Science.gov

Sample records for periscopes

  1. 30. DETAIL OF PERISCOPE SHOWING EYEPIECE AND FINE FOCUS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. DETAIL OF PERISCOPE SHOWING EYEPIECE AND FINE FOCUS ON LEFT; CONTROL HANDLES IN CENTER; WHEEL FOR ROTATING PERISCOPE AT BOTTOM - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. 29. VIEW OF 1959 KOLLMORGEN BUNKER PERISCOPE LOCATED IN NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. VIEW OF 1959 KOLLMORGEN BUNKER PERISCOPE LOCATED IN NORTHEAST CORNER OF SLC-3W CONTROL ROOM. NOTE SCHRADER VALVE ABOVE HANDLE ON RIGHT SIDE OF PERISCOPE. MONITOR LABELED '1-FLAMEBUCKET' IN BACKGROUND TO LEFT OF PERISCOPE. DIGITAL COUNTDOWN AND HOLD CLOCKS IMMEDIATELY ABOVE MONITOR. ANOTHER DIGITAL COUNTDOWN CLOCK AND THE MILITARY TIME CLOCK ON NORTH WALL BENEATH THE MONITOR. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. 32. DETAIL OF PRESSURE GAUGE INSTALLED ON BUNKER PERISCOPE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. DETAIL OF PRESSURE GAUGE INSTALLED ON BUNKER PERISCOPE IN 1991 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  4. Periscope: Looking into learning in best-practices physics classrooms

    NASA Astrophysics Data System (ADS)

    Scherr, Rachel; Goertzen, Renee Michelle

    2015-04-01

    Periscope is a set of instructional materials designed to support university physics instructors - including teaching assistants, learning assistants, and faculty - in learning to notice and interpret classroom events the way an accomplished teacher does. Periscope is organized into short lessons that highlight significant questions in the teaching and learning of physics, such as ``How do I bring out students' physics ideas?'' and ``Does it matter if students are unhappy in my class?'' Lessons are centered on captioned video episodes of introductory physics students in best-practices classrooms. By watching and discussing authentic teaching events, instructors enrich their experience with noticing and interpreting student behavior and practice applying lessons learned about teaching to actual teaching situations. Periscope also gives instructors a view of other institutions' transformed courses, which can support and expand the instructors' vision of their own instructional improvement and support the transfer of course developments among faculty. Periscope materials are free to educators.

  5. Resolving Spectral Lines with a Periscope-Type DVD Spectroscope

    ERIC Educational Resources Information Center

    Wakabayashi, Fumitaka

    2008-01-01

    A new type of DVD spectroscope, the periscope type, is described and the numerical analysis of the observed emission and absorption spectra is demonstrated. A small and thin mirror is put inside and an eighth part of a DVD is used as a grating. Using this improved DVD spectroscope, one can observe and photograph visible spectra more easily and

  6. IET. Periscope shielding and installation details. Shows range of scanning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Periscope shielding and installation details. Shows range of scanning head, removable concrete cap, concrete shielding. Ralph M. Parsons 902-4-ANP-620-A 324. Date: February 1954. Approved by INEEL Classification Office for public release. INEEL Index code no. 035-0620-00-693-106909 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  7. Resolving Spectral Lines with a Periscope-Type DVD Spectroscope

    ERIC Educational Resources Information Center

    Wakabayashi, Fumitaka

    2008-01-01

    A new type of DVD spectroscope, the periscope type, is described and the numerical analysis of the observed emission and absorption spectra is demonstrated. A small and thin mirror is put inside and an eighth part of a DVD is used as a grating. Using this improved DVD spectroscope, one can observe and photograph visible spectra more easily and…

  8. Submarine periscope thermal imaging: its evolution in the UK

    NASA Astrophysics Data System (ADS)

    Armstrong, George R.

    1996-06-01

    The first submarine periscope to carry a thermal imaging sensor started sea trials in 1978. As a leading EO company and the sole supplier of periscopes to the Royal Navy since 1917, Pilkington Optronics (Barr & Stroud) has led the evolution of this technology in the UK. As is often the case, the evolutionary path has been IR detector technology- led. The first operational periscope TI system (1981) used a serial/parallel array of first generation photoconductive detectors operating in the LWIR (8 - 12 micrometer) waveband. The advent of SPRITE detectors in the 1980s opened the way to greatly improved performance within a reduced space volume, culminating in 1993 with the entry into fleet service of the SPRITE-based IR028 modular system for Vanguard, the new class of RN ballistic submarines. Today, second generation focal plane array detectors, along with the concept of the non-hull penetrating optronics mast, are ready to revolutionize periscope TI. The Pilkington Optronics CM10 Optronics Mast, presently under development, has been bid for the next class of RN submarines, Trafalgar Batch 2. CM10 exists in two versions, allowing the user to choose the operational waveband most suited to his operational needs. The sensor in the LWIR version is the PO high definition thermal imager (HDTI), which makes optimum use of SPRITEs to achieve very high performance within a compact space. The MWIR version features dual-band (TV plus 3 - 5 micrometer) optics viewing through a single pressure window; the TI sensor is based on a microscanned CMT FPA, yielding high spatial resolution and thermal sensitivity with small aperture optics.

  9. Periscope: Looking into learning in best-practices physics classrooms

    NASA Astrophysics Data System (ADS)

    Scherr, Rachel

    2014-03-01

    Periscope is a set of materials to support university instructors in observing, discussing, and reflecting on best practices in university instruction. Periscope is organized into short ``video workshops,'' each introducing a significant topic in the teaching and learning of physics, such as formative assessment or cooperative learning. The workshops are appropriate for university professors, two-year college faculty, graduate student teaching assistants, and undergraduate learning assistants. Key topics in teaching and learning are introduced through captioned video episodes of introductory physics students in the classroom, chosen to prompt collaborative discussion. Video episodes from exemplary sites (including the University of Maryland, University of Colorado - Boulder, Harvard University, and Florida International University) showcase a variety of research-tested instructional formats such as Peer Instruction and Tutorials in Introductory Physics. Discussion questions prompt participants who view the episode to reflect on their pedagogical beliefs, on their own practice, and on the results of physics education research. Periscope materials may be flexibly adapted for settings ranging from brief introductory sessions to all-day workshops or weekly meetings.

  10. Symmetric periscope for concentric beam configuration in an ultra-high precision laser interferometric beam launcher

    NASA Technical Reports Server (NTRS)

    Ames, Lawrence L. (Inventor)

    2006-01-01

    An optical component especially suited for common path heterodyne interferometry comprises a symmetric dual-periscope configuration. Each periscope is substantially identical to the other with regard to certain design aspects. The resulting design is an optical component that is highly stable with variations in temperature and angular deviations.

  11. 31. DETAIL OF MANUFACTURER'S PLATE ON BUNKER PERISCOPE IN SLC3W ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. DETAIL OF MANUFACTURER'S PLATE ON BUNKER PERISCOPE IN SLC-3W CONTROL ROOM - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. Periscope-camera system for visible and infrared imaging diagnostics on TFTR

    SciTech Connect

    Medley, S.S.; Dimock, D.L.; Hayes, S.; Long, D.; Lowrance, J.L.; Mastrocola, V.; Renda, G.; Ulrickson, M.; Young, K.M.

    1985-10-01

    An optical diagnostic consisting of a periscope which relays images of the torus interior to an array of cameras is used on the Tokamak Fusion Test Reactor (TFTR) to view plasma discharge phenomena and inspect the vacuum vessel internal structures in both the visible and near-infrared wavelength regions. Three periscopes view through 20-cm-diam fused-silica windows which are spaced around the torus midplane to provide a viewing coverage of approximately 75% of the vacuum vessel internal surface area. The periscopes have f/8 optics and motor-driven controls for focusing, magnification selection (5/sup 0/, 20/sup 0/, and 60/sup 0/ field of view), elevation and azimuth setting, mast rotation, filter selection, iris aperture, and viewing port selection. The four viewing ports on each periscope are equipped with multiple imaging devices which include: (1) an inspection eyepiece, (2) standard (RCA TC2900) and fast (RETICON) framing rate television cameras, (3) a PtSi CCD infrared imaging camera, (4) a 35-mm Nikon F3 still camera, or (5) a 16-mm Locam II movie camera with variable framing rate up to 500 fps. Operation of the periscope-camera system is controlled either locally or remotely through a computer-CAMAC interface. A description of the equipment and examples of its application are presented.

  13. Periscope-camera system for visible and infrared imaging diagnostics on TFTR

    SciTech Connect

    Medley, S.S.; Dimock, D.L.; Hayes, S.; Long, D.; Lowrence, J.L.; Mastrocola, V.; Renda, G.; Ulrickson, M.; Young, K.M.

    1985-05-01

    An optical diagnostic consisting of a periscope which relays images of the torus interior to an array of cameras is used on the Tokamak Fusion Test Reactor (TFTR) to view plasma discharge phenomena and inspect vacuum vessel internal structures in both visible and near-infrared wavelength regions. Three periscopes view through 20-cm-diameter fused-silica windows which are spaced around the torus midplane to provide a viewing coverage of approximately 75% of the vacuum vessel internal surface area. The periscopes have f/8 optics and motor-driven controls for focusing, magnification selection (5/sup 0/, 20/sup 0/, and 60/sup 0/ field of view), elevation and azimuth setting, mast rotation, filter selection, iris aperture, and viewing port selection. The four viewing ports on each periscope are equipped with multiple imaging devices which include: (1) an inspection eyepiece, (2) standard (RCA TC2900) and fast (RETICON) framing rate television cameras, (3) a PtSi CCD infrared imaging camera, (4) a 35 mm Nikon F3 still camera, or (5) a 16 mm Locam II movie camera with variable framing up to 500 fps. Operation of the periscope-camera system is controlled either locally or remotely through a computer-CAMAC interface. A description of the equipment and examples of its application are presented.

  14. Polarization property analysis of a periscopic scanner with three-dimensional polarization ray-tracing calculus.

    PubMed

    Yang, Yufei; Yan, Changxiang

    2016-02-20

    The polarization properties of a two-axis periscopic optical scanner constituted by a pair of rotating planar mirrors have been studied by using the three-dimensional polarization ray-tracing matrix method. The separate and cumulative matrices that define the transformation of the polarization state are obtained and expressed in terms of the rotation angles of two mirrors. The variations of diattenuation and retardance are investigated and graphically shown as functions of the rotation angles. On this basis, a further investigation about the cumulative polarization aberrations of three different metal-coated periscopic scanners is accomplished. Finally, the output polarization states of the three metal-coated scanners are calculated with the input beam of the arbitrary polarization states, and the results show that aluminum film is more appropriate than gold film or silver film for the polarization-maintaining periscopic scanner. PMID:26906587

  15. Periscope for noninvasive two-photon imaging of murine retina in vivo

    PubMed Central

    Stremplewski, Patrycjusz; Komar, Katarzyna; Palczewski, Krzysztof; Wojtkowski, Maciej; Palczewska, Grazyna

    2015-01-01

    Two-photon microscopy allows visualization of subcellular structures in the living animal retina. In previously reported experiments it was necessary to apply a contact lens to each subject. Extending this technology to larger animals would require fitting a custom contact lens to each animal and cumbersome placement of the living animal head on microscope stage. Here we demonstrate a new device, periscope, for coupling light energy into mouse eye and capturing emitted fluorescence. Using this periscope we obtained images of the RPE and their subcellular organelles, retinosomes, with larger field of view than previously reported. This periscope provides an interface with a commercial microscope, does not require contact lens and its design could be modified to image retina in larger animals. PMID:26417507

  16. Elusive Reaction Intermediates in Solution Explored by ESI-MS: Reverse Periscope for Mechanistic Investigations.

    PubMed

    Iacobucci, Claudio; Reale, Samantha; De Angelis, Francesco

    2016-02-01

    Just as periscopes allow a submarine to visually search for objects above the surface of the sea, in a reversed periscope fashion electrospray mass spectrometry (ESI-MS) can analyze the compounds at the gas phase/liquid phase interface for chemical entities which may exist in solution. The challenge is the identification and structural characterization of key elusive reaction intermediates in chemical transformations, intermediates which are able to explain how chemical processes occur. This Minireview summarizes recent selected publications on the use of ESI-MS techniques for studying solution intermediates of homogeneous chemical reactions. PMID:26799781

  17. Design Study of a Visible/Infrared Periscope for Intense Radiation Applications using Reflective Optics

    SciTech Connect

    Medley, S.S.

    1998-05-01

    In magnetically confined fusion devices employing deuterium-tritium (D-T) operation, refractive optical components exposed to neutron and gamma radiation can be subject to degradation of the transmission characteristics, induced luminescence, and altered mechanical properties including dimensional changes. Although radiation resistant refractive optics functioned well for the Tokamak Fusion Test Reactor (TFTR) periscope system during D-T operation, this design approach is unpromising in the much more hostile radiation environment of future D-T devices such as the International Thermonumclear Experimental Reactor (ITER). Under contract to the Princeton Plasma Physics Laboratory, Ball Aerospace of Colorado carried out a periscope design study based on the use of reflective optics. In this design, beryllium reflective input optics supported by a fused silica optical bench were interfaced to a Cassegrain relay system to transfer plasma images to remotely located cameras. This system is also capable of measuring first-wall surface temperatures in the range of 300 - 2,000 degrees C even under projected heating of the reflective optics themselves to several hundred degrees Celsius. Tests of beryllium mirror samples, however, revealed that operation at temperatures above 700 degrees C leads to a loss of specular reflectivity, thus placing an upper limit on the acceptable thermal environment. The main results of this periscope study are presented in this paper.

  18. Periscope: quantitative prediction of soluble protein expression in the periplasm of Escherichia coli.

    PubMed

    Chang, Catherine Ching Han; Li, Chen; Webb, Geoffrey I; Tey, BengTi; Song, Jiangning; Ramanan, Ramakrishnan Nagasundara

    2016-01-01

    Periplasmic expression of soluble proteins in Escherichia coli not only offers a much-simplified downstream purification process, but also enhances the probability of obtaining correctly folded and biologically active proteins. Different combinations of signal peptides and target proteins lead to different soluble protein expression levels, ranging from negligible to several grams per litre. Accurate algorithms for rational selection of promising candidates can serve as a powerful tool to complement with current trial-and-error approaches. Accordingly, proteomics studies can be conducted with greater efficiency and cost-effectiveness. Here, we developed a predictor with a two-stage architecture, to predict the real-valued expression level of target protein in the periplasm. The output of the first-stage support vector machine (SVM) classifier determines which second-stage support vector regression (SVR) classifier to be used. When tested on an independent test dataset, the predictor achieved an overall prediction accuracy of 78% and a Pearson's correlation coefficient (PCC) of 0.77. We further illustrate the relative importance of various features with respect to different models. The results indicate that the occurrence of dipeptide glutamine and aspartic acid is the most important feature for the classification model. Finally, we provide access to the implemented predictor through the Periscope webserver, freely accessible at http://lightning.med.monash.edu/periscope/. PMID:26931649

  19. Periscope: quantitative prediction of soluble protein expression in the periplasm of Escherichia coli

    PubMed Central

    Chang, Catherine Ching Han; Li, Chen; Webb, Geoffrey I.; Tey, BengTi; Song, Jiangning; Ramanan, Ramakrishnan Nagasundara

    2016-01-01

    Periplasmic expression of soluble proteins in Escherichia coli not only offers a much-simplified downstream purification process, but also enhances the probability of obtaining correctly folded and biologically active proteins. Different combinations of signal peptides and target proteins lead to different soluble protein expression levels, ranging from negligible to several grams per litre. Accurate algorithms for rational selection of promising candidates can serve as a powerful tool to complement with current trial-and-error approaches. Accordingly, proteomics studies can be conducted with greater efficiency and cost-effectiveness. Here, we developed a predictor with a two-stage architecture, to predict the real-valued expression level of target protein in the periplasm. The output of the first-stage support vector machine (SVM) classifier determines which second-stage support vector regression (SVR) classifier to be used. When tested on an independent test dataset, the predictor achieved an overall prediction accuracy of 78% and a Pearson’s correlation coefficient (PCC) of 0.77. We further illustrate the relative importance of various features with respect to different models. The results indicate that the occurrence of dipeptide glutamine and aspartic acid is the most important feature for the classification model. Finally, we provide access to the implemented predictor through the Periscope webserver, freely accessible at http://lightning.med.monash.edu/periscope/. PMID:26931649

  20. A reflective image-rotating periscope for spatially resolved Thomson-scattering experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Katz, J.; Ross, J. S.; Sorce, C.; Froula, D. H.

