD5A, which is involved in error-free post-replicative repair. Mutations in both FAN1 and the endonuclease MUS81 resulted in greater sensitivity against CLs than in the respective single mutants. These results indicate that the two nucleases define two independent pathways of CL repair in plants. PMID:25779053

  3. Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CRISPR-Cas9.

    PubMed

    Koo, Taeyoung; Lee, Jungjoon; Kim, Jin-Soo

    2015-06-01

    Programmable nucleases, which include zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and RNA-guided engineered nucleases (RGENs) repurposed from the type II clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system are now widely used for genome editing in higher eukaryotic cells and whole organisms, revolutionising almost every discipline in biological research, medicine, and biotechnology. All of these nucleases, however, induce off-target mutations at sites homologous in sequence with on-target sites, limiting their utility in many applications including gene or cell therapy. In this review, we compare methods for detecting nuclease off-target mutations. We also review methods for profiling genome-wide off-target effects and discuss how to reduce or avoid off-target mutations. PMID:25985872

  4. Osmoregulated periplasmic glucans of Salmonella enterica serovar Typhimurium are required for optimal virulence in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We purified osmoregulated periplasmic glucans (OPGs) from Salmonella enterica serovar Typhimurium and found them to be composed of 100% glucose with 2-linked glucose as the most abundant residue with terminal glucose, 2,3-linked and 2,6-linked glucose also present in high quantities. The two structu...

  5. Membrane topology and functional importance of the periplasmic region of ABC transporter LolCDE.

    PubMed

    Yasuda, Masaki; Iguchi-Yokoyama, Asako; Matsuyama, Shin-ichi; Tokuda, Hajime; Narita, Shin-ichiro

    2009-10-01

    The LolCDE complex is an ATP-binding cassette transporter that mediates the release of newly synthesized lipoproteins from the cytoplasmic membrane of gram-negative bacteria, which results in the initiation of outer-membrane sorting of lipoproteins through the Lol pathway. LolCDE is composed of one copy each of membrane subunits LolC and LolE, and two copies of nucleotide-binding subunit LolD. In this study, we examined the membrane topology of LolC and LolE by PhoA fusion analysis. Both LolC and LolE were found to have four transmembrane segments with a large periplasmic loop exposed to the periplasm. Despite similarities in sequence and topology, the accessibility of a sulfhydryl reagent to Cys introduced into the periplasmic loop suggested that the structure of the periplasmic region differs between LolC and LolE. Inhibition of the release of lipoproteins by the sulfhydryl reagent supported a previous proposal that LolC and LolE have distinct functions. PMID:19809197

  6. A bacterial glutathione transporter (Escherichia coli CydDC) exports reductant to the periplasm.

    PubMed

    Pittman, Marc S; Robinson, Hilary C; Poole, Robert K

    2005-09-16

    Glutathione (GSH), a major biological antioxidant, maintains redox balance in prokaryotes and eukaryotic cells and forms exportable conjugates with compounds of pharmacological and agronomic importance. However, no GSH transporter has been characterized in a prokaryote. We show here that a heterodimeric ATP-binding cassette-type transporter, CydDC, mediates GSH transport across the Escherichia coli cytoplasmic membrane. In everted membrane vesicles, GSH is imported via an ATP-driven, protonophore-insensitive, orthovanadate-sensitive mechanism, equating with export to the periplasm in intact cells. GSH transport and cytochrome bd quinol oxidase assembly are abolished in the cydD1 mutant. Glutathione disulfide (GSSG) was not transported in either Cyd(+) or Cyd(-) strains. Exogenous GSH restores defective swarming motility and benzylpenicillin sensitivity in a cydD mutant and also benzylpenicillin sensitivity in a gshA mutant defective in GSH synthesis. Overexpression of the cydDC operon in dsbD mutants defective in disulfide bond formation restores dithiothreitol tolerance and periplasmic cytochrome b assembly, revealing redundant pathways for reductant export to the periplasm. These results identify the first prokaryotic GSH transporter and indicate a key role for GSH in periplasmic redox homeostasis. PMID:16040611

  7. Antigenic determinants of the membrane-bound hydrogenase in Alcaligenes eutrophus are exposed toward the periplasm.

    PubMed Central

    Eismann, K; Mlejnek, K; Zipprich, D; Hoppert, M; Gerberding, H; Mayer, F

    1995-01-01

    Electron microscopic immunogold labeling experiments were performed with ultrathin sections of plasmolyzed cells of Alcaligenes eutrophus and "whole-mount" samples of spheroplasts and protoplasts. They demonstrated that antigenic determinants of the membrane-bound hydrogenase are exposed, at the outside of the cytoplasmic membrane, to the periplasm. PMID:7592402

  8. Role of anionic charges of periplasmic glucans of Shigella flexneri in overcoming detergent stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osmoregulated periplasmic glucans (OPGs) are synthesized by the members of the family Enterobacteriaceae when grown under low osmotic growth conditions. Enteropathogens such as Shigella flexneri spend considerable time outside the host environment such as irrigation waters where low nutrient low os...

  9. Structural Basis for c-di-GMP-Mediated Inside-Out Signaling Controlling Periplasmic Proteolysis

    PubMed Central

    Madden, Dean R.; O'Toole, George A.; Sondermann, Holger

    2011-01-01

    The bacterial second messenger bis-(3′–5′) cyclic dimeric guanosine monophosphate (c-di-GMP) has emerged as a central regulator for biofilm formation. Increased cellular c-di-GMP levels lead to stable cell attachment, which in Pseudomonas fluorescens requires the transmembrane receptor LapD. LapD exhibits a conserved and widely used modular architecture containing a HAMP domain and degenerate diguanylate cyclase and phosphodiesterase domains. c-di-GMP binding to the LapD degenerate phosphodiesterase domain is communicated via the HAMP relay to the periplasmic domain, triggering sequestration of the protease LapG, thus preventing cleavage of the surface adhesin LapA. Here, we elucidate the molecular mechanism of autoinhibition and activation of LapD based on structure–function analyses and crystal structures of the entire periplasmic domain and the intracellular signaling unit in two different states. In the absence of c-di-GMP, the intracellular module assumes an inactive conformation. Binding of c-di-GMP to the phosphodiesterase domain disrupts the inactive state, permitting the formation of a trans-subunit dimer interface between adjacent phosphodiesterase domains via interactions conserved in c-di-GMP-degrading enzymes. Efficient mechanical coupling of the conformational changes across the membrane is realized through an extensively domain-swapped, unique periplasmic fold. Our structural and functional analyses identified a conserved system for the regulation of periplasmic proteases in a wide variety of bacteria, including many free-living and pathogenic species. PMID:21304926

  10. Promoterless gene targeting without nucleases ameliorates haemophilia B in mice.

    PubMed

    Barzel, A; Paulk, N K; Shi, Y; Huang, Y; Chu, K; Zhang, F; Valdmanis, P N; Spector, L P; Porteus, M H; Gaensler, K M; Kay, M A

    2015-01-15

    Site-specific gene addition can allow stable transgene expression for gene therapy. When possible, this is preferred over the use of promiscuously integrating vectors, which are sometimes associated with clonal expansion and oncogenesis. Site-specific endonucleases that can induce high rates of targeted genome editing are finding increasing applications in biological discovery and gene therapy. However, two safety concerns persist: endonuclease-associated adverse effects, both on-target and off-target; and oncogene activation caused by promoter integration, even without nucleases. Here we perform recombinant adeno-associated virus (rAAV)-mediated promoterless gene targeting without nucleases and demonstrate amelioration of the bleeding diathesis in haemophilia B mice. In particular, we target a promoterless human coagulation factor IX (F9) gene to the liver-expressed mouse albumin (Alb) locus. F9 is targeted, along with a preceding 2A-peptide coding sequence, to be integrated just upstream to the Alb stop codon. While F9 is fused to Alb at the DNA and RNA levels, two separate proteins are synthesized by way of ribosomal skipping. Thus, F9 expression is linked to robust hepatic albumin expression without disrupting it. We injected an AAV8-F9 vector into neonatal and adult mice and achieved on-target integration into ∼0.5% of the albumin alleles in hepatocytes. We established that F9 was produced only from on-target integration, and ribosomal skipping was highly efficient. Stable F9 plasma levels at 7-20% of normal were obtained, and treated F9-deficient mice had normal coagulation times. In conclusion, transgene integration as a 2A-fusion to a highly expressed endogenous gene may obviate the requirement for nucleases and/or vector-borne promoters. This method may allow for safe and efficacious gene targeting in both infants and adults by greatly diminishing off-target effects while still providing therapeutic levels of expression from integration. PMID:25363772

  11. Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans: a high throughput proteomics analysis.

    PubMed

    Chi, An; Valenzuela, Lissette; Beard, Simon; Mackey, Aaron J; Shabanowitz, Jeffrey; Hunt, Donald F; Jerez, Carlos A

    2007-12-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile capable of obtaining energy by oxidizing ferrous iron or sulfur compounds such as metal sulfides. Some of the proteins involved in these oxidations have been described as forming part of the periplasm of this extremophile. The detailed study of the periplasmic components constitutes an important area to understand the physiology and environmental interactions of microorganisms. Proteomics analysis of the periplasmic fraction of A. ferrooxidans ATCC 23270 was performed by using high resolution linear ion trap-FT MS. We identified a total of 131 proteins in the periplasm of the microorganism grown in thiosulfate. When possible, functional categories were assigned to the proteins: 13.8% were transport and binding proteins, 14.6% were several kinds of cell envelope proteins, 10.8% were involved in energy metabolism, 10% were related to protein fate and folding, 10% were proteins with unknown functions, and 26.1% were proteins without homologues in databases. These last proteins are most likely characteristic of A. ferrooxidans and may have important roles yet to be assigned. The majority of the periplasmic proteins from A. ferrooxidans were very basic compared with those of neutrophilic microorganisms such as Escherichia coli, suggesting a special adaptation of the chemolithoautotrophic bacterium to its very acidic environment. The high throughput proteomics approach used here not only helps to understand the physiology of this extreme acidophile but also offers an important contribution to the functional annotation for the available genomes of biomining microorganisms such as A. ferrooxidans for which no efficient genetic systems are available to disrupt genes by procedures such as homologous recombination. PMID:17911085

  12. Nanoplasmonic molecular ruler for nuclease activity and DNA footprinting

    DOEpatents

    Chen, Fanqing Frank; Liu, Gang L; Lee, Luke P

    2013-10-29

    This invention provides a nanoplasmonic molecular ruler, which can perform label-free and real-time monitoring of nucleic acid (e.g., DNA) length changes and perform nucleic acid footprinting. In various embodiments the ruler comprises a nucleic acid attached to a nanoparticle, such that changes in the nucleic acid length are detectable using surface plasmon resonance. The nanoplasmonic ruler provides a fast and convenient platform for mapping nucleic acid-protein interactions, for nuclease activity monitoring, and for other footprinting related methods.

  13. Top-Down Characterization of the Post-Translationally Modified Intact Periplasmic Proteome from the Bacterium Novosphingobium aromaticivorans

    DOE PAGESBeta

    Wu, Si; Brown, Roslyn N.; Payne, Samuel H.; Meng, Da; Zhao, Rui; Tolić, Nikola; Cao, Li; Shukla, Anil; Monroe, Matthew E.; Moore, Ronald J.; et al

    2013-01-01

    The periplasm of Gram-negative bacteria is a dynamic and physiologically important subcellular compartment where the constant exposure to potential environmental insults amplifies the need for proper protein folding and modifications. Top-down proteomics analysis of the periplasmic fraction at the intact protein level provides unrestricted characterization and annotation of the periplasmic proteome, including the post-translational modifications (PTMs) on these proteins. Here, we used single-dimension ultra-high pressure liquid chromatography coupled with the Fourier transform mass spectrometry (FTMS) to investigate the intact periplasmic proteome of Novosphingobium aromaticivorans . Our top-down analysis provided the confident identification of 55 proteins in the periplasm andmore » characterized their PTMs including signal peptide removal, N-terminal methionine excision, acetylation, glutathionylation, pyroglutamate, and disulfide bond formation. This study provides the first experimental evidence for the expression and periplasmic localization of many hypothetical and uncharacterized proteins and the first unrestrictive, large-scale data on PTMs in the bacterial periplasm.« less

  14. The Stable Interaction Between Signal Peptidase LepB of Escherichia coli and Nuclease Bacteriocins Promotes Toxin Entry into the Cytoplasm.

    PubMed

    Mora, Liliana; Moncoq, Karine; England, Patrick; Oberto, Jacques; de Zamaroczy, Miklos

    2015-12-25

    LepB is a key membrane component of the cellular secretion machinery, which releases secreted proteins into the periplasm by cleaving the inner membrane-bound leader. We showed that LepB is also an essential component of the machinery hijacked by the tRNase colicin D for its import. Here we demonstrate that this non-catalytic activity of LepB is to promote the association of the central domain of colicin D with the inner membrane before the FtsH-dependent proteolytic processing and translocation of the toxic tRNase domain into the cytoplasm. The novel structural role of LepB results in a stable interaction with colicin D, with a stoichiometry of 1:1 and a nanomolar Kd determined in vitro. LepB provides a chaperone-like function for the penetration of several nuclease-type bacteriocins into target cells. The colicin-LepB interaction is shown to require only a short peptide sequence within the central domain of these bacteriocins and to involve residues present in the short C-terminal Box E of LepB. Genomic screening identified the conserved LepB binding motif in colicin-like ORFs from 13 additional bacterial species. These findings establish a new paradigm for the functional adaptability of an essential inner-membrane enzyme. PMID:26499796

  15. Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump.

    PubMed

    Hinchliffe, Philip; Greene, Nicholas P; Paterson, Neil G; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2014-08-25

    Periplasmic adaptor proteins are key components of bacterial tripartite efflux pumps. The 2.85 Å resolution structure of an MFS (major facilitator superfamily) pump adaptor, Aquifex aeolicus EmrA, shows linearly arranged α-helical coiled-coil, lipoyl, and β-barrel domains, but lacks the fourth membrane-proximal domain shown in other pumps to interact with the inner membrane transporter. The adaptor α-hairpin, which binds outer membrane TolC, is exceptionally long at 127 Å, and the β-barrel contains a conserved disordered loop. The structure extends the view of adaptors as flexible, modular components that mediate diverse pump assembly, and suggests that in MFS tripartite pumps a hexamer of adaptors could provide a periplasmic seal. PMID:24996185

  16. Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump

    PubMed Central

    Hinchliffe, Philip; Greene, Nicholas P.; Paterson, Neil G.; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2014-01-01

    Periplasmic adaptor proteins are key components of bacterial tripartite efflux pumps. The 2.85 Å resolution structure of an MFS (major facilitator superfamily) pump adaptor, Aquifex aeolicus EmrA, shows linearly arranged α-helical coiled-coil, lipoyl, and β-barrel domains, but lacks the fourth membrane-proximal domain shown in other pumps to interact with the inner membrane transporter. The adaptor α-hairpin, which binds outer membrane TolC, is exceptionally long at 127 Å, and the β-barrel contains a conserved disordered loop. The structure extends the view of adaptors as flexible, modular components that mediate diverse pump assembly, and suggests that in MFS tripartite pumps a hexamer of adaptors could provide a periplasmic seal. PMID:24996185

  17. Histochemical and biochemical urease localization in the periplasm and outer membrane of two Proteus mirabilis strains.

    PubMed

    McLean, R J; Cheng, K J; Gould, W D; Nickel, J C; Costerton, J W

    1986-10-01

    Proteus mirabilis, a gram-negative bacillus, is often implicated in the formation of infectious kidney stones. As ureolytic activity of this organism is thought to play a major role in its pathogenesis, we adapted our recently described urease localization technique to visualize urease activity in vivo. Urease activity was ultrastructurally localized in two clinically isolated P. mirabilis strains by precipitating the enzymatic reaction product (ammonia) with sodium tetraphenylboron. Subsequent silver staining of the cells revealed urease activity to be predominantly associated with the periplasm and outer membranes of each strain. Biochemical measurements of urease activity in P. mirabilis cell fractions correlated well with histochemical observations in that the majority of urease activity was associated with the periplasm. Membrane-bound urease activity of these strains was associated mainly with the peptidoglycan in the detergent-insoluble (outer membrane) fraction. PMID:3539291

  18. The release and characterization of some periplasm-located enzymes of Pseudomona aeruginosa.

    PubMed

    Bhatti, A R; DeVoe, I W; Ingram, J M

    1976-10-01

    Pseudomonas aeruginosa (ATCC 9027) releases four periplasm-located enzymes, i.e., ribonuclease (EC 3.1.4.22; EC 3.1.4.23), alkaline phosphatase (EC 3.1.3.1), cyclic-2', 3'-phosphodiesterase (EC 3.1.4.d), and 5'-nucleotidase (EC 3.1.3.5) into the medium during growth. Ribonuclease and alkaline phosphatase are classed as enzymes which are readily extracted by osmotic shock and spheroplast formation whereas cyclic-2',3'-phosphodiesterase and 5'-nucleotidase are classed as enzymes which are not readily extracted by these procedures. In view of the relative ease of extraction of the former enzymes it is suggested that the lattter enzymes, cyclic-2',3'-phosphodiesterase and 5'-nucleotidase, are bound and located in the periplasm in a manner different to ribonuclease and alkaline phosphatase. PMID:184895

  19. The bent-end morphology of Treponema phagedenis is associated with short, left-handed, periplasmic flagella.

    PubMed Central

    Charon, N W; Goldstein, S F; Curci, K; Limberger, R J

    1991-01-01

    Treponema phagedenis Kazan 5 is a spirochete with multiple periplasmic flagella attached near each end of the cell cylinder. Dark-field microscopy revealed that most of the cell is right-handed (helix diameter, 0.23 micron; helix pitch, 1.74 microns), and the ends appear bent. These ends could move and gyrate while the central part of the cell remained stationary. The present study examines the basis for the bent-end characteristic. Motility mutants deficient in periplasmic flagella were found to lack the bent ends, and spontaneous revertants to motility regained the periplasmic flagella and bent-end characteristic. The length of the bent ends (2.40 microns) was found to be similar to the length of the periplasmic flagella as determined by electron microscopy (2.50 microns). The helix diameter of the bent ends was 0.57 micron, and the helix pitch of the bent ends was 1.85 microns. The periplasmic flagella were short relative to the length of the cells (15 microns) and, in contrast to the reports of others, did not overlap in the center of the cell. Similar results were found with T. phagedenis Reiter. The results taken together indicate that there is a causal relationship between the bent-end morphology and the presence of short periplasmic flagella. We report the first three-dimensional description of spirochete periplasmic flagella. Dark-field microscopy of purified periplasmic flagella revealed that these organelles were left-handed (helix diameter, 0.36 microns; helix pitch, 1.26 microns) and only 1 to 2 wavelengths long. Because of a right-handed cell cylinder and left-handed periplasmic flagella along with bent ends having helix diameters greater than those of either the cell cylinder or periplasmic flagella, we conclude that there is a complex interaction of the periplasmic flagella and the cell cylinder to form the bent ends. The results are discussed with respect to a possible mechanism of T. phagedenis motility. Images PMID:1856175

  20. Mechanism of ATPase-mediated Cu+ Export and Delivery to Periplasmic Chaperones

    PubMed Central

    Padilla-Benavides, Teresita; George Thompson, Alayna M.; McEvoy, Megan M.; Argüello, José M.

    2014-01-01

    Cellular copper homeostasis requires transmembrane transport and compartmental trafficking while maintaining the cell essentially free of uncomplexed Cu2+/+. In bacteria, soluble cytoplasmic and periplasmic chaperones bind and deliver Cu+ to target transporters or metalloenzymes. Transmembrane Cu+-ATPases couple the hydrolysis of ATP to the efflux of cytoplasmic Cu+. Cytosolic Cu+ chaperones (CopZ) interact with a structural platform in Cu+-ATPases (CopA) and deliver copper into the ion permeation path. CusF is a periplasmic Cu+ chaperone that supplies Cu+ to the CusCBA system for efflux to the extracellular milieu. In this report, using Escherichia coli CopA and CusF, direct Cu+ transfer from the ATPase to the periplasmic chaperone was observed. This required the specific interaction of the Cu+-bound form of CopA with apo-CusF for subsequent metal transfer upon ATP hydrolysis. As expected, the reverse Cu+ transfer from CusF to CopA was not observed. Mutation of CopA extracellular loops or the electropositive surface of CusF led to a decrease in Cu+ transfer efficiency. On the other hand, mutation of Met and Glu residues proposed to be part of the metal exit site in the ATPase yielded enzymes with lower turnover rates, although Cu+ transfer was minimally affected. These results show how soluble chaperones obtain Cu+ from transmembrane transporters. Furthermore, by explaining the movement of Cu+ from the cytoplasmic pool to the extracellular milieu, these data support a mechanism by which cytoplasmic Cu+ can be precisely directed to periplasmic targets via specific transporter-chaperone interactions. PMID:24917681

  1. Periplasmic chaperone FkpA is essential for imported colicin M toxicity

    PubMed Central

    Hullmann, Julia; Patzer, Silke I; Römer, Christin; Hantke, Klaus; Braun, Volkmar

    2008-01-01

    Chaperones facilitate correct folding of newly synthesized proteins. We show here that the periplasmic FkpA chaperone is required for killing Escherichia coli by colicin M entering cells from the outside. Highly active colicin M preparations were inactive against fkpA mutant cells; 104-fold dilutions killed fkpA+ cells. Three previously isolated spontaneous mutants tolerant to colicin M carried a stop codon or an IS1 insertion in the peptidyl-prolyl-cis-trans-isomerase (PPIase) domain (C-domain) of FkpA, which resulted in deletion of the domain. A randomly generated mutant carried a G148D mutation in the C-domain. A temperature-sensitive mutant tolerant to colicin M carried a Y25N mutation in the FkpA N-domain. Mutants transformed with wild-type fkpA were colicin M-sensitive. Isolated FkpA-His reduced colicin M-His cleavage by proteinase K and renatured denatured colicin M-His in vitro; renaturation was prevented by the PPIase inhibitor FK506. In both assays, periplasmic SurA-His had no effect. No other tested periplasmic chaperone could activate colicin M. Among the tested colicins, only colicin M required FkpA for activity. Colicin M bound to cells via FhuA was inactivated by trypsin; unbound colicin M retained activity. We propose that colicin M unfolds during import across the outer membrane, FkpA specifically assists in folding colicin M into an active toxin in the periplasm and PPIase is essential for colicin M activity. Colicin M is a suitable tool for the isolation of FkpA mutants used to elucidate the functions of the FkpA N- and C-domains. PMID:18554332

  2. Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha.

    PubMed

    Berks, B C; Richardson, D J; Robinson, C; Reilly, A; Aplin, R T; Ferguson, S J

    1994-02-15

    The periplasmic nitrate reductase of Thiosphaera pantotropha has been purified from a mutant strain (M-6) that overproduces the enzyme activity under anaerobic growth conditions. The enzyme is a complex of a 93-kDa polypeptide and a 16-kDa nitrate-oxidizable cytochrome c552. The complex contains molybdenum; a fluorescent compound with spectral features of a pterin derivative can be extracted. In contrast to the dissimilatory membrane-bound nitrate reductases, the periplasmic nitrate reductase shows high specificity for nitrate as a substrate and is insensitive to inhibition by azide. The 93-kDa subunit exhibits immunological cross-reactivity with the catalytic subunit of Rhodobacter capsulatus N22DNAR+ periplasmic nitrate reductase. Mass spectrometric comparisons of holo-cytochrome c552 and apo-cytochrome c552 demonstrated that the polypeptide bound two haem groups. Mediated redox potentiometry of the cytochrome indicated that the haem groups have reduction potentials (pH = 7.0) of approximately -15 mV and + 80 mV. The functional significance of these potentials is discussed in relation to the proposed physiological role of the enzyme as a redox valve. PMID:8119278

  3. Two regions of mature periplasmic maltose-binding protein of Escherichia coli involved in secretion.

    PubMed

    Duplay, P; Hofnung, M

    1988-10-01

    Six mutations in malE, the structural gene for the periplasmic maltose-binding protein (MBP) from Escherichia coli, prevent growth on maltose as a carbon source, as well as release of the mutant proteins by the cold osmotic-shock procedure. These mutations correspond to insertion of an oligonucleotide linker, concomitant with a deletion. One of the mutations (malE127) affects the N-terminal extension (the signal peptide), whereas the five others lie within the mature protein. As expected, the export of protein MalE127 is blocked at an early stage. This protein is neither processed to maturity nor sensitive to proteinase K in spheroplasts. In contrast, in the five other mutants, the signal peptide is cleaved and the protein is accessible to proteinase K added to spheroplasts. This indicates that the five mutant proteins are, at least in part, exported through the inner membrane. We propose that the corresponding mutations define two regions of the mature protein (between residues 18 and 42 and between residues 280 and 306), which are important for release of the protein from the inner membrane into the periplasm. We discuss the results in terms of possible conformational changes at this late step of export to the periplasm. PMID:3049532

  4. Periplasmic production via the pET expression system of soluble, bioactive human growth hormone.

    PubMed

    Sockolosky, Jonathan T; Szoka, Francis C

    2013-02-01

    A pET based expression system for the production of recombinant human growth hormone (hGH) directed to the Escherichia coli periplasmic space was developed. The pET22b plasmid was used as a template for creating vectors that encode hGH fused to either a pelB or ompA secretion signal under control of the strong bacteriophage T7 promoter. The pelB- and ompA-hGH constructs expressed in BL21 (λDE3)-RIPL E. coli are secreted into the periplasm which facilitates isolation of soluble hGH by selective disruption of the outer membrane. A carboxy-terminal poly-histidine tag enabled purification by Ni(2+) affinity chromatography with an average yield of 1.4 mg/L culture of purified hGH, independent of secretion signal. Purified pelB- and ompA-hGH are monomeric based on size exclusion chromatography with an intact mass corresponding to mature hGH indicating proper cleavage of the signal peptide and folding in the periplasm. Both pelB- and ompA-hGH bind the hGH receptor with high affinity and potently stimulate Nb2 cell growth. These results demonstrate that the pET expression system is suitable for the rapid and simple isolation of bioactive, soluble hGH from E. coli. PMID:23168094

  5. Contribution of nuclease to the pathogenesis of Aeromonas hydrophila

    PubMed Central

    Ji, Yachan; Li, Jinquan; Qin, Zhendong; Li, Aihua; Gu, Zemao; Liu, Xiaoling; Lin, Li; Zhou, Yang

    2015-01-01

    Aeromonas hydrophila is a gram-negative bacterium that is widely distributed in aquatic environments and can cause septicemia in both fish and humans. However, the underlying mechanisms leading to severe infection are not well understood. In this study, an A. hydrophila nuclease (ahn) deletion mutant was constructed to investigate its contribution to pathogenesis. This mutant did not differ from the wild-type strain in terms of its growth or hemolytic phenotype. However, the ahn-deficient mutant was more susceptible to being killed by fish macrophages and mouse blood in vitro. Furthermore, evidence obtained using both fish and murine infection models strongly indicated that the inactivation of Ahn impaired the ability of A. hydrophila to evade innate immune clearance in vivo. More importantly, the virulence of the mutant was attenuated in both fish and mice, with reductions in dissemination capacities and mortality rates. These findings implicate Ahn in A. hydrophila virulence, with important functions in evading innate immune defenses. PMID:26039879

  6. Targeted Mutagenesis in Zebrafish Using CRISPR RNA-Guided Nucleases.

    PubMed

    Hwang, Woong Y; Fu, Yanfang; Reyon, Deepak; Gonzales, Andrew P W; Joung, J Keith; Yeh, Jing-Ruey Joanna

    2015-01-01

    In recent years, the zebrafish has become a critical contributor to various areas of biomedical research, advancing our fundamental understanding of biomedicine and helping discover candidate therapeutics for human diseases. Nevertheless, to further extend the power of this important model organism requires a robust and simple-to-use genome editing platform that will enable targeted gene knockouts and introduction of specific mutations identified in human diseases into the zebrafish genome. We describe here protocols for creating insertion or deletion (indel) mutations or precise sequence modifications in zebrafish genes using customizable CRISPR-Cas9 RNA-guided nucleases (RGNs). These methods can be easily implemented in any lab and may also potentially be extended for use in other organisms. PMID:25981483

  7. Targeted Mutagenesis in Zebrafish Using Customized Zinc Finger Nucleases

    PubMed Central

    Foley, Jonathan E.; Maeder, Morgan L.; Pearlberg, Joseph; Joung, J. Keith; Peterson, Randall T.; Yeh, Jing-Ruey J.

    2009-01-01

    Zebrafish mutants have traditionally been obtained using random mutagenesis or retroviral insertions, methods that cannot be targeted to a specific gene and require laborious gene mapping and sequencing. Recently, we and others have shown that customized zinc finger nucleases (ZFNs) can introduce targeted frame-shift mutations with high efficiency, thereby enabling directed creation of zebrafish gene mutations. Here we describe a detailed protocol for constructing ZFN expression vectors, for generating and introducing ZFN-encoding RNAs into zebrafish embryos, and for identifying ZFN-generated mutations in targeted genomic sites. All of our vectors and methods are compatible with previously described Zinc Finger Consortium reagents for constructing engineered zinc finger arrays. Using these methods, zebrafish founders carrying targeted mutations can be identified within four months. PMID:20010934

  8. Designer Nuclease-Mediated Generation of Knockout THP1 Cells.

    PubMed

    Schmidt, Tobias; Schmid-Burgk, Jonathan L; Ebert, Thomas S; Gaidt, Moritz M; Hornung, Veit

    2016-01-01

    Recent developments in the field of designer nucleases allow the efficient and specific manipulation of genomic architectures in eukaryotic cell lines. To this end, it has become possible to introduce DNA double strand breaks (DSBs) at user-defined genomic loci. If located in critical coding regions of genes, thus induced DSBs can lead to insertions or deletions (indels) that result in frameshift mutations and thereby the knockout of the target gene. In this chapter, we describe a step-by-step workflow for establishing knockout cell clones of the difficult-to-transfect suspension cell line THP1. The here described protocol encompasses electroporation, cell cloning, and a deep sequencing-based genotyping step that allows the in-parallel analysis of 96 cell clones per gene of interest. Furthermore, we describe the use of the analysis tool OutKnocker that allows rapid identification of cell clones with all-allelic frameshift mutations. PMID:26443227

  9. Characterization of Rv0888, a Novel Extracellular Nuclease from Mycobacterium tuberculosis

    PubMed Central

    Dang, Guanghui; Cao, Jun; Cui, Yingying; Song, Ningning; Chen, Liping; Pang, Hai; Liu, Siguo

    2016-01-01

    Bacterial extracellular nucleases play important roles in virulence, biofilm formation, utilization of extracellular DNA as a nutrient, and degradation of neutrophil DNA extracellular traps. However, there is no current data available for extracellular nucleases derived from M. tuberculosis. Herein, we have identified and characterized Rv0888, an extracellular nuclease in M. tuberculosis. The protein was overexpressed in E. coli, and the purified Rv0888 protein was found to require divalent cations for activity, with an optimal temperature and pH of 41 °C and 6.5, respectively. Further results demonstrated that Rv0888 nuclease activity could be inhibited by four Chinese medicine monomers. Based on sequence analysis, Rv0888 nuclease exhibited no homology with any known extracellular nucleases, indicating that Rv0888 is a novel nuclease. Site-directed mutagenesis studies revealed that the H353, D387, and D438 residues play catalytic roles in Rv0888. In vivo infection studies confirmed that Rv0888 is required for infection and is related to pathogenicity, as the persistent ability of recombinant Mycobacterium smegmatis (rMS) Rv0888NS/MS and Rv0888S/MS is significantly higher than pMV262/MS in the lung tissue, and the Rv0888NS/MS and Rv0888S/MS could produce pathological changes in the mice lung. These results show that Rv0888 is relevant to pathogenicity of M. tuberculosis. PMID:26742696

  10. Surface-Bound Nuclease of Staphylococcus aureus: Localization of the Enzyme

    PubMed Central

    Okabayashi, Kinji; Mizuno, Den'ichi

    1974-01-01

    The cellular localization of staphylococcus nuclease, previously known as an exoenzyme, was investigated, and the following results were obtained. (i) When Staphylococcus aureus cells were converted to protoplasts by cell wall lytic enzyme L-11 (a bacteriolytic enzyme purified from Flavobacterium sp. which specifically hydrolyzes amide and peptide linkages of murein layers), over 80% of the cell-bound nuclease was released into the surrounding sucrose medium. (ii) The cell-bound nuclease was associated with the cell-wall membrane fraction of mechanically disrupted cells. (iii) The nuclease activity of cell-wall membrane fractions from cells during early and late stages of protoplast formation were compared. Less activity was found in the late stage. These results suggest that nuclease may be located at or near the surface of the cells. The distribution of cell-bound nuclease in the cell-wall membrane fraction varied with the growth conditions of S. aureus. The activity of alkaline phosphatase, another surface enzyme, was also investigated. Less of this enzyme than nuclease was released when the cells were converted to protoplasts. PMID:4587603

  11. Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells.

