Science.gov

Sample records for permanent lunar settlement

  1. A basis of settlement: Economic foundations of permanent pioneer communities. [Lunar settlement

    SciTech Connect

    Jones, E.M.

    1988-01-01

    High transport costs will dominate the pattern of lunar development. During the earliest phases, when lunar facilities consist of a research and resource development complex with staff serving tours of a few months, transport costs will encourage local production of food, fuel, and building materials. Once these capabilities are in place and the number of personnel grows to a few hundred, staff rotation might well dominate transport budgets. At that point it would make economic sense to encourage some members of staff to become permanent residents. By analogy with early British settlement in Australia, a vigorous private sector economy could emerge if the lunar organization provided quasi-export earning through its role as the community's major employer and as the major buyer of locally-produced goods. By providing such a market for goods and services, the lunar organization would not only provide a means whereby permanent residents would support themselves but could also accelerate the process of replacing imported goods with local manufactures, thereby reducing the cost of operations. By analogy with recent Alaskan experience, if the resource development activity started making money from sales to orbital customers, severance taxes and/or royalty payments could also provide means by which a lunar community could support itself.

  2. Toward a permanent lunar settlement in the coming decade: the Columbus Project

    SciTech Connect

    Hyde, R.A.; Ishikawa, M.Y.; Wood, L.L.

    1985-11-19

    The motivation for creating a permanent lunar settlement is sketched, and reasons for doing so in the coming decade are put forward. A basic plan to accomplish this is outlined, along technical and programmatic axes. It is concluded that founding a lunar settlement on the five hundredth anniversary of the Columbus landing - a Columbus Project - could be executed as a volunteer-intensive American enterprise requiring roughly six thousand man-years of skilled endeavor and a total Governmental contribution of the order of a half-billion dollars. 8 figs.

  3. Settlement-Compatible Lunar Transporation

    NASA Astrophysics Data System (ADS)

    Morgenthaler, G.

    Over the past few years we have published papers in this forum identifying, characterizing and advocating settlement-compatible transportation architectures for Mars. In the present paper, we do the same for the Moon and show evolutionary potentials for growth of lunar architectures into Mars architectures of the types discussed in our previous papers. The essence of a settlement-compatible architecture is that it yields a low recurring transportation cost and that the elements of the architecture are enduring, i.e., fully reusable with lifetimes on the order of Earth-based capital investments. Our previous papers have shown that extension of human habitation to other bodies in our Solar System is probably unaffordable with any other approach. The design of a settlement-compatible architecture begins with Earth launch. In our prior papers, we simply identified the Earth launch option as a fully reusable system with roughly Shuttle (or Atlas 5 or Delta 4 or Sea Launch or Ariane 5) capability, i.e. about 20 metric t. to low Earth orbit and a payload bay of dimensions about 5 m diameter x 15 to 20 m length. This is what the commercial market needs; this is where the traffic demand is; this is approximately the design point for a next-generation (after Shuttle) reusable launch vehicle. We continue in that vein for the present paper. Human mission advocates may argue it isn't big enough; that they need 80 metric t. payload to orbit. We answer that to achieve our cost criteria, there isn't much of a choice, and that the savings in launch cost will far outweigh the added expense for on-orbit assembly. Lunar transportation is considerably less demanding than Mars transportation. The main difference is in trip time. Because lunar trips are short, the crew habitat can be small, a la the Apollo Command Module, and the propulsion system to move it is also small by comparison. We analyze and depict a lunar transportation system based on crew elements adapted from the International Space Station program, high-thrust propulsion stages adapted from current upper stages with changes as needed to operate them space-based, and solar electric low-thrust propulsion systems for moving large cargo elements from one orbital state to another. The transportation system operates via a lunar libration point "gateway", similarly to some of NASA's current thinking, and has a growth option for development of lunar-supplied propellant for ascent from the lunar surface, and re-supply of a propellant depot at the gateway. We show further growth paths to the Mars transportation system described in our 2001 paper.

  4. A basis of settlement: Economic foundations of permanent pioneer communities

    NASA Technical Reports Server (NTRS)

    Jones, Eric M.

    1992-01-01

    High transport costs will dominate the course of lunar development. During the earliest phases, when lunar facilities consist of a research and resource development complex with staff serving tours of a few months, transport costs will encourage local production of fuel, food, and building materials. Once these capabilities are in place and the number of personnel grows to a few hundred, staff rotation might well dominate transport budgets. At that point it would make economic sense to encourage some members of staff to become permanent residents. By analogy with early British settlement in Australia, a vigorous private sector economy could emerge if the lunar organization provided quasi-export earnings through its role as the community's major employer and as the major buyer of locally produced goods. By providing such a market for goods and services, the lunar organization would not only provide a means whereby permanent residents could support themselves, but could also accelerate the process of replacing imported goods with local manufacturers, thereby reducing the cost of operations. By analogy with recent Alaskan experience, if the resource development activity started making money from sales to orbital customers, export taxes and/or royalty payments could also provide means by which a lunar community could support itself.

  5. Lunar settlements - A socio-economic outlook

    NASA Technical Reports Server (NTRS)

    Bluth, B. J.

    1986-01-01

    Factors in the design and development of a lunar settlement (LS) which affect the performance of the crew members are discussed. Topics examined include LS-program time constraints imposed by decisions made in developing and operating the Space Station; changes to make allowance for the long-term requirements of LSs; the design of the physical, technical, and organic LS environment; and the vital role of group dynamics in assuring LS success. It is suggested that many short-term cost-minimization strategies employed in spacecraft development may be inappropriate for LS programs.

  6. Lunar settlements--a socio-economic outlook

    NASA Technical Reports Server (NTRS)

    Bluth, B. J.

    1988-01-01

    The primary ingredient in a Lunar Settlement Program is the people. At the very high cost that will be required to transport, maintain and supply the people who will staff the Lunar operation, it is important to do everything possible to ensure their continued effectiveness in such an isolated, confined, and barren environment. This paper will attempt to identify the issues involved in providing for effective human performance in Lunar Settlements. The approach to be used will be contextual, and thus will not only examine the facets of the Lunar Settlement itself, but will also look at the organizational elements and the design and development processes used in project management from the point of view of long term success and cost effectiveness. The approach will also attempt to look at the Lunar Settlement "in time" as it is connected to events and experiences as they will evolve from the Space Station to Lunar Settlements. Finally, the approach will be contextual in the range of disciplines considered and their impact on planning, evolution, and activities in the entire process of Lunar Settlement. We will hope that Lunar settlers will be able to work and live as effective team members, and to make that possible, the designers, developers, builders, and managers must also function as a coherent team working together to bring about a common goal.

  7. Lunar Limb Observatory: An Incremental Plan for the Utilization, Exploration, and Settlement of the Moon

    NASA Technical Reports Server (NTRS)

    Lowman, Paul. D., Jr.

    1996-01-01

    This paper proposes a comprehensive incremental program, Lunar Limb Observatory (LLO), for a return to the Moon, beginning with robotic missions and ending with a permanent lunar settlement. Several recent technological developments make such a program both affordable and scientifically valuable: robotic telescopes, the Internet, light-weight telescopes, shared- autonomy/predictive graphics telerobotic devices, and optical interferometry systems. Reasons for focussing new NASA programs on the Moon include public interest, Moon-based astronomy, renewed lunar exploration, lunar resources (especially helium-3), technological stimulus, accessibility of the Moon (compared to any planet), and dispersal of the human species to counter predictable natural catastrophes, asteroidal or cometary impacts in particular. The proposed Lunar Limb Observatory would be located in the crater Riccioli, with auxiliary robotic telescopes in M. Smythii and at the North and South Poles. The first phase of the program, after site certification, would be a series of 5 Delta-launched telerobotic missions to Riccioli (or Grimaldi if Riccioli proves unsuitable), emplacing robotic telescopes and carrying out surface exploration. The next phase would be 7 Delta-launched telerobotic missions to M. Smythii (2 missions), the South Pole (3 missions), and the North Pole (2 missions), emplacing robotic telescopes to provide continuous all-sky coverage. Lunar base establishment would begin with two unmanned Shuttle/Fitan-Centaur missions to Riccioli, for shelter emplacement, followed by the first manned return, also using the Shuttle/Fitan-Centaur mode. The main LLO at Riccioli would then be permanently or periodically inhabited, for surface exploration, telerobotic rover and telescope operation and maintenance, and support of Earth-based student projects. The LLO would evolve into a permanent human settlement, serving, among other functions, as a test area and staging base for the exploration, settlement, and terraforming of Mars.

  8. Use of a Lunar Outpost for Developing Space Settlement Technologies

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R.

    2008-01-01

    The type of polar lunar outpost being considered in the NASA Vision for Space Exploration (VSE) can effectively support the development of technologies that will not only significantly enhance lunar exploration, but also enable long term crewed space missions, including space settlement. The critical technologies are: artificial gravity, radiation protection, Closed Ecological Life Support Systems (CELSS) and In-Situ Resource Utilization (ISRU). These enhance lunar exploration by extending the time an astronaut can remain on the moon and reducing the need for supplies from Earth, and they seem required for space settlement. A polar lunar outpost provides a location to perform the research and testing required to develop these technologies, as well as to determine if there are viable countermeasures that can reduce the need for Earth-surface-equivalent gravity and radiation protection on long human space missions. The types of spinning space vehicles or stations envisioned to provide artificial gravity can be implemented and tested on the lunar surface, where they can create any level of effective gravity above the 1/6 Earth gravity that naturally exists on the lunar surface. Likewise, varying degrees of radiation protection can provide a natural radiation environment on the lunar surface less than or equal to 1/2 that of open space at 1 AU. Lunar ISRU has the potential of providing most of the material needed for radiation protection, the centrifuge that provides artificial gravity; and the atmosphere, water and soil for a CELSS. Lunar ISRU both saves the cost of transporting these materials from Earth and helps define the requirements for ISRU on other planetary bodies. Biosphere II provides a reference point for estimating what is required for an initial habitat with a CELSS. Previous studies provide initial estimates of what would be required to provide such a lunar habitat with the gravity and radiation environment of the Earth s surface. While much preparatory work can be accomplished with existing capabilities such as the ISS, the full implementation of a lunar habitat with an Earth-like environment will require the development of a lunar mission architecture that goes beyond VSE concepts. The proven knowledge of how to build such a lunar habitat can then be applied to various approaches for space settlement.

  9. Armstrong City: A Permanent Settlement for Exo-Planetary Studies

    NASA Astrophysics Data System (ADS)

    Greenspon, J.

    Development of a permanent placement lunar base is the next fundamental step in an international program to explore and settle other planets within our solar system. While technical, operational, managerial and long-term issues must be considered, the establishment of a lunar facility can serve the preliminary needs of manned civilization in space. Numerous issues become apparent in the consideration of the activation of a lunar base. Specific and realistic determinations must be made about various types of interests in addition to the general conjectures given above. These activities include: - Spacecraft landings and vehicle systems - Crew selection, supplies and habitability - Power production and distribution - Risk management - Science and lunar activities - Base planning and configurations - Integrated operations and maintenance - Management. The development and activation of a lunar colony will require careful consideration to the future of space activities and operations in near Earth space. A lunar city, which we call Armstrong city, is defined by its own unique natural environment, available technology, realistic objectives, and common sense. Armstrong City, a preliminary first lunar base, will most probably be serving as an extended "division" of Earth's space exploration offices. The reasons are very simple and practical. -First, the costs of maintaining a permanent space facility will be lower in the long run than the costs of a series of short duration, rotating manned bases, -Second, studies in long-term space habitation can effectively be carried out in relative safety, -Third, the initial tasks which need to be done will define and establish methodologies and issues for development of future extraterrestrial base concepts, and -Fourth, the complexities of the initial facilities necessary to sustain the citizens can be tempered through developing local resources and reproducible research. In order to bring about development of Armstrong City, four things are necessary: resources, power, labour, and planning. 1.The lunar surface has an abundance of available resources for exploitation. Lava tubes can provide safe havens, the soil has a wealth of usable minerals, and the natural environment provides an unhindered scientific platform. 2.Power development, production and management will provide a novel sideline to the operation of Armstrong City. The ability to develop and operate solar collection systems as well as functional fusion plants will enhance the power capabilities of Earth itself, 3.Labour at Armstrong City will be demanding. This is going to be akin to developing and maintaining an off-shore oil platform completely on-site, and 4.Both on-site and Earth-based planning can be integrated dependent on mission operational needs.and thus will not be too expensive.

  10. Strategies for a permanent lunar base

    NASA Technical Reports Server (NTRS)

    Duke, M. B.; Mendell, W. W.; Roberts, B. B.

    1985-01-01

    One or more of three possible objectives, encompassing scientific research, lunar resource exploitation for space infrastructure construction, and lunar environment self-sufficiency refinement with a view to future planetary habitation, may be the purpose of manned lunar base activities. Attention is presently given to the possibility that the early phases of all three lunar base orientations may be developed in such a way as to share the greatest number of common elements. An evaluation is made of the cost and complexity of the lunar base, and the Space Transportation System used in conjunction with it, as functions of long term base use strategy.

  11. Possible Applications of Photoautotrophic Biotechnologies at Lunar Settlements

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Allen, Carl; Jones, J. A.; Bayless, D.; Brown, I.; Sarkisova, S.; Garrison, D.

    2007-01-01

    The most ambitious goal of the Vision of Space Exploration is to extend human presence across the solar system. Today, however, missions would have to bring all of the propellant, air, food, water, habitable volumes and shielding needed to sustain settlers beyond Earth. That is why resources for propellants, life support and construction of support systems and habitats must be found in space and utilized if humans hope to ever explore and colonize the solar system. The life support, fuel production and material processing systems currently proposed for spaceflight are essentially disconnected. Only traditional crop production has been proposed as a segment for bioregenerative life support systems, although the efficiency of higher plants for air regeneration is generally low. Thus, the investigation of air bioregeneration techniques based on the activity of photosynthetic organisms with higher rates of CO2 scrubbing and O2 release is very timely and important. Future systems for organic waste utilization in space may also benefit from the use of specific microorganisms. This janitorial job is efficiently carried out by microbes on Earth, which drive and connect different elemental cycles. It is likely that environmental control and life support systems based on bioregeneration will be capable of converting both organic and inorganic components of the waste at lunar settlements into edible biomass. The most challenging technologies for future lunar settlements are the extraction of elements (e.g. Fe, O, Si, etc) from local rocks for industrial feedstocks and the production of propellants. While such extraction can be accomplished by purely inorganic processes, the high energy requirements of such processes motivates the search for alternative technologies with lower energy requirements and appropriate efficiency. Well-developed terrestrial industrial biotechnologies for metals extraction and conversion could therefore be the prototypes for extraterrestrial biometallurgy.

  12. Strategies for a permanent lunar base

    NASA Technical Reports Server (NTRS)

    Duke, Michael B.; Mendell, Wendell W.; Roberts, Barney B.

    1989-01-01

    Three objectives are stated for activities at a proposed manned lunar base. One objective is scientific investigation of the moon and its environment and the application of special properties of the moon to research problems. Another objective would be to produce the capability of using the materials of the moon for beneficial purposes throughout the earth-moon system. The third objective is to conduct research and development leading to a self-sufficient and self-supporting lunar base, the first extraterrestrial human colony. The potential benefits to earth deriving from these moon-based activities, such as technology development and realization, as well as growing industrialization of near-earth space, are addressed.

  13. The design of a permanent lunar research station

    NASA Astrophysics Data System (ADS)

    Thomas, James R.

    The advancement of the United States' efforts in space exploration and research requires the establishment of a permanent manned lunar research station. This paper explores the possible design of such a facility. The use of a thin hedratecture dome covering a lunar depression is used to shield three multipurpose buildings and one command and control facility. Provisions for STS shuttle landings and take-off is also explored. The multipurpose buildings are designed using steel framing and cladding. The entire facility, capable of housing a team of thirty, could be transported by one shuttle. The buildings would arrive ready for erection within the completed dome. Steel was selected due to the low cost, high strength to weight ratio, long term durability, ready availability, quality control, and in-place availability of preengineering and fabrication. With the successful installation of the first facility, standardization would lower the already attractive cost for future projects. Facilities of this type could be erected quickly and inexpensively anywhere on the lunar surface.

  14. Albedo of Permanently Shadowed Regions of the Lunar Poles

    NASA Astrophysics Data System (ADS)

    Riner, M. A.; Lucey, P. G.; Bussey, B.; Cahill, J. T.; McGovern, A.

    2012-12-01

    Due to the slight tilt in the Moon's spin axis, some topographic depressions near the lunar poles experience permanent shadow and may serve as cold traps, harboring water ice and/or other volatile compounds [1]. Permanently shadowed regions (PSRs) provide an opportunity toward understanding the amount, nature and transport of volatiles on the Moon and may also be a potential resource for human exploration. While many different data sets have suggested the presence of water ice in PSRs near the lunar poles many questions remain. For example, ice does not appear to be uniformly distributed across identified PSRs. More work is needed to understand the distribution of ice in PSRs and how delivery and retention mechanisms influence the distribution. The active illumination of the Lunar Orbiter Laser Altimeter (LOLA) provides a unique contribution toward exploration PSR exploration. While LOLA is principally a laser altimeter used for quantitative topography and related cartographic and geodetic applications [2], LOLA also measures the intensity and width of the return laser pulse (1064 nm) from the surface. Here we use a global mosaic (4 pixels per degree) of LOLA albedo data corrected for instrumental drift, irregular variations, and calibrated to normal albedo using local equatorial measurements of normal albedo obtained by the Kaguya Multiband Imager [3]. Recent work using LOLA albedo shows the floor of Shackleton crater, near the lunar south pole, is brighter than the surrounding terrain (and the interior of nearby craters) at 1064 nm [4]. This albedo difference may be due to decreased space weathering due to shadowing from the Sun or to a 1 ?m thick layer with 20% water ice a the surface of the crater floor [4]. Here we use LOLA dayside reflectance measurements to examine the albedo of PSRs catalogued by [5] derived from illumination modeling of a hybrid 100 m/pixel LOLA-LROC digital terrain model (DTM) up to 83 north and south latitudes. The upper latitude limit is due to a complete loss of received laser signal as the spacecraft crosses the terminator due to thermal contraction of insulating blankets that pull the LOLA telescope out of alignment with the detectors. Fortuitously, two of the five laser spots reposition onto detectors after a transition period, so good laser range is obtained on a portion of the lunar night side. Additional calibration of night side reflectance data pole ward of 83 is ongoing [4]. The albedo of measured permanently shaded regions is 0.31 +/- 0.031 (1?) compared to 0.31 +/- 0.033 (1?) for measured sunlit regions from 60-80 north and south latitudes. This suggests that the high albedo of the floor of Shackleton is either unique or that the cause of the high albedo only acts at higher latitudes. Additional study of PSRs pole ward of 83 from LOLA night side data and examination of individual orbit tracks through PSRs may help elucidate the relationship between PSRs and albedo and contribute to understanding of these unique thermal environments, distribution of ice in PSRs, and volatile delivery and retention mechanisms. [1] Ingersoll et al. (1992) Icarus, 100, 40-47. [2] Smith et al. (2010) Space Sci. Rev., 150, 209-241. [3] Riner and Lucey (2011) AGU Fall Meeting, #P13D-1707. [4] Zuber et al. (2012) Nature, 486, 378-381. [5] McGovern et al. (2012), Icarus, accepted pending final review.

  15. Passive indirect sunlighting systems for a permanent NASA lunar base

    SciTech Connect

    Mullican, R.; Hamm, J.

    1996-10-01

    Principles of the new field of nonimaging optics were utilized to develop toplight and sidelight indirect sunlight delivery systems for a proposed permanent lunar habitat. Both trough shaped 2-D and cone shaped 3-D compound parabolic concentrators are successful in collecting sunlight from wide incident angles and directing it through a small exit aperture. This transformation of sunlight from a large moving source into a small fixed position source allows this light to be redistributed with a high degree of optical control in an interior environment. With the exception of extreme off axis collector sunlight angles, both toplight and sidelight systems can provide the necessary luminance distributions to meet interior luminance contrast design standards required for computer intensive environments and long term human visual comfort, while minimizing the size of envelope apertures.

  16. Simulated Water Delivery to Lunar Permanently Shadowed Regions

    NASA Astrophysics Data System (ADS)

    Moores, John

    2015-11-01

    A set of Monte Carlo simulations was run to examine water diffusion across the lunar surface and specifically to the Permanently Shadowed Regions (PSRs). This work extends the results of Schorghofer (2014) to latitudes above 5º from the pole and to specific PSRs and is accomplished using a separately derived model to independently test Schorghofer’s (2014) results. The model was validated using the results of Schorghofer (2014) at the 5º latitude line, replicating all of the behaviors of that model, but with slightly different values for the total number of tracer particles arriving and their fractionation.25 times fewer particles were able to survive to arrive within 1º of the pole, as compared to those that were able to arrive within 5º of the pole. For the PSRs themselves, 1.87% of particles were eventually sequestered within the PSRs by the end of our simulations. Examining the amount of water which could be transported over geological time reveals that sufficient water moves via migration to (1) supply the hydrogen signals observed by LEND, (Mitrofanov et al., 2012), (2) the frost at Haworth Crater (Gladstone et al., 2012) as well as to explain (3) the high level of water seen in the soils of Cabeus Crater in the LCROSS experiment (Colaprete et al., 2010) without the need to invoke another water supply mechanism.In all cases, the average time required for migration was small with average arrival times of less than a lunar day following an impact. Substantial differences were observed in the amount of water accreted by the different PSRs with Cabeus Crater accreting by far the most water per square meter. Faustini and the Haworth Lowlands have the next highest delivery, receiving ~60% each as much water as Cabeus per square meter. Shackleton has the lowest water delivery, receiving only ~5% as much water per square meter as Cabeus. The simulated results show a clear latitudinal trend with more water emplaced at lower latitudes. Yet, the data show very little difference between the PSRs in terms of the amount of fractionation taking place and low levels of fractionation overall, considering 100:1 distillation between the impactor and the PSRs.

  17. Radiological operational scenario for a permanent lunar base

    NASA Astrophysics Data System (ADS)

    McCormack, Percival D.

    An operational scenario for a lunar base is postulated based on 30 lunar base personnel and 2 year tours of duty plus stipulated numbers of EVA's and sorties in the lunar rover vehicles. It is also postulated that the main shielding material for the lunar base units (habitats, laboratories, etc.) will be lunar regolith. Using the solar minimum period as the basis, total accumulated dose equivalents for the galactic cosmic radiation over the two year period are computed at various shielding depths. Depths of regolith of over 20 g/sq cm are sufficient to reduce the total dose equivalents to well under the present limits. The second arm of the radiological health strategy -- continuous and all-encompassing radiation dosimetry -- is also discussed in some detail. It is also emphasized that monitoring of the base personnel for genetic mutations and chromosomal aberrations must be part of the radiological health program in the lunar base.

  18. Mapping and characterization of non-polar permanent shadows on the lunar surface

    NASA Astrophysics Data System (ADS)

    McGovern, J. Andrew; Bussey, D. Benjamin; Greenhagen, Benjamin T.; Paige, David A.; Cahill, Joshua T. S.; Spudis, Paul D.

    2013-03-01

    We present the first globally complete inventory of permanent shadows on the lunar surface that are detectable with the current global instrument datasets, including discovery of regions with persistent shadows over geologic time periods as close to the equator as 58 of latitude. These results were obtained through application of a ray tracing technique to the latest global topographic datasets from the Lunar Reconnaissance Orbiter. Our analysis reveals that 13,361 km2 of surface in the northern hemisphere and 17,698 km2 in the southern hemisphere are permanently shadowed. We present maps showing the locations of all the permanent shadows detectable using these datasets then turn our focus toward the permanent shadows farthest from the poles. Each permanent shadow on the equator side of 65 of latitude is shown in detail. Surface brightness temperature data derived from the Diviner mid-infrared radiometer on board the Lunar Reconnaissance Orbiter have been analyzed for four of these locations and found to have mid-day temperatures 75-120 K less than nearby comparison locations that experience direct daytime illumination. In some cases the permanently shadowed locations have nighttime temperatures 10-25 K lower than surroundings. The temperature results support our finding that these non-polar craters are permanently shadowed. The surface brightness temperature results also raise interesting questions about their ability to cold trap volatiles. Discovery of these non-polar permanently shadowed regions increases possible locations of water resources and high priority exploration targets on the Moon.

  19. Minimum ΔV for the transfer to permanent lunar orbits with hyperbolic approach

    NASA Astrophysics Data System (ADS)

    Qi, Yi; Xu, Shijie

    2016-02-01

    In this paper, the minimum ΔV of the two-impulse transfer from the low Earth orbit to the permanent lunar capture orbit is investigated in the frameworks of the planar circular restricted three-body problem and the two-body model, respectively. For the restricted three-body problem, the near-optimal lunar capture is adopted to find the capture point and the corresponding permanent lunar orbit. Then, we derive the theoretical minimum ΔV on two-impulse Earth-Moon transfer in the restricted three-body problem. For the two-body model, we apply the optimization to designing the patched-conic transfer. Then, using the numerical integration, we obtain the corresponding permanent lunar capture orbit and the minimum ΔV of the transfer. At last, some examples of both methods are discussed and compared. The results we obtained provide a reference for the low energy transfer from the low Earth orbit to the permanent lunar orbit.

  20. Thermal Analyses of Apollo Lunar Soils Provide Evidence for Water in Permanently Shadowed Areas

    NASA Technical Reports Server (NTRS)

    Cooper, Bonnie L.; Smith, M. C.; Gibson, E. K.

    2011-01-01

    Thermally-evolved-gas analyses were performed on the Apollo lunar soils shortly after their return to Earth [1-8]. The analyses revealed the presence of water evolving at temperatures above 200 C. Of particular interest are samples that were collected from permanently-shadowed locations (e.g., under a boulder) with a second sample collected in nearby sunlight, and pairs in which one was taken from the top of a trench, and the second was taken at the base of the trench, where the temperature would have been -10 to -20 C prior to the disturbance [9]. These samples include 63340/63500, 69941/69961, and 76240/76280. At the time that this research was first reported, the idea of hydrated minerals on the lunar surface was somewhat novel. Nevertheless, goethite was observed in lunar breccias from Apollo 14 [10], and it was shown that goethite, hematite and magnetite could originate in an equilibrium assemblage of lunar rocks

  1. Direct Solar Wind Proton Access into Permanently Shadowed Lunar Polar Craters

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.

    2011-01-01

    Recent analyses of Lunar Prospector neutron spectrometer (LPNS) data have suggested that high abundances of hydrogen exist within cold traps at the lunar poles, and it has often been assumed that hydrogen-bearing volatiles sequestered in permanent shadow are topographically shielded from sputtering by solar wind protons. However, recent simulation results are presented showing that solar wind protons clearly access the floor of an idealized, shadowed lunar crater through a combination of thermal and ambipolar processes, in effect creating a plasma "miniwake". These simulations are the first to model the mini-wake environment in two spatial dimensions with a self-consistent lunar surface-plasma interaction. Progress is reported on constraining the nonzero particle fluxes and energies incident on kilometer-scale shadowed topography, such as a small crater embedded within a larger one. The importance of direct solar wind proton bombardment is discussed within the context of understanding the stability and inventory of hydrogen-bearing volatiles in shadow at the lunar poles. The support of the National Lunar Science institute, the DREAM institute, LPROPS, and the NASA Postdoctoral Program at NASA Goddard Space Flight Center administered by ORAU are gratefully acknowledged.

  2. Anticipated Electrical Environment Within Permanently Shadowed Lunar Craters

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.; Killen, R. M.; Delory, G. T.; Collier, M. R.; Vondrak, R. R.

    2010-01-01

    Shadowed locations ncar the lunar poles arc almost certainly electrically complex regions. At these locations near the terminator, the local solar wind flows nearly tangential to the surface and interacts with large-scale topographic features such as mountains and deep large craters, In this work, we study the solar wind orographic effects from topographic obstructions along a rough lunar surface, On the leeward side of large obstructions, plasma voids are formed in the solar wind because of the absorption of plasma on the upstream surface of these obstacles, Solar wind plasma expands into such voids) producing an ambipolar potential that diverts ion flow into the void region. A surface potential is established on these leeward surfaces in order to balance the currents from the expansion-limited electron and ion populations, Wc find that there arc regions ncar the leeward wall of the craters and leeward mountain faces where solar wind ions cannot access the surface, leaving an electron-rich plasma previously identified as an "electron cloud." In this case, some new current is required to complete the closure for current balance at the surface, and we propose herein that lofted negatively charged dust is one possible (nonunique) compensating current source. Given models for both ambipolar and surface plasma processes, we consider the electrical environment around the large topographic features of the south pole (including Shoemaker crater and the highly varied terrain near Nobile crater), as derived from Goldstone radar data, We also apply our model to moving and stationary objects of differing compositions located on the surface and consider the impact of the deflected ion flow on possible hydrogen resources within the craters

  3. Depth and Horizontal Distribution of Volatiles in Lunar Permanently Shadowed Regions

    NASA Astrophysics Data System (ADS)

    Hurley, D. M.; Bussey, B.; Lawrence, D. J.; Gladstone, R.; Elphic, R. C.; Vondrak, R. R.

    2011-12-01

    Neutron spectroscopy from Lunar Prospector returned data consistent with the presence of water ice in the near-subsurface of the Moon in permanently shadowed regions (PSRs) at low spatial resolution. Clementine and ground-based radar returned tantalizing, but inconclusive evidence of ice in lunar PSRs. Later, Mini-RF on Chandrayaan-1 and LRO detected a signature consistent with water ice in some polar craters on the Moon, but not all PSRs. Similarly, LEND on LRO detected a heterogeneous distribution of hydrogen among lunar PSRs. In addition, LAMP on LRO detected FUV spectra consistent with a heterogeneous distribution of frost on the surface of permanently shadowed regions. Yet the weakest spectral feature from LAMP was associated with the crater with the strongest hydrogen feature from LEND. The impact of LCROSS into Cabeus released water and other volatiles, but abundances were higher than the background amounts detected by neutron spectroscopy implying heterogeneity within that PSR. Data from any one instrument taken alone would lead one to a different conclusion about the distribution of volatiles than data taken from any other single instrument. Although the data from different instrumentation can seem to be disparate, the apparent discrepancy results from the different fields of view and sensitivities of the detection techniques. The complementary nature of these data can be exploited to provide a multi-dimensional view of volatiles in lunar PSRs. We apply a Monte Carlo model to describe the retention and redistribution of volatiles within lunar cold traps. The model runs constrain the coherence of volatile deposits with depth, area, and time, which allows us to examine how a given volatile distribution would appear to remote sensing experiments. This provides a big picture framework for integrating the observations of volatiles on the surface and at depth at the poles of the Moon with the goal of finding a distribution of volatiles in lunar PSRs consistent with all of the data.

  4. Preliminary Mapping of Permanently Shadowed and Sunlit Regions Using the Lunar Reconnaissance Orbiter Camera (LROC)

    NASA Astrophysics Data System (ADS)

    Speyerer, E.; Koeber, S.; Robinson, M. S.

    2010-12-01

    The spin axis of the Moon is tilted by only 1.5 (compared with the Earth's 23.5), leaving some areas near the poles in permanent shadow while other nearby regions remain sunlit for a majority of the year. Theory, radar data, neutron measurements, and Lunar CRater Observation and Sensing Satellite (LCROSS) observations suggest that volatiles may be present in the cold traps created inside these permanently shadowed regions. While areas of near permanent illumination are prime locations for future lunar outposts due to benign thermal conditions and near constant solar power. The Lunar Reconnaissance Orbiter (LRO) has two imaging systems that provide medium and high resolution views of the poles. During almost every orbit the LROC Wide Angle Camera (WAC) acquires images at 100 m/pixel of the polar region (80 to 90 north and south latitude). In addition, the LROC Narrow Angle Camera (NAC) targets selected regions of interest at 0.7 to 1.5 m/pixel [Robinson et al., 2010]. During the first 11 months of the nominal mission, LROC acquired almost 6,000 WAC images and over 7,300 NAC images of the polar region (i.e., within 2 of pole). By analyzing this time series of WAC and NAC images, regions of permanent shadow and permanent, or near-permanent illumination can be quantified. The LROC Team is producing several reduced data products that graphically illustrate the illumination conditions of the polar regions. Illumination movie sequences are being produced that show how the lighting conditions change over a calendar year. Each frame of the movie sequence is a polar stereographic projected WAC image showing the lighting conditions at that moment. With the WACs wide field of view (~100 km at an altitude of 50 km), each frame has repeat coverage between 88 and 90 at each pole. The same WAC images are also being used to develop multi-temporal illumination maps that show the percent each 100 m 100 m area is illuminated over a period of time. These maps are derived by stacking all the WAC frames, selecting a threshold to determine if the surface is illuminated, and summing the resulting binary images. In addition, mosaics of NAC images are also being produced for regions of interest at a scale of 0.7 to 1.5 m/pixel. The mosaics produced so far have revealed small illuminated surfaces on the tens of meters scale that were previously thought to be shadowed during that time. The LROC dataset of the polar regions complements previous illumination analysis of Clementine images [Bussey et al., 1999], Kaguya topography [Bussey et al., 2010], and the current efforts underway by the Lunar Orbiter Laser Altimeter (LOLA) Team [Mazarico et al., 2010] and provide an important new dataset for science and exploration. References: Bussey et al. (1999), Illumination conditions at the lunar south pole, Geophysical Research Letters, 26(9), 1187-1190. Bussey et al. (2010), Illumination conditions of the south pole of the Moon derived from Kaguya topography, Icarus, 208, 558-564. Mazarico et al. (2010), Illumination of the lunar poles from the Lunar Orbiter Laser Altimeter (LOLA) Topography Data, paper presented at 41st LPSC, Houston, TX. Robinson et al. (2010), Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview, Space Sci Rev, 150, 81-124.

  5. W.W.W. MOON? The why, what and when of a permanent manned lunar colony.

    PubMed

    Morabito, Maurizio

    2005-01-01

    Several reasons for going back to the Moon are listed: scientific study of our natural satellite, Earth and in general the Solar System; exploitation of the resources of Outer Space; geopolitical considerations that made Apollo possible and are still valid in the long term; advancement of manned spaceflight, as robot-based exploration is time-wise inefficient and politically negligible. Technological, organisational and legal challenges are then outlined. After a discussion of human physiology, building materials and transportation of people and goods, an underground polar location is proposed as settlement site, either within kilometre-size lava tubes or man-made caves. An analysis of spaceflight history is conducted to determine a target date for returning to the Moon to stay. In the absence of political or commercial competition, experience indicates the last decades of the XXI century. To shorten this timescale, it is recommended to focus on accomplishing the task of establishing a reliable lunar travel and settlement system, rather than developing new technologies: simplifying the goals of each single step forward (as was the case of the Clementine mission) and concentrating on production-ready (or almost-ready) equipment (compare the ill-fated X-33 to the dependable Soyuz capsules). PMID:15852541

  6. W.W.W. Moon The Why, What and When of a Permanent Manned Lunar Colony

    NASA Astrophysics Data System (ADS)

    Morabito, M.

    Several reasons for going back to the Moon are listed: scientific study of our natural satellite, Earth and in general the Solar System; exploitation of the resources of Outer Space; geopolitical considerations that made Apollo possible and are still valid in the long term; advancement of manned spaceflight, as robot- based exploration is time-wise inefficient and politically negligible. Technological, organisational and legal challenges are then outlined. After a discussion of human physiology, building materials and transporta- tion of people and goods, an underground polar location is proposed as settlement site, either within kilometre-size lava tubes or man-made caves. An analysis of spaceflight history is conducted to determine a target date for returning to the Moon to stay. In the absence of political or commercial competition, experience indicates the last decades of the XXI century. To shorten this timescale, it is recommended to focus on accomplishing the task of establishing a reliable lunar travel and settlement system, rather than developing new technologies: simplifying the goals of each single step forward (as was the case of the Clementine mission) and concentrating on production-ready (or almost-ready) equipment (compare the ill- fated X-33 to the dependable Soyuz capsules)

  7. Deep dielectric charging of the lunar regolith within permanently shadowed regions

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Stubbs, T. J.; Joyce, C. J.; Schwadron, N.; Smith, S. S.; Spence, H.; Wilson, J. K.

    2013-12-01

    Galactic cosmic rays (GCRs) and solar energetic particles (SEPs) can penetrate within the lunar regolith, causing deep dielectric charging. The discharging timescale depends on the regolith's electrical conductivity and permittivity. In permanently shadowed regions (PSRs) near the lunar poles, this timescale is on the order of a lunation (~20 days). To estimate the resulting electric fields within the regolith, we develop a data-driven, one-dimensional, time-dependent model. For model inputs, we use GCR data from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on board the Lunar Reconnaissance Orbiter (LRO) and SEP data from the Electron, Proton, and Alpha Monitor (EPAM) on the Advanced Composition Explorer (ACE). We find that, during the recent solar minimum, GCRs create persistent electric fields up to 700 V/m. We also find that large SEP events create sporadic but strong fields (>10^6 V/m) that may induce dielectric breakdown. Meteoritic gardening limits the amount of time the regolith can spend close enough to the surface to be charged by SEPs, and we find that the gardened regolith within PSRs has likely experienced >10^6 breakdown-inducing events. Since dielectric breakdown typically creates cracks along the boundaries of changes in dielectric constant, we predict repeated breakdown to have fragmented a fraction of the regolith within PSRs into its mineralogical components.

  8. Testing lunar permanently shadowed regions for water ice: LEND results from LRO

    NASA Astrophysics Data System (ADS)

    Sanin, A. B.; Mitrofanov, I. G.; Litvak, M. L.; Malakhov, A.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Golovin, D. V.; Harshman, K.; McClanahan, T. P.; Mokrousov, M. I.; Mazarico, E.; Milikh, G.; Neumann, G.; Sagdeev, R.; Smith, D. E.; Starr, R. D.; Zuber, M. T.

    2012-06-01

    We use measurements from the Lunar Exploration Neutron Detector (LEND) collimated sensors during more than one year of the mapping phase of NASA's Lunar Reconnaissance Orbiter (LRO) mission to make estimates of the epithermal neutron flux within known large Permanently Shadowed Regions (PSRs). These are compared with the local neutron background measured outside PSRs in sunlit regions. Individual and collective analyses of PSR properties have been performed. Only three large PSRs, Shoemaker and Cabeus in the south and Rozhdestvensky U in the north, have been found to manifest significant neutron suppression. All other PSRs have much smaller suppression, only a few percent, if at all. Some even display an excess of neutron emission in comparison to the sunlit vicinity around them. Testing PSRs collectively, we have not found any average suppression for them. Only the group of 18 large PSRs, with area >200 km2, show a marginal effect of small average suppression, 2%, with low statistical confidence. A 2% suppression corresponds to 125 ppm of hydrogen taking into account the global neutron suppression near the lunar poles and assuming a homogeneous H distribution in depth in the regolith. This means that all PSRs, except those in Shoemaker, Cabeus and Rozhdestvensky U craters, do not contain any significant amount of hydrogen in comparison with sunlit areas around them at the same latitude.

  9. Testing Lunar Permanently Shadowed Regions for Water Ice: LEND Results from LRO

    NASA Technical Reports Server (NTRS)

    Sanin, A. B.; Mitrofanov, I. G.; Litvak, M. L.; Malakhov, A.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Golovin, D. V.; Harshman, K.; McClanahan, T. P.; Mokrousov, M. I.; Mazarico, E.; Milikh, G.; Neumann, G.; Sagdeev, R.; Smith, D. E.; Starr, R. D.; Zuber, M. T.

    2012-01-01

    We use measurements from the Lunar Exploration Neutron Detector (LEND) collimated sensors during more than one year of the mapping phase of NASA's Lunar Reconnaissance Orbiter (LRO) mission to make estimates of the epithermal neutron flux within known large Permanently Shadowed Regions (PSRs). These are compared with the local neutron background measured outside PSRs in sunlit regions. Individual and collective analyses of PSR properties have been performed. Only three large PSRs, Shoemaker and Cabeus in the south and Rozhdestvensky U in the north, have been found to manifest significant neutron suppression. All other PSRs have much smaller suppression, only a few percent, if at all. Some even display an excess of neutron emission in comparison to the sunlit vicinity around them. Testing PSRs collectively, we have not found any average suppression for them. Only the group of 18 large PSRs, with area >200 square kilometers, show a marginal effect of small average suppression, approx. 2%, with low statistical confidence. An approx. 2% suppression corresponds to approx. 125 ppm of hydrogen taking into account the global neutron suppression near the lunar poles and assuming a homogeneous H distribution in depth in the regolith. This means that all PSRs, except those in Shoemaker, Cabeus and Rozhdestvensky U craters, do not contain any significant amount of hydrogen in comparison with sunlit areas around them at the same latitude.

  10. The Distribution of Ice in Lunar Permanently Shadowed Regions: Science Enabling Exploration (Invited)

    NASA Astrophysics Data System (ADS)

    Hurley, D.; Elphic, R. C.; Bussey, B.; Hibbitts, C.; Lawrence, D. J.

    2013-12-01

    Recent prospecting indicates that water ice occurs in enhanced abundances in some lunar PSRs. That water constitutes a resource that enables lunar exploration if it can be harvested for fuel and life support. Future lunar exploration missions will need detailed information about the distribution of volatiles in lunar permanently shadowed regions (PSRs). In addition, the volatiles also offer key insights into the recent and distant past, as they have trapped volatiles delivered to the moon over ~2 Gyr. This comprises an unparalleled reservoir of past inner solar system volatiles, and future scientific missions are needed to make the measurements that will reveal the composition of those volatiles. These scientific missions will necessarily have to acquire and analyze samples of volatiles from the PSRs. For both exploration and scientific purposes, the precise location of volatiles will need to be known. However, data indicate that ice is distributed heterogeneously on the Moon. It is unlikely that the distribution will be known a priori with enough spatial resolution to guarantee access to volatiles using a single point sample. Some mechanism for laterally or vertically distributed access will increase the likelihood of acquiring a rich sample of volatiles. Trade studies will need to be conducted to anticipate the necessary range and duration of missions to lunar PSRs that will be needed to accomplish the mission objectives. We examine the spatial distribution of volatiles in lunar PSRs reported from data analyses and couple those with models of smaller scale processes. FUV and laser data from PSRs that indicate the average surface distribution is consistent with low abundances on the extreme surface in most PSRs. Neutron and radar data that probe the distribution at depth show heterogeneity at broad spatial resolution. We consider those data in conjunction with the model to understand the full, 3-D nature of the heterogeneity. A Monte Carlo technique simulates the stochastic process of impact gardening on a putative ice deposit. The model uses the crater production function as a basis for generating a random selection of impact craters over time. Impacts are implemented by modifying the topography, volatile content, and depth distribution in the simulation volume on a case by case basis. This technique will never be able to reproduce the exact impact history of a particular area. But by conducting multiple runs with the same initial conditions and a different seed to the random number generator, we are able to calculate the probability of situations occurring. Further, by repeating the simulations with varied initial conditions, we calculate the dependence of the expectation values on the inputs. We present findings regarding the heterogeneity of volatiles in PSRs as a function of age, initial ice thickness, and contributions from steady sources.

  11. Human safety in the lunar environment

    NASA Technical Reports Server (NTRS)

    Lewis, Robert H.

    1992-01-01

    Any attempt to establish a continuously staffed base or permanent settlement on the Moon must safely meet the challenges posed by the Moon's surface environment. This environment is drastically different from the Earth's, and radiation and meteoroids are significant hazards to human safety. These dangers may be mitigated through the use of underground habitats, the piling up of lunar materials as shielding, and the use of teleoperated devices for surface operations. The lunar environment is detailed along with concepts for survival.

  12. Science objectives in the lunar base advocacy

    NASA Technical Reports Server (NTRS)

    Mendell, Wendell W.

    1988-01-01

    The author considers the potential function of astronomy in planning for a lunar base during the 21st century. He is one of the leading advocates for a permanent settlement on the Moon and has given considerable thought to the possible impact of such a station on science. He considers the rationale for a lunar base, research on the Moon, and the definition of science objectives.

  13. Magnetic hysteresis classification of the lunar surface and the interpretation of permanent remanence in lunar surface samples

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1972-01-01

    A magnetic hysteresis classification of the lunar surface is presented. It was found that there is a distinct correlation between natural remanence (NRM), saturation magnetization, and the hysteresis ratios for the rock samples. The hysteresis classification is able to explain some aspects of time dependent magnetization in the lunar samples and relates the initial susceptibility to NRM, viscous remanence, and to other aspects of magnetization in lunar samples. It is also considered that since up to 60% of the iron in the lunar soil may be super paramagnetic at 400 K, and only 10% at 100 K, the 50% which becomes ferromagnetic over the cycle has the characteristics of thermoremanence and may provide for an enhancement in measurable field on the dark side during a subsatellite magnetometer circuit.