    2013-12-01

    A reflective image rotating periscope has been deployed on the Thomson-scattering system at the Laboratory for Laser Energetics, enabling the capability to make spatially resolved measurements of plasma conditions using either the 2ω (527-nm) or 4ω (263-nm) probe beam. The spectral content of ion-acoustic and electron plasma wave Thomson-scattering features are analyzed along the probe beam's axis of propagation using a pair of imaging Czerny-Turner spectrometers. A method for calculating image rotation was applied to design a translating periscope mirror assembly that provides fine adjustment of the image orientation at the spectrometer input plane. Spectrally dispersed Thomson-scattering signals are recorded using time-gated intensified charge-coupled-device cameras. Spectral resolution of up to 0.03 nm (0.2 nm) is achieved using a 1-m (0.3-m) spectrometer, allowing for simultaneous measurements of the ion-acoustic and electron plasma wave features. The optical system's 20-μm imaging resolution provides excellent noise rejection and spatial definition of the Thomson-scattering volume.

  1. Up Periscope! Designing a New Perceptual Metric for Imaging System Performance

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    2016-01-01

    Modern electronic imaging systems include optics, sensors, sampling, noise, processing, compression, transmission and display elements, and are viewed by the human eye. Many of these elements cannot be assessed by traditional imaging system metrics such as the MTF. More complex metrics such as NVTherm do address these elements, but do so largely through parametric adjustment of an MTF-like metric. The parameters are adjusted through subjective testing of human observers identifying specific targets in a set of standard images. We have designed a new metric that is based on a model of human visual pattern classification. In contrast to previous metrics, ours simulates the human observer identifying the standard targets. One application of this metric is to quantify performance of modern electronic periscope systems on submarines.

  2. Representing distributed cognition in complex systems: how a submarine returns to periscope depth.

    PubMed

    Stanton, Neville A

    2014-01-01

    This paper presents the Event Analysis of Systemic Teamwork (EAST) method as a means of modelling distributed cognition in systems. The method comprises three network models (i.e. task, social and information) and their combination. This method was applied to the interactions between the sound room and control room in a submarine, following the activities of returning the submarine to periscope depth. This paper demonstrates three main developments in EAST. First, building the network models directly, without reference to the intervening methods. Second, the application of analysis metrics to all three networks. Third, the combination of the aforementioned networks in different ways to gain a broader understanding of the distributed cognition. Analyses have shown that EAST can be used to gain both qualitative and quantitative insights into distributed cognition. Future research should focus on the analyses of network resilience and modelling alternative versions of a system. PMID:23510256

  3. The effect of tracking performance due to temperature distribution of SiC reflectors in periscopic laser communications

    NASA Astrophysics Data System (ADS)

    Song, Yiwei; Fu, Sen; Tao, Kunyu; Jiang, Yijun

    2015-10-01

    Effect of temperature gradient and uniform temperature on tracking performance of reflectors in periscopic laser communication terminals was studied. Zernike polynomials on elliptical area were used to fit wave-front aberration of elliptical reflectors in periscopic laser communication terminals due to temperature distribution. RMS value of the thermal deformation, tracking error and intensity on detectors degradation at receiving terminals caused by thermal deformation were studied in inter-satellite laser communication system. From the result we can know that effect of temperature gradient is the move of peak intensity and a little degradation. The tracking error reaches 2.9μrad when temperature gradient is 14°C/m. The uniform temperature will cause variation of intensity distribution on focus plane of detectors. When the difference between uniform temperature and reference temperature is small, the astigmatism causing by thermal distortion is very important. As the difference becomes bigger, the high-order modes of Zernike polynomials become very important. The distribution of intensity becomes irregular and the area is very big. This will reduce the tracking performance of detectors. This work will contribute to the thermal control of elliptical reflectors in periscopic laser communication terminals on satellites in orbit.

  4. Wiring a periscope--ocelli, retinula axons, visual neuropils and the ancestrality of sea spiders.

    PubMed

    Lehmann, Tobias; Hess, Martin; Melzer, Roland R

    2012-01-01

    The Pycnogonida or sea spiders are cryptic, eight-legged arthropods with four median ocelli in a 'periscope' or eye tubercle. In older attempts at reconstructing phylogeny they were Arthropoda incertae sedis, but recent molecular trees placed them as the sister group either to all other euchelicerates or even to all euarthropods. Thus, pycnogonids are among the oldest extant arthropods and hold a key position for the understanding of arthropod evolution. This has stimulated studies of new sets of characters conductive to cladistic analyses, e.g. of the chelifores and of the hox gene expression pattern. In contrast knowledge of the architecture of the visual system is cursory. A few studies have analysed the ocelli and the uncommon "pseudoinverted" retinula cells. Moreover, analyses of visual neuropils are still at the stage of Hanström's early comprehensive works. We have therefore used various techniques to analyse the visual fibre pathways and the structure of their interrelated neuropils in several species. We found that pycnogonid ocelli are innervated to first and second visual neuropils in close vicinity to an unpaired midline neuropil, i.e. possibly the arcuate body, in a way very similar to ancestral euarthropods like Euperipatoides rowelli (Onychophora) and Limulus polyphemus (Xiphosura). This supports the ancestrality of pycnogonids and sheds light on what eyes in the pycnogonid ground plan might have 'looked' like. Recently it was suggested that arthropod eyes originated from simple ocelli similar to larval eyes. Hence, pycnogonid eyes would be one of the early offshoots among the wealth of more sophisticated arthropod eyes. PMID:22279594

  5. Endovascular Treatment of a Symptomatic Thoracoabdominal Aortic Aneurysm by Chimney and Periscope Techniques for Total Visceral and Renal Artery Revascularization

    SciTech Connect

    Cariati, Maurizio; Mingazzini, Pietro; Dallatana, Raffaello; Rossi, Umberto G.; Settembrini, Alberto; Santuari, Davide

    2013-05-02

    Conventional endovascular therapy of thoracoabdominal aortic aneurysm with involving visceral and renal arteries is limited by the absence of a landing zone for the aortic endograft. Solutions have been proposed to overcome the problem of no landing zone; however, most of them are not feasible in urgent and high-risk patients. We describe a case that was successfully treated by total endovascular technique with a two-by-two chimney-and-periscope approach in a patient with acute symptomatic type IV thoracoabdominal aortic aneurysm with supra-anastomotic aneurysm formation involving the renal and visceral arteries and a pseduaneurismatic sac localized in the left ileopsoas muscle.

  6. Improved signal to noise ratio and sensitivity of an infrared imaging video bolometer on large helical device by using an infrared periscope.

    PubMed

    Pandya, Shwetang N; Peterson, Byron J; Mukai, Kiyofumi; Sano, Ryuichi; Enokuchi, Akito; Takeyama, Norihide

    2014-07-01

    An Infrared imaging Video Bolometer (IRVB) diagnostic is currently being used in the Large Helical Device (LHD) for studying the localization of radiation structures near the magnetic island and helical divertor X-points during plasma detachment and for 3D tomography. This research demands high signal to noise ratio (SNR) and sensitivity to improve the temporal resolution for studying the evolution of radiation structures during plasma detachment and a wide IRVB field of view (FoV) for tomography. Introduction of an infrared periscope allows achievement of a higher SNR and higher sensitivity, which in turn, permits a twofold improvement in the temporal resolution of the diagnostic. Higher SNR along with wide FoV is achieved simultaneously by reducing the separation of the IRVB detector (metal foil) from the bolometer's aperture and the LHD plasma. Altering the distances to meet the aforesaid requirements results in an increased separation between the foil and the IR camera. This leads to a degradation of the diagnostic performance in terms of its sensitivity by 1.5-fold. Using an infrared periscope to image the IRVB foil results in a 7.5-fold increase in the number of IR camera pixels imaging the foil. This improves the IRVB sensitivity which depends on the square root of the number of IR camera pixels being averaged per bolometer channel. Despite the slower f-number (f/# = 1.35) and reduced transmission (τ0 = 89%, due to an increased number of lens elements) for the periscope, the diagnostic with an infrared periscope operational on LHD has improved in terms of sensitivity and SNR by a factor of 1.4 and 4.5, respectively, as compared to the original diagnostic without a periscope (i.e., IRVB foil being directly imaged by the IR camera through conventional optics). The bolometer's field of view has also increased by two times. The paper discusses these improvements in apt details. PMID:25085127

  7. Improved signal to noise ratio and sensitivity of an infrared imaging video bolometer on large helical device by using an infrared periscope

    SciTech Connect

    Pandya, Shwetang N. Sano, Ryuichi; Peterson, Byron J.; Mukai, Kiyofumi; Enokuchi, Akito; Takeyama, Norihide

    2014-07-15

    An Infrared imaging Video Bolometer (IRVB) diagnostic is currently being used in the Large Helical Device (LHD) for studying the localization of radiation structures near the magnetic island and helical divertor X-points during plasma detachment and for 3D tomography. This research demands high signal to noise ratio (SNR) and sensitivity to improve the temporal resolution for studying the evolution of radiation structures during plasma detachment and a wide IRVB field of view (FoV) for tomography. Introduction of an infrared periscope allows achievement of a higher SNR and higher sensitivity, which in turn, permits a twofold improvement in the temporal resolution of the diagnostic. Higher SNR along with wide FoV is achieved simultaneously by reducing the separation of the IRVB detector (metal foil) from the bolometer's aperture and the LHD plasma. Altering the distances to meet the aforesaid requirements results in an increased separation between the foil and the IR camera. This leads to a degradation of the diagnostic performance in terms of its sensitivity by 1.5-fold. Using an infrared periscope to image the IRVB foil results in a 7.5-fold increase in the number of IR camera pixels imaging the foil. This improves the IRVB sensitivity which depends on the square root of the number of IR camera pixels being averaged per bolometer channel. Despite the slower f-number (f/# = 1.35) and reduced transmission (τ{sub 0} = 89%, due to an increased number of lens elements) for the periscope, the diagnostic with an infrared periscope operational on LHD has improved in terms of sensitivity and SNR by a factor of 1.4 and 4.5, respectively, as compared to the original diagnostic without a periscope (i.e., IRVB foil being directly imaged by the IR camera through conventional optics). The bolometer's field of view has also increased by two times. The paper discusses these improvements in apt details.

  8. How a submarine returns to periscope depth: analysing complex socio-technical systems using Cognitive Work Analysis.

    PubMed

    Stanton, Neville A; Bessell, Kevin

    2014-01-01

    This paper presents the application of Cognitive Work Analysis to the description of the functions, situations, activities, decisions, strategies, and competencies of a Trafalgar class submarine when performing the function of returning to periscope depth. All five phases of Cognitive Work Analysis are presented, namely: Work Domain Analysis, Control Task Analysis, Strategies Analysis, Social Organisation and Cooperation Analysis, and Worker Competencies Analysis. Complex socio-technical systems are difficult to analyse but Cognitive Work Analysis offers an integrated way of analysing complex systems with the core of functional means-ends analysis underlying all of the other representations. The joined-up analysis offers a coherent framework for understanding how socio-technical systems work. Data were collected through observation and interviews at different sites across the UK. The resultant representations present a statement of how the work domain and current activities are configured in this complex socio-technical system. This is intended to provide a baseline, from which all future conceptions of the domain may be compared. The strength of the analysis is in the multiple representations from which the constraints acting on the work may be analysed. Future research needs to challenge the assumptions behind these constraints in order to develop new ways of working. PMID:23702259

  9. Periscope: Views of the Individualized Education Program.

    ERIC Educational Resources Information Center

    Weiner, Bluma B., Ed.

    The collection of 41 papers from a conference on individualized education programs (IEPs) for handicapped students addresses four main topics (sample titles and authors in parentheses): communication and group process ("Establishing and Maintaining the IEP Team" by W. Morgan and N. Bray; "Child and Parent Involvement in Educational Planning" by M.…

  10. Wiring a Periscope – Ocelli, Retinula Axons, Visual Neuropils and the Ancestrality of Sea Spiders

    PubMed Central

    Lehmann, Tobias; Heß, Martin; Melzer, Roland R.

    2012-01-01

    The Pycnogonida or sea spiders are cryptic, eight-legged arthropods with four median ocelli in a ‘periscope’ or eye tubercle. In older attempts at reconstructing phylogeny they were Arthropoda incertae sedis, but recent molecular trees placed them as the sister group either to all other euchelicerates or even to all euarthropods. Thus, pycnogonids are among the oldest extant arthropods and hold a key position for the understanding of arthropod evolution. This has stimulated studies of new sets of characters conductive to cladistic analyses, e.g. of the chelifores and of the hox gene expression pattern. In contrast knowledge of the architecture of the visual system is cursory. A few studies have analysed the ocelli and the uncommon “pseudoinverted” retinula cells. Moreover, analyses of visual neuropils are still at the stage of Hanström's early comprehensive works. We have therefore used various techniques to analyse the visual fibre pathways and the structure of their interrelated neuropils in several species. We found that pycnogonid ocelli are innervated to first and second visual neuropils in close vicinity to an unpaired midline neuropil, i.e. possibly the arcuate body, in a way very similar to ancestral euarthropods like Euperipatoides rowelli (Onychophora) and Limulus polyphemus (Xiphosura). This supports the ancestrality of pycnogonids and sheds light on what eyes in the pycnogonid ground plan might have ‘looked’ like. Recently it was suggested that arthropod eyes originated from simple ocelli similar to larval eyes. Hence, pycnogonid eyes would be one of the early offshoots among the wealth of more sophisticated arthropod eyes. PMID:22279594

  11. Endovascular Repair of Acute Symptomatic Pararenal Aortic Aneurysm With Three Chimney and One Periscope Graft for Complete Visceral Artery Revascularization

    SciTech Connect

    Brechtel, Klaus Ketelsen, Dominik; Endisch, Andrea; Heller, Stephan; Heuschmid, Martin; Stock, Ulrich A.; Kalender, Guenay

    2012-04-15

    PurposeTo describe a modified endovascular technique for complete revascularization of visceral and renal arteries in symptomatic pararenal aortic aneurysm (PRAA).TechniqueArterial access was surgically established in both common femoral arteries (CFAs) and the left subclavian artery (LSA). Revascularization of the left renal artery, the celiac trunk, and the superior mesenteric artery was performed through one single sheath via the LSA. Suitable covered stents were put in the aortic branches but not deployed. The right renal artery was accessed over the left CFA. Due to the longitudinal extension of the presented aneurysm two stent-grafts were introduced via the right CFA. After deploying the aortic stent-grafts, all covered stents in the side branches were deployed consecutively with a minimum overlap of 5 mm over the cranial and caudal stent-graft edges. Simultaneous ballooning was performed to fully expand all stent-grafts and warranty patency. Conclusion: This is the first report in the literature of chimney grafting in PRAA for complete revascularization of visceral and renal branches by using more than two covered stents introduced from one side through one single sheath. However this technique is modified, it should be used only in bailout situations when branched stent-grafts are not available and/or surgery is not suitable.

  12. 33. HISTORIC VIEW OF WERNHER VON BRAUN LOOKS THROUGH THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. HISTORIC VIEW OF WERNHER VON BRAUN LOOKS THROUGH THE PERISCOPE FROM THE CONTROL ROOM AT TEST STAND NO. 1, PEENEMUENDE. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  13. 3. VIEW OF ESCAPE TUNNEL IN NORTH FACE OF LAUNCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF ESCAPE TUNNEL IN NORTH FACE OF LAUNCH OPERATIONS BUILDING. BUNKER PERISCOPE VISIBLE ABOVE RIGHT CORNER OF TUNNEL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. VIEW LOOKING NORTHEAST AT EARTH MOUND. NOTE THE RECTANGULAR OPENINGS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING NORTHEAST AT EARTH MOUND. NOTE THE RECTANGULAR OPENINGS USED FOR OBSERVATION EQUIPMENT AND PERISCOPE TOPS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  15. 48 CFR 225.7102-1 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....7102-1 Policy. When acquiring the following forging items, whether as end items or components, acquire... propulsion shafts Excludes service and landing craft shafts. Periscope tubes All. Ring forgings for...

