Science.gov

Sample records for periplasmic s1-like nuclease

  1. Characterization of a periplasmic S1-like nuclease coded by the Mesorhizobium loti symbiosis island

    SciTech Connect

    Pimkin, Maxim; Miller, C. Glenn; Blakesley, Lauryn; Oleykowski, Catherine A.; Kodali, Nagendra S.; Yeung, Anthony T. . E-mail: AT_Yeung@fccc.edu

    2006-04-28

    DNA sequences encoding hypothetical proteins homologous to S1 nuclease from Aspergillus oryzae are found in many organisms including fungi, plants, pathogenic bacteria, and eukaryotic parasites. One of these is the M1 nuclease of Mesorhizobium loti which we demonstrate herein to be an enzymatically active, soluble, and stable S1 homolog that lacks the extensive mannosyl-glycosylation found in eukaryotic S1 nuclease homologs. We have expressed the cloned M1 protein in M. loti and purified recombinant native M1 to near homogeneity and have also isolated a homogeneous M1 carboxy-terminal hexahistidine tag fusion protein. Mass spectrometry and N-terminal Edman degradation sequencing confirmed the protein identity. The enzymatic properties of the purified M1 nuclease are similar to those of S1. At acidic pH M1 is 25 times more active on single-stranded DNA than on double-stranded DNA and 3 times more active on single-stranded DNA than on single-stranded RNA. At neutral pH the RNase activity of M1 exceeds the DNase activity. M1 nicks supercoiled RF-I plasmid DNA and rapidly cuts the phosphodiester bond across from the nick in the resultant relaxed RF-II plasmid DNA. Therefore, M1 represents an active bacterial S1 homolog in spite of great sequence divergence. The biochemical characterization of M1 nuclease supports our sequence alignment that reveals the minimal 21 amino acid residues that are necessarily conserved for the structure and functions of this enzyme family. The ability of M1 to degrade RNA at neutral pH implies previously unappreciated roles of these nucleases in biological systems.

  2. Secretion of nuclease across the outer membrane of Serratia marcescens and its energy requirements.

    PubMed Central

    Suh, Y; Benedik, M J

    1997-01-01

    Extracellular secretion of Serratia marcescens nuclease occurs as a two-step process via a periplasmic intermediate. Unlike other extracellular proteins secreted by gram-negative bacteria by the general secretory pathway, nuclease accumulates in the periplasm in its active form for an unusually long time before its export into the growth medium. The energy requirements for extracellular secretion of nuclease from the periplasm were investigated. Our results suggest that the second step of secretion across the outer membrane is dependent upon the external pH; acidic pH effectively but reversibly blocks extracellular secretion. However, electrochemical proton gradient, and possibly ATP hydrolysis, are not required for this step. We suggest that nuclease uses a novel mechanism for the second step of secretion in S. marcescens. PMID:9006020

  3. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  4. Periplasmic Screening for Artificial Metalloenzymes.

    PubMed

    Jeschek, M; Panke, S; Ward, T R

    2016-01-01

    Artificial metalloenzymes represent an attractive means of combining state-of-the-art transition metal catalysis with the benefits of natural enzymes. Despite the tremendous recent progress in this field, current efforts toward the directed evolution of these hybrid biocatalysts mainly rely on the laborious, individual purification of protein variants rendering the throughput, and hence the outcome of these campaigns feeble. We have recently developed a screening platform for the directed evolution of artificial metalloenzymes based on the streptavidin-biotin technology in the periplasm of the Gram-negative bacterium Escherichia coli. This periplasmic compartmentalization strategy comprises a number of compelling advantages, in particular with respect to artificial metalloenzymes, which lead to a drastic increase in the throughput of screening campaigns and additionally are of unique value for future in vivo applications. Therefore, we highlight here the benefits of this strategy and intend to propose a generalized guideline for the development of novel transition metal-based biocatalysts by directed evolution in order to extend the natural enzymatic repertoire. PMID:27586348

  5. Vipera lebetina venom nucleases.

    PubMed

    Trummal, Katrin; Tõnismägi, Külli; Aaspõllu, Anu; Siigur, Jüri; Siigur, Ene

    2016-09-01

    Nucleases, in particular ribo- and deoxyribonucleases, are among the least-studied snake venom enzymes. In the present study we have partially purified different nucleases from Vipera lebetina venom. The DNase activity has been proved by DNA degradation both in solution as well as in-gel (zymogram-method). In DNA-containing SDS-PAGE V. lebetina venom exhibits DNA-degrading activity in bands with molecular masses of ∼120, 30-35 and 22-25 kDa. The 120 kDa band corresponds to phosphodiesterase, a 3', 5'-exonuclease. The endonucleolytic activity of the lower-molecular-mass protein has been confirmed by plasmid degradation and the visualization of the results in agarose gel (with ethidium bromide) electrophoresis. A partial DNA sequence of putative RNase H1 has been determined from the V. lebetina venom gland cDNA library. The translated sequence is similar to the assumed RNase H1 from Crotalus adamanteus (AFJ51163). The RNA/DNA hybrid is hydrolysed by V. lebetina venom and venom fractions. The masses of tryptic peptides from the SDS-PAGE 30-35 kDa band are in concordance with the theoretical peptide masses from the respective translated sequence. For the first time RNase H1-like enzyme activity has been ascertained in snake venom, and sequencing a relevant partial transcript confirmed the identification of this enzyme. PMID:27179419

  6. Periplasmic glucans of Pseudomonas syringae pv. syringae.

    PubMed Central

    Talaga, P; Fournet, B; Bohin, J P

    1994-01-01

    We report the initial characterization of glucans present in the periplasmic space of Pseudomonas syringae pv. syringae (strain R32). These compounds were found to be neutral, unsubstituted, and composed solely of glucose. Their size ranges from 6 to 13 glucose units/mol. Linkage studies and nuclear magnetic resonance analyses demonstrated that the glucans are linked by beta-1,2 and beta-1,6 glycosidic bonds. In contrast to the periplasmic glucans found in other plant pathogenic bacteria, the glucans of P. syringae pv. syringae are not cyclic but are highly branched structures. Acetolysis studies demonstrated that the backbone consists of beta-1,2-linked glucose units to which the branches are attached by beta-1,6 linkages. These periplasmic glucans were more abundant when the osmolarity of the growth medium was lower. Thus, P. syringae pv. syringae appears to synthesize periplasmic glucans in response to the osmolarity of the medium. The structural characteristics of these glucans are very similar to the membrane-derived oligosaccharides of Escherichia coli, apart from the neutral character, which contrasts with the highly anionic E. coli membrane-derived oligosaccharides. PMID:7961404

  7. Periplasmic Proteins of the Extremophile Acidithiobacillus ferrooxidans

    PubMed Central

    Chi, An; Valenzuela, Lissette; Beard, Simon; Mackey, Aaron J.; Shabanowitz, Jeffrey; Hunt, Donald F.; Jerez, Carlos A.

    2015-01-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile capable of obtaining energy by oxidizing ferrous iron or sulfur compounds such as metal sulfides. Some of the proteins involved in these oxidations have been described as forming part of the periplasm of this extremophile. The detailed study of the periplasmic components constitutes an important area to understand the physiology and environmental interactions of microorganisms. Proteomics analysis of the periplasmic fraction of A. ferrooxidans ATCC 23270 was performed by using high resolution linear ion trap-FT MS. We identified a total of 131 proteins in the periplasm of the microorganism grown in thiosulfate. When possible, functional categories were assigned to the proteins: 13.8% were transport and binding proteins, 14.6% were several kinds of cell envelope proteins, 10.8% were involved in energy metabolism, 10% were related to protein fate and folding, 10% were proteins with unknown functions, and 26.1% were proteins without homologues in databases. These last proteins are most likely characteristic of A. ferrooxidans and may have important roles yet to be assigned. The majority of the periplasmic proteins from A. ferrooxidans were very basic compared with those of neutrophilic microorganisms such as Escherichia coli, suggesting a special adaptation of the chemolithoautotrophic bacterium to its very acidic environment. The high throughput proteomics approach used here not only helps to understand the physiology of this extreme acidophile but also offers an important contribution to the functional annotation for the available genomes of biomining microorganisms such as A. ferrooxidans for which no efficient genetic systems are available to disrupt genes by procedures such as homologous recombination. PMID:17911085

  8. Periplasmic Superoxide Dismutase in Meningococcal Pathogenicity

    PubMed Central

    Wilks, Kathryn E.; Dunn, Kate L. R.; Farrant, Jayne L.; Reddin, Karen M.; Gorringe, Andrew R.; Langford, Paul R.; Kroll, J. Simon

    1998-01-01

    Meningococcal sodC encodes periplasmic copper- and zinc-cofactored superoxide dismutase (Cu,Zn SOD) which catalyzes the conversion of the superoxide radical anion to hydrogen peroxide, preventing a sequence of reactions leading to production of toxic hydroxyl free radicals. From its periplasmic location, Cu,Zn SOD was inferred to acquire its substrate from outside the bacterial cell and was speculated to play a role in preserving meningococci from the action of microbicidal oxygen free radicals produced in the context of host defense. A sodC mutant was constructed by allelic exchange and was used to investigate the role of Cu,Zn SOD in pathogenicity. Wild-type and mutant meningococci grew at comparable rates and survived equally long in aerobic liquid culture. The mutant showed no increased sensitivity to paraquat, which generates superoxide within the cytosol, but was approximately 1,000-fold more sensitive to the toxicity of superoxide generated in solution by the xanthine/xanthine oxidase system. These data support a role for meningococcal Cu,Zn SOD in protection against exogenous superoxide. In experiments to translate this into a role in pathogenicity, wild-type and mutant organisms were used in an intraperitoneal mouse infection model. The sodC mutant was significantly less virulent. We conclude that periplasmic Cu,Zn SOD contributes to the virulence of Neisseria meningitidis, most likely by reducing the effectiveness of toxic oxygen host defenses. PMID:9423860

  9. Lateral diffusion of proteins in the periplasm of Escherichia coli.

    PubMed Central

    Brass, J M; Higgins, C F; Foley, M; Rugman, P A; Birmingham, J; Garland, P B

    1986-01-01

    We have introduced biologically active, fluorescently labeled maltose-binding protein into the periplasmic space of Escherichia coli and measured its lateral diffusion coefficient by the fluorescence photobleaching recovery method. Diffusion of this protein in the periplasm was found to be surprisingly low (lateral diffusion coefficient, 0.9 X 10(-10) cm2 s-1), about 1,000-fold lower than would be expected for diffusion in aqueous medium and almost 100-fold lower than for an equivalent-size protein in the cytoplasm. Galactose-binding protein, myoglobin, and cytochrome c were also introduced into the periplasm and had diffusion coefficients identical to that determined for the maltose-binding protein. For all proteins nearly 100% recovery of fluorescence was obtained after photobleaching, indicating that the periplasm is a single contiguous compartment surrounding the cell. These data have considerable implications for periplasmic structure and for the role of periplasmic proteins in transport and chemotaxis. Images PMID:3005237

  10. Periplasmic Structure in Saccharomyces rouxii (Boutroux), an Osmophil

    PubMed Central

    Arnold, Wilfred N.; Garrison, Robert G.; Boyd, Karen S.

    1974-01-01

    Electron micrographs of ultrathin sections of S. rouxii displayed electrondense, membrane-circumscribed structures between the protoplasmic membrane and the cell wall. These periplasmic bodies were numerous in cells from a 3-day culture and absent or rare in older cells. Periplasmic bodies were fewer and smaller (flattened) in specimens grown in a medium fortified with 10% sucrose; they were not detected in cells grown in 20% sucrose. A brief treatment with ethyl acetate caused the periplasmic bodies of young cells to become electron light. Periplasmic bodies were most prevalent in the regions of the bud scars and were often accommodated within large invaginations in the protoplasmic membrane. In general, conditions which favor the prevalence and electron density of periplasmic bodies are those which also mask the activity of β-fructofuranosidase in this species. Images PMID:4451363

  11. Protein quality control in the bacterial periplasm.

    PubMed

    Merdanovic, Melisa; Clausen, Tim; Kaiser, Markus; Huber, Robert; Ehrmann, Michael

    2011-01-01

    Protein quality control involves sensing and treatment of defective or incomplete protein structures. Misfolded or mislocalized proteins trigger dedicated signal transduction cascades that upregulate the production of protein quality-control factors. Corresponding proteases and chaperones either degrade or repair damaged proteins, thereby reducing the level of aggregation-prone molecules. Because the periplasm of gram-negative bacteria is particularly exposed to environmental changes and respective protein-folding stresses connected with the presence of detergents, low or high osmolarity of the medium, elevated temperatures, and the host's immune response, fine-tuned protein quality control systems are essential for survival under these unfavorable conditions. This review discusses recent advances in the identification and characterization of the key cellular factors and the emerging general principles of the underlying molecular mechanisms. PMID:21639788

  12. Quantitative Microplate Assay for Real-Time Nuclease Kinetics

    PubMed Central

    Langel, Ülo

    2016-01-01

    Utilizing the phenomenon of nucleases exposing oligonucleotide phosphate backbones to phosphatases we present a novel quantitative method for kinetics of nuclease catalysis. Inorganic phosphate released from nuclease products by phosphatases could be quantified in real-time by a fluorescent sensor of inorganic phosphate. Two different nucleases were employed, showing the versatility of this assay for multiple turnover label-free nuclease studies. PMID:27101307

  13. Mouse genome engineering using designer nucleases.

    PubMed

    Hermann, Mario; Cermak, Tomas; Voytas, Daniel F; Pelczar, Pawel

    2014-01-01

    Transgenic mice carrying site-specific genome modifications (knockout, knock-in) are of vital importance for dissecting complex biological systems as well as for modeling human diseases and testing therapeutic strategies. Recent advances in the use of designer nucleases such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system for site-specific genome engineering open the possibility to perform rapid targeted genome modification in virtually any laboratory species without the need to rely on embryonic stem (ES) cell technology. A genome editing experiment typically starts with identification of designer nuclease target sites within a gene of interest followed by construction of custom DNA-binding domains to direct nuclease activity to the investigator-defined genomic locus. Designer nuclease plasmids are in vitro transcribed to generate mRNA for microinjection of fertilized mouse oocytes. Here, we provide a protocol for achieving targeted genome modification by direct injection of TALEN mRNA into fertilized mouse oocytes. PMID:24747757

  14. Structure and Metal Loading of a Soluble Periplasm Cuproprotein*

    PubMed Central

    Waldron, Kevin J.; Firbank, Susan J.; Dainty, Samantha J.; Pérez-Rama, Mónica; Tottey, Steve; Robinson, Nigel J.

    2010-01-01

    A copper-trafficking pathway was found to enable Cu2+ occupancy of a soluble periplasm protein, CucA, even when competing Zn2+ is abundant in the periplasm. Here, we solved the structure of CucA (a new cupin) and found that binding of Cu2+, but not Zn2+, quenches the fluorescence of Trp165, which is adjacent to the metal site. Using this fluorescence probe, we established that CucA becomes partly occupied by Zn2+ following exposure to equimolar Zn2+ and Cu2+. Cu2+-CucA is more thermodynamically stable than Zn2+-CucA but k(Zn→Cu)exchange is slow, raising questions about how the periplasm contains solely the Cu2+ form. We discovered that a copper-trafficking pathway involving two copper transporters (CtaA and PacS) and a metallochaperone (Atx1) is obligatory for Cu2+-CucA to accumulate in the periplasm. There was negligible CucA protein in the periplasm of ΔctaA cells, but the abundance of cucA transcripts was unaltered. Crucially, ΔctaA cells overaccumulate low Mr copper complexes in the periplasm, and purified apoCucA can readily acquire Cu2+ from ΔctaA periplasm extracts, but in vivo apoCucA fails to come into contact with these periplasmic copper pools. Instead, copper traffics via a cytoplasmic pathway that is coupled to CucA translocation to the periplasm. PMID:20702411

  15. Structure and metal loading of a soluble periplasm cuproprotein.

    PubMed

    Waldron, Kevin J; Firbank, Susan J; Dainty, Samantha J; Pérez-Rama, Mónica; Tottey, Steve; Robinson, Nigel J

    2010-10-15

    A copper-trafficking pathway was found to enable Cu(2+) occupancy of a soluble periplasm protein, CucA, even when competing Zn(2+) is abundant in the periplasm. Here, we solved the structure of CucA (a new cupin) and found that binding of Cu(2+), but not Zn(2+), quenches the fluorescence of Trp(165), which is adjacent to the metal site. Using this fluorescence probe, we established that CucA becomes partly occupied by Zn(2+) following exposure to equimolar Zn(2+) and Cu(2+). Cu(2+)-CucA is more thermodynamically stable than Zn(2+)-CucA but k((Zn→Cu)exchange) is slow, raising questions about how the periplasm contains solely the Cu(2+) form. We discovered that a copper-trafficking pathway involving two copper transporters (CtaA and PacS) and a metallochaperone (Atx1) is obligatory for Cu(2+)-CucA to accumulate in the periplasm. There was negligible CucA protein in the periplasm of ΔctaA cells, but the abundance of cucA transcripts was unaltered. Crucially, ΔctaA cells overaccumulate low M(r) copper complexes in the periplasm, and purified apoCucA can readily acquire Cu(2+) from ΔctaA periplasm extracts, but in vivo apoCucA fails to come into contact with these periplasmic copper pools. Instead, copper traffics via a cytoplasmic pathway that is coupled to CucA translocation to the periplasm. PMID:20702411

  16. Nuclease digestion studies of chromatin structure

    SciTech Connect

    Deutsch, S.M.

    1987-01-01

    Micrococcal nuclease, which preferentially cleaves linker DNA in chromatin, was immobilized by covalent attachment to CNBr-activated agarose beads and used to study the accessibility of linker DNA in chromatin fibers prepared from chicken erythrocyte nuclei. This immobilized nuclease was able to cleave chromatin fibers into the typical pattern of fragments corresponding to multiples of mononucleosomes. Cleavage from only the ends of the fibers was ruled out by examining the products of cleavage of fibers end-labelled with /sup 35/P. Comparison of the rate of digestion by immobilized and soluble micrococcal nuclease indicated that the fiber structure does not significantly affect access to linker DNA. The absence of an effect of reducing temperatures on the rate of digestion of fibers, as compared to short oligonucleosomes, indicated that breathing motions to allow access to the fiber interior were not required for cleavage of linker DNA.

  17. Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases

    PubMed Central

    Ishida, Kentaro; Gee, Peter; Hotta, Akitsu

    2015-01-01

    Programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and clustered regularly interspersed short palindromic repeats associated protein-9 (CRISPR-Cas9), hold tremendous potential for applications in the clinical setting to treat genetic diseases or prevent infectious diseases. However, because the accuracy of DNA recognition by these nucleases is not always perfect, off-target mutagenesis may result in undesirable adverse events in treated patients such as cellular toxicity or tumorigenesis. Therefore, designing nucleases and analyzing their activity must be carefully evaluated to minimize off-target mutagenesis. Furthermore, rigorous genomic testing will be important to ensure the integrity of nuclease modified cells. In this review, we provide an overview of available nuclease designing platforms, nuclease engineering approaches to minimize off-target activity, and methods to evaluate both on- and off-target cleavage of CRISPR-Cas9. PMID:26501275

  18. Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases.

    PubMed

    Ishida, Kentaro; Gee, Peter; Hotta, Akitsu

    2015-01-01

    Programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and clustered regularly interspersed short palindromic repeats associated protein-9 (CRISPR-Cas9), hold tremendous potential for applications in the clinical setting to treat genetic diseases or prevent infectious diseases. However, because the accuracy of DNA recognition by these nucleases is not always perfect, off-target mutagenesis may result in undesirable adverse events in treated patients such as cellular toxicity or tumorigenesis. Therefore, designing nucleases and analyzing their activity must be carefully evaluated to minimize off-target mutagenesis. Furthermore, rigorous genomic testing will be important to ensure the integrity of nuclease modified cells. In this review, we provide an overview of available nuclease designing platforms, nuclease engineering approaches to minimize off-target activity, and methods to evaluate both on- and off-target cleavage of CRISPR-Cas9. PMID:26501275

  19. The Intimin periplasmic domain mediates dimerisation and binding to peptidoglycan.

    PubMed

    Leo, Jack C; Oberhettinger, Philipp; Chaubey, Manish; Schütz, Monika; Kühner, Daniel; Bertsche, Ute; Schwarz, Heinz; Götz, Friedrich; Autenrieth, Ingo B; Coles, Murray; Linke, Dirk

    2015-01-01

    Intimin and Invasin are prototypical inverse (Type Ve) autotransporters and important virulence factors of enteropathogenic Escherichia coli and Yersinia spp. respectively. In addition to a C-terminal extracellular domain and a β-barrel transmembrane domain, both proteins also contain a short N-terminal periplasmic domain that, in Intimin, includes a lysin motif (LysM), which is thought to mediate binding to peptidoglycan. We show that the periplasmic domain of Intimin does bind to peptidoglycan both in vitro and in vivo, but only under acidic conditions. We were able to determine a dissociation constant of 0.8 μM for this interaction, whereas the Invasin periplasmic domain, which lacks a LysM, bound only weakly in vitro and failed to bind peptidoglycan in vivo. We present the solution structure of the Intimin LysM, which has an additional α-helix conserved within inverse autotransporter LysMs but lacking in others. In contrast to previous reports, we demonstrate that the periplasmic domain of Intimin mediates dimerisation. We further show that dimerisation and peptidoglycan binding are general features of LysM-containing inverse autotransporters. Peptidoglycan binding by the periplasmic domain in the infection process may aid in resisting mechanical and chemical stress during transit through the gastrointestinal tract. PMID:25353290

  20. Folding LacZ in the periplasm of Escherichia coli.

    PubMed

    Dwyer, Robert S; Malinverni, Juliana C; Boyd, Dana; Beckwith, Jon; Silhavy, Thomas J

    2014-09-01

    Targeted, translational LacZ fusions provided the initial support for the signal sequence hypothesis in prokaryotes and allowed for selection of the mutations that identified the Sec translocon. Many of these selections relied on the fact that expression of targeted, translational lacZ fusions like malE-lacZ and lamB-lacZ42-1 causes lethal toxicity as folded LacZ jams the translocation pore. However, there is another class of targeted LacZ fusions that do not jam the translocon. These targeted, nonjamming fusions also show toxic phenotypes that may be useful for selecting mutations in genes involved in posttranslocational protein folding and targeting; however, they have not been investigated to the same extent as their jamming counterparts. In fact, it is still unclear whether LacZ can be fully translocated in these fusions. It may be that they simply partition into the inner membrane where they can no longer participate in folding or assembly. In the present study, we systematically characterize the nonjamming fusions and determine their ultimate localization. We report that LacZ can be fully translocated into the periplasm, where it is toxic. We show that this toxicity is likely due to LacZ misfolding and that, in the absence of the periplasmic disulfide bond catalyst DsbA, LacZ folds in the periplasm. Using the novel phenotype of periplasmic β-galactosidase activity, we show that the periplasmic chaperone FkpA contributes to LacZ folding in this nonnative compartment. We propose that targeted, nonjamming LacZ fusions may be used to further study folding and targeting in the periplasm of Escherichia coli. PMID:25002543

  1. Osmoregulated periplasmic glucans synthesis gene family of Shigella flexneri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osmoregulated periplasmic glucans (OPGs) of foodborne enteropathogen Shigella flexneri were characterized. OPGs were composed of 100 percent glucose with 2-linked glucose as the most abundant residue with terminal glucose, 2-linked and 2,6-linked glucose also present in high quantities. Most dominan...

  2. Origins of Programmable Nucleases for Genome Engineering.

    PubMed

    Chandrasegaran, Srinivasan; Carroll, Dana

    2016-02-27

    Genome engineering with programmable nucleases depends on cellular responses to a targeted double-strand break (DSB). The first truly targetable reagents were the zinc finger nucleases (ZFNs) showing that arbitrary DNA sequences could be addressed for cleavage by protein engineering, ushering in the breakthrough in genome manipulation. ZFNs resulted from basic research on zinc finger proteins and the FokI restriction enzyme (which revealed a bipartite structure with a separable DNA-binding domain and a non-specific cleavage domain). Studies on the mechanism of cleavage by 3-finger ZFNs established that the preferred substrates were paired binding sites, which doubled the size of the target sequence recognition from 9 to 18bp, long enough to specify a unique genomic locus in plant and mammalian cells. Soon afterwards, a ZFN-induced DSB was shown to stimulate homologous recombination in cells. Transcription activator-like effector nucleases (TALENs) that are based on bacterial TALEs fused to the FokI cleavage domain expanded this capability. The fact that ZFNs and TALENs have been used for genome modification of more than 40 different organisms and cell types attests to the success of protein engineering. The most recent technology platform for delivering a targeted DSB to cellular genomes is that of the RNA-guided nucleases, which are based on the naturally occurring Type II prokaryotic CRISPR-Cas9 system. Unlike ZFNs and TALENs that use protein motifs for DNA sequence recognition, CRISPR-Cas9 depends on RNA-DNA recognition. The advantages of the CRISPR-Cas9 system-the ease of RNA design for new targets and the dependence on a single, constant Cas9 protein-have led to its wide adoption by research laboratories around the world. These technology platforms have equipped scientists with an unprecedented ability to modify cells and organisms almost at will, with wide-ranging implications across biology and medicine. However, these nucleases have also been shown to cut

  3. Targeting DNA Double-Strand Breaks with TAL Effector Nucleases

    PubMed Central

    Christian, Michelle; Cermak, Tomas; Doyle, Erin L.; Schmidt, Clarice; Zhang, Feng; Hummel, Aaron; Bogdanove, Adam J.; Voytas, Daniel F.

    2010-01-01

    Engineered nucleases that cleave specific DNA sequences in vivo are valuable reagents for targeted mutagenesis. Here we report a new class of sequence-specific nucleases created by fusing transcription activator-like effectors (TALEs) to the catalytic domain of the FokI endonuclease. Both native and custom TALE-nuclease fusions direct DNA double-strand breaks to specific, targeted sites. PMID:20660643

  4. Periplasmal Physics: The Rotational Dynamics of Spirochetal Flagella

    NASA Astrophysics Data System (ADS)

    Huber, Greg

    2012-02-01

    Spirochetes are distinguished by the location of their flagella, which reside within the periplasm: the tiny space between the bacterial cell wall and the outer membrane. In Borrelia burgdorferi/ (the causative agent of Lyme Disease), rotation of the flagella leads to cellular undulations that drive swimming. Exactly how these shape changes arise due to the forces and torques acting between the flagella and the cell body is unknown. By applying low-Reynolds number hydrodynamic theory to the motion of an elastic flagellum rotating in the periplasm, we show that the flagella are most likely separated from the bacterial cell wall by a lubricating layer of fluid. We obtain analytical solutions for the force and torque on the rotating flagellum through lubrication analysis, as well as through scaling analysis, and find results are in close agreement numerical simulations. (Joint work with J. Yang and C.W. Wolgemuth.)

  5. Genome Editing in Mice Using TALE Nucleases.

    PubMed

    Wefers, Benedikt; Brandl, Christina; Ortiz, Oskar; Wurst, Wolfgang; Kühn, Ralf

    2016-01-01

    Gene engineering for generating targeted mouse mutants is a key technology for biomedical research. Using TALENs as sequence-specific nucleases to induce targeted double-strand breaks, the mouse genome can be directly modified in zygotes in a single step without the need for embryonic stem cells. By embryo microinjection of TALEN mRNAs and targeting vectors, knockout and knock-in alleles can be generated fast and efficiently. In this chapter we provide protocols for the application of TALENs in mouse zygotes. PMID:26443225

  6. Monomeric site-specific nucleases for genome editing

    PubMed Central

    Kleinstiver, Benjamin P.; Wolfs, Jason M.; Kolaczyk, Tomasz; Roberts, Alanna K.; Hu, Sherry X.; Edgell, David R.

    2012-01-01

    Targeted manipulation of complex genomes often requires the introduction of a double-strand break at defined locations by site-specific DNA endonucleases. Here, we describe a monomeric nuclease domain derived from GIY-YIG homing endonucleases for genome-editing applications. Fusion of the GIY-YIG nuclease domain to three-member zinc-finger DNA binding domains generated chimeric GIY-zinc finger endonucleases (GIY-ZFEs). Significantly, the I-TevI-derived fusions (Tev-ZFEs) function in vitro as monomers to introduce a double-strand break, and discriminate in vitro and in bacterial and yeast assays against substrates lacking a preferred 5′-CNNNG-3′ cleavage motif. The Tev-ZFEs function to induce recombination in a yeast-based assay with activity on par with a homodimeric Zif268 zinc-finger nuclease. We also fused the I-TevI nuclease domain to a catalytically inactive LADGLIDADG homing endonuclease (LHE) scaffold. The monomeric Tev-LHEs are active in vivo and similarly discriminate against substrates lacking the 5′-CNNNG-3′ motif. The monomeric Tev-ZFEs and Tev-LHEs are distinct from the FokI-derived zinc-finger nuclease and TAL effector nuclease platforms as the GIY-YIG domain alleviates the requirement to design two nuclease fusions to target a given sequence, highlighting the diversity of nuclease domains with distinctive biochemical properties suitable for genome-editing applications. PMID:22566637

  7. Venturing into the New Science of Nucleases.

    PubMed

    Tolarová, Markéta; McGrath, John A; Tolar, Jakub

    2016-04-01

    Gene editing with zinc finger nucleases, transcription activator-like effector nucleases, clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated proteins system, or meganucleases can, in principle, mediate any genome modification. Recent studies have shown that COL7A1 mutations in cells of patients with recessive dystrophic epidermolysis bullosa can be corrected by homology-directed DNA repair. PMID:27012560

  8. Engineered apoptotic nucleases for chromatin research.

    PubMed

    Xiao, Fei; Widlak, Piotr; Garrard, William T

    2007-01-01

    We have created new genomics tools for chromatin research by genetically engineering the human and mouse major apoptotic nucleases that are responsible for internucleosomal DNA cleavage, DNA fragmentation factor (DFF). Normally, in its inactive form, DFF is a heterodimer composed of a 45-kDa chaperone inhibitor subunit (DFF45 or ICAD), and a 40-kDa latent endonuclease subunit (DFF40 or CAD). Upon caspase-3 cleavage of DFF45, DFF40 forms active endonuclease homo-oligomers. Although Saccharomyces cerevisiae lacks DFF, expression of caspase-3 is lethal in this organism, but expression of the highly sequence-specific tobacco etch virus protease (TEVP) is harmless. Therefore, we inserted TEVP cleavage sites immediately downstream of the two caspase-3 cleavage sites within DFF45, generating a novel form of DFF (DFF-T) whose nuclease activity proved to be exclusively under the control of TEVP. We demonstrate that co-expression of TEVP and DFF-T under galactose control results in nucleosomal DNA laddering and cell death in S. cerevisiae. We also created synthetic DFF genes with optimized codons for high-level expression in Eschericia coli or S. cerevisiae. We further demonstrate the excellence of the synthetic gene products for in vitro mapping of the nucleosome positions and hypersensitive sites in specific genes such as the yeast PHO5. PMID:17626049

  9. Effect of irradiation and endogenous nucleases on rat liver chromatin

    SciTech Connect

    Gelderblom, D.; Smit, B.J.; Boehm, L.

    1984-08-01

    The assessment of the consequences of irradiation on chromatin is complicated by endogenous nucleases. Isolation and prolonged storage of rat liver nuclei in buffers containing divalent metal ions activates these enzymes and promotes the degradation of chromatin. Irradiation of rat liver nuclei to dose levels of 20,000 rad under conditions in which endogenous nucleases are inhibited and analysis of the irradiated chromatin by sucrose density gradient centrifugation gave no evidence for monosomes or oligosomes. When chromatin from irradiated nuclei was digested with micrococcal nuclease, the levels of monosomes and oligosomes were identical to those of micrococcal nuclease digests of unirradiated control nuclei. These results suggest that irradiation results in neither a direct fragmentation of linkers nor the sensitization of linkers for subsequent cleavage by micrococcal nuclease.

  10. Electrostatic effects in unfolded staphylococcal nuclease

    PubMed Central

    Fitzkee, Nicholas C.; García-Moreno E, Bertrand

    2008-01-01

    Structure-based calculations of pK a values and electrostatic free energies of proteins assume that electrostatic effects in the unfolded state are negligible. In light of experimental evidence showing that this assumption is invalid for many proteins, and with increasing awareness that the unfolded state is more structured and compact than previously thought, a detailed examination of electrostatic effects in unfolded proteins is warranted. Here we address this issue with structure-based calculations of electrostatic interactions in unfolded staphylococcal nuclease. The approach involves the generation of ensembles of structures representing the unfolded state, and calculation of Coulomb energies to Boltzmann weight the unfolded state ensembles. Four different structural models of the unfolded state were tested. Experimental proton binding data measured with a variant of nuclease that is unfolded under native conditions were used to establish the validity of the calculations. These calculations suggest that weak Coulomb interactions are an unavoidable property of unfolded proteins. At neutral pH, the interactions are too weak to organize the unfolded state; however, at extreme pH values, where the protein has a significant net charge, the combined action of a large number of weak repulsive interactions can lead to the expansion of the unfolded state. The calculated pK a values of ionizable groups in the unfolded state are similar but not identical to the values in small peptides in water. These studies suggest that the accuracy of structure-based calculations of electrostatic contributions to stability cannot be improved unless electrostatic effects in the unfolded state are calculated explicitly. PMID:18227429

  11. Holo- And Apo- Structures of Bacterial Periplasmic Heme Binding Proteins

    SciTech Connect

    Ho, W.W.; Li, H.; Eakanunkul, S.; Tong, Y.; Wilks, A.; Guo, M.; Poulos, T.L.

    2009-06-01

    An essential component of heme transport in Gram-negative bacterial pathogens is the periplasmic protein that shuttles heme between outer and inner membranes. We have solved the first crystal structures of two such proteins, ShuT from Shigella dysenteriae and PhuT from Pseudomonas aeruginosa. Both share a common architecture typical of Class III periplasmic binding proteins. The heme binds in a narrow cleft between the N- and C-terminal binding domains and is coordinated by a Tyr residue. A comparison of the heme-free (apo) and -bound (holo) structures indicates little change in structure other than minor alterations in the heme pocket and movement of the Tyr heme ligand from an 'in' position where it can coordinate the heme iron to an 'out' orientation where it points away from the heme pocket. The detailed architecture of the heme pocket is quite different in ShuT and PhuT. Although Arg{sup 228} in PhuT H-bonds with a heme propionate, in ShuT a peptide loop partially takes up the space occupied by Arg{sup 228}, and there is no Lys or Arg H-bonding with the heme propionates. A comparison of PhuT/ShuT with the vitamin B{sub 12}-binding protein BtuF and the hydroxamic-type siderophore-binding protein FhuD, the only two other structurally characterized Class III periplasmic binding proteins, demonstrates that PhuT/ShuT more closely resembles BtuF, which reflects the closer similarity in ligands, heme and B{sub 12}, compared with ligands for FhuD, a peptide siderophore.

  12. Copper, zinc superoxide dismutase in Escherichia coli: periplasmic localization.

    PubMed

    Benov, L; Chang, L Y; Day, B; Fridovich, I

    1995-06-01

    Cu,ZnSOD purified from Escherichia coli has been used to raise antibodies in rabbits. The resultant antiserum was found to recognize a single band on Western blots of SDS-polyacrylamide gel electropherograms, and that single band coincided with the position of the Cu,ZnSOD. Ultrathin sections of fixed E. coli were treated with the antibody followed by protein A bearing 10-nm gold particles. Electron microscopy revealed that Cu,ZnSOD was largely localized in the periplasm in polar bays. PMID:7786035

  13. Dynamic periplasmic chaperone reservoir facilitates biogenesis of outer membrane proteins.

    PubMed

    Costello, Shawn M; Plummer, Ashlee M; Fleming, Patrick J; Fleming, Karen G

    2016-08-16

    Outer membrane protein (OMP) biogenesis is critical to bacterial physiology because the cellular envelope is vital to bacterial pathogenesis and antibiotic resistance. The process of OMP biogenesis has been studied in vivo, and each of its components has been studied in isolation in vitro. This work integrates parameters and observations from both in vivo and in vitro experiments into a holistic computational model termed "Outer Membrane Protein Biogenesis Model" (OMPBioM). We use OMPBioM to assess OMP biogenesis mathematically in a global manner. Using deterministic and stochastic methods, we are able to simulate OMP biogenesis under varying genetic conditions, each of which successfully replicates experimental observations. We observe that OMPs have a prolonged lifetime in the periplasm where an unfolded OMP makes, on average, hundreds of short-lived interactions with chaperones before folding into its native state. We find that some periplasmic chaperones function primarily as quality-control factors; this function complements the folding catalysis function of other chaperones. Additionally, the effective rate for the β-barrel assembly machinery complex necessary for physiological folding was found to be higher than has currently been observed in vitro. Overall, we find a finely tuned balance between thermodynamic and kinetic parameters maximizes OMP folding flux and minimizes aggregation and unnecessary degradation. In sum, OMPBioM provides a global view of OMP biogenesis that yields unique insights into this essential pathway. PMID:27482090

  14. Dissecting the Escherichia coli periplasmic chaperone network using differential proteomics

    PubMed Central

    Vertommen, Didier; Silhavy, Thomas J.; Collet, Jean-Francois

    2013-01-01

    β-barrel proteins, or outer membrane proteins (OMPs), perform many essential functions in Gram-negative bacteria, but questions remain about the mechanism by which they are assembled into the outer membrane (OM). In Escherichia coli, β-barrels are escorted across the periplasm by chaperones, most notably SurA and Skp. However, the contributions of these two chaperones to the assembly of the OM proteome remained unclear. We used differential proteomics to determine how the elimination of Skp and SurA affects the assembly of many OMPs. We have shown that removal of Skp has no impact on the levels of the 63 identified OM proteins. However, depletion of SurA in the skp strain has a marked impact on the OM proteome, diminishing the levels of almost all β-barrel proteins. Our results are consistent with a model in which SurA plays a primary chaperone role in E. coli. Furthermore, they suggest that while no OMPs prefer the Skp chaperone pathway in wild-type cells, most can use Skp efficiently when SurA is absent. Our data, which provide a unique glimpse into the protein content of the non-viable surA skp mutant, clarify the roles of the periplasmic chaperones in E. coli. PMID:22589188

  15. GENOME EDITING IN HUMAN CELLS USING CRISPR/CAS NUCLEASES

    PubMed Central

    Wyvekens, Nicolas; Tsai, Shengdar; Joung, J. Keith

    2016-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has been broadly adopted for highly efficient genome editing in a variety of model organisms and human cell types. Unlike previous genome editing technologies such as Zinc Finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs), the CRISPR/Cas technology does not require complex protein engineering and can be utilized by any researcher proficient in basic molecular biology and cell culture techniques. Here we describe protocols for design and cloning of vectors expressing single or multiplex gRNAs, for transient transfection of human cell lines, and for quantitation of mutation frequencies by T7 Endonuclease I assay. These protocols also include guidance for using two improvements that increase the specificity of CRISPR/Cas nucleases: truncated gRNAs and dimeric RNA-guided FokI nucleases. PMID:26423589

  16. Catalytic activity of nuclease P1: Experiment and theory

    SciTech Connect

    Miller, J.H.; Falcone, J.M.; Shibata, M.; Box, H.C.

    1994-10-01

    Nuclease P1 from Penicillium citrinum is a zinc dependent glyco-enzyme that recognizes single stranded DNA and RNA as substrates and hydrolyzes the phosphate ester bond. Nuclease Pl seems to recognize particular conformations of the phosphodiester backbone and shows significant variation in the rate of hydrolytic activity depending upon which nucleosides are coupled by the phosphodiester bond. The efficiency of nuclease Pl in hydrolyzing the phosphodiester bonds of a substrate can be altered by modifications to one of the substrate bases induced by ionizing radiation or oxidative stress. Measurements have been made of the effect of several radiation induced lesions on the catalytic rate of nuclease Pl. A model of the structure of the enzyme has been constructed in order to better understand the binding and activity of this enzyme on various ssDNA substrates.

  17. Analysis of the periplasmic proteome of Pseudomonas aeruginosa, a metabolically versatile opportunistic pathogen.

    PubMed

    Imperi, Francesco; Ciccosanti, Fabiola; Perdomo, Ariel Basulto; Tiburzi, Federica; Mancone, Carmine; Alonzi, Tonino; Ascenzi, Paolo; Piacentini, Mauro; Visca, Paolo; Fimia, Gian Maria

    2009-04-01

    The Gram-negative bacterium Pseudomonas aeruginosa is a main cause of infection in hospitalized, burned, immunocompromised, and cystic fibrosis patients. Many processes essential for P. aeruginosa pathogenesis, e.g., nutrient uptake, antibiotic resistance, and virulence, take place in the cell envelope and depend on components residing in the periplasmic space. Recent high-throughput studies focused on P. aeruginosa membrane compartments. However, the composition and dynamics of its periplasm remain largely uncharacterized. Here, we report a detailed description of the periplasmic proteome of the wild-type P. aeruginosa strain PAO1 by 2-DE and MALDI-TOF/TOF analysis. Three extraction methods were compared at proteome level in order to achieve the most reliable and comprehensive periplasmic protein map. A total of 495 spots representing 395 different proteins were identified. Most of the high intensity spots corresponded to periplasmic proteins, while cytoplasmic contaminants were mainly detected among faint spots. The majority of the identified periplasmic proteins is involved in transport, cell-envelope integrity, and protein folding control. Notably, more than 30% still has an unpredicted function. This work provides the first overview of the P. aeruginosa periplasm and offers the basis for future studies on periplasmic proteome changes occurring during P. aeruginosa adaptation to different environments and/or antibiotic treatments. PMID:19333994

  18. The foldon substructure of staphylococcal nuclease.

    PubMed

    Bédard, Sabrina; Mayne, Leland C; Peterson, Ronald W; Wand, A Joshua; Englander, S Walter

    2008-02-29

    To search for submolecular foldon units, the spontaneous reversible unfolding and refolding of staphylococcal nuclease under native conditions was studied by a kinetic native-state hydrogen exchange (HX) method. As for other proteins, it appears that staphylococcal nuclease is designed as an assembly of well-integrated foldon units that may define steps in its folding pathway and may regulate some other functional properties. The HX results identify 34 amide hydrogens that exchange with solvent hydrogens under native conditions by way of large transient unfolding reactions. The HX data for each hydrogen measure the equilibrium stability (Delta G(HX)) and the kinetic unfolding and refolding rates (k(op) and k(cl)) of the unfolding reaction that exposes it to exchange. These parameters separate the 34 identified residues into three distinct HX groupings. Two correspond to clearly defined structural units in the native protein, termed the blue and red foldons. The remaining HX grouping contains residues, not well separated by their HX parameters alone, that represent two other distinct structural units in the native protein, termed the green and yellow foldons. Among these four sets, a last unfolding foldon (blue) unfolds with a rate constant of 6 x 10(-6) s(-1) and free energy equal to the protein's global stability (10.0 kcal/mol). It represents part of the beta-barrel, including mutually H-bonding residues in the beta 4 and beta 5 strands, a part of the beta 3 strand that H-bonds to beta 5, and residues at the N-terminus of the alpha2 helix that is capped by beta 5. A second foldon (green), which unfolds and refolds more rapidly and at slightly lower free energy, includes residues that define the rest of the native alpha2 helix and its C-terminal cap. A third foldon (yellow) defines the mutually H-bonded beta1-beta2-beta 3 meander, completing the native beta-barrel, plus an adjacent part of the alpha1 helix. A final foldon (red) includes residues on remaining

  19. Degradation versus aggregation of misfolded maltose-binding protein in the periplasm of Escherichia coli.

    PubMed

    Betton, J M; Sassoon, N; Hofnung, M; Laurent, M

    1998-04-10

    The periplasmic fates of misfolded MalE31, a defective folding mutant of the maltose-binding protein, were determined by manipulating two cellular activities affecting the protein folding pathway in host cells: (i) the malEp promoter activity, which is controlled by the transcriptional activator MalT, and (ii) the DegP and Protease III periplasmic proteolytic activity. At a low level of expression, the degradation of misfolded MalE31 was partially impaired in cells lacking DegP or Protease III. At a high level of expression, misfolded MalE31 rapidly formed periplasmic inclusion bodies and thus escaped degradation. However, the manipulated host cell activities did not enhance the production of periplasmic, soluble MalE31. A kinetic competition between folding, aggregation, and degradation is proposed as a general model for the biogenesis of periplasmic proteins. PMID:9535871

  20. ARTEMIS nuclease facilitates apoptotic chromatin cleavage.

    PubMed

    Britton, Sébastien; Frit, Philippe; Biard, Denis; Salles, Bernard; Calsou, Patrick

    2009-10-15

    One hallmark of apoptosis is DNA degradation that first appears as high molecular weight fragments followed by extensive internucleosomal fragmentation. During apoptosis, the DNA-dependent protein kinase (DNA-PK) is activated. DNA-PK is involved in the repair of DNA double-strand breaks (DSB) and its catalytic subunit is associated with the nuclease ARTEMIS. Here, we report that, on initiation of apoptosis in human cells by agents causing DNA DSB or by staurosporine or other agents, ARTEMIS binds to apoptotic chromatin together with DNA-PK and other DSB repair proteins. ARTEMIS recruitment to chromatin showed a time and dose dependency. It required DNA-PK protein kinase activity and was blocked by antagonizing the onset of apoptosis with a pan-caspase inhibitor or on overexpression of the antiapoptotic BCL2 protein. In the absence of ARTEMIS, no defect in caspase-3, poly(ADP-ribose) polymerase-1, and XRCC4 cleavage or in H2AX phosphorylation was observed and DNA-PK catalytic subunit was still phosphorylated on S2056 in response to staurosporine. However, DNA fragmentation including high molecular weight fragmentation was delayed in ARTEMIS-deficient cells compared with cells expressing ARTEMIS. In addition, ARTEMIS enhanced the kinetics of MLL gene cleavage at a breakage cluster breakpoint that is frequently translocated in acute or therapy-related leukemias. These results show a facilitating role for ARTEMIS at least in early, site-specific chromosome breakage during apoptosis. PMID:19808974

  1. Protein diffusion in the periplasm of E. coli under osmotic stress.

    PubMed

    Sochacki, Kem A; Shkel, Irina A; Record, M Thomas; Weisshaar, James C

    2011-01-01

    The physical and mechanical properties of the cell envelope of Escherichia coli are poorly understood. We use fluorescence recovery after photobleaching to measure diffusion of periplasmic green fluorescent protein and probe the fluidity of the periplasm as a function of external osmotic conditions. For cells adapted to growth in complete medium at 0.14-1.02 Osm, the mean diffusion coefficient increases from 3.4 μm² s⁻¹ to 6.6 μm² s⁻¹ and the distribution of D(peri) broadens as growth osmolality increases. This is consistent with a net gain of water by the periplasm, decreasing its biopolymer volume fraction. This supports a model in which the turgor pressure drops primarily across the thin peptidoglycan layer while the cell actively maintains osmotic balance between periplasm and cytoplasm, thus avoiding a substantial pressure differential across the cytoplasmic membrane. After sudden hyperosmotic shock (plasmolysis), the cytoplasm loses water as the periplasm gains water. Accordingly, increases threefold. The fluorescence recovery after photobleaching is complete and homogeneous in all cases, but in minimal medium, the periplasm is evidently thicker at the cell tips. For the relevant geometries, Brownian dynamics simulations in model cytoplasmic and periplasmic volumes provide analytical formulae for extraction of accurate diffusion coefficients from readily measurable quantities. PMID:21190653

  2. Function of periplasmic copper-zinc superoxide dismutase in Caulobacter crescentus.

    PubMed

    Steinman, H M

    1993-02-01

    Caulobacter crescentus is one of a small number of bacterial species that contain a periplasmic copper-zinc superoxide dismutase (CuZnSOD). A C. crescentus mutant, with the CuZnSOD gene interrupted by a promoterless cat gene, was constructed and characterized to analyze CuZnSOD function. Periplasmic SOD does not protect against oxyradical damage in the cytosol or play a major role in maintaining the integrity of the cell envelope. Studies of the effect of sodium citrate on plating efficiency suggest that CuZnSOD protects a periplasmic or membrane function(s) requiring magnesium or calcium. PMID:8432713

  3. Hybrid nanosensor for colorimetric and ultrasensitive detection of nuclease contaminations

    NASA Astrophysics Data System (ADS)

    Cecere, Paola; Valentini, Paola; Pompa, Pier Paolo

    2016-04-01

    Nucleases are ubiquitous enzymes that degrade DNA or RNA, thus they can prejudice the good outcome of molecular biology experiments involving nucleic acids. We propose a colorimetric test for the naked-eye detection of nuclease contaminations. The system uses an hybrid nanosensor, based on gold nanoparticles functionalized with DNA probes. Our assay is rapid, instrument-free, simple and low-cost. Moreover, it reaches sensitivity equal or better than those of commercial kits, and presents a lot of advantageous aspects. Therefore, it is very competitive, with a real market potential. This test will be relevant in routine process monitoring in scientific laboratories, and in quality control in clinical laboratories and industrial processes, allowing the simultaneous detection of nucleases with different substrate specificities and large-scale screening.

  4. Direct Metal Transfer between Periplasmic Proteins Identifies a Bacterial Copper Chaperone†

    PubMed Central

    Bagai, Ireena; Rensing, Christopher; Blackburn, Ninian J.; McEvoy, Megan M.

    2008-01-01

    Transition metals require exquisite handling within cells to ensure that cells are not harmed by an excess of free metal species. In gram-negative bacteria, copper is only required in low amounts in the periplasm, not in the cytoplasm, so a key aspect of protection under excess metal conditions is to export copper from the periplasm. Additional protection could be conferred by a periplasmic chaperone in order to limit the free metal species prior to export. Using isothermal titration calorimetry, we have demonstrated that two periplasmic proteins, CusF and CusB, of the E. coli Cu(I)/Ag(I) efflux system undergo a metal dependent interaction. Through the development of a novel X-ray absorption spectroscopy approach using selenomethionine labeling to distinguish the metal sites of the two proteins, we have demonstrated transfer of Cu(I) occurs between CusF and CusB. The interaction between these proteins is highly specific, as a homolog of CusF with 51% sequence identity and similar affinity for metal, did not function in metal transfer. These experiments establish a metallochaperone activity for CusF in the periplasm of gram-negative bacteria, serving to protect the periplasm from metal-mediated damage. PMID:18847219

  5. Periplasmic production of native human proinsulin as a fusion to E. coli ecotin.

    PubMed

    Malik, Ajamaluddin; Jenzsch, Marco; Lübbert, Andreas; Rudolph, Rainer; Söhling, Brigitte

    2007-09-01

    Native proinsulin belongs to the class of the difficult-to-express proteins in Escherichia coli. Problems mainly arise due to its small size, a high proteolytic decay, and the necessity to form a native disulfide pattern. In the present study, human proinsulin was produced in the periplasm of E. coli as a fusion to ecotin, which is a small periplasmic protein of 16 kDa encoded by the host, containing one disulfide bond. The fusion protein was secreted to the periplasm and native proinsulin was determined by ELISA. Cultivation parameters were studied in parallel batch mode fermentations using E. coli BL21(DE3)Gold as a host. After improvement of fed-batch high density fermentation conditions, 153 mg fusion protein corresponding to 51.5mg native proinsulin was obtained per L. Proteins were extracted from the periplasm by osmotic shock treatment. The fusion protein was purified in one step by ecotin affinity chromatography on immobilized trypsinogen. After thrombin cleavage of the fusion protein, the products were separated by Ni-NTA chromatography. Proinsulin was quantified by ELISA and characterized by mass spectrometry. To evaluate the influence of periplasmic proteases, the amount of ecotin-proinsulin was determined in E. coli BL21(DE3)Gold and in a periplasmic protease deficient strain, E. coli SF120. PMID:17509894

  6. c-Type Cytochrome Assembly Is a Key Target of Copper Toxicity within the Bacterial Periplasm

    PubMed Central

    Durand, Anne; Azzouzi, Asma; Bourbon, Marie-Line; Steunou, Anne-Soisig; Liotenberg, Sylviane; Maeshima, Akinori; Astier, Chantal; Argentini, Manuela; Saito, Shingo

    2015-01-01

    ABSTRACT In the absence of a tight control of copper entrance into cells, bacteria have evolved different systems to control copper concentration within the cytoplasm and the periplasm. Central to these systems, the Cu+ ATPase CopA plays a major role in copper tolerance and translocates copper from the cytoplasm to the periplasm. The fate of copper in the periplasm varies among species. Copper can be sequestered, oxidized, or released outside the cells. Here we describe the identification of CopI, a periplasmic protein present in many proteobacteria, and show its requirement for copper tolerance in Rubrivivax gelatinosus. The ΔcopI mutant is more susceptible to copper than the Cu+ ATPase copA mutant. CopI is induced by copper, localized in the periplasm and could bind copper. Interestingly, copper affects cytochrome c membrane complexes (cbb3 oxidase and photosystem) in both ΔcopI and copA-null mutants, but the causes are different. In the copA mutant, heme and chlorophyll synthesis are affected, whereas in ΔcopI mutant, the decrease is a consequence of impaired cytochrome c assembly. This impact on c-type cytochromes would contribute also to the copper toxicity in the periplasm of the wild-type cells when they are exposed to high copper concentrations. PMID:26396241

  7. A triple-color fluorescent probe for multiple nuclease assays.

    PubMed

    Xu, Qinfeng; Zhang, Yihong; Zhang, Chun-yang

    2015-06-01

    We develop a triple-color fluorescent probe which may function as a lab-on-a-DNA-molecule for simultaneous detection of multiple exonucleases/restriction endonucleases. This triple-color fluorescent probe can be further applied for the discrimination of seven exonucleases and four cell lines as well as the screening of various nuclease inhibitors. PMID:25940190

  8. Use of the human hepcidin gene to build a positive-selection vector for periplasmic expression in Escherichia coli.

    PubMed

    Haustant, Jérome; Sil, Annesha; Maillo-Rius, Christopher; Hocquellet, Agnès; Costaglioli, Patricia; Garbay, Bertrand; Dieryck, Wilfrid

    2016-05-01

    Recombinant proteins are often produced in the periplasm of Escherichia coli because this facilitates the purification process. The oxidizing environment favors the formation of disulfide bridges. We showed that the periplasmic expression of the human hormone hepcidin 25 (Hep25) fused to the maltose-binding protein (MBP) resulted in cell death. This toxicity was not observed when MBP-Hep25 accumulated in the bacterial cytoplasm, or when Hep25 was addressed to the periplasm without the MBP tag. We then modified the periplasmic expression vector pMALp2E to create pMALp2EH, a positive-selection vector with Hep25 as counterselection gene. PMID:26873403

  9. Cloning and Expression of Recombinant Human Endostatin in Periplasm of Escherichia coli Expression System

    PubMed Central

    Mohajeri, Abbas; Pilehvar-Soltanahmadi, Yones; Pourhassan-Moghaddam, Mohammad; Abdolalizadeh, Jalal; Karimi, Pouran; Zarghami, Nosratollah

    2016-01-01

    Purpose: Recombinant human endostatin (rhEs) is an angiogenesis inhibitor which is used as a specific drug in the treatment of non-small-cell lung cancer. In the current research, we developed an efficient method for expressing soluble form of the rhEs protein in the periplasmic space of Escherichia coli via fusing with pelB signal peptide. Methods: The human endostatin (hEs) gene was amplified using synthetic (hEs) gene as a template; then, cloned and expressed under T7 lac promoter. IPTG was used as an inducer for rhEs expression. Next, the osmotic shock was used to extraction of protein from the periplasmic space. The presence of rhEs in the periplasmic space was approved by SDS-PAGE and Western blotting. Results: The results show the applicability of pelB fusion protein system usage for secreting rhEs in the periplasm of E. coli in the laboratory scale. The rhEs represents approximately 35 % (0.83mg/l) of the total cell protein. Conclusion: The present study apparently is the first report of codon-optimized rhEs expression as a fusion with pelB signal peptide. The results presented the successful secretion of soluble rhEs to the periplasmic space. PMID:27478780

  10. Engineered Escherichia coli with Periplasmic Carbonic Anhydrase as a Biocatalyst for CO2 Sequestration

    PubMed Central

    Jo, Byung Hoon; Kim, Im Gyu; Seo, Jeong Hyun; Kang, Dong Gyun

    2013-01-01

    Carbonic anhydrase is an enzyme that reversibly catalyzes the hydration of carbon dioxide (CO2). It has been suggested recently that this remarkably fast enzyme can be used for sequestration of CO2, a major greenhouse gas, making this a promising alternative for chemical CO2 mitigation. To promote the economical use of enzymes, we engineered the carbonic anhydrase from Neisseria gonorrhoeae (ngCA) in the periplasm of Escherichia coli, thereby creating a bacterial whole-cell catalyst. We then investigated the application of this system to CO2 sequestration by mineral carbonation, a process with the potential to store large quantities of CO2. ngCA was highly expressed in the periplasm of E. coli in a soluble form, and the recombinant bacterial cell displayed the distinct ability to hydrate CO2 compared with its cytoplasmic ngCA counterpart and previously reported whole-cell CA systems. The expression of ngCA in the periplasm of E. coli greatly accelerated the rate of calcium carbonate (CaCO3) formation and exerted a striking impact on the maximal amount of CaCO3 produced under conditions of relatively low pH. It was also shown that the thermal stability of the periplasmic enzyme was significantly improved. These results demonstrate that the engineered bacterial cell with periplasmic ngCA can successfully serve as an efficient biocatalyst for CO2 sequestration. PMID:23974145

  11. Relationship of Treponema denticola periplasmic flagella to irregular cell morphology.

    PubMed Central

    Ruby, J D; Li, H; Kuramitsu, H; Norris, S J; Goldstein, S F; Buttle, K F; Charon, N W

    1997-01-01

    Treponema denticola is an anaerobic, motile, oral spirochete associated with periodontal disease. We found that the periplasmic flagella (PFs), which are located between the outer membrane sheath and cell cylinder, influence its morphology in a unique manner. In addition, the protein composition of the PFs was found to be quite complex and similar to those of other spirochetes. Dark-field microscopy revealed that most wild-type cells had an irregular twisted morphology, with both planar and helical regions, and a minority of cells had a regular right-handed helical shape. High-voltage electron microscopy indicated that the PFs, especially in those regions of the cell which were planar, wrapped around the cell body axis in a right-handed sense. In those regions of the cell which were helical or irregular, the PFs tended to lie along the cell axis. The PFs caused the cell to form the irregular shape, as two nonmotile, PF-deficient mutants (JR1 and HL51) were no longer irregular but were right-handed helices. JR1 was isolated as a spontaneously occurring nonmotile mutant, and HL51 was isolated as a site-directed mutant in the flagellar hook gene flgE. Consistent with these results is the finding that wild-type cells with their outer membrane sheath removed were also right-handed helices similar in shape to JR1 and HL51. Purified PFs were analyzed by two-dimensional gel electrophoresis, and several protein species were identified. Western blot analysis using antisera to Treponema pallidum PF proteins along with N-terminal amino acid sequence analysis indicated T. denticola PFs are composed of one class A sheath protein of 38 kDa (FlaA) and three class B proteins of 35 kDa (FlaB1 and FlaB2) and one of 34 kDa (FlaB3). The N-terminal amino acid sequences of the FlaA and FlaB proteins of T. denticola were most similar to those of T. pallidum and Treponema phagedenis. Because these proteins were present in markedly reduced amounts or were absent in HL51, PF synthesis is

  12. The multifunctional SNM1 gene family: not just nucleases

    PubMed Central

    Yan, Yiyi; Akhter, Shamima; Zhang, Xiaoshan; Legerski, Randy

    2010-01-01

    The archetypical member of the SNM1 gene family was discovered 30 years ago in the budding yeast Saccharomyces cerevisiae. This small but ubiquitous gene family is characterized by metallo-β-lactamase and β-CASP domains, which together have been demonstrated to comprise a nuclease activity. Three mammalian members of this family, SNM1A, SNM1B/Apollo and Artemis, have been demonstrated to play surprisingly divergent roles in cellular metabolism. These pathways include variable (diversity) joining recombination, nonhomologous end-joining of double-strand breaks, DNA damage and mitotic cell cycle checkpoints, telomere maintenance and protein ubiquitination. Not all of these functions are consistent with a model in which these proteins act only as nucleases, and indicate that the SNM1 gene family encodes multifunctional products that can act in diverse biochemical pathways. In this article we discuss the various functions of SNM1A, SNM1B/Apollo and Artemis. PMID:20528238

  13. Protection of expressed immunoglobulin genes against nuclease cleavage.

    PubMed Central

    Weischet, W O; Glotov, B O; Zachau, H G

    1983-01-01

    Fragmentation of the actively transcribed kappa immunoglobulin gene in mouse myeloma nuclei with micrococcal nuclease and the restriction nuclease Bsp RI reveals a chromatin structure without the regularity of repeating nucleosomes found in bulk chromatin. Such regularity is restored about 2.2 kb 3' of the coding region. An only moderately increased micrococcal nuclease sensitivity and a 65% average protection of the Bsp RI sites indicates a DNA-protein interaction in the transcribed region which is not very different from that of an inactive gene. As determined by indirect endlabeling the frequency of Bsp RI cleavage both, after very mild and exhaustive digestion, varied moderately from site to site along the gene. In addition, it was not in each case the same at analogous sites on both alleles which are both transcribed. Thus, the experiments demonstrate differences between the chromatin structures of the genes which may be related to regulatory phenomena and thereby corroborate earlier findings made with DNAase I. Images PMID:6304636

  14. Phylogenomic analysis of the GIY-YIG nuclease superfamily

    PubMed Central

    Dunin-Horkawicz, Stanislaw; Feder, Marcin; Bujnicki, Janusz M

    2006-01-01

    Background The GIY-YIG domain was initially identified in homing endonucleases and later in other selfish mobile genetic elements (including restriction enzymes and non-LTR retrotransposons) and in enzymes involved in DNA repair and recombination. However, to date no systematic search for novel members of the GIY-YIG superfamily or comparative analysis of these enzymes has been reported. Results We carried out database searches to identify all members of known GIY-YIG nuclease families. Multiple sequence alignments together with predicted secondary structures of identified families were represented as Hidden Markov Models (HMM) and compared by the HHsearch method to the uncharacterized protein families gathered in the COG, KOG, and PFAM databases. This analysis allowed for extending the GIY-YIG superfamily to include members of COG3680 and a number of proteins not classified in COGs and to predict that these proteins may function as nucleases, potentially involved in DNA recombination and/or repair. Finally, all old and new members of the GIY-YIG superfamily were compared and analyzed to infer the phylogenetic tree. Conclusion An evolutionary classification of the GIY-YIG superfamily is presented for the very first time, along with the structural annotation of all (sub)families. It provides a comprehensive picture of sequence-structure-function relationships in this superfamily of nucleases, which will help to design experiments to study the mechanism of action of known members (especially the uncharacterized ones) and will facilitate the prediction of function for the newly discovered ones. PMID:16646971

  15. Functional Specificity of Extracellular Nucleases of Shewanella oneidensis MR-1

    PubMed Central

    Heun, Magnus; Binnenkade, Lucas; Kreienbaum, Maximilian

    2012-01-01

    Bacterial species such as Shewanella oneidensis MR-1 require extracellular nucleolytic activity for the utilization of extracellular DNA (eDNA) as a source of nutrients and for the turnover of eDNA as a structural matrix component during biofilm formation. We have previously characterized two extracellular nucleases of S. oneidensis MR-1, ExeM and ExeS. Although both are involved in biofilm formation, they are not specifically required for the utilization of eDNA as a nutrient. Here we identified and characterized EndA, a third extracellular nuclease of Shewanella. The heterologously overproduced and purified protein was highly active and rapidly degraded linear and supercoiled DNAs of various origins. Divalent metal ions (Mg2+ or Mn2+) were required for function. endA is cotranscribed with phoA, an extracellular phosphatase, and is not upregulated upon phosphostarvation. Deletion of endA abolished both extracellular degradation of DNA by S. oneidensis MR-1 and the ability to use eDNA as a sole source of phosphorus. PhoA is not strictly required for the exploitation of eDNA as a nutrient. The activity of EndA prevents the formation of large cell aggregates during planktonic growth. However, in contrast to the findings for ExeM, endA deletion had only minor effects on biofilm formation. The findings strongly suggest that the extracellular nucleases of S. oneidensis exert specific functions required under different conditions. PMID:22492434

  16. Safety evaluation of nuclease P1 from Penicillium citrinum.

    PubMed

    Okado, Nobuo; Hasegawa, Kazushige; Mizuhashi, Fukutaro; Lynch, Barry S; Vo, Trung D; Roberts, Ashley S

    2016-02-01

    Nuclease P1 has been widely used in the food industry to enhance or create flavor. One commercial source of this enzyme is Penicillium citrinum, an anamorphic mesophilic fungus with a long history of safe use in Europe and Asia as a fermentation organism used in the production of ribonucleases. Given the intended use in food for human consumption, and noting its potential presence at trace levels in finished products, a series of safety studies including an in vitro Ames and chromosome aberration assay, an in vivo rat erythrocyte micronucleus assay and a 90-day oral toxicity study in rats were conducted. No mutagenic activity was observed in the Ames assay. Equivocal activity in the chromosome aberration assay was not replicated in the micronucleus assay at doses of up to 1007 mg total organic solids (TOS)/kg body weight (bw)/day. Following oral administration of nuclease P1 at dosages of 10.1, 101 or 1007 mg TOS/kg bw/day to Sprague-Dawley rats, no adverse effects on any study parameter were observed. The no-observed-adverse-effect level was considered to be 1007 mg TOS/kg bw/day. The results of the genotoxicity studies and subchronic rat study support the safe use in food production of nuclease P1 produced from P. citrinum. PMID:26686996

  17. Nanoplasmonic molecular ruler for nuclease activity and DNAfootprinting

    SciTech Connect

    Chen, Fanqing Frank; Liu, Gang L.; Yin, Yadong; Gerion, Daniele; Kunchakarra, Siri; Mukherjee, Bipasha; Jett, Stephen D.; Bear, David G.; Alivisatos, Paul; Lee, Luke P.

    2006-08-15

    We have constructed a nanoplasmonic molecular ruler, which can perform label-free and real-time monitoring of DNA length changes and perform DNA footprinting. The ruler was created by tethering double-stranded DNA to single Au nanoparticles. The scattering spectra of Au-DNA nanoconjugates showed red-shifted peak plasmon resonance wavelength dependent on DNA length, which can be measured with sub-nanometer axial resolution, averaging {approx}1.24 nm peak wavelength shift per DNA base pair. The spectra of individual Au-DNA nanoconjugates in the presence of nuclease showed a time-resolved dependence on the reaction dynamics, allowing quantitative, kinetic and real-time measurement of nuclease activity. The ruler was further developed into a new DNA footprinting platform. We showed the specific binding of a protein to DNA and the accurate mapping of its footprint. This work promises a very fast and convenient platform for mapping DNA-protein interactions, for nuclease activity monitoring, and for other DNA size-based methods.

  18. Initiation of DNA damage responses through XPG-related nucleases.

    PubMed

    Kuntz, Karen; O'Connell, Matthew J

    2013-01-23

    Lesion-specific enzymes repair different forms of DNA damage, yet all lesions elicit the same checkpoint response. The common intermediate required to mount a checkpoint response is thought to be single-stranded DNA (ssDNA), coated by replication protein A (RPA) and containing a primer-template junction. To identify factors important for initiating the checkpoint response, we screened for genes that, when overexpressed, could amplify a checkpoint signal to a weak allele of chk1 in fission yeast. We identified Ast1, a novel member of the XPG-related family of endo/exonucleases. Ast1 promotes checkpoint activation caused by the absence of the other XPG-related nucleases, Exo1 and Rad2, the homologue of Fen1. Each nuclease is recruited to DSBs, and promotes the formation of ssDNA for checkpoint activation and recombinational repair. For Rad2 and Exo1, this is independent of their S-phase role in Okazaki fragment processing. This XPG-related pathway is distinct from MRN-dependent responses, and each enzyme is critical for damage resistance in MRN mutants. Thus, multiple nucleases collaborate to initiate DNA damage responses, highlighting the importance of these responses to cellular fitness. PMID:23211746

  19. Periplasmic Acid Stress Increases Cell Division Asymmetry (Polar Aging) of Escherichia coli

    PubMed Central

    Clark, Michelle W.; Yie, Anna M.; Eder, Elizabeth K.; Dennis, Richard G.; Basting, Preston J.; Martinez, Keith A.; Jones, Brian D.; Slonczewski, Joan L.

    2015-01-01

    Under certain kinds of cytoplasmic stress, Escherichia coli selectively reproduce by distributing the newer cytoplasmic components to new-pole cells while sequestering older, damaged components in cells inheriting the old pole. This phenomenon is termed polar aging or cell division asymmetry. It is unknown whether cell division asymmetry can arise from a periplasmic stress, such as the stress of extracellular acid, which is mediated by the periplasm. We tested the effect of periplasmic acid stress on growth and division of adherent single cells. We tracked individual cell lineages over five or more generations, using fluorescence microscopy with ratiometric pHluorin to measure cytoplasmic pH. Adherent colonies were perfused continually with LBK medium buffered at pH 6.00 or at pH 7.50; the external pH determines periplasmic pH. In each experiment, cell lineages were mapped to correlate division time, pole age and cell generation number. In colonies perfused at pH 6.0, the cells inheriting the oldest pole divided significantly more slowly than the cells inheriting the newest pole. In colonies perfused at pH 7.50 (near or above cytoplasmic pH), no significant cell division asymmetry was observed. Under both conditions (periplasmic pH 6.0 or pH 7.5) the cells maintained cytoplasmic pH values at 7.2–7.3. No evidence of cytoplasmic protein aggregation was seen. Thus, periplasmic acid stress leads to cell division asymmetry with minimal cytoplasmic stress. PMID:26713733

  20. The periplasmic alpha-carbonic anhydrase activity of Helicobacter pylori is essential for acid acclimation.

    PubMed

    Marcus, Elizabeth A; Moshfegh, Amiel P; Sachs, George; Scott, David R

    2005-01-01

    The role of the periplasmic alpha-carbonic anhydrase (alpha-CA) (HP1186) in acid acclimation of Helicobacter pylori was investigated. Urease and urea influx through UreI have been shown to be essential for gastric colonization and for acid survival in vitro. Intrabacterial urease generation of NH3 has a major role in regulation of periplasmic pH and inner membrane potential under acidic conditions, allowing adequate bioenergetics for survival and growth. Since alpha-CA catalyzes the conversion of CO2 to HCO3-, the role of CO2 in periplasmic buffering was studied using an alpha-CA deletion mutant and the CA inhibitor acetazolamide. Western analysis confirmed that alpha-CA was bound to the inner membrane. Immunoblots and PCR confirmed the absence of the enzyme and the gene in the alpha-CA knockout. In the mutant or in the presence of acetazolamide, there was an approximately 3 log10 decrease in acid survival. In acid, absence of alpha-CA activity decreased membrane integrity, as observed using membrane-permeant and -impermeant fluorescent DNA dyes. The increase in membrane potential and cytoplasmic buffering following urea addition to wild-type organisms in acid was absent in the alpha-CA knockout mutant and in the presence of acetazolamide, although UreI and urease remained fully functional. At low pH, the elevation of cytoplasmic and periplasmic pH with urea was abolished in the absence of alpha-CA activity. Hence, buffering of the periplasm to a pH consistent with viability depends not only on NH3 efflux from the cytoplasm but also on the conversion of CO2, produced by urease, to HCO3- by the periplasmic alpha-CA. PMID:15629943

  1. Osmoregulated Periplasmic Glucans (OPGs) of Salmonella enterica serovars Typhimurium are needed for optimal growth under nutrient limiting- hypoosmotic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osmoregulated periplasmic glucans (OPGs) are major periplasmic constituents of gram negative bacteria. Synthesis of OPGs is regulated by the osmolarity of the growth medium. The role of OPGs has been postulated in plant-symbiotic as well as pathogenic microorganisms. On the other hand, opg mutant...

  2. The nuclease FAN1 is involved in DNA crosslink repair in Arabidopsis thaliana independently of the nuclease MUS81

    PubMed Central

    Herrmann, Natalie J.; Knoll, Alexander; Puchta, Holger

    2015-01-01

    Fanconi anemia is a severe genetic disorder. Mutations in one of several genes lead to defects in DNA crosslink (CL) repair in human cells. An essential step in CL repair is the activation of the pathway by the monoubiquitination of the heterodimer FANCD2/FANCI, which recruits the nuclease FAN1 to the CL site. Surprisingly, FAN1 function is not conserved between different eukaryotes. No FAN1 homolog is present in Drosophila and Saccharomyces cerevisiae. The FAN1 homolog in Schizosaccharomyces pombe is involved in CL repair; a homolog is present in Xenopus but is not involved in CL repair. Here we show that a FAN1 homolog is present in plants and it is involved in CL repair in Arabidopsis thaliana. Both the virus-type replication-repair nuclease and the ubiquitin-binding ubiquitin-binding zinc finger domains are essential for this function. FAN1 likely acts upstream of two sub-pathways of CL repair. These pathways are defined by the Bloom syndrome homolog RECQ4A and the ATPase RAD5A, which is involved in error-free post-replicative repair. Mutations in both FAN1 and the endonuclease MUS81 resulted in greater sensitivity against CLs than in the respective single mutants. These results indicate that the two nucleases define two independent pathways of CL repair in plants. PMID:25779053

  3. Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CRISPR-Cas9.

    PubMed

    Koo, Taeyoung; Lee, Jungjoon; Kim, Jin-Soo

    2015-06-01

    Programmable nucleases, which include zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and RNA-guided engineered nucleases (RGENs) repurposed from the type II clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system are now widely used for genome editing in higher eukaryotic cells and whole organisms, revolutionising almost every discipline in biological research, medicine, and biotechnology. All of these nucleases, however, induce off-target mutations at sites homologous in sequence with on-target sites, limiting their utility in many applications including gene or cell therapy. In this review, we compare methods for detecting nuclease off-target mutations. We also review methods for profiling genome-wide off-target effects and discuss how to reduce or avoid off-target mutations. PMID:25985872

  4. Membrane topology and functional importance of the periplasmic region of ABC transporter LolCDE.

    PubMed

    Yasuda, Masaki; Iguchi-Yokoyama, Asako; Matsuyama, Shin-ichi; Tokuda, Hajime; Narita, Shin-ichiro

    2009-10-01

    The LolCDE complex is an ATP-binding cassette transporter that mediates the release of newly synthesized lipoproteins from the cytoplasmic membrane of gram-negative bacteria, which results in the initiation of outer-membrane sorting of lipoproteins through the Lol pathway. LolCDE is composed of one copy each of membrane subunits LolC and LolE, and two copies of nucleotide-binding subunit LolD. In this study, we examined the membrane topology of LolC and LolE by PhoA fusion analysis. Both LolC and LolE were found to have four transmembrane segments with a large periplasmic loop exposed to the periplasm. Despite similarities in sequence and topology, the accessibility of a sulfhydryl reagent to Cys introduced into the periplasmic loop suggested that the structure of the periplasmic region differs between LolC and LolE. Inhibition of the release of lipoproteins by the sulfhydryl reagent supported a previous proposal that LolC and LolE have distinct functions. PMID:19809197

  5. A bacterial glutathione transporter (Escherichia coli CydDC) exports reductant to the periplasm.

    PubMed

    Pittman, Marc S; Robinson, Hilary C; Poole, Robert K

    2005-09-16

    Glutathione (GSH), a major biological antioxidant, maintains redox balance in prokaryotes and eukaryotic cells and forms exportable conjugates with compounds of pharmacological and agronomic importance. However, no GSH transporter has been characterized in a prokaryote. We show here that a heterodimeric ATP-binding cassette-type transporter, CydDC, mediates GSH transport across the Escherichia coli cytoplasmic membrane. In everted membrane vesicles, GSH is imported via an ATP-driven, protonophore-insensitive, orthovanadate-sensitive mechanism, equating with export to the periplasm in intact cells. GSH transport and cytochrome bd quinol oxidase assembly are abolished in the cydD1 mutant. Glutathione disulfide (GSSG) was not transported in either Cyd(+) or Cyd(-) strains. Exogenous GSH restores defective swarming motility and benzylpenicillin sensitivity in a cydD mutant and also benzylpenicillin sensitivity in a gshA mutant defective in GSH synthesis. Overexpression of the cydDC operon in dsbD mutants defective in disulfide bond formation restores dithiothreitol tolerance and periplasmic cytochrome b assembly, revealing redundant pathways for reductant export to the periplasm. These results identify the first prokaryotic GSH transporter and indicate a key role for GSH in periplasmic redox homeostasis. PMID:16040611

  6. Antigenic determinants of the membrane-bound hydrogenase in Alcaligenes eutrophus are exposed toward the periplasm.

    PubMed Central

    Eismann, K; Mlejnek, K; Zipprich, D; Hoppert, M; Gerberding, H; Mayer, F

    1995-01-01

    Electron microscopic immunogold labeling experiments were performed with ultrathin sections of plasmolyzed cells of Alcaligenes eutrophus and "whole-mount" samples of spheroplasts and protoplasts. They demonstrated that antigenic determinants of the membrane-bound hydrogenase are exposed, at the outside of the cytoplasmic membrane, to the periplasm. PMID:7592402

  7. Role of anionic charges of periplasmic glucans of Shigella flexneri in overcoming detergent stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osmoregulated periplasmic glucans (OPGs) are synthesized by the members of the family Enterobacteriaceae when grown under low osmotic growth conditions. Enteropathogens such as Shigella flexneri spend considerable time outside the host environment such as irrigation waters where low nutrient low os...

  8. Structural Basis for c-di-GMP-Mediated Inside-Out Signaling Controlling Periplasmic Proteolysis

    PubMed Central

    Madden, Dean R.; O'Toole, George A.; Sondermann, Holger

    2011-01-01

    The bacterial second messenger bis-(3′–5′) cyclic dimeric guanosine monophosphate (c-di-GMP) has emerged as a central regulator for biofilm formation. Increased cellular c-di-GMP levels lead to stable cell attachment, which in Pseudomonas fluorescens requires the transmembrane receptor LapD. LapD exhibits a conserved and widely used modular architecture containing a HAMP domain and degenerate diguanylate cyclase and phosphodiesterase domains. c-di-GMP binding to the LapD degenerate phosphodiesterase domain is communicated via the HAMP relay to the periplasmic domain, triggering sequestration of the protease LapG, thus preventing cleavage of the surface adhesin LapA. Here, we elucidate the molecular mechanism of autoinhibition and activation of LapD based on structure–function analyses and crystal structures of the entire periplasmic domain and the intracellular signaling unit in two different states. In the absence of c-di-GMP, the intracellular module assumes an inactive conformation. Binding of c-di-GMP to the phosphodiesterase domain disrupts the inactive state, permitting the formation of a trans-subunit dimer interface between adjacent phosphodiesterase domains via interactions conserved in c-di-GMP-degrading enzymes. Efficient mechanical coupling of the conformational changes across the membrane is realized through an extensively domain-swapped, unique periplasmic fold. Our structural and functional analyses identified a conserved system for the regulation of periplasmic proteases in a wide variety of bacteria, including many free-living and pathogenic species. PMID:21304926

  9. Osmoregulated periplasmic glucans of Salmonella enterica serovar Typhimurium are required for optimal virulence in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We purified osmoregulated periplasmic glucans (OPGs) from Salmonella enterica serovar Typhimurium and found them to be composed of 100% glucose with 2-linked glucose as the most abundant residue with terminal glucose, 2,3-linked and 2,6-linked glucose also present in high quantities. The two structu...

  10. Promoterless gene targeting without nucleases ameliorates haemophilia B in mice.

    PubMed

    Barzel, A; Paulk, N K; Shi, Y; Huang, Y; Chu, K; Zhang, F; Valdmanis, P N; Spector, L P; Porteus, M H; Gaensler, K M; Kay, M A

    2015-01-15

    Site-specific gene addition can allow stable transgene expression for gene therapy. When possible, this is preferred over the use of promiscuously integrating vectors, which are sometimes associated with clonal expansion and oncogenesis. Site-specific endonucleases that can induce high rates of targeted genome editing are finding increasing applications in biological discovery and gene therapy. However, two safety concerns persist: endonuclease-associated adverse effects, both on-target and off-target; and oncogene activation caused by promoter integration, even without nucleases. Here we perform recombinant adeno-associated virus (rAAV)-mediated promoterless gene targeting without nucleases and demonstrate amelioration of the bleeding diathesis in haemophilia B mice. In particular, we target a promoterless human coagulation factor IX (F9) gene to the liver-expressed mouse albumin (Alb) locus. F9 is targeted, along with a preceding 2A-peptide coding sequence, to be integrated just upstream to the Alb stop codon. While F9 is fused to Alb at the DNA and RNA levels, two separate proteins are synthesized by way of ribosomal skipping. Thus, F9 expression is linked to robust hepatic albumin expression without disrupting it. We injected an AAV8-F9 vector into neonatal and adult mice and achieved on-target integration into ∼0.5% of the albumin alleles in hepatocytes. We established that F9 was produced only from on-target integration, and ribosomal skipping was highly efficient. Stable F9 plasma levels at 7-20% of normal were obtained, and treated F9-deficient mice had normal coagulation times. In conclusion, transgene integration as a 2A-fusion to a highly expressed endogenous gene may obviate the requirement for nucleases and/or vector-borne promoters. This method may allow for safe and efficacious gene targeting in both infants and adults by greatly diminishing off-target effects while still providing therapeutic levels of expression from integration. PMID:25363772

  11. Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans: a high throughput proteomics analysis.

    PubMed

    Chi, An; Valenzuela, Lissette; Beard, Simon; Mackey, Aaron J; Shabanowitz, Jeffrey; Hunt, Donald F; Jerez, Carlos A

    2007-12-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile capable of obtaining energy by oxidizing ferrous iron or sulfur compounds such as metal sulfides. Some of the proteins involved in these oxidations have been described as forming part of the periplasm of this extremophile. The detailed study of the periplasmic components constitutes an important area to understand the physiology and environmental interactions of microorganisms. Proteomics analysis of the periplasmic fraction of A. ferrooxidans ATCC 23270 was performed by using high resolution linear ion trap-FT MS. We identified a total of 131 proteins in the periplasm of the microorganism grown in thiosulfate. When possible, functional categories were assigned to the proteins: 13.8% were transport and binding proteins, 14.6% were several kinds of cell envelope proteins, 10.8% were involved in energy metabolism, 10% were related to protein fate and folding, 10% were proteins with unknown functions, and 26.1% were proteins without homologues in databases. These last proteins are most likely characteristic of A. ferrooxidans and may have important roles yet to be assigned. The majority of the periplasmic proteins from A. ferrooxidans were very basic compared with those of neutrophilic microorganisms such as Escherichia coli, suggesting a special adaptation of the chemolithoautotrophic bacterium to its very acidic environment. The high throughput proteomics approach used here not only helps to understand the physiology of this extreme acidophile but also offers an important contribution to the functional annotation for the available genomes of biomining microorganisms such as A. ferrooxidans for which no efficient genetic systems are available to disrupt genes by procedures such as homologous recombination. PMID:17911085

  12. Nanoplasmonic molecular ruler for nuclease activity and DNA footprinting

    DOEpatents

    Chen, Fanqing Frank; Liu, Gang L; Lee, Luke P

    2013-10-29

    This invention provides a nanoplasmonic molecular ruler, which can perform label-free and real-time monitoring of nucleic acid (e.g., DNA) length changes and perform nucleic acid footprinting. In various embodiments the ruler comprises a nucleic acid attached to a nanoparticle, such that changes in the nucleic acid length are detectable using surface plasmon resonance. The nanoplasmonic ruler provides a fast and convenient platform for mapping nucleic acid-protein interactions, for nuclease activity monitoring, and for other footprinting related methods.