  14. Design of an unmanned lunar cargo lander that reconfigures into a shelter for a habitation module or disassembles into parts useful to a permanent manned lunar base

    NASA Technical Reports Server (NTRS)

    Davanay, Lisa; Garner, Brian; Rigol, Jason

    1989-01-01

    NASA plans to establish a permanent manned lunar base by the first decade of the twenty-first century. It is extremely expensive to transport material from earth to the moon. Therefore, expense would be reduced if the vehicle that lands cargo on the moon could itself meet some of the material needs of establishing the lunar base. The design of a multi-functional lander that is entirely useful to the base after landing is described. Alternate designs of the overall lander configuration and possible uses of the lander and its components after landing are contained. The design solution is a lander employing the Saddlebagged Fuel Tank Configuration. After landing, its structure will be converted into a habitation module shelter that supports a protective layer of regolith. The fuel tanks will be cleaned and used as storage tanks for the lunar base. The engines and instrumentation will be saved as stock parts. Recommendations for further research and technology development to enhance future lander designs are given.

  15. Beagle to the Moon: An Experiment Package to Measure Polar Ice and Volatiles in Permanently Shadowed Areas or Beneath the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Gibson, E. K.; McKay, D. S.; Pillinger, C. T.; Wright, I. P.; Sims, M. R.; Richter, L.

    2007-01-01

    Near the beginning of the next decade we will see the launch of scientific payloads to the lunar surface to begin laying the foundations for the return to the moon in the Vision for Space Exploration. Shortly thereafter, astronauts will return to the lunar surface and have the ability to place scientific packages on the surface that will provide information about lunar resources and compositions of materials in permanently shadowed regions of the moon (1). One of the important questions which must be answered early in the program is whether there are lunar resources which would facilitate "living off the land" and not require the transport of resources and consumables from Earth (2). The Beagle science package is the ideal payload (3) to use on the lunar surface for determining the nature of hydrogen, water and lunar volatiles found in the polar regions which could support the Vision for Space Exploration

  16. Ilmenite-rich pyroclastic deposits - An ideal lunar resource

    NASA Technical Reports Server (NTRS)

    Hawke, B. R.; Clark, B.; Coombs, C. R.

    1990-01-01

    With a view of investigating possible economic benefits that a permanent lunar settlement might provide to the near-earth space infrastructures, consideration was given to the ilmenite-rich pyroclastic deposits as sources of oxygen (for use as a propellant) and He-3 (for nuclear fusion fuel). This paper demonstrates that ilmenite-rich pyroclastic deposits would be excellent sources of a wide variety of valuable elements besides O and He-3, including Fe, Ti, H2, N, C, S, Cu, Zn, Cd, Bi, and Pb. It is shown that several ilmenite-rich pyroclastic deposits of regional extent exist on the lunar surface. The suitability of regional pyroclastic deposits for lunar mining operations, construction activities, and the establishment of permanent lunar settlements is examined.

  17. Critical issues for establishment of a permanently-occupied lunar base

    NASA Astrophysics Data System (ADS)

    Kent, Paul C., II

    1987-09-01

    The purpose of this study was to determine the critical issues for a potential lunar outpost by polling a group of experts knowledgeable about decision-making involving the allocation of large-scale resources. A Delphi exercise is an iterative polling technique in which the group opinion is refined during successive iterations, while at the same time preserving differing viewpoints. The experts identified four critical issues: (1) demonstration of the value of a lunar base (e.g., cost effective lunar-based science, source of raw materials, technology spin-offs, etc.); (2) sustained political and financial support; (3) credibility of the government (i.e., NASA) in accomplishing such a large and complex program; (4) development of the military value of a lunar base.

  18. Beagle 2 the Moon: An Experimental Package to Measure Polar Ice and Volatiles in Permanently Shadowed Areas or Beneath the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Gibson, E. K.; McKay, D. S.; Pillinger, C. T.; Wright, I. P.; Sims, M. R.; Richter, L.

    2008-01-01

    NASA has announced the selection of several Lunar Science Sortie Concept Studies for potential scientific payloads with future Lunar Missions. The Beagle 2 scientific package was one of those chosen for study. Near the beginning of the next decade will see the launch of scientific payloads to the lunar surface to begin laying the foundations for the return to the moon in the Vision for Space Exploration. Shortly thereafter, astronauts will return to the lunar surface with the ability to place scientific packages on the surface that will provide information about lunar resources and compositions of materials in permanently shadowed regions of the moon (1). One of the important questions which must be answered early in the program is whether there are lunar resources which would facilitate "living off the land" and not require the transport of resources and consumables from Earth (2). The Beagle science package developed to seek the signatures of life on Mars is the ideal payload (3) to use on the lunar surface for determining the nature of hydrogen, water and lunar volatiles found in the polar regions which could support the Vision for Space Exploration.

  19. Modeling Lunar Borehole Temperature in order to Reconstruct Historical Total Solar Irradiance and Estimate Surface Temperature in Permanently Shadowed Regions

    NASA Astrophysics Data System (ADS)

    Wen, G.; Cahalan, R. F.; Miyahara, H.; Ohmura, A.

    2007-12-01

    The Moon is an ideal place to reconstruct historical total solar irradiance (TSI). With undisturbed lunar surface albedo and the very low thermal diffusivity of lunar regolith, changes in solar input lead to changes in lunar surface temperature that diffuse downward to be recorded in the temperature profile in the near-surface layer. Using regolith thermal properties from Apollo, we model the heat transfer in the regolith layer, and compare modeled surface temperature to Apollo observations to check model performance. Using as alternative input scenarios two reconstructed TSI time series from 1610 to 2000 (Lean, 2000; Wang, Lean, and Sheeley 2005), we conclude that the two scenarios can be distinguished by detectable differences in regolith temperature, with the peak difference of about 10 mK occuring at a depth of about 10 m (Miyahara et al., 2007). The possibility that water ice exists in permanently shadowed areas near the lunar poles (Nozette et al., 1997; Spudis et al, 1998), makes it of interest to estimate surface temperature in such dark regions. "Turning off" the Sun in our time dependent model, we found it would take several hundred years for the surface temperature to drop from ~~100K immediately after sunset down to a nearly constant equilibrium temperature of about 24~~38 K, with the range determined by the range of possible input from Earth, from 0 W/m2 without Earth visible, up to about 0.1 W/m2 at maximum Earth phase. A simple equilibrium model (e.g., Huang 2007) is inappropriate to relate the Apollo-observed nighttime temperature to Earth's radiation budget, given the long multi- centennial time scale needed for equilibration of the lunar surface layer after sunset. Although our results provide the key mechanisms for reconstructing historical TSI, further research is required to account for topography of lunar surfaces, and new measurements of regolith thermal properties will also be needed once a new base of operations is established. References Huang, S., (2007), Surface Temperatures at the Nearside of the Moon as a Record of the Radiation Budget of Earth's Climate System, Advances in Space Research, doi:10.1016/j.asr.2007.04.093. Lean, J., Geophys. Res. Lett., (2000), 27(16), 2425-2428. Miyahara, H., G. Wen, R. F. Cahalan, and A. Ohmura, (2007), Deriving Historical Total Solar Irradiance from Lunar Borehole Temperatures, submitted to Geophy. Res. Lett. Nozette, S., E. M. Shoemaker, P. D. Spudis, and C. L. Lichtenberg, The possibility of ice on the Moon, Science, 278, 144-145, 1997. Spudis, P.D., T. Cook, M. Robinson, B. Bussey, and B. Fessler, Topography of the southe polar region from Clementine stereo imaging, New views of the Moon, Integrated remotely sensed, geophysical, and sample datasets, Lunar Planet. Inst., [CD-ROM], abstract 6010, 1998. Wang, Y. M., J. L. Lean and N. R. Sheeley (2005), Astrophys. J., 625, 522-538.

  20. Lunar Polar Coring Lander

    NASA Technical Reports Server (NTRS)

    Angell, David; Bealmear, David; Benarroche, Patrice; Henry, Alan; Hudson, Raymond; Rivellini, Tommaso; Tolmachoff, Alex

    1990-01-01

    Plans to build a lunar base are presently being studied with a number of considerations. One of the most important considerations is qualifying the presence of water on the Moon. The existence of water on the Moon implies that future lunar settlements may be able to use this resource to produce things such as drinking water and rocket fuel. Due to the very high cost of transporting these materials to the Moon, in situ production could save billions of dollars in operating costs of the lunar base. Scientists have suggested that the polar regions of the Moon may contain some amounts of water ice in the regolith. Six possible mission scenarios are suggested which would allow lunar polar soil samples to be collected for analysis. The options presented are: remote sensing satellite, two unmanned robotic lunar coring missions (one is a sample return and one is a data return only), two combined manned and robotic polar coring missions, and one fully manned core retrieval mission. One of the combined manned and robotic missions has been singled out for detailed analysis. This mission proposes sending at least three unmanned robotic landers to the lunar pole to take core samples as deep as 15 meters. Upon successful completion of the coring operations, a manned mission would be sent to retrieve the samples and perform extensive experiments of the polar region. Man's first step in returning to the Moon is recommended to investigate the issue of lunar polar water. The potential benefits of lunar water more than warrant sending either astronauts, robots or both to the Moon before any permanent facility is constructed.

  1. Evolving concepts of lunar architecture: The potential of subselene development

    NASA Technical Reports Server (NTRS)

    Daga, Andrew W.; Daga, Meryl A.; Wendel, Wendel R.

    1992-01-01

    In view of the superior environmental and operational conditions that are thought to exist in lava tubes, popular visions of permanent settlements built upon the lunar surface may prove to be entirely romantic. The factors that will ultimately come together to determine the design of a lunar base are complex and interrelated, and they call for a radical architectural solution. Whether lunar surface-deployed superstructures can answer these issues is called into question. One particularly troublesome concern in any lunar base design is the need for vast amounts of space, and the ability of man-made structures to provide such volumes in a reliable pressurized habitat is doubtful. An examination of several key environmental design issues suggests that the alternative mode of subselene development may offer the best opportunity for an enduring and humane settlement.

  2. Testing of Lunar Permanently Shadowed Regions for Water Ice: LEND Results for about Three Years of Observations

    NASA Astrophysics Data System (ADS)

    Sanin, A.; Mitrofanov, I.; Litvak, M.; Boynton, W. V.; Chin, G.; Evans, L. G.; Garvin, J.; Golovin, D.; Harshman, K.; McClanahan, T. R.; Malakhov, A.; Milikh, G. M.; Sagdeev, R.; Starr, R. D.

    2012-12-01

    Introduction: More than 50 years ago, it was sug-gested that some areas near the lunar poles are suffi-ciently cold to trap and preserve for a very long time (~Gy) hydrogen bearing volatiles, either primordial or produced at the Moon via solar wind interactions or brought to the Moon as water ice by comets and mete-oroids [1,2]. The results of observations made by radar onboard the Clementine spacecraft and by neutron (LPNS) and gamma-ray (LPGRS) spectrometers onboard the Lunar Prospector mission have been inter-preted as an enhancement of hydrogen abundance in permanently shadowed regions (PSRs) [3]. Unfortu-nately, the spatial resolution of these instruments were much broader than the size of any largest PSRs [4] requiring model dependent data deconvolution to res-lve signal from PSRs itself. Data Analysis: We would like to present updated results of analysis of Lunar Exploration Neutron Detector (LEND) data for about three years of lunar mapping. Data measured by collimated LEND detectors allows one to look at neutron flux distribution at Moon poles with much better spatial resolution then was achieved at previous space missions. Using the LEND data we had tested the hypothesis that all PSRs are contain a large amount of water ice permafrost and test for hydrogen presents in regolith of regions outside of PSRs. Discussion: Both analyses of individual PSRs and studies of groups of PSRs have shown that these spots of extreme cold at lunar poles are not associated with a strong effect of epithermal neutron flux suppression [5]. We found only three large PSRs, Shoemaker and Cabeus in the South and Rozhdestvensky U in the North, which manifest significant neutron suppression, from -5.5% to -14.9%. All other PSRs have much smaller suppression, no more than few percentages, if at all. Some PSRs even display excess of neutron emis-sion in respect to sunlit vicinity around them. Testing PSRs collectively, we have not found any average suppression for them. Only group of 18 large PSRs, with area >200 km2, show a marginal effect of small average suppression, ~2%, with low statistical confidence. A ~2% suppression corresponds to ~125 ppm of hydrogen taking into account the global neutron suppression near the lunar poles and assuming a homogeneous Hydrogen distribution in depth in the regolith [6]. References: [1] Arnold, J. R. (1979) JGR, 84, 5659-5668. [2] Watson, K., Murray B. C. and Brown H. (1961) JGR, 66, 3033-3045. [3] Feldman W. C. et al. (2001) JGR, 106, 23231-23252. [4] Maurice S. et al. (2004) JGR, 109, E07S04, 40 PP. [5] Mitrofanov I. G. et al. (2010) Science, 330, 483. [6] Sanin A.B. et al. (2012) JGR, 117, E00H26

  3. Lunar Flashlight: Mapping Lunar Surface Volatiles Using a Cubesat

    NASA Astrophysics Data System (ADS)

    Cohen, B. A.; Hayne, P. O.; Paige, D. A.; Greenhagen, B. T.

    2014-10-01

    The Lunar Flashlight mission will measure surface ice within the permanently shadowed regions of the lunar south pole in support of NASAs Strategic Knowledge Gap to understand water and other volatiles in lunar cold traps.

  4. Lunar water migration in the interval between large impacts: Heterogeneous delivery to Permanently Shadowed Regions, fractionation, and diffusive barriers

    NASA Astrophysics Data System (ADS)

    Moores, John E.

    2016-01-01

    The migration of water molecules across the lunar surface from sources sufficiently small, so as to not generate a transient collisional atmosphere, was examined using a Monte Carlo simulation. Previous work using similar models is extended by examining a realistic distribution of large south polar Permanently Shadowed Regions (PSRs) to examine the heterogeneities observed in their water content—frost in Haworth and the nearby lowlands, but not in neighboring Shoemaker, and anomalously high hydrogen abundances from neutron data—and to determine how the pattern of water delivery can be distinguished from that predicted for transient collisional atmospheres. While the Haworth lowlands were seen to accumulate 3.9 times as much water as Shoemaker, the additional water delivered to Haworth crater was only 47% greater than Shoemaker, possibly due to shielding by Faustini and the lowlands. This relatively small difference is likely inadequate to explain the difference in frosting. More broadly, latitudinal trends in delivery dominate over meridional trends. Despite the heterogeneity in water delivery, fractionation effects from ballistic migration were small for the PSRs with equal D/H ratios seen in all PSRs within confidence limits. Finally, a diffusive barrier was observed starting at approximately 15° from each pole that hampers the poleward progress of equatorial particles. This barrier is the result of a reduction in the migration diffusivity from 1.0 × 107 m2 s-1 near the equator to 5.5 × 105 m2 s-1 within 10° of the pole and finally to 6.8 × 103 m2 s-1 within 4° of the pole.

  5. How Cold are the Floors of Lunar Polar Shadowed Craters?

    NASA Technical Reports Server (NTRS)

    Mendell, Wendell W.

    2010-01-01

    Almost five decades ago Watson, et al, [1] speculated that molecules of volatile species might accumulate within the cryogenic environments of permanently shadowed polar craters. The subject was largely a scientific curiosity until recently. In the mid-1980's, people began to seriously discuss the feasibility of long-term or permanent human settlement of the Moon. Given that the Moon was known be missing the compounds need to support life and that importing volatiles from Earth is prohibitively expensive, lunar colonists were pictured as processing the putative polar volatiles. A bistatic radar experiment performed with the Clementine spacecraft was interpreted to suggest the presence of large quantities of ice at some polar locations. [2] The neutron spectrometer aboard the Lunar Prospector spacecraft reported high concentrations of hydrogen in the polar regolith, [3] and some interpretations of the data set pointed to very high concentrations in permanently shadowed craters. The reformulation of civilian space policy in 2004, known as the Vision for Space Exploration, emphasized lunar exploration with eye toward development of economic returns from cislunar space and long-tern human presence on the Moon. The theme of finding lunar resources was an impetus for the inclusion of the Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter. Preliminary results from Diviner report an unexpectedly low temperature down to 35K in the depths of some craters. [4

  6. Human Lunar Destiny: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Fletcher, David

    2002-01-01

    This paper offers conceptual strategy and rationale for returning astronauts to the moon. NASA's historic Apollo program enabled humans to make the first expeditionary voyages to the moon and to gather and return samples back to the earth for further study. To continue exploration of the moon within the next ten to fifteen years, one possible mission concept for returning astronauts using existing launch vehicle infrastructure is presented. During these early lunar missions, expeditionary trips are made to geographical destinations and permanent outposts are established at the lunar south pole. As these missions continue, mining operations begin in an effort to learn how to live off the land. Over time, a burgeoning economy based on mining and scientific activity emerges with the formation of more accommodating settlements and surface infrastructure assets. As lunar activity advances, surface infrastructure assets grow and become more complex, lunar settlements and outposts are established across the globe, travel to and from the moon becomes common place, and commerce between earth and the moon develops and flourishes. Colonization and development of the moon is completed with the construction of underground cities and the establishment of a full range of political, religious, educational, and recreational institutions with a diverse population from all nations of the world. Finally, rationale for diversifying concentrations of humanity throughout earth's neighborhood and the greater solar system is presented.

  7. The Initial Nine Space Settlements

    NASA Astrophysics Data System (ADS)

    Gale, Anita E.; Edwards, Richard P.

    2003-01-01

    The co-authors describe a chronology of space infrastructure development illustrating how each element of infrastructure enables development of subsequent more ambitious infrastructure. This is likened to the ``Southern California freeway phenomenon'', wherein a new freeway built in a remote area promotes establishment of gas stations, restaurants, hotels, housing, and eventually entire new communities. The chronology includes new launch vehicles, inter-orbit vehicles, multiple LEO space stations, lunar mining, on-orbit manufacturing, tourist destinations, and supporting technologies required to make it all happen. The space settlements encompassed by the chronology are in Earth orbit (L5 and L4), on the lunar surface, in Mars orbit, on the Martian surface, and in the asteroid belt. Each space settlement is justified with a business rationale for construction. This paper is based on materials developed for Space Settlement Design Competitions that enable high school students to experience the technical and management challenges of working on an industry proposal team.

  8. Lunar laboratory

    SciTech Connect

    Keaton, P.W.; Duke, M.B.

    1986-01-01

    An international research laboratory can be established on the Moon in the early years of the 21st Century. It can be built using the transportation system now envisioned by NASA, which includes a space station for Earth orbital logistics and orbital transfer vehicles for Earth-Moon transportation. A scientific laboratory on the Moon would permit extended surface and subsurface geological exploration; long-duration experiments defining the lunar environment and its modification by surface activity; new classes of observations in astronomy; space plasma and fundamental physics experiments; and lunar resource development. The discovery of a lunar source for propellants may reduce the cost of constructing large permanent facilities in space and enhance other space programs such as Mars exploration. 29 refs.

  9. Project LEAP (lunar ecosystem and architectural prototype)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    University of Houston's The Sasakawa International Center for Space Architecture is pursuing research and design studies for permanent lunar settlements. One such study, Project LEAP, has produced staged growth concepts for a habitat to support lunar mining operations. The principal purpose assumed for the development is to produce liquid oxygen and hydrogen propellant for Advanced Space Transportation System and future orbital infrastructure consumption use. The base has been designed to grow over a ten year period from an initial six-person crew occupancy to an advanced facility capable of accommodating as many as one hundred and fifty people. Evolutionary growth stages would rely increasingly upon acquisition, processing and utilization of lunar materials to optimize self-sufficiency. Project LEAP's study objectives have sought to identify incremental site development and facility requirements; to identify candidate site development and construction options; to propose site layout and habitat design/growth concepts; and to survey requirements to achieve a high level of self-sufficiency. As an ongoing research and development program, the project has evolved from research and data collection for concept and design through three dimensional solids computer modeling. The University of Houston project is funded through the advanced Missions Office of the Johnson Space Center. Project representatives are guests of the Johnson Space Center at this conference.

  10. Lunar and Planetary Bases, Habitats, and Colonies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This special bibliography includes the design and construction of lunar and Mars bases, habitats, and settlements; construction materials and equipment; life support systems; base operations and logistics; thermal management and power systems; and robotic systems.

  11. A lunar venture

    NASA Technical Reports Server (NTRS)

    Lee, Joo Ahn; Trinh, Lu X.

    1989-01-01

    As the Earth's space station is in its final stages of design, the dream of a permanent manned space facility is now a reality. Despite this monumental achievement, however, man's quest to extend human habitation further out into space is far from being realized. The next logical step in space exploration must be the construction of a permanent lunar base. This lunar infrastucture can, in turn, be used as a staging ground for further exploration of the remote regions of the solar system. As outlined by the National Aeronautics and Space Administration, the lunar base program consists of three exploratory and implementation phases. In response to the technological and facility requirements of Phase 1 and 2 of this program, the Aerospace Vehicle Design Program of the University of Virgina (UVA) is proud to present a preliminary design for such a lunar infrastructure. This study is a comprehensive evaluation of the mission requirements as well as the design criteria for space vehicles and facilities. The UVA Lunar Venture is a dual system that consists of a lunar space station and a fleet of lunar landers/transporters. With such a design, it is demonstrated that all initial exploratory and construction requirements for the lunar base can be efficiently satisfied. Additionally, the need for such a dual system is justified both from a logistic and economic standpoint.

  12. Settlement specifics

    PubMed Central

    Williams, Elizabeth A; Cummins, Scott

    2009-01-01

    Chemical signaling plays a major role in shaping life history processes that drive ecology and evolution in marine systems, notably including habitat selection by marine invertebrate larvae that must settle out of the plankton onto the benthos.1 For larvae, the identification of appropriate habitats in which to settle and undergo metamorphosis to the adult form relies heavily on the recognition of cues indicative of a favorable environment. By documenting settlement responses of larvae of the tropical abalone, Haliotis asinina, to a range of coralline algae species, we recently highlighted the species-specific nature of this interaction.2 Here, we demonstrate that this specificity is likely driven by chemical, rather than physical, properties of the algae. Our initial characterization of the surface cell biomarkers from three different algal species shows that inductive cue biomolecular composition correlates with variations in larval settlement response. PMID:19721887

  13. The Lunar Polar Hydrogen Mapper (LunaH-Map) Mission: Mapping Hydrogen Distributions in Permanently Shadowed Regions of the Moon's South Pole

    NASA Astrophysics Data System (ADS)

    Hardgrove, C.; Bell, J.; Thangavelautham, J.; Klesh, A.; Starr, R.; Colaprete, T.; Robinson, M.; Drake, D.; Johnson, E.; Christian, J.; Genova, A.; Dunham, D.; Williams, B.; Nelson, D.; Babuscia, A.; Scowen, P.; Cheung, K. M.; McKinney, T.; Taits, A.; Hernandez, V.; Wren, P.; Thoesen, A.; Godber, A.; Beasley, M.

    2015-10-01

    LunaH-Map is a 6U CubeSat that will carry two neutron spectrometers and produce high spatial resolution maps of near-surface hydrogen (H) within PSRs at the lunar South Pole. LunaH-Map will map H at <10km/pixel to place constraints on H distributions.

  14. Preliminary definition of a lunar landing and launch facility (Complex 39L)

    NASA Technical Reports Server (NTRS)

    Matthews, H. Dennis; Jenson, Eric B.; Linsley, Jerald N.

    1992-01-01

    A preliminary definition of a lunar landing and launch facility has been formulated. A permanently manned lunar base and a baseline lunar module are assumed. The major features of the facility are specified and major design areas are described.

  15. Selenia: A habitability study for the development of a third generation lunar base

    NASA Technical Reports Server (NTRS)

    1991-01-01

    When Apollo astronauts landed on the Moon, the first generation of lunar bases was established. They consisted essentially of a lunar module and related hardware capable of housing two astronauts for not more than several days. Second generation lunar bases are being developed, and further infrastructure, such as space station, orbital transfer, and reusable lander vehicles will be necessary, as prolonged stay on the Moon is required for exploration, research, and construction for the establishment of a permanent human settlement there. Human life in these habitats could be sustained for months, dependent on a continual flow of life-support supplies from Earth. Third-generation lunar bases will come into being as self sufficiency of human settlements becomes feasible. Regeneration of water, oxygen production, and development of indigenous construction materials from lunar resources will be necessary. Greenhouses will grow food supplies in engineered biospheres. Assured protection from solar flares and cosmic radiation must be provided, as well as provision for survival under meteor showers, or the threat of meteorite impact. All these seem to be possible within the second decade of the next century. Thus, the builders of Selenia, the first of the third-generation lunar bases are born today. During the last two years students from the School of Architecture of the University of Puerto Rico have studied the problems that relate to habitability for prolonged stay in extraterrestrial space. An orbital personnel transport to Mars developed originally by the Aerospace Engineering Department of the University of Michigan was investigated and habitability criteria for evaluation of human space habitats were proposed. An important finding from that study was that the necessary rotational diameter of the vessel has to be on the order of two kilometers to ensure comfort for humans under the artificial gravity conditions necessary to maintain physiological well being of passengers, beyond the level of mere survival.

  16. Lunar base agriculture: Soils for plant growth

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Editor); Henninger, Donald L. (Editor)

    1989-01-01

    This work provides information on research and experimentation concerning various aspects of food production in space and particularly on the moon. Options for human settlement of the moon and Mars and strategies for a lunar base are discussed. The lunar environment, including the mineralogical and chemical properties of lunar regolith are investigated and chemical and physical considerations for a lunar-derived soil are considered. It is noted that biological considerations for such a soil include controlled-environment crop production, both hydroponic and lunar regolith-based; microorganisms and the growth of higher plants in lunar-derived soils; and the role of microbes to condition lunar regolith for plant cultivation. Current research in the controlled ecological life support system (CELSS) project is presented in detail and future research areas, such as the growth of higher research plants in CELSS are considered. Optimum plant and microbiological considerations for lunar derived soils are examined.

  17. Remote Sensing Assessment of Lunar Resources: We Know Where to Go to Find What We Need

    NASA Technical Reports Server (NTRS)

    Gillis, J. J.; Taylor, G. J.; Lucey, P. G.

    2004-01-01

    The utilization of space resources is necessary to not only foster the growth of human activities in space, but is essential to the President s vision of a "sustained and affordable human and robotic program to explore the solar system and beyond." The distribution of resources will shape planning permanent settlements by affecting decisions about where to locate a settlement. Mapping the location of such resources, however, is not the limiting factor in selecting a site for a lunar base. It is indecision about which resources to use that leaves the location uncertain. A wealth of remotely sensed data exists that can be used to identify targets for future detailed exploration. Thus, the future of space resource utilization pre-dominantly rests upon developing a strategy for resource exploration and efficient methods of extraction.

  18. Lunar Ice Cube: Determining Volatile Systematics Via Lunar Orbiting Cubesat

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Malphrus, B.; MacDowall, R.; Folta, D.; Mandell, A.; Brambora, C.; Patel, D.; Banks, S.; Hohman, K.; Hruby, V.; Brown, K.; Kruth, J.; Cox, R.

    2015-10-01

    We have applied the CubeSat Paradigm to science requirements-driven deep space exploration mission, Lunar Ice Cube, and are developing a compact 'workhorse' instrument for a high priority science application, which has just been selected for the HEOMD NextSTEP program for EM1 launch. Lunar Ice Cube complements Lunar Flashlight, a mission previously selected for EM1, by focusing on the abundance, location and transportation physics of water forms and components on the lunar surface at a variety of latitudes and terminator crossings not restricted to Permanently Shadowed Regions.

  19. An adaptive paradigm for human space settlement

    NASA Astrophysics Data System (ADS)

    Smith, Cameron M.

    2016-02-01

    Because permanent space settlement will be multigenerational it will have to be viable on ecological timescales so far unfamiliar to those planning space exploration. Long-term viability will require evolutionary and adaptive planning. Adaptations in the natural world provide many lessons for such planning, but implementing these lessons will require a new, evolutionary paradigm for envisioning and carrying out Earth-independent space settlement. I describe some of these adaptive lessons and propose some cognitive shifts required to implement them in a genuinely evolutionary approach to human space settlement.

  20. Lunar Flashlight: Illuminating the Lunar South Pole

    NASA Technical Reports Server (NTRS)

    Hayne, P. O.; Greenhagen,, B. T.; Paige, D. A.; Camacho, J. M.; Cohen, B. A.; Sellar, G.; Reiter, J.

    2016-01-01

    Recent reflectance data from LRO instruments suggest water ice and other volatiles may be present on the surface in lunar permanentlyshadowed regions, though the detection is not yet definitive. Understanding the composition, quantity, distribution, and form of water and other volatiles associated with lunar permanently shadowed regions (PSRs) is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits are also scientifically interesting, having the potential to reveal important information about the delivery of water to the Earth- Moon system.

  1. Lunar Water Resource Demonstration

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  2. The settlement of Somali nomads.

    PubMed

    Tsui, A O; Ragsdale, T A; Shirwa, A I

    1991-01-01

    During the April 1973-June 1975 drought in Somalia, the government settled 100,000 nomads over 5 years in 3 agricultural (Dujuma, Sablaale, and Kurtunwary) and 3 fishing settlements (Brava, Adale, and Eil). They had earlier sought relief from the drought at some 20 relief camps. In 1982, the Ministry of National Planning and the Settlement Development Agency conducted a household survey in 4 of the 6 settlements (2059 households). Considerable problems occurred during the survey thus the data must be interpreted with caution. Nevertheless this survey provided 1 of the few sources on nomadic settlement conditions. 47.5% of the population in the settlement areas were children 15 years old. Fewer middle aged men than women lived in the settlement areas (9% vs. 22%). Males tended to be more literate and/or in school than females (74% vs. 50% and 64% vs. 43% respectively). Despite the disparity, the researchers found these proportions considerable and encouraging. Women headed many households (47.25%), especially in Adale (61%). Presumedly many of the husbands returned to their pastoral ways. Other adult relatives and older children often lived in women headed households and provided support for farming, fishing, and other economic activities. Most respondents were satisfied with settled life and felt it would be permanent. Further 70-90% of respondents wanted their sons and daughters to be civil servants while 0-8% wanted them to be herders. 78-87% of respondents lost all livestock during the drought while only 2-10% acquired livestock after the drought. Since livestock provided considerable wealth in relation to incomes from agriculture and fishing and since nomads tended to be inexperienced in these new occupants, they underwent an extreme adjustment to settled life. In conclusion, the resettlement program had mixed successes. PMID:12284818

  3. Lunar lander ground support system

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The design of the Lunar Lander Ground Support System (LLGSS) is examined. The basic design time line is around 2010 to 2030 and is referred to as a second generation system, as lunar bases and equipment would have been present. Present plans for lunar colonization call for a phased return of personnel and materials to the moons's surface. During settlement of lunar bases, the lunar lander is stationary in a very hostile environment and would have to be in a state of readiness for use in case of an emergency. Cargo and personnel would have to be removed from the lander and transported to a safe environment at the lunar base. An integrated system is required to perform these functions. These needs are addressed which center around the design of a lunar lander servicing system. The servicing system could perform several servicing functions to the lander in addition to cargo servicing. The following were considered: (1) reliquify hydrogen boiloff; (2) supply power; and (3) remove or add heat as necessary. The final design incorporates both original designs and existing vehicles and equipment on the surface of the moon at the time considered. The importance of commonality is foremost in the design of any lunar machinery.

  4. Lunar Analog

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita L.

    2009-01-01

    In this viewgraph presentation, a ground-based lunar analog is developed for the return of manned space flight to the Moon. The contents include: 1) Digital Astronaut; 2) Bed Design; 3) Lunar Analog Feasibility Study; 4) Preliminary Data; 5) Pre-pilot Study; 6) Selection of Stockings; 7) Lunar Analog Pilot Study; 8) Bed Design for Lunar Analog Pilot.

  5. African rural settlement patterns.

    PubMed

    Kaloko, F R

    1983-11-01

    Rural settlements, characterized by illiteracy, traditionalism, isolationism, and an agricultural economy, dominate Tropical Africa. This paper presents an historical review of settlement evolution from before colonial rule to the present, to provide a better understanding of rural life for government policy formulation purposes. Before colonial rule, the early 19th century slave trade drove many villagers into scattered, remote settlements which were further established by increased food production, and decreased migration. After Africa's partition (1885), various governments concentrated dispersed settlements for security and administrative control. Rural settlements were transformed through colonial force, desires by the villagers for more land and wealth, and new settlement establishment by Europeans. In present day Africa, improved communication, a more diversified economy, and less traditional conservatism still influence rural settlement patterns. Resource development and agricultural and medical reasons currently act to change settlements, but villagers are now compensated for such moves and may even improve their earning power from them. The author describes settlement patterns in Sierra Leone, which typify much of Tropical Africa. Hill settlements, which offered security against intertribal wars, predominated in the 19th Century, but the Hut Tax War (1989) brought tranquility and an improved economy. Today, much of rural Sierra Leone has lost its population to diamond and iron mining areas. Modernization has changed food, housing, settlement size, and arrangement and farming techniques. The author emphasizes the strong environmental influences on settlement evolution and development, and urges a greater understanding of rural settlements to aid in future planning for Tropical Africa's people. PMID:12143658

  6. Lunar Water Resource Demonstration (LWRD)

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.

    2009-01-01

    Lunar Water Resource Demonstration (LWRD) is part of RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). RESOLVE is an ISRU ground demonstration: (1) A rover to explore a permanently shadowed crater at the south or north pole of the Moon (2) Drill core samples down to 1 meter (3) Heat the core samples to 150C (4) Analyze gases and capture water and/or hydrogen evolved (5) Use hydrogen reduction to extract oxygen from regolith

  7. Lunar architecture and urbanism

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    1992-01-01

    Human civilization and architecture have defined each other for over 5000 years on Earth. Even in the novel environment of space, persistent issues of human urbanism will eclipse, within a historically short time, the technical challenges of space settlement that dominate our current view. By adding modern topics in space engineering, planetology, life support, human factors, material invention, and conservation to their already renaissance array of expertise, urban designers can responsibly apply ancient, proven standards to the exciting new opportunities afforded by space. Inescapable facts about the Moon set real boundaries within which tenable lunar urbanism and its component architecture must eventually develop.

  8. Lunar Resources

    NASA Technical Reports Server (NTRS)

    Edmunson, Jennifer

    2010-01-01

    This slide presentation reviews the lunar resources that we know are available for human use while exploration of the moon. Some of the lunar resources that are available for use are minerals, sunlight, solar wind, water and water ice, rocks and regolith. The locations for some of the lunar resouces and temperatures are reviewed. The Lunar CRater Observation and Sensing Satellite (LCROSS) mission, and its findings are reviewed. There is also discussion about water retention in Permament Shadowed Regions of the Moon. There is also discussion about the Rock types on the lunar surface. There is also discussion of the lunar regolith, the type and the usages that we can have from it.

  9. Self-unloading, reusable, lunar lander project

    NASA Technical Reports Server (NTRS)

    Arseculeratne, Ruwan; Cavazos, Melissa; Euker, John; Ghavidel, Fred; Hinkel, Todd J.; Hitzfelder, John; Leitner, Jesse; Nevik, James; Paynter, Scott; Zolondek, Allen

    1990-01-01

    In the early 21st century, NASA will return to the Moon and establish a permanent base. To achieve this goal safely and economically, B&T Engineering has designed an unmanned, reusable, self-unloading lunar lander. The lander is designed to deliver 15,000 kg payloads from an orbit transfer vehicle (OTV) in a low lunar polar orbit and an altitude of 200 km to any location on the lunar surface.

  10. A lunar space station

    NASA Technical Reports Server (NTRS)

    Trinh, LU; Merrow, Mark; Coons, Russ; Iezzi, Gabrielle; Palarz, Howard M.; Nguyen, Marc H.; Spitzer, Mike; Cubbage, Sam

    1989-01-01

    A concept for a space station to be placed in low lunar orbit in support of the eventual establishment of a permanent moon base is proposed. This space station would have several functions: (1) a complete support facility for the maintenance of the permanent moon base and its population; (2) an orbital docking area to facilitate the ferrying of materials and personnel to and from Earth; (3) a zero gravity factory using lunar raw materials to grow superior GaAs crystals for use in semiconductors and mass produce inexpensive fiber glass; and (4) a space garden for the benefit of the air food cycles. The mission scenario, design requirements, and technology needs and developments are included as part of the proposal.

  11. Can the US afford a lunar base

    SciTech Connect

    Keaton, P.W.

    1986-01-01

    Establishing a lunar base will require steady funding for a decade or two. The question addressed here is whether such a large space project is affordable at this time. The relevant facts and methodology are presented so that the reader may formulate independent answers. It is shown that a permanent lunar base can be financed without increasing NASA's historical budgetary trends.

  12. Lunar power systems

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The findings of a study on the feasibility of several methods of providing electrical power for a permanently manned lunar base are provided. Two fundamentally different methods for lunar electrical power generation are considered. One is the use of a small nuclear reactor and the other is the conversion of solar energy to electricity. The baseline goal was to initially provide 300 kW of power with growth capability to one megawatt and eventually to 10 megawatts. A detailed, day by day scenario for the establishment, build-up, and operational activity of the lunar base is presented. Also presented is a conceptual approach to a supporting transportation system which identifies the number, type, and deployment of transportation vehicles required to support the base. An approach to the use of solar cells in the lunar environment was developed. There are a number of heat engines which are applicable to solar/electric conversions, and these are examined. Several approaches to energy storage which were used by the electric power utilities were examined and those which could be used at a lunar base were identified.

  13. LROC - Lunar Reconnaissance Orbiter Camera

    NASA Astrophysics Data System (ADS)

    Robinson, M. S.; Bowman-Cisneros, E.; Brylow, S. M.; Eliason, E.; Hiesinger, H.; Jolliff, B. L.; McEwen, A. S.; Malin, M. C.; Roberts, D.; Thomas, P. C.; Turtle, E.

    2006-12-01

    The Lunar Reconnaissance Orbiter Camera (LROC) is designed to address two of the prime LRO measurement requirements. 1) Assess meter and smaller-scale features to facilitate safety analysis for potential lunar landing sites near polar resources, and elsewhere on the Moon. 2) Acquire multi-temporal synoptic imaging of the poles every orbit to characterize the polar illumination environment (100 m scale), identifying regions of permanent shadow and permanent or near-permanent illumination over a full lunar year. The LROC consists of two narrow-angle camera components (NACs) to provide 0.5-m scale panchromatic images over a 5-km swath, a wide-angle camera component (WAC) to provide images at a scale of 100 and 400 m in seven color bands over a 100-km swath, and a common Sequence and Compressor System (SCS). In addition to acquiring the two LRO prime measurement sets, LROC will return six other high-value datasets that support LRO goals, the Robotic Lunar Exploration Program (RLEP), and basic lunar science. These additional datasets include: 3) meter-scale mapping of regions of permanent or near-permanent illumination of polar massifs; 4) multiple co-registered observations of portions of potential landing sites and elsewhere for derivation of high-resolution topography through stereogrammetric and photometric stereo analyses; 5) a global multispectral map in 7 wavelengths (300-680 nm) to characterize lunar resources, in particular ilmenite; 6) a global 100-m/pixel basemap with incidence angles (60-80) favorable for morphologic interpretations; 7) sub-meter imaging of a variety of geologic units to characterize physical properties, variability of the regolith, and key science questions; and 8) meter-scale coverage overlapping with Apollo era Panoramic images (1-2 m/pixel) to document the number of small impacts since 1971-1972, to ascertain hazards for future surface operations and interplanetary travel.

  14. Lunar History

    NASA Technical Reports Server (NTRS)

    Edmunson, Jennifer E.

    2009-01-01

    This section of the workshop describes the history of the moon, and offers explanations for the importance of understanding lunar history for engineers and users of lunar simulants. Included are summaries of the initial impact that is currently in favor as explaining the moon's formation, the crust generation, the creation of craters by impactors, the era of the lunar cataclysm, which some believe effected the evolution of life on earth, the nature of lunar impacts, crater morphology, which includes pictures of lunar craters that show the different types of craters, more recent events include effect of micrometeorites, solar wind, radiation and generation of agglutinates. Also included is a glossary of terms.

  15. Lunar Overview

    NASA Technical Reports Server (NTRS)

    Clinton, Raymond G., Jr.

    2008-01-01

    This slide presentation reviews the programs and missions that are being planned to enhance our knowledge of the moon. (1) Lunar Precursor Robotics Program (LPRP): the goal of which is to undertake robotic lunar exploration missions that will return data to advance our knowledge of the lunar environment and allow United States (US) exploration architecture objectives to be accomplished earlier and with less cost through application of robotic systems. LPRP will also reduce risk to crew and maximize crew efficiency by accomplishing tasks through precursor robotic missions, and by providing assistance to human explorers on the Moon. The missions under this program ae: the Lunar Reconnaissance Orbiter (LRO), Lunar Crater Observation and Sensing Satellite (LCROSS), Lunar Mapping Project. (2) The Altair Project, the goal of which is to land a crew of 4 to and from the surface of the moon. The vehicle, the 3 design reference missions (DRMs) and a Draft Lunar Landing schedule are briefly reviewed. (3) Lunar Science Program (LSP) which describes two different lunar missions: (1) Lunar Atmosphere & Dust Environment Explorer (LADEE), and (2) International Lunar Network (ILN).

  16. Design and Demonstration of Minimal Lunar Base

    NASA Astrophysics Data System (ADS)

    Boche-Sauvan, L.; Foing, B. H.; Exohab Team

    2009-04-01

    Introduction: We propose a conceptual analysis of a first minimal lunar base, in focussing on the system aspects and coordinating every different part as part an evolving architecture [1-3]. We justify the case for a scientific outpost allowing experiments, sample analysis in laboratory (relevant to the origin and evolution of the Earth, geophysical and geochemical studies of the Moon, life sciences, observation from the Moon). Research: Research activities will be conducted with this first settlement in: - science (of, from and on the Moon) - exploration (robotic mobility, rover, drilling), - technology (communication, command, organisation, automatism). Life sciences. The life sciences aspects are considered through a life support for a crew of 4 (habitat) and a laboratory activity with biological experiments performed on Earth or LEO, but then without any magnetosphere protection and therefore with direct cosmic rays and solar particle effects. Moreover, the ability of studying the lunar environment in the field will be a big asset before settling a permanent base [3-5]. Lunar environment. The lunar environment adds constraints to instruments specifications (vacuum, extreme temperature, regolith, seism, micrometeorites). SMART-1 and other missions data will bring geometrical, chemical and physical details about the environment (soil material characteristics, on surface conditions …). Test bench. To assess planetary technologies and operations preparing for Mars human exploration. Lunar outpost predesign modular concept: To allow a human presence on the moon and to carry out these experiments, we will give a pre-design of a human minimal lunar base. Through a modular concept, this base will be possibly evolved into a long duration or permanent base. We will analyse the possibilities of settling such a minimal base by means of the current and near term propulsion technology, as a full Ariane 5 ME carrying 1.7 T of gross payload to the surface of the Moon (Integrated Exploration Study, ESA ESTEC [1,2]). We will focus on the easiest and the soonest way in settling a minimal base immediately operational in scientific experimentation, but not immediately autonomous. It will prepare the next permanent lunar base by assessing its technologies, and give scientific results about the environment. The autonomy will be gained in the evolution of the base, and added equipment. A lunar outpost in a polar region would allow missions longer than 14 days, and a frequent addition of equipments. Moreover, a polar outpost will get both advantages of far-side for simulating direct or indirect communications to Earth and dark-side for observations. The low solar rays incidence may permit having ice in deep craters, which will be beneficial for the evolution of the outpost into a autonomous base. The South Pole, by its position on the edge of the South Pole Aitken (SPA) Basin, will allow different fast new data in analysis mantle samples, easily reachable due to the crater morphology. These samples will constrain the putative Late Heavy Bombarment (LHB). After a robotic sample return mission, a human presence will allow deeper research through well chosen geological samples [6]. In this modular concept, we consider various infrastructure elements: core habitat, EVA, crew mobility, energy supply, recycling module, communication, green house and food production, operations. Many of these elements have already been studied in space agencies' architecture proposals, with the tech-nological possibilities of industrial partners (lunar landers, lunar orbiter, rovers …). A deeper reflection will be therefore done about the core habitat and the laboratory equipment, proposing scientific priority experiments. Each element will be added in a range considering their priority to life support in duration [7]. Considering surface operations, protocols will be specified in the use of certain elements. After a reflexion on the different dependancies and priorities between these modules, a demonstration can assess the reliability of the concept and develop the evolution according to the practical needs. We shall also discuss experience form the ExoHab project and EuroGeoMars cmapign at Mars Desert Research station. References: [1] "Exploration Architecture Trade Report", ESA, 2008, [2] "Integrated Exploration Architecture", ESA, 2008, [3] 9th ILEWG International Conference on Exploration and Utilization of the moon, 2007, Foing et al Eds., (http://sci.esa.int/ilewg) [4] "The Moon: Resources, Future Development and Colonization", David Schrunk, Burton Sharpe, Bonnie Cooper and Madhu Thangavelu, 1999. [5] "The Moon as a Platform for Astronomy and Space Science", B.H. Foing, ASR 14 (6), 1994. [6] "The Moon after Apollo, 40 Years Later: Why and what Samples to Return ?", Johannes Geiss, Alpbach summer school 2008. [7] "Advanced Life Support, Baseline Values and Assumptions Document", Anthony J. Hanford, 2004

  17. Lunar Flashlight: Exploration and Science at the Moon with a 6U CubeSat

    NASA Astrophysics Data System (ADS)

    Cohen, B. A.; Hayne, P. O.; Greenhagen, B. T.; Paige, D. A.