  16. 48 CFR 225.7102-1 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....7102-1 Policy. When acquiring the following forging items, whether as end items or components, acquire... propulsion shafts Excludes service and landing craft shafts. Periscope tubes All. Ring forgings for...

  17. 48 CFR 225.7102-1 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....7102-1 Policy. When acquiring the following forging items, whether as end items or components, acquire... propulsion shafts Excludes service and landing craft shafts. Periscope tubes All. Ring forgings for...

  18. 48 CFR 225.7102-1 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....7102-1 Policy. When acquiring the following forging items, whether as end items or components, acquire... propulsion shafts Excludes service and landing craft shafts. Periscope tubes All. Ring forgings for...

  19. 48 CFR 225.7102-1 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....7102-1 Policy. When acquiring the following forging items, whether as end items or components, acquire... propulsion shafts Excludes service and landing craft shafts. Periscope tubes All. Ring forgings for...

  20. Upgrade of the Edge Charge Exchange Diagnostic on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    McDermott, Rachael; Lipschultz, Bruce; Marr, Kenneth

    2006-10-01

    The current edge Charge Exchange Spectroscopy system is being upgraded to include both a beam viewing and a background viewing toroidal periscope. The beam viewing periscope will be focused on the center of the DNB and will cover a 4cm radial region at the edge of the plasma starting a few centimeters in from and extending up to 1centimeter outside of the last closed flux surface. The background periscope will view the same radial region but will be displaced toroidally by 36 degrees. Each periscope has 20 chordal views with a radial resolution of 2.5-3mm. The presence of a background periscope obviates the need for a chopped DNB by providing time synchronized background B^+4 spectral data that can be subtracted directly from the active beam-derived B^+4 line-shapes. This system has been designed to work in conjunction with the current poloidal Charge Exchange periscope which has 25 fibers focused in the same region with equivalent radial resolution. The new toroidal system will enable concurrent measurements of the poloidal and toroidal velocity as well as the temperature and density of the B^+5 ions in the edge pedestal region; a measurement that currently does not exist on C-Mod. This information will then be used to calculate radial electric field profiles and study edge physics phenomena.

  1. Experimental evaluation of achromatic phase shifters for mid-infrared starlight suppression.

    PubMed

    Gappinger, Robert O; Diaz, Rosemary T; Ksendzov, Alexander; Lawson, Peter R; Lay, Oliver P; Liewer, Kurt M; Loya, Frank M; Martin, Stefan R; Serabyn, Eugene; Wallace, James K

    2009-02-10

    Phase shifters are a key component of nulling interferometry, one of the potential routes to enabling the measurement of faint exoplanet spectra. Here, three different achromatic phase shifters are evaluated experimentally in the mid-infrared, where such nulling interferometers may someday operate. The methods evaluated include the use of dispersive glasses, a through-focus field inversion, and field reversals on reflection from antisymmetric flat-mirror periscopes. All three approaches yielded deep, broadband, mid-infrared nulls, but the deepest broadband nulls were obtained with the periscope architecture. In the periscope system, average null depths of 4x10(-5) were obtained with a 25% bandwidth, and 2x10(-5) with a 20% bandwidth, at a central wavelength of 9.5 mum. The best short term nulls at 20% bandwidth were approximately 9x10(-6), in line with error budget predictions and the limits of the current generation of hardware. PMID:19209197

  2. Optics design of the divertor infrared television of KSTAR.

    PubMed

    Oh, S; Lee, K; Lee, H H; Wi, H M; Kim, Y S; Kang, C S

    2014-11-01

    The divertor Infrared television (IR TV) system for monitoring the temperature of a divertor and localized hot spots will be installed on the upper port of the N-port in the Korea Superconducting Tokamak Advanced Research (KSTAR). The cassette of KSTAR makes a periscope inevitable for the divertor IR TV. In this article, 4 design concepts for the periscope were examined, and the design based on Keplerian was shown to have better stabilities in alignment and the vibration. The final optics design based on an f-theta lens, Keplerian, and telecentric lens was derived. PMID:25430316

  3. Optical Probe/Camera Objective Having Large Focusing Range

    NASA Astrophysics Data System (ADS)

    Powell, I.

    1983-02-01

    The design of an optical probe/camera objective having good image quality over an extended focusing range is described. Bearing some resemblance to a periscope, it simultaneously provides an image to both vidicon tube and photographic film. The entire system is used in the production of television commercials where a certain type of special effects may be required.

  4. Photocopy of drawing located at National Archives, San Bruno, California ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing located at National Archives, San Bruno, California (Navy # 680-A-2). Part of ground floor, optical shop and roof periscope testing tower; 1936. - Mare Island Naval Shipyard, Machine Shop, California Avenue, southwest corner of California Avenue & Thirteenth Street, Vallejo, Solano County, CA

  5. 3. EAST SIDE FROM ATOP TUNNEL, SHOWING BLAST SHIELDED WINDOWS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EAST SIDE FROM ATOP TUNNEL, SHOWING BLAST SHIELDED WINDOWS AND PERISCOPE FACING TO TEST STAND 1-3. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  6. 47 CFR 78.105 - Antenna systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna systems. 78.105 Section 78.105... SERVICE Technical Regulations § 78.105 Antenna systems. (a) For fixed stations operating in the 12.7-13.2... planes. (2) New periscope antenna systems will be authorized upon a certification that the radiation,...

  7. 47 CFR 74.641 - Antenna systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna systems. 74.641 Section 74.641... Stations § 74.641 Antenna systems. (a) For fixed stations operating above 2025 MHz, the following standards... elevation planes. (2) New periscope antenna systems will be authorized upon a certification that...

  8. DETAIL VIEW OF THE WEST INTERIOR WALL OF THE EXTREME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF THE WEST INTERIOR WALL OF THE EXTREME NORTH (CONTROL) TANK. NOTE THE TWO PERISCOPES IN THE UPPER PART OF THE PHOTOGRAPH. ALSO NOTE THE CONTROL PANEL IN THE MIDDLE OF THE PHOTO, THIS WAS USED TO CONTROL THE REMOTE 'FIRE-EX' WATER NOZZLES. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  9. 2. VIEW OF WEST FACE OF LAUNCH OPERATIONS BUILDING. BUNKER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF WEST FACE OF LAUNCH OPERATIONS BUILDING. BUNKER PERISCOPE VISIBLE ON NORTH END OF ROOF. ESCAPE TUNNEL AND CABLE SHED VISIBLE ON NORTH FACE. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. 25. VIEW OF ATLAS CONTROL CONSOLE NEAR NORTHEAST CORNER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. VIEW OF ATLAS CONTROL CONSOLE NEAR NORTHEAST CORNER OF SLC-3W CONTROL ROOM. CONSOLE INCLUDES TELEVISION CONTROL, FACILITIES, AND VEHICLE (MISSILE) POWER PANELS. FROM LEFT TO RIGHT IN BACKGROUND: MILITARY-TIME CLOCK, BASE OF BUNKER PERISCOPE, AND STAIRS TO ESCAPE TUNNEL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. 4. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM NORTH FACE OF LAUNCH OPERATIONS BUILDING. TOPS OF BUNKER PERISCOPE AND FLAGPOLE ON ROOF OF LAUNCH OPERATIONS BUILDING IN BACKGROUND - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. IET control building (TAN620). control room. facing north. control consoles ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET control building (TAN-620). control room. facing north. control consoles have been removed. Openings in floor were communication and control conduits. Periscope controls at center left (see also HAER No. ID-33-E-20). INEEL negative no. HD-21-3-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  13. Optical tomography in the application of the surface feature extraction

    NASA Astrophysics Data System (ADS)

    Li, Baosheng; Wang, Yicheng; Yang, Jiuchun

    2015-11-01

    This paper put forwards a new optical tomographic imaging system, which consists of the rotating periscope system and modulating plate with 65 slits. One-dimensional signals which are divided by modulating plate through the rotating periscope system are collected by photon detector. The paper analyzes the principle of filter back projection (FBP), and chooses the filter that fits the system. It verifies the feasibility of this system by the actual simulation. Choose the circular hole and the calibration image as the target image in scanning experiment, in result of finding that the feature of reconstruction result is obvious, but information of edges is fade. This system plays an important role in developing feature extraction of surface.

  14. Innovative optronics for the new PUMA tank

    NASA Astrophysics Data System (ADS)

    Fritze, J.; Münzberg, M.; Schlemmer, H.

    2010-04-01

    The new PUMA tank is equipped with a fully stabilized 360° periscope. The thermal imager in the periscope is identical to the imager in the gunner sight. All optronic images of the cameras can be fed on every electronic display within the tank. The thermal imagers operate with a long wave 384x288 MCT starring focal plane array. The high quantum efficiency of MCT provides low NETD values at short integration times. The thermal imager has an image resolution of 768x576 pixels by means of a micro scanner. The MCT detector operates at high temperatures above 75K with high stability in noise and correctibility and offers high reliability (MTTF) values for the complete camera in a very compact design. The paper discusses the principle and functionality of the optronic combination of direct view optical channel, thermal imager and visible camera and discusses in detail the performances of the subcomponents with respect to demands for new tank applications.

  15. IET. Movable test cell building (TAN624). Plans, sections, and elevations ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Movable test cell building (TAN-624). Plans, sections, and elevations show trapezoidal shape of front/rear elevations, vertical sliding door panels, wheels, periscope and camera locations, fixed concrete wall, and relationship to coupling station (TAN-620) and rail track. Ralph M. Parson 902-4-ANP-624-A 329. Date: February 1954. Approved by INEEL Classification Office for public release. INEEL Index code no. 035-0624-00-693-106911 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  16. IET. Coupling station (TAN620), plans and sections. Concrete shielding walls ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Coupling station (TAN-620), plans and sections. Concrete shielding walls and boron surface treatment. Elevation shows two floor levels, position of periscopes, and stairways. Ralph M. Parsons 902-4-ANP-602-A 325. Date: February 1954. Approved by INEEL Classification Office for public release. INEEL index code no. 035-0620-00-693-106910 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  17. Streambank plants vital to water quality

    SciTech Connect

    Sherman, H.

    1989-08-01

    Studies of plants suitable for stabilizing streambanks are described. Sediments caused by soil erosion in Northern California's mountain meadows clog drinking water reservoirs, reduce fish populations, and block hydroelectric dams. Studies of the effect of seasonal climate change on root growth, photosynthesis, and water use of willows and grasses using a below-ground periscope and portable photosynthesis are described. In addition, studies to evaluate the seasonal effect of livestock grazing are in progress.

  18. Divertor surface heating in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Maqueda, R. J.; Wurden, G. A.; Terry, J. L.

    1998-11-01

    The new infrared imaging system of Alcator C-Mod has been used to measure the surface temperature of the upper, open sections of the lower divertor. This imaging system is based on an Amber Radiance 1 video camera (filtered to the 4.2-4.4 μm band) and a ZnSe-based IR periscope. The goal of this system is to assist in the study of phenomena that minimize wall heating such as plasma detachment, radiative mantles, volume recombination, etc. Typically, the temperature of these surfaces does not exceed the 250^oC level and no localized heating in the form of toroidal bands is observed. Occasionally, such toroidal bands of increased heating are seen. This is the case, for example, during disruptions that result in a downward movement of the plasma. Analysis of the data obtained up to date will be presented. The results obtained during the winter 97-98 campaign of Alcator C-Mod also suggest that the surface where most of the intense heating takes place is not directly imaged by the IR system. This is the surface of the closed section of the divertor located below the outer nose. The periscope is thus being modified to image this section. Progress on the periscope modification will be also presented.

  19. Infrared technology XII; Proceedings of the Meeting, San Diego, CA, Aug. 19, 20, 1986

    NASA Astrophysics Data System (ADS)

    Spiro, Irving J.; Mollicone, Richard A.

    1986-01-01

    The present conference on IR sensor technology considers topics in IR imaging, the simulation and modeling of IR images, IR technology developments in Britain, and novel IR sensor applications. Attention is given to an imaging spectrometer for Mars investigation, the Space Shuttle IR Imaging Experiment, an IR scene composer for electronic vision applications, and practical results for sampling effects in CdHgTe focal-plane arrays. Also discussed are a dual-waveband imaging radiometer, thermal imaging sensors for submarine periscopes, the structure of the extended emission in the IR celestial background, and novel long-path transmissometry.

  20. A model for the submarine depthkeeping team

    NASA Technical Reports Server (NTRS)

    Ware, J. R.; Best, J. F.; Bozzi, P. J.; Kleinman, D. W.

    1981-01-01

    The most difficult task the depthkeeping team must face occurs during periscope-depth operations during which they may be required to maintain a submarine several hundred feet long within a foot of ordered depth and within one-half degree of ordered pitch. The difficulty is compounded by the facts that wave generated forces are extremely high, depth and pitch signals are very noisy and submarine speed is such that overall dynamics are slow. A mathematical simulation of the depthkeeping team based on the optimal control models is described. A solution of the optimal team control problem with an output control restriction (limited display to each controller) is presented.

  1. Design considerations, tooling, and equipment for remote in-service inspection of radioactive piping and pressure-vessel systems

    SciTech Connect

    Swannack, D.L.; Schmoker, D.S.

    1983-01-01

    This paper summarizes results obtained in use of remotely-operated nondestructive testing (NDT) equipment for inspection of reactor-system components. Experience obtained in operating the Fast Flux Test Facility (FFTF) has provided a basis for field verification of remote NDT equipment designs and has suggested development improvements. Remote Viewing and data gathering systems used include periscopes, borescopes, fiberscopes, hybrid borescopes/fiberscopes, and closed circuit television. A summary of design consideration for inspection equipment and power plant design is presented to achieve improved equipment operation and reduction of plant maintenance downtime.

  2. Metrology system for inter-alignment of lasers, telescopes, and mechanical datum

    NASA Astrophysics Data System (ADS)

    Aharon, Oren; Vishnia, Itai

    2015-10-01

    In modern scientific and industrial laser applications, inter-alignment of multiple optical devices is frequently a basic requirement to meet a certain specification and performance. However, the designed optical system combining mechanical elements, lasers and optical sights in various wavelengths frequently deviates from specified goals due to real life imperfections and effects. These may include mechanical tolerances, optical distortion, heating, laser cavity misalignment, overall instabilities, and non-linear effects. In order to deliver accurately and produce intricate optical systems, a carefully designed method for inter-alignment is required completing and updating the already existing methods. Thus, we designed and upgraded the performance of electronic autocollimator and combined it with innovative mechanical manipulation of optical invariants such as a Lateral Transfer Hollow Periscope to greatly improve and expand inter-alignment procedures. Depending on the combination of optical sights, laser types, and mechanical requirements, an appropriate method will be analyzed. For example, several layouts will be analyzed such as high power CO2 laser cavity alignment and laser delivery system mechanical rollers alignment. By completing the presented gear in this article other instruments such as Align Meter, Lateral Hollow Periscope (LTHPTM), Lateral Hollow Retroreflector ( LTHRTM) are available for applications such as alignment of articulated beam delivery systems.

  3. Transverse Pupil Shifts for Adaptive Optics Non-Common Path Calibration

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.

    2011-01-01

    A simple new way of obtaining absolute wavefront measurements with a laboratory Fizeau interferometer was recently devised. In that case, the observed wavefront map is the difference of two cavity surfaces, those of the mirror under test and of an unknown reference surface on the Fizeau s transmission flat. The absolute surface of each can be determined by applying standard wavefront reconstruction techniques to two grids of absolute surface height differences of the mirror under test, obtained from pairs of measurements made with slight transverse shifts in X and Y. Adaptive optics systems typically provide an actuated periscope between wavefront sensor (WFS) and commonmode optics, used for lateral registration of deformable mirror (DM) to WFS. This periscope permits independent adjustment of either pupil or focal spot incident on the WFS. It would be used to give the required lateral pupil motion between common and non-common segments, analogous to the lateral shifts of the two phase contributions in the lab Fizeau. The technique is based on a completely new approach to calibration of phase. It offers unusual flexibility with regard to the transverse spatial frequency scales probed, and will give results quite quickly, making use of no auxiliary equipment other than that built into the adaptive optics system. The new technique may be applied to provide novel calibration information about other optical systems in which the beam may be shifted transversely in a controlled way.