  13. Top-Down Characterization of the Post-Translationally Modified Intact Periplasmic Proteome from the Bacterium Novosphingobium aromaticivorans

    DOE PAGESBeta

    Wu, Si; Brown, Roslyn N.; Payne, Samuel H.; Meng, Da; Zhao, Rui; Tolić, Nikola; Cao, Li; Shukla, Anil; Monroe, Matthew E.; Moore, Ronald J.; et al

    2013-01-01

    The periplasm of Gram-negative bacteria is a dynamic and physiologically important subcellular compartment where the constant exposure to potential environmental insults amplifies the need for proper protein folding and modifications. Top-down proteomics analysis of the periplasmic fraction at the intact protein level provides unrestricted characterization and annotation of the periplasmic proteome, including the post-translational modifications (PTMs) on these proteins. Here, we used single-dimension ultra-high pressure liquid chromatography coupled with the Fourier transform mass spectrometry (FTMS) to investigate the intact periplasmic proteome of Novosphingobium aromaticivorans . Our top-down analysis provided the confident identification of 55 proteins in the periplasm andmore » characterized their PTMs including signal peptide removal, N-terminal methionine excision, acetylation, glutathionylation, pyroglutamate, and disulfide bond formation. This study provides the first experimental evidence for the expression and periplasmic localization of many hypothetical and uncharacterized proteins and the first unrestrictive, large-scale data on PTMs in the bacterial periplasm.« less

  14. The Stable Interaction Between Signal Peptidase LepB of Escherichia coli and Nuclease Bacteriocins Promotes Toxin Entry into the Cytoplasm.

    PubMed

    Mora, Liliana; Moncoq, Karine; England, Patrick; Oberto, Jacques; de Zamaroczy, Miklos

    2015-12-25

    LepB is a key membrane component of the cellular secretion machinery, which releases secreted proteins into the periplasm by cleaving the inner membrane-bound leader. We showed that LepB is also an essential component of the machinery hijacked by the tRNase colicin D for its import. Here we demonstrate that this non-catalytic activity of LepB is to promote the association of the central domain of colicin D with the inner membrane before the FtsH-dependent proteolytic processing and translocation of the toxic tRNase domain into the cytoplasm. The novel structural role of LepB results in a stable interaction with colicin D, with a stoichiometry of 1:1 and a nanomolar Kd determined in vitro. LepB provides a chaperone-like function for the penetration of several nuclease-type bacteriocins into target cells. The colicin-LepB interaction is shown to require only a short peptide sequence within the central domain of these bacteriocins and to involve residues present in the short C-terminal Box E of LepB. Genomic screening identified the conserved LepB binding motif in colicin-like ORFs from 13 additional bacterial species. These findings establish a new paradigm for the functional adaptability of an essential inner-membrane enzyme. PMID:26499796

  15. Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump

    PubMed Central

    Hinchliffe, Philip; Greene, Nicholas P.; Paterson, Neil G.; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2014-01-01

    Periplasmic adaptor proteins are key components of bacterial tripartite efflux pumps. The 2.85 Å resolution structure of an MFS (major facilitator superfamily) pump adaptor, Aquifex aeolicus EmrA, shows linearly arranged α-helical coiled-coil, lipoyl, and β-barrel domains, but lacks the fourth membrane-proximal domain shown in other pumps to interact with the inner membrane transporter. The adaptor α-hairpin, which binds outer membrane TolC, is exceptionally long at 127 Å, and the β-barrel contains a conserved disordered loop. The structure extends the view of adaptors as flexible, modular components that mediate diverse pump assembly, and suggests that in MFS tripartite pumps a hexamer of adaptors could provide a periplasmic seal. PMID:24996185

  16. Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump.

    PubMed

    Hinchliffe, Philip; Greene, Nicholas P; Paterson, Neil G; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2014-08-25

    Periplasmic adaptor proteins are key components of bacterial tripartite efflux pumps. The 2.85 Å resolution structure of an MFS (major facilitator superfamily) pump adaptor, Aquifex aeolicus EmrA, shows linearly arranged α-helical coiled-coil, lipoyl, and β-barrel domains, but lacks the fourth membrane-proximal domain shown in other pumps to interact with the inner membrane transporter. The adaptor α-hairpin, which binds outer membrane TolC, is exceptionally long at 127 Å, and the β-barrel contains a conserved disordered loop. The structure extends the view of adaptors as flexible, modular components that mediate diverse pump assembly, and suggests that in MFS tripartite pumps a hexamer of adaptors could provide a periplasmic seal. PMID:24996185

  17. The release and characterization of some periplasm-located enzymes of Pseudomona aeruginosa.

    PubMed

    Bhatti, A R; DeVoe, I W; Ingram, J M

    1976-10-01

    Pseudomonas aeruginosa (ATCC 9027) releases four periplasm-located enzymes, i.e., ribonuclease (EC 3.1.4.22; EC 3.1.4.23), alkaline phosphatase (EC 3.1.3.1), cyclic-2', 3'-phosphodiesterase (EC 3.1.4.d), and 5'-nucleotidase (EC 3.1.3.5) into the medium during growth. Ribonuclease and alkaline phosphatase are classed as enzymes which are readily extracted by osmotic shock and spheroplast formation whereas cyclic-2',3'-phosphodiesterase and 5'-nucleotidase are classed as enzymes which are not readily extracted by these procedures. In view of the relative ease of extraction of the former enzymes it is suggested that the lattter enzymes, cyclic-2',3'-phosphodiesterase and 5'-nucleotidase, are bound and located in the periplasm in a manner different to ribonuclease and alkaline phosphatase. PMID:184895

  18. Histochemical and biochemical urease localization in the periplasm and outer membrane of two Proteus mirabilis strains.

    PubMed

    McLean, R J; Cheng, K J; Gould, W D; Nickel, J C; Costerton, J W

    1986-10-01

    Proteus mirabilis, a gram-negative bacillus, is often implicated in the formation of infectious kidney stones. As ureolytic activity of this organism is thought to play a major role in its pathogenesis, we adapted our recently described urease localization technique to visualize urease activity in vivo. Urease activity was ultrastructurally localized in two clinically isolated P. mirabilis strains by precipitating the enzymatic reaction product (ammonia) with sodium tetraphenylboron. Subsequent silver staining of the cells revealed urease activity to be predominantly associated with the periplasm and outer membranes of each strain. Biochemical measurements of urease activity in P. mirabilis cell fractions correlated well with histochemical observations in that the majority of urease activity was associated with the periplasm. Membrane-bound urease activity of these strains was associated mainly with the peptidoglycan in the detergent-insoluble (outer membrane) fraction. PMID:3539291

  19. The bent-end morphology of Treponema phagedenis is associated with short, left-handed, periplasmic flagella.

    PubMed Central

    Charon, N W; Goldstein, S F; Curci, K; Limberger, R J

    1991-01-01

    Treponema phagedenis Kazan 5 is a spirochete with multiple periplasmic flagella attached near each end of the cell cylinder. Dark-field microscopy revealed that most of the cell is right-handed (helix diameter, 0.23 micron; helix pitch, 1.74 microns), and the ends appear bent. These ends could move and gyrate while the central part of the cell remained stationary. The present study examines the basis for the bent-end characteristic. Motility mutants deficient in periplasmic flagella were found to lack the bent ends, and spontaneous revertants to motility regained the periplasmic flagella and bent-end characteristic. The length of the bent ends (2.40 microns) was found to be similar to the length of the periplasmic flagella as determined by electron microscopy (2.50 microns). The helix diameter of the bent ends was 0.57 micron, and the helix pitch of the bent ends was 1.85 microns. The periplasmic flagella were short relative to the length of the cells (15 microns) and, in contrast to the reports of others, did not overlap in the center of the cell. Similar results were found with T. phagedenis Reiter. The results taken together indicate that there is a causal relationship between the bent-end morphology and the presence of short periplasmic flagella. We report the first three-dimensional description of spirochete periplasmic flagella. Dark-field microscopy of purified periplasmic flagella revealed that these organelles were left-handed (helix diameter, 0.36 microns; helix pitch, 1.26 microns) and only 1 to 2 wavelengths long. Because of a right-handed cell cylinder and left-handed periplasmic flagella along with bent ends having helix diameters greater than those of either the cell cylinder or periplasmic flagella, we conclude that there is a complex interaction of the periplasmic flagella and the cell cylinder to form the bent ends. The results are discussed with respect to a possible mechanism of T. phagedenis motility. Images PMID:1856175

  20. Mechanism of ATPase-mediated Cu+ Export and Delivery to Periplasmic Chaperones

    PubMed Central

    Padilla-Benavides, Teresita; George Thompson, Alayna M.; McEvoy, Megan M.; Argüello, José M.

    2014-01-01

    Cellular copper homeostasis requires transmembrane transport and compartmental trafficking while maintaining the cell essentially free of uncomplexed Cu2+/+. In bacteria, soluble cytoplasmic and periplasmic chaperones bind and deliver Cu+ to target transporters or metalloenzymes. Transmembrane Cu+-ATPases couple the hydrolysis of ATP to the efflux of cytoplasmic Cu+. Cytosolic Cu+ chaperones (CopZ) interact with a structural platform in Cu+-ATPases (CopA) and deliver copper into the ion permeation path. CusF is a periplasmic Cu+ chaperone that supplies Cu+ to the CusCBA system for efflux to the extracellular milieu. In this report, using Escherichia coli CopA and CusF, direct Cu+ transfer from the ATPase to the periplasmic chaperone was observed. This required the specific interaction of the Cu+-bound form of CopA with apo-CusF for subsequent metal transfer upon ATP hydrolysis. As expected, the reverse Cu+ transfer from CusF to CopA was not observed. Mutation of CopA extracellular loops or the electropositive surface of CusF led to a decrease in Cu+ transfer efficiency. On the other hand, mutation of Met and Glu residues proposed to be part of the metal exit site in the ATPase yielded enzymes with lower turnover rates, although Cu+ transfer was minimally affected. These results show how soluble chaperones obtain Cu+ from transmembrane transporters. Furthermore, by explaining the movement of Cu+ from the cytoplasmic pool to the extracellular milieu, these data support a mechanism by which cytoplasmic Cu+ can be precisely directed to periplasmic targets via specific transporter-chaperone interactions. PMID:24917681

  1. Periplasmic chaperone FkpA is essential for imported colicin M toxicity

    PubMed Central

    Hullmann, Julia; Patzer, Silke I; Römer, Christin; Hantke, Klaus; Braun, Volkmar

    2008-01-01

    Chaperones facilitate correct folding of newly synthesized proteins. We show here that the periplasmic FkpA chaperone is required for killing Escherichia coli by colicin M entering cells from the outside. Highly active colicin M preparations were inactive against fkpA mutant cells; 104-fold dilutions killed fkpA+ cells. Three previously isolated spontaneous mutants tolerant to colicin M carried a stop codon or an IS1 insertion in the peptidyl-prolyl-cis-trans-isomerase (PPIase) domain (C-domain) of FkpA, which resulted in deletion of the domain. A randomly generated mutant carried a G148D mutation in the C-domain. A temperature-sensitive mutant tolerant to colicin M carried a Y25N mutation in the FkpA N-domain. Mutants transformed with wild-type fkpA were colicin M-sensitive. Isolated FkpA-His reduced colicin M-His cleavage by proteinase K and renatured denatured colicin M-His in vitro; renaturation was prevented by the PPIase inhibitor FK506. In both assays, periplasmic SurA-His had no effect. No other tested periplasmic chaperone could activate colicin M. Among the tested colicins, only colicin M required FkpA for activity. Colicin M bound to cells via FhuA was inactivated by trypsin; unbound colicin M retained activity. We propose that colicin M unfolds during import across the outer membrane, FkpA specifically assists in folding colicin M into an active toxin in the periplasm and PPIase is essential for colicin M activity. Colicin M is a suitable tool for the isolation of FkpA mutants used to elucidate the functions of the FkpA N- and C-domains. PMID:18554332

  2. Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha.

    PubMed

    Berks, B C; Richardson, D J; Robinson, C; Reilly, A; Aplin, R T; Ferguson, S J

    1994-02-15

    The periplasmic nitrate reductase of Thiosphaera pantotropha has been purified from a mutant strain (M-6) that overproduces the enzyme activity under anaerobic growth conditions. The enzyme is a complex of a 93-kDa polypeptide and a 16-kDa nitrate-oxidizable cytochrome c552. The complex contains molybdenum; a fluorescent compound with spectral features of a pterin derivative can be extracted. In contrast to the dissimilatory membrane-bound nitrate reductases, the periplasmic nitrate reductase shows high specificity for nitrate as a substrate and is insensitive to inhibition by azide. The 93-kDa subunit exhibits immunological cross-reactivity with the catalytic subunit of Rhodobacter capsulatus N22DNAR+ periplasmic nitrate reductase. Mass spectrometric comparisons of holo-cytochrome c552 and apo-cytochrome c552 demonstrated that the polypeptide bound two haem groups. Mediated redox potentiometry of the cytochrome indicated that the haem groups have reduction potentials (pH = 7.0) of approximately -15 mV and + 80 mV. The functional significance of these potentials is discussed in relation to the proposed physiological role of the enzyme as a redox valve. PMID:8119278

  3. Two regions of mature periplasmic maltose-binding protein of Escherichia coli involved in secretion.

    PubMed

    Duplay, P; Hofnung, M

    1988-10-01

    Six mutations in malE, the structural gene for the periplasmic maltose-binding protein (MBP) from Escherichia coli, prevent growth on maltose as a carbon source, as well as release of the mutant proteins by the cold osmotic-shock procedure. These mutations correspond to insertion of an oligonucleotide linker, concomitant with a deletion. One of the mutations (malE127) affects the N-terminal extension (the signal peptide), whereas the five others lie within the mature protein. As expected, the export of protein MalE127 is blocked at an early stage. This protein is neither processed to maturity nor sensitive to proteinase K in spheroplasts. In contrast, in the five other mutants, the signal peptide is cleaved and the protein is accessible to proteinase K added to spheroplasts. This indicates that the five mutant proteins are, at least in part, exported through the inner membrane. We propose that the corresponding mutations define two regions of the mature protein (between residues 18 and 42 and between residues 280 and 306), which are important for release of the protein from the inner membrane into the periplasm. We discuss the results in terms of possible conformational changes at this late step of export to the periplasm. PMID:3049532

  4. Periplasmic production via the pET expression system of soluble, bioactive human growth hormone.

    PubMed

    Sockolosky, Jonathan T; Szoka, Francis C

    2013-02-01

    A pET based expression system for the production of recombinant human growth hormone (hGH) directed to the Escherichia coli periplasmic space was developed. The pET22b plasmid was used as a template for creating vectors that encode hGH fused to either a pelB or ompA secretion signal under control of the strong bacteriophage T7 promoter. The pelB- and ompA-hGH constructs expressed in BL21 (λDE3)-RIPL E. coli are secreted into the periplasm which facilitates isolation of soluble hGH by selective disruption of the outer membrane. A carboxy-terminal poly-histidine tag enabled purification by Ni(2+) affinity chromatography with an average yield of 1.4 mg/L culture of purified hGH, independent of secretion signal. Purified pelB- and ompA-hGH are monomeric based on size exclusion chromatography with an intact mass corresponding to mature hGH indicating proper cleavage of the signal peptide and folding in the periplasm. Both pelB- and ompA-hGH bind the hGH receptor with high affinity and potently stimulate Nb2 cell growth. These results demonstrate that the pET expression system is suitable for the rapid and simple isolation of bioactive, soluble hGH from E. coli. PMID:23168094

  5. Targeted Mutagenesis in Zebrafish Using CRISPR RNA-Guided Nucleases.

    PubMed

    Hwang, Woong Y; Fu, Yanfang; Reyon, Deepak; Gonzales, Andrew P W; Joung, J Keith; Yeh, Jing-Ruey Joanna

    2015-01-01

    In recent years, the zebrafish has become a critical contributor to various areas of biomedical research, advancing our fundamental understanding of biomedicine and helping discover candidate therapeutics for human diseases. Nevertheless, to further extend the power of this important model organism requires a robust and simple-to-use genome editing platform that will enable targeted gene knockouts and introduction of specific mutations identified in human diseases into the zebrafish genome. We describe here protocols for creating insertion or deletion (indel) mutations or precise sequence modifications in zebrafish genes using customizable CRISPR-Cas9 RNA-guided nucleases (RGNs). These methods can be easily implemented in any lab and may also potentially be extended for use in other organisms. PMID:25981483

  6. Targeted Mutagenesis in Zebrafish Using Customized Zinc Finger Nucleases

    PubMed Central

    Foley, Jonathan E.; Maeder, Morgan L.; Pearlberg, Joseph; Joung, J. Keith; Peterson, Randall T.; Yeh, Jing-Ruey J.

    2009-01-01

    Zebrafish mutants have traditionally been obtained using random mutagenesis or retroviral insertions, methods that cannot be targeted to a specific gene and require laborious gene mapping and sequencing. Recently, we and others have shown that customized zinc finger nucleases (ZFNs) can introduce targeted frame-shift mutations with high efficiency, thereby enabling directed creation of zebrafish gene mutations. Here we describe a detailed protocol for constructing ZFN expression vectors, for generating and introducing ZFN-encoding RNAs into zebrafish embryos, and for identifying ZFN-generated mutations in targeted genomic sites. All of our vectors and methods are compatible with previously described Zinc Finger Consortium reagents for constructing engineered zinc finger arrays. Using these methods, zebrafish founders carrying targeted mutations can be identified within four months. PMID:20010934

  7. Contribution of nuclease to the pathogenesis of Aeromonas hydrophila

    PubMed Central

    Ji, Yachan; Li, Jinquan; Qin, Zhendong; Li, Aihua; Gu, Zemao; Liu, Xiaoling; Lin, Li; Zhou, Yang

    2015-01-01

    Aeromonas hydrophila is a gram-negative bacterium that is widely distributed in aquatic environments and can cause septicemia in both fish and humans. However, the underlying mechanisms leading to severe infection are not well understood. In this study, an A. hydrophila nuclease (ahn) deletion mutant was constructed to investigate its contribution to pathogenesis. This mutant did not differ from the wild-type strain in terms of its growth or hemolytic phenotype. However, the ahn-deficient mutant was more susceptible to being killed by fish macrophages and mouse blood in vitro. Furthermore, evidence obtained using both fish and murine infection models strongly indicated that the inactivation of Ahn impaired the ability of A. hydrophila to evade innate immune clearance in vivo. More importantly, the virulence of the mutant was attenuated in both fish and mice, with reductions in dissemination capacities and mortality rates. These findings implicate Ahn in A. hydrophila virulence, with important functions in evading innate immune defenses. PMID:26039879

  8. Designer Nuclease-Mediated Generation of Knockout THP1 Cells.

    PubMed

    Schmidt, Tobias; Schmid-Burgk, Jonathan L; Ebert, Thomas S; Gaidt, Moritz M; Hornung, Veit

    2016-01-01

    Recent developments in the field of designer nucleases allow the efficient and specific manipulation of genomic architectures in eukaryotic cell lines. To this end, it has become possible to introduce DNA double strand breaks (DSBs) at user-defined genomic loci. If located in critical coding regions of genes, thus induced DSBs can lead to insertions or deletions (indels) that result in frameshift mutations and thereby the knockout of the target gene. In this chapter, we describe a step-by-step workflow for establishing knockout cell clones of the difficult-to-transfect suspension cell line THP1. The here described protocol encompasses electroporation, cell cloning, and a deep sequencing-based genotyping step that allows the in-parallel analysis of 96 cell clones per gene of interest. Furthermore, we describe the use of the analysis tool OutKnocker that allows rapid identification of cell clones with all-allelic frameshift mutations. PMID:26443227

  9. Characterization of Rv0888, a Novel Extracellular Nuclease from Mycobacterium tuberculosis

    PubMed Central

    Dang, Guanghui; Cao, Jun; Cui, Yingying; Song, Ningning; Chen, Liping; Pang, Hai; Liu, Siguo

    2016-01-01

    Bacterial extracellular nucleases play important roles in virulence, biofilm formation, utilization of extracellular DNA as a nutrient, and degradation of neutrophil DNA extracellular traps. However, there is no current data available for extracellular nucleases derived from M. tuberculosis. Herein, we have identified and characterized Rv0888, an extracellular nuclease in M. tuberculosis. The protein was overexpressed in E. coli, and the purified Rv0888 protein was found to require divalent cations for activity, with an optimal temperature and pH of 41 °C and 6.5, respectively. Further results demonstrated that Rv0888 nuclease activity could be inhibited by four Chinese medicine monomers. Based on sequence analysis, Rv0888 nuclease exhibited no homology with any known extracellular nucleases, indicating that Rv0888 is a novel nuclease. Site-directed mutagenesis studies revealed that the H353, D387, and D438 residues play catalytic roles in Rv0888. In vivo infection studies confirmed that Rv0888 is required for infection and is related to pathogenicity, as the persistent ability of recombinant Mycobacterium smegmatis (rMS) Rv0888NS/MS and Rv0888S/MS is significantly higher than pMV262/MS in the lung tissue, and the Rv0888NS/MS and Rv0888S/MS could produce pathological changes in the mice lung. These results show that Rv0888 is relevant to pathogenicity of M. tuberculosis. PMID:26742696

  10. Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells.

    PubMed

    Liu, Jia; Gaj, Thomas; Yang, Yifeng; Wang, Nan; Shui, Sailan; Kim, Sojung; Kanchiswamy, Chidananda Nagamangala; Kim, Jin-Soo; Barbas, Carlos F

    2015-11-01

    Targeted nucleases, including zinc-finger nucleases (ZFNs), transcription activator-like (TAL) effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9), have provided researchers with the ability to manipulate nearly any genomic sequence in human cells and model organisms. However, realizing the full potential of these genome-modifying technologies requires their safe and efficient delivery into relevant cell types. Unlike methods that rely on expression from nucleic acids, the direct delivery of nuclease proteins to cells provides rapid action and fast turnover, leading to fewer off-target effects while maintaining high rates of targeted modification. These features make nuclease protein delivery particularly well suited for precision genome engineering. Here we describe procedures for implementing protein-based genome editing in human embryonic stem cells and primary cells. Protocols for the expression, purification and delivery of ZFN proteins, which are intrinsically cell-permeable; TALEN proteins, which can be internalized via conjugation with cell-penetrating peptide moieties; and Cas9 ribonucleoprotein, whose nucleofection into cells facilitates rapid induction of multiplexed modifications, are described, along with procedures for evaluating nuclease protein activity. Once they are constructed, nuclease proteins can be expressed and purified within 6 d, and they can be used to induce genomic modifications in human cells within 2 d. PMID:26492140

  11. Surface-Bound Nuclease of Staphylococcus aureus: Localization of the Enzyme

    PubMed Central

    Okabayashi, Kinji; Mizuno, Den'ichi

    1974-01-01

    The cellular localization of staphylococcus nuclease, previously known as an exoenzyme, was investigated, and the following results were obtained. (i) When Staphylococcus aureus cells were converted to protoplasts by cell wall lytic enzyme L-11 (a bacteriolytic enzyme purified from Flavobacterium sp. which specifically hydrolyzes amide and peptide linkages of murein layers), over 80% of the cell-bound nuclease was released into the surrounding sucrose medium. (ii) The cell-bound nuclease was associated with the cell-wall membrane fraction of mechanically disrupted cells. (iii) The nuclease activity of cell-wall membrane fractions from cells during early and late stages of protoplast formation were compared. Less activity was found in the late stage. These results suggest that nuclease may be located at or near the surface of the cells. The distribution of cell-bound nuclease in the cell-wall membrane fraction varied with the growth conditions of S. aureus. The activity of alkaline phosphatase, another surface enzyme, was also investigated. Less of this enzyme than nuclease was released when the cells were converted to protoplasts. PMID:4587603

  12. Mycoplasma gallisepticum MGA_0676 is a membrane-associated cytotoxic nuclease with a staphylococcal nuclease region essential for nuclear translocation and apoptosis induction in chicken cells.

    PubMed

    Xu, Jian; Teng, Da; Jiang, Fei; Zhang, Yuewei; El-Ashram, Saeed A; Wang, Hui; Sun, Zhenhong; He, Jinyan; Shen, Junjun; Wu, Wenxue; Li, Jinxiang

    2015-02-01

    Mycoplasma gallisepticum can infect a wide variety of birds including the commercial poultry. M. gallisepticum MGA_0676 is a putative lipoprotein, which is similar to bacterial thermostable nucleases. But the possible pathogenic effect of M. gallisepticum MGA_0676 has not been investigated so far. In the present study, we cloned the MGA_0676 gene after deletion of the amino-terminal signal sequence and mutagenesis of the Mycoplasma TGA tryptophan codons to TGG and expressed recombinant MGA_0676 protein in Escherichia coli. We identified and characterized MGA_0676 as a Ca(2+)-dependent cytotoxic nuclease of M. gallisepticum with a staphylococcal nuclease (SNc) region that displays the hallmarks of nucleases. Membrane protein immunoblot analysis and immunogold electron microscopy revealed that MGA_0676 locates on the membrane surface of M. gallisepticum. Furthermore, apoptosis assay using annexin V-FITC and propidium iodide (annexin V/PI) indicated that MGA_0676 played significant roles in apoptosis induction and pathological damages in chicken cells. Moreover, confocal microscopy showed that MGA_0676 localizes in the nuclei of host cells. Besides, after the SNc region was deleted, MGA_0676 lost its ability of nuclear localization, nuclease activity, and cytotoxicity, which revealed that the SNc region is essential for nuclear translocation and induction of apoptosis in chicken cells. The above results suggest that MGA_0676 is an important virulence factor in cellular pathology and may play a unique role in the life cycle events of M. gallisepticum. PMID:25363559

  13. Comparison of the large-scale periplasmic proteomes of the Escherichia coli K-12 and B strains.

    PubMed

    Han, Mee-Jung; Kim, Jin Young; Kim, Jung A

    2014-04-01

    Escherichia coli typically secretes many proteins into the periplasmic space, and the periplasmic proteins have been used for the secretory production of various proteins by the biotechnology industry. However, the identity of all of the E. coli periplasmic proteins remains unknown. Here, high-resolution periplasmic proteome reference maps of the E. coli K-12 and B strains were constructed and compared. Of the 145 proteins identified by tandem mass spectrometry, 61 proteins were conserved in the two strains, whereas 11 and 12 strain-specific proteins were identified for the E. coli K-12 and B strains, respectively. In addition, 27 proteins exhibited differences in intensities greater than 2-fold between the K-12 and B strains. The periplasmic proteins MalE and OppA were the most abundant proteins in the two E. coli strains. Distinctive differences between the two strains included several proteins that were caused by genetic variations, such as CybC, FliC, FliY, KpsD, MglB, ModA, and Ybl119, hydrolytic enzymes, particularly phosphatases, glycosylases, and proteases, and many uncharacterized proteins. Compared to previous studies, the localization of many proteins, including 30 proteins for the K-12 strain and 53 proteins for the B strain, was newly identified as periplasmic. This study identifies the largest number of proteins in the E. coli periplasm as well as the dynamics of these proteins. Additionally, these findings are summarized as reference proteome maps that will be useful for studying protein secretion and may provide new strategies for the enhanced secretory production of recombinant proteins. PMID:24140104

  14. Evaluation of Biological and Physical Protection against Nuclease Degradation of Clay-Bound Plasmid DNA

    PubMed Central

    Demanèche, Sandrine; Jocteur-Monrozier, Lucile; Quiquampoix, Hervé; Simonet, Pascal

    2001-01-01

    In order to determine the mechanisms involved in the persistence of extracellular DNA in soils and to monitor whether bacterial transformation could occur in such an environment, we developed artificial models composed of plasmid DNA adsorbed on clay particles. We determined that clay-bound DNA submitted to an increasing range of nuclease concentrations was physically protected. The protection mechanism was mainly related to the adsorption of the nuclease on the clay mineral. The biological potential of the resulting DNA was monitored by transforming the naturally competent proteobacterium Acinetobacter sp. strain BD413, allowing us to demonstrate that adsorbed DNA was only partially available for transformation. This part of the clay-bound DNA which was available for bacteria, was also accessible to nucleases, while the remaining fraction escaped both transformation and degradation. Finally, transformation efficiency was related to the perpetuation mechanism, with homologous recombination being less sensitive to nucleases than autonomous replication, which requires intact molecules. PMID:11133458

  15. Structure-Specific nuclease activities of Artemis and the Artemis: DNA-PKcs complex

    PubMed Central

    Chang, Howard H.Y.; Lieber, Michael R.

    2016-01-01

    Artemis is a vertebrate nuclease with both endo- and exonuclease activities that acts on a wide range of nucleic acid substrates. It is the main nuclease in the non-homologous DNA end-joining pathway (NHEJ). Not only is Artemis important for the repair of DNA double-strand breaks (DSBs) in NHEJ, it is essential in opening the DNA hairpin intermediates that are formed during V(D)J recombination. Thus, humans with Artemis deficiencies do not have T- or B-lymphocytes and are diagnosed with severe combined immunodeficiency (SCID). While Artemis is the only vertebrate nuclease capable of opening DNA hairpins, it has also been found to act on other DNA substrates that share common structural features. Here, we discuss the key structural features that all Artemis DNA substrates have in common, thus providing a basis for understanding how this structure-specific nuclease recognizes its DNA targets. PMID:27198222

  16. Targeting of a Nuclease to Murine Leukemia Virus Capsids Inhibits Viral Multiplication

    NASA Astrophysics Data System (ADS)

    Natsoulis, Georges; Seshaiah, Partha; Federspiel, Mark J.; Rein, Alan; Hughes, Stephen H.; Boeke, Jef D.

    1995-01-01

    Capsid-targeted viral inactivation is an antiviral strategy in which toxic fusion proteins are targeted to virions, where they inhibit viral multiplication by destroying viral components. These fusion proteins consist of a virion structural protein moiety and an enzymatic moiety such as a nuclease. Such fusion proteins can severely inhibit transposition of yeast retrotransposon Ty1, an element whose transposition mechanistically resembles retroviral multiplication. We demonstrate that expression of a murine retrovirus capsid-staphylococcal nuclease fusion protein inhibits multiplication of the corresponding murine leukemia virus by 30- to 100-fold. Staphylococcal nuclease is apparently inactive intracellularly and hence nontoxic to the host cell, but it is active extracellularly because of its requirement for high concentrations of Ca2+ ions. Virions assembled in and shed from cells expressing the fusion protein contain very small amounts of intact viral RNA, as would be predicted for nuclease-mediated inhibition of viral multiplication.

  17. A baculovirus alkaline nuclease knockout construct produces fragmented DNA and aberrant capsids

    SciTech Connect

    Okano, Kazuhiro; Vanarsdall, Adam L.; Rohrmann, George F. . E-mail: rohrmanng@orst.edu

    2007-03-01

    DNA replication of bacmid-derived constructs of the Autographa californica multiple nucleocapsid nucleopolyhedrovirus (AcMNPV) was analyzed by field inversion gel electrophoresis (FIGE) in combination with digestion at a unique Eco81I restriction enzyme site. Three constructs were characterized: a parental bacmid, a bacmid deleted for the alkaline nuclease gene, and a bacmid from which the gp64 gene had been deleted. The latter was employed as a control for comparison with the alkaline nuclease knockout because neither yields infectious virus and their replication is limited to the initially transfected cells. The major difference between DNA replicated by the different constructs was the presence in the alkaline nuclease knockout of high concentrations of relatively small, subgenome length DNA in preparations not treated with Eco81I. Furthermore, upon Eco81I digestion, the alkaline nuclease knockout bacmid also yielded substantially more subgenome size DNA than the other constructs. Electron microscopic examination of cells transfected with the alkaline nuclease knockout indicated that, in addition to a limited number of normal-appearing electron-dense nucleocapsids, numerous aberrant capsid-like structures were observed indicating a defect in nucleocapsid maturation or in a DNA processing step that is necessary for encapsidation. Because of the documented role of the baculovirus alkaline nuclease and its homologs from other viruses in homologous recombination, these data suggest that DNA recombination may play a major role in the production of baculovirus genomes.

  18. Role of the nuclease of nontypeable Haemophilus influenzae in dispersal of organisms from biofilms.

    PubMed

    Cho, Christine; Chande, Aroon; Gakhar, Lokesh; Bakaletz, Lauren O; Jurcisek, Joseph A; Ketterer, Margaret; Shao, Jian; Gotoh, Kenji; Foster, Eric; Hunt, Jason; O'Brien, Erin; Apicella, Michael A

    2015-03-01

    Nontypeable Haemophilus influenzae (NTHI) forms biofilms in the middle ear during human infection. The biofilm matrix of NTHI contains extracellular DNA. We show that NTHI possesses a potent nuclease, which is a homolog of the thermonuclease of Staphylococcus aureus. Using a biofilm dispersal assay, studies showed a biofilm dispersal pattern in the parent strain, no evidence of dispersal in the nuclease mutant, and a partial return of dispersion in the complemented mutant. Quantitative PCR of mRNA from biofilms from a 24-h continuous flow system demonstrated a significantly increased expression of the nuclease from planktonic organisms compared to those in the biofilm phase of growth (P < 0.042). Microscopic analysis of biofilms grown in vitro showed that in the nuclease mutant the nucleic acid matrix was increased compared to the wild-type and complemented strains. Organisms were typically found in large aggregates, unlike the wild-type and complement biofilms in which the organisms were evenly dispersed throughout the biofilm. At 48 h, the majority of the organisms in the mutant biofilm were dead. The nuclease mutant formed a biofilm in the chinchilla model of otitis media and demonstrated a propensity to also form similar large aggregates of organisms. These studies indicate that NTHI nuclease is involved in biofilm remodeling and organism dispersal. PMID:25547799

  19. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases.

    PubMed

    Frock, Richard L; Hu, Jiazhi; Meyers, Robin M; Ho, Yu-Jui; Kii, Erina; Alt, Frederick W

    2015-02-01

    Although great progress has been made in the characterization of the off-target effects of engineered nucleases, sensitive and unbiased genome-wide methods for the detection of off-target cleavage events and potential collateral damage are still lacking. Here we describe a linear amplification-mediated modification of a previously published high-throughput, genome-wide, translocation sequencing (HTGTS) method that robustly detects DNA double-stranded breaks (DSBs) generated by engineered nucleases across the human genome based on their translocation to other endogenous or ectopic DSBs. HTGTS with different Cas9:sgRNA or TALEN nucleases revealed off-target hotspot numbers for given nucleases that ranged from a few or none to dozens or more, and extended the number of known off-targets for certain previously characterized nucleases more than tenfold. We also identified translocations between bona fide nuclease targets on homologous chromosomes, an undesired collateral effect that has not been described previously. Finally, HTGTS confirmed that the Cas9D10A paired nickase approach suppresses off-target cleavage genome-wide. PMID:25503383

  20. The Cytoplasmic and Periplasmic Expression Levels and Folding of Organophosphorus Hydrolase Enzyme in Escherichia coli

    PubMed Central

    Latifi, Ali Mohammad; Khajeh, Khosro; Farnoosh, Gholamreza; Hassanpour, Kazem; Khodi, Samaneh

    2015-01-01

    Background: Organophosphorus hydrolase (OPH) is a type of organophosphate-degrading enzyme which is widely used in the bioremediation process. Objectives: In this study, the periplasmic and cytoplasmic productions and the activity of recombinant OPH in Escherichia coli were investigated and compared using two pET systems (pET21a and pET26b). Materials and Methods: The sequence encoding the opd gene was synthesized and expressed in the form of inclusion body using pET21a-opd and in the periplasmic space in pET26b-opd. Results: Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed a band of about 37 kDa with a maximum expression level at 30°C from pET21a-opd.However, the obtained results of the periplasmic space extraction of OPH (pET26b-opd) showed a very weak band, while the cytoplasmic expression of OPH (pET21a-opd) produced a strong protein band. Conclusions: The activities studied by the production of PNP were determined by following the increase at 410 nm. The maximum PNP was produced at 30°C with an optical density of 10.62 in the presence of cytoplasmic expression of OPH (pET21a-opd). Consequently, our results suggest cytoplasmic expression system as an appropriate candidate with a high amount of OPH in spite of inclusion body formation, which needs an additional refolding step. PMID:26870308

  1. Mutations in Cytochrome Assembly and Periplasmic Redox Pathways in Bordetella pertussis

    PubMed Central

    Feissner, Robert E.; Beckett, Caroline S.; Loughman, Jennifer A.; Kranz, Robert G.

    2005-01-01

    Transposon mutagenesis of Bordetella pertussis was used to discover mutations in the cytochrome c biogenesis pathway called system II. Using a tetramethyl-p-phenylenediamine cytochrome c oxidase screen, 27 oxidase-negative mutants were isolated and characterized. Nine mutants were still able to synthesize c-type cytochromes and possessed insertions in the genes for cytochrome c oxidase subunits (ctaC, -D, and -E), heme a biosynthesis (ctaB), assembly of cytochrome c oxidase (sco2), or ferrochelatase (hemZ). Eighteen mutants were unable to synthesize all c-type cytochromes. Seven of these had transposons in dipZ (dsbD), encoding the transmembrane thioreduction protein, and all seven mutants were corrected for cytochrome c assembly by exogenous dithiothreitol, which was consistent with the cytochrome c cysteinyl residues of the CXXCH motif requiring periplasmic reduction. The remaining 11 insertions were located in the ccsBA operon, suggesting that with the appropriate thiol-reducing environment, the CcsB and CcsA proteins comprise the entire system II biosynthetic pathway. Antiserum to CcsB was used to show that CcsB is absent in ccsA mutants, providing evidence for a stable CcsA-CcsB complex. No mutations were found in the genes necessary for disulfide bond formation (dsbA or dsbB). To examine whether the periplasmic disulfide bond pathway is required for cytochrome c biogenesis in B. pertussis, a targeted knockout was made in dsbB. The DsbB− mutant makes holocytochromes c like the wild type does and secretes and assembles the active periplasmic alkaline phosphatase. A dipZ mutant is not corrected by a dsbB mutation. Alternative mechanisms to oxidize disulfides in B. pertussis are analyzed and discussed. PMID:15937156

  2. Overexpression of Recombinant Human Beta Interferon (rhINF-β) in Periplasmic Space of Escherichia coli

    PubMed Central

    Morowvat, Mohammad Hossein; Babaeipour, Valiollah; Rajabi-Memari, Hamid; Vahidi, Hossein; Maghsoudi, Nader

    2014-01-01

    Human Interferon β (INF-β) is a member of cytokines family which different studies have shown its immunomodulatory and antiviral activities. In this study an expression vector was designed and constructed for expression of human INF-β-1b either in shake flasks or bench top bioreactor. The designed vector was constructed based upon pET-25b(+) with T7 promoter. Recombinant human beta interferon (rhINF-β) was codon optimized and overexpressed as a soluble, N-terminal pelB fusion protein and secreted into the periplasmic space of Escherichia coli BL21 (DE3). The sugar, Isopropyl-β-D-thiogalactopyranoside (IPTG) was used as a chemical inducer for rhINF-β production in the shake flasks and bench top bioreactor. Timing of beta interferon expression was controlled by using the T7 promoter. The rhINF-β protein was extracted from periplasmic space by osmotic shock treatment and the expression of the beta interferon encoding gene in random selected transformants, was confirmed by western and dot blot methods. The maximum of product formation achieved at the OD600nm = 3.42 was found to be 35 % of the total protein content of the strain which translates to 0.32 g L-1. The constructed vector could efficiently overexpress the rhINF-β into the periplasmic space of E. coli. The obtained yield of the produced rhINF-β was more than previous reports. The system is easily adapted to include other vectors, tags or fusions and therefore has the potential to be broadly applicable to express other recombinant proteins. PMID:24711841

  3. Overexpression of Recombinant Human Beta Interferon (rhINF-β) in Periplasmic Space of Escherichia coli.

    PubMed

    Morowvat, Mohammad Hossein; Babaeipour, Valiollah; Rajabi-Memari, Hamid; Vahidi, Hossein; Maghsoudi, Nader

    2014-01-01

    Human Interferon β (INF-β) is a member of cytokines family which different studies have shown its immunomodulatory and antiviral activities. In this study an expression vector was designed and constructed for expression of human INF-β-1b either in shake flasks or bench top bioreactor. The designed vector was constructed based upon pET-25b(+) with T7 promoter. Recombinant human beta interferon (rhINF-β) was codon optimized and overexpressed as a soluble, N-terminal pelB fusion protein and secreted into the periplasmic space of Escherichia coli BL21 (DE3). The sugar, Isopropyl-β-D-thiogalactopyranoside (IPTG) was used as a chemical inducer for rhINF-β production in the shake flasks and bench top bioreactor. Timing of beta interferon expression was controlled by using the T7 promoter. The rhINF-β protein was extracted from periplasmic space by osmotic shock treatment and the expression of the beta interferon encoding gene in random selected transformants, was confirmed by western and dot blot methods. The maximum of product formation achieved at the OD600nm = 3.42 was found to be 35 % of the total protein content of the strain which translates to 0.32 g L-1. The constructed vector could efficiently overexpress the rhINF-β into the periplasmic space of E. coli. The obtained yield of the produced rhINF-β was more than previous reports. The system is easily adapted to include other vectors, tags or fusions and therefore has the potential to be broadly applicable to express other recombinant proteins. PMID:24711841

  4. Top-down characterization of the post-translationally modified intact periplasmic proteome of the bacterium Novosphingobium aromaticivorans

    SciTech Connect

    Wu, Si; Brown, Roslyn N.; Payne, Samuel H.; Meng, Da; Zhao, Rui; Tolic, Nikola; Cao, Li; Shukla, Anil K.; Monroe, Matthew E.; Moore, Ronald J.; Lipton, Mary S.; Pasa-Tolic, Ljiljana

    2013-03-10

    In this study, the intact periplasmic proteome of Novosphingobium aromaticivorans was analyzed. We identified 55 proteins in the periplasm, and characterized their post translational modifications. Proteins were first categorized based on their N-terminal processing: 17 proteins were identified with removal of signal peptides containing the canonical A-X-A motif, 8 proteins were identified with removal of signal peptides containing non A-X-A motif, 24 proteins were identified with N-terminal methione excision (NME), and 4 proteins were identified with other N-terminal processing (e.g. complex proteolysis). Only 2 proteins were identified with no N-terminal modifications. Other observed protein post-translational modifications included acetylation, glutathiolynation, pyroglutamate modification, disulfide bond formation, etc. In summary, we analyzed the intact periplasmic proteins of N. aromaticivorans in a high throughput fashion, and provided a catalogue of information on post-translational modifications observed in this dynamic subcellular fraction. This study provides the first experimental evidence for the expression and periplasmic localization of hypothetical and uncharacterized proteins, and the first unrestrictive, large-scale data on post-translational modifications in the bacterial periplasm.

  5. Effect of codon-optimized E. coli signal peptides on recombinant Bacillus stearothermophilus maltogenic amylase periplasmic localization, yield and activity.

    PubMed

    Samant, Shalaka; Gupta, Gunja; Karthikeyan, Subbulakshmi; Haq, Saiful F; Nair, Ayyappan; Sambasivam, Ganesh; Sukumaran, Sunilkumar

    2014-09-01

    Recombinant proteins can be targeted to the Escherichia coli periplasm by fusing them to signal peptides. The popular pET vectors facilitate fusion of target proteins to the PelB signal. A systematic comparison of the PelB signal with native E. coli signal peptides for recombinant protein expression and periplasmic localization is not reported. We chose the Bacillus stearothermophilus maltogenic amylase (MA), an industrial enzyme widely used in the baking and brewing industry, as a model protein and analyzed the competence of seven, codon-optimized, E. coli signal sequences to translocate MA to the E. coli periplasm compared to PelB. MA fusions to three of the signals facilitated enhanced periplasmic localization of MA compared to the PelB fusion. Interestingly, these three fusions showed greatly improved MA yields and between 18- and 50-fold improved amylase activities compared to the PelB fusion. Previously, non-optimal codon usage in native E. coli signal peptide sequences has been reported to be important for protein stability and activity. Our results suggest that E. coli signal peptides with optimal codon usage could also be beneficial for heterologous protein secretion to the periplasm. Moreover, such fusions could even enhance activity rather than diminish it. This effect, to our knowledge has not been previously documented. In addition, the seven vector platform reported here could also be used as a screen to identify the best signal peptide partner for other recombinant targets of interest. PMID:25038884

  6. Purification and characterization of periplasmic alpha-amylase from Xanthomonas campestris K-11151.

    PubMed Central

    Abe, J; Onitsuka, N; Nakano, T; Shibata, Y; Hizukuri, S; Entani, E

    1994-01-01

    Xanthomonas campestris K-11151, isolated from soil, produced a periplasmic alpha-amylase of a new type. The enzyme was purified to homogeneity, as shown by several criteria. The purified enzyme showed almost the same activities on alpha-, beta-, and gamma-cyclodextrins, soluble starch, and amylose. Moreover, it was active on branched cyclodextrins, pullulan, and maltose but not on glycogen. Kinetic analysis showed that alpha-cyclodextrin was the best substrate among the cyclodextrins. The substrate specificity suggested that this enzyme had the combined activities of alpha-amylase, cyclodextrinase, and neopullulanase. Images PMID:8206836

  7. Crystal Structure of a Histidine Kinase Sensor Domain with Similarity to Periplasmic Binding Proteins

    SciTech Connect

    Cheung, J.; Le-Khac, M; Hendrickson, W

    2009-01-01

    Histidine kinase receptors are elements of the two-component signal transduction systems commonly found in bacteria and lower eukaryotes, where they are crucial for environmental adaption through the coupling of extracellular changes to intracellular responses. The typical two-component system consists of a membrane-spanning histidine kinase sensor and a cytoplasmic response regulator. In the calssic system, extracellular signals such as small molecule ligands and ions are detected by the periplasmic sensor domain of the histidine kinase receptor, which modulates the catalytic activity of the cytoplasmic histidine kinase domain and promotes ATP-dependent autophosphorylation of a conserved histidine residue. G. sulfurreducens genomic DNA was used.

  8. Identification of periplasmic nitrate reductase Mo(V) EPR signals in intact cells of Paracoccus denitrificans.

    PubMed

    Sears, H J; Bennett, B; Spiro, S; Thomson, A J; Richardson, D J

    1995-08-15

    EPR spectroscopy has been successfully used to detect signals due to molybdenum (V) and ferric iron in intact cells of aerobically grown Paracoccus denitrificans. The signals are ascribed to the catalytic molybdenum centre and to the haem iron of the periplasmic nitrate reductase. These signals are absent from a mutant strain deficient in this enzyme. The Mo(V) signal is due to the High-g Split species which has been well characterized in the purified enzyme. This confirms that the High-g Split is the physiologically relevant signal of a number observed in the previous work on the purified enzyme. PMID:7646461

  9. Nuclease-Assisted Suppression of Human DNA Background in Sepsis

    PubMed Central

    Song, Yajing; Giske, Christian G.; Gille-Johnson, Patrik; Emanuelsson, Olof; Lundeberg, Joakim; Gyarmati, Peter

    2014-01-01

    Sepsis is a severe medical condition characterized by a systemic inflammatory response of the body caused by pathogenic microorganisms in the bloodstream. Blood or plasma is typically used for diagnosis, both containing large amount of human DNA, greatly exceeding the DNA of microbial origin. In order to enrich bacterial DNA, we applied the C0t effect to reduce human DNA background: a model system was set up with human and Escherichia coli (E. coli) DNA to mimic the conditions of bloodstream infections; and this system was adapted to plasma and blood samples from septic patients. As a consequence of the C0t effect, abundant DNA hybridizes faster than rare DNA. Following denaturation and re-hybridization, the amount of abundant DNA can be decreased with the application of double strand specific nucleases, leaving the non-hybridized rare DNA intact. Our experiments show that human DNA concentration can be reduced approximately 100,000-fold without affecting the E. coli DNA concentration in a model system with similarly sized amplicons. With clinical samples, the human DNA background was decreased 100-fold, as bacterial genomes are approximately 1,000-fold smaller compared to the human genome. According to our results, background suppression can be a valuable tool to enrich rare DNA in clinical samples where a high amount of background DNA can be found. PMID:25076135

  10. Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases.

    PubMed

    Christian, Michelle; Qi, Yiping; Zhang, Yong; Voytas, Daniel F

    2013-10-01

    Custom TAL effector nucleases (TALENs) are increasingly used as reagents to manipulate genomes in vivo. Here, we used TALENs to modify the genome of the model plant, Arabidopsis thaliana. We engineered seven TALENs targeting five Arabidopsis genes, namely ADH1, TT4, MAPKKK1, DSK2B, and NATA2. In pooled seedlings expressing the TALENs, we observed somatic mutagenesis frequencies ranging from 2-15% at the intended targets for all seven TALENs. Somatic mutagenesis frequencies as high as 41-73% were observed in individual transgenic plant lines expressing the TALENs. Additionally, a TALEN pair targeting a tandemly duplicated gene induced a 4.4-kb deletion in somatic cells. For the most active TALEN pairs, namely those targeting ADH1 and NATA2, we found that TALEN-induced mutations were transmitted to the next generation at frequencies of 1.5-12%. Our work demonstrates that TALENs are useful reagents for achieving targeted mutagenesis in this important plant model. PMID:23979944

  11. Myostatin gene mutated mice induced with tale nucleases.

    PubMed

    Zhou, Fangfang; Sun, Ruilin; Chen, Hongyan; Fei, Jian; Lu, Daru

    2015-01-01

    Myostain gene (MSTN) is expressed primarily in skeletal muscle, and negatively regulates skeletal muscle mass; it has been suggested that mice with MSTN inhibition have reduced adiposity and improved insulin sensitivity. Therefore, it is important to establish a fast and effective gene editing method. In this report, we established the myostatin mutated-mouse model by microinjection of Transcription Activator-Like Effector Nucleases (TALENs) mRNA within the mouse fertilized oocytes and achieved high rates of mutagenesis of the mouse MSTN in C57BL/6J. Six of 45 born mice carried target mutations and we appointed one as the parental mating with wild mouse to produce the F1 and backcross to produce the F2 generation. All the mutations of the mice were examined quickly and efficiently by high-resolution melting curve analysis (HRMA) and then verified by direct sequencing. We obtained the homozygous of the F2 generation which transmitted the mutant alleles to the progeny with 100% efficiency. Mutant mice exhibited increases in muscle mass comparable to those observed in wild-type mice. Therefore, combining TALEN-mediated gene targeting with HRMA technology is a superior method of constructing genetically modified mice through microinjection in the mouse fertilized oocytes with high efficiency and short time of selection. PMID:25695746

  12. Generation of albino Xenopus tropicalis using zinc-finger nucleases.

    PubMed

    Nakajima, Keisuke; Nakajima, Taeko; Takase, Minoru; Yaoita, Yoshio

    2012-12-01

    To generate albino lines of Xenopus tropicalis, we injected fertilized eggs with mRNAs encoding zinc-finger nucleases (ZFNs) targeting the tyrosinase coding region. Surprisingly, vitiligo was observed on the skin of F0 frogs that had been injected with ZFN mRNAs, indicating that both tyrosinase genes in the genome were disrupted in all melanocytes within the vitiligo patches. Mutation analysis using genomic DNA from the skin revealed that two mosaic F0 frogs underwent spatially complex tyrosinase gene mutations. The data implies that the ZFN-induced tyrosinase gene ablations occurred randomly over space and time throughout the entire body, possibly until the young tadpole stage, and that melanocyte precursors lacking functional tyrosinase proliferated and formed vitiligo patches. Several albino X. tropicalis, which are compound heterozygotes for biallelic tyrosinase mutations, were obtained by mating the mosaic F0 frogs. To our knowledge, this is the first report of the albino vertebrates generated by the targeted gene knockout. PMID:23106502

  13. Targeted chromosomal deletions in human cells using zinc finger nucleases.

    PubMed

    Lee, Hyung Joo; Kim, Eunji; Kim, Jin-Soo

    2010-01-01

    We present a novel approach for generating targeted deletions of genomic segments in human and other eukaryotic cells using engineered zinc finger nucleases (ZFNs). We found that ZFNs designed to target two different sites in a human chromosome could introduce two concurrent DNA double-strand breaks (DSBs) in the chromosome and give rise to targeted deletions of the genomic segment between the two sites. Using this method in human cells, we were able to delete predetermined genomic DNA segments in the range of several-hundred base pairs (bp) to 15 mega-bp at frequencies of 10(-3) to 10(-1). These high frequencies allowed us to isolate clonal populations of cells, in which the target chromosomal segments were deleted, by limiting dilution. Sequence analysis revealed that many of the deletion junctions contained small insertions or deletions and microhomologies, indicative of DNA repair via nonhomologous end-joining. Unlike other genome engineering tools such as recombinases and meganucleases, ZFNs do not require preinsertion of target sites into the genome and allow precise manipulation of endogenous genomic scripts in animal and plant cells. Thus, ZFN-induced genomic deletions should be broadly useful as a novel method in biomedical research, biotechnology, and gene therapy. PMID:19952142

  14. Chaperone function of FkpA, a heat shock prolyl isomerase, in the periplasm of Escherichia coli.

    PubMed

    Arié, J P; Sassoon, N; Betton, J M

    2001-01-01

    The nature of molecular chaperones in the periplasm of Escherichia coli that assist newly translocated proteins to reach their native state has remained poorly defined. Here, we show that FkpA, a heat shock periplasmic peptidyl-prolyl cis/trans isomerase (PPIase), suppresses the formation of inclusion bodies from a defective-folding variant of the maltose-binding protein, MalE31. This chaperone-like activity of FkpA, which is independent of its PPIase activity, requires a full-length structure of the protein. In vitro, FkpA does not catalyse a slow rate-limiting step in the refolding of MalE31, but prevents its aggregation at stoichiometric amounts and promotes the reactivation of denaturated citrate synthase. We propose that FkpA functions as a chaperone for envelope proteins in the bacterial periplasm. PMID:11123702

  15. Periplasmic Vestibule Determines the Ligand Selectivity in E.Coli AMTB

    NASA Astrophysics Data System (ADS)

    Akgun, Ugur; Khademi, Shahram

    2010-03-01

    The transport of ammonia, fundamental to the nitrogen metabolism in all domains of life, is carried out by the Rh/Amt/MEP membrane protein superfamily. The first structure of this family, AmtB from E.Coli shows a pathway for ammonia that includes two vestibules connected by a long and narrow hydrophobic lumen. The accepted mechanism for AmtB is to recruit NH4^+ and conduct neutral NH3 by deprotonation of NH4^+ at the end of periplasmic vestibule. Here we report from various MD simulations performed using a model of trimeric AmtB embedded into POPE lipid bilayer to determine the mechanism of ligands selectivity and conduction in the ammonia channels. Our total more than 500ns simulations reveal that the AmtB periplasmic vestibule prefers NH4^+ over NH3 and CO2. And the rate of ammonia conduction is regulated by the motion of the phenyl rings at the bottom of the vestibule. We also report that the conserved D160 is essential for ligand conduction by stabilizing the NH4^+ at the recruitment site through charge interactions. Our simulations also suggest NH4^+ most likely releases its proton to the bulk of water as it enters to the hydrophobic lumen.

  16. Periscope: quantitative prediction of soluble protein expression in the periplasm of Escherichia coli.

    PubMed

    Chang, Catherine Ching Han; Li, Chen; Webb, Geoffrey I; Tey, BengTi; Song, Jiangning; Ramanan, Ramakrishnan Nagasundara

    2016-01-01

    Periplasmic expression of soluble proteins in Escherichia coli not only offers a much-simplified downstream purification process, but also enhances the probability of obtaining correctly folded and biologically active proteins. Different combinations of signal peptides and target proteins lead to different soluble protein expression levels, ranging from negligible to several grams per litre. Accurate algorithms for rational selection of promising candidates can serve as a powerful tool to complement with current trial-and-error approaches. Accordingly, proteomics studies can be conducted with greater efficiency and cost-effectiveness. Here, we developed a predictor with a two-stage architecture, to predict the real-valued expression level of target protein in the periplasm. The output of the first-stage support vector machine (SVM) classifier determines which second-stage support vector regression (SVR) classifier to be used. When tested on an independent test dataset, the predictor achieved an overall prediction accuracy of 78% and a Pearson's correlation coefficient (PCC) of 0.77. We further illustrate the relative importance of various features with respect to different models. The results indicate that the occurrence of dipeptide glutamine and aspartic acid is the most important feature for the classification model. Finally, we provide access to the implemented predictor through the Periscope webserver, freely accessible at http://lightning.med.monash.edu/periscope/. PMID:26931649

  17. Engineering and overexpression of periplasmic forms of the penicillin-binding protein 3 of Escherichia coli.

    PubMed Central

    Fraipont, C; Adam, M; Nguyen-Distèche, M; Keck, W; Van Beeumen, J; Ayala, J A; Granier, B; Hara, H; Ghuysen, J M

    1994-01-01

    Replacement of the 36 and 56 N-terminal amino acid residues of the 588-amino-acid-residue membrane-bound penicillin-binding protein 3 (PBP3) of Escherichia coli by the OmpA signal peptide allows export of F37-V577 PBP3 and G57-V577 PBP3 respectively into the periplasm. The modified ftsI genes were placed under the control of the fused lpp promoter and lac promoter/operator; expression of the truncated PBP3s was optimized by varying the copy number of the recombinant plasmids and the amount of LacI repressor, and export was facilitated by increasing the SecB content of the producing strain. The periplasmic PBP3s (yield 8 mg/l of culture) were purified to 70% protein homogeneity. They require the presence of 0.25 M NaCl to remain soluble. Like the membrane-bound PBP3, they undergo processing by elimination of the C-terminal decapeptide I578-S588, they bind penicillin in a 1:1 molar ratio and they catalyse hydrolysis and aminolysis of acyclic thioesters that are analogues of penicillin. The membrane-anchor-free PBP3s have ragged N-termini. The G57-V577 PBP3, however, is less prone to proteolytic degradation than the F37-V577 PBP3. Images Figure 3 PMID:8129719

  18. High-Throughput Detection of Thiamine Using Periplasmic Binding Protein-Based Biorecognition.

    PubMed

    Edwards, Katie A; Seog, Woo Jin; Han, Lu; Feder, Seth; Kraft, Clifford E; Baeumner, Antje J

    2016-08-16

    Although antibodies and aptamers are commonly used bioaffinity recognition elements, they are not available for many important analytes. As an alternative, we demonstrate use of a periplasmic binding protein (PBP) to provide high affinity recognition for thiamine (vitamin B1), an analyte of great importance to human and environmental health for which, like so many other small molecules, no suitable biorecognition element is available. We demonstrate that with an appropriate competitive strategy, a highly sensitive (limit of detection of 0.5 nM) and specific bioassay for thiamine and its phosphorylated derivatives can be designed. The high-throughput method relies upon the thiamine periplasmic binding protein (TBP) from Escherichia coli for thiamine biorecognition and dye-encapsulating liposomes for signal-enhancement. A thiamine monosuccinate-PEG-biotin derivative was synthesized to serve as an immobilized competitor that overcame constraints imposed by the deep binding cleft and structural recognition requirements of PBPs. The assay was applied to ambient environmental samples with high reproducibility. These findings demonstrate that PBPs can serve as highly specific and sensitive affinity recognition elements in bioanalytical assay formats, thereby opening up the field of affinity sensors to a new range of analytes. PMID:27460839

  19. Periscope: quantitative prediction of soluble protein expression in the periplasm of Escherichia coli

    PubMed Central

    Chang, Catherine Ching Han; Li, Chen; Webb, Geoffrey I.; Tey, BengTi; Song, Jiangning; Ramanan, Ramakrishnan Nagasundara

    2016-01-01

    Periplasmic expression of soluble proteins in Escherichia coli not only offers a much-simplified downstream purification process, but also enhances the probability of obtaining correctly folded and biologically active proteins. Different combinations of signal peptides and target proteins lead to different soluble protein expression levels, ranging from negligible to several grams per litre. Accurate algorithms for rational selection of promising candidates can serve as a powerful tool to complement with current trial-and-error approaches. Accordingly, proteomics studies can be conducted with greater efficiency and cost-effectiveness. Here, we developed a predictor with a two-stage architecture, to predict the real-valued expression level of target protein in the periplasm. The output of the first-stage support vector machine (SVM) classifier determines which second-stage support vector regression (SVR) classifier to be used. When tested on an independent test dataset, the predictor achieved an overall prediction accuracy of 78% and a Pearson’s correlation coefficient (PCC) of 0.77. We further illustrate the relative importance of various features with respect to different models. The results indicate that the occurrence of dipeptide glutamine and aspartic acid is the most important feature for the classification model. Finally, we provide access to the implemented predictor through the Periscope webserver, freely accessible at http://lightning.med.monash.edu/periscope/. PMID:26931649

  20. Identification and Characterization of a Periplasmic Aminoacyl-phosphatidylglycerol Hydrolase Responsible for Pseudomonas aeruginosa Lipid Homeostasis*

    PubMed Central

    Arendt, Wiebke; Groenewold, Maike K.; Hebecker, Stefanie; Dickschat, Jeroen S.; Moser, Jürgen

    2013-01-01

    Specific aminoacylation of the phospholipid phosphatidylglycerol (PG) with alanine (or with lysine) was shown to render various organisms less susceptible to antimicrobial agents and environmental stresses. In this study, we make use of the opportunistic pathogen Pseudomonas aeruginosa to decode ORF PA0919-dependent lipid homeostasis. Analysis of the polar lipid content of the deletion mutant ΔPA0919 indicated significantly enlarged levels of alanyl-PG. The resulting phenotype manifested an increased susceptibility to several antimicrobial compounds when compared with the wild type. A pH-dependent PA0919 promoter located within the upstream gene PA0920 was identified. Localization experiments demonstrated that the PA0919 protein is anchored to the periplasmic surface of the inner bacterial membrane. The recombinant overproduction of wild type and several site-directed mutant proteins in the periplasm of Escherichia coli facilitated a detailed in vitro analysis of the enzymatic PA0919 function. A series of artificial substrates (p-nitrophenyl esters of various amino acids/aliphatic acids) indicated enzymatic hydrolysis of the alanine, glycine, or lysine moiety of the respective ester substrates. Our final in vitro activity assay in the presence of radioactively labeled alanyl-PG then revealed hydrolysis of the aminoacyl linkage, resulting in the formation of alanine and PG. Consequently, PA0919 was termed alanyl-PG hydrolase. The elucidated enzymatic activity implies a new regulatory circuit for the appropriate tuning of cellular alanyl-PG concentrations. PMID:23792962

  1. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  2. Cytochromes c biogenesis in a photosynthetic bacterium requires a periplasmic thioredoxin-like protein.

    PubMed Central

    Beckman, D L; Kranz, R G

    1993-01-01

    Rhodobacter capsulatus is a Gram-negative photosynthetic bacterium that requires c-type cytochromes for photosynthetic electron transport. Our studies demonstrate that the gene helX is required for the biogenesis of c-type cytochromes in R. capsulatus. A helX chromosomal deletion mutant cannot grow photosynthetically, due to a deficiency of all c-type cytochromes. The predicted amino acid sequence of the helX gene product (176 residues) is related to that of thioredoxin and shares active-site homology with protein disulfide isomerase. Cytochrome c2-alkaline phosphatase gene fusions are used to show that HelX is not required for the transcription, translation, or secretion of apocytochrome c2. HelX-alkaline phosphatase and HelX-beta-galactosidase gene fusions are used to demonstrate that HelX is a periplasmic protein, which is consistent with the presence of a typical signal sequence in HelX. Based on these results, we propose HelX functions as a periplasmic disulfide oxidoreductase that is essential for cytochromes c biogenesis. This role is in accordance with the observation that both heme and the cysteines of apocytochromes c (Cys-Xaa-Yaa-Cys-His) must be in the reduced state for covalent linkage between the two moieties to occur. PMID:8384715

  3. Label-free fluorometric detection of S1 nuclease activity by using polycytosine oligonucleotide-templated silver nanoclusters.

    PubMed

    Wang, Lihui; Ma, Keke; Zhang, Yaodong

    2014-09-28

    S1 nuclease has an important function in DNA transcription, replication, recombination, and repair. A label-free fluorescent method for the detection of S1 nuclease activity has been developed using polycytosine oligonucleotide-templated silver nanoclusters (dC12-Ag NCs). In this assay, dC12 can function as both the template for the stabilization of Ag NCs and the substrate of the S1 nuclease. Fluorescent Ag NCs could be effectively formed using dC12 as the template without S1 nuclease. In the presence of S1 nuclease, dC12 is degraded to mono- or oligonucleotide fragments, thereby resulting in a reduction in fluorescence. S1 nuclease with an activity as low as 5×10(-8)Uμl(-1) (signal/noise=3) can be determined with a linear range of 5×10(-7) to 1×10(-3)Uμl(-1). The promising application of the proposed method in S1 nuclease inhibitor screening has been demonstrated using pyrophosphate as the model inhibitor. Furthermore, the S1 nuclease concentrations in RPMI 1640 cell medium were validated. The developed method for S1 nuclease is sensitive and facile because its operation does not require any complicated DNA labeling or laborious fluorescent dye synthesis. PMID:25263815

  4. The Quorum-Sensing Hybrid Histidine Kinase LuxN of Vibrio harveyi Contains a Periplasmically Located N Terminus▿

    PubMed Central

    Jung, Kirsten; Odenbach, Tina; Timmen, Melanie

    2007-01-01

    Hydropathy profile analyses of the amino acid sequence of the quorum-sensing hybrid histidine kinase LuxN of Vibrio harveyi predict a periplasmic location of the N terminus. To test this, two-hybrid proteins consisting of LuxN and an N-terminally fused maltose-binding protein with or without a leader sequence were analyzed with regard to the enzymatic activities of LuxN, protease accessibility, and complementation of an Escherichia coli malE mutant. The results strongly support a periplasmic location of the N terminus, implying that LuxN is anchored with nine transmembrane domains in the cytoplasmic membrane. PMID:17259316

  5. Engineered CRISPR-Cas9 nucleases with altered PAM specificities

    PubMed Central

    Kleinstiver, Benjamin P.; Prew, Michelle S.; Tsai, Shengdar Q.; Topkar, Ved; Nguyen, Nhu T.; Zheng, Zongli; Gonzales, Andrew P.W.; Li, Zhuyun; Peterson, Randall T.; Yeh, Jing-Ruey Joanna; Aryee, Martin J.; Joung, J. Keith

    2015-01-01

    Although CRISPR-Cas9 nucleases are widely used for genome editing1, 2, the range of sequences that Cas9 can recognize is constrained by the need for a specific protospacer adjacent motif (PAM)3–6. As a result, it can often be difficult to target double-stranded breaks (DSBs) with the precision that is necessary for various genome editing applications. The ability to engineer Cas9 derivatives with purposefully altered PAM specificities would address this limitation. Here we show that the commonly used Streptococcus pyogenes Cas9 (SpCas9) can be modified to recognize alternative PAM sequences using structural information, bacterial selection-based directed evolution, and combinatorial design. These altered PAM specificity variants enable robust editing of endogenous gene sites in zebrafish and human cells not currently targetable by wild-type SpCas9, and their genome-wide specificities are comparable to wild-type SpCas9 as judged by GUIDE-Seq analysis7. In addition, we identified and characterized another SpCas9 variant that exhibits improved specificity in human cells, possessing better discrimination against off-target sites with non-canonical NAG and NGA PAMs and/or mismatched spacers. We also found that two smaller-size Cas9 orthologues, Streptococcus thermophilus Cas9 (St1Cas9) and Staphylococcus aureus Cas9 (SaCas9), function efficiently in the bacterial selection systems and in human cells, suggesting that our engineering strategies could be extended to Cas9s from other species. Our findings provide broadly useful SpCas9 variants and, more importantly, establish the feasibility of engineering a wide range of Cas9s with altered and improved PAM specificities. PMID:26098369

  6. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.

    PubMed

    Kleinstiver, Benjamin P; Prew, Michelle S; Tsai, Shengdar Q; Topkar, Ved V; Nguyen, Nhu T; Zheng, Zongli; Gonzales, Andrew P W; Li, Zhuyun; Peterson, Randall T; Yeh, Jing-Ruey Joanna; Aryee, Martin J; Joung, J Keith

    2015-07-23

    Although CRISPR-Cas9 nucleases are widely used for genome editing, the range of sequences that Cas9 can recognize is constrained by the need for a specific protospacer adjacent motif (PAM). As a result, it can often be difficult to target double-stranded breaks (DSBs) with the precision that is necessary for various genome-editing applications. The ability to engineer Cas9 derivatives with purposefully altered PAM specificities would address this limitation. Here we show that the commonly used Streptococcus pyogenes Cas9 (SpCas9) can be modified to recognize alternative PAM sequences using structural information, bacterial selection-based directed evolution, and combinatorial design. These altered PAM specificity variants enable robust editing of endogenous gene sites in zebrafish and human cells not currently targetable by wild-type SpCas9, and their genome-wide specificities are comparable to wild-type SpCas9 as judged by GUIDE-seq analysis. In addition, we identify and characterize another SpCas9 variant that exhibits improved specificity in human cells, possessing better discrimination against off-target sites with non-canonical NAG and NGA PAMs and/or mismatched spacers. We also find that two smaller-size Cas9 orthologues, Streptococcus thermophilus Cas9 (St1Cas9) and Staphylococcus aureus Cas9 (SaCas9), function efficiently in the bacterial selection systems and in human cells, suggesting that our engineering strategies could be extended to Cas9s from other species. Our findings provide broadly useful SpCas9 variants and, more importantly, establish the feasibility of engineering a wide range of Cas9s with altered and improved PAM specificities. PMID:26098369

  7. DNA Oxidation Profiles of Copper Phenanthrene Chemical Nucleases

    NASA Astrophysics Data System (ADS)

    Molphy, Zara; Slator, Creina; Chatgilialoglu, Chryssostomos; Kellett, Andrew

    2015-04-01

    The deleterious effects of metal-catalyzed reactive oxygen species (ROS) in biological systems can be seen in a wide variety of pathological conditions including cancer, cardiovascular disease, ageing, and neurodegenerative disorder. On the other hand however, targeted ROS production in the vicinity of nucleic acids - as demonstrated by metal-activated bleomycin - has paved the way for ROS-active chemotherapeutic drug development. Herein we report mechanistic investigations into the oxidative nuclease activity and redox properties of copper(II) developmental therapeutics [Cu(DPQ)(phen)]2+ (Cu-DPQ-Phen), [Cu(DPPZ)(phen)]2+ (Cu-DPPZ-Phen), and [{Cu(phen)2}2(μ-terph)](terph) (Cu-Terph), with results being compared directly to Sigman’s reagent [Cu(phen)2]2+ throughout (phen = 1,10-phenanthroline; DPQ = dipyridoquinoxaline; DPPZ = dipyridophenazine). Oxidative DNA damage was identified at the minor groove through use of surface bound recognition elements of methyl green, netropsin, and [Co(NH3)6]Cl3 that functioned to control complex accessibility at selected regions. ROS-specific scavengers and stabilisers were employed to identify the cleavage process, the results of which infer hydrogen peroxide produced metal-hydroxo or free hydroxyl radicals (•OH) as the predominant species. The extent of DNA damage owing to these radicals was then quantified through 8-oxo-2'-deoxyguanosine (8-oxo-dG) lesion detection under ELISA protocol with the overall trend following Cu-DPQ-Phen > Cu-Terph > Cu-Phen > Cu-DPPZ. Finally, the effects of oxidative damage on DNA replication processes were investigated using the polymerase chain reaction (PCR) where amplification of 120 base pair DNA sequences of varying base content were inhibited - particularly along A-T rich chains - through oxidative damage of the template strands.

  8. Osmoregulated periplasmic glucans are needed for competitive growth and biofilm formation by Salmonella enterica serovar Typhimurium in leafy-green vegetable wash-waters and colonization in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osmoregulated periplasmic glucans (OPGs) are major periplasmic constituents of Gram negative bacteria. The role of OPGs has been postulated in symbiotic as well as pathogenic host-microbe interactions. Here we report the role of OPGs from Salmonella enterica serovar Typhimurium during growth and b...

  9. Protein folding in the periplasm in the absence of primary oxidant DsbA: modulation of redox potential in periplasmic space via OmpL porin

    PubMed Central

    Dartigalongue, Claire; Nikaido, Hiroshi; Raina, Satish

    2000-01-01

    Disulfide bond formation in Escherichia coli is a catalyzed reaction accomplished by DsbA. We found that null mutations in a new porin gene, ompL, allowed a total bypass of the DsbA requirement for protein oxidation. These mutations acted as extragenic null suppressors for dsbA, and restored normal folding of alkaline phosphatase and relieved sensitivity to dithiothreitol. ompL dsbA double mutants were completely like wild-type mutants in terms of motility and lack of mucoidy. This suppression was not dependent on DsbC and DsbG, since the oxidation status of these proteins was unaltered in ompL dsbA strains. Purified OmpL allowed diffusion of small solutes, including sugars, but the suppression was not dependent on the carbon sources used. Suppression by ompL null mutations required DsbB, leading us to propose a hypothesis that DsbB oxidizes yet unidentified, low-molecular-weight redox agents in the periplasm. These oxidized agents accumulate and substitute for DsbA if their leakage into the medium is prevented by the absence of OmpL, presumed to form a specific channel for their diffusion. PMID:11080145

  10. AdnAB: a new DSB-resecting motor-nuclease from mycobacteria.

    PubMed

    Sinha, Krishna Murari; Unciuleac, Mihaela-Carmen; Glickman, Michael S; Shuman, Stewart

    2009-06-15

    The resection of DNA double-strand breaks (DSBs) in bacteria is a motor-driven process performed by a multisubunit helicase-nuclease complex: either an Escherichia coli-type RecBCD enzyme or a Bacillus-type AddAB enzyme. Here we identify mycobacterial AdnAB as the founder of a new family of heterodimeric helicase-nucleases with distinctive properties. The AdnA and AdnB subunits are each composed of an N-terminal UvrD-like motor domain and a C-terminal nuclease module. The AdnAB ATPase is triggered by dsDNA with free ends and the energy of ATP hydrolysis is coupled to DSB end resection by the AdnAB nuclease. The mycobacterial nonhomologous end-joining (NHEJ) protein Ku protects DSBs from resection by AdnAB. We find that AdnAB incises ssDNA by measuring the distance from the free 5' end to dictate the sites of cleavage, which are predominantly 5 or 6 nucleotides (nt) from the 5' end. The "molecular ruler" of AdnAB is regulated by ATP, which elicits an increase in ssDNA cleavage rate and a distal displacement of the cleavage sites 16-17 nt from the 5' terminus. AdnAB is a dual nuclease with a clear division of labor between the subunits. Mutations in the nuclease active site of the AdnB subunit ablate the ATP-inducible cleavages; the corresponding changes in AdnA abolish ATP-independent cleavage. Complete suppression of DSB end resection requires simultaneous mutation of both subunit nucleases. The nuclease-null AdnAB is a helicase that unwinds linear plasmid DNA without degrading the displaced single strands. Mutations of the phosphohydrolase active site of the AdnB subunit ablate DNA-dependent ATPase activity, DSB end resection, and ATP-inducible ssDNA cleavage; the equivalent mutations of the AdnA subunit have comparatively little effect. AdnAB is a novel signature of the Actinomycetales taxon. Mycobacteria are exceptional in that they encode both AdnAB and RecBCD, suggesting the existence of alternative end-resecting motor-nuclease complexes. PMID:19470566

  11. Nuclease activity of Saccharomyces cerevisiae Dna2 inhibits its potent DNA helicase activity

    PubMed Central

    Levikova, Maryna; Klaue, Daniel; Seidel, Ralf; Cejka, Petr

    2013-01-01

    Dna2 is a nuclease-helicase involved in several key pathways of eukaryotic DNA metabolism. The potent nuclease activity of Saccharomyces cerevisiae Dna2 was reported to be required for all its in vivo functions tested to date. In contrast, its helicase activity was shown to be weak, and its inactivation affected only a subset of Dna2 functions. We describe here a complex interplay of the two enzymatic activities. We show that the nuclease of Dna2 inhibits its helicase by cleaving 5′ flaps that are required by the helicase domain for loading onto its substrate. Mutational inactivation of Dna2 nuclease unleashes unexpectedly vigorous DNA unwinding activity, comparable with that of the most potent eukaryotic helicases. Thus, the ssDNA-specific nuclease activity of Dna2 limits and controls the enzyme's capacity to unwind dsDNA. We postulate that regulation of this interplay could modulate the biochemical properties of Dna2 and thus license it to carry out its distinct cellular functions. PMID:23671118

  12. Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases.

    PubMed

    Hu, Johnny H; Davis, Kevin M; Liu, David R

    2016-01-21

    Programmable DNA nucleases have provided scientists with the unprecedented ability to probe, regulate, and manipulate the human genome. Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeat-Cas9 system (CRISPR-Cas9) represent a powerful array of tools that can bind to and cleave a specified DNA sequence. In their canonical forms, these nucleases induce double-strand breaks at a DNA locus of interest that can trigger cellular DNA repair processes that disrupt or replace genes. The fusion of these programmable nucleases with a variety of other protein domains has led to a rapidly growing suite of tools for activating, repressing, visualizing, and modifying loci of interest. Maximizing the usefulness and therapeutic relevance of these tools, however, requires precisely controlling their activity and specificity to minimize potentially toxic side effects arising from off-target activities. This need has motivated the application of chemical biology principles and methods to genome-editing proteins, including the engineering of variants of these proteins with improved or altered specificities, and the development of genetic, chemical, optical, and protein delivery methods that control the activity of these agents in cells. Advancing the capabilities, safety, effectiveness, and therapeutic relevance of genome-engineering proteins will continue to rely on chemical biology strategies that manipulate their activity, specificity, and localization. PMID:26933736

  13. Quantification of designer nuclease induced mutation rates: a direct comparison of different methods

    PubMed Central

    Ehrke-Schulz, Eric; Bergmann, Thorsten; Schiwon, Maren; Doerner, Johannes; Saydaminova, Kamola; Lieber, Andre; Ehrhardt, Anja

    2016-01-01

    Designer nucleases are broadly applied to induce site-specific DNA double-strand breaks (DSB) in genomic DNA. These are repaired by nonhomologous end joining leading to insertions or deletions (in/dels) at the respective DNA-locus. To detect in/del mutations, the heteroduplex based T7-endonuclease I -assay is widely used. However, it only provides semi-quantitative evidence regarding the number of mutated alleles. Here we compared T7-endonuclease I- and heteroduplex mobility assays, with a quantitative polymerase chain reaction mutation detection method. A zinc finger nuclease pair specific for the human adeno-associated virus integration site 1 (AAVS1), a transcription activator-like effector nuclease pair specific for the human DMD gene, and a zinc finger nuclease- and a transcription activator-like effector nuclease pair specific for the human CCR5 gene were explored. We found that the heteroduplex mobility assays and T7-endonuclease I - assays detected mutations but the relative number of mutated cells/alleles can only be estimated. In contrast, the quantitative polymerase chain reaction based method provided quantitative results which allow calculating mutation and homologous recombination rates in different eukaryotic cell types including human peripheral blood mononuclear cells. In conclusion, our quantitative polymerase chain reaction based mutation detection method expands the array of methods for in/del mutation detection and facilitates quantification of introduced in/del mutations for a genomic locus containing a mixture of mutated and unmutated DNA. PMID:27419195

  14. Interplay of Mre11 Nuclease with Dna2 plus Sgs1 in Rad51-Dependent Recombinational Repair

    PubMed Central

    Budd, Martin E.; Campbell, Judith L.

    2009-01-01

    The Mre11/Rad50/Xrs2 complex initiates IR repair by binding to the end of a double-strand break, resulting in 5′ to 3′ exonuclease degradation creating a single-stranded 3′ overhang competent for strand invasion into the unbroken chromosome. The nuclease(s) involved are not well understood. Mre11 encodes a nuclease, but it has 3′ to 5′, rather than 5′ to 3′ activity. Furthermore, mutations that inactivate only the nuclease activity of Mre11 but not its other repair functions, mre11-D56N and mre11-H125N, are resistant to IR. This suggests that another nuclease can catalyze 5′ to 3′ degradation. One candidate nuclease that has not been tested to date because it is encoded by an essential gene is the Dna2 helicase/nuclease. We recently reported the ability to suppress the lethality of a dna2Δ with a pif1Δ. The dna2Δ pif1Δ mutant is IR-resistant. We have determined that dna2Δ pif1Δ mre11-D56N and dna2Δ pif1Δ mre11-H125N strains are equally as sensitive to IR as mre11Δ strains, suggesting that in the absence of Dna2, Mre11 nuclease carries out repair. The dna2Δ pif1Δ mre11-D56N triple mutant is complemented by plasmids expressing Mre11, Dna2 or dna2K1080E, a mutant with defective helicase and functional nuclease, demonstrating that the nuclease of Dna2 compensates for the absence of Mre11 nuclease in IR repair, presumably in 5′ to 3′ degradation at DSB ends. We further show that sgs1Δ mre11-H125N, but not sgs1Δ, is very sensitive to IR, implicating the Sgs1 helicase in the Dna2-mediated pathway. PMID:19165339

  15. Generating and identifying axolotls with targeted mutations using Cas9 RNA-guided nuclease.

    PubMed

    Flowers, G Parker; Crews, Craig M

    2015-01-01

    The CRISPR/Cas9 RNA-guided nuclease now enables a reverse genetics approach to investigate the function of genes of interest during regeneration in the axolotl. The process of generating the constructs necessary for targeting a gene of interest is considerably less labor intensive than for other methods of targeted mutagenesis such as Zinc finger nucleases or Transcription activator-like effector nucleases. Here, we describe the identification of targetable sequences in the gene of interest, the construction of unique guide RNAs, the microinjection of these RNAs with Cas9-encoding mRNA, the selection of well-injected animals, and an inexpensive, PCR-based method for identifying highly mutagenized animals. PMID:25740494

  16. Use of S1 nuclease in deep sequencing for detection of double-stranded RNA viruses.

    PubMed

    Shimada, Saya; Nagai, Makoto; Moriyama, Hiromitsu; Fukuhara, Toshiyuki; Koyama, Satoshi; Omatsu, Tsutomu; Furuya, Tetsuya; Shirai, Junsuke; Mizutani, Tetsuya

    2015-09-01

    Metagenomic approach using next-generation DNA sequencing has facilitated the detection of many pathogenic viruses from fecal samples. However, in many cases, majority of the detected sequences originate from the host genome and bacterial flora in the gut. Here, to improve efficiency of the detection of double-stranded (ds) RNA viruses from samples, we evaluated the applicability of S1 nuclease on deep sequencing. Treating total RNA with S1 nuclease resulted in 1.5-28.4- and 10.1-208.9-fold increases in sequence reads of group A rotavirus in fecal and viral culture samples, respectively. Moreover, increasing coverage of mapping to reference sequences allowed for sufficient genotyping using analytical software. These results suggest that library construction using S1 nuclease is useful for deep sequencing in the detection of dsRNA viruses. PMID:25843154

  17. Installing logic gates in permeability controllable polyelectrolyte-carbon nitride films for detecting proteases and nucleases.