    2015-10-01

    The Lunar Flashlight mission, manifested on the SLS EM-1 flight scheduled for 2018, will illuminate permanently shadowed regions at the lunar south pole to measure the abundance and distribution of surface water ice for human resource utilization.

  18. 75 FR 8701 - Notice of Settlement Agreement Pertaining to Construction of a Waste Repository on the Settlors...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... AGENCY Notice of Settlement Agreement Pertaining to Construction of a Waste Repository on the Settlors.... 9601 et seq., notice is hereby given of a Settlement Agreement pertaining to Construction of a Waste... settlement requires a permanent waste repository on the property by resolving, liability the settling...

  19. Various problems in lunar habitat construction scenarios

    NASA Astrophysics Data System (ADS)

    Nitta, Keiji; Ohtsubo, Koji; Oguchi, Mitsuo; Ohya, Haruhiko; Kanbe, Seiichiro; Ashida, Akira; Sano, Kenichi

    1991-10-01

    Many papers describing the lunar base construction have been published previously. Lunar base has been considered to be a useful facility to conduct future scientific programs and to get new nuclear energy resource, namely 3He, for defending the environmental collapse on Earth and also to develop lunar resources such as oxygen and nitrogen for extending human activities in space more economically. The scale of the lunar base and the construction methods adopted are determined by the scenario of a lunar utilization program but constrained by the availability of the established space transportation technologies. As indicated in the scenarios described in papers regarding lunar base construction, the first steps of lunar missions are the investigation of lunar itself for conducting scientific research and for surveying the lunar base construction sites, the second steps are the outpost construction for conducting man-tended missions, for more precise scientific research and studying the lunar base construction methods, and third steps are the construction of a permanent base and the expansion of this lunar base for exploiting lunar resources. The missions within the first and second steps are all possible using the ferry (OTV) similar to the service and command modules of Apollo Spacecraft because all necessary weights to be landed on the lunar surface for these missions seem to be under the equivalent weight of the Apollo Lunar Lander. On the other hand, the permanent facilities constructed on the lunar surface in the third step requires larger quantities of construction materials to be transported from Earth, and a new ferry (advanced OTV) having higher transportation ability, at least above 6 times, compared with Apollo Service and Command Modules, are to be developed. The largest problems in the permament lunar base construction are related to the food production facilities, 30-40 m 2 plant cultivation area per person are required for providing the nutrition requirement and the necessary electric power per person for producing high energy foods, such as wheat, rice and potato, are now estimated ranging from 30 to 40 kW. The extension program of crew numbers under the limitation of usable transportation capability anticipated at present and the construction scenarios, including the numbers of facilities to be constructed every year, are to be determined based upon the requirements of plant cultivation area and of electric power for producing necessary and sufficient foods in order to accelerate the feasibility studies of each subsystem to be installed in the permanent lunar base in future.

  20. Lunar studies

    NASA Technical Reports Server (NTRS)

    Gold, T.

    1979-01-01

    Experimental and theoretical research, concerning lunar surface processes and the nature, origin and derivation of the lunar surface cover, conducted during the period of February 1, 1971 through January 31, 1976 is presented. The principle research involved were: (1) electrostatic dust motion and transport process; (2) seismology properties of fine rock powders in lunar conditions; (3) surface processes that darken the lunar soil and affect the surface chemical properties of the soil grains; (4) laser simulation of micrometeorite impacts (estimation of the erosion rate caused by the microemeteorite flux); (5) the exposure history of the lunar regolith; and (6) destruction of amino acids by exposure to a simulation of the solar wind at the lunar surface. Research papers are presented which cover these general topics.

  1. Lunar rivers.

    PubMed

    Lingenfelter, R E; Peale, S J; Schubert, G

    1968-07-19

    Mature meanders in lunar sinuous rills strongly suggests that the rills are features of surface erosion by water. Such erosion could occur under a pressurizing ice cover in the absence of a lunar atmosphere. Water, outgassed from the lunar interior and trapped beneath a layer of permafrost, could be released by a meteoritic impact and overflow the crater to form an ice-covered river. A sinuous rill could be eroded in about 100 years. PMID:17821163

  2. Lunar Science

    NASA Technical Reports Server (NTRS)

    Burns, Jack; Lazio, Joseph

    2012-01-01

    Lunar Laser Ranging will provide critical data to determine the initial composition of the Moon and the Earth-­Moon system. Specifically, LLR uniquely measures the properties of the lunar core via librations. LUNAR is advancing LLR: APOLLO recovery of Lunokhod 1, thus dramatically improving measurements of librations; Technology development of next generation retroreflectors; New drilling techniques. Dual-­use Low Frequency Radio arrays will constrain: Lunar ionosphere density via riometry; Nano-­size interplanetary dust particles responsible for surface weathering.

  3. ILEWG report and discussion on Lunar Science and Exploration

    NASA Astrophysics Data System (ADS)

    Foing, Bernard

    2015-04-01

    The EGU PS2.2 session "Lunar Science and Exploration" will include oral papers and posters, and a series of discussions. Members of ILEWG International Lunar Exploration Working Group will debate: - Recent lunar results: geochemistry, geophysics in the context of open - Celebrating the lunar legacy of pioneers Gerhard Neukum, Colin Pillinger and Manfred Fuchs planetary science and exploration - Latest results from LADEE and Chang'e 3/4 - Synthesis of results from SMART-1, Kaguya, Chang-E1 and Chang-E2, Chandrayaan-1, Lunar Reconnaissance Orbiter and LCROSS impactor, Artemis and GRAIL - Goals and Status of missions under preparation: orbiters, Luna-Glob, Google Lunar X Prize, Luna Resurs, Chang'E 5, Future landers, Lunar sample return - Precursor missions, instruments and investigations for landers, rovers, sample return, and human cis-lunar activities and human lunar sorties - Preparation: databases, instruments, terrestrial field campaigns - The future international lunar exploration programme towards ILEWG roadmap of a global robotic village and permanent international lunar base - The proposals for an International Lunar Decade and International Lunar Research Parks - Strategic Knowledge Gaps, and key science Goals relevant to Human Lunar Global Exploration Lunar science and exploration are developing further with new and exciting missions being developed by China, the US, Japan, India, Russia, Korea and Europe, and with the perspective of robotic and human exploration. The session will include invited and contributed talks as well as a panel discussion and interactive posters with short oral introduction.

  4. Methods of extracting hydrogen from lunar soil

    NASA Technical Reports Server (NTRS)

    Bustin, Roberta

    1988-01-01

    Increasing interest in establishing a lunar base has generated considerable study on the utilization of lunar resources. Because of its importance in producing water, reducing oxides, and serving as a fuel for orbital tranfer vehicles, hydrogen is of prime importance as a resource. Lowman (1985) states that hydrogen would greatly facilitate the establishment of an autonomous permanent colony, and he calls hydrogen the most valuable lunar resource. Through the centuries, hydrogen has been embedded in lunar soil by the solar wind. The hydrogen can be extracted by heating the soil to 900 C (Carr et al, 1987). In order to obtain hydrogen on the lunar surface, an extraction method must be developed which will not only be reliable but also economically feasible. Three heating methods are examined for possible use in extracting hydrogen from lunar soil.

  5. Rising CO2 concentrations affect settlement behaviour of larval damselfishes

    NASA Astrophysics Data System (ADS)

    Devine, B. M.; Munday, P. L.; Jones, G. P.

    2012-03-01

    Reef fish larvae actively select preferred benthic habitat, relying on olfactory, visual and acoustic cues to discriminate between microhabitats at settlement. Recent studies show exposure to elevated carbon dioxide (CO2) impairs olfactory cue recognition in larval reef fishes. However, whether this alters the behaviour of settling fish or disrupts habitat selection is unknown. Here, the effect of elevated CO2 on larval behaviour and habitat selection at settlement was tested in three species of damselfishes (family Pomacentridae) that differ in their pattern of habitat use: Pomacentrus amboinensis (a habitat generalist), Pomacentrus chrysurus (a rubble specialist) and Pomacentrus moluccensis (a live coral specialist). Settlement-stage larvae were exposed to current-day CO2 levels or CO2 concentrations that could occur by 2100 (700 and 850 ppm) based on IPCC emission scenarios. First, pair-wise choice tests were performed using a two-channel flume chamber to test olfactory discrimination between hard coral, soft coral and coral rubble habitats. The habitat selected by settling fish was then compared among treatments using a multi-choice settlement experiment conducted overnight. Finally, settlement timing between treatments was compared across two lunar cycles for one of the species, P. chrysurus. Exposure to elevated CO2 disrupted the ability of larvae to discriminate between habitat odours in olfactory trials. However, this had no effect on the habitats selected at settlement when all sensory cues were available. The timing of settlement was dramatically altered by CO2 exposure, with control fish exhibiting peak settlement around the new moon, whereas fish exposed to 850 ppm CO2 displaying highest settlement rates around the full moon. These results suggest larvae can rely on other sensory information, such as visual cues, to compensate for impaired olfactory ability when selecting settlement habitat at small spatial scales. However, rising CO2 could cause larvae to settle at unfavourable times, with potential consequences for larval survival and population replenishment.

  6. NASA Lunar Base Wireless System Propagation Analysis

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The results from this paper are important for the lunar wireless system link margin analysis in order to determine the limits on the reliable communication range, achievable data rate and RF coverage performance at planned lunar base work sites.

  7. International lunar observatory / power station: from Hawaii to the Moon

    NASA Astrophysics Data System (ADS)

    Durst, S.

    Astronomy's great advantages from the Moon are well known - stable surface, diffuse atmosphere, long cool nights (14 days), low gravity, far side radio frequency silence. A large variety of astronomical instruments and observations are possible - radio, optical and infrared telescopes and interferometers; interferometry for ultra- violet to sub -millimeter wavelengths and for very long baselines, including Earth- Moon VLBI; X-ray, gamma-ray, cosmic ray and neutrino detection; very low frequency radio observation; and more. Unparalleled advantages of lunar observatories for SETI, as well as for local surveillance, Earth observation, and detection of Earth approaching objects add significant utility to lunar astronomy's superlatives. At least nine major conferences in the USA since 1984 and many elsewhere, as well as ILEWG, IAF, IAA, LEDA and other organizations' astronomy-from-the-Moon research indicate a lunar observatory / power station, robotic at first, will be one of the first mission elements for a permanent lunar base. An international lunar observatory will be a transcending enterprise, highly principled, indispensable, soundly and broadly based, and far- seeing. Via Astra - From Hawaii to the Moon: The astronomy and scie nce communities, national space agencies and aerospace consortia, commercial travel and tourist enterprises and those aspiring to advance humanity's best qualities, such as Aloha, will recognize Hawaii in the 21st century as a new major support area and pan- Pacific port of embarkation to space, the Moon and beyond. Astronomical conditions and facilities on Hawaii's Mauna Kea provide experience for construction and operation of observatories on the Moon. Remote and centrally isolated, with diffuse atmosphere, sub-zero temperature and limited working mobility, the Mauna Kea complex atop the 4,206 meter summit of the largest mountain on the planet hosts the greatest collection of large astronomical telescopes on Earth. Lunar, extraterrestrial-like lava flow geology adds to Mauna Kea / Moon similarities. Operating amidst the extinct volcano's fine grain lava and dust particles offers experience for major challenges posed by silicon-edged, powdery, deep and abundant lunar regolith. Power stations for lunar observatories, both robotic and low cost at first, are an immediate enabling necessity and will serve as a commercial-industrial driver for a wide range of lunar base technologies. Both microwave rectenna-transmitters and radio-optical telescopes, maybe 1-meter diameter, can be designed using the same, new ultra-lightweight materials. Five of the world's six major spacefaring powers - America, Russia, Japan, China and India, are located around Hawaii in the Pacific / Asia area. With Europe, which has many resources in the Pacific hemisphere including Arianespace offices in Tokyo and Singapore, they have 55-60% of the global population. New international business partnerships such as Sea Launch in the mid-Pacific, and national ventures like China's Hainan spaceport, Japan's Kiribati shuttle landing site, Australia and Indonesia's emerging launch sites, and Russia's Ekranoplane sea launcher / lander - all combine with still more and advancing technologies to provide the central Pacific a globally representative, state-of-the-art and profitable access to space in this new century. The astronomer / engineers tasked with operation of the lunar observatory / power station will be the first to voyage from Hawaii to the Moon, before this decade is out. Their scientific and technical training at the world's leading astronomical complex on the lunar-like landscape of Mauna Kea may be enhanced with the learning and transmission of local cultures. Following the astronomer / engineers, tourism and travel in the commercially and technologically dynamic Pacific hemisphere will open the new ocean of space to public access in the 21st century like they opened the old ocean of sea and air to Hawaii in the 20th - with Hawaii becoming the place to go to honeymoon, and to go to the Moon. A world apart, Hawaii, with its microgravity environment, is part way in space already, a stepping stone to the Moon, stars, and beyond. References 1. NASA Technical Memorandum 4757; Paul D. Lowman Jr, "Lunar Limb Observatory", An Incremental Plan for the Utilization, Exploration and Settlement of the Moon; Goddard Space Flight Center, October 1996. 2. Japan NASDA Report 61; "An Infinity of Twinkling Stars Visible from the Moon", The Day the Moon Becomes the Heartland of Humankind - Series 4; July 1997. 3. China Space Flight High Tech Program 863; "Research on the Necessity and Feasibility of Lunar Exploration in our Country"; May 1995. 4. European Space Agency SP-1150; "Mission to the Moon", Europe's Priorities for the Scientific Exploration and Utilization of the Moon; 1992. 5. Lavochkin Association; Company Prospectus; Moscow, Russia; August 1995. 6. India Space Research Organization; Lunar Spacecraft 2005 Feasibility Study; Bangalore; due late 2000. 7. "International Lunar Observatory", Steve Durst; 3rd International Conference on Exploration and Utilization of the Moon; Russian Academy of Sciences, Moscow; October 1998. 8. "Lunar Observatories: Why, Where, and When?"; Paul D. Lowman Jr, Peter C. Chen, Steve Durst; 8th International Space Conference of Pacific -basin Societies; Xian, China; June 1999. 9. "International Lunar Observatory: From Hawaii to the Moon", Steve Durst; 4th International Conference on Exploration and Utilization of the Moon; ESA / ESTEC, Noordwijk, The Netherlands, July 2000. (Paper Revised; Prepared for but not Presented to the 2nd Annual Lunar Development Conference: `Return to the Moon II' 20-21 July 2000, Caesars Palace, Las Vegas, Nevada)

  8. Lunar Riometry

    NASA Astrophysics Data System (ADS)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Burns, J. O.; Kasper, J. C.

    2011-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent and its behavior over time, including modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, in situ, the peak plasma density of the lunar exosphere over time. We describe a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of nanometer- to micron-scale dust. The LUNAR consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  9. Lunar base siting

    NASA Technical Reports Server (NTRS)

    Staehle, Robert L.; Dowling, Richard

    1991-01-01

    As with any planetary body, the lunar surface is quite heterogeneous. There are widely dispersed sites of particular interest for known and potential resource availability, selenology, and lunar observatories. Discriminating characteristics include solar illumination, view of earth, local topography, engineering properties of the regolith and certain geological features, and local mineralogy and petrology. Space vehicle arrival and departure trajectories constitute a minor consideration. Over time, a variety of base sites will be developed serving different purposes. Resource-driven sites may see the fastest growth during the first decades of lunar development, but selection of the most favorable sites is likely to be driven by suitability for a combination of activities. As on earth, later development may be driven by geographical advantages of surface transportation routes. With the availability of near-constant sunlight for power generation, as well as permanently shadowed areas at cryogenic temperatures, polar sites are attractive because they require substantially less earth-launched mass and lower equipment complexity for an initial permanent base. Discovery of accessible volatiles reservoirs, either in the form of polar permafrost or gas reservoirs at other locations, would dramatically increase the attractiveness of any site from a logistical support and selenological point of view. Amid such speculation, no reliable evidence of such volatiles exist. More reliable evidence exists for areas of certain mineral concentrations, such as ilmenite, which could form a feedstock for some proposed resource extraction schemes. While tentative selections of advantageous base sites are made, new data from lunar polar orbiters and the Galileo polar flybys would be very helpful.

  10. Lunar cement

    NASA Technical Reports Server (NTRS)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  11. Advanced technology lunar telescope

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Chu, Wei-Kan; Chen, Peter C.

    1994-01-01

    A new type of telescope pointing system designed specifically for space and lunar applications will be discussed, based upon a prototype advanced technology telescope under investigation. The focus here will be the system of hybrid superconductor magnetic bearings (HSMB) used to provide isolation support and steering functions. HSMB's are combinations of high temperature superconductors, permanent magnets, and coils, being passive (requiring no power), noncontact, and essentially frictionless. These also are well suited to long-term unattended operation in the space environment. The characteristics of these subsystems, their expected behavior under space vacuum, and thermal and radiation environments are discussed.

  12. Challenges of Rover Navigation at the Lunar Poles

    NASA Technical Reports Server (NTRS)

    Nefian, Ara; Deans, Matt; Bouyssounouse, Xavier; Edwards, Larry; Dille, Michael; Fong, Terry; Colaprete, Tony; Miller, Scott; Vaughan, Ryan; Andrews, Dan; Allan, Mark; Furlong, Michael

    2015-01-01

    Observations from Lunar Prospector, LCROSS, Lunar Reconnaissance Orbiter (LRO), and other missions have contributed evidence that water and other volatiles exist at the lunar poles in permanently shadowed regions. Combining a surface rover and a volatile prospecting and analysis payload would enable the detection and characterization of volatiles in terms of nature, abundance, and distribution. This knowledge could have impact on planetary science, in-situ resource utilization, and human exploration of space. While Lunar equatorial regions of the Moon have been explored by manned (Apollo) and robotic missions (Lunokhod, Cheng'e), no surface mission has reached the lunar poles.

  13. Microwave Extraction of Water from Lunar Regolith Simulant

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaukler, William

    2007-01-01

    Nearly a decade ago the DOD Clementine lunar orbital mission obtained data indicating that the permanently shaded regions at the lunar poles may have permanently frozen water in the lunar soil. Currently NASA's Robotic Lunar Exploration Program, RLEP-2, is planned to land at the lunar pole to determine if water is present. The detection and extraction of water from the permanently frozen permafrost is an important goal for NASA. Extraction of water from lunar permafrost has a high priority in the In-Situ Resource Utilization, ISRU, community for human life support and as a fuel. The use of microwave processing would permit the extraction of water without the need to dig, drill, or excavate the lunar surface. Microwave heating of regolith is potentially faster and more efficient than any other heating methods due to the very low thermal conductivity of the lunar regolith. Also, microwaves can penetrate into the soil permitting water removal from deep below the lunar surface. A cryogenic vacuum test facility was developed for evaluating the use of microwave heating and water extraction from a lunar regolith permafrost simulant. Water is obtained in a cryogenic cold trap even with soil conditions below 0 C. The results of microwave extraction of water experiments will be presented.

  14. Lunar magnetism

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Sonett, C. P.; Srnka, L. J.

    1984-01-01

    Aspects of lunar paleomagnetic and electromagnetic sounding results which appear inconsistent with the hypothesis that an ancient core dynamo was the dominant source of the observed crustal magnetism are discussed. Evidence is summarized involving a correlation between observed magnetic anomalies and ejecta blankets from impact events which indicates the possible importance of local mechanisms involving meteoroid impact processes in generating strong magnetic fields at the lunar surface. A reply is given to the latter argument which also presents recent evidence of a lunar iron core.

  15. Lunar exospheric argon modeling

    NASA Astrophysics Data System (ADS)

    Grava, Cesare; Chaufray, J.-Y.; Retherford, K. D.; Gladstone, G. R.; Greathouse, T. K.; Hurley, D. M.; Hodges, R. R.; Bayless, A. J.; Cook, J. C.; Stern, S. A.

    2015-07-01

    Argon is one of the few known constituents of the lunar exosphere. The surface-based mass spectrometer Lunar Atmosphere Composition Experiment (LACE) deployed during the Apollo 17 mission first detected argon, and its study is among the subjects of the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and Lunar Atmospheric and Dust Environment Explorer (LADEE) mission investigations. We performed a detailed Monte Carlo simulation of neutral atomic argon that we use to better understand its transport and storage across the lunar surface. We took into account several loss processes: ionization by solar photons, charge-exchange with solar protons, and cold trapping as computed by recent LRO/Lunar Orbiter Laser Altimeter (LOLA) mapping of Permanently Shaded Regions (PSRs). Recycling of photo-ions and solar radiation acceleration are also considered. We report that (i) contrary to previous assumptions, charge exchange is a loss process as efficient as photo-ionization, (ii) the PSR cold-trapping flux is comparable to the ionization flux (photo-ionization and charge-exchange), and (iii) solar radiation pressure has negligible effect on the argon density, as expected. We determine that the release of 2.6 × 1028 atoms on top of a pre-existing argon exosphere is required to explain the maximum amount of argon measured by LACE. The total number of atoms (1.0 × 1029) corresponds to ∼6700 kg of argon, 30% of which (∼1900 kg) may be stored in the cold traps after 120 days in the absence of space weathering processes. The required population is consistent with the amount of argon that can be released during a High Frequency Teleseismic (HFT) Event, i.e. a big, rare and localized moonquake, although we show that LACE could not distinguish between a localized and a global event. The density of argon measured at the time of LACE appears to have originated from no less than four such episodic events. Finally, we show that the extent of the PSRs that trap argon, 0.007% of the total lunar surface, is consistent with the presence of adsorbed water in such PSRs.

  16. Lunar and Planetary Science XXXV: Lunar Remote Sensing: Seeing the Big Picture

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Lunar Remote Sensing: Seeing the Big Picture" contained the following reports:Approaches for Approximating Topography in High Resolution, Multispectral Data; Verification of Quality and Compatibility for the Newly Calibrated Clementine NIR Data Set; Near Infrared Spectral Properties of Selected Nearside and Farside Sites ; Global Comparisons of Mare Volcanism from Clementine Near-Infrared Data; Testing the Relation Between UVVIS Color and TiO2 Composition in the Lunar Maria; Color Reflectance Trends in the Mare: Implications for Mapping Iron with Multispectral Images ; The Composition of the Lunar Megaregolith: Some Initial Results from Global Mapping; Global Images of Mg-Number Derived from Clementine Data; The Origin of Lunar Crater Rays; Properties of Lunar Crater Ejecta from New 70-cm Radar Observations ; Permanent Sunlight at the Lunar North Pole; and ESA s SMART-1 Mission to the Moon: Goals, Status and First Results.

  17. A Revolutionary Lunar Space Transportation System Architecture Using Extraterrestrial Lox-augmented NTR Propulsion

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Corban, Robert R.; Culver, Donald W.; Bulman, Melvin J.; Mcilwain, Mel C.

    1994-01-01

    The concept of a liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) engine is introduced, and its potential for revolutionizing lunar space transportation system (LTS) performance using extraterrestrial 'lunar-derived' liquid oxygen (LUNOX) is outlined. The LOX-augmented NTR (LANTR) represents the marriage of conventional liquid hydrogen (LH2)-cooled NTR and airbreathing engine technologies. The large divergent section of the NTR nozzle functions as an 'afterburner' into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the NTR's choked sonic throat: 'scramjet propulsion in reverse.' By varying the oxygen-to-fuel mixture ratio (MR), the LANTR concept can provide variable thrust and specific impulse (Isp) capability with a LH2-cooled NTR operating at relatively constant power output. For example, at a MR = 3, the thrust per engine can be increased by a factor of 2.75 while the Isp decreases by only 30 percent. With this thrust augmentation option, smaller, 'easier to develop' NTR's become more acceptable from a mission performance standpoint (e.g., earth escape gravity losses are reduced and perigee propulsion requirements are eliminated). Hydrogen mass and volume is also reduced resulting in smaller space vehicles. An evolutionary NTR-based lunar architecture requiring only Shuttle C and/or 'in-line' shuttle-derived launch vehicles (SDV's) would operate initially in an 'expandable mode' with NTR lunar transfer vehicles (LTV's) delivering 80 percent more payload on piloted missions than their LOX/LH2 chemical propulsion counterparts. With the establishment of LUNOX production facilities on the lunar surface and 'fuel/oxidizer' depot in low lunar orbit (LLO), monopropellant NTR's would be outfitted with an oxygen propellant module, feed system, and afterburner nozzle for 'bipropellant' operation. The LANTR cislunar LTV now transitions to a reusable mode with smaller vehicle and payload doubling benefits on each piloted round trip mission. As the initial lunar outposts grow to centralized bases and settlements with a substantial permanent human presence, a LANTR-powered shuttle capable of 36 to 24 hour 'one-way' trip times to the moon and back becomes possible with initial mass in low earth orbit (IMLEO) requirements of approximately 160 to 240 metric tons, respectively.

  18. A revolutionary lunar space transportation system architecture using extraterrestrial LOX-augmented NTR propulsion

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.; Corban, Robert R.; Culver, Donald W.; Bulman, Melvin J.; McIlwain, Mel C.

    1994-08-01

    The concept of a liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) engine is introduced, and its potential for revolutionizing lunar space transportation system (LTS) performance using extraterrestrial 'lunar-derived' liquid oxygen (LUNOX) is outlined. The LOX-augmented NTR (LANTR) represents the marriage of conventional liquid hydrogen (LH2)-cooled NTR and airbreathing engine technologies. The large divergent section of the NTR nozzle functions as an 'afterburner' into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the NTR's choked sonic throat: 'scramjet propulsion in reverse.' By varying the oxygen-to-fuel mixture ratio (MR), the LANTR concept can provide variable thrust and specific impulse (Isp) capability with a LH2-cooled NTR operating at relatively constant power output. For example, at a MR = 3, the thrust per engine can be increased by a factor of 2.75 while the Isp decreases by only 30 percent. With this thrust augmentation option, smaller, 'easier to develop' NTR's become more acceptable from a mission performance standpoint (e.g., earth escape gravity losses are reduced and perigee propulsion requirements are eliminated). Hydrogen mass and volume is also reduced resulting in smaller space vehicles. An evolutionary NTR-based lunar architecture requiring only Shuttle C and/or 'in-line' shuttle-derived launch vehicles (SDV's) would operate initially in an 'expandable mode' with NTR lunar transfer vehicles (LTV's) delivering 80 percent more payload on piloted missions than their LOX/LH2 chemical propulsion counterparts. With the establishment of LUNOX production facilities on the lunar surface and 'fuel/oxidizer' depot in low lunar orbit (LLO), monopropellant NTR's would be outfitted with an oxygen propellant module, feed system, and afterburner nozzle for 'bipropellant' operation. The LANTR cislunar LTV now transitions to a reusable mode with smaller vehicle and payload doubling benefits on each piloted round trip mission. As the initial lunar outposts grow to centralized bases and settlements with a substantial permanent human presence, a LANTR-powered shuttle capable of 36 to 24 hour 'one-way' trip times to the moon and back becomes possible with initial mass in low earth orbit (IMLEO) requirements of approximately 160 to 240 metric tons, respectively.

  19. Lunar beneficiation

    NASA Technical Reports Server (NTRS)

    Agosto, William N.

    1992-01-01

    Natural concentrations of industrially valuable minerals are far less likely to be found on the Moon than on the Earth. But that is all the more reason for devising beneficiation processes to concentrate and extract the useful mineral components in lunar rocks and soils. As an example of a useful mineral that can be beneficiated, it has been estimated that ilmenite abundance accounts for 15 and 20 percent of the volume of the Apollo 11 and 17 basalts and 2 and 5 percent by volume in the Apollo 11 and 17 soils. Reduction of lunar ilmenite with hydrogen imported from Earth appears to one of the more practical schemes for obtaining lunar oxygen. While the reported concentrations are significant, a more highly concentrated ilmenite extract would improve the efficiency of the reduction process. The topics covered include electrostatic concentration, magnetic concentration, lunar soil sizing, and electrical sizing.

  20. Electrical power integration for lunar operations

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon

    1992-01-01

    Electrical power for future lunar operations is expected to range from a few kilowatts for an early human outpost to many megawatts for industrial operations in the 21st century. All electrical power must be imported as chemical, solar, nuclear, or directed energy. The slow rotation of the Moon and consequent long lunar night impose severe mass penalties on solar systems needing night delivery from storage. The cost of power depends on the cost of the power systems the cost of its transportation to the Moon, operating cost, and, of course, the life of the power system. The economic feasibility of some proposed lunar ventures depends in part on the cost of power. This paper explores power integration issues, costs, and affordability in the context of the following representative lunar ventures: (1) early human outpost (10 kWe); (2) early permanent lunar base, including experimental ISMU activities (100 kWe); (3) lunar oxygen production serving an evolved lunar base (500 kWe); (4) lunar base production of specialized high-value products for use on Earth (5 kWe); and (5) lunar mining and production of helium-3 (500 kWe). The schema of the paper is to project likely costs of power alternatives (including integration factors) in these power ranges, to select the most economic, to determine power cost contribution to the product or activities, to estimate whether the power cost is economically acceptable, and, finally, to offer suggestions for reaching acceptability where cost problems exist.

  1. Implications of Dielectric Breakdown Weathering for the Lunar Polar Regolith

    NASA Astrophysics Data System (ADS)

    Jordan, A. P.; Wilson, J. K.; Stubbs, T. J.; Schwadron, N. A.; Spence, H. E.; Izenberg, N. R.

    2015-10-01

    Dielectric breakdown weathering may significantly affect lunar regolith in permanently shadowed regions. We estimate how it may evolve the distribution of grain sizes and properties, which could have operational implications for rovers.

  2. Prospecting for lunar resources

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Martel, L.

    Large space settlements on the Moon (thousands of people) will require use of indigenous resources to build and maintain the infrastructure and generate products for export. Prospecting for these resources is a crucial step in human migration to space and needs to begin before settlement and the establishment of industrial complexes. We are devising a multi-faceted approach to prospect for resources. A central part of this work is developing the methodology for prospecting the Moon and other planetary bodies. This involves a number of investigations: (1) It is essential to analyze the economics of planetary ore deposits. Ore deposits are planetary materials that we can mine, process, and deliver to customers at a profit. The planetary context tosses in some interesting twists to this definition. (2) We are also making a comprehensive theoretical assessment of potential lunar ore deposits. Our understanding of the compositions, geological histories, and geological processes on the Moon will lead to significant differences in how we assess wh a t types of ores could be present. For example, the bone-dry nature of the Moon (except at the poles) eliminates all ore deposits associated with hydrothermal fluids. (3) We intend to search for resources using existing data for the Moon. Thus, prospecting can begin immediately. We have a wealth of remote sensing data for the Moon. We also have a good sampling of the Moon by the Apollo and Luna missions, and from lunar meteorites. We can target specific types of deposits already identified (e.g. lunar pyroclastic deposits) and look for other geological settings that might have produced ores and other materials of economic value. Another approach we will take is to examine all data available to look for anomalies. Examples are unusual spectral properties, large disagreements between independent techniques that measure the same property, unusual elemental ratios, or simply exceptional properties such as elemental abundances much larger than elsewhere in a region. (4) We are developing a strategy that represents a comprehensive, integrated program to prospect for resources throughout the solar system. The plan involves a hierarchy of surface exploration techniques. At the base is a huge swarm (thousands to millions) of microrobots equipped with sensors to identify targeted resources. The tiny robots work in consort with sophisticated all- terrain rovers that serve as communication links and make detailed observations at promising locations identified by the microrobots.

  3. Can the United States afford a lunar base

    NASA Technical Reports Server (NTRS)

    Keaton, Paul W.

    1988-01-01

    Establishing a lunar base will require steady funding for a decade or two. The question addressed is whether such a large space project is affordable at this time. The relevant facts and methodology are presented so that the reader may formulate independent answers. It is shown that a permanent lunar base can be financed without increasing NASA's historical budgetary trend.

  4. Lunar Flashlight: Mapping Lunar Surface Volatiles Using a Cubesat

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2014-01-01

    Lunar Flashlight is an exciting new mission concept in preformulation studies for NASA's Advanced Exploration Systems (AES) by a team from the Jet Propulsion Laboratory, UCLA, and Marshall Space Flight Center. This innovative, low-cost concept will map the lunar south pole for volatiles and demonstrate several technological firsts, including being the first CubeSat to reach the Moon, the first mission to use an 80 m2 solar sail, and the first mission to use a solar sail as a reflector for science observations. The Lunar Flashlight mission spacecraft maneuvers to its lunar polar orbit and uses its solar sail as a mirror to reflect 50 kW of sunlight down into shaded polar regions, while the on-board spectrometer measures surface reflection and composition. The Lunar Flashlight 6U spacecraft has heritage elements from multiple cubesat systems. The deployable solar sail/reflector is based on previous solar sail experiments, scaled up for this mission. The mission will demonstrate a path where 6U CubeSats could, at dramatically lower cost than previously thought possible, explore, locate and estimate size and composition of ice deposits on the Moon. Locating ice deposits in the Moon's permanently shadowed craters addresses one of NASA's Strategic Knowledge Gaps (SKGs) to detect composition, quantity, distribution, form of water/H species and other volatiles associated with lunar cold traps. Polar volatile data collected by Lunar Flashlight could then ensure that targets for more expensive lander- and rover-borne measurements would include volatiles in sufficient quantity and near enough to the surface to be operationally useful.

  5. 48 CFR 49.108 - Settlement of subcontract settlement proposals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Settlement of subcontract settlement proposals. 49.108 Section 49.108 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TERMINATION OF CONTRACTS General Principles 49.108 Settlement of...

  6. 48 CFR 49.108 - Settlement of subcontract settlement proposals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Settlement of subcontract settlement proposals. 49.108 Section 49.108 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TERMINATION OF CONTRACTS General Principles 49.108 Settlement of...

  7. 48 CFR 49.108 - Settlement of subcontract settlement proposals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Settlement of subcontract settlement proposals. 49.108 Section 49.108 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TERMINATION OF CONTRACTS General Principles 49.108 Settlement of...

  8. 48 CFR 49.108 - Settlement of subcontract settlement proposals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Settlement of subcontract settlement proposals. 49.108 Section 49.108 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TERMINATION OF CONTRACTS General Principles 49.108 Settlement of...

  9. 48 CFR 49.108 - Settlement of subcontract settlement proposals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Settlement of subcontract settlement proposals. 49.108 Section 49.108 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TERMINATION OF CONTRACTS General Principles 49.108 Settlement of...

  10. Microwave Extraction of Water from Lunar Regolith Simulant

    NASA Astrophysics Data System (ADS)

    Ethridge, Edwin; Kaukler, William

    2007-01-01

    Nearly a decade ago the DOD Clementine lunar orbital mission obtained data indicating that the permanently shaded regions at the lunar poles may have permanently frozen water in the lunar soil or `permafrost'. Currently a Lunar Lander Exploration Program is expected to land at the lunar pole to determine if water is present. The detection of water from the permafrost is an important goal for NASA. Extraction of water from lunar permafrost would be a valuable In-Situ Resource for Utilization (ISRU) in human life support and as a fuel. The use of microwave processing could permit the extraction of water without the need to dig, drill, or excavate the lunar surface. Microwave heating of regolith is potentially faster and more efficient than any other heating methods due to the very low thermal conductivity of the lunar regolith. Also, microwaves can penetrate into the soil permitting water removal from deep below the lunar surface. A cryogenic vacuum test facility was developed for evaluating the use of microwave heating and water extraction from a lunar regolith simulant. Water was collected in a cryogenic cold trap even with soil temperature well below 0 C. The results of microwave extraction of water experiments will be presented.

  11. Lunar anorthosites.

    PubMed

    Wood, J A; Dickey, J S; Marvin, U B; Powell, B N

    1970-01-30

    Sixty-one of 1676 lunar rock fragments examined were found to be anorthosites, markedly different in composition, color, and specific gravity from mare basalts and soil breccias. Compositional similiarity to Tycho ejecta analyzed by Surveyor 7 suggests that the anorthosites are samples of highlands material, thrown to Tranquillity Base by cratering events. A lunar structural model is proposed in which a 25-kilometer anorthosite crust, produced by magmatic fractionation, floats on denser gabbro. Where early major impacts punched through the crust, basaltic lava welled up to equilibrium surface levels and solidified (maria). Mascons are discussed in this context. PMID:17781512

  12. Lunar ores

    NASA Astrophysics Data System (ADS)

    Gillett, S. L.

    Geochemical considerations indicate that local concentrations, referred to here as ore bodies, of lunar-deficient elements (LDEs) may exist on the moon. To illustrate this, the earth is discussed, since it exemplifies the sort of large scale chemical fractionation that a planet undergoes. Lunar geology is then reviewed, and impact cratering is discussed as a geologic process. Possible ore-forming mechanisms are then considered, noting that nearly pure bodies of anorthosite, the major source of Al, should occur. Other mechanisms considered possible are cumulate deposits in layered igneous intrusion and concentrations of rare, refractory lithophile elements in highly differentiated, silica-rich magmas.

  13. 15 CFR 785.17 - Settlement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Settlement. (a) Settlements before issuance of a NOVA. When the parties have agreed to a settlement of the case prior to issuance of a NOVA, a settlement proposal consisting of a settlement agreement and order... following issuance of a NOVA. The parties may enter into settlement negotiations at any time during the...

  14. 15 CFR 785.17 - Settlement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Settlement. (a) Settlements before issuance of a NOVA. When the parties have agreed to a settlement of the case prior to issuance of a NOVA, a settlement proposal consisting of a settlement agreement and order... following issuance of a NOVA. The parties may enter into settlement negotiations at any time during the...

  15. 15 CFR 785.17 - Settlement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Settlement. (a) Settlements before issuance of a NOVA. When the parties have agreed to a settlement of the case prior to issuance of a NOVA, a settlement proposal consisting of a settlement agreement and order... following issuance of a NOVA. The parties may enter into settlement negotiations at any time during the...

  16. 15 CFR 785.17 - Settlement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Settlement. (a) Settlements before issuance of a NOVA. When the parties have agreed to a settlement of the case prior to issuance of a NOVA, a settlement proposal consisting of a settlement agreement and order... following issuance of a NOVA. The parties may enter into settlement negotiations at any time during the...

  17. ISA accelerometer and Lunar science

    NASA Astrophysics Data System (ADS)

    Iafolla, Valerio; Peron, Roberto; Lucchesi, David; Santoli, Francesco; Lefevre, Carlo; Fiorenza, Emiliano; Nozzoli, Sergio; Lucente, Marco; Magnafico, Carmelo; Milyukov, Vadim

    In recent years the Moon has become again a target for exploration activities, as shown by many missions, performed, ongoing or foreseen. The reasons for this new wave are manifold. The knowledge of formation and evolution of the Moon to its current state is important in order to trace the overall history of the Solar System. An effective driving factor is the possibility of building a human settlement on its surface, with all the related issues of environment characterization, safety, resources, communication and navigation. Our natural satellite is also an important laboratory for fundamental physics: Lunar Laser Ranging is continuing to provide important data for testing gravitation theories. All these topics are providing stimulus and inspirations for new experiments: in fact a wide variety of them has been proposed to be conducted on the lunar surface. ISA (Italian Spring Accelerometer) can provide an important tool for lunar studies. Thanks to its design it works on-ground with the same configuration developed for in-orbit applications. It can therefore be used onboard a spacecraft, as a support to a radio science mission, and on the surface of the Moon, as a seismometer. This second option in particular has been the subject of preliminary studies and has been proposed as a candidate to be hosted on NASA ILN (International Lunar Network) and ESA First Lunar Lander. ISA-S (ISA-Seismometer) has a very high sensitivity, which has already been demonstrated with long time periods of usage on Earth. It features also a wide bandwidth, extended towards the low frequencies. After a description of the instrument, its use in the context of landing missions will be described and discussed, giving emphasis on its integration with the other components of the systems.

  18. Lunar cement and lunar concrete

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1991-01-01

    Results of a study to investigate methods of producing cements from lunar materials are presented. A chemical process and a differential volatilization process to enrich lime content in selected lunar materials were identified. One new cement made from lime and anorthite developed compressive strengths of 39 Mpa (5500 psi) for 1 inch paste cubes. The second, a hypothetical composition based on differential volatilization of basalt, formed a mineral glass which was activated with an alkaline additive. The 1 inch paste cubes, cured at 100C and 100 percent humidity, developed compressive strengths in excess of 49 Mpa (7100 psi). Also discussed are tests made with Apollo 16 lunar soil and an ongoing investigation of a proposed dry mix/steam injection procedure for casting concrete on the Moon.

  19. Lunar cement and lunar concrete

    NASA Astrophysics Data System (ADS)

    Lin, T. D.

    Results of a study to investigate methods of producing cements from lunar materials are presented. A chemical process and a differential volatilization process to enrich lime content in selected lunar materials were identified. One new cement made from lime and anorthite developed compressive strengths of 39 Mpa (5500 psi) for 1 inch paste cubes. The second, a hypothetical composition based on differential volatilization of basalt, formed a mineral glass which was activated with an alkaline additive. The 1 inch paste cubes, cured at 100C and 100 percent humidity, developed compressive strengths in excess of 49 Mpa (7100 psi). Also discussed are tests made with Apollo 16 lunar soil and an ongoing investigation of a proposed dry mix/steam injection procedure for casting concrete on the Moon.

  20. Lunar oasis

    NASA Technical Reports Server (NTRS)

    Duke, Michael B.; Niehoff, John

    1989-01-01

    The 'lunar oasis' emphasizes development toward self-sufficiency in order to reduce dependence on the earth for resupply, and to enable expansion utilizing indigeneous resources. The oasis phase includes: (1) habitation and work facilities for 10 people, (2) capability for extraction of volatile consumables (H2O, O2, N2, etc.) from indigenous resources for resupply of losses and filling of reservoirs, and (3) a highly closed life support system, including food production. In the consolidation phase, the base grows from 10 to 30 crewmembers. Lunar resources are used for expanding the lunar foothold, including construction of habitats, extraction of metals for the fabrication of products for maintenance and repair, and expansion of the power system. The strategy does not produce propellants for space transportation. A 10-year scenario is laid out, which contains all elements needed to allow the base to enter a self-expanding utilization phase. Three lunar missions yer year, two cargo missions and one crew flight, are required. At the end of a decade, the base is producing more than it requires for its continued support, although it is unlikely to be completely self-sufficient.

  1. Lunar Seismology

    ERIC Educational Resources Information Center

    Latham, Gary V.

    1973-01-01

    Summarizes major findings from the passive seismic experiment on the Moon with the Apollo seismic network illustrated in a map. Concludes that human beings may have discovered something very basic about the physics of planetary interiors because of the affirmation of the presence of a warm'' lunar interior. (CC)

  2. Lunar Flashlight: Mapping Lunar Surface Volatiles Using a Cubesat

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Hayne, P. O.; Banazadeh, P.; Baker, J. D.; Staehle, R. L.; Paine, C..; Paige, D. A.

    2014-01-01

    Water ice and other volatiles may be located in the Moon's polar regions, with sufficient quantities for in situ extraction and utilization by future human and robotic missions. Evidence from orbiting spacecraft and the LCROSS impactor suggests the presence of surface and/or nearsurface volatiles, including water ice. These deposits are of interest to human exploration to understand their potential for use by astronauts. Understanding the composition, quantity, distribution, and form of water/H species and other volatiles associated with lunar cold traps is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits could also reveal important information about the delivery of water to the Earth- Moon system, so are of scientific interest. The scientific exploration of the lunar polar regions was one of the key recommendations of the Planetary Science Decadal Survey. In order to address NASA's SKGs, the Advanced Exploration Systems (AES) program selected three lowcost 6-U CubeSat missions for launch as secondary payloads on the first test flight (EM1) of the Space Launch System (SLS) scheduled for 2017. The Lunar Flashlight mission was selected as one of these missions, specifically to address the SKG associated with lunar volatiles. Development of the Lunar Flashlight CubeSat concept leverages JPL's Interplanetary Nano- Spacecraft Pathfinder In Relevant Environment (INSPIRE) mission, MSFC's intimate knowledge of the Space Launch System and EM-1 mission, small business development of solar sail and electric propulsion hardware, and JPL experience with specialized miniature sensors. The goal of Lunar Flashlight is to determine the presence or absence of exposed water ice and its physical state, and map its concentration at the kilometer scale within the permanently shadowed regions of the lunar south pole. After being ejected in cislunar space by SLS, Lunar Flashlight deploys its solar panels and solar sail and maneuvers into a low-energy transfer to lunar orbit. The solar sail and attitude control system work to bring the satellite into an elliptical polar orbit spiraling down to a perilune of 30-10 km above the south pole for data collection. Lunar Flashlight uses its solar sail to shine reflected sunlight into permanently shadowed regions, measuring surface albedo with a four-filter point spectrometer at 1.1, 1.5 1.9, and 2.0 microns. Water ice will be distinguished from dry regolith from these measurements in two ways: 1) spatial variations in absolute reflectance (water ice is much brighter in the continuum channels), and 2) reflectance ratios between absorption and continuum channels. Derived reflectance and reflectance ratios will be mapped onto the lunar surface in order to distinguish the composition of the PSRs from that of the sunlit terrain. Lunar Flashlight enables a low-cost path to in-situ resource utilization (ISRU) by identifying operationally useful deposits (if there are any), which is a game-changing capability for expanded human exploration.