    PubMed

    Liu, Jia; Gaj, Thomas; Yang, Yifeng; Wang, Nan; Shui, Sailan; Kim, Sojung; Kanchiswamy, Chidananda Nagamangala; Kim, Jin-Soo; Barbas, Carlos F

    2015-11-01

    Targeted nucleases, including zinc-finger nucleases (ZFNs), transcription activator-like (TAL) effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9), have provided researchers with the ability to manipulate nearly any genomic sequence in human cells and model organisms. However, realizing the full potential of these genome-modifying technologies requires their safe and efficient delivery into relevant cell types. Unlike methods that rely on expression from nucleic acids, the direct delivery of nuclease proteins to cells provides rapid action and fast turnover, leading to fewer off-target effects while maintaining high rates of targeted modification. These features make nuclease protein delivery particularly well suited for precision genome engineering. Here we describe procedures for implementing protein-based genome editing in human embryonic stem cells and primary cells. Protocols for the expression, purification and delivery of ZFN proteins, which are intrinsically cell-permeable; TALEN proteins, which can be internalized via conjugation with cell-penetrating peptide moieties; and Cas9 ribonucleoprotein, whose nucleofection into cells facilitates rapid induction of multiplexed modifications, are described, along with procedures for evaluating nuclease protein activity. Once they are constructed, nuclease proteins can be expressed and purified within 6 d, and they can be used to induce genomic modifications in human cells within 2 d. PMID:26492140

  12. Mycoplasma gallisepticum MGA_0676 is a membrane-associated cytotoxic nuclease with a staphylococcal nuclease region essential for nuclear translocation and apoptosis induction in chicken cells.

    PubMed

    Xu, Jian; Teng, Da; Jiang, Fei; Zhang, Yuewei; El-Ashram, Saeed A; Wang, Hui; Sun, Zhenhong; He, Jinyan; Shen, Junjun; Wu, Wenxue; Li, Jinxiang

    2015-02-01

    Mycoplasma gallisepticum can infect a wide variety of birds including the commercial poultry. M. gallisepticum MGA_0676 is a putative lipoprotein, which is similar to bacterial thermostable nucleases. But the possible pathogenic effect of M. gallisepticum MGA_0676 has not been investigated so far. In the present study, we cloned the MGA_0676 gene after deletion of the amino-terminal signal sequence and mutagenesis of the Mycoplasma TGA tryptophan codons to TGG and expressed recombinant MGA_0676 protein in Escherichia coli. We identified and characterized MGA_0676 as a Ca(2+)-dependent cytotoxic nuclease of M. gallisepticum with a staphylococcal nuclease (SNc) region that displays the hallmarks of nucleases. Membrane protein immunoblot analysis and immunogold electron microscopy revealed that MGA_0676 locates on the membrane surface of M. gallisepticum. Furthermore, apoptosis assay using annexin V-FITC and propidium iodide (annexin V/PI) indicated that MGA_0676 played significant roles in apoptosis induction and pathological damages in chicken cells. Moreover, confocal microscopy showed that MGA_0676 localizes in the nuclei of host cells. Besides, after the SNc region was deleted, MGA_0676 lost its ability of nuclear localization, nuclease activity, and cytotoxicity, which revealed that the SNc region is essential for nuclear translocation and induction of apoptosis in chicken cells. The above results suggest that MGA_0676 is an important virulence factor in cellular pathology and may play a unique role in the life cycle events of M. gallisepticum. PMID:25363559

  13. Comparison of the large-scale periplasmic proteomes of the Escherichia coli K-12 and B strains.

    PubMed

    Han, Mee-Jung; Kim, Jin Young; Kim, Jung A

    2014-04-01

    Escherichia coli typically secretes many proteins into the periplasmic space, and the periplasmic proteins have been used for the secretory production of various proteins by the biotechnology industry. However, the identity of all of the E. coli periplasmic proteins remains unknown. Here, high-resolution periplasmic proteome reference maps of the E. coli K-12 and B strains were constructed and compared. Of the 145 proteins identified by tandem mass spectrometry, 61 proteins were conserved in the two strains, whereas 11 and 12 strain-specific proteins were identified for the E. coli K-12 and B strains, respectively. In addition, 27 proteins exhibited differences in intensities greater than 2-fold between the K-12 and B strains. The periplasmic proteins MalE and OppA were the most abundant proteins in the two E. coli strains. Distinctive differences between the two strains included several proteins that were caused by genetic variations, such as CybC, FliC, FliY, KpsD, MglB, ModA, and Ybl119, hydrolytic enzymes, particularly phosphatases, glycosylases, and proteases, and many uncharacterized proteins. Compared to previous studies, the localization of many proteins, including 30 proteins for the K-12 strain and 53 proteins for the B strain, was newly identified as periplasmic. This study identifies the largest number of proteins in the E. coli periplasm as well as the dynamics of these proteins. Additionally, these findings are summarized as reference proteome maps that will be useful for studying protein secretion and may provide new strategies for the enhanced secretory production of recombinant proteins. PMID:24140104

  14. Structure-Specific nuclease activities of Artemis and the Artemis: DNA-PKcs complex

    PubMed Central

    Chang, Howard H.Y.; Lieber, Michael R.

    2016-01-01

    Artemis is a vertebrate nuclease with both endo- and exonuclease activities that acts on a wide range of nucleic acid substrates. It is the main nuclease in the non-homologous DNA end-joining pathway (NHEJ). Not only is Artemis important for the repair of DNA double-strand breaks (DSBs) in NHEJ, it is essential in opening the DNA hairpin intermediates that are formed during V(D)J recombination. Thus, humans with Artemis deficiencies do not have T- or B-lymphocytes and are diagnosed with severe combined immunodeficiency (SCID). While Artemis is the only vertebrate nuclease capable of opening DNA hairpins, it has also been found to act on other DNA substrates that share common structural features. Here, we discuss the key structural features that all Artemis DNA substrates have in common, thus providing a basis for understanding how this structure-specific nuclease recognizes its DNA targets. PMID:27198222

  15. Targeting of a Nuclease to Murine Leukemia Virus Capsids Inhibits Viral Multiplication

    NASA Astrophysics Data System (ADS)

    Natsoulis, Georges; Seshaiah, Partha; Federspiel, Mark J.; Rein, Alan; Hughes, Stephen H.; Boeke, Jef D.

    1995-01-01

    Capsid-targeted viral inactivation is an antiviral strategy in which toxic fusion proteins are targeted to virions, where they inhibit viral multiplication by destroying viral components. These fusion proteins consist of a virion structural protein moiety and an enzymatic moiety such as a nuclease. Such fusion proteins can severely inhibit transposition of yeast retrotransposon Ty1, an element whose transposition mechanistically resembles retroviral multiplication. We demonstrate that expression of a murine retrovirus capsid-staphylococcal nuclease fusion protein inhibits multiplication of the corresponding murine leukemia virus by 30- to 100-fold. Staphylococcal nuclease is apparently inactive intracellularly and hence nontoxic to the host cell, but it is active extracellularly because of its requirement for high concentrations of Ca2+ ions. Virions assembled in and shed from cells expressing the fusion protein contain very small amounts of intact viral RNA, as would be predicted for nuclease-mediated inhibition of viral multiplication.

  16. Evaluation of Biological and Physical Protection against Nuclease Degradation of Clay-Bound Plasmid DNA

    PubMed Central

    Demanèche, Sandrine; Jocteur-Monrozier, Lucile; Quiquampoix, Hervé; Simonet, Pascal

    2001-01-01

    In order to determine the mechanisms involved in the persistence of extracellular DNA in soils and to monitor whether bacterial transformation could occur in such an environment, we developed artificial models composed of plasmid DNA adsorbed on clay particles. We determined that clay-bound DNA submitted to an increasing range of nuclease concentrations was physically protected. The protection mechanism was mainly related to the adsorption of the nuclease on the clay mineral. The biological potential of the resulting DNA was monitored by transforming the naturally competent proteobacterium Acinetobacter sp. strain BD413, allowing us to demonstrate that adsorbed DNA was only partially available for transformation. This part of the clay-bound DNA which was available for bacteria, was also accessible to nucleases, while the remaining fraction escaped both transformation and degradation. Finally, transformation efficiency was related to the perpetuation mechanism, with homologous recombination being less sensitive to nucleases than autonomous replication, which requires intact molecules. PMID:11133458

  17. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases.

    PubMed

    Frock, Richard L; Hu, Jiazhi; Meyers, Robin M; Ho, Yu-Jui; Kii, Erina; Alt, Frederick W

    2015-02-01

    Although great progress has been made in the characterization of the off-target effects of engineered nucleases, sensitive and unbiased genome-wide methods for the detection of off-target cleavage events and potential collateral damage are still lacking. Here we describe a linear amplification-mediated modification of a previously published high-throughput, genome-wide, translocation sequencing (HTGTS) method that robustly detects DNA double-stranded breaks (DSBs) generated by engineered nucleases across the human genome based on their translocation to other endogenous or ectopic DSBs. HTGTS with different Cas9:sgRNA or TALEN nucleases revealed off-target hotspot numbers for given nucleases that ranged from a few or none to dozens or more, and extended the number of known off-targets for certain previously characterized nucleases more than tenfold. We also identified translocations between bona fide nuclease targets on homologous chromosomes, an undesired collateral effect that has not been described previously. Finally, HTGTS confirmed that the Cas9D10A paired nickase approach suppresses off-target cleavage genome-wide. PMID:25503383

  18. Role of the nuclease of nontypeable Haemophilus influenzae in dispersal of organisms from biofilms.

    PubMed

    Cho, Christine; Chande, Aroon; Gakhar, Lokesh; Bakaletz, Lauren O; Jurcisek, Joseph A; Ketterer, Margaret; Shao, Jian; Gotoh, Kenji; Foster, Eric; Hunt, Jason; O'Brien, Erin; Apicella, Michael A

    2015-03-01

    Nontypeable Haemophilus influenzae (NTHI) forms biofilms in the middle ear during human infection. The biofilm matrix of NTHI contains extracellular DNA. We show that NTHI possesses a potent nuclease, which is a homolog of the thermonuclease of Staphylococcus aureus. Using a biofilm dispersal assay, studies showed a biofilm dispersal pattern in the parent strain, no evidence of dispersal in the nuclease mutant, and a partial return of dispersion in the complemented mutant. Quantitative PCR of mRNA from biofilms from a 24-h continuous flow system demonstrated a significantly increased expression of the nuclease from planktonic organisms compared to those in the biofilm phase of growth (P < 0.042). Microscopic analysis of biofilms grown in vitro showed that in the nuclease mutant the nucleic acid matrix was increased compared to the wild-type and complemented strains. Organisms were typically found in large aggregates, unlike the wild-type and complement biofilms in which the organisms were evenly dispersed throughout the biofilm. At 48 h, the majority of the organisms in the mutant biofilm were dead. The nuclease mutant formed a biofilm in the chinchilla model of otitis media and demonstrated a propensity to also form similar large aggregates of organisms. These studies indicate that NTHI nuclease is involved in biofilm remodeling and organism dispersal. PMID:25547799

  19. A baculovirus alkaline nuclease knockout construct produces fragmented DNA and aberrant capsids

    SciTech Connect

    Okano, Kazuhiro; Vanarsdall, Adam L.; Rohrmann, George F. . E-mail: rohrmanng@orst.edu

    2007-03-01

    DNA replication of bacmid-derived constructs of the Autographa californica multiple nucleocapsid nucleopolyhedrovirus (AcMNPV) was analyzed by field inversion gel electrophoresis (FIGE) in combination with digestion at a unique Eco81I restriction enzyme site. Three constructs were characterized: a parental bacmid, a bacmid deleted for the alkaline nuclease gene, and a bacmid from which the gp64 gene had been deleted. The latter was employed as a control for comparison with the alkaline nuclease knockout because neither yields infectious virus and their replication is limited to the initially transfected cells. The major difference between DNA replicated by the different constructs was the presence in the alkaline nuclease knockout of high concentrations of relatively small, subgenome length DNA in preparations not treated with Eco81I. Furthermore, upon Eco81I digestion, the alkaline nuclease knockout bacmid also yielded substantially more subgenome size DNA than the other constructs. Electron microscopic examination of cells transfected with the alkaline nuclease knockout indicated that, in addition to a limited number of normal-appearing electron-dense nucleocapsids, numerous aberrant capsid-like structures were observed indicating a defect in nucleocapsid maturation or in a DNA processing step that is necessary for encapsidation. Because of the documented role of the baculovirus alkaline nuclease and its homologs from other viruses in homologous recombination, these data suggest that DNA recombination may play a major role in the production of baculovirus genomes.

  20. Overexpression of Recombinant Human Beta Interferon (rhINF-β) in Periplasmic Space of Escherichia coli

    PubMed Central

    Morowvat, Mohammad Hossein; Babaeipour, Valiollah; Rajabi-Memari, Hamid; Vahidi, Hossein; Maghsoudi, Nader

    2014-01-01

    Human Interferon β (INF-β) is a member of cytokines family which different studies have shown its immunomodulatory and antiviral activities. In this study an expression vector was designed and constructed for expression of human INF-β-1b either in shake flasks or bench top bioreactor. The designed vector was constructed based upon pET-25b(+) with T7 promoter. Recombinant human beta interferon (rhINF-β) was codon optimized and overexpressed as a soluble, N-terminal pelB fusion protein and secreted into the periplasmic space of Escherichia coli BL21 (DE3). The sugar, Isopropyl-β-D-thiogalactopyranoside (IPTG) was used as a chemical inducer for rhINF-β production in the shake flasks and bench top bioreactor. Timing of beta interferon expression was controlled by using the T7 promoter. The rhINF-β protein was extracted from periplasmic space by osmotic shock treatment and the expression of the beta interferon encoding gene in random selected transformants, was confirmed by western and dot blot methods. The maximum of product formation achieved at the OD600nm = 3.42 was found to be 35 % of the total protein content of the strain which translates to 0.32 g L-1. The constructed vector could efficiently overexpress the rhINF-β into the periplasmic space of E. coli. The obtained yield of the produced rhINF-β was more than previous reports. The system is easily adapted to include other vectors, tags or fusions and therefore has the potential to be broadly applicable to express other recombinant proteins. PMID:24711841

  1. Overexpression of Recombinant Human Beta Interferon (rhINF-β) in Periplasmic Space of Escherichia coli.

    PubMed

    Morowvat, Mohammad Hossein; Babaeipour, Valiollah; Rajabi-Memari, Hamid; Vahidi, Hossein; Maghsoudi, Nader

    2014-01-01

    Human Interferon β (INF-β) is a member of cytokines family which different studies have shown its immunomodulatory and antiviral activities. In this study an expression vector was designed and constructed for expression of human INF-β-1b either in shake flasks or bench top bioreactor. The designed vector was constructed based upon pET-25b(+) with T7 promoter. Recombinant human beta interferon (rhINF-β) was codon optimized and overexpressed as a soluble, N-terminal pelB fusion protein and secreted into the periplasmic space of Escherichia coli BL21 (DE3). The sugar, Isopropyl-β-D-thiogalactopyranoside (IPTG) was used as a chemical inducer for rhINF-β production in the shake flasks and bench top bioreactor. Timing of beta interferon expression was controlled by using the T7 promoter. The rhINF-β protein was extracted from periplasmic space by osmotic shock treatment and the expression of the beta interferon encoding gene in random selected transformants, was confirmed by western and dot blot methods. The maximum of product formation achieved at the OD600nm = 3.42 was found to be 35 % of the total protein content of the strain which translates to 0.32 g L-1. The constructed vector could efficiently overexpress the rhINF-β into the periplasmic space of E. coli. The obtained yield of the produced rhINF-β was more than previous reports. The system is easily adapted to include other vectors, tags or fusions and therefore has the potential to be broadly applicable to express other recombinant proteins. PMID:24711841

  2. The Cytoplasmic and Periplasmic Expression Levels and Folding of Organophosphorus Hydrolase Enzyme in Escherichia coli

    PubMed Central

    Latifi, Ali Mohammad; Khajeh, Khosro; Farnoosh, Gholamreza; Hassanpour, Kazem; Khodi, Samaneh

    2015-01-01

    Background: Organophosphorus hydrolase (OPH) is a type of organophosphate-degrading enzyme which is widely used in the bioremediation process. Objectives: In this study, the periplasmic and cytoplasmic productions and the activity of recombinant OPH in Escherichia coli were investigated and compared using two pET systems (pET21a and pET26b). Materials and Methods: The sequence encoding the opd gene was synthesized and expressed in the form of inclusion body using pET21a-opd and in the periplasmic space in pET26b-opd. Results: Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed a band of about 37 kDa with a maximum expression level at 30°C from pET21a-opd.However, the obtained results of the periplasmic space extraction of OPH (pET26b-opd) showed a very weak band, while the cytoplasmic expression of OPH (pET21a-opd) produced a strong protein band. Conclusions: The activities studied by the production of PNP were determined by following the increase at 410 nm. The maximum PNP was produced at 30°C with an optical density of 10.62 in the presence of cytoplasmic expression of OPH (pET21a-opd). Consequently, our results suggest cytoplasmic expression system as an appropriate candidate with a high amount of OPH in spite of inclusion body formation, which needs an additional refolding step. PMID:26870308

  3. Mutations in Cytochrome Assembly and Periplasmic Redox Pathways in Bordetella pertussis

    PubMed Central

    Feissner, Robert E.; Beckett, Caroline S.; Loughman, Jennifer A.; Kranz, Robert G.

    2005-01-01

    Transposon mutagenesis of Bordetella pertussis was used to discover mutations in the cytochrome c biogenesis pathway called system II. Using a tetramethyl-p-phenylenediamine cytochrome c oxidase screen, 27 oxidase-negative mutants were isolated and characterized. Nine mutants were still able to synthesize c-type cytochromes and possessed insertions in the genes for cytochrome c oxidase subunits (ctaC, -D, and -E), heme a biosynthesis (ctaB), assembly of cytochrome c oxidase (sco2), or ferrochelatase (hemZ). Eighteen mutants were unable to synthesize all c-type cytochromes. Seven of these had transposons in dipZ (dsbD), encoding the transmembrane thioreduction protein, and all seven mutants were corrected for cytochrome c assembly by exogenous dithiothreitol, which was consistent with the cytochrome c cysteinyl residues of the CXXCH motif requiring periplasmic reduction. The remaining 11 insertions were located in the ccsBA operon, suggesting that with the appropriate thiol-reducing environment, the CcsB and CcsA proteins comprise the entire system II biosynthetic pathway. Antiserum to CcsB was used to show that CcsB is absent in ccsA mutants, providing evidence for a stable CcsA-CcsB complex. No mutations were found in the genes necessary for disulfide bond formation (dsbA or dsbB). To examine whether the periplasmic disulfide bond pathway is required for cytochrome c biogenesis in B. pertussis, a targeted knockout was made in dsbB. The DsbB− mutant makes holocytochromes c like the wild type does and secretes and assembles the active periplasmic alkaline phosphatase. A dipZ mutant is not corrected by a dsbB mutation. Alternative mechanisms to oxidize disulfides in B. pertussis are analyzed and discussed. PMID:15937156

  4. Effect of codon-optimized E. coli signal peptides on recombinant Bacillus stearothermophilus maltogenic amylase periplasmic localization, yield and activity.

    PubMed

    Samant, Shalaka; Gupta, Gunja; Karthikeyan, Subbulakshmi; Haq, Saiful F; Nair, Ayyappan; Sambasivam, Ganesh; Sukumaran, Sunilkumar

    2014-09-01

    Recombinant proteins can be targeted to the Escherichia coli periplasm by fusing them to signal peptides. The popular pET vectors facilitate fusion of target proteins to the PelB signal. A systematic comparison of the PelB signal with native E. coli signal peptides for recombinant protein expression and periplasmic localization is not reported. We chose the Bacillus stearothermophilus maltogenic amylase (MA), an industrial enzyme widely used in the baking and brewing industry, as a model protein and analyzed the competence of seven, codon-optimized, E. coli signal sequences to translocate MA to the E. coli periplasm compared to PelB. MA fusions to three of the signals facilitated enhanced periplasmic localization of MA compared to the PelB fusion. Interestingly, these three fusions showed greatly improved MA yields and between 18- and 50-fold improved amylase activities compared to the PelB fusion. Previously, non-optimal codon usage in native E. coli signal peptide sequences has been reported to be important for protein stability and activity. Our results suggest that E. coli signal peptides with optimal codon usage could also be beneficial for heterologous protein secretion to the periplasm. Moreover, such fusions could even enhance activity rather than diminish it. This effect, to our knowledge has not been previously documented. In addition, the seven vector platform reported here could also be used as a screen to identify the best signal peptide partner for other recombinant targets of interest. PMID:25038884

  5. Top-down characterization of the post-translationally modified intact periplasmic proteome of the bacterium Novosphingobium aromaticivorans

    SciTech Connect

    Wu, Si; Brown, Roslyn N.; Payne, Samuel H.; Meng, Da; Zhao, Rui; Tolic, Nikola; Cao, Li; Shukla, Anil K.; Monroe, Matthew E.; Moore, Ronald J.; Lipton, Mary S.; Pasa-Tolic, Ljiljana

    2013-03-10

    In this study, the intact periplasmic proteome of Novosphingobium aromaticivorans was analyzed. We identified 55 proteins in the periplasm, and characterized their post translational modifications. Proteins were first categorized based on their N-terminal processing: 17 proteins were identified with removal of signal peptides containing the canonical A-X-A motif, 8 proteins were identified with removal of signal peptides containing non A-X-A motif, 24 proteins were identified with N-terminal methione excision (NME), and 4 proteins were identified with other N-terminal processing (e.g. complex proteolysis). Only 2 proteins were identified with no N-terminal modifications. Other observed protein post-translational modifications included acetylation, glutathiolynation, pyroglutamate modification, disulfide bond formation, etc. In summary, we analyzed the intact periplasmic proteins of N. aromaticivorans in a high throughput fashion, and provided a catalogue of information on post-translational modifications observed in this dynamic subcellular fraction. This study provides the first experimental evidence for the expression and periplasmic localization of hypothetical and uncharacterized proteins, and the first unrestrictive, large-scale data on post-translational modifications in the bacterial periplasm.

  6. Crystal Structure of a Histidine Kinase Sensor Domain with Similarity to Periplasmic Binding Proteins

    SciTech Connect

    Cheung, J.; Le-Khac, M; Hendrickson, W

    2009-01-01

    Histidine kinase receptors are elements of the two-component signal transduction systems commonly found in bacteria and lower eukaryotes, where they are crucial for environmental adaption through the coupling of extracellular changes to intracellular responses. The typical two-component system consists of a membrane-spanning histidine kinase sensor and a cytoplasmic response regulator. In the calssic system, extracellular signals such as small molecule ligands and ions are detected by the periplasmic sensor domain of the histidine kinase receptor, which modulates the catalytic activity of the cytoplasmic histidine kinase domain and promotes ATP-dependent autophosphorylation of a conserved histidine residue. G. sulfurreducens genomic DNA was used.

  7. Identification of periplasmic nitrate reductase Mo(V) EPR signals in intact cells of Paracoccus denitrificans.

    PubMed

    Sears, H J; Bennett, B; Spiro, S; Thomson, A J; Richardson, D J

    1995-08-15

    EPR spectroscopy has been successfully used to detect signals due to molybdenum (V) and ferric iron in intact cells of aerobically grown Paracoccus denitrificans. The signals are ascribed to the catalytic molybdenum centre and to the haem iron of the periplasmic nitrate reductase. These signals are absent from a mutant strain deficient in this enzyme. The Mo(V) signal is due to the High-g Split species which has been well characterized in the purified enzyme. This confirms that the High-g Split is the physiologically relevant signal of a number observed in the previous work on the purified enzyme. PMID:7646461

  8. Purification and characterization of periplasmic alpha-amylase from Xanthomonas campestris K-11151.

    PubMed Central

    Abe, J; Onitsuka, N; Nakano, T; Shibata, Y; Hizukuri, S; Entani, E

    1994-01-01

    Xanthomonas campestris K-11151, isolated from soil, produced a periplasmic alpha-amylase of a new type. The enzyme was purified to homogeneity, as shown by several criteria. The purified enzyme showed almost the same activities on alpha-, beta-, and gamma-cyclodextrins, soluble starch, and amylose. Moreover, it was active on branched cyclodextrins, pullulan, and maltose but not on glycogen. Kinetic analysis showed that alpha-cyclodextrin was the best substrate among the cyclodextrins. The substrate specificity suggested that this enzyme had the combined activities of alpha-amylase, cyclodextrinase, and neopullulanase. Images PMID:8206836

  9. Generation of albino Xenopus tropicalis using zinc-finger nucleases.

    PubMed

    Nakajima, Keisuke; Nakajima, Taeko; Takase, Minoru; Yaoita, Yoshio

    2012-12-01

    To generate albino lines of Xenopus tropicalis, we injected fertilized eggs with mRNAs encoding zinc-finger nucleases (ZFNs) targeting the tyrosinase coding region. Surprisingly, vitiligo was observed on the skin of F0 frogs that had been injected with ZFN mRNAs, indicating that both tyrosinase genes in the genome were disrupted in all melanocytes within the vitiligo patches. Mutation analysis using genomic DNA from the skin revealed that two mosaic F0 frogs underwent spatially complex tyrosinase gene mutations. The data implies that the ZFN-induced tyrosinase gene ablations occurred randomly over space and time throughout the entire body, possibly until the young tadpole stage, and that melanocyte precursors lacking functional tyrosinase proliferated and formed vitiligo patches. Several albino X. tropicalis, which are compound heterozygotes for biallelic tyrosinase mutations, were obtained by mating the mosaic F0 frogs. To our knowledge, this is the first report of the albino vertebrates generated by the targeted gene knockout. PMID:23106502

  10. Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases.

    PubMed

    Christian, Michelle; Qi, Yiping; Zhang, Yong; Voytas, Daniel F

    2013-10-01

    Custom TAL effector nucleases (TALENs) are increasingly used as reagents to manipulate genomes in vivo. Here, we used TALENs to modify the genome of the model plant, Arabidopsis thaliana. We engineered seven TALENs targeting five Arabidopsis genes, namely ADH1, TT4, MAPKKK1, DSK2B, and NATA2. In pooled seedlings expressing the TALENs, we observed somatic mutagenesis frequencies ranging from 2-15% at the intended targets for all seven TALENs. Somatic mutagenesis frequencies as high as 41-73% were observed in individual transgenic plant lines expressing the TALENs. Additionally, a TALEN pair targeting a tandemly duplicated gene induced a 4.4-kb deletion in somatic cells. For the most active TALEN pairs, namely those targeting ADH1 and NATA2, we found that TALEN-induced mutations were transmitted to the next generation at frequencies of 1.5-12%. Our work demonstrates that TALENs are useful reagents for achieving targeted mutagenesis in this important plant model. PMID:23979944

  11. Targeted chromosomal deletions in human cells using zinc finger nucleases.

    PubMed

    Lee, Hyung Joo; Kim, Eunji; Kim, Jin-Soo

    2010-01-01

    We present a novel approach for generating targeted deletions of genomic segments in human and other eukaryotic cells using engineered zinc finger nucleases (ZFNs). We found that ZFNs designed to target two different sites in a human chromosome could introduce two concurrent DNA double-strand breaks (DSBs) in the chromosome and give rise to targeted deletions of the genomic segment between the two sites. Using this method in human cells, we were able to delete predetermined genomic DNA segments in the range of several-hundred base pairs (bp) to 15 mega-bp at frequencies of 10(-3) to 10(-1). These high frequencies allowed us to isolate clonal populations of cells, in which the target chromosomal segments were deleted, by limiting dilution. Sequence analysis revealed that many of the deletion junctions contained small insertions or deletions and microhomologies, indicative of DNA repair via nonhomologous end-joining. Unlike other genome engineering tools such as recombinases and meganucleases, ZFNs do not require preinsertion of target sites into the genome and allow precise manipulation of endogenous genomic scripts in animal and plant cells. Thus, ZFN-induced genomic deletions should be broadly useful as a novel method in biomedical research, biotechnology, and gene therapy. PMID:19952142

  12. Nuclease-Assisted Suppression of Human DNA Background in Sepsis

    PubMed Central

    Song, Yajing; Giske, Christian G.; Gille-Johnson, Patrik; Emanuelsson, Olof; Lundeberg, Joakim; Gyarmati, Peter

    2014-01-01

    Sepsis is a severe medical condition characterized by a systemic inflammatory response of the body caused by pathogenic microorganisms in the bloodstream. Blood or plasma is typically used for diagnosis, both containing large amount of human DNA, greatly exceeding the DNA of microbial origin. In order to enrich bacterial DNA, we applied the C0t effect to reduce human DNA background: a model system was set up with human and Escherichia coli (E. coli) DNA to mimic the conditions of bloodstream infections; and this system was adapted to plasma and blood samples from septic patients. As a consequence of the C0t effect, abundant DNA hybridizes faster than rare DNA. Following denaturation and re-hybridization, the amount of abundant DNA can be decreased with the application of double strand specific nucleases, leaving the non-hybridized rare DNA intact. Our experiments show that human DNA concentration can be reduced approximately 100,000-fold without affecting the E. coli DNA concentration in a model system with similarly sized amplicons. With clinical samples, the human DNA background was decreased 100-fold, as bacterial genomes are approximately 1,000-fold smaller compared to the human genome. According to our results, background suppression can be a valuable tool to enrich rare DNA in clinical samples where a high amount of background DNA can be found. PMID:25076135

  13. Myostatin gene mutated mice induced with tale nucleases.

    PubMed

    Zhou, Fangfang; Sun, Ruilin; Chen, Hongyan; Fei, Jian; Lu, Daru

    2015-01-01

    Myostain gene (MSTN) is expressed primarily in skeletal muscle, and negatively regulates skeletal muscle mass; it has been suggested that mice with MSTN inhibition have reduced adiposity and improved insulin sensitivity. Therefore, it is important to establish a fast and effective gene editing method. In this report, we established the myostatin mutated-mouse model by microinjection of Transcription Activator-Like Effector Nucleases (TALENs) mRNA within the mouse fertilized oocytes and achieved high rates of mutagenesis of the mouse MSTN in C57BL/6J. Six of 45 born mice carried target mutations and we appointed one as the parental mating with wild mouse to produce the F1 and backcross to produce the F2 generation. All the mutations of the mice were examined quickly and efficiently by high-resolution melting curve analysis (HRMA) and then verified by direct sequencing. We obtained the homozygous of the F2 generation which transmitted the mutant alleles to the progeny with 100% efficiency. Mutant mice exhibited increases in muscle mass comparable to those observed in wild-type mice. Therefore, combining TALEN-mediated gene targeting with HRMA technology is a superior method of constructing genetically modified mice through microinjection in the mouse fertilized oocytes with high efficiency and short time of selection. PMID:25695746

  14. Chaperone function of FkpA, a heat shock prolyl isomerase, in the periplasm of Escherichia coli.

    PubMed

    Arié, J P; Sassoon, N; Betton, J M

    2001-01-01

    The nature of molecular chaperones in the periplasm of Escherichia coli that assist newly translocated proteins to reach their native state has remained poorly defined. Here, we show that FkpA, a heat shock periplasmic peptidyl-prolyl cis/trans isomerase (PPIase), suppresses the formation of inclusion bodies from a defective-folding variant of the maltose-binding protein, MalE31. This chaperone-like activity of FkpA, which is independent of its PPIase activity, requires a full-length structure of the protein. In vitro, FkpA does not catalyse a slow rate-limiting step in the refolding of MalE31, but prevents its aggregation at stoichiometric amounts and promotes the reactivation of denaturated citrate synthase. We propose that FkpA functions as a chaperone for envelope proteins in the bacterial periplasm. PMID:11123702

  15. Periscope: quantitative prediction of soluble protein expression in the periplasm of Escherichia coli.

    PubMed

    Chang, Catherine Ching Han; Li, Chen; Webb, Geoffrey I; Tey, BengTi; Song, Jiangning; Ramanan, Ramakrishnan Nagasundara