    PubMed

    Chen, Lichan; Zeng, Xiaoting; Dandapat, Anirban; Chi, Yuwu; Kim, Donghwan

    2015-09-01

    Proteases and nucleases are enzymes heavily involved in many important biological processes, such as cancer initiation, progression, and metastasis; hence, they are indicative of potential diagnostic biomarkers. Here, we demonstrate a new label free and sensitive electrochemiluminescent (ECL) sensing strategy for protease and nuclease assays that utilize target-triggered desorption of programmable polyelectrolyte films assembled on graphite-like carbon nitride (g-C3N4) film to regulate the diffusion flux of a coreactant. Furthermore, we have built Boolean logic gates OR and AND into the polyelectrolyte films, capable of simultaneously sensing proteases and nucleases in a complicated system by breaking it into simple functions. The developed intelligent permeability controlled enzyme sensor may prove valuable in future medical diagnostics. PMID:26228179

  18. Cellular Architecture of Treponema pallidum: Novel Flagellum, Periplasmic Cone, and Cell Envelope as Revealed by Cryo-Electron Tomography

    PubMed Central

    Liu, Jun; Howell, Jerrilyn K.; Bradley, Sherille D.; Zheng, Yesha; Zhou, Z. Hong; Norris, Steven J.

    2010-01-01

    High resolution cryo-electron tomography (cryo-ET) was utilized to visualize Treponema pallidum, the causative agent of syphilis, at the molecular level. Three-dimensional (3-D) reconstructions from 304 infectious organisms revealed unprecedented cellular structures of this unusual member in the spirochetal family. High resolution cryo-ET reconstructions provided the detailed structures of the cell envelope, which is significantly different from that of gram-negative bacteria. The 4 nm lipid bilayer of both outer and cytoplasmic membranes resolved in 3-D reconstructions, providing an important marker for interpreting membrane-associated structures. Abundant lipoproteins cover the outer leaflet of the cytoplasmic membrane, in contrast to the rare outer membrane proteins visible by scanning probe microscopy. High resolution cryo-ET images also provided the first observation of T. pallidum chemoreceptor arrays, as well as structural details of the periplasmically located, cone-shaped structure at both ends of bacterium. Furthermore, 3-D subvolume averages of the periplasmic flagellar motors and filaments from living organisms revealed the novel flagellar architectures that may facilitate their rotation within the confining periplasmic space. Together, our findings provide the most detailed structural understanding of the periplasmic flagella and the surrounding cell envelope, which enable this enigmatic bacterium to efficiently penetrate tissue and escape host immune responses. PMID:20850455

  19. High-yield export of a native heterologous protein to the periplasm by the tat translocation pathway in Escherichia coli.

    PubMed

    Matos, Cristina F R O; Branston, Steven D; Albiniak, Anna; Dhanoya, Arjun; Freedman, Robert B; Keshavarz-Moore, Eli; Robinson, Colin

    2012-10-01

    Numerous high-value recombinant proteins that are produced in bacteria are exported to the periplasm as this approach offers relatively easy downstream processing and purification. Most recombinant proteins are exported by the Sec pathway, which transports them across the plasma membrane in an unfolded state. The twin-arginine translocation (Tat) system operates in parallel with the Sec pathway but transports substrate proteins in a folded state; it therefore has potential to export proteins that are difficult to produce using the Sec pathway. In this study, we have produced a heterologous protein (green fluorescent protein; GFP) in Escherichia coli and have used batch and fed-batch fermentation systems to test the ability of the newly engineered Tat system to export this protein into the periplasm under industrial-type production conditions. GFP cannot be exported by the Sec pathway in an active form. We first tested the ability of five different Tat signal peptides to export GFP, and showed that the TorA signal peptide directed most efficient export. Under batch fermentation conditions, it was found that TorA-GFP was exported efficiently in wild type cells, but a twofold increase in periplasmic GFP was obtained when the TatABC components were co-expressed. In both cases, periplasmic GFP peaked at about the 12 h point during fermentation but decreased thereafter, suggesting that proteolysis was occurring. Typical yields were 60 mg periplasmic GFP per liter culture. The cells over-expressed the tat operon throughout the fermentation process and the Tat system was shown to be highly active over a 48 h induction period. Fed-batch fermentation generated much greater yields: using glycerol feed rates of 0.4, 0.8, and 1.2 mL h(-1), the cultures reached OD(600) values of 180 and periplasmic GFP levels of 0.4, 0.85, and 1.1 g L(-1) culture, respectively. Most or all of the periplasmic GFP was shown to be active. These export values are in line with those obtained in

  20. DddY, a periplasmic dimethylsulfoniopropionate lyase found in taxonomically diverse species of Proteobacteria

    PubMed Central

    Curson, Andrew R J; Sullivan, Matthew J; Todd, Jonathan D; Johnston, Andrew W B

    2011-01-01

    The abundant compatible solute dimethylsulfoniopropionate (DMSP) is made by many marine algae. Different marine bacteria catabolise DMSP by various mechanisms, some of which liberate the environmentally important gas dimethyl sulfide (DMS). We describe an enzyme, DddY, which cleaves DMSP into DMS plus acrylate and is located in the bacterial periplasm, unlike other DMSP lyases that catalyse this reaction. There are dddY-like genes in strains of Alcaligenes, Arcobacter and Shewanella, in the β-, ɛ- and γ-proteobacteria, respectively. In Alcaligenes, dddY is in a cluster of ddd and acu genes that resemble, but also have significant differences to, those in other bacteria that catabolise both DMSP and acrylate. Although production of DMS and transcription of Alcaligenes dddY are both apparently inducible by pre-growth of cells with DMSP, this substrate must be catabolised to form acrylate, the bona fide coinducer. PMID:21248856

  1. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm

    NASA Astrophysics Data System (ADS)

    Li, Dao-Bo; Cheng, Yuan-Yuan; Wu, Chao; Li, Wen-Wei; Li, Na; Yang, Zong-Chuang; Tong, Zhong-Hua; Yu, Han-Qing

    2014-01-01

    In situ reduction of selenite to elemental selenium (Se(0)), by microorganisms in sediments and soils is an important process and greatly affects the environmental distribution and the biological effects of selenium. However, the mechanism behind such a biological process remains unrevealed yet. Here we use Shewanella oneidensis MR-1, a widely-distributed dissimilatory metal-reducing bacterium with a powerful and diverse respiration capability, to evaluate the involvement of anaerobic respiration system in the microbial selenite reduction. With mutants analysis, we identify fumarate reductase FccA as the terminal reductase of selenite in periplasm. Moreover, we find that such a reduction is dependent on central respiration c-type cytochrome CymA. In contrast, nitrate reductase, nitrite reductase, and the Mtr electron transfer pathway do not work as selenite reductases. These findings reveal a previously unrecognized role of anaerobic respiration reductases of S. oneidensis MR-1 in selenite reduction and geochemical cycles of selenium in sediments and soils.

  2. Interaction of Nuclease Colicins with Membranes: Insertion Depth Correlates with Bilayer Perturbation

    PubMed Central

    Vankemmelbeke, Mireille; O′Shea, Paul; James, Richard; Penfold, Christopher N.

    2012-01-01

    Background Protein transport across cellular membranes is an important aspect of toxin biology. Escherichia coli cell killing by nuclease colicins occurs through DNA (DNases) or RNA (RNases) hydrolysis and to this end their cytotoxic domains require transportation across two sets of membranes. In order to begin to unravel the molecular mechanisms underlying the membrane translocation of colicin nuclease domains, we have analysed the membrane association of four DNase domains (E9, a charge reduction E9 mutant, E8, and E7) and one ribosomal RNase domain (E3) using a biomembrane model system. Principal Results We demonstrate, through the use of large unilamellar vesicles composed of synthetic and E. coli lipids and a membrane surface potential sensor, that the colicin nuclease domains bind anionic membranes only, with micromolar affinity and via a cooperative binding mechanism. The evaluation of the nuclease bilayer insertion depth, through a fluorescence quenching analysis using brominated lipids, indicates that the nucleases locate to differential regions in the bilayer. Colicin DNases target the interfacial region of the lipid bilayer, with the DNase E7 showing the deepest insertion, whereas the ribosomal RNase E3 penetrates into the hydrophobic core region of the bilayer. Furthermore, the membrane association of the DNase E7 and the ribosomal RNase E3 induces vesicle aggregation, lipid mixing and content leakage to a much larger extent than that of the other DNases analysed. Conclusions/Significance Our results show, for the first time, that after the initial electrostatically driven membrane association, the pleiotropic membrane effects induced by colicin nuclease domains relate to their bilayer insertion depth and may be linked to their in vivo membrane translocation. PMID:23029560

  3. Disulfide Bond Formation in the Bacterial Periplasm: Major Achievements and Challenges Ahead

    PubMed Central

    Denoncin, Katleen

    2013-01-01

    Abstract Significance: The discovery of the oxidoreductase disulfide bond protein A (DsbA) in 1991 opened the way to the unraveling of the pathways of disulfide bond formation in the periplasm of Escherichia coli and other Gram-negative bacteria. Correct oxidative protein folding in the E. coli envelope depends on both the DsbA/DsbB pathway, which catalyzes disulfide bond formation, and the DsbC/DsbD pathway, which catalyzes disulfide bond isomerization. Recent Advances: Recent data have revealed an unsuspected link between the oxidative protein-folding pathways and the defense mechanisms against oxidative stress. Moreover, bacterial disulfide-bond-forming systems that differ from those at play in E. coli have been discovered. Critical Issues: In this review, we discuss fundamental questions that remain unsolved, such as what is the mechanism employed by DsbD to catalyze the transfer of reducing equivalents across the membrane and how do the oxidative protein-folding catalysts DsbA and DsbC cooperate with the periplasmic chaperones in the folding of secreted proteins. Future Directions: Understanding the mechanism of DsbD will require solving the structure of the membranous domain of this protein. Another challenge of the coming years will be to put the knowledge of the disulfide formation machineries into the global cellular context to unravel the interplay between protein-folding catalysts and chaperones. Also, a thorough characterization of the disulfide bond formation machineries at work in pathogenic bacteria is necessary to design antimicrobial drugs targeting the folding pathway of virulence factors stabilized by disulfide bonds. Antioxid. Redox Signal. 19, 63–71. PMID:22901060

  4. The periplasmic serine protease inhibitor ecotin protects bacteria against neutrophil elastase.

    PubMed Central

    Eggers, Christopher T; Murray, Iain A; Delmar, Valerie A; Day, Anthony G; Craik, Charles S

    2004-01-01

    Ecotin is a dimeric periplasmic protein from Escherichia coli that has been shown to inhibit potently many trypsin-fold serine proteases of widely varying substrate specificity. To help elucidate the physiological function of ecotin, we examined the family of ecotin orthologues, which are present in a subset of Gram-negative bacteria. Phylogenetic analysis suggested that ecotin has an exogenous target, possibly neutrophil elastase. Recombinant protein was expressed and purified from E. coli, Yersinia pestis and Pseudomonas aeruginosa, all species that encounter the mammalian immune system, and also from the plant pathogen Pantoea citrea. Notably, the Pa. citrea variant inhibits neutrophil elastase 1000-fold less potently than the other orthologues. All four orthologues are dimeric proteins that potently inhibit (<10 pM) the pancreatic digestive proteases trypsin and chymotrypsin, while showing more variable inhibition (5 pM to 24 microM) of the blood proteases Factor Xa, thrombin and urokinase-type plasminogen activator. To test whether ecotin does, in fact, protect bacteria from neutrophil elastase, an ecotin-deficient strain was generated in E. coli. This strain is significantly more sensitive in cell-killing assays to human neutrophil elastase, which causes increased permeability of the outer membrane that persists even during renewed bacterial growth. Ecotin affects primarily the ability of E. coli to recover and grow following treatment with neutrophil elastase, rather than the actual rate of killing. This suggests that an important part of the antimicrobial mechanism of neutrophil elastase may be a periplasmic bacteriostatic effect of protease that has translocated across the damaged outer membrane. PMID:14705961

  5. Periplasmic Nitrate Reductase (NapABC Enzyme) Supports Anaerobic Respiration by Escherichia coli K-12

    PubMed Central

    Stewart, Valley; Lu, Yiran; Darwin, Andrew J.

    2002-01-01

    Periplasmic nitrate reductase (NapABC enzyme) has been characterized from a variety of proteobacteria, especially Paracoccus pantotrophus. Whole-genome sequencing of Escherichia coli revealed the structural genes napFDAGHBC, which encode NapABC enzyme and associated electron transfer components. E. coli also expresses two membrane-bound proton-translocating nitrate reductases, encoded by the narGHJI and narZYWV operons. We measured reduced viologen-dependent nitrate reductase activity in a series of strains with combinations of nar and nap null alleles. The napF operon-encoded nitrate reductase activity was not sensitive to azide, as shown previously for the P. pantotrophus NapA enzyme. A strain carrying null alleles of narG and narZ grew exponentially on glycerol with nitrate as the respiratory oxidant (anaerobic respiration), whereas a strain also carrying a null allele of napA did not. By contrast, the presence of napA+ had no influence on the more rapid growth of narG+ strains. These results indicate that periplasmic nitrate reductase, like fumarate reductase, can function in anaerobic respiration but does not constitute a site for generating proton motive force. The time course of Φ(napF-lacZ) expression during growth in batch culture displayed a complex pattern in response to the dynamic nitrate/nitrite ratio. Our results are consistent with the observation that Φ(napF-lacZ) is expressed preferentially at relatively low nitrate concentrations in continuous cultures (H. Wang, C.-P. Tseng, and R. P. Gunsalus, J. Bacteriol. 181:5303-5308, 1999). This finding and other considerations support the hypothesis that NapABC enzyme may function in E. coli when low nitrate concentrations limit the bioenergetic efficiency of nitrate respiration via NarGHI enzyme. PMID:11844760

  6. Thiocyanate binding to the molybdenum centre of the periplasmic nitrate reductase from Paracoccus pantotrophus.

    PubMed

    Butler, C S; Charnock, J M; Garner, C D; Thomson, A J; Ferguson, S J; Berks, B C; Richardson, D J

    2000-12-15

    The periplasmic nitrate reductase (NAP) from Paracoccus pantotrophus is a soluble two-subunit enzyme (NapAB) that binds two haem groups, a [4Fe-4S] cluster and a bis(molybdopterin guanine dinucleotide) (MGD) cofactor that catalyses the reduction of nitrate to nitrite. In the present study the effect of KSCN (potassium thiocyanate) as an inhibitor and Mo ligand has been investigated. Results are presented that show NAP is sensitive to SCN(-) (thiocyanate) inhibition, with SCN(-) acting as a competitive inhibitor of nitrate (K(i) approximately 4.0 mM). The formation of a novel EPR Mo(V) species with an elevated g(av) value (g(av) approximately 1.994) compared to the Mo(V) High-g (resting) species was observed upon redox cycling in the presence of SCN(-). Mo K-edge EXAFS analysis of the dithionite-reduced NAP was best fitted as a mono-oxo Mo(IV) species with three Mo-S ligands at 2.35 A (1 A=0.1 nm) and a Mo-O ligand at 2.14 A. The addition of SCN(-) to the reduced Mo(IV) NAP generated a sample that was best fitted as a mono-oxo (1.70 A) Mo(IV) species with four Mo-S ligands at 2.34 A. Taken together, the competitive nature of SCN(-) inhibition of periplasmic nitrate reductase activity, the elevated Mo(V) EPR g(av) value following redox cycling in the presence of SCN(-) and the increase in sulphur co-ordination of Mo(IV) upon SCN(-) binding, provide strong evidence for the direct binding of SCN(-) via a sulphur atom to Mo. PMID:11104696

  7. Cyclic Di-GMP-Regulated Periplasmic Proteolysis of a Pseudomonas aeruginosa Type Vb Secretion System Substrate

    PubMed Central

    Cooley, Richard B.; Smith, T. Jarrod; Leung, Wilfred; Tierney, Valerie; Borlee, Bradley R.; O'Toole, George A.

    2015-01-01

    ABSTRACT We previously identified a second-messenger-regulated signaling system in the environmental bacterium Pseudomonas fluorescens which controls biofilm formation in response to levels of environmental inorganic phosphate. This system contains the transmembrane cyclic di-GMP (c-di-GMP) receptor LapD and the periplasmic protease LapG. LapD regulates LapG and controls the ability of this protease to process a large cell surface adhesin protein, LapA. While LapDG orthologs can be identified in diverse bacteria, predictions of LapG substrates are sparse. Notably, the opportunistic pathogen Pseudomonas aeruginosa harbors LapDG orthologs, but neither the substrate of LapG nor any associated secretion machinery has been identified to date. Here, we identified P. aeruginosa CdrA, a protein known to mediate cell-cell aggregation and biofilm maturation, as a substrate of LapG. We also demonstrated LapDG to be a minimal system sufficient to control CdrA localization in response to changes in the intracellular concentration of c-di-GMP. Our work establishes this biofilm signaling node as a regulator of a type Vb secretion system substrate in a clinically important pathogen. IMPORTANCE Here, the biological relevance of a conserved yet orphan signaling system in the opportunistic pathogen Pseudomonas aeruginosa is revealed. In particular, we identified the adhesin CdrA, the cargo of a two-partner secretion system, as a substrate of a periplasmic protease whose activity is controlled by intracellular c-di-GMP levels and a corresponding transmembrane receptor via an inside-out signaling mechanism. The data indicate a posttranslational control mechanism of CdrA via c-di-GMP, in addition to its established transcriptional regulation via the same second messenger. PMID:26100041

  8. Secretion of Bacterial Lipoproteins: Through the Cytoplasmic Membrane, the Periplasm and Beyond

    PubMed Central

    Zückert, Wolfram R.

    2014-01-01

    Bacterial lipoproteins are peripherally anchored membrane proteins that play a variety of roles in bacterial physiology and virulence in monoderm (single membrane-enveloped, e.g., grampositive) and diderm (double membrane-enveloped, e.g., gram-negative) bacteria. After export of prolipoproteins through the cytoplasmic membrane, which occurs predominantly but not exclusively via the general secretory or Sec pathway, the proteins are lipid-modified at the cytoplasmic membrane in a multistep process that involves sequential modification of a cysteine residue and cleavage of the signal peptide by the signal II peptidase Lsp. In both monoderms and diderms, signal peptide processing is preceded by acylation with a diacylglycerol through preprolipoprotein diacylglycerol transferase (Lgt). In diderms but also some monoderms, lipoproteins are further modified with a third acyl chain through lipoprotein N-acyl transferase (Lnt). Fully modified lipoproteins that are destined to be anchored in the inner leaflet of the outer membrane (OM) are selected, transported and inserted by the Lol (lipoprotein outer membrane localization) pathway machinery, which consists of the inner-membrane (IM) ABC transporterlike LolCDE complex, the periplasmic LolA chaperone and the OM LolB lipoprotein receptor. Retention of lipoproteins in the cytoplasmic membrane results from Lol avoidance signals that were originally described as the “+2 rule”. Surface localization of lipoproteins in diderms is rare in most bacteria, with the exception of several spirochetal species. Type 2 (T2SS) and type 5 (T5SS) secretion systems are involved in secretion of specific surface lipoproteins of γ-proteobacteria. In the model spirochete Borrelia burgdorferi, surface lipoprotein secretion does not follow established sorting rules, but remains dependent on N-terminal peptide sequences. Secretion through the outer membrane requires maintenance of lipoproteins in a translocation-competent unfolded conformation

  9. An ultrasensitive fluorescence method suitable for quantitative analysis of mung bean nuclease and inhibitor screening in vitro and vivo.

    PubMed

    Peng, Lan; Fan, Jialong; Tong, Chunyi; Xie, Zhenhua; Zhao, Chuan; Liu, Xuanming; Zhu, Yonghua; Liu, Bin

    2016-09-15

    Mung bean nuclease is a single stranded specific DNA and RNA endonuclease purified from mung bean sprouts. It yields 5'-phosphate terminated mono- and oligonucleotides. The activity level of this nuclease can act as a marker to monitor the developmental process of mung bean sprouts. In order to facilitate the activity and physiological analysis of this nuclease, we have developed a biosensing assay system based on the mung bean nuclease-induced single-stranded DNA scission and the affinity difference of graphene oxide for single-stranded DNA containing different numbers of bases. This end-point measurement method can detect mung bean nuclease in a range of 2×10(-4) to 4×10(-2) with a detection limit of 1×10(-4) unit/mL. In addition, we demonstrate the utility of the assay for screening chemical antibiotics and metal ions, resulting in the identification of several inhibitors of this enzyme in vitro. Furthermore, we firstly report that inhibiting mung bean nuclease by gentamycin sulfate and kanamycin in vivo can suppress mung bean sprouts growth. In summary, this method provides an alternative tool for the biochemical analysis for mung bean nuclease and indicates the feasibility of high-throughput screening specific inhibitors of this nuclease in vitro and in vivo. PMID:27125839

  10. Varicella-Zoster Virus Open Reading Frame 48 Encodes an Active Nuclease

    PubMed Central

    Mueller, Niklaus H.; Gilden, Don

    2013-01-01

    Based on a DNA sequence and relative genomic position similar to those other herpesviruses, varicella-zoster virus (VZV) open reading frame 48 (ORF48) is predicted to encode an alkaline nuclease. Here we report the cloning, expression, purification, and characterization of recombinant VZV ORF48 protein and a VZV ORF48 point mutation (T172P). Protein encoded by wild-type ORF48, but not mutant protein, displayed both endo- and exonuclease activity, identifying ORF48 as a potential therapeutic target in VZV disease since efficient viral replication requires viral nuclease activity. PMID:23966396

  11. Temperature-dependent cleavage of chromatin by micrococcal nuclease near the nucleosome center.

    PubMed

    Huang, S Y; Garrard, W T

    1986-04-01

    Digestion of nuclei at 4 degrees C with micrococcal nuclease results in significant intranucleosomal cleavage compared to digestion conducted at 37 degrees C. Employing nucleoprotein gel electrophoresis in one dimension followed by DNA electrophoresis in a second dimension, we demonstrate that such temperature-sensitive, internal cleavage predominantly occurs about 20 bp from the nucleosome center. We suggest that lower temperatures reduce the stability of hydrophobic interactions within the histone octamer and lead to a conformational alteration in nucleosomes that is detected by micrococcal nuclease. PMID:3956749

  12. Acinetobacter baumannii Extracellular OXA-58 Is Primarily and Selectively Released via Outer Membrane Vesicles after Sec-Dependent Periplasmic Translocation

    PubMed Central

    Liao, Yu-Ting; Kuo, Shu-Chen; Chiang, Ming-Hsien; Lee, Yi-Tzu; Sung, Wang-Chou; Chen, You-Hsuan; Fung, Chang-Phone

    2015-01-01

    Carbapenem-resistant Acinetobacter baumannii (CRAb) shelter cohabiting carbapenem-susceptible bacteria from carbapenem killing via extracellular release of carbapenem-hydrolyzing class D β-lactamases, including OXA-58. However, the mechanism of the extracellular release of OXA-58 has not been elucidated. In silico analysis predicted OXA-58 to be translocated to the periplasm via the Sec system. Using cell fractionation and Western blotting, OXA-58 with the signal peptide and C terminus deleted was not detected in the periplasmic and extracellular fractions. Overexpression of enhanced green fluorescent protein fused to the OXA-58 signal peptide led to its periplasmic translocation but not extracellular release, suggesting that OXA-58 is selectively released. The majority of the extracellular OXA-58 was associated with outer membrane vesicles (OMVs). The OMV-associated OXA-58 was detected only in a strain overexpressing OXA-58. The presence of OXA-58 in OMVs was confirmed by a carbapenem inactivation bioassay, proteomic analysis, and transmission electron microscopy. Imipenem treatment increased OMV formation and caused cell lysis, resulting in an increase in the OMV-associated and OMV-independent release of extracellular OXA-58. OMV-independent OXA-58 hydrolyzed nitrocefin more rapidly than OMV-associated OXA-58 but was more susceptible to proteinase K degradation. Rose bengal, an SecA inhibitor, inhibited the periplasmic translocation and OMV-associated release of OXA-58 and abolished the sheltering effect of CRAb. This study demonstrated that the majority of the extracellular OXA-58 is selectively released via OMVs after Sec-dependent periplasmic translocation. Addition of imipenem increased both OMV-associated and OMV-independent OXA-58, which may have different biological roles. SecA inhibitor could abolish the carbapenem-sheltering effect of CRAb. PMID:26369971

  13. Effects of cytoplasmic and periplasmic chaperones on secretory production of single-chain Fv antibody in Escherichia coli.

    PubMed

    Sonoda, Hiroyuki; Kumada, Yoichi; Katsuda, Tomohisa; Yamaji, Hideki

    2011-04-01

    The effects of cytoplasmic and periplasmic chaperones on the secretory production of an anti-bovine ribonuclease A single-chain variable fragment (scFv) 3A21 in Escherichia coli were investigated. Co-expression of a cytoplasmic chaperone, GroEL/ES, DnaK/DnaJ/GrpE, trigger factor, or SecB with 3A21 scFv affected the proportions of antigen-binding activity in the cytoplasmic soluble fraction, the periplasmic fraction, and the extracellular medium, but there was no significant difference in the total activity compared to the control without chaperone co-expression. On the other hand, co-expression of a periplasmic chaperone, Skp or FkpA, with the exception of DsbC, greatly increased the binding activity in all the soluble fractions. Co-expression of both Skp and FkpA had no synergistic effect. Combinations of cytoplasmic and periplasmic chaperones decreased the productivity. In shake-flask cultures of cells co-expressing Skp or FkpA, considerable amounts of 3A21 scFv were detected in the extracellular medium by enzyme-linked immunosorbent assay (ELISA) and Western blot, and the extracellular production level of 3A21 scFv was calculated to be around 40mg/l. The binding activity of 3A21 scFv co-expressed with Skp was slightly higher than that with FkpA. These results indicate that the co-expression of periplasmic chaperones Skp and FkpA is extremely useful for the secretory production of scFvs in a culture medium using E. coli, but cytoplasmic chaperones and multiple-chaperone combinations may not be effective. PMID:21324738

  14. Characterization of the periplasmic redox network that sustains the versatile anaerobic metabolism of Shewanella oneidensis MR-1

    PubMed Central

    Alves, Mónica N.; Neto, Sónia E.; Alves, Alexandra S.; Fonseca, Bruno M.; Carrêlo, Afonso; Pacheco, Isabel; Paquete, Catarina M.; Soares, Cláudio M.; Louro, Ricardo O.

    2015-01-01

    The versatile anaerobic metabolism of the Gram-negative bacterium Shewanella oneidensis MR-1 (SOMR-1) relies on a multitude of redox proteins found in its periplasm. Most are multiheme cytochromes that carry electrons to terminal reductases of insoluble electron acceptors located at the cell surface, or bona fide terminal reductases of soluble electron acceptors. In this study, the interaction network of several multiheme cytochromes was explored by a combination of NMR spectroscopy, activity assays followed by UV-visible spectroscopy and comparison of surface electrostatic potentials. From these data the small tetraheme cytochrome (STC) emerges as the main periplasmic redox shuttle in SOMR-1. It accepts electrons from CymA and distributes them to a number of terminal oxidoreductases involved in the respiration of various compounds. STC is also involved in the electron transfer pathway to reduce nitrite by interaction with the octaheme tetrathionate reductase (OTR), but not with cytochrome c nitrite reductase (ccNiR). In the main pathway leading the metal respiration STC pairs with flavocytochrome c (FccA), the other major periplasmic cytochrome, which provides redundancy in this important pathway. The data reveals that the two proteins compete for the binding site at the surface of MtrA, the decaheme cytochrome inserted on the periplasmic side of the MtrCAB–OmcA outer-membrane complex. However, this is not observed for the MtrA homologues. Indeed, neither STC nor FccA interact with MtrD, the best replacement for MtrA, and only STC is able to interact with the decaheme cytochrome DmsE of the outer-membrane complex DmsEFABGH. Overall, these results shown that STC plays a central role in the anaerobic respiratory metabolism of SOMR-1. Nonetheless, the trans-periplasmic electron transfer chain is functionally resilient as a consequence of redundancies that arise from the presence of alternative pathways that bypass/compete with STC. PMID:26175726

  15. Modeling structural transitions from the periplasmic-open state of lactose permease and interpretations of spin label experiments.

    PubMed

    Zhuang, Xiaohong; Klauda, Jeffery B

    2016-07-01

    Lactose permease of E. coli (LacY) is a secondary active transporter (SAT) that belongs to the major facilitator superfamily (MFS). Experimental structures of the cytoplasmic-open and more recently occluded-like structure have been determined, however, the crystal structure of LacY in the periplasmic-open state is still not available. The periplasmic-open LacY structure is important for understanding complete proton/sugar transport process of LacY as well as other similar SAT proteins. Previously, a structural model of periplasmic-open LacY has been obtained through a two-step hybrid implicit-explicit (IM-EX) simulation method (JMB404: 506). Molecular dynamics simulations are performed to further test the IM-EX model for the periplasmic-open LacY with ββ-(Galp)2 in a lipid membrane. The comparison of the calculated pore radii to the data of the crystal structure indicates that the IM-EX model of LacY remains periplasmic-open in E269-protonated states. The neighbor residue distance change based on Cα are very similar in simulation results, but they are significantly different in double electron-electron resonance (DEER) experimental data, which motivates us to perform the molecular dynamics dummy spin-label (MDDS) simulations to test the effect of spin labels (size and internal flexibility) on DEER spin label distance measurements. The MDDS simulation results show that the orientation and movement of the spin labels significantly affect the residue pair distance measurement. DEER data alone may not provide an accurate guide for predicting protein structures. MDDS simulations can be applied to analyze the distance distribution due to spin labels and also aid in proper interpretation of DEER experimental data. PMID:27107553

  16. Mre11 Nuclease Activity has Essential Roles in DNA Repair and Genomic Stability Distinct from ATM Activation

    PubMed Central

    Buis, Jeffrey; Wu, Yipin; Deng, Yibin; Leddon, Jennifer; Westfield, Gerwin; Eckersdorff, Mark; Sekiguchi, JoAnn M.; Chang, Sandy; Ferguson, David O.

    2008-01-01

    Summary The Mre11/Rad50/NBS1 complex (MRN) maintains genomic stability by bridging DNA ends and initiating DNA damage signaling through activation of the ATM kinase. Mre11 possesses DNA nuclease activities that are highly conserved in evolution, but play unknown roles in mammals. To define functions of Mre11 we engineered targeted mouse alleles which either abrogate nuclease activities or inactivate the entire MRN complex. Mre11 nuclease deficiency causes a striking array of phenotypes indistinguishable from absence of MRN, including early embryonic lethality and dramatic genomic instability. We identify a crucial role for the nuclease activities in homology directed double strand break repair, and a contributing role in activating the ATR kinase. However, nuclease activities are not required to activate ATM after DNA damage or telomere deprotection. Therefore, nucleolytic processing by Mre11 is an essential function of fundamental importance in DNA repair distinct from MRN control of ATM signaling. PMID:18854157

  17. Instability of toxin A subunit of AB5 toxins in the bacterial periplasm caused by deficiency of their cognate B subunits

    PubMed Central

    Kim, Sang-Hyun; Ryu, Su Hyang; Lee, Sang-Ho; Lee, Yong-Hoon; Lee, Sang-Rae; Huh, Jae-Won; Kim, Sun-Uk; Kim, Ekyune; Kim, Sunghyun; Jon, Sangyong; Bishop, Russell E.; Chang, Kyu-Tae

    2016-01-01

    Shiga toxin (STx) belongs to the AB5 toxin family and is transiently localized in the periplasm before secretion into the extracellular milieu. While producing outer membrane vesicles (OMVs) containing only A subunit of the toxin (STxA), we created specific STx1B- and STx2B-deficient mutants of E. coli O157:H7. Surprisingly, STxA subunit was absent in the OMVs and periplasm of the STxB-deficient mutants. In parallel, the A subunit of heat-labile toxin (LT) of enterotoxigenic E. coli (ETEC) was absent in the periplasm of the LT-B-deficient mutant, suggesting that instability of toxin A subunit in the absence of the B subunit is a common phenomenon in the AB5 bacterial toxins. Moreover, STx2A was barely detectable in the periplasm of E. coli JM109 when stx2A was overexpressed alone, while it was stably present when stxB was co-expressed. Compared with STx2 holotoxin, purified STx2A was degraded rapidly by periplasmic proteases when assessed for in vitro proteolytic susceptibility, suggesting that the B subunit contributes to stability of the toxin A subunit in the periplasm. We propose a novel role for toxin B subunits of AB5 toxins in protection of the A subunit from proteolysis during holotoxin assembly in the periplasm. PMID:21762677

  18. Mycoplasma bovis MBOV_RS02825 Encodes a Secretory Nuclease Associated with Cytotoxicity.

    PubMed

    Zhang, Hui; Zhao, Gang; Guo, Yusi; Menghwar, Harish; Chen, Yingyu; Chen, Huanchun; Guo, Aizhen

    2016-01-01

    This study aimed to determine the activity of one Mycoplasma bovis nuclease encoded by MBOV_RS02825 and its association with cytotoxicity. The bioinformatics analysis predicted that it encodes a Ca(2+)-dependent nuclease based on existence of enzymatic sites in a TNASE_3 domain derived from a Staphylococcus aureus thermonuclease (SNc). We cloned and purified the recombinant MbovNase (rMbovNase), and demonstrated its nuclease activity by digesting bovine macrophage linear DNA and RNA, and closed circular plasmid DNA in the presence of 10 mM Ca(2+) at 22-65 °C. In addition, this MbovNase was localized in membrane and rMbovNase able to degrade DNA matrix of neutrophil extracellular traps (NETs). When incubated with macrophages, rMbovNase bound to and invaded the cells localizing to both the cytoplasm and nuclei. These cells experienced apoptosis and the viability was significantly reduced. The apoptosis was confirmed by activated expression of phosphorylated NF-κB p65 and Bax, and inhibition of Iκβα and Bcl-2. In contrast, rMbovNase(Δ181-342) without TNASE_3 domain exhibited deficiency in all the biological functions. Furthermore, rMbovNase was also demonstrated to be secreted. In conclusion, it is a first report that MbovNase is an active nuclease, both secretory and membrane protein with ability to degrade NETs and induce apoptosis. PMID:27136546

  19. Programmable Site-Specific Nucleases for Targeted Genome Engineering in Higher Eukaryotes.

    PubMed

    Govindan, Ganesan; Ramalingam, Sivaprakash

    2016-11-01

    Recent advances in the targeted genome engineering enable molecular biologists to generate sequence specific modifications with greater efficiency and higher specificity in complex eukaryotic genomes. Programmable site-specific DNA cleavage reagents and cellular DNA repair mechanisms have made this possible. These reagents have become powerful tools for delivering a site-specific genomic double-strand break (DSB) at the desired chromosomal locus, which produces sequence alterations through error-prone non-homologous end joining (NHEJ) resulting in gene inactivations/knockouts. Alternatively, the DSB can be repaired through homology-directed repair (HDR) using a donor DNA template, which leads to the introduction of desired sequence modifications at the predetermined site. Here, we summarize the role of three classes of nucleases; zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) system in achieving targeted genome modifications. Further, we discuss the progress towards the applications of programmable site-specific nucleases (SSNs) in treating human diseases and other biological applications in economically important higher eukaryotic organisms such as plants and livestock. J. Cell. Physiol. 231: 2380-2392, 2016. © 2016 Wiley Periodicals, Inc. PMID:26945523

  20. MegaTevs: single-chain dual nucleases for efficient gene disruption.

    PubMed

    Wolfs, Jason M; DaSilva, Matthew; Meister, Sarah E; Wang, Xu; Schild-Poulter, Caroline; Edgell, David R

    2014-07-01

    Targeting gene disruptions in complex genomes relies on imprecise repair by the non-homologous end-joining DNA pathway, creating mutagenic insertions or deletions (indels) at the break point. DNA end-processing enzymes are often co-expressed with genome-editing nucleases to enhance the frequency of indels, as the compatible cohesive ends generated by the nucleases can be precisely repaired, leading to a cycle of cleavage and non-mutagenic repair. Here, we present an alternative strategy to bias repair toward gene disruption by fusing two different nuclease active sites from I-TevI (a GIY-YIG enzyme) and I-OnuI E2 (an engineered meganuclease) into a single polypeptide chain. In vitro, the MegaTev enzyme generates two double-strand breaks to excise an intervening 30-bp fragment. In HEK 293 cells, we observe a high frequency of gene disruption without co-expression of DNA end-processing enzymes. Deep sequencing of disrupted target sites revealed minimal processing, consistent with the MegaTev sequestering the double-strand breaks from the DNA repair machinery. Off-target profiling revealed no detectable cleavage at sites where the I-TevI CNNNG cleavage motif is not appropriately spaced from the I-OnuI binding site. The MegaTev enzyme represents a small, programmable nuclease platform for extremely specific genome-engineering applications. PMID:25013171

  1. MegaTevs: single-chain dual nucleases for efficient gene disruption

    PubMed Central

    Wolfs, Jason M.; DaSilva, Matthew; Meister, Sarah E.; Wang, Xu; Schild-Poulter, Caroline; Edgell, David R.

    2014-01-01

    Targeting gene disruptions in complex genomes relies on imprecise repair by the non-homologous end-joining DNA pathway, creating mutagenic insertions or deletions (indels) at the break point. DNA end-processing enzymes are often co-expressed with genome-editing nucleases to enhance the frequency of indels, as the compatible cohesive ends generated by the nucleases can be precisely repaired, leading to a cycle of cleavage and non-mutagenic repair. Here, we present an alternative strategy to bias repair toward gene disruption by fusing two different nuclease active sites from I-TevI (a GIY-YIG enzyme) and I-OnuI E2 (an engineered meganuclease) into a single polypeptide chain. In vitro, the MegaTev enzyme generates two double-strand breaks to excise an intervening 30-bp fragment. In HEK 293 cells, we observe a high frequency of gene disruption without co-expression of DNA end-processing enzymes. Deep sequencing of disrupted target sites revealed minimal processing, consistent with the MegaTev sequestering the double-strand breaks from the DNA repair machinery. Off-target profiling revealed no detectable cleavage at sites where the I-TevI CNNNG cleavage motif is not appropriately spaced from the I-OnuI binding site. The MegaTev enzyme represents a small, programmable nuclease platform for extremely specific genome-engineering applications. PMID:25013171

  2. Insights into how RNase R degrades structured RNA: analysis of the nuclease domain.

    PubMed

    Vincent, Helen A; Deutscher, Murray P

    2009-04-01

    RNase R readily degrades highly structured RNA, whereas its paralogue, RNase II, is unable to do so. Furthermore, the nuclease domain of RNase R, devoid of all canonical RNA-binding domains, is sufficient for this activity. RNase R also binds RNA more tightly within its catalytic channel than does RNase II, which is thought to be important for its unique catalytic properties. To investigate this idea further, certain residues within the nuclease domain channel of RNase R were changed to those found in RNase II. Among the many examined, we identified one amino acid residue, R572, that has a significant role in the properties of RNase R. Conversion of this residue to lysine, as found in RNase II, results in weaker substrate binding within the nuclease domain channel, longer limit products, increased activity against a variety of substrates and a faster substrate on-rate. Most importantly, the mutant encounters difficulty in degrading structured RNA, pausing within a double-stranded region. Additional studies show that degradation of structured substrates is dependent upon temperature, suggesting a role for thermal breathing in the mechanism of action of RNase R. On the basis of these data, we propose a model in which tight binding within the nuclease domain allows RNase R to capitalize on the natural thermal breathing of an RNA duplex to degrade structured RNAs. PMID:19361424

  3. PrrC-anticodon nuclease: functional organization of a prototypical bacterial restriction RNase

    PubMed Central

    Blanga-Kanfi, Shani; Amitsur, Michal; Azem, Abdussalam; Kaufmann, Gabriel

    2006-01-01

    The tRNALys anticodon nuclease PrrC is associated in latent form with the type Ic DNA restriction endonuclease EcoprrI and activated by a phage T4-encoded inhibitor of EcoprrI. The activation also requires the hydrolysis of GTP and presence of dTTP and is inhibited by ATP. The N-proximal NTPase domain of PrrC has been implicated in relaying the activating signal to a C-proximal anticodon nuclease site by interacting with the requisite nucleotide cofactors [Amitsur et al. (2003) Mol. Microbiol., 50, 129–143]. Means described here to bypass PrrC's self-limiting translation and thermal instability allowed purifying an active mutant form of the protein, demonstrating its oligomeric structure and confirming its anticipated interactions with the nucleotide cofactors of the activation reaction. Mutagenesis and chemical rescue data shown implicate the C-proximal Arg320, Glu324 and, possibly, His356 in anticodon nuclease catalysis. This triad exists in all the known PrrC homologs but only some of them feature residues needed for tRNALys recognition by the Escherichia coli prototype. The differential conservation and consistent genetic linkage of the PrrC proteins with EcoprrI homologs portray them as a family of restriction RNases of diverse substrate specificities that are mobilized when an associated DNA restriction nuclease is compromised. PMID:16790566

  4. PrrC-anticodon nuclease: functional organization of a prototypical bacterial restriction RNase.

    PubMed

    Blanga-Kanfi, Shani; Amitsur, Michal; Azem, Abdussalam; Kaufmann, Gabriel

    2006-01-01

    The tRNA(Lys) anticodon nuclease PrrC is associated in latent form with the type Ic DNA restriction endonuclease EcoprrI and activated by a phage T4-encoded inhibitor of EcoprrI. The activation also requires the hydrolysis of GTP and presence of dTTP and is inhibited by ATP. The N-proximal NTPase domain of PrrC has been implicated in relaying the activating signal to a C-proximal anticodon nuclease site by interacting with the requisite nucleotide cofactors [Amitsur et al. (2003) Mol. Microbiol., 50, 129-143]. Means described here to bypass PrrC's self-limiting translation and thermal instability allowed purifying an active mutant form of the protein, demonstrating its oligomeric structure and confirming its anticipated interactions with the nucleotide cofactors of the activation reaction. Mutagenesis and chemical rescue data shown implicate the C-proximal Arg320, Glu324 and, possibly, His356 in anticodon nuclease catalysis. This triad exists in all the known PrrC homologs but only some of them feature residues needed for tRNA(Lys) recognition by the Escherichia coli prototype. The differential conservation and consistent genetic linkage of the PrrC proteins with EcoprrI homologs portray them as a family of restriction RNases of diverse substrate specificities that are mobilized when an associated DNA restriction nuclease is compromised. PMID:16790566

  5. Mycoplasma bovis MBOV_RS02825 Encodes a Secretory Nuclease Associated with Cytotoxicity

    PubMed Central

    Zhang, Hui; Zhao, Gang; Guo, Yusi; Menghwar, Harish; Chen, Yingyu; Chen, Huanchun; Guo, Aizhen

    2016-01-01

    This study aimed to determine the activity of one Mycoplasma bovis nuclease encoded by MBOV_RS02825 and its association with cytotoxicity. The bioinformatics analysis predicted that it encodes a Ca2+-dependent nuclease based on existence of enzymatic sites in a TNASE_3 domain derived from a Staphylococcus aureus thermonuclease (SNc). We cloned and purified the recombinant MbovNase (rMbovNase), and demonstrated its nuclease activity by digesting bovine macrophage linear DNA and RNA, and closed circular plasmid DNA in the presence of 10 mM Ca2+ at 22–65 °C. In addition, this MbovNase was localized in membrane and rMbovNase able to degrade DNA matrix of neutrophil extracellular traps (NETs). When incubated with macrophages, rMbovNase bound to and invaded the cells localizing to both the cytoplasm and nuclei. These cells experienced apoptosis and the viability was significantly reduced. The apoptosis was confirmed by activated expression of phosphorylated NF-κB p65 and Bax, and inhibition of Iκβα and Bcl-2. In contrast, rMbovNaseΔ181–342 without TNASE_3 domain exhibited deficiency in all the biological functions. Furthermore, rMbovNase was also demonstrated to be secreted. In conclusion, it is a first report that MbovNase is an active nuclease, both secretory and membrane protein with ability to degrade NETs and induce apoptosis. PMID:27136546

  6. Identification of Plasmodium falciparum DNA Repair Protein Mre11 with an Evolutionarily Conserved Nuclease Function

    PubMed Central

    Badugu, Sugith Babu; Nabi, Shaik Abdul; Vaidyam, Pratap; Laskar, Shyamasree; Bhattacharyya, Sunanda; Bhattacharyya, Mrinal Kanti

    2015-01-01

    The eukaryotic Meiotic Recombination protein 11 (Mre11) plays pivotal roles in the DNA damage response (DDR). Specifically, Mre11 senses and signals DNA double strand breaks (DSB) and facilitates their repair through effector proteins belonging to either homologous recombination (HR) or non-homologous end joining (NHEJ) repair mechanisms. In the human malaria parasite Plasmodium falciparum, HR and alternative-NHEJ have been identified; however, little is known about the upstream factors involved in the DDR of this organism. In this report, we identify a putative ortholog of Mre11 in P. falciparum (PfalMre11) that shares 22% sequence similarity to human Mre11. Homology modeling reveals striking structural resemblance of the predicted PfalMre11 nuclease domain to the nuclease domain of Saccharomyces cerevisiae Mre11 (ScMre11). Complementation analyses reveal functional conservation of PfalMre11 nuclease activity as demonstrated by the ability of the PfalMre11 nuclease domain, in conjunction with the C-terminal domain of ScMre11, to functionally complement an mre11 deficient yeast strain. Functional complementation was virtually abrogated by an amino acid substitution in the PfalMre11 nuclease domain (D398N). PfalMre11 is abundant in the mitotically active trophozoite and schizont stages of P. falciparum and is up-regulated in response to DNA damage, suggesting a role in the DDR. PfalMre11 exhibits physical interaction with PfalRad50. In addition, yeast 2-hybrid studies show that PfalMre11 interacts with ScRad50 and ScXrs2, two important components of the well characterized Mre11-Rad50-Xrs2 complex which is involved in DDR signaling and repair in S. cerevisiae, further supporting a role for PfalMre11 in the DDR. Taken together, these findings provide evidence that PfalMre11 is an evolutionarily conserved component of the DDR in Plasmodium. PMID:25938776

  7. Mouse Spermatozoa Contain a Nuclease that Is Activated by Pretreatment with EGTA and Subsequent Calcium Incubation

    PubMed Central

    Boaz, Segal M.; Dominguez, Kenneth; Shaman, Jeffrey A.; Ward, W. Steven

    2009-01-01

    We demonstrated that mouse spermatozoa cleave their DNA into ~50 kb loop-sized fragments with topoisomerase IIB when treated with MnCl2 and CaCl2 in a process we term sperm chromatin fragmentation (SCF). SCF can be reversed by EDTA. A nuclease then further degrades the DNA in a process we term sperm DNA degradation (SDD). MnCl2 alone could elicit this activity, but CaCl2 had no effect. Here, we demonstrate the existence of a nuclease in the vas deferens that can be activated by EGTA to digest the sperm DNA by SDD. Spermatozoa were extracted with salt and dithiothreitol to remove protamines and then incubated with EGTA. Next, the EGTA was removed and divalent cations were added. We found that Mn+2, Ca+2, or Zn+2 could each activate SDD in spermatozoa but Mg+2 could not. When the reaction was slowed by incubation on ice, EGTA pretreatment followed by incubation in Ca+2 elicited the reversible fragmentation of sperm DNA evident in SCF. When the reactions were then incubated at 37°C they progressed to the more complete degradation of DNA by SDD. EDTA could also be used to activate the nuclease, but required a higher concentration than EGTA. This EGTA-activatable nuclease activity was found in each fraction of the vas deferens plasma: in the spermatozoa, in the surrounding fluid, and in the insoluble components in the fluid. These results suggest that this sperm nuclease is regulated by a mechanism that is sensitive to EGTA, possibly by removing inhibition of a calcium binding protein. PMID:17879959

  8. Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases

    PubMed Central

    Watanabe, Takahito; Ochiai, Hiroshi; Sakuma, Tetsushi; Horch, Hadley W.; Hamaguchi, Naoya; Nakamura, Taro; Bando, Tetsuya; Ohuchi, Hideyo; Yamamoto, Takashi; Noji, Sumihare; Mito, Taro

    2012-01-01

    Hemimetabolous, or incompletely metamorphosing, insects are phylogenetically relatively basal and comprise many pests. However, the absence of a sophisticated genetic model system, or targeted gene-manipulation system, has limited research on hemimetabolous species. Here we use zinc-finger nuclease and transcription activator-like effector nuclease technologies to produce genetic knockouts in the hemimetabolous insect Gryllus bimaculatus. Following the microinjection of mRNAs encoding zinc-finger nucleases or transcription activator-like effector nucleases into cricket embryos, targeting of a transgene or endogenous gene results in sequence-specific mutations. Up to 48% of founder animals transmit disrupted gene alleles after zinc-finger nucleases microinjection compared with 17% after microinjection of transcription activator-like effector nucleases. Heterozygous offspring is selected using mutation detection assays that use a Surveyor (Cel-I) nuclease, and subsequent sibling crosses create homozygous knockout crickets. This approach is independent from a mutant phenotype or the genetic tractability of the organism of interest and can potentially be applied to manage insect pests using a non-transgenic strategy. PMID:22910363

  9. Effects of thyrotropin on the phosphorylation of histones and nonhistone phosphoproteins in micrococcal nuclease-sensitive and resistant thyroid chromatin

    SciTech Connect

    Cooper, E.; Spaulding, S.W.

    1983-05-01

    Actively transcribed regions of chromatin are more susceptible than bulk chromatin to digestion by nucleases, and useful information about the composition and structure of active chromatin may be obtained by studying the chromatin fragments released from nuclei by limited nuclease digestion. In the present study, we have used micrococcal nuclease to investigate the effects of TSH on protein phosphorylation in nuclease-sensitive fractions of calf thyroid chromatin. Batches of calf thyroid slices were incubated for 2 h with /sup 32/Pi, with or without 50 mU/ml TSH. Nuclei were then prepared and the distribution of /sup 32/P-labeled histones, high mobility group (HMG) proteins, and other acid-soluble phosphoproteins between micrococcal nuclease-sensitive and resistant fractions of chromatin was examined. TSH increased the amount of /sup 32/P incorporated into HMG 14 and the histones H1 and H3. Hormone-dependent increases in the /sup 32/P-labeling of H1 and H3 were not selectively associated with micrococcal nuclease-sensitive chromatin. In contrast, (/sup 32/P) HMG-14 was preferentially solubilized from nuclei by micrococcal nuclease. This lends support to the view that TSH-induced effects on the structure and function of transcriptionally active chromatin may be mediated in part by phosphorylation of HMG 14.

  10. Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond.

    PubMed

    Zückert, Wolfram R

    2014-08-01

    Bacterial lipoproteins are peripherally anchored membrane proteins that play a variety of roles in bacterial physiology and virulence in monoderm (single membrane-enveloped, e.g., gram-positive) and diderm (double membrane-enveloped, e.g., gram-negative) bacteria. After export of prolipoproteins through the cytoplasmic membrane, which occurs predominantly but not exclusively via the general secretory or Sec pathway, the proteins are lipid-modified at the cytoplasmic membrane in a multistep process that involves sequential modification of a cysteine residue and cleavage of the signal peptide by the signal II peptidase Lsp. In both monoderms and diderms, signal peptide processing is preceded by acylation with a diacylglycerol through preprolipoprotein diacylglycerol transferase (Lgt). In diderms but also some monoderms, lipoproteins are further modified with a third acyl chain through lipoprotein N-acyl transferase (Lnt). Fully modified lipoproteins that are destined to be anchored in the inner leaflet of the outer membrane (OM) are selected, transported and inserted by the Lol (lipoprotein outer membrane localization) pathway machinery, which consists of the inner-membrane (IM) ABC transporter-like LolCDE complex, the periplasmic LolA chaperone and the OM LolB lipoprotein receptor. Retention of lipoproteins in the cytoplasmic membrane results from Lol avoidance signals that were originally described as the "+2 rule". Surface localization of lipoproteins in diderms is rare in most bacteria, with the exception of several spirochetal species. Type 2 (T2SS) and type 5 (T5SS) secretion systems are involved in secretion of specific surface lipoproteins of γ-proteobacteria. In the model spirochete Borrelia burgdorferi, surface lipoprotein secretion does not follow established sorting rules, but remains dependent on N-terminal peptide sequences. Secretion through the outer membrane requires maintenance of lipoproteins in a translocation-competent unfolded conformation

  11. Periplasmic nitrate reductase and formate dehydrogenase: similar molecular architectures with very different enzymatic activities.

    PubMed

    Cerqueira, Nuno M F S A; Gonzalez, Pablo J; Fernandes, Pedro A; Moura, José J G; Ramos, Maria João

    2015-11-17

    It is remarkable how nature has been able to construct enzymes that, despite sharing many similarities, have simple but key differences that tune them for completely different functions in living cells. Periplasmic nitrate reductase (Nap) and formate dehydrogenase (Fdh) from the DMSOr family are representative examples of this. Both enzymes share almost identical three-dimensional protein foldings and active sites, in terms of coordination number, geometry and nature of the ligands. The substrates of both enzymes (nitrate and formate) are polyatomic anions that also share similar charge and stereochemistry. In terms of the catalytic mechanism, both enzymes have a common activation mechanism (the sulfur-shift mechanism) that ensures a constant coordination number around the metal ion during the catalytic cycle. In spite of these similarities, they catalyze very different reactions: Nap abstracts an oxygen atom from nitrate releasing nitrite, whereas FdH catalyzes a hydrogen atom transfer from formate and releases carbon dioxide. In this Account, a critical analysis of structure, function, and catalytic mechanism of the molybdenum enzymes periplasmic nitrate reductase (Nap) and formate dehydrogenase (Fdh) is presented. We conclude that the main structural driving force that dictates the type of reaction, catalyzed by each enzyme, is a key difference on one active site residue that is located in the top region of the active sites of both enzymes. In both enzymes, the active site is centered on the metal ion of the cofactor (Mo in Nap and Mo or W in Fdh) that is coordinated by four sulfur atoms from two pyranopterin guanosine dinucleotide (PGD) molecules and by a sulfido. However, while in Nap there is a Cys directly coordinated to the Mo ion, in FdH there is a SeCys instead. In Fdh there is also an important His that interacts very closely with the SeCys, whereas in Nap the same position is occupied by a Met. The role of Cys in Nap and SeCys in FdH is similar in both

  12. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina.

    PubMed

    Simpson, Philippa J L; Codd, Rachel

    2011-11-01

    The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo-MGD) cofactor and one [4Fe-4S] iron-sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (Nap(Sgel)) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (Nap(Sput)) was examined at varied temperature. Irreversible deactivation of Nap(Sgel) and Nap(Sput) occurred at 54.5 and 65°C, respectively. When Nap(Sgel) was preincubated at 21-70°C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54°C, which suggested that Nap(Sgel) was poised for optimal catalysis at modest temperatures and, unlike Nap(Sput), did not benefit from thermally-induced refolding. At 20°C, Nap(Sgel) reduced selenate at 16% of the rate of nitrate reduction. Nap(Sput) did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in Nap(Sgel) that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the Nap(Sgel) cold-adapted phenotype. Protein homology modeling of Nap(Sgel) using a mesophilic template with 66% amino acid identity showed the majority of substitutions occurred at the protein surface distal to the Mo-MGD cofactor. Two mesophilic↔psychrophilic substitutions (Asn↔His, Val↔Trp) occurred in a region close to the surface of the NapA substrate funnel resulting in potential interdomain π-π and/or cation-π interactions. Three mesophilic↔psychrophilic substitutions occurred within 4.5Å of the Mo-MGD cofactor (Phe↔Met, Ala↔Ser, Ser↔Thr) resulting in local regions that varied in hydrophobicity and hydrogen bonding

  13. Export of unprocessed precursor maltose-binding protein to the periplasm of Escherichia coli cells.

    PubMed

    Fikes, J D; Bassford, P J

    1987-06-01

    The Escherichia coli maltose-binding protein (MBP) R2 signal peptide is a truncated version of the wild-type structure that still facilitates very efficient export of MBP to the periplasm. Among single amino acid substitutions in the R2 signal peptide resulting in an export-defective precursor MBP (pMBP) were two that replaced residues in the consensus Ala-X-Ala sequence (residues -3 to -1) that immediately precedes the cleavage site. It was suggested that the functional hydrophobic core and signal peptidase recognition sequence of this signal peptide substantially overlap and that these two alterations affect both pMBP translocation and processing. In this study, the export of pMBP by the mutants, designated CC15 and CC17, with these two alterations was investigated further. The pMBP of mutant CC17 has an Arg substituted for Leu at the -2 position. It was found that CC17 cells exported only a very small amount of MBP, but that which was exported appeared to be correctly processed. This result was consistent with other studies that have concluded that virtually any amino acid can occupy the -2 position. For mutant CC15, which exhibits a fully Mal+ phenotype, an Asp is substituted for the Ala at the -3 position. CC15 cells were found to export large quantities of unprocessed, soluble pMBP to the periplasm, although such export was achieved in a relatively slow, posttranslational manner. This result was also consistent with other studies that suggested that charged residues are normally excluded from the -3 position of the cleavage site. Using in vitro oligonucleotide-directed mutagenesis, we constructed a new signal sequence mutant in which Asp was substituted for Arg at the -3 position of an otherwise wild-type MBP signal peptide. This alteration had no apparent effect on pMBP translocation across the cytoplasmic membrane, but processing by signal peptidase was inhibited. This pMBP species with its full-length hydrophobic core remained anchored to the membrane

  14. High yield purification of nanobodies from the periplasm of E. coli as fusions with the maltose binding protein.

    PubMed

    Salema, Valencio; Fernández, Luis Ángel

    2013-09-01

    Nanobodies (Nbs) are single domain antibodies based on the variable domains of heavy chain only antibodies (HCAbs) found in camelids, also referred to as VHHs. Their small size (ca. 12-15kDa), superior biophysical and antigen binding properties have made Nbs very attractive molecules for multiple biotechnological applications, including human therapy. The most widely used system for the purification of Nbs is their expression in the periplasm of Escherichia coli with a C-terminal hexa-histidine (His6) tag followed by immobilized metal affinity chromatography (IMAC). However, significant variability in the expression levels of different Nbs are routinely observed and a single affinity chromatography step is often not sufficient to obtain Nbs of high purity. Here, we report an alternative method for expression and purification of Nbs from the periplasm of E. coli based on their fusion to maltose binding protein (MBP) in the N-terminus and His6 tag in the C-terminus (MBP-NbHis6). Soluble MBP-NbHis6 fusions were consistently expressed at high levels (⩾12mg/L of induced culture in shake flasks) in the periplasm of E. coli HM140, a strain deficient in several periplasmic proteases. Highly pure MBP-NbHis6 fusions and free NbHis6 (after site specific proteolysis of the fusions), were recovered by amylose and metal affinity chromatography steps. The monomeric nature of the purified NbHis6 was determined by gel filtration chromatography. Lastly, we demonstrated by ELISA that both monomeric NbHis6 and MBP-NbHis6 fusions retained antigen binding activity and specificity, thus facilitating their direct use in antigen recognition assays. PMID:23856605

  15. Effect of periplasmic expression of recombinant mouse interleukin-4 on hydrogen peroxide concentration and catalase activity in Escherichia coli.

    PubMed

    Mehdizadeh Aghdam, Elnaz; Mahmoudi Azar, Lena; Barzegari, Abolfazl; Karimi, Farrokh; Mesbahfar, Majid; Samadi, Naser; Hejazi, Mohammad Saeid

    2012-12-15

    Oxidative stress occurs as a result of imbalance between generation and detoxification of reactive oxygen species (ROS). This kind of stress was rarely discussed in connection with foreign protein production in Escherichia coli. Relation between cytoplasmic recombinant protein expression with H(2)O(2) concentration and catalase activity variation was already reported. The periplasmic space of E. coli has different oxidative environment in relative to cytoplasm and there are some benefits in periplasmic expression of recombinant proteins. In this study, hydrogen peroxide concentration and catalase activity following periplasmic expression of mouse IL-4 were measured in E. coli. After construction of pET2mIL4 plasmid, the expression of recombinant mouse interleukin-4 (mIL-4) was confirmed. Then, the H(2)O(2) concentration and catalase activity variation in the cells were studied in exponential and stationary phases at various ODs and were compared to those of wild type cells and empty vector transformed cells. It was revealed that empty vector introduction and periplasmic recombinant protein expression increased significantly the H(2)O(2) concentration of the cells. However, the H(2)O(2) concentration in mIL-4 expressing cells was significantly higher than its concentration in empty vector transformed cells, demonstrating more effects of recombinant mIL-4 expression on H(2)O(2) elevation. Likewise, although catalase activity was reduced in foreign DNA introduced cells, it was more lowered following expression of recombinant proteins. Correlation between H(2)O(2) concentration elevation and catalase activity reduction with cell growth depletion is also demonstrated. It was also found that recombinant protein expression results in cell size increase. PMID:23000065

  16. Novel Mechanism for Scavenging of Hypochlorite Involving a Periplasmic Methionine-Rich Peptide and Methionine Sulfoxide Reductase

    PubMed Central

    Melnyk, Ryan A.; Youngblut, Matthew D.; Clark, Iain C.; Carlson, Hans K.; Wetmore, Kelly M.; Price, Morgan N.; Iavarone, Anthony T.; Deutschbauer, Adam M.; Arkin, Adam P.

    2015-01-01

    ABSTRACT Reactive chlorine species (RCS) defense mechanisms are important for bacterial fitness in diverse environments. In addition to the anthropogenic use of RCS in the form of bleach, these compounds are also produced naturally through photochemical reactions of natural organic matter and in vivo by the mammalian immune system in response to invading microorganisms. To gain insight into bacterial RCS defense mechanisms, we investigated Azospira suillum strain PS, which produces periplasmic RCS as an intermediate of perchlorate respiration. Our studies identified an RCS response involving an RCS stress-sensing sigma/anti-sigma factor system (SigF/NrsF), a soluble hypochlorite-scavenging methionine-rich periplasmic protein (MrpX), and a putative periplasmic methionine sulfoxide reductase (YedY1). We investigated the underlying mechanism by phenotypic characterization of appropriate gene deletions, chemogenomic profiling of barcoded transposon pools, transcriptome sequencing, and biochemical assessment of methionine oxidation. Our results demonstrated that SigF was specifically activated by RCS and initiated the transcription of a small regulon centering around yedY1 and mrpX. A yedY1 paralog (yedY2) was found to have a similar fitness to yedY1 despite not being regulated by SigF. Markerless deletions of yedY2 confirmed its synergy with the SigF regulon. MrpX was strongly induced and rapidly oxidized by RCS, especially hypochlorite. Our results suggest a mechanism involving hypochlorite scavenging by sacrificial oxidation of the MrpX in the periplasm. Reduced MrpX is regenerated by the YedY methionine sulfoxide reductase activity. The phylogenomic distribution of this system revealed conservation in several Proteobacteria of clinical importance, including uropathogenic Escherichia coli and Brucella spp., implying a putative role in immune response evasion in vivo. PMID:25968643

  17. Analyzing the Role of Periplasmic Folding Factors in the Biogenesis of OMPs and Members of the Type V Secretion System.

    PubMed

    Bodelón, Gustavo; Marín, Elvira; Fernández, Luis Ángel

    2015-01-01

    The outer membrane (OM) of gram-negative bacteria is highly packed with OM proteins (OMPs) and the trafficking and assembly of OMPs in gram-negative bacteria is a subject of intense research. Structurally, OMPs vary in the number of β-strands and in the size and complexity of extra-membrane domains, with extreme examples being the members of the type V protein secretion system (T5SS), such as the autotransporter (AT) and intimin/invasin families of secreted proteins, in which a large extracellular "passenger" domain is linked to a β-barrel that inserts in the OM. Despite their structural and functional diversity, OMPs interact in the periplasm with a relatively small set of protein chaperones that facilitate their transport from the inner membrane (IM) to the β-barrel assembly machinery (BAM complex), preventing aggregation and assisting their folding in various aspects including disulfide bond formation. This chapter is focused on the periplasmic folding factors involved in the biogenesis of integral OMPs and members of T5SS in E. coli, which are used as a model system in this field. Background information on these periplasmic folding factors is provided along with genetic methods to generate conditional mutants that deplete these factors from E. coli and biochemical methods to analyze the folding, surface display, disulfide formation and oligomerization state of OMPs/T5SS in these mutants. PMID:26427678

  18. Construction and Periplasmic Expression of the Anti-EGFRvIII ScFv Antibody Gene in Escherichia coli.

    PubMed

    Dewi, Kartika Sari; Retnoningrum, Debbie Sofie; Riani, Catur; Fuad, Asrul Muhamad

    2016-01-01

    In the previous study, we constructed an expression vector carrying the anti-EGFRvIII scFv antibody gene with VH-linker-VL orientation. The proteins were successfully produced in the periplasmic space of Escherichia coli. In this study, we substituted the inserted DNA with VL-linker-VH orientation of the anti-EGFRvIII scFv gene and analyzed its expression in E. coli. The DNA fragment was amplified from its cloning vector (pTz-rscFv), subsequently cloned into a previous expression vector containing the pelB signal sequence and his-tag, and then transformed into E. coli TOP10. The recombinant plasmids were characterized by restriction, PCR, and DNA sequencing analyses. The new anti-EGFRvIII scFv antibody proteins have been successfully expressed in the periplasmic compartment of E. coli Nico21(DE3) using 0.1 mM final concentration of IPTG induction. Total proteins, soluble periplasmic and cytoplasmic proteins, solubilized inclusion bodies, and extracellular proteins were analyzed by SDS-PAGE and Western Blot analyses. The results showed that soluble scFv proteins were found in all fractions except from the cytoplasmic space. PMID:27110505

  19. Construction and Periplasmic Expression of the Anti-EGFRvIII ScFv Antibody Gene in Escherichia coli

    PubMed Central

    Dewi, Kartika Sari; Retnoningrum, Debbie Sofie; Riani, Catur; Fuad, Asrul Muhamad

    2016-01-01

    In the previous study, we constructed an expression vector carrying the anti-EGFRvIII scFv antibody gene with VH-linker-VL orientation. The proteins were successfully produced in the periplasmic space of Escherichia coli. In this study, we substituted the inserted DNA with VL-linker-VH orientation of the anti-EGFRvIII scFv gene and analyzed its expression in E. coli. The DNA fragment was amplified from its cloning vector (pTz-rscFv), subsequently cloned into a previous expression vector containing the pelB signal sequence and his-tag, and then transformed into E. coli TOP10. The recombinant plasmids were characterized by restriction, PCR, and DNA sequencing analyses. The new anti-EGFRvIII scFv antibody proteins have been successfully expressed in the periplasmic compartment of E. coli Nico21(DE3) using 0.1 mM final concentration of IPTG induction. Total proteins, soluble periplasmic and cytoplasmic proteins, solubilized inclusion bodies, and extracellular proteins were analyzed by SDS-PAGE and Western Blot analyses. The results showed that soluble scFv proteins were found in all fractions except from the cytoplasmic space. PMID:27110505

  20. Substrate-Linked Conformational Change in the Periplasmic Component of a Cu(I)/Ag(I) Efflux System

    SciTech Connect

    Bagai, I.; Liu, W.; Rensing, C.; Blackburn, N.J.; McEvoy, M.M.

    2009-06-02

    Gram-negative bacteria utilize dual membrane resistance nodulation division-type efflux systems to export a variety of substrates. These systems contain an essential periplasmic component that is important for assembly of the protein complex. We show here that the periplasmic protein CusB from the Cus copper/silver efflux system has a critical role in Cu(I) and Ag(I) binding. Isothermal titration calorimetry experiments demonstrate that one Ag(I) ion is bound per CusB molecule with high affinity. X-ray absorption spectroscopy data indicate that the metal environment is an all-sulfur 3-coordinate environment. Candidates for the metal-coordinating residues were identified from sequence analysis, which showed four conserved methionine residues. Mutations of three of these methionine residues to isoleucine resulted in significant effects on CusB metal binding in vitro. Cells containing these CusB variants also show a decrease in their ability to grow on copper-containing plates, indicating an important functional role for metal binding by CusB. Gel filtration chromatography demonstrates that upon binding metal, CusB undergoes a conformational change to a more compact structure. Based on these structural and functional effects of metal binding, we propose that the periplasmic component of resistance nodulation division-type efflux systems plays an active role in export through substrate-linked conformational changes.

  1. A novel periplasmic protein (Slr0280) tunes photomixotrophic growth of the cyanobacterium, Synechocystis sp. PCC 6803.

    PubMed

    Dong, Liang-Liang; Li, Qing-Dong; Wu, Dong; Sun, Ya-Fang; Zhou, Ming; Zhao, Kai-Hong

    2016-01-10

    Cyanobacteria are among the main contributors to global photosynthesis and show a high degree of metabolic plasticity. Synechocystis sp. PCC 6803 can grow under photoautotrophic, photomixotrophic or photoheterotrophic conditions. We have characterized a novel periplasmic protein (Slr0280) that tunes the photomixotrophic growth of Synechocystis sp. PCC 6803. Slr0280 is a multi-domain protein consisting mainly of β-sheets. Several proteins that interact with Slr0280 were identified via bacterial two-hybrid screening. Slr0280 may interact through its DUF2233 domain with partners that participate in sugar metabolism, thereby coordinating the respective regulations. When slr0280 was deleted, the mutant grew more slowly than wild-type in the presence of glucose, which is ascribed to the down-regulation of glycolysis, glycogen catabolism, oxidative pentose phosphate pathway, Calvin cycle and glucose utilization. A positive regulation of Slr0280 on these sugar catabolic enzymes was confirmed by transcript (qPCR) analyses. Based on these findings, we proposed a speculative model that Slr0280 plays a coordinating regulatory role in sugar metabolism. PMID:26367329

  2. Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies.

    PubMed

    Symmons, Martyn F; Marshall, Robert L; Bavro, Vassiliy N

    2015-01-01

    Recent years have seen major advances in the structural understanding of the different components of tripartite efflux assemblies, which encompass the multidrug efflux (MDR) pumps and type I secretion systems. The majority of these investigations have focused on the role played by the inner membrane transporters and the outer membrane factor (OMF), leaving the third component of the system - the Periplasmic Adaptor Proteins (PAPs) - relatively understudied. Here we review the current state of knowledge of these versatile proteins which, far from being passive linkers between the OMF and the transporter, emerge as active architects of tripartite assemblies, and play diverse roles in the transport process. Recognition between the PAPs and OMFs is essential for pump assembly and function, and targeting this interaction may provide a novel avenue for combating multidrug resistance. With the recent advances elucidating the drug efflux and energetics of the tripartite assemblies, the understanding of the interaction between the OMFs and PAPs is the last piece remaining in the complete structure of the tripartite pump assembly puzzle. PMID:26074901

  3. Crystal structure of a putative oligopeptide-binding periplasmic protein from a hyperthermophile.

    PubMed

    Yoon, Hye-Jin; Kim, Hee Jung; Mikami, Bunzo; Yu, Yeon Gyu; Lee, Hyung Ho

    2016-09-01

    Oligopeptide-binding proteins (Opps) are part of the ATP-binding cassette system, playing a crucial role in nutrient uptake and sensing the external environment in bacteria, including hyperthermophiles. Opps serve as a binding platform for diverse peptides; however, how these peptides are recognized by Opps is still largely unknown and few crystal structures of Opps from hyperthermophiles have been determined. To facilitate such an understanding, the crystal structure of a putative Opp, OppA from Thermotoga maritima (TmOppA), was solved at 2.6-Å resolution in the open conformation. TmOppA is composed of three domains. The N-terminal domain consists of twelve strands, nine helices, and four 310 helices, and the C-terminal domain consists of five strands, ten helices, and one 310 helix. These two domains are connected by the linker domain, which consists of two strands, three helices, and three 310 helices. Based on structural comparisons of TmOppA with other OppAs and binding studies, we suggest that TmOppA might be a periplasmic Opp. The most distinct feature of TmOppA is the insertion of two helices, which are lacking in other OppAs. A cavity volume between the N-terminal and C-terminal domains is suggested to be responsible for binding peptides of various lengths. PMID:27377296

  4. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm

    PubMed Central

    Li, Dao-Bo; Cheng, Yuan-Yuan; Wu, Chao; Li, Wen-Wei; Li, Na; Yang, Zong-Chuang; Tong, Zhong-Hua; Yu, Han-Qing

    2014-01-01

    In situ reduction of selenite to elemental selenium (Se(0)), by microorganisms in sediments and soils is an important process and greatly affects the environmental distribution and the biological effects of selenium. However, the mechanism behind such a biological process remains unrevealed yet. Here we use Shewanella oneidensis MR-1, a widely-distributed dissimilatory metal-reducing bacterium with a powerful and diverse respiration capability, to evaluate the involvement of anaerobic respiration system in the microbial selenite reduction. With mutants analysis, we identify fumarate reductase FccA as the terminal reductase of selenite in periplasm. Moreover, we find that such a reduction is dependent on central respiration c-type cytochrome CymA. In contrast, nitrate reductase, nitrite reductase, and the Mtr electron transfer pathway do not work as selenite reductases. These findings reveal a previously unrecognized role of anaerobic respiration reductases of S. oneidensis MR-1 in selenite reduction and geochemical cycles of selenium in sediments and soils. PMID:24435070

  5. SilE is an intrinsically disordered periplasmic "molecular sponge" involved in bacterial silver resistance.

    PubMed

    Asiani, Karishma R; Williams, Huw; Bird, Louise; Jenner, Matthew; Searle, Mark S; Hobman, Jon L; Scott, David J; Soultanas, Panos

    2016-09-01

    Ag(+) resistance was initially found on the Salmonella enetrica serovar Typhimurium multi-resistance plasmid pMG101 from burns patients in 1975. The putative model of Ag(+) resistance, encoded by the sil operon from pMG101, involves export of Ag(+) via an ATPase (SilP), an effluxer complex (SilCFBA) and a periplasmic chaperon of Ag(+) (SilE). SilE is predicted to be intrinsically disordered. We tested this hypothesis using structural and biophysical studies and show that SilE is an intrinsically disordered protein in its free apo-form but folds to a compact structure upon optimal binding to six Ag(+) ions in its holo-form. Sequence analyses and site-directed mutagenesis established the importance of histidine and methionine containing motifs for Ag(+) -binding, and identified a nucleation core that initiates Ag(+) -mediated folding of SilE. We conclude that SilE is a molecular sponge for absorbing metal ions. PMID:27085056

  6. The Treponema denticola Major Sheath Protein Is Predominantly Periplasmic and Has Only Limited Surface Exposure

    PubMed Central

    Caimano, Melissa J.; Bourell, Kenneth W.; Bannister, Teresa D.; Cox, David L.; Radolf, Justin D.

    1999-01-01

    The recent discovery that the Treponema pallidum genome encodes 12 orthologs of the Treponema denticola major sheath protein (Msp) prompted us to reexamine the cellular location and topology of the T. denticola polypeptide. Experiments initially were conducted to ascertain whether Msp forms an array on or within the T. denticola outer membrane. Transmission electron microscopy (EM) of negatively stained and ultrathin-sectioned organisms failed to identify a typical surface layer, whereas freeze-fracture EM revealed that the T. denticola outer membrane contains heterogeneous transmembrane proteins but no array. In contrast, a lattice-like structure was observed in vesicles released from mildly sonicated treponemes; combined EM and biochemical analyses demonstrated that this structure was the peptidoglycan sacculus. Immunoelectron microscopy (IEM) subsequently was performed to localize Msp in T. denticola. Examination of negatively stained whole mounts identified substantial amounts of Msp in sonicated organisms. IEM of ultrathin-sectioned, intact treponemes also demonstrated that the preponderance of antigen was unassociated with the outer membrane. Lastly, immunofluorescence analysis of treponemes embedded in agarose gel microdroplets revealed that only minor portions of Msp are surface exposed. Taken as a whole, our findings challenge the widely held belief that Msp forms an array within the T. denticola outer membrane and demonstrate, instead, that it is predominantly periplasmic with only limited surface exposure. These findings also have implications for our evolving understanding of the contribution(s) of Msp/Tpr orthologs to treponemal physiology and disease pathogenesis. PMID:10417176

  7. The periplasmic protein TolB as a potential drug target in Pseudomonas aeruginosa.

    PubMed

    Lo Sciuto, Alessandra; Fernández-Piñar, Regina; Bertuccini, Lucia; Iosi, Francesca; Superti, Fabiana; Imperi, Francesco

    2014-01-01

    The Gram-negative bacterium Pseudomonas aeruginosa is one of the most dreaded pathogens in the hospital setting, and represents a prototype of multi-drug resistant "superbug" for which effective therapeutic options are very limited. The identification and characterization of new cellular functions that are essential for P. aeruginosa viability and/or virulence could drive the development of anti-Pseudomonas compounds with novel mechanisms of action. In this study we investigated whether TolB, the periplasmic component of the Tol-Pal trans-envelope protein complex of Gram-negative bacteria, represents a potential drug target in P. aeruginosa. By combining conditional mutagenesis with the analysis of specific pathogenicity-related phenotypes, we demonstrated that TolB is essential for P. aeruginosa growth, both in laboratory and clinical strains, and that TolB-depleted P. aeruginosa cells are strongly defective in cell-envelope integrity, resistance to human serum and several antibiotics, as well as in the ability to cause infection and persist in an insect model of P. aeruginosa infection. The essentiality of TolB for P. aeruginosa growth, resistance and pathogenicity highlights the potential of TolB as a novel molecular target for anti-P. aeruginosa drug discovery. PMID:25093328

  8. A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenic Neisseria.

    PubMed

    Jen, Freda E-C; Djoko, Karrera Y; Bent, Stephen J; Day, Christopher J; McEwan, Alastair G; Jennings, Michael P

    2015-09-01

    Under conditions of low oxygen availability, Neisseria meningitidis and Neisseria gonorrhoeae are able to respire via a partial denitrification pathway in which nitrite is converted to nitrous oxide. In this process, nitrite reductase (AniA), a copper (Cu)-containing protein converts nitrite to NO, and this product is converted to nitrous oxide by nitric oxide reductase (NorB). NorB also confers protection against toxic NO, and so we devised a conditional lethal screen, using a norB mutant, to identify mutants that were resistant to nitrite-dependent killing. After random-deletion mutagenesis of N. meningitidis, this genetic screen identified a gene encoding a Cu chaperone that is essential for AniA function, AccA. Purified AccA binds one Cu (I) ion and also possesses a second binding site for Cu (II). This novel periplasmic Cu chaperone (AccA) appears to be essential for provision of Cu ions to AniA of pathogenic Neisseria to generate an active nitrite reductase. Apart from the Neisseria genus, AccA is distributed across a wide range of environmental Proteobacteria species. PMID:26031293

  9. Structure-Based Design of a Periplasmic Binding Protein Antagonist that Prevents Domain Closure

    SciTech Connect

    Borrok, M. Jack; Zhu, Yimin; Forest, Katrina T.; Kiessling, Laura L.

    2009-07-31

    Many receptors undergo ligand-induced conformational changes to initiate signal transduction. Periplasmic binding proteins (PBPs) are bacterial receptors that exhibit dramatic conformational changes upon ligand binding. These proteins mediate a wide variety of fundamental processes including transport, chemotaxis, and quorum sensing. Despite the importance of these receptors, no PBP antagonists have been identified and characterized. In this study, we identify 3-O-methyl-D-glucose as an antagonist of glucose/galactose-binding protein and demonstrate that it inhibits glucose chemotaxis in E. coli. Using small-angle X-ray scattering and X-ray crystallography, we show that this antagonist acts as a wedge. It prevents the large-scale domain closure that gives rise to the active signaling state. Guided by these results and the structures of open and closed glucose/galactose-binding protein, we designed and synthesized an antagonist composed of two linked glucose residues. These findings provide a blueprint for the design of new bacterial PBP inhibitors. Given the key role of PBPs in microbial physiology, we anticipate that PBP antagonists will have widespread uses as probes and antimicrobial agents.

  10. Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies

    PubMed Central

    Symmons, Martyn F.; Marshall, Robert L.

    2015-01-01

    Recent years have seen major advances in the structural understanding of the different components of tripartite efflux assemblies, which encompass the multidrug efflux (MDR) pumps and type I secretion systems. The majority of these investigations have focused on the role played by the inner membrane transporters and the outer membrane factor (OMF), leaving the third component of the system – the Periplasmic Adaptor Proteins (PAPs) – relatively understudied. Here we review the current state of knowledge of these versatile proteins which, far from being passive linkers between the OMF and the transporter, emerge as active architects of tripartite assemblies, and play diverse roles in the transport process. Recognition between the PAPs and OMFs is essential for pump assembly and function, and targeting this interaction may provide a novel avenue for combating multidrug resistance. With the recent advances elucidating the drug efflux and energetics of the tripartite assemblies, the understanding of the interaction between the OMFs and PAPs is the last piece remaining in the complete structure of the tripartite pump assembly puzzle. PMID:26074901

  11. Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein.

    PubMed

    Simon, Jörg; Sänger, Monica; Schuster, Stephan C; Gross, Roland

    2003-07-01

    The rumen bacterium Wolinella succinogenes grows by respiratory nitrate ammonification with formate as electron donor. Whereas the enzymology and coupling mechanism of nitrite respiration is well known, nitrate reduction to nitrite has not yet been examined. We report here that intact cells and cell fractions catalyse nitrate and chlorate reduction by reduced viologen dyes with high specific activities. A gene cluster encoding components of a putative periplasmic nitrate reductase system (napA, G, H, B, F, L, D) was sequenced. The napA gene was inactivated by inserting a kanamycin resistance gene cassette. The resulting mutant did not grow by nitrate respiration and did not reduce nitrate during growth by fumarate respiration, in contrast to the wild type. An antigen was detected in wild-type cells using an antiserum raised against the periplasmic nitrate reductase (NapA) from Paracoccus pantotrophus. This antigen was absent in the W. succinogenes napA mutant. It is concluded that the periplasmic nitrate reductase NapA is the only respiratory nitrate reductase in W. succinogenes, although a second nitrate-reducing enzyme is apparently induced in the napA mutant. The nap cluster of W. succinogenes lacks a napC gene whose product is thought to function in quinol oxidation and electron transfer to NapA in other bacteria. The W. succinogenes genome encodes two members of the NapC/NirT family, NrfH and FccC. Characterization of corresponding deletion mutants indicates that neither of these two proteins is required for nitrate respiration. A mutant lacking the genes encoding respiratory nitrite reductase (nrfHA) had wild-type properties with respect to nitrate respiration. A model of the electron transport chain of nitrate respiration is proposed in which one or more of the napF, G, H and L gene products mediate electron transport from menaquinol to the periplasmic NapAB complex. Inspection of the W. succinogenes genome sequence suggests that ammonia formation from

  12. Karyomegalic interstitial nephritis and DNA damage-induced polyploidy in Fan1 nuclease-defective knock-in mice

    PubMed Central

    Lachaud, Christophe; Slean, Meghan; Marchesi, Francesco; Lock, Claire; Odell, Edward; Castor, Dennis; Toth, Rachel; Rouse, John

    2016-01-01

    The Fan1 endonuclease is required for repair of DNA interstrand cross-links (ICLs). Mutations in human Fan1 cause karyomegalic interstitial nephritis (KIN), but it is unclear whether defective ICL repair is responsible or whether Fan1 nuclease activity is relevant. We show that Fan1 nuclease-defective (Fan1nd/nd) mice develop a mild form of KIN. The karyomegalic nuclei from Fan1nd/nd kidneys are polyploid, and fibroblasts from Fan1nd/nd mice become polyploid upon ICL induction, suggesting that defective ICL repair causes karyomegaly. Thus, Fan1 nuclease activity promotes ICL repair in a manner that controls ploidy, a role that we show is not shared by the Fanconi anemia pathway or the Slx4–Slx1 nuclease also involved in ICL repair. PMID:26980188

  13. Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing.