  4. Live capture of megafauna from 2300 m depth, using a newly designed Pressurized Recovery Device

    NASA Astrophysics Data System (ADS)

    Shillito, B.; Hamel, G.; Duchi, C.; Cottin, D.; Sarrazin, J.; Sarradin, P.-M.; Ravaux, J.; Gaill, F.

    2008-07-01

    The deep sea is an extremely diverse habitat, which is now threatened by human activity. Means for evaluating the response of deep-sea creatures to environmental perturbation are limited because of lethal decompression effects during sampling. The addressing of this issue requires that target species be (i) captured at depth, (ii) recovered at natural pressure, (iii) submitted to in vivo investigations. Although a single container may meet these requirements, we believe that using several dedicated cells greatly expands experimental possibilities. Accordingly, we have designed a new sampling system which has been named PERISCOP and which has accounted for the selective capture and recovery of live animals from depths exceeding 2000 m. Three hydrothermal vent shrimp species were sampled on the Mid-Atlantic Ridge, from depths of 1700 and 2300 m. In addition, a fish caught at 2300 m depth reached the surface in very good condition. This is by far the deepest record for the pressurized recovery of a live deep-sea fish. Our prototype aims at making pressurized recovery a more efficient and practical process. Finally, future evolutions of sampling methods are discussed based on the present design of the PERISCOP.

  5. Spectrum slicer for snapshot spectral imaging

    NASA Astrophysics Data System (ADS)

    Tamamitsu, Miu; Kitagawa, Yutaro; Nakagawa, Keiichi; Horisaki, Ryoichi; Oishi, Yu; Morita, Shin-ya; Yamagata, Yutaka; Motohara, Kentaro; Goda, Keisuke

    2015-12-01

    We propose and demonstrate an optical component that overcomes critical limitations in our previously demonstrated high-speed multispectral videography-a method in which an array of periscopes placed in a prism-based spectral shaper is used to achieve snapshot multispectral imaging with the frame rate only limited by that of an image-recording sensor. The demonstrated optical component consists of a slicing mirror incorporated into a 4f-relaying lens system that we refer to as a spectrum slicer (SS). With its simple design, we can easily increase the number of spectral channels without adding fabrication complexity while preserving the capability of high-speed multispectral videography. We present a theoretical framework for the SS and its experimental utility to spectral imaging by showing real-time monitoring of a dynamic colorful event through five different visible windows.

  6. Electron beam irradiated silver nanowires for a highly transparent heater.

    PubMed

    Hong, Chan-Hwa; Oh, Seung Kyu; Kim, Tae Kyoung; Cha, Yu-Jung; Kwak, Joon Seop; Shin, Jae-Heon; Ju, Byeong-Kwon; Cheong, Woo-Seok

    2015-01-01

    Transparent heaters have attracted increasing attention for their usefulness in vehicle windows, outdoor displays, and periscopes. We present high performance transparent heaters based on Ag nanowires with electron beam irradiation. We obtained an Ag-nanowire thin film with 48 ohm/sq of sheet resistance and 88.8% (substrate included) transmittance at 550 nm after electron beam irradiation for 120 sec. We demonstrate that the electron beam creates nano-soldering at the junctions of the Ag nanowires, which produces lower sheet resistance and improved adhesion of the Ag nanowires. We fabricated a transparent heater with Ag nanowires after electron beam irradiation, and obtained a temperature of 51 °C within 1 min at an applied voltage of 7 V. The presented technique will be useful in a wide range of applications for transparent heaters. PMID:26639760

  7. Manastash Ridge Observatory Autoguider Upgrade

    NASA Astrophysics Data System (ADS)

    Lozo, Jason; Huehnerhoff, Joseph; Armstrong, John; Davila, Adrian; Johnson, Courtney; McMaster, Alex; Olinger, Kyle

    2016-06-01

    The Astronomy Undergraduate Engineering Group (AUEG) at the University of Washington has designed and manufactured a novel autoguider system for the 0.8-meter telescope at the Manastash Ridge Observatory in Ellensburg, Washington. The system uses a pickoff mirror placed in the unused optical path, directing the outer field to the guide camera via a system of axi-symmetrically rotating relay mirrors (periscope). This allows the guider to sample nearly 7 times the area that would be possible with the same fixed detector. This system adds closed loop optical feedback to the tracking capabilities of the telescope. When tuned the telescope will be capable of acheiving 0.5 arcsecond tracking or better. Dynamic focusing of the primary optical path will also be an included feature of this system. This unique guider will be a much needed upgrade to the telescope allowing for increased scientific capability.

  8. [Space perception: the history and its significance for art].

    PubMed

    Norn, Mogens

    2002-01-01

    Some aspects of the opthalmologic history of Denmark are briefly mentioned. Lens extraction in 1667 in Copenhagen, Edmund Hansen Gruts stereoophtalmoscopy in 1857, Ludvig Panums area in 1858 (single vision) space perception and outside this area double vision), squint treatment, Marius Tschernings periscopic spectacle lenses, Henning Rønnes stereoortograph and keiroscope and Gerhard Rønnes stereoscope. Space perception depends mostly on binocular function (convergens), but in fact some space perception occurs in vision due to perspective, accommodation, parallaxe, blurring, colours and shadows. The Danisk Poet, Hans Christian Andersen, has in his novels mentioned latent squint. The German poet Rainer Maria Rilke was much interested in perspective in connection with the development of impressionism, especially Paul Cézanne. Rilke in his later period developed the view that concentration on perspective removed those essential aspects from the world, in which he found God or a fourth dimension, as exemplified in the presence of ghosts. PMID:12564450

  9. Investigation of light source and scattering medium related to vapor-screen flow visualization in a supersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Snow, W. L.; Morris, O. A.

    1984-01-01

    Methods for increasing the radiant in light sheets used for vapor screen set-ups were investigated. Both high-pressure mercury arc lamps and lasers were considered. Pulsed operation of the air-cooled 1-kW lamps increased the light output but decreased reliability. An ellipsoidal mirror improved the output of the air-cooled lamps by concentrating the light but increased the complexity of the housing. Water-cooled-4-kW lamps coupled with high-aperture Fresnel lenses provided reasonable improvements over the air-cooled lamps. Fanned laser beams measurements of scattered light versus dew point made in conjunction with successful attempts to control the fluid injection. A number of smoke generators are described and test results comparing smoke and vapor screens are shown. Finally, one test included a periscope system to relay the image to a camera outside the flow.

  10. Optical system design, analysis, and production for advanced technology systems; Proceedings of the Meeting, Innsbruck, Austria, Apr. 15-17, 1986

    NASA Technical Reports Server (NTRS)

    Fischer, Robert E. (Editor); Rogers, Philip J. (Editor)

    1986-01-01

    The present conference considers topics in the fields of optical systems design software, the design and analysis of optical systems, illustrative cases of advanced optical system design, the integration of optical designs into greater systems, and optical fabrication and testing techniques. Attention is given to an extended range diffraction-based merit function for lens design optimization, an assessment of technologies for stray light control and evaluation, the automated characterization of IR systems' spatial resolution, a spectrum of design techniques based on aberration theory, a three-field IR telescope, a large aperture zoom lens for 16-mm motion picture cameras, and the use of concave holographic gratings as monochomators. Also discussed are the use of aspherics in optical systems, glass choice procedures for periscope design, the fabrication and testing of unconventional optics, low mass mirrors for large optics, and the diamond grinding of optical surfaces on aspheric lens molds.

  11. Electron beam irradiated silver nanowires for a highly transparent heater

    PubMed Central

    Hong, Chan-Hwa; Oh, Seung Kyu; Kim, Tae Kyoung; Cha, Yu-Jung; Kwak, Joon Seop; Shin, Jae-Heon; Ju, Byeong-Kwon; Cheong, Woo-Seok

    2015-01-01

    Transparent heaters have attracted increasing attention for their usefulness in vehicle windows, outdoor displays, and periscopes. We present high performance transparent heaters based on Ag nanowires with electron beam irradiation. We obtained an Ag-nanowire thin film with 48 ohm/sq of sheet resistance and 88.8% (substrate included) transmittance at 550 nm after electron beam irradiation for 120 sec. We demonstrate that the electron beam creates nano-soldering at the junctions of the Ag nanowires, which produces lower sheet resistance and improved adhesion of the Ag nanowires. We fabricated a transparent heater with Ag nanowires after electron beam irradiation, and obtained a temperature of 51 °C within 1 min at an applied voltage of 7 V. The presented technique will be useful in a wide range of applications for transparent heaters. PMID:26639760

  12. Initiation Mechanisms in IHE and CHE Materials

    NASA Astrophysics Data System (ADS)

    Jardine, Andrew; Williamson, David; Walley, Stephen; Palmer, Stewart; Leppard, Claire; Fracture and Shock Physics Group, University of Cambridge Team; AWE Team

    2013-06-01

    Impact sensitivity and subsequent impact initiation is one of the key characteristics of explosive materials. Various standardised tests exist, such as the Rotter or BAM impact tests, which allow the relative sensitivity of different materials to be characterised. However, these provide little insight into the underlying behaviour of the material. The use of a periscopic glass-anvil drop-weight apparatus has proven to provide valuable information about the hotspot initiation of many materials. In this paper we describe experiments which apply the technique, in conjunction with high speed video and additional diagnostic instrumentation, to study the mechanism of initiation of modern explosive materials including TATB, LLM-105, Fox-7, HMX, RDX and PETN.

  13. Electron beam irradiated silver nanowires for a highly transparent heater

    NASA Astrophysics Data System (ADS)

    Hong, Chan-Hwa; Oh, Seung Kyu; Kim, Tae Kyoung; Cha, Yu-Jung; Kwak, Joon Seop; Shin, Jae-Heon; Ju, Byeong-Kwon; Cheong, Woo-Seok

    2015-12-01

    Transparent heaters have attracted increasing attention for their usefulness in vehicle windows, outdoor displays, and periscopes. We present high performance transparent heaters based on Ag nanowires with electron beam irradiation. We obtained an Ag-nanowire thin film with 48 ohm/sq of sheet resistance and 88.8% (substrate included) transmittance at 550 nm after electron beam irradiation for 120 sec. We demonstrate that the electron beam creates nano-soldering at the junctions of the Ag nanowires, which produces lower sheet resistance and improved adhesion of the Ag nanowires. We fabricated a transparent heater with Ag nanowires after electron beam irradiation, and obtained a temperature of 51 °C within 1 min at an applied voltage of 7 V. The presented technique will be useful in a wide range of applications for transparent heaters.

  14. Optical tomographic scanning target-tracking system based on single pixel sensor

    NASA Astrophysics Data System (ADS)

    Li, Baosheng; Wang, Yicheng; Yang, Jiuchun

    2015-11-01

    Optical tomography imaging had the characteristics of high resolution. The rotating periscope system and modulating plate with 65 slits were designed. Filter back projection (FBP) algorithm was applied to the one-dimensional signals, which were obtained by multi-angle scanning in modulating plate, to reconstruct two-dimensional image. Single pixel photoelectric sensor has high frequency response and can acquire high speed real-time signal. This work had carried on the simulation and experiment about scanning system based on the analysis and determination about the modulating plate's parameters, and verify the feasibility of scanning system. In this paper, the method plays an important role in developing novel target tracking system and provides deep foundation for deeper experimental research.

  15. High-resolution, continuous field-of-view (FOV), non-rotating imaging system

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance L. (Inventor); Stirbl, Robert C. (Inventor); Aghazarian, Hrand (Inventor); Padgett, Curtis W. (Inventor)

    2010-01-01

    A high resolution CMOS imaging system especially suitable for use in a periscope head. The imaging system includes a sensor head for scene acquisition, and a control apparatus inclusive of distributed processors and software for device-control, data handling, and display. The sensor head encloses a combination of wide field-of-view CMOS imagers and narrow field-of-view CMOS imagers. Each bank of imagers is controlled by a dedicated processing module in order to handle information flow and image analysis of the outputs of the camera system. The imaging system also includes automated or manually controlled display system and software for providing an interactive graphical user interface (GUI) that displays a full 360-degree field of view and allows the user or automated ATR system to select regions for higher resolution inspection.

  16. Prototype Development Of A Microcontroller Based Field Optical Density Tester

    NASA Astrophysics Data System (ADS)

    Cote, Daniel R.; LaFleur, L. D.; Cappelli, Victor E.; Clayton, Robert H.; Bingman, Kenneth J.

    1989-05-01

    A portable spectrometer has been designed that measures the transmission of tank periscopes in the field. The purpose of the instrument is to measure optical density to 4.0 over the range from 380 to 1100nm with lnm resolution. A motorized monochromator scans the desired test band. Data is acquired by silicon photodiodes, amplified by a programmable gain amplifier (PGA) and processed using a 12-bit A/D converter. A chopped input beam removes background signal. Ratio detection between measurement and reference arms compensates for input light intensity variation. Innovations in optical, mechanical and signal processing design are described. The precision of measurements made at various wavelengths and angles of incidence is discussed.

  17. Hemispherical Field-of-View Above-Water Surface Imager for Submarines

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Kovalik, Joseph M.; Farr, William H.; Dannecker, John D.

    2012-01-01

    A document discusses solutions to the problem of submarines having to rise above water to detect airplanes in the general vicinity. Two solutions are provided, in which a sensor is located just under the water surface, and at a few to tens of meter depth under the water surface. The first option is a Fish Eye Lens (FEL) digital-camera combination, situated just under the water surface that will have near-full- hemisphere (360 azimuth and 90 elevation) field of view for detecting objects on the water surface. This sensor can provide a three-dimensional picture of the airspace both in the marine and in the land environment. The FEL is coupled to a camera and can continuously look at the entire sky above it. The camera can have an Active Pixel Sensor (APS) focal plane array that allows logic circuitry to be built directly in the sensor. The logic circuitry allows data processing to occur on the sensor head without the need for any other external electronics. In the second option, a single-photon sensitive (photon counting) detector-array is used at depth, without the need for any optics in front of it, since at this location, optical signals are scattered and arrive at a wide (tens of degrees) range of angles. Beam scattering through clouds and seawater effectively negates optical imaging at depths below a few meters under cloudy or turbulent conditions. Under those conditions, maximum collection efficiency can be achieved by using a non-imaging photon-counting detector behind narrowband filters. In either case, signals from these sensors may be fused and correlated or decorrelated with other sensor data to get an accurate picture of the object(s) above the submarine. These devices can complement traditional submarine periscopes that have a limited field of view in the elevation direction. Also, these techniques circumvent the need for exposing the entire submarine or its periscopes to the outside environment.

  18. Physical activity and play in kindergarten age children.

    PubMed

    Caroli, Margherita; Malecka-Tendera, Ewa; Epifani, Susi; Rollo, Rodolfo; Sansolios, Sanne; Matusik, Pawel; Mikkelsen, Bent E

    2011-10-01

    PERISCOPE project assesses factors promoting or preventing obesity development in early age. A specific aim is to assess preschool children's physical activity habits in three different European countries. PERISCOPE has been implemented in 1094 children attending kindergartens in Denmark, Italy and Poland. The parents' and children's physical activity habits and attitudes assessed by a questionnaire filled by the parents. Overweight and obesity assessed by Cole's BMI cut-off points. Statistical analysis performed by ?(2) test and the test of proportion. Denmark shows the lowest rate (14.6 %) of overweight, followed by Poland (17.1%), while Italy shows the highest (21.2 %) (p < 0.0001). The Polish families show the highest rate of walking from home to kindergarten and back, followed by the Italians and, lastly, the Danish ones (p < 0.001). Almost all the Danish and Polish children, but only the 50.1 % of the Italians play outside (p < 0.001). During the weekdays, 34.9 % of Polish children, 22.2 % of Italians and 19.8 % of the Danish play outside more than one hour a day (p < 0.0001). During the weekend, 91.1 % of Polish children, 86.7 % of Danish children, but only 54.4 % of Italians play outside more than one hour (p < 0.0001). 53.5 % of Danish children, 31.9 % of Polish children, and 18.2 % of Italian ones practice sport (p < 0.0001). Danish children are the most active, the Polish are in the middle and the Italians are the least active. The difference in infrastructures (safety of walking streets, access to playgrounds/parks, etc.) can play an important role, in addition to cultural and social family characteristics, to the development of overweight. PMID:21923297

  19. Synthesis and design of silicide intermetallic materials. 1998 annual progress report

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.; Park, Y.; Vaidya, R.U.; Hollis, K.J.; Kung, H.H.