  3. Lunar base initiative 1992

    NASA Astrophysics Data System (ADS)

    Koelle, H. H.

    The return to the Moon is no longer a question of yes or no, but a question of when and how. The first landing of a human being on the lunar surface in 1969 was a purely national effort of the U.S.A. Building a lunar base and operating it in the next century is rather a task for all nations of this planet, even if one nation could do it alone. However, there are several alternatives to carry out such a program and these will and should be debated during the next years on an urgent basis. To do this, one has to take into account not only the historical accomplishments and the present trends of cooperation in space programs, but also recent geopolitical developments as well as the frame of reference established by international law. The case for an International Lunar Base (ILB) has been presented to the International Academy of Astronautics on 11 October 1987 by the IAA Ad Hoc Committee "Return-to-the-Moon". This draft of a position paper was subsequently published in Acta Astronautica Vol. 17, No. 5, (pp. 463-489) with the request of public debate particularly by the members of the Academy. Some 80 Academicians responded to this invitation by the President of the Academy and voiced their opinions on the questions and issues raised by this draft of a position paper. This led to a refinement of the arguments and assumptions made and it is now possible to prepare an improved position paper proposing concrete steps which may lead to an ILB. An issue of this proportion must start with a discussion of goals and objectives to be arranged in some kind of a ranked order. It also has to take note of the limitations existing at any time by the availability of suitable space transportation systems. These will determine the acquisition date and rate of growth of a lunar base. The logistics system will also greatly influence the base characteristics and layout. The availability of heavy lift launch vehicles would simplify the task and allow to concentrate the construction activities for a lunar base on Earth where it is done the cheapest way. Extraterrestrial activities by men should be kept as small as possible to keep costs down. The organizational alternatives have an equally wide span and many options have been considered already. The most prominent ones are described and the results of a ranking exercise are presented. Finally, a phased project plan as seen from today's viewpoint is proposed beginning in 1992 with the activation of a "Lunar Base Planning Office" to be followed by an "International Lunar Development Agency" with the goal of establishing the first element of a permanent lunar base in the second half of the first decade of the 21st century.

  4. Lunar Gene Bank for Endangered Species

    NASA Astrophysics Data System (ADS)

    Swain, R. K.

    2014-10-01

    The concept of a gene bank in the lunar polar craters provides a permanent solution to the menace of endangered species and the failure of the prevailing strategies to protect them. This is one vital, technologically viable yet cost effective option.

  5. Evaluation of Blue Crab, Callinectes sapidus, Megalopal Settlement and Condition during the Deepwater Horizon Oil Spill

    PubMed Central

    Grey, Erin K.; Chiasson, Susan C.; Williams, Hannah G.; Troeger, Victoria J.; Taylor, Caz M.

    2015-01-01

    The Blue Crab, Callinectes sapidus, is a commercially, culturally, and ecologically significant species in the Gulf of Mexico (GOM), whose offshore stages were likely impacted by the Deepwater Horizon oil spill (DWH). To test for DWH effects and to better understand the planktonic ecology of this species, we monitored Callinectes spp. megalopal settlement and condition at sites within and outside of the spill extent during and one year after the DWH. We tested for DWH effects by comparing 2010 settlement against baseline data available for two sites, and by testing for differences in settlement and condition inside and outside of the spill extent. We also developed time series models to better understand natural drivers of daily settlement variation (seasonal and lunar trends, hydrodynamics, wind) during 2010 and 2011. Overall, we found that neither megalopal settlement nor body weight were significantly reduced at oiled sites, but that high unexplained variation and low statistical power made detection of even large effects unlikely. Time series models revealed remarkably consistent and relatively strong seasonal and lunar trends within sites (explaining on average 28% and 9% of variation, respectively), while wind and hydrodynamic effects were weak (1–5% variation explained) and variable among sites. This study provides insights into DWH impacts as well as the natural drivers of Callinectes spp. megalopal settlement across the northern GOM. PMID:26270970

  6. Evaluation of Blue Crab, Callinectes sapidus, Megalopal Settlement and Condition during the Deepwater Horizon Oil Spill.

    PubMed

    Grey, Erin K; Chiasson, Susan C; Williams, Hannah G; Troeger, Victoria J; Taylor, Caz M

    2015-01-01

    The Blue Crab, Callinectes sapidus, is a commercially, culturally, and ecologically significant species in the Gulf of Mexico (GOM), whose offshore stages were likely impacted by the Deepwater Horizon oil spill (DWH). To test for DWH effects and to better understand the planktonic ecology of this species, we monitored Callinectes spp. megalopal settlement and condition at sites within and outside of the spill extent during and one year after the DWH. We tested for DWH effects by comparing 2010 settlement against baseline data available for two sites, and by testing for differences in settlement and condition inside and outside of the spill extent. We also developed time series models to better understand natural drivers of daily settlement variation (seasonal and lunar trends, hydrodynamics, wind) during 2010 and 2011. Overall, we found that neither megalopal settlement nor body weight were significantly reduced at oiled sites, but that high unexplained variation and low statistical power made detection of even large effects unlikely. Time series models revealed remarkably consistent and relatively strong seasonal and lunar trends within sites (explaining on average 28% and 9% of variation, respectively), while wind and hydrodynamic effects were weak (1-5% variation explained) and variable among sites. This study provides insights into DWH impacts as well as the natural drivers of Callinectes spp. megalopal settlement across the northern GOM. PMID:26270970

  7. Lunar Base Sitting

    NASA Technical Reports Server (NTRS)

    Staehle, Robert L.; Burke, James D.; Snyder, Gerald C.; Dowling, Richard; Spudis, Paul D.

    1993-01-01

    Speculation with regard to a permanent lunar base has been with us since Robert Goddard was working on the first liquid-fueled rockets in the 1920's. With the infusion of data from the Apollo Moon flights, a once speculative area of space exploration has become an exciting possibility. A Moon base is not only a very real possibility, but is probably a critical element in the continuation of our piloted space program. This article, originally drafted by World Space Foundation volunteers in conjuction with various academic and research groups, examines some of the strategies involved in selecting an appropriate site for such a lunar base. Site selection involves a number of complex variables, including raw materials for possible rocket propellant generation, hot an cold cycles, view of the sky (for astronomical considerations, among others), geological makeup of the region, and more. This article summarizes the key base siting considerations and suggests some alternatives. Availability of specific resources, including energy and certain minerals, is critical to success.

  8. An engineer/constructor's view of lunar resource development

    NASA Technical Reports Server (NTRS)

    Jones, Carleton H.

    1992-01-01

    A strawman lunar outpost scenario has been postulated as a special focus to guide the papers in this symposium. This scenario describes an evolving facility with basic components, personnel, and activities intended to support lunar missions that lead to a permanent occupation on the lunar surface. The engineer/constructor's view of establishing a lunar outpost is largely concerned with identifying and analyzing the logistics needed to transform the engineering designs on paper into a constructed and operating facility. This means that all aspects of the outpost design will be examined to satisfy constructability requirements and to develop a construction management plan that leads to successful facility startup and routine operations. Whether the facility is to be devoted to materials production, vehicle refueling, or science projects will influence the construction plan in its details, but the construction of all lunar facilities will be mainly governed by the difficult logistics path from Earth to the lunar surface.

  9. Concepts for manned lunar habitats

    NASA Technical Reports Server (NTRS)

    Hypes, W. D.; Butterfield, A. J.; King, C. B.; Qualls, G. D.; Davis, W. T.; Gould, M. J.; Nealy, J. E.; Simonsen, L. C.

    1991-01-01

    The design philosophy that will guide the design of early lunar habitats will be based on a compromise between the desired capabilities of the base and the economics of its development and implantation. Preferred design will be simple, make use of existing technologies, require the least amount of lunar surface preparation, and minimize crew activity. Three concepts for an initial habitat supporting a crew of four for 28 to 30 days are proposed. Two of these are based on using Space Station Freedom structural elements modified for use in a lunar-gravity environment. A third concept is proposed that is based on an earlier technology based on expandable modules. The expandable modules offer significant advantages in launch mass and packaged volume reductions. It appears feasible to design a transport spacecraft lander that, once landed, can serve as a habitat and a stand-off for supporting a regolith environmental shield. A permanent lunar base habitat supporting a crew of twelve for an indefinite period can be evolved by using multiple initial habitats. There appears to be no compelling need for an entirely different structure of larger volume and increased complexity of implantation.

  10. Lunar science from lunar laser ranging

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Newhall, X. X.; Dickey, J. O.

    1987-01-01

    Seventeen years of lunar ranging data have been analyzed to determine lunar second-degree moment differences, third-degree gravitational harmonics, Love number, rotational dissipation and retroreflector coordinates.

  11. 15 CFR 719.19 - Settlement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of State, forwarding a proposed settlement agreement and order, which, in accordance with 22 CFR 103... settlement agreement and order, which, in accordance with 22 CFR 103.9(b), the Secretary will approve and... Settlement. (a) Settlements before issuance of a NOVA. When the parties have agreed to a settlement of...

  12. 15 CFR 719.19 - Settlement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of State, forwarding a proposed settlement agreement and order, which, in accordance with 22 CFR 103... settlement agreement and order, which, in accordance with 22 CFR 103.9(b), the Secretary will approve and... Settlement. (a) Settlements before issuance of a NOVA. When the parties have agreed to a settlement of...

  13. 15 CFR 719.19 - Settlement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of State, forwarding a proposed settlement agreement and order, which, in accordance with 22 CFR 103... settlement agreement and order, which, in accordance with 22 CFR 103.9(b), the Secretary will approve and... Settlement. (a) Settlements before issuance of a NOVA. When the parties have agreed to a settlement of...

  14. 15 CFR 719.19 - Settlement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of State, forwarding a proposed settlement agreement and order, which, in accordance with 22 CFR 103... settlement agreement and order, which, in accordance with 22 CFR 103.9(b), the Secretary will approve and... Settlement. (a) Settlements before issuance of a NOVA. When the parties have agreed to a settlement of...

  15. 15 CFR 719.19 - Settlement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of State, forwarding a proposed settlement agreement and order, which, in accordance with 22 CFR 103... settlement agreement and order, which, in accordance with 22 CFR 103.9(b), the Secretary will approve and... Settlement. (a) Settlements before issuance of a NOVA. When the parties have agreed to a settlement of...

  16. Human Settlements, Energy, and Industry

    SciTech Connect

    Scott, Michael J.; Gupta, Sujata; Jauregui, Ernesto; Nwafor, James; Satterthwaite, David; Wanasinghe, Yapa; Wilbanks, Thomas; Yoshino, Masatoshi; Kelkar, Ulka

    2001-01-15

    Human settlements are integrators of many of the climate impacts initially felt in other sectors, and differ from each other in geographic location, size, economic circumstances, and political and social capacity. The most wide-spread serious potential impact is flooding and landslides, followed by tropical cyclones. A growing literature suggests that a very wide variety of settlements in nearly every climate zone may be affected, although the specific evidence is still very limited. Settlements with little economic diversification and where a high percentage of incomes derive from climate sensitive primary resource industries (agriculture, forestry and fisheries) are more sensitive than more diversified settlements

  17. The lunar community church: Contributions to lunar living and to evolution of ethical and spiritual thinking

    NASA Technical Reports Server (NTRS)

    Allton, J. H.

    1992-01-01

    Should religious institutions get interested in lunar settlement? Would their participation make positive contributions or would it discourage creative diversity and interfere with science and good technical judgement? Among the spacefaring nations of today, religion is distinctly separated from the governments that plan and pay for space exploration. However, as we move off the Earth, our art and philosophy will follow our science and technology. Spiritual thinking will follow as part of our culture. It is time to consider in what ways this can occur constructively. Transport of religious values to a lunar base may have positive effects in two ways. First, the social structure of a 'community church' as found in today's United States, supports its members psychologically. Mutual psychological and social support will be needed in a lunar community. Second, our space pioneers will experience a unique view of the universe which may, in their philosophical discussions, forge new ideas in the spiritual realm.

  18. Potential of derived lunar volatiles for life support

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Wittenberg, L. J.; Tibbitts, T. W.; Kulcinski, G. L.

    1992-01-01

    The lunar regolith contains small quantities of solar wind implanted volatile compounds that have vital, basic uses for maintaining life support systems of lunar or space settlements. Recent proposals to utilize the helium-3 isotope (He-3) derived from the lunar regolith as a fuel for fusion reactors would result in the availability of large quantities of other lunar volatile compounds. The quantities obtained would provide the annual life support replacement requirements of 1150 to 23,000 inhabitants per ton of He-3 recovered, depending on the volatile compound. Utilization of the lunar volatile compounds for life support depends on the costs, in terms of materials and energy, associated with their extraction from the lunar regolith as compared to the delivery costs of these compounds from Earth resources. Considering today's conservative estimated transportation costs ($10,000 dollars per kilogram) and regolith mining costs ($5 dollars per ton), the life support replacement requirements could be more economically supplied by recovering the lunar volatile compounds than transporting these materials from Earth resources, even before He-3 will be utilized as a fusion fuel. In addition, availability of lunar volatile compounds could have a significant cost impact on maintaining the life support systems of the space station and a Mars base.

  19. Lunar exploration and development—A sustainable model

    NASA Astrophysics Data System (ADS)

    Williamson, Mark

    2005-07-01

    A long-term goal of space exploration is the development of a lunar settlement that will not only be largely self-sufficient but also contribute to the economy of the Earth Moon system. Proposals for lunar mining and materials processing developments, as well as tourism-based applications, have appeared in the literature for many years. However, so great are the technical and financial difficulties associated with sustained lunar development that, more than 30 years after the end of the Apollo programme, there have been no practical advances towards this goal. While this may soon be remedied by a series of proposed unmanned orbiters, landers and rovers, the philosophy of lunar exploration and development remains the same as it has for decades: conquer, exploit, and ignore the consequences. By contrasting the well-recognised problems of Earth orbital debris and the barely recognised issue of intentional spacecraft impacts on the lunar surface, this paper illustrates the need for a new model for lunar exploration and development. This new paradigm would assign a value to the lunar environment and provide a balance between protection and exploitation, creating, in effect, a philosophy of sustainable development for the Moon. It is suggested that this new philosophy should be an integral part of any future strategy for lunar colonisation.

  20. Lunar exploration and development--a sustainable model.

    PubMed

    Williamson, Mark

    2005-01-01

    A long-term goal of space exploration is the development of a lunar settlement that will not only be largely self-sufficient but also contribute to the economy of the Earth-Moon system. Proposals for lunar mining and materials processing developments, as well as tourism-based applications, have appeared in the literature for many years. However, so great are the technical and financial difficulties associated with sustained lunar development that, more than 30 years after the end of the Apollo programme, there have been no practical advances towards this goal. While this may soon be remedied by a series of proposed unmanned orbiters, landers and rovers, the philosophy of lunar exploration and development remains the same as it has for decades: conquer, exploit, and ignore the consequences. By contrasting the well-recognised problems of Earth orbital debris and the barely recognised issue of intentional spacecraft impacts on the lunar surface, this paper illustrates the need for a new model for lunar exploration and development. This new paradigm would assign a value to the lunar environment and provide a balance between protection and exploitation, creating, in effect, a philosophy of sustainable development for the Moon. It is suggested that this new philosophy should be an integral part of any future strategy for lunar colonisation. PMID:16010758

  1. Impact of lunar and planetary missions on the space station

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The impacts upon the growth space station of several advanced planetary missions and a populated lunar base are examined. Planetary missions examined include sample returns from Mars, the Comet Kopff, the main belt asteroid Ceres, a Mercury orbiter, and a saturn orbiter with multiple Titan probes. A manned lunar base build-up scenario is defined, encompassing preliminary lunar surveys, ten years of construction, and establishment of a permanent 18 person facility with the capability to produce oxygen propellant. The spacecraft mass departing from the space station, mission Delta V requirements, and scheduled departure date for each payload outbound from low Earth orbit are determined for both the planetary missions and for the lunar base build-up. Large aerobraked orbital transfer vehicles (OTV's) are used. Two 42 metric ton propellant capacity OTV's are required for each the the 68 lunar sorties of the base build-up scenario. The two most difficult planetary missions (Kopff and Ceres) also require two of these OTV's. An expendable lunar lander and ascent stage and a reusable lunar lander which uses lunar produced oxygen are sized to deliver 18 metric tons to the lunar surface. For the lunar base, the Space Station must hangar at least two non-pressurized OTV's, store 100 metric tons of cryogens, and support an average of 14 OTV launch, return, and refurbishment cycles per year. Planetary sample return missions require a dedicated quarantine module.

  2. Design of a lunar transportation system

    NASA Technical Reports Server (NTRS)

    Sankaravelu, A.; Goddard, H.; Gold, R.; Greenwell, S.; Lander, J.; Nordell, B.; Stepp, K.; Styer, M.

    1989-01-01

    The development of a good transportation infrastructure is a major requirement for the establishment of a permanent lunar base. Transportation is characterized by the technology available in a specific time frame and the need to transport personnel and cargo between Earth and Moon, and between lunar bases. In our study, attention was first focused on developing a transportation system for the first generation lunar base. As a first step, a tracked-type multipurpose lunar transportation vehicle was considered as a possible mode of transportation and a detailed study was conducted on the various aspects of the vehicle. Since the vehicle is composed of many moving parts, exposing it to the environment of the Moon, where fine dust particles are prevalent, can cause problems associated with lubrication and friction. The vehicle also posed problems concerning weight and power. Hence, several modifications were made to the above design ideas conceptually, and a Lunar Articulated Remote Transportation System (Lunar ARTS) is proposed as a more effective alternative with the following objectives: (1) minimizing the transportation of construction material and fuel from Earth or maximizing the use of the lunar material; (2) use of novel materials and light-weight structures; (3) use of new manufacturing methods and technology such as magnetic levitation using superconducting materials; and (4) innovative concepts of effectively utilizing the exotic lunar conditions, i.e., high thermal gradients, lack of atmosphere, lower gravity, etc. To achieve the above objectives of designing transportation systems from concept to operation, the project was planned in three phases: (1) conceptual design; (2) detailed analysis and synthesis; and (3) construction, testing, evaluation, and operation. In this project, both phases 1 and 2 have been carried out and work on phase 3 is in progress. In this paper, the details of the Lunar ARTS are discussed and the future work on the vehicle are also outlined.

  3. Lunar Lava Tubes as Potential Human Settlements and Refuge Sites

    NASA Astrophysics Data System (ADS)

    Lemke, K. A.; Mardon, A. A.

    2015-10-01

    Lava tubes have been detected on the surface of Earth's moon via satellite images. Upon further exploration of these caves through robotic technology and other means, a refuge place for astronauts may be installed.

  4. Modelling of Lunar Dust and Electrical Field for Future Lunar Surface Measurements

    NASA Astrophysics Data System (ADS)

    Lin, Yunlong

    Modelling of the lunar dust and electrical field is important to future human and robotic activities on the surface of the moon. Apollo astronauts had witnessed the maintaining of micron- and millimeter sized moon dust up to meters level while walked on the surface of the moon. The characterizations of the moon dust would enhance not only the scientific understanding of the history of the moon but also the future technology development for the surface operations on the moon. It has been proposed that the maintaining and/or settlement of the small-sized dry dust are related to the size and weight of the dust particles, the level of the surface electrical fields on the moon, and the impaction and interaction between lunar regolith and the solar particles. The moon dust distributions and settlements obviously affected the safety of long term operations of future lunar facilities. For the modelling of the lunar dust and the electrical field, we analyzed the imaging of the legs of the moon lander, the cover and the footwear of the space suits, and the envelope of the lunar mobiles, and estimated the size and charges associated with the small moon dust particles, the gravity and charging effects to them along with the lunar surface environment. We also did numerical simulation of the surface electrical fields due to the impaction of the solar winds in several conditions. The results showed that the maintaining of meters height of the micron size of moon dust is well related to the electrical field and the solar angle variations, as expected. These results could be verified and validated through future on site and/or remote sensing measurements and observations of the moon dust and the surface electrical field.

  5. Lunar Magnetic Fields: Implications for Resource Utilization

    NASA Technical Reports Server (NTRS)

    Hood, L. L.

    1992-01-01

    It is well known that solar-wind-implanted hydrogen and helium-3 in lunar soils are potentially usable resources for future manned activities. For economical mining of these implanted gases, it is desirable that relative concentrations exceed that of typical soils. It has previously been noted that the monthly variation of solar wind flux on the surface due to lunar immersion in the geomagnetic tail may have measurable consequences for resource utilization. It is pointed out that, for a constant external flux, locally strong lunar crustal magnetic fields will exert the dominant influence on solar wind volatile implantation rates. In particular, the strongest lunar crustal magnetic fields will both deflect and focus incident ions in local regions leading to local enhancements of the incident ion flux. Thus, the most economical sites for extraction of solar-wind-implanted volatiles may be within or adjacent to strong crustal magnetic fields. In addition, solar wind ion deflection by crustal magnetic fields must be considered in evaluating the issue of whether remnant cometary ice or water-bearing minerals have survived in permanently shadowed regions near the lunar poles. This is because sputter erosion of water ice by solar wind ions has been suggested to be an important ice loss mechanism within permanently shadowed regions. Thus, permanently shadowed regions that are also shielded from the solar wind by locally strong crustal fields could be the most promising locations for the survival of cometary ice. Additional numerical simulations are employed to show that solar wind ion deflection by strong lunar magnetic anomalies can produce local increases in the implantation rate of solar wind gases such as hydrogen.

  6. Lunar sulfur

    NASA Astrophysics Data System (ADS)

    Kuck, David L.

    Ideas introduced by Vaniman, Pettit and Heiken in their 1988 Uses of Lunar Sulfur are expanded. Particular attention is given to uses of SO2 as a mineral-dressing fluid. Also introduced is the concept of using sulfide-based concrete as an alternative to the sulfur-based concretes proposed by Leonard and Johnson. Sulfur is abundant in high-Ti mare basalts, which range from 0.16 to 0.27 pct. by weight. Terrestrial basalts with 0.15 pct. S are rare. For oxygen recovery, sulfur must be driven off with other volatiles from ilmenite concentrates, before reduction. Troilite (FeS) may be oxidized to magnetite (Fe3O4) and SO2 gas, by burning concentrates in oxygen within a magnetic field, to further oxidize ilmenite before regrinding the magnetic reconcentration. SO2 is liquid at -20 C, the mean temperature underground on the Moon, at a minimum of 0.6 atm pressure. By using liquid SO2 as a mineral dressing fluid, all the techniques of terrestrial mineral separation become available for lunar ores and concentrates. Combination of sulfur and iron in an exothermic reaction, to form iron sulfides, may be used to cement grains of other minerals into an anhydrous iron-sulfide concrete. A sulfur-iron-aggregate mixture may be heated to the ignition temperature of iron with sulfur to make a concrete shape. The best iron, sulfur, and aggregate ratios need to be experimentally established. The iron and sulfur will be by-products of oxygen production from lunar minerals.

  7. Lunar sulfur

    NASA Technical Reports Server (NTRS)

    Kuck, David L.

    1991-01-01

    Ideas introduced by Vaniman, Pettit and Heiken in their 1988 Uses of Lunar Sulfur are expanded. Particular attention is given to uses of SO2 as a mineral-dressing fluid. Also introduced is the concept of using sulfide-based concrete as an alternative to the sulfur-based concretes proposed by Leonard and Johnson. Sulfur is abundant in high-Ti mare basalts, which range from 0.16 to 0.27 pct. by weight. Terrestrial basalts with 0.15 pct. S are rare. For oxygen recovery, sulfur must be driven off with other volatiles from ilmenite concentrates, before reduction. Troilite (FeS) may be oxidized to magnetite (Fe3O4) and SO2 gas, by burning concentrates in oxygen within a magnetic field, to further oxidize ilmenite before regrinding the magnetic reconcentration. SO2 is liquid at -20 C, the mean temperature underground on the Moon, at a minimum of 0.6 atm pressure. By using liquid SO2 as a mineral dressing fluid, all the techniques of terrestrial mineral separation become available for lunar ores and concentrates. Combination of sulfur and iron in an exothermic reaction, to form iron sulfides, may be used to cement grains of other minerals into an anhydrous iron-sulfide concrete. A sulfur-iron-aggregate mixture may be heated to the ignition temperature of iron with sulfur to make a concrete shape. The best iron, sulfur, and aggregate ratios need to be experimentally established. The iron and sulfur will be by-products of oxygen production from lunar minerals.

  8. Lunar Seimology

    NASA Astrophysics Data System (ADS)

    Khan, A.; Lognonn, P.; Gagnepain-Beyneix, J.; Chenet, H.; Mosegaard, K.

    2003-04-01

    Seismology has the highest resolving power of all geophysical methods used to study the Earth's structure, and, for this reason, it carries the responsibility of determining many parameters critically important to our understanding of the dynamic behaviour of the Earth. This was probably the main scientific motivation for NASA to deploy seismometers on the lunar surface during the Apollo missions. In the period from 1969 to 1972 the US Apollo missions landed seismographs on the lunar surface. These, of which four of the landed stations constituted a seismic array, were positioned in an approximate equilateral triangle with distances between stations being about 1100 km. The array recorded more than 12000 events in the period 1969-1977 which were continuously signaled to Earth. Subsequent examination of the seismograms revealed a highly complex wave train unlike anything observed on the Earth, hampering at times even the detection of the first-arriving P and S-waves, due to intense scattering in a highly porous regolith. The seismic events constitute man-made impacts, meteoroid impacts, shallow moonquakes and deep moonquakes, of which the latter are by far the most numerous. The deep moonquakes are found to occur half-way toward the center of the moon and are believed to be correlated with the tides raised on the moon by the Earth and the Sun. The shallow moonquakes occur in the depth range from 50-220 km and are thought to be akin to intraplate earthquakes. Generally, the Apollo-era studies were successful in determining the gross features of the lunar interior which resulted in the recognition of the Moon as being a differentiated body with a crust and a mantle whose lower parts were thought to be partially molten. However, details remained perfunctory with questions concerning seismic velocity variations and possible discontinuities in the mantle left unanswered. In the present study we show how we have obtained somewhat more detailed information on the lunar interior by inverting first-arrivals of P and S-waves using a Monte Carlo sampling method.

  9. Photometric Lunar Surface Reconstruction

    NASA Technical Reports Server (NTRS)

    Nefian, Ara V.; Alexandrov, Oleg; Morattlo, Zachary; Kim, Taemin; Beyer, Ross A.

    2013-01-01

    Accurate photometric reconstruction of the Lunar surface is important in the context of upcoming NASA robotic missions to the Moon and in giving a more accurate understanding of the Lunar soil composition. This paper describes a novel approach for joint estimation of Lunar albedo, camera exposure time, and photometric parameters that utilizes an accurate Lunar-Lambertian reflectance model and previously derived Lunar topography of the area visualized during the Apollo missions. The method introduced here is used in creating the largest Lunar albedo map (16% of the Lunar surface) at the resolution of 10 meters/pixel.

  10. Lunar lander conceptual design

    NASA Technical Reports Server (NTRS)

    Lee, Joo Ahn; Carini, John; Choi, Andrew; Dillman, Robert; Griffin, Sean J.; Hanneman, Susan; Mamplata, Caesar; Stanton, Edward

    1989-01-01

    A conceptual design is presented of a Lunar Lander, which can be the primary vehicle to transport the equipment necessary to establish a surface lunar base, the crew that will man the base, and the raw materials which the Lunar Station will process. A Lunar Lander will be needed to operate in the regime between the lunar surface and low lunar orbit (LLO), up to 200 km. This lander is intended for the establishment and operation of a manned surface base on the moon and for the support of the Lunar Space Station. The lander will be able to fulfill the requirements of 3 basic missions: A mission dedicated to delivering maximum payload for setting up the initial lunar base; Multiple missions between LLO and lunar surface dedicated to crew rotation; and Multiple missions dedicated to cargo shipments within the regime of lunar surface and LLO. A complete set of structural specifications is given.

  11. 49 CFR 511.67 - Settlement order.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... settlement shall be issued, setting out the terms of the settlement, and containing a brief discussion of the... discussion of comments received under § 511.65. If the Administrator rejects a petition for settlement,...

  12. Rover Traverse Planning to Support a Lunar Polar Volatiles Mission

    NASA Technical Reports Server (NTRS)

    Heldmann, J.L.; Colaprete, A.C.; Elphic, R. C.; Bussey, B.; McGovern, A.; Beyer, R.; Lees, D.; Deans, M. C.; Otten, N.; Jones, H.; Wettergreen, D.

    2015-01-01

    Studies of lunar polar volatile depositsare of interest for scientific purposes to understandthe nature and evolution of the volatiles, and alsofor exploration reasons as a possible in situ resource toenable long term exploration and settlement of theMoon. Both theoretical and observational studies havesuggested that significant quantities of volatiles exist inthe polar regions, although the lateral and horizontaldistribution remains unknown at the km scale and finerresolution. A lunar polar rover mission is required tofurther characterize the distribution, quantity, andcharacter of lunar polar volatile deposits at thesehigher spatial resolutions. Here we present two casestudies for NASAs Resource Prospector (RP) missionconcept for a lunar polar rover and utilize this missionarchitecture and associated constraints to evaluatewhether a suitable landing site exists to support an RPflight mission.

  13. Lunar surface vehicle model competition

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During Fall and Winter quarters, Georgia Tech's School of Mechanical Engineering students designed machines and devices related to Lunar Base construction tasks. These include joint projects with Textile Engineering students. Topics studied included lunar environment simulator via drop tower technology, lunar rated fasteners, lunar habitat shelter, design of a lunar surface trenching machine, lunar support system, lunar worksite illumination (daytime), lunar regolith bagging system, sunlight diffusing tent for lunar worksite, service apparatus for lunar launch vehicles, lunar communication/power cables and teleoperated deployment machine, lunar regolith bag collection and emplacement device, soil stabilization mat for lunar launch/landing site, lunar rated fastening systems for robotic implementation, lunar surface cable/conduit and automated deployment system, lunar regolith bagging system, and lunar rated fasteners and fastening systems. A special topics team of five Spring quarter students designed and constructed a remotely controlled crane implement for the SKITTER model.

  14. Lunar base activities and the lunar environment

    NASA Astrophysics Data System (ADS)

    Vondrak, Richard R.

    1992-09-01

    The Moon is an attractive site for astronomical observatories and other facilities because of the absence of a substantial lunar atmosphere and the stability of the lunar surface. The present lunar atmosphere is sufficiently transparent that there is no significant image distortion due to absorption or refraction. This thin atmosphere results from a combination of small sources and prompt losses. The major source that has been identified is the solar wind, whose total mass input into the lunar atmosphere is approximately 50 gm/sec. The major components of the solar wind are light elements (H and He) that promptly escape from the lunar surface by exospheric evaporation (Jeans' escape). The principal atmospheric loss mechanism for heavier gases is photoionization within a period of weeks to months, followed by immediate loss to the solar wind. Lunar base activities will modify the lunar atmosphere if gas is released at a larger rate than that now occurring naturally. Possible gas sources are rocket exhaust, processing of lunar materials, venting of pressurized volumes, and astronaut life support systems. For even modest lunar base activity, such sources will substantially exceed natural sources, although effects are expected to be localized and transient. The Apollo database serves as a useful reference for both measurements of the natural lunar environment and its modification by lunar base activities.

  15. Lunar base activities and the lunar environment

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard R.

    1992-01-01

    The Moon is an attractive site for astronomical observatories and other facilities because of the absence of a substantial lunar atmosphere and the stability of the lunar surface. The present lunar atmosphere is sufficiently transparent that there is no significant image distortion due to absorption or refraction. This thin atmosphere results from a combination of small sources and prompt losses. The major source that has been identified is the solar wind, whose total mass input into the lunar atmosphere is approximately 50 gm/sec. The major components of the solar wind are light elements (H and He) that promptly escape from the lunar surface by exospheric evaporation (Jeans' escape). The principal atmospheric loss mechanism for heavier gases is photoionization within a period of weeks to months, followed by immediate loss to the solar wind. Lunar base activities will modify the lunar atmosphere if gas is released at a larger rate than that now occurring naturally. Possible gas sources are rocket exhaust, processing of lunar materials, venting of pressurized volumes, and astronaut life support systems. For even modest lunar base activity, such sources will substantially exceed natural sources, although effects are expected to be localized and transient. The Apollo database serves as a useful reference for both measurements of the natural lunar environment and its modification by lunar base activities.

  16. Fusion power from lunar resources

    SciTech Connect

    Kulcinski, G.L. . Fusion Technology Inst.); Schmitt, H.H.

    1992-07-01

    This paper reports that the moon contains an enormous energy source in {sup 3}He deposited by the solar wind. Fusion of only 100 kg of {sup 3}He with deuterium in thermonuclear fusion power plants can produce {gt} 1000 MW (electric) of electrical energy, and the lunar resource base is estimated at 1 {times} 10{sup 9} kg of {sup 3}He. This fuel can supply {gt}1000 yr of terrestrial electrical energy demand. The methods for extracting this fuel and the other solar wind volatiles are described. Alternate uses of D-{sup 3}He fusion in direct thrust rockets will enable more ambitious deep-space missions to be conducted. The capability of extracting hydrogen, water, nitrogen, and other carbon-containing molecules will open up the moon to a much greater level of human settlement than previously thought.

  17. A lunar construction shack vehicle: Final design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A lunar construction shack vehicle is a critical component in most of the plans proposed for the construction of a permanent base on the moon. The Selene Engineering Company (SEC) has developed a concept for this vehicle which is both innovative and practical. The design makes use of the most advanced technology available to meet the goals for a safe, versatile and durable habitat that will serve as a starting point for the initial phase of the construction of a permanent lunar base. This document outlines SEC's proposed design for a lander vehicle which will be fully self-sufficient and will provide for all necessary life support, including consumables and radiation protection, needed by the construction crew until they can complete the assembly of a more permanent habitat. Since it is highly likely that it will take more than one crew to complete the construction of a permanent lunar base, the design emphasis is on systems which can be easily maintained and resupplied and which will take a minimum of start up preparation by succeeding crews.

  18. Extraction of Water from Lunar Permafrost

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaukler, William

    2009-01-01

    Remote sensing indicates the presence of hydrogen rich regions associated with the lunar poles. The logical hypothesis is that there is cryogenically trapped water ice located in craters at the lunar poles. Some of the craters have been in permanent darkness for a billion years. The presence of water at the poles as well as other scientific advantages of a polar base, have influenced NASA plans for the lunar outpost. The lunar outpost has water and oxygen requirements on the order of 1 ton per year scaling up to as much as 5 tons per year. Microwave heating of the frozen permafrost has unique advantages for water extraction. Proof of principle experiments have successfully demonstrated that microwaves will couple to the cryogenic soil in a vacuum and the sublimed water vapor can be successfully captured on a cold trap. Dielectric property measurements of lunar soil simulant have been measured. Microwave absorption and attenuation in lunar soil simulant has been correlated with measured dielectric properties. Future work will be discussed.

  19. Design of a lunar transportation system

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The establishment of lunar bases is the next logical step in the exploration of space. Permanent lunar bases will support scientific investigation, the industrialization of space, and the development of self-sufficiency on the Moon. Scientific investigation and research and development would lead to applications utilizing lunar material resources. By utilizing these resources, the industrialization of space can become a reality. The above two factors coupled with the development of key and enabling technologies would lead to achievement of self-sufficiency of the lunar base. Attention was focused on specific design(s) to be pursued during subsequent stages in advanced courses. Some of the objectives in the project included: (1) minimizing the transportation of construction material and fuel from earth, or maximizing the use of the lunar material; (2) use of novel materials and light weight structures; (3) use of new manufacturing methods and technology such as magnetically levitated, or superconducting materials; and (4) innovative concepts of effectively utilizing the exotic lunar conditions, i.e. high thermal gradients, lack of atmosphere, zero wind forces, and lower gravity, etc.

  20. LCROSS: Lunar CRater Observation and Sensing Satellite Project

    NASA Technical Reports Server (NTRS)

    Marmie, John

    2010-01-01

    This slide presentation reviews the success of the Lunar Crater Observation and Sensing Satellite (LCROSS) project. The LCROSS mission science goals was to: (1) Confirm the presence or absence of water ice in a permanently shadowed region on the Moon (2) Identify the form/state of hydrogen observed by at the lunar poles (3) Quantify, if present, the amount of water in the lunar regolith, with respect to hydrogen concentrations (4) Characterize the lunar regolith within a permanently shadowed crater on the Moon. The mission confirmed the presence of water ice on the moon by impacting a part of the spent Centaur upper stage into the Cabeus crater.. The presentation includes pictures of the development of the spacecraft, testing, launch, impact site, impact and a section of what the author called "Lunacy" which showed joking cartoons.

  1. Lunar architecture

    NASA Astrophysics Data System (ADS)

    Malek, Shahin

    The climatic conditions of Earth and human trends for discover the space, make these questions that how we can design a camp on the moon as a base for traveling in space or how we can live on that condition and what kind of camp we can have on the moon?!The first step in this way was creating the International Space Station on earth's orbit. (International Space Station, 2001) Settlement on moon was proposed since knowledge about it growth. Regarding to new technologies, architects parallel to engineers are trying to design and invent new ways for human settlement on moon because of its suitable conditions. Proposed habitats range from the actual spacecraft lander or their used fuel tanks, to inflatable modules of various shapes. Due to the researches until now, the first requirement for the living on other planets is water existence for human breath and fuel and after that we need to solve air pressure and gravity difference. (Colonization of the Moon, 2004) The Goal of this research is to answer to the question which is designing a camp on the Moon. But for this goal, there is need to think and study more about the subject and its factors. With qualitative and comparative methodology, the conditions of the Earth and the Moon will be comparing in different categories such as nature, human and design. I think that after water discovery, with using local materials and appropriate building design which can be on surface or underground, along with new sciences, we can plan for long period living on Moon. The important point is to consider Function, Form and Structure together in designing on the Moon. References: Colonization of the Moon. (2004). Retrieved December 14, 2009, from Wikipedia: http://en.wikipedia.org/wiki/Colonizationo ft heM oonStructure, InternationalSpaceStation.(2001).Retrie http : //en.wikipedia.org/wiki/InternationalS paceS tation

  2. Lunar Paleomagnetism

    NASA Astrophysics Data System (ADS)

    Fuller, M.; Weiss, B. P.

    2013-05-01

    We have completed a reanalysis of the old Apollo paleomagnetic data using modern techniques of analysis and presentation. The principal result from the mare basalts is that several samples, such as 10020, 10017, 10049, and 70215 appear to be carrying primary natural remanent magnetization (NRM) acquired on the Moon as they cooled initially on the lunar surface, but in almost every case alternating field (AF) demagnetization was not carried out to strong enough fields to isolate this primary magnetization properly. When modern measurements are available, the agreement between old Apollo era data and new data is strikingly good. It also appears that the fields recorded by the basalts of Apollo 11 and Apollo 17 are stronger than those recorded by Apollo 12 and Apollo 15 basalts. Indeed it is not clear that any reliable records have come from these younger samples. The histories of breccias are more complicated than those of mare basalts and their NRM is harder to interpret. For regolith breccias, interpretations are complicated because of their strong superparamagnetic components and their complex, polymict lithologies. It would be unwise to use these samples for paleointensity estimates unless one can be sure that the NRM was entirely acquired as TRM during cooling after the shock event, as may be the case for 15498. In contrast, the melt rock and melt breccias, which include samples formed at high temperatures far above the Curie point of any magnetic carriers, have an excellent chance of recording lunar fields faithfully as they cool. This cooling may have taken place in a melt pool in a simple crater, or in a melt layer in a complex crater. Such samples would then have been excavated and deposited in the regolith and some appear to have recorded strong fields, but more work needs to be done to test this suggestion. Other melt rocks and melt breccias have had more complicated histories and appear to have been deposited in ejecta blankets, where final cooling took place. A useful, if imperfect, analogy may be pyroclastic volcanic deposits. The samples from the Apollo 17 layered boulder 1 at station 2 provide an example of this history. If a pTRM can be related to this secondary cooling, then we may recover a record of the field during this cooling. Samples such as 62235 and 72215 may provide just such a record, with Apollo-era and modern estimates of fields of the order of around 100 microT. Explaining such high paleointensities so late in lunar history is a major challenge to dynamo models based on cooling of the core, given its small size, and has led to alternative models.

  3. Lunar orbiting prospector

    NASA Technical Reports Server (NTRS)

    1988-01-01

    One of the prime reasons for establishing a manned lunar presence is the possibility of using the potential lunar resources. The Lunar Orbital Prospector (LOP) is a lunar orbiting platform whose mission is to prospect and explore the Moon from orbit in support of early lunar colonization and exploitation efforts. The LOP mission is divided into three primary phases: transport from Earth to low lunar orbit (LLO), operation in lunar orbit, and platform servicing in lunar orbit. The platform alters its orbit to obtain the desired surface viewing, and the orbit can be changed periodically as needed. After completion of the inital remote sensing mission, more ambitious and/or complicated prospecting and exploration missions can be contemplated. A refueled propulsion module, updated instruments, or additional remote sensing packages can be flown up from the lunar base to the platform.

  4. Lunar resources: Toward living off the lunar land

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Colson, Russell O.

    1990-01-01

    The following topics are addressed: (1) lunar resources and surface conditions; (2) guidelines for early lunar technologies; (3) the lunar farm; (4) the lunar filling station; (5) lunar construction materials; (6) the lunar power company; (7) the electrolysis of molten silicate as a means of producing oxygen and metals for use on the Moon and in near-Earth space.

  5. Planetary science: constant illumination at the lunar north pole.

    PubMed

    Bussey, D Ben J; Fristad, Kirsten E; Schenk, Paul M; Robinson, Mark S; Spudis, Paul D

    2005-04-14

    Images returned by the spacecraft Clementine have been used to produce a quantitative illumination map of the north pole of the Moon, revealing the percentage of time that points on the surface are illuminated during the lunar day. We have used this map to identify areas that are constantly illuminated during a lunar day in summer and which may therefore be in permanent sunlight. All are located on the northern rim of Peary crater, close to the north pole. Permanently sunlit areas represent prime locations for lunar outpost sites as they have abundant solar energy, are relatively benign thermally (when compared with equatorial regions), and are close to permanently shadowed regions that may contain water ice. PMID:15829952

  6. Lunar magnetism

    NASA Astrophysics Data System (ADS)

    Fuller, M.; Weiss, B.

    2013-09-01

    We have completed a reexamination of the old Apollo paleomagnetic data using modern techniques of analysis and presentation. When new measurements are available, the agreement between them and the old Apollo era data is strikingly good. The principal result is that several samples appear to be carrying primary natural remanent magnetization (NRM) acquired on the Moon and recording an early lunar dynamo field. This field reached levels greater than the present Earth's surface field. It may have switched on by 4.2 Ga and lasted for several hundred million years, but this suggestion requires additional testing. Such a history for a dynamo in so small a core may be problematic for a convection driven core and require another driving force.

  7. A bootstrap lunar base: Preliminary design review 2

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A bootstrap lunar base is the gateway to manned solar system exploration and requires new ideas and new designs on the cutting edge of technology. A preliminary design for a Bootstrap Lunar Base, the second provided by this contractor, is presented. An overview of the work completed is discussed as well as the technical, management, and cost strategies to complete the program requirements. The lunar base design stresses the transforming capabilities of its lander vehicles to aid in base construction. The design also emphasizes modularity and expandability in the base configuration to support the long-term goals of scientific research and profitable lunar resource exploitation. To successfully construct, develop, and inhabit a permanent lunar base, however, several technological advancements must first be realized. Some of these technological advancements are also discussed.

  8. Pyroclastic deposits as sites for lunar bases

    NASA Technical Reports Server (NTRS)

    Hawke, B. Ray; Clark, Beth; Coombs, C. R.