    PubMed

    Lee, Ciaran M; Cradick, Thomas J; Fine, Eli J; Bao, Gang

    2016-03-01

    The rapid advancement in targeted genome editing using engineered nucleases such as ZFNs, TALENs, and CRISPR/Cas9 systems has resulted in a suite of powerful methods that allows researchers to target any genomic locus of interest. A complementary set of design tools has been developed to aid researchers with nuclease design, target site selection, and experimental validation. Here, we review the various tools available for target selection in designing engineered nucleases, and for quantifying nuclease activity and specificity, including web-based search tools and experimental methods. We also elucidate challenges in target selection, especially in predicting off-target effects, and discuss future directions in precision genome editing and its applications. PMID:26750397

  14. Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing

    PubMed Central

    Lee, Ciaran M; Cradick, Thomas J; Fine, Eli J; Bao, Gang

    2016-01-01

    The rapid advancement in targeted genome editing using engineered nucleases such as ZFNs, TALENs, and CRISPR/Cas9 systems has resulted in a suite of powerful methods that allows researchers to target any genomic locus of interest. A complementary set of design tools has been developed to aid researchers with nuclease design, target site selection, and experimental validation. Here, we review the various tools available for target selection in designing engineered nucleases, and for quantifying nuclease activity and specificity, including web-based search tools and experimental methods. We also elucidate challenges in target selection, especially in predicting off-target effects, and discuss future directions in precision genome editing and its applications. PMID:26750397

  15. Nuclease-functionalized poly(styrene-b-isobutylene-b-styrene) surface with anti-infection and tissue integration bifunctions.

    PubMed

    Yuan, Shuaishuai; Zhao, Jie; Luan, Shifang; Yan, Shunjie; Zheng, Wanling; Yin, Jinghua

    2014-10-22

    Hydrophobic thermoplastic elastomers, e.g., poly(styrene-b-isobutylene-b-styrene) (SIBS), have found various in vivo biomedical applications. It has long been recognized that biomaterials can be adversely affected by bacterial contamination and clinical infection. However, inhibiting bacterial colonization while simultaneously preserving or enhancing tissue-cell/material interactions is a great challenge. Herein, SIBS substrates were functionalized with nucleases under mild conditions, through polycarboxylate grafts as intermediate. It was demonstrated that the nuclease-modified SIBS could effectively prevent bacterial adhesion and biofilm formation. Cell adhesion assays confirmed that nuclease coatings generally had no negative effects on L929 cell adhesion, compared with the virgin SIBS reference. Therefore, the as-reported nuclease coating may present a promising approach to inhibit bacterial infection, while preserving tissue-cell integration on polymeric biomaterials. PMID:25253647

  16. Cleavage of the HIV replication primer tRNALys,3 in human cells expressing bacterial anticodon nuclease.

    PubMed Central

    Shterman, N; Elroy-Stein, O; Morad, I; Amitsur, M; Kaufmann, G

    1995-01-01

    Anticodon nuclease is a bacterial restriction enzyme directed against tRNA(Lys). We report that anticodon nuclease also cleaves mammalian tRNA(Lys) molecules, with preference and site specificity shown towards the natural substrate. Expression of the anticodon nuclease core polypeptide PrrC in HeLa cells from a recombinant vaccinia virus elicited cleavage of intracellular tRNA(Lys),3. The data justify an inquiry into the possible application of anticodon nuclease as an inhibitor of tRNA(Lys),3-primed HIV replication. They also indicate that the anticodon region of tRNA(Lys) is a substrate recognition site and suggest that PrrC harbors the enzymatic activity. Images PMID:7784179

  17. Selective Enhancement of Nucleases by Polyvalent DNA-Functionalized Gold Nanoparticles

    PubMed Central

    Prigodich, Andrew E.; Alhasan, Ali H.

    2011-01-01

    We demonstrate that polyvalent DNA-functionalized gold nanoparticles (DNA-Au NPs) selectively enhance Ribonuclease H (RNase H) activity, while inhibiting most biologically relevant nucleases. This combination of properties is particularly interesting in the context of gene regulation, since high RNase H activity results in rapid mRNA degradation and general nuclease inhibition results in high biological stability. We investigate the mechanism of selective RNase H activation and find that the high DNA density of DNA-Au NPs is responsible for this unusual behavior. This work adds to our understanding of polyvalent DNA-Au NPs as gene regulation agents, and suggests a new model for selectively controlling protein-nanoparticle interactions. PMID:21268581

  18. Evolution of an archaeal virus nucleocapsid protein from the CRISPR-associated Cas4 nuclease.

    PubMed

    Krupovic, Mart; Cvirkaite-Krupovic, Virginija; Prangishvili, David; Koonin, Eugene V

    2015-01-01

    Many proteins of viruses infecting hyperthermophilic Crenarchaeota have no detectable homologs in current databases, hampering our understanding of viral evolution. We used sensitive database search methods and structural modeling to show that a nucleocapsid protein (TP1) of Thermoproteus tenax virus 1 (TTV1) is a derivative of the Cas4 nuclease, a component of the CRISPR-Cas adaptive immunity system that is encoded also by several archaeal viruses. In TTV1, the Cas4 gene was split into two, with the N-terminal portion becoming TP1, and lost some of the catalytic amino acid residues, apparently resulting in the inactivation of the nuclease. To our knowledge, this is the first described case of exaptation of an enzyme for a virus capsid protein function. PMID:26514828

  19. Dimerization of SLX4 contributes to functioning of the SLX4-nuclease complex

    PubMed Central

    Yin, Jinhu; Wan, Bingbing; Sarkar, Jaya; Horvath, Kent; Wu, Jian; Chen, Yong; Cheng, Guangjuan; Wan, Ke; Chin, Peiju; Lei, Ming; Liu, Yie

    2016-01-01

    The Fanconi anemia protein SLX4 assembles a genome and telomere maintenance toolkit, consisting of the nucleases SLX1, MUS81 and XPF. Although it is known that SLX4 acts as a scaffold for building this complex, the molecular basis underlying this function of SLX4 remains unclear. Here, we report that functioning of SLX4 is dependent on its dimerization via an oligomerization motif called the BTB domain. We solved the crystal structure of the SLX4BTB dimer, identifying key contacts (F681 and F708) that mediate dimerization. Disruption of BTB dimerization abrogates nuclear foci formation and telomeric localization of not only SLX4 but also of its associated nucleases. Furthermore, dimerization-deficient SLX4 mutants cause defective cellular response to DNA interstrand crosslinking agent and telomere maintenance, underscoring the contribution of BTB domain-mediated dimerization of SLX4 in genome and telomere maintenance. PMID:27131364

  20. A simple molecular beacon with duplex-specific nuclease amplification for detection of microRNA.

    PubMed

    Li, Yingcun; Zhang, Jiangyan; Zhao, Jingjing; Zhao, Likun; Cheng, Yongqiang; Li, Zhengping

    2016-02-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene activity, promoting or inhibiting cell proliferation, migration and apoptosis. Abnormal expression of miRNAs is associated with many diseases. Therefore, it is essential to establish a simple, rapid and sensitive miRNA detection method. In this paper, based on a simple molecular beacon (MB) and duplex-specific nuclease (DSN), we developed a target recycling amplification method for miRNA detection. By controlling the number of stem bases to 5, the MB probe used in this method can be prevented from hydrolysis by DSN without special modification. This assay is direct and simple to quantitatively detect miRNA with high sensitivity and specificity. The MB probe design provides a new strategy for nuclease-based amplification reaction. PMID:26688865

  1. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases.

    PubMed

    Tsai, Shengdar Q; Joung, J Keith

    2016-04-18

    CRISPR-Cas9 RNA-guided nucleases are a transformative technology for biology, genetics and medicine owing to the simplicity with which they can be programmed to cleave specific DNA target sites in living cells and organisms. However, to translate these powerful molecular tools into safe, effective clinical applications, it is of crucial importance to carefully define and improve their genome-wide specificities. Here, we outline our state-of-the-art understanding of target DNA recognition and cleavage by CRISPR-Cas9 nucleases, methods to determine and improve their specificities, and key considerations for how to evaluate and reduce off-target effects for research and therapeutic applications. PMID:27087594

  2. Studies of interaction between a new synthesized minor-groove targeting artificial nuclease and DNA

    NASA Astrophysics Data System (ADS)

    Yin, Qiang; Zhang, Zhen; Zhao, Yu-Fen

    2007-04-01

    Nuclease plays an important role in molecular biology, such as DNA sequencing. Synthetic polyamide conjugates can be considered as new tool in the selective inhibition of gene expression and as potential drugs in anticancer or antiviral chemotherapy. In this paper, a new synthesized minor-groove targeting artificial nuclease, oligopyrrol-containing peptide, was reported. It was found that this new compound can bind DNA in AT-riched minor groove with high affinity and site specificity. DNA binding behavior was determined by UV-vis and circular dichroism (CD) methods. It was indicated that compound 6 can enhance the Tm of oligomer DNA from 51.8 to 63.5 °C and possesses large binding constant ( Kb = 8.83 × 10 4 L/mol).

  3. Dimerization of SLX4 contributes to functioning of the SLX4-nuclease complex.

    PubMed

    Yin, Jinhu; Wan, Bingbing; Sarkar, Jaya; Horvath, Kent; Wu, Jian; Chen, Yong; Cheng, Guangjuan; Wan, Ke; Chin, Peiju; Lei, Ming; Liu, Yie

    2016-06-01

    The Fanconi anemia protein SLX4 assembles a genome and telomere maintenance toolkit, consisting of the nucleases SLX1, MUS81 and XPF. Although it is known that SLX4 acts as a scaffold for building this complex, the molecular basis underlying this function of SLX4 remains unclear. Here, we report that functioning of SLX4 is dependent on its dimerization via an oligomerization motif called the BTB domain. We solved the crystal structure of the SLX4BTB dimer, identifying key contacts (F681 and F708) that mediate dimerization. Disruption of BTB dimerization abrogates nuclear foci formation and telomeric localization of not only SLX4 but also of its associated nucleases. Furthermore, dimerization-deficient SLX4 mutants cause defective cellular response to DNA interstrand crosslinking agent and telomere maintenance, underscoring the contribution of BTB domain-mediated dimerization of SLX4 in genome and telomere maintenance. PMID:27131364

  4. The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis

    PubMed Central

    Ipsaro, Jonathan J.; Haase, Astrid D.; Knott, Simon R.; Joshua-Tor, Leemor; Hannon, Gregory J.

    2012-01-01

    PIWI-family proteins and their associated small RNAs (piRNAs) act in an evolutionarily conserved innate immune mechanism that provides an essential protection for germ cell genomes against the activity of mobile genetic elements1. piRNA populations comprise a molecular definition of transposons that permits them to be distinguished from host genes and selectively silenced. piRNAs can be generated in two distinct ways. Primary piRNAs emanate from discrete genomic loci, termed piRNA clusters, and appear to be derived from long, single-stranded precursors2. The biogenesis of primary piRNAs involves at least two nucleolytic steps. An unknown enzyme cleaves piRNA cluster transcripts to generate monophosphorylated piRNA 5' ends. piRNA 3' ends are likely formed by exonucleolytic trimming, after a piRNA precursor is loaded into its PIWI partner1,3. Secondary piRNAs arise during the adaptive ping-pong cycle, with their 5' termini being formed by the activity of PIWIs themselves2,4. A number of proteins have been implicated genetically in primary piRNA biogenesis. One of these, Zucchini, is a member of the phospholipase D family of phosphodiesterases, which includes both phospholipases and nucleases5–7. We have produced a dimeric, soluble fragment of the mouse Zucchini homolog (mZuc/PLD6) and have shown that it possesses single strand-specific nuclease activity. A crystal structure of mZuc at 1.75 Å resolution indicates greater architectural similarity to PLD-family nucleases than to phospholipases. Considered together, our data suggest that the Zucchini proteins act in primary piRNA biogenesis as nucleases, perhaps generating the 5' ends of primary piRNAs. PMID:23064227

  5. The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis.

    PubMed

    Ipsaro, Jonathan J; Haase, Astrid D; Knott, Simon R; Joshua-Tor, Leemor; Hannon, Gregory J

    2012-11-01

    PIWI-family proteins and their associated small RNAs (piRNAs) act in an evolutionarily conserved innate immune mechanism to provide essential protection for germ-cell genomes against the activity of mobile genetic elements. piRNA populations comprise a molecular definition of transposons, which permits them to distinguish transposons from host genes and selectively silence them. piRNAs can be generated in two distinct ways, forming either primary or secondary piRNAs. Primary piRNAs come from discrete genomic loci, termed piRNA clusters, and seem to be derived from long, single-stranded precursors. The biogenesis of primary piRNAs involves at least two nucleolytic steps. An unknown enzyme cleaves piRNA cluster transcripts to generate monophosphorylated piRNA 5' ends. piRNA 3' ends are probably formed by exonucleolytic trimming, after a piRNA precursor is loaded into its PIWI partner. Secondary piRNAs arise during the adaptive 'ping-pong' cycle, with their 5' termini being formed by the activity of PIWIs themselves. A number of proteins have been implicated genetically in primary piRNA biogenesis. One of these, Drosophila melanogaster Zucchini, is a member of the phospholipase-D family of phosphodiesterases, which includes both phospholipases and nucleases. Here we produced a dimeric, soluble fragment of the mouse Zucchini homologue (mZuc; also known as PLD6) and show that it possesses single-strand-specific nuclease activity. A crystal structure of mZuc at 1.75 Å resolution indicates greater architectural similarity to phospholipase-D family nucleases than to phospholipases. Together, our data suggest that the Zucchini proteins act in primary piRNA biogenesis as nucleases, perhaps generating the 5' ends of primary piRNAs. PMID:23064227

  6. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases

    PubMed Central

    Chen, Fuqiang; Pruett-Miller, Shondra M; Huang, Yuping; Gjoka, Monika; Duda, Katarzyna; Taunton, Jack; Collingwood, Trevor N; Frodin, Morten; Davis, Gregory D

    2011-01-01

    Zinc-finger nucleases (ZFNs) have enabled highly efficient gene targeting in multiple cell types and organisms. Here we describe methods for using simple ssDNA oligonucleotides in tandem with ZFNs to efficiently produce human cell lines with three distinct genetic outcomes: (i) targeted point mutation, (ii) targeted genomic deletion of up to 100 kb and (iii) targeted insertion of small genetic elements concomitant with large genomic deletions. PMID:21765410

  7. Escherichia coli ghost production by expression of lysis gene E and Staphylococcal nuclease.

    PubMed

    Haidinger, W; Mayr, U B; Szostak, M P; Resch, S; Lubitz, W

    2003-10-01

    The production of bacterial ghosts from Escherichia coli is accomplished by the controlled expression of phage phiX174 lysis gene E and, in contrast to other gram-negative bacterial species, is accompanied by the rare detection of nonlysed, reproductive cells within the ghost preparation. To overcome this problem, the expression of a secondary killing gene was suggested to give rise to the complete genetic inactivation of the bacterial samples. The expression of staphylococcal nuclease A in E. coli resulted in intracellular accumulation of the protein and degradation of the host DNA into fragments shorter than 100 bp. Two expression systems for the nuclease are presented and were combined with the protein E-mediated lysis system. Under optimized conditions for the coexpression of gene E and the staphylococcal nuclease, the concentration of viable cells fell below the lower limit of detection, whereas the rates of ghost formation were not affected. With regard to the absence of reproductive cells from the ghost fractions, the reduction of viability could be determined as being at least 7 to 8 orders of magnitude. The lysis process was characterized by electrophoretic analysis and absolute quantification of the genetic material within the cells and the culture supernatant via real-time PCR. The ongoing degradation of the bacterial nucleic acids resulted in a continuous quantitative clearance of the genetic material associated with the lysing cells until the concentrations fell below the detection limits of either assay. No functional, released genetic units (genes) were detected within the supernatant during the lysis process, including nuclease expression. PMID:14532068

  8. Improved Somatic Mutagenesis in Zebrafish Using Transcription Activator-Like Effector Nucleases (TALENs)

    PubMed Central

    Moore, Finola E.; Reyon, Deepak; Sander, Jeffry D.; Martinez, Sarah A.; Blackburn, Jessica S.; Khayter, Cyd; Ramirez, Cherie L.; Joung, J. Keith; Langenau, David M.

    2012-01-01

    Zinc Finger Nucleases (ZFNs) made by Context-Dependent Assembly (CoDA) and Transcription Activator-Like Effector Nucleases (TALENs) provide robust and user-friendly technologies for efficiently inactivating genes in zebrafish. These designer nucleases bind to and cleave DNA at particular target sites, inducing error-prone repair that can result in insertion or deletion mutations. Here, we assess the relative efficiencies of these technologies for inducing somatic DNA mutations in mosaic zebrafish. We find that TALENs exhibited a higher success rate for obtaining active nucleases capable of inducing mutations than compared with CoDA ZFNs. For example, all six TALENs tested induced DNA mutations at genomic target sites while only a subset of CoDA ZFNs exhibited detectable rates of mutagenesis. TALENs also exhibited higher mutation rates than CoDA ZFNs that had not been pre-screened using a bacterial two-hybrid assay, with DNA mutation rates ranging from 20%–76.8% compared to 1.1%–3.3%. Furthermore, the broader targeting range of TALENs enabled us to induce mutations at the methionine translation start site, sequences that were not targetable using the CoDA ZFN platform. TALENs exhibited similar toxicity to CoDA ZFNs, with >50% of injected animals surviving to 3 days of life. Taken together, our results suggest that TALEN technology provides a robust alternative to CoDA ZFNs for inducing targeted gene-inactivation in zebrafish, making it a preferred technology for creating targeted knockout mutants in zebrafish. PMID:22655075

  9. The history and market impact of CRISPR RNA-guided nucleases

    PubMed Central

    van Erp, Paul B.G.; Bloomer, Gary; Wilkinson, Royce; Wiedenheft, Blake

    2015-01-01

    The interface between viruses and their hosts’ are hot spots for biological and biotechnological innovation. Bacteria use restriction endonucleases to destroy invading DNA, and industry has exploited these enzymes for molecular cut-and-paste reactions that are central to many recombinant DNA technologies. Today, another class of nucleases central to adaptive immune systems that protect bacteria and archaea from invading viruses and plasmids are blazing a similar path from basic science to profound biomedical and industrial applications. PMID:25914022

  10. Stable DNA Unwinding, not "Breathing," Accounts for Single-Strand-Specific Nuclease Hypersensitivity of Specific A + T-Rich Sequences

    NASA Astrophysics Data System (ADS)

    Kowalski, David; Natale, Darren A.; Eddy, Martha J.

    1988-12-01

    A long A+T-rich sequence in supercoiled pBR322 DNA is hypersensitive to single-strand-specific nucleases at 37 degrees C but not at reduced temperature. The basis for the nuclease hypersensitivity is stable DNA unwinding as revealed by (i) the same temperature dependence for hypersensitivity and for stable unwinding of plasmid topoisomers after two-dimensional gel electrophoresis, (ii) preferential nuclease digestion of stably unwound topoisomers, and (iii) quantitative nicking of stably unwound topoisomers in the A+T-rich region. Nuclease hypersensitivity of A+T-rich sequences is hierarchical, and either deletion of the primary site or a sufficient increase in the free energy of supercoiling leads to enhanced nicking at an alternative A+T-rich site. The hierarchy of nuclease hypersensitivity reflects a hierarchy in the free energy required for unwinding naturally occurring sequences in supercoiled DNA. This finding, along with the known hypersensitivity of replication origins and transcriptional regulatory regions, has important implications for using single-strand-specific nucleases in DNA structure-function studies.

  11. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina

    SciTech Connect

    Simpson, Philippa J.L.; Codd, Rachel

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Cold-adapted phenotype of NapA from the Antarctic bacterium Shewanella gelidimarina. Black-Right-Pointing-Pointer Protein homology model of NapA from S. gelidimarina and mesophilic homologue. Black-Right-Pointing-Pointer Six amino acid residues identified as lead candidates governing NapA cold adaptation. Black-Right-Pointing-Pointer Molecular-level understanding of designing cool-temperature in situ oxyanion sensors. -- Abstract: The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo-MGD) cofactor and one [4Fe-4S] iron-sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (Nap{sub Sgel}) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (Nap{sub Sput}) was examined at varied temperature. Irreversible deactivation of Nap{sub Sgel} and Nap{sub Sput} occurred at 54.5 and 65 Degree-Sign C, respectively. When Nap{sub Sgel} was preincubated at 21-70 Degree-Sign C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54 Degree-Sign C, which suggested that Nap{sub Sgel} was poised for optimal catalysis at modest temperatures and, unlike Nap{sub Sput}, did not benefit from thermally-induced refolding. At 20 Degree-Sign C, Nap{sub Sgel} reduced selenate at 16% of the rate of nitrate reduction. Nap{sub Sput} did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in Nap{sub Sgel} that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the Nap{sub Sgel} cold-adapted phenotype. Protein homology modeling of Nap{sub Sgel} using a

  12. Soluble periplasmic production of human granulocyte colony-stimulating factor (G-CSF) in Pseudomonas fluorescens.

    PubMed

    Jin, Hongfan; Cantin, Greg T; Maki, Steven; Chew, Lawrence C; Resnick, Sol M; Ngai, Jerry; Retallack, Diane M

    2011-07-01

    Cost-effective production of soluble recombinant protein in a bacterial system remains problematic with respect to expression levels and quality of the expressed target protein. These constraints have particular meaning today as "biosimilar" versions of innovator protein drugs are entering the clinic and the marketplace. A high throughput, parallel processing approach to expression strain engineering was used to evaluate soluble expression of human granulocyte colony-stimulating factor (G-CSF) in Pseudomonas fluorescens. The human g-csf gene was optimized for expression in P. fluorescens and cloned into a set of periplasmic expression vectors. These plasmids were transformed into a variety of P. fluorescens host strains each having a unique phenotype, to evaluate soluble expression in a 96-well growth and protein expression format. To identify a strain producing high levels of intact, soluble Met-G-CSF product, more than 150 protease defective host strains from the Pfēnex Expression Technology™ toolbox were screened in parallel using biolayer interferometry (BLI) to quantify active G-CSF binding to its receptor. A subset of these strains was screened by LC-MS analysis to assess the quality of the expressed G-CSF protein. A single strain with an antibiotic resistance marker insertion in the pfaI gene was identified that produced>99% Met-GCSF. A host with a complete deletion of the autotransporter-coding gene pfaI from the genome was constructed, and expression of soluble, active Met-GSCF in this strain was observed to be 350mg/L at the 1 liter fermentation scale. PMID:21396452

  13. Catalytic Mechanism and Mode of Action of the Periplasmic Alginate Epimerase AlgG*

    PubMed Central

    Wolfram, Francis; Kitova, Elena N.; Robinson, Howard; Walvoort, Marthe T. C.; Codée, Jeroen D. C.; Klassen, John S.; Howell, P. Lynne

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that forms chronic biofilm infections in the lungs of cystic fibrosis patients. A major component of the biofilm during these infections is the exopolysaccharide alginate, which is synthesized at the inner membrane as a homopolymer of 1–4-linked β-d-mannuronate. As the polymer passages through the periplasm, 22–44% of the mannuronate residues are converted to α-l-guluronate by the C5-epimerase AlgG to produce a polymer of alternating β-d-mannuronate and α-l-guluronate blocks and stretches of polymannuronate. To understand the molecular basis of alginate epimerization, the structure of Pseudomonas syringae AlgG has been determined at 2.1-Å resolution, and the protein was functionally characterized. The structure reveals that AlgG is a long right-handed parallel β-helix with an elaborate lid structure. Functional analysis of AlgG mutants suggests that His319 acts as the catalytic base and that Arg345 neutralizes the acidic group during the epimerase reaction. Water is the likely catalytic acid. Electrostatic surface potential and residue conservation analyses in conjunction with activity and substrate docking studies suggest that a conserved electropositive groove facilitates polymannuronate binding and contains at least nine substrate binding subsites. These subsites likely align the polymer in the correct register for catalysis to occur. The presence of multiple subsites, the electropositive groove, and the non-random distribution of guluronate in the alginate polymer suggest that AlgG is a processive enzyme. Moreover, comparison of AlgG and the extracellular alginate epimerase AlgE4 of Azotobacter vinelandii provides a structural rationale for the differences in their Ca2+ dependence. PMID:24398681

  14. Function of Periplasmic Hydrogenases in the Sulfate-ReducingBacterium Desulfovibrio vulgaris Hildenborough

    SciTech Connect

    Caffrey, Sean M.; Park, Hyung-Soo; Voordouw, Johanna K.; He,Zhili; Zhou, Jizhong; Voordouw, Gerrit

    2007-09-24

    The sulfate-reducing bacterium Desulfovibrio vulgarisHildenborough possesses four periplasmic hydrogenases to facilitate theoxidation of molecular hydrogen. These include an [Fe]hydrogenase, an[NiFeSe]hydrogenase, and two [NiFe]hydrogenases encoded by the hyd,hys, hyn1, and hyn2 genes, respectively. In order to understand theircellular functions, we have compared the growth rates of existing (hydand hyn1) and newly constructed (hys and hyn-1 hyd) mutants to those ofthe wild type in defined media in which lactate or hydrogen at either 5or 50 percent (vol/vol) was used as the sole electron donor for sulfatereduction. Only strains missing the [Fe]hydrogenase were significantlyaffected during growth with lactate or with 50 percent (vol/vol) hydrogenas the sole electron donor. When the cells were grown at low (5 percent[vol/vol]) hydrogen concentrations, those missing the [NiFeSe]hydrogenase suffered the greatest impairment. The growth rate datacorrelated strongly with gene expression results obtained from microarrayhybridizations and real-time PCR using mRNA extracted from cells grownunder the three conditions. Expression of the hys genes followed theorder 5 percent hydrogen>50 percent hydrogen>lactate, whereasexpression of the hyd genes followed the reverse order. These resultssuggest that growth with lactate and 50 percent hydrogen is associatedwith high intracellular hydrogen concentrations, which are best capturedby the higher activity, lower affinity [Fe]hydrogenase. In contrast,growth with 5 percent hydrogen is associated with a low intracellularhydrogen concentration, requiring the lower activity, higher affinity[NiFeSe]hydrogenase.

  15. Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins.

    PubMed

    Davidson, A L; Shuman, H A; Nikaido, H

    1992-03-15

    Maltose transport across the cytoplasmic membrane of Escherichia coli is dependent on the presence of a periplasmic maltose-binding protein (MBP), the product of the malE gene. The products of the malF, malG, and malK genes form a membrane-associated complex that catalyzes the hydrolysis of ATP to provide energy for the transport event. Previously, mutants were isolated that had gained the ability to grow on maltose in the absence of MBP. After reconstitution of the transport complex into proteoliposomes, measurement of the ATPase activity of wild-type and mutant complexes in the presence and absence of MBP revealed that the wild-type complex hydrolyzed ATP rapidly only when MBP and maltose were both present. In contrast, the mutant complexes have gained the ability to hydrolyze ATP in the absence of maltose and MBP. The basal rate of hydrolysis by the different mutant complexes was directly proportional to the growth rate of that strain on maltose, a result indicating that the constitutive ATP hydrolysis and presumably the resultant cyclic conformational changes of the complex produce maltose transport in the absence of MBP. These results also suggest that ATP hydrolysis is not directly coupled to ligand transport even in wild-type cells and that one important function of MBP is to transmit a transmembrane signal, through the membrane-spanning MalF and MalG proteins, to the MalK protein on the other side of the membrane, so that ATP hydrolysis can occur. PMID:1549599

  16. Export of the periplasmic maltose-binding protein of Escherichia coli.

    PubMed

    Bassford, P J

    1990-06-01

    The export of the maltose-binding protein (MBP), the malE gene product, to the periplasm of Escherichia coli cells has been extensively investigated. The isolation of strains synthesizing MalE-LacZ hybrid proteins led to a novel genetic selection for mutants that accumulate export-defective precursor MBP (preMBP) in the cytoplasm. The export defects were subsequently shown to result from alterations in the MBP signal peptide. Analysis of these and a variety of mutants obtained in other ways has provided considerable insight into the requirements for an optimally functional MBP signal peptide. This structure has been shown to have multiple roles in the export process, including promoting entry of preMBP into the export pathway and initiating MBP translocation across the cytoplasmic membrane. The latter has been shown to be a late event relative to synthesis and can occur entirely posttranslationally, even many minutes after the completion of synthesis. Translocation requires that the MBP polypeptide exist in an export-competent conformation that most likely represents an unfolded state that is not inhibitory to membrane transit. The signal peptide contributes to the export competence of preMBP by slowing the rate at which the attached mature moiety folds. In addition, preMBP folding is thought to be further retarded by the binding of a cytoplasmic protein, SecB, to the mature moiety of nascent preMBP. In cells lacking this antifolding factor, MBP export represents a race between delivery of newly synthesized, export-competent preMBP to the translocation machinery in the cytoplasmic membrane and folding of preMBP into an export-incompetent conformation. SecB is one of three E. coli proteins classified as "molecular chaperones" by their ability to stabilize precursor proteins for membrane translocation. PMID:2202725

  17. The Lipoprotein LpqW Is Essential for the Mannosylation of Periplasmic Glycolipids in Corynebacteria*

    PubMed Central

    Rainczuk, Arek K.; Yamaryo-Botte, Yoshiki; Brammananth, Rajini; Stinear, Timothy P.; Seemann, Torsten; Coppel, Ross L.; McConville, Malcolm J.; Crellin, Paul K.

    2012-01-01

    Phosphatidylinositol mannosides (PIM), lipomannan (LM), and lipoarabinomannan (LAM) are essential components of the cell wall and plasma membrane of mycobacteria, including the human pathogen Mycobacterium tuberculosis, as well as the related Corynebacterineae. We have previously shown that the lipoprotein, LpqW, regulates PIM and LM/LAM biosynthesis in mycobacteria. Here, we provide direct evidence that LpqW regulates the activity of key mannosyltransferases in the periplasmic leaflet of the cell membrane. Inactivation of the Corynebacterium glutamicum lpqW ortholog, NCgl1054, resulted in a slow growth phenotype and a global defect in lipoglycan biosynthesis. The NCgl1054 mutant lacked LAMs and was defective in the elongation of the major PIM species, AcPIM2, as well as a second glycolipid, termed Gl-X (mannose-α1–4-glucuronic acid-α1-diacylglycerol), which function as membrane anchors for LM-A and LM-B, respectively. Elongation of AcPIM2 and Gl-X was found to be dependent on expression of polyprenol phosphomannose (ppMan) synthase. However, the ΔNCgl1054 mutant synthesized normal levels of ppMan, indicating that LpqW is not required for synthesis of this donor. A spontaneous suppressor strain was isolated in which lipoglycan synthesis in the ΔNCgl1054 mutant was partially restored. Genome-wide sequencing indicated that a single amino acid substitution within the ppMan-dependent mannosyltransferase MptB could bypass the need for LpqW. Further evidence of an interaction is provided by the observation that MptB activity in cell-free extracts was significantly reduced in the absence of LpqW. Collectively, our results suggest that LpqW may directly activate MptB, highlighting the role of lipoproteins in regulating key cell wall biosynthetic pathways in these bacteria. PMID:23091062

  18. TupA: A Tungstate Binding Protein in the Periplasm of Desulfovibrio alaskensis G20

    PubMed Central

    Otrelo-Cardoso, Ana Rita; Nair, Rashmi R.; Correia, Márcia A. S.; Rivas, Maria G.; Santos-Silva, Teresa

    2014-01-01

    The TupABC system is involved in the cellular uptake of tungsten and belongs to the ABC (ATP binding cassette)-type transporter systems. The TupA component is a periplasmic protein that binds tungstate anions, which are then transported through the membrane by the TupB component using ATP hydrolysis as the energy source (the reaction catalyzed by the ModC component). We report the heterologous expression, purification, determination of affinity binding constants and crystallization of the Desulfovibrio alaskensis G20 TupA. The tupA gene (locus tag Dde_0234) was cloned in the pET46 Enterokinase/Ligation-Independent Cloning (LIC) expression vector, and the construct was used to transform BL21 (DE3) cells. TupA expression and purification were optimized to a final yield of 10 mg of soluble pure protein per liter of culture medium. Native polyacrylamide gel electrophoresis was carried out showing that TupA binds both tungstate and molybdate ions and has no significant interaction with sulfate, phosphate or perchlorate. Quantitative analysis of metal binding by isothermal titration calorimetry was in agreement with these results, but in addition, shows that TupA has higher affinity to tungstate than molybdate. The protein crystallizes in the presence of 30% (w/v) polyethylene glycol 3350 using the hanging-drop vapor diffusion method. The crystals diffract X-rays beyond 1.4 Å resolution and belong to the P21 space group, with cell parameters a = 52.25 Å, b = 42.50 Å, c = 54.71 Å, β = 95.43°. A molecular replacement solution was found, and the structure is currently under refinement. PMID:24992597

  19. Visualization of Periplasmic and Cytoplasmic Proteins with a Self-Labeling Protein Tag

    PubMed Central

    Ke, Na; Landgraf, Dirk; Paulsson, Johan

    2016-01-01

    ABSTRACT The use of fluorescent and luminescent proteins in visualizing proteins has become a powerful tool in understanding molecular and cellular processes within living organisms. This success has resulted in an ever-increasing demand for new and more versatile protein-labeling tools that permit light-based detection of proteins within living cells. In this report, we present data supporting the use of the self-labeling HaloTag protein as a light-emitting reporter for protein fusions within the model prokaryote Escherichia coli. We show that functional protein fusions of the HaloTag can be detected both in vivo and in vitro when expressed within the cytoplasmic or periplasmic compartments of E. coli. The capacity to visually detect proteins localized in various prokaryotic compartments expands today's molecular biologist toolbox and paves the path to new applications. IMPORTANCE Visualizing proteins microscopically within living cells is important for understanding both the biology of cells and the role of proteins within living cells. Currently, the most common tool is green fluorescent protein (GFP). However, fluorescent proteins such as GFP have many limitations; therefore, the field of molecular biology is always in need of new tools to visualize proteins. In this paper, we demonstrate, for the first time, the use of HaloTag to visualize proteins in two different compartments within the model prokaryote Escherichia coli. The use of HaloTag as an additional tool to visualize proteins within prokaryotes increases our capacity to ask about and understand the role of proteins within living cells. PMID:26787765

  20. Functions of the Periplasmic Loop of the Porin MspA from Mycobacterium smegmatis*

    PubMed Central

    Huff, Jason; Pavlenok, Mikhail; Sukumaran, Suja; Niederweis, Michael

    2009-01-01

    MspA is the major porin of Mycobacterium smegmatis and mediates diffusion of small and hydrophilic solutes across the outer membrane. The octameric structure of MspA, its sharply defined constriction zone, and a large periplasmic loop L6 represent novel structural features. L6 consists of 13 amino acids and is directly adjacent to the constriction zone. Deletion of 3, 5, 7, 9, and 11 amino acids of the L6 loop resulted in functional pores that restored glucose uptake and growth of a porin mutant of M. smegmatis. Lipid bilayer experiments revealed that all mutant channels were noisier than wild type (wt) MspA, indicating that L6 is required for pore stability in vitro. Voltage gating of the Escherichia coli porin OmpF was attributed to loops that collapse into the channel in response to a strong electrical field. Here, we show that deletion mutants Δ7, Δ9, and Δ11 had critical voltages similar to wt MspA. This demonstrated that the L6 loop is not the primary voltage-dependent gating mechanism of MspA. Surprisingly, large deletions in L6 resulted in 3-6-fold less extractable pores, whereas small deletions did not alter expression levels of MspA. Pores with large deletions in L6 were more permissive for glucose than smaller deletion mutants, whereas their single channel conductance was similar to that of wt MspA. These results indicate that translocation of ions through the MspA pore is governed by different mechanisms than that of neutral solutes. This is the first study identifying a molecular determinant of solute translocation in a mycobacterial porin. PMID:19208627

  1. Functions of the periplasmic loop of the porin MspA from Mycobacterium smegmatis.

    PubMed

    Huff, Jason; Pavlenok, Mikhail; Sukumaran, Suja; Niederweis, Michael

    2009-04-10

    MspA is the major porin of Mycobacterium smegmatis and mediates diffusion of small and hydrophilic solutes across the outer membrane. The octameric structure of MspA, its sharply defined constriction zone, and a large periplasmic loop L6 represent novel structural features. L6 consists of 13 amino acids and is directly adjacent to the constriction zone. Deletion of 3, 5, 7, 9, and 11 amino acids of the L6 loop resulted in functional pores that restored glucose uptake and growth of a porin mutant of M. smegmatis. Lipid bilayer experiments revealed that all mutant channels were noisier than wild type (wt) MspA, indicating that L6 is required for pore stability in vitro. Voltage gating of the Escherichia coli porin OmpF was attributed to loops that collapse into the channel in response to a strong electrical field. Here, we show that deletion mutants Delta7, Delta9, and Delta11 had critical voltages similar to wt MspA. This demonstrated that the L6 loop is not the primary voltage-dependent gating mechanism of MspA. Surprisingly, large deletions in L6 resulted in 3-6-fold less extractable pores, whereas small deletions did not alter expression levels of MspA. Pores with large deletions in L6 were more permissive for glucose than smaller deletion mutants, whereas their single channel conductance was similar to that of wt MspA. These results indicate that translocation of ions through the MspA pore is governed by different mechanisms than that of neutral solutes. This is the first study identifying a molecular determinant of solute translocation in a mycobacterial porin. PMID:19208627

  2. Production of organic acids by periplasmic enzymes present in free and immobilized cells of Zymomonas mobilis.

    PubMed

    Malvessi, Eloane; Carra, Sabrina; Pasquali, Flávia Cristina; Kern, Denise Bizarro; da Silveira, Mauricio Moura; Ayub, Marco Antônio Záchia

    2013-01-01

    In this work the periplasmic enzymatic complex glucose-fructose oxidoreductase (GFOR)/glucono-δ-lactonase (GL) of permeabilized free or immobilized cells of Zymomonas mobilis was evaluated for the bioconversion of mixtures of fructose and different aldoses into organic acids. For all tested pairs of substrates with permeabilized free-cells, the best enzymatic activities were obtained in reactions with pH around 6.4 and temperatures ranging from 39 to 45 °C. Decreasing enzyme/substrate affinities were observed when fructose was in the mixture with glucose, maltose, galactose, and lactose, in this order. In bioconversion runs with 0.7 mol l(-1) of fructose and with aldose, with permeabilized free-cells of Z. mobilis, maximal concentrations of the respective aldonic acids of 0.64, 0.57, 0.51, and 0.51 mol l(-1) were achieved, with conversion yields of 95, 88, 78, and 78 %, respectively. Due to the important applications of lactobionic acid, the formation of this substance by the enzymatic GFOR/GL complex in Ca-alginate-immobilized cells was assessed. The highest GFOR/GL activities were found at pH 7.0-8.0 and temperatures of 47-50 °C. However, when a 24 h bioconversion run was carried out, it was observed that a combination of pH 6.4 and temperature of 47 °C led to the best results. In this case, despite the fact that Ca-alginate acts as a barrier for the diffusion of substrates and products, maximal lactobionic acid concentration, conversion yields and specific productivity similar to those obtained with permeabilized free-cells were achieved. PMID:23053345

  3. Characterization of a periplasmic quinoprotein from Sphingomonas wittichii that functions as aldehyde dehydrogenase.

    PubMed

    Zeiser, Jessica; Mühlenbeck, Larissa Helen; Schweiger, Paul; Deppenmeier, Uwe

    2014-03-01

    The α-proteobacterium Sphingomonas wittichii RW1 is known for its ability to degrade dioxins and related toxic substances. Bioinformatic analysis of the genome indicated that this organism may contain the largest number of pyrroloquinoline quinone-dependent dehydrogenases of any bacteria sequenced so far. Sequence analysis also showed that one of these genes (swit_4395) encodes an enzyme that belongs to the class of periplasmic glucose dehydrogenases. This gene was fused to a pelB signal sequence and a strep-tag coding region at the 5' and 3' ends, respectively. The fusion product was cloned into the broad-host range expression vector pBBR1p264-Streplong and the corresponding protein was heterologously produced in Escherichia coli, purified via Strep-Tactin affinity chromatography, and characterized. The protein Swit_4395 had a subunit mass of 39.3 kDa and formed active homooctamers and homododecamers. The enzyme showed the highest activities with short- and medium-chain aldehydes (chain length C1-C6) and ketoaldehydes, such as methylglyoxal and phenylglyoxal. Butyraldehyde was the best substrate, with V max and apparent K M values of 3,970 U/mg protein and 12.3 mM, respectively. Pyrroloquinoline quinone was detected using UV-Vis spectroscopy and was found to be a prosthetic group of the purified enzyme. Therefore, Swit_4395 was identified as a pyrroloquinoline quinone-dependent aldehyde dehydrogenase. The enzyme could be purified from the native host when the expression vector was introduced into S. wittichii RW1, indicating homologous protein production. Overproduction of Swit_4395 in S. wittichii RW1 dramatically increased the tolerance of the bacterium toward butyraldehyde and thus might contribute to the detoxification of toxic aldehydes. PMID:23828599

  4. Catalytic mechanism and mode of action of the periplasmic alginate epimerase AlgG.

    PubMed

    Wolfram, Francis; Kitova, Elena N; Robinson, Howard; Walvoort, Marthe T C; Codée, Jeroen D C; Klassen, John S; Howell, P Lynne

    2014-02-28

    Pseudomonas aeruginosa is an opportunistic pathogen that forms chronic biofilm infections in the lungs of cystic fibrosis patients. A major component of the biofilm during these infections is the exopolysaccharide alginate, which is synthesized at the inner membrane as a homopolymer of 1-4-linked β-D-mannuronate. As the polymer passages through the periplasm, 22-44% of the mannuronate residues are converted to α-L-guluronate by the C5-epimerase AlgG to produce a polymer of alternating β-D-mannuronate and α-L-guluronate blocks and stretches of polymannuronate. To understand the molecular basis of alginate epimerization, the structure of Pseudomonas syringae AlgG has been determined at 2.1-Å resolution, and the protein was functionally characterized. The structure reveals that AlgG is a long right-handed parallel β-helix with an elaborate lid structure. Functional analysis of AlgG mutants suggests that His(319) acts as the catalytic base and that Arg(345) neutralizes the acidic group during the epimerase reaction. Water is the likely catalytic acid. Electrostatic surface potential and residue conservation analyses in conjunction with activity and substrate docking studies suggest that a conserved electropositive groove facilitates polymannuronate binding and contains at least nine substrate binding subsites. These subsites likely align the polymer in the correct register for catalysis to occur. The presence of multiple subsites, the electropositive groove, and the non-random distribution of guluronate in the alginate polymer suggest that AlgG is a processive enzyme. Moreover, comparison of AlgG and the extracellular alginate epimerase AlgE4 of Azotobacter vinelandii provides a structural rationale for the differences in their Ca(2+) dependence. PMID:24398681

  5. Detection of single-nucleotide polymorphisms using gold nanoparticles and single-strand-specific nucleases.

    PubMed

    Chen, Yen-Ting; Hsu, Chiao-Ling; Hou, Shao-Yi

    2008-04-15

    The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly. PMID:18211817

  6. The High Dielectric Constant of Staphylococcal Nuclease is Encoded in its Structural Architecture

    PubMed Central

    Goh, Garrett B.; Bertrand, García-Moreno E.; Brooks, Charles L.

    2011-01-01

    The pKa values of Lys-66, Glu-66 and Asp-66 buried in the interior of the staphylococcal nuclease Δ+PHS variant were reported to be shifted by as much as 5 pKa units from their normal values. Reproducing the pKa of these buried ionizable residues using continuum electrostatic calculations required the use of a high protein dielectric constant of 10 or higher. The apparent high dielectric constant has been rationalized as a consequence of a local structural reorganization or increased fluctuations in the microenvironment of the mutation site We have calculated the dielectric constant of Δ+PHS and the Lys-66, Asp-66 and Glu-66 mutants from first principles using the Kirkwood-Fröhlich equation, and discovered that staphylococcal nuclease has a naturally high dielectric constant ranging from 20 to 30. This high dielectric constant does not change significantly with the mutation of residue 66 or with the ionization of the mutated residues. Calculation of the spatial dependence of the dielectric constant for the microenvironment of residue-66 produces a value of about 10, which matches well with the apparent dielectric constant needed to reproduce pKa values from continuum electrostatic calculations. Our results suggest an alternative explanation that the high dielectric constant of staphylococcal nuclease is a property resulting from the intrinsic backbone fluctuations originating from its structural architecture. PMID:22085022

  7. Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases.

    PubMed

    Butler, Nathaniel M; Baltes, Nicholas J; Voytas, Daniel F; Douches, David S

    2016-01-01

    Genome editing using sequence-specific nucleases (SSNs) is rapidly being developed for genetic engineering in crop species. The utilization of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems (CRISPR/Cas) for inducing double-strand breaks facilitates targeting of virtually any sequence for modification. Targeted mutagenesis via non-homologous end-joining (NHEJ) has been demonstrated extensively as being the preferred DNA repair pathway in plants. However, gene targeting via homologous recombination (HR) remains more elusive but could be a powerful tool for directed DNA repair. To overcome barriers associated with gene targeting, a geminivirus replicon (GVR) was used to deliver SSNs targeting the potato ACETOLACTATE SYNTHASE1 (ALS1) gene and repair templates designed to incorporate herbicide-inhibiting point mutations within the ALS1 locus. Transformed events modified with GVRs held point mutations that were capable of supporting a reduced herbicide susceptibility phenotype, while events transformed with conventional T-DNAs held no detectable mutations and were similar to wild-type. Regeneration of transformed events improved detection of point mutations that supported a stronger reduced herbicide susceptibility phenotype. These results demonstrate the use of geminiviruses for delivering genome editing reagents in plant species, and a novel approach to gene targeting in a vegetatively propagated species. PMID:27493650

  8. Digital PCR to assess gene-editing frequencies (GEF-dPCR) mediated by designer nucleases.

    PubMed

    Mock, Ulrike; Hauber, Ilona; Fehse, Boris

    2016-03-01

    Genome editing using designer nucleases such as transcription activator-like effector nucleases (TALENs) or clustered regularly interspersed short palindromic repeats (CRISPR)-Cas9 nucleases is an emerging technology in basic and applied research. Whereas the application of editing tools, namely CRISPR-Cas9, has recently become very straightforward, quantification of resulting gene knockout rates still remains a bottleneck. This is particularly true if the product of a targeted gene is not easily detectable. To address this problem, we devised a novel gene-editing frequency digital PCR (GEF-dPCR) technique. GEF-dPCR exploits two differently labeled probes that are placed within one amplicon at the gene-editing target site to simultaneously detect wild-type and nonhomologous end-joining (NHEJ)-affected alleles. Taking advantage of the principle of dPCR, this enables concurrent quantification of edited and wild-type alleles in a given sample. We propose that our method is optimal for the monitoring of gene-edited cells in vivo, e.g., in clinical settings. Here we describe preparation, design of primers and probes, and setup and analysis of GEF-dPCR. The setup of GEF-dPCR requires up to 2 weeks (depending on the starting point); once the dPCR has been established, the protocol for sample analysis takes <1 d. PMID:26914317

  9. Non-invasive Imaging of Staphylococcus aureus Infections with a Nuclease-Activated Probe

    PubMed Central

    Hernandez, Frank J.; Huang, Lingyan; Olson, Michael E.; Powers, Kristy M.; Hernandez, Luiza I.; Meyerholz, David K.; Thedens, Daniel R.; Behlke, Mark A.; Horswill, Alexander R.; McNamara, James O.

    2013-01-01

    Technologies that enable the rapid detection and localization of bacterial infections in living animals could address an unmet need for infectious disease diagnostics. We describe a molecular imaging approach for the specific, non-invasive detection of S. aureus based on the activity of its secreted nuclease, micrococcal nuclease (MN). Several short, synthetic oligonucleotides, rendered resistant to mammalian serum nucleases by various chemical modifications, flanked with a fluorophore and quencher, were activated upon degradation by recombinant MN and in S. aureus culture supernatants. A probe consisting of a pair of deoxythymidines flanked by several 2′-O-methyl-modified nucleotides was activated in culture supernatants of S. aureus but not in culture supernatants of several other pathogenic bacteria. Systemic administration of this probe to mice bearing bioluminescent S. aureus muscle infections resulted in probe activation at the infection sites in an MN-dependent manner. This novel bacterial imaging approach has potential clinical applicability for S. aureus and several other medically significant pathogens. PMID:24487433

  10. Recent developments and clinical studies utilizing engineered zinc finger nuclease technology.

    PubMed

    Jo, Young-Il; Kim, Hyongbum; Ramakrishna, Suresh

    2015-10-01

    Efficient methods for creating targeted genetic modifications have long been sought for the investigation of gene function and the development of therapeutic modalities for various diseases, including genetic disorders. Although such modifications are possible using homologous recombination, the efficiency is extremely low. Zinc finger nucleases (ZFNs) are custom-designed artificial nucleases that make double-strand breaks at specific sequences, enabling efficient targeted genetic modifications such as corrections, additions, gene knockouts and structural variations. ZFNs are composed of two domains: (i) a DNA-binding domain comprised of zinc finger modules and (ii) the FokI nuclease domain that cleaves the DNA strand. Over 17 years after ZFNs were initially developed, a number of improvements have been made. Here, we will review the developments and future perspectives of ZFN technology. For example, ZFN activity and specificity have been significantly enhanced by modifying the DNA-binding domain and FokI cleavage domain. Advances in culture methods, such as the application of a cold shock and the use of small molecules that affect ZFN stability, have also increased ZFN activity. Furthermore, ZFN-induced mutant cells can be enriched using episomal surrogate reporters. Additionally, we discuss several ongoing clinical studies that are based on ZFN-mediated genome editing in humans. These breakthroughs have substantially facilitated the use of ZFNs in research, medicine and biotechnology. PMID:26089249

  11. Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases

    PubMed Central

    Butler, Nathaniel M.; Baltes, Nicholas J.; Voytas, Daniel F.; Douches, David S.

    2016-01-01

    Genome editing using sequence-specific nucleases (SSNs) is rapidly being developed for genetic engineering in crop species. The utilization of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems (CRISPR/Cas) for inducing double-strand breaks facilitates targeting of virtually any sequence for modification. Targeted mutagenesis via non-homologous end-joining (NHEJ) has been demonstrated extensively as being the preferred DNA repair pathway in plants. However, gene targeting via homologous recombination (HR) remains more elusive but could be a powerful tool for directed DNA repair. To overcome barriers associated with gene targeting, a geminivirus replicon (GVR) was used to deliver SSNs targeting the potato ACETOLACTATE SYNTHASE1 (ALS1) gene and repair templates designed to incorporate herbicide-inhibiting point mutations within the ALS1 locus. Transformed events modified with GVRs held point mutations that were capable of supporting a reduced herbicide susceptibility phenotype, while events transformed with conventional T-DNAs held no detectable mutations and were similar to wild-type. Regeneration of transformed events improved detection of point mutations that supported a stronger reduced herbicide susceptibility phenotype. These results demonstrate the use of geminiviruses for delivering genome editing reagents in plant species, and a novel approach to gene targeting in a vegetatively propagated species. PMID:27493650

  12. A direct screen for c-di-GMP modulators reveals a Salmonella Typhimurium periplasmic ʟ-arginine-sensing pathway.

    PubMed

    Mills, Erez; Petersen, Erik; Kulasekara, Bridget R; Miller, Samuel I

    2015-06-01

    Cyclic-di-GMP (c-di-GMP) is a bacterial second messenger that transduces internal and external signals and regulates bacterial motility and biofilm formation. Some organisms encode more than 100 c-di-GMP-modulating enzymes, but only for a few has a signal been defined that modulates their activity. We developed and applied a high-throughput, real-time flow cytometry method that uses a fluorescence resonance energy transfer (FRET)-based biosensor of free c-di-GMP to screen for signals that modulate its concentration within Salmonella Typhimurium. We identified multiple compounds, including glucose, N-acetyl-d-glucosamine, salicylic acid, and ʟ-arginine, that modulated the FRET signal and therefore the free c-di-GMP concentration. By screening a library of mutants, we identified proteins required for the c-di-GMP response to each compound. Furthermore, low micromolar concentrations of ʟ-arginine induced a rapid translation-independent increase in c-di-GMP concentrations and c-di-GMP-dependent cellulose synthesis, responses that required the regulatory periplasmic domain of the diguanylate cyclase STM1987. ʟ-Arginine signaling also required the periplasmic putative ʟ-arginine-binding protein ArtI, implying that ʟ-arginine sensing occurred in the periplasm. Among the 20 commonly used amino acids, S. Typhimurium specifically responded to ʟ-arginine with an increase in c-di-GMP, suggesting that ʟ-arginine may serve as a signal during S. Typhimurium infection. Our results demonstrate that a second-messenger biosensor can be used to identify environmental signals and define pathways that alter microbial behavior. PMID:26060330

  13. The dimer formed by the periplasmic domain of EpsL from the Type 2 Secretion System of Vibrio parahaemolyticus

    PubMed Central

    Abendroth, Jan; Kreger, Allison C.; Hol, Wim G. J.

    2010-01-01

    The Type 2 Secretion System (T2SS), occurring in many Gram-negative bacteria, is responsible for the transport of a diversity of proteins from the periplasm across the outer membrane into the extracellular space. In Vibrio cholerae, the T2SS secretes several unrelated proteins including the major virulence factor cholera toxin. The T2SS consists of three subassemblies, one of which is the Inner Membrane Complex which contains multiple copies of five proteins, including the bitopic membrane protein EpsL. Here we report the 2.3 Å resolution crystal structure of the periplasmic domain of EpsL (peri-EpsL) from V. parahaemolyticus, which is 56 % identical in sequence to its homolog in V. cholerae. The domain adopts a circular permutation of the “common” ferredoxin fold with two contiguous sub-domains. Remarkably, this permutation has so far only been observed once before: in the periplasmic domain of EpsM (peri-EpsM), another T2SS protein which interacts with EpsL. These two domains are 18 % identical in sequence which may indicate a common evolutionary origin. Both peri-EpsL and peri-EpsM form dimers, but the organization of the subunits in these dimers appears to be entirely different. We have previously shown that the cytoplasmic domain of EpsL is also dimeric and forms a heterotetramer with the first domain of the “secretion ATPase” EpsE. The latter enzyme is most likely hexameric. The possible consequences of the combination of the different symmetries of EpsE and EpsL for the architecture of the T2SS are discussed. PMID:19646531

  14. Compensatory periplasmic nitrate reductase activity supports anaerobic growth of Pseudomonas aeruginosa PAO1 in the absence of membrane nitrate reductase.

    PubMed

    Van Alst, Nadine E; Sherrill, Lani A; Iglewski, Barbara H; Haidaris, Constantine G

    2009-10-01

    Nitrate serves as a terminal electron acceptor under anaerobic conditions in Pseudomonas aeruginosa. Reduction of nitrate to nitrite generates a transmembrane proton motive force allowing ATP synthesis and anaerobic growth. The inner membrane-bound nitrate reductase NarGHI is encoded within the narK1K2GHJI operon, and the periplasmic nitrate reductase NapAB is encoded within the napEFDABC operon. The roles of the 2 dissimilatory nitrate reductases in anaerobic growth, and the regulation of their expressions, were examined by use of a set of deletion mutants in P. aeruginosa PAO1. NarGHI mutants were unable to grow anaerobically, but plate cultures remained viable up to 120 h. In contrast, the nitrate sensor-response regulator mutant DeltanarXL displayed growth arrest initially, but resumed growth after 72 h and reached the early stationary phase in liquid culture after 120 h. Genetic, transcriptional, and biochemical studies demonstrated that anaerobic growth recovery by the NarXL mutant was the result of NapAB periplasmic nitrate reductase expression. A novel transcriptional start site for napEFDABC expression was identified in the NarXL mutant grown anaerobically. Furthermore, mutagenesis of a consensus NarL-binding site monomer upstream of the novel transcriptional start site restored anaerobic growth recovery in the NarXL mutant. The data suggest that during anaerobic growth of wild-type P. aeruginosa PAO1, the nitrate response regulator NarL directly represses expression of periplasmic nitrate reductase, while inducing maximal expression of membrane nitrate reductase. PMID:19935885

  15. Enhancement of antibody fragment secretion into the Escherichia coli periplasm by co-expression with the peptidyl prolyl isomerase, FkpA, in the cytoplasm.

    PubMed

    Levy, Raphael; Ahluwalia, Kiran; Bohmann, David J; Giang, Hoa M; Schwimmer, Lauren J; Issafras, Hassan; Reddy, Nithin B; Chan, Chung; Horwitz, Arnold H; Takeuchi, Toshihiko

    2013-08-30

    Improper protein folding or aggregation can frequently be responsible for low expression and poor functional activity of antibody fragments secreted into the Escherichia coli periplasm. Expression issues also can affect selection of antibody candidates from phage libraries, since antibody fragments displayed on phage also are secreted into the E. coli periplasm. To improve secretion of properly folded antibody fragments into the periplasm, we have developed a novel approach that involves co-expressing the antibody fragments with the peptidyl prolyl cis-trans isomerase, FkpA, lacking its signal sequence (cytFkpA) which consequently is expressed in the E. coli cytosol. Cytoplasmic expression of cytFkpA improved secretion of functional Fab fragments into the periplasm, exceeding even the benefits from co-expressing Fab fragments with native, FkpA localized in the periplasm. In addition, panning and subsequent screening of large Fab and scFv naïve phage libraries in the presence of cytFkpA significantly increased the number of unique clones selected, as well as their functional expression levels and diversity. PMID:23624043

  16. Dynamic interplay between the periplasmic and transmembrane domains of GspL and GspM in the type II secretion system.

    PubMed

    Lallemand, Mathilde; Login, Frédéric H; Guschinskaya, Natalia; Pineau, Camille; Effantin, Géraldine; Robert, Xavier; Shevchik, Vladimir E

    2013-01-01

    The type II secretion system (T2SS) is a multiprotein nanomachine that transports folded proteins across the outer membrane of gram-negative bacteria. The molecular mechanisms that govern the secretion process remain poorly understood. The inner membrane components GspC, GspL and GspM possess a single transmembrane segment (TMS) and a large periplasmic region and they are thought to form a platform of unknown function. Here, using two-hybrid and pull-down assays we performed a systematic mapping of the GspC/GspL/GspM interaction regions in the plant pathogen Dickeya dadantii. We found that the TMS of these components interact with each other, implying a complex interaction network within the inner membrane. We also showed that the periplasmic, ferredoxin-like, domains of GspL and GspM drive homo- and heterodimerizations of these proteins. Disulfide bonding analyses revealed that the respective domain interfaces include the equivalent secondary-structure elements, suggesting alternating interactions of the periplasmic domains, L/L and M/M versus L/M. Finally, we found that displacements of the periplasmic GspM domain mediate coordinated shifts or rotations of the cognate TMS. These data suggest a plausible mechanism for signal transmission between the periplasmic and the cytoplasmic portions of the T2SS machine. PMID:24223969

  17. The emerging periplasm-localized subclass of AroQ chorismate mutases, exemplified by those from Salmonella typhimurium and Pseudomonas aeruginosa

    PubMed Central

    Calhoun, David H; Bonner, Carol A; Gu, Wei; Xie, Gary; Jensen, Roy A

    2001-01-01

    Background Chorismate mutases of the AroQ homology class are widespread in the Bacteria and the Archaea. Many of these exist as domains that are fused with other aromatic-pathway catalytic domains. Among the monofunctional AroQ proteins, that from Erwinia herbicola was previously shown to have a cleavable signal peptide and located in the periplasmic compartment. Whether or not this might be unique to E. herbicola was unknown. Results The gene coding for the AroQ protein was cloned from Salmonella typhimurium, and the AroQ protein purified from both S. typhimurium and Pseudomonas aeruginosa was shown to have a periplasmic location. The periplasmic chorismate mutases (denoted *AroQ) are shown to be a distinct subclass of AroQ, being about twice the size of cytoplasmic AroQ proteins. The increased size is due to a carboxy-terminal extension of unknown function. In addition, a so-far novel aromatic aminotransferase was shown to be present in the periplasm of P. aeruginosa. Conclusions Our analysis has detected a number of additional *aroQ genes. The joint presence of *AroQ, cyclohexadienyl dehydratase and aromatic aminotransferase in the periplasmic compartment of P. aeruginosa comprises a complete chorismate-to-phenylalanine pathway and accounts for the "hidden overflow pathway" to phenylalanine described previously. PMID:11532214

  18. Dynamic Interplay between the Periplasmic and Transmembrane Domains of GspL and GspM in the Type II Secretion System

    PubMed Central

    Guschinskaya, Natalia; Pineau, Camille; Effantin, Géraldine; Robert, Xavier; Shevchik, Vladimir E.

    2013-01-01

    The type II secretion system (T2SS) is a multiprotein nanomachine that transports folded proteins across the outer membrane of gram-negative bacteria. The molecular mechanisms that govern the secretion process remain poorly understood. The inner membrane components GspC, GspL and GspM possess a single transmembrane segment (TMS) and a large periplasmic region and they are thought to form a platform of unknown function. Here, using two-hybrid and pull-down assays we performed a systematic mapping of the GspC/GspL/GspM interaction regions in the plant pathogen Dickeya dadantii. We found that the TMS of these components interact with each other, implying a complex interaction network within the inner membrane. We also showed that the periplasmic, ferredoxin-like, domains of GspL and GspM drive homo- and heterodimerizations of these proteins. Disulfide bonding analyses revealed that the respective domain interfaces include the equivalent secondary-structure elements, suggesting alternating interactions of the periplasmic domains, L/L and M/M versus L/M. Finally, we found that displacements of the periplasmic GspM domain mediate coordinated shifts or rotations of the cognate TMS. These data suggest a plausible mechanism for signal transmission between the periplasmic and the cytoplasmic portions of the T2SS machine. PMID:24223969

  19. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase

    DOE PAGESBeta

    Melnyk, Ryan A.; Youngblut, Matthew D.; Clark, Iain C.; Carlson, Hans K.; Wetmore, Kelly M.; Price, Morgan N.; Lavarone, Anthony T.; Deutschbauer, Adam M.; Arkin, Adam P.; Coates, John D.

    2015-05-12

    Reactive chlorine species (RCS) defense mechanisms are important for bacterial fitness in diverse environments. In addition to the anthropogenic use of RCS in the form of bleach, these compounds are also produced naturally through photochemical reactions of natural organic matter and in vivo by the mammalian immune system in response to invading microorganisms. To gain insight into bacterial RCS defense mechanisms, we investigated Azospira suillum strain PS, which produces periplasmic RCS as an intermediate of perchlorate respiration. Our studies identified an RCS response involving an RCS stress-sensing sigma/anti-sigma factor system (SigF/NrsF), a soluble hypochlorite-scavenging methionine-rich periplasmic protein (MrpX), and amore » putative periplasmic methionine sulfoxide reductase (YedY1). We investigated the underlying mechanism by phenotypic characterization of appropriate gene deletions, chemogenomic profiling of barcoded transposon pools, transcriptome sequencing, and biochemical assessment of methionine oxidation. Our results demonstrated that SigF was specifically activated by RCS and initiated the transcription of a small regulon centering around yedY1 and mrpX. A yedY1 paralog (yedY2) was found to have a similar fitness to yedY1 despite not being regulated by SigF. Markerless deletions of yedY2 confirmed its synergy with the SigF regulon. MrpX was strongly induced and rapidly oxidized by RCS, especially hypochlorite. Our results suggest a mechanism involving hypochlorite scavenging by sacrificial oxidation of the MrpX in the periplasm. Reduced MrpX is regenerated by the YedY methionine sulfoxide reductase activity. The phylogenomic distribution of this system revealed conservation in several Proteobacteria of clinical importance, including uropathogenic Escherichia coli and Brucella spp., implying a putative role in immune response evasion in vivo. In addition, bacteria are often stressed in the environment by reactive chlorine species (RCS) of

  20. Repellents for Escherichia coli operate neither by changing membrane fluidity nor by being sensed by periplasmic receptors during chemotaxis.

    PubMed Central

    Eisenbach, M; Constantinou, C; Aloni, H; Shinitzky, M

    1990-01-01

    A long-standing question in bacterial chemotaxis is whether repellents are sensed by receptors or whether they change a general membrane property such as the membrane fluidity and this change, in turn, is sensed by the chemotaxis system. This study addressed this question. The effects of common repellents on the membrane fluidity of Escherichia coli were measured by the fluorescence polarization of the probe 1,6-diphenyl-1,3,5-hexatriene in liposomes made of lipids extracted from the bacteria and in membrane vesicles. Glycerol, indole, and L-leucine had no significant effect on the membrane fluidity. NiSO4 decreased the membrane fluidity but only at concentrations much higher than those which elicit a repellent response in intact bacteria. This indicated that these repellents are not sensed by modulating the membrane fluidity. Aliphatic alcohols, on the other hand, fluidized the membrane, but the concentrations that elicited a repellent response were not equally effective in fluidizing the membrane. The response of intact bacteria to alcohols was monitored in various chemotaxis mutants and found to be missing in mutants lacking all the four methyl-accepting chemotaxis proteins (MCPs) or the cytoplasmic che gene products. The presence of any single MCP was sufficient for the expression of a repellent response. It is concluded (i) that the repellent response to aliphatic alcohols can be mediated by any MCP and (ii) that although an increase in membrane fluidity may take part in a repellent response, it is not the only mechanism by which aliphatic alcohols, or at least some of them, are effective as repellents. To determine whether any of the E. coli repellents are sensed by periplasmic receptors, the effects of repellents from various classes on periplasm-void cells were examined. The responses to all the repellents tested (sodium benzoate, indole, L-leucine, and NiSO4) were retained in these cells. In a control experiment, the response of the attractant maltose

  1. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase

    SciTech Connect

    Melnyk, Ryan A.; Youngblut, Matthew D.; Clark, Iain C.; Carlson, Hans K.; Wetmore, Kelly M.; Price, Morgan N.; Lavarone, Anthony T.; Deutschbauer, Adam M.; Arkin, Adam P.; Coates, John D.

    2015-05-12

    Reactive chlorine species (RCS) defense mechanisms are important for bacterial fitness in diverse environments. In addition to the anthropogenic use of RCS in the form of bleach, these compounds are also produced naturally through photochemical reactions of natural organic matter and in vivo by the mammalian immune system in response to invading microorganisms. To gain insight into bacterial RCS defense mechanisms, we investigated Azospira suillum strain PS, which produces periplasmic RCS as an intermediate of perchlorate respiration. Our studies identified an RCS response involving an RCS stress-sensing sigma/anti-sigma factor system (SigF/NrsF), a soluble hypochlorite-scavenging methionine-rich periplasmic protein (MrpX), and a putative periplasmic methionine sulfoxide reductase (YedY1). We investigated the underlying mechanism by phenotypic characterization of appropriate gene deletions, chemogenomic profiling of barcoded transposon pools, transcriptome sequencing, and biochemical assessment of methionine oxidation. Our results demonstrated that SigF was specifically activated by RCS and initiated the transcription of a small regulon centering around yedY1 and mrpX. A yedY1 paralog (yedY2) was found to have a similar fitness to yedY1 despite not being regulated by SigF. Markerless deletions of yedY2 confirmed its synergy with the SigF regulon. MrpX was strongly induced and rapidly oxidized by RCS, especially hypochlorite. Our results suggest a mechanism involving hypochlorite scavenging by sacrificial oxidation of the MrpX in the periplasm. Reduced MrpX is regenerated by the YedY methionine sulfoxide reductase activity. The phylogenomic distribution of this system revealed conservation in several Proteobacteria of clinical importance, including uropathogenic Escherichia coli and Brucella spp., implying a putative role in immune response evasion in vivo. In addition, bacteria are often

  2. Molecular genetic analysis of a class B periplasmic-flagellum gene of Treponema phagedenis.

    PubMed Central

    Limberger, R J; Slivienski, L L; Yelton, D B; Charon, N W

    1992-01-01

    Treponema phagedenis is a host-associated spirochete with multiple polypeptides making up its periplasmic flagella (PFs). Each PF has a 39-kDa polypeptide making up the sheath (class A PF polypeptide) and two to four antigenically similar 33- to 34-kDa polypeptide species making up the core (class B PF polypeptides). A genetic analysis of the PF-deficient mutants T-40 and T-55 has shown that the PFs are involved in motility. To better understand the synthesis and assembly of these complex organelles and to compare the PF genes with those of other spirochetes, we cloned and characterized the T. phagedenis flaB2 gene, which encodes one class B polypeptide. The flaB2 gene consists of an open reading frame of 858 nucleotides capable of encoding a protein of 31.5 kDa. The predicted amino acid sequence of the FlaB2 polypeptide was 92% identical to that of T. pallidum FlaB2, with a 76% identity at the nucleotide level. These results confirm previous immunological and N-terminal-sequence analyses which suggested that the PF genes are well conserved in the spirochetes. Primer extension analysis of T. phagedenis flaB2 indicated that the start site of transcription was 127 nucleotides upstream from the ATG initiation codon. Preceding the start site is a DNA sequence similar to the sigma 28 consensus promoter sequence commonly found associated with motility genes. Northern (RNA) blots probed with a segment of flaB2 DNA revealed a 1,000-nucleotide monocistronic transcript in the wild type and in PF-deficient mutants T-40 and T-55. DNA sequencing of most of the flaB2 gene of the mutants revealed no differences from the wild-type gene. Because the mutants fail to synthesize detectable class B PF polypeptides yet synthesize extensive amounts of flaB2 mRNA, PF synthesis in T. phagedenis is likely to involve regulation at the translational level. Images PMID:1400192

  3. 32P-postlabeling detection of thymine glycols: evaluation of adduct recoveries after enhancement with affinity chromatography, nuclease P1, nuclease S1, and polynucleotide kinase.

    PubMed

    Reddy, M V; Bleicher, W T; Blackburn, G R

    1991-04-01

    Thymine glycol (Tg) is a product of DNA damage by oxygen radicals generated by oxidative mutagens and carcinogens and ionizing radiation. The highly sensitive 32P-postlabeling assay was validated and optimized for the measurement of Tg generated in vitro by the reaction of dTp or calf thymus DNA with osmium tetroxide (OsO4). Adduct detection was enhanced by purification of Tg adducts using phenylboronate affinity chromatography or by preferential dephosphorylation of unmodified 3'-nucleotides with nuclease P1, nuclease S1, or polynucleotide kinase; Tg nucleotides were found to be resistant to limited enzymatic 3'-dephosphorylation. Two adducts were seen with OsO4-modified dTp, which may have been cis-Tg adducts, because they were retained on a phenylboronate column, and because OsO4 selectively forms cis-Tg adducts. With OsO4-modified DNA, several adducts were detected, two major derivatives of which coincided chromatographically with those seen in OsO4-modified dTp. The recoveries of major adducts were similar before and after enrichment by different methods, indicating that Tg adducts were resistant to enzymatic dephosphorylation. The efficacy of labeling of the two major Tg adducts by polynucleotide kinase was optimal at 60 microM ATP and higher, whereas it was about 3%, 50%, and 80% of the optimal rate at 2, 10, and 30 microM, respectively. This was in contrast to our previous finding that only 0.25 microM ATP was needed for optimal labeling of benzoquinone-DNA adducts.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2025496

  4. sup 32 P-postlabeling detection of thymine glycols: evaluation of adduct recoveries after enhancement with affinity chromatography, nuclease P1, nuclease S1, and polynucleotide kinase

    SciTech Connect

    Reddy, M.V.; Bleicher, W.T.; Blackburn, G.R. )

    1991-04-01

    Thymine glycol (Tg) is a product of DNA damage by oxygen radicals generated by oxidative mutagens and carcinogens and ionizing radiation. The highly sensitive {sup 32}P-postlabeling assay was validated and optimized for the measurement of Tg generated in vitro by the reaction of dTp or calf thymus DNA with osmium tetroxide (OsO{sub 4}). Adduct detection was enhanced by purification of Tg adducts using phenylboronate affinity chromatography or by preferential dephosphorylation of unmodified 3'-nucleotides with nuclease P1, nuclease S1, or polynucleotide kinase; Tg nucleotides were found to be resistant to limited enzymatic 3'-dephosphorylation. Two adducts were seen with OsO{sub 4}-modified dTp, which may have been cis-Tg adducts, because they were retained on a phenylboronate column, and because OsO{sub 4} selectively forms cis-Tg adducts. With OsO{sub 4}-modified DNA, several adducts were detected, two major derivatives of which coincided chromatographically with those seen in OsO{sub 4}-modified dTp. The recoveries of major adducts were similar before and after enrichment by different methods, indicating that Tg adducts were resistant to enzymatic dephosphorylation. The efficacy of labeling of the two major Tg adducts by polynucleotide kinase was optimal at 60 microM ATP and higher, whereas it was about 3%, 50%, and 80% of the optimal rate at 2, 10, and 30 microM, respectively. This was in contrast to our previous finding that only 0.25 microM ATP was needed for optimal labeling of benzoquinone-DNA adducts.

  5. Multi-reporter selection for the design of active and more specific zinc-finger nucleases for genome editing.

    PubMed

    Oakes, Benjamin L; Xia, Danny F; Rowland, Elizabeth F; Xu, Denise J; Ankoudinova, Irina; Borchardt, Jennifer S; Zhang, Lei; Li, Patrick; Miller, Jeffrey C; Rebar, Edward J; Noyes, Marcus B

    2016-01-01

    Engineered nucleases have transformed biological research and offer great therapeutic potential by enabling the straightforward modification of desired genomic sequences. While many nuclease platforms have proven functional, all can produce unanticipated off-target lesions and have difficulty discriminating between homologous sequences, limiting their therapeutic application. Here we describe a multi-reporter selection system that allows the screening of large protein libraries to uncover variants able to discriminate between sequences with substantial homology. We have used this system to identify zinc-finger nucleases that exhibit high cleavage activity (up to 60% indels) at their targets within the CCR5 and HBB genes and strong discrimination against homologous sequences within CCR2 and HBD. An unbiased screen for off-target lesions using a novel set of CCR5-targeting nucleases confirms negligible CCR2 activity and demonstrates minimal off-target activity genome wide. This system offers a straightforward approach to generate nucleases that discriminate between similar targets and provide exceptional genome-wide specificity. PMID:26738816

  6. Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells

    PubMed Central

    Morton, Jason; Davis, M. Wayne; Jorgensen, Erik M.; Carroll, Dana

    2006-01-01

    Zinc-finger nucleases are chimeric proteins consisting of engineered zinc-finger DNA-binding motifs attached to an endonuclease domain. These proteins can induce site-specific DNA double-strand breaks in genomic DNA, which are then substrates for cellular repair mechanisms. Here, we demonstrate that engineered zinc-finger nucleases function effectively in somatic cells of the nematode Caenorhabditis elegans. Although gene-conversion events were indistinguishable from uncut DNA in our assay, nonhomologous end joining resulted in mutations at the target site. A synthetic target on an extrachromosomal array was targeted with a previously characterized nuclease, and an endogenous genomic sequence was targeted with a pair of specifically designed nucleases. In both cases, ≈20% of the target sites were mutated after induction of the corresponding nucleases. Alterations in the extrachromosomal targets were largely products of end-filling and blunt ligation. By contrast, alterations in the chromosomal target were mostly deletions. We interpret these differences to reflect the abundance of homologous templates present in the extrachromosomal arrays versus the paucity of such templates for repair of chromosomal breaks. In addition, we find evidence for the involvement of error-prone DNA synthesis in both homologous and nonhomologous pathways of repair. DNA ligase IV is required for efficient end joining, particularly of blunt ends. In its absence, a secondary end-joining pathway relies more heavily on microhomologies in producing deletions. PMID:17060623

  7. Multi-reporter selection for the design of active and more specific zinc-finger nucleases for genome editing

    PubMed Central

    Oakes, Benjamin L.; Xia, Danny F.; Rowland, Elizabeth F.; Xu, Denise J.; Ankoudinova, Irina; Borchardt, Jennifer S.; Zhang, Lei; Li, Patrick; Miller, Jeffrey C.; Rebar, Edward J.; Noyes, Marcus B.

    2016-01-01

    Engineered nucleases have transformed biological research and offer great therapeutic potential by enabling the straightforward modification of desired genomic sequences. While many nuclease platforms have proven functional, all can produce unanticipated off-target lesions and have difficulty discriminating between homologous sequences, limiting their therapeutic application. Here we describe a multi-reporter selection system that allows the screening of large protein libraries to uncover variants able to discriminate between sequences with substantial homology. We have used this system to identify zinc-finger nucleases that exhibit high cleavage activity (up to 60% indels) at their targets within the CCR5 and HBB genes and strong discrimination against homologous sequences within CCR2 and HBD. An unbiased screen for off-target lesions using a novel set of CCR5-targeting nucleases confirms negligible CCR2 activity and demonstrates minimal off-target activity genome wide. This system offers a straightforward approach to generate nucleases that discriminate between similar targets and provide exceptional genome-wide specificity. PMID:26738816

  8. The Structure and Interactions of Periplasmic Domains of Crucial MmpL Membrane Proteins from Mycobacterium tuberculosis.

    PubMed

    Chim, Nicholas; Torres, Rodrigo; Liu, Yuqi; Capri, Joe; Batot, Gaëlle; Whitelegge, Julian P; Goulding, Celia W

    2015-08-20

    Mycobacterium tuberculosis mycobacterial membrane protein large (MmpL) proteins are important in substrate transport across the inner membrane. Here, we show that MmpL proteins are classified into two phylogenetic clusters, where MmpL cluster II contains three soluble domains (D1, D2, and D3) and has two full-length members, MmpL3 and MmpL11. Significantly, MmpL3 is currently the most druggable M. tuberculosis target. We have solved the 2.4-Å MmpL11-D2 crystal structure, revealing structural homology to periplasmic porter subdomains of RND (multidrug) transporters. The resulting predicted cluster II MmpL membrane topology has D1 and D2 residing, and possibly interacting, within the periplasm. Crosslinking and biolayer interferometry experiments confirm that cluster II D1 and D2 bind with weak affinities, and guided D1-D2 heterodimeric model assemblies. The predicted full-length MmpL3 and MmpL11 structural models reveal key substrate binding and transport residues, and may serve as templates to set the stage for in silico anti-tuberculosis drug development. PMID:26278184

  9. Treponema pallidum Lipoprotein TP0435 Expressed in Borrelia burgdorferi Produces Multiple Surface/Periplasmic Isoforms and mediates Adherence

    PubMed Central

    Chan, Kamfai; Nasereddin, Thayer; Alter, Laura; Centurion-Lara, Arturo; Giacani, Lorenzo; Parveen, Nikhat

    2016-01-01

    The ability of Treponema pallidum, the syphilis spirochete to colonize various tissues requires the presence of surface-exposed adhesins that have been difficult to identify due to the inability to culture and genetically manipulate T. pallidum. Using a Borrelia burgdorferi-based heterologous system and gain-in-function approach, we show for the first time that a highly immunogenic lipoprotein TP0435 can be differentially processed into multiple isoforms with one variant stochastically displayed on the spirochete surface. TP0435 was previously believed to be exclusively located in T. pallidum periplasm. Furthermore, non-adherent B. burgdorferi strain expressing TP0435 acquires the ability to bind to a variety of host cells including placental cells and exhibits slow opsonophagocytosis in vitro similar to poor ex vivo phagocytosis of T. pallidum by host macrophages reported previously. This phenomenon of production of both surface and periplasmic immunogenic lipoprotein isoforms has possible implications in immune evasion of the obligate pathogen T. pallidum during infection. PMID:27161310

  10. Involvement of a periplasmic protein kinase in DNA strand break repair and homologous recombination in Escherichia coli.

    PubMed

    Khairnar, Nivedita P; Kamble, Vidya A; Mangoli, Suhas H; Apte, Shree K; Misra, Hari S

    2007-07-01

    The involvement of signal transduction in the repair of radiation-induced damage to DNA has been known in eukaryotes but remains understudied in bacteria. This article for the first time demonstrates a role for the periplasmic lipoprotein (YfgL) with protein kinase activity transducing a signal for DNA strand break repair in Escherichia coli. Purified YfgL protein showed physical as well as functional interaction with pyrroloquinoline-quinone in solution and the protein kinase activity of YfgL was strongly stimulated in the presence of pyrroloquinoline-quinone. Transgenic E. coli cells producing Deinococcus radiodurans pyrroloquinoline-quinone synthase showed nearly four log cycle improvement in UVC dark survival and 10-fold increases in gamma radiation resistance as compared with untransformed cells. Pyrroloquinoline-quinone enhanced the UV resistance of E. coli through the YfgL protein and required the active recombination repair proteins. The yfgL mutant showed higher sensitivity to UVC, mitomycin C and gamma radiation as compared with wild-type cells and showed a strong impairment in homologous DNA recombination. The mutant expressing an active YfgL in trans recovered the lost phenotypes to nearly wild-type levels. The results strongly suggest that the periplasmic phosphoquinolipoprotein kinase YfgL plays an important role in radiation-induced DNA strand break repair and homologous recombination in E. coli. PMID:17630970

  11. Identification of an EF-Tu protein that is periplasm-associated and processed in Neisseria gonorrhoeae.

    PubMed

    Porcella, S F; Belland, R J; Judd, R C

    1996-09-01

    A 44 kDa protein is a dominant component of periplasmic extracts of Neisseria gonorrhoeae. Peptide sequence generated from a cyanogen-bromide-cleaved fragment of this protein indicated sequence homology with elongation factor-Tu (EF-Tu). Polyclonal antiserum was made against the 44 kDa protein purified from periplasm extracts of N. gonorrhoeae. The preabsorbed antiserum was immunoblotted against whole-cell lysates on two-dimensional gels. A 44 kDa protein and a smaller 37 kDa protein were recognized by this antiserum. A N. gonorrhoeae gamma phage DNA library was screened and a clone expressing a 44 kDa protein was identified. The DNA insert in this clone contained several genes homologous to genes contained in the str operon of Escherichia coli. One ORF product with a calculated molecular mass of 43 kDa was highly homologous to the EF-TuA of E. coli. A synthetic peptide antiserum specific for a portion of the C terminus of EF-Tu confirmed that the 37 kDa protein in whole-cell lysates of N. gonorrhoeae was a processed form of EF-Tu. Deletion of the tufA gene homologue in N. gonorrhoeae was attempted but was unsuccessful. PMID:8828215

  12. Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm

    PubMed Central

    El Khatib, Mariam; Martins, Alexandre; Bourgeois, Dominique; Colletier, Jacques-Philippe; Adam, Virgile

    2016-01-01

    Phototransformable fluorescent proteins are central to several nanoscopy approaches. As yet however, there is no available variant allowing super-resolution imaging in cell compartments that maintain oxidative conditions. Here, we report the rational design of two reversibly switchable fluorescent proteins able to fold and photoswitch in the bacterial periplasm, rsFolder and rsFolder2. rsFolder was designed by hybridisation of Superfolder-GFP with rsEGFP2, and inherited the fast folding properties of the former together with the rapid switching of the latter, but at the cost of a reduced switching contrast. Structural characterisation of the switching mechanisms of rsFolder and rsEGFP2 revealed different scenarios for chromophore cis-trans isomerisation and allowed designing rsFolder2, a variant of rsFolder that exhibits improved switching contrast and is amenable to RESOLFT nanoscopy. The rsFolders can be efficiently expressed in the E. coli periplasm, opening the door to the nanoscale investigation of proteins localised in hitherto non-observable cellular compartments. PMID:26732634

  13. Treponema pallidum Lipoprotein TP0435 Expressed in Borrelia burgdorferi Produces Multiple Surface/Periplasmic Isoforms and mediates Adherence.