    1999-03-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the US processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive US processing industries. The program presently has a number of developing industrial connections, including a CRADA with Johns Manville Corporation targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. With Combustion Technology Inc., they are developing silicide-based periscope sight tubes for the direct observation of glass melts. With Accutru International Corporation, they are developing silicide-based protective sheaths for self-verifying temperature sensors which may be used in glass furnaces and other industrial applications. The progress made on the program in this period is summarized.

  20. SIRE (sight-integrated ranging equipment): an eyesafe laser rangefinder for armored vehicle fire control systems

    NASA Astrophysics Data System (ADS)

    Keeter, Howard S.; Gudmundson, Glen A.; Woodall, Milton A., II

    1991-04-01

    The Sight Integrated Ranging Equipment (SIRE) incorporates an eyesafe laser rangefinder into the M-36 periscope used in tactical armored vehicles, such as the Commando Stingray light tank. The SIRE unit provides crucial range data simultaneously to the gunner and fire control computer. This capability greatly reduces 'time-to-fire', improves first-round hit probability, and increases the overall effectiveness of the vehicle under actual and simulated battlefield conditions. The SIRE can provide target range up to 10-km, with an accuracy of 10-meters. The key advantage of the SIRE over similar laser rangefinder systems is that it uses erbium:glass as the active lasing medium. With a nominal output wavelength of 1.54-microns, the SIRE can produce sufficient peak power to penetrate long atmospheric paths (even in the presence of obscurants), while remaining completely eyesafe under all operating conditions. The SIRE is the first eyesafe vehicle-based system to combine this level of accuracy, maximum range capability, and fire control interface. It simultaneously improves the accuracy and confidence of the operator, and eliminates the ocular hazard issues typically encountered with laser rangefinder devices.

  1. Multi-photon excitation microscopy in intact animals.

    PubMed

    Rothstein, Emily C; Nauman, Michael; Chesnick, Scott; Balaban, Robert S

    2006-04-01

    Two-photon excitation fluorescence microscopy and backscattered-second harmonic generation microscopy permit the investigation of the subcellular events within living animals but numerous aspects of these experiments need to be optimized to overcome the traditional microscope geometry, motion and optical coupling to the subject. This report describes a stable system for supporting a living instrumented mouse or rabbit during endogenous reduced nicotinamide adenine dinucleotide and exogenous dye two-photon excitation fluorescence microscopy measurements, and backscattered-second harmonic generation microscopy measurements. The system was a modified inverted LSM510 microscope (Carl Zeiss, Inc., Thornwood, NY, U.S.A.) with a rotating periscope that converted the inverted scope to an upright format, with the objective located approximately, 15 cm from the centre of the microscope base, allowing easy placement of an instrumented animal. An Olympus 20x water immersion objective was optically coupled to the tissue, without a cover glass, via a saline bath or custom hydrated transparent gel. The instrumented animals were held on a specially designed holder that poised the animal under the objective as well as permitted different ventilation schemes to minimize motion. Using this approach, quality images were routinely collected in living animals from both the peripheral and body cavity organs. The remaining most significant issue for physiological studies using this approach is motion on the micrometre scale. Several strategies for motion compensation are described and discussed. PMID:16734715

  2. LG wargaming tool for effect-based operations

    NASA Astrophysics Data System (ADS)

    Stilman, Boris; Yakhnis, Vladimir; McCrabb, Maris

    2002-07-01

    The LG-WGT approach to EBO may be summarized as follows. 1) Causes and Effects will be defined as game state properties. 2) LG algorithms will automatically generate strategies to attain desired effects. The strategies will be generated through LG Zones. LG will model effects as properties of the game pieces and relations among the pieces and the board. 3) The overall Engagement Theater will be modeled as LG hypergame, that is several concurrent abstract board games (ABG) linked together via inter-linking mappings (ILM). LG will represent indirect effects in a related game linked with the game of interest via several ILMs. With LG-WGT, a commander will observe the entire operation as an omnipresent ghost with a virtual camera. He/she would be able to view the operation from the cockcpit of a fighter flying on a SEAD mission, from the cabin of an amphibious vehicle, through the periscope of an attack submarine, or from a virtual AWACS flying over the entire battlefield. Even a normally invisible element, like damages to adversarial infrastructure or political changes, will be made visible in virtual reality together with the chain of events causing this effect. The LG-WGT will provide explanation for all the decisions made employing probabilities of kill, integrated probabilities of survival, threshold for retreat, etc.

  3. Fast Visible and IR Imaging in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Maqueda, R. J.; Wurden, G. A.; Terry, J. L.; Stillerman, J. A.; Zweben, S. J.

    1997-11-01

    Two imaging systems have been installed on C-Mod as part of the LANL/MIT collaboration. The first one is a fast Kodak digital camera system that can store 1600 full frames at rates up to 1000 frames/sec and with gating times from a few microseconds to 1 millisecond. The second system uses an Amber Radiance IR camera (3-5 μm band and 30 frames/sec) and should be able to measure heat loads on the divertor surfaces. A re-entrant periscope viewing the lower, closed divertor (30 cm x 30 cm region) from above and based on ZnSe optics is used to transport the image to the IR camera located 5 m away. The data acquisiton and camera control of the IR system is perfomed remotely through fiber optic links by a PC running Windows 95 and using a MuTech MV-1000 video grabber board. Results obtained during the 1997 campaign will be presented. These might include: edge turbulence, fast-scanning probe injection of impurities, radiation from runaway electrons, heat loads during attached/detached plasma operation and disruptions; as well as localization of hot spots, possible sources of molybdenum.

  4. The new infrared imaging system on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Maqueda, R. J.; Wurden, G. A.; Terry, J. L.; Stillerman, J. A.

    1999-01-01

    A new infrared imaging system has been installed on Alcator C-Mod. This system uses an Amber Radiance 1 IR video camera (filtered to the 4.2-4.4 μm band) to view a 30 cm×30 cm region of the lower divertor from above by means of a re-entrant 5-m long ZnSe based periscope. Capture of the standard 30 Hz video frames (8-bit) and camera control are performed remotely over fiber optic links by a Windows 95 PC, using a MuTech MV-1000 video grabber board. Plans are under way to directly capture the 60 Hz, 12-bit, 256×256 pixel images using a digital video camera interface with a fiber optic link from EDT (Beaverton, Oregon). Preliminary results show that during nondisruptive discharges no substantial surface temperature increase is observed on the upper sections of the divertor, with the exception of "hot spots," although occasionally, increased heating in toroidal bands is seen. Bands can also be observed after disruptions that result in a downward movement of the plasma.

  5. The new infrared imaging system on Alcator C-Mod

    SciTech Connect

    Maqueda, R.J.; Wurden, G.A.; Terry, J.L.; Stillerman, J.A.

    1999-01-01

    A new infrared imaging system has been installed on Alcator C-Mod. This system uses an Amber Radiance 1 IR video camera (filtered to the 4.2{endash}4.4 {mu}m band) to view a 30 cm{times}30 cm region of the lower divertor from above by means of a re-entrant 5-m long ZnSe based periscope. Capture of the standard 30 Hz video frames (8-bit) and camera control are performed remotely over fiber optic links by a Windows 95 PC, using a MuTech MV-1000 video grabber board. Plans are under way to directly capture the 60 Hz, 12-bit, 256{times}256 pixel images using a digital video camera interface with a fiber optic link from EDT (Beaverton, Oregon). Preliminary results show that during nondisruptive discharges no substantial surface temperature increase is observed on the upper sections of the divertor, with the exception of {open_quotes}hot spots,{close_quotes} although occasionally, increased heating in toroidal bands is seen. Bands can also be observed after disruptions that result in a downward movement of the plasma. {copyright} {ital 1999 American Institute of Physics.}

  6. The influence of the hand's acceleration and the relative contribution of drag and lift forces in front crawl swimming.

    PubMed

    Gourgoulis, Vassilios; Boli, Alexia; Aggeloussis, Nikolaos; Antoniou, Panagiotis; Toubekis, Argyris; Mavromatis, Georgios

    2015-01-01

    The aim of this study was to assess the effect of the hand's acceleration on the propulsive forces and the relative contribution of the drag and lift on their resultant force in the separate phases of the front crawl underwater arm stroke. Ten female swimmers swam one trial of all-out 25-m front crawl. The underwater motion of each swimmer's right hand was recorded using four camcorders and four periscope systems. Anatomical landmarks were digitised, and the propulsive forces generated by the swimmer's hand were estimated from the kinematic data in conjunction with hydrodynamic coefficients. When the hand's acceleration was taken into account, the magnitude of the propulsive forces was greater, with the exception of the mean drag force during the final part of the underwater arm stroke. The mean drag force was greater than the mean lift force in the middle part, while the mean lift force was greater than the mean drag force in the final part of the underwater arm stroke. Thus, swimmers should accelerate their hands from the beginning of their backward motion, press the water with large pitch angles during the middle part and sweep with small pitch angles during the final part of their underwater arm stroke. PMID:25429796

  7. Progress in Doppler Velocity Measurements of Ions in the DIII-D Divertor and SOL

    NASA Astrophysics Data System (ADS)

    Allen, S. L.; Meyer, W. H.; Samuel, C.; Howard, J.; Groth, M.

    2015-11-01

    We present recent progress in Doppler velocity measurements of ions using coherence imaging. A new in-situ calibration technique has been developed, focusing on CIII emission (465nm), and an optimized tomographic inversion routine provides time-resolved (~2 ms) flow images between shots. The CIII flow velocity in the divertor changes direction in response to a change in the sense of the DIII-D toroidal field, indicating the importance of drifts; the details of the flow image also changes near the x-point. Initial comparisons with UEDGE modeling will be presented. A second polarization interferometer system has been installed on the LLNL wide-view periscope, providing a tangential view of the scrape-off region around the plasma core. Initial measurements with a high spatial resolution camera (5.5 Megapixel) with ~10 ms time resolution will be presented. Both systems have a remote filter wheel to select visible impurity lines, e.g. CIII, CII, along with the main ion in Helium plasmas. Work supported by the US Department of Energy under DE-FC02-04ER54698 and DE-AC52-07NA27344.

  8. Fast Filtered Imaging of the C-2U Advanced Beam-Driven Field-Reversed Configuration

    NASA Astrophysics Data System (ADS)

    Granstedt, E. M.; Petrov, P.; Knapp, K.; Cordero, M.; Patel, V.; the TAE Team

    2015-11-01

    The goal of the C-2U program is to sustain a Field-Reversed Configuration (FRC) for 5+ ms using neutral beam injection, end-biasing, and various particle fueling techniques. Three high-speed, filtered cameras are used to observe visible light emission from deuterium pellet ablation and compact-toroid injection which are used for auxiliary particle fueling. The instruments are also used to view the dynamics of the macroscopic plasma evolution, identify regions of strong plasma-material interactions, and visualize non-axisymmetric perturbations. To achieve the necessary viewing geometry, imaging lenses are mounted in re-entrant viewports, two of which are mounted on bellows for retraction during gettering and removal if cleaning is necessary. Images are coupled from the imaging lens to the camera via custom lens-based optical periscopes. Each instrument contains a remote-controlled filter wheel which is set between shots to select a particular emission line from neutral D or various charge states of He, C, O, or Ti. Measurements of absolute emissivity and estimates of neutral and impurity density will be presented.

  9. Evolution of design concepts for remotely maintainable equipment racks

    SciTech Connect

    Peishel, F.L.; Mouring, R.W.; Schrock, S.L.

    1986-01-01

    Equipment racks have been used to support process equipment in radioactive facilities for many years. Improvements in the design of these racks have evolved relatively slowly primarily as a result of limitations in the capabilities of maintenance equipment; that is, tasks could only be approached from above using bridge cranes with viewing primarily through periscopes. In recent years, however, technological advances have been made by the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) in bridge-mounted servomanipulators with onboard auxiliary hoists and television viewing systems. These advances permit full cell coverage by the manipulator arms which, in turn, allow maintenance tasks to be approached horizontally as well as from above. Maintainable equipment items can be stacked vertically on a rack because total overhead access is less important and maintenance tasks that would not have been attempted in the past can now be performed. These advances permit greater flexibility in the design and cell layout of the racks and lead to concepts that could significantly increase the availability of a facility. The evolution of rack design and a description of the alternative concepts based on present maintenance systems capabilities are presented in this paper. 13 refs., 11 figs.

  10. Impact of WWI on Relativity and Other Sciences

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia

    2015-04-01

    Custom calls WWII the physicists' war (radar, nuclear bombs, rockets) and WWI the chemists' war (nitrogen fixation and synthetic fuels as well as poison gases). In fact both wars affected all of science profoundly. For us, hostilities began with the capture of Erwin Freundlich's German eclipse expedition to the Crrimea in August 1914. Curioiusly they had gone there to measure deflection of starlight be the sun at the half-of-GR level predicted earlier by Einstein. The end came in 1919 with the founding of the IAU (Central Powers strictly excluded; indeed Germany did not join until after WWII) and the Eddington-Dyson-Crommelin eclipse expedition that did record the deflection. In between were many deaths (Moseley and Karl Schwarzschild perhaps best know), turning of observatory optical shops to making binoculars, periscopes, etc, and twisting of careers (including probably the origin of the Hubble-Shapley enmity, when the former volunteered and the latter went directly to a job at Mt. Wilson; Lemaitre is another interesting case). There will be a small prize for the first person to identify the gentleman who refereed my second thesis paper, who served the full four years, partly in the trenches, on the German side.

  11. Optical multiple access intersatellite links

    NASA Astrophysics Data System (ADS)

    Grant, M. A.; Matthews, N. F.; Robson, D.

    1988-03-01

    The feasibility of an optical implementation of a multiple access medium data rate data relay service on the timescale of Euro-DRS was assessed. The service requirements for the feasibility study are based on the service which, in existing or planned systems, is implemented at S band. The system should communicate simultaneously with up to 8 LEO users in orbits of radii up to 7400 km providing 8 independently agile links. On each link, it should communicate at up to 2Mb/sec, at bit error rates of 10 to the minus 6th power in the return direction (LEO to GEO). A design concept for the GEO central node was produced. Mass and power estimates were evaluated and a preliminary spacecraft accommodation study performed. The system weighs 130 kg and has a power consumption of 300 W. The optical subsystem occupies a 75 x 75 x 30 cm volume on the top floor of the spacecraft. A number of trade-offs were identified and performed in reaching the final system configuration. The system should have 1 telescope system per user, a periscope mirror configuration for coarse pointing, a single telescope for both transmit and receive, and the use of both 0.8 micron for the LEO-GEO link and 1.3 micron for GEO-LEO.

  12. Final summary report for 1989 inservice inspection (ISI) of SRS (Savannah River Site) 100-P Reactor tank

    SciTech Connect

    Morrison, J.M.; Loibl, M.W.

    1989-12-15

    The integrity of the SRS reactor tanks is a key factor affecting their suitability for continued service since, unlike the external piping system and components, the tanks are virtually irreplaceable. Cracking in various areas of the process water piping systems has occurred beginning in 1960 as a result of several degradation mechanisms, chiefly intergranular stress corrosion cracking (IGSCC) and chloride-induced transgranular cracking. IGSCC, currently the primary degradation mechanism, also occurred in the knuckle'' region (tank wall-to-bottom tube sheet transition piece) unique to C Reactor and was eventually responsible for that reactor being deactivated in 1985. A program of visual examinations of the SRS reactor tanks was initiated in 1968, which used a specially designed immersible periscope. Under that program the condition of the accessible tank welds and associated heat affected zones (HAZ) was evaluated on a five-year frequency. Prior to 1986, the scope of these inspections comprised approximately 20 percent of the accessible weld area. In late 1986 and early 1987 the scope of the inspections was expanded and a 100 percent visual inspection of accessible welds was performed of the P-, L-, and K-Reactor tanks. Supplemental dye penetrant examinations were performed in L Reactor on selected areas which showed visual indications. No evidence of cracking was detected in any of these inspections of the P-, L-, and K-Reactor tanks. 17 refs., 7 figs.