    1990-01-01

    Ilmenite-rich pyroclastic deposits may prove to be excellent sites for the establishment of a permanent lunar base for mining purposes. A wide variety of potentially useful by-products could be produced (e.g., Fe, Ti, H, N, C, S, Cu, Zn, Cd, Bi, and Pb). A number of ilmenite-rich pyroclastic deposits of regional extent has been studied. The physical properties of the regional pyroclastic units have important implications for lunar construction. These extensive, deep deposits of ilmenite-rich pyroclastic material are block-free and uncontaminated; they could be easily excavated and would be ideal for lunar mining operations. These deep, loose pyroclastic deposits would also be ideal for rapidly covering base modules with an adequate thickness of shielding.

  9. Lunar base and Mars base design projects

    NASA Technical Reports Server (NTRS)

    Amos, J.; Campbell, J.; Hudson, C.; Kenny, E.; Markward, D.; Pham, C.; Wolf, C.

    1989-01-01

    The space design classes at the University of Texas at Austin undertook seven projects in support of the NASA/USRA advanced space design program during the 1988-89 year. A total of 51 students, including 5 graduate students, participated in the design efforts. Four projects were done within the Aerospace Engineering (ASE) design program and three within the Mechanical Engineering (ME) program. Both lunar base and Mars base design efforts were studied, and the specific projects were as follows: Lunar Crew Emergency Rescue Vehicle (ASE); Mars Logistics Lander Convertible to a Rocket Hopper (ME); A Robotically Constructed Production and Supply Base on Phobos (ASE); A Mars/Phobos Transportation System (ASE); Manned Base Design and Related Construction Issues for Mars/Phobos Mission (ME); and Health Care Needs for a Lunar Colony and Design of Permanent Medical Facility (ME).

  10. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview

    USGS Publications Warehouse

    Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; Caplinger, M.A.; Ghaemi, F.T.; Schaffner, J.A.; Malin, M.C.; Mahanti, P.; Bartels, A.; Anderson, J.; Tran, T.N.; Eliason, E.M.; McEwen, A.S.; Turtle, E.; Jolliff, B.L.; Hiesinger, H.

    2010-01-01

    The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) and Narrow Angle Cameras (NACs) are on the NASA Lunar Reconnaissance Orbiter (LRO). The WAC is a 7-color push-frame camera (100 and 400 m/pixel visible and UV, respectively), while the two NACs are monochrome narrow-angle linescan imagers (0.5 m/pixel). The primary mission of LRO is to obtain measurements of the Moon that will enable future lunar human exploration. The overarching goals of the LROC investigation include landing site identification and certification, mapping of permanently polar shadowed and sunlit regions, meter-scale mapping of polar regions, global multispectral imaging, a global morphology base map, characterization of regolith properties, and determination of current impact hazards.

  11. Genesis lunar outpost: An evolutionary lunar habitat

    NASA Technical Reports Server (NTRS)

    Moore, Gary T. (Compiler); Baschiera, Dino; Fieber, Joe; Moths, Janis

    1990-01-01

    Students at the University of Wisconsin-Milwaukee Department of Agriculture undertook a series of studies of lunar habitats during the 1989 to 1990 academic year. Undergraduate students from architecture and mechanical and structural engineering with backgrounds in interior design, biology and construction technology were involved in a seminar in the fall semester followed by a design studio in the spring. The studies resulted in three design alternatives for lunar habitation and an integrated design for an early stage lunar outpost.

  12. Lunar Crustal History Recorded in Lunar Anorthosites

    NASA Technical Reports Server (NTRS)

    Nyquist, Laurence E.; Shih, C.-Y.; Reese, D.; Park, J.; Bogard. D.; Garrison, D.; Yamaguchi, A.

    2010-01-01

    Anorthosites occur ubiquitously within the lunar crust at depths of 3-30 km in apparent confirmation of the Lunar Magma Ocean (LMO) hypothesis. We have dated lunar anorthosite 67075, a Feldspathic Fragmental Breccia (FFB) collected near the rim of North Ray Crater by the Sm-Nd and Rb-Sr techniques. We also have dated an anorthositic white clast (WC) in lunar meteorite Dhofar 908 by the Ar-39-Ar-40 technique and measured whole rock (WR) Sm-Nd data for a companion sample. We discuss the significance of the ages determined for these and other anorthosites for the early magmatic and bombardment history of the moon.

  13. Material Damage from Impacts of Lunar Soil Particles Ejected by the Rocket Exhaust of Landing Spacecraft

    NASA Technical Reports Server (NTRS)

    Wittbrodt, Audelia C.; Metzger, Philip T.

    2008-01-01

    This paper details the experimentation of lunar stimulant sandblasting. This was done to understand the damage that landing spacecraft on the moon will have to a permanent lunar outpost. The sandblasting was done with JSC-1A onto glass coupons. Correlations between the velocity and the damage done to the glass were not found. Reasons for this and future analyses are discussed.

  14. 48 CFR 49.107 - Audit of prime contract settlement proposals and subcontract settlements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... settlement proposals and subcontract settlements. 49.107 Section 49.107 Federal Acquisition Regulations....107 Audit of prime contract settlement proposals and subcontract settlements. (a) The TCO shall refer... TCO shall refer subcontract settlements received for approval or ratification to the appropriate...

  15. 48 CFR 49.107 - Audit of prime contract settlement proposals and subcontract settlements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... settlement proposals and subcontract settlements. 49.107 Section 49.107 Federal Acquisition Regulations....107 Audit of prime contract settlement proposals and subcontract settlements. (a) The TCO shall refer... TCO shall refer subcontract settlements received for approval or ratification to the appropriate...

  16. 48 CFR 49.107 - Audit of prime contract settlement proposals and subcontract settlements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... settlement proposals and subcontract settlements. 49.107 Section 49.107 Federal Acquisition Regulations....107 Audit of prime contract settlement proposals and subcontract settlements. (a) The TCO shall refer... TCO shall refer subcontract settlements received for approval or ratification to the appropriate...

  17. 48 CFR 49.107 - Audit of prime contract settlement proposals and subcontract settlements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... settlement proposals and subcontract settlements. 49.107 Section 49.107 Federal Acquisition Regulations....107 Audit of prime contract settlement proposals and subcontract settlements. (a) The TCO shall refer... TCO shall refer subcontract settlements received for approval or ratification to the appropriate...

  18. 48 CFR 49.107 - Audit of prime contract settlement proposals and subcontract settlements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... settlement proposals and subcontract settlements. 49.107 Section 49.107 Federal Acquisition Regulations....107 Audit of prime contract settlement proposals and subcontract settlements. (a) The TCO shall refer... TCO shall refer subcontract settlements received for approval or ratification to the appropriate...

  19. Ground Cracking and Differential Settlement

    USGS Multimedia Gallery

    Ground cracking and differential settlement dueg to liquefaction of beach and Salinas River deposits damaged approach and abutment of bridge linking Moss Landing spit to the mainland, near Moss Landing Marine Laboratory....

  20. Lunar & Planetary Science Conference.

    ERIC Educational Resources Information Center

    Warner, Jeffrey L.; And Others

    1982-01-01

    Summaries of different topics discussed at the Lunar and Planetary Science Conference are presented to provide updated information to nonplanetologists. Some topics include Venus, isotopes, chondrites, creation science, cosmic dust, cratering, moons and rings, igneous rocks, and lunar soil. (DC)

  1. Lunar Module Ascent Stage

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Lunar Module 'Spider' ascent stage is photographed from the Command/Service Module on the fifth day of the Apollo 9 earth-orbital mission. The Lunar Module's descent stage had already been jettisoned.

  2. First Lunar Outpost support study

    NASA Technical Reports Server (NTRS)

    Bartz, Christopher; Cook, John; Rusingizandekwe, Jean-Luc

    1993-01-01

    The First Lunar Outpost (FLO) is the first manned step in the accomplishment of the Space Exploration Initiative, the Vice President's directive to NASA on the 20th anniversary of the Apollo moon landing. FLO's broad objectives are the establishment of a permanent human presence on the moon, supporting the utilization of extraterrestrial resources in a long-term, sustained program. The primary objective is to emplace and validate the first elements of a man tended outpost on the lunar surface to provide the basis for: (1) establishing, maintaining and expanding human activities and influence across the surface; (2) establishing, maintaining and enhancing human safety and productivity; (3) accommodating space transportation operations to and from the surface; (4) accommodating production of scientific information; (5) exploiting in-situ resources. Secondary objectives are: (1) to conduct local, small scale science (including life science); (2) In-situ resource utilization (ISRU) demonstrations; (3) engineering and operations tests; (4) to characterize the local environment; and (5) to explore locally. The current work is part of ongoing research at the Sasakawa International Center for Space Architecture supporting NASA's First Lunar Outpost initiative. Research at SICSA supporting the First Lunar Outpost initiative has been funded through the Space Exploration Initiatives office at Johnson Space Center. The objectives of the current study are to further develop a module concept from an evaluation of volumetric and programmatic requirements, and pursue a high fidelity design of this concept, with the intention of providing a high fidelity design mockup to research planetary design issues and evaluate future design concepts.

  3. Apollo lunar sounder experiment

    USGS Publications Warehouse

    Phillips, R.J.; Adams, G.F.; Brown, W.E., Jr.; Eggleton, R.E.; Jackson, P.; Jordan, R.; Linlor, W.I.; Peeples, W.J.; Porcello, L.J.; Ryu, J.; Schaber, G.; Sill, W.R.; Thompson, T.W.; Ward, S.H.; Zelenka, J.S.

    1973-01-01

    The scientific objectives of the Apollo lunar sounder experiment (ALSE) are (1) mapping of subsurface electrical conductivity structure to infer geological structure, (2) surface profiling to determine lunar topographic variations, (3) surface imaging, and (4) measuring galactic electromagnetic radiation in the lunar environment. The ALSE was a three-frequency, wide-band, coherent radar system operated from lunar orbit during the Apollo 17 mission.

  4. Russian Lunar Space Program

    NASA Astrophysics Data System (ADS)

    Zelenyi, Lev; Petrukovich, Anatoly; Khartov, Victor V.; Dolgopolov, Vladimir; Mitrofanov, Igor; Martunov, M.; Lukianchikov, A.; Shevchenko, Vladislav

    Russia had a great number of “firsts” in Lunar Studies (first soft landing, first pictures of the dark side of the moon, first sample return, first rover). Now after a long break the focus of Russian Space Program is again aimed to the lunar science investigations. These investigations have two aims: 1) to get answers to a principal questions of lunar formation and evolution, search for volatiles and regions with subsurface lunar permafrost, studies of lunar dust, electrostatic fields and magnetic anomalies. 2) Preparation to Lunar Exploration stage and search for most promising sites for future lunar habitable scientific stations. First stage of Russian Lunar program during this decade of 2 Lunar includes launches Landers and one Lunar orbiter, discussed in a preceding talks. Further steps during the next decade are related, first of all, with the cryogenic lunar sample return from a certain locations, hear South (or North ) poles, which according to the analysis of orbital observations are enriched by the subsurface water ice inclusions. Next steps, which are planned now are transitional to the exploration stage: delivery of a “ heavy rover“ to the specific site (thoroughly investigated during previous stages), accomplishment of technological experiments on the mitigation of lunar dust and space radiation hazards, simple initial experiments on radioastronomy and cosmic ray studies. It is a long and complicated path to go and quite naturally Russia considers that all important steps on this way will be done in international partnership.

  5. Lunar Module Communications

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael A.

    2009-01-01

    This slide presentation reviews the Apollo lunar module communications. It describes several changes in terminology from the Apollo era to more recent terms. It reviews: (1) Lunar Module Antennas and Functions (2). Earth Line of Sight Communications Links (3) No Earth Line of Sight Communications Links (4) Lunar Surface Communications Links (5) Signal-Processing Assembly (6) Instrumentation System (7) Some Communications Problems Encountered

  6. Lunar sample analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.

    1978-01-01

    Flameless atomic abosrption, X-ray photoemission spectroscopy, ferromagnetic resonance, scanning electron microscopy, and Moessbauer spectroscopy were used to investigate the evolution of the lunar regolith, the transport of volatile trace metals, and the surface composition of lunar samples. The development of a model for lunar volcanic eruptions is also discussed.

  7. Solar lunar power

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1994-01-01

    Current and projected technology is assessed for photovoltaic power for a lunar base. The following topics are discussed: requirements for power during the lunar day and night; solar cell efficiencies, specific power, temperature sensitivity, and availability; storage options for the lunar night; array and system integration; the potential for in situ production of photovoltaic arrays and storage medium.

  8. Autonomous Optical Lunar Navigation

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; Crouse, Brian; D'souza, Chris

    2009-01-01

    The performance of optical autonomous navigation is investigated for low lunar orbits and for high elliptical lunar orbits. Various options for employing the camera measurements are presented and compared. Strategies for improving navigation performance are developed and applied to the Orion vehicle lunar mission

  9. Moonport: Transportation node in lunar orbit

    NASA Technical Reports Server (NTRS)

    1987-01-01

    An orbital transporation system between the Earth and Moon was designed. The design work focused on the requirements and configuration of an orbiting lunar base. The design utilized current Space Station technologies, but also focused on the specific requirements involved with a permanently manned, orbiting lunar station. A model of the recommended configuration was constructed. In order to analyze Moonport activity and requirements, a traffic model was designed, defining traffic between the lunar port, or Moonport and low Earth orbit. Also, a lunar base model was used to estimate requirements of the surface base on Moonport traffic and operations. A study was conducted to compare Moonport traffic and operations based in low lunar orbit and the L (sub 2) equilibrium point, behind the Moon. The study compared delta-V requirements to each location and possible payload deliveries to low Earth orbit from each location. Products of the Moonport location study included number of flights annually to Moonport, net payload delivery to low Earth orbit, and Moonport storage requirement.

  10. Design of a lunar oxygen production plant

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Ramalingam

    1990-01-01

    To achieve permanent human presence and activity on the moon, oxygen is required for both life support and propulsion. Lunar oxygen production using resources existing on the moon will reduce or eliminate the need to transport liquid oxygen from earth. In addition, the co-products of oxygen production will provide metals, structural ceramics, and other volatile compounds. This will enable development of even greater self-sufficiency as the lunar outpost evolves. Ilmenite is the most abundant metal-oxide mineral in the lunar regolith. A process involving the reaction of ilmenite with hydrogen at 1000 C to produce water, followed by the electrolysis of this water to provide oxygen and recycle the hydrogen has been explored. The objective of this 1990 Summer Faculty Project was to design a lunar oxygen-production plant to provide 5 metric tons of liquid oxygen per year from lunar soil. The results of this study describe the size and mass of the equipment, the power needs, feedstock quantity and the engineering details of the plant.

  11. Design of a lunar oxygen production plant

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Ramalingam

    1990-12-01

    To achieve permanent human presence and activity on the moon, oxygen is required for both life support and propulsion. Lunar oxygen production using resources existing on the moon will reduce or eliminate the need to transport liquid oxygen from earth. In addition, the co-products of oxygen production will provide metals, structural ceramics, and other volatile compounds. This will enable development of even greater self-sufficiency as the lunar outpost evolves. Ilmenite is the most abundant metal-oxide mineral in the lunar regolith. A process involving the reaction of ilmenite with hydrogen at 1000 C to produce water, followed by the electrolysis of this water to provide oxygen and recycle the hydrogen has been explored. The objective of this 1990 Summer Faculty Project was to design a lunar oxygen-production plant to provide 5 metric tons of liquid oxygen per year from lunar soil. The results of this study describe the size and mass of the equipment, the power needs, feedstock quantity and the engineering details of the plant.

  12. Design of a lunar surface structure

    NASA Astrophysics Data System (ADS)

    Mottaghi, Sohrob

    The next step for manned exploration and settlement is a return to the Moon. In such a return, the most challenging task is the construction of structures for habitation, considering the Moon's hostile environment. Therefore the question is: What is the best way to erect habitable structures on the lunar surface? Given the cost associated with bringing material to the Moon, In-Situ Resource Utilization (ISRU) is viewed by most as the basis for a successful manned exploration and settlement of the Solar system. Along these lines, we propose an advanced concept where the use of freeform fabrication technologies by autonomous mini-robots can form the basis for habitable lunar structures. Also, locally-available magnesium is proposed as the structural material. While it is one of the most pervasive metals in the regolith, magnesium has been only suggested only briefly as a viable option in the past. Therefore, a study has been conducted on magnesium and its alloys, taking into account the availability of the alloying elements on the Moon. An igloo-shaped magnesium structure, covered by sandbags of regolith shielding and supported on a sintered regolith foundation, is considered as a potential design of a lunar base, as well as the test bed for the proposed vision. Three studies are carried out: First a static analysis is conducted which proves the feasibility of the proposed material and method. Second, a thermal analysis is carried out to study the effect of the regolith shielding as well as the sensitivity of such designs to measurement uncertainties of regolith and sintered thermal properties. The lunar thermal environment is modeled for a potential site at 88º latitude in the lunar South Pole Region. Our analysis shows that the uncertainties are in an acceptable range where a three-meter thick shield is considered. Also, the required capacity of a thermal rejection system is estimated, choosing the thermal loads to be those of the Space Station modules. In the third study, a seismic model based on best available data has been developed and applied to our typical structure to assess the vulnerability of designs that ignore seismicity. Using random vibration and modal superposition methods, the structural response to a lunar seismic event of 7 Richter magnitude indicates that the seismic risk is very low. However, it must be considered for certain types of structural designs.

  13. Evolution of lunar polar ice stability

    NASA Astrophysics Data System (ADS)

    Siegler, Matt; Paige, David; Williams, Jean-Pierre; Bills, Bruce

    2015-07-01

    The polar regions of the Moon and Mercury both have permanently shadowed environments, potentially capable of harboring ice (cold traps). While cold traps are likely to have been stable for nearly 4 Gyr on Mercury, this has not been the case for the Moon. Roughly 3 1 Gya, when the Moon is believed to have resided at approximately half of its current semimajor axis, lunar obliquities have been calculated to have reached as high as 77. At this time, lunar polar temperatures were much warmer and cold traps did not exist. Since that era, lunar obliquity has secularly decreased, creating environments over approximately the last 1-2 Gyr where ice could be stable (assuming near current recession rates). We argue that the paucity of ice in the present lunar cold traps is evidence that no cometary impact has occurred in the past billion years that is similar to the one(s) which are thought to have delivered volatiles to Mercury's poles. However, the present ice distribution may be compatible with a cometary impact if it occurred not in today's lunar thermal environment, but in a past one. If ice were delivered during a past epoch, the distribution of ground ice would be dictated not by present day temperatures, but rather by these ancient, warmer, temperatures. In this paper, we attempt to recreate the thermal environments for past lunar orbital configurations to characterize the history of lunar environments capable of harboring ice. We will develop models of ice stability and mobility to examine likely fossil remains of past ice delivery (e.g. a comet impact) that could be observed on the present Moon. We attempt to quantify when in the Moon's outward evolution areas first became stable for ice deposition and when ice mobility would have ceased.

  14. Lunar Dust-Tolerant Electrical Connector

    NASA Technical Reports Server (NTRS)

    Herman, Jason; Sadick, Shazad; Roberts, Dustyn

    2010-01-01

    An electrical connector was developed that is tolerant of the presence of lunar dust. Novel features of the connector include the use of a permeable membrane to act both as a dust barrier and as a wiper to limit the amount of dust that makes its way into the internal chamber of the connector. The development focused on the Constellation lunar extravehicular activity (EVA) spacesuit s portable life support system (PLSS) battery recharge connector; however, continued research is applying this technology to other lunar surface systems such as lunar rover subsystems and cryogenic fluid transfer connections for in-situ resource utilization (ISRU) applications. Lunar dust has been identified as a significant and present challenge in future exploration missions. In addition to posing contamination and health risks for human explorers, the interlocking, angular nature of lunar dust and its broad grain size distribution make it particularly harmful to mechanisms with which it may come into contact. All Apollo lunar missions experienced some degree of equipment failure because of dust, and it appears that dust accumulation on exposed material is unavoidable and difficult to reverse. Both human EVA and ISRU activities are on the mission horizon and are paramount to the establishment of a permanent human base on the Moon. Reusable and dust-tolerant connection mechanisms are a critical component for mission success. The need for dust-tolerant solutions is also seen in utility work and repair, mass transit applications, construction, mining, arctic and marine environments, diving (search and rescue), and various operations in deserts, where dust or sand clogging and coating different mechanisms and connections may render them difficult to operate or entirely inoperable.

  15. Lunar Polar Subsurface Temperature History

    NASA Astrophysics Data System (ADS)

    Siegler, M.; Bills, B.; Paige, D.

    2008-12-01

    We present thermal calculations for lunar polar subsurface locations to depths of 1 km in order to examine relative stability of water ice over lunar orbital history. The lunar orbit plane precesses in response to torques from the Earth and Sun. Cassini states are configurations in which the obliquity is adjusted so that the spin pole precesses about the orbit pole in the same period as the orbit pole precesses about the invariable pole. Such a state is the expected outcome of tidal dissipation within the Moon. Tidal dissipation within the Earth drives the lunar orbit outward, which in turn influences the rate of orbit plane precession. The Moon's original low obliquity Cassini state ceased to exist at a semimajor axis of about 34 Earth radii. Thereafter, the lunar spin pole reoriented into a new, higher obliquity Cassini state which slowly evolved into the Moon's current low obliquity [Ward, 1975; Siegler et al, 2007]. During the transition, there was a brief period of even higher obliquity values (~70 degrees). The duration of this transition is not well constrained, as it depends on the dissipation rate within the Moon at that time, but was likely of order 104-105 years. Though it is clear the lunar surface environment would be thermally unstable for ice during this transition, the same is not necessarily true for the polar subsurface. Furthermore, the period before this transition may have been thermally suitable for collecting volatiles in the near surface. It is therefore a worthwhile study to explore where early near surface ice might have relocated in response to orbital forcing. Here we relate a modeled subsurface thermal response to surface temperature forcing for a calculated lunar spin pole history. We examine the cases within and surrounding an idealized, currently shadowed, near polar crater that received direct illumination in earlier orbital epochs. We show depths at which temperatures would have provided a safe haven for ice if it were present and comment on its mobility. One of the motivations of this study is to understand the contrast in polar volatile inventories between the Moon and Mercury. Radar observations and thermal models support the conclusion that permanently shadowed polar craters of Mercury contain abundant near surface water ice. Thermal modeling shows that the Moon should also currently have near polar environments capable of preserving surface ice [Vasavada et al, 1999]. However, there is little conclusive evidence for surface lunar ice [Campbell et al, 2006]. A plausible explanation for this is that both bodies once had ice, but differing obliquity histories made lunar surface ice unstable and mobile, while mercurian ice remained unchanged. The present obliquity of Mercury is small, and has likely always been so. In contrast, the Moon experienced this period of very high obliquity, during which presently shadowed polar regions would have been fully illuminated.

  16. Design of a lunar transportation system, volume 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Spring 1990 Introduction to Design class was asked to conceptually design second generation lunar vehicles and equipment as a semester design project. A brief summary of four of the final projects, is presented. The designs were to facilitate the transportation of personnel and materials. The eight topics to choose from included flying vehicles, ground based vehicles, robotic arms, and life support systems. A lunar flying vehicle that uses clean propellants for propulsion is examined. A design that will not contribute to the considerable amount of caustic pollution already present in the sparse lunar atmosphere is addressed by way of ballistic flight techniques. A second generation redesign of the current Extra Vehicular Activity (EVA) suit to increase operating time, safety, and efficiency is also addressed. A separate life support system is also designed to be permanently attached to the lunar rover. The two systems would interact through the use of an umbilical cord connection. A ground based vehicle which will travel for greater distances than a 37.5 kilometer radius from a base on the lunar surface was designed. The vehicle is pressurized due to the fact that existing lunar rovers are limited by the EVA suits currently in use. A robotic arm for use at lunar bases or on roving vehicles on the lunar surface was designed. The arm was originally designed as a specimen gathering device, but it can be used for a wide range of tasks through the use of various attachments.

  17. A quasi-economic role for lunar science

    SciTech Connect

    Jones, E.M.

    1989-01-01

    In broad economic terms, the development of lunar products will begin with a sequence of technology, production, and delivery demonstrations which will have to precede the emergence of markets. Economically viable products will tend to be those for which the sum of production and transport costs are lower for lunar suppliers than for terrestrial suppliers. As long as lunar production costs exceed terrestrial production costs -- as will be the case for most lunar products until such time as lunar development has reached a mature stage -- the most viable industries will be those producing low-tech products for lunar markets. The scale of initial lunar markets will depend on the size of a lunar base and/or its rate of growth. For a given level of public support, maximum base size can be achieved through the conduct, at the base, of a vigorous program of scientific and engineering research making use of as much local production and as many permanently-resident support staff as feasible. 5 refs.

  18. In-Situ Propellant Supplied Lunar Lander Concept

    NASA Astrophysics Data System (ADS)

    Donahue, Benjamin; Maulsby, Curtis

    2008-01-01

    Future NASA and commercial Lunar missions will require innovative spacecraft configurations incorporating reliable, sustainable propulsion, propellant storage, power and crew life support technologies that can evolve into long duration, partially autonomous systems that can be used to emplace and sustain the massive supplies required for a permanently occupied lunar base. Ambitious surface science missions will require efficient Lunar transfer systems to provide the consumables, science equipment, energy generation systems, habitation systems and crew provisions necessary for lengthy tours on the surface. Lunar lander descent and ascent stages become significantly more efficient when they can be refueled on the Lunar surface and operated numerous times. Landers enabled by Lunar In-Situ Propellant Production (ISPP) facilities will greatly ease constraints on spacecraft mass and payload delivery capability, and may operate much more affordably (in the long term) then landers that are dependant on Earth supplied propellants. In this paper, a Lander concept that leverages ISPP is described and its performance is quantified. Landers, operating as sortie vehicles from Low Lunar Orbit, with efficiencies facilitated by ISPP will enable economical utilization and enhancements that will provide increasingly valuable science yields from Lunar Bases.

  19. The lunar quarantine program

    NASA Technical Reports Server (NTRS)

    Johnston, R. S.; Mason, J. A.; Wooley, B. C.; Mccollum, G. W.; Mieszkuc, B. J.

    1974-01-01

    The lunar quarantine program was designed to ensure that return of lunar material represented no threat to the public health, to agriculture, or to other living resources. It established definitely that no life exists on the moon. The crews of the three lunar quarantine missions, Apollo 11, 12, and 14, experienced no health problems as a result of their exposure to lunar samples. Plants and animals also showed no adverse effects. Stringent quarantine was terminated after Apollo 14, but lunar samples continued to be protected to guarantee that scientists would receive uncontaminated materials for study.

  20. Lunar and Planetary Science XXXV: Lunar Remote Sensing: Fire, Ice, and Regolith

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Lunar Remote Sensing: Fire, Ice, and Regolith" included the following:Compositional and Structural Study of the Aristarchus Plateau from Integrated UV-VIS-NIR Spectral Data; Clementine 2.7-?m Data: Mapping the Mare and Searching for Water; On the Search for Water at the Lunar Poles: Results of Forward Modeling of Permanently Shaded Areas and Lunar Prospector Measurements; Searching the Moon for Aluminous Mare Basalts Using Compositional Remote-Sensing Constraints I: Finding the Regions of Interest; Semi-automated Extraction of Contours from Lunar Topographic Maps; Basalts in Mare Humorum and S.E. Procellarum; The Hansteen and Helmet Volcanic Dome Regions on the Moon: Stratigraphy and Ages; Derivation of Elemental Abundance Maps at 15-km Spatial Resolution from the Merging of Clementine Optical and Lunar Prospector Geochemical Data; Remote Sensing and Geologic Studies of the Balmer Region of the Moon; Lava Flows in Mare Nubium and Mare Cognitum: A Geological History Based on Analysis of Multispectral Data; Development of Ground-based Lunar VIS/NEAR IR Spectral Imager; A BRDF Measurement Apparatus for Lab-based Samples; A New Source of High Resolution Lunar Images: Amateur Astronomers! ; Leakage of Gamma Rays and Neutrons from Thick Targets Bombarded by Energetic Protons; Progress on Reviving Lunar Orbiter: Scanning, Archiving, and Cartographic Processing at USGS; Modeling Lateral and Vertical Mixing by Impact Cratering with Applications for the Moon; Optical Maturity Study of Stuart#s Crater Candidate Impact; Evidence for Three Basins Beneath Oceanus Procellarum; and Ellipses of the South Pole-Aitken Basin: Implications for Basin Formation.

  1. Costs and benefits of lunar oxygen: Engineering, operations, and economics

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent; Woodcock, Gordon R.

    1991-01-01

    Oxygen is the most commonly discussed lunar resource. It will certainly not be the easiest to retrieve, but oxygen's fundamental place in propulsion and life support guarantees it continued attention as a prime candidate for early in situ resource utilization (ISRU). The findings are reviewed of recent investigation, sponsored by NASA-Ames, into the kinds of technologies, equipment, and scenarios (the engineering and operations costs) that will be required even to initiate lunar oxygen production. The infrastructure necessary to surround and support a viable oxygen-processing operation is explained. Selected details are used to illustrate the depth of technology challenges, extent of operations burdens, and complexity of decision linkages. Basic assumptions, and resulting timelines and mass manifests, are listed. These findings are combined with state-of-the-art knowledge of lunar and Mars propulsion options in simple economic input/output and internal-rate-of-return models, to compare production costs with performance benefits. Implications for three realistic scales of exploration architecture - expeditionary, aggressive science, and industrialization/settlement - are discussed. Conclusions are reached regarding the contextual conditions within which production of lunar oxygen (LLOX) is a reasonable activity. LLOX appears less useful for Mars missions than previously hoped. Its economical use in low Earth orbit hinges on production of lunar hydrogen as well. LLOX shows promise for lunar ascent/descent use, but that depends strongly on the plant mass required.

  2. The ESA Lunar Lander and the search for Lunar Volatiles

    NASA Astrophysics Data System (ADS)

    Morse, A. D.; Barber, S. J.; Pillinger, J. M.; Sheridan, S.; Wright, I. P.; Gibson, E. K.; Merrifield, J. A.; Waltham, N. R.; Waugh, L. J.; Pillinger, C. T.

    2011-10-01

    Following the Apollo era the moon was considered a volatile poor body. Samples collected from the Apollo missions contained only ppm levels of water formed by the interaction of the solar wind with the lunar regolith [1]. However more recent orbiter observations have indicated that water may exist as water ice in cold polar regions buried within craters at concentrations of a few wt. % [2]. Infrared images from M3 on Chandrayaan-1 have been interpreted as showing the presence of hydrated surface minerals with the ongoing hydroxyl/water process feeding cold polar traps. This has been supported by observation of ephemeral features termed "space dew" [3]. Meanwhile laboratory studies indicate that water could be present in appreciable quantities in lunar rocks [4] and could also have a cometary source [5]. The presence of sufficient quantities of volatiles could provide a resource which would simplify logistics for long term lunar missions. The European Space Agency (ESA's Directorate of Human Spaceflight and Operations) have provisionally scheduled a robotic mission to demonstrate key technologies to enable later human exploration. Planned for launch in 2018, the primary aim is for precise automated landing, with hazard avoidance, in zones which are almost constantly illuminated (e.g. at the edge of the Shackleton crater at the lunar south pole). These regions would enable the solar powered Lander to survive for long periods > 6 months, but require accurate navigation to within 200m. Although landing in an illuminated area, these regions are close to permanently shadowed volatile rich regions and the analysis of volatiles is a major science objective of the mission. The straw man payload includes provision for a Lunar Volatile and Resources Analysis Package (LVRAP). The authors have been commissioned by ESA to conduct an evaluation of possible technologies to be included in L-VRAP which can be included within the Lander payload. Scientific aims are to demonstrate the extraction of volatiles and determine the volatile inventory of the moon with a view for future In-Situ Resource Utilization (ISRU). Surface samples will be collected by a robotic arm with the possibility of a rover to collect more distant samples. The concentration, chemical and accurate isotopic ratios (D/H, 12C/13C, 15N/14N, 18O/16O and noble gases) of liberated volatiles will be determined, possibly using similar technology to the Philae comet lander of the Rosetta mission [6]. An additional aim is the monitoring of the chemical and isotopic composition of the tenuous lunar atmosphere [7] which will become contaminated by active human exploration. The lunar atmosphere will provide information on the processes involved in forming lunar volatiles and their concentration mechanisms. Modelling the effects of contamination from the Lander is an essential part of this study so that these can be recognized and minimized.

  3. The ISA accelerometer and Lunar science

    NASA Astrophysics Data System (ADS)

    Iafolla, Valerio; Fiorenza, Emiliano; Lefevre, Carlo; Massimo Lucchesi, David; Lucente, Marco; Magnafico, Carmelo; Milyukov, Vadim; Nozzoli, Sergio; Peron, Roberto; Santoli, Francesco

    2014-05-01

    In recent years the Moon has become again a target for exploration activities, as shown by many missions, performed, ongoing or foreseen. The reasons for this new wave are manifold. The knowledge of formation and evolution of the Moon to its current state is important in order to trace the overall history of Solar System. An effective driving factor is the possibility of building a human settlement on its surface, with all the related issues of environment characterization, safety, resources, communication and navigation. Our natural satellite is also an important laboratory for fundamental physics: Lunar Laser Ranging is continuing to provide important data for testing gravitation theories. All these topics are providing stimulus and inspirations for new experiments: in fact a wide variety of them has been proposed to be conducted on the lunar surface. ISA (Italian Spring Accelerometer) can provide an important tool for lunar studies. Thanks to its structure (three one-dimensional sensors assembled in a composite structure) it works both in-orbit and on-ground, with the same configuration. It can therefore be used onboard a spacecraft, as a support to a radio science mission, and on the surface of the Moon, as a seismometer. This second option in particular has been the subject of preliminary studies and has been proposed as a candidate to be hosted on NASA ILN (International Lunar Network) and ESA First Lunar Lander. ISA-S (ISA-Seismometer) has a very high sensitivity, which has already been demonstrated with long time periods of usage on Earth. After a description of the instrument, its use in the context of landing missions will be described and discussed, giving emphasis on its integration with the other components of the systems.

  4. Applicability of the beamed power concept to lunar rovers, construction, mining, explorers and other mobile equipment

    NASA Technical Reports Server (NTRS)

    Christian, Jose L., Jr.

    1989-01-01

    Some of the technical issues dealing with the feasibility of high power (10 Kw to 100 Kw) mobile manned equipment for settlement, exploration and exploitation of Lunar resources are addressed. Short range mining/construction equipment, a moderate range (50 Km) exploration vehicle, and an unlimited range explorer are discussed.

  5. Our Lunar Destiny: Creating a Lunar Economy

    NASA Astrophysics Data System (ADS)

    Rohwer, Christopher J.

    2000-01-01

    "Our Lunar Destiny: Creating a Lunar Economy" supports a vision of people moving freely and economically between the earth and the Moon in an expansive space and lunar economy. It makes the economic case for the creation of a lunar space economy and projects the business plan that will make the venture an economic success. In addition, this paper argues that this vision can be created and sustained only by private enterprise and the legal right of private property in space and on the Moon. Finally, this paper advocates the use of lunar land grants as the key to unleashing the needed capital and the economic power of private enterprise in the creation of a 21st century lunar space economy. It is clear that the history of our United States economic system proves the value of private property rights in the creation of any new economy. It also teaches us that the successful development of new frontiers-those that provide economic opportunity for freedom-loving people-are frontiers that encourage, respect and protect the possession of private property and the fruits of labor and industry. Any new 21st century space and lunar economy should therefore be founded on this same principle.

  6. Settlement characteristics of major infrastructures in Shanghai

    NASA Astrophysics Data System (ADS)

    Jiao, X.; Yan, X. X.; Wang, H. M.

    2015-11-01

    Critical infrastructures in Shanghai have undergone uneven settlement since their operation, which plays an important role in affecting the security of Shanghai. This paper, taking rail transportation as example, investigates settlement characteristics and influencing factors of this linear engineering, based on long-term settlement monitoring data. Results show that rail settlement is related to geological conditions, regional ground subsidence, surrounding construction activities and structural differences in the rail systems. In order to effectively decrease the impact of regional ground subsidence, a monitoring and early-warning mechanism for critical infrastructure is established by the administrative department and engineering operators, including monitoring network construction, settlement monitoring, information sharing, settlement warning, and so on.

  7. Lunar in-core thermionic nuclear reactor power system conceptual design

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Schmitz, Paul C.; Gallup, Donald R.

    1991-01-01

    This paper presents a conceptual design of a lunar in-core thermionic reactor power system. The concept consists of a thermionic reactor located in a lunar excavation with surface mounted waste heat radiators. The system was integrated with a proposed lunar base concept representative of recent NASA Space Exploration Initiative studies. The reference mission is a permanently-inhabited lunar base requiring a 550 kWe, 7 year life central power station. Performance parameters and assumptions were based on the Thermionic Fuel Element (TFE) Verification Program. Five design cases were analyzed ranging from conservative to advanced. The cases were selected to provide sensitivity effects on the achievement of TFE program goals.

  8. Lunar in-core thermionic nuclear reactor power system conceptual design

    SciTech Connect

    Mason, L.S. ); Schmitz, P.C. ); Gallup, D.R. )

    1991-01-05

    This paper presents a conceptual design of a lunar in-core thermionic reactor power system. The concept consists of a thermionic reactor located in a lunar excavation with surface mounted waste heat radiators. The system was integrated with a proposed lunar base concept representative of recent NASA Space Explortion Initiative studies. The reference mission is a permanently-inhabited lunar base requiring a 550 kWe, 7 year life central power station. Performance parameters and assumptions were based on the Thermionic Fuel Element (TFE) Verification Program. Five design cases were analyzed ranging from conservative to advanced. The cases were selected to provide sensitivity effects on the achievement of TFE program goals.

  9. NASA's Lunar Reconnaissance Orbiter Cameras (LROC)

    NASA Astrophysics Data System (ADS)

    Robinson, M.; McEwen, A.; Eliason, E.; Joliff, B.; Hiesinger, H.; Malin, M.; Thomas, P.; Turtle, E.; Brylow, S.

    The Lunar Reconnaissance Orbiter LRO mission is scheduled to launch in the fall of 2008 as part of NASA s Robotic Lunar Exploration Program and is the first spacecraft to be built as part of NASA s Vision for Space Exploration The orbiter will be equipped with seven scientific instrument packages one of which is LROC The Lunar Reconnaissance Orbiter Camera LROC has been designed to address two of LRO s primary measurement objectives landing site certification and monitoring of polar illumination In order to examine potential landing sites high-resolution images 0 5 m pixel will be used to assess meter-scale features near the pole and other regions on the lunar surface The LROC will also acquire 100 m pixel images of the polar regions of the Moon during each orbit for a year to identify areas of permanent shadow and permanent or near-permanent illumination In addition to these two main objectives the LROC team also plans to conduct meter-scale monitoring of polar regions under varying illumination angles acquire overlapping observations to enable derivation of meter-scale topography acquire global multispectral imaging to map ilmenite and other minerals derive a global morphology base map characterize regolith properties and determine current impact hazards by re-imaging areas covered by Apollo images to search for newly-formed impact craters The LROC is a modified version of the Mars Reconnaissance Orbiter s Context Camera and Mars Color Imager The LROC will be made up of four optical elements two identical narrow-angle telescopes

  10. Lunar base surface mission operations. Lunar Base Systems Study (LBSS) task 4.1

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The purpose was to perform an analysis of the surface operations associated with a human-tended lunar base. Specifically, the study defined surface elements and developed mission manifests for a selected base scenario, determined the nature of surface operations associated with this scenario, generated a preliminary crew extravehicular and intravehicular activity (EVA/IVA) time resource schedule for conducting the missions, and proposed concepts for utilizing remotely operated equipment to perform repetitious or hazardous surface tasks. The operations analysis was performed on a 6 year period of human-tended lunar base operation prior to permanent occupancy. The baseline scenario was derived from a modified version of the civil needs database (CNDB) scenario. This scenario emphasizes achievement of a limited set of science and exploration objectives while emplacing the minimum habitability elements required for a permanent base.

  11. 7 CFR 1434.19 - Settlement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... FOR HONEY § 1434.19 Settlement. The value of the settlement of loans shall be made by CCC on the... CCC and CCC shall have no obligation to pay such amount to any party. (b) With respect to honey...

  12. Orbital studies of lunar magnetism

    NASA Technical Reports Server (NTRS)

    Mcleod, M. G.; Coleman, P. J., Jr.

    1982-01-01

    Limitations of present lunar magnetic maps are considered. Optimal processing of satellite derived magnetic anomaly data is also considered. Studies of coastal and core geomagnetism are discussed. Lunar remanent and induced lunar magnetization are included.

  13. A primer in lunar geology

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor); Schultz, P. H. (Editor)

    1974-01-01

    Primary topics in lunar geology range from the evolution of the solar system to lunar photointerpretation, impact crater formation, and sampling to analyses on various Apollo lunar landing site geomorphologies.

  14. Power requirements for the first lunar outpost (FLO)

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.; Bozek, John M.

    1993-01-01

    NASA's Exploration Program Office is currently developing a preliminary reference mission description that lays the framework from which the nation can return to the Moon by the end of the decade. The First Lunar Outpost is the initial phase of establishing a permanent presence on the Moon and the next step of sending humans to Mars. Many systems required for missions to Mars will be verified on the Moon, while still accomplishing valuable lunar science and in-situ resource utilization (ISRU). Some of FLO's major accomplishments will be long duration habitation, extended surface roving (both piloted and teleoperated) and a suite of science experiments, including lunar resources extraction. Of equal challenge will be to provide long life, reliable power sources to meet the needs of a lunar mission.

  15. A short course in lunar geology for earth science instructors

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Shultz, P.

    1975-01-01

    A four-day short course in lunar geology was developed, leading to the publication of a primer in lunar geology. The course was offered to 22 sponsored participants (community college teachers) and to representatives from the Lunar Science Institute, Houston, Texas, and from the Educational Program Office of NASA-Ames, on April 25-28, 1974. A follow-up survey of the course participants was made in two steps: on the last day of the course, and one year later. In general, the participants felt that the course was well organized and that the speakers were effective. Most of the participants introduced some aspects of what they learned into their own teaching material. Finally, a well-panel display about 7 1/2 feet high and 16 feet long designed to acquaint the viewer with elementary facts of lunar geology was constructed and permanently installed at the Space Science Center of Foothill College.

  16. Lunar Crater Mini-Wakes: Structure, Variability, and Volatiles

    NASA Technical Reports Server (NTRS)

    Zimmerman, Michael I.; Jackson, T. L.; Farrell, W. M.; Stubbs, T. J.

    2012-01-01

    Within a permanently shadowed lunar crater the horizontal flow of solar wind is obstructed by upstream topography, forming a regional plasma mini-wake. In the present work kinetic simulations are utilized to investigate how the most prominent structural aspects of a crater mini-wake are modulated during passage of a solar storm. In addition, the simulated particle fluxes are coupled into an equivalent-circuit model of a roving astronaut,. including triboelectric charging due to frictional contact with the lunar regolith, to characterize charging of the astronaut suit during the various stages of the storm. In some cases, triboelectric charging of the astronaut suit becomes effectively perpetual, representing a critical engineering concern for roving within shadowed lunar regions. Finally, the present results suggest that wake structure plays a critical role in modulating the spatial distribution of volatiles at the lunar poles.

  17. 29 CFR 18.9 - Consent order or settlement; settlement judge procedure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 1 2014-07-01 2013-07-01 true Consent order or settlement; settlement judge procedure. 18.9 Section 18.9 Labor Office of the Secretary of Labor RULES OF PRACTICE AND PROCEDURE FOR ADMINISTRATIVE HEARINGS BEFORE THE OFFICE OF ADMINISTRATIVE LAW JUDGES General 18.9 Consent order or settlement; settlement judge procedure. (a) Generally....

  18. 29 CFR 18.9 - Consent order or settlement; settlement judge procedure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 1 2013-07-01 2013-07-01 false Consent order or settlement; settlement judge procedure. 18.9 Section 18.9 Labor Office of the Secretary of Labor RULES OF PRACTICE AND PROCEDURE FOR ADMINISTRATIVE HEARINGS BEFORE THE OFFICE OF ADMINISTRATIVE LAW JUDGES General 18.9 Consent order or settlement; settlement judge procedure. (a)...

  19. 48 CFR 1449.107 - Audit of prime contract settlement proposals and subcontract settlements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Audit of prime contract settlement proposals and subcontract settlements. 1449.107 Section 1449.107 Federal Acquisition Regulations....107 Audit of prime contract settlement proposals and subcontract settlements. Requests for...

  20. 48 CFR 1449.107 - Audit of prime contract settlement proposals and subcontract settlements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Audit of prime contract settlement proposals and subcontract settlements. 1449.107 Section 1449.107 Federal Acquisition Regulations....107 Audit of prime contract settlement proposals and subcontract settlements. Requests for...

  1. 48 CFR 1449.107 - Audit of prime contract settlement proposals and subcontract settlements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Audit of prime contract settlement proposals and subcontract settlements. 1449.107 Section 1449.107 Federal Acquisition Regulations....107 Audit of prime contract settlement proposals and subcontract settlements. Requests for...