    PubMed

    Chan, Kamfai; Nasereddin, Thayer; Alter, Laura; Centurion-Lara, Arturo; Giacani, Lorenzo; Parveen, Nikhat

    2016-01-01

    The ability of Treponema pallidum, the syphilis spirochete to colonize various tissues requires the presence of surface-exposed adhesins that have been difficult to identify due to the inability to culture and genetically manipulate T. pallidum. Using a Borrelia burgdorferi-based heterologous system and gain-in-function approach, we show for the first time that a highly immunogenic lipoprotein TP0435 can be differentially processed into multiple isoforms with one variant stochastically displayed on the spirochete surface. TP0435 was previously believed to be exclusively located in T. pallidum periplasm. Furthermore, non-adherent B. burgdorferi strain expressing TP0435 acquires the ability to bind to a variety of host cells including placental cells and exhibits slow opsonophagocytosis in vitro similar to poor ex vivo phagocytosis of T. pallidum by host macrophages reported previously. This phenomenon of production of both surface and periplasmic immunogenic lipoprotein isoforms has possible implications in immune evasion of the obligate pathogen T. pallidum during infection. PMID:27161310

  14. Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm.

    PubMed

    El Khatib, Mariam; Martins, Alexandre; Bourgeois, Dominique; Colletier, Jacques-Philippe; Adam, Virgile

    2016-01-01

    Phototransformable fluorescent proteins are central to several nanoscopy approaches. As yet however, there is no available variant allowing super-resolution imaging in cell compartments that maintain oxidative conditions. Here, we report the rational design of two reversibly switchable fluorescent proteins able to fold and photoswitch in the bacterial periplasm, rsFolder and rsFolder2. rsFolder was designed by hybridisation of Superfolder-GFP with rsEGFP2, and inherited the fast folding properties of the former together with the rapid switching of the latter, but at the cost of a reduced switching contrast. Structural characterisation of the switching mechanisms of rsFolder and rsEGFP2 revealed different scenarios for chromophore cis-trans isomerisation and allowed designing rsFolder2, a variant of rsFolder that exhibits improved switching contrast and is amenable to RESOLFT nanoscopy. The rsFolders can be efficiently expressed in the E. coli periplasm, opening the door to the nanoscale investigation of proteins localised in hitherto non-observable cellular compartments. PMID:26732634

  15. Proline cis-trans isomerization in staphylococcal nuclease: multi-substrate free energy perturbation calculations.

    PubMed Central

    Hodel, A.; Rice, L. M.; Simonson, T.; Fox, R. O.; Brünger, A. T.

    1995-01-01

    Staphylococcal nuclease A exists in two folded forms that differ in the isomerization state of the Lys 116-Pro 117 peptide bond. The dominant form (90% occupancy) adopts a cis peptide bond, which is observed in the crystal structure. NMR studies show that the relatively small difference in free energy between the cis and trans forms (delta Gcis-->trans approximately 1.2 kcal/mol) results from large and nearly compensating differences in enthalpy and entropy (delta Hcis-->trans approximately delta TScis-->trans approximately 10 kcal/mol). There is evidence from X-ray crystal structures that the structural differences between the cis and the trans forms of nuclease are confined to the conformation of residues 112-117, a solvated protein loop. Here, we obtain a thermodynamic and structural description of the conformational equilibrium of this protein loop through an exhaustive conformational search that identified several substates followed by free energy simulations between the substrates. By partitioning the search into conformational substates, we overcame the multiple minima problem in this particular case and obtained precise and reproducible free energy values. The protein and water environment was implicitly modeled by appropriately chosen nonbonded terms between the explicitly treated loop and the rest of the protein. These simulations correctly predicted a small free energy difference between the cis and trans forms composed of larger, compensating differences in enthalpy and entropy. The structural predictions of these simulations were qualitatively consistent with known X-ray structures of nuclease variants and yield a model of the unknown minor trans conformation. PMID:7613463

  16. The I-TevI Nuclease and Linker Domains Contribute to the Specificity of Monomeric TALENs

    PubMed Central

    Kleinstiver, Benjamin P.; Wang, Li; Wolfs, Jason M.; Kolaczyk, Tomasz; McDowell, Brendon; Wang, Xu; Schild-Poulter, Caroline; Bogdanove, Adam J.; Edgell, David R.

    2014-01-01

    Precise genome editing in complex genomes is enabled by engineered nucleases that can be programmed to cleave in a site-specific manner. Here, we fused the small, sequence-tolerant monomeric nuclease domain from the homing endonuclease I-TevI to transcription-like activator effectors (TALEs) to create monomeric Tev-TALE nucleases (Tev-mTALENs). Using the PthXo1 TALE scaffold to optimize the Tev-mTALEN architecture, we found that choice of the N-terminal fusion point on the TALE greatly influenced activity in yeast-based assays, and that the length of the linker used affected the optimal spacing of the TALE binding site from the I-TevI cleavage site, specified by the motif 5′-CNNNG-3′. By assaying activity on all 64 possible sequence variants of this motif, we discovered that in the Tev-mTALEN context, I-TevI prefers A/T-rich triplets over G/C-rich ones at the cleavage site. Profiling of nucleotide requirements in the DNA spacer that separates the CNNNG motif from the TALE binding site revealed substantial, but not complete, tolerance to sequence variation. Tev-mTALENs showed robust mutagenic activity on an episomal target in HEK 293T cells consistent with specific cleavage followed by nonhomologous end-joining repair. Our data substantiate the applicability of Tev-mTALENs as genome-editing tools but highlight DNA spacer and cleavage site nucleotide preferences that, while enhancing specificity, do confer moderate targeting constraints. PMID:24739648

  17. The I-TevI nuclease and linker domains contribute to the specificity of monomeric TALENs.

    PubMed

    Kleinstiver, Benjamin P; Wang, Li; Wolfs, Jason M; Kolaczyk, Tomasz; McDowell, Brendon; Wang, Xu; Schild-Poulter, Caroline; Bogdanove, Adam J; Edgell, David R

    2014-06-01

    Precise genome editing in complex genomes is enabled by engineered nucleases that can be programmed to cleave in a site-specific manner. Here, we fused the small, sequence-tolerant monomeric nuclease domain from the homing endonuclease I-TevI to transcription-like activator effectors (TALEs) to create monomeric Tev-TALE nucleases (Tev-mTALENs). Using the PthXo1 TALE scaffold to optimize the Tev-mTALEN architecture, we found that choice of the N-terminal fusion point on the TALE greatly influenced activity in yeast-based assays, and that the length of the linker used affected the optimal spacing of the TALE binding site from the I-TevI cleavage site, specified by the motif 5'-CNNNG-3'. By assaying activity on all 64 possible sequence variants of this motif, we discovered that in the Tev-mTALEN context, I-TevI prefers A/T-rich triplets over G/C-rich ones at the cleavage site. Profiling of nucleotide requirements in the DNA spacer that separates the CNNNG motif from the TALE binding site revealed substantial, but not complete, tolerance to sequence variation. Tev-mTALENs showed robust mutagenic activity on an episomal target in HEK 293T cells consistent with specific cleavage followed by nonhomologous end-joining repair. Our data substantiate the applicability of Tev-mTALENs as genome-editing tools but highlight DNA spacer and cleavage site nucleotide preferences that, while enhancing specificity, do confer moderate targeting constraints. PMID:24739648

  18. Staphylococcus aureus Nuc2 Is a Functional, Surface-Attached Extracellular Nuclease

    PubMed Central

    Kiedrowski, Megan R.; Crosby, Heidi A.; Hernandez, Frank J.; Malone, Cheryl L.; McNamara, James O.; Horswill, Alexander R.

    2014-01-01

    Staphylococcus aureus is a prominent bacterial pathogen that causes a diverse range of acute and chronic infections. Recently, it has been demonstrated that the secreted nuclease (Nuc) enzyme is a virulence factor in multiple models of infection, and in vivo expression of nuc has facilitated the development of an infection imaging approach based on Nuc-activatable probes. Interestingly, S. aureus strains encode a second nuclease (Nuc2) that has received limited attention. With the growing interest in bacterial nucleases, we sought to characterize Nuc2 in more detail through localization, expression, and biochemical studies. Fluorescence microscopy and alkaline phosphatase localization approaches using Nuc2-GFP and Nuc2-PhoA fusions, respectively, demonstrated that Nuc2 is membrane bound with the C-terminus facing the extracellular environment, indicating it is a signal-anchored Type II membrane protein. Nuc2 enzyme activity was detectable on the S. aureus cell surface using a fluorescence resonance energy transfer (FRET) assay, and in time courses, both nuc2 transcription and enzyme activity peaked in early logarithmic growth and declined in stationary phase. Using a mouse model of S. aureus pyomyositis, Nuc2 activity was detected with activatable probes in vivo in nuc mutant strains, demonstrating that Nuc2 is produced during infections. To assess Nuc2 biochemical properties, the protein was purified and found to cleave both single- and double-stranded DNA, and it exhibited thermostability and calcium dependence, paralleling the properties of Nuc. Purified Nuc2 prevented biofilm formation in vitro and modestly decreased biomass in dispersal experiments. Altogether, our findings confirm that S. aureus encodes a second, surface-attached and functional DNase that is expressed during infections and displays similar biochemical properties to the secreted Nuc enzyme. PMID:24752186

  19. The alpha aneurism: a structural motif revealed in an insertion mutant of staphylococcal nuclease.

    PubMed Central

    Keefe, L J; Sondek, J; Shortle, D; Lattman, E E

    1993-01-01

    The x-ray crystal structure of a mutant of staphylococcal nuclease that contains a single glycine residue inserted in the C-terminal alpha-helix has been solved to 1.67 A resolution and refined to a crystallographic R value of 0.170. This inserted glycine residue is accommodated in the alpha-helix by formation of a previously uncharacterized bulge, which we term the alpha aneurism. A conformational search of known protein structures has identified the alpha aneurism in a number of protein families, including the histocompatibility antigens and hemoglobins. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 6 PMID:8475069

  20. An Mrr-family nuclease motif in the single polypeptide restriction–modification enzyme LlaGI

    PubMed Central

    Smith, Rachel M.; Josephsen, Jytte; Szczelkun, Mark D.

    2009-01-01

    Bioinformatic analysis of the putative nuclease domain of the single polypeptide restriction–modification enzyme LlaGI reveals amino acid motifs characteristic of the Escherichia coli methylated DNA-specific Mrr endonuclease. Using mutagenesis, we examined the role of the conserved residues in both DNA translocation and cleavage. Mutations in those residues predicted to play a role in DNA hydrolysis produced enzymes that could translocate on DNA but were either unable to cleave the polynucleotide track or had reduced nuclease activity. Cleavage by LlaGI is not targeted to methylated DNA, suggesting that the conserved motifs in the Mrr domain are a conventional sub-family of the PD-(D/E)XK superfamily of DNA nucleases. PMID:19793866

  1. Nuclease S1-mediated enhancement of the 32P-postlabeling assay for aromatic carcinogen-DNA adducts.

    PubMed

    Reddy, M V

    1991-09-01

    Treatment of DNA digests with nuclease P1 prior to 32P-labeling of adducts has previously been shown to enhance the sensitivity of the 32P-postlabeling assay for the detection of aromatic carcinogen-DNA adducts. The enhancement was based on the ability of nuclease P1 to remove the 3'-phosphate from normal nucleotides but not the corresponding phosphate from most aromatic adducted nucleotides. We investigated the utility of another 3'-dephosphorylating enzyme, nuclease S1, for this purpose, and found it to be as effective as nuclease P1. The recovery of DNA adducts derived from benzo[a]-pyrene (B[a]P), benzoquinone (BQ) and 2-acetylaminofluorene (AAF) was comparable after enhancement with either enzyme. Some differences were, however, observed. Recovery of a minor B[a]P adduct was 1.5 times higher by the S1 procedure. Among minor adducts of BQ, two showed higher values (2.8- and 6.1-fold) by the S1 procedure and one by the P1 procedure (2.4-fold). The major AAF adduct, deoxyguanosine-C8-AF, exhibited poorer recovery (1-11%) by either procedure, while the minor adducts, deoxyguanosine-N2-AAF and deoxyguanosine-C8-AAF, showed better recovery (2-3 times) than by the enhancement procedure involving extraction of adducts into butanol. Our results show that the nuclease S1 assay can complement the nuclease P1 assay, with improved recoveries for some adducts. Considering the complexity of the postlabeling assay, this additional variant may prove useful in unequivocal detection of DNA adducts. PMID:1893535

  2. Enhancement of nuclease P1 production by Penicillium citrinum YL104 immobilized on activated carbon filter sponge.

    PubMed

    Zhao, Nan; Ren, Hengfei; Li, Zhenjian; Zhao, Ting; Shi, Xinchi; Cheng, Hao; Zhuang, Wei; Chen, Yong; Ying, Hanjie

    2015-02-01

    The efficiency of current methods for industrial production of the enzyme nuclease P1 is limited. In this study, we sought to improve fermentation methods for the production of nuclease P1. An immobilized fermentation system using an activated carbon filter sponge as a carrier was used for the production of nuclease P1. In an airlift internal loop reactor (ALR), the fermentation performance of three different fermentation modes, including free-cell fermentation, repeated-batch fermentation, and semi-continuous immobilized fermentation, were compared. The fermentation kinetics in the fermentation broth of the three fermentation modes, including dissolved oxygen (DO), pH value, cell concentration, residual sugar concentration, and enzyme activity, were tested. The productivity of semi-continuous immobilized fermentation reached 8.76 U/mL/h, which was 33.3 and 80.2% higher than that of repeated-batch fermentation and free-cell fermentation, respectively. The sugar consumption of free-cell, repeated-batch, and semi-continuous immobilized fermentations was 41.2, 30.8, and 25.9 g/L, respectively. These results showed that immobilized-cell fermentation by using Penicillium citrinum with activated carbon filter sponge in an ALR was advantageous for nuclease P1 production, especially in the semi-continuous immobilized fermentation mode. In spite of the significant improvement in nuclease P1 production in semi-continuous immobilized fermentation mode, the specific activity of nuclease P1 was almost equal among the three fermentation modes. PMID:25472432

  3. Targeted genome engineering using designer nucleases: State of the art and practical guidance for application in human pluripotent stem cells.

    PubMed

    Merkert, Sylvia; Martin, Ulrich

    2016-03-01

    Within the last years numerous publications successfully applied sequence specific designer nucleases for genome editing in human PSCs. However, despite this abundance of reports together with the rapid development and improvement accomplished with the technology, it is still difficult to choose the optimal methodology for a specific application of interest. With focus on the most suitable approach for specific applications, we present a practical guidance for successful gene editing in human PSCs using designer nucleases. We discuss experimental considerations, limitations and critical aspects which will guide the investigator for successful implementation of this technology. PMID:26921872

  4. Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases

    PubMed Central

    Santiago, Yolanda; Chan, Edmond; Liu, Pei-Qi; Orlando, Salvatore; Zhang, Lin; Urnov, Fyodor D.; Holmes, Michael C.; Guschin, Dmitry; Waite, Adam; Miller, Jeffrey C.; Rebar, Edward J.; Gregory, Philip D.; Klug, Aaron; Collingwood, Trevor N.

    2008-01-01

    Gene knockout is the most powerful tool for determining gene function or permanently modifying the phenotypic characteristics of a cell. Existing methods for gene disruption are limited by their efficiency, time to completion, and/or the potential for confounding off-target effects. Here, we demonstrate a rapid single-step approach to targeted gene knockout in mammalian cells, using engineered zinc-finger nucleases (ZFNs). ZFNs can be designed to target a chosen locus with high specificity. Upon transient expression of these nucleases the target gene is first cleaved by the ZFNs and then repaired by a natural—but imperfect—DNA repair process, nonhomologous end joining. This often results in the generation of mutant (null) alleles. As proof of concept for this approach we designed ZFNs to target the dihydrofolate reductase (DHFR) gene in a Chinese hamster ovary (CHO) cell line. We observed biallelic gene disruption at frequencies >1%, thus obviating the need for selection markers. Three new genetically distinct DHFR−/− cell lines were generated. Each new line exhibited growth and functional properties consistent with the specific knockout of the DHFR gene. Importantly, target gene disruption is complete within 2–3 days of transient ZFN delivery, thus enabling the isolation of the resultant DHFR−/− cell lines within 1 month. These data demonstrate further the utility of ZFNs for rapid mammalian cell line engineering and establish a new method for gene knockout with application to reverse genetics, functional genomics, drug discovery, and therapeutic recombinant protein production. PMID:18359850

  5. Genetics and complementation of Haemophilus influenzae mutants deficient in adenosine 5'-triphosphate-dependent nuclease.

    PubMed Central

    Kooistra, J; Small, G D; Setlow, J K; Shapanka, R

    1976-01-01

    Eight different mutations in Haemophilus influenzae leading to deficiency in adenosine 5'-triphosphate (ATP)-dependent nuclease have been investigated in strains in which the mutations of the originally mutagenized strains have been transferred into the wild type. Sensitivity to mitomycin C and deoxycholate and complementation between extracts and deoxyribonucleic acid (DNA)-dependent ATPase activity have been measured. Genetic crosses have provided information on the relative position of the mutations on the genome. There are three complementation groups, corresponding to three genetic groups. The strains most sensitive to mitomycin and deoxycholate, derived from mutants originally selected on the basis of sensitivity to mitomycin C or methyl methanesulfonate, are in one group. Apparently all these sensitive strains lack DNA-dependent ATPase activity, as does a strain intermediate in sensitivity to deoxycholate, which is the sole representative of another group. There are four strains that are relatively resistant to deoxycholate and mitomycin C, and all of these contain the ATPase activity. Three of these are in the same genetic and complementation group, whereas the other incongruously belongs in the same group as the sensitive strains. It is postulated that there are three cistrons in H. influenzae that code for the three known subunits of the ATP-dependent nuclease. PMID:177397

  6. Efficient processing of TFO-directed psoralen DNA interstrand crosslinks by the UvrABC nuclease.

    PubMed

    Christensen, Laura A; Wang, Hong; Van Houten, Bennett; Vasquez, Karen M

    2008-12-01

    Photoreactive psoralens can form interstrand crosslinks (ICLs) in double-stranded DNA. In eubacteria, the endonuclease UvrABC plays a key role in processing psoralen ICLs. Psoralen-modified triplex-forming oligonucleotides (TFOs) can be used to direct ICLs to specific genomic sites. Previous studies of pyrimidine-rich methoxypsoralen-modified TFOs indicated that the TFO inhibits cleavage by UvrABC. Because different chemistries may alter the processing of TFO-directed ICLs, we investigated the effect of another type of triplex formed by purine-rich TFOs on the processing of 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) ICLs by the UvrABC nuclease. Using an HMT-modified TFO to direct ICLs to a specific site, we found that UvrABC made incisions on the purine-rich strand of the duplex approximately 3 bases from the 3'-side and approximately 9 bases from the 5'-side of the ICL, within the TFO-binding region. In contrast to previous reports, the UvrABC nuclease cleaved the TFO-directed psoralen ICL with a greater efficiency than that of the psoralen ICL alone. Furthermore, the TFO was dissociated from its duplex binding site by UvrA and UvrB. As mutagenesis by TFO-directed ICLs requires nucleotide excision repair, the efficient processing of these lesions supports the use of triplex technology to direct DNA damage for genome modification. PMID:18996898

  7. Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster

    PubMed Central

    Simoni, Alekos; Siniscalchi, Carla; Chan, Yuk-Sang; Huen, David S.; Russell, Steven; Windbichler, Nikolai; Crisanti, Andrea

    2014-01-01

    Selfish genes are DNA elements that increase their rate of genetic transmission at the expense of other genes in the genome and can therefore quickly spread within a population. It has been suggested that selfish elements could be exploited to modify the genome of entire populations for medical and ecological applications. Here we report that transcription activator-like effector nuclease (TALEN) and zinc finger nuclease (ZFN) can be engineered into site-specific synthetic selfish elements (SSEs) and demonstrate their transmission of up to 70% in the Drosophila germline. We show here that SSEs can spread via DNA break-induced homologous recombination, a process known as ‘homing’ similar to that observed for homing endonuclease genes (HEGs), despite their fundamentally different modes of DNA binding and cleavage. We observed that TALEN and ZFN have a reduced capability of secondary homing compared to HEG as their repetitive structure had a negative effect on their genetic stability. The modular architecture of ZFNs and TALENs allows for the rapid design of novel SSEs against specific genomic sequences making them potentially suitable for the genetic engineering of wild-type populations of animals and plants, in applications such as gene replacement or population suppression of pest species. PMID:24803674

  8. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes

    SciTech Connect

    Li, T; Huang, S; Zhao, XF; Wright, DA; Carpenter, S; Spalding, MH; Weeks, DP; Yang, B

    2011-08-08

    Recent studies indicate that the DNA recognition domain of transcription activator-like (TAL) effectors can be combined with the nuclease domain of FokI restriction enzyme to produce TAL effector nucleases (TALENs) that, in pairs, bind adjacent DNA target sites and produce double-strand breaks between the target sequences, stimulating non-homologous end-joining and homologous recombination. Here, we exploit the four prevalent TAL repeats and their DNA recognition cipher to develop a 'modular assembly' method for rapid production of designer TALENs (dTALENs) that recognize unique DNA sequence up to 23 bases in any gene. We have used this approach to engineer 10 dTALENs to target specific loci in native yeast chromosomal genes. All dTALENs produced high rates of site-specific gene disruptions and created strains with expected mutant phenotypes. Moreover, dTALENs stimulated high rates (up to 34%) of gene replacement by homologous recombination. Finally, dTALENs caused no detectable cytotoxicity and minimal levels of undesired genetic mutations in the treated yeast strains. These studies expand the realm of verified TALEN activity from cultured human cells to an intact eukaryotic organism and suggest that low-cost, highly dependable dTALENs can assume a significant role for gene modifications of value in human and animal health, agriculture and industry.

  9. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation

    PubMed Central

    Seper, Andrea; Fengler, Vera H I; Roier, Sandro; Wolinski, Heimo; Kohlwein, Sepp D; Bishop, Anne L; Camilli, Andrew; Reidl, Joachim; Schild, Stefan

    2011-01-01

    Biofilms are a preferred mode of survival for many microorganisms including Vibrio cholerae, the causative agent of the severe secretory diarrhoeal disease cholera. The ability of the facultative human pathogen V. cholerae to form biofilms is a key factor for persistence in aquatic ecosystems and biofilms act as a source for new outbreaks. Thus, a better understanding of biofilm formation and transmission of V. cholerae is an important target to control the disease. So far the Vibrio exopolysaccharide was the only known constituent of the biofilm matrix. In this study we identify and characterize extracellular DNA as a component of the Vibrio biofilm matrix. Furthermore, we show that extracellular DNA is modulated and controlled by the two extracellular nucleases Dns and Xds. Our results indicate that extracellular DNA and the extracellular nucleases are involved in diverse processes including the development of a typical biofilm architecture, nutrient acquisition, detachment from biofilms and the colonization fitness of biofilm clumps after ingestion by the host. This study provides new insights into biofilm development and transmission of biofilm-derived V. cholerae. PMID:22032623

  10. Targeted Mutagenesis in Plant Cells through Transformation of Sequence-Specific Nuclease mRNA

    PubMed Central

    Stoddard, Thomas J.; Clasen, Benjamin M.; Baltes, Nicholas J.; Demorest, Zachary L.; Voytas, Daniel F.; Zhang, Feng; Luo, Song

    2016-01-01

    Plant genome engineering using sequence-specific nucleases (SSNs) promises to advance basic and applied plant research by enabling precise modification of endogenous genes. Whereas DNA is an effective means for delivering SSNs, DNA can integrate randomly into the plant genome, leading to unintentional gene inactivation. Further, prolonged expression of SSNs from DNA constructs can lead to the accumulation of off-target mutations. Here, we tested a new approach for SSN delivery to plant cells, namely transformation of messenger RNA (mRNA) encoding TAL effector nucleases (TALENs). mRNA delivery of a TALEN pair targeting the Nicotiana benthamiana ALS gene resulted in mutation frequencies of approximately 6% in comparison to DNA delivery, which resulted in mutation frequencies of 70.5%. mRNA delivery resulted in three-fold fewer insertions, and 76% were <10bp; in contrast, 88% of insertions generated through DNA delivery were >10bp. In an effort to increase mutation frequencies using mRNA, we fused several different 5’ and 3’ untranslated regions (UTRs) from Arabidopsis thaliana genes to the TALEN coding sequence. UTRs from an A. thaliana adenine nucleotide α hydrolases-like gene (At1G09740) enhanced mutation frequencies approximately two-fold, relative to a no-UTR control. These results indicate that mRNA can be used as a delivery vehicle for SSNs, and that manipulation of mRNA UTRs can influence efficiencies of genome editing. PMID:27176769

  11. Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster.

    PubMed

    Simoni, Alekos; Siniscalchi, Carla; Chan, Yuk-Sang; Huen, David S; Russell, Steven; Windbichler, Nikolai; Crisanti, Andrea

    2014-06-01

    Selfish genes are DNA elements that increase their rate of genetic transmission at the expense of other genes in the genome and can therefore quickly spread within a population. It has been suggested that selfish elements could be exploited to modify the genome of entire populations for medical and ecological applications. Here we report that transcription activator-like effector nuclease (TALEN) and zinc finger nuclease (ZFN) can be engineered into site-specific synthetic selfish elements (SSEs) and demonstrate their transmission of up to 70% in the Drosophila germline. We show here that SSEs can spread via DNA break-induced homologous recombination, a process known as 'homing' similar to that observed for homing endonuclease genes (HEGs), despite their fundamentally different modes of DNA binding and cleavage. We observed that TALEN and ZFN have a reduced capability of secondary homing compared to HEG as their repetitive structure had a negative effect on their genetic stability. The modular architecture of ZFNs and TALENs allows for the rapid design of novel SSEs against specific genomic sequences making them potentially suitable for the genetic engineering of wild-type populations of animals and plants, in applications such as gene replacement or population suppression of pest species. PMID:24803674

  12. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing.

    PubMed

    Tsai, Shengdar Q; Wyvekens, Nicolas; Khayter, Cyd; Foden, Jennifer A; Thapar, Vishal; Reyon, Deepak; Goodwin, Mathew J; Aryee, Martin J; Joung, J Keith

    2014-06-01

    Monomeric CRISPR-Cas9 nucleases are widely used for targeted genome editing but can induce unwanted off-target mutations with high frequencies. Here we describe dimeric RNA-guided FokI nucleases (RFNs) that can recognize extended sequences and edit endogenous genes with high efficiencies in human cells. RFN cleavage activity depends strictly on the binding of two guide RNAs (gRNAs) to DNA with a defined spacing and orientation substantially reducing the likelihood that a suitable target site will occur more than once in the genome and therefore improving specificities relative to wild-type Cas9 monomers. RFNs guided by a single gRNA generally induce lower levels of unwanted mutations than matched monomeric Cas9 nickases. In addition, we describe a simple method for expressing multiple gRNAs bearing any 5' end nucleotide, which gives dimeric RFNs a broad targeting range. RFNs combine the ease of RNA-based targeting with the specificity enhancement inherent to dimerization and are likely to be useful in applications that require highly precise genome editing. PMID:24770325

  13. Rh D blood group conversion using transcription activator-like effector nucleases.

    PubMed

    Kim, Young-Hoon; Kim, Hyun O; Baek, Eun J; Kurita, Ryo; Cha, Hyuk-Jin; Nakamura, Yukio; Kim, Hyongbum

    2015-01-01

    Group O D-negative blood cells are universal donors in transfusion medicine and methods for converting other blood groups into this universal donor group have been researched. However, conversion of D-positive cells into D-negative is yet to be achieved, although conversion of group A or B cells into O cells has been reported. The Rh D blood group is determined by the RHD gene, which encodes a 12-transmembrane domain protein. Here we convert Rh D-positive erythroid progenitor cells into D-negative cells using RHD-targeting transcription activator-like effector nucleases (TALENs). After transfection of TALEN-encoding plasmids, RHD-knockout clones are obtained. Erythroid-lineage cells differentiated from these knockout erythroid progenitor cells do not agglutinate in the presence of anti-D reagents and do not express D antigen, as assessed using flow cytometry. Our programmable nuclease-induced blood group conversion opens new avenues for compatible donor cell generation in transfusion medicine. PMID:26078220

  14. Butyrate-induced changes in nuclease sensitivity of chromatin cannot be correlated with transcriptional activation

    SciTech Connect

    Birren, B.W.; Taplitz, S.J.; Herschman, H.R.

    1987-11-01

    The authors examined in the H4IIE rat heptoma cell line the relationship between butyrate-induced changes in the nuclease sensitivity of chromatin and changes in transcriptional activity of specific genes. The butyrate-inducible metallothionein I (MT-I) gene underwent a dramatic increase in DNase I sensitivity after 3 h of butyrate treatment. However, genes not transcribed in H4IIE cells underwent the same changes in DNase I sensitivity. Thus, butyrate-induced increases in DNase I sensitivity are not sufficient for the transcriptional activation of a gene. Butyrate treatment has also been reported to alter the sensitivity of sequence to micrococcal nuclease (MNase) in a manner reflecting their tissue-specific expression. Butyrate exposure caused increased digestion of the MT-I gene by MNase. However, butyrate-induced MNase sensitivity also occurred for genes which are neither transcribed in untreated cells nor butyrate inducible. Moreover, cadmium, a potent transcriptional activator of the MT-I gene, does not alter the sensitivity of the MT-I gene to MNase. Thus, the butyrate-induced alterations in MNase sensitivity are neither sufficient for, necessary for, nor indicative of transcriptional activation.

  15. Crystallization and preliminary X-ray characterization of two thermostable DNA nucleases

    SciTech Connect

    Kuettner, E. Bartholomeus; Pfeifer, Sven; Keim, Antje; Greiner-Stöffele, Thomas; Sträter, Norbert

    2006-12-01

    Two thermostable DNA nucleases from archaea were crystallized in different space groups; the crystals were suitable for X-ray analysis. Temperature-tolerant organisms are an important source to enhance the stability of enzymes used in biotechnological processes. The DNA-cleaving enzyme exonuclease III from Escherichia coli is used in several applications in gene technology. A thermostable variant could expand the applicability of the enzyme in these methods. Two homologous nucleases from Archaeoglobus fulgidus (ExoAf) and Methanothermobacter thermoautrophicus (ExoMt) were studied for this purpose. Both enzymes were crystallized in different space groups using (poly)ethylene glycols, 2,4-methyl pentandiol, dioxane, ethanol or 2-propanol as precipitants. The addition of a 10-mer DNA oligonucleotide was important to obtain monoclinic crystals of ExoAf and ExoMt that diffracted to resolutions better than 2 Å using synchrotron radiation. The crystal structures of the homologous proteins can serve as templates for genetic engineering of the E. coli exonuclease III and will aid in understanding the different catalytic properties of the enzymes.

  16. Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases

    PubMed Central

    Merlin, Christine; Beaver, Lauren E.; Taylor, Orley R.; Wolfe, Scot A.; Reppert, Steven M.

    2013-01-01

    The development of reverse-genetic tools in “nonmodel” insect species with distinct biology is critical to establish them as viable model systems. The eastern North American monarch butterfly (Danaus plexippus), whose genome is sequenced, has emerged as a model to study animal clocks, navigational mechanisms, and the genetic basis of long-distance migration. Here, we developed a highly efficient gene-targeting approach in the monarch using zinc-finger nucleases (ZFNs), engineered nucleases that generate mutations at targeted genomic sequences. We focused our ZFN approach on targeting the type 2 vertebrate-like cryptochrome gene of the monarch (designated cry2), which encodes a putative transcriptional repressor of the monarch circadian clockwork. Co-injections of mRNAs encoding ZFNs targeting the second exon of monarch cry2 into “one nucleus” stage embryos led to high-frequency nonhomologous end-joining-mediated, mutagenic lesions in the germline (up to 50%). Heritable ZFN-induced lesions in two independent lines produced truncated, nonfunctional CRY2 proteins, resulting in the in vivo disruption of circadian behavior and the molecular clock mechanism. Our work genetically defines CRY2 as an essential transcriptional repressor of the monarch circadian clock and provides a proof of concept for the use of ZFNs for manipulating genes in the monarch butterfly genome. Importantly, this approach could be used in other lepidopterans and “nonmodel” insects, thus opening new avenues to decipher the molecular underpinnings of a variety of biological processes. PMID:23009861

  17. A novel mode of nuclease action is revealed by the bacterial Mre11/Rad50 complex

    PubMed Central

    Lim, Chew Theng; Lai, Pey Jiun; Leach, David R. F.; Maki, Hisaji; Furukohri, Asako

    2015-01-01

    The Mre11/Rad50 complex is a central player in various genome maintenance pathways. Here, we report a novel mode of nuclease action found for the Escherichia coli Mre11/Rad50 complex, SbcC2/D2 complex (SbcCD). SbcCD cuts off the top of a cruciform DNA by making incisions on both strands and continues cleaving the dsDNA stem at ∼10-bp intervals. Using linear-shaped DNA substrates, we observed that SbcCD cleaved dsDNA using this activity when the substrate was 110 bp long, but that on shorter substrates the cutting pattern was changed to that predicted for the activity of a 3′-5′ exonuclease. Our results suggest that SbcCD processes hairpin and linear dsDNA ends with this novel DNA end-dependent binary endonuclease activity in response to substrate length rather than using previously reported activities. We propose a model for this mode of nuclease action, which provides new insight into SbcCD activity at a dsDNA end. PMID:26319016

  18. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly

    PubMed Central

    Kim, Hye Joo; Lee, Hyung Joo; Kim, Hyojin; Cho, Seung Woo; Kim, Jin-Soo

    2009-01-01

    Broad applications of zinc finger nuclease (ZFN) technology—which allows targeted genome editing—in research, medicine, and biotechnology are hampered by the lack of a convenient, rapid, and publicly available method for the synthesis of functional ZFNs. Here we describe an efficient and easy-to-practice modular-assembly method using publicly available zinc fingers to make ZFNs that can modify the DNA sequences of predetermined genomic sites in human cells. We synthesized and tested hundreds of ZFNs to target dozens of different sites in the human CCR5 gene—a co-receptor required for HIV infection—and found that many of these nucleases induced site-specific mutations in the CCR5 sequence. Because human cells that harbor CCR5 null mutations are functional and normal, these ZFNs might be used for (1) knocking out CCR5 to produce T-cells that are resistant to HIV infection in AIDS patients or (2) inserting therapeutic genes at “safe sites” in gene therapy applications. PMID:19470664

  19. Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases.

    PubMed

    Merlin, Christine; Beaver, Lauren E; Taylor, Orley R; Wolfe, Scot A; Reppert, Steven M

    2013-01-01

    The development of reverse-genetic tools in "nonmodel" insect species with distinct biology is critical to establish them as viable model systems. The eastern North American monarch butterfly (Danaus plexippus), whose genome is sequenced, has emerged as a model to study animal clocks, navigational mechanisms, and the genetic basis of long-distance migration. Here, we developed a highly efficient gene-targeting approach in the monarch using zinc-finger nucleases (ZFNs), engineered nucleases that generate mutations at targeted genomic sequences. We focused our ZFN approach on targeting the type 2 vertebrate-like cryptochrome gene of the monarch (designated cry2), which encodes a putative transcriptional repressor of the monarch circadian clockwork. Co-injections of mRNAs encoding ZFNs targeting the second exon of monarch cry2 into "one nucleus" stage embryos led to high-frequency nonhomologous end-joining-mediated, mutagenic lesions in the germline (up to 50%). Heritable ZFN-induced lesions in two independent lines produced truncated, nonfunctional CRY2 proteins, resulting in the in vivo disruption of circadian behavior and the molecular clock mechanism. Our work genetically defines CRY2 as an essential transcriptional repressor of the monarch circadian clock and provides a proof of concept for the use of ZFNs for manipulating genes in the monarch butterfly genome. Importantly, this approach could be used in other lepidopterans and "nonmodel" insects, thus opening new avenues to decipher the molecular underpinnings of a variety of biological processes. PMID:23009861

  20. Genome Editing in Mouse Spermatogonial Stem/Progenitor Cells Using Engineered Nucleases

    PubMed Central

    Fanslow, Danielle A.; Wirt, Stacey E.; Barker, Jenny C.; Connelly, Jon P.; Porteus, Matthew H.; Dann, Christina Tenenhaus

    2014-01-01

    Editing the genome to create specific sequence modifications is a powerful way to study gene function and promises future applicability to gene therapy. Creation of precise modifications requires homologous recombination, a very rare event in most cell types that can be stimulated by introducing a double strand break near the target sequence. One method to create a double strand break in a particular sequence is with a custom designed nuclease. We used engineered nucleases to stimulate homologous recombination to correct a mutant gene in mouse “GS” (germline stem) cells, testicular derived cell cultures containing spermatogonial stem cells and progenitor cells. We demonstrated that gene-corrected cells maintained several properties of spermatogonial stem/progenitor cells including the ability to colonize following testicular transplantation. This proof of concept for genome editing in GS cells impacts both cell therapy and basic research given the potential for GS cells to be propagated in vitro, contribute to the germline in vivo following testicular transplantation or become reprogrammed to pluripotency in vitro. PMID:25409432

  1. Periplasmic Domains of Pseudomonas aeruginosa PilN and PilO Form a Stable Heterodimeric Complex

    SciTech Connect

    Sampaleanu, L.M.; Bonanno, J.B.; Ayers, M.; Koo, J.; Tammam, S.; Burley, S.K.; Almo, S.C.; Burrows, L.L.; Howell, P.L.

    2010-01-12

    Type IV pili (T4P) are bacterial virulence factors responsible for attachment to surfaces and for twitching motility, a motion that involves a succession of pilus extension and retraction cycles. In the opportunistic pathogen Pseudomonas aeruginosa, the PilM/N/O/P proteins are essential for T4P biogenesis, and genetic and biochemical analyses strongly suggest that they form an inner-membrane complex. Here, we show through co-expression and biochemical analysis that the periplasmic domains of PilN and PilO interact to form a heterodimer. The structure of residues 69-201 of the periplasmic domain of PilO was determined to 2.2 {angstrom} resolution and reveals the presence of a homodimer in the asymmetric unit. Each monomer consists of two N-terminal coiled coils and a C-terminal ferredoxin-like domain. This structure was used to generate homology models of PilN and the PilN/O heterodimer. Our structural analysis suggests that in vivo PilN/O heterodimerization would require changes in the orientation of the first N-terminal coiled coil, which leads to two alternative models for the role of the transmembrane domains in the PilN/O interaction. Analysis of PilN/O orthologues in the type II secretion system EpsL/M revealed significant similarities in their secondary structures and the tertiary structures of PilO and EpsM, although the way these proteins interact to form inner-membrane complexes appears to be different in T4P and type II secretion. Our analysis suggests that PilN interacts directly, via its N-terminal tail, with the cytoplasmic protein PilM. This work shows a direct interaction between the periplasmic domains of PilN and PilO, with PilO playing a key role in the proper folding of PilN. Our results suggest that PilN/O heterodimers form the foundation of the inner-membrane PilM/N/O/P complex, which is critical for the assembly of a functional T4P complex.

  2. Motor Rotation Is Essential for the Formation of the Periplasmic Flagellar Ribbon, Cellular Morphology, and Borrelia burgdorferi Persistence within Ixodes scapularis Tick and Murine Hosts

    PubMed Central

    Sultan, Syed Z.; Sekar, Padmapriya; Zhao, Xiaowei; Manne, Akarsh; Liu, Jun; Wooten, R. Mark

    2015-01-01

    Borrelia burgdorferi must migrate within and between its arthropod and mammalian hosts in order to complete its natural enzootic cycle. During tick feeding, the spirochete transmits from the tick to the host dermis, eventually colonizing and persisting within multiple, distant tissues. This dissemination modality suggests that flagellar motor rotation and, by extension, motility are crucial for infection. We recently reported that a nonmotile flaB mutant that lacks periplasmic flagella is rod shaped and unable to infect mice by needle or tick bite. However, those studies could not differentiate whether motor rotation or merely the possession of the periplasmic flagella was crucial for cellular morphology and host persistence. Here, we constructed and characterized a motB mutant that is nonmotile but retains its periplasmic flagella. Even though ΔmotB bacteria assembled flagella, part of the mutant cell is rod shaped. Cryoelectron tomography revealed that the flagellar ribbons are distorted in the mutant cells, indicating that motor rotation is essential for spirochetal flat-wave morphology. The ΔmotB cells are unable to infect mice, survive in the vector, or migrate out of the tick. Coinfection studies determined that the presence of these nonmotile ΔmotB cells has no effect on the clearance of wild-type spirochetes during murine infection and vice versa. Together, our data demonstrate that while flagellar motor rotation is necessary for spirochetal morphology and motility, the periplasmic flagella display no additional properties related to immune clearance and persistence within relevant hosts. PMID:25690096

  3. The periplasmic sensing domain of Vibrio fischeri chemoreceptor protein A (VfcA): cloning, purification and crystallographic analysis.

    PubMed

    Salah Ud-Din, Abu Iftiaf Md; Roujeinikova, Anna

    2016-05-01

    Flagella-mediated motility and chemotaxis towards nutrients are important characteristics of Vibrio fischeri that play a crucial role in the development of its symbiotic relationship with its Hawaiian squid host Euprymna scolopes. The V. fischeri chemoreceptor A (VfcA) mediates chemotaxis toward amino acids. The periplasmic sensory domain of VfcA has been crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 3350 as a precipitating agent. The crystals belonged to space group P1, with unit-cell parameters a = 39.9, b = 57.0, c = 117.0 Å, α = 88.9, β = 80.5, γ = 89.7°. A complete X-ray diffraction data set has been collected to 1.8 Å resolution using cryocooling conditions and synchrotron radiation. PMID:27139830

  4. The Periplasmic Nitrate Reductase NapABC Supports Luminal Growth of Salmonella enterica Serovar Typhimurium during Colitis

    PubMed Central

    Lopez, Christopher A.; Rivera-Chávez, Fabian; Byndloss, Mariana X.

    2015-01-01

    The food-borne pathogen Salmonella enterica serovar Typhimurium benefits from acute inflammation in part by using host-derived nitrate to respire anaerobically and compete successfully with the commensal microbes during growth in the intestinal lumen. The S. Typhimurium genome contains three nitrate reductases, encoded by the narGHI, narZYV, and napABC genes. Work on homologous genes present in Escherichia coli suggests that nitrate reductase A, encoded by the narGHI genes, is the main enzyme promoting growth on nitrate as an electron acceptor in anaerobic environments. Using a mouse colitis model, we found, surprisingly, that S. Typhimurium strains with defects in either nitrate reductase A (narG mutant) or the regulator inducing its transcription in the presence of high concentrations of nitrate (narL mutant) exhibited growth comparable to that of wild-type S. Typhimurium. In contrast, a strain lacking a functional periplasmic nitrate reductase (napA mutant) exhibited a marked growth defect in the lumen of the colon. In E. coli, the napABC genes are transcribed maximally under anaerobic growth conditions in the presence of low nitrate concentrations. Inactivation of narP, encoding a response regulator that activates napABC transcription in response to low nitrate concentrations, significantly reduced the growth of S. Typhimurium in the gut lumen. Cecal nitrate measurements suggested that the murine cecum is a nitrate-limited environment. Collectively, our results suggest that S. Typhimurium uses the periplasmic nitrate reductase to support its growth on the low nitrate concentrations encountered in the gut, a strategy that may be shared with other enteric pathogens. PMID:26099579

  5. Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins

    PubMed Central

    Mealman, Tiffany D.; McEvoy, Megan M.; Blackburn, Ninian J.

    2014-01-01

    Copper is an essential nutrient for all aerobic organisms but is toxic in excess. At the host–pathogen interface, macrophages respond to bacterial infection by copper-dependent killing mechanisms, whereas the invading bacteria are thought to counter with an up-regulation of copper transporters and efflux pumps. The tripartite efflux pump CusCBA and its metallochaperone CusF are vital to the detoxification of copper and silver ions in the periplasm of Escherichia coli. However, the mechanism of efflux by this complex, which requires the activation of the inner membrane pump CusA, is poorly understood. Here, we use selenomethionine (SeM) active site labels in a series of biological X-ray absorption studies at the selenium, copper, and silver edges to establish a “switch” role for the membrane fusion protein CusB. We determine that metal-bound CusB is required for activation of cuprous ion transfer from CusF directly to a site in the CusA antiporter, showing for the first time (to our knowledge) the in vitro activation of the Cus efflux pump. This metal-binding site of CusA is unlike that observed in the crystal structures of the CusA protein and is composed of one oxygen and two sulfur ligands. Our results suggest that metal transfer occurs between CusF and apo-CusB, and that, when metal-loaded, CusB plays a role in the regulation of metal ion transfer from CusF to CusA in the periplasm. PMID:25313055

  6. Chaperone-mediated native folding of a β-scorpion toxin in the periplasm of Escherichia coli☆

    PubMed Central

    O'Reilly, A.O.; Cole, A.R.; Lopes, J.L.S.; Lampert, A.; Wallace, B.A.

    2014-01-01

    Background Animal neurotoxin peptides are valuable probes for investigating ion channel structure/function relationships and represent lead compounds for novel therapeutics and insecticides. However, misfolding and aggregation are common outcomes when toxins containing multiple disulfides are expressed in bacteria. Methods The β-scorpion peptide toxin Bj-xtrIT from Hottentotta judaica and four chaperone enzymes (DsbA, DsbC, SurA and FkpA) were co-secreted into the oxidizing environment of the Escherichia coli periplasm. Expressed Bj-xtrIT was purified and analyzed by HPLC and FPLC chromatography. Its thermostability was assessed using synchrotron radiation circular dichroism spectroscopy and its crystal structure was determined. Results Western blot analysis showed that robust expression was only achieved when cells co-expressed the chaperones. The purified samples were homogenous and monodisperse and the protein was thermostable. The crystal structure of the recombinant toxin confirmed that it adopts the native disulfide connectivity and fold. Conclusions The chaperones enabled correct folding of the four-disulfide-bridged Bj-xtrIT toxin. There was no apparent sub-population of misfolded Bj-xtrIT, which attests to the effectiveness of this expression method. General significance We report the first example of a disulfide-linked scorpion toxin natively folded during bacterial expression. This method eliminates downstream processing steps such as oxidative refolding or cleavage of a fusion-carrier and therefore enables efficient production of insecticidal Bj-xtrIT. Periplasmic chaperone activity may produce native folding of other extensively disulfide-reticulated proteins including animal neurotoxins. This work is therefore relevant to venomics and studies of a wide range of channels and receptors. PMID:23999087

  7. A Novel Periplasmic Protein, VrpA, Contributes to Efficient Protein Secretion by the Type III Secretion System in Xanthomonas spp.

    PubMed

    Zhou, Xiaofeng; Hu, Xiufang; Li, Jinyun; Wang, Nian

    2015-02-01

    Efficient secretion of type III effector proteins from the bacterial cytoplasm to host cell cytosol via a type III secretion system (T3SS) is crucial for virulence of plant-pathogenic bacterium. Our previous study revealed a conserved hypothetical protein, virulence-related periplasm protein A (VrpA), which was identified as a critical virulence factor for Xanthomonas citri subsp. citri. In this study, we demonstrate that mutation of vrpA compromises X. citri subsp. citri virulence and hypersensitive response induction. This deficiency is also observed in the X. campestris pv. campestris strain, suggesting a functional conservation of VrpA in Xanthomonas spp. Our study indicates that VrpA is required for efficient protein secretion via T3SS, which is supported by multiple lines of evidence. A CyaA reporter assay shows that VrpA is involved in type III effector secretion; quantitative reverse-transcription polymerase chain reaction analysis suggests that the vrpA mutant fails to activate citrus-canker-susceptible gene CsLOB1, which is transcriptionally activated by transcription activator-like effector PthA4; in vitro secretion study reveals that VrpA plays an important role in secretion of T3SS pilus, translocon, and effector proteins. Our data also indicate that VrpA in X. citri subsp. citri localizes to bacterial periplasmic space and the periplasmic localization is required for full function of VrpA and X. citri subsp. citri virulence. Protein-protein interaction studies show that VrpA physically interacts with periplasmic T3SS components HrcJ and HrcC. However, the mutation of VrpA does not affect T3SS gene expression. Additionally, VrpA is involved in X. citri subsp. citri tolerance of oxidative stress. Our data contribute to the mechanical understanding of an important periplasmic protein VrpA in Xanthomonas spp. PMID:25338144

  8. The structure of ends determines the pathway choice and Mre11 nuclease dependency of DNA double-strand break repair.

    PubMed

    Liao, Shuren; Tammaro, Margaret; Yan, Hong

    2016-07-01

    The key event in the choice of repair pathways for DNA double-strand breaks (DSBs) is the initial processing of ends. Non-homologous end joining (NHEJ) involves limited processing, but homology-dependent repair (HDR) requires extensive resection of the 5' strand. How cells decide if an end is channeled to resection or NHEJ is not well understood. We hypothesize that the structure of ends is a major determinant and tested this hypothesis with model DNA substrates in Xenopus egg extracts. While ends with normal nucleotides are efficiently channeled to NHEJ, ends with damaged nucleotides or bulky adducts are channeled to resection. Resection is dependent on Mre11, but its nuclease activity is critical only for ends with 5' bulky adducts. CtIP is absolutely required for activating the nuclease-dependent mechanism of Mre11 but not the nuclease-independent mechanism. Together, these findings suggest that the structure of ends is a major determinant for the pathway choice of DSB repair and the Mre11 nuclease dependency of resection. PMID:27084932

  9. The structure of ends determines the pathway choice and Mre11 nuclease dependency of DNA double-strand break repair

    PubMed Central

    Liao, Shuren; Tammaro, Margaret; Yan, Hong

    2016-01-01

    The key event in the choice of repair pathways for DNA double-strand breaks (DSBs) is the initial processing of ends. Non-homologous end joining (NHEJ) involves limited processing, but homology-dependent repair (HDR) requires extensive resection of the 5′ strand. How cells decide if an end is channeled to resection or NHEJ is not well understood. We hypothesize that the structure of ends is a major determinant and tested this hypothesis with model DNA substrates in Xenopus egg extracts. While ends with normal nucleotides are efficiently channeled to NHEJ, ends with damaged nucleotides or bulky adducts are channeled to resection. Resection is dependent on Mre11, but its nuclease activity is critical only for ends with 5′ bulky adducts. CtIP is absolutely required for activating the nuclease-dependent mechanism of Mre11 but not the nuclease-independent mechanism. Together, these findings suggest that the structure of ends is a major determinant for the pathway choice of DSB repair and the Mre11 nuclease dependency of resection. PMID:27084932

  10. Cell Wall-Anchored Nuclease of Streptococcus sanguinis Contributes to Escape from Neutrophil Extracellular Trap-Mediated Bacteriocidal Activity

    PubMed Central

    Nakata, Masanobu; Okahashi, Nobuo; Wada, Satoshi; Yamashiro, Takashi; Hayashi, Mikako; Hamada, Shigeyuki; Sumitomo, Tomoko; Kawabata, Shigetada

    2014-01-01

    Streptococcus sanguinis, a member of the commensal mitis group of streptococci, is a primary colonizer of the tooth surface, and has been implicated in infectious complications including bacteremia and infective endocarditis. During disease progression, S. sanguinis may utilize various cell surface molecules to evade the host immune system to survive in blood. In the present study, we discovered a novel cell surface nuclease with a cell-wall anchor domain, termed SWAN (streptococcal wall-anchored nuclease), and investigated its contribution to bacterial resistance against the bacteriocidal activity of neutrophil extracellular traps (NETs). Recombinant SWAN protein (rSWAN) digested multiple forms of DNA including NET DNA and human RNA, which required both Mg2+ and Ca2+ for optimum activity. Furthermore, DNase activity of S. sanguinis was detected around growing colonies on agar plates containing DNA. In-frame deletion of the swan gene mostly reduced that activity. These findings indicated that SWAN is a major nuclease displayed on the surface, which was further confirmed by immuno-detection of SWAN in the cell wall fraction. The sensitivity of S. sanguinis to NET killing was reduced by swan gene deletion. Moreover, heterologous expression of the swan gene rendered a Lactococcus lactis strain more resistant to NET killing. Our results suggest that the SWAN nuclease on the bacterial surface contributes to survival in the potential situation of S. sanguinis encountering NETs during the course of disease progression. PMID:25084357

  11. Crystallization and preliminary X-ray analysis of a RecB-family nuclease from the archaeon Pyrococcus abyssi

    SciTech Connect

    Ren, Bin; Kuhn, Joëlle; Meslet-Cladiere, Laurence; Myllykallio, Hannu; Ladenstein, Rudolf

    2007-05-01

    A RecB-like nuclease from the archaeon Pyrococcus abyssi was expressed, purified and crystallized. The crystals belong to the orthorhombic space group C222{sub 1} with a = 81.5, b = 159.8, c = 100.8 Å, and a native data set was collected to 2.65 Å resolution. Nucleases are required to process and repair DNA damage in living cells. One of the best studied nucleases is the RecB protein, which functions in Escherichia coli as a component of the RecBCD enzyme complex that amends double-strand breaks in DNA. Although archaea do not contain the RecBCD complex, a RecB-like nuclease from Pyrococcus abyssi has been cloned, expressed and purified. The protein was crystallized by the sitting-drop vapour-diffusion method using polyethylene glycol 8000 as the precipitant. The crystals belong to the orthorhombic space group C222{sub 1}, with unit-cell parameters a = 81.5, b = 159.8, c = 100.8 Å. Self-rotation function and native Patterson map calculations revealed that there is a dimer in the asymmetric unit with its local twofold axis running parallel to the crystallographic twofold screw axis. The crystals diffracted to about 2 Å and a complete native data set was collected to 2.65 Å resolution.

  12. Mm19, a Mycoplasma meleagridis Major Surface Nuclease that Is Related to the RE_AlwI Superfamily of Endonucleases

    PubMed Central

    Yacoub, Elhem; Ben Abdelmoumen Mardassi, Boutheina

    2016-01-01

    Mycoplasma meleagridis infection is widespread in turkeys, causing poor growth and feathering, airsacculitis, osteodystrophy, and reduction in hatchability. Like most mycoplasma species, M. meleagridis is characterized by its inability to synthesize purine and pyrimidine nucleotides de novo. Consistent with this intrinsic deficiency, we here report the cloning, expression, and characterization of a M. meleagridis gene sequence encoding a major surface nuclease, referred to as Mm19. Mm19 consists of a 1941- bp ORF encoding a 646-amino-acid polypeptide with a predicted molecular mass of 74,825 kDa. BLASTP analysis revealed a significant match with the catalytic/dimerization domain of type II restriction enzymes of the RE_AlwI superfamily. This finding is consistent with the genomic location of Mm19 sequence, which dispalys characteristics of a typical type II restriction-modification locus. Like intact M. meleagridis cells, the E. coli-expressed Mm19 fusion product was found to exhibit a nuclease activity against plasmid DNA, double-stranded DNA, single-stranded DNA, and RNA. The Mm19-associated nuclease activity was consistently enhanced with Mg2+ divalent cations, a hallmark of type II restriction enzymes. A rabbit hyperimmune antiserum raised against the bacterially expressed Mm19 strongly reacted with M. meleagridis intact cells and fully neutralized the surface-bound nuclease activity. Collectively, the results show that M. meleagridis expresses a strong surface-bound nuclease activity, which is the product of a single gene sequence that is related to the RE_AlwI superfamily of endonucleases. PMID:27010566

  13. Mm19, a Mycoplasma meleagridis Major Surface Nuclease that Is Related to the RE_AlwI Superfamily of Endonucleases.

    PubMed

    Yacoub, Elhem; Ben Abdelmoumen Mardassi, Boutheina

    2016-01-01

    Mycoplasma meleagridis infection is widespread in turkeys, causing poor growth and feathering, airsacculitis, osteodystrophy, and reduction in hatchability. Like most mycoplasma species, M. meleagridis is characterized by its inability to synthesize purine and pyrimidine nucleotides de novo. Consistent with this intrinsic deficiency, we here report the cloning, expression, and characterization of a M. meleagridis gene sequence encoding a major surface nuclease, referred to as Mm19. Mm19 consists of a 1941-bp ORF encoding a 646-amino-acid polypeptide with a predicted molecular mass of 74,825 kDa. BLASTP analysis revealed a significant match with the catalytic/dimerization domain of type II restriction enzymes of the RE_AlwI superfamily. This finding is consistent with the genomic location of Mm19 sequence, which dispalys characteristics of a typical type II restriction-modification locus. Like intact M. meleagridis cells, the E. coli-expressed Mm19 fusion product was found to exhibit a nuclease activity against plasmid DNA, double-stranded DNA, single-stranded DNA, and RNA. The Mm19-associated nuclease activity was consistently enhanced with Mg2+ divalent cations, a hallmark of type II restriction enzymes. A rabbit hyperimmune antiserum raised against the bacterially expressed Mm19 strongly reacted with M. meleagridis intact cells and fully neutralized the surface-bound nuclease activity. Collectively, the results show that M. meleagridis expresses a strong surface-bound nuclease activity, which is the product of a single gene sequence that is related to the RE_AlwI superfamily of endonucleases. PMID:27010566

  14. Evaluation of Novel Design Strategies for Developing Zinc Finger Nucleases Tools for Treating Human Diseases

    DOE PAGESBeta

    Bach, Christian; Sherman, William; Pallis, Jani; Patra, Prabir; Bajwa, Hassan

    2014-01-01

    Zinc finger nucleases (ZFNs) are associated with cell death and apoptosis by binding at countless undesired locations. This cytotoxicity is associated with the binding ability of engineered zinc finger domains to bind dissimilar DNA sequences with high affinity. In general, binding preferences of transcription factors are associated with significant degenerated diversity and complexity which convolutes the design and engineering of precise DNA binding domains. Evolutionary success of natural zinc finger proteins, however, evinces that nature created specific evolutionary traits and strategies, such as modularity and rank-specific recognition to cope with binding complexity that are critical for creating clinical viable toolsmore » to precisely modify the human genome. Our findings indicate preservation of general modularity and significant alteration of the rank-specific binding preferences of the three-finger binding domain of transcription factor SP1 when exchanging amino acids in the 2nd finger.« less

  15. The production and X-ray structure determination of perdeuterated Staphylococcal nuclease.

    PubMed

    Gamble, T R; Clauser, K R; Kossiakoff, A A

    1994-12-01

    Staphylococcal Nuclease (SNase) has been chosen as a model protein system to evaluate the improvement in neutron diffraction data quality using fully perdeuterated protein. Large quantities of the protein were expressed in Escherichia coli grown in medium containing deuterated amino acids and deuterated water (D2O) and then purified. The mean perdeuteration level of the non-exchangable sites in the protein was found to be 96% by electrospray ionization mass spectrometry. The perdeuterated enzyme was crystallized and its X-ray structure determined. Crystals of perdeuterated SNase have been grown to 1.5 mm3. Crystallization conditions, space group and cell parameters were found to be the same for both native and perdeuterated forms of the protein. Comparison of these two forms of SNase revealed no significant structural differences between them at the atomic resolution of 1.9 A. Data collection using crystals of the perdeuterated protein is scheduled at the Brookhaven High Flux Beam Reactor. PMID:7841330

  16. A nuclease-hypersensitive region forms de novo after chromosome replication.

    PubMed

    Solomon, M J; Varshavsky, A

    1987-10-01

    Regular nucleosome arrays in eucaryotic chromosomes are punctuated at specific locations, such as active promoters and replication origins, by apparently nucleosome-free sites, also called nuclease-hypersensitive, or exposed, regions. The -400-base pair-exposed region within simian virus 40 (SV40) chromosomes is present in approximately 20% of the chromosomes in lytically infected cells and encompasses the replication origin, transcriptional enhancer, and both late and early SV40 promoters. We report that nearly all SV40 chromosomes lacked the exposed region during replication and that newly formed chromosomes acquired the exposed region of the same degree as did bulk SV40 chromosomes within 1 h after replication. Furthermore, a much lower but significant level of exposure was detectable in late SV40 replication intermediates, indicating that formation of the exposed region could start within minutes after passage of the replication fork. PMID:2824998

  17. DNA sensor's selectivity enhancement and protection from contaminating nucleases due to a hydrated ionic liquid.

    PubMed

    Tateishi-Karimata, Hisae; Pramanik, Smritimoy; Sugimoto, Naoki

    2015-07-01

    The thermodynamic stability of certain mismatched base pairs has made the development of DNA sequence sensing systems challenging. Thus, the stability of fully matched and mismatched DNA oligonucleotides in the hydrated ionic liquid choline dihydrogen phosphate (choline dhp) was investigated. Mismatched base pairs were significantly destabilized in choline dhp relative to those in aqueous buffer. A molecular beacon that forms a triplex with a conserved HIV-1 sequence was then designed and tested in choline dhp. The molecular beacon specifically detected the target duplex via triplex formation at concentrations as low as 1 pmol per 10 μL with 10,000-fold sequence selectivity. Moreover, the molecular beacon was protected from a contaminating nuclease in choline dhp, and DNAs in aqueous solutions were not sufficiently stable for practical use. PMID:25919083

  18. Disruption of the Myostatin Gene in Porcine Primary Fibroblasts and Embryos Using Zinc-Finger Nucleases

    PubMed Central

    Huang, Xian-Ju; Zhang, Hong-Xiao; Wang, Huili; Xiong, Kai; Qin, Ling; Liu, Honglin

    2014-01-01

    Myostatin represses muscle growth by negatively regulating the number and size of muscle fibers. Myostatin loss-of-function can result in the double-muscling phenotype and increased muscle mass. Thus, knockout of myostatin gene could improve the quality of meat from mammals. In the present study, zinc finger nucleases, a useful tool for generating gene knockout animals, were designed to target exon 1 of the myostatin gene. The designed ZFNs were introduced into porcine primary fibroblasts and early implantation embryos via electroporation and microinjection, respectively. Mutations around the ZFNs target site were detected in both primary fibroblasts and blastocysts. The proportion of mutant fibroblast cells and blastocyst was 4.81% and 5.31%, respectively. Thus, ZFNs can be used to knockout myostatin in porcine primary fibroblasts and early implantation embryos. PMID:24802055

  19. Knockout of Myostatin by Zinc-finger Nuclease in Sheep Fibroblasts and Embryos.

    PubMed

    Zhang, Xuemei; Wang, Liqin; Wu, Yangsheng; Li, Wenrong; An, Jing; Zhang, Fuchun; Liu, Mingjun

    2016-10-01

    Myostatin (MSTN) can negatively regulate the growth and development of skeletal muscle, and natural mutations can cause "double-muscling" trait in animals. In order to block the inhibiting effect of MSTN on muscle growth, we transferred zinc-finger nucleases (ZFN) which targeted sheep MSTN gene into cultured fibroblasts. Gene targeted colonies were isolated from transfected fibroblasts by serial dilution culture and screened by sequencing. Two colonies were identified with mono-allele mutation and one colony with bi-allelic deletion. Further, we introduced the MSTN-ZFN mRNA into sheep embryos by microinjection. Thirteen of thirty-seven parthenogenetic embryos were targeted by ZFN, with the efficiency of 35%. Our work established the technical foundation for generation of MSTN gene editing sheep by somatic cloning and microinjection ZFN into embryos. PMID:27189642

  20. Targeted integration in rat and mouse embryos with zinc-finger nucleases.

    PubMed

    Cui, Xiaoxia; Ji, Diana; Fisher, Daniel A; Wu, Yumei; Briner, David M; Weinstein, Edward J

    2011-01-01

    Gene targeting is indispensible for reverse genetics and the generation of animal models of disease. The mouse has become the most commonly used animal model system owing to the success of embryonic stem cell-based targeting technology, whereas other mammalian species lack convenient tools for genome modification. Recently, microinjection of engineered zinc-finger nucleases (ZFNs) in embryos was used to generate gene knockouts in the rat and the mouse by introducing nonhomologous end joining (NHEJ)-mediated deletions or insertions at the target site. Here we use ZFN technology in embryos to introduce sequence-specific modifications (knock-ins) by means of homologous recombination in Sprague Dawley and Long-Evans hooded rats and FVB mice. This approach enables precise genome engineering to generate modifications such as point mutations, accurate insertions and deletions, and conditional knockouts and knock-ins. The same strategy can potentially be applied to many other species for which genetic engineering tools are needed. PMID:21151125

  1. Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases.

    PubMed

    Zhao, Xinxia; Ni, Wei; Chen, Chuangfu; Sai, Wujiafu; Qiao, Jun; Sheng, Jingliang; Zhang, Hui; Li, Guozhong; Wang, Dawei; Hu, Shengwei

    2016-03-01

    Myostatin (MSTN) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs) in tandem with single-stranded DNA oligonucleotides (ssODNs). We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals. PMID:26950874

  2. Interfacial microrheology study of layer formation by staphylococcal nuclease protein and its disordered variant

    NASA Astrophysics Data System (ADS)

    Tzolova, Bilyana; Allan, Daniel; Firester, Daniel; Garcia-Moreno, Bertrand; Reich, Daniel; Leheny, Robert

    We study the formation of layers of staphylococcal nuclease protein adsorbing at the air-water interface. In a series of experiments, we follow the evolution of the rheological response of the layer using an active microrheology technique that involves tracking the rotational motion of magnetic nanowires at the interface in response to time-dependent external magnetic fields. At early stages of layer formation, the wire mobility can be interpreted using a model for viscous drag with an interfacial viscosity that increases rapidly with layer age; however, at later ages deviations from a simple viscous response indicating non-Newtonian behavior are observed. We compare the evolution in microrheology of layers forming from wild-type protein that assumes a folded conformation in solution with a variant that is disordered due to substitution of a single amino acid, thereby gaining a perspective on the impact of initial protein state on the layer formation and rheology.

  3. Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases

    PubMed Central

    Zhao, Xinxia; Ni, Wei; Chen, Chuangfu; Sai, Wujiafu; Qiao, Jun; Sheng, Jingliang; Zhang, Hui; Li, Guozhong; Wang, Dawei; Hu, Shengwei

    2016-01-01

    Myostatin (MSTN) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs) in tandem with single-stranded DNA oligonucleotides (ssODNs). We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals. PMID:26950874

  4. Functional identification of the non-specific nuclease from white spot syndrome virus

    SciTech Connect

    Li Li; Lin Shumei; Yanga Feng . E-mail: mbiotech@public.xm.fj.cn

    2005-07-05

    The product encoded by the wsv191 gene from shrimp white spot syndrome virus (WSSV) is homologous with non-specific nucleases (NSN) of other organisms. To functionally identify the protein, the wsv191 gene was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein with 6His-tag at C-terminal. The fusion protein (termed as rWSSV-NSN) was purified using Ni-NTA affinity chromatography under denatured conditions, renatured and characterized by three methods. The results showed that rWSSV-NSN could hydrolyze both DNA and RNA. 5'-RACE result revealed that the transcription initiation site of the wsv191 gene was located at nucleotide residue G of the predicted ATG triplet. Therefore, we concluded that the next ATG should be the genuine translation initiation codon of the wsv191 gene. Western blot analysis revealed that the molecular mass of natural WSSV-NSN was 37 kDa.

  5. Evaluation of Novel Design Strategies for Developing Zinc Finger Nucleases Tools for Treating Human Diseases

    PubMed Central

    Bach, Christian; Sherman, William; Pallis, Jani; Bajwa, Hassan

    2014-01-01

    Zinc finger nucleases (ZFNs) are associated with cell death and apoptosis by binding at countless undesired locations. This cytotoxicity is associated with the binding ability of engineered zinc finger domains to bind dissimilar DNA sequences with high affinity. In general, binding preferences of transcription factors are associated with significant degenerated diversity and complexity which convolutes the design and engineering of precise DNA binding domains. Evolutionary success of natural zinc finger proteins, however, evinces that nature created specific evolutionary traits and strategies, such as modularity and rank-specific recognition to cope with binding complexity that are critical for creating clinical viable tools to precisely modify the human genome. Our findings indicate preservation of general modularity and significant alteration of the rank-specific binding preferences of the three-finger binding domain of transcription factor SP1 when exchanging amino acids in the 2nd finger. PMID:24808958

  6. Crystallization and preliminary X-ray characterization of two thermostable DNA nucleases.

    PubMed

    Kuettner, E Bartholomeus; Pfeifer, Sven; Keim, Antje; Greiner-Stöffele, Thomas; Sträter, Norbert

    2006-12-01

    Temperature-tolerant organisms are an important source to enhance the stability of enzymes used in biotechnological processes. The DNA-cleaving enzyme exonuclease III from Escherichia coli is used in several applications in gene technology. A thermostable variant could expand the applicability of the enzyme in these methods. Two homologous nucleases from Archaeoglobus fulgidus (ExoAf) and Methanothermobacter thermoautrophicus (ExoMt) were studied for this purpose. Both enzymes were crystallized in different space groups using (poly)ethylene glycols, 2,4-methyl pentandiol, dioxane, ethanol or 2-propanol as precipitants. The addition of a 10-mer DNA oligonucleotide was important to obtain monoclinic crystals of ExoAf and ExoMt that diffracted to resolutions better than 2 A using synchrotron radiation. The crystal structures of the homologous proteins can serve as templates for genetic engineering of the E. coli exonuclease III and will aid in understanding the different catalytic properties of the enzymes. PMID:17142920

  7. Expression and Characterization of Recombinant Serratia liquefaciens Nucleases Produced with Baculovirus-mediated Silkworm Expression System.

    PubMed

    Iiyama, Kazuhiro; Lee, Jae Man; Tatsuke, Tuneyuki; Mon, Hiroaki; Kusakabe, Takahiro

    2016-06-01

    Baculovirus-Bombyx mori protein expression system has mainly been used for translation of eukaryotic proteins. In contrast, information pertaining to bacterial protein expression using this system is not sufficient. Therefore, recombinant nucleases from Serratia liquefaciens (rSlNucAs) were expressed in a Baculovirus-B. mori protein expression system. rSlNucAs containing the native signal peptide (rSlNucA-NSP) or silkworm 30-K signal peptide (rSlNucA-30K) at the NH2-terminus were constructed to enable secretion into the extracellular fraction. Both rSlNucA-30K and rSlNucA-NSP were successfully secreted into hemolymph of B. mori larvae. Affinity-purified rSlNucAs showed high nuclease activity. Optimum pH was 7.5 and half of maximum activity was maintained between pH 7.0 and 9.5. Optimum temperature was 35 °C. rSlNucAs showed sufficient activity in twofold-diluted radioimmunoprecipitation assay buffer and undiluted, mild lysis buffer. Genomic DNA of Escherichia coli was efficiently digested by rSlNucAs in the bacterial lysate. The results in this study suggest that rSlNucAs expressed by the Baculovirus-B. mori protein expression system will be a useful tool in molecular biology. Functional recombinant protein of bacteria was produced by Baculovirus-B. mori protein expression system. This system may be highly suitable for bacterial extracellular protein secreted via Sec pathway. PMID:27059494

  8. Rapid Mutation of Endogenous Zebrafish Genes Using Zinc Finger Nucleases Made by Oligomerized Pool ENgineering (OPEN)

    PubMed Central

    Maeder, Morgan L.; Reyon, Deepak; Sander, Jeffry D.; Peterson, Randall T.; Joung, J. Keith

    2009-01-01

    Background Customized zinc finger nucleases (ZFNs) form the basis of a broadly applicable tool for highly efficient genome modification. ZFNs are artificial restriction endonucleases consisting of a non-specific nuclease domain fused to a zinc finger array which can be engineered to recognize specific DNA sequences of interest. Recent proof-of-principle experiments have shown that targeted knockout mutations can be efficiently generated in endogenous zebrafish genes via non-homologous end-joining-mediated repair of ZFN-induced DNA double-stranded breaks. The Zinc Finger Consortium, a group of academic laboratories committed to the development of engineered zinc finger technology, recently described the first rapid, highly effective, and publicly available method for engineering zinc finger arrays. The Consortium has previously used this new method (known as OPEN for Oligomerized Pool ENgineering) to generate high quality ZFN pairs that function in human and plant cells. Methodology/Principal Findings Here we show that OPEN can also be used to generate ZFNs that function efficiently in zebrafish. Using OPEN, we successfully engineered ZFN pairs for five endogenous zebrafish genes: tfr2, dopamine transporter, telomerase, hif1aa, and gridlock. Each of these ZFN pairs induces targeted insertions and deletions with high efficiency at its endogenous gene target in somatic zebrafish cells. In addition, these mutations are transmitted through the germline with sufficiently high frequency such that only a small number of fish need to be screened to identify founders. Finally, in silico analysis demonstrates that one or more potential OPEN ZFN sites can be found within the first three coding exons of more than 25,000 different endogenous zebrafish gene transcripts. Conclusions and Significance In summary, our study nearly triples the total number of endogenous zebrafish genes successfully modified using ZFNs (from three to eight) and suggests that OPEN provides a reliable

  9. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    SciTech Connect

    Watanabe, Masahito; Umeyama, Kazuhiro; Matsunari, Hitomi; Takayanagi, Shuko; Haruyama, Erika; Nakano, Kazuaki; Fujiwara, Tsukasa; Ikezawa, Yuka; Nakauchi, Hiromitsu; and others

    2010-11-05

    Research highlights: {yields} EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. {yields} ZFNs induced targeted mutations in porcine primary cultured cells. {yields} Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor the exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.

  10. A 5' Nuclease Genotyping Assay for Identification of Macrolide-Resistant Mycoplasma genitalium in Clinical Specimens.

    PubMed

    Kristiansen, Gitte Qvist; Lisby, Jan Gorm; Schønning, Kristian

    2016-06-01

    Rapid and sensitive detection of macrolide resistance in Mycoplasma genitalium is required for the guidance of adequate antimicrobial treatment. Previous studies have confirmed that single-base mutations at position 2058 or 2059 in domain V of the 23S rRNA gene of M. genitalium result in high-level macrolide resistance. Sequencing of PCR products remains the gold standard for the identification of mutations conferring resistance to macrolides but is laborious and time-consuming. The aim of the present study was to develop a 5' nuclease genotyping assay to detect single nucleotide polymorphisms in the 23S rRNA gene of Mycoplasma genitalium that are associated with macrolide resistance by combining PCR with hydrolysis probes and subsequent endpoint genotyping analysis. The 5' nuclease genotyping assay was used as a referral test to be used on M. genitalium-positive samples and was validated on 259 positive samples, of which 253 (97.7%) were successfully sequenced. With the newly developed assay, 237/259 (91.5%) investigated M. genitalium-positive samples were genotyped. The positive and the negative predictive values were 100% when evaluated on successfully genotyped samples. The newly developed assay discriminated macrolide-resistant M. genitalium in clinical specimens possessing A2058G, A2058C, A2058T, and A2059G mutations with a sensitivity of 94.4% (95% confidence interval [CI], 90.7% to 98.2%) and a specificity of 92.7% (95% CI, 87.8% to 97.6%) when evaluated on successfully sequenced samples. The assay can correctly guide antimicrobial treatment of M. genitalium infections. PMID:27053672

  11. Potential application of FoldX force field based protein modeling in zinc finger nucleases design.

    PubMed

    He, ZuYong; Mei, Gui; Zhao, ChunPeng; Chen, YaoSheng

    2011-05-01

    Engineered sequence-specific zinc finger nucleases (ZFNs) make the highly efficient modification of eukaryotic genomes possible. However, most current strategies for developing zinc finger nucleases with customized sequence specificities require the construction of numerous tandem arrays of zinc finger proteins (ZFPs), and subsequent largescale in vitro validation of their DNA binding affinities and specificities via bacterial selection. The labor and expertise required in this complex process limits the broad adoption of ZFN technology. An effective computational assisted design strategy will lower the complexity of the production of a pair of functional ZFNs. Here we used the FoldX force field to build 3D models of 420 ZFP-DNA complexes based on zinc finger arrays developed by the Zinc Finger Consortium using OPEN (oligomerized pool engineering). Using nonlinear and linear regression analysis, we found that the calculated protein-DNA binding energy in a modeled ZFP-DNA complex strongly correlates to the failure rate of the zinc finger array to show significant ZFN activity in human cells. In our models, less than 5% of the three-finger arrays with calculated protein-DNA binding energies lower than -13.132 kcal mol(-1) fail to form active ZFNs in human cells. By contrast, for arrays with calculated protein-DNA binding energies higher than -5 kcal mol(-1), as many as 40% lacked ZFN activity in human cells. Therefore, we suggest that the FoldX force field can be useful in reducing the failure rate and increasing efficiency in the design of ZFNs. PMID:21455692

  12. Production of 5′ Nucleotide by Using Halophilic Nuclease H Preferentially Adsorbed on Flocculated Cells of the Halophile Micrococcus varians subsp. halophilus

    PubMed Central

    Onishi, Hiroshi; Kamekura, Masahiro; Yokoi, Haruhiko; Kobayashi, Takekazu

    1988-01-01

    A bioreactor with a column of flocculated cells of the moderate halophile Micrococcus varians subsp. halophilus which adsorbed the halophilic nuclease H was designed to be used in the production of 5′ nucleotides from RNA. A remarkable characteristic of the flocculated cells was that they preferentially adsorbed much exogenous nuclease, excluding adsorbed 5′ nucleotidase. Furthermore, desalting treatment of the flocculated cells in the presence of 2% MgSO4 · 7H2O gave rise to selective inactivation of 5′ nucleotidase without the loss of nuclease H activity, and 5′-guanylic acid was produced with the bioreactor. PMID:16347767

  13. Fractionation of Sulfur Isotopes by Desulfovibrio vulgaris Mutants Lacking Periplasmic Hydrogenases or the Type I Tetraheme Cytochrome c3

    NASA Astrophysics Data System (ADS)

    Sim, M.; Ono, S.; Bosak, T.

    2012-12-01

    A large fraction of anaerobic mineralization of organic compounds relies on microbial sulfate reduction. Sulfur isotope fractionation by these microbes has been widely used to trace the biogeochemical cycling of sulfur and carbon, but intracellular mechanisms behind the wide range of fractionations observed in nature and cultures are not fully understood. In this study, we investigated the influence of electron transport chain components on the fractionation of sulfur isotopes by culturing Desulfovibrio vulgaris Hildenborough mutants lacking hydrogenases or type I tetraheme cytochrome c3 (Tp1-c3). The mutants were grown both in batch and continuous cultures. All tested mutants grew on lactate or pyruvate as the sole carbon and energy sources, generating sulfide. Mutants lacking cytoplasmic and periplasmic hydrogenases exhibited similar growth physiologies and sulfur isotope fractionations to their parent strains. On the other hand, a mutant lacking Tp1-c3 (ΔcycA) fractionated the 34S/32S ratio more than the wild type, evolving H2 in the headspace and exhibiting a lower specific respiration rate. In the presence of high concentrations of pyruvate, the growth of ΔcycA relied largely on fermentation rather than sulfate reduction, even when sulfate was abundant, producing the largest sulfur isotope effect observed in this study. Differences between sulfur isotope fractionation by ΔcycA and the wild type highlight the effect of electron transfer chains on the magnitude of sulfur isotope fractionation. Because Tp1-c3 is known to exclusively shuttle electrons from periplasmic hydrogenases to transmembrane complexes, electron transfers in the absence of Tp1-c3 should bypass the periplasmic hydrogen cycling, and the loss of reducing equivalents in the form of H2 can impair the flow of electrons from organic acids to sulfur, increasing isotope fractionation. Larger fractionation by ΔcycA can inform interpretations of sulfur isotope data at an environmental scale as well

  14. Identification of putative substrates for the periplasmic chaperone YfgM in Escherichia coli using quantitative proteomics.