  13. Laser Safety: A Laser Alignment Practical Training Course

    SciTech Connect

    Woods, Michael; Edstrom, Steve; ,

    2011-01-26

    SLAC National Accelerator Laboratory has developed a Laser Alignment Practical Training Course as one of its core laser safety classes. The course is taught to small groups of up to three students and takes 1-3 hours to complete. This practical course is not a substitute for site-specific On-the-Job Training; it does, however, provide a good introduction in core laser safety practices that can be broadly applied. Alignment and diagnostic tasks are performed with low power lasers. Students learn safe alignment and diagnostic techniques and how to avoid common mistakes that might lead to an accident. The class is taught by laser supervisors, enabling them to assess the skill level of new laser personnel and determine the subsequent level of supervision needed. The course has six alignment tasks. For each task, discussion points are given for the instructor to review with the students. The optics setup includes different wavelength lasers, a beam expander, mirrors, irises, a periscope, a beam-splitting polarizer and a diffraction grating. Diagnostic tools include viewing cards, an IR viewer and a ccd camera. Laser eyewear is available to block some laser wavelengths in the setup.

  14. Conceptual design study for an advanced cab and visual system, volume 1

    NASA Technical Reports Server (NTRS)

    Rue, R. J.; Cyrus, M. L.; Garnett, T. A.; Nachbor, J. W.; Seery, J. A.; Starr, R. L.

    1980-01-01

    A conceptual design study was conducted to define requirements for an advanced cab and visual system. The rotorcraft system integration simulator is for engineering studies in the area of mission associated vehicle handling qualities. Principally a technology survey and assessment of existing and proposed simulator visual display systems, image generation systems, modular cab designs, and simulator control station designs were performed and are discussed. State of the art survey data were used to synthesize a set of preliminary visual display system concepts of which five candidate display configurations were selected for further evaluation. Basic display concepts incorporated in these configurations included: real image projection, using either periscopes, fiber optic bundles, or scanned laser optics; and virtual imaging with helmet mounted displays. These display concepts were integrated in the study with a simulator cab concept employing a modular base for aircraft controls, crew seating, and instrumentation (or other) displays. A simple concept to induce vibration in the various modules was developed and is described. Results of evaluations and trade offs related to the candidate system concepts are given, along with a suggested weighting scheme for numerically comparing visual system performance characteristics.

  15. Experiments with optical instruments. [attitude control and docking of Soyuz T-4 with Salyut 6

    NASA Technical Reports Server (NTRS)

    Savinykh, V.

    1983-01-01

    Photography was used to document known defects of the periscopic instrument used to check spacecrews in the descent module of the Soyuz T-4. The screen of the altitude control unit was also photographed and revealed glare in the central field of vision. A light filter was installed in the peripheral window to observe the Sun and horizon of the Earth. Checking attitude control by means of polaroids enabled a 5 further advance (500 km) into the zone of shadow. The attitude control unit was used to check the orbital orientation with respect to the vertical during the night segment of flight. A lens screen was used for the emission glow of the atmosphere at an altitude of about 100 km. Docking of the Soyuz T-4 was observed by means of an onboard display, a television camera, and a sighting device. From a distance of about 5 km, the space station could be seen as a bright dot in the sighting device. Docking occurred in shadow.

  16. Beryllium Use in the Advanced Test Reactor

    SciTech Connect

    Glen R. Longhurst

    2007-12-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) began operation in 1967. It makes use of a unique serpentine fuel core design and a beryllium reflector. Reactor control is achieved with rotating beryllium cylinders to which have been fastened plates of hafnium. Over time, the beryllium develops rather high helium content because of nuclear transmutations and begins to swell. The beryllium must be replaced at nominally 10-year intervals. Determination of when the replacement is made is by visual observation using a periscope to examine the beryllium surface for cracking and swelling. Disposition of the irradiated beryllium was once accomplished in the INL’s Radioactive Waste Management Complex, but that is no longer possible. Among contributing reasons are high levels of specific radioactive contaminants including transuranics. The INL is presently considering disposition pathways for this irradiated beryllium, but presently is storing it in the canal adjacent to the reactor. Numerous issues are associated with this situation including (1) Is there a need for ultra-low uranium material? (2) Is there a need to recover tritium from irradiated beryllium either because this is a strategic material resource or in preparation for disposal? (3) Is there a need to remove activation and fission products from irradiated beryllium? (4) Will there be enough material available to meet requirements for research reactors (fission and fusion)? In this paper will be discussed the present status of considerations on these issues.

  17. Development of imaging bolometers for magnetic fusion reactors (invited)

    SciTech Connect

    Peterson, Byron J.; Parchamy, Homaira; Ashikawa, Naoko; Kawashima, Hisato; Konoshima, Shigeru; Kostryukov, Artem Yu.; Miroshnikov, Igor V.; Seo, Dongcheol; Omori, T.

    2008-10-15

    Imaging bolometers utilize an infrared (IR) video camera to measure the change in temperature of a thin foil exposed to the plasma radiation, thereby avoiding the risks of conventional resistive bolometers related to electric cabling and vacuum feedthroughs in a reactor environment. A prototype of the IR imaging video bolometer (IRVB) has been installed and operated on the JT-60U tokamak demonstrating its applicability to a reactor environment and its ability to provide two-dimensional measurements of the radiation emissivity in a poloidal cross section. In this paper we review this development and present the first results of an upgraded version of this IRVB on JT-60U. This upgrade utilizes a state-of-the-art IR camera (FLIR/Indigo Phoenix-InSb) (3-5 {mu}m, 256x360 pixels, 345 Hz, 11 mK) mounted in a neutron/gamma/magnetic shield behind a 3.6 m IR periscope consisting of CaF{sub 2} optics and an aluminum mirror. The IRVB foil is 7 cmx9 cmx5 {mu}m tantalum. A noise equivalent power density of 300 {mu}W/cm{sup 2} is achieved with 40x24 channels and a time response of 10 ms or 23 {mu}W/cm{sup 2} for 16x12 channels and a time response of 33 ms, which is 30 times better than the previous version of the IRVB on JT-60U.

  18. Development of imaging bolometers for magnetic fusion reactors (invited).

    PubMed

    Peterson, Byron J; Parchamy, Homaira; Ashikawa, Naoko; Kawashima, Hisato; Konoshima, Shigeru; Kostryukov, Artem Yu; Miroshnikov, Igor V; Seo, Dongcheol; Omori, T

    2008-10-01

    Imaging bolometers utilize an infrared (IR) video camera to measure the change in temperature of a thin foil exposed to the plasma radiation, thereby avoiding the risks of conventional resistive bolometers related to electric cabling and vacuum feedthroughs in a reactor environment. A prototype of the IR imaging video bolometer (IRVB) has been installed and operated on the JT-60U tokamak demonstrating its applicability to a reactor environment and its ability to provide two-dimensional measurements of the radiation emissivity in a poloidal cross section. In this paper we review this development and present the first results of an upgraded version of this IRVB on JT-60U. This upgrade utilizes a state-of-the-art IR camera (FLIR/Indigo Phoenix-InSb) (3-5 microm, 256 x 360 pixels, 345 Hz, 11 mK) mounted in a neutron/gamma/magnetic shield behind a 3.6 m IR periscope consisting of CaF(2) optics and an aluminum mirror. The IRVB foil is 7 cm x 9 cm x 5 microm tantalum. A noise equivalent power density of 300 microW/cm(2) is achieved with 40 x 24 channels and a time response of 10 ms or 23 microW/cm(2) for 16 x 12 channels and a time response of 33 ms, which is 30 times better than the previous version of the IRVB on JT-60U. PMID:19044463

  19. Multi-photon excitation microscopy in intact animals

    PubMed Central

    Rothstein, Emily C.; Nauman, Michael; Chesnick, Scott; Balaban, Robert S.

    2006-01-01

    Two-photon excitation fluorescence microscopy (TPEFM) and backscattered-second harmonic generation (B-SHG) microscopy permit the investigation of the subcellular events within living animals, but numerous aspects of these experiments need to be optimized to overcome the traditional microscope geometry, motion, and optical coupling to the subject. This report describes a stable system for supporting a living instrumented mouse or rabbit during endogenous reduced nicotinamide adenine dinucleotide (NAD(P)H) and exogenous dye TPEFM measurements and B-SHG microscopy measurements. The system was a modified inverted Zeiss LSM510 microscope with a rotating periscope that converted the inverted scope in to an upright format, with the objective approximately 15 cm displaced from the center of the microscope base, allowing the easy placement of an instrumented animal. An Olympus 20x water immersion objective was optically coupled to the tissue, with out a cover glass, via a saline bath or custom hydrated transparent gel. The instrumented animals were held on a specially designed holder that poised the animal under the objective as well as permitted different ventilation schemes to minimize motion. Using this approach, quality images were routinely collected in living animals from both the peripheral and body cavity organs. The remaining most significant issue for physiological studies using this approach is motion on the micron scale. Several strategies for motion compensation are described and discussed. PMID:16734715

  20. Visual Target Tracking in the Presence of Unknown Observer Motion

    NASA Technical Reports Server (NTRS)

    Williams, Stephen; Lu, Thomas

    2009-01-01

    Much attention has been given to the visual tracking problem due to its obvious uses in military surveillance. However, visual tracking is complicated by the presence of motion of the observer in addition to the target motion, especially when the image changes caused by the observer motion are large compared to those caused by the target motion. Techniques for estimating the motion of the observer based on image registration techniques and Kalman filtering are presented and simulated. With the effects of the observer motion removed, an additional phase is implemented to track individual targets. This tracking method is demonstrated on an image stream from a buoy-mounted or periscope-mounted camera, where large inter-frame displacements are present due to the wave action on the camera. This system has been shown to be effective at tracking and predicting the global position of a planar vehicle (boat) being observed from a single, out-of-plane camera. Finally, the tracking system has been extended to a multi-target scenario.

  1. ATTICA family of thermal cameras in submarine applications

    NASA Astrophysics Data System (ADS)

    Kuerbitz, Gunther; Fritze, Joerg; Hoefft, Jens-Rainer; Ruf, Berthold

    2001-10-01

    Optronics Mast Systems (US: Photonics Mast Systems) are electro-optical devices which enable a submarine crew to observe the scenery above water during dive. Unlike classical submarine periscopes they are non-hull-penetrating and therefore have no direct viewing capability. Typically they have electro-optical cameras both for the visual and for an IR spectral band with panoramic view and a stabilized line of sight. They can optionally be equipped with laser range- finders, antennas, etc. The brand name ATTICA (Advanced Two- dimensional Thermal Imager with CMOS-Array) characterizes a family of thermal cameras using focal-plane-array (FPA) detectors which can be tailored to a variety of requirements. The modular design of the ATTICA components allows the use of various detectors (InSb, CMT 3...5 μm , CMT 7...11 μm ) for specific applications. By means of a microscanner ATTICA cameras achieve full standard TV resolution using detectors with only 288 X 384 (US:240 X 320) detector elements. A typical requirement for Optronics-Mast Systems is a Quick- Look-Around capability. For FPA cameras this implies the need for a 'descan' module which can be incorporated in the ATTICA cameras without complications.

  2. Views of parents, teachers and children on health promotion in kindergarten--first results from formative focus groups and observations.

    PubMed

    Sansolios, Sanne; Mikkelsen, Bent Egberg

    2011-10-01

    The aim of the study was to capture the views of children, parents and teachers on the topic of physical activity in kindergarten through observation and focus group interviews. The study was conducted in the kindergartens from the sampling group in the Danish part of PERISCOPE. 1(st) methodology: Children interviewed inside by the researcher on preferable movements and settings and then observed outside during their playtime. 2(nd) methodology: Children asked to draw themselves playing their most preferred physical activity. Parents and kindergarten teachers interviewed in two different groups, using an identical guide. Children are skilled in taking advantage of the space and facilities available for physical activity; girls need more support than boys to initiate physical activity; children are happy with the facilities and the toys available in the kindergarten. Teachers feel an increasing pressure to take more responsibility and initiatives for the children's health habits. Parents state that if more physical activity is initiated in the kindergarten, it could make children request domestic activity. Physical activity and movement concept are too abstract for children of this age to talk about: they quickly lose their focus and concentration. The new methodology of videotaping gives the researcher the chance to interpret facial expressions to capture movement, talk and actions, and to make a distinction among children, as they tend to interrupt each other. However, this method contains a weakness, if used alone, by the fact that the shooting is only a reflection of what the video camera has recorded. PMID:21923292

  3. Various uses for optical metamaterials

    NASA Astrophysics Data System (ADS)

    Barbosa, Jose G.

    2015-05-01

    Optical metamaterials promise aberration free and better than diffraction limited performance for imaging systems through constructed materials made to regulate the interaction with electromagnetic waves. Optical metamaterials have the potential to miniaturize the optical bench and obtain diffraction-limited performance with a single device. The reduction of size, weight, and complexity of optical systems while maintaining performance is desired. In unmanned aircrafts, buoy systems, 360 degree imaging systems, and optronic or traditional periscope systems the lenses constitute a considerable percentage of the weight and volume. Another characteristic that is desired is optical cross section reduction for both visible and infrared bands. Optical cloaking using metamaterials has the potential to make objects indiscernible from its environment by masking objects signature. Other characteristics that are desired are materials that are perfect light absorbers for stray light baffles, detectors, or solar energy harvesting, nonlinear frequency conversion for photonics devices, and lenses or head window coatings to achieve specific properties. These topics are discussed in this paper.

  4. History of remote operations and robotics in nuclear facilities. Robotics and Intelligent Systems Program

    SciTech Connect

    Herndon, J.N.

    1992-05-01

    The field of remote technology is continuing to evolve to support man`s efforts to perform tasks in hostile environments. Remote technology has roots which reach into the early history of man. Fireplace pokers, blacksmith`s tongs, and periscopes are examples of the beginnings of remote technology. The technology which we recognize today has evolved over the last 45-plus years to support human operations in hostile environments such as nuclear fission and fusion, space, underwater, hazardous chemical, and hazardous manufacturing. The four major categories of approach to remote technology have been (1) protective clothing and equipment for direct human entry, (2) extended reach tools using distance for safety, (3) telemanipulators with barriers for safety, and (4) teleoperators incorporating mobility with distance and/or barriers for safety. The government and commercial nuclear industry has driven the development of the majority of the actual teleoperator hardware available today. This hardware has been developed due to the unsatisfactory performance of the protective-clothing approach in many hostile applications. Systems which have been developed include crane/impact wrench systems, unilateral power manipulators, mechanical master/slaves, and servomanipulators. Work for space applications has been primarily research oriented with few successful space applications, although the shuttle`s remote manipulator system has been successful. In the last decade, underwater applications have moved forward significantly, with the offshore oil industry and military applications providing the primary impetus. This document consists of viewgraphs and subtitled figures.

  5. Formation, Simulation and Restoration of Hypertelescopes Images

    NASA Astrophysics Data System (ADS)

    Mary, D.; Aime, C.; Carlotti, A.

    2013-03-01

    This article first provides a historical and detailed introduction to the image formation models for diluted pupils array and their densified versions called hypertelescopes. We propose in particular an original derivation showing that densification using a periscopic setting like in Michelson's 20 - foot interferometer, or using inverted Galilean telescopes are fully equivalent. After a review based on previous reference studies (Tallon & Tallon-Bosc 1992; Labeyrie 1996; Aime 2008 and Aime et al. 2012), the introductory part ends with a tutorial section for simulating optical interferometric images produced by cophased arrays. We illustrate in details how the optical image formation model can be used to simulate hypertelescopes images, including sampling issues and their effects on the observed images. In a second part of the article, we address the issue of restoring hypertelescope images and present numerical illustrations obtained for classical (constrained Maximum Likelihood) methods. We also provide a detailed survey of more recent deconvolution methods based on sparse representations and of their spread in interferometric image reconstruction. The last part of the article is dedicated to two original and numerical studies. The first study shows by Monte Carlo simulations that the restoration quality achieved by constrained ML methods applied to photon limited images obtained from a diluted array on a square grid, or from a densified array (without spectral aliasing) on a grid, are essentially equivalent. The second study shows that it is possible to recover in hypertelescopes images quasi point sources that are not only far outside the clean field, but also superimposed on the replicas of other objects. This is true at least for the considered pupil array and in the limit of vanishing noise.

  6. Thiazolidinediones: effects on the development and progression of type 2 diabetes and associated vascular complications.