    2016-01-01

    Periplasmic expression of soluble proteins in Escherichia coli not only offers a much-simplified downstream purification process, but also enhances the probability of obtaining correctly folded and biologically active proteins. Different combinations of signal peptides and target proteins lead to different soluble protein expression levels, ranging from negligible to several grams per litre. Accurate algorithms for rational selection of promising candidates can serve as a powerful tool to complement with current trial-and-error approaches. Accordingly, proteomics studies can be conducted with greater efficiency and cost-effectiveness. Here, we developed a predictor with a two-stage architecture, to predict the real-valued expression level of target protein in the periplasm. The output of the first-stage support vector machine (SVM) classifier determines which second-stage support vector regression (SVR) classifier to be used. When tested on an independent test dataset, the predictor achieved an overall prediction accuracy of 78% and a Pearson's correlation coefficient (PCC) of 0.77. We further illustrate the relative importance of various features with respect to different models. The results indicate that the occurrence of dipeptide glutamine and aspartic acid is the most important feature for the classification model. Finally, we provide access to the implemented predictor through the Periscope webserver, freely accessible at http://lightning.med.monash.edu/periscope/. PMID:26931649

  16. Engineering and overexpression of periplasmic forms of the penicillin-binding protein 3 of Escherichia coli.

    PubMed Central

    Fraipont, C; Adam, M; Nguyen-Distèche, M; Keck, W; Van Beeumen, J; Ayala, J A; Granier, B; Hara, H; Ghuysen, J M

    1994-01-01

    Replacement of the 36 and 56 N-terminal amino acid residues of the 588-amino-acid-residue membrane-bound penicillin-binding protein 3 (PBP3) of Escherichia coli by the OmpA signal peptide allows export of F37-V577 PBP3 and G57-V577 PBP3 respectively into the periplasm. The modified ftsI genes were placed under the control of the fused lpp promoter and lac promoter/operator; expression of the truncated PBP3s was optimized by varying the copy number of the recombinant plasmids and the amount of LacI repressor, and export was facilitated by increasing the SecB content of the producing strain. The periplasmic PBP3s (yield 8 mg/l of culture) were purified to 70% protein homogeneity. They require the presence of 0.25 M NaCl to remain soluble. Like the membrane-bound PBP3, they undergo processing by elimination of the C-terminal decapeptide I578-S588, they bind penicillin in a 1:1 molar ratio and they catalyse hydrolysis and aminolysis of acyclic thioesters that are analogues of penicillin. The membrane-anchor-free PBP3s have ragged N-termini. The G57-V577 PBP3, however, is less prone to proteolytic degradation than the F37-V577 PBP3. Images Figure 3 PMID:8129719

  17. High-Throughput Detection of Thiamine Using Periplasmic Binding Protein-Based Biorecognition.

    PubMed

    Edwards, Katie A; Seog, Woo Jin; Han, Lu; Feder, Seth; Kraft, Clifford E; Baeumner, Antje J

    2016-08-16

    Although antibodies and aptamers are commonly used bioaffinity recognition elements, they are not available for many important analytes. As an alternative, we demonstrate use of a periplasmic binding protein (PBP) to provide high affinity recognition for thiamine (vitamin B1), an analyte of great importance to human and environmental health for which, like so many other small molecules, no suitable biorecognition element is available. We demonstrate that with an appropriate competitive strategy, a highly sensitive (limit of detection of 0.5 nM) and specific bioassay for thiamine and its phosphorylated derivatives can be designed. The high-throughput method relies upon the thiamine periplasmic binding protein (TBP) from Escherichia coli for thiamine biorecognition and dye-encapsulating liposomes for signal-enhancement. A thiamine monosuccinate-PEG-biotin derivative was synthesized to serve as an immobilized competitor that overcame constraints imposed by the deep binding cleft and structural recognition requirements of PBPs. The assay was applied to ambient environmental samples with high reproducibility. These findings demonstrate that PBPs can serve as highly specific and sensitive affinity recognition elements in bioanalytical assay formats, thereby opening up the field of affinity sensors to a new range of analytes. PMID:27460839

  18. Periscope: quantitative prediction of soluble protein expression in the periplasm of Escherichia coli

    PubMed Central

    Chang, Catherine Ching Han; Li, Chen; Webb, Geoffrey I.; Tey, BengTi; Song, Jiangning; Ramanan, Ramakrishnan Nagasundara

    2016-01-01

    Periplasmic expression of soluble proteins in Escherichia coli not only offers a much-simplified downstream purification process, but also enhances the probability of obtaining correctly folded and biologically active proteins. Different combinations of signal peptides and target proteins lead to different soluble protein expression levels, ranging from negligible to several grams per litre. Accurate algorithms for rational selection of promising candidates can serve as a powerful tool to complement with current trial-and-error approaches. Accordingly, proteomics studies can be conducted with greater efficiency and cost-effectiveness. Here, we developed a predictor with a two-stage architecture, to predict the real-valued expression level of target protein in the periplasm. The output of the first-stage support vector machine (SVM) classifier determines which second-stage support vector regression (SVR) classifier to be used. When tested on an independent test dataset, the predictor achieved an overall prediction accuracy of 78% and a Pearson’s correlation coefficient (PCC) of 0.77. We further illustrate the relative importance of various features with respect to different models. The results indicate that the occurrence of dipeptide glutamine and aspartic acid is the most important feature for the classification model. Finally, we provide access to the implemented predictor through the Periscope webserver, freely accessible at http://lightning.med.monash.edu/periscope/. PMID:26931649

  19. Identification and Characterization of a Periplasmic Aminoacyl-phosphatidylglycerol Hydrolase Responsible for Pseudomonas aeruginosa Lipid Homeostasis*

    PubMed Central

    Arendt, Wiebke; Groenewold, Maike K.; Hebecker, Stefanie; Dickschat, Jeroen S.; Moser, Jürgen

    2013-01-01

    Specific aminoacylation of the phospholipid phosphatidylglycerol (PG) with alanine (or with lysine) was shown to render various organisms less susceptible to antimicrobial agents and environmental stresses. In this study, we make use of the opportunistic pathogen Pseudomonas aeruginosa to decode ORF PA0919-dependent lipid homeostasis. Analysis of the polar lipid content of the deletion mutant ΔPA0919 indicated significantly enlarged levels of alanyl-PG. The resulting phenotype manifested an increased susceptibility to several antimicrobial compounds when compared with the wild type. A pH-dependent PA0919 promoter located within the upstream gene PA0920 was identified. Localization experiments demonstrated that the PA0919 protein is anchored to the periplasmic surface of the inner bacterial membrane. The recombinant overproduction of wild type and several site-directed mutant proteins in the periplasm of Escherichia coli facilitated a detailed in vitro analysis of the enzymatic PA0919 function. A series of artificial substrates (p-nitrophenyl esters of various amino acids/aliphatic acids) indicated enzymatic hydrolysis of the alanine, glycine, or lysine moiety of the respective ester substrates. Our final in vitro activity assay in the presence of radioactively labeled alanyl-PG then revealed hydrolysis of the aminoacyl linkage, resulting in the formation of alanine and PG. Consequently, PA0919 was termed alanyl-PG hydrolase. The elucidated enzymatic activity implies a new regulatory circuit for the appropriate tuning of cellular alanyl-PG concentrations. PMID:23792962

  20. Periplasmic Vestibule Determines the Ligand Selectivity in E.Coli AMTB

    NASA Astrophysics Data System (ADS)

    Akgun, Ugur; Khademi, Shahram

    2010-03-01

    The transport of ammonia, fundamental to the nitrogen metabolism in all domains of life, is carried out by the Rh/Amt/MEP membrane protein superfamily. The first structure of this family, AmtB from E.Coli shows a pathway for ammonia that includes two vestibules connected by a long and narrow hydrophobic lumen. The accepted mechanism for AmtB is to recruit NH4^+ and conduct neutral NH3 by deprotonation of NH4^+ at the end of periplasmic vestibule. Here we report from various MD simulations performed using a model of trimeric AmtB embedded into POPE lipid bilayer to determine the mechanism of ligands selectivity and conduction in the ammonia channels. Our total more than 500ns simulations reveal that the AmtB periplasmic vestibule prefers NH4^+ over NH3 and CO2. And the rate of ammonia conduction is regulated by the motion of the phenyl rings at the bottom of the vestibule. We also report that the conserved D160 is essential for ligand conduction by stabilizing the NH4^+ at the recruitment site through charge interactions. Our simulations also suggest NH4^+ most likely releases its proton to the bulk of water as it enters to the hydrophobic lumen.

  1. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  2. Cytochromes c biogenesis in a photosynthetic bacterium requires a periplasmic thioredoxin-like protein.

    PubMed Central

    Beckman, D L; Kranz, R G

    1993-01-01

    Rhodobacter capsulatus is a Gram-negative photosynthetic bacterium that requires c-type cytochromes for photosynthetic electron transport. Our studies demonstrate that the gene helX is required for the biogenesis of c-type cytochromes in R. capsulatus. A helX chromosomal deletion mutant cannot grow photosynthetically, due to a deficiency of all c-type cytochromes. The predicted amino acid sequence of the helX gene product (176 residues) is related to that of thioredoxin and shares active-site homology with protein disulfide isomerase. Cytochrome c2-alkaline phosphatase gene fusions are used to show that HelX is not required for the transcription, translation, or secretion of apocytochrome c2. HelX-alkaline phosphatase and HelX-beta-galactosidase gene fusions are used to demonstrate that HelX is a periplasmic protein, which is consistent with the presence of a typical signal sequence in HelX. Based on these results, we propose HelX functions as a periplasmic disulfide oxidoreductase that is essential for cytochromes c biogenesis. This role is in accordance with the observation that both heme and the cysteines of apocytochromes c (Cys-Xaa-Yaa-Cys-His) must be in the reduced state for covalent linkage between the two moieties to occur. PMID:8384715

  3. Label-free fluorometric detection of S1 nuclease activity by using polycytosine oligonucleotide-templated silver nanoclusters.

    PubMed

    Wang, Lihui; Ma, Keke; Zhang, Yaodong

    2014-09-28

    S1 nuclease has an important function in DNA transcription, replication, recombination, and repair. A label-free fluorescent method for the detection of S1 nuclease activity has been developed using polycytosine oligonucleotide-templated silver nanoclusters (dC12-Ag NCs). In this assay, dC12 can function as both the template for the stabilization of Ag NCs and the substrate of the S1 nuclease. Fluorescent Ag NCs could be effectively formed using dC12 as the template without S1 nuclease. In the presence of S1 nuclease, dC12 is degraded to mono- or oligonucleotide fragments, thereby resulting in a reduction in fluorescence. S1 nuclease with an activity as low as 5×10(-8)Uμl(-1) (signal/noise=3) can be determined with a linear range of 5×10(-7) to 1×10(-3)Uμl(-1). The promising application of the proposed method in S1 nuclease inhibitor screening has been demonstrated using pyrophosphate as the model inhibitor. Furthermore, the S1 nuclease concentrations in RPMI 1640 cell medium were validated. The developed method for S1 nuclease is sensitive and facile because its operation does not require any complicated DNA labeling or laborious fluorescent dye synthesis. PMID:25263815

  4. The Quorum-Sensing Hybrid Histidine Kinase LuxN of Vibrio harveyi Contains a Periplasmically Located N Terminus▿

    PubMed Central

    Jung, Kirsten; Odenbach, Tina; Timmen, Melanie

    2007-01-01

    Hydropathy profile analyses of the amino acid sequence of the quorum-sensing hybrid histidine kinase LuxN of Vibrio harveyi predict a periplasmic location of the N terminus. To test this, two-hybrid proteins consisting of LuxN and an N-terminally fused maltose-binding protein with or without a leader sequence were analyzed with regard to the enzymatic activities of LuxN, protease accessibility, and complementation of an Escherichia coli malE mutant. The results strongly support a periplasmic location of the N terminus, implying that LuxN is anchored with nine transmembrane domains in the cytoplasmic membrane. PMID:17259316

  5. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.

    PubMed

    Kleinstiver, Benjamin P; Prew, Michelle S; Tsai, Shengdar Q; Topkar, Ved V; Nguyen, Nhu T; Zheng, Zongli; Gonzales, Andrew P W; Li, Zhuyun; Peterson, Randall T; Yeh, Jing-Ruey Joanna; Aryee, Martin J; Joung, J Keith

    2015-07-23

    Although CRISPR-Cas9 nucleases are widely used for genome editing, the range of sequences that Cas9 can recognize is constrained by the need for a specific protospacer adjacent motif (PAM). As a result, it can often be difficult to target double-stranded breaks (DSBs) with the precision that is necessary for various genome-editing applications. The ability to engineer Cas9 derivatives with purposefully altered PAM specificities would address this limitation. Here we show that the commonly used Streptococcus pyogenes Cas9 (SpCas9) can be modified to recognize alternative PAM sequences using structural information, bacterial selection-based directed evolution, and combinatorial design. These altered PAM specificity variants enable robust editing of endogenous gene sites in zebrafish and human cells not currently targetable by wild-type SpCas9, and their genome-wide specificities are comparable to wild-type SpCas9 as judged by GUIDE-seq analysis. In addition, we identify and characterize another SpCas9 variant that exhibits improved specificity in human cells, possessing better discrimination against off-target sites with non-canonical NAG and NGA PAMs and/or mismatched spacers. We also find that two smaller-size Cas9 orthologues, Streptococcus thermophilus Cas9 (St1Cas9) and Staphylococcus aureus Cas9 (SaCas9), function efficiently in the bacterial selection systems and in human cells, suggesting that our engineering strategies could be extended to Cas9s from other species. Our findings provide broadly useful SpCas9 variants and, more importantly, establish the feasibility of engineering a wide range of Cas9s with altered and improved PAM specificities. PMID:26098369

  6. Engineered CRISPR-Cas9 nucleases with altered PAM specificities

    PubMed Central

    Kleinstiver, Benjamin P.; Prew, Michelle S.; Tsai, Shengdar Q.; Topkar, Ved; Nguyen, Nhu T.; Zheng, Zongli; Gonzales, Andrew P.W.; Li, Zhuyun; Peterson, Randall T.; Yeh, Jing-Ruey Joanna; Aryee, Martin J.; Joung, J. Keith

    2015-01-01

    Although CRISPR-Cas9 nucleases are widely used for genome editing1, 2, the range of sequences that Cas9 can recognize is constrained by the need for a specific protospacer adjacent motif (PAM)3–6. As a result, it can often be difficult to target double-stranded breaks (DSBs) with the precision that is necessary for various genome editing applications. The ability to engineer Cas9 derivatives with purposefully altered PAM specificities would address this limitation. Here we show that the commonly used Streptococcus pyogenes Cas9 (SpCas9) can be modified to recognize alternative PAM sequences using structural information, bacterial selection-based directed evolution, and combinatorial design. These altered PAM specificity variants enable robust editing of endogenous gene sites in zebrafish and human cells not currently targetable by wild-type SpCas9, and their genome-wide specificities are comparable to wild-type SpCas9 as judged by GUIDE-Seq analysis7. In addition, we identified and characterized another SpCas9 variant that exhibits improved specificity in human cells, possessing better discrimination against off-target sites with non-canonical NAG and NGA PAMs and/or mismatched spacers. We also found that two smaller-size Cas9 orthologues, Streptococcus thermophilus Cas9 (St1Cas9) and Staphylococcus aureus Cas9 (SaCas9), function efficiently in the bacterial selection systems and in human cells, suggesting that our engineering strategies could be extended to Cas9s from other species. Our findings provide broadly useful SpCas9 variants and, more importantly, establish the feasibility of engineering a wide range of Cas9s with altered and improved PAM specificities. PMID:26098369

  7. DNA Oxidation Profiles of Copper Phenanthrene Chemical Nucleases

    NASA Astrophysics Data System (ADS)

    Molphy, Zara; Slator, Creina; Chatgilialoglu, Chryssostomos; Kellett, Andrew

    2015-04-01

    The deleterious effects of metal-catalyzed reactive oxygen species (ROS) in biological systems can be seen in a wide variety of pathological conditions including cancer, cardiovascular disease, ageing, and neurodegenerative disorder. On the other hand however, targeted ROS production in the vicinity of nucleic acids - as demonstrated by metal-activated bleomycin - has paved the way for ROS-active chemotherapeutic drug development. Herein we report mechanistic investigations into the oxidative nuclease activity and redox properties of copper(II) developmental therapeutics [Cu(DPQ)(phen)]2+ (Cu-DPQ-Phen), [Cu(DPPZ)(phen)]2+ (Cu-DPPZ-Phen), and [{Cu(phen)2}2(μ-terph)](terph) (Cu-Terph), with results being compared directly to Sigman’s reagent [Cu(phen)2]2+ throughout (phen = 1,10-phenanthroline; DPQ = dipyridoquinoxaline; DPPZ = dipyridophenazine). Oxidative DNA damage was identified at the minor groove through use of surface bound recognition elements of methyl green, netropsin, and [Co(NH3)6]Cl3 that functioned to control complex accessibility at selected regions. ROS-specific scavengers and stabilisers were employed to identify the cleavage process, the results of which infer hydrogen peroxide produced metal-hydroxo or free hydroxyl radicals (•OH) as the predominant species. The extent of DNA damage owing to these radicals was then quantified through 8-oxo-2'-deoxyguanosine (8-oxo-dG) lesion detection under ELISA protocol with the overall trend following Cu-DPQ-Phen > Cu-Terph > Cu-Phen > Cu-DPPZ. Finally, the effects of oxidative damage on DNA replication processes were investigated using the polymerase chain reaction (PCR) where amplification of 120 base pair DNA sequences of varying base content were inhibited - particularly along A-T rich chains - through oxidative damage of the template strands.

  8. Osmoregulated periplasmic glucans are needed for competitive growth and biofilm formation by Salmonella enterica serovar Typhimurium in leafy-green vegetable wash-waters and colonization in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osmoregulated periplasmic glucans (OPGs) are major periplasmic constituents of Gram negative bacteria. The role of OPGs has been postulated in symbiotic as well as pathogenic host-microbe interactions. Here we report the role of OPGs from Salmonella enterica serovar Typhimurium during growth and b...

  9. Protein folding in the periplasm in the absence of primary oxidant DsbA: modulation of redox potential in periplasmic space via OmpL porin

    PubMed Central

    Dartigalongue, Claire; Nikaido, Hiroshi; Raina, Satish

    2000-01-01

    Disulfide bond formation in Escherichia coli is a catalyzed reaction accomplished by DsbA. We found that null mutations in a new porin gene, ompL, allowed a total bypass of the DsbA requirement for protein oxidation. These mutations acted as extragenic null suppressors for dsbA, and restored normal folding of alkaline phosphatase and relieved sensitivity to dithiothreitol. ompL dsbA double mutants were completely like wild-type mutants in terms of motility and lack of mucoidy. This suppression was not dependent on DsbC and DsbG, since the oxidation status of these proteins was unaltered in ompL dsbA strains. Purified OmpL allowed diffusion of small solutes, including sugars, but the suppression was not dependent on the carbon sources used. Suppression by ompL null mutations required DsbB, leading us to propose a hypothesis that DsbB oxidizes yet unidentified, low-molecular-weight redox agents in the periplasm. These oxidized agents accumulate and substitute for DsbA if their leakage into the medium is prevented by the absence of OmpL, presumed to form a specific channel for their diffusion. PMID:11080145

  10. AdnAB: a new DSB-resecting motor-nuclease from mycobacteria.

    PubMed

    Sinha, Krishna Murari; Unciuleac, Mihaela-Carmen; Glickman, Michael S; Shuman, Stewart

    2009-06-15

    The resection of DNA double-strand breaks (DSBs) in bacteria is a motor-driven process performed by a multisubunit helicase-nuclease complex: either an Escherichia coli-type RecBCD enzyme or a Bacillus-type AddAB enzyme. Here we identify mycobacterial AdnAB as the founder of a new family of heterodimeric helicase-nucleases with distinctive properties. The AdnA and AdnB subunits are each composed of an N-terminal UvrD-like motor domain and a C-terminal nuclease module. The AdnAB ATPase is triggered by dsDNA with free ends and the energy of ATP hydrolysis is coupled to DSB end resection by the AdnAB nuclease. The mycobacterial nonhomologous end-joining (NHEJ) protein Ku protects DSBs from resection by AdnAB. We find that AdnAB incises ssDNA by measuring the distance from the free 5' end to dictate the sites of cleavage, which are predominantly 5 or 6 nucleotides (nt) from the 5' end. The "molecular ruler" of AdnAB is regulated by ATP, which elicits an increase in ssDNA cleavage rate and a distal displacement of the cleavage sites 16-17 nt from the 5' terminus. AdnAB is a dual nuclease with a clear division of labor between the subunits. Mutations in the nuclease active site of the AdnB subunit ablate the ATP-inducible cleavages; the corresponding changes in AdnA abolish ATP-independent cleavage. Complete suppression of DSB end resection requires simultaneous mutation of both subunit nucleases. The nuclease-null AdnAB is a helicase that unwinds linear plasmid DNA without degrading the displaced single strands. Mutations of the phosphohydrolase active site of the AdnB subunit ablate DNA-dependent ATPase activity, DSB end resection, and ATP-inducible ssDNA cleavage; the equivalent mutations of the AdnA subunit have comparatively little effect. AdnAB is a novel signature of the Actinomycetales taxon. Mycobacteria are exceptional in that they encode both AdnAB and RecBCD, suggesting the existence of alternative end-resecting motor-nuclease complexes. PMID:19470566

  11. Nuclease activity of Saccharomyces cerevisiae Dna2 inhibits its potent DNA helicase activity

    PubMed Central

    Levikova, Maryna; Klaue, Daniel; Seidel, Ralf; Cejka, Petr

    2013-01-01

    Dna2 is a nuclease-helicase involved in several key pathways of eukaryotic DNA metabolism. The potent nuclease activity of Saccharomyces cerevisiae Dna2 was reported to be required for all its in vivo functions tested to date. In contrast, its helicase activity was shown to be weak, and its inactivation affected only a subset of Dna2 functions. We describe here a complex interplay of the two enzymatic activities. We show that the nuclease of Dna2 inhibits its helicase by cleaving 5′ flaps that are required by the helicase domain for loading onto its substrate. Mutational inactivation of Dna2 nuclease unleashes unexpectedly vigorous DNA unwinding activity, comparable with that of the most potent eukaryotic helicases. Thus, the ssDNA-specific nuclease activity of Dna2 limits and controls the enzyme's capacity to unwind dsDNA. We postulate that regulation of this interplay could modulate the biochemical properties of Dna2 and thus license it to carry out its distinct cellular functions. PMID:23671118

  12. Quantification of designer nuclease induced mutation rates: a direct comparison of different methods

    PubMed Central

    Ehrke-Schulz, Eric; Bergmann, Thorsten; Schiwon, Maren; Doerner, Johannes; Saydaminova, Kamola; Lieber, Andre; Ehrhardt, Anja

    2016-01-01

    Designer nucleases are broadly applied to induce site-specific DNA double-strand breaks (DSB) in genomic DNA. These are repaired by nonhomologous end joining leading to insertions or deletions (in/dels) at the respective DNA-locus. To detect in/del mutations, the heteroduplex based T7-endonuclease I -assay is widely used. However, it only provides semi-quantitative evidence regarding the number of mutated alleles. Here we compared T7-endonuclease I- and heteroduplex mobility assays, with a quantitative polymerase chain reaction mutation detection method. A zinc finger nuclease pair specific for the human adeno-associated virus integration site 1 (AAVS1), a transcription activator-like effector nuclease pair specific for the human DMD gene, and a zinc finger nuclease- and a transcription activator-like effector nuclease pair specific for the human CCR5 gene were explored. We found that the heteroduplex mobility assays and T7-endonuclease I - assays detected mutations but the relative number of mutated cells/alleles can only be estimated. In contrast, the quantitative polymerase chain reaction based method provided quantitative results which allow calculating mutation and homologous recombination rates in different eukaryotic cell types including human peripheral blood mononuclear cells. In conclusion, our quantitative polymerase chain reaction based mutation detection method expands the array of methods for in/del mutation detection and facilitates quantification of introduced in/del mutations for a genomic locus containing a mixture of mutated and unmutated DNA. PMID:27419195

  13. Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases.

    PubMed

    Hu, Johnny H; Davis, Kevin M; Liu, David R

    2016-01-21

    Programmable DNA nucleases have provided scientists with the unprecedented ability to probe, regulate, and manipulate the human genome. Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeat-Cas9 system (CRISPR-Cas9) represent a powerful array of tools that can bind to and cleave a specified DNA sequence. In their canonical forms, these nucleases induce double-strand breaks at a DNA locus of interest that can trigger cellular DNA repair processes that disrupt or replace genes. The fusion of these programmable nucleases with a variety of other protein domains has led to a rapidly growing suite of tools for activating, repressing, visualizing, and modifying loci of interest. Maximizing the usefulness and therapeutic relevance of these tools, however, requires precisely controlling their activity and specificity to minimize potentially toxic side effects arising from off-target activities. This need has motivated the application of chemical biology principles and methods to genome-editing proteins, including the engineering of variants of these proteins with improved or altered specificities, and the development of genetic, chemical, optical, and protein delivery methods that control the activity of these agents in cells. Advancing the capabilities, safety, effectiveness, and therapeutic relevance of genome-engineering proteins will continue to rely on chemical biology strategies that manipulate their activity, specificity, and localization. PMID:26933736

  14. Interplay of Mre11 Nuclease with Dna2 plus Sgs1 in Rad51-Dependent Recombinational Repair

    PubMed Central

    Budd, Martin E.; Campbell, Judith L.

    2009-01-01

    The Mre11/Rad50/Xrs2 complex initiates IR repair by binding to the end of a double-strand break, resulting in 5′ to 3′ exonuclease degradation creating a single-stranded 3′ overhang competent for strand invasion into the unbroken chromosome. The nuclease(s) involved are not well understood. Mre11 encodes a nuclease, but it has 3′ to 5′, rather than 5′ to 3′ activity. Furthermore, mutations that inactivate only the nuclease activity of Mre11 but not its other repair functions, mre11-D56N and mre11-H125N, are resistant to IR. This suggests that another nuclease can catalyze 5′ to 3′ degradation. One candidate nuclease that has not been tested to date because it is encoded by an essential gene is the Dna2 helicase/nuclease. We recently reported the ability to suppress the lethality of a dna2Δ with a pif1Δ. The dna2Δ pif1Δ mutant is IR-resistant. We have determined that dna2Δ pif1Δ mre11-D56N and dna2Δ pif1Δ mre11-H125N strains are equally as sensitive to IR as mre11Δ strains, suggesting that in the absence of Dna2, Mre11 nuclease carries out repair. The dna2Δ pif1Δ mre11-D56N triple mutant is complemented by plasmids expressing Mre11, Dna2 or dna2K1080E, a mutant with defective helicase and functional nuclease, demonstrating that the nuclease of Dna2 compensates for the absence of Mre11 nuclease in IR repair, presumably in 5′ to 3′ degradation at DSB ends. We further show that sgs1Δ mre11-H125N, but not sgs1Δ, is very sensitive to IR, implicating the Sgs1 helicase in the Dna2-mediated pathway. PMID:19165339

  15. Generating and identifying axolotls with targeted mutations using Cas9 RNA-guided nuclease.

    PubMed

    Flowers, G Parker; Crews, Craig M

    2015-01-01

    The CRISPR/Cas9 RNA-guided nuclease now enables a reverse genetics approach to investigate the function of genes of interest during regeneration in the axolotl. The process of generating the constructs necessary for targeting a gene of interest is considerably less labor intensive than for other methods of targeted mutagenesis such as Zinc finger nucleases or Transcription activator-like effector nucleases. Here, we describe the identification of targetable sequences in the gene of interest, the construction of unique guide RNAs, the microinjection of these RNAs with Cas9-encoding mRNA, the selection of well-injected animals, and an inexpensive, PCR-based method for identifying highly mutagenized animals. PMID:25740494

  16. Use of S1 nuclease in deep sequencing for detection of double-stranded RNA viruses.

    PubMed

    Shimada, Saya; Nagai, Makoto; Moriyama, Hiromitsu; Fukuhara, Toshiyuki; Koyama, Satoshi; Omatsu, Tsutomu; Furuya, Tetsuya; Shirai, Junsuke; Mizutani, Tetsuya

    2015-09-01

    Metagenomic approach using next-generation DNA sequencing has facilitated the detection of many pathogenic viruses from fecal samples. However, in many cases, majority of the detected sequences originate from the host genome and bacterial flora in the gut. Here, to improve efficiency of the detection of double-stranded (ds) RNA viruses from samples, we evaluated the applicability of S1 nuclease on deep sequencing. Treating total RNA with S1 nuclease resulted in 1.5-28.4- and 10.1-208.9-fold increases in sequence reads of group A rotavirus in fecal and viral culture samples, respectively. Moreover, increasing coverage of mapping to reference sequences allowed for sufficient genotyping using analytical software. These results suggest that library construction using S1 nuclease is useful for deep sequencing in the detection of dsRNA viruses. PMID:25843154

  17. Installing logic gates in permeability controllable polyelectrolyte-carbon nitride films for detecting proteases and nucleases.

    PubMed

    Chen, Lichan; Zeng, Xiaoting; Dandapat, Anirban; Chi, Yuwu; Kim, Donghwan

    2015-09-01

    Proteases and nucleases are enzymes heavily involved in many important biological processes, such as cancer initiation, progression, and metastasis; hence, they are indicative of potential diagnostic biomarkers. Here, we demonstrate a new label free and sensitive electrochemiluminescent (ECL) sensing strategy for protease and nuclease assays that utilize target-triggered desorption of programmable polyelectrolyte films assembled on graphite-like carbon nitride (g-C3N4) film to regulate the diffusion flux of a coreactant. Furthermore, we have built Boolean logic gates OR and AND into the polyelectrolyte films, capable of simultaneously sensing proteases and nucleases in a complicated system by breaking it into simple functions. The developed intelligent permeability controlled enzyme sensor may prove valuable in future medical diagnostics. PMID:26228179

  18. Cellular Architecture of Treponema pallidum: Novel Flagellum, Periplasmic Cone, and Cell Envelope as Revealed by Cryo-Electron Tomography

    PubMed Central

    Liu, Jun; Howell, Jerrilyn K.; Bradley, Sherille D.; Zheng, Yesha; Zhou, Z. Hong; Norris, Steven J.

    2010-01-01

    High resolution cryo-electron tomography (cryo-ET) was utilized to visualize Treponema pallidum, the causative agent of syphilis, at the molecular level. Three-dimensional (3-D) reconstructions from 304 infectious organisms revealed unprecedented cellular structures of this unusual member in the spirochetal family. High resolution cryo-ET reconstructions provided the detailed structures of the cell envelope, which is significantly different from that of gram-negative bacteria. The 4 nm lipid bilayer of both outer and cytoplasmic membranes resolved in 3-D reconstructions, providing an important marker for interpreting membrane-associated structures. Abundant lipoproteins cover the outer leaflet of the cytoplasmic membrane, in contrast to the rare outer membrane proteins visible by scanning probe microscopy. High resolution cryo-ET images also provided the first observation of T. pallidum chemoreceptor arrays, as well as structural details of the periplasmically located, cone-shaped structure at both ends of bacterium. Furthermore, 3-D subvolume averages of the periplasmic flagellar motors and filaments from living organisms revealed the novel flagellar architectures that may facilitate their rotation within the confining periplasmic space. Together, our findings provide the most detailed structural understanding of the periplasmic flagella and the surrounding cell envelope, which enable this enigmatic bacterium to efficiently penetrate tissue and escape host immune responses. PMID:20850455

  19. High-yield export of a native heterologous protein to the periplasm by the tat translocation pathway in Escherichia coli.