    PubMed

    Götzke, Hansjörg; Muheim, Claudio; Altelaar, A F Maarten; Heck, Albert J R; Maddalo, Gianluca; Daley, Daniel O

    2015-01-01

    How proteins are trafficked, folded, and assembled into functional units in the cell envelope of Gram-negative bacteria is of significant interest. A number of chaperones have been identified, however, the molecular roles of these chaperones are often enigmatic because it has been challenging to assign substrates. Recently we discovered a novel periplasmic chaperone, called YfgM, which associates with PpiD and the SecYEG translocon and operates in a network that contains Skp and SurA. The aim of the study presented here was to identify putative substrates of YfgM. We reasoned that substrates would be incorrectly folded or trafficked when YfgM was absent from the cell, and thus more prone to proteolysis (the loss-of-function rationale). We therefore used a comparative proteomic approach to identify cell envelope proteins that were lower in abundance in a strain lacking yfgM, and strains lacking yfgM together with either skp or surA. Sixteen putative substrates were identified. The list contained nine inner membrane proteins (CusS, EvgS, MalF, OsmC, TdcB, TdcC, WrbA, YfhB, and YtfH) and seven periplasmic proteins (HdeA, HdeB, AnsB, Ggt, MalE, YcgK, and YnjE), but it did not include any lipoproteins or outer membrane proteins. Significantly, AnsB (an asparaginase) and HdeB (a protein involved in the acid stress response), were lower in abundance in all three strains lacking yfgM. For both genes, we ruled out the possibility that they were transcriptionally down-regulated, so it is highly likely that the corresponding proteins are misfolded/mistargeted and turned-over in the absence of YfgM. For HdeB we validated this conclusion in a pulse-chase experiment. The identification of HdeB and other cell envelope proteins as potential substrates will be a valuable resource for follow-up experiments that aim to delineate molecular the function of YfgM. PMID:25403562

  15. An extracytoplasmic function sigma factor-dependent periplasmic glutathione peroxidase is involved in oxidative stress response of Shewanella oneidensis

    DOE PAGESBeta

    Dai, Jingcheng; Wei, Hehong; Tian, Chunyuan; Damron, Fredrick; Zhou, Jizhong; Qiu, Dongru

    2015-01-01

    Background: Bacteria use alternative sigma factors (σs) to regulate condition-specific gene expression for survival and Shewanella harbors multiple ECF (extracytoplasmic function) σ genes and cognate anti-sigma factor genes. Here we comparatively analyzed two of the rpoE-like operons in the strain MR-1: rpoE-rseA-rseB-rseC and rpoE2-chrR. Results: RpoE was important for bacterial growth at low and high temperatures, in the minimal medium, and high salinity. The degP/htrA orthologue, required for growth of Escherichia coli and Pseudomonas aeruginosa at high temperature, is absent in Shewanella, while the degQ gene is RpoE-regulated and is required for bacterial growth at high temperature. RpoE2 was essentialmore » for the optimal growth in oxidative stress conditions because the rpoE2 mutant was sensitive to hydrogen peroxide and paraquat. The operon encoding a ferrochelatase paralogue (HemH2) and a periplasmic glutathione peroxidase (PgpD) was identified as RpoE2-dependent. PgpD exhibited higher activities and played a more important role in the oxidative stress responses than the cytoplasmic glutathione peroxidase CgpD under tested conditions. The rpoE2-chrR operon and the identified regulon genes, including pgpD and hemH2, are coincidently absent in several psychrophilic and/or deep-sea Shewanella strains. Conclusion: In S. oneidensis MR-1, the RpoE-dependent degQ gene is required for optimal growth under high temperature. The rpoE2 and RpoE2-dependent pgpD gene encoding a periplasmic glutathione peroxidase are involved in oxidative stress responses. But rpoE2 is not required for bacterial growth at low temperature and it even affected bacterial growth under salt stress, indicating that there is a tradeoff between the salt resistance and RpoE2-mediated oxidative stress responses.« less

  16. An extracytoplasmic function sigma factor-dependent periplasmic glutathione peroxidase is involved in oxidative stress response of Shewanella oneidensis

    SciTech Connect

    Dai, Jingcheng; Wei, Hehong; Tian, Chunyuan; Damron, Fredrick; Zhou, Jizhong; Qiu, Dongru

    2015-01-01

    Background: Bacteria use alternative sigma factors (σs) to regulate condition-specific gene expression for survival and Shewanella harbors multiple ECF (extracytoplasmic function) σ genes and cognate anti-sigma factor genes. Here we comparatively analyzed two of the rpoE-like operons in the strain MR-1: rpoE-rseA-rseB-rseC and rpoE2-chrR. Results: RpoE was important for bacterial growth at low and high temperatures, in the minimal medium, and high salinity. The degP/htrA orthologue, required for growth of Escherichia coli and Pseudomonas aeruginosa at high temperature, is absent in Shewanella, while the degQ gene is RpoE-regulated and is required for bacterial growth at high temperature. RpoE2 was essential for the optimal growth in oxidative stress conditions because the rpoE2 mutant was sensitive to hydrogen peroxide and paraquat. The operon encoding a ferrochelatase paralogue (HemH2) and a periplasmic glutathione peroxidase (PgpD) was identified as RpoE2-dependent. PgpD exhibited higher activities and played a more important role in the oxidative stress responses than the cytoplasmic glutathione peroxidase CgpD under tested conditions. The rpoE2-chrR operon and the identified regulon genes, including pgpD and hemH2, are coincidently absent in several psychrophilic and/or deep-sea Shewanella strains. Conclusion: In S. oneidensis MR-1, the RpoE-dependent degQ gene is required for optimal growth under high temperature. The rpoE2 and RpoE2-dependent pgpD gene encoding a periplasmic glutathione peroxidase are involved in oxidative stress responses. But rpoE2 is not required for bacterial growth at low temperature and it even affected bacterial growth under salt stress, indicating that there is a tradeoff between the salt resistance and RpoE2-mediated oxidative stress responses.

  17. Characterization of the mycobacterial AdnAB DNA motor provides insights into the evolution of bacterial motor-nuclease machines.

    PubMed

    Unciuleac, Mihaela-Carmen; Shuman, Stewart

    2010-01-22

    Mycobacterial AdnAB exemplifies a family of heterodimeric motor-nucleases involved in processing DNA double strand breaks (DSBs). The AdnA and AdnB subunits are each composed of an N-terminal UvrD-like motor domain and a C-terminal RecB-like nuclease module. Here we conducted a biochemical characterization of the AdnAB motor, using a nuclease-inactivated heterodimer. AdnAB is a vigorous single strand DNA (ssDNA)-dependent ATPase (k(cat) 415 s(-1)), and the affinity of the motor for the ssDNA cofactor increases 140-fold as DNA length is extended from 12 to 44 nucleotides. Using a streptavidin displacement assay, we demonstrate that AdnAB is a 3' --> 5' translocase on ssDNA. AdnAB binds stably to DSB ends. In the presence of ATP, the motor unwinds the DNA duplex without requiring an ssDNA loading strand. We integrate these findings into a model of DSB unwinding in which the "leading" AdnB and "lagging" AdnA motor domains track in tandem, 3' to 5', along the same DNA single strand. This contrasts with RecBCD, in which the RecB and RecD motors track in parallel along the two separated DNA single strands. The effects of 5' and 3' terminal obstacles on ssDNA cleavage by wild-type AdnAB suggest that the AdnA nuclease receives and processes the displaced 5' strand, while the AdnB nuclease cleaves the displaced 3' strand. We present evidence that the distinctive "molecular ruler" function of the ATP-dependent single strand DNase, whereby AdnAB measures the distance from the 5'-end to the sites of incision, reflects directional pumping of the ssDNA through the AdnAB motor into the AdnB nuclease. These and other findings suggest a scenario for the descent of the RecBCD- and AddAB-type DSB-processing machines from an ancestral AdnAB-like enzyme. PMID:19920138

  18. Evidence for posttranslational protein flavinylation in the syphilis spirochete Treponema pallidum: Structural and biochemical insights from the catalytic core of a periplasmic flavin-trafficking protein

    DOE PAGESBeta

    Deka, Ranjit K.; Brautigam, Chad A.; Liu, Wei Z.; Tomchick, Diana R.; Norgard, Michael V.

    2015-05-05

    The syphilis spirochete Treponema pallidum is an important human pathogen but a highly enigmatic bacterium that cannot be cultivated in vitro. T. pallidum lacks many biosynthetic pathways and therefore has evolved the capability to exploit host-derived metabolites via its periplasmic lipoprotein repertoire. We recently reported a flavin-trafficking protein in T. pallidum (Ftp_Tp; TP0796) as the first bacterial metal-dependent flavin adenine dinucleotide (FAD) pyrophosphatase that hydrolyzes FAD into AMP and flavin mononucleotide (FMN) in the spirochete’s periplasm. However, orthologs of Ftp_Tp from other bacteria appear to lack this hydrolytic activity; rather, they bind and flavinylate subunits of a cytoplasmic membrane redoxmore » system (Nqr/Rnf). To further explore this dichotomy, biochemical analyses, protein crystallography, and structure-based mutagenesis were used to show that a single amino acid change (N55Y) in Ftp_Tp converts it from an Mg²⁺-dependent FAD pyrophosphatase to an FAD-binding protein. We also demonstrated that Ftp_Tp has a second enzymatic activity (Mg²⁺-FMN transferase); it flavinylates protein(s) covalently with FMN on a threonine side chain of an appropriate sequence motif using FAD as the substrate. Moreover, mutation of a metal-binding residue (D284A) eliminates Ftp_Tp’s dual activities, thereby underscoring the role of Mg²⁺ in the enzyme-catalyzed reactions. The posttranslational flavinylation activity that can target a periplasmic lipoprotein (TP0171) has not previously been described. The observed activities reveal the catalytic flexibility of a treponemal protein to perform multiple functions. Together, these findings imply mechanisms by which a dynamic pool of flavin cofactor is maintained and how flavoproteins are generated by Ftp_Tp locally in the T. pallidum periplasm.« less

  19. Evidence for Posttranslational Protein Flavinylation in the Syphilis Spirochete Treponema pallidum: Structural and Biochemical Insights from the Catalytic Core of a Periplasmic Flavin-Trafficking Protein

    PubMed Central

    Deka, Ranjit K.; Brautigam, Chad A.; Liu, Wei Z.

    2015-01-01

    ABSTRACT The syphilis spirochete Treponema pallidum is an important human pathogen but a highly enigmatic bacterium that cannot be cultivated in vitro. T. pallidum lacks many biosynthetic pathways and therefore has evolved the capability to exploit host-derived metabolites via its periplasmic lipoprotein repertoire. We recently reported a flavin-trafficking protein in T. pallidum (Ftp_Tp; TP0796) as the first bacterial metal-dependent flavin adenine dinucleotide (FAD) pyrophosphatase that hydrolyzes FAD into AMP and flavin mononucleotide (FMN) in the spirochete’s periplasm. However, orthologs of Ftp_Tp from other bacteria appear to lack this hydrolytic activity; rather, they bind and flavinylate subunits of a cytoplasmic membrane redox system (Nqr/Rnf). To further explore this dichotomy, biochemical analyses, protein crystallography, and structure-based mutagenesis were used to show that a single amino acid change (N55Y) in Ftp_Tp converts it from an Mg2+-dependent FAD pyrophosphatase to an FAD-binding protein. We also demonstrated that Ftp_Tp has a second enzymatic activity (Mg2+-FMN transferase); it flavinylates protein(s) covalently with FMN on a threonine side chain of an appropriate sequence motif using FAD as the substrate. Moreover, mutation of a metal-binding residue (D284A) eliminates Ftp_Tp’s dual activities, thereby underscoring the role of Mg2+ in the enzyme-catalyzed reactions. The posttranslational flavinylation activity that can target a periplasmic lipoprotein (TP0171) has not previously been described. The observed activities reveal the catalytic flexibility of a treponemal protein to perform multiple functions. Together, these findings imply mechanisms by which a dynamic pool of flavin cofactor is maintained and how flavoproteins are generated by Ftp_Tp locally in the T. pallidum periplasm. PMID:25944861

  20. Signal Transduction by BvgS Sensor Kinase: BINDING OF MODULATOR NICOTINATE AFFECTS THE CONFORMATION AND DYNAMICS OF THE ENTIRE PERIPLASMIC MOIETY.

    PubMed

    Dupré, Elian; Lesne, Elodie; Guérin, Jérémy; Lensink, Marc F; Verger, Alexis; de Ruyck, Jérôme; Brysbaert, Guillaume; Vezin, Hervé; Locht, Camille; Antoine, Rudy; Jacob-Dubuisson, Françoise

    2015-09-18

    The two-component sensory transduction system BvgAS controls the virulence regulon of the whooping-cough agent Bordetella pertussis. The periplasmic moiety of the homodimeric sensor kinase BvgS is composed of four bilobed Venus flytrap (VFT) perception domains followed by α helices that extend into the cytoplasmic membrane. In the virulent phase, the default state of B. pertussis, the cytoplasmic enzymatic moiety of BvgS acts as kinase by autophosphorylating and transferring the phosphoryl group to the response regulator BvgA. Under laboratory conditions, BvgS shifts to phosphatase activity in response to modulators, notably nicotinate ions. Here we characterized the effects of nicotinate and related modulators on the BvgS periplasmic moiety by using site-directed mutagenesis and in silico and biophysical approaches. Modulators bind with low affinity to BvgS in the VFT2 cavity. Electron paramagnetic resonance shows that their binding globally affects the conformation and dynamics of the periplasmic moiety. Specific amino acid substitutions designed to slacken interactions within and between the VFT lobes prevent BvgS from responding to nicotinate, showing that BvgS shifts from kinase to phosphatase activity in response to this modulator via a tense transition state that involves a large periplasmic structural block. We propose that this transition enables the transmembrane helices to adopt a distinct conformation that sets the cytoplasmic enzymatic moiety in the phosphatase mode. The bona fide, in vivo VFT ligands that remain to be identified are likely to trigger similar effects on the transmembrane and cytoplasmic moieties. This mechanism may be relevant to the other VFT-containing sensor kinases homologous to BvgS. PMID:26203186

  1. Use of the amicyanin signal sequence for efficient periplasmic expression in E. coli of a human antibody light chain variable domain.

    PubMed

    Dow, Brian A; Tatulian, Suren A; Davidson, Victor L

    2015-04-01

    Periplasmic localization of recombinant proteins offers advantages over cytoplasmic protein expression. In this study signal sequence of amicyanin, which is encoded by the mauC gene of Paracoccus denitrificans, was used to express the light chain variable domain of the human κIO8/O18 germline antibody in the periplasm of Escherichiacoli. The expressed protein was purified in good yield (70mg/L of culture) in one step from the periplasmic fraction by affinity chromatography using an engineered hexahistidine tag. Circular dichroism spectroscopy was used to determine if the secondary and tertiary structures of the protein and its thermal stability corresponded to those of the native folded protein. The expressed and purified protein was indeed properly folded and exhibited a reasonable thermal transition temperature of 53°C. These results indicate that the amicyanin signal sequence may be particularly useful for prokaryotic expression of proteins which are prone to mis-folding, aggregation or formation of inclusion bodies, all of which were circumvented in this study. PMID:25573388

  2. Molecular insights into the enzymatic diversity of flavin-trafficking protein (Ftp; formerly ApbE) in flavoprotein biogenesis in the bacterial periplasm.

    PubMed

    Deka, Ranjit K; Brautigam, Chad A; Liu, Wei Z; Tomchick, Diana R; Norgard, Michael V

    2016-02-01

    We recently reported a flavin-trafficking protein (Ftp) in the syphilis spirochete Treponema pallidum (Ftp_Tp) as the first bacterial metal-dependent FAD pyrophosphatase that hydrolyzes FAD into AMP and FMN in the periplasm. Orthologs of Ftp_Tp in other bacteria (formerly ApbE) appear to lack this hydrolytic activity; rather, they flavinylate the redox subunit, NqrC, via their metal-dependent FMN transferase activity. However, nothing has been known about the nature or mechanism of metal-dependent Ftp catalysis in either Nqr- or Rnf-redox-containing bacteria. In the current study, we identified a bimetal center in the crystal structure of Escherichia coli Ftp (Ftp_Ec) and show via mutagenesis that a single amino acid substitution converts it from an FAD-binding protein to a Mg(2+) -dependent FAD pyrophosphatase (Ftp_Tp-like). Furthermore, in the presence of protein substrates, both types of Ftps are capable of flavinylating periplasmic redox-carrying proteins (e.g., RnfG_Ec) via the metal-dependent covalent attachment of FMN. A high-resolution structure of the Ftp-mediated flavinylated protein of Shewanella oneidensis NqrC identified an essential lysine in phosphoester-threonyl-FMN bond formation in the posttranslationally modified flavoproteins. Together, these discoveries broaden our understanding of the physiological capabilities of the bacterial periplasm, and they also clarify a possible mechanism by which flavoproteins are generated. PMID:26626129

  3. Extracellular amylases of starch-fermenting yeast: pH effect on export and residence time in the periplasm

    SciTech Connect

    Calleja, G.B.; Levy-Rick, S.R.; Nasim, A.; Lusena, C.V.

    1987-01-01

    Aerobic cultures of S. alluvius in Wickerham's yeast-nitrogen-base medium with starch as sole carbon source become strongly acidic and contain no detectable extra-cellular amylolytic activity during stationary phase, when the activity in buffered cultures is maximal. The extracellular amylases are irreversibly inactivated at the low pH value (less than 3.5) attained by the cultures. When adequately buffered, the medium yields maximal extracellular amylolytic activity. About 0.2 M phosphate buffer is adequate for substrate concentrations of up to 0.5% starch; higher starch concentrations require more buffer. Unbuffered cultures that are adjusted once with alkali to pH 5.5 also allow maximal extracellular amylolytic activity, provided the adjustment is made prior to the end of exponential growth. Automatic pH control allows use of high starch concentrations of up to 4%. Export is optimal at pH values higher than the optima for enzyme activity and stability and for population growth. The need for pH adjustment prior to the appearance of amylolytic activity in the medium suggests pH dependence of the export process itself and/or acid inactivation of enzymes transiently resident in the periplasm. (Refs. 23).

  4. AlgK is a TPR-containing protein and the periplasmic component of a novel exopolysaccharide secretin

    PubMed Central

    Keiski, Carrie-Lynn; Harwich, Michael; Jain, Sumita; Neculai, Ana Mirela; Yip, Patrick; Robinson, Howard; Whitney, John C.; Riley, Laura; Burrows, Lori L.; Ohman, Dennis E.; Howell, P. Lynne

    2010-01-01

    The opportunistic pathogen Pseudomonas aeruginosa causes chronic biofilm infections in cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by overproduction of the exopolysaccharide alginate. Here we show that AlgK, a protein essential for production of high molecular weight alginate, is an outer membrane lipoprotein that contributes to the correct localization of the porin, AlgE. Our 2.5Å structure shows AlgK is composed of 9.5 tetratricopeptide (TPR)-like repeats, and three putative sites of protein-protein interaction have been identified. Bioinformatics analysis suggests that BcsA, PgaA and PelB, involved in the production and export of cellulose, poly-β-1,6-N-Acetyl-D-glucosamine and Pel exopolysaccharide, respectively, share the same topology as AlgK/E. Together, our data suggest that AlgK plays a role in the assembly of the alginate biosynthetic complex and represents the periplasmic component of a new type of outer membrane secretin that differs from canonical bacterial capsular polysaccharide secretion systems. PMID:20159471

  5. The role of the synergistic phosphate anion in iron transport by the periplasmic iron-binding protein from Haemophilus influenzae

    PubMed Central

    Khan, Ali G.; Shouldice, Stephen R.; Tari, Leslie W.; Schryvers, Anthony B.

    2006-01-01

    The acquisition of iron from transferrin by Gram-negative bacterial pathogens is dependent on a periplasmic ferric-ion-binding protein, FbpA. FbpA shuttles iron from the outer membrane to an inner membrane transport complex. A bound phosphate anion completes the iron co-ordination shell of FbpA and kinetic studies demonstrate that the anion plays a critical role in iron binding and release in vitro. The present study was initiated to directly address the hypothesis that the synergistic anion is required for transport of iron in intact cells. A series of site-directed mutants in the anion-binding amino acids of the Haemophilus influenzae FbpA (Gln-58, Asn-175 and Asn-193) were prepared to provide proteins defective in binding of the phosphate anion. Crystal structures of various mutants have revealed that alteration of the C-terminal domain ligands (Asn-175 or Asn-193) but not the N-terminal domain ligand (Gln-58) abrogated binding of the phosphate anion. The mutant proteins were introduced into H. influenzae to evaluate their ability to mediate iron transport. All of the single site-directed mutants (Q58L, N175L and N193L) were capable of mediating iron acquisition from transferrin and from limiting concentrations of ferric citrate. The results suggest that the transport of iron by FbpA is not dependent on binding of phosphate in the synergistic anion-binding site. PMID:17147516

  6. Shewanella oneidensis MR-1 Nanowires are Outer Membrane and Periplasmic Extensions of the Extracellular Electron Transport Components

    SciTech Connect

    Pirbadian, S.; Barchinger, S. E.; Leung, K. M.; Byun, H. S.; Jangir, Y.; Bouhenni, Rachida; Reed, Samantha B.; Romine, Margaret F.; Saffarini, Daad; Shi, Liang; Gorby, Yuri A.; Golbeck, J. H.; El-Naggar, Mohamed Y.

    2014-08-20

    Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic-abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella neidensis MR-1. Using live fluorescence measurements, immunolabeling, and quantitative gene expression analysis, we report that S. oneidensis MR-1 nanowires are extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures, as previously thought. These bacterial nanowires were also associated with outer membrane vesicles and vesicle chains, structures ubiquitous in gram-negative bacteria. Redoxfunctionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution.

  7. Substrate Specificity of MarP, a Periplasmic Protease Required for Resistance to Acid and Oxidative Stress in Mycobacterium tuberculosis*

    PubMed Central

    Small, Jennifer L.; O'Donoghue, Anthony J.; Boritsch, Eva C.; Tsodikov, Oleg V.; Knudsen, Giselle M.; Vandal, Omar; Craik, Charles S.; Ehrt, Sabine

    2013-01-01

    The transmembrane serine protease MarP is important for pH homeostasis in Mycobacterium tuberculosis (Mtb). Previous structural studies revealed that MarP contains a chymotrypsin fold and a disulfide bond that stabilizes the protease active site in the substrate-bound conformation. Here, we determined that MarP is located in the Mtb periplasm and showed that this localization is essential for function. Using the recombinant protease domain of MarP, we identified its substrate specificity using two independent assays: positional-scanning synthetic combinatorial library profiling and multiplex substrate profiling by mass spectrometry. These methods revealed that MarP prefers bulky residues at P4, tryptophan or leucine at P2, arginine or hydrophobic residues at P1, and alanine or asparagine at P1′. Guided by these data, we designed fluorogenic peptide substrates and characterized the kinetic properties of MarP. Finally, we tested the impact of mutating MarP cysteine residues on the peptidolytic activity of recombinant MarP and its ability to complement phenotypes of Mtb ΔMarP. Taken together, our studies provide insight into the enzymatic properties of MarP, its substrate preference, and the importance of its transmembrane helices and disulfide bond. PMID:23504313

  8. Physiological Roles for Two Periplasmic Nitrate Reductases in Rhodobacter sphaeroides 2.4.3 (ATCC 17025)▿

    PubMed Central

    Hartsock, Angela; Shapleigh, James P.

    2011-01-01

    The metabolically versatile purple bacterium Rhodobacter sphaeroides 2.4.3 is a denitrifier whose genome contains two periplasmic nitrate reductase-encoding gene clusters. This work demonstrates nonredundant physiological roles for these two enzymes. One cluster is expressed aerobically and repressed under low oxygen while the second is maximally expressed under low oxygen. Insertional inactivation of the aerobically expressed nitrate reductase eliminated aerobic nitrate reduction, but cells of this strain could still respire nitrate anaerobically. In contrast, when the anaerobic nitrate reductase was absent, aerobic nitrate reduction was detectable, but anaerobic nitrate reduction was impaired. The aerobic nitrate reductase was expressed but not utilized in liquid culture but was utilized during growth on solid medium. Growth on a variety of carbon sources, with the exception of malate, the most oxidized substrate used, resulted in nitrite production on solid medium. This is consistent with a role for the aerobic nitrate reductase in redox homeostasis. These results show that one of the nitrate reductases is specific for respiration and denitrification while the other likely plays a role in redox homeostasis during aerobic growth. PMID:21949073

  9. Control of periplasmic nitrate reductase gene expression (napEDABC) from Paracoccus pantotrophus in response to oxygen and carbon substrates.

    PubMed

    Sears, H J; Sawers, G; Berks, B C; Ferguson, S J; Richardson, D J

    2000-11-01

    The napEDABC operon of Paracoccus pantotrophus encodes a periplasmic nitrate reductase (NAP), together with electron-transfer components and proteins required for the synthesis of a fully functional enzyme. Previously, it had been shown that high NAP activity was observed when P. pantotrophus was grown aerobically on highly reduced carbon sources such as butyrate or caproate, but not when cultured on more oxidized substrates such as succinate or malate. The enzyme is not present to any extent when the organism is grown anaerobically under denitrifying conditions, regardless of the carbon source. Transcriptional analyses of the nap operon have now identified two initiation sites which were differentially regulated in response to the carbon source, with expression being maximal when cells were grown aerobically with butyrate. Analysis of a P. pantotrophus mutant (M6) deregulated for NAP activity identified a single C-->A transversion in a heptameric inverted-repeat sequence that partially overlapped the proximal promoter. Transcription analysis of this mutant revealed that expression of nap was completely derepressed under all growth conditions examined. Taken together, these findings indicate that nap transcription is negatively regulated during anaerobiosis, such that expression is restricted to aerobic growth, but only when the carbon source is highly reduced. PMID:11065376

  10. Structural flexibility of the periplasmic protein, FlgA, regulates flagellar P-ring assembly in Salmonella enterica.

    PubMed

    Matsunami, Hideyuki; Yoon, Young-Ho; Meshcheryakov, Vladimir A; Namba, Keiichi; Samatey, Fadel A

    2016-01-01

    A periplasmic flagellar chaperone protein, FlgA, is required for P-ring assembly in bacterial flagella of taxa such as Salmonella enterica or Escherichia coli. The mechanism of chaperone-mediated P-ring formation is poorly understood. Here we present the open and closed crystal structures of FlgA from Salmonella enterica serovar Typhimurium, grown under different crystallization conditions. An intramolecular disulfide cross-linked form of FlgA caused a dominant negative effect on motility of the wild-type strain. Pull-down experiments support a specific protein-protein interaction between FlgI, the P-ring component protein, and the C-terminal domain of FlgA. Surface plasmon resonance and limited-proteolysis indicate that flexibility of the domain is reduced in the covalently closed form. These results show that the structural flexibility of the C-terminal domain of FlgA, which is related to the structural difference between the two crystal forms, is intrinsically associated with its molecular chaperone function in P-ring assembly. PMID:27273476

  11. Silent and functional changes in the periplasmic maltose-binding protein of Escherichia coli K12. II. Chemotaxis towards maltose.

    PubMed

    Duplay, P; Szmelcman, S

    1987-04-20

    We examined the chemotactic behavior of ten Escherichia coli mutants able to synthesize a modified periplasmic maltose-binding protein (MBP) retaining high affinity for maltose. Eight were able to grow on maltose (Mal+), two were not (Mal-). In the capillary assay six out of eight of the Mal+ strains showed an optimal response at the same concentration of maltose as the wild-type strain; the amplitude of the response was strongly reduced in two Mal+ mutants and partially affected in one. The amplitude of the chemotactic response of the two Mal- strains was at least equal to that of the wild type, so that the chemotactic and transport functions of MBP were dissociated in these two cases. We define two regions of the protein (residues 297 to 303 and 364 to 369), that are important both for the chemotactic response and for transport, and one region (residues 207 to 220) that is essential for transport but dispensable for chemotaxis. Interestingly, some regions that were found to be inessential for transport are also dispensable for chemotaxis. PMID:3309329

  12. Tripartite ATP-independent Periplasmic (TRAP) Transporters Use an Arginine-mediated Selectivity Filter for High Affinity Substrate Binding.

    PubMed

    Fischer, Marcus; Hopkins, Adam P; Severi, Emmanuele; Hawkhead, Judith; Bawdon, Daniel; Watts, Andrew G; Hubbard, Roderick E; Thomas, Gavin H

    2015-11-01

    Tripartite ATP-independent periplasmic (TRAP) transporters are secondary transporters that have evolved an obligate dependence on a substrate-binding protein (SBP) to confer unidirectional transport. Different members of the DctP family of TRAP SBPs have binding sites that recognize a diverse range of organic acid ligands but appear to only share a common electrostatic interaction between a conserved arginine and a carboxylate group in the ligand. We investigated the significance of this interaction using the sialic acid-specific SBP, SiaP, from the Haemophilus influenzae virulence-related SiaPQM TRAP transporter. Using in vitro, in vivo, and structural methods applied to SiaP, we demonstrate that the coordination of the acidic ligand moiety of sialic acid by the conserved arginine (Arg-147) is essential for the function of the transporter as a high affinity scavenging system. However, at high substrate concentrations, the transporter can function in the absence of Arg-147 suggesting that this bi-molecular interaction is not involved in further stages of the transport cycle. As well as being required for high affinity binding, we also demonstrate that the Arg-147 is a strong selectivity filter for carboxylate-containing substrates in TRAP transporters by engineering the SBP to recognize a non-carboxylate-containing substrate, sialylamide, through water-mediated interactions. Together, these data provide biochemical and structural support that TRAP transporters function predominantly as high affinity transporters for carboxylate-containing substrates. PMID:26342690

  13. Borrelia burgdorferi BBA74, a Periplasmic Protein Associated with the Outer Membrane, Lacks Porin-Like Properties▿

    PubMed Central

    Mulay, Vishwaroop; Caimano, Melissa J.; Liveris, Dionysios; Desrosiers, Daniel C.; Radolf, Justin D.; Schwartz, Ira

    2007-01-01

    The outer membrane of Borrelia burgdorferi, the causative agent of Lyme disease, contains very few integral membrane proteins, in contrast to other gram-negative bacteria. BBA74, a Borrelia burgdorferi plasmid-encoded protein, was proposed to be an integral outer membrane protein with putative porin function and designated as a 28-kDa outer membrane-spanning porin (Oms28). In this study, the biophysical properties of BBA74 and its subcellular localization were investigated. BBA74 is posttranslationally modified by signal peptidase I cleavage to a mature 25-kDa protein. The secondary structure of BBA74 as determined by circular dichroism spectroscopy consists of at least 78% α-helix with little β-sheet structure. BBA74 in intact B. burgdorferi cells was insensitive to proteinase K digestion, and indirect immunofluorescence microscopy showed that BBA74 was not exposed on the cell surface. Triton X-114 extraction of outer membrane vesicle preparations indicated that BBA74 is not an integral membrane protein. Taken together, the data indicate that BBA74 is a periplasmic, outer membrane-associated protein that lacks properties typically associated with porins. PMID:17189354

  14. Borrelia burgdorferi BBA74, a periplasmic protein associated with the outer membrane, lacks porin-like properties.

    PubMed

    Mulay, Vishwaroop; Caimano, Melissa J; Liveris, Dionysios; Desrosiers, Daniel C; Radolf, Justin D; Schwartz, Ira

    2007-03-01

    The outer membrane of Borrelia burgdorferi, the causative agent of Lyme disease, contains very few integral membrane proteins, in contrast to other gram-negative bacteria. BBA74, a Borrelia burgdorferi plasmid-encoded protein, was proposed to be an integral outer membrane protein with putative porin function and designated as a 28-kDa outer membrane-spanning porin (Oms28). In this study, the biophysical properties of BBA74 and its subcellular localization were investigated. BBA74 is posttranslationally modified by signal peptidase I cleavage to a mature 25-kDa protein. The secondary structure of BBA74 as determined by circular dichroism spectroscopy consists of at least 78% alpha-helix with little beta-sheet structure. BBA74 in intact B. burgdorferi cells was insensitive to proteinase K digestion, and indirect immunofluorescence microscopy showed that BBA74 was not exposed on the cell surface. Triton X-114 extraction of outer membrane vesicle preparations indicated that BBA74 is not an integral membrane protein. Taken together, the data indicate that BBA74 is a periplasmic, outer membrane-associated protein that lacks properties typically associated with porins. PMID:17189354

  15. Structural flexibility of the periplasmic protein, FlgA, regulates flagellar P-ring assembly in Salmonella enterica

    PubMed Central

    Matsunami, Hideyuki; Yoon, Young-Ho; Meshcheryakov, Vladimir A.; Namba, Keiichi; Samatey, Fadel A.

    2016-01-01

    A periplasmic flagellar chaperone protein, FlgA, is required for P-ring assembly in bacterial flagella of taxa such as Salmonella enterica or Escherichia coli. The mechanism of chaperone-mediated P-ring formation is poorly understood. Here we present the open and closed crystal structures of FlgA from Salmonella enterica serovar Typhimurium, grown under different crystallization conditions. An intramolecular disulfide cross-linked form of FlgA caused a dominant negative effect on motility of the wild-type strain. Pull-down experiments support a specific protein-protein interaction between FlgI, the P-ring component protein, and the C-terminal domain of FlgA. Surface plasmon resonance and limited-proteolysis indicate that flexibility of the domain is reduced in the covalently closed form. These results show that the structural flexibility of the C-terminal domain of FlgA, which is related to the structural difference between the two crystal forms, is intrinsically associated with its molecular chaperone function in P-ring assembly. PMID:27273476

  16. Mechanistic insight into the conserved allosteric regulation of periplasmic proteolysis by the signaling molecule cyclic-di-GMP

    PubMed Central

    Chatterjee, Debashree; Cooley, Richard B; Boyd, Chelsea D; Mehl, Ryan A; O'Toole, George A; Sondermann, Holger

    2014-01-01

    Stable surface adhesion of cells is one of the early pivotal steps in bacterial biofilm formation, a prevalent adaptation strategy in response to changing environments. In Pseudomonas fluorescens, this process is regulated by the Lap system and the second messenger cyclic-di-GMP. High cytoplasmic levels of cyclic-di-GMP activate the transmembrane receptor LapD that in turn recruits the periplasmic protease LapG, preventing it from cleaving a cell surface-bound adhesin, thereby promoting cell adhesion. In this study, we elucidate the molecular basis of LapG regulation by LapD and reveal a remarkably sensitive switching mechanism that is controlled by LapD's HAMP domain. LapD appears to act as a coincidence detector, whereby a weak interaction of LapG with LapD transmits a transient outside-in signal that is reinforced only when cyclic-di-GMP levels increase. Given the conservation of key elements of this receptor system in many bacterial species, the results are broadly relevant for cyclic-di-GMP- and HAMP domain-regulated transmembrane signaling. DOI: http://dx.doi.org/10.7554/eLife.03650.001 PMID:25182848

  17. Iron- and 4-hydroxy-2-alkylquinoline-containing periplasmic inclusion bodies of Pseudomonas aeruginosa: A chemical analysis

    USGS Publications Warehouse

    Royt, P.W.; Honeychuck, R.V.; Pant, R.R.; Rogers, M.L.; Asher, L.V.; Lloyd, J.R.; Carlos, W.E.; Belkin, H.E.; Patwardhan, S.

    2007-01-01

    Dark aggregated particles were seen on pellets of iron-rich, mid-logarithmic phase Pseudomonas aeruginosa. Transmission electron microscopy of these cells showed inclusion bodies in periplasmic vacuoles. Aggregated particles isolated from the spent medium of these cells contained iron as indicated by atomic absorption spectroscopy and by electron paramagnetic resonance spectroscopy that revealed Fe3+. Scanning electron microscopy/energy dispersive X-ray analysis of whole cells revealed the presence of iron-containing particles beneath the surface of the cell, indicating that the isolated aggregates were the intracellular inclusion bodies. Collectively, mass spectroscopy and nuclear magnetic resonance spectroscopy of the isolated inclusion bodies revealed the presence of 3,4-dihydroxy-2-heptylquinoline which is the Pseudomonas quinolone signaling compound (PQS) and an iron chelator; 4-hydroxy-2-heptylquinoline (pseudan VII), which is an iron chelator, antibacterial compound and precursor of PQS; 4-hydroxy-2-nonylquinoline (pseudan IX) which is an iron chelator and antibacterial compound; 4-hydroxy-2-methylquinoline (pseudan I), and 4-hydroxy-2-nonylquinoline N-oxide. ?? 2006 Elsevier Inc. All rights reserved.

  18. Tripartite ATP-independent Periplasmic (TRAP) Transporters Use an Arginine-mediated Selectivity Filter for High Affinity Substrate Binding*

    PubMed Central

    Fischer, Marcus; Hopkins, Adam P.; Severi, Emmanuele; Hawkhead, Judith; Bawdon, Daniel; Watts, Andrew G.; Hubbard, Roderick E.; Thomas, Gavin H.

    2015-01-01

    Tripartite ATP-independent periplasmic (TRAP) transporters are secondary transporters that have evolved an obligate dependence on a substrate-binding protein (SBP) to confer unidirectional transport. Different members of the DctP family of TRAP SBPs have binding sites that recognize a diverse range of organic acid ligands but appear to only share a common electrostatic interaction between a conserved arginine and a carboxylate group in the ligand. We investigated the significance of this interaction using the sialic acid-specific SBP, SiaP, from the Haemophilus influenzae virulence-related SiaPQM TRAP transporter. Using in vitro, in vivo, and structural methods applied to SiaP, we demonstrate that the coordination of the acidic ligand moiety of sialic acid by the conserved arginine (Arg-147) is essential for the function of the transporter as a high affinity scavenging system. However, at high substrate concentrations, the transporter can function in the absence of Arg-147 suggesting that this bi-molecular interaction is not involved in further stages of the transport cycle. As well as being required for high affinity binding, we also demonstrate that the Arg-147 is a strong selectivity filter for carboxylate-containing substrates in TRAP transporters by engineering the SBP to recognize a non-carboxylate-containing substrate, sialylamide, through water-mediated interactions. Together, these data provide biochemical and structural support that TRAP transporters function predominantly as high affinity transporters for carboxylate-containing substrates. PMID:26342690

  19. Microbial host selection and periplasmic folding in Escherichia coli affect the biochemical characteristics of a cutinase from Fusarium oxysporum.

    PubMed

    Nikolaivits, Efstratios; Kokkinou, Areti; Karpusas, Michael; Topakas, Evangelos

    2016-11-01

    A cutinase from the mesophilic fungus Fusarium oxysporum (FoCut5a) was functionally expressed in different hosts and their recombinant products were characterized regarding their activity, thermostability and tolerance in organic solvents. The cutinase gene cut5a was expressed in the BL21 and Origami 2 Escherichia coli strains and the resulting protein was folded either in the cytoplasm or in the periplasmic space, with the aim of correct formation of disulfide bonds. Increase of thermostability occurred when the enzyme was expressed in the oxidative cytoplasm of Origami 2. All expression products showed maximum enzyme activity at 40 °C, while thermostability increased by 73% when expressed in the Origami strain compared to the cytoplasmic expression in BL21 cells. The melting temperature of each protein construct was determined by fluorescence spectroscopy showing an additional transition at about 63 °C for enzymes expressed in Origami cells, indicating the co-presence of a different thermostable species. Kinetic studies performed on three p-nitrophenyl synthetic esters of aliphatic acids (C2, C4, C12) indicated that this cutinase shows higher affinity for the hydrolysis of the butyl ester. PMID:27302766

  20. Mechanistic insight into the conserved allosteric regulation of periplasmic proteolysis by the signaling molecule cyclic-di-GMP.

    PubMed

    Chatterjee, Debashree; Cooley, Richard B; Boyd, Chelsea D; Mehl, Ryan A; O'Toole, George A; Sondermann, Holger

    2014-01-01

    Stable surface adhesion of cells is one of the early pivotal steps in bacterial biofilm formation, a prevalent adaptation strategy in response to changing environments. In Pseudomonas fluorescens, this process is regulated by the Lap system and the second messenger cyclic-di-GMP. High cytoplasmic levels of cyclic-di-GMP activate the transmembrane receptor LapD that in turn recruits the periplasmic protease LapG, preventing it from cleaving a cell surface-bound adhesin, thereby promoting cell adhesion. In this study, we elucidate the molecular basis of LapG regulation by LapD and reveal a remarkably sensitive switching mechanism that is controlled by LapD's HAMP domain. LapD appears to act as a coincidence detector, whereby a weak interaction of LapG with LapD transmits a transient outside-in signal that is reinforced only when cyclic-di-GMP levels increase. Given the conservation of key elements of this receptor system in many bacterial species, the results are broadly relevant for cyclic-di-GMP- and HAMP domain-regulated transmembrane signaling. PMID:25182848

  1. The nitrate-sensing NasST system regulates nitrous oxide reductase and periplasmic nitrate reductase in Bradyrhizobium japonicum.

    PubMed

    Sánchez, Cristina; Itakura, Manabu; Okubo, Takashi; Matsumoto, Takashi; Yoshikawa, Hirofumi; Gotoh, Aina; Hidaka, Masafumi; Uchida, Takafumi; Minamisawa, Kiwamu

    2014-10-01

    The soybean endosymbiont Bradyrhizobium japonicum is able to scavenge the greenhouse gas N2O through the N2O reductase (Nos). In previous research, N2O emission from soybean rhizosphere was mitigated by B. japonicum Nos(++) strains (mutants with increased Nos activity). Here, we report the mechanism underlying the Nos(++) phenotype. Comparative analysis of Nos(++) mutant genomes showed that mutation of bll4572 resulted in Nos(++) phenotype. bll4572 encodes NasS, the nitrate (NO3(-))-sensor of the two-component NasST regulatory system. Transcriptional analyses of nosZ (encoding Nos) and other genes from the denitrification process in nasS and nasST mutants showed that, in the absence of NO3(-) , nasS mutation induces nosZ and nap (periplasmic nitrate reductase) via nasT. NO3(-) addition dissociated the NasS-NasT complex in vitro, suggesting the release of the activator NasT. Disruption of nasT led to a marked decrease in nosZ and nap transcription in cells incubated in the presence of NO3(-). Thus, although NasST is known to regulate the NO3(-)-mediated response of NO3(-) assimilation genes in bacteria, our results show that NasST regulates the NO3(-) -mediated response of nosZ and napE genes, from the dissimilatory denitrification pathway, in B. japonicum. PMID:24947409

  2. Thermal stability and unfolding pathways of hyperthermophilic and mesophilic periplasmic binding proteins studied by molecular dynamics simulation.

    PubMed

    Chen, Lin; Li, Xue; Wang, Ruige; Fang, Fengqin; Yang, Wanli; Kan, Wei

    2016-07-01

    The ribose binding protein (RBP), a sugar-binding periplasmic protein, is involved in the transport and signaling processes in both prokaryotes and eukaryotes. Although several cellular and structural studies have been reported, a description of the thermostability of RBP at the molecular level remains elusive. Focused on the hyperthermophilic Thermoytoga maritima RBP (tmRBP) and mesophilic Escherichia coli homolog (ecRBP), we applied molecular dynamics simulations at four different temperatures (300, 380, 450, and 500 K) to obtain a deeper insight into the structural features responsible for the reduced thermostability of the ecRBP. The simulations results indicate that there are distinct structural differences in the unfolding pathway between the two homologs and the ecRBP unfolds faster than the hyperthermophilic homologs at certain temperatures in accordance with the lower thermal stability found experimentally. Essential dynamics analysis uncovers that the essential subspaces of ecRBP and tmRBP are non-overlapping and these two proteins show different directions of motion within the simulations trajectories. Such an understanding is required for designing efficient proteins with characteristics for a particular application. PMID:26292713

  3. Isolation and sequence analysis of the gene (cpdB) encoding periplasmic 2',3'-cyclic phosphodiesterase.

    PubMed Central

    Liu, J; Burns, D M; Beacham, I R

    1986-01-01

    The cpdB gene encodes a periplasmic 2',3'-cyclic phosphodiesterase (3'-nucleotidase). This enzyme has been purified previously and the gene is located at 96 min on the Escherichia coli chromosome. In this study the cpdB gene was cloned from ClaI-cleaved DNA, and the gene product was identified. DNA blotting experiments showed that the recombinant plasmid contains a deletion with respect to the expected genomic fragment of approximately 4 kilobases, which extends into the vector. Furthermore, the gene was absent from three other recombinant libraries. Together, these findings suggest the presence in the genome of an adjacent gene whose product is lethal when it is present on a multicopy plasmid. The nucleotide sequence of the cpdB gene was also determined. The 5' and 3' untranslated sequences contain characteristic sequences that are involved in the initiation and termination of transcription, including two possible promoters, one of which may contain two overlapping -10 sequences. A strong Shine-Dalgarno sequence is followed by an open reading frame which corresponds to a protein having a molecular weight of 70,954. The first 19 amino acid residues have the characteristics of a signal peptide. The 3' untranslated sequence contains two putative rho-independent transcription terminators having low thermodynamic stability. Images PMID:3005231

  4. AlgK is a TPR-containing Protein and the Periplasmic Component of a Novel Exopolysaccharide Secretin

    SciTech Connect

    Keiski, C.; Harwich, M; Jain, S; Neculai, A; Whitney, J; Yip, P; Robinson, H; Riley, L; Burrows, L; et al.

    2010-01-01

    The opportunistic pathogen Pseudomonas aeruginosa causes chronic biofilm infections in cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by overproduction of the exopolysaccharide alginate. Here we show that AlgK, a protein essential for production of high molecular weight alginate, is an outer membrane lipoprotein that contributes to the correct localization of the porin AlgE. Our 2.5 {angstrom} structure shows AlgK is composed of 9.5 tetratricopeptide-like repeats, and three putative sites of protein-protein interaction have been identified. Bioinformatics analysis suggests that BcsA, PgaA, and PelB, involved in the production and export of cellulose, poly-{beta}-1,6-N-Acetyl-d-glucosamine, and Pel exopolysaccharide, respectively, share the same topology as AlgK/E. Together, our data suggest that AlgK plays a role in the assembly of the alginate biosynthetic complex and represents the periplasmic component of a new type of outer membrane secretin that differs from canonical bacterial capsular polysaccharide secretion systems.

  5. Phosphate binding in the active centre of tomato multifunctional nuclease TBN1 and analysis of superhelix formation by the enzyme.

    PubMed

    Stránský, Jan; Koval', Tomáš; Podzimek, Tomáš; Týcová, Anna; Lipovová, Petra; Matoušek, Jaroslav; Kolenko, Petr; Fejfarová, Karla; Dušková, Jarmila; Skálová, Tereza; Hašek, Jindřich; Dohnálek, Jan

    2015-11-01

    Tomato multifunctional nuclease TBN1 belongs to the type I nuclease family, which plays an important role in apoptotic processes and cell senescence in plants. The newly solved structure of the N211D mutant is reported. Although the main crystal-packing motif (the formation of superhelices) is conserved, the details differ among the known structures. A phosphate ion was localized in the active site of the enzyme. The binding of the surface loop to the active centre is stabilized by the phosphate ion, which correlates with the observed aggregation of TBN1 in phosphate buffer. The conserved binding of the surface loop to the active centre suggests biological relevance of the contact in a regulatory function or in the formation of oligomers. PMID:26527269

  6. A RecB-family nuclease motif in the Type I restriction endonuclease EcoR124I

    PubMed Central

    Šišáková, Eva; Stanley, Louise K.; Weiserová, Marie; Szczelkun, Mark D.

    2008-01-01

    The Type I restriction-modification enzyme EcoR124I is an ATP-dependent endonuclease that uses dsDNA translocation to locate and cleave distant non-specific DNA sites. Bioinformatic analysis of the HsdR subunits of EcoR124I and related Type I enzymes showed that in addition to the principal PD-(E/D)xK Motifs, I, II and III, a QxxxY motif is also present that is characteristic of RecB-family nucleases. The QxxxY motif resides immediately C-terminal to Motif III within a region of predicted α-helix. Using mutagenesis, we examined the role of the Q and Y residues in DNA binding, translocation and cleavage. Roles for the QxxxY motif in coordinating the catalytic residues or in stabilizing the nuclease domain on the DNA are discussed. PMID:18511464

  7. CRISPR/Cas-Mediated Site-Specific Mutagenesis in Arabidopsis thaliana Using Cas9 Nucleases and Paired Nickases.

    PubMed

    Schiml, Simon; Fauser, Friedrich; Puchta, Holger

    2016-01-01

    The CRISPR/Cas system has recently become the most important tool for genome engineering due to its simple architecture that allows for rapidly changing the target sequence and its applicability to organisms throughout all kingdoms of life. The need for an easy-to-use and reliable nuclease is especially high in plant research, as precise genome modifications are almost impossible to achieve by Agrobacterium-mediated transformation and the regeneration of plants from protoplast cultures is very labor intensive. Here, we describe the application of the Cas9 nuclease to Arabidopsis thaliana for the induction of heritable targeted mutations, which may also be used for other plant species. To cover the concern for off-target activity, we also describe the generation of stable mutants using paired Cas9 nickases. PMID:27557689

  8. The pH dependence of staphylococcal nuclease stability is incompatible with a three-state denaturation model

    PubMed Central

    Spencer, Daniel; Bertrand García-Moreno, E.; Stites, Wesley E.

    2013-01-01

    Six single substitution mutations, V66F, V66G, V66N, V66Q, V66S, V66T, and V66Y, were made in the background of a highly stable triple mutant (P117G, H124L, and S128A) of staphylococcal nuclease. The thermodynamic stabilities of wild type staphylococcal nuclease, of the stable triple mutant and of its six variants were determined by guanidine hydrochloride denaturation in thirteen different buffers spanning the pH range 4.5 to 10.2. Within experimental error the values of ΔGH2O and mGuHCl for the various proteins measured over this wide range of pH maintain a constant offset from one another, tracing a series of approximately parallel curves. This data offers an independent means of determining the error of stabilities and slopes determined by guanidine hydrochloride denaturations and shows that previous error estimates are accurate. More importantly, this behavior cannot be reconciled with a three-state denaturation model for staphylococcal nuclease. The large variations in mGuHCl observed in these mutants must therefore arise from other causes. PMID:23892194

  9. Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission, and programmed cell death-related processes

    PubMed Central

    Farage-Barhom, Sarit; Burd, Shaul; Sonego, Lilian; Perl-Treves, Rafael; Lers, Amnon

    2008-01-01

    Little is known about the biological role of nucleases induced during plant senescence and programmed cell death (PCD). Arabidopsis BFN1 has been identified as a senescence-associated type I nuclease, whose protein sequence shares high homology with some other senescence- or PCD-associated plant nucleases. To learn about BFN1 regulation, its expression pattern was analysed. A 2.3 kb portion of the 5′ promoter sequence of BFN1 was cloned and its ability to activate the GUS reporter gene was examined. Transgenic Arabidopsis and tomato plants harbouring this chimeric construct were analysed for GUS expression. In both, the BFN1 promoter was able specifically to direct GUS expression in senescent leaves, differentiating xylem and the abscission zone of flowers. Thus, at least part of the regulation of BFN1 is mediated at the transcriptional level, and the regulatory elements are recognized in the two different plants. In tomato, specific expression was observed in the leaf and the fruit abscission zones. The BFN1 promoter was also active in other tissues, including developing anthers and seeds, and in floral organs after fertilization. PCD has been implicated in all of these processes, suggesting that in addition to senescence, BFN1 is involved in PCD associated with different development processes in Arabidopsis. PMID:18603613

  10. Recombination hotspots attenuate the coupled ATPase and translocase activities of an AddAB-type helicase–nuclease

    PubMed Central

    Gilhooly, Neville S.; Dillingham, Mark S.

    2014-01-01

    In all domains of life, the resection of double-stranded DNA breaks to form long 3′-ssDNA overhangs in preparation for recombinational repair is catalyzed by the coordinated activities of DNA helicases and nucleases. In bacterial cells, this resection reaction is modulated by the recombination hotspot sequence Chi. The Chi sequence is recognized in cis by translocating helicase–nuclease complexes such as the Bacillus subtilis AddAB complex. Binding of Chi to AddAB results in the attenuation of nuclease activity on the 3′-terminated strand, thereby promoting recombination. In this work, we used stopped-flow methods to monitor the coupling of adenosine triphosphate (ATP) hydrolysis and DNA translocation and how this is affected by Chi recognition. We show that in the absence of Chi sequences, AddAB translocates processively on DNA at ∼2000 bp s−1 and hydrolyses approximately 1 ATP molecule per base pair travelled. The recognition of recombination hotspots results in a sustained decrease in the translocation rate which is accompanied by a decrease in the ATP hydrolysis rate, such that the coupling between these activities and the net efficiency of DNA translocation is largely unchanged by Chi. PMID:24682829

  11. Site-specific DNA cleavage by artificial zinc finger-type nuclease with cerium-binding peptide

    SciTech Connect

    Nakatsukasa, Takako; Shiraishi, Yasuhisa; Negi, Shigeru; Imanishi, Miki; Futaki, Shiroh; Sugiura, Yukio . E-mail: sugiura@scl.kyoto-u.ac.jp

    2005-04-29

    The addition of a new function to native proteins is one of the most attractive protein-based designs. In this study, we have converted a C{sub 2}H{sub 2}-type zinc finger as a DNA-binding motif into a novel zinc finger-type nuclease by connecting two distinct zinc finger proteins (Sp1 and GLI) with a functional linker possessing DNA cleavage activity. As a DNA cleavage domain, we chose an analogue of the metal-binding loop (12 amino acid residues), peptide P1, which has been reported to exhibit a strong binding affinity for a lanthanide ion and DNA cleavage ability in the presence of Ce(IV). Our newly designed nucleases, Sp1(P1)GLI and Sp1(P1G)GLI, can strongly bind to a lanthanide ion and show a unique DNA cleavage pattern, in which certain positions between the two DNA-binding sites are specifically cleaved. The present result provides useful information for expanding the design strategy for artificial nucleases.

  12. GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases

    PubMed Central

    Nguyen, Nhu T.; Liebers, Matthew; Topkar, Ved V.; Thapar, Vishal; Wyvekens, Nicolas; Khayter, Cyd; Iafrate, A. John; Le, Long P.; Aryee, Martin J.; Joung, J. Keith

    2014-01-01

    CRISPR RNA-guided nucleases (RGNs) are widely used genome-editing reagents, but methods to delineate their genome-wide off-target cleavage activities have been lacking. Here we describe an approach for global detection of DNA double-stranded breaks (DSBs) introduced by RGNs and potentially other nucleases. This method, called Genome-wide Unbiased Identification of DSBs Enabled by Sequencing (GUIDE-Seq), relies on capture of double-stranded oligodeoxynucleotides into breaks Application of GUIDE-Seq to thirteen RGNs in two human cell lines revealed wide variability in RGN off-target activities and unappreciated characteristics of off-target sequences. The majority of identified sites were not detected by existing computational methods or ChIP-Seq. GUIDE-Seq also identified RGN-independent genomic breakpoint ‘hotspots’. Finally, GUIDE-Seq revealed that truncated guide RNAs exhibit substantially reduced RGN-induced off-target DSBs. Our experiments define the most rigorous framework for genome-wide identification of RGN off-target effects to date and provide a method for evaluating the safety of these nucleases prior to clinical use. PMID:25513782

  13. Distinct properties of proteases and nucleases in the gut, salivary gland and saliva of southern green stink bug, Nezara viridula

    PubMed Central

    Lomate, Purushottam R.; Bonning, Bryony C.

    2016-01-01

    Stink bugs negatively impact numerous plant species of agricultural and horticultural importance. While efforts to develop effective control measures are underway, the unique digestive physiology of these pests presents a significant hurdle for either protein- or nucleotide-based management options. Here we report the comparative biochemical and proteomic characterization of proteases and nucleases from the gut, salivary gland and saliva of the southern green stink bug, Nezara viridula. The pH optimum for protease activity was acidic (5 to 6) in the gut with the primary proteases being cysteine proteases, and alkaline (8 to 9) in the saliva and salivary gland with the primary proteases being serine proteases. The serine proteases in saliva differ biochemically from trypsin and chymotrypsin, and the cathepsins in the gut and saliva showed distinct properties in inhibitor assays. Nuclease activity (DNase, RNase, dsRNase) was concentrated in the salivary gland and saliva with negligible activity in the gut. The most abundant proteins of the gut (530) and salivary gland (631) identified by proteomic analysis included four gut proteases along with eight proteases and one nuclease from the salivary gland. Understanding of N. viridula digestive physiology will facilitate the design of new strategies for management of this significant pest. PMID:27282882

  14. The Interrelationship of Helicase and Nuclease Domains during DNA Translocation by the Molecular Motor EcoR124I

    PubMed Central

    Šišáková, Eva; Weiserová, Marie; Dekker, Cees; Seidel, Ralf; Szczelkun, Mark D.

    2008-01-01

    The type I restriction–modification enzyme EcoR124I comprises three subunits with the stoichiometry HsdR2/HsdM2/HsdS1. The HsdR subunits are archetypical examples of the fusion between nuclease and helicase domains into a single polypeptide, a linkage that is found in a great many other DNA processing enzymes. To explore the interrelationship between these physically linked domains, we examined the DNA translocation properties of EcoR124I complexes in which the HsdR subunits had been mutated in the RecB-like nuclease motif II or III. We found that nuclease mutations can have multiple effects on DNA translocation despite being distinct from the helicase domain. In addition to reductions in DNA cleavage activity, we also observed decreased translocation and ATPase rates, different enzyme populations with different characteristic translocation rates, a tendency to stall during initiation and altered HsdR turnover dynamics. The significance of these observations to our understanding of domain interactions in molecular machines is discussed. PMID:18952104

  15. CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells.

    PubMed

    Heo, Young Tae; Quan, Xiaoyuan; Xu, Yong Nan; Baek, Soonbong; Choi, Hwan; Kim, Nam-Hyung; Kim, Jongpil

    2015-02-01

    Efficient and precise genetic engineering in livestock such as cattle holds great promise in agriculture and biomedicine. However, techniques that generate pluripotent stem cells, as well as reliable tools for gene targeting in livestock, are still inefficient, and thus not routinely used. Here, we report highly efficient gene targeting in the bovine genome using bovine pluripotent cells and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 nuclease. First, we generate induced pluripotent stem cells (iPSCs) from bovine somatic fibroblasts by the ectopic expression of yamanaka factors and GSK3β and MEK inhibitor (2i) treatment. We observed that these bovine iPSCs are highly similar to naïve pluripotent stem cells with regard to gene expression and developmental potential in teratomas. Moreover, CRISPR/Cas9 nuclease, which was specific for the bovine NANOG locus, showed highly efficient editing of the bovine genome in bovine iPSCs and embryos. To conclude, CRISPR/Cas9 nuclease-mediated homologous recombination targeting in bovine pluripotent cells is an efficient gene editing method that can be used to generate transgenic livestock in the future. PMID:25209165

  16. Solid-phase synthesis, thermal denaturation studies, nuclease resistance, and cellular uptake of (oligodeoxyribonucleoside)methylborane phosphine-DNA chimeras.

    PubMed

    Krishna, Heera; Caruthers, Marvin H

    2011-06-29

    The major hurdle associated with utilizing oligodeoxyribonucleotides for therapeutic purposes is their poor delivery into cells coupled with high nuclease susceptibility. In an attempt to combine the nonionic nature and high nuclease stability of the P-C bond of methylphosphonates with the high membrane permeability, low toxicity, and improved gene silencing ability of borane phosphonates, we have focused our research on the relatively unexplored methylborane phosphine (Me-P-BH(3)) modification. This Article describes the automated solid-phase synthesis of mixed-backbone oligodeoxynucleotides (ODNs) consisting of methylborane phosphine and phosphate or thiophosphate linkages (16-mers). Nuclease stability assays show that methylborane phosphine ODNs are highly resistant to 5' and 3' exonucleases. When hybridized to a complementary strand, the ODN:RNA duplex was more stable than its corresponding ODN:DNA duplex. The binding affinity of ODN:RNA duplex increased at lower salt concentration and approached that of a native DNA:RNA duplex under conditions close to physiological saline, indicating that the Me-P-BH(3) linkage is positively charged. Cellular uptake measurements indicate that these ODNs are efficiently taken up by cells even when the strand is 13% modified. Treatment of HeLa cells and WM-239A cells with fluorescently labeled ODNs shows significant cytoplasmic fluorescence when viewed under a microscope. Our results suggest that methylborane phosphine ODNs may prove very valuable as potential candidates in antisense research and RNAi. PMID:21585202

  17. One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification.

    PubMed

    Yin, Bin-Cheng; Liu, Yu-Qiang; Ye, Bang-Ce

    2012-03-21

    Traditional molecular beacons, widely applied for detection of nucleic acids, have an intrinsic limitation on sensitivity, as one target molecule converts only one beacon molecule to its fluorescent form. Herein, we take advantage of the duplex-specific nuclease (DSN) to create a new signal-amplifying mechanism, duplex-specific nuclease signal amplification (DSNSA), to increase the detection sensitivity of molecular beacons (Taqman probes). DSN nuclease is employed to recycle the process of target-assisted digestion of Taqman probes, thus, resulting in a significant fluorescence signal amplification through which one target molecule cleaves thousands of probe molecules. We further demonstrate the efficiency of this DSNSA strategy for rapid direct quantification of multiple miRNAs in biological samples. Our experimental results showed a quantitative measurement of sequence-specific miRNAs with the detection limit in the femtomolar range, nearly 5 orders of magnitude lower than that of conventional molecular beacons. This amplification strategy also demonstrated a high selectivity for discriminating differences between miRNA family members. Considering the superior sensitivity and specificity, as well as the multiplex and simple-to-implement features, this method promises a great potential of becoming a routine tool for simultaneously quantitative analysis of multiple miRNAs in tissues or cells, and supplies valuable information for biomedical research and clinical early diagnosis. PMID:22394262

  18. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing

    PubMed Central

    Miyaoka, Yuichiro; Berman, Jennifer R.; Cooper, Samantha B.; Mayerl, Steven J.; Chan, Amanda H.; Zhang, Bin; Karlin-Neumann, George A.; Conklin, Bruce R.

    2016-01-01

    Precise genome-editing relies on the repair of sequence-specific nuclease-induced DNA nicking or double-strand breaks (DSBs) by homology-directed repair (HDR). However, nonhomologous end-joining (NHEJ), an error-prone repair, acts concurrently, reducing the rate of high-fidelity edits. The identification of genome-editing conditions that favor HDR over NHEJ has been hindered by the lack of a simple method to measure HDR and NHEJ directly and simultaneously at endogenous loci. To overcome this challenge, we developed a novel, rapid, digital PCR–based assay that can simultaneously detect one HDR or NHEJ event out of 1,000 copies of the genome. Using this assay, we systematically monitored genome-editing outcomes of CRISPR-associated protein 9 (Cas9), Cas9 nickases, catalytically dead Cas9 fused to FokI, and transcription activator–like effector nuclease at three disease-associated endogenous gene loci in HEK293T cells, HeLa cells, and human induced pluripotent stem cells. Although it is widely thought that NHEJ generally occurs more often than HDR, we found that more HDR than NHEJ was induced under multiple conditions. Surprisingly, the HDR/NHEJ ratios were highly dependent on gene locus, nuclease platform, and cell type. The new assay system, and our findings based on it, will enable mechanistic studies of genome-editing and help improve genome-editing technology. PMID:27030102

  19. DNase I- and micrococcal nuclease-hypersensitive sites in the human apolipoprotein B gene are tissue specific

    SciTech Connect

    Levy-Wilson, B.; Fortier, C.; Blackhart, B.D.; McCarthy, B.J.

    1988-01-01

    The authors mapped the DNase I- and micrococcal nuclease-hypersensitive sites present in the 5' end of the human apolipoprotein B (apo-B) gene in nuclei from cells expressing or not expressing the gene. Four DNase I-hypersensitive sites were found in nuclei from liver-derived HepG2 cells and intestine-derived CaCo-2 cells, which express the apo-B gene, but not in HeLa cells, which do not. These sites are located near positions -120, -440, -700, and +760 base pairs relative to the transcriptional start site. Undifferentiated CaCo-2 cells exhibited another site, near position -540. Six micrococcal nuclease-hypersensitive sites were found in nuclei from HepG2 and CaCo-2 cells, but not in HeLa cells or free DNA. These sites are located near positions -120, -390, -530, -700, -850, and +210. HepG2 cells exhibited another site, near position +460. Comparison of the DNA sequence of the 5' flanking regions of the human and mouse apo-B genes revealed a high degree of evolutionary conservation of short stretches of sequences in the immediate vicinity of each of the DNase I- and most of the micrococcal nuclease-hypersensitive sites.

  20. Enhanced Sensitivity for Detection of HIV-1 p24 Antigen by a Novel Nuclease-Linked Fluorescence Oligonucleotide Assay

    PubMed Central

    Fan, Peihu; Li, Xiaojun; Su, Weiheng; Kong, Wei; Kong, Xianggui; Wang, Zhenxin; Wang, Youchun; Jiang, Chunlai; Gao, Feng

    2015-01-01

    The relatively high detection limit of the Enzyme-linked immunosorbent assay (ELISA) prevents its application for detection of low concentrations of antigens. To increase the sensitivity for detection of HIV-1 p24 antigen, we developed a highly sensitive nuclease-linked fluorescence oligonucleotide assay (NLFOA). Two major improvements were incorporated in NLFOA to amplify antibody-antigen interaction signals and reduce the signal/noise ratio; a large number of nuclease molecules coupled to the gold nanoparticle/streptavidin complex and fluorescent signals generated from fluorescent-labeled oligonucleotides by the nuclease. The detection limit of p24 by NLFOA was 1 pg/mL, which was 10-fold more sensitive than the conventional ELISA (10 pg/mL). The specificity was 100% and the coefficient of variation (CV) was 7.8% at low p24 concentration (1.5 pg/mL) with various concentrations of spiked p24 in HIV-1 negative sera. Thus, NLFOA is highly sensitive, specific, reproducible and user-friendly. The more sensitive detection of low p24 concentrations in HIV-1-infected individuals by NLFOA could allow detection of HIV-1 infections that are missed by the conventional ELISA at the window period during acute infection to further reduce the risk for HIV-1 infection due to the undetected HIV-1 in the blood products. Moreover, NLFOA can be easily applied to more sensitive detection of other antigens. PMID:25915630

  1. Enhanced Sensitivity for Detection of HIV-1 p24 Antigen by a Novel Nuclease-Linked Fluorescence Oligonucleotide Assay.

    PubMed

    Fan, Peihu; Li, Xiaojun; Su, Weiheng; Kong, Wei; Kong, Xianggui; Wang, Zhenxin; Wang, Youchun; Jiang, Chunlai; Gao, Feng

    2015-01-01

    The relatively high detection limit of the Enzyme-linked immunosorbent assay (ELISA) prevents its application for detection of low concentrations of antigens. To increase the sensitivity for detection of HIV-1 p24 antigen, we developed a highly sensitive nuclease-linked fluorescence oligonucleotide assay (NLFOA). Two major improvements were incorporated in NLFOA to amplify antibody-antigen interaction signals and reduce the signal/noise ratio; a large number of nuclease molecules coupled to the gold nanoparticle/streptavidin complex and fluorescent signals generated from fluorescent-labeled oligonucleotides by the nuclease. The detection limit of p24 by NLFOA was 1 pg/mL, which was 10-fold more sensitive than the conventional ELISA (10 pg/mL). The specificity was 100% and the coefficient of variation (CV) was 7.8% at low p24 concentration (1.5 pg/mL) with various concentrations of spiked p24 in HIV-1 negative sera. Thus, NLFOA is highly sensitive, specific, reproducible and user-friendly. The more sensitive detection of low p24 concentrations in HIV-1-infected individuals by NLFOA could allow detection of HIV-1 infections that are missed by the conventional ELISA at the window period during acute infection to further reduce the risk for HIV-1 infection due to the undetected HIV-1 in the blood products. Moreover, NLFOA can be easily applied to more sensitive detection of other antigens. PMID:25915630

  2. Distinct properties of proteases and nucleases in the gut, salivary gland and saliva of southern green stink bug, Nezara viridula.

    PubMed

    Lomate, Purushottam R; Bonning, Bryony C

    2016-01-01

    Stink bugs negatively impact numerous plant species of agricultural and horticultural importance. While efforts to develop effective control measures are underway, the unique digestive physiology of these pests presents a significant hurdle for either protein- or nucleotide-based management options. Here we report the comparative biochemical and proteomic characterization of proteases and nucleases from the gut, salivary gland and saliva of the southern green stink bug, Nezara viridula. The pH optimum for protease activity was acidic (5 to 6) in the gut with the primary proteases being cysteine proteases, and alkaline (8 to 9) in the saliva and salivary gland with the primary proteases being serine proteases. The serine proteases in saliva differ biochemically from trypsin and chymotrypsin, and the cathepsins in the gut and saliva showed distinct properties in inhibitor assays. Nuclease activity (DNase, RNase, dsRNase) was concentrated in the salivary gland and saliva with negligible activity in the gut. The most abundant proteins of the gut (530) and salivary gland (631) identified by proteomic analysis included four gut proteases along with eight proteases and one nuclease from the salivary gland. Understanding of N. viridula digestive physiology will facilitate the design of new strategies for management of this significant pest. PMID:27282882

  3. Pressure Denaturation of Staphylococcal Nuclease Studied by Neutron Small-Angle Scattering and Molecular Simulation

    PubMed Central

    Paliwal, Amit; Asthagiri, Dilipkumar; Bossev, Dobrin P.; Paulaitis, Michael E.

    2004-01-01

    We studied the pressure-induced folding/unfolding transition of staphylococcal nuclease (SN) over a pressure range of ∼1–3 kilobars at 25°C by small-angle neutron scattering and molecular dynamics simulations. We find that applying pressure leads to a twofold increase in the radius of gyration derived from the small-angle neutron scattering spectra, and P(r), the pair distance distribution function, broadens and shows a transition from a unimodal to a bimodal distribution as the protein unfolds. The results indicate that the globular structure of SN is retained across the folding/unfolding transition although this structure is less compact and elongated relative to the native structure. Pressure-induced unfolding is initiated in the molecular dynamics simulations by inserting water molecules into the protein interior and applying pressure. The P(r) calculated from these simulations likewise broadens and shows a similar unimodal-to-bimodal transition with increasing pressure. The simulations also reveal that the bimodal P(r) for the pressure-unfolded state arises as the protein expands and forms two subdomains that effectively diffuse apart during initial stages of unfolding. Hydrophobic contact maps derived from the simulations show that water insertions into the protein interior and the application of pressure together destabilize hydrophobic contacts between these two subdomains. The findings support a mechanism for the pressure-induced unfolding of SN in which water penetration into the hydrophobic core plays a central role. PMID:15347583

  4. LEM-3 - A LEM domain containing nuclease involved in the DNA damage response in C. elegans.

    PubMed

    Dittrich, Christina M; Kratz, Katja; Sendoel, Ataman; Gruenbaum, Yosef; Jiricny, Josef; Hengartner, Michael O

    2012-01-01

    The small nematode Caenorhabditis elegans displays a spectrum of DNA damage responses similar to humans. In order to identify new DNA damage response genes, we isolated in a forward genetic screen 14 new mutations conferring hypersensitivity to ionizing radiation. We present here our characterization of lem-3, one of the genes identified in this screen. LEM-3 contains a LEM domain and a GIY nuclease domain. We confirm that LEM-3 has DNase activity in vitro. lem-3(lf) mutants are hypersensitive to various types of DNA damage, including ionizing radiation, UV-C light and crosslinking agents. Embryos from irradiated lem-3 hermaphrodites displayed severe defects during cell division, including chromosome mis-segregation and anaphase bridges. The mitotic defects observed in irradiated lem-3 mutant embryos are similar to those found in baf-1 (barrier-to-autointegration factor) mutants. The baf-1 gene codes for an essential and highly conserved protein known to interact with the other two C. elegans LEM domain proteins, LEM-2 and EMR-1. We show that baf-1, lem-2, and emr-1 mutants are also hypersensitive to DNA damage and that loss of lem-3 sensitizes baf-1 mutants even in the absence of DNA damage. Our data suggest that BAF-1, together with the LEM domain proteins, plays an important role following DNA damage - possibly by promoting the reorganization of damaged chromatin. PMID:22383942

  5. Targeted gene exchange in plant cells mediated by a zinc finger nuclease double cut.

    PubMed

    Schneider, Katja; Schiermeyer, Andreas; Dolls, Anja; Koch, Natalie; Herwartz, Denise; Kirchhoff, Janina; Fischer, Rainer; Russell, Sean M; Cao, Zehui; Corbin, David R; Sastry-Dent, Lakshmi; Ainley, W Michael; Webb, Steven R; Schinkel, Helga; Schillberg, Stefan

    2016-04-01

    Genome modification by homology-directed repair (HDR) is an attractive tool for the controlled genetic manipulation of plants. Here, we report the HDR-mediated gene exchange of expression cassettes in tobacco BY-2 cells using a designed zinc finger nuclease (ZFN). The target contained a 7-kb fragment flanked by two ZFN cutting sites. That fragment was replaced with a 4-kb donor cassette, which integrates gene markers for selection (kanamycin resistance) and for scoring targeting (red fluorescent protein, RFP). Candidates resulting from cassette exchange were identified by molecular analysis of calli generated by transformation via direct DNA delivery. The precision of HDR-mediated donor integration was evaluated by Southern blot analysis, sequencing of the integration locus and analysis of RFP fluorescence by flow cytometry. Screening of 1326 kanamycin-resistant calli yielded 18 HDR events, 16 of which had a perfect cassette exchange at the insert junction and 13 of which produced functional RFP. Our results demonstrate that ZFN-based HDR can be used for high frequency, precise, targeted exchange of fragments of sizes that are commercially relevant in plants. PMID:26426390

  6. Genome Editing in Astyanax mexicanus Using Transcription Activator-like Effector Nucleases (TALENs).

    PubMed

    Kowalko, Johanna E; Ma, Li; Jeffery, William R

    2016-01-01

    Identifying alleles of genes underlying evolutionary change is essential to understanding how and why evolution occurs. Towards this end, much recent work has focused on identifying candidate genes for the evolution of traits in a variety of species. However, until recently it has been challenging to functionally validate interesting candidate genes. Recently developed tools for genetic engineering make it possible to manipulate specific genes in a wide range of organisms. Application of this technology in evolutionarily relevant organisms will allow for unprecedented insight into the role of candidate genes in evolution. Astyanax mexicanus (A. mexicanus) is a species of fish with both surface-dwelling and cave-dwelling forms. Multiple independent lines of cave-dwelling forms have evolved from ancestral surface fish, which are interfertile with one another and with surface fish, allowing elucidation of the genetic basis of cave traits. A. mexicanus has been used for a number of evolutionary studies, including linkage analysis to identify candidate genes responsible for a number of traits. Thus, A. mexicanus is an ideal system for the application of genome editing to test the role of candidate genes. Here we report a method for using transcription activator-like effector nucleases (TALENs) to mutate genes in surface A. mexicanus. Genome editing using TALENs in A. mexicanus has been utilized to generate mutations in pigmentation genes. This technique can also be utilized to evaluate the role of candidate genes for a number of other traits that have evolved in cave forms of A. mexicanus. PMID:27404092

  7. Enzymological characterization of the nuclease domain from the bacterial toxin colicin E9 from Escherichia coli.

    PubMed Central

    Pommer, A J; Wallis, R; Moore, G R; James, R; Kleanthous, C

    1998-01-01

    The cytotoxicity of the bacterial toxin colicin E9 is due to a non-specific DNase that penetrates the cytoplasm of the infected organism and causes cell death. We report the first enzymological characterization of the overexpressed and purified 15 kDa DNase domain (E9 DNase) from this class of toxin. CD spectroscopy shows the E9 DNase to be structured in solution, and analytical ultracentrifugation data indicate that the enzyme is a monomer. The nuclease activity of the E9 DNase was compared with the well-studied, non-specific DNase I by using a spectrophotometric assay with calf thymus DNA as the substrate. Both enzymes require divalent metal ions for activity but, unlike DNase I, the E9 DNase is not activated by Ca2+ ions. Somewhat surprisingly, the E9 DNase shows optimal activity and linear kinetics in the presence of transition metals such as Ni2+ and Co2+ but displays non-linear kinetics with metals such as Mg2+ and Ca2+. Conversely, Ni2+ and other transition metals showed poor activity in a plasmid-based nicking assay, yielding significant amounts of linearized plasmid, whereas Mg2+ was very active, with the main intermediate being open-circle DNA. The results suggest that, on entry into bacterial cells, the E9 DNase is likely to exhibit primarily Mg2+-dependent nicking activity against chromosomal DNA, although other metals could also be utilized to introduce both single- and double-strand cleavages. PMID:9716496

  8. High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases

    PubMed Central

    Qiu, Zhongwei; Liu, Meizhen; Chen, Zhaohua; Shao, Yanjiao; Pan, Hongjie; Wei, Gaigai; Yu, Chao; Zhang, Long; Li, Xia; Wang, Ping; Fan, Heng-Yu; Du, Bing; Liu, Bin; Liu, Mingyao; Li, Dali

    2013-01-01

    Transcription activator-like effector nucleases (TALENs) are a powerful new approach for targeted gene disruption in various animal models, but little is known about their activities in Mus musculus, the widely used mammalian model organism. Here, we report that direct injection of in vitro transcribed messenger RNA of TALEN pairs into mouse zygotes induced somatic mutations, which were stably passed to the next generation through germ-line transmission. With one TALEN pair constructed for each of 10 target genes, mutant F0 mice for each gene were obtained with the mutation rate ranged from 13 to 67% and an average of ∼40% of total healthy newborns with no significant differences between C57BL/6 and FVB/N genetic background. One TALEN pair with single mismatch to their intended target sequence in each side failed to yield any mutation. Furthermore, highly efficient germ-line transmission was obtained, as all the F0 founders tested transmitted the mutations to F1 mice. In addition, we also observed that one bi-allele mutant founder of Lepr gene, encoding Leptin receptor, had similar diabetic phenotype as db/db mouse. Together, our results suggest that TALENs are an effective genetic tool for rapid gene disruption with high efficiency and heritability in mouse with distinct genetic background. PMID:23630316

  9. Protection of polynucleotides against nuclease-mediated hydrolysis by complexation with schizophyllan.

    PubMed

    Mizu, Masami; Koumoto, Kazuya; Kimura, Taro; Sakurai, Kazuo; Shinkai, Seiji

    2004-07-01

    Schizophyllan is a beta-(1-->3)-D-glucan existing as a triple helix in water and as a single chain in dimethylsulfoxide (DMSO), respectively. As we already reported, when some homo-polynucleotide (for example, poly(dA) or poly(C)) is added to the schizophyllan/DMSO solution and subsequently DMSO is exchanged for water, the single chain of schizophyllan (s-SPG) forms a complex with the polynucleotide. The present work demonstrates that the polynucleotide bound in the complex is more stable to nuclease-mediated hydrolysis than the polynucleotide itself (i.e., naked polynucleotide), using high-performance liquid chromatography and ultraviolet absorbance technique. A kinetic study for the hydrolysis clarified that the simple Michaelis-Menten relation is held and the maximum velocity for the complex is one-sixth as small as that of the naked polynucleotide. This low hydrolysis rate for the complex suggests that s-SPG is applicable to a carrier for antisense oligonucleotides. PMID:14967545

  10. DNA repair defects sensitize cells to anticodon nuclease yeast killer toxins.

    PubMed

    Klassen, Roland; Wemhoff, Sabrina; Krause, Jens; Meinhardt, Friedhelm

    2011-03-01

    Killer toxins from Kluyveromyces lactis (zymocin) and Pichia acaciae (PaT) were found to disable translation in target cells by virtue of anticodon nuclease (ACNase) activities on tRNA(Glu) and tRNA(Gln), respectively. Surprisingly, however, ACNase exposure does not only impair translation, but also affects genome integrity and concomitantly DNA damage occurs. Previously, it was shown that homologous recombination protects cells from ACNase toxicity. Here, we have analyzed whether other DNA repair pathways are functional in conferring ACNase resistance as well. In addition to HR, base excision repair (BER) and postreplication repair (PRR) promote clear resistance to either, PaT and zymocin. Comparative toxin sensitivity analysis of BER mutants revealed that its ACNase protective function is due to the endonucleases acting on apurinic (AP) sites, whereas none of the known DNA glycosylases is involved. Because PaT and zymocin require the presence of the ELP3/TRM9-dependent wobble uridine modification 5-methoxy-carbonyl-methyl (mcm(5)) for tRNA cleavage, we analyzed toxin response in DNA repair mutants additionally lacking such tRNA modifications. ACNase resistance caused by elp3 or trm9 mutations was found to rescue hypersensitivity of DNA repair defects, consistent with DNA damage to occur as a consequence of tRNA cleavage. The obtained genetic evidence promises to reveal new aspects into the mechanism linking translational fidelity and genome surveillance. PMID:21188417

  11. Splice site consensus sequences are preferentially accessible to nucleases in isolated adenovirus RNA.

    PubMed Central

    Munroe, S H; Duthie, R S

    1986-01-01

    The conformation of RNA sequences spanning five 3' splice sites and two 5' splice sites in adenovirus mRNA was probed by partial digestion with single-strand specific nucleases. Although cleavage of nucleotides near both 3' and 5' splice sites was observed, most striking was the preferential digestion of sequences near the 3' splice site. At each 3' splice site a region of very strong cleavage is observed at low concentrations of enzyme near the splice site consensus sequence or the upstream branch point consensus sequence. Additional sites of moderately strong cutting near the branch point consensus sequence were observed in those sequences where the splice site was the preferred target. Since recognition of the 3' splice site and branch site appear to be early events in mRNA splicing these observations may indicate that the local conformation of the splice site sequences may play a direct or indirect role in enhancing the accessibility of sequences important for splicing. Images PMID:3024107

  12. Mutational and Biochemical Analysis of the DNA-entry Nuclease EndA from Streptococcus pneumoniae

    SciTech Connect

    M Midon; P Schafer; A Pingoud; M Ghosh; A Moon; M Cuneo; R London; G Meiss

    2011-12-31

    EndA is a membrane-attached surface-exposed DNA-entry nuclease previously known to be required for genetic transformation of Streptococcus pneumoniae. More recent studies have shown that the enzyme also plays an important role during the establishment of invasive infections by degrading extracellular chromatin in the form of neutrophil extracellular traps (NETs), enabling streptococci to overcome the innate immune system in mammals. As a virulence factor, EndA has become an interesting target for future drug design. Here we present the first mutational and biochemical analysis of recombinant forms of EndA produced either in a cell-free expression system or in Escherichia coli. We identify His160 and Asn191 to be essential for catalysis and Asn182 to be required for stability of EndA. The role of His160 as the putative general base in the catalytic mechanism is supported by chemical rescue of the H160A variant of EndA with imidazole added in excess. Our study paves the way for the identification and development of protein or low-molecular-weight inhibitors for EndA in future high-throughput screening assays.

  13. Nuclease Footprints in Sperm Project Past and Future Chromatin Regulatory Events

    PubMed Central

    Johnson, Graham D.; Jodar, Meritxell; Pique-Regi, Roger; Krawetz, Stephen A.

    2016-01-01

    Nuclear remodeling to a condensed state is a hallmark of spermatogenesis. This is achieved by replacement of histones with protamines. Regions retaining nucleosomes may be of functional significance. To determine their potential roles, sperm from wild type and transgenic mice harboring a single copy insert of the human protamine cluster were subjected to Micrococcal Nuclease-seq. CENTIPEDE, a hierarchical Bayesian model, was used to identify multiple spatial patterns, "footprints", of MNase-seq reads along the sperm genome. Regions predicted by CENTIPEDE analysis to be bound by a regulatory factor in sperm were correlated with genomic landmarks and higher order chromatin structure datasets to identify potential roles for these factors in regulating either prior or post spermatogenic, i.e., early embryonic events. This approach linked robust endogenous protamine transcription and transgene suppression to its chromatin environment within topologically associated domains. Of the candidate enhancer-bound regulatory proteins, Ctcf, was associated with chromatin domain boundaries in testes and embryonic stem cells. The continuity of Ctcf binding through the murine germline may permit rapid reconstitution of chromatin organization following fertilization. This likely reflects its preparation for early zygotic genome activation and comparatively accelerated preimplantation embryonic development program observed in mouse as compared to human and bull. PMID:27184706

  14. Tudor Staphylococcal Nuclease plays two antagonistic roles in RNA metabolism under stress

    PubMed Central

    Gutiérrez-Beltran, Emilio; Bozhkov, Peter V; Moschou, Panagiotis N

    2015-01-01

    Adaptation to stress entails a repertoire of molecular pathways that remodel the proteome, thereby promoting selective translation of pro-survival proteins. Yet, translation of other proteins, especially those which are harmful for stress adaptation is, on the contrary, transiently suppressed through mRNA decay or storage. Proteome remodeling under stress is intimately associated with the cytoplasmic ribonucleoprotein (RNP) complexes called stress granules (SGs) and processing bodies (PBs). The molecular composition and regulation of SGs and PBs in plants remain largely unknown. Recently, we identified the Arabidopsis Tudor Staphylococcal Nuclease (TSN, Tudor-SN or SND1) as a SG- and PB-associated protein required for mRNA decapping under stress conditions. Here we show that SGs localize in close proximity to PBs within plant cells that enable the exchange of molecular components. Furthermore, we provide a meta-analysis of mRNA degradome of TSN-deficient plants suggesting that TSN might inhibit the degradation of mRNAs which are involved in stress adaptation. Our results establish TSN as a versatile mRNA regulator during stress. PMID:26237081

  15. Comparison between different forms of estrogen cytosol receptor and the nuclear receptor extracted by micrococcal nuclease.