  2. 48 CFR 1449.107 - Audit of prime contract settlement proposals and subcontract settlements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Audit of prime contract settlement proposals and subcontract settlements. 1449.107 Section 1449.107 Federal Acquisition Regulations....107 Audit of prime contract settlement proposals and subcontract settlements. Requests for...

  3. 48 CFR 1449.107 - Audit of prime contract settlement proposals and subcontract settlements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Audit of prime contract settlement proposals and subcontract settlements. 1449.107 Section 1449.107 Federal Acquisition Regulations....107 Audit of prime contract settlement proposals and subcontract settlements. Requests for...

  4. Lunar Exploration Manned and Unmanned

    NASA Astrophysics Data System (ADS)

    Spudis, P. D.; Asmar, S. W.; Bussey, D. B. J.; Duxbury, N.; Friesen, L. J.; Gillis, J. J.; Hawke, B. R.; Heiken, G.; Lawrence, D.; Manifold, J.; Slade, M. A.; Smith, A.; Taylor, G. J.; Yingst, R. A.

    2002-08-01

    The past decade has seen two global reconnaissance missions to the Moon, Clementine and Lunar Prospector, which have mapped the surface in multiple wavelengths, determined the Moon's topography and gravity fields, and discovered the presence of water ice in the permanently dark regions near the poles. Although we have learned much about the Moon, many key aspects of its history and evolution remain obscure. The three highest priority questions in lunar science are: 1) the Moon's global composition, particularly the abundance of aluminum and magnesium; 2) the extent, composition, and physical state of polar deposits, including the extent, purity, and thickness of ice, the elemental, isotopic, and molecular composition of polar volatiles, the environment of the polar regions; and 3) the cratering chronology of the Moon and the implications of a possibly unique history, such as a cataclysm, for our understanding of other Solar System objects. Answering and addressing these questions require a series of new missions, including an orbiter (carrying XRF, imaging radar, and other instruments), the deployment of surface network stations equipped with seismometers and heat flow probes, selected robotic sample return missions from geologically simple areas (e.g., youngest lava flow or crater melt sheet), and complex geological field work, conducted by human explorers. Because the Moon is a touchstone for the history and evolution of other rocky bodies in the solar system, we believe that these questions are of very high scientific priority and that lunar missions should receive much more serious attention and detailed study than they have in the past by the NASA Office of Space Science.

  5. Current NASA lunar base concepts

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.; Connolly, John F.

    1990-01-01

    The NASA Office of Aeronautics, Exploration, and Technology has completed a Systems Engineering and Integration effort to define a point design for an evolving lunar base that supports substantial science, exploration, and resource production objectives. This study addressed the following: systems level design; element requirements and conceptual design; assessments of precursor and technology needs; and operations concepts. The central base is assumed to be located equatorially on the lunar nearside north of the crater Moltke in Mare Tranquilliatis. The study considers an aggressive case with three main phases. The initial Man-Tended Phase established basic enabling facilities that include a modular habitat that periodically houses a crew of four. During the Experimental Phase, the base becomes permanently manned with the construction of a larger habitat that provides augmented workshop and laboratory volumes and housing for crew. The Operational Phase expands base capabilities to a substantially mature level while reducing reliance on Earth. The analysis classifies base characteristics into several major functional areas: Human Systems; Assembly and Construction; Energy Management; Launch and Landing; Surface Transportation; In-Situ Resources Utilization; User Accommodations; and Telecommunications, Navigation, and Information Management. Results of various NASA-sponsored studies were synthesized to meet requirements. The system level architecture was determined, the physical layout was developed from a set of proximity criteria and related functions, and the evlotuionary path of the base was analyzed. Conclusions include a summary of technology needs, design drivers, high leverage items, and important issues.

  6. Limits to the lunar atmosphere

    NASA Technical Reports Server (NTRS)

    Morgan, T. H.; Shemansky, D. E.

    1991-01-01

    Apollo UV spectrometer experiment set limits on the density of oxygen of less than 500/cu cm, and the Apollo Lunar Atmospheric Composition Experiment data imply a value less than 50/cu cm above the subsolar point. These limits are surprisingly small relative to the measured value for sodium. A simple consideration of sources and sinks predicts significantly greater densities of oxygen. It is possible but doubtful that the Apollo measurements occurred during an epoch in which source rates were small. A preferential loss process for oxygen on the darkside of the moon is considered in which ionization by electron capture in surface collisions leads to escape through acceleration in the local electric field. Cold trapping in permanently shadowed regions as a net sink is considered and discounted, but the episodic nature of cometary insertion may allow formation of ice layers which act as a stabilized source of OH. On the basis of an assumed meteoroid impact source, a possible emission brightness of 50 R in the OH(A - X)(0,0) band above the lunar bright limb is predicted.

  7. Limits to the lunar atmosphere

    NASA Astrophysics Data System (ADS)

    Morgan, T. H.; Shemansky, D. E.

    1991-02-01

    Apollo UV spectrometer experiment set limits on the density of oxygen of less than 500/cu cm, and the Apollo Lunar Atmospheric Composition Experiment data imply a value less than 50/cu cm above the subsolar point. These limits are surprisingly small relative to the measured value for sodium. A simple consideration of sources and sinks predicts significantly greater densities of oxygen. It is possible but doubtful that the Apollo measurements occurred during an epoch in which source rates were small. A preferential loss process for oxygen on the darkside of the moon is considered in which ionization by electron capture in surface collisions leads to escape through acceleration in the local electric field. Cold trapping in permanently shadowed regions as a net sink is considered and discounted, but the episodic nature of cometary insertion may allow formation of ice layers which act as a stabilized source of OH. On the basis of an assumed meteoroid impact source, a possible emission brightness of 50 R in the OH(A - X)(0,0) band above the lunar bright limb is predicted.

  8. 17 CFR 39.14 - Settlement procedures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 1 2012-04-01 2012-04-01 false Settlement procedures. 39.14 Section 39.14 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION DERIVATIVES CLEARING ORGANIZATIONS Compliance with Core Principles 39.14 Settlement procedures. (a) Definitions(1) Settlement....

  9. 17 CFR 39.14 - Settlement procedures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Settlement procedures. 39.14 Section 39.14 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION DERIVATIVES CLEARING ORGANIZATIONS Compliance with Core Principles 39.14 Settlement procedures. (a) Definitions(1) Settlement....

  10. 17 CFR 39.14 - Settlement procedures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 1 2014-04-01 2014-04-01 false Settlement procedures. 39.14 Section 39.14 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION DERIVATIVES CLEARING ORGANIZATIONS Compliance with Core Principles 39.14 Settlement procedures. (a) Definitions(1) Settlement....

  11. 37 CFR 351.7 - Settlement conference.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Settlement conference. 351.7... ROYALTY JUDGES RULES AND PROCEDURES PROCEEDINGS § 351.7 Settlement conference. A post-discovery settlement conference will be held among the participants, within 21 days after the close of discovery, outside of...

  12. 7 CFR 1782.20 - Debt Settlement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Debt Settlement. 1782.20 Section 1782.20 Agriculture... (CONTINUED) SERVICING OF WATER AND WASTE PROGRAMS § 1782.20 Debt Settlement. Pursuant to 7 U.S.C. 1981, this section prescribes policies for debt settlement of Water and Waste Disposal loans; Watershed loans...

  13. 7 CFR 1951.213 - Debt settlement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Debt settlement. 1951.213 Section 1951.213 Agriculture... and Grants § 1951.213 Debt settlement. Subpart C of part 1956 of this chapter prescribes policies and procedures for debt settlement actions for loans covered under this subpart when it is determined that a...

  14. 33 CFR 20.502 - Settlements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Settlements. 20.502 Section 20.502 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY GENERAL RULES OF PRACTICE, PROCEDURE, AND EVIDENCE FOR FORMAL ADMINISTRATIVE PROCEEDINGS OF THE COAST GUARD Conferences and Settlements 20.502 Settlements. (a)...

  15. Technical comment on "Hydrogen mapping of the lunar South Pole using the LRO neutron detector experiment LEND".

    PubMed

    Lawrence, David J; Eke, Vincent R; Elphic, Richard C; Feldman, William C; Funsten, Herbert O; Prettyman, Thomas H; Teodoro, Luis F A

    2011-11-25

    Based on a study of high-energy epithermal (HEE) neutrons in data from the Lunar Exploration Neutron Detector (LEND) on NASA's Lunar Reconnaissance Orbiter (LRO), the background from HEE neutrons is larger than initially estimated. Claims by Mitrofanov et al. (Reports, 22 October 2010, p. 483) of enhanced hydrogen abundance in sunlit portions of the lunar south pole and quantitative hydrogen concentration values in south pole permanently shaded regions are therefore insufficiently supported. PMID:22116865

  16. Technical Comment on “Hydrogen Mapping of the Lunar South Pole Using the LRO Neutron Detector Experiment LEND”

    NASA Astrophysics Data System (ADS)

    Lawrence, David J.; Eke, Vincent R.; Elphic, Richard C.; Feldman, William C.; Funsten, Herbert O.; Prettyman, Thomas H.; Teodoro, Luis F. A.

    2011-11-01

    Based on a study of high-energy epithermal (HEE) neutrons in data from the Lunar Exploration Neutron Detector (LEND) on NASA’s Lunar Reconnaissance Orbiter (LRO), the background from HEE neutrons is larger than initially estimated. Claims by Mitrofanov et al. (Reports, 22 October 2010, p. 483) of enhanced hydrogen abundance in sunlit portions of the lunar south pole and quantitative hydrogen concentration values in south pole permanently shaded regions are therefore insufficiently supported.

  17. Lunar Reconnaissance Orbiter Overview: The Instrument Suite and Mission

    NASA Astrophysics Data System (ADS)

    Chin, Gordon; Brylow, Scott; Foote, Marc; Garvin, James; Kasper, Justin; Keller, John; Litvak, Maxim; Mitrofanov, Igor; Paige, David; Raney, Keith; Robinson, Mark; Sanin, Anton; Smith, David; Spence, Harlan; Spudis, Paul; Stern, S. Alan; Zuber, Maria

    2007-04-01

    NASA’s Lunar Precursor Robotic Program (LPRP), formulated in response to the President’s Vision for Space Exploration, will execute a series of robotic missions that will pave the way for eventual permanent human presence on the Moon. The Lunar Reconnaissance Orbiter (LRO) is first in this series of LPRP missions, and plans to launch in October of 2008 for at least one year of operation. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search for possible polar surface ice in shadowed regions, Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well as wide-angle images to characterize polar illumination conditions and to identify potential resources, Lunar Exploration Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and will provide space radiation environment measurements that may be useful for future human exploration, Diviner Lunar Radiometer Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution to identify cold-traps and potential ice deposits, Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently shadowed regions illuminated only by starlight. Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which will investigate the effect of galactic cosmic rays on tissue-equivalent plastics as a constraint on models of biological response to background space radiation. The technology demonstration is an advanced radar (mini-RF) that will demonstrate X- and S-band radar imaging and interferometry using light weight synthetic aperture radar. This paper will give an introduction to each of these instruments and an overview of their objectives.

  18. Lunar Dust 101

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2008-01-01

    Largely due to rock and soil samples returned during the Apollo program, much has been learned about the composition and properties of lunar regolith. Although, for the most part, the mineral composition resembles terrestrial minerals, the characteristics of the lunar environment have led to very different weathering processes. These result in substantial differences in the particle shapes, particle size distributions, and surface chemistry. These differences lead to non-intuitive adhesion, abrasion, and possible health properties that will pose challenges to future lunar missions. An overview of lunar dust composition and properties will be given with a particular emphasis on possible health effects.

  19. Lunar surface magnetometer experiment

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Colburn, D. S.; Schubert, G.

    1972-01-01

    The Apollo 16 lunar surface magnetometer (LSM) activation completed the network installation of magnetic observatories on the lunar surface and initiated simultaneous measurements of the global response of the moon to large-scale solar and terrestrial magnetic fields. Fossil remanent magnetic fields have been measured at nine locations on the lunar surface, including the Apollo 16 LSM site in the Descartes highlands area. This fossil record indicates the possible existence of an ancient lunar dynamo or a solar or terrestrial field much stronger than exists at present. The experimental technique and operation of the LSM are described and the results obtained are discussed.

  20. The lunar dust environment

    NASA Astrophysics Data System (ADS)

    Grün, Eberhard; Horanyi, Mihaly; Sternovsky, Zoltan

    2011-11-01

    Each year the Moon is bombarded by about 10 6 kg of interplanetary micrometeoroids of cometary and asteroidal origin. Most of these projectiles range from 10 nm to about 1 mm in size and impact the Moon at 10-72 km/s speed. They excavate lunar soil about 1000 times their own mass. These impacts leave a crater record on the surface from which the micrometeoroid size distribution has been deciphered. Much of the excavated mass returns to the lunar surface and blankets the lunar crust with a highly pulverized and "impact gardened" regolith of about 10 m thickness. Micron and sub-micron sized secondary particles that are ejected at speeds up to the escape speed of 2300 m/s form a perpetual dust cloud around the Moon and, upon re-impact, leave a record in the microcrater distribution. Such tenuous clouds have been observed by the Galileo spacecraft around all lunar-sized Galilean satellites at Jupiter. The highly sensitive Lunar Dust Experiment (LDEX) onboard the LADEE mission will shed new light on the lunar dust environment. LADEE is expected to be launched in early 2013. Another dust related phenomenon is the possible electrostatic mobilization of lunar dust. Images taken by the television cameras on Surveyors 5, 6, and 7 showed a distinct glow just above the lunar horizon referred to as horizon glow (HG). This light was interpreted to be forward-scattered sunlight from a cloud of dust particles above the surface near the terminator. A photometer onboard the Lunokhod-2 rover also reported excess brightness, most likely due to HG. From the lunar orbit during sunrise the Apollo astronauts reported bright streamers high above the lunar surface, which were interpreted as dust phenomena. The Lunar Ejecta and Meteorites (LEAM) Experiment was deployed on the lunar surface by the Apollo 17 astronauts in order to characterize the lunar dust environment. Instead of the expected low impact rate from interplanetary and interstellar dust, LEAM registered hundreds of signals associated with the passage of the terminator, which swamped any signature of primary impactors of interplanetary origin. It was suggested that the LEAM events are consistent with the sunrise/sunset-triggered levitation and transport of charged lunar dust particles. Currently no theoretical model explains the formation of a dust cloud above the lunar surface but recent laboratory experiments indicate that the interaction of dust on the lunar surface with solar UV and plasma is more complex than previously thought.

  1. Lunar Prospecting Using Thermal Wadis and Compact Rovers. Part A; Infrastructure for Surviving the Lunar Night

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt R.; Wegeng, Robert S.; Suzuki, Nantel H.

    2012-01-01

    Recent missions have confirmed the existence of water and other volatiles on the Moon, both in permanently-shadowed craters and elsewhere. Non-volatile lunar resources may represent significant additional value as infrastructure or manufacturing feedstock. Characterization of lunar resources in terms of abundance concentrations, distribution, and recoverability is limited to in-situ Apollo samples and the expanding remote-sensing database. This paper introduces an approach to lunar resource prospecting supported by a simple lunar surface infrastructure based on the Thermal Wadi concept of thermal energy storage and using compact rovers equipped with appropriate prospecting sensors and demonstration resource extraction capabilities. Thermal Wadis are engineered sources of heat and power based on the storage and retrieval of solar-thermal energy in modified lunar regolith. Because Thermal Wadis keep compact prospecting rovers warm during periods of lunar darkness, the rovers are able to survive months to years on the lunar surface rather than just weeks without being required to carry the burdensome capability to do so. The resulting lower-cost, long-lived rovers represent a potential paradigm breakthrough in extra-terrestrial prospecting productivity and will enable the production of detailed resource maps. Integrating resource processing and other technology demonstrations that are based on the content of the resource maps will inform engineering economic studies that can define the true resource potential of the Moon. Once this resource potential is understood quantitatively, humans might return to the Moon with an economically sound objective including where to go, what to do upon arrival, and what to bring along.

  2. First Lunar Flashes Observed from Morocco (ILIAD Network): Implications for Lunar Seismology

    NASA Astrophysics Data System (ADS)

    Ait Moulay Larbi, Mamoun; Daassou, Ahmed; Baratoux, David; Bouley, Sylvain; Benkhaldoun, Zouhair; Lazrek, Mohamed; Garcia, Raphael; Colas, Francois

    2015-07-01

    We report the detection of two transient luminous events recorded on the lunar surface on February 6, 2013, at 06:29:56.7 UT and April 14, 2013, 20:00:45.4 from the Atlas Golf Marrakech observatory in Morocco. Estimated visual magnitudes are 9.4 ± 0.2 and 7.7 ± 0.2. We show that these events have the typical characteristics of impact flashes generated by meteoroids impacting the lunar surface, despite proof using two different telescopes is not available. Assuming these events were lunar impact flashes, meteoroid masses are 0.3 ± 0.05 and 1.8 ± 0.3 kg, corresponding to diameters of 7-8 and 14-15 cm for a density of 1500 kg m-3. The meteoroids would have produced craters of about 2.6 ± 0.3 and 4.4 ± 0.3 m in diameter. We then present a method based on the identification of lunar features illuminated by the Earthshine to determine the position of the flash. The method does not require any information about the observation geometry or lunar configuration. The coordinates are respectively 08.15° ± 0.15°S 59.1° ± 0.15°E and 26.81° ± 0.15°N 09.10° ± 0.15°W. Further improvement on the determination of the flash position is necessary for seismological applications. This studies demonstrates that permanent lunar impact flashes observation programs may be run in different parts of the globe using mid-sized telescopes. We call for the development of an international lunar impact astronomical detection networks that would represent an opportunity for scientific and cultural developments in countries where astronomy is under-represented.

  3. Lunar Reconnaissance Orbiter Lunar Workshops for Educators

    NASA Astrophysics Data System (ADS)

    Jones, A. P.; Hsu, B. C.; Hessen, K.; Bleacher, L.

    2012-12-01

    The Lunar Workshops for Educators (LWEs) are a series of weeklong professional development workshops, accompanied by quarterly follow-up sessions, designed to educate and inspire grade 6-12 science teachers, sponsored by the Lunar Reconnaissance Orbiter (LRO). Participants learn about lunar science and exploration, gain tools to help address common student misconceptions about the Moon, find out about the latest research results from LRO scientists, work with data from LRO and other lunar missions, and learn how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks and through authentic research experiences. LWEs are held around the country, primarily in locations underserved with respect to NASA workshops. Where possible, workshops also include tours of science facilities or field trips intended to help participants better understand mission operations or geologic processes relevant to the Moon. Scientist and engineer involvement is a central tenant of the LWEs. LRO scientists and engineers, as well as scientists working on other lunar missions, present their research or activities to the workshop participants and answer questions about lunar science and exploration. This interaction with the scientists and engineers is consistently ranked by the LWE participants as one of the most interesting and inspiring components of the workshops. Evaluation results from the 2010 and 2011 workshops, as well as preliminary analysis of survey responses from 2012 participants, demonstrated an improved understanding of lunar science concepts among LWE participants in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and effectively share LRO data with students. Teachers reported increased confidence in helping students conduct research using lunar data, and learned about programs that would allow their students to make authentic contributions to lunar science. Participant feedback on workshop surveys was enthusiastically positive. 2012 was the third and final year for the LWEs in the current funding cycle. They will continue in a modified version at NASA Goddard Space Flight Center in Greenbelt, MD, where the LRO Project Office and Education and Public Outreach Team are based. We will present evaluation results from our external evaluator, and share lessons learned from this workshop series. The LWEs can serve as a model for others interested in incorporating scientist and engineer involvement, data from planetary missions, and data-based activities into a thematic professional development experience for science educators. For more information about the LWEs, please visit http://lunar.gsfc.nasa.gov/lwe/index.html.

  4. Mysteries of the Lunar Atmosphere

    NASA Astrophysics Data System (ADS)

    Killen, R. M.; Hurley, D. M.

    2012-12-01

    The lunar atmosphere has been probed by various instruments since the Apollo program, and continues to be measured today by the instruments onboard the Lunar Reconnaissance Orbiter, LRO. But like Sisyphus' trek, the progress has not been linear. LAMP, The Lyman Alpha Mapping Project, onboard LRO, measured He in the lunar exosphere, confirming the Apollo 17 result from the Lunar Atmosphere Composition Experiment (LACE) (Hoffman et al., 1973), but LAMP did not observe Ar although the expected 0.1 R should have been detectable by their instrument (Gladstone et al., Science, 2010). A surfeit of O+ was reported in the lunar wake (Mall et al. 1998; Hilchenbach et al. 1992;1993), but the origin of those ions is unknown, since oxygen has not been seen. Water and OH were measured on the surface of the moon, but theory tells us that efficiencies of production of water by solar wind proton bombardment may be low (Burke et al., Icarus, 2011). Starukhina and Shukaratov (LPSC, abstract 1385, 2010) suggest that the observed diurnal variation in the 3 micron band at the moon is due to thermal emission and not to variation in OH. LAMP observed Hg vapor following the LCROSS impact into Cabeus crater, but Hg atoms at 800 K (Wooden et al., LPSC abstract 2025, 2010) are too heavy to reach the altitudes where they would be exposed to sunlight, and thereby resonantly scatter photons, unless they are entrained in a gas with bulk velocity 3.5 km/s (Hurley et al., JGR, 2012). This bulk velocity is high for a 2 km/s impact. Another mystery from LCROSS is the H2 energy budget. Given the large amount of H2 observed after the LCROSS impact, and the high velocity required (a few km/s) to get in the field of view when it did, the kinetic energy associated with the H2 is too large of a fraction of the impactor energy. One possibility is that the H2 is produced by an exothermic reaction, which has implications for how it is stored in the regolith in permanently shadowed regions. The Na density is known to be low in the lunar exosphere when the Moon enters and traverses the Earth's magnetosphere, even though the major source processes should still be operative there. The high-energy component of Na observed in the extended Na tail at the moon, along with the very energetic Ca and Mg atoms observed at Mercury, also suggest the possibility of exothermic chemical reactions at or near the surfaces of these bodies. LCROSS also reported the presence of organics (Colaprete et al., Science, 2010), but their origin is unknown. The Apollo 15 coronal photographs recorded light scattering that was attributed to dust lofted from the lunar surface. More recently, upper limits on line of sight dust column of 103 cm-2 for 0.1 micron grains have been made via an analysis of Clementine star tracker data, much less than that predicted from Apollo results (Glenar et al., NLSI, 2012). We will report on modeling efforts that aim to resolve some of these uncertainties. Future observations by LADEE will be used along with models to further constrain the source and loss rates of volatiles.

  5. Rare earth permanent magnets

    SciTech Connect

    Major-Sosias, M.A.

    1993-10-01

    Permanent magnets were discovered centuries ago from what was known as {open_quotes}lodestone{close_quotes}, a rock containing large quantities of the iron-bearing mineral magnetite (Fe{sub 3}O{sub 4}). The compass was the first technological use for permanent magnetic materials; it was used extensively for navigational purposes by the fifteenth century. During the twentieth century, as new applications for permanent magnets were developed, interest and research in permanent magnetic materials soared. Four major types of permanent magnets have been developed since the turn of the century.

  6. Environment, agriculture, and settlement patterns in a marginal Polynesian landscape

    USGS Publications Warehouse

    Kirch, P.V.; Hartshorn, A.S.; Chadwick, O.A.; Vitousek, P.M.; Sherrod, D.R.; Coil, J.; Holm, L.; Sharp, W.D.

    2004-01-01

    Beginning ca. A.D. 1400, Polynesian farmers established permanent settlements along the arid southern flank of Haleakala Volcano, Maui, Hawaiian Islands; peak population density (43-57 persons per km2) was achieved by A.D. 1700-1800, and it was followed by the devastating effects of European contact. This settlement, based on dryland agriculture with sweet potato as a main crop, is represented by >3,000 archaeological features investigated to date. Geological and environmental factors are the most important influence on Polynesian farming and settlement practices in an agriculturally marginal landscape. Interactions between lava flows, whose ages range from 3,000 to 226,000 years, and differences in rainfall create an environmental mosaic that constrained precontact Polynesian farming practices to a zone defined by aridity at low elevation and depleted soil nutrients at high elevation. Within this productive zone, however, large-scale agriculture was concentrated on older, tephra-blanketed lava flows; younger flows were reserved for residential sites, small ritual gardens, and agricultural temples.

  7. Understanding the Role of Local Management in Vegetation Recovery Around Pastoral Settlements in Northern Kenya

    NASA Astrophysics Data System (ADS)

    Roba, Hassan G.; Oba, Gufu

    2013-04-01

    The recent greening of the Sahel region and increase in vegetation cover around pastoral settlements previously described as "man-made deserts", have raised important questions on the permanency of land degradation associated with the over-exploitation of woody plants. Evidence presented is mostly on increased wetness, while management by local communities has received limited attention. This study evaluated changes in woody vegetation cover around the settlements of Kargi and Korr in northern Kenya, using satellite imagery (1986/2000), ecological ground surveys and interviews with local elders, in order to understand long-term changes in vegetation cover and the role of local community in vegetation dynamics. At both settlements, there were increments in vegetation cover and reduction in the extent of bare ground between 1986 and 2000. At Kargi settlement, there were more tree seedlings in the centre of settlement than further away. Mature tree class was more abundant in the centre of Korr than outside the settlement. The success of the regeneration and recovery of tree cover was attributed to the actions of vegetation management initiative including stringent measures by the local Environmental Management Committees. This study provides good evidence that local partnership is important for sustainable management of resources especially in rural areas where the effectiveness of government initiative is lacking.

  8. Overview of lunar-based astronomy

    NASA Technical Reports Server (NTRS)

    Smith, Harlan J.

    1988-01-01

    The opportunities along with the advantages and disadvantages of the Moon for astronomical observatories are carefully and methodically considered. Taking a relatively unbiased approach, it was concluded that lunar observatories will clearly be a major factor in the future of astronomy in the next century. He concludes that ground based work will continue because of its accessibility and that Earth orbital work will remain useful, primarily for convenience of access in constructing and operating very large space systems. Deep space studies will feature not only probes but extensive systems for extremely long baseline studies at wavelengths from gamma rays through visible and IR out to radio is also a conclusion drawn, along with the consideration that lunar astronomy will have found important permanent applications along lines such as are discussed at the present symposium and others quite unsuspected today.

  9. Astronaut Alan Bean deploys Lunar Surface Magnetometer on lunar surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, deploys the Lunar Surface Magnetometer (LSM) during the first Apollo 12 extravehicular activity on the Moon. The LSM is a component of the Apollo Lunar Surface Experiments Package (ALSEP). The Lunar Module can be seen in the left background.

  10. Lunar Resource Mapper/Lunar Geodetic Scout program status

    NASA Technical Reports Server (NTRS)

    Conley, Mike

    1992-01-01

    Information is given in viewgraph form on the Lunar Resource Mapper/Lunar Geodetic Scout (LRM/LGS) program status. Topics covered include the LEXWG Lunar Observer science measurement priorities, space exploration initiative priorities, the question of why a lunar orbiting mission is attractive to the Space Exploration Initiative (SEI), instrument selection, major milestones, and the organization of the LRM/LGS Program Office.

  11. Apollo 9 Lunar Module in lunar landing configuration

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module, in a lunar landing configuration, as photographed form the Command/Service Module on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on the Lunar Module 'Spider' has been deployed. Note Lunar Module's upper hatch and docking tunnel.

  12. Lunar radar backscatter studies

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.

    1979-01-01

    The lunar surface material in the Plato area is characterized using Earth based visual, infrared, and radar signatures. Radar scattering in the lunar regolith with an existing optical scattering computer program is modeled. Mapping with 1 to 2 km resolution of the Moon using a 70 cm Arecibo radar is presented.

  13. Lunar meteorites from Oman

    NASA Astrophysics Data System (ADS)

    Korotev, Randy L.

    2012-08-01

    Sixty named lunar meteorite stones representing about 24 falls have been found in Oman. In an area of 10.7 103 km2 in southern Oman, lunar meteorite areal densities average 1 g km-2. All lunar meteorites from Oman are breccias, although two are dominated by large igneous clasts (a mare basalt and a crystalline impact-melt breccia). Among the meteorites, the range of compositions is large: 9-32% Al2O3, 2.5-21.1% FeO, 0.3-38 ?g g-1 Sm, and <1 to 22.5 ng g-1 Ir. The proportion of nonmare lunar meteorites is higher among those from Oman than those from Antarctica or Africa. Omani lunar meteorites extend the compositional range of lunar rocks as known from the Apollo collection and from lunar meteorites from other continents. Some of the feldspathic meteorites are highly magnesian (high MgO/[MgO + FeO]) compared with most similarly feldspathic Apollo rocks. Two have greater concentrations of incompatible trace elements than all but a few Apollo samples. A few have moderately high abundances of siderophile elements from impacts of iron meteorites on the Moon. All lunar meteorites from Oman are contaminated, to various degrees, with terrestrial Na, K, P, Zn, As, Se, Br, Sr, Sb, Ba, U, carbonates, or sulfates. The contamination is not so great, however, that it seriously compromises the scientific usefulness of the meteorites as samples from randomly distributed locations on the Moon.

  14. A baseline lunar mine

    NASA Technical Reports Server (NTRS)

    Gertsch, Richard E.

    1992-01-01

    A models lunar mining method is proposed that illustrates the problems to be expected in lunar mining and how they might be solved. While the method is quite feasible, it is, more importantly, a useful baseline system against which to test other, possible better, methods. Our study group proposed the slusher to stimulate discussion of how a lunar mining operation might be successfully accomplished. Critics of the slusher system were invited to propose better methods. The group noted that while nonterrestrial mining has been a vital part of past space manufacturing proposals, no one has proposed a lunar mining system in any real detail. The group considered it essential that the design of actual, workable, and specific lunar mining methods begin immediately. Based on an earlier proposal, the method is a three-drum slusher, also known as a cable-operated drag scraper. Its terrestrial application is quite limited, as it is relatively inefficient and inflexible. The method usually finds use in underwater mining from the shore and in moving small amounts of ore underground. When lunar mining scales up, the lunarized slusher will be replaced by more efficient, high-volume methods. Other aspects of lunar mining are discussed.

  15. Toxicity of lunar dust

    NASA Astrophysics Data System (ADS)

    Linnarsson, Dag; Carpenter, James; Fubini, Bice; Gerde, Per; Karlsson, Lars L.; Loftus, David J.; Prisk, G. Kim; Staufer, Urs; Tranfield, Erin M.; van Westrenen, Wim

    2012-12-01

    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of substantial research efforts, lunar dust properties, and therefore lunar dust toxicity may differ substantially. In this contribution, past and ongoing work on dust toxicity is reviewed, and major knowledge gaps that prevent an accurate assessment of lunar dust toxicity are identified. Finally, a range of studies using ground-based, low-gravity, and in situ measurements is recommended to address the identified knowledge gaps. Because none of the curated lunar samples exist in a pristine state that preserves the surface reactive chemical aspects thought to be present on the lunar surface, studies using this material carry with them considerable uncertainty in terms of fidelity. As a consequence, in situ data on lunar dust properties will be required to provide ground truth for ground-based studies quantifying the toxicity of dust exposure and the associated health risks during future manned lunar missions.

  16. Lunar Soil Particle Separator

    NASA Technical Reports Server (NTRS)

    Berggren, Mark

    2010-01-01

    The Lunar Soil Particle Separator (LSPS) beneficiates soil prior to in situ resource utilization (ISRU). It can improve ISRU oxygen yield by boosting the concentration of ilmenite, or other iron-oxide-bearing materials found in lunar soils, which can substantially reduce hydrogen reduction reactor size, as well as drastically decreasing the power input required for soil heating

  17. Lunar observer laser altimeter

    NASA Technical Reports Server (NTRS)

    Bufton, J. L.

    1988-01-01

    Understanding the global topography of the Moon is especially important for answering questions concerning lunar origin and evolution. Many outstanding problems in lunar science can be addressed with high resolution topographic data. The severe power, mass, size, and data-rate limitations imposed by the Lunar Geoscience Observer (LGO) and other Observer-class missions are major challenges for all instruments capable of measuring topography. A radar altimeter that meets these strict requirements could obtain a global prespective of lunar topography with a few kilometers spatial resolution and 10 m vertical resolution from a lunar orbit of 100 km. A prototype model is being constructed of the Lunar Observer Laser Altimeter (LOLA) capable of continuously measuring the range to the lunar surface with sub-meter vertical resolution within a 30 to 300 m diameter surface footprint. This same instrument is also designed to provide a direct measure of the surface height distribution in the footprint by waveform analysis of the backscattered laser pulse. Both these measurements are to be made in a continuous, nadir profile across the lunar surface from a 100 km orbit. The wavelength of the altimeter is 1064 nm. A short-pulse (2 nsec), diode-pumped Nd:YAG laser combined with a 25 cm diameter telescope, silicon avalanche photodiode detector, ranging electronics, and instrument computer was designed to make these measurements and meet all the requirements of the LGO mission.

  18. Development of a Korean Lunar Simulant(KLS-1) and its Possible Further Recommendations

    NASA Astrophysics Data System (ADS)

    Chang, I.; Ryn, B. H.; Cho, G. C.

    2014-12-01

    The rapid development on space exploration finally found that water exists on the moon according to NASA's recent studies. This becomes a turning point in lunar science and surface development because the existence of water raises the possibility of human survival on the moon. In this case, advanced space construction technology against the distinctive lunar environment (i.e., atmosphereless, subgravity, different geology) becomes a key issue for consistent and reliable settlement of human beings. Thus, understandings on the lunar surface and its composition must be secured as an important role in lunar development. During project Apollo (1961~1972), only 320 kg of real lunar soils were collected and sent to the Earth. Due to the lack of samples, many space agencies are attempting to simulate the lunar soil using Earth materials to be used in large and massive practical studies and simulations. In the same vein, we developed a Korean lunar simulant from a specific basalt type Cenozoic Erathem in Korea. The simulated regolith sample shows a high similarity to the Apollo average samples in mineral composition, density, and particle shape aspects. Therefore, the developed regolith simulant is expected to be used in various lunar exploration purposes.

  19. Lunar lava tube sensing

    NASA Astrophysics Data System (ADS)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-12-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  20. Lunar Balance and Locomotion

    NASA Technical Reports Server (NTRS)

    Paloski, William H.

    2008-01-01

    Balance control and locomotor patterns were altered in Apollo crewmembers on the lunar surface, owing, presumably, to a combination of sensory-motor adaptation during transit and lunar surface operations, decreased environmental affordances associated with the reduced gravity, and restricted joint mobility as well as altered center-of-gravity caused by the EVA pressure suits. Dr. Paloski will discuss these factors, as well as the potential human and mission impacts of falls and malcoordination during planned lunar sortie and outpost missions. Learning objectives: What are the potential impacts of postural instabilities on the lunar surface? CME question: What factors affect balance control and gait stability on the moon? Answer: Sensory-motor adaptation to the lunar environment, reduced mechanical and visual affordances, and altered biomechanics caused by the EVA suit.

  1. Lunar Surface Rovers

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.; Lane, A. L.; Miller, D.

    1992-01-01

    Many questions of lunar science remain unanswered because of a lack of specific data. With the potential for returning humans to the Moon and establishing a long-term presence there, a new realm of exploration is possible. Numerous plans have been outlined for orbital and surface missions. The capabilities and objectives of a small class of rovers to be deployed on the lunar surface are described. The objective of these small rovers is to collect detailed in situ information about the composition and distribution of materials on the lunar surface. Those data, in turn, would be applied to a variety of lunar geoscience questions and form a basis for planning human activities on the lunar surface.

  2. Thermoluminescence of lunar samples

    USGS Publications Warehouse

    Dalrymple, G.B.; Doell, Richard R.

    1970-01-01

    Appreciable natural thermoluminescence with glow curve peaks at about 350 degrees centigrade for lunar fines and breccias and above 400 degrees centigrade for crystalline rocks has been recognized in lunar samples. Plagioclase has been identified as the principal carrier of thermoluminescence, and the difference in peak temperatures indicates compositional or structural differences between the feldspars of the different rock types. The present thermoluminescence in the lunar samples is probably the result of a dynamic equilibrium between acquisition from radiation and loss in the lunar thermal environment. A progressive change in the glow curves of core samples with depth below the surface suggests the use of thermoluminescence disequilibrium to detect surfaces buried by recent surface activity, and it also indicates that the lunar diurnal temperature variation penetrates to at least 10.5 centimeters.

  3. Estimating Background and Lunar Contribution to Neutrons Detected by the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) Instrument

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Mitrofanov, I. G.; Chin, G.; Boynton, W. V.; Evans, L. G.; Litvak, M. L.; McClanahan, T. P.; Sagdeev, R.; Sanin, A. B.; Starr, R. D.; Su, J. J.

    2014-12-01

    The fraction of hydrogen-bearing species embedded in planetary regolith can be determined from the ratio between measured epithermal neutron leakage flux and the flux measured from similar dry regolith. The Lunar Reconnaissance Orbiter (LRO) spacecraft is equipped with the Lunar Exploration Neutron Detector (LEND) instrument to measure embedded hydrogen in the Moon's polar regions and elsewhere. We have investigated the relative contribution of lunar and non-lunar (spacecraft-sourced) neutrons by modeling maps of the measured count rate from three of the LEND detector systems using linear combinations of maps compiled from the Lunar Prospector Neutron Spectrometer (LPNS) and the LEND detectors, demonstrating that the two systems are compatible and enabling reference signal to be inferred to enable detecting hydrogen and hydrogen-bearing volatiles. The pole-to-equator contrast ratio in epithermal neutrons indicates that the average concentration of hydrogen in the Moon's polar regolith above 80 north or south latitude is ~110 ppmw, or 0.100.01 wt% water-equivalent hydrogen. Above 88 north or south, the concentration increases to ~140 ppmw, or 0.130.02 wt% water-equivalent hydrogen. Nearly identical suppression of neutron flux at both the north and south poles, despite differences in topography and distribution of permanently-shadowed regions, supports the contention that hydrogen is broadly distributed in the polar regions and increasingly concentrated approaching the poles. Similarity in the degree of neutron suppression in low-energy and high-energy epithermal neutrons suggests that the hydrogen fraction is relatively uniform with depth down to ~1 m; the neutron leakage flux is insensitive to greater depth.

  4. Lunar Science from Lunar Laser Ranging

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2013-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, tidal Love number k2, and moment of inertia differences. There is weaker sensitivity to flattening of the core/mantle boundary (CMB) and fluid core moment of inertia. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to variations in lunar rotation, orientation and tidal displacements. Past solutions using the LLR data have given results for Love numbers plus dissipation due to solid-body tides and fluid core. Detection of the fluid core polar minus equatorial moment of inertia difference due to CMB flattening is weakly significant. This strengthens the case for a fluid lunar core. Future approaches are considered to detect a solid inner core.

  5. Lunar Influences on Human Aggression.

    ERIC Educational Resources Information Center

    Russell, Gordon W.; Dua, Manjula

    1983-01-01

    Used league records of all Canadian hockey games (N=426) played during a season to test a lunar-aggression hypothesis. Despite the use of multiple measures of lunar phase and interpersonal aggression, support for lunar influence was not forthcoming. Supplemental data revealed that beliefs in lunar influence are fairly common. (JAC)

  6. Space Resources and Space Settlements

    NASA Technical Reports Server (NTRS)

    Billingham, J. (Editor); Gilbreath, W. P. (Editor); Oleary, B. (Editor); Gosset, B. (Editor)

    1979-01-01

    The technical papers from the five tasks groups that took part in the 1977 Ames Summer Study on Space Settlements and Industrialization Using Nonterrestrial Materials are presented. The papers are presented under the following general topics: (1) research needs for regenerative life-support systems; (2) habitat design; (3) dynamics and design of electromagnetic mass drivers; (4) asteroids as resources for space manufacturing; and (5) processing of nonterrestrial materials.

  7. Integration of Lunar Polar Remote-Sensing Data Sets: Evidence for Ice at the Lunar South Pole

    NASA Technical Reports Server (NTRS)

    Nozette, Stewart; Spudis, Paul D.; Robinson, Mark S.; Bussey, D. B. J.; Lichtenberg, Chris; Bonner, Robert

    2001-01-01

    In order to investigate the feasibility of ice deposits at the lunar south pole, we have integrated all relevant lunar polar data sets. These include illumination data, Arecibo ground-based monostatic radar data, newly processed Clementine bistatic radar data, and Lunar Prospector neutron spectrometer measurements. The possibility that the lunar poles harbor ice deposits has important implications not only as a natural resource for future human lunar activity but also as a record of inner solar system volatiles (e.g., comets and asteroids) over the past billion years or more. We find that the epithermal neutron flux anomalies, measured by Lunar Prospector, are coincident with permanently shadowed regions at the lunar south pole, particularly those associated with Shackleton crater. Furthermore, these areas also correlate with the beta=0 circular polarization ratio (CPR) enhancements revealed by new processing of Clementine bistatic radar echoes, which in turn are colocated with areas of anomalous high CPR observed by Arecibo Observatory on the lower, Sun-shadowed wall of Shackleton crater. Estimates of the extent of high CPR from Arecibo Observatory and Clementine bistatic radar data independently suggest that approximately 10 square kilometers of ice may be present on the inner Earth-facing wall of Shackleton crater. None of the experiments that obtained the data presented here were ideally suited for definitively identifying ice in lunar polar regions. By assessing the relative merits of all available data, we find that it is plausible that ice does occur in cold traps at the lunar south pole and that future missions with instruments specifically designed to investigate these anomalies are worthy.

  8. Lunar shape does not record a past eccentric orbit

    NASA Astrophysics Data System (ADS)

    ?uk, Matija

    2011-01-01

    The Moon has long been known to have an overall shape not consistent with expected past tidal forces. It has recently been suggested (Garrick-Bethell, I., Wisdom, J., Zuber, M.T. [2006]. Science 313, 652-655) that the present lunar moments of inertia indicate a past high-eccentricity orbit and, possibly, a past non-synchronous spin-orbit resonance. Here I show that the match between the lunar shape and the proposed orbital and spin states is much less conclusive than initially proposed. Garrick-Bethell et al. (Garrick-Bethell, I., Wisdom, J., Zuber, M.T. [2006]. Science 313, 652-655) spin and shape evolution scenarios also completely ignore the physics of the capture into such resonances, which require prior permanent deformation, as well as tidal despinning to the relevant resonance. If the early lunar orbit was eccentric, the Moon would have been rotating at an equilibrium non-synchronous rate determined by it eccentricity. This equilibrium supersynchronous rotation would be much too fast to allow a synchronous spin-orbit lock at e = 0.49, while the capture into the 3:2 resonance is possible only for a very constrained lunar eccentricity history and assuming some early permanent lunar tri-axiality. Here I show that large impacts in the early history of the Moon would have frequently disrupted this putative resonant rotation, making the rotation and eccentricity solutions of Garrick-Bethell et al. (Garrick-Bethell, I., Wisdom, J., Zuber, M.T. [2006]. Science 313, 652-655) unstable. I conclude that the present lunar shape cannot be used to support the hypothesis of an early eccentric lunar orbit.

  9. Lunar base thermoelectric power station study

    NASA Technical Reports Server (NTRS)

    Determan, William; Frye, Patrick; Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, G.; Brooks, Michael D.; Heshmatpour, Ben

    2006-01-01

    Under NASA's Project Prometheus, the Nuclear Systems Program, the Jet Propulsion Laboratory, Pratt & Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) program, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing and the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as the lunar base power station where kilowatts of power are required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this mission. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed and well as transport issues for this concept. The goal of the study was to review the entire life cycle of the unit to assess its technical problems and technology needs in all areas to support the development, deployment, operation and disposal of the unit.

  10. Lunar Base Thermoelectric Power Station Study

    SciTech Connect

    Determan, William; Frye, Patrick; Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, Gerhard; Brooks, Michael; Heshmatpour, Ben

    2006-01-20

    Under NASA's Project Prometheus, the Nuclear Space Power Systems Program, the Jet Propulsion Laboratory, Pratt and Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) Task, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing, and promising candidates for the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as a lunar base power station where kilowatts of power would be required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this particular mission concept. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed as well as transport issues for this concept. The goal of the study was to review the entire life cycle of the unit to assess its technical problems and technology needs in all areas to support the development, deployment, operation and disposal of the unit.

  11. Lunar Base Thermoelectric Power Station Study

    NASA Astrophysics Data System (ADS)

    Determan, William; Frye, Patrick; Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, Gerhard; Brooks, Michael; Heshmatpour, Ben

    2006-01-01

    Under NASA's Project Prometheus, the Nuclear Space Power Systems Program, the Jet Propulsion Laboratory, Pratt & Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) Task, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing, and promising candidates for the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as a lunar base power station where kilowatts of power would be required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this particular mission concept. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed as well as transport issues for this concept. The goal of the study was to review the entire life cycle of the unit to assess its technical problems and technology needs in all areas to support the development, deployment, operation and disposal of the unit.