    PubMed

    Matos, Cristina F R O; Branston, Steven D; Albiniak, Anna; Dhanoya, Arjun; Freedman, Robert B; Keshavarz-Moore, Eli; Robinson, Colin

    2012-10-01

    Numerous high-value recombinant proteins that are produced in bacteria are exported to the periplasm as this approach offers relatively easy downstream processing and purification. Most recombinant proteins are exported by the Sec pathway, which transports them across the plasma membrane in an unfolded state. The twin-arginine translocation (Tat) system operates in parallel with the Sec pathway but transports substrate proteins in a folded state; it therefore has potential to export proteins that are difficult to produce using the Sec pathway. In this study, we have produced a heterologous protein (green fluorescent protein; GFP) in Escherichia coli and have used batch and fed-batch fermentation systems to test the ability of the newly engineered Tat system to export this protein into the periplasm under industrial-type production conditions. GFP cannot be exported by the Sec pathway in an active form. We first tested the ability of five different Tat signal peptides to export GFP, and showed that the TorA signal peptide directed most efficient export. Under batch fermentation conditions, it was found that TorA-GFP was exported efficiently in wild type cells, but a twofold increase in periplasmic GFP was obtained when the TatABC components were co-expressed. In both cases, periplasmic GFP peaked at about the 12 h point during fermentation but decreased thereafter, suggesting that proteolysis was occurring. Typical yields were 60 mg periplasmic GFP per liter culture. The cells over-expressed the tat operon throughout the fermentation process and the Tat system was shown to be highly active over a 48 h induction period. Fed-batch fermentation generated much greater yields: using glycerol feed rates of 0.4, 0.8, and 1.2 mL h(-1), the cultures reached OD(600) values of 180 and periplasmic GFP levels of 0.4, 0.85, and 1.1 g L(-1) culture, respectively. Most or all of the periplasmic GFP was shown to be active. These export values are in line with those obtained in

  20. Interaction of Nuclease Colicins with Membranes: Insertion Depth Correlates with Bilayer Perturbation

    PubMed Central

    Vankemmelbeke, Mireille; O′Shea, Paul; James, Richard; Penfold, Christopher N.

    2012-01-01

    Background Protein transport across cellular membranes is an important aspect of toxin biology. Escherichia coli cell killing by nuclease colicins occurs through DNA (DNases) or RNA (RNases) hydrolysis and to this end their cytotoxic domains require transportation across two sets of membranes. In order to begin to unravel the molecular mechanisms underlying the membrane translocation of colicin nuclease domains, we have analysed the membrane association of four DNase domains (E9, a charge reduction E9 mutant, E8, and E7) and one ribosomal RNase domain (E3) using a biomembrane model system. Principal Results We demonstrate, through the use of large unilamellar vesicles composed of synthetic and E. coli lipids and a membrane surface potential sensor, that the colicin nuclease domains bind anionic membranes only, with micromolar affinity and via a cooperative binding mechanism. The evaluation of the nuclease bilayer insertion depth, through a fluorescence quenching analysis using brominated lipids, indicates that the nucleases locate to differential regions in the bilayer. Colicin DNases target the interfacial region of the lipid bilayer, with the DNase E7 showing the deepest insertion, whereas the ribosomal RNase E3 penetrates into the hydrophobic core region of the bilayer. Furthermore, the membrane association of the DNase E7 and the ribosomal RNase E3 induces vesicle aggregation, lipid mixing and content leakage to a much larger extent than that of the other DNases analysed. Conclusions/Significance Our results show, for the first time, that after the initial electrostatically driven membrane association, the pleiotropic membrane effects induced by colicin nuclease domains relate to their bilayer insertion depth and may be linked to their in vivo membrane translocation. PMID:23029560

  1. DddY, a periplasmic dimethylsulfoniopropionate lyase found in taxonomically diverse species of Proteobacteria

    PubMed Central

    Curson, Andrew R J; Sullivan, Matthew J; Todd, Jonathan D; Johnston, Andrew W B

    2011-01-01

    The abundant compatible solute dimethylsulfoniopropionate (DMSP) is made by many marine algae. Different marine bacteria catabolise DMSP by various mechanisms, some of which liberate the environmentally important gas dimethyl sulfide (DMS). We describe an enzyme, DddY, which cleaves DMSP into DMS plus acrylate and is located in the bacterial periplasm, unlike other DMSP lyases that catalyse this reaction. There are dddY-like genes in strains of Alcaligenes, Arcobacter and Shewanella, in the β-, ɛ- and γ-proteobacteria, respectively. In Alcaligenes, dddY is in a cluster of ddd and acu genes that resemble, but also have significant differences to, those in other bacteria that catabolise both DMSP and acrylate. Although production of DMS and transcription of Alcaligenes dddY are both apparently inducible by pre-growth of cells with DMSP, this substrate must be catabolised to form acrylate, the bona fide coinducer. PMID:21248856

  2. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm

    NASA Astrophysics Data System (ADS)

    Li, Dao-Bo; Cheng, Yuan-Yuan; Wu, Chao; Li, Wen-Wei; Li, Na; Yang, Zong-Chuang; Tong, Zhong-Hua; Yu, Han-Qing

    2014-01-01

    In situ reduction of selenite to elemental selenium (Se(0)), by microorganisms in sediments and soils is an important process and greatly affects the environmental distribution and the biological effects of selenium. However, the mechanism behind such a biological process remains unrevealed yet. Here we use Shewanella oneidensis MR-1, a widely-distributed dissimilatory metal-reducing bacterium with a powerful and diverse respiration capability, to evaluate the involvement of anaerobic respiration system in the microbial selenite reduction. With mutants analysis, we identify fumarate reductase FccA as the terminal reductase of selenite in periplasm. Moreover, we find that such a reduction is dependent on central respiration c-type cytochrome CymA. In contrast, nitrate reductase, nitrite reductase, and the Mtr electron transfer pathway do not work as selenite reductases. These findings reveal a previously unrecognized role of anaerobic respiration reductases of S. oneidensis MR-1 in selenite reduction and geochemical cycles of selenium in sediments and soils.

  3. Disulfide Bond Formation in the Bacterial Periplasm: Major Achievements and Challenges Ahead

    PubMed Central

    Denoncin, Katleen

    2013-01-01

    Abstract Significance: The discovery of the oxidoreductase disulfide bond protein A (DsbA) in 1991 opened the way to the unraveling of the pathways of disulfide bond formation in the periplasm of Escherichia coli and other Gram-negative bacteria. Correct oxidative protein folding in the E. coli envelope depends on both the DsbA/DsbB pathway, which catalyzes disulfide bond formation, and the DsbC/DsbD pathway, which catalyzes disulfide bond isomerization. Recent Advances: Recent data have revealed an unsuspected link between the oxidative protein-folding pathways and the defense mechanisms against oxidative stress. Moreover, bacterial disulfide-bond-forming systems that differ from those at play in E. coli have been discovered. Critical Issues: In this review, we discuss fundamental questions that remain unsolved, such as what is the mechanism employed by DsbD to catalyze the transfer of reducing equivalents across the membrane and how do the oxidative protein-folding catalysts DsbA and DsbC cooperate with the periplasmic chaperones in the folding of secreted proteins. Future Directions: Understanding the mechanism of DsbD will require solving the structure of the membranous domain of this protein. Another challenge of the coming years will be to put the knowledge of the disulfide formation machineries into the global cellular context to unravel the interplay between protein-folding catalysts and chaperones. Also, a thorough characterization of the disulfide bond formation machineries at work in pathogenic bacteria is necessary to design antimicrobial drugs targeting the folding pathway of virulence factors stabilized by disulfide bonds. Antioxid. Redox Signal. 19, 63–71. PMID:22901060

  4. The periplasmic serine protease inhibitor ecotin protects bacteria against neutrophil elastase.

    PubMed Central

    Eggers, Christopher T; Murray, Iain A; Delmar, Valerie A; Day, Anthony G; Craik, Charles S

    2004-01-01

    Ecotin is a dimeric periplasmic protein from Escherichia coli that has been shown to inhibit potently many trypsin-fold serine proteases of widely varying substrate specificity. To help elucidate the physiological function of ecotin, we examined the family of ecotin orthologues, which are present in a subset of Gram-negative bacteria. Phylogenetic analysis suggested that ecotin has an exogenous target, possibly neutrophil elastase. Recombinant protein was expressed and purified from E. coli, Yersinia pestis and Pseudomonas aeruginosa, all species that encounter the mammalian immune system, and also from the plant pathogen Pantoea citrea. Notably, the Pa. citrea variant inhibits neutrophil elastase 1000-fold less potently than the other orthologues. All four orthologues are dimeric proteins that potently inhibit (<10 pM) the pancreatic digestive proteases trypsin and chymotrypsin, while showing more variable inhibition (5 pM to 24 microM) of the blood proteases Factor Xa, thrombin and urokinase-type plasminogen activator. To test whether ecotin does, in fact, protect bacteria from neutrophil elastase, an ecotin-deficient strain was generated in E. coli. This strain is significantly more sensitive in cell-killing assays to human neutrophil elastase, which causes increased permeability of the outer membrane that persists even during renewed bacterial growth. Ecotin affects primarily the ability of E. coli to recover and grow following treatment with neutrophil elastase, rather than the actual rate of killing. This suggests that an important part of the antimicrobial mechanism of neutrophil elastase may be a periplasmic bacteriostatic effect of protease that has translocated across the damaged outer membrane. PMID:14705961

  5. Periplasmic Nitrate Reductase (NapABC Enzyme) Supports Anaerobic Respiration by Escherichia coli K-12

    PubMed Central

    Stewart, Valley; Lu, Yiran; Darwin, Andrew J.

    2002-01-01

    Periplasmic nitrate reductase (NapABC enzyme) has been characterized from a variety of proteobacteria, especially Paracoccus pantotrophus. Whole-genome sequencing of Escherichia coli revealed the structural genes napFDAGHBC, which encode NapABC enzyme and associated electron transfer components. E. coli also expresses two membrane-bound proton-translocating nitrate reductases, encoded by the narGHJI and narZYWV operons. We measured reduced viologen-dependent nitrate reductase activity in a series of strains with combinations of nar and nap null alleles. The napF operon-encoded nitrate reductase activity was not sensitive to azide, as shown previously for the P. pantotrophus NapA enzyme. A strain carrying null alleles of narG and narZ grew exponentially on glycerol with nitrate as the respiratory oxidant (anaerobic respiration), whereas a strain also carrying a null allele of napA did not. By contrast, the presence of napA+ had no influence on the more rapid growth of narG+ strains. These results indicate that periplasmic nitrate reductase, like fumarate reductase, can function in anaerobic respiration but does not constitute a site for generating proton motive force. The time course of Φ(napF-lacZ) expression during growth in batch culture displayed a complex pattern in response to the dynamic nitrate/nitrite ratio. Our results are consistent with the observation that Φ(napF-lacZ) is expressed preferentially at relatively low nitrate concentrations in continuous cultures (H. Wang, C.-P. Tseng, and R. P. Gunsalus, J. Bacteriol. 181:5303-5308, 1999). This finding and other considerations support the hypothesis that NapABC enzyme may function in E. coli when low nitrate concentrations limit the bioenergetic efficiency of nitrate respiration via NarGHI enzyme. PMID:11844760

  6. Thiocyanate binding to the molybdenum centre of the periplasmic nitrate reductase from Paracoccus pantotrophus.

    PubMed

    Butler, C S; Charnock, J M; Garner, C D; Thomson, A J; Ferguson, S J; Berks, B C; Richardson, D J

    2000-12-15

    The periplasmic nitrate reductase (NAP) from Paracoccus pantotrophus is a soluble two-subunit enzyme (NapAB) that binds two haem groups, a [4Fe-4S] cluster and a bis(molybdopterin guanine dinucleotide) (MGD) cofactor that catalyses the reduction of nitrate to nitrite. In the present study the effect of KSCN (potassium thiocyanate) as an inhibitor and Mo ligand has been investigated. Results are presented that show NAP is sensitive to SCN(-) (thiocyanate) inhibition, with SCN(-) acting as a competitive inhibitor of nitrate (K(i) approximately 4.0 mM). The formation of a novel EPR Mo(V) species with an elevated g(av) value (g(av) approximately 1.994) compared to the Mo(V) High-g (resting) species was observed upon redox cycling in the presence of SCN(-). Mo K-edge EXAFS analysis of the dithionite-reduced NAP was best fitted as a mono-oxo Mo(IV) species with three Mo-S ligands at 2.35 A (1 A=0.1 nm) and a Mo-O ligand at 2.14 A. The addition of SCN(-) to the reduced Mo(IV) NAP generated a sample that was best fitted as a mono-oxo (1.70 A) Mo(IV) species with four Mo-S ligands at 2.34 A. Taken together, the competitive nature of SCN(-) inhibition of periplasmic nitrate reductase activity, the elevated Mo(V) EPR g(av) value following redox cycling in the presence of SCN(-) and the increase in sulphur co-ordination of Mo(IV) upon SCN(-) binding, provide strong evidence for the direct binding of SCN(-) via a sulphur atom to Mo. PMID:11104696

  7. Secretion of Bacterial Lipoproteins: Through the Cytoplasmic Membrane, the Periplasm and Beyond

    PubMed Central

    Zückert, Wolfram R.

    2014-01-01

    Bacterial lipoproteins are peripherally anchored membrane proteins that play a variety of roles in bacterial physiology and virulence in monoderm (single membrane-enveloped, e.g., grampositive) and diderm (double membrane-enveloped, e.g., gram-negative) bacteria. After export of prolipoproteins through the cytoplasmic membrane, which occurs predominantly but not exclusively via the general secretory or Sec pathway, the proteins are lipid-modified at the cytoplasmic membrane in a multistep process that involves sequential modification of a cysteine residue and cleavage of the signal peptide by the signal II peptidase Lsp. In both monoderms and diderms, signal peptide processing is preceded by acylation with a diacylglycerol through preprolipoprotein diacylglycerol transferase (Lgt). In diderms but also some monoderms, lipoproteins are further modified with a third acyl chain through lipoprotein N-acyl transferase (Lnt). Fully modified lipoproteins that are destined to be anchored in the inner leaflet of the outer membrane (OM) are selected, transported and inserted by the Lol (lipoprotein outer membrane localization) pathway machinery, which consists of the inner-membrane (IM) ABC transporterlike LolCDE complex, the periplasmic LolA chaperone and the OM LolB lipoprotein receptor. Retention of lipoproteins in the cytoplasmic membrane results from Lol avoidance signals that were originally described as the “+2 rule”. Surface localization of lipoproteins in diderms is rare in most bacteria, with the exception of several spirochetal species. Type 2 (T2SS) and type 5 (T5SS) secretion systems are involved in secretion of specific surface lipoproteins of γ-proteobacteria. In the model spirochete Borrelia burgdorferi, surface lipoprotein secretion does not follow established sorting rules, but remains dependent on N-terminal peptide sequences. Secretion through the outer membrane requires maintenance of lipoproteins in a translocation-competent unfolded conformation

  8. Cyclic Di-GMP-Regulated Periplasmic Proteolysis of a Pseudomonas aeruginosa Type Vb Secretion System Substrate

    PubMed Central

    Cooley, Richard B.; Smith, T. Jarrod; Leung, Wilfred; Tierney, Valerie; Borlee, Bradley R.; O'Toole, George A.

    2015-01-01

    ABSTRACT We previously identified a second-messenger-regulated signaling system in the environmental bacterium Pseudomonas fluorescens which controls biofilm formation in response to levels of environmental inorganic phosphate. This system contains the transmembrane cyclic di-GMP (c-di-GMP) receptor LapD and the periplasmic protease LapG. LapD regulates LapG and controls the ability of this protease to process a large cell surface adhesin protein, LapA. While LapDG orthologs can be identified in diverse bacteria, predictions of LapG substrates are sparse. Notably, the opportunistic pathogen Pseudomonas aeruginosa harbors LapDG orthologs, but neither the substrate of LapG nor any associated secretion machinery has been identified to date. Here, we identified P. aeruginosa CdrA, a protein known to mediate cell-cell aggregation and biofilm maturation, as a substrate of LapG. We also demonstrated LapDG to be a minimal system sufficient to control CdrA localization in response to changes in the intracellular concentration of c-di-GMP. Our work establishes this biofilm signaling node as a regulator of a type Vb secretion system substrate in a clinically important pathogen. IMPORTANCE Here, the biological relevance of a conserved yet orphan signaling system in the opportunistic pathogen Pseudomonas aeruginosa is revealed. In particular, we identified the adhesin CdrA, the cargo of a two-partner secretion system, as a substrate of a periplasmic protease whose activity is controlled by intracellular c-di-GMP levels and a corresponding transmembrane receptor via an inside-out signaling mechanism. The data indicate a posttranslational control mechanism of CdrA via c-di-GMP, in addition to its established transcriptional regulation via the same second messenger. PMID:26100041

  9. An ultrasensitive fluorescence method suitable for quantitative analysis of mung bean nuclease and inhibitor screening in vitro and vivo.

    PubMed

    Peng, Lan; Fan, Jialong; Tong, Chunyi; Xie, Zhenhua; Zhao, Chuan; Liu, Xuanming; Zhu, Yonghua; Liu, Bin

    2016-09-15

    Mung bean nuclease is a single stranded specific DNA and RNA endonuclease purified from mung bean sprouts. It yields 5'-phosphate terminated mono- and oligonucleotides. The activity level of this nuclease can act as a marker to monitor the developmental process of mung bean sprouts. In order to facilitate the activity and physiological analysis of this nuclease, we have developed a biosensing assay system based on the mung bean nuclease-induced single-stranded DNA scission and the affinity difference of graphene oxide for single-stranded DNA containing different numbers of bases. This end-point measurement method can detect mung bean nuclease in a range of 2×10(-4) to 4×10(-2) with a detection limit of 1×10(-4) unit/mL. In addition, we demonstrate the utility of the assay for screening chemical antibiotics and metal ions, resulting in the identification of several inhibitors of this enzyme in vitro. Furthermore, we firstly report that inhibiting mung bean nuclease by gentamycin sulfate and kanamycin in vivo can suppress mung bean sprouts growth. In summary, this method provides an alternative tool for the biochemical analysis for mung bean nuclease and indicates the feasibility of high-throughput screening specific inhibitors of this nuclease in vitro and in vivo. PMID:27125839

  10. Varicella-Zoster Virus Open Reading Frame 48 Encodes an Active Nuclease

    PubMed Central

    Mueller, Niklaus H.; Gilden, Don

    2013-01-01

    Based on a DNA sequence and relative genomic position similar to those other herpesviruses, varicella-zoster virus (VZV) open reading frame 48 (ORF48) is predicted to encode an alkaline nuclease. Here we report the cloning, expression, purification, and characterization of recombinant VZV ORF48 protein and a VZV ORF48 point mutation (T172P). Protein encoded by wild-type ORF48, but not mutant protein, displayed both endo- and exonuclease activity, identifying ORF48 as a potential therapeutic target in VZV disease since efficient viral replication requires viral nuclease activity. PMID:23966396

  11. Temperature-dependent cleavage of chromatin by micrococcal nuclease near the nucleosome center.

    PubMed

    Huang, S Y; Garrard, W T

    1986-04-01

    Digestion of nuclei at 4 degrees C with micrococcal nuclease results in significant intranucleosomal cleavage compared to digestion conducted at 37 degrees C. Employing nucleoprotein gel electrophoresis in one dimension followed by DNA electrophoresis in a second dimension, we demonstrate that such temperature-sensitive, internal cleavage predominantly occurs about 20 bp from the nucleosome center. We suggest that lower temperatures reduce the stability of hydrophobic interactions within the histone octamer and lead to a conformational alteration in nucleosomes that is detected by micrococcal nuclease. PMID:3956749

  12. Acinetobacter baumannii Extracellular OXA-58 Is Primarily and Selectively Released via Outer Membrane Vesicles after Sec-Dependent Periplasmic Translocation

    PubMed Central

    Liao, Yu-Ting; Kuo, Shu-Chen; Chiang, Ming-Hsien; Lee, Yi-Tzu; Sung, Wang-Chou; Chen, You-Hsuan; Fung, Chang-Phone

    2015-01-01

    Carbapenem-resistant Acinetobacter baumannii (CRAb) shelter cohabiting carbapenem-susceptible bacteria from carbapenem killing via extracellular release of carbapenem-hydrolyzing class D β-lactamases, including OXA-58. However, the mechanism of the extracellular release of OXA-58 has not been elucidated. In silico analysis predicted OXA-58 to be translocated to the periplasm via the Sec system. Using cell fractionation and Western blotting, OXA-58 with the signal peptide and C terminus deleted was not detected in the periplasmic and extracellular fractions. Overexpression of enhanced green fluorescent protein fused to the OXA-58 signal peptide led to its periplasmic translocation but not extracellular release, suggesting that OXA-58 is selectively released. The majority of the extracellular OXA-58 was associated with outer membrane vesicles (OMVs). The OMV-associated OXA-58 was detected only in a strain overexpressing OXA-58. The presence of OXA-58 in OMVs was confirmed by a carbapenem inactivation bioassay, proteomic analysis, and transmission electron microscopy. Imipenem treatment increased OMV formation and caused cell lysis, resulting in an increase in the OMV-associated and OMV-independent release of extracellular OXA-58. OMV-independent OXA-58 hydrolyzed nitrocefin more rapidly than OMV-associated OXA-58 but was more susceptible to proteinase K degradation. Rose bengal, an SecA inhibitor, inhibited the periplasmic translocation and OMV-associated release of OXA-58 and abolished the sheltering effect of CRAb. This study demonstrated that the majority of the extracellular OXA-58 is selectively released via OMVs after Sec-dependent periplasmic translocation. Addition of imipenem increased both OMV-associated and OMV-independent OXA-58, which may have different biological roles. SecA inhibitor could abolish the carbapenem-sheltering effect of CRAb. PMID:26369971

  13. Effects of cytoplasmic and periplasmic chaperones on secretory production of single-chain Fv antibody in Escherichia coli.

    PubMed

    Sonoda, Hiroyuki; Kumada, Yoichi; Katsuda, Tomohisa; Yamaji, Hideki

    2011-04-01

    The effects of cytoplasmic and periplasmic chaperones on the secretory production of an anti-bovine ribonuclease A single-chain variable fragment (scFv) 3A21 in Escherichia coli were investigated. Co-expression of a cytoplasmic chaperone, GroEL/ES, DnaK/DnaJ/GrpE, trigger factor, or SecB with 3A21 scFv affected the proportions of antigen-binding activity in the cytoplasmic soluble fraction, the periplasmic fraction, and the extracellular medium, but there was no significant difference in the total activity compared to the control without chaperone co-expression. On the other hand, co-expression of a periplasmic chaperone, Skp or FkpA, with the exception of DsbC, greatly increased the binding activity in all the soluble fractions. Co-expression of both Skp and FkpA had no synergistic effect. Combinations of cytoplasmic and periplasmic chaperones decreased the productivity. In shake-flask cultures of cells co-expressing Skp or FkpA, considerable amounts of 3A21 scFv were detected in the extracellular medium by enzyme-linked immunosorbent assay (ELISA) and Western blot, and the extracellular production level of 3A21 scFv was calculated to be around 40mg/l. The binding activity of 3A21 scFv co-expressed with Skp was slightly higher than that with FkpA. These results indicate that the co-expression of periplasmic chaperones Skp and FkpA is extremely useful for the secretory production of scFvs in a culture medium using E. coli, but cytoplasmic chaperones and multiple-chaperone combinations may not be effective. PMID:21324738

  14. Characterization of the periplasmic redox network that sustains the versatile anaerobic metabolism of Shewanella oneidensis MR-1

    PubMed Central

    Alves, Mónica N.; Neto, Sónia E.; Alves, Alexandra S.; Fonseca, Bruno M.; Carrêlo, Afonso; Pacheco, Isabel; Paquete, Catarina M.; Soares, Cláudio M.; Louro, Ricardo O.

    2015-01-01

    The versatile anaerobic metabolism of the Gram-negative bacterium Shewanella oneidensis MR-1 (SOMR-1) relies on a multitude of redox proteins found in its periplasm. Most are multiheme cytochromes that carry electrons to terminal reductases of insoluble electron acceptors located at the cell surface, or bona fide terminal reductases of soluble electron acceptors. In this study, the interaction network of several multiheme cytochromes was explored by a combination of NMR spectroscopy, activity assays followed by UV-visible spectroscopy and comparison of surface electrostatic potentials. From these data the small tetraheme cytochrome (STC) emerges as the main periplasmic redox shuttle in SOMR-1. It accepts electrons from CymA and distributes them to a number of terminal oxidoreductases involved in the respiration of various compounds. STC is also involved in the electron transfer pathway to reduce nitrite by interaction with the octaheme tetrathionate reductase (OTR), but not with cytochrome c nitrite reductase (ccNiR). In the main pathway leading the metal respiration STC pairs with flavocytochrome c (FccA), the other major periplasmic cytochrome, which provides redundancy in this important pathway. The data reveals that the two proteins compete for the binding site at the surface of MtrA, the decaheme cytochrome inserted on the periplasmic side of the MtrCAB–OmcA outer-membrane complex. However, this is not observed for the MtrA homologues. Indeed, neither STC nor FccA interact with MtrD, the best replacement for MtrA, and only STC is able to interact with the decaheme cytochrome DmsE of the outer-membrane complex DmsEFABGH. Overall, these results shown that STC plays a central role in the anaerobic respiratory metabolism of SOMR-1. Nonetheless, the trans-periplasmic electron transfer chain is functionally resilient as a consequence of redundancies that arise from the presence of alternative pathways that bypass/compete with STC. PMID:26175726

  15. Modeling structural transitions from the periplasmic-open state of lactose permease and interpretations of spin label experiments.

    PubMed

    Zhuang, Xiaohong; Klauda, Jeffery B

    2016-07-01

    Lactose permease of E. coli (LacY) is a secondary active transporter (SAT) that belongs to the major facilitator superfamily (MFS). Experimental structures of the cytoplasmic-open and more recently occluded-like structure have been determined, however, the crystal structure of LacY in the periplasmic-open state is still not available. The periplasmic-open LacY structure is important for understanding complete proton/sugar transport process of LacY as well as other similar SAT proteins. Previously, a structural model of periplasmic-open LacY has been obtained through a two-step hybrid implicit-explicit (IM-EX) simulation method (JMB404: 506). Molecular dynamics simulations are performed to further test the IM-EX model for the periplasmic-open LacY with ββ-(Galp)2 in a lipid membrane. The comparison of the calculated pore radii to the data of the crystal structure indicates that the IM-EX model of LacY remains periplasmic-open in E269-protonated states. The neighbor residue distance change based on Cα are very similar in simulation results, but they are significantly different in double electron-electron resonance (DEER) experimental data, which motivates us to perform the molecular dynamics dummy spin-label (MDDS) simulations to test the effect of spin labels (size and internal flexibility) on DEER spin label distance measurements. The MDDS simulation results show that the orientation and movement of the spin labels significantly affect the residue pair distance measurement. DEER data alone may not provide an accurate guide for predicting protein structures. MDDS simulations can be applied to analyze the distance distribution due to spin labels and also aid in proper interpretation of DEER experimental data. PMID:27107553

  16. Mre11 Nuclease Activity has Essential Roles in DNA Repair and Genomic Stability Distinct from ATM Activation

    PubMed Central

    Buis, Jeffrey; Wu, Yipin; Deng, Yibin; Leddon, Jennifer; Westfield, Gerwin; Eckersdorff, Mark; Sekiguchi, JoAnn M.; Chang, Sandy; Ferguson, David O.

    2008-01-01

    Summary The Mre11/Rad50/NBS1 complex (MRN) maintains genomic stability by bridging DNA ends and initiating DNA damage signaling through activation of the ATM kinase. Mre11 possesses DNA nuclease activities that are highly conserved in evolution, but play unknown roles in mammals. To define functions of Mre11 we engineered targeted mouse alleles which either abrogate nuclease activities or inactivate the entire MRN complex. Mre11 nuclease deficiency causes a striking array of phenotypes indistinguishable from absence of MRN, including early embryonic lethality and dramatic genomic instability. We identify a crucial role for the nuclease activities in homology directed double strand break repair, and a contributing role in activating the ATR kinase. However, nuclease activities are not required to activate ATM after DNA damage or telomere deprotection. Therefore, nucleolytic processing by Mre11 is an essential function of fundamental importance in DNA repair distinct from MRN control of ATM signaling. PMID:18854157

  17. Instability of toxin A subunit of AB5 toxins in the bacterial periplasm caused by deficiency of their cognate B subunits

    PubMed Central

    Kim, Sang-Hyun; Ryu, Su Hyang; Lee, Sang-Ho; Lee, Yong-Hoon; Lee, Sang-Rae; Huh, Jae-Won; Kim, Sun-Uk; Kim, Ekyune; Kim, Sunghyun; Jon, Sangyong; Bishop, Russell E.; Chang, Kyu-Tae

    2016-01-01

    Shiga toxin (STx) belongs to the AB5 toxin family and is transiently localized in the periplasm before secretion into the extracellular milieu. While producing outer membrane vesicles (OMVs) containing only A subunit of the toxin (STxA), we created specific STx1B- and STx2B-deficient mutants of E. coli O157:H7. Surprisingly, STxA subunit was absent in the OMVs and periplasm of the STxB-deficient mutants. In parallel, the A subunit of heat-labile toxin (LT) of enterotoxigenic E. coli (ETEC) was absent in the periplasm of the LT-B-deficient mutant, suggesting that instability of toxin A subunit in the absence of the B subunit is a common phenomenon in the AB5 bacterial toxins. Moreover, STx2A was barely detectable in the periplasm of E. coli JM109 when stx2A was overexpressed alone, while it was stably present when stxB was co-expressed. Compared with STx2 holotoxin, purified STx2A was degraded rapidly by periplasmic proteases when assessed for in vitro proteolytic susceptibility, suggesting that the B subunit contributes to stability of the toxin A subunit in the periplasm. We propose a novel role for toxin B subunits of AB5 toxins in protection of the A subunit from proteolysis during holotoxin assembly in the periplasm. PMID:21762677

  18. Mycoplasma bovis MBOV_RS02825 Encodes a Secretory Nuclease Associated with Cytotoxicity.

    PubMed

    Zhang, Hui; Zhao, Gang; Guo, Yusi; Menghwar, Harish; Chen, Yingyu; Chen, Huanchun; Guo, Aizhen

    2016-01-01

    This study aimed to determine the activity of one Mycoplasma bovis nuclease encoded by MBOV_RS02825 and its association with cytotoxicity. The bioinformatics analysis predicted that it encodes a Ca(2+)-dependent nuclease based on existence of enzymatic sites in a TNASE_3 domain derived from a Staphylococcus aureus thermonuclease (SNc). We cloned and purified the recombinant MbovNase (rMbovNase), and demonstrated its nuclease activity by digesting bovine macrophage linear DNA and RNA, and closed circular plasmid DNA in the presence of 10 mM Ca(2+) at 22-65 °C. In addition, this MbovNase was localized in membrane and rMbovNase able to degrade DNA matrix of neutrophil extracellular traps (NETs). When incubated with macrophages, rMbovNase bound to and invaded the cells localizing to both the cytoplasm and nuclei. These cells experienced apoptosis and the viability was significantly reduced. The apoptosis was confirmed by activated expression of phosphorylated NF-κB p65 and Bax, and inhibition of Iκβα and Bcl-2. In contrast, rMbovNase(Δ181-342) without TNASE_3 domain exhibited deficiency in all the biological functions. Furthermore, rMbovNase was also demonstrated to be secreted. In conclusion, it is a first report that MbovNase is an active nuclease, both secretory and membrane protein with ability to degrade NETs and induce apoptosis. PMID:27136546

  19. Programmable Site-Specific Nucleases for Targeted Genome Engineering in Higher Eukaryotes.

    PubMed

    Govindan, Ganesan; Ramalingam, Sivaprakash

    2016-11-01

    Recent advances in the targeted genome engineering enable molecular biologists to generate sequence specific modifications with greater efficiency and higher specificity in complex eukaryotic genomes. Programmable site-specific DNA cleavage reagents and cellular DNA repair mechanisms have made this possible. These reagents have become powerful tools for delivering a site-specific genomic double-strand break (DSB) at the desired chromosomal locus, which produces sequence alterations through error-prone non-homologous end joining (NHEJ) resulting in gene inactivations/knockouts. Alternatively, the DSB can be repaired through homology-directed repair (HDR) using a donor DNA template, which leads to the introduction of desired sequence modifications at the predetermined site. Here, we summarize the role of three classes of nucleases; zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) system in achieving targeted genome modifications. Further, we discuss the progress towards the applications of programmable site-specific nucleases (SSNs) in treating human diseases and other biological applications in economically important higher eukaryotic organisms such as plants and livestock. J. Cell. Physiol. 231: 2380-2392, 2016. © 2016 Wiley Periodicals, Inc. PMID:26945523

  20. MegaTevs: single-chain dual nucleases for efficient gene disruption.

    PubMed

    Wolfs, Jason M; DaSilva, Matthew; Meister, Sarah E; Wang, Xu; Schild-Poulter, Caroline; Edgell, David R

    2014-07-01

    Targeting gene disruptions in complex genomes relies on imprecise repair by the non-homologous end-joining DNA pathway, creating mutagenic insertions or deletions (indels) at the break point. DNA end-processing enzymes are often co-expressed with genome-editing nucleases to enhance the frequency of indels, as the compatible cohesive ends generated by the nucleases can be precisely repaired, leading to a cycle of cleavage and non-mutagenic repair. Here, we present an alternative strategy to bias repair toward gene disruption by fusing two different nuclease active sites from I-TevI (a GIY-YIG enzyme) and I-OnuI E2 (an engineered meganuclease) into a single polypeptide chain. In vitro, the MegaTev enzyme generates two double-strand breaks to excise an intervening 30-bp fragment. In HEK 293 cells, we observe a high frequency of gene disruption without co-expression of DNA end-processing enzymes. Deep sequencing of disrupted target sites revealed minimal processing, consistent with the MegaTev sequestering the double-strand breaks from the DNA repair machinery. Off-target profiling revealed no detectable cleavage at sites where the I-TevI CNNNG cleavage motif is not appropriately spaced from the I-OnuI binding site. The MegaTev enzyme represents a small, programmable nuclease platform for extremely specific genome-engineering applications. PMID:25013171

  1. MegaTevs: single-chain dual nucleases for efficient gene disruption

    PubMed Central

    Wolfs, Jason M.; DaSilva, Matthew; Meister, Sarah E.; Wang, Xu; Schild-Poulter, Caroline; Edgell, David R.