    PubMed

    Rochefort, H; André, J

    1978-11-01

    As an approach to the mechanism of the nuclear translocation of estrogen receptor, the estradiol nuclear receptor (RN) of lamb endometrium was extracted with micrococcal nuclease at 2--4 degrees and compared to the "native" 8S and to the Ca2+-transformed cytosol receptors. After extensive digestion of chromatin, giving up to 10% perchloric acid-soluble DNA and a majority of nucleosome monomers, up to 80% of the RN was extracted and under low ionic strength. This RN was found to be completely different from the partially proteolyzed Ca2+-transformed cytosol receptor. It migrated with a sedimentation constant of 4 and 6 S. The Stokes radius of the predominant form as determined by ACA 34 chromatography was 5.3 nm. The calculated apparent molecular weights were 130,000 and 90,000, respectively. The RN was able to bind DNA and was eluted from a diethylaminoethyl cellulose column at 0.23 and 0.30 M KCl. We conclude that the mechanism proposed by Puca et al., according to which the Ca2+-transformed cytosol receptor is split by a Ca2+ receptor-transforming factor into a smaller form able to cross the nuclear membrane, is very unlikely. PMID:698961

  16. Oligonucleotide-Mediated Genome Editing Provides Precision and Function to Engineered Nucleases and Antibiotics in Plants.

    PubMed

    Sauer, Noel J; Narváez-Vásquez, Javier; Mozoruk, Jerry; Miller, Ryan B; Warburg, Zachary J; Woodward, Melody J; Mihiret, Yohannes A; Lincoln, Tracey A; Segami, Rosa E; Sanders, Steven L; Walker, Keith A; Beetham, Peter R; Schöpke, Christian R; Gocal, Greg F W

    2016-04-01

    Here, we report a form of oligonucleotide-directed mutagenesis for precision genome editing in plants that uses single-stranded oligonucleotides (ssODNs) to precisely and efficiently generate genome edits at DNA strand lesions made by DNA double strand break reagents. Employing a transgene model in Arabidopsis (Arabidopsis thaliana), we obtained a high frequency of precise targeted genome edits when ssODNs were introduced into protoplasts that were pretreated with the glycopeptide antibiotic phleomycin, a nonspecific DNA double strand breaker. Simultaneous delivery of ssODN and a site-specific DNA double strand breaker, either transcription activator-like effector nucleases (TALENs) or clustered, regularly interspaced, short palindromic repeats (CRISPR/Cas9), resulted in a much greater targeted genome-editing frequency compared with treatment with DNA double strand-breaking reagents alone. Using this site-specific approach, we applied the combination of ssODN and CRISPR/Cas9 to develop an herbicide tolerance trait in flax (Linum usitatissimum) by precisely editing the 5'-ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE SYNTHASE (EPSPS) genes. EPSPS edits occurred at sufficient frequency that we could regenerate whole plants from edited protoplasts without employing selection. These plants were subsequently determined to be tolerant to the herbicide glyphosate in greenhouse spray tests. Progeny (C1) of these plants showed the expected Mendelian segregation of EPSPS edits. Our findings show the enormous potential of using a genome-editing platform for precise, reliable trait development in crop plants. PMID:26864017

  17. Equilibrium and kinetic studies on reversible and irreversible denaturation of micrococcal nuclease.

    PubMed

    Nohara, D; Yamada, T; Watanabe, A; Sakai, T

    1994-07-01

    The effect of pH and temperature on the thermal denaturation of micrococcal nuclease were investigated. The ranges employed were between pH3.30 and pH9.70 and between 10 degrees C and 85 degrees C, respectively. The reversible denaturation involved in the whole process was clearly discriminated from the irreversible one. The former took place with a large enthalpy change of 384 kJ mol(-1) at pH 9.70, where the enzyme exhibited it s maximum activity. The latter probably led to aggregation because the successive long incubation after complete deactivation caused precipitation. A reasonable scheme explaining the process involving both denaturations was proposed and the kinetic on the irreversible deactivation was performed. It was revealed that the irreversible deactivation involved two types of reactions whose activation energies were relatively small: 22.2 kJ mol(-1) and 18.8 kJ mol(-1). The presence of sucrose suppressed the reversible denaturation without significant influence on enthalpy change, whereas it affected little the irreversible deactivation kinetically. The effects of pH change and addition of sucrose on the denaturation were discussed thermodynamically, especially in terms of the entropy change. PMID:18618743

  18. Structural characterization of the virulence factor Sda1 nuclease from Streptococcus pyogenes.

    PubMed

    Moon, Andrea F; Krahn, Juno M; Lu, Xun; Cuneo, Matthew J; Pedersen, Lars C

    2016-05-01

    Infection by Group A Streptococcus pyogenes (GAS) is a leading cause of severe invasive disease in humans, including streptococcal toxic shock syndrome and necrotizing fasciitis. GAS infections lead to nearly 163,000 annual deaths worldwide. Hypervirulent strains of S. pyogenes have evolved a plethora of virulence factors that aid in disease-by promoting bacterial adhesion to host cells, subsequent invasion of deeper tissues and blocking the immune system's attempts to eradicate the infection. Expression and secretion of the extracellular nuclease Sda1 is advantageous for promoting bacterial dissemination throughout the host organism, and evasion of the host's innate immune response. Here we present two crystal structures of Sda1, as well as biochemical studies to address key structural features and surface residues involved in DNA binding and catalysis. In the active site, Asn211 is observed to directly chelate a hydrated divalent metal ion and Arg124, on the putative substrate binding loop, likely stabilizes the transition state during phosphodiester bond cleavage. These structures provide a foundation for rational drug design of small molecule inhibitors to be used in prevention of invasive streptococcal disease. PMID:26969731

  19. Structural characterization of the virulence factor Sda1 nuclease from Streptococcus pyogenes

    PubMed Central

    Moon, Andrea F.; Krahn, Juno M.; Lu, Xun; Cuneo, Matthew J.; Pedersen, Lars C.

    2016-01-01

    Infection by Group A Streptococcus pyogenes (GAS) is a leading cause of severe invasive disease in humans, including streptococcal toxic shock syndrome and necrotizing fasciitis. GAS infections lead to nearly 163,000 annual deaths worldwide. Hypervirulent strains of S. pyogenes have evolved a plethora of virulence factors that aid in disease—by promoting bacterial adhesion to host cells, subsequent invasion of deeper tissues and blocking the immune system's attempts to eradicate the infection. Expression and secretion of the extracellular nuclease Sda1 is advantageous for promoting bacterial dissemination throughout the host organism, and evasion of the host's innate immune response. Here we present two crystal structures of Sda1, as well as biochemical studies to address key structural features and surface residues involved in DNA binding and catalysis. In the active site, Asn211 is observed to directly chelate a hydrated divalent metal ion and Arg124, on the putative substrate binding loop, likely stabilizes the transition state during phosphodiester bond cleavage. These structures provide a foundation for rational drug design of small molecule inhibitors to be used in prevention of invasive streptococcal disease. PMID:26969731

  20. Crystallization and preliminary X-ray characterization of two thermostable DNA nucleases

    PubMed Central

    Kuettner, E. Bartholomeus; Pfeifer, Sven; Keim, Antje; Greiner-Stöffele, Thomas; Sträter, Norbert

    2006-01-01

    Temperature-tolerant organisms are an important source to enhance the stability of enzymes used in biotechnological processes. The DNA-cleaving enzyme exonuclease III from Escherichia coli is used in several applications in gene technology. A thermostable variant could expand the applicability of the enzyme in these methods. Two homologous nucleases from Archaeoglobus fulgidus (ExoAf) and Methanothermobacter thermoautrophicus (ExoMt) were studied for this purpose. Both enzymes were crystallized in different space groups using (poly)ethylene glycols, 2,4-methyl pentandiol, dioxane, ethanol or 2-propanol as precipitants. The addition of a 10-mer DNA oligonucleotide was important to obtain monoclinic crystals of ExoAf and ExoMt that diffracted to resolutions better than 2 Å using synchrotron radiation. The crystal structures of the homologous proteins can serve as templates for genetic engineering of the E. coli exonuclease III and will aid in understanding the different catalytic properties of the enzymes. PMID:17142920

  1. Use of the HPRT gene to study nuclease-induced DNA double-strand break repair

    PubMed Central

    Gravells, Polly; Ahrabi, Sara; Vangala, Rajani K.; Tomita, Kazunori; Brash, James T.; Brustle, Lena A.; Chung, Christopher; Hong, Julia M.; Kaloudi, Aikaterini; Humphrey, Timothy C.; Porter, Andrew C.G.

    2015-01-01

    Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been developed to detect various DSBR pathways. Here, using a single endogenous reporter gene, the X-chromosomal disease gene encoding hypoxanthine phosphoribosyltransferase (HPRT), we monitor the relative utilization of three DSBR pathways following cleavage by I-SceI or CRISPR/Cas9 nucleases. For I-SceI, our estimated frequencies of accurate or mutagenic non-homologous end-joining and gene correction by homologous recombination are 4.1, 1.5 and 0.16%, respectively. Unexpectedly, I-SceI and Cas9 induced markedly different DSBR profiles. Also, using an I-SceI-sensitive HPRT minigene, we show that gene correction is more efficient when using long double-stranded DNA than single- or double-stranded oligonucleotides. Finally, using both endogenous HPRT and exogenous reporters, we validate novel cell cycle phase-specific I-SceI derivatives for investigating cell cycle variations in DSBR. The results obtained using these novel approaches provide new insights into template design for gene correction and the relationships between multiple DSBR pathways at a single endogenous disease gene. PMID:26423459

  2. 14-3-3 proteins restrain the Exo1 nuclease to prevent overresection.

    PubMed

    Chen, Xiaoqing; Kim, In-Kwon; Honaker, Yuchi; Paudyal, Sharad C; Koh, Won Kyun; Sparks, Melanie; Li, Shan; Piwnica-Worms, Helen; Ellenberger, Tom; You, Zhongsheng

    2015-05-01

    The DNA end resection process dictates the cellular response to DNA double strand break damage and is essential for genome maintenance. Although insufficient DNA resection hinders homology-directed repair and ATR (ataxia telangiectasia and Rad3 related)-dependent checkpoint activation, overresection produces excessive single-stranded DNA that could lead to genomic instability. However, the mechanisms controlling DNA end resection are poorly understood. Here we show that the major resection nuclease Exo1 is regulated both positively and negatively by protein-protein interactions to ensure a proper level of DNA resection. We have shown previously that the sliding DNA clamp proliferating cell nuclear antigen (PCNA) associates with the C-terminal domain of Exo1 and promotes Exo1 damage association and DNA resection. In this report, we show that 14-3-3 proteins interact with a central region of Exo1 and negatively regulate Exo1 damage recruitment and subsequent resection. 14-3-3s limit Exo1 damage association, at least in part, by suppressing its association with PCNA. Disruption of the Exo1 interaction with 14-3-3 proteins results in elevated sensitivity of cells to DNA damage. Unlike Exo1, the Dna2 resection pathway is apparently not regulated by PCNA and 14-3-3s. Our results provide critical insights into the mechanism and regulation of the DNA end resection process and may have implications for cancer treatment. PMID:25833945

  3. Nuclease Footprints in Sperm Project Past and Future Chromatin Regulatory Events.

    PubMed

    Johnson, Graham D; Jodar, Meritxell; Pique-Regi, Roger; Krawetz, Stephen A

    2016-01-01

    Nuclear remodeling to a condensed state is a hallmark of spermatogenesis. This is achieved by replacement of histones with protamines. Regions retaining nucleosomes may be of functional significance. To determine their potential roles, sperm from wild type and transgenic mice harboring a single copy insert of the human protamine cluster were subjected to Micrococcal Nuclease-seq. CENTIPEDE, a hierarchical Bayesian model, was used to identify multiple spatial patterns, "footprints", of MNase-seq reads along the sperm genome. Regions predicted by CENTIPEDE analysis to be bound by a regulatory factor in sperm were correlated with genomic landmarks and higher order chromatin structure datasets to identify potential roles for these factors in regulating either prior or post spermatogenic, i.e., early embryonic events. This approach linked robust endogenous protamine transcription and transgene suppression to its chromatin environment within topologically associated domains. Of the candidate enhancer-bound regulatory proteins, Ctcf, was associated with chromatin domain boundaries in testes and embryonic stem cells. The continuity of Ctcf binding through the murine germline may permit rapid reconstitution of chromatin organization following fertilization. This likely reflects its preparation for early zygotic genome activation and comparatively accelerated preimplantation embryonic development program observed in mouse as compared to human and bull. PMID:27184706

  4. Evaluation and application of modularly assembled zinc-finger nucleases in zebrafish

    PubMed Central

    Zhu, Cong; Smith, Tom; McNulty, Joseph; Rayla, Amy L.; Lakshmanan, Abirami; Siekmann, Arndt F.; Buffardi, Matthew; Meng, Xiangdong; Shin, Jimann; Padmanabhan, Arun; Cifuentes, Daniel; Giraldez, Antonio J.; Look, A. Thomas; Epstein, Jonathan A.; Lawson, Nathan D.; Wolfe, Scot A.

    2011-01-01

    Zinc-finger nucleases (ZFNs) allow targeted gene inactivation in a wide range of model organisms. However, construction of target-specific ZFNs is technically challenging. Here, we evaluate a straightforward modular assembly-based approach for ZFN construction and gene inactivation in zebrafish. From an archive of 27 different zinc-finger modules, we assembled more than 70 different zinc-finger cassettes and evaluated their specificity using a bacterial one-hybrid assay. In parallel, we constructed ZFNs from these cassettes and tested their ability to induce lesions in zebrafish embryos. We found that the majority of zinc-finger proteins assembled from these modules have favorable specificities and nearly one-third of modular ZFNs generated lesions at their targets in the zebrafish genome. To facilitate the application of ZFNs within the zebrafish community we constructed a public database of sites in the zebrafish genome that can be targeted using this archive. Importantly, we generated new germline mutations in eight different genes, confirming that this is a viable platform for heritable gene inactivation in vertebrates. Characterization of one of these mutants, gata2a, revealed an unexpected role for this transcription factor in vascular development. This work provides a resource to allow targeted germline gene inactivation in zebrafish and highlights the benefit of a definitive reverse genetic strategy to reveal gene function. PMID:21937602

  5. Editing T cell specificity towards leukemia by zinc-finger nucleases and lentiviral gene transfer

    PubMed Central

    Lombardo, Angelo; Magnani, Zulma; Liu, Pei-Qi; Reik, Andreas; Chu, Victoria; Paschon, David E.; Zhang, Lei; Kuball, Jurgen; Camisa, Barbara; Bondanza, Attilio; Casorati, Giulia; Ponzoni, Maurilio; Ciceri, Fabio; Bordignon, Claudio; Greenberg, Philip D.; Holmes, Michael C.; Gregory, Philip D.; Naldini, Luigi; Bonini, Chiara

    2016-01-01

    The transfer of high-avidity T-cell receptor (TCR) genes isolated from rare tumor-specific lymphocytes into polyclonal T cells is an attractive cancer immunotherapy strategy. However, TCR gene transfer results in competition for surface expression and inappropriate pairing between the exogenous and endogenous TCR chains, resulting in suboptimal activity and potentially harmful unpredicted specificities. We designed zinc-finger nucleases (ZFNs) promoting the disruption of endogenous TCR β and α chain genes. ZFN-treated lymphocytes lacked CD3/TCR surface expression and expanded with IL-7 and IL-15. Upon lentiviral transfer of a TCR for the WT1 tumor antigen, these TCR-edited cells expressed the new TCR at high levels, were easily expanded to near-purity, and proved superior in specific antigen recognition to matched TCR-transferred cells. In contrast to TCR-transferred cells, TCR edited lymphocytes did not mediate off-target reactivity while maintaining anti-tumor activity in vivo, thus demonstrating that complete editing of T-cell specificity generate tumor-specific lymphocytes with improved biosafety profile. PMID:22466705

  6. The CopC Family: Structural and Bioinformatic Insights into a Diverse Group of Periplasmic Copper Binding Proteins.

    PubMed

    Lawton, Thomas J; Kenney, Grace E; Hurley, Joseph D; Rosenzweig, Amy C

    2016-04-19

    The CopC proteins are periplasmic copper binding proteins believed to play a role in bacterial copper homeostasis. Previous studies have focused on CopCs that are part of seven-protein Cop or Pco systems involved in copper resistance. These canonical CopCs contain distinct Cu(I) and Cu(II) binding sites. Mounting evidence suggests that CopCs are more widely distributed, often present only with the CopD inner membrane protein, frequently as a fusion protein, and that the CopC and CopD proteins together function in the uptake of copper to the cytoplasm. In the methanotroph Methylosinus trichosporium OB3b, genes encoding a CopCD pair are located adjacent to the particulate methane monooxygenase (pMMO) operon. The CopC from this organism (Mst-CopC) was expressed, purified, and structurally characterized. The 1.46 Å resolution crystal structure of Mst-CopC reveals a single Cu(II) binding site with coordination somewhat different from that in canonical CopCs, and the absence of a Cu(I) binding site. Extensive bioinformatic analyses indicate that the majority of CopCs in fact contain only a Cu(II) site, with just 10% of sequences corresponding to the canonical two-site CopC. Accordingly, a new classification scheme for CopCs was developed, and detailed analyses of the sequences and their genomic neighborhoods reveal new proteins potentially involved in copper homeostasis, providing a framework for expanded models of CopCD function. PMID:27010565

  7. Structural and Functional Characterization of ScsC, a Periplasmic Thioredoxin-Like Protein from Salmonella enterica Serovar Typhimurium

    PubMed Central

    Shepherd, Mark; Heras, Begoña; Achard, Maud E. S.; King, Gordon J.; Argente, M. Pilar; Kurth, Fabian; Taylor, Samantha L.; Howard, Mark J.; King, Nathan P.

    2013-01-01

    Abstract Aims: The prototypical protein disulfide bond (Dsb) formation and protein refolding pathways in the bacterial periplasm involving Dsb proteins have been most comprehensively defined in Escherichia coli. However, genomic analysis has revealed several distinct Dsb-like systems in bacteria, including the pathogen Salmonella enterica serovar Typhimurium. This includes the scsABCD locus, which encodes a system that has been shown via genetic analysis to confer copper tolerance, but whose biochemical properties at the protein level are not defined. The aim of this study was to provide functional insights into the soluble ScsC protein through structural, biochemical, and genetic analyses. Results: Here we describe the structural and biochemical characterization of ScsC, the soluble DsbA-like component of this system. Our crystal structure of ScsC reveals a similar overall fold to DsbA, although the topology of β-sheets and α-helices in the thioredoxin domains differ. The midpoint reduction potential of the CXXC active site in ScsC was determined to be −132 mV versus normal hydrogen electrode. The reactive site cysteine has a low pKa, typical of the nucleophilic cysteines found in DsbA-like proteins. Deletion of scsC from S. Typhimurium elicits sensitivity to copper (II) ions, suggesting a potential involvement for ScsC in disulfide folding under conditions of copper stress. Innovation and Conclusion: ScsC is a novel disulfide oxidoreductase involved in protection against copper ion toxicity. Antioxid. Redox Signal. 19, 1494–1506. PMID:23642141

  8. Regulation of nap Gene Expression and Periplasmic Nitrate Reductase Activity in the Phototrophic Bacterium Rhodobacter sphaeroides DSM158

    PubMed Central

    Gavira, Mónica; Roldán, M. Dolores; Castillo, Francisco; Moreno-Vivián, Conrado

    2002-01-01

    Bacterial periplasmic nitrate reductases (Nap) can play different physiological roles and are expressed under different conditions depending on the organism. Rhodobacter sphaeroides DSM158 has a Nap system, encoded by the napKEFDABC gene cluster, but nitrite formed is not further reduced because this strain lacks nitrite reductase. Nap activity increases in the presence of nitrate and oxygen but is unaffected by ammonium. Reverse transcription-PCR and Northern blots demonstrated that the napKEFDABC genes constitute an operon transcribed as a single 5.5-kb product. Northern blots and nap-lacZ fusions revealed that nap expression is threefold higher under aerobic conditions but is regulated by neither nitrate nor ammonium, although it is weakly induced by nitrite. On the other hand, nitrate but not nitrite causes a rapid enzyme activation, explaining the higher Nap activity found in nitrate-grown cells. Translational nap′-′lacZ fusions reveal that the napK and napD genes are not efficiently translated, probably due to mRNA secondary structures occluding the translation initiation sites of these genes. Neither butyrate nor caproate increases nap expression, although cells growing phototrophically on these reduced substrates show a very high Nap activity in vivo (nitrite accumulation is sevenfold higher than in medium with malate). Phototrophic growth on butyrate or caproate medium is severely reduced in the NapA− mutants. Taken together, these results indicate that nitrate reduction in R. sphaeroides is mainly regulated at the level of enzyme activity by both nitrate and electron supply and confirm that the Nap system is involved in redox balancing using nitrate as an ancillary oxidant to dissipate excess reductant. PMID:11872721

  9. Bacterial Lysis Liberates the Neutrophil Migration Suppressor YbcL from the Periplasm of Uropathogenic Escherichia coli

    PubMed Central

    Lau, Megan E.; Danka, Elizabeth S.; Tiemann, Kristin M.

    2014-01-01

    Uropathogenic Escherichia coli (UPEC) modulates aspects of the innate immune response during urinary tract infection to facilitate bacterial invasion of the bladder epithelium, a requirement for the propagation of infection. For example, UPEC-encoded YbcL suppresses the traversal of bladder epithelia by neutrophils in both an in vitro model and an in vivo murine cystitis model. The suppressive activity of YbcL requires liberation from the bacterial periplasm, though the mechanism of release is undefined. Here we present findings on the site of action of YbcL and demonstrate a novel mode of secretion for a UPEC exoprotein. Suppression of neutrophil migration by purified YbcLUTI, encoded by cystitis isolate UTI89, required the presence of a uroepithelial layer; YbcLUTI did not inhibit neutrophil chemotaxis directly. YbcLUTI was released to a greater extent during UPEC infection of uroepithelial cells than during that of neutrophils. Release of YbcLUTI was maximal when UPEC and bladder epithelial cells were in close proximity. Established modes of secretion, including outer membrane vesicles, the type II secretion system, and the type IV pilus, were dispensable for YbcLUTI release from UPEC. Instead, YbcLUTI was liberated during bacterial death, which was augmented upon exposure to bladder epithelial cells, as confirmed by detection of bacterial cytoplasmic proteins and DNA in the supernatant and enumeration of bacteria with compromised membranes. As YbcLUTI acts on the uroepithelium to attenuate neutrophil migration, this mode of release may represent a type of altruistic cooperation within a UPEC population during colonization of the urinary tract. PMID:25183735

  10. Release of Periplasmic Nucleotidase Induced by Human Antimicrobial Peptide in E. coli Causes Accumulation of the Immunomodulator Adenosine

    PubMed Central

    Estrela, Andreia Bergamo; Türck, Patrick; Stutz, Elaine; Abraham, Wolf-Rainer

    2015-01-01

    Previous work by our group described that human β-defensin-2 induces accumulation of extracellular adenosine (Ado) in E. coli cultures through a non-lytic mechanism causing severe plasmolysis. Here, we investigate the presence of AMP as a direct precursor and the involvement of a bacterial enzyme in the generation of extracellular Ado by treated bacteria. Following hBD-2 treatment, metabolites were quantified in the supernatants using targeted HPLC-MS/MS analysis. Microbial growth was monitored by optical density and cell viability was determined by colony forming units counts. Phosphatase activity was measured using chromogenic substrate pNPP. The results demonstrate that defensin-treated E. coli strain W releases AMP in the extracellular space, where it is converted to Ado by a bacterial soluble factor. An increase in phosphatase activity in the supernatant was observed after peptide treatment, similar to the effect of sucrose-induced osmotic stress, suggesting that the periplasmic 5'nucleotidase (5'-NT) is released following the plasmolysis event triggered by the peptide. Ado accumulation was enhanced in the presence of Co2+ ion and inhibited by EDTA, further supporting the involvement of a metallo-phosphatase such as 5’-NT in extracellular AMP conversion into Ado. The comparative analysis of hBD-induced Ado accumulation in different E. coli strains and in Pseudomonas aeruginosa revealed that the response is not correlated to the peptide's effect on cell viability, but indicates it might be dependent on the subcellular distribution of the nucleotidase. Taken together, these data shed light on a yet undescribed mechanism of host-microbial interaction: a human antimicrobial peptide inducing selective release of a bacterial enzyme (E. coli 5'-NT), leading to the formation of a potent immunomodulator metabolite (Ado). PMID:26371472

  11. Release of Periplasmic Nucleotidase Induced by Human Antimicrobial Peptide in E. coli Causes Accumulation of the Immunomodulator Adenosine.

    PubMed

    Estrela, Andreia Bergamo; Türck, Patrick; Stutz, Elaine; Abraham, Wolf-Rainer

    2015-01-01

    Previous work by our group described that human β-defensin-2 induces accumulation of extracellular adenosine (Ado) in E. coli cultures through a non-lytic mechanism causing severe plasmolysis. Here, we investigate the presence of AMP as a direct precursor and the involvement of a bacterial enzyme in the generation of extracellular Ado by treated bacteria. Following hBD-2 treatment, metabolites were quantified in the supernatants using targeted HPLC-MS/MS analysis. Microbial growth was monitored by optical density and cell viability was determined by colony forming units counts. Phosphatase activity was measured using chromogenic substrate pNPP. The results demonstrate that defensin-treated E. coli strain W releases AMP in the extracellular space, where it is converted to Ado by a bacterial soluble factor. An increase in phosphatase activity in the supernatant was observed after peptide treatment, similar to the effect of sucrose-induced osmotic stress, suggesting that the periplasmic 5'nucleotidase (5'-NT) is released following the plasmolysis event triggered by the peptide. Ado accumulation was enhanced in the presence of Co2+ ion and inhibited by EDTA, further supporting the involvement of a metallo-phosphatase such as 5'-NT in extracellular AMP conversion into Ado. The comparative analysis of hBD-induced Ado accumulation in different E. coli strains and in Pseudomonas aeruginosa revealed that the response is not correlated to the peptide's effect on cell viability, but indicates it might be dependent on the subcellular distribution of the nucleotidase. Taken together, these data shed light on a yet undescribed mechanism of host-microbial interaction: a human antimicrobial peptide inducing selective release of a bacterial enzyme (E. coli 5'-NT), leading to the formation of a potent immunomodulator metabolite (Ado). PMID:26371472

  12. Mannosylglycerate stabilizes staphylococcal nuclease with restriction of slow β-sheet motions

    PubMed Central

    Pais, Tiago M; Lamosa, Pedro; Matzapetakis, Manolis; Turner, David L; Santos, Helena

    2012-01-01

    Mannosylglycerate is a compatible solute typical of thermophilic marine microorganisms that has a remarkable ability to protect proteins from thermal denaturation. This ionic solute appears to be a universal stabilizing agent, but the extent of protection depends on the specific protein examined. To understand how mannosylglycerate confers protection, we have been studying its influence on the internal motions of a hyperstable staphylococcal nuclease (SNase). Previously, we found a correlation between the magnitude of protein stabilization and the restriction of fast backbone motions. We now report the effect of mannosylglycerate on the fast motions of side-chains and on the slower unfolding motions of the protein. Side-chain motions were assessed by 13CH3 relaxation measurements and model-free analysis while slower unfolding motions were probed by H/D exchange measurements at increasing concentrations of urea. Side-chain motions were little affected by the presence of different concentrations of mannosylglycerate or even by the presence of urea (0.25M), and show no correlation with changes in the thermodynamic stability of SNase. Native hydrogen exchange experiments showed that, contrary to reports on other stabilizing solutes, mannosylglycerate restricts local motions in addition to the global motions of the protein. The protein unfolding/folding pathway remained undisturbed in the presence of mannosylglycerate but the solute showed a specific effect on the local motions of β-sheet residues. This work reinforces the link between solute-induced stabilization and restriction of protein motions at different timescales, and shows that the solute preferentially affects specific structural elements of SNase. PMID:22619184

  13. Structural Plasticity of Staphylococcal Nuclease Probed by Perturbation with Pressure and pH

    PubMed Central

    Kitahara, Ryo; Hata, Kazumi; Maeno, Akihiro; Akasaka, Kazuyuki; Chimenti, Michael; Bertrand Garcia-Moreno, E; Schroer, Martin A.; Jeworrek, Christoph; Tolan, Metin; Winter, Roland; Roche, Julien; Roumestand, Christian; de Guillen, Karine Montet; Royer, Catherine A.

    2012-01-01

    The ionization of internal groups in proteins can trigger conformational change. Despite this being the structural basis of most biological energy transduction, these processes are poorly understood. SAXS and NMR spectroscopy experiments at ambient and high hydrostatic pressure were used to examine how the presence and ionization of Lys-66, buried in the hydrophobic core of a stabilized variant of staphylococcal nuclease, affect conformation and dynamics. NMR spectroscopy at atmospheric pressure showed previously that the neutral Lys-66 affects slow conformational fluctuations globally, whereas the effects of the charged form are localized to the region immediately surrounding position 66. Ab initio models from SAXS data suggest that when Lys-66 is charged the protein expands, which is consistent with results from NMR spectroscopy. The application of moderate pressure (< 2 kbar) at pH values where Lys-66 is normally neutral at ambient pressure left most of the structure unperturbed but produced significant non-linear changes in chemical shifts in the helix where Lys-66 is located. Above 2 kbar pressure at these pH values the protein with Lys-66 unfolded cooperatively adopting a relatively compact, albeit random structure according to Kratky analysis of the SAXS data. In contrast, at low pH and high pressure the unfolded state of the variant with Lys-66 is more expanded than that of the reference protein. The combined global and local view of the structural reorganization triggered by ionization of the internal Lys-66 reveals more detectable changes than were previously suggested by NMR spectroscopy at ambient pressure. PMID:21254234

  14. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases

    PubMed Central

    Moehle, Erica A.; Rock, Jeremy M.; Lee, Ya-Li; Jouvenot, Yann; DeKelver, Russell C.; Gregory, Philip D.; Urnov, Fyodor D.; Holmes, Michael C.

    2007-01-01

    Efficient incorporation of novel DNA sequences into a specific site in the genome of living human cells remains a challenge despite its potential utility to genetic medicine, biotechnology, and basic research. We find that a precisely placed double-strand break induced by engineered zinc finger nucleases (ZFNs) can stimulate integration of long DNA stretches into a predetermined genomic location, resulting in high-efficiency site-specific gene addition. Using an extrachromosomal DNA donor carrying a 12-bp tag, a 900-bp ORF, or a 1.5-kb promoter-transcription unit flanked by locus-specific homology arms, we find targeted integration frequencies of 15%, 6%, and 5%, respectively, within 72 h of treatment, and with no selection for the desired event. Importantly, we find that the integration event occurs in a homology-directed manner and leads to the accurate reconstruction of the donor-specified genotype at the endogenous chromosomal locus, and hence presumably results from synthesis-dependent strand annealing repair of the break using the donor DNA as a template. This site-specific gene addition occurs with no measurable increase in the rate of random integration. Remarkably, we also find that ZFNs can drive the addition of an 8-kb sequence carrying three distinct promoter-transcription units into an endogenous locus at a frequency of 6%, also in the absence of any selection. These data reveal the surprising versatility of the specialized polymerase machinery involved in double-strand break repair, illuminate a powerful approach to mammalian cell engineering, and open the possibility of ZFN-driven gene addition therapy for human genetic disease. PMID:17360608

  15. Efficient Immunoglobulin Gene Disruption and Targeted Replacement in Rabbit Using Zinc Finger Nucleases

    PubMed Central

    Offner, Sonja; Ros, Francesca; Lifke, Valeria; Zeitler, Bryan; Rottmann, Oswald; Vincent, Anna; Zhang, Lei; Jenkins, Shirin; Niersbach, Helmut; Kind, Alexander J.; Gregory, Philip D.; Schnieke, Angelika E.; Platzer, Josef

    2011-01-01

    Rabbits are widely used in biomedical research, yet techniques for their precise genetic modification are lacking. We demonstrate that zinc finger nucleases (ZFNs) introduced into fertilized oocytes can inactivate a chosen gene by mutagenesis and also mediate precise homologous recombination with a DNA gene-targeting vector to achieve the first gene knockout and targeted sequence replacement in rabbits. Two ZFN pairs were designed that target the rabbit immunoglobulin M (IgM) locus within exons 1 and 2. ZFN mRNAs were microinjected into pronuclear stage fertilized oocytes. Founder animals carrying distinct mutated IgM alleles were identified and bred to produce offspring. Functional knockout of the immunoglobulin heavy chain locus was confirmed by serum IgM and IgG deficiency and lack of IgM+ and IgG+ B lymphocytes. We then tested whether ZFN expression would enable efficient targeted sequence replacement in rabbit oocytes. ZFN mRNA was co-injected with a linear DNA vector designed to replace exon 1 of the IgM locus with ∼1.9 kb of novel sequence. Double strand break induced targeted replacement occurred in up to 17% of embryos and in 18% of fetuses analyzed. Two major goals have been achieved. First, inactivation of the endogenous IgM locus, which is an essential step for the production of therapeutic human polyclonal antibodies in the rabbit. Second, establishing efficient targeted gene manipulation and homologous recombination in a refractory animal species. ZFN mediated genetic engineering in the rabbit and other mammals opens new avenues of experimentation in immunology and many other research fields. PMID:21695153

  16. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases.

    PubMed

    Moehle, Erica A; Moehle, E A; Rock, Jeremy M; Rock, J M; Lee, Ya-Li; Lee, Y L; Jouvenot, Yann; Jouvenot, Y; DeKelver, Russell C; Dekelver, R C; Gregory, Philip D; Gregory, P D; Urnov, Fyodor D; Urnov, F D; Holmes, Michael C; Holmes, M C

    2007-02-27

    Efficient incorporation of novel DNA sequences into a specific site in the genome of living human cells remains a challenge despite its potential utility to genetic medicine, biotechnology, and basic research. We find that a precisely placed double-strand break induced by engineered zinc finger nucleases (ZFNs) can stimulate integration of long DNA stretches into a predetermined genomic location, resulting in high-efficiency site-specific gene addition. Using an extrachromosomal DNA donor carrying a 12-bp tag, a 900-bp ORF, or a 1.5-kb promoter-transcription unit flanked by locus-specific homology arms, we find targeted integration frequencies of 15%, 6%, and 5%, respectively, within 72 h of treatment, and with no selection for the desired event. Importantly, we find that the integration event occurs in a homology-directed manner and leads to the accurate reconstruction of the donor-specified genotype at the endogenous chromosomal locus, and hence presumably results from synthesis-dependent strand annealing repair of the break using the donor DNA as a template. This site-specific gene addition occurs with no measurable increase in the rate of random integration. Remarkably, we also find that ZFNs can drive the addition of an 8-kb sequence carrying three distinct promoter-transcription units into an endogenous locus at a frequency of 6%, also in the absence of any selection. These data reveal the surprising versatility of the specialized polymerase machinery involved in double-strand break repair, illuminate a powerful approach to mammalian cell engineering, and open the possibility of ZFN-driven gene addition therapy for human genetic disease. PMID:17360608

  17. Zinc-finger nuclease mediated disruption of Rag1 in the LEW/Ztm rat

    PubMed Central

    2012-01-01

    Background Engineered zinc-finger nucleases (ZFN) represented an innovative method for the genome manipulation in vertebrates. ZFN introduced targeted DNA double strand breaks (DSB) and initiated non-homologous end joining (NHEJ) after pronuclear or cytoplasmatic microinjection into zygotes. Resulting frame shift mutations led to functional gene ablations in zebra fish, mice, pigs and also in laboratory rats. Therefore, we targeted the rat Rag1 gene essential for the V(D)J recombination within the immunoglobulin production process and for the differentiation of mature B and T lymphocytes to generate an immunodeficient rat model in the LEW/Ztm strain. Results After microinjection of Rag1 specific ZFN mRNAs in 623 zygotes of inbred LEW/Ztm rats 59 offspring were born from which one carried a 4 bp deletion. This frame shift mutation led to a premature stop codon and a subsequently truncated Rag1 protein confirmed by the loss of the full-length protein in Western Blot analysis. Truncation of the Rag1 protein was characterized by the complete depletion of mature B cells. The remaining T cell population contained mature CD4+/CD3+/TCRαβ+ as well as CD8+/CD3+/TCRαβ+ positive lymphocytes accompanied by a compensatory increase of natural killer cells in the peripheral blood. Reduction of T cell development in Rag1 mutant rats was associated with a hypoplastic thymus that lacked follicular structures. Histological evaluation also revealed the near-complete absence of lymphocytes in spleen and lymph nodes in the immunodeficient Rag1 mutant rat. Conclusion The Rag1 mutant rat will serve as an important model for transplantation studies. Furthermore, it may be used as a model for reconstitution experiments related to the immune system, particularly with respect to different populations of human lymphocytes, natural killer cells and autoimmune phenomena. PMID:23136839

  18. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication.

    PubMed

    Weber, Nicholas D; Stone, Daniel; Sedlak, Ruth Hall; De Silva Feelixge, Harshana S; Roychoudhury, Pavitra; Schiffer, Joshua T; Aubert, Martine; Jerome, Keith R

    2014-01-01

    Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs) that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB), imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV) vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy. PMID:24827459

  19. Processing of 3'-Phosphoglycolate-Terminated DNA Double-StrandBreaks by Artemis Nuclease

    SciTech Connect

    Povrik, Lawrence F.; Zhou, Tong; Zhou, Ruizhe; Cowan, Morton J.; Yannone, Steven M.

    2005-10-01

    The Artemis nuclease is required for V(D)J recombination and for repair of an as yet undefined subset of radiation-induced DNA double-strand breaks. To assess the possibility that Artemis functions on oxidatively modified double-strand break termini, its activity toward model DNA substrates, bearing either 3{prime}-hydroxyl or 3{prime}-phosphoglycolate moieties, was examined. A 3{prime}-phosphoglycolate had little effect on Artemis-mediated trimming of long 3{prime} overhangs (>9 nucleotides), which were efficiently trimmed to 4-5 nucleotides. However, 3{prime}-phosphoglycolates on overhangs of 4-5 bases promoted selective Artemis-mediated trimming of a single 3{prime}-terminal nucleotide, while at least 2 nucleotides were trimmed from identical hydroxyl-terminated substrates. Artemis also efficiently removed a single nucleotide from a phosphoglycolate-terminated 3-base 3{prime} overhang, while leaving an analogous hydroxyl-terminated overhang largely intact. Such removal was dependent upon Ku, DNA-dependent protein kinase, and ATP. Together, these data suggest that Artemis-mediated cleavage of 3{prime} overhangs requires a minimum of 2 nucleotides, or a nucleotide plus a phosphoglycolate, 3{prime} to the cleavage site. Shorter 3{prime}-phosphoglycolate-terminated overhangs and blunt ends were also processed by Artemis, but much less efficiently. Consistent with the in vitro substrate specificity of Artemis, human cells lacking Artemis exhibited hypersensitivity to X-rays, bleomycin and neocarzinostatin, which all induce 3{prime}-phosphoglycolate-terminated double-strand breaks. Collectively, these results suggest that 3{prime}-phosphoglycolate termini and/or specific classes of DNA ends that arise from such blocked termini are relevant Artemis substrates in vivo.

  20. Nuclease Activity of Legionella pneumophila Cas2 Promotes Intracellular Infection of Amoebal Host Cells

    PubMed Central

    Gunderson, Felizza F.; Mallama, Celeste A.; Fairbairn, Stephanie G.

    2014-01-01

    Legionella pneumophila, the primary agent of Legionnaires' disease, flourishes in both natural and man-made environments by growing in a wide variety of aquatic amoebae. Recently, we determined that the Cas2 protein of L. pneumophila promotes intracellular infection of Acanthamoeba castellanii and Hartmannella vermiformis, the two amoebae most commonly linked to cases of disease. The Cas2 family of proteins is best known for its role in the bacterial and archeal clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) system that constitutes a form of adaptive immunity against phage and plasmid. However, the infection event mediated by L. pneumophila Cas2 appeared to be distinct from this function, because cas2 mutants exhibited infectivity defects in the absence of added phage or plasmid and since mutants lacking the CRISPR array or any one of the other cas genes were not impaired in infection ability. We now report that the Cas2 protein of L. pneumophila has both RNase and DNase activities, with the RNase activity being more pronounced. By characterizing a catalytically deficient version of Cas2, we determined that nuclease activity is critical for promoting infection of amoebae. Also, introduction of Cas2, but not its catalytic mutant form, into a strain of L. pneumophila that naturally lacks a CRISPR-Cas locus caused that strain to be 40- to 80-fold more infective for amoebae, unequivocally demonstrating that Cas2 facilitates the infection process independently of any other component encoded within the CRISPR-Cas locus. Finally, a cas2 mutant was impaired for infection of Willaertia magna but not Naegleria lovaniensis, suggesting that Cas2 promotes infection of most but not all amoebal hosts. PMID:25547789

  1. AAV-Mediated Delivery of Zinc Finger Nucleases Targeting Hepatitis B Virus Inhibits Active Replication

    PubMed Central

    Weber, Nicholas D.; Stone, Daniel; Sedlak, Ruth Hall; De Silva Feelixge, Harshana S.; Roychoudhury, Pavitra; Schiffer, Joshua T.; Aubert, Martine; Jerome, Keith R.

    2014-01-01

    Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs) that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB), imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV) vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy. PMID:24827459

  2. Generation of Esr1-Knockout Rats Using Zinc Finger Nuclease-Mediated Genome Editing

    PubMed Central

    Dhakal, Pramod; Kubota, Kaiyu; Chakraborty, Damayanti; Lei, Tianhua; Larson, Melissa A.; Wolfe, Michael W.; Roby, Katherine F.; Vivian, Jay L.

    2014-01-01

    Estrogens play pivotal roles in development and function of many organ systems, including the reproductive system. We have generated estrogen receptor 1 (Esr1)-knockout rats using zinc finger nuclease (ZFN) genome targeting. mRNAs encoding ZFNs targeted to exon 3 of Esr1 were microinjected into single-cell rat embryos and transferred to pseudopregnant recipients. Of 17 live births, 5 had biallelic and 1 had monoallelic Esr1 mutations. A founder with monoallelic mutations was backcrossed to a wild-type rat. Offspring possessed only wild-type Esr1 alleles or wild-type alleles and Esr1 alleles containing either 482 bp (Δ482) or 223 bp (Δ223) deletions, indicating mosaicism in the founder. These heterozygous mutants were bred for colony expansion, generation of homozygous mutants, and phenotypic characterization. The Δ482 Esr1 allele yielded altered transcript processing, including the absence of exon 3, aberrant splicing of exon 2 and 4, and a frameshift that generated premature stop codons located immediately after the codon for Thr157. ESR1 protein was not detected in homozygous Δ482 mutant uteri. ESR1 disruption affected sexually dimorphic postnatal growth patterns and serum levels of gonadotropins and sex steroid hormones. Both male and female Esr1-null rats were infertile. Esr1-null males had small testes with distended and dysplastic seminiferous tubules, whereas Esr1-null females possessed large polycystic ovaries, thread-like uteri, and poorly developed mammary glands. In addition, uteri of Esr1-null rats did not effectively respond to 17β-estradiol treatment, further demonstrating that the Δ482 Esr1 mutation created a null allele. This rat model provides a new experimental tool for investigating the pathophysiology of estrogen action. PMID:24506075

  3. Remodeling of the folding free energy landscape of staphylococcal nuclease by cavity-creating mutations.

    PubMed

    Roche, Julien; Dellarole, Mariano; Caro, Jose A; Guca, Ewelina; Norberto, Douglas R; Yang, Yinshan; Garcia, Angel E; Roumestand, Christian; García-Moreno, Bertrand; Royer, Catherine A

    2012-11-27

    The folding of staphylococcal nuclease (SNase) is known to proceed via a major intermediate in which the central OB subdomain is folded and the C-terminal helical subdomain is disordered. To identify the structural and energetic determinants of this folding free energy landscape, we have examined in detail, using high-pressure NMR, the consequences of cavity creating mutations in each of the two subdomains of an ultrastable SNase, Δ+PHS. The stabilizing mutations of Δ+PHS enhanced the population of the major folding intermediate. Cavity creation in two different regions of the Δ+PHS reference protein, despite equivalent effects on global stability, had very distinct consequences on the complexity of the folding free energy landscape. The L125A substitution in the C-terminal helix of Δ+PHS slightly suppressed the major intermediate and promoted an additional excited state involving disorder in the N-terminus, but otherwise decreased landscape heterogeneity with respect to the Δ+PHS background protein. The I92A substitution, located in the hydrophobic OB-fold core, had a much more profound effect, resulting in a significant increase in the number of intermediate states and implicating the entire protein structure. Denaturant (GuHCl) had very subtle and specific effects on the landscape, suppressing some states and favoring others, depending upon the mutational context. These results demonstrate that disrupting interactions in a region of the protein with highly cooperative, unfrustrated folding has very profound effects on the roughness of the folding landscape, whereas the effects are less pronounced for an energetically equivalent substitution in an already frustrated region. PMID:23116341

  4. MCCE analysis of the pKas of introduced buried acids and bases in staphylococcal nuclease.

    PubMed

    Gunner, M R; Zhu, Xuyu; Klein, Max C

    2011-12-01

    The pK(a)s of 96 acids and bases introduced into buried sites in the staphylococcal nuclease protein (SNase) were calculated using the multiconformation continuum electrostatics (MCCE) program and the results compared with experimental values. The pK(a)s are obtained by Monte Carlo sampling of coupled side chain protonation and position as a function of pH. The dependence of the results on the protein dielectric constant (ε(prot)) in the continuum electrostatics analysis and on the Lennard-Jones non-electrostatics parameters was evaluated. The pK(a)s of the introduced residues have a clear dependence on ε(prot,) whereas native ionizable residues do not. The native residues have electrostatic interactions with other residues in the protein favoring ionization, which are larger than the desolvation penalty favoring the neutral state. Increasing ε(prot) scales both terms, which for these residues leads to small changes in pK(a). The introduced residues have a larger desolvation penalty and negligible interactions with residues in the protein. For these residues, changing ε(prot) has a large influence on the calculated pK(a). An ε(prot) of 8-10 and a Lennard-Jones scaling of 0.25 is best here. The X-ray crystal structures of the mutated proteins are found to provide somewhat better results than calculations carried out on mutations made in silico. Initial relaxation of the in silico mutations by Gromacs and extensive side chain rotamer sampling within MCCE can significantly improve the match with experiment. PMID:21910138

  5. Structural and Functional Investigation of the Ag(+)/Cu(+) Binding Domains of the Periplasmic Adaptor Protein SilB from Cupriavidus metallidurans CH34.

    PubMed

    Urbina, Patricia; Bersch, Beate; De Angelis, Fabien; Derfoufi, Kheiro-Mouna; Prévost, Martine; Goormaghtigh, Erik; Vandenbussche, Guy

    2016-05-24

    Silver ion resistance in bacteria mainly relies on efflux systems, and notably on tripartite efflux complexes involving a transporter from the resistance-nodulation-cell division (RND) superfamily, such as the SilCBA system from Cupriavidus metallidurans CH34. The periplasmic adaptor protein SilB hosts two specific metal coordination sites, located in the N-terminal and C-terminal domains, respectively, that are believed to play a different role in the efflux mechanism and the trafficking of metal ions from the periplasm to the RND transporter. On the basis of the known domain structure of periplasmic adaptor proteins, we designed different protein constructs derived from SilB domains with either one or two metal binding sites per protein chain. ITC data acquired on proteins with single metal sites suggest a slightly higher affinity of Ag(+) for the N-terminal metal site, compared to that for the C-terminal one. Remarkably, via the study of a protein construct featuring both metal sites, nuclear magnetic resonance (NMR) and fluorescence spectroscopies concordantly show that the C-terminal site is saturated prior to the N-terminal one. The C-terminal binding site is supposed to transfer the metal ions to the RND protein, while the transport driven by this latter is activated upon binding of the metal ion to the N-terminal site. Our results suggest that the filling of the C-terminal metal site is a key prerequisite for preventing futile activation of the transport system. Exhaustive NMR studies reveal for the first time the structure and dynamics of the functionally important N-terminal domain connected to the membrane proximal domain as well as of its Ag(+) binding site. PMID:27145046

  6. On the molecular basis of the high affinity binding of basic amino acids to LAOBP, a periplasmic binding protein from Salmonella typhimurium.

    PubMed

    Pulido, Nancy O; Silva, Daniel-Adriano; Tellez, Luis A; Pérez-Hernández, Gerardo; García-Hernández, Enrique; Sosa-Peinado, Alejandro; Fernández-Velasco, D Alejandro

    2015-02-01

    The rational designing of binding abilities in proteins requires an understanding of the relationship between structure and thermodynamics. However, our knowledge of the molecular origin of high-affinity binding of ligands to proteins is still limited; such is the case for l-lysine-l-arginine-l-ornithine periplasmic binding protein (LAOBP), a periplasmic binding protein from Salmonella typhimurium that binds to l-arginine, l-lysine, and l-ornithine with nanomolar affinity and to l-histidine with micromolar affinity. Structural studies indicate that ligand binding induces a large conformational change in LAOBP. In this work, we studied the thermodynamics of l-histidine and l-arginine binding to LAOBP by isothermal titration calorimetry. For both ligands, the affinity is enthalpically driven, with a binding ΔCp of ~-300 cal mol(-1)  K(-1) , most of which arises from the burial of protein nonpolar surfaces that accompanies the conformational change. Osmotic stress measurements revealed that several water molecules become sequestered upon complex formation. In addition, LAOBP prefers positively charged ligands in their side chain. An energetic analysis shows that the protein acquires a thermodynamically equivalent state with both ligands. The 1000-fold higher affinity of LAOBP for l-arginine as compared with l-histidine is mainly of enthalpic origin and can be ascribed to the formation of an extra pair of hydrogen bonds. Periplasmic binding proteins have evolved diverse energetic strategies for ligand recognition. STM4351, another arginine binding protein from Salmonella, shows an entropy-driven micromolar affinity toward l-arginine. In contrast, our data show that LAOBP achieves nanomolar affinity for the same ligand through enthalpy optimization. PMID:25604964

  7. Kinetics and mechanism of exogenous anion exchange in FeFbpA-NTA: significance of periplasmic anion lability and anion binding activity of ferric binding protein A.

    PubMed

    Heymann, Jared J; Gabricević, Mario; Mietzner, Timothy A; Crumbliss, Alvin L

    2010-02-01

    The bacterial transferrin ferric binding protein A (FbpA) requires an exogenous anion to facilitate iron sequestration, and subsequently to shuttle the metal across the periplasm to the cytoplasmic membrane. In the diverse conditions of the periplasm, numerous anions are known to be present. Prior in vitro experiments have demonstrated the ability of multiple anions to fulfill the synergistic iron-binding requirement, and the identity of the bound anion has been shown to modulate important physicochemical properties of iron-bound FbpA (FeFbpA). Here we address the kinetics and mechanism of anion exchange for the FeFbpA-nitrilotriacetate (NTA) assembly with several biologically relevant anions (citrate, oxalate, phosphate, and pyrophosphate), with nonphysiologic NTA serving as a representative synergistic anion/chelator. The kinetic data are consistent with an anion-exchange process that occurs in multiple steps, dependent on the identity of both the entering anion and the leaving anion. The exchange mechanism may proceed either as a direct substitution or through an intermediate FeFbpA-X* assembly based on anion (X) identity. Our kinetic results further develop an understanding of exogenous anion lability in the periplasm, as well as address the final step of the iron-free FbpA (apo-FbpA)/Fe(3+) sequestration mechanism. Our results highlight the kinetic significance of the FbpA anion binding site, demonstrating a correlation between apo-FbpA/anion affinity and the FeFbpA rate of anion exchange, further supporting the requirement of an exogenous anion to complete tight sequestration of iron by FbpA, and developing a mechanism for anion exchange within FeFbpA that is dependent on the identity of both the entering anion and the leaving anion. PMID:19813031

  8. The Major Outer Sheath Protein (Msp) of Treponema denticola Has a Bipartite Domain Architecture and Exists as Periplasmic and Outer Membrane-Spanning Conformers

    PubMed Central

    Anand, Arvind; Luthra, Amit; Edmond, Maxwell E.; Ledoyt, Morgan; Caimano, Melissa J.

    2013-01-01

    The major outer sheath protein (Msp) is a primary virulence determinant in Treponema denticola, as well as the parental ortholog for the Treponema pallidum repeat (Tpr) family in the syphilis spirochete. The Conserved Domain Database (CDD) server revealed that Msp contains two conserved domains, major outer sheath proteinN (MOSPN) and MOSPC, spanning residues 77 to 286 and 332 to 543, respectively, within the N- and C-terminal regions of the protein. Circular dichroism (CD) spectroscopy, Triton X-114 (TX-114) phase partitioning, and liposome incorporation demonstrated that full-length, recombinant Msp (MspFl) and a recombinant protein containing MOSPC, but not MOSPN, form amphiphilic, β-sheet-rich structures with channel-forming activity. Immunofluorescence analysis of intact T. denticola revealed that only MOSPC contains surface-exposed epitopes. Data obtained using proteinase K accessibility, TX-114 phase partitioning, and cell fractionation revealed that Msp exists as distinct OM-integrated and periplasmic trimers. MspFl folded in Tris buffer contained slightly less β-sheet structure than detergent-folded MspFl; both forms, however, partitioned into the TX-114 detergent-enriched phase. CDD analysis of the nine Tpr paralogs predicted to be outer membrane proteins (OMPs) revealed that seven have an Msp-like bipartite structure; phylogenetic analysis revealed that the MOSPN and MOSPC domains of Msp are most closely related to those of TprK. Based upon our collective results, we propose a model whereby a newly exported, partially folded intermediate can be either processed for OM insertion by the β-barrel assembly machinery (BAM) or remain periplasmic, ultimately forming a stable, water-soluble trimer. Extrapolated to T. pallidum, our model enables us to explain how individual Tprs can localize to either the periplasmic (e.g., TprK) or OM (e.g., TprC) compartments. PMID:23457251

  9. Inactivation of Serpulina hyodysenteriae flaA1 and flaB1 periplasmic flagellar genes by electroporation-mediated allelic exchange.

    PubMed Central

    Rosey, E L; Kennedy, M J; Petrella, D K; Ulrich, R G; Yancey, R J

    1995-01-01

    Serpulina hyodysenteriae, the etiologic agent of swine dysentery, contains complex periplasmic flagella which are composed of multiple class A and class B polypeptides. To examine the role these proteins play in flagellar synthesis, structure, and function and to develop strains which may provide insight into the importance of motility in the etiology of this pathogen, we constructed specific periplasmic flagellar mutations in S. hyodysenteriae B204. The cloned flaA1 and flaB1 genes were disrupted by replacement of internal fragments with chloramphenicol and/or kanamycin gene cassettes. Following delivery of these suicide plasmids into S. hyodysenteriae, homologous recombination and allelic exchange at the targeted chromosomal flaA1 and flaB1 genes was verified by PCR, sequence, and Southern analysis. The utility of a chloramphenicol resistance gene cassette for targeted gene disruption was demonstrated and found more amenable than kanamycin as a selective marker in S. hyodysenteriae. Immunoblots of cell lysates of the flagellar mutants with antiserum raised against purified FlaA or FlaB confirmed the absence of the corresponding sheath or core protein. Both mutations selectively abolished expression of the targeted gene without affecting synthesis of the other flagellar polypeptide. flaA1 and flaB1 mutant strains exhibited altered motility in vitro and were less efficient in movement through a liquid medium. Paradoxically, isogenic strains containing specifically disrupted flaA1 or flaB1 alleles were capable of assembling periplasmic flagella that were morphologically normal as evidenced by electron microscopy. This is the first report of specific inactivation of a motility-associated gene in spirochetes. PMID:7592350

  10. Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations.

    PubMed

    Maggio, Ignazio; Stefanucci, Luca; Janssen, Josephine M; Liu, Jin; Chen, Xiaoyu; Mouly, Vincent; Gonçalves, Manuel A F V

    2016-02-18

    Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle-wasting disorder caused by mutations in the 2.4 Mb dystrophin-encoding DMD gene. The integration of gene delivery and gene editing technologies based on viral vectors and sequence-specific designer nucleases, respectively, constitutes a potential therapeutic modality for permanently repairing defective DMD alleles in patient-derived myogenic cells. Therefore, we sought to investigate the feasibility of combining adenoviral vectors (AdVs) with CRISPR/Cas9 RNA-guided nucleases (RGNs) alone or together with transcriptional activator-like effector nucleases (TALENs), for endogenous DMD repair through non-homologous end-joining (NHEJ). The strategies tested involved; incorporating small insertions or deletions at out-of-frame sequences for reading frame resetting, splice acceptor knockout for DNA-level exon skipping, and RGN-RGN or RGN-TALEN multiplexing for targeted exon(s) removal. We demonstrate that genome editing based on the activation and recruitment of the NHEJ DNA repair pathway after AdV delivery of designer nuclease genes, is a versatile and robust approach for repairing DMD mutations in bulk populations of patient-derived muscle progenitor cells (up to 37% of corrected DMD templates). These results open up a DNA-level genetic medicine strategy in which viral vector-mediated transient designer nuclease expression leads to permanent and regulated dystrophin synthesis from corrected native DMD alleles. PMID:26762977

  11. Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations

    PubMed Central

    Maggio, Ignazio; Stefanucci, Luca; Janssen, Josephine M.; Liu, Jin; Chen, Xiaoyu; Mouly, Vincent; Gonçalves, Manuel A.F.V.

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle-wasting disorder caused by mutations in the 2.4 Mb dystrophin-encoding DMD gene. The integration of gene delivery and gene editing technologies based on viral vectors and sequence-specific designer nucleases, respectively, constitutes a potential therapeutic modality for permanently repairing defective DMD alleles in patient-derived myogenic cells. Therefore, we sought to investigate the feasibility of combining adenoviral vectors (AdVs) with CRISPR/Cas9 RNA-guided nucleases (RGNs) alone or together with transcriptional activator-like effector nucleases (TALENs), for endogenous DMD repair through non-homologous end-joining (NHEJ). The strategies tested involved; incorporating small insertions or deletions at out-of-frame sequences for reading frame resetting, splice acceptor knockout for DNA-level exon skipping, and RGN-RGN or RGN-TALEN multiplexing for targeted exon(s) removal. We demonstrate that genome editing based on the activation and recruitment of the NHEJ DNA repair pathway after AdV delivery of designer nuclease genes, is a versatile and robust approach for repairing DMD mutations in bulk populations of patient-derived muscle progenitor cells (up to 37% of corrected DMD templates). These results open up a DNA-level genetic medicine strategy in which viral vector-mediated transient designer nuclease expression leads to permanent and regulated dystrophin synthesis from corrected native DMD alleles. PMID:26762977

  12. Tandem overproduction and characterisation of the nuclease domain of colicin E9 and its cognate inhibitor protein Im9.

    PubMed

    Wallis, R; Reilly, A; Barnes, K; Abell, C; Campbell, D G; Moore, G R; James, R; Kleanthous, C

    1994-03-01

    We report the overproduction of the non-specific endonuclease domain of the bacterial toxin colicin E9 and its preliminary characterisation in vitro. The enzymatic colicins (61 kDa) are normally released from producing cells in a complex with their cognate inhibitors, known as the immunity proteins (9.5 kDa). Tryptic digestion of the purified ColE9 complex was found to generate two major components, a monomer derived from the N-terminal and central regions of the toxin and a heterodimer comprising the catalytically active C-terminal domain of the colicin bound to its intact immunity protein, Im9. N-terminal amino acid sequencing, in conjunction with electrospray mass spectrometry, shows that preparations of the DNase domain isolated by this method are heterogeneous, thus making subsequent mechanistic and structural analysis difficult. This problem was circumvented by selectively overexpressing the C-terminal 15-kDa nuclease domain of colicin E9 in tandem with its cognate inhibitor in Escherichia coli. This tandem overexpression strategy allowed high-level production of a 25-kDa protein complex comprising the C-terminal DNase domain of colicin E9 tightly bound to its specific inhibitor Im9, thus masking the anticipated toxicity of the nuclease. The DNase domain was then separated from Im9 under denaturing conditions, refolded by removal of the denaturant and the renatured protein shown to possess both endonuclease and Im9 binding activity. These results describe a novel method for the overproduction of a nuclease in bacteria by co-expressing its specific inhibitor and lay the foundations for a full mechanistic, biophysical and structural characterization of the isolated DNase domain of the colicin E9 toxin. PMID:8125102

  13. Structure–activity relationships in Kluyveromyces lactis γ-toxin, a eukaryal tRNA anticodon nuclease

    PubMed Central

    Keppetipola, Niroshika; Jain, Ruchi; Meineke, Birthe; Diver, Melinda; Shuman, Stewart

    2009-01-01

    tRNA anticodon damage inflicted by secreted ribotoxins such as Kluyveromyces lactis γ-toxin and bacterial colicins underlies a rudimentary innate immune system that distinguishes self from nonself species. The intracellular expression of γ-toxin (a 232-amino acid polypeptide) arrests the growth of Saccharomyces cerevisiae by incising a single RNA phosphodiester 3′ of the modified wobble base of tRNAGlu. Fungal γ-toxin bears no primary structure similarity to any known nuclease and has no plausible homologs in the protein database. To gain insight to γ-toxin's mechanism, we tested the effects of alanine mutations at 62 basic, acidic, and polar amino acids on ribotoxin activity in vivo. We thereby identified 22 essential residues, including 10 lysines, seven arginines, three glutamates, one cysteine, and one histidine (His209, the only histidine present in γ-toxin). Structure–activity relations were gleaned from the effects of 44 conservative substitutions. Recombinant tag-free γ-toxin, a monomeric protein, incised an oligonucleotide corresponding to the anticodon stem–loop of tRNAGlu at a single phosphodiester 3′ of the wobble uridine. The anticodon nuclease was metal independent. RNA cleavage was abolished by ribose 2′-H and 2′-F modifications of the wobble uridine. Mutating His209 to alanine, glutamine, or asparagine abolished nuclease activity. We propose that γ-toxin catalyzes an RNase A-like transesterification reaction that relies on His209 and a second nonhistidine side chain as general acid–base catalysts. PMID:19383764

  14. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template

    PubMed Central

    Sather, Blythe D.; Romano Ibarra, Guillermo S.; Sommer, Karen; Curinga, Gabrielle; Hale, Malika; Khan, Iram F.; Singh, Swati; Song, Yumei; Gwiazda, Kamila; Sahni, Jaya; Jarjour, Jordan; Astrakhan, Alexander; Wagner, Thor A.; Scharenberg, Andrew M.; Rawlings, David J.

    2016-01-01

    Genetic mutations or engineered nucleases that disrupt the HIV co-receptor CCR5 block HIV infection of CD4+ T cells. These findings have motivated the engineering of CCR5-specific nucleases for application as HIV therapies. The efficacy of this approach relies on efficient biallelic disruption of CCR5, and the ability to efficiently target sequences that confer HIV resistance to the CCR5 locus has the potential to further improve clinical outcomes. We used RNA-based nuclease expression paired with adeno-associated virus (AAV) – mediated delivery of a CCR5-targeting donor template to achieve highly efficient targeted recombination in primary human T cells. This method consistently achieved 8 to 60% rates of homology-directed recombination into the CCR5 locus in T cells, with over 80% of cells modified with an MND-GFP expression cassette exhibiting biallelic modification. MND-GFP – modified T cells maintained a diverse repertoire and engrafted in immune-deficient mice as efficiently as unmodified cells. Using this method, we integrated sequences coding chimeric antigen receptors (CARs) into the CCR5 locus, and the resulting targeted CAR T cells exhibited antitumor or anti-HIV activity. Alternatively, we introduced the C46 HIV fusion inhibitor, generating T cell populations with high rates of biallelic CCR5 disruption paired with potential protection from HIV with CXCR4 co-receptor tropism. Finally, this protocol was applied to adult human mobilized CD34+ cells, resulting in 15 to 20% homologous gene targeting. Our results demonstrate that high-efficiency targeted integration is feasible in primary human hematopoietic cells and highlight the potential of gene editing to engineer T cell products with myriad functional properties. PMID:26424571

  15. Dimeric CRISPR RNA-Guided FokI-dCas9 Nucleases Directed by Truncated gRNAs for Highly Specific Genome Editing

    PubMed Central

    Wyvekens, Nicolas; Topkar, Ved V.; Khayter, Cyd; Joung, J. Keith; Tsai, Shengdar Q.

    2015-01-01

    Monomeric clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated 9 (Cas9) nucleases have been widely adopted for simple and robust targeted genome editing but also have the potential to induce high-frequency off-target mutations. In principle, two orthogonal strategies for reducing off-target cleavage, truncated guide RNAs (tru-gRNAs) and dimerization-dependent RNA-guided FokI-dCas9 nucleases (RFNs), could be combined as tru-RFNs to further improve genome editing specificity. Here we identify a robust tru-RFN architecture that shows high activity in human cancer cell lines and embryonic stem cells. Additionally, we demonstrate that tru-gRNAs reduce the undesirable mutagenic effects of monomeric FokI-dCas9. Tru-RFNs combine the advantages of two orthogonal strategies for improving the specificity of CRISPR/Cas nucleases and therefore provide a highly specific platform for performing genome editing. PMID:26068112

  16. Dimeric CRISPR RNA-Guided FokI-dCas9 Nucleases Directed by Truncated gRNAs for Highly Specific Genome Editing.

    PubMed

    Wyvekens, Nicolas; Topkar, Ved V; Khayter, Cyd; Joung, J Keith; Tsai, Shengdar Q

    2015-07-01

    Monomeric clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated 9 (Cas9) nucleases have been widely adopted for simple and robust targeted genome editing but also have the potential to induce high-frequency off-target mutations. In principle, two orthogonal strategies for reducing off-target cleavage, truncated guide RNAs (tru-gRNAs) and dimerization-dependent RNA-guided FokI-dCas9 nucleases (RFNs), could be combined as tru-RFNs to further improve genome editing specificity. Here we identify a robust tru-RFN architecture that shows high activity in human cancer cell lines and embryonic stem cells. Additionally, we demonstrate that tru-gRNAs reduce the undesirable mutagenic effects of monomeric FokI-dCas9. Tru-RFNs combine the advantages of two orthogonal strategies for improving the specificity of CRISPR-Cas nucleases and therefore provide a highly specific platform for performing genome editing. PMID:26068112

  17. A fungal anticodon nuclease ribotoxin exploits a secondary cleavage site to evade tRNA repair.

    PubMed

    Meineke, Birthe; Kast, Alene; Schwer, Beate; Meinhardt, Friedhelm; Shuman, Stewart; Klassen, Roland

    2012-09-01

    PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases. These secreted ribotoxins are assimilated by Saccharomyces cerevisiae, wherein they arrest growth by depleting specific tRNAs. Toxicity can be recapitulated by induced intracellular expression of PaOrf2 or γ-toxin in S. cerevisiae. Mutational analysis of γ-toxin has identified amino acids required for ribotoxicity in vivo and RNA transesterification in vitro. Here, we report that PaOrf2 residues Glu9 and His287 (putative counterparts of γ-toxin Glu9 and His209) are essential for toxicity. Our results suggest a similar basis for RNA transesterification by PaOrf2 and γ-toxin, despite their dissimilar primary structures and distinctive tRNA target specificities. PaOrf2 makes two sequential incisions in tRNA, the first of which occurs 3' from the mcm(5)s(2)U wobble nucleoside and depends on mcm(5). A second incision two nucleotides upstream results in the net excision of a di-nucleotide. Expression of phage and plant tRNA repair systems can relieve PaOrf2 toxicity when tRNA cleavage is restricted to the secondary site in elp3 cells that lack the mcm(5) wobble U modification. Whereas the endogenous yeast tRNA ligase Trl1 can heal tRNA halves produced by PaOrf2 cleavage in elp3 cells, its RNA sealing activity is inadequate to complete the repair. Compatible sealing activity can be provided in trans by plant tRNA ligase. The damage-rescuing ability of tRNA repair systems is lost when PaOrf2 can break tRNA at both sites. These results highlight the logic of a two-incision mechanism of tRNA anticodon damage that evades productive repair by tRNA ligases. PMID:22836353

  18. Zinc Finger Nuclease: A New Approach to Overcome Beta-Lactam Antibiotic Resistance

    PubMed Central

    Shahbazi Dastjerdeh, Mansoureh; Kouhpayeh, Shirin; Sabzehei, Faezeh; Khanahmad, Hossein; Salehi, Mansour; Mohammadi, Zahra; Shariati, Laleh; Hejazi, Zahra; Rabiei, Parisa; Manian, Mostafa

    2016-01-01

    Background: The evolution of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) has been accelerated recently by the indiscriminate application of antibiotics. Antibiotic resistance has challenged the success of medical interventions and therefore is considered a hazardous threat to human health. Objectives: The present study aimed to describe the use of zinc finger nuclease (ZFN) technology to target and disrupt a plasmid-encoded β-lactamase, which prevents horizontal gene transfer-mediated evolution of ARBs. Materials and Methods: An engineered ZFN was designed to target a specific sequence in the ampicillin resistance gene (ampR) of the pTZ57R plasmid. The Escherichia coli bacteria already contained the pZFN kanamycin-resistant (kanaR) plasmid as the case or the pP15A, kanaR empty vector as the control, were transformed with the pTZ57R; the ability of the designed ZFN to disrupt the β-lactamase gene was evaluated with the subsequent disturbed ability of the bacteria to grow on ampicillin (amp) and ampicillin-kanamycin (amp-kana)-containing media. The effect of mild hypothermia on the ZFN gene targeting efficiency was also evaluated. Results: The growth of bacteria in the case group on the amp and amp-kana-containing media was significantly lower compared with the control group at 37°C (P < 0.001). Despite being more efficient in hypothermic conditions at 30°C (P < 0.001), there were no significant associations between the incubation temperature and the ZFN gene targeting efficiency. Conclusions: Our findings revealed that the ZFN technology could be employed to overcome ampicillin resistance by the targeted disruption of the ampicillin resistance gene, which leads to inactivation of β-lactam synthesis. Therefore, ZFN technology could be engaged to decrease the antibiotic resistance issue with the construction of a ZFN archive against different ARGs. To tackle the resistance issue at the environmental level, recombinant phages

  19. Genome editing with CompoZr custom zinc finger nucleases (ZFNs).

    PubMed

    Hansen, Keith; Coussens, Matthew J; Sago, Jack; Subramanian, Shilpi; Gjoka, Monika; Briner, Dave

    2012-01-01

    Genome editing is a powerful technique that can be used to elucidate gene function and the genetic basis of disease. Traditional gene editing methods such as chemical-based mutagenesis or random integration of DNA sequences confer indiscriminate genetic changes in an overall inefficient manner and require incorporation of undesirable synthetic sequences or use of aberrant culture conditions, potentially confusing biological study. By contrast, transient ZFN expression in a cell can facilitate precise, heritable gene editing in a highly efficient manner without the need for administration of chemicals or integration of synthetic transgenes. Zinc finger nucleases (ZFNs) are enzymes which bind and cut distinct sequences of double-stranded DNA (dsDNA). A functional CompoZr ZFN unit consists of two individual monomeric proteins that bind a DNA "half-site" of approximately 15-18 nucleotides (see Figure 1). When two ZFN monomers "home" to their adjacent target sites the DNA-cleavage domains dimerize and create a double-strand break (DSB) in the DNA. Introduction of ZFN-mediated DSBs in the genome lays a foundation for highly efficient genome editing. Imperfect repair of DSBs in a cell via the non-homologous end-joining (NHEJ) DNA repair pathway can result in small insertions and deletions (indels). Creation of indels within the gene coding sequence of a cell can result in frameshift and subsequent functional knockout of a gene locus at high efficiency. While this protocol describes the use of ZFNs to create a gene knockout, integration of transgenes may also be conducted via homology-directed repair at the ZFN cut site. The CompoZr Custom ZFN Service represents a systematic, comprehensive, and well-characterized approach to targeted gene editing for the scientific community with ZFN technology. Sigma scientists work closely with investigators to 1) perform due diligence analysis including analysis of relevant gene structure, biology, and model system pursuant to the

  20. Comparison of Culture and a Novel 5′ Taq Nuclease Assay for Direct Detection of Campylobacter fetus subsp. venerealis in Clinical Specimens from Cattle

    PubMed Central

    McMillen, Lyle; Fordyce, Geoffry; Doogan, Vivienne J.; Lew, Ala E.

    2006-01-01

    A Campylobacter fetus subsp. venerealis-specific 5′ Taq nuclease PCR assay using a 3′ minor groove binder-DNA probe (TaqMan MGB) was developed based on a subspecies-specific fragment of unknown identity (S. Hum, K. Quinn, J. Brunner, and S. L. On, Aust. Vet. J. 75:827-831, 1997). The assay specifically detected four C. fetus subsp. venerealis strains with no observed cross-reaction with C. fetus subsp. fetus-related Campylobacter species or other bovine venereal microflora. The 5′ Taq nuclease assay detected approximately one single cell compared to 100 and 10 cells in the conventional PCR assay and 2,500 and 25,000 cells from selective culture from inoculated smegma and mucus, respectively. The respective detection limits following the enrichments from smegma and mucus were 5,000 and 50 cells/inoculum for the conventional PCR compared to 500 and 50 cells/inoculum for the 5′ Taq nuclease assay. Field sampling confirmed the sensitivity and the specificity of the 5′ Taq nuclease assay by detecting an additional 40 bulls that were not detected by culture. Urine-inoculated samples demonstrated comparable detection of C. fetus subsp. venerealis by both culture and the 5′ Taq nuclease assay; however, urine was found to be less effective than smegma for bull sampling. Three infected bulls were tested repetitively to compare sampling tools, and the bull rasper proved to be the most suitable, as evidenced by the improved ease of specimen collection and the consistent detection of higher levels of C. fetus subsp. venerealis. The 5′ Taq nuclease assay demonstrates a statistically significant association with culture (χ2 = 29.8; P < 0.001) and significant improvements for the detection of C. fetus subsp. venerealis-infected animals from crude clinical extracts following prolonged transport. PMID:16517880

  1. Comparison of culture and a novel 5' Taq nuclease assay for direct detection of Campylobacter fetus subsp. venerealis in clinical specimens from cattle.

    PubMed

    McMillen, Lyle; Fordyce, Geoffry; Doogan, Vivienne J; Lew, Ala E

    2006-03-01

    A Campylobacter fetus subsp. venerealis-specific 5' Taq nuclease PCR assay using a 3' minor groove binder-DNA probe (TaqMan MGB) was developed based on a subspecies-specific fragment of unknown identity (S. Hum, K. Quinn, J. Brunner, and S. L. On, Aust. Vet. J. 75:827-831, 1997). The assay specifically detected four C. fetus subsp. venerealis strains with no observed cross-reaction with C. fetus subsp. fetus-related Campylobacter species or other bovine venereal microflora. The 5' Taq nuclease assay detected approximately one single cell compared to 100 and 10 cells in the conventional PCR assay and 2,500 and 25,000 cells from selective culture from inoculated smegma and mucus, respectively. The respective detection limits following the enrichments from smegma and mucus were 5,000 and 50 cells/inoculum for the conventional PCR compared to 500 and 50 cells/inoculum for the 5' Taq nuclease assay. Field sampling confirmed the sensitivity and the specificity of the 5' Taq nuclease assay by detecting an additional 40 bulls that were not detected by culture. Urine-inoculated samples demonstrated comparable detection of C. fetus subsp. venerealis by both culture and the 5' Taq nuclease assay; however, urine was found to be less effective than smegma for bull sampling. Three infected bulls were tested repetitively to compare sampling tools, and the bull rasper proved to be the most suitable, as evidenced by the improved ease of specimen collection and the consistent detection of higher levels of C. fetus subsp. venerealis. The 5' Taq nuclease assay demonstrates a statistically significant association with culture (chi2 = 29.8; P < 0.001) and significant improvements for the detection of C. fetus subsp. venerealis-infected animals from crude clinical extracts following prolonged transport. PMID:16517880

  2. Analysis of periplasmic sensor domains from Anaeromyxobacter dehalogenans 2CP-C: structure of one sensor domain from a histidine kinase and another from a chemotaxis protein.

    PubMed

    Pokkuluri, P Raj; Dwulit-Smith, Jeff; Duke, Norma E; Wilton, Rosemarie; Mack, Jamey C; Bearden, Jessica; Rakowski, Ella; Babnigg, Gyorgy; Szurmant, Hendrik; Joachimiak, Andrzej; Schiffer, Marianne

    2013-10-01

    Anaeromyxobacter dehalogenans is a δ-proteobacterium found in diverse soils and sediments. It is of interest in bioremediation efforts due to its dechlorination and metal-reducing capabilities. To gain an understanding on A. dehalogenans' abilities to adapt to diverse environments we analyzed its signal transduction proteins. The A. dehalogenans genome codes for a large number of sensor histidine kinases (HK) and methyl-accepting chemotaxis proteins (MCP); among these 23 HK and 11 MCP proteins have a sensor domain in the periplasm. These proteins most likely contribute to adaptation to the organism's surroundings. We predicted their three-dimensional folds and determined the structures of two of the periplasmic sensor domains by X-ray diffraction. Most of the domains are predicted to have either PAS-like or helical bundle structures, with two predicted to have solute-binding protein fold, and another predicted to have a 6-phosphogluconolactonase like fold. Atomic structures of two sensor domains confirmed the respective fold predictions. The Adeh_2942 sensor (HK) was found to have a helical bundle structure, and the Adeh_3718 sensor (MCP) has a PAS-like structure. Interestingly, the Adeh_3718 sensor has an acetate moiety bound in a binding site typical for PAS-like domains. Future work is needed to determine whether Adeh_3718 is involved in acetate sensing by A. dehalogenans. PMID:23897711

  3. Crystallization and preliminary X-ray diffraction analysis of the periplasmic domain of the Escherichia coli aspartate receptor Tar and its complex with aspartate

    SciTech Connect

    Mise, Takeshi; Matsunami, Hideyuki; Samatey, Fadel A.; Maruyama, Ichiro N.

    2014-08-27

    The periplasmic domain of the E. coli aspartate receptor Tar was cloned, expressed, purified and crystallized with and without bound ligand. The crystals obtained diffracted to resolutions of 1.58 and 1.95 Å, respectively. The cell-surface receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni{sup 2+}. To understand the molecular mechanisms underlying the induction of Tar activity by its ligands, the Escherichia coli Tar periplasmic domain with and without bound aspartate (Asp-Tar and apo-Tar, respectively) were each crystallized in two different forms. Using ammonium sulfate as a precipitant, crystals of apo-Tar1 and Asp-Tar1 were grown and diffracted to resolutions of 2.10 and 2.40 Å, respectively. Alternatively, using sodium chloride as a precipitant, crystals of apo-Tar2 and Asp-Tar2 were grown and diffracted to resolutions of 1.95 and 1.58 Å, respectively. Crystals of apo-Tar1 and Asp-Tar1 adopted space group P4{sub 1}2{sub 1}2, while those of apo-Tar2 and Asp-Tar2 adopted space groups P2{sub 1}2{sub 1}2{sub 1} and C2, respectively.

  4. ZraP is a periplasmic molecular chaperone and a repressor of the zinc-responsive two-component regulator ZraSR.

    PubMed

    Appia-Ayme, Corinne; Hall, Andrea; Patrick, Elaine; Rajadurai, Shiny; Clarke, Thomas A; Rowley, Gary

    2012-02-15

    The bacterial envelope is the interface with the surrounding environment and is consequently subjected to a barrage of noxious agents including a range of compounds with antimicrobial activity. The ESR (envelope stress response) pathways of enteric bacteria are critical for maintenance of the envelope against these antimicrobial agents. In the present study, we demonstrate that the periplasmic protein ZraP contributes to envelope homoeostasis and assign both chaperone and regulatory function to ZraP from Salmonella Typhimurium. The ZraP chaperone mechanism is catalytic and independent of ATP; the chaperone activity is dependent on the presence of zinc, which is shown to be responsible for the stabilization of an oligomeric ZraP complex. Furthermore, ZraP can act to repress the two-component regulatory system ZraSR, which itself is responsive to zinc concentrations. Through structural homology, ZraP is a member of the bacterial CpxP family of periplasmic proteins, which also consists of CpxP and Spy. We demonstrate environmental co-expression of the CpxP family and identify an important role for these proteins in Salmonella's defence against the cationic antimicrobial peptide polymyxin B. PMID:22084975

  5. Structure of the Mycobacterium tuberculosis antigen 88, a protein related to the Escherichia coli PstA periplasmic phosphate permease subunit.

    PubMed Central

    Braibant, M; De Wit, L; Peirs, P; Kalai, M; Ooms, J; Drowart, A; Huygen, K; Content, J

    1994-01-01

    We report the cloning and sequencing of the gene coding for antigen 88 from Mycobacterium tuberculosis by using monoclonal antibodies to screen an expression library in lambda gt11. The gene encodes a 403-amino-acid-residue protein with a calculated molecular mass of 43,790 Da which contains seven putative transmembrane alpha-helical domains and presents a significant homology to the PstA protein of Escherichia coli. In its N-terminal region, it contains a 61-amino-acid region highly homologous to the fifth transmembrane helix of E. coli PstC. PstA and PstC are the two hydrophobic subunits of an E. coli periplasmic phosphate permease. Since the phosphate-binding subunit of this putative permease in M. tuberculosis has previously been characterized, i.e., the 38-kDa mycobacterial protein (also called protein antigen b, Ag 5, and Ag 78) homologous to PstS of E. coli, it seems likely that functional permeases analogous to the periplasmic permeases of gram-negative bacteria also exist in mycobacteria. Images PMID:8112854

  6. MacA, a periplasmic membrane fusion protein of the macrolide transporter MacAB-TolC, binds lipopolysaccharide core specifically and with high affinity.

    PubMed

    Lu, Shuo; Zgurskaya, Helen I

    2013-11-01

    The Escherichia coli MacAB-TolC transporter has been implicated in efflux of macrolide antibiotics and secretion of enterotoxin STII. In this study, we found that purified MacA, a periplasmic membrane fusion protein, contains one tightly bound rough core lipopolysaccharide (R-LPS) molecule per MacA molecule. R-LPS was bound specifically to MacA protein with affinity exceeding that of polymyxin B. Sequence analyses showed that MacA contains two high-density clusters of positively charged amino acid residues located in the cytoplasmic N-terminal domain and the periplasmic C-terminal domain. Substitutions in the C-terminal cluster reducing the positive-charge density completely abolished binding of R-LPS. At the same time, these substitutions significantly reduced the functionality of MacA in the protection of E. coli against macrolides in vivo and in the in vitro MacB ATPase stimulation assays. Taken together, our results suggest that R-LPS or a similar glycolipid is a physiological substrate of MacAB-TolC. PMID:23974027

  7. Reconstitution of the Escherichia coli macrolide transporter: the periplasmic membrane fusion protein MacA stimulates the ATPase activity of MacB.