    PubMed

    Krentz, Andrew

    2009-02-01

    In addition to reducing hyperglycaemia, the metabolic actions of TZDs (pioglitazone and rosiglitazone) in theory might improve the prognosis of patients with type 2 diabetes. However, it appears from recent data that pioglitazone and rosiglitazone have different cardiovascular risk profiles. The scope of this paper is to examine the benefits and risks of pioglitazone and rosiglitazone. Three large clinical studies (DREAM, and ADOPT with rosiglitazone; PROactive with pioglitazone) have recently been reported. A lower annual rate of decline of ss-cell function observed with rosiglitazone in the ADOPT study, compared with metformin and glyburide (glibenclamide), along with a reduced progression to insulin use seen with pioglitazone in the PROactive study, provides evidence that TZDs are effective in treating progressive hyperglycaemia. In PROactive, although the primary endpoint was not met, pioglitazone was associated with a reduction in a secondary composite endpoint of clinical cardiovascular events in high-risk patients with existing macrovascular disease who were already receiving other glycaemic and cardiovascular medications. Further evidence supporting an anti-atherogenic effect of pioglitazone was gained from the PERISCOPE study of carotid intima-media thickness. Recent controversy concerning a possible increased risk of myocardial infarction associated with rosiglitazone has fuelled uncertainty about the risk-benefit profile of this agent. In 2008, an update of an American Diabetes Association-European Association for the Study of Diabetes consensus statement on initiation and adjustment of therapy in patients with type 2 diabetes advised clinicians against using rosiglitazone. Skeletal fractures have recently emerged as a side effect of both TZDs. Available data suggest that cardiovascular benefits observed with pioglitazone might not be a class effect of TZDs. PMID:19219860

  7. A historical perspective of remote operations and robotics in nuclear facilities. Robotics and Intelligent Systems Program

    SciTech Connect

    Herndon, J.N.

    1992-12-31

    The field of remote technology is continuing to evolve to support man`s efforts to perform tasks in hostile environments. The technology which we recognize today as remote technology has evolved over the last 45 years to support human operations in hostile environments such as nuclear fission and fusion, space, underwater, hazardous chemical, and hazardous manufacturing. The four major categories of approach to remote technology have been (1) protective clothing and equipment for direct human entry, (2) extended reach tools using distance for safety, (3) telemanipulators with barriers for safety, and (4) teleoperators incorporating mobility with distance and/or barriers for safety. The government and commercial nuclear industry has driven the development of the majority of the actual teleoperator hardware available today. This hardware has been developed largely due to the unsatisfactory performance of the protective-clothing approach in many hostile applications. Manipulation systems which have been developed include crane/impact wrench systems, unilateral power manipulators, mechanical master/slaves, and servomanipulators. Viewing systems have included periscopes, shield windows, and television systems. Experience over the past 45 years indicates that maintenance system flexibility is essential to typical repair tasks because they are usually not repetitive, structured, or planned. Fully remote design (manipulation, task provisions, remote tooling, and facility synergy) is essential to work task efficiency. Work for space applications has been primarily research oriented with relatively few successful space applications, although the shuttle`s remote manipulator system has been quite successful. In the last decade, underwater applications have moved forward significantly, with the offshore oil industry and military applications providing the primary impetus.

  8. RoboLab and virtual environments

    NASA Technical Reports Server (NTRS)

    Giarratano, Joseph C.

    1994-01-01

    A useful adjunct to the manned space station would be a self-contained free-flying laboratory (RoboLab). This laboratory would have a robot operated under telepresence from the space station or ground. Long duration experiments aboard RoboLab could be performed by astronauts or scientists using telepresence to operate equipment and perform experiments. Operating the lab by telepresence would eliminate the need for life support such as food, water and air. The robot would be capable of motion in three dimensions, have binocular vision TV cameras, and two arms with manipulators to simulate hands. The robot would move along a two-dimensional grid and have a rotating, telescoping periscope section for extension in the third dimension. The remote operator would wear a virtual reality type headset to allow the superposition of computer displays over the real-time video of the lab. The operators would wear exoskeleton type arms to facilitate the movement of objects and equipment operation. The combination of video displays, motion, and the exoskeleton arms would provide a high degree of telepresence, especially for novice users such as scientists doing short-term experiments. The RoboLab could be resupplied and samples removed on other space shuttle flights. A self-contained RoboLab module would be designed to fit within the cargo bay of the space shuttle. Different modules could be designed for specific applications, i.e., crystal-growing, medicine, life sciences, chemistry, etc. This paper describes a RoboLab simulation using virtual reality (VR). VR provides an ideal simulation of telepresence before the actual robot and laboratory modules are constructed. The easy simulation of different telepresence designs will produce a highly optimum design before construction rather than the more expensive and time consuming hardware changes afterwards.

  9. A geodetic laser radar rangefinder with 10(exp -7) resolution

    NASA Technical Reports Server (NTRS)

    Mizushima, Y.; Takeichi, M.; Warashima, Y.; Takeshima, A.; Ogawa, I.; Ichie, K.; Schiller, N. H.

    1992-01-01

    A novel geodetic laser radar rangefinder (GLRR) unit utilizing a pair of synchronized 10-psec streak camera systems was developed for displacement measurements of the earth's plates. In order to achieve minimum computing error and assure extremely high spatial resolution, an optical pulse registration clock was developed and used to register a fiducial mark on the time scale of the system. Conventional optical rangefinders have been limited to a relative resolution of 10(exp -6) even for short distances. The system to be reported on today has the capability of measuring a 50km range with an accuracy of 4mm corresponding to a relative resolution of 10(exp -7). With a gain of greater than 3 x 10(exp 3), the system has the capability of detecting extremely weak signals on the order of photon counting. This combined with temporal gating makes daytime measurements comparable in signal-to-noise ratio to nighttime viewing. This is useful for measuring faint signals returning over a range of several tens of kilometers. The present ranging system was designed to observe the mutual displacement of geodetic plates and was employed to measure the boundary between the Philippine and Asian geodetic plates that pass beneath the Suruga Bay near Hamamatsu City, Japan. The system has been in operation for over 3 years. In addition, the system has the ability of producing and detecting optical ranging pulses of several wavelengths simultaneously, making this a complete multicolor system. The basic GLRR system consists of a frequency stabilizing crystal, optical clock, YAG laser, KDP doubling crystal, DK*P tripling crystal, two matched streak cameras (A and B), a control computer, and an output/input periscope system.

  10. A lidar technique for adjusting aerosol model number densities close to the ocean surface

    NASA Astrophysics Data System (ADS)

    Paulson, M. R.; Hughes, H. G.

    1990-12-01

    With the Navy's interest in FLIR detectors at submarine periscope heights, it is important to get more detailed information on the atmospheric characteristics at FLIR wavelengths (3 to 5 and 8 to 12 microns) in the first few meters above the ocean. This information is particularly important for predicting the performance of electro-optical systems operating against skimmer-type missiles approaching a ship or submarine from beyond the horizon. A technique is introduced by which the total number density of the LOWTRAN 7 Navy Aerosol Model (NAM) (the kernel for the Naval Oceanic Vertical Aerosol Model) is adjusted to represent existing conditions close to the ocean surface. Measurements of bulk meteorological parameters at a reference height above the ocean surface are used to generate stability dependent logarithmic profiles of temperature and relative humidity. These profiles are used with the aerosol model to determine aerosol extinction and backscatter coefficient variations close to the ocean surface. Using the single-scatter lidar (light detection and ranging) equation, these parameters are then used to calculate a range compensated power, S(R), returned from scattering volumes at different heights in the modeled atmosphere. An iterative method is used by which the calculated S(R) values are adjusted to agree with the corresponding measured values obtained with a lidar operating at 1.06 microns and directed at the ocean over a slant path from an altitude of 10 meters. Examples of extinction coefficient variations with height above the ocean surface, calculated using the original and adjusted size distribution for different surface wind speed conditions and air-mass characteristics.

  11. High-Power Prismatic Devices for Oblique Peripheral Prisms

    PubMed Central

    Peli, Eli; Bowers, Alex R.; Keeney, Karen; Jung, Jae-Hyun

    2016-01-01

    ABSTRACT Purpose Horizontal peripheral prisms for hemianopia provide field expansion above and below the horizontal meridian; however, there is a vertical gap leaving the central area (important for driving) without expansion. In the oblique design, tilting the bases of both prism segments toward the horizontal meridian moves the field expansion area vertically and centrally (closing the central gap) while the prisms remain in the peripheral location. However, tilting the prisms results also in a reduction of the lateral field expansion. Higher prism powers are needed to counter this effect. Methods We developed, implemented, and tested a series of designs aimed at increasing the prism power to reduce the central gap while maintaining wide lateral expansion. The designs included inserting the peripheral prisms into carrier lenses that included yoked prism in the opposite direction, combination of two Fresnel segments attached at the base and angled to each other (bi-part prisms), and creating Fresnel prism–like segments from nonparallel periscopic mirror pairs (reflective prisms). Results A modest increase in lateral power was achieved with yoked-prism carriers. Bi-part combination of 36Δ Fresnel segments provided high power with some reduction in image quality. Fresnel reflective prism segments have potential for high power with superior optical quality but may be limited in field extent or by interruptions of the expanded field. Extended apical scotomas, even with unilateral fitting, may limit the utility of very high power prisms. The high-power bi-part and reflective prisms enable a wider effective eye scanning range (more than 15 degrees) into the blind hemifield. Conclusions Conventional prisms of powers higher than the available 57Δ are limited by the binocular impact of a wider apical scotoma and a reduced effective eye scanning range to the blind side. The various designs that we developed may overcome these limitations and find use in various other field expansion applications. PMID:26866438

  12. Atomically Bonded Transparent Superhydrophobic Coatings

    SciTech Connect

    Aytug, Tolga

    2015-08-01

    Maintaining clarity and avoiding the accumulation of water and dirt on optically transparent surfaces such as US military vehicle windshields, viewports, periscope optical head windows, and electronic equipment cover glasses are critical to providing a high level of visibility, improved survivability, and much-needed safety for warfighters in the field. Through a combination of physical vapor deposition techniques and the exploitation of metastable phase separation in low-alkali borosilicate, a novel technology was developed for the fabrication of optically transparent, porous nanostructured silica thin film coatings that are strongly bonded to glass platforms. The nanotextured films, initially structurally superhydrophilic, exhibit superior superhydrophobicity, hence antisoiling ability, following a simple but robust modification in surface chemistry. The surfaces yield water droplet contact angles as high as 172°. Moreover, the nanostructured nature of these coatings provides increased light scattering in the UV regime and reduced reflectivity (i.e., enhanced transmission) over a broad range of the visible spectrum. In addition to these functionalities, the coatings exhibit superior mechanical resistance to abrasion and are thermally stable to temperatures approaching 500°C. The overall process technology relies on industry standard equipment and inherently scalable manufacturing processes and demands only nontoxic, naturally abundant, and inexpensive base materials. Such coatings, applied to the optical components of current and future combat equipment and military vehicles will provide a significant strategic advantage for warfighters. The inherent self-cleaning properties of such superhydrophobic coatings will also mitigate biofouling of optical windows exposed to high-humidity conditions and can help decrease repair/replacement costs, reduce maintenance, and increase readiness by limiting equipment downtime.

  13. Nest Site Selection by Kentish Plover Suggests a Trade-Off between Nest-Crypsis and Predator Detection Strategies

    PubMed Central

    Gómez-Serrano, Miguel Ángel; López-López, Pascual

    2014-01-01

    Predation is one of the main causes of adult mortality and breeding failure for ground-nesting birds. Micro-habitat structure around nests plays a critical role in minimizing predation risk. Plovers nest in sites with little vegetation cover to maximize the incubating adult visibility, but many studies suggest a trade-off between nest-crypsis and predator detection strategies. However, this trade-off has not been explored in detail because methods used so far do not allow estimating the visibility with regards to critical factors such as slope or plant permeability to vision. Here, we tested the hypothesis that Kentish plovers select exposed sites according to a predator detection strategy, and the hypothesis that more concealed nests survive longer according to a crypsis strategy. To this end, we obtained an accurate estimation of the incubating adult's field of vision through a custom built inverted periscope. Our results showed that plovers selected nest sites with higher visibility than control points randomly selected with regards to humans and dogs, although nests located in sites with higher vegetation cover survived longer. In addition, the flushing distance (i.e., the distance at which incubating adults leave the nest when they detect a potential predator) decreased with vegetation cover. Consequently, the advantages of concealing the nest were limited by the ability to detect predators, thus indirectly supporting the existence of the trade-off between crypsis and predator detection. Finally, human disturbance also constrained nest choice, forcing plovers to move to inland sites that were less suitable because of higher vegetation cover, and modulated flushing behavior, since plovers that were habituated to humans left their nests closer to potential predators. This constraint on the width of suitable breeding habitat is particularly relevant for the conservation of Kentish Plover in sand beaches, especially under the current context of coastal regression and increase of recreational activities. PMID:25208045

  14. Relative abundances of methane- and sulfur-oxidizing symbionts in gills of the deep-sea hydrothermal vent mussel Bathymodiolus azoricus under pressure

    NASA Astrophysics Data System (ADS)

    Szafranski, Kamil M.; Piquet, Bérénice; Shillito, Bruce; Lallier, François H.; Duperron, Sébastien

    2015-07-01

    The deep-sea mussel Bathymodiolus azoricus dominates hydrothermal vent fauna in the Azores region. The gills of this species house methane- and sulfur-oxidizing bacteria that fulfill most of the mussel's nutritional requirements. Previous studies suggested that the ratio between methane- and sulfur-oxidizers could vary in response to the availability of electron donors in their environment, and this flexibility is considered a key factor in explaining the ecological success of the species. However, previous studies were based on non-isobaric recovery of specimens, with experiments at atmospheric pressure which may have induced artifacts. This study investigates the effect of pressure-related stress during recovery and experimentation on the relative abundances of bacterial symbionts. Mussel specimens were recovered for the first time using the pressure-maintaining device PERISCOP. Specimens were subsequently transferred into pressurized vessels and exposed to various chemical conditions. Using optimized fluorescence in situ hybridization-based approaches, relative abundance of symbionts were measured. Our results show that the recovery method (isobaric versus non-isobaric) does not influence the abundances of bacterial symbionts. Significant differences occur among specimens sampled from two contrasting sites. Exposure of mussels from the deeper site to sulfide and bicarbonate, and to bicarbonate alone, both resulted in a rapid and significant increase in the relative abundance of sulfur-oxidizers. Results reported herein are congruent with those from previous reports investigating mussels originating from shallow sites and kept at ambient pressure. Isobaric recovery and maintenance allowed us to perform in vivo experiments in specimens from a deeper site that could not be maintained alive at ambient pressure, and will greatly improve the chances of identifying the molecular mechanisms underlying the dialogue between bathymodioline hosts and symbionts.

  15. Development and results of a new methodology to perform focus group with preschool children on their beliefs and attitudes on physical activity.

    PubMed

    Cammisa, Maria; Montrone, Rosa; Caroli, Margherita

    2011-10-01

    The aim of this study is to develop and test a method to perform focus groups (FGs) and to elicit the subjective views of preschool-age children on physical activity and perceived kindergarten barriers to practice it. FGs have been held in three different kindergarten classes with 49 children who were 4-5 years old. Children were asked to draw themselves in their preferred way of playing and were asked few questions about their drawings to understand their behaviours and ideas. In class A and B, 67% and 75% of the children, respectively, drew sedentary plays (table and impersonation games). Children referred that the main obstacle to perform active games outside home/kindergarten was the parents' and teachers' perceived risk that they could be hurt or catch a cold. The children would like to have more table games in the kindergarten. 81% of children in class C drew active group games. All these children were well satisfied with their kindergarten environment and did not refer to any adults' fear regarding active play. This class teacher spent a lot of time to develop children's motor abilities through active games and often used the garden to let the children to play freely. The use of drawings to understand children's habits on physical activity has turned out to be a reliable and easy tool in preschool children. The different results obtained in the two children groups show the need to change the beliefs and the behaviours of teachers and parents who seem to be non-architectural "invisible" barriers to be knocked down. This protocol has been developed by ASL Brindisi within the framework of PERISCOPE's objective to develop new methodologies. PMID:21923291

  16. Fast ion transport during applied 3D magnetic perturbations on DIII-D

    NASA Astrophysics Data System (ADS)

    Van Zeeland, M. A.; Ferraro, N. M.; Grierson, B. A.; Heidbrink, W. W.; Kramer, G. J.; Lasnier, C. J.; Pace, D. C.; Allen, S. L.; Chen, X.; Evans, T. E.; García-Muñoz, M.; Hanson, J. M.; Lanctot, M. J.; Lao, L. L.; Meyer, W. H.; Moyer, R. A.; Nazikian, R.; Orlov, D. M.; Paz-Soldan, C.; Wingen, A.