    2014-01-01

    Targeting gene disruptions in complex genomes relies on imprecise repair by the non-homologous end-joining DNA pathway, creating mutagenic insertions or deletions (indels) at the break point. DNA end-processing enzymes are often co-expressed with genome-editing nucleases to enhance the frequency of indels, as the compatible cohesive ends generated by the nucleases can be precisely repaired, leading to a cycle of cleavage and non-mutagenic repair. Here, we present an alternative strategy to bias repair toward gene disruption by fusing two different nuclease active sites from I-TevI (a GIY-YIG enzyme) and I-OnuI E2 (an engineered meganuclease) into a single polypeptide chain. In vitro, the MegaTev enzyme generates two double-strand breaks to excise an intervening 30-bp fragment. In HEK 293 cells, we observe a high frequency of gene disruption without co-expression of DNA end-processing enzymes. Deep sequencing of disrupted target sites revealed minimal processing, consistent with the MegaTev sequestering the double-strand breaks from the DNA repair machinery. Off-target profiling revealed no detectable cleavage at sites where the I-TevI CNNNG cleavage motif is not appropriately spaced from the I-OnuI binding site. The MegaTev enzyme represents a small, programmable nuclease platform for extremely specific genome-engineering applications. PMID:25013171

  2. PrrC-anticodon nuclease: functional organization of a prototypical bacterial restriction RNase

    PubMed Central

    Blanga-Kanfi, Shani; Amitsur, Michal; Azem, Abdussalam; Kaufmann, Gabriel

    2006-01-01

    The tRNALys anticodon nuclease PrrC is associated in latent form with the type Ic DNA restriction endonuclease EcoprrI and activated by a phage T4-encoded inhibitor of EcoprrI. The activation also requires the hydrolysis of GTP and presence of dTTP and is inhibited by ATP. The N-proximal NTPase domain of PrrC has been implicated in relaying the activating signal to a C-proximal anticodon nuclease site by interacting with the requisite nucleotide cofactors [Amitsur et al. (2003) Mol. Microbiol., 50, 129–143]. Means described here to bypass PrrC's self-limiting translation and thermal instability allowed purifying an active mutant form of the protein, demonstrating its oligomeric structure and confirming its anticipated interactions with the nucleotide cofactors of the activation reaction. Mutagenesis and chemical rescue data shown implicate the C-proximal Arg320, Glu324 and, possibly, His356 in anticodon nuclease catalysis. This triad exists in all the known PrrC homologs but only some of them feature residues needed for tRNALys recognition by the Escherichia coli prototype. The differential conservation and consistent genetic linkage of the PrrC proteins with EcoprrI homologs portray them as a family of restriction RNases of diverse substrate specificities that are mobilized when an associated DNA restriction nuclease is compromised. PMID:16790566

  3. PrrC-anticodon nuclease: functional organization of a prototypical bacterial restriction RNase.

    PubMed

    Blanga-Kanfi, Shani; Amitsur, Michal; Azem, Abdussalam; Kaufmann, Gabriel

    2006-01-01

    The tRNA(Lys) anticodon nuclease PrrC is associated in latent form with the type Ic DNA restriction endonuclease EcoprrI and activated by a phage T4-encoded inhibitor of EcoprrI. The activation also requires the hydrolysis of GTP and presence of dTTP and is inhibited by ATP. The N-proximal NTPase domain of PrrC has been implicated in relaying the activating signal to a C-proximal anticodon nuclease site by interacting with the requisite nucleotide cofactors [Amitsur et al. (2003) Mol. Microbiol., 50, 129-143]. Means described here to bypass PrrC's self-limiting translation and thermal instability allowed purifying an active mutant form of the protein, demonstrating its oligomeric structure and confirming its anticipated interactions with the nucleotide cofactors of the activation reaction. Mutagenesis and chemical rescue data shown implicate the C-proximal Arg320, Glu324 and, possibly, His356 in anticodon nuclease catalysis. This triad exists in all the known PrrC homologs but only some of them feature residues needed for tRNA(Lys) recognition by the Escherichia coli prototype. The differential conservation and consistent genetic linkage of the PrrC proteins with EcoprrI homologs portray them as a family of restriction RNases of diverse substrate specificities that are mobilized when an associated DNA restriction nuclease is compromised. PMID:16790566

  4. Mycoplasma bovis MBOV_RS02825 Encodes a Secretory Nuclease Associated with Cytotoxicity

    PubMed Central

    Zhang, Hui; Zhao, Gang; Guo, Yusi; Menghwar, Harish; Chen, Yingyu; Chen, Huanchun; Guo, Aizhen

    2016-01-01

    This study aimed to determine the activity of one Mycoplasma bovis nuclease encoded by MBOV_RS02825 and its association with cytotoxicity. The bioinformatics analysis predicted that it encodes a Ca2+-dependent nuclease based on existence of enzymatic sites in a TNASE_3 domain derived from a Staphylococcus aureus thermonuclease (SNc). We cloned and purified the recombinant MbovNase (rMbovNase), and demonstrated its nuclease activity by digesting bovine macrophage linear DNA and RNA, and closed circular plasmid DNA in the presence of 10 mM Ca2+ at 22–65 °C. In addition, this MbovNase was localized in membrane and rMbovNase able to degrade DNA matrix of neutrophil extracellular traps (NETs). When incubated with macrophages, rMbovNase bound to and invaded the cells localizing to both the cytoplasm and nuclei. These cells experienced apoptosis and the viability was significantly reduced. The apoptosis was confirmed by activated expression of phosphorylated NF-κB p65 and Bax, and inhibition of Iκβα and Bcl-2. In contrast, rMbovNaseΔ181–342 without TNASE_3 domain exhibited deficiency in all the biological functions. Furthermore, rMbovNase was also demonstrated to be secreted. In conclusion, it is a first report that MbovNase is an active nuclease, both secretory and membrane protein with ability to degrade NETs and induce apoptosis. PMID:27136546

  5. Insights into how RNase R degrades structured RNA: analysis of the nuclease domain.

    PubMed

    Vincent, Helen A; Deutscher, Murray P

    2009-04-01

    RNase R readily degrades highly structured RNA, whereas its paralogue, RNase II, is unable to do so. Furthermore, the nuclease domain of RNase R, devoid of all canonical RNA-binding domains, is sufficient for this activity. RNase R also binds RNA more tightly within its catalytic channel than does RNase II, which is thought to be important for its unique catalytic properties. To investigate this idea further, certain residues within the nuclease domain channel of RNase R were changed to those found in RNase II. Among the many examined, we identified one amino acid residue, R572, that has a significant role in the properties of RNase R. Conversion of this residue to lysine, as found in RNase II, results in weaker substrate binding within the nuclease domain channel, longer limit products, increased activity against a variety of substrates and a faster substrate on-rate. Most importantly, the mutant encounters difficulty in degrading structured RNA, pausing within a double-stranded region. Additional studies show that degradation of structured substrates is dependent upon temperature, suggesting a role for thermal breathing in the mechanism of action of RNase R. On the basis of these data, we propose a model in which tight binding within the nuclease domain allows RNase R to capitalize on the natural thermal breathing of an RNA duplex to degrade structured RNAs. PMID:19361424

  6. Identification of Plasmodium falciparum DNA Repair Protein Mre11 with an Evolutionarily Conserved Nuclease Function

    PubMed Central

    Badugu, Sugith Babu; Nabi, Shaik Abdul; Vaidyam, Pratap; Laskar, Shyamasree; Bhattacharyya, Sunanda; Bhattacharyya, Mrinal Kanti

    2015-01-01

    The eukaryotic Meiotic Recombination protein 11 (Mre11) plays pivotal roles in the DNA damage response (DDR). Specifically, Mre11 senses and signals DNA double strand breaks (DSB) and facilitates their repair through effector proteins belonging to either homologous recombination (HR) or non-homologous end joining (NHEJ) repair mechanisms. In the human malaria parasite Plasmodium falciparum, HR and alternative-NHEJ have been identified; however, little is known about the upstream factors involved in the DDR of this organism. In this report, we identify a putative ortholog of Mre11 in P. falciparum (PfalMre11) that shares 22% sequence similarity to human Mre11. Homology modeling reveals striking structural resemblance of the predicted PfalMre11 nuclease domain to the nuclease domain of Saccharomyces cerevisiae Mre11 (ScMre11). Complementation analyses reveal functional conservation of PfalMre11 nuclease activity as demonstrated by the ability of the PfalMre11 nuclease domain, in conjunction with the C-terminal domain of ScMre11, to functionally complement an mre11 deficient yeast strain. Functional complementation was virtually abrogated by an amino acid substitution in the PfalMre11 nuclease domain (D398N). PfalMre11 is abundant in the mitotically active trophozoite and schizont stages of P. falciparum and is up-regulated in response to DNA damage, suggesting a role in the DDR. PfalMre11 exhibits physical interaction with PfalRad50. In addition, yeast 2-hybrid studies show that PfalMre11 interacts with ScRad50 and ScXrs2, two important components of the well characterized Mre11-Rad50-Xrs2 complex which is involved in DDR signaling and repair in S. cerevisiae, further supporting a role for PfalMre11 in the DDR. Taken together, these findings provide evidence that PfalMre11 is an evolutionarily conserved component of the DDR in Plasmodium. PMID:25938776

  7. Mouse Spermatozoa Contain a Nuclease that Is Activated by Pretreatment with EGTA and Subsequent Calcium Incubation

    PubMed Central

    Boaz, Segal M.; Dominguez, Kenneth; Shaman, Jeffrey A.; Ward, W. Steven

    2009-01-01

    We demonstrated that mouse spermatozoa cleave their DNA into ~50 kb loop-sized fragments with topoisomerase IIB when treated with MnCl2 and CaCl2 in a process we term sperm chromatin fragmentation (SCF). SCF can be reversed by EDTA. A nuclease then further degrades the DNA in a process we term sperm DNA degradation (SDD). MnCl2 alone could elicit this activity, but CaCl2 had no effect. Here, we demonstrate the existence of a nuclease in the vas deferens that can be activated by EGTA to digest the sperm DNA by SDD. Spermatozoa were extracted with salt and dithiothreitol to remove protamines and then incubated with EGTA. Next, the EGTA was removed and divalent cations were added. We found that Mn+2, Ca+2, or Zn+2 could each activate SDD in spermatozoa but Mg+2 could not. When the reaction was slowed by incubation on ice, EGTA pretreatment followed by incubation in Ca+2 elicited the reversible fragmentation of sperm DNA evident in SCF. When the reactions were then incubated at 37°C they progressed to the more complete degradation of DNA by SDD. EDTA could also be used to activate the nuclease, but required a higher concentration than EGTA. This EGTA-activatable nuclease activity was found in each fraction of the vas deferens plasma: in the spermatozoa, in the surrounding fluid, and in the insoluble components in the fluid. These results suggest that this sperm nuclease is regulated by a mechanism that is sensitive to EGTA, possibly by removing inhibition of a calcium binding protein. PMID:17879959

  8. Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases

    PubMed Central

    Watanabe, Takahito; Ochiai, Hiroshi; Sakuma, Tetsushi; Horch, Hadley W.; Hamaguchi, Naoya; Nakamura, Taro; Bando, Tetsuya; Ohuchi, Hideyo; Yamamoto, Takashi; Noji, Sumihare; Mito, Taro

    2012-01-01

    Hemimetabolous, or incompletely metamorphosing, insects are phylogenetically relatively basal and comprise many pests. However, the absence of a sophisticated genetic model system, or targeted gene-manipulation system, has limited research on hemimetabolous species. Here we use zinc-finger nuclease and transcription activator-like effector nuclease technologies to produce genetic knockouts in the hemimetabolous insect Gryllus bimaculatus. Following the microinjection of mRNAs encoding zinc-finger nucleases or transcription activator-like effector nucleases into cricket embryos, targeting of a transgene or endogenous gene results in sequence-specific mutations. Up to 48% of founder animals transmit disrupted gene alleles after zinc-finger nucleases microinjection compared with 17% after microinjection of transcription activator-like effector nucleases. Heterozygous offspring is selected using mutation detection assays that use a Surveyor (Cel-I) nuclease, and subsequent sibling crosses create homozygous knockout crickets. This approach is independent from a mutant phenotype or the genetic tractability of the organism of interest and can potentially be applied to manage insect pests using a non-transgenic strategy. PMID:22910363

  9. Effects of thyrotropin on the phosphorylation of histones and nonhistone phosphoproteins in micrococcal nuclease-sensitive and resistant thyroid chromatin

    SciTech Connect

    Cooper, E.; Spaulding, S.W.

    1983-05-01

    Actively transcribed regions of chromatin are more susceptible than bulk chromatin to digestion by nucleases, and useful information about the composition and structure of active chromatin may be obtained by studying the chromatin fragments released from nuclei by limited nuclease digestion. In the present study, we have used micrococcal nuclease to investigate the effects of TSH on protein phosphorylation in nuclease-sensitive fractions of calf thyroid chromatin. Batches of calf thyroid slices were incubated for 2 h with /sup 32/Pi, with or without 50 mU/ml TSH. Nuclei were then prepared and the distribution of /sup 32/P-labeled histones, high mobility group (HMG) proteins, and other acid-soluble phosphoproteins between micrococcal nuclease-sensitive and resistant fractions of chromatin was examined. TSH increased the amount of /sup 32/P incorporated into HMG 14 and the histones H1 and H3. Hormone-dependent increases in the /sup 32/P-labeling of H1 and H3 were not selectively associated with micrococcal nuclease-sensitive chromatin. In contrast, (/sup 32/P) HMG-14 was preferentially solubilized from nuclei by micrococcal nuclease. This lends support to the view that TSH-induced effects on the structure and function of transcriptionally active chromatin may be mediated in part by phosphorylation of HMG 14.

  10. Export of unprocessed precursor maltose-binding protein to the periplasm of Escherichia coli cells.

    PubMed

    Fikes, J D; Bassford, P J

    1987-06-01

    The Escherichia coli maltose-binding protein (MBP) R2 signal peptide is a truncated version of the wild-type structure that still facilitates very efficient export of MBP to the periplasm. Among single amino acid substitutions in the R2 signal peptide resulting in an export-defective precursor MBP (pMBP) were two that replaced residues in the consensus Ala-X-Ala sequence (residues -3 to -1) that immediately precedes the cleavage site. It was suggested that the functional hydrophobic core and signal peptidase recognition sequence of this signal peptide substantially overlap and that these two alterations affect both pMBP translocation and processing. In this study, the export of pMBP by the mutants, designated CC15 and CC17, with these two alterations was investigated further. The pMBP of mutant CC17 has an Arg substituted for Leu at the -2 position. It was found that CC17 cells exported only a very small amount of MBP, but that which was exported appeared to be correctly processed. This result was consistent with other studies that have concluded that virtually any amino acid can occupy the -2 position. For mutant CC15, which exhibits a fully Mal+ phenotype, an Asp is substituted for the Ala at the -3 position. CC15 cells were found to export large quantities of unprocessed, soluble pMBP to the periplasm, although such export was achieved in a relatively slow, posttranslational manner. This result was also consistent with other studies that suggested that charged residues are normally excluded from the -3 position of the cleavage site. Using in vitro oligonucleotide-directed mutagenesis, we constructed a new signal sequence mutant in which Asp was substituted for Arg at the -3 position of an otherwise wild-type MBP signal peptide. This alteration had no apparent effect on pMBP translocation across the cytoplasmic membrane, but processing by signal peptidase was inhibited. This pMBP species with its full-length hydrophobic core remained anchored to the membrane

  11. Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond.

    PubMed

    Zückert, Wolfram R

    2014-08-01

    Bacterial lipoproteins are peripherally anchored membrane proteins that play a variety of roles in bacterial physiology and virulence in monoderm (single membrane-enveloped, e.g., gram-positive) and diderm (double membrane-enveloped, e.g., gram-negative) bacteria. After export of prolipoproteins through the cytoplasmic membrane, which occurs predominantly but not exclusively via the general secretory or Sec pathway, the proteins are lipid-modified at the cytoplasmic membrane in a multistep process that involves sequential modification of a cysteine residue and cleavage of the signal peptide by the signal II peptidase Lsp. In both monoderms and diderms, signal peptide processing is preceded by acylation with a diacylglycerol through preprolipoprotein diacylglycerol transferase (Lgt). In diderms but also some monoderms, lipoproteins are further modified with a third acyl chain through lipoprotein N-acyl transferase (Lnt). Fully modified lipoproteins that are destined to be anchored in the inner leaflet of the outer membrane (OM) are selected, transported and inserted by the Lol (lipoprotein outer membrane localization) pathway machinery, which consists of the inner-membrane (IM) ABC transporter-like LolCDE complex, the periplasmic LolA chaperone and the OM LolB lipoprotein receptor. Retention of lipoproteins in the cytoplasmic membrane results from Lol avoidance signals that were originally described as the "+2 rule". Surface localization of lipoproteins in diderms is rare in most bacteria, with the exception of several spirochetal species. Type 2 (T2SS) and type 5 (T5SS) secretion systems are involved in secretion of specific surface lipoproteins of γ-proteobacteria. In the model spirochete Borrelia burgdorferi, surface lipoprotein secretion does not follow established sorting rules, but remains dependent on N-terminal peptide sequences. Secretion through the outer membrane requires maintenance of lipoproteins in a translocation-competent unfolded conformation

  12. Periplasmic nitrate reductase and formate dehydrogenase: similar molecular architectures with very different enzymatic activities.

    PubMed

    Cerqueira, Nuno M F S A; Gonzalez, Pablo J; Fernandes, Pedro A; Moura, José J G; Ramos, Maria João

    2015-11-17

    It is remarkable how nature has been able to construct enzymes that, despite sharing many similarities, have simple but key differences that tune them for completely different functions in living cells. Periplasmic nitrate reductase (Nap) and formate dehydrogenase (Fdh) from the DMSOr family are representative examples of this. Both enzymes share almost identical three-dimensional protein foldings and active sites, in terms of coordination number, geometry and nature of the ligands. The substrates of both enzymes (nitrate and formate) are polyatomic anions that also share similar charge and stereochemistry. In terms of the catalytic mechanism, both enzymes have a common activation mechanism (the sulfur-shift mechanism) that ensures a constant coordination number around the metal ion during the catalytic cycle. In spite of these similarities, they catalyze very different reactions: Nap abstracts an oxygen atom from nitrate releasing nitrite, whereas FdH catalyzes a hydrogen atom transfer from formate and releases carbon dioxide. In this Account, a critical analysis of structure, function, and catalytic mechanism of the molybdenum enzymes periplasmic nitrate reductase (Nap) and formate dehydrogenase (Fdh) is presented. We conclude that the main structural driving force that dictates the type of reaction, catalyzed by each enzyme, is a key difference on one active site residue that is located in the top region of the active sites of both enzymes. In both enzymes, the active site is centered on the metal ion of the cofactor (Mo in Nap and Mo or W in Fdh) that is coordinated by four sulfur atoms from two pyranopterin guanosine dinucleotide (PGD) molecules and by a sulfido. However, while in Nap there is a Cys directly coordinated to the Mo ion, in FdH there is a SeCys instead. In Fdh there is also an important His that interacts very closely with the SeCys, whereas in Nap the same position is occupied by a Met. The role of Cys in Nap and SeCys in FdH is similar in both

  13. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina.

    PubMed

    Simpson, Philippa J L; Codd, Rachel

    2011-11-01

    The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo-MGD) cofactor and one [4Fe-4S] iron-sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (Nap(Sgel)) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (Nap(Sput)) was examined at varied temperature. Irreversible deactivation of Nap(Sgel) and Nap(Sput) occurred at 54.5 and 65°C, respectively. When Nap(Sgel) was preincubated at 21-70°C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54°C, which suggested that Nap(Sgel) was poised for optimal catalysis at modest temperatures and, unlike Nap(Sput), did not benefit from thermally-induced refolding. At 20°C, Nap(Sgel) reduced selenate at 16% of the rate of nitrate reduction. Nap(Sput) did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in Nap(Sgel) that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the Nap(Sgel) cold-adapted phenotype. Protein homology modeling of Nap(Sgel) using a mesophilic template with 66% amino acid identity showed the majority of substitutions occurred at the protein surface distal to the Mo-MGD cofactor. Two mesophilic↔psychrophilic substitutions (Asn↔His, Val↔Trp) occurred in a region close to the surface of the NapA substrate funnel resulting in potential interdomain π-π and/or cation-π interactions. Three mesophilic↔psychrophilic substitutions occurred within 4.5Å of the Mo-MGD cofactor (Phe↔Met, Ala↔Ser, Ser↔Thr) resulting in local regions that varied in hydrophobicity and hydrogen bonding

  14. Effect of periplasmic expression of recombinant mouse interleukin-4 on hydrogen peroxide concentration and catalase activity in Escherichia coli.

    PubMed

    Mehdizadeh Aghdam, Elnaz; Mahmoudi Azar, Lena; Barzegari, Abolfazl; Karimi, Farrokh; Mesbahfar, Majid; Samadi, Naser; Hejazi, Mohammad Saeid

    2012-12-15

    Oxidative stress occurs as a result of imbalance between generation and detoxification of reactive oxygen species (ROS). This kind of stress was rarely discussed in connection with foreign protein production in Escherichia coli. Relation between cytoplasmic recombinant protein expression with H(2)O(2) concentration and catalase activity variation was already reported. The periplasmic space of E. coli has different oxidative environment in relative to cytoplasm and there are some benefits in periplasmic expression of recombinant proteins. In this study, hydrogen peroxide concentration and catalase activity following periplasmic expression of mouse IL-4 were measured in E. coli. After construction of pET2mIL4 plasmid, the expression of recombinant mouse interleukin-4 (mIL-4) was confirmed. Then, the H(2)O(2) concentration and catalase activity variation in the cells were studied in exponential and stationary phases at various ODs and were compared to those of wild type cells and empty vector transformed cells. It was revealed that empty vector introduction and periplasmic recombinant protein expression increased significantly the H(2)O(2) concentration of the cells. However, the H(2)O(2) concentration in mIL-4 expressing cells was significantly higher than its concentration in empty vector transformed cells, demonstrating more effects of recombinant mIL-4 expression on H(2)O(2) elevation. Likewise, although catalase activity was reduced in foreign DNA introduced cells, it was more lowered following expression of recombinant proteins. Correlation between H(2)O(2) concentration elevation and catalase activity reduction with cell growth depletion is also demonstrated. It was also found that recombinant protein expression results in cell size increase. PMID:23000065

  15. High yield purification of nanobodies from the periplasm of E. coli as fusions with the maltose binding protein.

    PubMed

    Salema, Valencio; Fernández, Luis Ángel

    2013-09-01

    Nanobodies (Nbs) are single domain antibodies based on the variable domains of heavy chain only antibodies (HCAbs) found in camelids, also referred to as VHHs. Their small size (ca. 12-15kDa), superior biophysical and antigen binding properties have made Nbs very attractive molecules for multiple biotechnological applications, including human therapy. The most widely used system for the purification of Nbs is their expression in the periplasm of Escherichia coli with a C-terminal hexa-histidine (His6) tag followed by immobilized metal affinity chromatography (IMAC). However, significant variability in the expression levels of different Nbs are routinely observed and a single affinity chromatography step is often not sufficient to obtain Nbs of high purity. Here, we report an alternative method for expression and purification of Nbs from the periplasm of E. coli based on their fusion to maltose binding protein (MBP) in the N-terminus and His6 tag in the C-terminus (MBP-NbHis6). Soluble MBP-NbHis6 fusions were consistently expressed at high levels (⩾12mg/L of induced culture in shake flasks) in the periplasm of E. coli HM140, a strain deficient in several periplasmic proteases. Highly pure MBP-NbHis6 fusions and free NbHis6 (after site specific proteolysis of the fusions), were recovered by amylose and metal affinity chromatography steps. The monomeric nature of the purified NbHis6 was determined by gel filtration chromatography. Lastly, we demonstrated by ELISA that both monomeric NbHis6 and MBP-NbHis6 fusions retained antigen binding activity and specificity, thus facilitating their direct use in antigen recognition assays. PMID:23856605

  16. Novel Mechanism for Scavenging of Hypochlorite Involving a Periplasmic Methionine-Rich Peptide and Methionine Sulfoxide Reductase

    PubMed Central

    Melnyk, Ryan A.; Youngblut, Matthew D.; Clark, Iain C.; Carlson, Hans K.; Wetmore, Kelly M.; Price, Morgan N.; Iavarone, Anthony T.; Deutschbauer, Adam M.; Arkin, Adam P.

    2015-01-01

    ABSTRACT Reactive chlorine species (RCS) defense mechanisms are important for bacterial fitness in diverse environments. In addition to the anthropogenic use of RCS in the form of bleach, these compounds are also produced naturally through photochemical reactions of natural organic matter and in vivo by the mammalian immune system in response to invading microorganisms. To gain insight into bacterial RCS defense mechanisms, we investigated Azospira suillum strain PS, which produces periplasmic RCS as an intermediate of perchlorate respiration. Our studies identified an RCS response involving an RCS stress-sensing sigma/anti-sigma factor system (SigF/NrsF), a soluble hypochlorite-scavenging methionine-rich periplasmic protein (MrpX), and a putative periplasmic methionine sulfoxide reductase (YedY1). We investigated the underlying mechanism by phenotypic characterization of appropriate gene deletions, chemogenomic profiling of barcoded transposon pools, transcriptome sequencing, and biochemical assessment of methionine oxidation. Our results demonstrated that SigF was specifically activated by RCS and initiated the transcription of a small regulon centering around yedY1 and mrpX. A yedY1 paralog (yedY2) was found to have a similar fitness to yedY1 despite not being regulated by SigF. Markerless deletions of yedY2 confirmed its synergy with the SigF regulon. MrpX was strongly induced and rapidly oxidized by RCS, especially hypochlorite. Our results suggest a mechanism involving hypochlorite scavenging by sacrificial oxidation of the MrpX in the periplasm. Reduced MrpX is regenerated by the YedY methionine sulfoxide reductase activity. The phylogenomic distribution of this system revealed conservation in several Proteobacteria of clinical importance, including uropathogenic Escherichia coli and Brucella spp., implying a putative role in immune response evasion in vivo. PMID:25968643

  17. Analyzing the Role of Periplasmic Folding Factors in the Biogenesis of OMPs and Members of the Type V Secretion System.

    PubMed

    Bodelón, Gustavo; Marín, Elvira; Fernández, Luis Ángel

    2015-01-01

    The outer membrane (OM) of gram-negative bacteria is highly packed with OM proteins (OMPs) and the trafficking and assembly of OMPs in gram-negative bacteria is a subject of intense research. Structurally, OMPs vary in the number of β-strands and in the size and complexity of extra-membrane domains, with extreme examples being the members of the type V protein secretion system (T5SS), such as the autotransporter (AT) and intimin/invasin families of secreted proteins, in which a large extracellular "passenger" domain is linked to a β-barrel that inserts in the OM. Despite their structural and functional diversity, OMPs interact in the periplasm with a relatively small set of protein chaperones that facilitate their transport from the inner membrane (IM) to the β-barrel assembly machinery (BAM complex), preventing aggregation and assisting their folding in various aspects including disulfide bond formation. This chapter is focused on the periplasmic folding factors involved in the biogenesis of integral OMPs and members of T5SS in E. coli, which are used as a model system in this field. Background information on these periplasmic folding factors is provided along with genetic methods to generate conditional mutants that deplete these factors from E. coli and biochemical methods to analyze the folding, surface display, disulfide formation and oligomerization state of OMPs/T5SS in these mutants. PMID:26427678

  18. Construction and Periplasmic Expression of the Anti-EGFRvIII ScFv Antibody Gene in Escherichia coli.

    PubMed

    Dewi, Kartika Sari; Retnoningrum, Debbie Sofie; Riani, Catur; Fuad, Asrul Muhamad

    2016-01-01

    In the previous study, we constructed an expression vector carrying the anti-EGFRvIII scFv antibody gene with VH-linker-VL orientation. The proteins were successfully produced in the periplasmic space of Escherichia coli. In this study, we substituted the inserted DNA with VL-linker-VH orientation of the anti-EGFRvIII scFv gene and analyzed its expression in E. coli. The DNA fragment was amplified from its cloning vector (pTz-rscFv), subsequently cloned into a previous expression vector containing the pelB signal sequence and his-tag, and then transformed into E. coli TOP10. The recombinant plasmids were characterized by restriction, PCR, and DNA sequencing analyses. The new anti-EGFRvIII scFv antibody proteins have been successfully expressed in the periplasmic compartment of E. coli Nico21(DE3) using 0.1 mM final concentration of IPTG induction. Total proteins, soluble periplasmic and cytoplasmic proteins, solubilized inclusion bodies, and extracellular proteins were analyzed by SDS-PAGE and Western Blot analyses. The results showed that soluble scFv proteins were found in all fractions except from the cytoplasmic space. PMID:27110505

  19. Construction and Periplasmic Expression of the Anti-EGFRvIII ScFv Antibody Gene in Escherichia coli

    PubMed Central

    Dewi, Kartika Sari; Retnoningrum, Debbie Sofie; Riani, Catur; Fuad, Asrul Muhamad

    2016-01-01

    In the previous study, we constructed an expression vector carrying the anti-EGFRvIII scFv antibody gene with VH-linker-VL orientation. The proteins were successfully produced in the periplasmic space of Escherichia coli. In this study, we substituted the inserted DNA with VL-linker-VH orientation of the anti-EGFRvIII scFv gene and analyzed its expression in E. coli. The DNA fragment was amplified from its cloning vector (pTz-rscFv), subsequently cloned into a previous expression vector containing the pelB signal sequence and his-tag, and then transformed into E. coli TOP10. The recombinant plasmids were characterized by restriction, PCR, and DNA sequencing analyses. The new anti-EGFRvIII scFv antibody proteins have been successfully expressed in the periplasmic compartment of E. coli Nico21(DE3) using 0.1 mM final concentration of IPTG induction. Total proteins, soluble periplasmic and cytoplasmic proteins, solubilized inclusion bodies, and extracellular proteins were analyzed by SDS-PAGE and Western Blot analyses. The results showed that soluble scFv proteins were found in all fractions except from the cytoplasmic space. PMID:27110505

  20. Substrate-Linked Conformational Change in the Periplasmic Component of a Cu(I)/Ag(I) Efflux System

    SciTech Connect

    Bagai, I.; Liu, W.; Rensing, C.; Blackburn, N.J.; McEvoy, M.M.

    2009-06-02

    Gram-negative bacteria utilize dual membrane resistance nodulation division-type efflux systems to export a variety of substrates. These systems contain an essential periplasmic component that is important for assembly of the protein complex. We show here that the periplasmic protein CusB from the Cus copper/silver efflux system has a critical role in Cu(I) and Ag(I) binding. Isothermal titration calorimetry experiments demonstrate that one Ag(I) ion is bound per CusB molecule with high affinity. X-ray absorption spectroscopy data indicate that the metal environment is an all-sulfur 3-coordinate environment. Candidates for the metal-coordinating residues were identified from sequence analysis, which showed four conserved methionine residues. Mutations of three of these methionine residues to isoleucine resulted in significant effects on CusB metal binding in vitro. Cells containing these CusB variants also show a decrease in their ability to grow on copper-containing plates, indicating an important functional role for metal binding by CusB. Gel filtration chromatography demonstrates that upon binding metal, CusB undergoes a conformational change to a more compact structure. Based on these structural and functional effects of metal binding, we propose that the periplasmic component of resistance nodulation division-type efflux systems plays an active role in export through substrate-linked conformational changes.