    PubMed

    Tikhonova, Elena B; Devroy, Vishakha K; Lau, Sze Yi; Zgurskaya, Helen I

    2007-02-01

    Periplasmic membrane fusion proteins (MFPs) are essential components of the type I protein secretion systems and drug efflux pumps in Gram-negative bacteria. Previous studies suggested that MFPs connect the inner and outer membrane components of the transport systems and by this means co-ordinate the transfer of substrates across the two membranes. In this study, we purified and reconstituted the macrolide transporter MacAB from Escherichia coli. Here, MacA is a periplasmic MFP and MacB is an ABC-type transporter. Similar to other MFP-dependent transporters from E. coli, the in vivo function of MacAB requires the outer membrane channel TolC. The purified MacB displayed a basal ATPase activity in detergent micelles. This activity conformed to Michaelis-Menten kinetics but was unresponsive to substrates or accessory proteins. Upon reconstitution into proteoliposomes, the ATPase activity of MacB was strictly dependent on MacA. The catalytic efficiency of MacAB ATPase was more than 45-fold higher than the activity of MacB alone. Both the N- and C-terminal regions of MacA were essential for this activity. MacA stimulated MacB ATPase only in phospholipid bilayers and did not need the presence of macrolides. Our results suggest that MacA is a functional subunit of the MacB transporter. PMID:17214741

  8. Transcription activator-like effector nuclease (TALEN)-mediated female-specific sterility in the silkworm, Bombyx mori.

    PubMed

    Xu, J; Wang, Y; Li, Z; Ling, L; Zeng, B; James, A A; Tan, A; Huang, Y

    2014-12-01

    Engineering sex-specific sterility is critical for developing transgene-based sterile insect technology. Targeted genome engineering achieved by customized zinc-finger nuclease, transcription activator-like effector nuclease (TALEN) or clustered, regularly interspaced, short palindromic repeats/Cas9 systems has been exploited extensively in a variety of model organisms; however, screening mutated individuals without a detectable phenotype is still challenging. In addition, genetically recessive mutations only detectable in homozygotes make the experiments time-consuming. In the present study, we model a novel genetic system in the silkworm, Bombyx mori, that results in female-specific sterility by combining transgenesis with TALEN technologies. This system induces sex-specific sterility at a high efficiency by targeting the female-specific exon of the B. mori doublesex (Bmdsx) gene, which has sex-specific splicing isoforms regulating somatic sexual development. Transgenic animals co-expressing TALEN left and right arms targeting the female-specific Bmdsx exon resulted in somatic mutations and female mutants lost fecundity because of lack of egg storage and abnormal external genitalia. The wild-type sexual dimorphism of abdominal segment was not evident in mutant females. In contrast, there were no deleterious effects in mutant male moths. The current somatic TALEN technologies provide a promising approach for future insect functional genetics, thus providing the basis for the development of attractive genetic alternatives for insect population management. PMID:25125145

  9. Locked nucleic acid couples with Fok I nucleases to target and cleave hepatitis B virus's gene in vitro.

    PubMed

    Li, Ma; Hongyan, Chen; Huaxing, Zhu; Wei, Li; Daru, Lu

    2016-04-01

    Hepatitis B virus (HBV) is a dented double-stranded DNA virus. After infecting human hepatic cells, it forms cccDNA that replicates persistently and integrates randomly into the host’s genome during the process of reserve transcription. On average, in each cell with chronic HBV infection, there are about 33 copies of cccDNA with a half of 35-57 days, which can be difficult to eradicate. A new strategy is to inhibit HBV transcription by using locked nucleic acid (LNA). Besides, cleaving HBV genome by targeted genome editing technologies could potentially cure patients. In this study, we explored new genome editing tools for HBV treatment. Based on LNA’s ability to form triple helix by binding to duplex DNA, its stability towards nuclease and polymerase, and its sensitivity to single base mismatches, we designed LNA-modified oligonucleotides as DNA binding domain to effectively increase the specificity of target gene recognition. Meanwhile, by utilizing the small molecular weight and dimerization dependent activity of nuclease Fok I, we used Fok I recombinant dimer protein as DNA cleavage domain. Here, we established a method by chemical coupling of LNA-oligonucleotide with Fok I cleavage domain, and also validated the targeted cleavage of HBV genes with our new tools in vitro. These results provide new possibilities for future in vivo anti-virus gene therapy with high specificity and no integration risk. PMID:27103458

  10. Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases

    PubMed Central

    Karginov, Fedor V.; Cheloufi, Sihem; Chong, Mark M.W.; Stark, Alexander; Smith, Andrew D.; Hannon, Gregory J.

    2010-01-01

    The lifespan of a mammalian mRNA is determined, in part, by the binding of regulatory proteins and small RNA-guided complexes. The conserved endonuclease activity of Argonaute2 requires extensive complementarity between a small RNA and its target and is not used by animal microRNAs, which pair with their targets imperfectly. Here, we investigate the endonucleolytic function of Ago2 and other nucleases by transcriptome-wide profiling of mRNA cleavage products retaining 5′-phosphate groups in mouse ES. We detect a prominent signature of Ago2-dependent cleavage events and validate several such targets. Unexpectedly, a broader class of Ago2-independent cleavage sites is also observed, indicating participation of additional nucleases in site-specific mRNA cleavage. Within this class, we identify a cohort of Drosha-dependent mRNA cleavage events that functionally regulate mRNA levels in mES cells, including one in the Dgcr8 mRNA. Together, these results highlight the underappreciated role of endonucleolytic cleavage in controlling mRNA fates in mammals. PMID:20620951

  11. Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases.

    PubMed

    Karginov, Fedor V; Cheloufi, Sihem; Chong, Mark M W; Stark, Alexander; Smith, Andrew D; Hannon, Gregory J

    2010-06-25

    The life span of a mammalian mRNA is determined, in part, by the binding of regulatory proteins and small RNA-guided complexes. The conserved endonuclease activity of Argonaute2 requires extensive complementarity between a small RNA and its target and is not used by animal microRNAs, which pair with their targets imperfectly. Here we investigate the endonucleolytic function of Ago2 and other nucleases by transcriptome-wide profiling of mRNA cleavage products retaining 5' phosphate groups in mouse embryonic stem cells (mESCs). We detect a prominent signature of Ago2-dependent cleavage events and validate several such targets. Unexpectedly, a broader class of Ago2-independent cleavage sites is also observed, indicating participation of additional nucleases in site-specific mRNA cleavage. Within this class, we identify a cohort of Drosha-dependent mRNA cleavage events that functionally regulate mRNA levels in mESCs, including one in the Dgcr8 mRNA. Together, these results highlight the underappreciated role of endonucleolytic cleavage in controlling mRNA fates in mammals. PMID:20620951

  12. Engineering HIV-Resistant Human CD4+ T Cells with CXCR4-Specific Zinc-Finger Nucleases

    PubMed Central

    Wilen, Craig B.; Wang, Jianbin; Tilton, John C.; Miller, Jeffrey C.; Kim, Kenneth A.; Rebar, Edward J.; Sherrill-Mix, Scott A.; Patro, Sean C.; Secreto, Anthony J.; Jordan, Andrea P. O.; Lee, Gary; Kahn, Joshua; Aye, Pyone P.; Bunnell, Bruce A.; Lackner, Andrew A.; Hoxie, James A.; Danet-Desnoyers, Gwenn A.; Bushman, Frederic D.; Riley, James L.; Gregory, Philip D.; June, Carl H.; Holmes, Michael C.; Doms, Robert W.

    2011-01-01

    HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5) virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to protect cells from virus strains that use CXCR4 (X4) in place of or in addition to CCR5 (R5X4) remains. Here we describe engineering a pair of zinc finger nucleases that, when introduced into human T cells, efficiently disrupt cxcr4 by cleavage and error-prone non-homologous DNA end-joining. The resulting cells proliferated normally and were resistant to infection by X4-tropic HIV-1 strains. CXCR4 could also be inactivated in ccr5Δ32 CD4+ T cells, and we show that such cells were resistant to all strains of HIV-1 tested. Loss of CXCR4 also provided protection from X4 HIV-1 in a humanized mouse model, though this protection was lost over time due to the emergence of R5-tropic viral mutants. These data suggest that CXCR4-specific ZFNs may prove useful in establishing resistance to CXCR4-tropic HIV for autologous transplant in HIV-infected individuals. PMID:21533216

  13. Site-specific gene targeting using transcription activator-like effector (TALE)-based nuclease in Brassica oleracea.

    PubMed

    Sun, Zijian; Li, Nianzu; Huang, Guodong; Xu, Junqiang; Pan, Yu; Wang, Zhimin; Tang, Qinglin; Song, Ming; Wang, Xiaojia

    2013-11-01

    Site-specific recognition modules with DNA nuclease have tremendous potential as molecular tools for genome targeting. The type III transcription activator-like effectors (TALEs) contain a DNA binding domain consisting of tandem repeats that can be engineered to bind user-defined specific DNA sequences. We demonstrated that customized TALE-based nucleases (TALENs), constructed using a method called "unit assembly", specifically target the endogenous FRIGIDA gene in Brassica oleracea L. var. capitata L. The results indicate that the TALENs bound to the target site and cleaved double-strand DNA in vitro and in vivo, whereas the effector binding elements have a 23 bp spacer. The T7 endonuclease I assay and sequencing data show that TALENs made double-strand breaks, which were repaired by a non-homologous end-joining pathway within the target sequence. These data show the feasibility of applying customized TALENs to target and modify the genome with deletions in those organisms that are still in lacking gene target methods to provide germplasms in breeding improvement. PMID:23870552

  14. Structure-based functional identification of Helicobacter pylori HP0268 as a nuclease with both DNA nicking and RNase activities

    PubMed Central

    Lee, Ki-Young; Lee, Kyu-Yeon; Kim, Ji-Hun; Lee, In-Gyun; Lee, Sung-Hee; Sim, Dae-Won; Won, Hyung-Sik; Lee, Bong-Jin

    2015-01-01

    HP0268 is a conserved, uncharacterized protein from Helicobacter pylori. Here, we determined the solution structure of HP0268 using three-dimensional nuclear magnetic resonance (NMR) spectroscopy, revealing that this protein is structurally most similar to a small MutS-related (SMR) domain that exhibits nicking endonuclease activity. We also demonstrated for the first time that HP0268 is a nicking endonuclease and a purine-specific ribonuclease through gel electrophoresis and fluorescence spectroscopy. The nuclease activities for DNA and RNA were maximally increased by Mn2+ and Mg2+ ions, respectively, and decreased by Cu2+ ions. Using NMR chemical shift perturbations, the metal and nucleotide binding sites of HP0268 were determined to be spatially divided but close to each other. The lysine residues (Lys7, Lys11 and Lys43) are clustered and form the nucleotide binding site. Moreover, site-directed mutagenesis was used to define the catalytic active site of HP0268, revealing that this site contains two acidic residues, Asp50 and Glu54, in the metal binding site. The nucleotide binding and active sites are not conserved in the structural homologues of HP0268. This study will contribute to improving our understanding of the structure and functionality of a wide spectrum of nucleases. PMID:25916841

  15. Structural Basis of Duplex Thermodynamic Stability and Enhanced Nuclease Resistance of 5'-C-Methyl Pyrimidine-Modified Oligonucleotides.

    PubMed

    Kel'in, Alexander V; Zlatev, Ivan; Harp, Joel; Jayaraman, Muthusamy; Bisbe, Anna; O'Shea, Jonathan; Taneja, Nate; Manoharan, Rajar M; Khan, Saeed; Charisse, Klaus; Maier, Martin A; Egli, Martin; Rajeev, Kallanthottathil G; Manoharan, Muthiah

    2016-03-18

    Although judicious use of chemical modifications has contributed to the success of nucleic acid therapeutics, poor systemic stability remains a major hurdle. The introduction of functional groups around the phosphate backbone can enhance the nuclease resistance of oligonucleotides (ONs). Here, we report the synthesis of enantiomerically pure (R)- and (S)-5'-C-methyl (C5'-Me) substituted nucleosides and their incorporation into ONs. These modifications generally resulted in a decrease in thermal stability of oligonucleotide (ON) duplexes in a manner dependent on the stereoconfiguration at C5' with greater destabilization characteristic of (R)-epimers. Enhanced stability against snake venom phosphodiesterase resulted from modification of the 3'-end of an ON with either (R)- or (S)-C5'-Me nucleotides. The (S)-isomers with different 2'-substituents provided greater resistance against 3'-exonucleases than the corresponding (R)-isomers. Crystal structure analyses of RNA octamers with (R)- or (S)-5'-C-methyl-2'-deoxy-2'-fluorouridine [(R)- or (S)-C5'-Me-2'-FU, respectively] revealed that the stereochemical orientation of the C5'-Me and the steric effects that emanate from the alkyl substitution are the dominant determinants of thermal stability and are likely molecular origins of resistance against nucleases. X-ray and NMR structural analyses showed that the (S)-C5'-Me epimers are spatially and structurally more similar to their natural 5' nonmethylated counterparts than the corresponding (R)-epimers. PMID:26940174

  16. Caffeine impairs resection during DNA break repair by reducing the levels of nucleases Sae2 and Dna2.

    PubMed

    Tsabar, Michael; Eapen, Vinay V; Mason, Jennifer M; Memisoglu, Gonen; Waterman, David P; Long, Marcus J; Bishop, Douglas K; Haber, James E

    2015-08-18

    In response to chromosomal double-strand breaks (DSBs), eukaryotic cells activate the DNA damage checkpoint, which is orchestrated by the PI3 kinase-like protein kinases ATR and ATM (Mec1 and Tel1 in budding yeast). Following DSB formation, Mec1 and Tel1 phosphorylate histone H2A on serine 129 (known as γ-H2AX). We used caffeine to inhibit the checkpoint kinases after DSB induction. We show that prolonged phosphorylation of H2A-S129 does not require continuous Mec1 and Tel1 activity. Unexpectedly, caffeine treatment impaired homologous recombination by inhibiting 5' to 3' end resection, independent of Mec1 and Tel1 inhibition. Caffeine treatment led to the rapid loss, by proteasomal degradation, of both Sae2, a nuclease that plays a role in early steps of resection, and Dna2, a nuclease that facilitates one of two extensive resection pathways. Sae2's instability is evident in the absence of DNA damage. A similar loss is seen when protein synthesis is inhibited by cycloheximide. Caffeine treatment had similar effects on irradiated HeLa cells, blocking the formation of RPA and Rad51 foci that depend on 5' to 3' resection of broken chromosome ends. Our findings provide insight toward the use of caffeine as a DNA damage-sensitizing agent in cancer cells. PMID:26019182

  17. Use of the heteroduplex mobility assay and cell sorting to select genome sequences of the CCR5 gene in HEK 293T cells edited by transcription activator-like effector nucleases

    PubMed Central

    Nerys-Junior, Arildo; Costa, Lendel C.; Braga-Dias, Luciene P.; Oliveira, Márcia; Rossi, Átila D.; da Cunha, Rodrigo Delvecchio; Gonçalves, Gabriel S.; Tanuri, Amilcar

    2014-01-01

    Engineered nucleases such as zinc finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN) are one of the most promising tools for modifying genomes. These site-specific enzymes cause double-strand breaks that allow gene disruption or gene insertion, thereby facilitating genetic manipulation. The major problem associated with this approach is the labor-intensive procedures required to screen and confirm the cellular modification by nucleases. In this work, we produced a TALEN that targets the human CCR5 gene and developed a heteroduplex mobility assay for HEK 293T cells to select positive colonies for sequencing. This approach provides a useful tool for the quick detection and easy assessment of nuclease activity. PMID:24688299

  18. Use of the heteroduplex mobility assay and cell sorting to select genome sequences of the CCR5 gene in HEK 293T cells edited by transcription activator-like effector nucleases.

    PubMed

    Nerys-Junior, Arildo; Costa, Lendel C; Braga-Dias, Luciene P; Oliveira, Márcia; Rossi, Atila D; da Cunha, Rodrigo Delvecchio; Gonçalves, Gabriel S; Tanuri, Amilcar

    2014-03-01

    Engineered nucleases such as zinc finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN) are one of the most promising tools for modifying genomes. These site-specific enzymes cause double-strand breaks that allow gene disruption or gene insertion, thereby facilitating genetic manipulation. The major problem associated with this approach is the labor-intensive procedures required to screen and confirm the cellular modification by nucleases. In this work, we produced a TALEN that targets the human CCR5 gene and developed a heteroduplex mobility assay for HEK 293T cells to select positive colonies for sequencing. This approach provides a useful tool for the quick detection and easy assessment of nuclease activity. PMID:24688299

  19. Label-Free Fluorescence Assay of S1 Nuclease and Hydroxyl Radicals Based on Water-Soluble Conjugated Polymers and WS₂ Nanosheets.

    PubMed

    Li, Junting; Zhao, Qi; Tang, Yanli

    2016-01-01

    We developed a new method for detecting S1 nuclease and hydroxyl radicals based on the use of water-soluble conjugated poly[9,9-bis(6,6-(N,N,N-trimethylammonium)-fluorene)-2,7-ylenevinylene-co-alt-2,5-dicyano-1,4-phenylene)] (PFVCN) and tungsten disulfide (WS₂) nanosheets. Cationic PFVCN is used as a signal reporter, and single-layer WS₂ is used as a quencher with a negatively charged surface. The ssDNA forms complexes with PFVCN due to much stronger electrostatic interactions between cationic PFVCN and anionic ssDNA, whereas PFVCN emits yellow fluorescence. When ssDNA is hydrolyzed by S1 nuclease or hydroxyl radicals into small fragments, the interactions between the fragmented DNA and PFVCN become weaker, resulting in PFVCN being adsorbed on the surface of WS₂ and the fluorescence being quenched through fluorescence resonance energy transfer. The new method based on PFVCN and WS₂ can sense S1 nuclease with a low detection limit of 5 × 10(-6) U/mL. Additionally, this method is cost-effective by using affordable WS₂ as an energy acceptor without the need for dye-labeled ssDNA. Furthermore, the method provides a new platform for the nuclease assay and reactive oxygen species, and provides promising applications for drug screening. PMID:27304956

  20. The non-histone proteins of the rat liver nucleus and their distribution amongst chromatin fractions as produced by nuclease digestion.

    PubMed Central

    Hyde, J E; Igo-Kemenes, T; Zachau, H G

    1979-01-01

    The search for proteins involved in maintaining higher order chromatin structures has led to a systematic examination of the non-histone proteins (NHP) of rat liver nuclei in the context of nuclease digestion studies. 40-45% of the 3H-tryptophan labelled NHP originally present could be removed by extensive washing in a "physiological" buffer, incubation at 37 degrees C with or without nuclease and a further wash step. Nuclei at this stage had a remarkably constant NHP content (ca. 0.73 micrograms/micrograms DNA), independent of the degree of digestion with micrococcal nuclease or HaeIII. The solubilized chromatin produced by limited digestion with either nuclease contained 0.3-0.5 microgram NHP/microgram DNA, this value falling to ca. 0.16 after more extensive cleavage. Insoluble chromatin fractions were between 2-fold (very limited digestion) and 16-fold (extensive digestion) richer in NHP than the corresponding soluble fractions. Gel electrophoresis revealed about 12 NHP bands in soluble fractions, the most prominent of M.Wt. 41.400, while the insoluble material had at least 50 components. These properties were independent of whether lysis of nuclei occurred in 0.2 or 50 mM ionic strength. The large disparity in NHP content between complementary soluble and insoluble chromatin fractions is considered in terms of chromatin organization in vivo and the possible role of NHP migration. Images PMID:493143

  1. Two distinct modes of metal ion binding in the nuclease active site of a viral DNA-packaging terminase: insight into the two-metal-ion catalytic mechanism

    PubMed Central

    Zhao, Haiyan; Lin, Zihan; Lynn, Anna Y.; Varnado, Brittany; Beutler, John A.; Murelli, Ryan P.; Le Grice, Stuart F. J.; Tang, Liang

    2015-01-01

    Many dsDNA viruses encode DNA-packaging terminases, each containing a nuclease domain that resolves concatemeric DNA into genome-length units. Terminase nucleases resemble the RNase H-superfamily nucleotidyltransferases in folds, and share a two-metal-ion catalytic mechanism. Here we show that residue K428 of a bacteriophage terminase gp2 nuclease domain mediates binding of the metal cofactor Mg2+. A K428A mutation allows visualization, at high resolution, of a metal ion binding mode with a coupled-octahedral configuration at the active site, exhibiting an unusually short metal-metal distance of 2.42 Å. Such proximity of the two metal ions may play an essential role in catalysis by generating a highly positive electrostatic niche to enable formation of the negatively charged pentacovalent phosphate transition state, and provides the structural basis for distinguishing Mg2+ from Ca2+. Using a metal ion chelator β-thujaplicinol as a molecular probe, we observed a second mode of metal ion binding at the active site, mimicking the DNA binding state. Arrangement of the active site residues differs drastically from those in RNase H-like nucleases, suggesting a drifting of the active site configuration during evolution. The two distinct metal ion binding modes unveiled mechanistic details of the two-metal-ion catalysis at atomic resolution. PMID:26450964

  2. Label-Free Fluorescence Assay of S1 Nuclease and Hydroxyl Radicals Based on Water-Soluble Conjugated Polymers and WS2 Nanosheets

    PubMed Central

    Li, Junting; Zhao, Qi; Tang, Yanli

    2016-01-01

    We developed a new method for detecting S1 nuclease and hydroxyl radicals based on the use of water-soluble conjugated poly[9,9-bis(6,6-(N,N,N-trimethylammonium)-fluorene)-2,7-ylenevinylene-co-alt-2,5-dicyano-1,4-phenylene)] (PFVCN) and tungsten disulfide (WS2) nanosheets. Cationic PFVCN is used as a signal reporter, and single-layer WS2 is used as a quencher with a negatively charged surface. The ssDNA forms complexes with PFVCN due to much stronger electrostatic interactions between cationic PFVCN and anionic ssDNA, whereas PFVCN emits yellow fluorescence. When ssDNA is hydrolyzed by S1 nuclease or hydroxyl radicals into small fragments, the interactions between the fragmented DNA and PFVCN become weaker, resulting in PFVCN being adsorbed on the surface of WS2 and the fluorescence being quenched through fluorescence resonance energy transfer. The new method based on PFVCN and WS2 can sense S1 nuclease with a low detection limit of 5 × 10−6 U/mL. Additionally, this method is cost-effective by using affordable WS2 as an energy acceptor without the need for dye-labeled ssDNA. Furthermore, the method provides a new platform for the nuclease assay and reactive oxygen species, and provides promising applications for drug screening. PMID:27304956

  3. Creating Directed Double-strand Breaks with the Ref Protein: A Novel Rec A-Dependent Nuclease from Bacteriophage P1

    SciTech Connect

    Gruenig, Marielle C.; Lu, Duo; Won, Sang Joon; Dulberger, Charles L.; Manlick, Angela J.; Keck, James L.; Cox, Michael M.

    2012-03-16

    The bacteriophage P1-encoded Ref protein enhances RecA-dependent recombination in vivo by an unknown mechanism. We demonstrate that Ref is a new type of enzyme; that is, a RecA-dependent nuclease. Ref binds to ss- and dsDNA but does not cleave any DNA substrate until RecA protein and ATP are added to form RecA nucleoprotein filaments. Ref cleaves only where RecA protein is bound. RecA functions as a co-nuclease in the Ref/RecA system. Ref nuclease activity can be limited to the targeted strands of short RecA-containing D-loops. The result is a uniquely programmable endonuclease activity, producing targeted double-strand breaks at any chosen DNA sequence in an oligonucleotide-directed fashion. We present evidence indicating that cleavage occurs in the RecA filament groove. The structure of the Ref protein has been determined to 1.4 {angstrom} resolution. The core structure, consisting of residues 77-186, consists of a central 2-stranded {beta}-hairpin that is sandwiched between several {alpha}-helical and extended loop elements. The N-terminal 76 amino acid residues are disordered; this flexible region is required for optimal activity. The overall structure of Ref, including several putative active site histidine residues, defines a new subclass of HNH-family nucleases. We propose that enhancement of recombination by Ref reflects the introduction of directed, recombinogenic double-strand breaks.

  4. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system.

    PubMed

    Sinkunas, Tomas; Gasiunas, Giedrius; Fremaux, Christophe; Barrangou, Rodolphe; Horvath, Philippe; Siksnys, Virginijus

    2011-04-01

    Clustered regularly interspaced short palindromic repeat (CRISPR) is a recently discovered adaptive prokaryotic immune system that provides acquired immunity against foreign nucleic acids by utilizing small guide crRNAs (CRISPR RNAs) to interfere with invading viruses and plasmids. In Escherichia coli, Cas3 is essential for crRNA-guided interference with virus proliferation. Cas3 contains N-terminal HD phosphohydrolase and C-terminal Superfamily 2 (SF2) helicase domains. Here, we provide the first report of the cloning, expression, purification and in vitro functional analysis of the Cas3 protein of the Streptococcus thermophilus CRISPR4 (Ecoli subtype) system. Cas3 possesses a single-stranded DNA (ssDNA)-stimulated ATPase activity, which is coupled to unwinding of DNA/DNA and RNA/DNA duplexes. Cas3 also shows ATP-independent nuclease activity located in the HD domain with a preference for ssDNA substrates. To dissect the contribution of individual domains, Cas3 separation-of-function mutants (ATPase(+)/nuclease(-) and ATPase(-)/nuclease(+)) were obtained by site-directed mutagenesis. We propose that the Cas3 ATPase/helicase domain acts as a motor protein, which assists delivery of the nuclease activity to Cascade-crRNA complex targeting foreign DNA. PMID:21343909

  5. DIFFERENCES IN DETECTION OF DNA ADDUCTS IN THE 32P-POSTLABELING ASSAY AFTER EITHER 1-BUTANOL EXTRACTION OR NUCLEASE P1 TREATMENT

    EPA Science Inventory

    The use of nuclease Pl treatment and 1-butanol extraction to increase the sensitivity of the 32P-postlabe1ling assay for DNA adducts have been compared. lthough similar results were obtained with the two methods for standard adducts formed with benzo(a)pyrene diol epoxide I, nucl...

  6. Investigation of a redox-sensitive predictive model of mouse embryonic stem cells differentiation using quantitative nuclease protection assays and glutathione redox status

    EPA Science Inventory

    Investigation of a redox-sensitive predictive model of mouse embryonic stem cell differentiation via quantitative nuclease protection assays and glutathione redox status Chandler KJ,Hansen JM, Knudsen T,and Hunter ES 1. U.S. Environmental Protection Agency, Research Triangl...

  7. Modular Nuclease-Responsive DNA Three-Way Junction-Based Dynamic Assembly of a DNA Device and Its Sensing Application.

    PubMed

    Zhu, Jing; Wang, Lei; Xu, Xiaowen; Wei, Haiping; Jiang, Wei

    2016-04-01

    Here, we explored a modular strategy for rational design of nuclease-responsive three-way junctions (TWJs) and fabricated a dynamic DNA device in a "plug-and-play" fashion. First, inactivated TWJs were designed, which contained three functional domains: the inaccessible toehold and branch migration domains, the specific sites of nucleases, and the auxiliary complementary sequence. The actions of different nucleases on their specific sites in TWJs caused the close proximity of the same toehold and branch migration domains, resulting in the activation of the TWJs and the formation of a universal trigger for the subsequent dynamic assembly. Second, two hairpins (H1 and H2) were introduced, which could coexist in a metastable state, initially to act as the components for the dynamic assembly. Once the trigger initiated the opening of H1 via TWJs-driven strand displacement, the cascade hybridization of hairpins immediately switched on, resulting in the formation of the concatemers of H1/H2 complex appending numerous integrated G-quadruplexes, which were used to obtain label-free signal readout. The inherent modularity of this design allowed us to fabricate a flexible DNA dynamic device and detect multiple nucleases through altering the recognition pattern slightly. Taking uracil-DNA glycosylase and CpG methyltransferase M.SssI as models, we successfully realized the butt joint between the uracil-DNA glycosylase and M.SssI recognition events and the dynamic assembly process. Furthermore, we achieved ultrasensitive assay of nuclease activity and the inhibitor screening. The DNA device proposed here will offer an adaptive and flexible tool for clinical diagnosis and anticancer drug discovery. PMID:26943244

  8. Tsetse Salivary Gland Proteins 1 and 2 Are High Affinity Nucleic Acid Binding Proteins with Residual Nuclease Activity

    PubMed Central

    Caljon, Guy; Ridder, Karin De; Stijlemans, Benoît; Coosemans, Marc; Magez, Stefan; De Baetselier, Patrick; Van Den Abbeele, Jan

    2012-01-01

    Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans) saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2) display DNA/RNA non-specific, high affinity nucleic acid binding with KD values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents. PMID:23110062

  9. Production of Mutated Porcine Embryos Using Zinc Finger Nucleases and a Reporter-based Cell Enrichment System

    PubMed Central

    Koo, Ok Jae; Park, Sol Ji; Lee, Choongil; Kang, Jung Taek; Kim, Sujin; Moon, Joon Ho; Choi, Ji Yei; Kim, Hyojin; Jang, Goo; Kim, Jin-Soo; Kim, Seokjoong; Lee, Byeong-Chun

    2014-01-01

    To facilitate the construction of genetically-modified pigs, we produced cloned embryos derived from porcine fibroblasts transfected with a pair of engineered zinc finger nuclease (ZFN) plasmids to create targeted mutations and enriched using a reporter plasmid system. The reporter expresses RFP and eGFP simultaneously when ZFN-mediated site-specific mutations occur. Thus, double positive cells (RFP+/eGFP+) were selected and used for somatic cell nuclear transfer. Two types of reporter based enrichment systems were used in this study; the cloned embryos derived from cells enriched using a magnetic sorting-based system showed better developmental competence than did those derived from cells enriched by flow cytometry. Mutated sequences, such as insertions, deletions, or substitutions, together with the wild-type sequence, were found in the cloned porcine blastocysts. Therefore, genetic mutations can be achieved in cloned porcine embryos reconstructed with ZFN-treated cells that were enriched by a reporter-based system. PMID:25049958

  10. OutKnocker: a web tool for rapid and simple genotyping of designer nuclease edited cell lines

    PubMed Central

    Schmid-Burgk, Jonathan L.; Schmidt, Tobias; Gaidt, Moritz M.; Pelka, Karin; Latz, Eicke; Ebert, Thomas S.

    2014-01-01

    The application of designer nucleases allows the induction of DNA double-strand breaks (DSBs) at user-defined genomic loci. Due to imperfect DNA repair mechanisms, DSBs can lead to alterations in the genomic architecture, such as the disruption of the reading frame of a critical exon. This can be exploited to generate somatic knockout cell lines. While high genome editing activities can be achieved in various cellular systems, obtaining cell clones that contain all-allelic frameshift mutations at the target locus of interest remains a laborious task. To this end, we have developed an easy-to-follow deep sequencing workflow and the evaluation tool OutKnocker (www.OutKnocker.org), which allows convenient, reliable, and cost-effective identification of knockout cell lines. PMID:25186908

  11. Creation of targeted genomic deletions using TALEN or CRISPR/Cas nuclease pairs in one-cell mouse embryos

    PubMed Central

    Brandl, Christina; Ortiz, Oskar; Röttig, Bernhard; Wefers, Benedikt; Wurst, Wolfgang; Kühn, Ralf

    2014-01-01

    The use of TALEN and CRISPR/CAS nucleases is becoming increasingly popular as a means to edit single target sites in one-cell mouse embryos. Nevertheless, an area that has received less attention concerns the engineering of structural genome variants and the necessary religation of two distant double-strand breaks. Herein, we applied pairs of TALEN or sgRNAs and Cas9 to create deletions in the Rab38 gene. We found that the deletion of 3.2 or 9.3 kb, but not of 30 kb, occurs at a frequency of 6–37%. This is sufficient for the direct production of mutants by embryo microinjection. Therefore, deletions up to ∼10 kb can be readily achieved for modeling human disease alleles. This work represents an important step towards the establishment of new protocols that support the ligation of remote DSB ends to achieve even larger rearrangements. PMID:25685662

  12. Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference

    SciTech Connect

    Beloglazova, Natalia; Petit, Pierre; Flick, Robert; Brown, Greg; Savchenko, Alexei; Yakunin, Alexander F.

    2012-03-15

    Clustered regularly interspaced short palindromic repeats (CRISPRs) and Cas proteins represent an adaptive microbial immunity system against viruses and plasmids. Cas3 proteins have been proposed to play a key role in the CRISPR mechanism through the direct cleavage of invasive DNA. Here, we show that the Cas3 HD domain protein MJ0384 from Methanocaldococcus jannaschii cleaves endonucleolytically and exonucleolytically (3'-5') single-stranded DNAs and RNAs, as well as 3'-flaps, splayed arms, and R-loops. The degradation of branched DNA substrates by MJ0384 is stimulated by the Cas3 helicase MJ0383 and ATP. The crystal structure of MJ0384 revealed the active site with two bound metal cations and together with site-directed mutagenesis suggested a catalytic mechanism. Our studies suggest that the Cas3 HD nucleases working together with the Cas3 helicases can completely degrade invasive DNAs through the combination of endo- and exonuclease activities.

  13. Dual nuclease activity of a Cas2 protein in CRISPR-Cas subtype I-B of Leptospira interrogans.

    PubMed

    Dixit, Bhuvan; Ghosh, Karukriti Kaushik; Fernandes, Gary; Kumar, Pankaj; Gogoi, Prerana; Kumar, Manish

    2016-04-01

    Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 carries a set of cas genes associated with CRISPR-Cas subtype I-B. Herein, we report for the first time active transcription of a set of cas genes (cas1 to cas8) of L. interrogans where cas4, cas1, cas2 and cas6, cas3, cas8, cas7, cas5 are clustered together in two independent operons. As an initial step toward comprehensive understanding of CRISPR-Cas system in spirochete, the biochemical study of one of the core Leptospira Cas2 proteins (Lep_Cas2) showed nuclease activity on both DNA and RNA in a nonspecific manner. Additionally, unlike other known Cas2 proteins, Lep_Cas2 showed metal-independent RNase activity and preferential activity on RNA over DNA. These results provide insight for understanding Cas2 diversity existing in the prokaryotic adaptive immune system. PMID:26950513

  14. Consequences of Normalizing Transcriptomic and Genomic Libraries of Plant Genomes Using a Duplex-Specific Nuclease and Tetramethylammonium Chloride

    PubMed Central

    Froenicke, Lutz; Lavelle, Dean; Martineau, Belinda; Perroud, Bertrand; Michelmore, Richard

    2013-01-01

    Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC), which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce. PMID:23409088

  15. Classification of a Haemophilus influenzae ABC Transporter HI1470/71 through Its Cognate Molybdate Periplasmic Binding Protein, MolA

    SciTech Connect

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C.; Pinkett, Heather W.

    2014-10-02

    molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB{sub 2}C{sub 2} (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 {angstrom} resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The {approx}100 {mu}M binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate. The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.

  16. Activity of protein MalE (maltose-binding protein) fused to cytoplasmic and periplasmic regions of an Escherichia coli inner membrane protein.

    PubMed

    Dassa, E; Lambert, P

    1997-06-01

    We analysed the properties of mature MBP (maltose-binding protein or MalE protein) fused to an integral cytoplasmic membrane protein of Escherichia coli. Fusion of MalE to the first MalG periplasmic loop enabled a strain defective in the malE gene to utilize maltose. In contrast, fusion of MalE to a cytoplasmic loop did not complement the malE delta 444 deletion. We obtained results highly correlated with those obtained by using alkaline phosphatase as a reporter for the topology of MalG. We discuss the possibility of genetically determining the topology of cytoplasmic membrane proteins by a method based on engineered fusions to MBP. PMID:9765817

  17. Classification of a Haemophilus influenzae ABC transporter HI1470/71 through its cognate molybdate periplasmic binding protein, MolA.

    PubMed

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C; Pinkett, Heather W

    2011-11-01

    molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB(2)C(2) (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 Å resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The ∼100 μM binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate. The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus. PMID:22078568

  18. Periplasmic Binding Proteins in Thermophiles: Characterization and Potential Application of an Arginine-Binding Protein from Thermotoga maritima: A Brief Thermo-Story.

    PubMed

    Ausili, Alessio; Staiano, Maria; Dattelbaum, Jonathan; Varriale, Antonio; Capo, Alessandro; D'Auria, Sabato

    2013-01-01

    Arginine-binding protein from the extremophile Thermotoga maritima is a 27.7 kDa protein possessing the typical two-domain structure of the periplasmic binding proteins family. The protein is characterized by a very high specificity and affinity to bind to arginine, also at high temperatures. Due to its features, this protein could be taken into account as a potential candidate for the design of a biosensor for arginine. It is important to investigate the stability of proteins when they are used for biotechnological applications. In this article, we review the structural and functional features of an arginine-binding protein from the extremophile Thermotoga maritima with a particular eye on its potential biotechnological applications. PMID:25371336

  19. Cloning, Purification and Initial Characterization of E. coli McrA, a Putative 5-methylcytosine-specific Nuclease

    SciTech Connect

    Mulligan,E.; Dunn, J.

    2008-01-01

    Expression strains of Escherichia coli BL21(DE3) overproducing the E. coli m5C McrA restriction protein were produced by cloning the mcrA coding sequence behind a T7 promoter. The recombinant mcrA minus BL21(DE3) host produces active McrA as evidenced by its acquired ability to selectively restrict the growth of T7 phage containing DNA methylated in vitro by HpaII methylase. The mcrA coding region contains several non-optimal E. coli triplets. Addition of the pACYC-RIL tRNA encoding plasmid to the BL21(DE3) host increased the yield of recombinant McrA (rMcrA) upon induction about 5- to 10-fold. McrA protein expressed at 37 C is insoluble but a significant fraction is recovered as soluble protein after autoinduction at 20 C. rMcrA protein, which is predicted to contain a Cys4-Zn2+ finger and a catalytically important histidine triad in its putative nuclease domain, binds to several metal chelate resins without addition of a poly-histidine affinity tag. This feature was used to develop an efficient protocol for the rapid purification of nearly homogeneous rMcrA. The native protein is a dimer with a high a-helical content as measured by circular dichroism analysis. Under all conditions tested purified rMcrA does not have measurable nuclease activity on HpaII methylated (Cm5CGG) DNA, although the purified protein does specifically bind HpaII methylated DNA. These results have implications for understanding the in vivo activity of McrA in 'restricting' m5C-containing DNA and suggest that rMcrA may have utility as a reagent for affinity purification of DNA fragments containing m5C residues.

  20. 32P-postlabeling assay for carcinogen-DNA adducts: nuclease P1-mediated enhancement of its sensitivity and applications.

    PubMed Central

    Reddy, M V; Randerath, K

    1987-01-01

    Exceedingly sensitive assays are required for the detection of DNA adducts formed in humans exposed to low levels of environmental genotoxicants and therapeutic drugs. A 32P-postlabeling procedure for detection and quantitation of aromatic carcinogen-DNA lesions with a sensitivity limit of 1 adduct in 10(7) to 10(8) nucleotides has been described previously. In the standard procedure, DNA is enzymatically digested to 3'-phosphorylated normal and adducted mononucleotides, which are 32P-labeled at 5'-hydroxyl groups by T4 polynucleotide kinase-catalyzed [32P]phosphate transfer from [gamma-32P]ATP. 32P-labeled derivatives are resolved by TLC, detected by autoradiography, and quantitated by counting. This assay has been recently utilized for the determination and partial characterization of DNA adducts formed in somatic and reproductive tissues of rats given the clinically used anticancer drug, mitomycin C. The drug exhibits similar levels of covalent binding to DNA in most tissues. Further studies have revealed that adducted nucleotides are primarily guanine derivatives that are resistant to 3'-dephosphorylation by Penicillium citrinum nuclease P1. The latter observation has been utilized to enhance the 32P-assay's sensitivity to 1 adduct in 10(10) nucleotides for a 10-micrograms DNA sample by postincubation of DNA digests with nuclease P1 before 32P-labeling. The enzyme dephosphorylates the normal nucleotides but not most aromatic and bulky nonaromatic adducts, so that only the latter serve as substrates for the kinase-catalyzed labeling reaction. The new assay has also shown utility in the analysis of very low levels of age- and tissue-related DNA modifications, which might arise from dietary or endogenous compounds, in untreated rats and in humans. Images FIGURE 2. FIGURE 5. PMID:2834194

  1. Conformational consequences of ionization of Lys, Asp and Glu buried at position 66 in staphylococcal nuclease

    PubMed Central

    Karp, Daniel A.; Stahley, Mary R.; Bertrand, García-Moreno E.

    2012-01-01

    The pKa values measured previously for the internal Lys-66, Asp-66 and Glu-66 in variants of a highly stable form of staphylococcal nuclease are shifted by as many as 5 pKa units relative to normal pKa values in water. These shifts cannot be reproduced with continuum electrostatics calculations with static structures unless the protein is treated with high dielectric constants near 10. These high apparent dielectric constants are inconsistent with the highly hydrophobic microenvironments of the ionizable moieties in crystal structures. To examine the origins of these high apparent dielectric constants we showed that the pKa of these internal residues are sensitive to the global stability of the protein; the shifts tend to be smaller in less stable forms of nuclease. This implies that the apparent dielectric constants reported by these internal ionizable groups are high because they reflect conformational reorganization coupled to their ionization. To detect this directly, acid/base titrations monitored with Trp fluorescence, near-UV and far-UV CD spectroscopy were performed on variants with Lys-66, Glu-66 or Asp-66 in background proteins with different stability. Conformational reorganization coupled to the ionization of the internal groups was spectroscopically detectable, especially in the less stable background proteins. The data show that to improve the accuracy of structure-based pKa calculations of internal groups the calculations will have to treat explicitly all structural reorganization coupled to ionization. The data also suggest a novel approach to mapping the folding free energy landscape of proteins by using internal ionizable groups to stabilize partially unfolded states. PMID:20329780

  2. Efficient generation of FVII gene knockout mice using CRISPR/Cas9 nuclease and truncated guided RNAs

    PubMed Central

    An, Liyou; Hu, Yeshu; Chang, Shiwei; Zhu, Xiumei; Ling, Pingping; Zhang, Fenli; Liu, Jiao; Liu, Yanhong; Chen, Yexiang; Yang, Lan; Presicce, Giorgio Antonio; Du, Fuliang

    2016-01-01

    We investigated the effects of 5′-end truncated CRISPR RNA-guided Cas9 nuclease (tru-RGN, 17/18 nucleotides) on genome editing capability in NIH/3T3 cells, and its efficiencies on generating Factor VII (FVII) gene-knockout (KO) mice. In cultured cells, RGNs on-target editing activity had been varied when gRNAs was truncated, higher at Site Two (tF7–2 vs. F7–2, 49.5 vs. 30.1%) while lower in other two sites (Site One, tF7–1 vs.F7–1, 12.1 vs. 23.6%; Site Three, tF7–3 vs.F7–3, 7.7 vs 10.9%) (P < 0.05). Out of 15 predicated off–target sites, tru-RGNs showed significantly decreased frequencies at 5 sites. By microinjecting tru-RGN RNAs into zygotes, FVII KO mice were generated with higher efficiency at Site Two (80.1 vs. 35.8%) and Site One (55.0 vs 3.7%) (P < 0.05), but not at Site three (39.4 vs 27.8%) (P > 0.05) when compared with standard RGN controls. Knockout FVII mice demonstrated a delayed prothrombin time and decreased plasma FVII expression. Our study first demonstrates that truncated gRNAs to 18 complementary nucleotides and Cas9 nucleases, can effectively generate FVII gene KO mice with a significantly higher efficiency in a site-dependent manner. In addition, the off-target frequency was much lower in KO mice than in cell lines via RGN expression vector-mediated genome editing. PMID:27139777

  3. Preventing over-resection by DNA2 helicase/nuclease suppresses repair defects in Fanconi anemia cells

    PubMed Central

    Karanja, Kenneth K; Lee, Eu Han; Hendrickson, Eric A; Campbell, Judith L

    2014-01-01

    FANCD2 is required for the repair of DNA damage by the FA (Fanconi anemia) pathway, and, consequently, FANCD2-deficient cells are sensitive to compounds such as cisplatin and formaldehyde that induce DNA:DNA and DNA:protein crosslinks, respectively. The DNA2 helicase/nuclease is required for RNA/DNA flap removal from Okazaki fragments during DNA replication and for the resection of DSBs (double-strand breaks) during HDR (homology-directed repair) of replication stress-induced damage. A knockdown of DNA2 renders normal cells as sensitive to cisplatin (in the absence of EXO1) and to formaldehyde (even in the presence of EXO1) as FANCD2−/− cells. Surprisingly, however, the depletion of DNA2 in FANCD2-deficient cells rescues the sensitivity of FANCD2−/− cells to cisplatin and formaldehyde. We previously showed that the resection activity of DNA2 acts downstream of FANCD2 to insure HDR of the DSBs arising when replication forks encounter ICL (interstrand crosslink) damage. The suppression of FANCD2−/− by DNA2 knockdowns suggests that DNA2 and FANCD2 also have antagonistic roles: in the absence of FANCD2, DNA2 somehow corrupts repair. To demonstrate that DNA2 is deleterious to crosslink repair, we used psoralen-induced ICL damage to trigger the repair of a site-specific crosslink in a GFP reporter and observed that “over-resection” can account for reduced repair. Our work demonstrates that excessive resection can lead to genome instability and shows that strict regulatory processes have evolved to inhibit resection nucleases. The suppression of FANCD2−/− phenotypes by DNA2 depletion may have implications for FA therapies and for the use of ICL-inducing agents in chemotherapy. PMID:24626199

  4. Efficient generation of FVII gene knockout mice using CRISPR/Cas9 nuclease and truncated guided RNAs.

    PubMed

    An, Liyou; Hu, Yeshu; Chang, Shiwei; Zhu, Xiumei; Ling, Pingping; Zhang, Fenli; Liu, Jiao; Liu, Yanhong; Chen, Yexiang; Yang, Lan; Presicce, Giorgio Antonio; Du, Fuliang

    2016-01-01

    We investigated the effects of 5'-end truncated CRISPR RNA-guided Cas9 nuclease (tru-RGN, 17/18 nucleotides) on genome editing capability in NIH/3T3 cells, and its efficiencies on generating Factor VII (FVII) gene-knockout (KO) mice. In cultured cells, RGNs on-target editing activity had been varied when gRNAs was truncated, higher at Site Two (tF7-2 vs. F7-2, 49.5 vs. 30.1%) while lower in other two sites (Site One, tF7-1 vs.F7-1, 12.1 vs. 23.6%; Site Three, tF7-3 vs.F7-3, 7.7 vs 10.9%) (P < 0.05). Out of 15 predicated off-target sites, tru-RGNs showed significantly decreased frequencies at 5 sites. By microinjecting tru-RGN RNAs into zygotes, FVII KO mice were generated with higher efficiency at Site Two (80.1 vs. 35.8%) and Site One (55.0 vs 3.7%) (P < 0.05), but not at Site three (39.4 vs 27.8%) (P > 0.05) when compared with standard RGN controls. Knockout FVII mice demonstrated a delayed prothrombin time and decreased plasma FVII expression. Our study first demonstrates that truncated gRNAs to 18 complementary nucleotides and Cas9 nucleases, can effectively generate FVII gene KO mice with a significantly higher efficiency in a site-dependent manner. In addition, the off-target frequency was much lower in KO mice than in cell lines via RGN expression vector-mediated genome editing. PMID:27139777

  5. Cloning, purification and initial characterization of E. coli McrA, a putative 5-methylcytosine-specific nuclease.

    PubMed

    Mulligan, Elizabeth A; Dunn, John J

    2008-11-01

    Expression strains of Escherichia coli BL21(DE3) overproducing the E. coli m(5)C McrA restriction protein were produced by cloning the mcrA coding sequence behind a T7 promoter. The recombinant mcrA minus BL21(DE3) host produces active McrA as evidenced by its acquired ability to selectively restrict the growth of T7 phage containing DNA methylated in vitro by HpaII methylase. The mcrA coding region contains several non-optimal E. coli triplets. Addition of the pACYC-RIL tRNA encoding plasmid to the BL21(DE3) host increased the yield of recombinant McrA (rMcrA) upon induction about 5- to 10-fold. McrA protein expressed at 37 degrees C is insoluble but a significant fraction is recovered as soluble protein after autoinduction at 20 degrees C. rMcrA protein, which is predicted to contain a Cys(4)-Zn(2+) finger and a catalytically important histidine triad in its putative nuclease domain, binds to several metal chelate resins without addition of a poly-histidine affinity tag. This feature was used to develop an efficient protocol for the rapid purification of nearly homogeneous rMcrA. The native protein is a dimer with a high alpha-helical content as measured by circular dichroism analysis. Under all conditions tested purified rMcrA does not have measurable nuclease activity on HpaII methylated (Cm(5)CGG) DNA, although the purified protein does specifically bind HpaII methylated DNA. These results have implications for understanding the in vivo activity of McrA in "restricting" m(5)C-containing DNA and suggest that rMcrA may have utility as a reagent for affinity purification of DNA fragments containing m(5)C residues. PMID:18662788

  6. Model of mouth-to-mouth transfer of bacterial lipoproteins through inner membrane LolC, periplasmic LolA, and outer membrane LolB.

    PubMed

    Okuda, Suguru; Tokuda, Hajime

    2009-04-01

    Outer membrane-specific lipoproteins in Escherichia coli are released from the inner membrane by an ATP-binding cassette transporter, the LolCDE complex, which causes the formation of a soluble complex with a periplasmic molecular chaperone, LolA. LolA then transports lipoproteins to the outer membrane where an outer membrane receptor, LolB, incorporates lipoproteins into the outer membrane. The molecular mechanisms underlying the Lol-dependent lipoprotein sorting have been clarified in detail. However, it remained unclear how Lol factors interact with each other to conduct very efficient lipoprotein transfer in the periplasm where ATP is not available. To address this issue, a photo-reactive phenylalanine analogue, p-benzoyl-phenylalanine, was introduced at various positions of LolA and LolB, of which the overall structures are very similar and comprise an incomplete beta-barrel with a hydrophobic cavity inside. Cells expressing LolA or LolB derivatives containing the above analogue were irradiated with UV for in vivo photo-cross-linking. These analyses revealed a hot area in the same region of LolA and LolB, through which LolA and LolB interact with each other. This area is located at the entrance of the hydrophobic cavity. Moreover, this area in LolA is involved in the interaction with a membrane subunit, LolC, whereas no cross-linking occurs between LolA and the other membrane subunit, LolE, or ATP-binding subunit LolD, despite the structural similarity between LolC and LolE. The hydrophobic cavities of LolA and LolB were both found to bind lipoproteins inside. These results indicate that the transfer of lipoproteins through Lol proteins occurs in a mouth-to-mouth manner. PMID:19307584

  7. Site-directed Fluorescence Labeling Reveals a Revised N-terminal Membrane Topology and Functional Periplasmic Residues in the Escherichia coli Cell Division Protein FtsK*

    PubMed Central

    Berezuk, Alison M.; Goodyear, Mara; Khursigara, Cezar M.

    2014-01-01

    In Escherichia coli, FtsK is a large integral membrane protein that coordinates chromosome segregation and cell division. The N-terminal domain of FtsK (FtsKN) is essential for division, and the C terminus (FtsKC) is a well characterized DNA translocase. Although the function of FtsKN is unknown, it is suggested that FtsK acts as a checkpoint to ensure DNA is properly segregated before septation. This may occur through modulation of protein interactions between FtsKN and other division proteins in both the periplasm and cytoplasm; thus, a clear understanding of how FtsKN is positioned in the membrane is required to characterize these interactions. The membrane topology of FtsKN was initially determined using site-directed reporter fusions; however, questions regarding this topology persist. Here, we report a revised membrane topology generated by site-directed fluorescence labeling. The revised topology confirms the presence of four transmembrane segments and reveals a newly identified periplasmic loop between the third and fourth transmembrane domains. Within this loop, four residues were identified that, when mutated, resulted in the appearance of cellular voids. High resolution transmission electron microscopy of these voids showed asymmetric division of the cytoplasm in the absence of outer membrane invagination or visible cell wall ingrowth. This uncoupling reveals a novel role for FtsK in linking cell envelope septation events and yields further evidence for FtsK as a critical checkpoint of cell division. The revised topology of FtsKN also provides an important platform for future studies on essential interactions required for this process. PMID:25002583

  8. The Periplasmic Nitrate Reductase Nap Is Required for Anaerobic Growth and Involved in Redox Control of Magnetite Biomineralization in Magnetospirillum gryphiswaldense

    PubMed Central

    Li, Yingjie; Katzmann, Emanuel; Borg, Sarah

    2012-01-01

    The magnetosomes of many magnetotactic bacteria consist of membrane-enveloped magnetite crystals, whose synthesis is favored by a low redox potential. However, the cellular redox processes governing the biomineralization of the mixed-valence iron oxide have remained unknown. Here, we show that in the alphaproteobacterium Magnetospirillum gryphiswaldense, magnetite biomineralization is linked to dissimilatory nitrate reduction. A complete denitrification pathway, including gene functions for nitrate (nap), nitrite (nir), nitric oxide (nor), and nitrous oxide reduction (nos), was identified. Transcriptional gusA fusions as reporters revealed that except for nap, the highest expression of the denitrification genes coincided with conditions permitting maximum magnetite synthesis. Whereas microaerobic denitrification overlapped with oxygen respiration, nitrate was the only electron acceptor supporting growth in the entire absence of oxygen, and only the deletion of nap genes, encoding a periplasmic nitrate reductase, and not deletion of nor or nos genes, abolished anaerobic growth and also delayed aerobic growth in both nitrate and ammonium media. While loss of nosZ or norCB had no or relatively weak effects on magnetosome synthesis, deletion of nap severely impaired magnetite biomineralization and resulted in fewer, smaller, and irregular crystals during denitrification and also microaerobic respiration, probably by disturbing the proper redox balance required for magnetite synthesis. In contrast to the case for the wild type, biomineralization in Δnap cells was independent of the oxidation state of carbon substrates. Altogether, our data demonstrate that in addition to its essential role in anaerobic respiration, the periplasmic nitrate reductase Nap has a further key function by participating in redox reactions required for magnetite biomineralization. PMID:22730130

  9. A Periplasmic Complex of the Nitrite Reductase NirS, the Chaperone DnaK, and the Flagellum Protein FliC Is Essential for Flagellum Assembly and Motility in Pseudomonas aeruginosa

    PubMed Central

    Borrero-de Acuña, José Manuel; Molinari, Gabriella; Rohde, Manfred; Dammeyer, Thorben; Wissing, Josef; Jänsch, Lothar; Arias, Sagrario; Jahn, Martina; Schobert, Max; Timmis, Kenneth N.

    2015-01-01

    ABSTRACT Pseudomonas aeruginosa is a ubiquitously occurring environmental bacterium and opportunistic pathogen responsible for various acute and chronic infections. Obviously, anaerobic energy generation via denitrification contributes to its ecological success. To investigate the structural basis for the interconnection of the denitrification machinery to other essential cellular processes, we have sought to identify the protein interaction partners of the denitrification enzyme nitrite reductase NirS in the periplasm. We employed NirS as an affinity-purifiable bait to identify interacting proteins in vivo. Results obtained revealed that both the flagellar structural protein FliC and the protein chaperone DnaK form a complex with NirS in the periplasm. The interacting domains of NirS and FliC were tentatively identified. The NirS-interacting stretch of amino acids lies within its cytochrome c domain. Motility assays and ultrastructure analyses revealed that a nirS mutant was defective in the formation of flagella and correspondingly in swimming motility. In contrast, the fliC mutant revealed an intact denitrification pathway. However, deletion of the nirF gene, coding for a heme d1 biosynthetic enzyme, which leads to catalytically inactive NirS, did not abolish swimming ability. This pointed to a structural function for the NirS protein. FliC and NirS were found colocalized with DnaK at the cell surface of P. aeruginosa. A function of the detected periplasmic NirS-DnaK-FliC complex in flagellum formation and motility was concluded and discussed. IMPORTANCE Physiological functions in Gram-negative bacteria are connected with the cellular compartment of the periplasm and its membranes. Central enzymatic steps of anaerobic energy generation and the motility mediated by flagellar activity use these cellular structures in addition to multiple other processes. Almost nothing is known about the protein network functionally connecting these processes in the periplasm

  10. Differences in detection of DNA adducts in the 32P-postlabelling assay after either 1-butanol extraction or nuclease P1 treatment.

    PubMed

    Gallagher, J E; Jackson, M A; George, M H; Lewtas, J; Robertson, I G

    1989-04-01

    The use of nuclease P1 treatment and 1-butanol extraction to increase the sensitivity of the 32P-postlabelling assay for DNA adducts have been compared. Although similar results were obtained with the two methods for standard adducts formed with benzo[a]pyrene diol epoxide I (BPDE-I), nuclease P1 treatment resulted in a significant reduction in detection of major adducts from 1-amino-6-nitropyrene (1-amino-6-NP), 1-amino-8-nitropyrene (1-amino-8-NP), 2-aminofluorene (2-AF), 2-naphthylamine (2-NA) and 4-aminobiphenyl (4-ABP) modified DNAs, but not following the 32P-postlabelling analysis of 2-acetylaminofluorene (2-AAF) modified DNA. These results suggest that, at least initially, both modifications of the 32P-postlabelling assay should be used for the detection of unknown adducts or for adducts derived from nitroaromatics and aromatic amines. PMID:2540901

  11. Efficient Gene Editing in Pluripotent Stem Cells by Bacterial Injection of Transcription Activator-Like Effector Nuclease Proteins

    PubMed Central

    Jia, Jingyue; Bai, Fang; Jin, Yongxin; Santostefano, Katherine E.; Ha, Un-Hwan; Wu, Donghai

    2015-01-01

    The type III secretion system (T3SS) of Pseudomonas aeruginosa is a powerful tool for direct protein delivery into mammalian cells and has successfully been used to deliver various exogenous proteins into mammalian cells. In the present study, transcription activator-like effector nuclease (TALEN) proteins have been efficiently delivered using the P. aeruginosa T3SS into mouse embryonic stem cells (mESCs), human ESCs (hESCs), and human induced pluripotent stem cells (hiPSCs) for genome editing. This bacterial delivery system offers an alternative method of TALEN delivery that is highly efficient in cleavage of the chromosomal target and presumably safer by avoiding plasmid DNA introduction. We combined the method of bacterial T3SS-mediated TALEN protein injection and transfection of an oligonucleotide template to effectively generate precise genetic modifications in the stem cells. Initially, we efficiently edited a single-base in the gfp gene of a mESC line to silence green fluorescent protein (GFP) production. The resulting GFP-negative mESC was cloned from a single cell and subsequently mutated back to a GFP-positive mESC line. Using the same approach, the gfp gene was also effectively knocked out in hESCs. In addition, a defined single-base edition was effectively introduced into the X-chromosome-linked HPRT1 gene in hiPSCs, generating an in vitro model of Lesch-Nyhan syndrome. T3SS-mediated TALEN protein delivery provides a highly efficient alternative for introducing precise gene editing within pluripotent stem cells for the purpose of disease genotype-phenotype relationship studies and cellular replacement therapies. Significance The present study describes a novel and powerful tool for the delivery of the genome editing enzyme transcription activator-like effector nuclease (TALEN) directly into pluripotent stem cells (PSCs), achieving desired base changes on the genomes of PSCs with high efficiency. This novel approach uses bacteria as a protein delivery

  12. RecQ helicase and RecJ nuclease provide complementary functions to resect DNA for homologous recombination

    PubMed Central

    Morimatsu, Katsumi; Kowalczykowski, Stephen C.

    2014-01-01

    Recombinational DNA repair by the RecF pathway of Escherichia coli requires the coordinated activities of RecA, RecFOR, RecQ, RecJ, and single-strand DNA binding (SSB) proteins. These proteins facilitate formation of homologously paired joint molecules between linear double-stranded (dsDNA) and supercoiled DNA. Repair starts with resection of the broken dsDNA by RecQ, a 3′→5′ helicase, RecJ, a 5′→3′ exonuclease, and SSB protein. The ends of a dsDNA break can be blunt-ended, or they may possess either 5′- or 3′-single-stranded DNA (ssDNA) overhangs of undefined length. Here we show that RecJ nuclease alone can initiate nucleolytic resection of DNA with 5′-ssDNA overhangs, and that RecQ helicase can initiate resection of DNA with blunt-ends or 3′-ssDNA overhangs by DNA unwinding. We establish that in addition to its well-known ssDNA exonuclease activity, RecJ can display dsDNA exonuclease activity, degrading 100–200 nucleotides of the strand terminating with a 5′-ssDNA overhang. The dsDNA product, with a 3′-ssDNA overhang, is an optimal substrate for RecQ, which unwinds this intermediate to reveal the complementary DNA strand with a 5′-end that is degraded iteratively by RecJ. On the other hand, RecJ cannot resect duplex DNA that is either blunt-ended or terminated with 3′-ssDNA; however, such DNA is unwound by RecQ to create ssDNA for RecJ exonuclease. RecJ requires interaction with SSB for exonucleolytic degradation of ssDNA but not dsDNA. Thus, complementary action by RecJ and RecQ permits initiation of recombinational repair from all dsDNA ends: 5′-overhangs, blunt, or 3′-overhangs. Such helicase–nuclease coordination is a common mechanism underlying resection in all organisms. PMID:25411316

  13. A quantitative multiplex nuclease protection assay reveals immunotoxicity gene expression profiles in the rabbit model for vaginal drug safety evaluation

    SciTech Connect

    Fichorova, Raina N.; Mendonca, Kevin; Yamamoto, Hidemi S.; Murray, Ryan; Chandra, Neelima; Doncel, Gustavo F.

    2015-06-15

    Any vaginal product that alters the mucosal environment and impairs the immune barrier increases the risk of sexually transmitted infections, especially HIV infection, which thrives on mucosal damage and inflammation. The FDA-recommended rabbit vaginal irritation (RVI) model serves as a first line selection tool for vaginal products; however, for decades it has been limited to histopathology scoring, insufficient to select safe anti-HIV microbicides. In this study we incorporate to the RVI model a novel quantitative nuclease protection assay (qNPA) to quantify mRNA levels of 25 genes representing leukocyte differentiation markers, toll-like receptors (TLR), cytokines, chemokines, epithelial repair, microbicidal and vascular markers, by designing two multiplex arrays. Tissue sections were obtained from 36 rabbits (6 per treatment arm) after 14 daily applications of a placebo gel, saline, 4% nonoxynol-9 (N-9), and three combinations of the anti-HIV microbicides tenofovir (TFV) and UC781 in escalating concentrations (highest: 10% TFV + 2.5%UC781). Results showed that increased expression levels of toll-like receptor (TLR)-4, interleukin (IL)-1β, CXCL8, epithelial membrane protein (EMP)-1 (P < 0.05), and decreased levels of TLR2 (P < 0.05), TLR3 and bactericidal permeability increasing protein (BPI) (P < 0.001) were associated with cervicovaginal mucosal alteration (histopathology). Seven markers showed a significant linear trend predicting epithelial damage (up with CD4, IL-1β, CXCL8, CCL2, CCL21, EMP1 and down with BPI). Despite the low tissue damage RVI scores, the high-dose microbicide combination gel caused activation of HIV host cells (SLC and CD4) while N-9 caused proinflammatory gene upregulation (IL-8 and TLR4) suggesting a potential for increasing risk of HIV via different mechanisms depending on the chemical nature of the test product. - Highlights: • A transcriptome nuclease protection assay assessed microbicides for vaginal safety. • Biomarkers were

  14. Characterization of the C-Terminal Nuclease Domain of Herpes Simplex Virus pUL15 as a Target of Nucleotidyltransferase Inhibitors.

    PubMed

    Masaoka, Takashi; Zhao, Haiyan; Hirsch, Danielle R; D'Erasmo, Michael P; Meck, Christine; Varnado, Brittany; Gupta, Ankit; Meyers, Marvin J; Baines, Joel; Beutler, John A; Murelli, Ryan P; Tang, Liang; Le Grice, Stuart F J

    2016-02-01

    The natural product α-hydroxytropolones manicol and β-thujaplicinol inhibit replication of herpes simplex viruses 1 and 2 (HSV-1 and HSV-2, respectively) at nontoxic concentrations. Because these were originally developed as divalent metal-sequestering inhibitors of the ribonuclease H activity of HIV-1 reverse transcriptase, α-hydroxytropolones likely target related HSV proteins of the nucleotidyltransferase (NTase) superfamily, which share an "RNase H-like" fold. One potential candidate is pUL15, a component of the viral terminase molecular motor complex, whose C-terminal nuclease domain, pUL15C, has recently been crystallized. Crystallography also provided a working model for DNA occupancy of the nuclease active site, suggesting potential protein-nucleic acid contacts over a region of ∼ 14 bp. In this work, we extend crystallographic analysis by examining pUL15C-mediated hydrolysis of short, closely related DNA duplexes. In addition to defining a minimal substrate length, this strategy facilitated construction of a dual-probe fluorescence assay for rapid kinetic analysis of wild-type and mutant nucleases. On the basis of its proposed role in binding the phosphate backbone, studies with pUL15C variant Lys700Ala showed that this mutation affected neither binding of duplex DNA nor binding of small molecule to the active site but caused a 17-fold reduction in the turnover rate (kcat), possibly by slowing conversion of the enzyme-substrate complex to the enzyme-product complex and/or inhibiting dissociation from the hydrolysis product. Finally, with a view of pUL15-associated nuclease activity as an antiviral target, the dual-probe fluorescence assay, in combination with differential scanning fluorimetry, was used to demonstrate inhibition by several classes of small molecules that target divalent metal at the active site. PMID:26829613

  15. The Nontoxic Cell Cycle Modulator Indirubin Augments Transduction of Adeno-Associated Viral Vectors and Zinc-Finger Nuclease-Mediated Gene Targeting

    PubMed Central

    Rahman, Shamim H.; Bobis-Wozowicz, Sylwia; Chatterjee, Debanjana; Gellhaus, Katharina; Pars, Kaweh; Heilbronn, Regine; Jacobs, Roland

    2013-01-01

    Abstract Parameters that regulate or affect the cell cycle or the DNA repair choice between non-homologous end-joining and homology-directed repair (HDR) are excellent targets to enhance therapeutic gene targeting. Here, we have evaluated the impact of five cell-cycle modulating drugs on targeted genome engineering mediated by DNA double-strand break (DSB)-inducing nucleases, such as zinc-finger nucleases (ZFNs). For a side-by-side comparison, we have established four reporter cell lines by integrating a mutated EGFP gene into either three transformed human cell lines or primary umbilical cord–derived mesenchymal stromal cells (UC-MSCs). After treatment with different cytostatic drugs, cells were transduced with adeno-associated virus (AAV) vectors that encode a nuclease or a repair donor to rescue EGFP expression through DSB-induced HDR. We show that transient cell-cycle arrest increased AAV transduction and AAV-mediated HDR up to six-fold in human cell lines and ten-fold in UC-MSCs, respectively. Targeted gene correction was observed in up to 34% of transduced cells. Both the absolute and the relative gene-targeting frequencies were dependent on the cell type, the cytostatic drug, the vector dose, and the nuclease. Treatment of cells with the cyclin-dependent kinase inhibitor indirubin-3′-monoxime was especially promising as this compound combined high stimulatory effects with minimal cytotoxicity. In conclusion, indirubin-3′-monoxime significantly improved AAV transduction and the efficiency of AAV/ZFN-mediated gene targeting and may thus represent a promising compound to enhance DSB-mediated genome engineering in human stem cells, such as UC-MSCs, which hold great promise for future clinical applications. PMID:23072634

  16. Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA

    PubMed Central

    Minczuk, Michal; Papworth, Monika A.; Miller, Jeffrey C.; Murphy, Michael P.; Klug, Aaron

    2008-01-01

    The selective degradation of mutated mitochondrial DNA (mtDNA) molecules is a potential strategy to re-populate cells with wild-type (wt) mtDNA molecules and thereby alleviate the defective mitochondrial function that underlies mtDNA diseases. Zinc finger nucleases (ZFNs), which are nucleases conjugated to a zinc-finger peptide (ZFP) engineered to bind a specific DNA sequence, could be useful for the selective degradation of particular mtDNA sequences. Typically, pairs of complementary ZFNs are used that heterodimerize on the target DNA sequence; however, conventional ZFNs were ineffective in our system. To overcome this, we created single-chain ZFNs by conjugating two FokI nuclease domains, connected by a flexible linker, to a ZFP with an N-terminal mitochondrial targeting sequence. Here we show that these ZFNs are efficiently transported into mitochondria in cells and bind mtDNA in a sequence-specific manner discriminating between two 12-bp long sequences that differ by a single base pair. Due to their selective binding they cleave dsDNA at predicted sites adjacent to the mutation. When expressed in heteroplasmic cells containing a mixture of mutated and wt mtDNA these ZFNs selectively degrade mutated mtDNA, thereby increasing the proportion of wt mtDNA molecules in the cell. Therefore, mitochondria-targeted single-chain ZFNs are a promising candidate approach for the treatment of mtDNA diseases. PMID:18511461

  17. The crystal structure of porcine reproductive and respiratory syndrome virus nonstructural protein Nsp1beta reveals a novel metal-dependent nuclease.

    PubMed

    Xue, Fei; Sun, Yuna; Yan, Liming; Zhao, Cong; Chen, Ji; Bartlam, Mark; Li, Xuemei; Lou, Zhiyong; Rao, Zihe

    2010-07-01

    Porcine reproductive and respiratory syndrome virus (PRRSV), a member of the Arteriviridae family of Nidovirales, is the causative agent of porcine reproductive and respiratory syndrome, which results in enormous economic losses in the swine industry. As the second protein encoded by the PRRSV genome, nsp1beta cleaves itself from the downstream nsp2 protein via a C-terminal papain-like cysteine protease (PCP) domain. Although nsp1beta is known to be involved in virulence, its precise role in the process of viral infection remains unclear. In this work, we describe the homodimeric crystal structure of PRRSV nsp1beta in its natural, self-processed form. We show that the architecture of its N-terminal domain (NTD) adopts a fold closely resembling that of several known nucleases and has intrinsic nuclease activity that is strongly activated by manganese ions in vitro. Key features, however, distinguish nsp1beta from characterized nucleases, including the C-terminal PCP domain (which is responsible for the self-release of nsp1beta from nsp2), a linker domain (LKD) that connects the NTD and the PCP domain, and a C-terminal extension (CTE) that binds to and is stabilized by the putative substrate binding site of the PCPbeta domain. Combined with the reported nuclear localization of this protein, these results shed light on the self-processing mode and precise biological function of nsp1beta and thus offer a multitarget template for future drug discovery. PMID:20410261

  18. Application of 5′-Nuclease PCR for Quantitative Detection of Listeria monocytogenes in Pure Cultures, Water, Skim Milk, and Unpasteurized Whole Milk

    PubMed Central

    Nogva, Hege Karin; Rudi, Knut; Naterstad, Kristine; Holck, Askild; Lillehaug, Dag

    2000-01-01

    PCR techniques have significantly improved the detection and identification of bacterial pathogens. Countless adaptations and applications have been described, including quantitative PCR and the latest innovation, real-time PCR. In real-time PCR, e.g., the 5′-nuclease chemistry renders the automated and direct detection and quantification of PCR products possible (P. M. Holland et al., Proc. Natl. Acad. Sci. USA 88:7276–7280, 1991). We present an assay for the quantitative detection of Listeria monocytogenes based on the 5′-nuclease PCR using a 113-bp amplicon from the listeriolysin O gene (hlyA) as the target. The assay was positive for all isolates of L. monocytogenes tested (65 isolates including the type strain) and negative for all other Listeria strains (16 isolates from five species tested) and several other bacteria (18 species tested). The application of 5′-nuclease PCR in diagnostics requires a quantitative sample preparation step. Several magnetic bead-based strategies were evaluated, since these systems are simple and relatively easy to automate. The combination of nonspecific binding of bacteria to paramagnetic beads, with subsequent DNA purification by use of the same beads, gave the most satisfactory result. The detection limit was approximately 6 to 60 CFU, quantification was linear over at least 7 log units, and the method could be completed within 3 h. In conclusion, a complete quantitative method for L. monocytogenes in water and in skimmed and raw milk was developed. PMID:11010869

  19. Efficient nanobiocatalytic systems of nuclease P1 immobilized on PEG-NH2 modified graphene oxide: effects of interface property heterogeneity.

    PubMed

    Zhuang, Wei; He, Linjiao; Zhu, Jiahua; Zheng, Jianwei; Liu, Xiaojing; Dong, Yihui; Wu, Jinglan; Zhou, Jingwei; Chen, Yong; Ying, Hanjie

    2016-09-01

    The use of graphene oxide (GO) nanosheets for functional enzyme support has attracted intensive interest owing to their unique planar structure and intriguing physical and chemical properties. However, the detailed effects of the interface properties of GO and its functionalized derivatives on active biomolecules are not well understood. We immobilize nuclease P1, a common industrial nucleic acid production enzyme, on pristine and amino poly(ethylene glycol) (PEG-NH2) modified GO nanosheets with interface property heterogeneity using two approaches, physical adsorption and chemical crosslinking. It is demonstrated that nuclease P1 could be stable immobilized on the surface of pristine GO by physical adsorption and on the edge of modified GO nanosheets by chemical crosslinking. The resultant loading capacity of nuclease P1 on pristine GO is as high as 6.45mg/mg as a consequence of strong electrostatic and hydrophobic interactions between the enzyme and carrier. However, it is determined that the acid resistance, thermal stability, reusability and degradation efficiency of the immobilized enzyme on PEG-NH2-modified GO are obviously improved compared to those of the enzyme immobilized on pristine GO. The enhanced catalytic behavior demonstrates that GO and its derivatives have great potential in efficient biocatalytic systems. PMID:27295495

  20. Structure-specific nuclease activity of RAGs is modulated by sequence, length and phase position of flanking double-stranded DNA.

    PubMed

    Kumari, Rupa; Raghavan, Sathees C

    2015-01-01

    RAGs (recombination activating genes) are responsible for the generation of antigen receptor diversity through the process of combinatorial joining of different V (variable), D (diversity) and J (joining) gene segments. In addition to its physiological property, wherein RAG functions as a sequence-specific nuclease, it can also act as a structure-specific nuclease leading to genomic instability and cancer. In the present study, we investigate the factors that regulate RAG cleavage on non-B DNA structures. We find that RAG binding and cleavage on heteroduplex DNA is dependent on the length of the double-stranded flanking region. Besides, the immediate flanking double-stranded region regulates RAG activity in a sequence-dependent manner. Interestingly, the cleavage efficiency of RAGs at the heteroduplex region is influenced by the phasing of DNA. Thus, our results suggest that sequence, length and phase positions of the DNA can affect the efficiency of RAG cleavage when it acts as a structure-specific nuclease. These findings provide novel insights on the regulation of the pathological functions of RAGs. PMID:25327637

  1. Label-free microRNA detection based on terbium and duplex-specific nuclease assisted target recycling.

    PubMed

    Zhang, Jing; Wu, Dongzhi; Chen, QiuXiang; Chen, Mei; Xia, Yaokun; Cai, Shuxian; Zhang, Xi; Wu, Fang; Chen, Jinghua

    2015-08-01

    In this paper, we describe a novel label-free fluorescence method for microRNA-21 (miR-21) detection based on terbium (Tb(3+)) and duplex-specific nuclease (DSN) assisted target recycling. Capture probes (Cps), containing a target-binding part and a signal-output part, are immobilized on magnetic beads (MBs). In the presence of the target miR-21, it hybridizes with the target-binding part of a Cp to form a DNA-RNA heteroduplex. Due to the considerable cleavage preference for DNA in DNA-RNA hybrids, DSN hydrolyzes the target-binding part of the Cp while liberating the intact target miR-21 to hybridize with a new Cp and initiate the second cycle of hydrolysis. Eventually, through magnetic separation, only the signal-output part of the Cp could remain in solution and function as a signalling flare to increase the fluorescence intensity of Tb(3+) dramatically. By employing the above strategy, this approach can gain an amplified fluorescent signal and detect as low as 8 fM miR-21 under the optimized conditions. Moreover, due to the high selectivity of DSN, the method shows little cross-hybridization among the closely related miRNA family members even at the single-base-mismatched level. Successful attempts were made in applying the approach to detect miR-21 in human cell lysate samples of breast cancer patients. PMID:26106867

  2. True-Breeding Targeted Gene Knock-Out in Barley Using Designer TALE-Nuclease in Haploid Cells

    PubMed Central

    Gurushidze, Maia; Hensel, Goetz; Hiekel, Stefan; Schedel, Sindy; Valkov, Vladimir; Kumlehn, Jochen

    2014-01-01

    Transcription activator-like effector nucleases (TALENs) are customizable fusion proteins able to cleave virtually any genomic DNA sequence of choice, and thereby to generate site-directed genetic modifications in a wide range of cells and organisms. In the present study, we expressed TALENs in pollen-derived, regenerable cells to establish the generation of instantly true-breeding mutant plants. A gfp-specific TALEN pair was expressed via Agrobacterium-mediated transformation in embryogenic pollen of transgenic barley harboring a functional copy of gfp. Thanks to the haploid nature of the target cells, knock-out mutations were readily detected, and homozygous primary mutant plants obtained following genome duplication. In all, 22% of the TALEN transgenics proved knocked out with respect to gfp, and the loss of function could be ascribed to the deletions of between four and 36 nucleotides in length. The altered gfp alleles were transmitted normally through meiosis, and the knock-out phenotype was consistently shown by the offspring of two independent mutants. Thus, here we describe the efficient production of TALEN-mediated gene knock-outs in barley that are instantaneously homozygous and non-chimeric in regard to the site-directed mutations induced. This TALEN approach has broad applicability for both elucidating gene function and tailoring the phenotype of barley and other crop species. PMID:24643227

  3. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq

    PubMed Central

    Kim, Daesik; Kim, Sojung; Kim, Sunghyun; Park, Jeongbin; Kim, Jin-Soo

    2016-01-01

    We present multiplex Digenome-seq to profile genome-wide specificities of up to 11 CRISPR-Cas9 nucleases simultaneously, saving time and reducing cost. Cell-free human genomic DNA was digested using multiple sgRNAs combined with the Cas9 protein and then subjected to whole-genome sequencing. In vitro cleavage patterns, characteristic of on- and off-target sites, were computationally identified across the genome using a new DNA cleavage scoring system. We found that many false-positive, bulge-type off-target sites were cleaved by sgRNAs transcribed from an oligonucleotide duplex but not by those transcribed from a plasmid template. Multiplex Digenome-seq captured many bona fide off-target sites, missed by other genome-wide methods, at which indels were induced at frequencies <0.1%. After analyzing 964 sites cleaved in vitro by these sgRNAs and measuring indel frequencies at hundreds of off-target sites in cells, we propose a guideline for the choice of target sites for minimizing CRISPR-Cas9 off-target effects in the human genome. PMID:26786045

  4. LEM-3 – A LEM Domain Containing Nuclease Involved in the DNA Damage Response in C. elegans

    PubMed Central

    Dittrich, Christina M.; Kratz, Katja; Sendoel, Ataman; Gruenbaum, Yosef; Jiricny, Josef; Hengartner, Michael O.

    2012-01-01

    The small nematode Caenorhabditis elegans displays a spectrum of DNA damage responses similar to humans. In order to identify new DNA damage response genes, we isolated in a forward genetic screen 14 new mutations conferring hypersensitivity to ionizing radiation. We present here our characterization of lem-3, one of the genes identified in this screen. LEM-3 contains a LEM domain and a GIY nuclease domain. We confirm that LEM-3 has DNase activity in vitro. lem-3(lf) mutants are hypersensitive to various types of DNA damage, including ionizing radiation, UV-C light and crosslinking agents. Embryos from irradiated lem-3 hermaphrodites displayed severe defects during cell division, including chromosome mis-segregation and anaphase bridges. The mitotic defects observed in irradiated lem-3 mutant embryos are similar to those found in baf-1 (barrier-to-autointegration factor) mutants. The baf-1 gene codes for an essential and highly conserved protein known to interact with the other two C. elegans LEM domain proteins, LEM-2 and EMR-1. We show that baf-1, lem-2, and emr-1 mutants are also hypersensitive to DNA damage and that loss of lem-3 sensitizes baf-1 mutants even in the absence of DNA damage. Our data suggest that BAF-1, together with the LEM domain proteins, plays an important role following DNA damage – possibly by promoting the reorganization of damaged chromatin. PMID:22383942

  5. In vivo mutagenesis of miRNA gene families using a scalable multiplexed CRISPR/Cas9 nuclease system

    PubMed Central

    Narayanan, Anand; Hill-Teran, Guillermina; Moro, Albertomaria; Ristori, Emma; Kasper, Dionna M.; A. Roden, Christine; Lu, Jun; Nicoli, Stefania

    2016-01-01

    A large number of microRNAs (miRNAs) are grouped into families derived from the same phylogenetic ancestors. miRNAs within a family often share the same physiological functions despite differences in their primary sequences, secondary structures, or chromosomal locations. Consequently, the generation of animal models to analyze the activity of miRNA families is extremely challenging. Using zebrafish as a model system, we successfully provide experimental evidence that a large number of miRNAs can be simultaneously mutated to abrogate the activity of an entire miRNA family. We show that injection of the Cas9 nuclease and two, four, ten, and up to twenty-four multiplexed single guide RNAs (sgRNAs) can induce mutations in 90% of the miRNA genomic sequences analyzed. We performed a survey of these 45 mutations in 10 miRNA genes, analyzing the impact of our mutagenesis strategy on the processing of each miRNA both computationally and in vivo. Our results offer an effective approach to mutate and study the activity of miRNA families and pave the way for further analysis on the function of complex miRNA families in higher multicellular organisms. PMID:27572667

  6. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae.

    PubMed

    Aouida, Mustapha; Li, Lixin; Mahjoub, Ali; Alshareef, Sahar; Ali, Zahir; Piatek, Agnieszka; Mahfouz, Magdy M

    2015-10-01

    Targeted engineering of microbial genomes holds much promise for diverse biotechnological applications. Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/Cas9 systems are capable of efficiently editing microbial genomes, including that of Saccharomyces cerevisiae. Here, we demonstrate the use of TALENs to edit the genome of S. cerevisiae with the aim of inducing the overproduction of fatty acids. Heterodimeric TALENs were designed to simultaneously edit the FAA1 and FAA4 genes encoding acyl-CoA synthetases in S. cerevisiae. Functional yeast double knockouts generated using these TALENs over-produce large amounts of free fatty acids into the cell. This study demonstrates the use of TALENs for targeted engineering of yeast and demonstrates that this technology can be used to stimulate the enhanced production of free fatty acids, which are potential substrates for biofuel production. This proof-of-principle study extends the utility of TALENs as excellent genome editing tools and highlights their potential use for metabolic engineering of yeast and other organisms, such as microalgae and plants, for biofuel production. PMID:25907574

  7. DNA damage induced by the anticodon nuclease from a Pichia acaciae killer strain is linked to ribonucleotide reductase depletion.