    2015-07-01

    Measurements show fast ion losses correlated with applied three-dimensional (3D) fields in a variety of plasmas ranging from L-mode to resonant magnetic perturbation (RMP) edge localized mode (ELM) suppressed H-mode discharges. In DIII-D L-mode discharges with a slowly rotating n=2 magnetic perturbation, scintillator detector loss signals synchronized with the applied fields are observed to decay within one poloidal transit time after beam turn-off indicating they arise predominantly from prompt loss orbits. Full orbit following using M3D-C1 calculations of the perturbed fields and kinetic profiles reproduce many features of the measured losses and points to the importance of the applied 3D field phase with respect to the beam injection location in determining the overall impact on prompt beam ion loss. Modeling of these results includes a self-consistent calculation of the 3D perturbed beam ion birth profiles and scrape-off-layer ionization, a factor found to be essential to reproducing the experimental measurements. Extension of the simulations to full slowing down timescales, including fueling and the effects of drag and pitch angle scattering, show the applied n=3 RMPs in ELM suppressed H-mode plasmas can induce a significant loss of energetic particles from the core. With the applied n=3 fields, up to 8.4% of the injected beam power is predicted to be lost, compared to 2.7% with axisymmetric fields only. These fast ions, originating from minor radii ρ >0.7 , are predicted to be primarily passing particles lost to the divertor region, consistent with wide field-of-view infrared periscope measurements of wall heating in n=3 RMP ELM suppressed plasmas. Edge fast ion {{\\text{D}}α} (FIDA) measurements also confirm a large change in edge fast ion profile due to the n=3 fields, where the effect was isolated by using short 50 ms RMP-off periods during which ELM suppression was maintained yet the fast ion profile was allowed to recover. The role of resonances between fast ion drift motion and the applied 3D fields in the context of selectively targeting regions of fast ion phase space is also discussed.

  17. Obituary: Cornell H. Mayer, 1921-2005

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Venkataraman

    2006-12-01

    Cornell (Connie) H. Mayer, a pioneer of radio astronomy, died on 19 November 2005 of congestive heart failure at his home in Mt. Vernon, Virginia. He was eighty-three. Cornell Mayer was born in Ossian, Iowa on 10 December 1921. After graduating from the University of Iowa in 1943, he joined the Navy during World War II and was stationed at the Naval Research Laboratory (NRL) in Washington, DC. There he assisted Fred T. Haddock in the development of the first radar antenna inside a submarine periscope. This device has been credited with shortening the war in the Pacific because of the number of Japanese ships that were sunk with its aid. With Haddock, Connie also discovered centimeter-wave radio bursts from the sun coincident with solar flares. They made the first detection of thermal radio emission from the Orion nebula and other galactic HII regions. They also detected extragalactic objects and thus initiated the important field of centimeter-wave astronomy. Their observations were made with a 50-foot parabolic reflector on a gun mount located on the roof of one of the NRL buildings. This telescope had the world's highest radio resolving power for many years. With Haddock's departure to the University of Michigan in 1956 to create a new radio observatory there, Connie became head of a group in the Radio Astronomy Branch at NRL, where he remained until his retirement in 1980. Much of his work involved the measurement of planetary temperatures by analysis of radio emissions. By making technical innovations in instrumentation--such as replacing disc choppers with a ferrite switch to compare the sky and reference load, or using argon gas tubes for calibration--Connie greatly improved the performance of his equipment. This resulted in the discovery of an astonishing, 600oC surface temperature of Venus, which contradicted the widespread notion that Venus was similar to the Earth and potentially habitable. In spite of the extraordinarily careful and systematic way that the observations were carried out and analyzed, many remained skeptical about the result and its interpretation in terms of a massive greenhouse effect, until the Mariner-II spacecraft fly-by in 1962, which put all such doubts to rest. Connie and his group continued to make radio observations of other planets and discovered a non-thermal centimeter wavelength emission from Jupiter. This led directly to work done at Caltech that demonstrated the existence of Van Allen-like belts around the planet. Being a superb engineer, Connie firmly believed that technology led to scientific discovery. Like others, he was preoccupied with the improvement of the sensitivity of radio astronomy receivers, and applied physics to new designs. In 1959, Connie collaborated with Charles Townes and his students at Columbia in the first application of the maser to astronomy. When Townes received the 1964 Nobel Prize for the invention of the maser, he asserted that Connie's desire to improve receiver sensitivity was influential in his work and shared a portion of his prize money with him. Connie's greatest contribution was in the study of non-thermal radio sources at very short wavelengths. Non-thermal sources were recognized by the fact that their flux density decreases with increasing frequency. If the emission mechanism were synchrotron radiation (as theorized in 1950), then the radiation should be linearly polarized up to a theoretical maximum of 70 percent. In 1949, John Bolton had identified a discrete radio source with the Crab Nebula optical counterpart. The optical radiation was known to contain a diffuse component with a featureless spectrum. The Russian astrophysicist Joseph Shklovsky boldly hypothesized that both the optical and radio emissions were due to the synchrotron mechanism. This implied that the optical radiation would be polarized, and Soviet scientists found it so in 1954. Soon after, the radio source Virgo A was matched with the peculiar galaxy M87, whose spectrally featureless optical jet was found to be polarized in 1956. Thus the crucial evidence in support of the synchrotron mechanism for both galactic and extragalactic radio sources was the detection of polarization in their optical radiation. The very next year, Connie and his collaborators showed that at a 3 cm wavelength, the Crab Nebula was substantially polarized (8%) at a position angle close to that of the optical direction. The hundreds of pixels obtainable in the optical, as opposed to only one in the NRL 3 cm observation, enabled the variation of position angle with sky position to be measured. Five years later, the NRL group, succeeded in measuring the first polarization in two extragalactic radio sources, Cygnus A and Centaurus A, at 3 cm. Later measurements at slightly longer wavelengths showed that polarization must be common in synchrotron sources, but that the amount decreased rapidly with increasing wavelength. It was already evident from the NRL measurements that Faraday rotation was important, and it was also clear that increased resolution would be required to remove the effects of averaging over distributions with varying position angles. This led Connie to build receivers at even shorter wavelengths and to use them on larger telescopes than NRL's. The most spectacular results were obtained in 1966 with a 1.55 cm receiver on the NRAO 140-ft reflector at Green Bank, which provided a beam width of only 1?:7. They found that the Crab Nebula had a distribution of polarization similar to that observed optically, reaching up to 16%. Internal Faraday rotation was clearly required to explain the rapid depolarization with increasing wavelength. For Cygnus A, they had just enough resolution to show that the two components of the double radio source were nearly orthogonally polarized. Their most beautiful result was on the galactic supernova remnant Cassiopea A, where they found a remarkable circular circumferential symmetry in the polarization vectors, explaining why previous work with poorer resolution indicated no polarization. Most importantly they recognized that the implied radial field "suggests that the magnetic field has been carried out with the expansion of the supernova envelope, and...[they] observe[d] polarized radiation associated with a component which has been stretched out in the radial direction during the expansion of the shell." This landmark paper led the way for later polarimetric studies of both galactic and extragalactic radio sources. Observations two decades later with the VLA (the world's most powerful, synthesis radio telescope with a quarter million pixels to each one of Connie's), substantiated most or all of his early conclusions, and was a tribute to his pioneering effort. The NRL group was later involved in discoveries about the variability of interstellar water and SiO masers, the structure of molecular clouds and star forming regions, the development of techniques for precision time transfer, remote sensing of the ocean and atmosphere, and much else, but in the aforementioned radio astronomy work, Connie Mayer had no peer. A colleague remarked, "Connie was among the last of the scientist-engineers who built their own equipment, performed their own experiments, and also interpreted the results into paradigm shifting science." Connie was a rare and noble example of natural modesty, becoming uncomfortable if anyone praised him. After his death, his wife found many awards that he had received but never framed nor told her about. He joked that he did not want a formal funeral "with a lot of people getting up and mouthing off about me." He received full military honor services at Arlington National Cemetery, but was cremated as per his wishes. He is survived by Carey Whitehead Mayer, his wife of fifty-six years, and their daughter, Carolyn Elizabeth Mayer. Their son, John, died in 1978.

  18. Obituary: James Gilbert Baker, 1914-2005

    NASA Astrophysics Data System (ADS)

    Baker, Neal Kenton

    2005-12-01

    Dr. James Gilbert Baker, renowned astronomer and optical physicist, died 29 June 2005 at his home in Bedford, New Hampshire at the age of 90. Although his scientific interest was astronomy, his extraordinary ability in optical design led to the creation of hundreds of optical systems that supported astronomy, aerial reconnaissance, instant photography (Polaroid SX70 camera), and the US space programs. He was the recipient of numerous awards for his creative work. He was born in Louisville, Kentucky, on 11 November 1914, the fourth child of Jesse B. Baker and Hattie M. Stallard. After graduating from Louisville DuPont Manual High, he went on to attend the University of Louisville majoring in Mathematics. He became very close to an Astronomy Professor, Dr. Moore, and many times used his telescopes to do nightly observations. While at the university, he built mirrors for his own telescopes and helped form the Louisville Astronomical Society in 1933. At the University of Louisville, he also met his future wife, Elizabeth Katherine Breitenstein of Jefferson County, Kentucky. He received his BA in 1935 at the height of the Depression. He began his graduate work in astronomy at the Harvard College Observatory. After his MA (1936), he was appointed a Junior Fellow (1937-1943) in the Prestigious Harvard Society of Fellows. He received his PhD in 1942 from Harvard in rather an unusual fashion, which is worth retelling. During an Astronomy Department dinner, Dr. Harlow Shapley (the director) asked him to give a talk. According to the "Courier-Journal Magazine", "Dr. Shapley stood up and proclaimed an on-the-spot departmental meeting and asked for a vote on recommending Baker for a Ph.D. on the basis of the 'oral exam' he had just finished. The vote was unanimous." It was at Harvard College Observatory during this first stage of his career that he collaborated with Donald H. Menzel, Lawrence H. Aller, and George H. Shortley on a landmark set of papers on the physical processes in gaseous nebulae. In addition to his theoretical work, he also began designing astronomical instruments with ever greater resolving powers and wide-angle acceptance which he described as the "the royal way to new discoveries."1 He is well known for the Baker-Schmidt telescope and the Baker Super Schmidt meteor camera. He was also a co-author with George Z. Dimitroff of a book entitled, "Telescopes and Accessories" (1945). In 1948 he received an Honorary Doctorate from the University of Louisville. With the start of World War II, the U.S. Army sought to establish an aerial reconnaissance branch and placed the project in charge of Colonel George W. Goddard. After months of searching for an optical designer, he asked for a recommendation from Dr. Mees2 of Eastman Kodak. Following the recommendations of Dr. Mees, Col. Goddard found this friendly and unassuming twenty-six year old graduate student at Harvard to be the perfect candidate. He was impressed by Dr. Baker's originality in optical design and provided him a small army research contract in early 1941 for a wide-angle camera system. Goddard's "Victory Lens" project began on 20 May 1942 when he visited Dr. Baker's office at Harvard College Observatory and described the need for a lens of f/2.5 covering a 5x5 plate to be made in huge quantities." Multiple designs were developed during the war effort. A hands-on man, Dr. Baker risked his life operating the cameras in many of the early test flights that carried the camera systems in unpressurized compartments on aircraft. He was the director of the Observatory Optical Project at Harvard University from 1943 to 1945. He began his long consulting career with the Perkin Elmer Corporation during this period. When the war ended, Harvard University decided to cease war-related projects and subsequently, Dr. Baker's lab was moved to Boston University and was eventually spun off as ITEK Corporation. However, he continued to be an associate professor and research associate at Harvard from 1946 to 1949. In 1948 he received the Presidential Medal for Merit for his work during World War II in the Office of Scientific Research and Development. In 1948, he moved to Orinda, California from Cambridge, Massachusetts and became a research associate of Lick Observatory for two years. He returned to Harvard in 1950. He had spent thousands of hours doing ray trace calculations on a Marchant calculator to produce his first aerial cameras. To replace the tedious calculations by hand, Dr. Baker introduced the use of numerical computers into the field of optics. His ray-trace program was one of the first applications run on the Harvard Mark II (1947) computer. Later on, he developed his own methodology to optimize the performance of his optical designs. These optical design computer programs were a family affair, developed under his direction by his own children to support his highly sophisticated designs of the 1960s and 1970s. For most of his career, Dr. Baker was involved with large system concepts covering not only the camera, but the camera delivery systems as well. As the chairman of U.S. Air Force Scientific Advisory Board, he recognized that national security requirements would require optical designs of even greater resolving power using aircraft at extreme altitudes. The need for such a plane resulted in the creation of the U-2 system consisting of a plane and camera functioning as a unit to create panoramic high-resolution aerial photographs. He formed Spica Incorporated in 1955 to perform the necessary optical design work for the US Government. The final design was a 36-inch f/10 system. Dr. Baker also designed the aircraft's periscope to allow the pilot to see his flight path. By 1958, he was almost solely responsible for all the cameras used in photoreconnaissance aircraft. He continued to serve on the President's Foreign Intelligence Advisory Board and on the Land Panel. Before the launch of Sputnik, he designed the Baker-Nunn satellite-tracking camera to support the Air Force's early satellite tracking and space surveillance networks. Because of his foresight, cameras were in place to track the Sputnik Satellite in October 1957. These cameras allowed the precise orbital determination of all orbiting spacecraft for over three decades until the tracking cameras were retired from service. He continued to advise top Government officials in the evolution of reconnaissance systems during the 1960s and 1970s. He received a Space Pioneer Award from the US Air Force. He received the Pioneers of National Reconnaissance Medal (2000) with the citation, "As a young Harvard astronomer, Dr. James G. Baker designed most of the lenses and many of the cameras used in aerial over flights of 'denied territory' enabling the success of the U.S. peacetime strategic reconnaissance policy." Around 1968, he undertook a consulting contract with Polaroid Corporation after Dr. Edwin Land persuaded him that only he could design the optical system for his new SX-70 Land. He was also responsible for the design of the Quintic focusing system for the Polaroid Spectra Camera system that employed a revolutionary combination of non-rotational aspherics to achieve focusing function. In 1958 he became a Fellow of the Optical Society of America (OSA). In 1960 he was elected President of the Society for one year and helped establish the Applied Optics Journal. He was the recipient of numerous OSA awards, spanning the breadth of the field, and has been honored with the Adolf Lomb Award, Ives Medal, Fraunhofer Award, and Richardson Award. He was made an honorary member of OSA in 1993. He also was the recipient of the 1978 Gold Medal, the highest award of the International Society of Optical Engineers (SPIE). Furthermore, he was the Recipient of the Elliott Cresson Medal of the Franklin Institute for his many innovations in astronomical tools. Dr. Baker was elected a Member of the National Academy of Sciences (1965), the American Philosophical Society (1970), the American Academy of Arts and Sciences (1946), and the National Academy of Engineering (1979). He was a member of the American Astronomical Society, the International Astronomical Union, and the Astronomical Society of the Pacific. He authored numerous professional papers and has over fifty US patents. He maintained his affiliation with the Harvard College Observatory and the Smithsonian Astrophysical Observatory until he retired in 2003. Even after his retirement in 2003, he continued work at his home on a new telescope design that he told his family he should have discovered in 1940. Light was always his tool to the understanding of the Universe. An entry from his personal observation log, 7 January 1933, made after an evening of star gazing reveals the pure inspiration of his efforts: "After all, it is the satisfaction obtained which benefits humanity, more than any other thing. It is in the satisfaction of greater human knowledge about the cosmos that the scientist is spurred on to greater efforts." James Baker fulfilled the destiny he had foreseen in 1933, living to see professional and amateur astronomers use his instruments and designs to further the understanding of the cosmos. Whereas, he had not predicted that his cameras would protect this nation for over many years. He is survived by his wife, his four children and five grandchildren. 1Oscar Bryant, "Astronomical Designs," in "Accent", the University of Louisville College of Arts and Sciences Alumni Newsletter, Spring 1994. 2George W. Goddard,Brigadier General, "Overview", 273.