  1. Crystal structure of a putative oligopeptide-binding periplasmic protein from a hyperthermophile.

    PubMed

    Yoon, Hye-Jin; Kim, Hee Jung; Mikami, Bunzo; Yu, Yeon Gyu; Lee, Hyung Ho

    2016-09-01

    Oligopeptide-binding proteins (Opps) are part of the ATP-binding cassette system, playing a crucial role in nutrient uptake and sensing the external environment in bacteria, including hyperthermophiles. Opps serve as a binding platform for diverse peptides; however, how these peptides are recognized by Opps is still largely unknown and few crystal structures of Opps from hyperthermophiles have been determined. To facilitate such an understanding, the crystal structure of a putative Opp, OppA from Thermotoga maritima (TmOppA), was solved at 2.6-Å resolution in the open conformation. TmOppA is composed of three domains. The N-terminal domain consists of twelve strands, nine helices, and four 310 helices, and the C-terminal domain consists of five strands, ten helices, and one 310 helix. These two domains are connected by the linker domain, which consists of two strands, three helices, and three 310 helices. Based on structural comparisons of TmOppA with other OppAs and binding studies, we suggest that TmOppA might be a periplasmic Opp. The most distinct feature of TmOppA is the insertion of two helices, which are lacking in other OppAs. A cavity volume between the N-terminal and C-terminal domains is suggested to be responsible for binding peptides of various lengths. PMID:27377296

  2. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm

    PubMed Central

    Li, Dao-Bo; Cheng, Yuan-Yuan; Wu, Chao; Li, Wen-Wei; Li, Na; Yang, Zong-Chuang; Tong, Zhong-Hua; Yu, Han-Qing

    2014-01-01

    In situ reduction of selenite to elemental selenium (Se(0)), by microorganisms in sediments and soils is an important process and greatly affects the environmental distribution and the biological effects of selenium. However, the mechanism behind such a biological process remains unrevealed yet. Here we use Shewanella oneidensis MR-1, a widely-distributed dissimilatory metal-reducing bacterium with a powerful and diverse respiration capability, to evaluate the involvement of anaerobic respiration system in the microbial selenite reduction. With mutants analysis, we identify fumarate reductase FccA as the terminal reductase of selenite in periplasm. Moreover, we find that such a reduction is dependent on central respiration c-type cytochrome CymA. In contrast, nitrate reductase, nitrite reductase, and the Mtr electron transfer pathway do not work as selenite reductases. These findings reveal a previously unrecognized role of anaerobic respiration reductases of S. oneidensis MR-1 in selenite reduction and geochemical cycles of selenium in sediments and soils. PMID:24435070

  3. SilE is an intrinsically disordered periplasmic "molecular sponge" involved in bacterial silver resistance.

    PubMed

    Asiani, Karishma R; Williams, Huw; Bird, Louise; Jenner, Matthew; Searle, Mark S; Hobman, Jon L; Scott, David J; Soultanas, Panos

    2016-09-01

    Ag(+) resistance was initially found on the Salmonella enetrica serovar Typhimurium multi-resistance plasmid pMG101 from burns patients in 1975. The putative model of Ag(+) resistance, encoded by the sil operon from pMG101, involves export of Ag(+) via an ATPase (SilP), an effluxer complex (SilCFBA) and a periplasmic chaperon of Ag(+) (SilE). SilE is predicted to be intrinsically disordered. We tested this hypothesis using structural and biophysical studies and show that SilE is an intrinsically disordered protein in its free apo-form but folds to a compact structure upon optimal binding to six Ag(+) ions in its holo-form. Sequence analyses and site-directed mutagenesis established the importance of histidine and methionine containing motifs for Ag(+) -binding, and identified a nucleation core that initiates Ag(+) -mediated folding of SilE. We conclude that SilE is a molecular sponge for absorbing metal ions. PMID:27085056

  4. The Treponema denticola Major Sheath Protein Is Predominantly Periplasmic and Has Only Limited Surface Exposure

    PubMed Central

    Caimano, Melissa J.; Bourell, Kenneth W.; Bannister, Teresa D.; Cox, David L.; Radolf, Justin D.

    1999-01-01

    The recent discovery that the Treponema pallidum genome encodes 12 orthologs of the Treponema denticola major sheath protein (Msp) prompted us to reexamine the cellular location and topology of the T. denticola polypeptide. Experiments initially were conducted to ascertain whether Msp forms an array on or within the T. denticola outer membrane. Transmission electron microscopy (EM) of negatively stained and ultrathin-sectioned organisms failed to identify a typical surface layer, whereas freeze-fracture EM revealed that the T. denticola outer membrane contains heterogeneous transmembrane proteins but no array. In contrast, a lattice-like structure was observed in vesicles released from mildly sonicated treponemes; combined EM and biochemical analyses demonstrated that this structure was the peptidoglycan sacculus. Immunoelectron microscopy (IEM) subsequently was performed to localize Msp in T. denticola. Examination of negatively stained whole mounts identified substantial amounts of Msp in sonicated organisms. IEM of ultrathin-sectioned, intact treponemes also demonstrated that the preponderance of antigen was unassociated with the outer membrane. Lastly, immunofluorescence analysis of treponemes embedded in agarose gel microdroplets revealed that only minor portions of Msp are surface exposed. Taken as a whole, our findings challenge the widely held belief that Msp forms an array within the T. denticola outer membrane and demonstrate, instead, that it is predominantly periplasmic with only limited surface exposure. These findings also have implications for our evolving understanding of the contribution(s) of Msp/Tpr orthologs to treponemal physiology and disease pathogenesis. PMID:10417176

  5. The periplasmic protein TolB as a potential drug target in Pseudomonas aeruginosa.

    PubMed

    Lo Sciuto, Alessandra; Fernández-Piñar, Regina; Bertuccini, Lucia; Iosi, Francesca; Superti, Fabiana; Imperi, Francesco

    2014-01-01

    The Gram-negative bacterium Pseudomonas aeruginosa is one of the most dreaded pathogens in the hospital setting, and represents a prototype of multi-drug resistant "superbug" for which effective therapeutic options are very limited. The identification and characterization of new cellular functions that are essential for P. aeruginosa viability and/or virulence could drive the development of anti-Pseudomonas compounds with novel mechanisms of action. In this study we investigated whether TolB, the periplasmic component of the Tol-Pal trans-envelope protein complex of Gram-negative bacteria, represents a potential drug target in P. aeruginosa. By combining conditional mutagenesis with the analysis of specific pathogenicity-related phenotypes, we demonstrated that TolB is essential for P. aeruginosa growth, both in laboratory and clinical strains, and that TolB-depleted P. aeruginosa cells are strongly defective in cell-envelope integrity, resistance to human serum and several antibiotics, as well as in the ability to cause infection and persist in an insect model of P. aeruginosa infection. The essentiality of TolB for P. aeruginosa growth, resistance and pathogenicity highlights the potential of TolB as a novel molecular target for anti-P. aeruginosa drug discovery. PMID:25093328

  6. Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies

    PubMed Central

    Symmons, Martyn F.; Marshall, Robert L.

    2015-01-01

    Recent years have seen major advances in the structural understanding of the different components of tripartite efflux assemblies, which encompass the multidrug efflux (MDR) pumps and type I secretion systems. The majority of these investigations have focused on the role played by the inner membrane transporters and the outer membrane factor (OMF), leaving the third component of the system – the Periplasmic Adaptor Proteins (PAPs) – relatively understudied. Here we review the current state of knowledge of these versatile proteins which, far from being passive linkers between the OMF and the transporter, emerge as active architects of tripartite assemblies, and play diverse roles in the transport process. Recognition between the PAPs and OMFs is essential for pump assembly and function, and targeting this interaction may provide a novel avenue for combating multidrug resistance. With the recent advances elucidating the drug efflux and energetics of the tripartite assemblies, the understanding of the interaction between the OMFs and PAPs is the last piece remaining in the complete structure of the tripartite pump assembly puzzle. PMID:26074901

  7. A novel periplasmic protein (Slr0280) tunes photomixotrophic growth of the cyanobacterium, Synechocystis sp. PCC 6803.

    PubMed

    Dong, Liang-Liang; Li, Qing-Dong; Wu, Dong; Sun, Ya-Fang; Zhou, Ming; Zhao, Kai-Hong

    2016-01-10

    Cyanobacteria are among the main contributors to global photosynthesis and show a high degree of metabolic plasticity. Synechocystis sp. PCC 6803 can grow under photoautotrophic, photomixotrophic or photoheterotrophic conditions. We have characterized a novel periplasmic protein (Slr0280) that tunes the photomixotrophic growth of Synechocystis sp. PCC 6803. Slr0280 is a multi-domain protein consisting mainly of β-sheets. Several proteins that interact with Slr0280 were identified via bacterial two-hybrid screening. Slr0280 may interact through its DUF2233 domain with partners that participate in sugar metabolism, thereby coordinating the respective regulations. When slr0280 was deleted, the mutant grew more slowly than wild-type in the presence of glucose, which is ascribed to the down-regulation of glycolysis, glycogen catabolism, oxidative pentose phosphate pathway, Calvin cycle and glucose utilization. A positive regulation of Slr0280 on these sugar catabolic enzymes was confirmed by transcript (qPCR) analyses. Based on these findings, we proposed a speculative model that Slr0280 plays a coordinating regulatory role in sugar metabolism. PMID:26367329

  8. Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies.

    PubMed

    Symmons, Martyn F; Marshall, Robert L; Bavro, Vassiliy N

    2015-01-01

    Recent years have seen major advances in the structural understanding of the different components of tripartite efflux assemblies, which encompass the multidrug efflux (MDR) pumps and type I secretion systems. The majority of these investigations have focused on the role played by the inner membrane transporters and the outer membrane factor (OMF), leaving the third component of the system - the Periplasmic Adaptor Proteins (PAPs) - relatively understudied. Here we review the current state of knowledge of these versatile proteins which, far from being passive linkers between the OMF and the transporter, emerge as active architects of tripartite assemblies, and play diverse roles in the transport process. Recognition between the PAPs and OMFs is essential for pump assembly and function, and targeting this interaction may provide a novel avenue for combating multidrug resistance. With the recent advances elucidating the drug efflux and energetics of the tripartite assemblies, the understanding of the interaction between the OMFs and PAPs is the last piece remaining in the complete structure of the tripartite pump assembly puzzle. PMID:26074901

  9. Structure-Based Design of a Periplasmic Binding Protein Antagonist that Prevents Domain Closure

    SciTech Connect

    Borrok, M. Jack; Zhu, Yimin; Forest, Katrina T.; Kiessling, Laura L.

    2009-07-31

    Many receptors undergo ligand-induced conformational changes to initiate signal transduction. Periplasmic binding proteins (PBPs) are bacterial receptors that exhibit dramatic conformational changes upon ligand binding. These proteins mediate a wide variety of fundamental processes including transport, chemotaxis, and quorum sensing. Despite the importance of these receptors, no PBP antagonists have been identified and characterized. In this study, we identify 3-O-methyl-D-glucose as an antagonist of glucose/galactose-binding protein and demonstrate that it inhibits glucose chemotaxis in E. coli. Using small-angle X-ray scattering and X-ray crystallography, we show that this antagonist acts as a wedge. It prevents the large-scale domain closure that gives rise to the active signaling state. Guided by these results and the structures of open and closed glucose/galactose-binding protein, we designed and synthesized an antagonist composed of two linked glucose residues. These findings provide a blueprint for the design of new bacterial PBP inhibitors. Given the key role of PBPs in microbial physiology, we anticipate that PBP antagonists will have widespread uses as probes and antimicrobial agents.

  10. A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenic Neisseria.

    PubMed

    Jen, Freda E-C; Djoko, Karrera Y; Bent, Stephen J; Day, Christopher J; McEwan, Alastair G; Jennings, Michael P

    2015-09-01

    Under conditions of low oxygen availability, Neisseria meningitidis and Neisseria gonorrhoeae are able to respire via a partial denitrification pathway in which nitrite is converted to nitrous oxide. In this process, nitrite reductase (AniA), a copper (Cu)-containing protein converts nitrite to NO, and this product is converted to nitrous oxide by nitric oxide reductase (NorB). NorB also confers protection against toxic NO, and so we devised a conditional lethal screen, using a norB mutant, to identify mutants that were resistant to nitrite-dependent killing. After random-deletion mutagenesis of N. meningitidis, this genetic screen identified a gene encoding a Cu chaperone that is essential for AniA function, AccA. Purified AccA binds one Cu (I) ion and also possesses a second binding site for Cu (II). This novel periplasmic Cu chaperone (AccA) appears to be essential for provision of Cu ions to AniA of pathogenic Neisseria to generate an active nitrite reductase. Apart from the Neisseria genus, AccA is distributed across a wide range of environmental Proteobacteria species. PMID:26031293

  11. Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein.

    PubMed

    Simon, Jörg; Sänger, Monica; Schuster, Stephan C; Gross, Roland

    2003-07-01

    The rumen bacterium Wolinella succinogenes grows by respiratory nitrate ammonification with formate as electron donor. Whereas the enzymology and coupling mechanism of nitrite respiration is well known, nitrate reduction to nitrite has not yet been examined. We report here that intact cells and cell fractions catalyse nitrate and chlorate reduction by reduced viologen dyes with high specific activities. A gene cluster encoding components of a putative periplasmic nitrate reductase system (napA, G, H, B, F, L, D) was sequenced. The napA gene was inactivated by inserting a kanamycin resistance gene cassette. The resulting mutant did not grow by nitrate respiration and did not reduce nitrate during growth by fumarate respiration, in contrast to the wild type. An antigen was detected in wild-type cells using an antiserum raised against the periplasmic nitrate reductase (NapA) from Paracoccus pantotrophus. This antigen was absent in the W. succinogenes napA mutant. It is concluded that the periplasmic nitrate reductase NapA is the only respiratory nitrate reductase in W. succinogenes, although a second nitrate-reducing enzyme is apparently induced in the napA mutant. The nap cluster of W. succinogenes lacks a napC gene whose product is thought to function in quinol oxidation and electron transfer to NapA in other bacteria. The W. succinogenes genome encodes two members of the NapC/NirT family, NrfH and FccC. Characterization of corresponding deletion mutants indicates that neither of these two proteins is required for nitrate respiration. A mutant lacking the genes encoding respiratory nitrite reductase (nrfHA) had wild-type properties with respect to nitrate respiration. A model of the electron transport chain of nitrate respiration is proposed in which one or more of the napF, G, H and L gene products mediate electron transport from menaquinol to the periplasmic NapAB complex. Inspection of the W. succinogenes genome sequence suggests that ammonia formation from

  12. Cleavage of the HIV replication primer tRNALys,3 in human cells expressing bacterial anticodon nuclease.

    PubMed Central

    Shterman, N; Elroy-Stein, O; Morad, I; Amitsur, M; Kaufmann, G

    1995-01-01

    Anticodon nuclease is a bacterial restriction enzyme directed against tRNA(Lys). We report that anticodon nuclease also cleaves mammalian tRNA(Lys) molecules, with preference and site specificity shown towards the natural substrate. Expression of the anticodon nuclease core polypeptide PrrC in HeLa cells from a recombinant vaccinia virus elicited cleavage of intracellular tRNA(Lys),3. The data justify an inquiry into the possible application of anticodon nuclease as an inhibitor of tRNA(Lys),3-primed HIV replication. They also indicate that the anticodon region of tRNA(Lys) is a substrate recognition site and suggest that PrrC harbors the enzymatic activity. Images PMID:7784179

  13. Karyomegalic interstitial nephritis and DNA damage-induced polyploidy in Fan1 nuclease-defective knock-in mice

    PubMed Central

    Lachaud, Christophe; Slean, Meghan; Marchesi, Francesco; Lock, Claire; Odell, Edward; Castor, Dennis; Toth, Rachel; Rouse, John

    2016-01-01

    The Fan1 endonuclease is required for repair of DNA interstrand cross-links (ICLs). Mutations in human Fan1 cause karyomegalic interstitial nephritis (KIN), but it is unclear whether defective ICL repair is responsible or whether Fan1 nuclease activity is relevant. We show that Fan1 nuclease-defective (Fan1nd/nd) mice develop a mild form of KIN. The karyomegalic nuclei from Fan1nd/nd kidneys are polyploid, and fibroblasts from Fan1nd/nd mice become polyploid upon ICL induction, suggesting that defective ICL repair causes karyomegaly. Thus, Fan1 nuclease activity promotes ICL repair in a manner that controls ploidy, a role that we show is not shared by the Fanconi anemia pathway or the Slx4–Slx1 nuclease also involved in ICL repair. PMID:26980188

  14. Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing.

    PubMed

    Lee, Ciaran M; Cradick, Thomas J; Fine, Eli J; Bao, Gang

    2016-03-01

    The rapid advancement in targeted genome editing using engineered nucleases such as ZFNs, TALENs, and CRISPR/Cas9 systems has resulted in a suite of powerful methods that allows researchers to target any genomic locus of interest. A complementary set of design tools has been developed to aid researchers with nuclease design, target site selection, and experimental validation. Here, we review the various tools available for target selection in designing engineered nucleases, and for quantifying nuclease activity and specificity, including web-based search tools and experimental methods. We also elucidate challenges in target selection, especially in predicting off-target effects, and discuss future directions in precision genome editing and its applications. PMID:26750397

  15. Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing

    PubMed Central

    Lee, Ciaran M; Cradick, Thomas J; Fine, Eli J; Bao, Gang

    2016-01-01

    The rapid advancement in targeted genome editing using engineered nucleases such as ZFNs, TALENs, and CRISPR/Cas9 systems has resulted in a suite of powerful methods that allows researchers to target any genomic locus of interest. A complementary set of design tools has been developed to aid researchers with nuclease design, target site selection, and experimental validation. Here, we review the various tools available for target selection in designing engineered nucleases, and for quantifying nuclease activity and specificity, including web-based search tools and experimental methods. We also elucidate challenges in target selection, especially in predicting off-target effects, and discuss future directions in precision genome editing and its applications. PMID:26750397

  16. Nuclease-functionalized poly(styrene-b-isobutylene-b-styrene) surface with anti-infection and tissue integration bifunctions.

    PubMed

    Yuan, Shuaishuai; Zhao, Jie; Luan, Shifang; Yan, Shunjie; Zheng, Wanling; Yin, Jinghua

    2014-10-22

    Hydrophobic thermoplastic elastomers, e.g., poly(styrene-b-isobutylene-b-styrene) (SIBS), have found various in vivo biomedical applications. It has long been recognized that biomaterials can be adversely affected by bacterial contamination and clinical infection. However, inhibiting bacterial colonization while simultaneously preserving or enhancing tissue-cell/material interactions is a great challenge. Herein, SIBS substrates were functionalized with nucleases under mild conditions, through polycarboxylate grafts as intermediate. It was demonstrated that the nuclease-modified SIBS could effectively prevent bacterial adhesion and biofilm formation. Cell adhesion assays confirmed that nuclease coatings generally had no negative effects on L929 cell adhesion, compared with the virgin SIBS reference. Therefore, the as-reported nuclease coating may present a promising approach to inhibit bacterial infection, while preserving tissue-cell integration on polymeric biomaterials. PMID:25253647

  17. A simple molecular beacon with duplex-specific nuclease amplification for detection of microRNA.

    PubMed

    Li, Yingcun; Zhang, Jiangyan; Zhao, Jingjing; Zhao, Likun; Cheng, Yongqiang; Li, Zhengping

    2016-02-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene activity, promoting or inhibiting cell proliferation, migration and apoptosis. Abnormal expression of miRNAs is associated with many diseases. Therefore, it is essential to establish a simple, rapid and sensitive miRNA detection method. In this paper, based on a simple molecular beacon (MB) and duplex-specific nuclease (DSN), we developed a target recycling amplification method for miRNA detection. By controlling the number of stem bases to 5, the MB probe used in this method can be prevented from hydrolysis by DSN without special modification. This assay is direct and simple to quantitatively detect miRNA with high sensitivity and specificity. The MB probe design provides a new strategy for nuclease-based amplification reaction. PMID:26688865

  18. Selective Enhancement of Nucleases by Polyvalent DNA-Functionalized Gold Nanoparticles

    PubMed Central

    Prigodich, Andrew E.; Alhasan, Ali H.

    2011-01-01

    We demonstrate that polyvalent DNA-functionalized gold nanoparticles (DNA-Au NPs) selectively enhance Ribonuclease H (RNase H) activity, while inhibiting most biologically relevant nucleases. This combination of properties is particularly interesting in the context of gene regulation, since high RNase H activity results in rapid mRNA degradation and general nuclease inhibition results in high biological stability. We investigate the mechanism of selective RNase H activation and find that the high DNA density of DNA-Au NPs is responsible for this unusual behavior. This work adds to our understanding of polyvalent DNA-Au NPs as gene regulation agents, and suggests a new model for selectively controlling protein-nanoparticle interactions. PMID:21268581

  19. Evolution of an archaeal virus nucleocapsid protein from the CRISPR-associated Cas4 nuclease.

    PubMed

    Krupovic, Mart; Cvirkaite-Krupovic, Virginija; Prangishvili, David; Koonin, Eugene V

    2015-01-01

    Many proteins of viruses infecting hyperthermophilic Crenarchaeota have no detectable homologs in current databases, hampering our understanding of viral evolution. We used sensitive database search methods and structural modeling to show that a nucleocapsid protein (TP1) of Thermoproteus tenax virus 1 (TTV1) is a derivative of the Cas4 nuclease, a component of the CRISPR-Cas adaptive immunity system that is encoded also by several archaeal viruses. In TTV1, the Cas4 gene was split into two, with the N-terminal portion becoming TP1, and lost some of the catalytic amino acid residues, apparently resulting in the inactivation of the nuclease. To our knowledge, this is the first described case of exaptation of an enzyme for a virus capsid protein function. PMID:26514828

  20. Dimerization of SLX4 contributes to functioning of the SLX4-nuclease complex

    PubMed Central

    Yin, Jinhu; Wan, Bingbing; Sarkar, Jaya; Horvath, Kent; Wu, Jian; Chen, Yong; Cheng, Guangjuan; Wan, Ke; Chin, Peiju; Lei, Ming; Liu, Yie

    2016-01-01

    The Fanconi anemia protein SLX4 assembles a genome and telomere maintenance toolkit, consisting of the nucleases SLX1, MUS81 and XPF. Although it is known that SLX4 acts as a scaffold for building this complex, the molecular basis underlying this function of SLX4 remains unclear. Here, we report that functioning of SLX4 is dependent on its dimerization via an oligomerization motif called the BTB domain. We solved the crystal structure of the SLX4BTB dimer, identifying key contacts (F681 and F708) that mediate dimerization. Disruption of BTB dimerization abrogates nuclear foci formation and telomeric localization of not only SLX4 but also of its associated nucleases. Furthermore, dimerization-deficient SLX4 mutants cause defective cellular response to DNA interstrand crosslinking agent and telomere maintenance, underscoring the contribution of BTB domain-mediated dimerization of SLX4 in genome and telomere maintenance. PMID:27131364

  1. Studies of interaction between a new synthesized minor-groove targeting artificial nuclease and DNA

    NASA Astrophysics Data System (ADS)

    Yin, Qiang; Zhang, Zhen; Zhao, Yu-Fen

    2007-04-01

    Nuclease plays an important role in molecular biology, such as DNA sequencing. Synthetic polyamide conjugates can be considered as new tool in the selective inhibition of gene expression and as potential drugs in anticancer or antiviral chemotherapy. In this paper, a new synthesized minor-groove targeting artificial nuclease, oligopyrrol-containing peptide, was reported. It was found that this new compound can bind DNA in AT-riched minor groove with high affinity and site specificity. DNA binding behavior was determined by UV-vis and circular dichroism (CD) methods. It was indicated that compound 6 can enhance the Tm of oligomer DNA from 51.8 to 63.5 °C and possesses large binding constant ( Kb = 8.83 × 10 4 L/mol).

  2. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases.

    PubMed

    Tsai, Shengdar Q; Joung, J Keith

    2016-04-18

    CRISPR-Cas9 RNA-guided nucleases are a transformative technology for biology, genetics and medicine owing to the simplicity with which they can be programmed to cleave specific DNA target sites in living cells and organisms. However, to translate these powerful molecular tools into safe, effective clinical applications, it is of crucial importance to carefully define and improve their genome-wide specificities. Here, we outline our state-of-the-art understanding of target DNA recognition and cleavage by CRISPR-Cas9 nucleases, methods to determine and improve their specificities, and key considerations for how to evaluate and reduce off-target effects for research and therapeutic applications. PMID:27087594

  3. Dimerization of SLX4 contributes to functioning of the SLX4-nuclease complex.

    PubMed

    Yin, Jinhu; Wan, Bingbing; Sarkar, Jaya; Horvath, Kent; Wu, Jian; Chen, Yong; Cheng, Guangjuan; Wan, Ke; Chin, Peiju; Lei, Ming; Liu, Yie

    2016-06-01

    The Fanconi anemia protein SLX4 assembles a genome and telomere maintenance toolkit, consisting of the nucleases SLX1, MUS81 and XPF. Although it is known that SLX4 acts as a scaffold for building this complex, the molecular basis underlying this function of SLX4 remains unclear. Here, we report that functioning of SLX4 is dependent on its dimerization via an oligomerization motif called the BTB domain. We solved the crystal structure of the SLX4BTB dimer, identifying key contacts (F681 and F708) that mediate dimerization. Disruption of BTB dimerization abrogates nuclear foci formation and telomeric localization of not only SLX4 but also of its associated nucleases. Furthermore, dimerization-deficient SLX4 mutants cause defective cellular response to DNA interstrand crosslinking agent and telomere maintenance, underscoring the contribution of BTB domain-mediated dimerization of SLX4 in genome and telomere maintenance. PMID:27131364

  4. The history and market impact of CRISPR RNA-guided nucleases

    PubMed Central

    van Erp, Paul B.G.; Bloomer, Gary; Wilkinson, Royce; Wiedenheft, Blake

    2015-01-01

    The interface between viruses and their hosts’ are hot spots for biological and biotechnological innovation. Bacteria use restriction endonucleases to destroy invading DNA, and industry has exploited these enzymes for molecular cut-and-paste reactions that are central to many recombinant DNA technologies. Today, another class of nucleases central to adaptive immune systems that protect bacteria and archaea from invading viruses and plasmids are blazing a similar path from basic science to profound biomedical and industrial applications. PMID:25914022

  5. The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis

    PubMed Central

    Ipsaro, Jonathan J.; Haase, Astrid D.; Knott, Simon R.; Joshua-Tor, Leemor; Hannon, Gregory J.

    2012-01-01

    PIWI-family proteins and their associated small RNAs (piRNAs) act in an evolutionarily conserved innate immune mechanism that provides an essential protection for germ cell genomes against the activity of mobile genetic elements1. piRNA populations comprise a molecular definition of transposons that permits them to be distinguished from host genes and selectively silenced. piRNAs can be generated in two distinct ways. Primary piRNAs emanate from discrete genomic loci, termed piRNA clusters, and appear to be derived from long, single-stranded precursors2. The biogenesis of primary piRNAs involves at least two nucleolytic steps. An unknown enzyme cleaves piRNA cluster transcripts to generate monophosphorylated piRNA 5' ends. piRNA 3' ends are likely formed by exonucleolytic trimming, after a piRNA precursor is loaded into its PIWI partner1,3. Secondary piRNAs arise during the adaptive ping-pong cycle, with their 5' termini being formed by the activity of PIWIs themselves2,4. A number of proteins have been implicated genetically in primary piRNA biogenesis. One of these, Zucchini, is a member of the phospholipase D family of phosphodiesterases, which includes both phospholipases and nucleases5–7. We have produced a dimeric, soluble fragment of the mouse Zucchini homolog (mZuc/PLD6) and have shown that it possesses single strand-specific nuclease activity. A crystal structure of mZuc at 1.75 Å resolution indicates greater architectural similarity to PLD-family nucleases than to phospholipases. Considered together, our data suggest that the Zucchini proteins act in primary piRNA biogenesis as nucleases, perhaps generating the 5' ends of primary piRNAs. PMID:23064227

  6. The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis.

    PubMed

    Ipsaro, Jonathan J; Haase, Astrid D; Knott, Simon R; Joshua-Tor, Leemor; Hannon, Gregory J

    2012-11-01

    PIWI-family proteins and their associated small RNAs (piRNAs) act in an evolutionarily conserved innate immune mechanism to provide essential protection for germ-cell genomes against the activity of mobile genetic elements. piRNA populations comprise a molecular definition of transposons, which permits them to distinguish transposons from host genes and selectively silence them. piRNAs can be generated in two distinct ways, forming either primary or secondary piRNAs. Primary piRNAs come from discrete genomic loci, termed piRNA clusters, and seem to be derived from long, single-stranded precursors. The biogenesis of primary piRNAs involves at least two nucleolytic steps. An unknown enzyme cleaves piRNA cluster transcripts to generate monophosphorylated piRNA 5' ends. piRNA 3' ends are probably formed by exonucleolytic trimming, after a piRNA precursor is loaded into its PIWI partner. Secondary piRNAs arise during the adaptive 'ping-pong' cycle, with their 5' termini being formed by the activity of PIWIs themselves. A number of proteins have been implicated genetically in primary piRNA biogenesis. One of these, Drosophila melanogaster Zucchini, is a member of the phospholipase-D family of phosphodiesterases, which includes both phospholipases and nucleases. Here we produced a dimeric, soluble fragment of the mouse Zucchini homologue (mZuc; also known as PLD6) and show that it possesses single-strand-specific nuclease activity. A crystal structure of mZuc at 1.75 Å resolution indicates greater architectural similarity to phospholipase-D family nucleases than to phospholipases. Together, our data suggest that the Zucchini proteins act in primary piRNA biogenesis as nucleases, perhaps generating the 5' ends of primary piRNAs. PMID:23064227

  7. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases

    PubMed Central

    Chen, Fuqiang; Pruett-Miller, Shondra M; Huang, Yuping; Gjoka, Monika; Duda, Katarzyna; Taunton, Jack; Collingwood, Trevor N; Frodin, Morten; Davis, Gregory D

    2011-01-01

    Zinc-finger nucleases (ZFNs) have enabled highly efficient gene targeting in multiple cell types and organisms. Here we describe methods for using simple ssDNA oligonucleotides in tandem with ZFNs to efficiently produce human cell lines with three distinct genetic outcomes: (i) targeted point mutation, (ii) targeted genomic deletion of up to 100 kb and (iii) targeted insertion of small genetic elements concomitant with large genomic deletions. PMID:21765410

  8. Escherichia coli ghost production by expression of lysis gene E and Staphylococcal nuclease.

    PubMed

    Haidinger, W; Mayr, U B; Szostak, M P; Resch, S; Lubitz, W

    2003-10-01

    The production of bacterial ghosts from Escherichia coli is accomplished by the controlled expression of phage phiX174 lysis gene E and, in contrast to other gram-negative bacterial species, is accompanied by the rare detection of nonlysed, reproductive cells within the ghost preparation. To overcome this problem, the expression of a secondary killing gene was suggested to give rise to the complete genetic inactivation of the bacterial samples. The expression of staphylococcal nuclease A in E. coli resulted in intracellular accumulation of the protein and degradation of the host DNA into fragments shorter than 100 bp. Two expression systems for the nuclease are presented and were combined with the protein E-mediated lysis system. Under optimized conditions for the coexpression of gene E and the staphylococcal nuclease, the concentration of viable cells fell below the lower limit of detection, whereas the rates of ghost formation were not affected. With regard to the absence of reproductive cells from the ghost fractions, the reduction of viability could be determined as being at least 7 to 8 orders of magnitude. The lysis process was characterized by electrophoretic analysis and absolute quantification of the genetic material within the cells and the culture supernatant via real-time PCR. The ongoing degradation of the bacterial nucleic acids resulted in a continuous quantitative clearance of the genetic material associated with the lysing cells until the concentrations fell below the detection limits of either assay. No functional, released genetic units (genes) were detected within the supernatant during the lysis process, including nuclease expression. PMID:14532068

  9. Improved Somatic Mutagenesis in Zebrafish Using Transcription Activator-Like Effector Nucleases (TALENs)

    PubMed Central

    Moore, Finola E.; Reyon, Deepak; Sander, Jeffry D.; Martinez, Sarah A.; Blackburn, Jessica S.; Khayter, Cyd; Ramirez, Cherie L.; Joung, J. Keith; Langenau, David M.