  12. Permanent contraception for women.

    PubMed

    Micks, Elizabeth A; Jensen, Jeffrey T

    2015-11-01

    Permanent methods of contraception are used by an estimated 220 million couples worldwide, and are often selected due to convenience, ease of use and lack of side effects. A variety of tubal occlusion techniques are available for female permanent contraception, and procedures can be performed using a transcervical or transabdominal approach. This article reviews currently available techniques for female permanent contraception and discusses considerations when helping patients choose a contraceptive method and tubal occlusion technique. PMID:26626698

  13. Processes and energy costs for mining lunar Helium-3

    NASA Technical Reports Server (NTRS)

    Sviatoslavsky, I. N.

    1988-01-01

    Preliminary investigations show that obtaining He-3 from the moon is technically feasible and economically viable. With the exception of beneficiation, the proposed procedures are state of the art. Mass of equipment needed from earth is of some concern, but resupply will eventually be ameliorated by the use of titanium from indigenous ilmenite. A complete energy payback from a D/He-3 fusion reactor utilizing lunar He-3 is approx. 80, providing ample incentive for commercial investment is forthcoming. Byproducts will be of great value to the resupply of a permanent lunar base and enhancement of space exploration.

  14. A Common Lunar Lander (CLL) for the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Bailey, Stephen

    1991-01-01

    Information is given in viewgraph form on the Artemis project, a plan to establish a permanent base on the Moon. Information includes a summary of past and future events, the program rationale, a summary of potential payloads, the physical characteristics of experiments, sketches of equipment, design study objectives, and details of such payloads as the Geophysical Station Network, teleoperated rovers, astronomical telescopes, a Moon-Earth radio interferometer, very low frequency radio antennas, the Lunar Polar Crater Telescope, Lunar Resource Utilization Experiments, and biological experiments.

  15. Extending terrestrial mobile robotics to a proposed lunar base

    SciTech Connect

    Klarer, P.R.

    1989-01-01

    The National Aeronautics and Space Administration (NASA) has recently been conducting studies regarding missions to establish permanent manned facilities either on Earth's moon or on Mars sometime in the next few decades. This paper addresses issues associated with the operation of manned, teleoperated and autonomous land vehicles to be used in the lunar environment. Current capabilities in teleoperation and autonomous navigation for land vehicles in the terrestrial environment are discussed, as are the technology issues and new capabilities required to extend the current capabilities to a lunar operating environment. 16 refs.

  16. Lunar base launch and landing facilities conceptual design

    NASA Technical Reports Server (NTRS)

    Phillips, Paul G.; Simonds, Charles H.; Stump, William R.

    1992-01-01

    The purpose of this study was to perform a first look at the requirements for launch and landing facilities for early lunar bases and to prepared conceptual designs for some of these facilities. The emphasis of the study is on the facilities needed from the first manned landing until permanent occupancy, the Phase 2 lunar base. Factors including surface characteristics, navigation system, engine blast effects, and expected surface operations are used to develop landing pad designs, and definitions fo various other elements of the launch and landing facilities. Finally, the dependence of the use of these elements and the evolution of the facilities are established.

  17. Oscillating Permanent Magnets.

    ERIC Educational Resources Information Center

    Michaelis, M. M.; Haines, C. M.

    1989-01-01

    Describes several ways to partially levitate permanent magnets. Computes field line geometries and oscillation frequencies. Provides several diagrams illustrating the mechanism of the oscillation. (YP)

  18. Lunar Resource Assessment: Strategies for Surface Exploration

    NASA Technical Reports Server (NTRS)

    Spudis, Paul D.

    1992-01-01

    Use of the indigenous resources of space to support long-term human presence is an essential element of the settlement of other planetary bodies. We are in a very early stage of understanding exactly how and under what circumstances space resources will become important. The materials and processes to recover them that we now think are critical may not ultimately be the raison d'etre for a resource utilization program. However, the need for strategic thinking proceeds in parallel with efforts to implement such plans and it is not too soon to begin thinking how we could and should use the abundant resources of materials and energy available from the Moon. The following commodities from the Moon are discussed: (1) bulk regolith, for shielding and construction on the lunar surface (ultimately for export to human-tended stations in Earth-Moon space), and (2) oxygen and hydrogen, for propellant and life support.

  19. Humanoids for lunar and planetary surface operations

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Keymeulen, Didier; Csaszar, Ambrus; Gan, Quan; Hidalgo, Timothy; Moore, Jeff; Newton, Jason; Sandoval, Steven; Xu, Jiajing

    2005-01-01

    This paper presents a vision of humanoid robots as human's key partners in future space exploration, in particular for construction, maintenance/repair and operation of lunar/planetary habitats, bases and settlements. It integrates this vision with the recent plans, for human and robotic exploration, aligning a set of milestones for operational capability of humanoids with the schedule for the next decades and development spirals in the Project Constellation. These milestones relate to a set of incremental challenges, for the solving of which new humanoid technologies are needed. A system of systems integrative approach that would lead to readiness of cooperating humanoid crews is sketched. Robot fostering, training/education techniques, and improved cognitive/sensory/motor development techniques are considered essential elements for achieving intelligent humanoids. A pilot project in this direction is outlined.

  20. Lunar seismicity and tectonics

    NASA Technical Reports Server (NTRS)

    Lammlein, D. R.

    1977-01-01

    Results are presented for an analysis of all moonquake data obtained by the Apollo seismic stations during the period from November 1969 to May 1974 and a preliminary analysis of critical data obtained in the interval from May 1974 to May 1975. More accurate locations are found for previously located moonquakes, and additional sources are located. Consideration is given to the sources of natural seismic signals, lunar seismic activity, moonquake periodicities, tidal periodicities in moonquake activity, hypocentral locations and occurrence characteristics of deep and shallow moonquakes, lunar tidal control over moonquakes, lunar tectonism, the locations of moonquake belts, and the dynamics of the lunar interior. It is concluded that: (1) moonquakes are distributed in several major belts of global extent that coincide with regions of the youngest and most intense volcanic and tectonic activity; (2) lunar tides control both the small quakes occurring at great depth and the larger quakes occurring near the surface; (3) the moon has a much thicker lithosphere than earth; (4) a single tectonic mechanism may account for all lunar seismic activity; and (5) lunar tidal stresses are an efficient triggering mechanism for moonquakes.

  1. Lunar transportation system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.

  2. Copernicus: Lunar surface mapper

    NASA Technical Reports Server (NTRS)

    Redd, Frank J.; Anderson, Shaun D.

    1992-01-01

    The Utah State University (USU) 1991-92 Space Systems Design Team has designed a Lunar Surface Mapper (LSM) to parallel the development of the NASA Office of Exploration lunar initiatives. USU students named the LSM 'Copernicus' after the 16th century Polish astronomer, for whom the large lunar crater on the face of the moon was also named. The top level requirements for the Copernicus LSM are to produce a digital map of the lunar surface with an overall resolution of 12 meters (39.4 ft). It will also identify specified local surface features/areas to be mapped at higher resolutions by follow-on missions. The mapping operation will be conducted from a 300 km (186 mi) lunar-polar orbit. Although the entire surface should be mapped within six months, the spacecraft design lifetime will exceed one year with sufficient propellant planned for orbit maintenance in the anomalous lunar gravity field. The Copernicus LSM is a small satellite capable of reaching lunar orbit following launch on a Conestoga launch vehicle which is capable of placing 410 kg (900 lb) into translunar orbit. Upon orbital insertion, the spacecraft will weigh approximately 233 kg (513 lb). This rather severe mass constraint has insured attention to component/subsystem size and mass, and prevented 'requirements creep.' Transmission of data will be via line-of-sight to an earth-based receiving system.

  3. The Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2009-01-01

    A thick layer of regolith, fragmental and unconsolidated rock material, covers the entire lunar surface. This layer is the result of the continuous impact of meteoroids large and small and the steady bombardment of charged particles from the sun and stars. The regolith is generally about 4-5 m thick in mare regions and 10-15 m in highland areas (McKay et al., 1991) and contains all sizes of material from large boulders to sub-micron dust particles. Below the regolith is a region of large blocks of material, large-scale ejecta and brecciated bedrock, often referred to as the "megaregolith". Lunar soil is a term often used interchangeably with regolith, however, soil is defined as the subcentimeter fraction of the regolith (in practice though, soil generally refers to the submillimeter fraction of the regolith). Lunar dust has been defined in many ways by different researchers, but generally refers to only the very finest fractions of the soil, less than approx.10 or 20 microns. Lunar soil can be a misleading term, as lunar "soil" bears little in common with terrestrial soils. Lunar soil contains no organic matter and is not formed through biologic or chemical means as terrestrial soils are, but strictly through mechanical comminution from meteoroids and interaction with the solar wind and other energetic particles. Lunar soils are also not exposed to the wind and water that shapes the Earth. As a consequence, in contrast to terrestrial soils, lunar soils are not sorted in any way, by size, shape, or chemistry. Finally, without wind and water to wear down the edges, lunar soil grains tend to be sharp with fresh fractured surfaces.

  4. Lunar Reconnaissance Orbiter Mission Results and Future Plans

    NASA Astrophysics Data System (ADS)

    Keller, John; Petro, Noah; McLanahan, Timothy; Vondrak, Richard; Garvin, James

    2014-05-01

    The Lunar Reconnaissance Orbiter (LRO) mission is poised to take advantage of recent extraordinary discoveries on the Moon to advance lunar and planetary science with new, targeted investigations that focus on geologically recent and even contemporaneous changes on the Moon. We will present recent results for the mission and describe plans for a second two-year extension of the science mission. LRO has been in orbit for nearly 5 years. In that time it has been a witness to, and participant in, a remarkable era of lunar science where a paradigm shift is taking place from the view of the Moon as a static planet to one with many active processes. As we approach the end of the first extended mission, we review here the major results from the LRO. Examples include: enabled the development of comprehensive high resolution maps and digital terrain models of the lunar surface; discoveries on the nature of hydrogen distribution, and by extension water, at the lunar poles; measured of the daytime and nighttime temperature of the lunar surface including temperature down below 30 K in permanently shadowed regions (PSRs); direct measurement of Hg, H2, and CO deposits in the Cabeus PSR; evidence for recent tectonic activity on the Moon; and high resolution maps of the illumination conditions at the poles.

  5. In-situ resource utilization in the design of advanced lunar facilities

    NASA Astrophysics Data System (ADS)

    1990-11-01

    Resource utilization will play an important role in the establishment and support of a permanently manned lunar base. At the University of Houston - College of Architecture and the Sasakawa International Center for Space Architecture, a study team recently investigated the potential use of lunar in-situ materials in the design of lunar facilities. The team identified seven potential lunar construction materials; concrete, sulfur concrete, cast basalt, sintered basalt, glass, fiberglass, and metals. Analysis and evaluation of these materials with respect to their physical properties, processes, energy requirements, resource efficiency, and overall advantages and disadvantages lead to the selection of basalt materials as the more likely construction material for initial use on a lunar base. Basalt materials can be formed out of in-situ lunar regolith, with minor material beneficiation, by a simple process of heating and controlled cooling. The team then conceptualized a construction system that combines lunar regolith sintering and casting to make pressurized structures out of lunar resources. The design uses a machine that simultaneously excavates and sinters the lunar regolith to create a cylindrical hole, which is then enclosed with cast basalt slabs, allowing the volume to be pressurized for use as a living or work environment. Cylinder depths of up to 4 to 6 m in the lunar mare or 10 to 12 m in the lunar highlands are possible. Advantages of this construction system include maximum resource utilization, relatively large habitable volumes, interior flexibility, and minimal construction equipment needs. Conclusions of this study indicate that there is significant potential for the use of basalt, a lunar resource derived construction material, as a low cost alternative to Earth-based materials. It remains to be determined when in lunar base phasing this construction method should be implemented.

  6. In-situ resource utilization in the design of advanced lunar facilities

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Resource utilization will play an important role in the establishment and support of a permanently manned lunar base. At the University of Houston - College of Architecture and the Sasakawa International Center for Space Architecture, a study team recently investigated the potential use of lunar in-situ materials in the design of lunar facilities. The team identified seven potential lunar construction materials; concrete, sulfur concrete, cast basalt, sintered basalt, glass, fiberglass, and metals. Analysis and evaluation of these materials with respect to their physical properties, processes, energy requirements, resource efficiency, and overall advantages and disadvantages lead to the selection of basalt materials as the more likely construction material for initial use on a lunar base. Basalt materials can be formed out of in-situ lunar regolith, with minor material beneficiation, by a simple process of heating and controlled cooling. The team then conceptualized a construction system that combines lunar regolith sintering and casting to make pressurized structures out of lunar resources. The design uses a machine that simultaneously excavates and sinters the lunar regolith to create a cylindrical hole, which is then enclosed with cast basalt slabs, allowing the volume to be pressurized for use as a living or work environment. Cylinder depths of up to 4 to 6 m in the lunar mare or 10 to 12 m in the lunar highlands are possible. Advantages of this construction system include maximum resource utilization, relatively large habitable volumes, interior flexibility, and minimal construction equipment needs. Conclusions of this study indicate that there is significant potential for the use of basalt, a lunar resource derived construction material, as a low cost alternative to Earth-based materials. It remains to be determined when in lunar base phasing this construction method should be implemented.

  7. Lunar and Planetary Science XXXV: Lunar Rocks from Outer Space

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The following topics were discussed: Mineralogy and Petrology of Unbrecciated Lunar Basaltic Meteorite LAP 02205; LAP02205 Lunar Meteorite: Lunar Mare Basalt with Similarities to the Apollo 12 Ilmenite Basalt; Mineral Chemistry of LaPaz Ice Field 02205 - A New Lunar Basalt; Petrography of Lunar Meteorite LAP 02205, a New Low-Ti Basalt Possibly Launch Paired with NWA 032; KREEP-rich Basaltic Magmatism: Diversity of Composition and Consistency of Age; Mineralogy of Yamato 983885 Lunar Polymict Breccia with Alkali-rich and Mg-rich Rocks; Ar-Ar Studies of Dhofar Clast-rich Feldspathic Highland Meteorites: 025, 026, 280, 303; Can Granulite Metamorphic Conditions Reset 40Ar-39Ar Ages in Lunar Rocks? [#1009] A Ferroan Gabbronorite Clast in Lunar Meteorite ALHA81005: Major and Trace Element Composition, and Origin; Petrography of Lunar Meteorite PCA02007, a New Feldspathic Regolith Breccia; and Troilite Formed by Sulfurization: A Crystal Structure of Synthetic Analogue

  8. Lunar microcosmos. [human factors of lunar habitat

    NASA Technical Reports Server (NTRS)

    Pirie, N.

    1974-01-01

    A human habitat on the lunar surface requires energy recycling metabolites based on the utilization of vegetative plants that are good photosynthesizers. Selection criteria involve reactions to fertilization by human excrements, suitability as food for man (with or without fractionation), physiological effects of prolonged ingestion of these plants, and technical methods for returning inedible portions back into the cycle.

  9. Lunar Rotation and the Lunar Interior

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.; Dickey, J. O.

    2003-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/ solid-mantle boundary, and tidal Love number k2. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) and fluid core moment of inertia. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core plus Love number. Past detection of CMB flattening has been marginal but is improving, while direct detection of the core moment has not yet been achieved. Three decades of Lunar Laser Ranging (LLR) data are analyzed using a weighted least-squares approach. The lunar solution parameters include dissipation at the fluid-core/solid-mantle boundary, tidal dissipation, dissipation-related coefficients for rotation and orientation terms, potential Love number k2, a correction to the constant term in the tilt of the equator to the ecliptic which is meant to approximate the influence of core-mantle boundary flattening, and displacement Love numbers h2 and l2. Several solutions, with different combinations of solution parameters and constraints, are considered.

  10. Lunar regolith bagging system

    NASA Technical Reports Server (NTRS)

    Cannon, Reuben; Henninger, Scott; Levandoski, Mark; Perkins, Jim; Pitchon, Jack; Swats, Robin; Wessels, Roger

    1990-01-01

    A design of a lunar regolith bag and bagging system is described. The bags of regolith are to be used for construction applications on the lunar surface. The machine is designed to be used in conjunction with the lunar SKITTER currently under development. The bags for this system are 1 cu ft volume and are made from a fiberglass composite weave. The machinery is constructed mostly from a boron/aluminum composite. The machine can fill 120 bags per hour and work for 8 hours a day. The man hours to machine hours ratio to operate the machine is .5/8.

  11. The lunar hopping transporter

    NASA Technical Reports Server (NTRS)

    Degner, R.; Kaplan, M. H.; Manning, J.; Meetin, R.; Pasternack, S.; Peterson, S.; Seifert, H.

    1971-01-01

    Research on several aspects of lunar transport using the hopping mode is reported. Hopping exploits the weak lunar gravity, permits fuel economy because of partial recompression of propellant gas on landing, and does not require a continuous smooth surface for operation. Three questions critical to the design of a lunar hopping vehicle are addressed directly in this report: (1) the tolerance of a human pilot for repeated accelerations; (2) means for controlling vehicle attitude during ballistic flight; and (3) means of propulsion. In addition, a small scale terrestrial demonstrator built to confirm feasibility of the proposed operational mode is described, along with results of preliminary study of unmanned hoppers for moon exploration.

  12. Lunar Roving Vehicle Parked Beside Boulder on Lunar Surface

    NASA Technical Reports Server (NTRS)

    1972-01-01

    In this Apollo 17 onboard photo, a Lunar Roving Vehicle (LRV) is parked beside a huge boulder near the Valley of Tourus-Litttrow on the lunar surface. The seventh and last manned lunar landing and return to Earth mission, the Apollo 17, carrying a crew of three astronauts: Mission Commander Eugene A. Cernan; Lunar Module pilot Harrison H. Schmitt; and Command Module pilot Ronald E. Evans, lifted off on December 7, 1972 from the Kennedy Space Flight Center (KSC). Scientific objectives of the Apollo 17 mission included geological surveying and sampling of materials and surface features in a preselected area of the Taurus-Littrow region, deploying and activating surface experiments, and conducting in-flight experiments and photographic tasks during lunar orbit and transearth coast (TEC). These objectives included: Deployed experiments such as the Apollo lunar surface experiment package (ALSEP) with a Heat Flow experiment, Lunar seismic profiling (LSP), Lunar surface gravimeter (LSG), Lunar atmospheric composition experiment (LACE) and Lunar ejecta and meteorites (LEAM). The mission also included Lunar Sampling and Lunar orbital experiments. Biomedical experiments included the Biostack II Experiment and the BIOCORE experiment. The mission marked the longest Apollo mission, 504 hours, and the longest lunar surface stay time, 75 hours, which allowed the astronauts to conduct an extensive geological investigation. They collected 257 pounds (117 kilograms) of lunar samples with the use of the Marshall Space Flight Center developed LRV. The mission ended on December 19, 1972

  13. A socio-economic evaluation of the lunar environment and resources. I. Principles and overall system strategy

    NASA Astrophysics Data System (ADS)

    Ehricke, Krafft A.

    This first of several study papers, based on a fundamental paper presented in 1972, provides an independent conceptual analysis and evaluation of the lunar environment as industrial base and habitat. A selenosphere system strategy is outlined. The underlying concept is that of one or several lunar industrial zones for resource extraction and on-surface processing, integrated with a circumlunar zero-g processing capability, serving markets in geolunar space. A classification of lunar elements by utilization category is presented. Lunar oxygen is a prime candidate for being an initial economic "drawing card", because of its value for fast transportation in geolunar space, requiring significantly fewer ships for equal transfer capability per unit time than electric transports which, however, have value, especially between geosynchronous and lunar orbit. The reduced development difficulties of controlled fusion outside the atmosphere and its advantages for extracting oxygen and other elements in quantity are summarized. Examples of lunar cycle management as fundamental exoindustrial requirement for economic resource enhancement are presented. The principal initial socio-economic value of lunar industry lies in the use of lunar resources for exoindustrial products and operations designed to accelerate, intensify and diversify Earth-related benefits. In the longer run, lunar settlements are a highly suitable proving ground for studying and testing the complex matrix of technological, biological, cultural, social and psychological aspects that must be understood and manageable before large settlements beyond Earth can have a realistic basis for viability. The lunar environment is more suitable for experimentation and comparatively more "forgiving" in case of failures than is orbital space.

  14. Oxygen extraction from lunar soil by fluorination

    NASA Technical Reports Server (NTRS)

    Seboldt, W.; Lingner, S.; Hoernes, S.; Grimmeisen, W.

    1991-01-01

    Mining and processing of lunar material could possibly lead to more cost-efficient scenarios for permanent presence of man in space and on the Moon. Production of oxygen for use as propellant seems especially important. Different candidate processes for oxygen-extraction from lunar soil were proposed, of which the reduction of ilmenite by hydrogen was studied most. This process, however, needs the concentration of ilmenite from lunar regolith to a large extent and releases oxygen only with low efficiency. Another possibility - the fluorination method - which works with lunar bulk material as feedstock is discussed. Liberation of oxygen from silicate or oxide materials by fluorination methods has been applied in geoscience since the early sixties. The fact that even at moderate temperatures 98 to 100 percent yields can be attained, suggests that fluorination of lunar regolith could be an effective way of propellant production. Lunar soil contains about 50 percent oxygen by weight which is gained nearly completely through this process as O2 gas. The second-most element Si is liberated as gaseous SiF4. It could be used for production of Si-metal and fluorine-recycling. All other main elements of lunar soil will be converted into solid fluorides which also can be used for metal-production and fluorine-recycling. Preliminary results of small scale experiments with different materials are discussed, giving information on specific oxygen-yields and amounts of by-products as functions of temperature. These experiments were performed with an already existing fluorine extraction and collection device at the University of Bonn, normally used for determination of oxygen-isotopic abundances. Optimum conditions, especially concerning energy consumption, are investigated. Extrapolation of the experimental results to large industrial-type plants on the Moon is tried and seems to be promising at first sight. The recycling of the fluorine is, however, crucial for the process. It might be achieved by means of electrolysis. This needs further investigation. The technical problem of transport and handling of the toxic and corrosive fluorine seems to be solvable and could be done by inert storage vessels.

  15. Manned in Situ Confirmation of Lunar Ice

    NASA Astrophysics Data System (ADS)

    Geren, S. P. B.; Hummeling, R. W. J.; Ockels, W. J.

    A study is performed to investigate the feasibility of a manned expedition to the Moon using the European Ariane-5 launcher. The primary objective of this lunar mission is to confirm the presence of water at the South-Pole craters. It is believed that these permanently shadowed craters contain water in the form of ice. Secondary objective is to perform lunar surface science and making a first step towards a lunar outpost. Early results show that a minimum of two Ariane-5 launches is required. In this `two Ariane' scenario the first launch will bring a Lunar Landing Vehicle (LLV) into low lunar orbit. The second will launch two astronauts in a Crew Transfer Vehicle into a rendez- vous trajectory with the LLV. Arrived at the Moon, the astronauts will enter the LLV, undock from the CTV and land at the designated site located near the rim of the South-Pole Shackleton crater. The transfer strategy for both spacecraft will be the so-called direct transfer, taking about four days. At arrival the LLV will start mapping the landing site at a ground resolution of one meter. As a consequence of the polar orbit, the CTV has to arrive fourteen days later and surface operations can take about twelve days, accumulating in a total mission-duration of 36 days. 32 days for the CTV and 22 days for the LLV. In case a `two Ariane' flight does not posses sufficient capabilities also a `three Ariane' scenario is developed, in which the LLV is split-up into two stages and launched separately. These two will dock at the Moon forming a descent stage and an ascent stage. The third launch will be a CTV. During surface operations, astronauts will set up a solar power unit, install the sample retrieval system and carry out surface science. Samples of the crater floor will be retrieved by means of a probe or robot guided along a cable suspended over the crater rim. Also, this paper shows the way in which European astronauts can be brought to the Moon for other future missions, like the construction of a telescope, a lunar hotel, a lunar solar power system or even harvesting of Helium-3. The preliminary design study shows the feasibility of both missions, meaning that ESA has the capability to put a man on the Moon to search for ice and bring him back safely with today's technology.

  16. Diviner Lunar Radiometer Experiment: Initial global mapping results (Invited)

    NASA Astrophysics Data System (ADS)

    Paige, D. A.; Greenhagen, B. T.; Vasavada, A. R.; Allen, C.; Bandfield, J. L.; Bowles, N. E.; Calcutt, S. B.; de Jong, E. M.; Elphic, R. C.; Foote, E. J.; Foote, M. C.; Donaldson Hanna, K. L.; McCleese, D. J.; Ghent, R. R.; Glotch, T. D.; Hayne, P. O.; Lucey, P. G.; Murray, B. C.; Schofield, J. T.; Siegler, M. A.; Snook, K.; Soderblom, L. A.; Taylor, F. W.; Thomas, I. R.; Wyatt, M. B.

    2009-12-01

    The Diviner Lunar Radiometer Experiment aboard the Lunar Reconnaissance Orbiter has been mapping the moon continuously since early July, 2009. The instrument has acquired thermal emission and solar reflectance data in nine spectral channels spanning a wavelength range from 0.3 to 400 microns, at spatial resolutions ranging from 0.2 to 1.3 km (Paige et al., 2009). Diviners growing dataset is revealing, for the first time, the extreme nature of the lunar thermal environment, and its diurnal and seasonal variability. The lunar polar regions are of special interest due to the presence of permanently shadowed regions that may contain cold-trapped water and other volatiles. Diviner has obtained sufficient coverage to make complete maps of annual maximum temperatures in the south polar region, and annual minimum temperatures in the north polar region. The results reveal the presence of large areas on the surface and beneath the surface that are capable of serving as long-term cold traps for water ice, as well as compounds of lower and higher volatility. In the low and mid-latitude regions, Diviner is mapping daytime and nighttime thermal emission in multiple spectral channels. Daytime measurements in Diviners three 8-micron channels have been used to map the wavelength of a distinct peak in the Moons thermal emission spectrum due to the Christiansen feature, an emissivity maximum associated with Si-O stretching vibrations (Greenhagen et al., this meeting). The results show strong correlations with lunar mineralogy derived from other remote sensing techniques and analysis of lunar samples. Diviners nighttime measurements in its four thermal mapping channels are mapping the global distribution of isolated exposures of high thermal inertia material associated with the recent excavation of blocky material by impact craters (Vasavada et al., this meeting). Diviners observations to date cover nearly 50% of the surface area of the moon. Over time, it is anticipated that Diviner will accumulate sufficient coverage to map most locations at multiple times per day. Future combined analyses of Diviner temperature, thermophysical properties and compositional data may provide new insights into the structure and history of the lunar regolith, and the nature and distribution of cold-trapped volatile compounds at the lunar poles. Greenhagen, B. T. et al. LRO Diviner Lunar Radiometer: Compositional Investigation Coverage and Results, this meeting, 2009. Paige, D. A. et. al. The Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment, Space Science Reviews, DOI: 10.1007/s11214-009-9529-2, 2009. Vasavada, A. R. et al. LRO Diviner: First Look at Lunar Global Temperatures and Thermophysical Properties, this meeting, 2009.

  17. An Overview of The Lunar Crater Observation and Sensing Satellite (LCROSS) Mission - An ESMD Mission to Investigate Lunar Polar Hydrogen

    NASA Astrophysics Data System (ADS)

    Colaprete, Anthony; Heldmann, J.; Wooden, D.; Asphaug, E.; Schultz, P.; Plesko, C.; Korycansky, D.; Briggs, G.; Ennico, K.; LCROSS Project, the

    2006-09-01

    The Lunar Crater Observation and Sensing Satellite (LCROSS) mission will advance the Vision for Space Exploration by identifying the presence of water ice at one of the Moon's poles. This mission provides a 2000kg kinetic impactor that will have more than 200 times the energy of the Lunar Prospector impact. The resulting ejecta cloud is expected to exceed 500 metric tons and will be visible from a number of Lunar-orbital and Earth-based assets. The impact is achieved by steering the entire launch vehicle's spent Earth Departure Upper Stage (EDUS) into a permanently shadowed polar region. The EDUS is guided to its target by a Shepherding Spacecraft (S-S/C), which after release of the EDUS, flies toward the impact ejecta cloud, telemetering real-time data and characterizing the morphology, evolution and composition of the cloud with a suite of cameras and spectrometers. The S-S/C then becomes a 700kg impactor itself, to provide a second opportunity to study the nature of the Lunar regolith. LCROSS provides a critical ground-truth for Lunar Prospector and LRO neutron and radar maps, making it possible to assess the total lunar water inventory.

  18. Lunar Exploration By Selene Lunar Radar Sounder

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Ono, T.; Oya, H.

    SELENE Lunar Radar Sounder SELENE Lunar Radar Sounder (LRS) is a space borne HF sounder experiment which is one of fourteen science missions onboard SELENE orbiter that is to be launched in 2005. LRS is an FMCW radar with transmission power of 800W and of which transmission pulse frequency is linearly swept from 4 to 6 MHz in 200 microseconds. A crossed pair of dipole antennas of tip-to-tip 30m long are installed as transmission and receiving antennas. The primary objective of LRS is boundary interface of lunar subsurface structure and its spatial extent. Simulation of LRS observation The whole sequence of an LRS observation, from radar pulse transmission to data analysis, has been simulated to establish the data analysis technique. The core of the simulation code is a subroutine program which treats re- flection/refraction of electromagnetic fields of radar pulse on boundary interfaces. The subroutine was designed based on Kirchhoff theory. Data analysis Four data analysis methodologies have been established for LRS: (1) B-scan analysis to investigate nadir subsurface boundary interface, (2) SAR analy- sis to investigate lunar surface crater population distribution as well as to distinguish confusing surface echoes from subsurface echoes, (3) InSAR analysis to investigate surface topography, and (4) 2D-SAR analysis to image lunar polar region surface, to investigate its surface topography, and to investigate state of surface roughness with Pol-SAR technique. Those methodologies are expected not only to be practiced in SE- LENE LRS mission but also to be applied to future planetary missions as a powerful remote sensing tool.

  19. Permanent magnet assembly

    DOEpatents

    Chell, Jeremy; Zimm, Carl B.

    2006-12-12

    A permanent magnet assembly is disclosed that is adapted to provide a magnetic field across an arc-shaped gap. Such a permanent magnet assembly can be used, for example, to provide a time-varying magnetic field to an annular region for use in a magnetic refrigerator.

  20. Conceptual design of lunar lander

    NASA Astrophysics Data System (ADS)

    Iwata, Tsutomu; Eto, Takao; Kaneko, Yutaka; Kawazoe, Takeshi; Kaneko, Kazuhisa; Tanaka, Toshiyuki; Yamamoto, Masaya

    Lunar exploration/development will be one of the most significant future space activities. In the initial phase of lunar exploration, various unmanned missions will be undertaken and effective transportation means will be required. This paper discusses the results of the conceptual design of a Japanese lunar lander to be used in such explorations. The lunar lander would be launched on a Japanese H-II launch vehicle and would transport a payload, such as a lunar mobile explorer or a lunar sample return vehicle, on to the Moon. Requirements definition, mission analysis, system and subsystem definition of a lunar lander were performed. Our analysis shows that it should be able to carry an 750 kg payload onto the lunar surface. This lunar lander features are summarized.

  1. A taxonomy for the evolution of human settlements on the moon and Mars

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.; Mandell, Humboldt C.

    1991-01-01

    A proposed structure is described for partnerships with shared interests and investments to develop the technology and approach for evolutionary surface systems for the moon and Mars. Five models are presented for cooperation with specific references to the technical evolutionary path of the surface systems. The models encompass the standard customer/provider relationship, a concept for exclusive government use, a joint venture with a government-sponsored non-SEI market, a technology joint-development approach, and a redundancy model to insure competitive pricing. The models emphasize the nonaerospace components of the settlement technologies and the decentralized nature of surface systems that make the project suitable for private industrial development by several companies. It is concluded that the taxonomy be considered when examining collaborative opportunities for lunar and Martian settlement.

  2. Lunar robotic maintenance module

    NASA Technical Reports Server (NTRS)

    Ayres, Michael L.

    1988-01-01

    A design for a robotic maintenance module that will assist a mobile 100-meter lunar drill is introduced. The design considers the following areas of interest: the atmospheric conditions, actuator systems, power supply, material selection, weight, cooling system and operation.

  3. Lunar sample contracts

    NASA Technical Reports Server (NTRS)

    Walker, R. M.

    1974-01-01

    The major scientific accomplishments through 1971 are reported for the particle track studies of lunar samples. Results are discussed of nuclear track measurements by optical and electron microscopy, thermoluminescence, X-ray diffraction, and differential thermal analysis.

  4. An Unusual Lunar Halo

    ERIC Educational Resources Information Center

    Cardon, Bartley L.

    1977-01-01

    Discusses a photograph of an unusual combination of lunar halos: the 22-degree refraction halo, the circumscribed halo, and a reflection halo. Deduces the form and orientations of the ice crystals responsible for the observed halo features. (MLH)

  5. Lunar outpost agriculture

    NASA Technical Reports Server (NTRS)

    Hossner, Lloyd R.; Ming, Douglas W.; Henninger, Donald L.; Allen, Earl R.

    1991-01-01

    The development of a CELSS for a lunar outpost is discussed. It is estimated that a lunar outpost life support system with a crew of four that produces food would break even in terms of mass and cost to deliver the system to the lunar surface after 2.5 years when compared to the cost of resupply from earth. A brief review is made of research on life support systems and NASA projects for evaluating CELSS components. The use of on-site materials for propellants, construction materials, and agriculture is evaluated, and the use of microbes for waste decomposition and stabilization of ecological balance is touched upon. Areas for further investigation include the behavior of organisms in microgravity, genetic alteration, gas exchange capabilities of organisms, integration of biological and physicochemical components, and automation. The development stages leading to lunar deployment are outlined.

  6. The Lunar Dust Pendulum

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.

    2011-01-01

    Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lunar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however, the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.

  7. Lunar Influence On Plants

    NASA Astrophysics Data System (ADS)

    Schad, Wolfgang

    Concerning lunar periodicity in biology, we summarized all what has been observationally and experimentally found and published in scientific literature till 1996. We summoned up as many as about 600 living species (mostly animals) with identified lunar periodicities, functioning in a more or less endogenous manner. Here we give a short review about the occurrence in the plant kingdom. In Thallophytes 45 species have been described as well as 40 species of Angiosperms. In Prokaryonts no lunar rhythms could be found. Their individual life cycles do not reach the time span of at least comparable parts of a lunar day. Thus as in all Eukaryonts the occurrence of the cell nucleus constitutes specifically ndogenous rhythms in plants as well as in the animal kingdom.

  8. Lunar Prospector: overview.

    PubMed

    Binder, A B

    1998-09-01

    Lunar Prospector is providing a global map of the composition of the moon and analyzing the moon's gravity and magnetic fields. It has been in a polar orbit around the moon since 16 January 1998. Neutron flux data show that there is abundant H, and hence probably abundant water ice, in the lunar polar regions. Gamma-ray and neutron data reveal the distribution of Fe, Ti, and other major and trace elements on the moon. The data delineate the global distributions of a key trace element-rich component of lunar materials called KREEP and of the major rock types. Magnetic mapping shows that the lunar magnetic fields are strong antipodal to Mare Imbrium and Mare Serenitatis and has discovered the smallest known magnetosphere, magnetosheath, and bow shock complex in the solar system. Gravity mapping has delineated seven new gravity anomalies and shown that the moon has a small Fe-rich core of about 300 km radius. PMID:9727967

  9. Lunar & Planetary Science, 11.

    ERIC Educational Resources Information Center

    Geotimes, 1980

    1980-01-01

    Presents a summary of each paper presented at the Lunar and Planetary Science Conference at the Johnson Space Center, Houston in March 1980. Topics relate to Venus, Jupiter, Mars, asteroids, meteorites, regoliths, achondrites, remote sensing, and cratering studies. (SA)

  10. Lunar Dust Biological Effects

    NASA Astrophysics Data System (ADS)

    Jones, L.; Jacques, S.; Rask, J. C.; Tranfield, E.; Taylor, L.; Kerschmann, R.; Loftus, D. J.

    2008-07-01

    We are investigating the biological effects of lunar dust collected during the Apollo missions to understand potential skin effects, inhalation toxicity, and ocular effects that may result from long duration human habitation of the Moon.

  11. Lunar Prospector: overview

    NASA Technical Reports Server (NTRS)

    Binder, A. B.

    1998-01-01

    Lunar Prospector is providing a global map of the composition of the moon and analyzing the moon's gravity and magnetic fields. It has been in a polar orbit around the moon since 16 January 1998. Neutron flux data show that there is abundant H, and hence probably abundant water ice, in the lunar polar regions. Gamma-ray and neutron data reveal the distribution of Fe, Ti, and other major and trace elements on the moon. The data delineate the global distributions of a key trace element-rich component of lunar materials called KREEP and of the major rock types. Magnetic mapping shows that the lunar magnetic fields are strong antipodal to Mare Imbrium and Mare Serenitatis and has discovered the smallest known magnetosphere, magnetosheath, and bow shock complex in the solar system. Gravity mapping has delineated seven new gravity anomalies and shown that the moon has a small Fe-rich core of about 300 km radius.

  12. Limits to the lunar atmosphere

    SciTech Connect

    Morgan, T.H. ); Shemansky, D.E. )

    1991-02-01

    The presence of sodium and potassium on the Moon implies that other more abundant species should be present. Volatile molecules like H{sub 2}O are significantly more abundant than sodium in any of the proposed external atmospheric sources. Source mechanisms which derive atoms from the surface should favor abundant elements in the regolith. It is therefore puzzling that the Apollo ultraviolet spectrometer experiment set limits on the density of oxygen of N{sub O} < 5 {times} 10{sup 2} cm{sup {minus}3}, and that the Apollo Lunar Atmospheric Composition Experiment data imply N{sub O} < 50 cm{sup {minus}3} above the subsolar point. These limits are surprisingly small relative to the measured value for sodium. A simple consideration of sources and sinks predicts significantly greater densities of oxygen. It is possible but doubtful that the Apollo measurements occur ed during an epoch in which source rates were small. A preferential loss process for oxygen on the darkside of the Moon is considered in which ionization by electron capture in surface collisions leads to escape through acceleration in the local electric field. Cold trapping in permanently shadowed regions as a net sink is considered and discounted, but the episodic nature of cometary insertion may allow formation of ice layers which act as a stablized source of OH. On the basis of an assumed meteoroid impact source, the authors predict a possible emission brightness of {approximately} 50 R in the OH(A {minus} X)(0,0) band above the lunar bright limb. A very uncertain small comet source of H{sub 2}O could raise this value by more than two orders of magnitude.

  13. Lunar Sulfur Capture System

    NASA Technical Reports Server (NTRS)

    Berggren, Mark; Zubrin, Robert; Bostwick-White, Emily

    2013-01-01

    The Lunar Sulfur Capture System (LSCS) protects in situ resource utilization (ISRU) hardware from corrosion, and reduces contaminant levels in water condensed for electrolysis. The LSCS uses a lunar soil sorbent to trap over 98 percent of sulfur gases and about two-thirds of halide gases evolved during hydrogen reduction of lunar soils. LSCS soil sorbent is based on lunar minerals containing iron and calcium compounds that trap sulfur and halide gas contaminants in a fixed-bed reactor held at temperatures between 250 and 400 C, allowing moisture produced during reduction to pass through in vapor phase. Small amounts of Earth-based polishing sorbents consisting of zinc oxide and sodium aluminate are used to reduce contaminant concentrations to one ppm or less. The preferred LSCS configuration employs lunar soil beneficiation to boost concentrations of reactive sorbent minerals. Lunar soils contain sulfur in concentrations of about 0.1 percent, and halogen compounds including chlorine and fluorine in concentrations of about 0.01 percent. These contaminants are released as gases such as H2S, COS, CS2,HCl, and HF during thermal ISRU processing with hydrogen or other reducing gases. Removal of contaminant gases is required during ISRU processing to prevent hardware corrosion, electrolyzer damage, and catalyst poisoning. The use of Earth-supplied, single-use consumables to entirely remove contaminants at the levels existing in lunar soils would make many ISRU processes unattractive due to the large mass of consumables relative to the mass of oxygen produced. The LSCS concept of using a primary sorbent prepared from lunar soil was identified as a method by which the majority of contaminants could be removed from process gas streams, thereby substantially reducing the required mass of Earth-supplied consumables. The LSCS takes advantage of minerals containing iron and calcium compounds that are present in lunar soil to trap sulfur and halide gases in a fixedbed reactor downstream of an in-ISRU process such as hydrogen reduction. The lunar-soil-sorbent trap is held at a temperature significantly lower than the operating temperature of the hydrogen reduction or other ISRU process in order to maximize capture of contaminants, but is held at a high enough temperature to allow moisture to pass through without condensing. The lunar soil benefits from physical beneficiation to remove ultrafine particles (to reduce pressure drop through a fixed bed reactor) and to upgrade concentrations of iron and/or calcium compounds (to improve reactivity with gaseous contaminants).

  14. Lunar Commercialization Workshop

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2008-01-01

    This slide presentation describes the goals and rules of the workshop on Lunar Commercialization. The goal of the workshop is to explore the viability of using public-private partnerships to open the new space frontier. The bulk of the workshop was a team competition to create a innovative business plan for the commercialization of the moon. The public private partnership concept is reviewed, and the open architecture as an infrastructure for potential external cooperation. Some possible lunar commercialization elements are reviewed.

  15. Lunar Lander Exhibit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA's Lunar Lander exhibit is located at the Mississippi I-10 Welcome Center in Hancock County, Miss., just west of Bay St. Louis and 45 miles east of New Orleans on I-10 at Exit 2. The exhibit features a 30-foot-tall replica of a Lunar Lander used as a trainer by the Apollo 13 astronauts. Apollo 13 astronaut and Mississippi native Fred Haise left space-boot prints and signature in concrete at the base of the exhibit.

  16. Lunar sample analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.

    1983-01-01

    The evolution of the lunar regolith under solar wind and micrometeorite bombardment is discussed as well as the size distribution of ultrafine iron in lunar soil. The most important characteristics of complex graphite, sulfide, arsenide, palladium, and platinum mineralization in a pegmatoid pyroxenite of the Stillwater Complex in Montana are examined. Oblique reflected light micrographs and backscattered electron SEM images of the graphite associations are included.

  17. Lunar association with suicide.

    PubMed

    Jones, P K; Jones, S L

    1977-01-01

    Suicides in Cuyahoga County, Ohio, for 1972--1975 are tabulated by year, month of year, day of week, lunar phase, and holiday occurrence. Only lunar phase demonstrates a significant (p less than .01) variation in suicide rate; an increase is observed in this sample with respect to new moon phase but not for full moon phase. Explanations for this finding are considered, but the precise reasons remain unknown. PMID:613499

  18. Lunar subsurface architecture enhanced by artificial biosphere concepts

    NASA Technical Reports Server (NTRS)

    Klassi, Jason D.; Rocha, Carlos J.; Carr, Charles A.

    1992-01-01

    The integration of artificial biosphere technology with subselene architecture can create a life-enhancing, productive habitat that is safe from solar radiation and extreme temperature fluctuations while maximizing resources brought from Earth and derived from lunar regolith. In the short term, the resulting biotectural (biosphere and architectural) designs will not only make the structures more habitable, productive, and manageable, but will ultimately provide the self-sufficiency factors necessary for the mature lunar settlement. From a long-term perspective, this biotecture approach to astronautics and extraterrestrial development (1) helps reduce mass lift requirements, (2) contributes to habitat self-sufficiency, and (3) actualizes at least one philosophy of solar system exploration, which is to exploit nonterrestrial resources in an effort to conserve our natural resources on this planet.

  19. Technology needs for lunar and Mars space transfer systems

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.; Cothran, Bradley C.; Donahue, Benjamin; Mcghee, Jerry

    1991-01-01

    The determination of appropriate space transportation technologies and operating modes is discussed with respect to both lunar and Mars missions. Three levels of activity are set forth to examine the sensitivity of transportation preferences including 'minimum,' 'full science,' and 'industrialization and settlement' categories. High-thrust-profile missions for lunar and Mars transportation are considered in terms of their relative advantages, and transportation options are defined in terms of propulsion and braking technologies. Costs and life-cycle cost estimates are prepared for the transportation preferences by using a parametric cost model, and a return-on-investment summary is given. Major technological needs for the programs are listed and include storable propulsion systems; cryogenic engines and fluids management; aerobraking; and nuclear thermal, nuclear electric, electric, and solar electric propulsion technologies.