    2012-01-01

    Zinc Finger Nucleases (ZFNs) made by Context-Dependent Assembly (CoDA) and Transcription Activator-Like Effector Nucleases (TALENs) provide robust and user-friendly technologies for efficiently inactivating genes in zebrafish. These designer nucleases bind to and cleave DNA at particular target sites, inducing error-prone repair that can result in insertion or deletion mutations. Here, we assess the relative efficiencies of these technologies for inducing somatic DNA mutations in mosaic zebrafish. We find that TALENs exhibited a higher success rate for obtaining active nucleases capable of inducing mutations than compared with CoDA ZFNs. For example, all six TALENs tested induced DNA mutations at genomic target sites while only a subset of CoDA ZFNs exhibited detectable rates of mutagenesis. TALENs also exhibited higher mutation rates than CoDA ZFNs that had not been pre-screened using a bacterial two-hybrid assay, with DNA mutation rates ranging from 20%–76.8% compared to 1.1%–3.3%. Furthermore, the broader targeting range of TALENs enabled us to induce mutations at the methionine translation start site, sequences that were not targetable using the CoDA ZFN platform. TALENs exhibited similar toxicity to CoDA ZFNs, with >50% of injected animals surviving to 3 days of life. Taken together, our results suggest that TALEN technology provides a robust alternative to CoDA ZFNs for inducing targeted gene-inactivation in zebrafish, making it a preferred technology for creating targeted knockout mutants in zebrafish. PMID:22655075

  10. Stable DNA Unwinding, not "Breathing," Accounts for Single-Strand-Specific Nuclease Hypersensitivity of Specific A + T-Rich Sequences

    NASA Astrophysics Data System (ADS)

    Kowalski, David; Natale, Darren A.; Eddy, Martha J.

    1988-12-01

    A long A+T-rich sequence in supercoiled pBR322 DNA is hypersensitive to single-strand-specific nucleases at 37 degrees C but not at reduced temperature. The basis for the nuclease hypersensitivity is stable DNA unwinding as revealed by (i) the same temperature dependence for hypersensitivity and for stable unwinding of plasmid topoisomers after two-dimensional gel electrophoresis, (ii) preferential nuclease digestion of stably unwound topoisomers, and (iii) quantitative nicking of stably unwound topoisomers in the A+T-rich region. Nuclease hypersensitivity of A+T-rich sequences is hierarchical, and either deletion of the primary site or a sufficient increase in the free energy of supercoiling leads to enhanced nicking at an alternative A+T-rich site. The hierarchy of nuclease hypersensitivity reflects a hierarchy in the free energy required for unwinding naturally occurring sequences in supercoiled DNA. This finding, along with the known hypersensitivity of replication origins and transcriptional regulatory regions, has important implications for using single-strand-specific nucleases in DNA structure-function studies.

  11. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina

    SciTech Connect

    Simpson, Philippa J.L.; Codd, Rachel

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Cold-adapted phenotype of NapA from the Antarctic bacterium Shewanella gelidimarina. Black-Right-Pointing-Pointer Protein homology model of NapA from S. gelidimarina and mesophilic homologue. Black-Right-Pointing-Pointer Six amino acid residues identified as lead candidates governing NapA cold adaptation. Black-Right-Pointing-Pointer Molecular-level understanding of designing cool-temperature in situ oxyanion sensors. -- Abstract: The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo-MGD) cofactor and one [4Fe-4S] iron-sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (Nap{sub Sgel}) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (Nap{sub Sput}) was examined at varied temperature. Irreversible deactivation of Nap{sub Sgel} and Nap{sub Sput} occurred at 54.5 and 65 Degree-Sign C, respectively. When Nap{sub Sgel} was preincubated at 21-70 Degree-Sign C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54 Degree-Sign C, which suggested that Nap{sub Sgel} was poised for optimal catalysis at modest temperatures and, unlike Nap{sub Sput}, did not benefit from thermally-induced refolding. At 20 Degree-Sign C, Nap{sub Sgel} reduced selenate at 16% of the rate of nitrate reduction. Nap{sub Sput} did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in Nap{sub Sgel} that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the Nap{sub Sgel} cold-adapted phenotype. Protein homology modeling of Nap{sub Sgel} using a

  12. Production of organic acids by periplasmic enzymes present in free and immobilized cells of Zymomonas mobilis.

    PubMed

    Malvessi, Eloane; Carra, Sabrina; Pasquali, Flávia Cristina; Kern, Denise Bizarro; da Silveira, Mauricio Moura; Ayub, Marco Antônio Záchia

    2013-01-01

    In this work the periplasmic enzymatic complex glucose-fructose oxidoreductase (GFOR)/glucono-δ-lactonase (GL) of permeabilized free or immobilized cells of Zymomonas mobilis was evaluated for the bioconversion of mixtures of fructose and different aldoses into organic acids. For all tested pairs of substrates with permeabilized free-cells, the best enzymatic activities were obtained in reactions with pH around 6.4 and temperatures ranging from 39 to 45 °C. Decreasing enzyme/substrate affinities were observed when fructose was in the mixture with glucose, maltose, galactose, and lactose, in this order. In bioconversion runs with 0.7 mol l(-1) of fructose and with aldose, with permeabilized free-cells of Z. mobilis, maximal concentrations of the respective aldonic acids of 0.64, 0.57, 0.51, and 0.51 mol l(-1) were achieved, with conversion yields of 95, 88, 78, and 78 %, respectively. Due to the important applications of lactobionic acid, the formation of this substance by the enzymatic GFOR/GL complex in Ca-alginate-immobilized cells was assessed. The highest GFOR/GL activities were found at pH 7.0-8.0 and temperatures of 47-50 °C. However, when a 24 h bioconversion run was carried out, it was observed that a combination of pH 6.4 and temperature of 47 °C led to the best results. In this case, despite the fact that Ca-alginate acts as a barrier for the diffusion of substrates and products, maximal lactobionic acid concentration, conversion yields and specific productivity similar to those obtained with permeabilized free-cells were achieved. PMID:23053345

  13. Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins.

    PubMed

    Davidson, A L; Shuman, H A; Nikaido, H

    1992-03-15

    Maltose transport across the cytoplasmic membrane of Escherichia coli is dependent on the presence of a periplasmic maltose-binding protein (MBP), the product of the malE gene. The products of the malF, malG, and malK genes form a membrane-associated complex that catalyzes the hydrolysis of ATP to provide energy for the transport event. Previously, mutants were isolated that had gained the ability to grow on maltose in the absence of MBP. After reconstitution of the transport complex into proteoliposomes, measurement of the ATPase activity of wild-type and mutant complexes in the presence and absence of MBP revealed that the wild-type complex hydrolyzed ATP rapidly only when MBP and maltose were both present. In contrast, the mutant complexes have gained the ability to hydrolyze ATP in the absence of maltose and MBP. The basal rate of hydrolysis by the different mutant complexes was directly proportional to the growth rate of that strain on maltose, a result indicating that the constitutive ATP hydrolysis and presumably the resultant cyclic conformational changes of the complex produce maltose transport in the absence of MBP. These results also suggest that ATP hydrolysis is not directly coupled to ligand transport even in wild-type cells and that one important function of MBP is to transmit a transmembrane signal, through the membrane-spanning MalF and MalG proteins, to the MalK protein on the other side of the membrane, so that ATP hydrolysis can occur. PMID:1549599

  14. Export of the periplasmic maltose-binding protein of Escherichia coli.

    PubMed

    Bassford, P J

    1990-06-01

    The export of the maltose-binding protein (MBP), the malE gene product, to the periplasm of Escherichia coli cells has been extensively investigated. The isolation of strains synthesizing MalE-LacZ hybrid proteins led to a novel genetic selection for mutants that accumulate export-defective precursor MBP (preMBP) in the cytoplasm. The export defects were subsequently shown to result from alterations in the MBP signal peptide. Analysis of these and a variety of mutants obtained in other ways has provided considerable insight into the requirements for an optimally functional MBP signal peptide. This structure has been shown to have multiple roles in the export process, including promoting entry of preMBP into the export pathway and initiating MBP translocation across the cytoplasmic membrane. The latter has been shown to be a late event relative to synthesis and can occur entirely posttranslationally, even many minutes after the completion of synthesis. Translocation requires that the MBP polypeptide exist in an export-competent conformation that most likely represents an unfolded state that is not inhibitory to membrane transit. The signal peptide contributes to the export competence of preMBP by slowing the rate at which the attached mature moiety folds. In addition, preMBP folding is thought to be further retarded by the binding of a cytoplasmic protein, SecB, to the mature moiety of nascent preMBP. In cells lacking this antifolding factor, MBP export represents a race between delivery of newly synthesized, export-competent preMBP to the translocation machinery in the cytoplasmic membrane and folding of preMBP into an export-incompetent conformation. SecB is one of three E. coli proteins classified as "molecular chaperones" by their ability to stabilize precursor proteins for membrane translocation. PMID:2202725

  15. The Lipoprotein LpqW Is Essential for the Mannosylation of Periplasmic Glycolipids in Corynebacteria*

    PubMed Central

    Rainczuk, Arek K.; Yamaryo-Botte, Yoshiki; Brammananth, Rajini; Stinear, Timothy P.; Seemann, Torsten; Coppel, Ross L.; McConville, Malcolm J.; Crellin, Paul K.

    2012-01-01

    Phosphatidylinositol mannosides (PIM), lipomannan (LM), and lipoarabinomannan (LAM) are essential components of the cell wall and plasma membrane of mycobacteria, including the human pathogen Mycobacterium tuberculosis, as well as the related Corynebacterineae. We have previously shown that the lipoprotein, LpqW, regulates PIM and LM/LAM biosynthesis in mycobacteria. Here, we provide direct evidence that LpqW regulates the activity of key mannosyltransferases in the periplasmic leaflet of the cell membrane. Inactivation of the Corynebacterium glutamicum lpqW ortholog, NCgl1054, resulted in a slow growth phenotype and a global defect in lipoglycan biosynthesis. The NCgl1054 mutant lacked LAMs and was defective in the elongation of the major PIM species, AcPIM2, as well as a second glycolipid, termed Gl-X (mannose-α1–4-glucuronic acid-α1-diacylglycerol), which function as membrane anchors for LM-A and LM-B, respectively. Elongation of AcPIM2 and Gl-X was found to be dependent on expression of polyprenol phosphomannose (ppMan) synthase. However, the ΔNCgl1054 mutant synthesized normal levels of ppMan, indicating that LpqW is not required for synthesis of this donor. A spontaneous suppressor strain was isolated in which lipoglycan synthesis in the ΔNCgl1054 mutant was partially restored. Genome-wide sequencing indicated that a single amino acid substitution within the ppMan-dependent mannosyltransferase MptB could bypass the need for LpqW. Further evidence of an interaction is provided by the observation that MptB activity in cell-free extracts was significantly reduced in the absence of LpqW. Collectively, our results suggest that LpqW may directly activate MptB, highlighting the role of lipoproteins in regulating key cell wall biosynthetic pathways in these bacteria. PMID:23091062

  16. Soluble periplasmic production of human granulocyte colony-stimulating factor (G-CSF) in Pseudomonas fluorescens.

    PubMed

    Jin, Hongfan; Cantin, Greg T; Maki, Steven; Chew, Lawrence C; Resnick, Sol M; Ngai, Jerry; Retallack, Diane M

    2011-07-01

    Cost-effective production of soluble recombinant protein in a bacterial system remains problematic with respect to expression levels and quality of the expressed target protein. These constraints have particular meaning today as "biosimilar" versions of innovator protein drugs are entering the clinic and the marketplace. A high throughput, parallel processing approach to expression strain engineering was used to evaluate soluble expression of human granulocyte colony-stimulating factor (G-CSF) in Pseudomonas fluorescens. The human g-csf gene was optimized for expression in P. fluorescens and cloned into a set of periplasmic expression vectors. These plasmids were transformed into a variety of P. fluorescens host strains each having a unique phenotype, to evaluate soluble expression in a 96-well growth and protein expression format. To identify a strain producing high levels of intact, soluble Met-G-CSF product, more than 150 protease defective host strains from the Pfēnex Expression Technology™ toolbox were screened in parallel using biolayer interferometry (BLI) to quantify active G-CSF binding to its receptor. A subset of these strains was screened by LC-MS analysis to assess the quality of the expressed G-CSF protein. A single strain with an antibiotic resistance marker insertion in the pfaI gene was identified that produced>99% Met-GCSF. A host with a complete deletion of the autotransporter-coding gene pfaI from the genome was constructed, and expression of soluble, active Met-GSCF in this strain was observed to be 350mg/L at the 1 liter fermentation scale. PMID:21396452

  17. Catalytic Mechanism and Mode of Action of the Periplasmic Alginate Epimerase AlgG*

    PubMed Central

    Wolfram, Francis; Kitova, Elena N.; Robinson, Howard; Walvoort, Marthe T. C.; Codée, Jeroen D. C.; Klassen, John S.; Howell, P. Lynne

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that forms chronic biofilm infections in the lungs of cystic fibrosis patients. A major component of the biofilm during these infections is the exopolysaccharide alginate, which is synthesized at the inner membrane as a homopolymer of 1–4-linked β-d-mannuronate. As the polymer passages through the periplasm, 22–44% of the mannuronate residues are converted to α-l-guluronate by the C5-epimerase AlgG to produce a polymer of alternating β-d-mannuronate and α-l-guluronate blocks and stretches of polymannuronate. To understand the molecular basis of alginate epimerization, the structure of Pseudomonas syringae AlgG has been determined at 2.1-Å resolution, and the protein was functionally characterized. The structure reveals that AlgG is a long right-handed parallel β-helix with an elaborate lid structure. Functional analysis of AlgG mutants suggests that His319 acts as the catalytic base and that Arg345 neutralizes the acidic group during the epimerase reaction. Water is the likely catalytic acid. Electrostatic surface potential and residue conservation analyses in conjunction with activity and substrate docking studies suggest that a conserved electropositive groove facilitates polymannuronate binding and contains at least nine substrate binding subsites. These subsites likely align the polymer in the correct register for catalysis to occur. The presence of multiple subsites, the electropositive groove, and the non-random distribution of guluronate in the alginate polymer suggest that AlgG is a processive enzyme. Moreover, comparison of AlgG and the extracellular alginate epimerase AlgE4 of Azotobacter vinelandii provides a structural rationale for the differences in their Ca2+ dependence. PMID:24398681

  18. Function of Periplasmic Hydrogenases in the Sulfate-ReducingBacterium Desulfovibrio vulgaris Hildenborough

    SciTech Connect

    Caffrey, Sean M.; Park, Hyung-Soo; Voordouw, Johanna K.; He,Zhili; Zhou, Jizhong; Voordouw, Gerrit

    2007-09-24

    The sulfate-reducing bacterium Desulfovibrio vulgarisHildenborough possesses four periplasmic hydrogenases to facilitate theoxidation of molecular hydrogen. These include an [Fe]hydrogenase, an[NiFeSe]hydrogenase, and two [NiFe]hydrogenases encoded by the hyd,hys, hyn1, and hyn2 genes, respectively. In order to understand theircellular functions, we have compared the growth rates of existing (hydand hyn1) and newly constructed (hys and hyn-1 hyd) mutants to those ofthe wild type in defined media in which lactate or hydrogen at either 5or 50 percent (vol/vol) was used as the sole electron donor for sulfatereduction. Only strains missing the [Fe]hydrogenase were significantlyaffected during growth with lactate or with 50 percent (vol/vol) hydrogenas the sole electron donor. When the cells were grown at low (5 percent[vol/vol]) hydrogen concentrations, those missing the [NiFeSe]hydrogenase suffered the greatest impairment. The growth rate datacorrelated strongly with gene expression results obtained from microarrayhybridizations and real-time PCR using mRNA extracted from cells grownunder the three conditions. Expression of the hys genes followed theorder 5 percent hydrogen>50 percent hydrogen>lactate, whereasexpression of the hyd genes followed the reverse order. These resultssuggest that growth with lactate and 50 percent hydrogen is associatedwith high intracellular hydrogen concentrations, which are best capturedby the higher activity, lower affinity [Fe]hydrogenase. In contrast,growth with 5 percent hydrogen is associated with a low intracellularhydrogen concentration, requiring the lower activity, higher affinity[NiFeSe]hydrogenase.

  19. Functions of the Periplasmic Loop of the Porin MspA from Mycobacterium smegmatis*

    PubMed Central

    Huff, Jason; Pavlenok, Mikhail; Sukumaran, Suja; Niederweis, Michael

    2009-01-01

    MspA is the major porin of Mycobacterium smegmatis and mediates diffusion of small and hydrophilic solutes across the outer membrane. The octameric structure of MspA, its sharply defined constriction zone, and a large periplasmic loop L6 represent novel structural features. L6 consists of 13 amino acids and is directly adjacent to the constriction zone. Deletion of 3, 5, 7, 9, and 11 amino acids of the L6 loop resulted in functional pores that restored glucose uptake and growth of a porin mutant of M. smegmatis. Lipid bilayer experiments revealed that all mutant channels were noisier than wild type (wt) MspA, indicating that L6 is required for pore stability in vitro. Voltage gating of the Escherichia coli porin OmpF was attributed to loops that collapse into the channel in response to a strong electrical field. Here, we show that deletion mutants Δ7, Δ9, and Δ11 had critical voltages similar to wt MspA. This demonstrated that the L6 loop is not the primary voltage-dependent gating mechanism of MspA. Surprisingly, large deletions in L6 resulted in 3-6-fold less extractable pores, whereas small deletions did not alter expression levels of MspA. Pores with large deletions in L6 were more permissive for glucose than smaller deletion mutants, whereas their single channel conductance was similar to that of wt MspA. These results indicate that translocation of ions through the MspA pore is governed by different mechanisms than that of neutral solutes. This is the first study identifying a molecular determinant of solute translocation in a mycobacterial porin. PMID:19208627

  20. Characterization of a periplasmic quinoprotein from Sphingomonas wittichii that functions as aldehyde dehydrogenase.

    PubMed

    Zeiser, Jessica; Mühlenbeck, Larissa Helen; Schweiger, Paul; Deppenmeier, Uwe

    2014-03-01

    The α-proteobacterium Sphingomonas wittichii RW1 is known for its ability to degrade dioxins and related toxic substances. Bioinformatic analysis of the genome indicated that this organism may contain the largest number of pyrroloquinoline quinone-dependent dehydrogenases of any bacteria sequenced so far. Sequence analysis also showed that one of these genes (swit_4395) encodes an enzyme that belongs to the class of periplasmic glucose dehydrogenases. This gene was fused to a pelB signal sequence and a strep-tag coding region at the 5' and 3' ends, respectively. The fusion product was cloned into the broad-host range expression vector pBBR1p264-Streplong and the corresponding protein was heterologously produced in Escherichia coli, purified via Strep-Tactin affinity chromatography, and characterized. The protein Swit_4395 had a subunit mass of 39.3 kDa and formed active homooctamers and homododecamers. The enzyme showed the highest activities with short- and medium-chain aldehydes (chain length C1-C6) and ketoaldehydes, such as methylglyoxal and phenylglyoxal. Butyraldehyde was the best substrate, with V max and apparent K M values of 3,970 U/mg protein and 12.3 mM, respectively. Pyrroloquinoline quinone was detected using UV-Vis spectroscopy and was found to be a prosthetic group of the purified enzyme. Therefore, Swit_4395 was identified as a pyrroloquinoline quinone-dependent aldehyde dehydrogenase. The enzyme could be purified from the native host when the expression vector was introduced into S. wittichii RW1, indicating homologous protein production. Overproduction of Swit_4395 in S. wittichii RW1 dramatically increased the tolerance of the bacterium toward butyraldehyde and thus might contribute to the detoxification of toxic aldehydes. PMID:23828599

  1. Functions of the periplasmic loop of the porin MspA from Mycobacterium smegmatis.

    PubMed

    Huff, Jason; Pavlenok, Mikhail; Sukumaran, Suja; Niederweis, Michael

    2009-04-10

    MspA is the major porin of Mycobacterium smegmatis and mediates diffusion of small and hydrophilic solutes across the outer membrane. The octameric structure of MspA, its sharply defined constriction zone, and a large periplasmic loop L6 represent novel structural features. L6 consists of 13 amino acids and is directly adjacent to the constriction zone. Deletion of 3, 5, 7, 9, and 11 amino acids of the L6 loop resulted in functional pores that restored glucose uptake and growth of a porin mutant of M. smegmatis. Lipid bilayer experiments revealed that all mutant channels were noisier than wild type (wt) MspA, indicating that L6 is required for pore stability in vitro. Voltage gating of the Escherichia coli porin OmpF was attributed to loops that collapse into the channel in response to a strong electrical field. Here, we show that deletion mutants Delta7, Delta9, and Delta11 had critical voltages similar to wt MspA. This demonstrated that the L6 loop is not the primary voltage-dependent gating mechanism of MspA. Surprisingly, large deletions in L6 resulted in 3-6-fold less extractable pores, whereas small deletions did not alter expression levels of MspA. Pores with large deletions in L6 were more permissive for glucose than smaller deletion mutants, whereas their single channel conductance was similar to that of wt MspA. These results indicate that translocation of ions through the MspA pore is governed by different mechanisms than that of neutral solutes. This is the first study identifying a molecular determinant of solute translocation in a mycobacterial porin. PMID:19208627

  2. Visualization of Periplasmic and Cytoplasmic Proteins with a Self-Labeling Protein Tag

    PubMed Central

    Ke, Na; Landgraf, Dirk; Paulsson, Johan

    2016-01-01

    ABSTRACT The use of fluorescent and luminescent proteins in visualizing proteins has become a powerful tool in understanding molecular and cellular processes within living organisms. This success has resulted in an ever-increasing demand for new and more versatile protein-labeling tools that permit light-based detection of proteins within living cells. In this report, we present data supporting the use of the self-labeling HaloTag protein as a light-emitting reporter for protein fusions within the model prokaryote Escherichia coli. We show that functional protein fusions of the HaloTag can be detected both in vivo and in vitro when expressed within the cytoplasmic or periplasmic compartments of E. coli. The capacity to visually detect proteins localized in various prokaryotic compartments expands today's molecular biologist toolbox and paves the path to new applications. IMPORTANCE Visualizing proteins microscopically within living cells is important for understanding both the biology of cells and the role of proteins within living cells. Currently, the most common tool is green fluorescent protein (GFP). However, fluorescent proteins such as GFP have many limitations; therefore, the field of molecular biology is always in need of new tools to visualize proteins. In this paper, we demonstrate, for the first time, the use of HaloTag to visualize proteins in two different compartments within the model prokaryote Escherichia coli. The use of HaloTag as an additional tool to visualize proteins within prokaryotes increases our capacity to ask about and understand the role of proteins within living cells. PMID:26787765

  3. Catalytic mechanism and mode of action of the periplasmic alginate epimerase AlgG.

    PubMed

    Wolfram, Francis; Kitova, Elena N; Robinson, Howard; Walvoort, Marthe T C; Codée, Jeroen D C; Klassen, John S; Howell, P Lynne

    2014-02-28

    Pseudomonas aeruginosa is an opportunistic pathogen that forms chronic biofilm infections in the lungs of cystic fibrosis patients. A major component of the biofilm during these infections is the exopolysaccharide alginate, which is synthesized at the inner membrane as a homopolymer of 1-4-linked β-D-mannuronate. As the polymer passages through the periplasm, 22-44% of the mannuronate residues are converted to α-L-guluronate by the C5-epimerase AlgG to produce a polymer of alternating β-D-mannuronate and α-L-guluronate blocks and stretches of polymannuronate. To understand the molecular basis of alginate epimerization, the structure of Pseudomonas syringae AlgG has been determined at 2.1-Å resolution, and the protein was functionally characterized. The structure reveals that AlgG is a long right-handed parallel β-helix with an elaborate lid structure. Functional analysis of AlgG mutants suggests that His(319) acts as the catalytic base and that Arg(345) neutralizes the acidic group during the epimerase reaction. Water is the likely catalytic acid. Electrostatic surface potential and residue conservation analyses in conjunction with activity and substrate docking studies suggest that a conserved electropositive groove facilitates polymannuronate binding and contains at least nine substrate binding subsites. These subsites likely align the polymer in the correct register for catalysis to occur. The presence of multiple subsites, the electropositive groove, and the non-random distribution of guluronate in the alginate polymer suggest that AlgG is a processive enzyme. Moreover, comparison of AlgG and the extracellular alginate epimerase AlgE4 of Azotobacter vinelandii provides a structural rationale for the differences in their Ca(2+) dependence. PMID:24398681

  4. TupA: A Tungstate Binding Protein in the Periplasm of Desulfovibrio alaskensis G20

    PubMed Central

    Otrelo-Cardoso, Ana Rita; Nair, Rashmi R.; Correia, Márcia A. S.; Rivas, Maria G.; Santos-Silva, Teresa

    2014-01-01

    The TupABC system is involved in the cellular uptake of tungsten and belongs to the ABC (ATP binding cassette)-type transporter systems. The TupA component is a periplasmic protein that binds tungstate anions, which are then transported through the membrane by the TupB component using ATP hydrolysis as the energy source (the reaction catalyzed by the ModC component). We report the heterologous expression, purification, determination of affinity binding constants and crystallization of the Desulfovibrio alaskensis G20 TupA. The tupA gene (locus tag Dde_0234) was cloned in the pET46 Enterokinase/Ligation-Independent Cloning (LIC) expression vector, and the construct was used to transform BL21 (DE3) cells. TupA expression and purification were optimized to a final yield of 10 mg of soluble pure protein per liter of culture medium. Native polyacrylamide gel electrophoresis was carried out showing that TupA binds both tungstate and molybdate ions and has no significant interaction with sulfate, phosphate or perchlorate. Quantitative analysis of metal binding by isothermal titration calorimetry was in agreement with these results, but in addition, shows that TupA has higher affinity to tungstate than molybdate. The protein crystallizes in the presence of 30% (w/v) polyethylene glycol 3350 using the hanging-drop vapor diffusion method. The crystals diffract X-rays beyond 1.4 Å resolution and belong to the P21 space group, with cell parameters a = 52.25 Å, b = 42.50 Å, c = 54.71 Å, β = 95.43°. A molecular replacement solution was found, and the structure is currently under refinement. PMID:24992597

  5. Non-invasive Imaging of Staphylococcus aureus Infections with a Nuclease-Activated Probe

    PubMed Central

    Hernandez, Frank J.; Huang, Lingyan; Olson, Michael E.; Powers, Kristy M.; Hernandez, Luiza I.; Meyerholz, David K.; Thedens, Daniel R.; Behlke, Mark A.; Horswill, Alexander R.; McNamara, James O.

    2013-01-01

    Technologies that enable the rapid detection and localization of bacterial infections in living animals could address an unmet need for infectious disease diagnostics. We describe a molecular imaging approach for the specific, non-invasive detection of S. aureus based on the activity of its secreted nuclease, micrococcal nuclease (MN). Several short, synthetic oligonucleotides, rendered resistant to mammalian serum nucleases by various chemical modifications, flanked with a fluorophore and quencher, were activated upon degradation by recombinant MN and in S. aureus culture supernatants. A probe consisting of a pair of deoxythymidines flanked by several 2′-O-methyl-modified nucleotides was activated in culture supernatants of S. aureus but not in culture supernatants of several other pathogenic bacteria. Systemic administration of this probe to mice bearing bioluminescent S. aureus muscle infections resulted in probe activation at the infection sites in an MN-dependent manner. This novel bacterial imaging approach has potential clinical applicability for S. aureus and several other medically significant pathogens. PMID:24487433

  6. Digital PCR to assess gene-editing frequencies (GEF-dPCR) mediated by designer nucleases.

    PubMed

    Mock, Ulrike; Hauber, Ilona; Fehse, Boris

    2016-03-01

    Genome editing using designer nucleases such as transcription activator-like effector nucleases (TALENs) or clustered regularly interspersed short palindromic repeats (CRISPR)-Cas9 nucleases is an emerging technology in basic and applied research. Whereas the application of editing tools, namely CRISPR-Cas9, has recently become very straightforward, quantification of resulting gene knockout rates still remains a bottleneck. This is particularly true if the product of a targeted gene is not easily detectable. To address this problem, we devised a novel gene-editing frequency digital PCR (GEF-dPCR) technique. GEF-dPCR exploits two differently labeled probes that are placed within one amplicon at the gene-editing target site to simultaneously detect wild-type and nonhomologous end-joining (NHEJ)-affected alleles. Taking advantage of the principle of dPCR, this enables concurrent quantification of edited and wild-type alleles in a given sample. We propose that our method is optimal for the monitoring of gene-edited cells in vivo, e.g., in clinical settings. Here we describe preparation, design of primers and probes, and setup and analysis of GEF-dPCR. The setup of GEF-dPCR requires up to 2 weeks (depending on the starting point); once the dPCR has been established, the protocol for sample analysis takes <1 d. PMID:26914317

  7. Recent developments and clinical studies utilizing engineered zinc finger nuclease technology.

    PubMed

    Jo, Young-Il; Kim, Hyongbum; Ramakrishna, Suresh

    2015-10-01

    Efficient methods for creating targeted genetic modifications have long been sought for the investigation of gene function and the development of therapeutic modalities for various diseases, including genetic disorders. Although such modifications are possible using homologous recombination, the efficiency is extremely low. Zinc finger nucleases (ZFNs) are custom-designed artificial nucleases that make double-strand breaks at specific sequences, enabling efficient targeted genetic modifications such as corrections, additions, gene knockouts and structural variations. ZFNs are composed of two domains: (i) a DNA-binding domain comprised of zinc finger modules and (ii) the FokI nuclease domain that cleaves the DNA strand. Over 17 years after ZFNs were initially developed, a number of improvements have been made. Here, we will review the developments and future perspectives of ZFN technology. For example, ZFN activity and specificity have been significantly enhanced by modifying the DNA-binding domain and FokI cleavage domain. Advances in culture methods, such as the application of a cold shock and the use of small molecules that affect ZFN stability, have also increased ZFN activity. Furthermore, ZFN-induced mutant cells can be enriched using episomal surrogate reporters. Additionally, we discuss several ongoing clinical studies that are based on ZFN-mediated genome editing in humans. These breakthroughs have substantially facilitated the use of ZFNs in research, medicine and biotechnology. PMID:26089249

  8. Detection of single-nucleotide polymorphisms using gold nanoparticles and single-strand-specific nucleases.

    PubMed

    Chen, Yen-Ting; Hsu, Chiao-Ling; Hou, Shao-Yi

    2008-04-15

    The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly. PMID:18211817

  9. The High Dielectric Constant of Staphylococcal Nuclease is Encoded in its Structural Architecture

    PubMed Central

    Goh, Garrett B.; Bertrand, García-Moreno E.; Brooks, Charles L.

    2011-01-01

    The pKa values of Lys-66, Glu-66 and Asp-66 buried in the interior of the staphylococcal nuclease Δ+PHS variant were reported to be shifted by as much as 5 pKa units from their normal values. Reproducing the pKa of these buried ionizable residues using continuum electrostatic calculations required the use of a high protein dielectric constant of 10 or higher. The apparent high dielectric constant has been rationalized as a consequence of a local structural reorganization or increased fluctuations in the microenvironment of the mutation site We have calculated the dielectric constant of Δ+PHS and the Lys-66, Asp-66 and Glu-66 mutants from first principles using the Kirkwood-Fröhlich equation, and discovered that staphylococcal nuclease has a naturally high dielectric constant ranging from 20 to 30. This high dielectric constant does not change significantly with the mutation of residue 66 or with the ionization of the mutated residues. Calculation of the spatial dependence of the dielectric constant for the microenvironment of residue-66 produces a value of about 10, which matches well with the apparent dielectric constant needed to reproduce pKa values from continuum electrostatic calculations. Our results suggest an alternative explanation that the high dielectric constant of staphylococcal nuclease is a property resulting from the intrinsic backbone fluctuations originating from its structural architecture. PMID:22085022

  10. Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases.

    PubMed

    Butler, Nathaniel M; Baltes, Nicholas J; Voytas, Daniel F; Douches, David S

    2016-01-01

    Genome editing using sequence-specific nucleases (SSNs) is rapidly being developed for genetic engineering in crop species. The utilization of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems (CRISPR/Cas) for inducing double-strand breaks facilitates targeting of virtually any sequence for modification. Targeted mutagenesis via non-homologous end-joining (NHEJ) has been demonstrated extensively as being the preferred DNA repair pathway in plants. However, gene targeting via homologous recombination (HR) remains more elusive but could be a powerful tool for directed DNA repair. To overcome barriers associated with gene targeting, a geminivirus replicon (GVR) was used to deliver SSNs targeting the potato ACETOLACTATE SYNTHASE1 (ALS1) gene and repair templates designed to incorporate herbicide-inhibiting point mutations within the ALS1 locus. Transformed events modified with GVRs held point mutations that were capable of supporting a reduced herbicide susceptibility phenotype, while events transformed with conventional T-DNAs held no detectable mutations and were similar to wild-type. Regeneration of transformed events improved detection of point mutations that supported a stronger reduced herbicide susceptibility phenotype. These results demonstrate the use of geminiviruses for delivering genome editing reagents in plant species, and a novel approach to gene targeting in a vegetatively propagated species. PMID:27493650

  11. Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases

    PubMed Central

    Butler, Nathaniel M.; Baltes, Nicholas J.; Voytas, Daniel F.; Douches, David S.

    2016-01-01

    Genome editing using sequence-specific nucleases (SSNs) is rapidly being developed for genetic engineering in crop species. The utilization of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems (CRISPR/Cas) for inducing double-strand breaks facilitates targeting of virtually any sequence for modification. Targeted mutagenesis via non-homologous end-joining (NHEJ) has been demonstrated extensively as being the preferred DNA repair pathway in plants. However, gene targeting via homologous recombination (HR) remains more elusive but could be a powerful tool for directed DNA repair. To overcome barriers associated with gene targeting, a geminivirus replicon (GVR) was used to deliver SSNs targeting the potato ACETOLACTATE SYNTHASE1 (ALS1) gene and repair templates designed to incorporate herbicide-inhibiting point mutations within the ALS1 locus. Transformed events modified with GVRs held point mutations that were capable of supporting a reduced herbicide susceptibility phenotype, while events transformed with conventional T-DNAs held no detectable mutations and were similar to wild-type. Regeneration of transformed events improved detection of point mutations that supported a stronger reduced herbicide susceptibility phenotype. These results demonstrate the use of geminiviruses for delivering genome editing reagents in plant species, and a novel approach to gene targeting in a vegetatively propagated species. PMID:27493650

  12. The dimer formed by the periplasmic domain of EpsL from the Type 2 Secretion System of Vibrio parahaemolyticus

    PubMed Central

    Abendroth, Jan; Kreger, Allison C.; Hol, Wim G. J.

    2010-01-01

    The Type 2 Secretion System (T2SS), occurring in many Gram-negative bacteria, is responsible for the transport of a diversity of proteins from the periplasm across the outer membrane into the extracellular space. In Vibrio cholerae, the T2SS secretes several unrelated proteins including the major virulence factor cholera toxin. The T2SS consists of three subassemblies, one of which is the Inner Membrane Complex which contains multiple copies of five proteins, including the bitopic membrane protein EpsL. Here we report the 2.3 Å resolution crystal structure of the periplasmic domain of EpsL (peri-EpsL) from V. parahaemolyticus, which is 56 % identical in sequence to its homolog in V. cholerae. The domain adopts a circular permutation of the “common” ferredoxin fold with two contiguous sub-domains. Remarkably, this permutation has so far only been observed once before: in the periplasmic domain of EpsM (peri-EpsM), another T2SS protein which interacts with EpsL. These two domains are 18 % identical in sequence which may indicate a common evolutionary origin. Both peri-EpsL and peri-EpsM form dimers, but the organization of the subunits in these dimers appears to be entirely different. We have previously shown that the cytoplasmic domain of EpsL is also dimeric and forms a heterotetramer with the first domain of the “secretion ATPase” EpsE. The latter enzyme is most likely hexameric. The possible consequences of the combination of the different symmetries of EpsE and EpsL for the architecture of the T2SS are discussed. PMID:19646531

  13. A direct screen for c-di-GMP modulators reveals a Salmonella Typhimurium periplasmic ʟ-arginine-sensing pathway.

    PubMed

    Mills, Erez; Petersen, Erik; Kulasekara, Bridget R; Miller, Samuel I

    2015-06-01

    Cyclic-di-GMP (c-di-GMP) is a bacterial second messenger that transduces internal and external signals and regulates bacterial motility and biofilm formation. Some organisms encode more than 100 c-di-GMP-modulating enzymes, but only for a few has a signal been defined that modulates their activity. We developed and applied a high-throughput, real-time flow cytometry method that uses a fluorescence resonance energy transfer (FRET)-based biosensor of free c-di-GMP to screen for signals that modulate its concentration within Salmonella Typhimurium. We identified multiple compounds, including glucose, N-acetyl-d-glucosamine, salicylic acid, and ʟ-arginine, that modulated the FRET signal and therefore the free c-di-GMP concentration. By screening a library of mutants, we identified proteins required for the c-di-GMP response to each compound. Furthermore, low micromolar concentrations of ʟ-arginine induced a rapid translation-independent increase in c-di-GMP concentrations and c-di-GMP-dependent cellulose synthesis, responses that required the regulatory periplasmic domain of the diguanylate cyclase STM1987. ʟ-Arginine signaling also required the periplasmic putative ʟ-arginine-binding protein ArtI, implying that ʟ-arginine sensing occurred in the periplasm. Among the 20 commonly used amino acids, S. Typhimurium specifically responded to ʟ-arginine with an increase in c-di-GMP, suggesting that ʟ-arginine may serve as a signal during S. Typhimurium infection. Our results demonstrate that a second-messenger biosensor can be used to identify environmental signals and define pathways that alter microbial behavior. PMID:26060330

  14. Compensatory periplasmic nitrate reductase activity supports anaerobic growth of Pseudomonas aeruginosa PAO1 in the absence of membrane nitrate reductase.

    PubMed

    Van Alst, Nadine E; Sherrill, Lani A; Iglewski, Barbara H; Haidaris, Constantine G

    2009-10-01

    Nitrate serves as a terminal electron acceptor under anaerobic conditions in Pseudomonas aeruginosa. Reduction of nitrate to nitrite generates a transmembrane proton motive force allowing ATP synthesis and anaerobic growth. The inner membrane-bound nitrate reductase NarGHI is encoded within the narK1K2GHJI operon, and the periplasmic nitrate reductase NapAB is encoded within the napEFDABC operon. The roles of the 2 dissimilatory nitrate reductases in anaerobic growth, and the regulation of their expressions, were examined by use of a set of deletion mutants in P. aeruginosa PAO1. NarGHI mutants were unable to grow anaerobically, but plate cultures remained viable up to 120 h. In contrast, the nitrate sensor-response regulator mutant DeltanarXL displayed growth arrest initially, but resumed growth after 72 h and reached the early stationary phase in liquid culture after 120 h. Genetic, transcriptional, and biochemical studies demonstrated that anaerobic growth recovery by the NarXL mutant was the result of NapAB periplasmic nitrate reductase expression. A novel transcriptional start site for napEFDABC expression was identified in the NarXL mutant grown anaerobically. Furthermore, mutagenesis of a consensus NarL-binding site monomer upstream of the novel transcriptional start site restored anaerobic growth recovery in the NarXL mutant. The data suggest that during anaerobic growth of wild-type P. aeruginosa PAO1, the nitrate response regulator NarL directly represses expression of periplasmic nitrate reductase, while inducing maximal expression of membrane nitrate reductase. PMID:19935885

  15. Enhancement of antibody fragment secretion into the Escherichia coli periplasm by co-expression with the peptidyl prolyl isomerase, FkpA, in the cytoplasm.

    PubMed

    Levy, Raphael; Ahluwalia, Kiran; Bohmann, David J; Giang, Hoa M; Schwimmer, Lauren J; Issafras, Hassan; Reddy, Nithin B; Chan, Chung; Horwitz, Arnold H; Takeuchi, Toshihiko

    2013-08-30

    Improper protein folding or aggregation can frequently be responsible for low expression and poor functional activity of antibody fragments secreted into the Escherichia coli periplasm. Expression issues also can affect selection of antibody candidates from phage libraries, since antibody fragments displayed on phage also are secreted into the E. coli periplasm. To improve secretion of properly folded antibody fragments into the periplasm, we have developed a novel approach that involves co-expressing the antibody fragments with the peptidyl prolyl cis-trans isomerase, FkpA, lacking its signal sequence (cytFkpA) which consequently is expressed in the E. coli cytosol. Cytoplasmic expression of cytFkpA improved secretion of functional Fab fragments into the periplasm, exceeding even the benefits from co-expressing Fab fragments with native, FkpA localized in the periplasm. In addition, panning and subsequent screening of large Fab and scFv naïve phage libraries in the presence of cytFkpA significantly increased the number of unique clones selected, as well as their functional expression levels and diversity. PMID:23624043

  16. Dynamic interplay between the periplasmic and transmembrane domains of GspL and GspM in the type II secretion system.

    PubMed

    Lallemand, Mathilde; Login, Frédéric H; Guschinskaya, Natalia; Pineau, Camille; Effantin, Géraldine; Robert, Xavier; Shevchik, Vladimir E

    2013-01-01

    The type II secretion system (T2SS) is a multiprotein nanomachine that transports folded proteins across the outer membrane of gram-negative bacteria. The molecular mechanisms that govern the secretion process remain poorly understood. The inner membrane components GspC, GspL and GspM possess a single transmembrane segment (TMS) and a large periplasmic region and they are thought to form a platform of unknown function. Here, using two-hybrid and pull-down assays we performed a systematic mapping of the GspC/GspL/GspM interaction regions in the plant pathogen Dickeya dadantii. We found that the TMS of these components interact with each other, implying a complex interaction network within the inner membrane. We also showed that the periplasmic, ferredoxin-like, domains of GspL and GspM drive homo- and heterodimerizations of these proteins. Disulfide bonding analyses revealed that the respective domain interfaces include the equivalent secondary-structure elements, suggesting alternating interactions of the periplasmic domains, L/L and M/M versus L/M. Finally, we found that displacements of the periplasmic GspM domain mediate coordinated shifts or rotations of the cognate TMS. These data suggest a plausible mechanism for signal transmission between the periplasmic and the cytoplasmic portions of the T2SS machine. PMID:24223969

  17. The emerging periplasm-localized subclass of AroQ chorismate mutases, exemplified by those from Salmonella typhimurium and Pseudomonas aeruginosa

    PubMed Central

    Calhoun, David H; Bonner, Carol A; Gu, Wei; Xie, Gary; Jensen, Roy A

    2001-01-01

    Background Chorismate mutases of the AroQ homology class are widespread in the Bacteria and the Archaea. Many of these exist as domains that are fused with other aromatic-pathway catalytic domains. Among the monofunctional AroQ proteins, that from Erwinia herbicola was previously shown to have a cleavable signal peptide and located in the periplasmic compartment. Whether or not this might be unique to E. herbicola was unknown. Results The gene coding for the AroQ protein was cloned from Salmonella typhimurium, and the AroQ protein purified from both S. typhimurium and Pseudomonas aeruginosa was shown to have a periplasmic location. The periplasmic chorismate mutases (denoted *AroQ) are shown to be a distinct subclass of AroQ, being about twice the size of cytoplasmic AroQ proteins. The increased size is due to a carboxy-terminal extension of unknown function. In addition, a so-far novel aromatic aminotransferase was shown to be present in the periplasm of P. aeruginosa. Conclusions Our analysis has detected a number of additional *aroQ genes. The joint presence of *AroQ, cyclohexadienyl dehydratase and aromatic aminotransferase in the periplasmic compartment of P. aeruginosa comprises a complete chorismate-to-phenylalanine pathway and accounts for the "hidden overflow pathway" to phenylalanine described previously. PMID:11532214

  18. Dynamic Interplay between the Periplasmic and Transmembrane Domains of GspL and GspM in the Type II Secretion System

    PubMed Central

    Guschinskaya, Natalia; Pineau, Camille; Effantin, Géraldine; Robert, Xavier; Shevchik, Vladimir E.

    2013-01-01

    The type II secretion system (T2SS) is a multiprotein nanomachine that transports folded proteins across the outer membrane of gram-negative bacteria. The molecular mechanisms that govern the secretion process remain poorly understood. The inner membrane components GspC, GspL and GspM possess a single transmembrane segment (TMS) and a large periplasmic region and they are thought to form a platform of unknown function. Here, using two-hybrid and pull-down assays we performed a systematic mapping of the GspC/GspL/GspM interaction regions in the plant pathogen Dickeya dadantii. We found that the TMS of these components interact with each other, implying a complex interaction network within the inner membrane. We also showed that the periplasmic, ferredoxin-like, domains of GspL and GspM drive homo- and heterodimerizations of these proteins. Disulfide bonding analyses revealed that the respective domain interfaces include the equivalent secondary-structure elements, suggesting alternating interactions of the periplasmic domains, L/L and M/M versus L/M. Finally, we found that displacements of the periplasmic GspM domain mediate coordinated shifts or rotations of the cognate TMS. These data suggest a plausible mechanism for signal transmission between the periplasmic and the cytoplasmic portions of the T2SS machine. PMID:24223969

  19. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase

    SciTech Connect

    Melnyk, Ryan A.; Youngblut, Matthew D.; Clark, Iain C.; Carlson, Hans K.; Wetmore, Kelly M.; Price, Morgan N.; Lavarone, Anthony T.; Deutschbauer, Adam M.; Arkin, Adam P.; Coates, John D.

    2015-05-12

    Reactive chlorine species (RCS) defense mechanisms are important for bacterial fitness in diverse environments. In addition to the anthropogenic use of RCS in the form of bleach, these compounds are also produced naturally through photochemical reactions of natural organic matter and in vivo by the mammalian immune system in response to invading microorganisms. To gain insight into bacterial RCS defense mechanisms, we investigated Azospira suillum strain PS, which produces periplasmic RCS as an intermediate of perchlorate respiration. Our studies identified an RCS response involving an RCS stress-sensing sigma/anti-sigma factor system (SigF/NrsF), a soluble hypochlorite-scavenging methionine-rich periplasmic protein (MrpX), and a putative periplasmic methionine sulfoxide reductase (YedY1). We investigated the underlying mechanism by phenotypic characterization of appropriate gene deletions, chemogenomic profiling of barcoded transposon pools, transcriptome sequencing, and biochemical assessment of methionine oxidation. Our results demonstrated that SigF was specifically activated by RCS and initiated the transcription of a small regulon centering around yedY1 and mrpX. A yedY1 paralog (yedY2) was found to have a similar fitness to yedY1 despite not being regulated by SigF. Markerless deletions of yedY2 confirmed its synergy with the SigF regulon. MrpX was strongly induced and rapidly oxidized by RCS, especially hypochlorite. Our results suggest a mechanism involving hypochlorite scavenging by sacrificial oxidation of the MrpX in the periplasm. Reduced MrpX is regenerated by the YedY methionine sulfoxide reductase activity. The phylogenomic distribution of this system revealed conservation in several Proteobacteria of clinical importance, including uropathogenic Escherichia coli and Brucella spp., implying a putative role in immune response evasion in vivo. In addition, bacteria are often

  20. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase

    DOE PAGESBeta

    Melnyk, Ryan A.; Youngblut, Matthew D.; Clark, Iain C.; Carlson, Hans K.; Wetmore, Kelly M.; Price, Morgan N.; Lavarone, Anthony T.; Deutschbauer, Adam M.; Arkin, Adam P.; Coates, John D.

    2015-05-12

    Reactive chlorine species (RCS) defense mechanisms are important for bacterial fitness in diverse environments. In addition to the anthropogenic use of RCS in the form of bleach, these compounds are also produced naturally through photochemical reactions of natural organic matter and in vivo by the mammalian immune system in response to invading microorganisms. To gain insight into bacterial RCS defense mechanisms, we investigated Azospira suillum strain PS, which produces periplasmic RCS as an intermediate of perchlorate respiration. Our studies identified an RCS response involving an RCS stress-sensing sigma/anti-sigma factor system (SigF/NrsF), a soluble hypochlorite-scavenging methionine-rich periplasmic protein (MrpX), and amore » putative periplasmic methionine sulfoxide reductase (YedY1). We investigated the underlying mechanism by phenotypic characterization of appropriate gene deletions, chemogenomic profiling of barcoded transposon pools, transcriptome sequencing, and biochemical assessment of methionine oxidation. Our results demonstrated that SigF was specifically activated by RCS and initiated the transcription of a small regulon centering around yedY1 and mrpX. A yedY1 paralog (yedY2) was found to have a similar fitness to yedY1 despite not being regulated by SigF. Markerless deletions of yedY2 confirmed its synergy with the SigF regulon. MrpX was strongly induced and rapidly oxidized by RCS, especially hypochlorite. Our results suggest a mechanism involving hypochlorite scavenging by sacrificial oxidation of the MrpX in the periplasm. Reduced MrpX is regenerated by the YedY methionine sulfoxide reductase activity. The phylogenomic distribution of this system revealed conservation in several Proteobacteria of clinical importance, including uropathogenic Escherichia coli and Brucella spp., implying a putative role in immune response evasion in vivo. In addition, bacteria are often stressed in the environment by reactive chlorine species (RCS) of

  1. Repellents for Escherichia coli operate neither by changing membrane fluidity nor by being sensed by periplasmic receptors during chemotaxis.

    PubMed Central

    Eisenbach, M; Constantinou, C; Aloni, H; Shinitzky, M

    1990-01-01

    A long-standing question in bacterial chemotaxis is whether repellents are sensed by receptors or whether they change a general membrane property such as the membrane fluidity and this change, in turn, is sensed by the chemotaxis system. This study addressed this question. The effects of common repellents on the membrane fluidity of Escherichia coli were measured by the fluorescence polarization of the probe 1,6-diphenyl-1,3,5-hexatriene in liposomes made of lipids extracted from the bacteria and in membrane vesicles. Glycerol, indole, and L-leucine had no significant effect on the membrane fluidity. NiSO4 decreased the membrane fluidity but only at concentrations much higher than those which elicit a repellent response in intact bacteria. This indicated that these repellents are not sensed by modulating the membrane fluidity. Aliphatic alcohols, on the other hand, fluidized the membrane, but the concentrations that elicited a repellent response were not equally effective in fluidizing the membrane. The response of intact bacteria to alcohols was monitored in various chemotaxis mutants and found to be missing in mutants lacking all the four methyl-accepting chemotaxis proteins (MCPs) or the cytoplasmic che gene products. The presence of any single MCP was sufficient for the expression of a repellent response. It is concluded (i) that the repellent response to aliphatic alcohols can be mediated by any MCP and (ii) that although an increase in membrane fluidity may take part in a repellent response, it is not the only mechanism by which aliphatic alcohols, or at least some of them, are effective as repellents. To determine whether any of the E. coli repellents are sensed by periplasmic receptors, the effects of repellents from various classes on periplasm-void cells were examined. The responses to all the repellents tested (sodium benzoate, indole, L-leucine, and NiSO4) were retained in these cells. In a control experiment, the response of the attractant maltose

  2. Molecular genetic analysis of a class B periplasmic-flagellum gene of Treponema phagedenis.

    PubMed Central

    Limberger, R J; Slivienski, L L; Yelton, D B; Charon, N W

    1992-01-01

    Treponema phagedenis is a host-associated spirochete with multiple polypeptides making up its periplasmic flagella (PFs). Each PF has a 39-kDa polypeptide making up the sheath (class A PF polypeptide) and two to four antigenically similar 33- to 34-kDa polypeptide species making up the core (class B PF polypeptides). A genetic analysis of the PF-deficient mutants T-40 and T-55 has shown that the PFs are involved in motility. To better understand the synthesis and assembly of these complex organelles and to compare the PF genes with those of other spirochetes, we cloned and characterized the T. phagedenis flaB2 gene, which encodes one class B polypeptide. The flaB2 gene consists of an open reading frame of 858 nucleotides capable of encoding a protein of 31.5 kDa. The predicted amino acid sequence of the FlaB2 polypeptide was 92% identical to that of T. pallidum FlaB2, with a 76% identity at the nucleotide level. These results confirm previous immunological and N-terminal-sequence analyses which suggested that the PF genes are well conserved in the spirochetes. Primer extension analysis of T. phagedenis flaB2 indicated that the start site of transcription was 127 nucleotides upstream from the ATG initiation codon. Preceding the start site is a DNA sequence similar to the sigma 28 consensus promoter sequence commonly found associated with motility genes. Northern (RNA) blots probed with a segment of flaB2 DNA revealed a 1,000-nucleotide monocistronic transcript in the wild type and in PF-deficient mutants T-40 and T-55. DNA sequencing of most of the flaB2 gene of the mutants revealed no differences from the wild-type gene. Because the mutants fail to synthesize detectable class B PF polypeptides yet synthesize extensive amounts of flaB2 mRNA, PF synthesis in T. phagedenis is likely to involve regulation at the translational level. Images PMID:1400192

  3. 32P-postlabeling detection of thymine glycols: evaluation of adduct recoveries after enhancement with affinity chromatography, nuclease P1, nuclease S1, and polynucleotide kinase.

    PubMed

    Reddy, M V; Bleicher, W T; Blackburn, G R

    1991-04-01

    Thymine glycol (Tg) is a product of DNA damage by oxygen radicals generated by oxidative mutagens and carcinogens and ionizing radiation. The highly sensitive 32P-postlabeling assay was validated and optimized for the measurement of Tg generated in vitro by the reaction of dTp or calf thymus DNA with osmium tetroxide (OsO4). Adduct detection was enhanced by purification of Tg adducts using phenylboronate affinity chromatography or by preferential dephosphorylation of unmodified 3'-nucleotides with nuclease P1, nuclease S1, or polynucleotide kinase; Tg nucleotides were found to be resistant to limited enzymatic 3'-dephosphorylation. Two adducts were seen with OsO4-modified dTp, which may have been cis-Tg adducts, because they were retained on a phenylboronate column, and because OsO4 selectively forms cis-Tg adducts. With OsO4-modified DNA, several adducts were detected, two major derivatives of which coincided chromatographically with those seen in OsO4-modified dTp. The recoveries of major adducts were similar before and after enrichment by different methods, indicating that Tg adducts were resistant to enzymatic dephosphorylation. The efficacy of labeling of the two major Tg adducts by polynucleotide kinase was optimal at 60 microM ATP and higher, whereas it was about 3%, 50%, and 80% of the optimal rate at 2, 10, and 30 microM, respectively. This was in contrast to our previous finding that only 0.25 microM ATP was needed for optimal labeling of benzoquinone-DNA adducts.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2025496

  4. sup 32 P-postlabeling detection of thymine glycols: evaluation of adduct recoveries after enhancement with affinity chromatography, nuclease P1, nuclease S1, and polynucleotide kinase

    SciTech Connect

    Reddy, M.V.; Bleicher, W.T.; Blackburn, G.R. )

    1991-04-01

    Thymine glycol (Tg) is a product of DNA damage by oxygen radicals generated by oxidative mutagens and carcinogens and ionizing radiation. The highly sensitive {sup 32}P-postlabeling assay was validated and optimized for the measurement of Tg generated in vitro by the reaction of dTp or calf thymus DNA with osmium tetroxide (OsO{sub 4}). Adduct detection was enhanced by purification of Tg adducts using phenylboronate affinity chromatography or by preferential dephosphorylation of unmodified 3'-nucleotides with nuclease P1, nuclease S1, or polynucleotide kinase; Tg nucleotides were found to be resistant to limited enzymatic 3'-dephosphorylation. Two adducts were seen with OsO{sub 4}-modified dTp, which may have been cis-Tg adducts, because they were retained on a phenylboronate column, and because OsO{sub 4} selectively forms cis-Tg adducts. With OsO{sub 4}-modified DNA, several adducts were detected, two major derivatives of which coincided chromatographically with those seen in OsO{sub 4}-modified dTp. The recoveries of major adducts were similar before and after enrichment by different methods, indicating that Tg adducts were resistant to enzymatic dephosphorylation. The efficacy of labeling of the two major Tg adducts by polynucleotide kinase was optimal at 60 microM ATP and higher, whereas it was about 3%, 50%, and 80% of the optimal rate at 2, 10, and 30 microM, respectively. This was in contrast to our previous finding that only 0.25 microM ATP was needed for optimal labeling of benzoquinone-DNA adducts.

  5. Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells

    PubMed Central

    Morton, Jason; Davis, M. Wayne; Jorgensen, Erik M.; Carroll, Dana

    2006-01-01

    Zinc-finger nucleases are chimeric proteins consisting of engineered zinc-finger DNA-binding motifs attached to an endonuclease domain. These proteins can induce site-specific DNA double-strand breaks in genomic DNA, which are then substrates for cellular repair mechanisms. Here, we demonstrate that engineered zinc-finger nucleases function effectively in somatic cells of the nematode Caenorhabditis elegans. Although gene-conversion events were indistinguishable from uncut DNA in our assay, nonhomologous end joining resulted in mutations at the target site. A synthetic target on an extrachromosomal array was targeted with a previously characterized nuclease, and an endogenous genomic sequence was targeted with a pair of specifically designed nucleases. In both cases, ≈20% of the target sites were mutated after induction of the corresponding nucleases. Alterations in the extrachromosomal targets were largely products of end-filling and blunt ligation. By contrast, alterations in the chromosomal target were mostly deletions. We interpret these differences to reflect the abundance of homologous templates present in the extrachromosomal arrays versus the paucity of such templates for repair of chromosomal breaks. In addition, we find evidence for the involvement of error-prone DNA synthesis in both homologous and nonhomologous pathways of repair. DNA ligase IV is required for efficient end joining, particularly of blunt ends. In its absence, a secondary end-joining pathway relies more heavily on microhomologies in producing deletions. PMID:17060623

  6. Multi-reporter selection for the design of active and more specific zinc-finger nucleases for genome editing

    PubMed Central

    Oakes, Benjamin L.; Xia, Danny F.; Rowland, Elizabeth F.; Xu, Denise J.; Ankoudinova, Irina; Borchardt, Jennifer S.; Zhang, Lei; Li, Patrick; Miller, Jeffrey C.; Rebar, Edward J.; Noyes, Marcus B.

    2016-01-01

    Engineered nucleases have transformed biological research and offer great therapeutic potential by enabling the straightforward modification of desired genomic sequences. While many nuclease platforms have proven functional, all can produce unanticipated off-target lesions and have difficulty discriminating between homologous sequences, limiting their therapeutic application. Here we describe a multi-reporter selection system that allows the screening of large protein libraries to uncover variants able to discriminate between sequences with substantial homology. We have used this system to identify zinc-finger nucleases that exhibit high cleavage activity (up to 60% indels) at their targets within the CCR5 and HBB genes and strong discrimination against homologous sequences within CCR2 and HBD. An unbiased screen for off-target lesions using a novel set of CCR5-targeting nucleases confirms negligible CCR2 activity and demonstrates minimal off-target activity genome wide. This system offers a straightforward approach to generate nucleases that discriminate between similar targets and provide exceptional genome-wide specificity. PMID:26738816

  7. Multi-reporter selection for the design of active and more specific zinc-finger nucleases for genome editing.

    PubMed

    Oakes, Benjamin L; Xia, Danny F; Rowland, Elizabeth F; Xu, Denise J; Ankoudinova, Irina; Borchardt, Jennifer S; Zhang, Lei; Li, Patrick; Miller, Jeffrey C; Rebar, Edward J; Noyes, Marcus B

    2016-01-01

    Engineered nucleases have transformed biological research and offer great therapeutic potential by enabling the straightforward modification of desired genomic sequences. While many nuclease platforms have proven functional, all can produce unanticipated off-target lesions and have difficulty discriminating between homologous sequences, limiting their therapeutic application. Here we describe a multi-reporter selection system that allows the screening of large protein libraries to uncover variants able to discriminate between sequences with substantial homology. We have used this system to identify zinc-finger nucleases that exhibit high cleavage activity (up to 60% indels) at their targets within the CCR5 and HBB genes and strong discrimination against homologous sequences within CCR2 and HBD. An unbiased screen for off-target lesions using a novel set of CCR5-targeting nucleases confirms negligible CCR2 activity and demonstrates minimal off-target activity genome wide. This system offers a straightforward approach to generate nucleases that discriminate between similar targets and provide exceptional genome-wide specificity. PMID:26738816

  8. The Structure and Interactions of Periplasmic Domains of Crucial MmpL Membrane Proteins from Mycobacterium tuberculosis.

    PubMed

    Chim, Nicholas; Torres, Rodrigo; Liu, Yuqi; Capri, Joe; Batot, Gaëlle; Whitelegge, Julian P; Goulding, Celia W

    2015-08-20

    Mycobacterium tuberculosis mycobacterial membrane protein large (MmpL) proteins are important in substrate transport across the inner membrane. Here, we show that MmpL proteins are classified into two phylogenetic clusters, where MmpL cluster II contains three soluble domains (D1, D2, and D3) and has two full-length members, MmpL3 and MmpL11. Significantly, MmpL3 is currently the most druggable M. tuberculosis target. We have solved the 2.4-Å MmpL11-D2 crystal structure, revealing structural homology to periplasmic porter subdomains of RND (multidrug) transporters. The resulting predicted cluster II MmpL membrane topology has D1 and D2 residing, and possibly interacting, within the periplasm. Crosslinking and biolayer interferometry experiments confirm that cluster II D1 and D2 bind with weak affinities, and guided D1-D2 heterodimeric model assemblies. The predicted full-length MmpL3 and MmpL11 structural models reveal key substrate binding and transport residues, and may serve as templates to set the stage for in silico anti-tuberculosis drug development. PMID:26278184

  9. Treponema pallidum Lipoprotein TP0435 Expressed in Borrelia burgdorferi Produces Multiple Surface/Periplasmic Isoforms and mediates Adherence

    PubMed Central

    Chan, Kamfai; Nasereddin, Thayer; Alter, Laura; Centurion-Lara, Arturo; Giacani, Lorenzo; Parveen, Nikhat

    2016-01-01

    The ability of Treponema pallidum, the syphilis spirochete to colonize various tissues requires the presence of surface-exposed adhesins that have been difficult to identify due to the inability to culture and genetically manipulate T. pallidum. Using a Borrelia burgdorferi-based heterologous system and gain-in-function approach, we show for the first time that a highly immunogenic lipoprotein TP0435 can be differentially processed into multiple isoforms with one variant stochastically displayed on the spirochete surface. TP0435 was previously believed to be exclusively located in T. pallidum periplasm. Furthermore, non-adherent B. burgdorferi strain expressing TP0435 acquires the ability to bind to a variety of host cells including placental cells and exhibits slow opsonophagocytosis in vitro similar to poor ex vivo phagocytosis of T. pallidum by host macrophages reported previously. This phenomenon of production of both surface and periplasmic immunogenic lipoprotein isoforms has possible implications in immune evasion of the obligate pathogen T. pallidum during infection. PMID:27161310

  10. Involvement of a periplasmic protein kinase in DNA strand break repair and homologous recombination in Escherichia coli.

    PubMed

    Khairnar, Nivedita P; Kamble, Vidya A; Mangoli, Suhas H; Apte, Shree K; Misra, Hari S

    2007-07-01

    The involvement of signal transduction in the repair of radiation-induced damage to DNA has been known in eukaryotes but remains understudied in bacteria. This article for the first time demonstrates a role for the periplasmic lipoprotein (YfgL) with protein kinase activity transducing a signal for DNA strand break repair in Escherichia coli. Purified YfgL protein showed physical as well as functional interaction with pyrroloquinoline-quinone in solution and the protein kinase activity of YfgL was strongly stimulated in the presence of pyrroloquinoline-quinone. Transgenic E. coli cells producing Deinococcus radiodurans pyrroloquinoline-quinone synthase showed nearly four log cycle improvement in UVC dark survival and 10-fold increases in gamma radiation resistance as compared with untransformed cells. Pyrroloquinoline-quinone enhanced the UV resistance of E. coli through the YfgL protein and required the active recombination repair proteins. The yfgL mutant showed higher sensitivity to UVC, mitomycin C and gamma radiation as compared with wild-type cells and showed a strong impairment in homologous DNA recombination. The mutant expressing an active YfgL in trans recovered the lost phenotypes to nearly wild-type levels. The results strongly suggest that the periplasmic phosphoquinolipoprotein kinase YfgL plays an important role in radiation-induced DNA strand break repair and homologous recombination in E. coli. PMID:17630970