  20. Construction of the 16 meter Large Lunar Telescope (LLT)

    NASA Technical Reports Server (NTRS)

    Omar, Husam Anwar

    1990-01-01

    The different materials that could be used to design the pedestal for a Moon based 16 meter telescope are discussed. The material that should be used has a low coefficient of thermal expansion, high modulus of elasticity, and high compressive and tensile strengths. For the model developed in this study, an aluminum-manganese alloy was used because of its low coefficient of thermal expansion. Due to variations in lunar soil conditions, both vertically and horizontally, three foundation systems are presented. The spudcan footing can be used in the case where dense soil is more than three meters. The spread footing is recommended where the dense soil is between one and three meters. Finally, in the third system, the Lunar Excursion Vehicle (LEV) is used as a base support for the telescope's pedestal. The LEV support requires a prepared site. The soil should be compacted and stabilized, if necessary, to reduce settlement.

  1. Construction of the 16 meter Large Lunar Telescope (LLT)

    NASA Astrophysics Data System (ADS)

    Omar, Husam Anwar

    1990-10-01

    The different materials that could be used to design the pedestal for a Moon based 16 meter telescope are discussed. The material that should be used has a low coefficient of thermal expansion, high modulus of elasticity, and high compressive and tensile strengths. For the model developed in this study, an aluminum-manganese alloy was used because of its low coefficient of thermal expansion. Due to variations in lunar soil conditions, both vertically and horizontally, three foundation systems are presented. The spudcan footing can be used in the case where dense soil is more than three meters. The spread footing is recommended where the dense soil is between one and three meters. Finally, in the third system, the Lunar Excursion Vehicle (LEV) is used as a base support for the telescope's pedestal. The LEV support requires a prepared site. The soil should be compacted and stabilized, if necessary, to reduce settlement.

  2. Lunar Resources: A Review

    NASA Astrophysics Data System (ADS)

    Crawford, Ian A.

    2015-04-01

    There is growing interest in the possibility that the resource base of the Solar System might in future be used to supplement the economic resources of our own planet. As the Earth's closest celestial neighbour, the Moon is sure to feature prominently in these developments. In this paper I review what is currently known about economically exploitable resources on the Moon, while also stressing the need for continued lunar exploration. I find that, although it is difficult to identify any single lunar resource that will be sufficiently valuable to drive a lunar resource extraction industry on its own (notwithstanding claims sometimes made for the 3He isotope, which are found to be exaggerated), the Moon nevertheless does possess abundant raw materials that are of potential economic interest. These are relevant to a hierarchy of future applications, beginning with the use of lunar materials to facilitate human activities on the Moon itself, and progressing to the use of lunar resources to underpin a future industrial capability within the Earth-Moon system. In this way, gradually increasing access to lunar resources may help 'bootstrap' a space-based economy from which the world economy, and possibly also the world's environment, will ultimately benefit.

  3. Lunar Orbit Anomaly

    NASA Astrophysics Data System (ADS)

    Riofrio, L.

    2012-12-01

    Independent experiments show a large anomaly in measurements of lunar orbital evolution, with applications to cosmology and the speed of light. The Moon has long been known to be slowly drifting farther from Earth due to tidal forces. The Lunar Laser Ranging Experiment (LLRE) indicates the Moon's semimajor axis increasing at 3.82 ± .07 cm/yr, anomalously high. If the Moon were today gaining angular momentum at this rate, it would have coincided with Earth less than 2 Gyr ago. Study of tidal rhythmites indicates a rate of 2.9 ± 0.6 cm/yr. Historical eclipse observations independently measure a recession rate of 2.82 ± .08 cm/yr. Detailed numerical simulation of lunar orbital evolution predicts 2.91 cm/yr. LLRE differs from three independent experiments by over12 sigma. A cosmology where speed of light c is related to time t by GM=tc^3 has been suggested to predict the redshifts of Type Ia supernovae, and a 4.507034% proportion of baryonic matter. If c were changing in the amount predicted, lunar orbital distance would appear to increase by an additional 0.935 cm/yr. An anomaly in the lunar orbit may be precisely calculated, shedding light on puzzles of 'dark energy'. In Planck units this cosmology may be summarized as M=R=t.Lunar Recession Rate;

  4. The Lunar Orbital Prospector

    NASA Technical Reports Server (NTRS)

    Redd, Frank J.; Cantrell, James N.; Mccurdy, Greg

    1992-01-01

    The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.

  5. The Lunar Orbital Prospector

    NASA Astrophysics Data System (ADS)

    Redd, Frank J.; Cantrell, James N.; McCurdy, Greg

    1992-09-01

    The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.

  6. Lunar Sample Compendium

    NASA Technical Reports Server (NTRS)

    Meyer, Charles

    2005-01-01

    The purpose of the Lunar Sample Compendium will be to inform scientists, astronauts and the public about the various lunar samples that have been returned from the Moon. This Compendium will be organized rock by rock in the manor of a catalog, but will not be as comprehensive, nor as complete, as the various lunar sample catalogs that are available. Likewise, this Compendium will not duplicate the various excellent books and reviews on the subject of lunar samples (Cadogen 1981, Heiken et al. 1991, Papike et al. 1998, Warren 2003, Eugster 2003). However, it is thought that an online Compendium, such as this, will prove useful to scientists proposing to study individual lunar samples and should help provide backup information for lunar sample displays. This Compendium will allow easy access to the scientific literature by briefly summarizing the significant findings of each rock along with the documentation of where the detailed scientific data are to be found. In general, discussion and interpretation of the results is left to the formal reviews found in the scientific literature. An advantage of this Compendium will be that it can be updated, expanded and corrected as need be.

  7. Beneficiation of lunar ilmenite

    NASA Technical Reports Server (NTRS)

    Ruiz, Joaquin

    1991-01-01

    One of the most important commodities lacking in the moon is free oxygen which is required for life and used extensively for propellent. Free oxygen, however, can be obtained by liberating it from the oxides and silicates that form the lunar rocks and regolith. Ilmenite (FeTiO3) is considered one of the leading candidates for production of oxygen because it can be reduced with a reasonable amount of energy and it is an abundant mineral in the lunar regolith and many mare basalts. In order to obtain oxygen from ilmenite, a method must be developed to beneficiate ilmenite from lunar material. Two possible techniques are electrostatic or magnetic methods. Both methods have complications because lunar ilmenite completely lacks Fe(3+). Magnetic methods were tested on eucrite meteorites, which are a good chemical simulant for low Ti mare basalts. The ilmenite yields in the experiments were always very low and the eucrite had to be crushed to xxxx. These data suggest that magnetic separation of ilmenite from fine grain lunar basalts would not be cost effective. Presently, experiments are being performed with electrostatic separators, and lunar regolith is being waited for so that simulants do not have to be employed.

  8. Lunar preform manufacturing

    NASA Technical Reports Server (NTRS)

    Leong, Gregory N.; Nease, Sandra; Lager, Vicky; Yaghjian, Raffy; Waller, Chris

    1992-01-01

    A design for a machine to produce hollow, continuous fiber-reinforced composite rods of lunar glass and a liquid crystalline matrix using the pultrusion process is presented. The glass fiber will be produced from the lunar surface, with the machine and matrix being transported to the moon. The process is adaptable to the low gravity and near-vacuum environment of the moon through the use of a thermoplastic matrix in fiber form as it enters the pultrusion process. With a power consumption of 5 kW, the proposed machine will run unmanned continuously in fourteen-day cycles, matching the length of lunar days. A number of dies could be included that would allow the machine to produce rods of varying diameter, I-beams, angles, and other structural members. These members could then be used for construction on the lunar surface or transported for use in orbit. The benefits of this proposal are in the savings in weight of the cargo each lunar mission would carry. The supply of glass on the moon is effectively endless, so enough rods would have to be produced to justify its transportation, operation, and capital cost. This should not be difficult as weight on lunar mission is at a premium.

  9. Lunar atmospheric composition experiment

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1975-01-01

    Apollo 17 carried a miniature mass spectrometer, called the Lunar Atmospheric Composition Experiment (LACE), to the moon as part of the Apollo Lunar Surface Experiments Package (ALSEP) to study the composition and variations in the lunar atmosphere. The instrument was successfully deployed in the Taurus-Littrow Valley with its entrance aperture oriented upward to intercept and measure the downward flux of gases at the lunar surface. During the ten lunations that the LACE operated, it produced a large base of data on the lunar atmosphere, mainly collected at night time. It was found that thermal escape is the most rapid loss mechanism for hydrogen and helium. For heavier gases, photoionization followed by acceleration through the solar wind electric field accounted for most of the loss. The dominant gases on the moosn were argon and helium, and models formed for their distribution are described in detail. It is concluded that most of the helium in the lunar atmosphere is of solar wind origin, and that there also exist very small amounts of methane, ammonia, and carbon dioxide.

  10. Robotic Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Echols, Raymond

    2006-01-01

    This presentation describes current Lunar Exploration plans and objectives. It begins with specific statements from the President s vision for U.S. Space Exploration which pertain to robotic lunar missions. An outline of missions objectives is provided, along with a high-level schedule of events through the year 2025. Focus is then given to the Lunar Robotic and Precursor Program (LPRP) to describe objectives and goals. Recent developments in the Program are explained - specifically, the renaming of the RLEP program to "LPRP" and the movement of the program office to MSFC. A brief summary of the synergy expected between the robotic and crewed missions, with the LSAM descent stage Project is given. The Lunar Reconnaissance Orbiter mission, with its co-manifested Lunar Crater Observation and Sensing Satellite (LCROSS), is then described with an overview of the payloads and mission objectives. Finally, information is given about the expected future of the LPRP program and Exploration and the development of a compressive Lunar Exploration Architecture.

  11. Lunar preform manufacturing

    NASA Astrophysics Data System (ADS)

    Leong, Gregory N.; Nease, Sandra; Lager, Vicky; Yaghjian, Raffy; Waller, Chris

    A design for a machine to produce hollow, continuous fiber-reinforced composite rods of lunar glass and a liquid crystalline matrix using the pultrusion process is presented. The glass fiber will be produced from the lunar surface, with the machine and matrix being transported to the moon. The process is adaptable to the low gravity and near-vacuum environment of the moon through the use of a thermoplastic matrix in fiber form as it enters the pultrusion process. With a power consumption of 5 kW, the proposed machine will run unmanned continuously in fourteen-day cycles, matching the length of lunar days. A number of dies could be included that would allow the machine to produce rods of varying diameter, I-beams, angles, and other structural members. These members could then be used for construction on the lunar surface or transported for use in orbit. The benefits of this proposal are in the savings in weight of the cargo each lunar mission would carry. The supply of glass on the moon is effectively endless, so enough rods would have to be produced to justify its transportation, operation, and capital cost. This should not be difficult as weight on lunar mission is at a premium.

  12. Insolation Effects on Lunar Hydrogen: Observation from the LRO LEND and LOLA Instruments

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Harshman, K.; Livak, M. M.; Malakhov, A.; Milikh, G. M.; Namkung, M.; Nandikotkur, G.; Neumann, G.; Smith, D.; Sagdeev, R.; Sanin, A. G.; Starr, R. D.; Trombka, J. I.; Zuber, M. T.

    2011-01-01

    The Moon's polar permanent shadow regions (PSR) have long been considered the unique repository for volatile Hydrogen (H) Largely, this was due to the extreme and persistently cold environment that has been maintained over eons of lunar history. However, recent discoveries indicate that the H picture may be more complex than thc PSR hypothesis suggests. Observations by the Lunar Exploration Neutron Detect (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) indicate some H concentrations lie outside PSR. Similarly, observations from Chandraayan-l's M3 and Deep Impact's EPOXI near infra-red observations indicate diurnal cycling of volatile H in lower latitudes. These results suggest other geophysical phenomena may also play a role in the Lunar Hydrogen budget. In this presentation we review the techniques and results from the recent high latitude analysis and apply similar techniques to equatorial regions. Results from our low latitude analysis will be reported. We discuss interpretations and implications for Lunar Hydrogen studies

  13. Chemical processing of lunar materials

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.; Waldron, R. D.

    1979-01-01

    The paper highlights recent work on the general problem of processing lunar materials. The discussion covers lunar source materials, refined products, motivations for using lunar materials, and general considerations for a lunar or space processing plant. Attention is given to chemical processing through various techniques, including electrolysis of molten silicates, carbothermic/silicothermic reduction, carbo-chlorination process, NaOH basic-leach process, and HF acid-leach process. Several options for chemical processing of lunar materials are well within the state of the art of applied chemistry and chemical engineering to begin development based on the extensive knowledge of lunar materials.

  14. Closer look at lunar volcanism

    SciTech Connect

    Vaniman, D.T.; Heiken, G.; Taylor, G.J.

    1984-01-01

    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry.

  15. Prospecting for Lunar Resources with Global Geochemical and Multispectral Data

    NASA Astrophysics Data System (ADS)

    Allen, C. C.

    1999-01-01

    Laboratory experiments have demonstrated correlations between the abundances of some lunar resources and specific chemical and mineralogical parameters of surface materials. Global remote sensing from the Apollo, Galileo, Clementine, and Lunar Prospector missions, combined with Earth-based observations, has now quantified these parameters. Combining experiments and remote sensing allows the first prospecting for resources across the entire lunar surface. The Moon's rocks and soil contain resources that could be used to support a future lunar base for research or for launching expeditions into deep space. Lunar O is the resource most likely to be exploited first, for both propulsion and life support. The efficiency of O extraction from lunar materials has been shown to depend strongly on the material's chemical and mineralogical composition.Some lunar materials may be rare and vital enough on Earth to justify the cost of their return. The rare isotope He-3, which can be used in an efficient and low-polluting fusion power reaction, has been cited as one such resource. Over 20 different processes have been proposed for O production on the Moon. Among the simplest and best studied of these processes is the reduction of oxides in lunar minerals and glass using H gas. It was reported that the results of O extraction experiments on 16 lunar soils. Each sample was reacted in flowing H for 3 h at 1050 C. Total O yield correlated strongly to each sample's initial Fe2+ abundance. A linear least-squares fit of O yield vs. Fe2+ for 16 lunar soils yielded a regression line with a slope of 0.19, an intercept of 0.55 wt% O and an r-square value of 0.87. Oxygen yield did not significantly correlate with the abundance of any element except Fe. Thus, O yield from lunar soils can be predicted with nearly 90% confidence based solely on their iron abundances. The potential for O production at any location on the Moon can be predicted if the soil's Fe concentration is known. On a global scale, Fe concentration in the near surface has been estimated from data returned by a variety of spacecraft. Iron was one of several elements measured from near equatorial orbits during the Apollo 15 and 16 missions, using gamma ray spectrometry. These data covered approximately 20% of the lunar surface, with spatial resolutions of about 100 km. An improved gamma ray spectrometer and a neutron spectrometer, flown on the Lunar Prospector spacecraft in a polar orbit, provided Fe abundance data for the entire lunar surface, again at a spatial resolution of about 100 km. A technique for iron assessment based on orbital multispectral imaging has been developed. This method correlates Fe abundance to a parameter derived from reflectance values at 750 and900nm. The authors use data from the Clementine spacecraft to map Fe abundances across nearly the entire lunar surface. These data can support identification of Fe-rich regions as small as a few hundred meters across. Researchers find good agreement between gamma-ray/neutron and multispectral Fe determinations for most areas on the Moon. The H-reduction experiments cited above also showed submillimeter volcanic glass beads could be highly desirable feedstocks for lunar O production. Iron-rich species, represented by glassy (orange) and crystalline (black) beads, promise particularly high O yields. Apollo 17 volcanic glass sample 74220, composed predominantly of orange glass beads with an average diameter of 40 mm, contains 17.8 wt% Fe2+. Reduction of this sample yielded 4.3 wt% O, well above the regression line defined by the experiments on 16 lunar soils. Sample 74001 is dominated by black crystalline beads, the isochemical equivalent of orange glasses. Reduction of 74001 yielded 4.7 wt% O, the highest value for any lunar sample. Extensive areas of the lunar surface covered by volcanic glass beads have been delineated using Earth based data and spacecraft orbital photography. Chemical compositions of the deposits have been estimated and mixing ratios of glassy and crystalline glass beads have been determined. Clementine multispectral imagery has been employed to determine the precise extent and estimate the thickness of one widespread deposit, that of the Aristarchus Plateau. Lunar ice could prove to be a highly advantageous O source, compared to O derived from soil reduction, in terms of process complexity and power requirements. Thus, a deposit of ice on the Moon is a potentially important resource.Permanently shadowed polar craters have been modeled as possible cold traps for water ice, derived either from indigenous sources or from comets. Any lunar ice deposits must occur in extremely restricted areas near the poles. Only crater interiors that are permanently shadowed from sunlight are cold enough to have retained volatiles for a significant part of the Moon's history. Clementine images and Earth-based radar have demonstrated that craters whose interiors are never exposed to sunlight do exist near the lunar poles. Water ice has been tentatively identified in some of these craters using Clementine bi-static radar data. Lunar Prospector mapped the epithermal and fast-neutron fluxes across the entire Moon. Low epithermal fluxes are correlated with concentrations of H, and by extension ice, in the near-surface. Such signatures were observed near permanently-shadowed craters at both lunar poles. Calculation of the actual amount of water ice in these cold traps is strongly model-dependent but each polar region could contain as much as 3x109 t of water ice. The concentration of solar wind-implanted He in mare regolith increases with the soil's Ti content. This correlation is apparently due to preferential adsorption of He by ilmenite grains. Thus, Ti in mare soils is a predictor of the He-3 resource. Additional information is contained in the original.

  16. Investigations on the Development of Avalanche Risk in Settlements of Grisons, Switzerland

    NASA Astrophysics Data System (ADS)

    Fuchs, S.; Bruendl, M.

    2003-04-01

    Snow avalanches represent a serious risk in mountain areas, endangering settlements, roads and infrastructure. It is often postulated, but not yet quantified, that the risk resulting from snow avalanches increased during the last 50 years, mainly because of an expanded value concentration. Regarding the development of avalanche risk in settlements, two relevant factors have to be examined: Recurrence probability and the amount of damage potential. Due to mitigation measures, such as snow rakes in starting zones, the run out zones and thus the recurrence probabilities decreased in the last 50 years. Consequently, the amount of damage is declining. This development is overlain by an increase in damage potential due to new buildings in avalanche-prone areas, leading to a lower risk reduction. This paper evaluates the effects of permanent mitigation measures on the avalanche risk in settlements of the municipality of Davos, Switzerland, between 1950 and 2000. The expected value of annual damage has been reduced by 95%, regarding the settlement boundaries of 1950. Furthermore, changes of risk which result from a changed land use development are pointed out. The reduction of the annual expectancy value only amounts to 75%, if the new-erected buildings since the implementation of mitigation measures are taken into consideration. Looking more closely at rare events (300 years), the risk reduction is only 25%, due to increased land development. This study leads to a better understanding of the development of risk in settlements. It also provides useful information for the economic assessment of the effects of mitigation measures.

  17. Lunar and Planetary Science XXXVI, Part 5

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Topics discussed include: Automation Recognition oF Crater-Like Structures in Terrestrial and Plantary Images; Condensation from Cluster-IDP Enriched Vapor Inside the Snow Line: Implications for Mercury, Asteroids, and Enstatite Chondrites; Tomographic Location of Potential Melt-Bearing Phenocrysts in Lunar Glass Spherules; Source and Evolution of Vapor Due to Impacts into Layered Carbonates and Silicates; Noble Gases and I-Xe Ages of the Zag Meteorite; The MArs Hand Lens Imager (MAHLI) for the 209 Mars Science Laboratory; The Sedimentary Rocks of Meridiani Planum, in Context; Three-System Isotopic of Lunar Norite 78238: Rb-Sr Results; Constraints on the Role of Curium-247 as a Source of Fission Xenon in the Early Solar System; New Features in the ADS Abstract Service; Cassini RADAR's First Look at Titan; Volcanism and Volatile Recycling on Venus from Lithospheric Delamination; The Fate of Water in the Martian Magma Ocean and the Formation of an Early Atmosphere; Mars Odyssey Neutron Spectrometer Water-Equivalent Hydrogen: Comparison with Glacial; Landforms on Tharsis; Using Models of Permanent Shadow to Constrain Lunar Polar Water Ice Abundances; Martian Radiative Transfer Modeling Using the Optimal Spectral Sampling Method; Petrological and Geochemical Consideration on the Tuserkanite Meteorite; and Mineralogy of Asteroids from Observations with the Spitzer Space Telescope.

  18. Ice in the lunar polar regions

    NASA Technical Reports Server (NTRS)

    Arnold, J. R.

    1979-01-01

    The idea that ice and other trapped volatiles exist in permanently shadowed regions near the lunar poles was proposed by Watson, Murray, and Brown (1961). It is reexamined in the present paper, in the light of the vast increase of lunar knowledge. The stability of the traps and the trapping mechanism are verified. Four potential sources of lunar H2O, namely (1) solar wind reduction of Fe in the regolith, (2) H2O-containing meteoroids, (3) cometary impact, and (4) (the least certain) degassing of the interior, can supply amounts of trapped H2O estimated in the range of 10 to the 16th to 10 to the 17th g. Two important destructive mechanisms have been identified: photodissociation of H2O molecules adsorbed on the sunlit surface and sputtering or decomposition of trapped H2O by solar wind particles. The effect of impact gardening is mainly protective. The question of the presence of H2O in the traps remains open; it can be settled by experiment.

  19. Space Solar Power Technology for Lunar Polar Applications

    NASA Technical Reports Server (NTRS)

    Henley, Mark W.; Howell, Joe T.

    2004-01-01

    The technology for Laser-Photo-Voltaic Wireless Power Transistor (Laser-PV WPT) is being developed for lunar polar applications by Boeing and NASA Marshall Space Center. A lunar polar mission could demonstrate and validate Laser-PV WPT and other SSP technologies, while enabling access to cold, permanently shadowed craters that are believed to contain ice. Crater may hold frozen water and other volatiles deposited over billion of years, recording prior impact event on the moon (and Earth). A photo-voltaic-powered rover could use sunlight, when available, and laser light, when required, to explore a wide range of lunar terrain. The National Research Council recently found that a mission to the moon's south pole-Aitkir basin has priority for space science

  20. Restoration and PDS Archive of Apollo Lunar Rock Sample Data

    NASA Technical Reports Server (NTRS)

    Garcia, P. A.; Todd, N. S.; Lofgren, G. E.; Stefanov, W. L.; Runco, S. K.; LaBasse, D.; Gaddis, L. R.

    2011-01-01

    In 2008, scientists at the Johnson Space Center (JSC) Lunar Sample Laboratory and Image Science & Analysis Laboratory (under the auspices of the Astromaterials Research and Exploration Science Directorate or ARES) began work on a 4-year project to digitize the original film negatives of Apollo Lunar Rock Sample photographs. These rock samples together with lunar regolith and core samples were collected as part of the lander missions for Apollos 11, 12, 14, 15, 16 and 17. The original film negatives are stored at JSC under cryogenic conditions. This effort is data restoration in the truest sense. The images represent the only record available to scientists which allows them to view the rock samples when making a sample request. As the negatives are being scanned, they are also being formatted and documented for permanent archive in the NASA Planetary Data System (PDS) archive. The ARES group is working collaboratively with the Imaging Node of the PDS on the archiving.

  1. Cross Calibration of Omnidirectional Orbital Neutron Detectors of Lunar Prospector (LP) and Lunar Exploration Neutron Detector (LEND) by Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Murray, J.; SU, J. J.; Sagdeev, R.; Chin, G.

    2014-12-01

    Introduction:Monte Carlo (MC) simulations have been used to investigate neutron production and leakage from the lunar surface to assess the composition of the lunar soil [1-3]. Orbital measurements of lunar neutron flux have been made by the Lunar Prospector Neutron Spectrometer (LPNS)[4] of the Lunar Prospector mission and the Lunar Exploration Neutron Detector (LEND)[5] of the Lunar Reconnaissance Orbiter mission. While both are cylindrical helium-3 detectors, LEND's SETN (Sensor EpiThermal Neutrons) instrument is shorter, with double the helium-3 pressure than that of LPNS. The two instruments therefore have different angular sensitivities and neutron detection efficiencies. Furthermore, the Lunar Prospector's spin-stabilized design makes its detection efficiency latitude-dependent, while the SETN instrument faces permanently downward toward the lunar surface. We use the GEANT4 Monte Carlo simulation code[6] to investigate the leakage lunar neutron energy spectrum, which follows a power law of the form E-0.9 in the epithermal energy range, and the signals detected by LPNS and SETN in the LP and LRO mission epochs, respectively. Using the lunar neutron flux reconstructed for LPNS epoch, we calculate the signal that would have been observed by SETN at that time. The subsequent deviation from the actual signal observed during the LEND epoch is due to the significantly higher intensity of Galactic Cosmic Rays during the anomalous Solar Minimum of 2009-2010. References: [1] W. C. Feldman, et al., (1998) Science Vol. 281 no. 5382 pp. 1496-1500. [2] Gasnault, O., et al.,(2000) J. Geophys. Res., 105(E2), 4263-4271. [3] Little, R. C., et al. (2003), J. Geophys. Res., 108(E5), 5046. [4]W. C. Feldman, et al., (1999) Nucl. Inst. And Method in Phys. Res. A 422, [5] M. L. Litvak, et al., (2012) J.Geophys. Res. 117, E00H32 [6] J. Allison, et al, (2006) IEEE Trans. on Nucl Sci, Vol 53, No 1.

  2. Lunar neutron leakage fluxes as a function of composition and hydrogen content

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Reedy, R. C.; Mckay, D. S.

    1991-01-01

    Areas of the moon that might have enhanced concentrations of hydrogen are discussed. The fluxes of thermal, epithermal, and fast neutrons escaping from the lunar surface were calculated for eight different compositions and several hydrogen contents. These flux ratios depend on composition and are very sensitive to the hydrogen content. Their measurement using flight-proven techniques from lunar orbit should allow detection and identification of hydrogen residing in either permanently shaded cold traps near the lunar poles or mature regoliths. Knowledge of composition, especially of Fe and Ti, improves the thresholds for hydrogen detection and also could allow identification of Gd and Sm.

  3. Lunar base launch and landing facility conceptual design, 2nd edition

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This report documents the Lunar Base Launch and Landing Facility Conceptual Design study. The purpose of this study was to examine the requirements for launch and landing facilities for early lunar bases and to prepare conceptual designs for some of these facilities. The emphasis of this study is on the facilities needed from the first manned landing until permanent occupancy. Surface characteristics and flight vehicle interactions are described, and various facility operations are related. Specific recommendations for equipment, facilities, and evolutionary planning are made, and effects of different aspects of lunar development scenarios on facilities and operations are detailed. Finally, for a given scenario, a specific conceptual design is developed and presented.

  4. Observations of Lunar Swirls by the Diviner Lunar Radiometer

    NASA Astrophysics Data System (ADS)

    Glotch, T. D.; Lucey, P. G.; Hayne, P. O.; Bandfield, J. L.; Greenhagen, B. T.; Shirley, K. A.

    2015-11-01

    Diviner observations of lunar swirls show a CF anomaly consistent with abnormal space weathering. Night time cooling and surface roughness models indicate that the finely structured lunar regolith has not been disturbed at swirls.

  5. The science of the lunar poles

    NASA Astrophysics Data System (ADS)

    Lucey, P. G.

    2011-12-01

    It was the great geochemist Harold Urey who first called attention to peculiar conditions at the poles of the Moon where the very small inclination of the lunar spin axis with respect to the sun causes craters and other depressions to be permanently shaded from sunlight allowing very low temperatures. Urey suggested that the expected low temperature surfaces could cold trap and collect any vapors that might transiently pass through the lunar environment. Urey's notion has led to studies of the poles as a new research area in lunar science. The conditions and science of the poles are utterly unlike those of the familiar Moon of Neil Armstrong, and the study of the poles is similar to our understanding of the Moon itself at the dawn of the space age, with possibilities outweighing current understanding. Broadly, we can treat the poles as a dynamic system of input, transport, trapping, and loss. Volatile sources range from continuous, including solar wind, the Earth's polar fountain and micrometeorites, to episodic, including comets and wet asteroids, to nearly unique events including late lunar outgassing and passage through giant molecular clouds. The lunar exosphere transports volatiles to the poles, complicated by major perturbances to the atmosphere by volatile-rich sources. Trapping includes cold trapping, but also in situ creation of more refractory species such as organics, clathrates and water-bearing minerals, as well as sequester by regolith overturn or burial by larger impacts. Finally, volatiles are lost to space by ionization and sweeping. Spacecraft results have greatly added to the understanding of the polar system. Temperatures have been precisely measured by LRO, and thermal models now allow determination of temperature over the long evolution of the lunar orbit, and show very significant changes in temperature and temperature distribution with time and depth. Polar topography is revealed in detail by Selene and LRO laser altimeters while direct imaging of interiors of polar shadowed craters has been accomplished by many instruments from the ultraviolet to the radar. Imaging radars on Chandrayaan-1 and LRO have identified anomalous craters that may contain rich water ice deposits. Neutron spectrometers on Lunar Prospector and LRO directly detected hydrogen enhancements at both poles. Spectacularly, the LCROSS impact experiment detected a wide range of volatile elements and species at Cabeus crater in the lunar south polar region. While these measurements have catapulted polar science forward, much remains to be understood about the polar system, both from analysis of the current data, and new missions planned and in development. The general state of the lunar atmosphere is planned to be addressed by the UV and neutral mass spectrometers carried by the planned NASA LADEE (Lunar Atmosphere And Dust Environment Explorer) spacecraft creating an important baseline. But more data is necessary, from an in situ direct assay of polar volatiles to measurements of species and fluxes into and out of the cold traps over lengthy timescales.

  6. 39 CFR 963.12 - Settlement agreements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Settlement agreements. 963.12 Section 963.12 Postal Service UNITED STATES POSTAL SERVICE PROCEDURES RULES OF PRACTICE IN PROCEEDINGS RELATIVE TO VIOLATIONS OF THE PANDERING ADVERTISEMENTS STATUTE, 39 U.S.C. 3008 963.12 Settlement agreements....

  7. 39 CFR 963.12 - Settlement agreements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 39 Postal Service 1 2011-07-01 2011-07-01 false Settlement agreements. 963.12 Section 963.12 Postal Service UNITED STATES POSTAL SERVICE PROCEDURES RULES OF PRACTICE IN PROCEEDINGS RELATIVE TO VIOLATIONS OF THE PANDERING ADVERTISEMENTS STATUTE, 39 U.S.C. 3008 963.12 Settlement agreements....

  8. 21 CFR 10.110 - Settlement proposals.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Settlement proposals. 10.110 Section 10.110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATIVE... settlement information in a court proceeding or in another administrative proceeding....

  9. 21 CFR 10.110 - Settlement proposals.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Settlement proposals. 10.110 Section 10.110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATIVE... settlement information in a court proceeding or in another administrative proceeding....

  10. 45 CFR 150.413 - Settlement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Settlement. 150.413 Section 150.413 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES REQUIREMENTS RELATING TO HEALTH CARE ACCESS CMS ENFORCEMENT IN GROUP AND INDIVIDUAL INSURANCE MARKETS Administrative Hearings 150.413 Settlement. CMS has...

  11. 32 CFR 536.63 - Settlement agreements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Settlement agreements. 536.63 Section 536.63 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY CLAIMS AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES Investigation and Processing of Claims 536.63 Settlement agreements. (a) When required. (1) A claimant's acceptance of...

  12. 5 CFR 2610.306 - Settlement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Settlement. 2610.306 Section 2610.306 Administrative Personnel OFFICE OF GOVERNMENT ETHICS ORGANIZATION AND PROCEDURES IMPLEMENTATION OF THE EQUAL ACCESS TO JUSTICE ACT Procedures for Considering Applications § 2610.306 Settlement. The applicant...

  13. 47 CFR 1.956 - Settlement conferences.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Settlement conferences. 1.956 Section 1.956... Applications and Proceedings Application Requirements and Procedures § 1.956 Settlement conferences. Parties... their attorneys to appear before it for a conference. (a) The purposes of such conferences are: (1)...

  14. 49 CFR 511.26 - Settlement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Settlement. 511.26 Section 511.26 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ADJUDICATIVE PROCEDURES Prehearing Procedures; Motions; Interlocutory Appeals; Summary Judgment; Settlement ...

  15. 49 CFR 511.26 - Settlement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Settlement. 511.26 Section 511.26 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ADJUDICATIVE PROCEDURES Prehearing Procedures; Motions; Interlocutory Appeals; Summary Judgment; Settlement ...

  16. 10 CFR 590.309 - Settlements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Settlements. 590.309 Section 590.309 Energy DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) ADMINISTRATIVE PROCEDURES WITH RESPECT TO THE IMPORT AND EXPORT OF NATURAL GAS Procedures § 590.309 Settlements. The parties may...

  17. 10 CFR 590.309 - Settlements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Settlements. 590.309 Section 590.309 Energy DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) ADMINISTRATIVE PROCEDURES WITH RESPECT TO THE IMPORT AND EXPORT OF NATURAL GAS Procedures 590.309 Settlements. The parties may...

  18. 32 CFR 537.12 - Settlement authority.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Settlement authority. 537.12 Section 537.12 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY CLAIMS AND ACCOUNTS CLAIMS ON BEHALF OF THE UNITED STATES § 537.12 Settlement authority. (a) Assertions for $50,000 or less—(1) Approval authority. An RJA or civilian...

  19. 32 CFR 537.12 - Settlement authority.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Settlement authority. 537.12 Section 537.12 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY CLAIMS AND ACCOUNTS CLAIMS ON BEHALF OF THE UNITED STATES § 537.12 Settlement authority. (a) Assertions for $50,000 or less—(1) Approval authority. An RJA or civilian...

  20. 47 CFR 1.956 - Settlement conferences.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Settlement conferences. 1.956 Section 1.956 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless Radio Services Applications and Proceedings Application Requirements and Procedures 1.956 Settlement conferences....

  1. [Settlement structure and regional population development].

    PubMed

    Gormar, W; Maretzke, S

    1992-04-01

    Demographic differences in settlement structure between the areas that formerly made up East and West Germany are analyzed. The findings indicate that the East exhibits less suburbanization, lower population and settlement densities, and a larger number of small communities. Policy implications are also discussed. PMID:12285779

  2. 7 CFR 1782.20 - Debt Settlement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (CONTINUED) SERVICING OF WATER AND WASTE PROGRAMS 1782.20 Debt Settlement. Pursuant to 7 U.S.C. 1981, this section prescribes policies for debt settlement of Water and Waste Disposal loans; Watershed loans and advances; Resource Conservation and Development loans; and 306 (c) Water and Waste Facility loans....

  3. 7 CFR 1782.20 - Debt Settlement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 12 2014-01-01 2013-01-01 true Debt Settlement. 1782.20 Section 1782.20 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) SERVICING OF WATER AND WASTE PROGRAMS 1782.20 Debt Settlement. Pursuant to 7 U.S.C. 1981, this section prescribes policies...

  4. 15 CFR 990.25 - Settlement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OIL POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Authorities § 990.25 Settlement. Trustees may settle claims for natural resource... the injured natural resources and services. Sums recovered in settlement of such claims, other...

  5. 15 CFR 990.25 - Settlement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OIL POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Authorities § 990.25 Settlement. Trustees may settle claims for natural resource... the injured natural resources and services. Sums recovered in settlement of such claims, other...

  6. 15 CFR 990.25 - Settlement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OIL POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Authorities § 990.25 Settlement. Trustees may settle claims for natural resource... the injured natural resources and services. Sums recovered in settlement of such claims, other...

  7. 15 CFR 990.25 - Settlement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OIL POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Authorities § 990.25 Settlement. Trustees may settle claims for natural resource... the injured natural resources and services. Sums recovered in settlement of such claims, other...

  8. 75 FR 82390 - Proposed Settlement Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-30

    ... the Clean Air Act, 42 U.S.C. 7413(g), notice is hereby given of a proposed settlement agreement to...,'' published at 73 FR 35838 (June 24, 2008). The proposed settlement agreement establishes deadlines for EPA's... rule promulgated under the Clean Air Act (``CAA'') section 111, 42 U.S.C. 7411, entitled,...

  9. Apollo 17 Lunar Surface Experiment: Lunar Surface Gravimeter

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Table-top views of one of the Apollo 17 Lunar Surface Experiments. This view is of the Lunar Surface Gravimeter (LSG), Experiment S-207, one of the experiments of the Apollo Lunar Surface Experiments Package which will be carried on the Apollo 17 lunar landing mission. The major goal of the LSG is to confirm the existence of gravity waver as predicted by Einstein's general theory of relativity.

  10. Apollo 9 Lunar Module in lunar landing configuration

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module, in a lunar landing configuration, as photographed form the Command/Service Module on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on the 'Spider' has been deployed. Lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the 'Spider' were Astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot.

  11. Apollo 9 Lunar Module in lunar landing configuration

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module, in a lunar landing configuration, as photographed form the Command/Service Module on the fifth day of the Apollo 9 earth-orbital mission. The Lunar Module 'Spider' is flying upside down in relation to the earth below. The landing gear on the 'Spider' had been deployed. Lunar surface probes (sensors) extend out from the landing gear foot pads.

  12. Small Lunar Lander - A Near Term Precursor Mission

    NASA Astrophysics Data System (ADS)

    Soppa, Uwe; Kyr, Peter; Bolz, Joerg; Bischof, Bernd

    In preparation of the Ministerial Conference in November 2008, the European Space Agency is currently developing a roadmap leading to the capability to sustain long term planetary exploration missions and manned missions to Moon and Mars. Embedded in the cornerstone missions of today's European planetary exploration program, which are marked by the two robotic Exo-Mars and Mars Sample Return missions, ESA has defined a Small Lunar Landing Mission serving as a precursor mission allowing to validate key enabling technologies for planetary exploration, while providing a scientific platform to Lunar exploration at the same time. In reply for the call for missions fitting into the mission time frame ranging from 2014 through 2016, EADS Astrium has proposed a Lunar Lander which can be launched by a Soyuz Fregat, combined with a programmatic planning with the goal being ready to fly within the given time. In the meantime, a European lunar exploration program has gained momentum such that the goals of the proposed mission have been expanded towards the preparation of technologies required for the logistics of lunar exploration including transportation to the Moon and back, building and supporting large scale outposts up to permanently manned bases. These key functions are the capability of autonomous, soft and precision landing, the Rendez-Vous in lunar orbit, plus the provision of surface mobility for science and logistic operations. The paper will first present the concept of the proposed Lunar Landing mission, describe the technical design and programmatic planning, and put it into context of the Mars Sample Return mission. The spacecraft shall be launched into the GTO by a Soyuz Fregat from the Kourou Space Center, and travel to the Moon from there on direct, 5 days transfer trajectory. The spacecraft is a single stage lander with the capability to autonomously perform all operations from launcher separation down to the lunar surface. A lunar rover shall provide science payload deployment capability and mobility for a period of up to 1 year. Major key enabling technologies have been identified which will be given priority within the programmatic planning of the project, such as the use of a modular propulsion concept built from mature components, camera and LIDAR based optical navigation and hazard avoidance, and concepts for rover egress, science and payload mobility. In addition, the paper will identify the growth potential of the proposed lander's capabilities in view of the aforementioned long term lunar exploration roadmap, which consists beside other elements of an Ariane 5 class lander, able to deliver about 1.5 tons cargo on the lunar surface for logistic reasons.

  13. Fluxes of fast and epithermal neutrons from Lunar Prospector: evidence for water ice at the lunar poles.

    PubMed

    Feldman, W C; Maurice, S; Binder, A B; Barraclough, B L; Elphic, R C; Lawrence, D J

    1998-09-01

    Maps of epithermal- and fast-neutron fluxes measured by Lunar Prospector were used to search for deposits enriched in hydrogen at both lunar poles. Depressions in epithermal fluxes were observed close to permanently shaded areas at both poles. The peak depression at the North Pole is 4.6 percent below the average epithermal flux intensity at lower latitudes, and that at the South Pole is 3.0 percent below the low-latitude average. No measurable depression in fast neutrons is seen at either pole. These data are consistent with deposits of hydrogen in the form of water ice that are covered by as much as 40 centimeters of desiccated regolith within permanently shaded craters near both poles. PMID:9727973

  14. Lunar geophysics, geodesy, and dynamics

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Dickey, J. O.

    2002-01-01

    Experience with the dynamics and data analyses for earth and moon reveals both similarities and differences. Analysis of Lunar Laser Ranging (LLR) data provides information on the lunar orbit, rotation, solid-body tides, and retroreflector locations.

  15. Catalog of lunar mission data

    NASA Technical Reports Server (NTRS)

    Mantel, E. J. (Editor); Miller, E. R. (Editor)

    1977-01-01

    Several series of spacecraft were developed, designed, built and launched to determine different characteristics of the lunar surface and environment for a manned landing. Both unmanned and manned spacecrafts, spacecraft equipment and lunar missions are documented.

  16. Lunar regolith and structure mechanics

    NASA Technical Reports Server (NTRS)

    Barnes, Frank; Ko, Hon-Yim; Sture, Stein; Carter, Tyrone R.; Evenson, Kraig A.; Nathan, Mark P.; Perkins, Steve W.

    1991-01-01

    The topics are presented in viewgraph form and include the following: modeling of regolith-structure interaction in extraterrestrial constructed facilities; densification of lunar soil simulant; and vibration assisted penetration of lunar soil simulant.

  17. Power sources for lunar bases

    NASA Astrophysics Data System (ADS)

    Mayer, Alastair J. W.

    The solar, nuclear, and mechanical power sources designed or proposed to support lunar operations, primarily those for large systems, are briefly surveyed. As an additional criterion for power-to-weight ratios, expandability using lunar materials is examined.

  18. Settlement-Size Scaling among Prehistoric Hunter-Gatherer Settlement Systems in the New World

    PubMed Central

    Haas, W. Randall; Klink, Cynthia J.; Maggard, Greg J.; Aldenderfer, Mark S.

    2015-01-01

    Settlement size predicts extreme variation in the rates and magnitudes of many social and ecological processes in human societies. Yet, the factors that drive human settlement-size variation remain poorly understood. Size variation among economically integrated settlements tends to be heavy tailed such that the smallest settlements are extremely common and the largest settlements extremely large and rare. The upper tail of this size distribution is often formalized mathematically as a power-law function. Explanations for this scaling structure in human settlement systems tend to emphasize complex socioeconomic processes including agriculture, manufacturing, and warfarebehaviors that tend to differentially nucleate and disperse populations hierarchically among settlements. But, the degree to which heavy-tailed settlement-size variation requires such complex behaviors remains unclear. By examining the settlement patterns of eight prehistoric New World hunter-gatherer settlement systems spanning three distinct environmental contexts, this analysis explores the degree to which heavy-tailed settlement-size scaling depends on the aforementioned socioeconomic complexities. Surprisingly, the analysis finds that power-law models offer plausible and parsimonious statistical descriptions of prehistoric hunter-gatherer settlement-size variation. This finding reveals that incipient forms of hierarchical settlement structure may have preceded socioeconomic complexity in human societies and points to a need for additional research to explicate how mobile foragers came to exhibit settlement patterns that are more commonly associated with hierarchical organization. We propose that hunter-gatherer mobility with preferential attachment to previously occupied locations may account for the observed structure in site-size variation. PMID:26536241

  19. Settlement-Size Scaling among Prehistoric Hunter-Gatherer Settlement Systems in the New World.

    PubMed

    Haas, W Randall; Klink, Cynthia J; Maggard, Greg J; Aldenderfer, Mark S

    2015-01-01

    Settlement size predicts extreme variation in the rates and magnitudes of many social and ecological processes in human societies. Yet, the factors that drive human settlement-size variation remain poorly understood. Size variation among economically integrated settlements tends to be heavy tailed such that the smallest settlements are extremely common and the largest settlements extremely large and rare. The upper tail of this size distribution is often formalized mathematically as a power-law function. Explanations for this scaling structure in human settlement systems tend to emphasize complex socioeconomic processes including agriculture, manufacturing, and warfare-behaviors that tend to differentially nucleate and disperse populations hierarchically among settlements. But, the degree to which heavy-tailed settlement-size variation requires such complex behaviors remains unclear. By examining the settlement patterns of eight prehistoric New World hunter-gatherer settlement systems spanning three distinct environmental contexts, this analysis explores the degree to which heavy-tailed settlement-size scaling depends on the aforementioned socioeconomic complexities. Surprisingly, the analysis finds that power-law models offer plausible and parsimonious statistical descriptions of prehistoric hunter-gatherer settlement-size variation. This finding reveals that incipient forms of hierarchical settlement structure may have preceded socioeconomic complexity in human societies and points to a need for additional research to explicate how mobile foragers came to exhibit settlement patterns that are more commonly associated with hierarchical organization. We propose that hunter-gatherer mobility with preferential attachment to previously occupied locations may account for the observed structure in site-size variation. PMID:26536241

  20. Lunar Water Resource Demonstration (LWRD) Test Results

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.; Captain, Janine E.; Quinn, Jacqueline W.; Gibson, Tracy L.; Perusich, Stephen A.; Weis, Kyle H.

    2009-01-01

    NASA has undertaken the In-Situ Resource Utilization (lSRU) project called RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). This project is an Earth-based lunar precursor demonstration of a system that could be sent to explore permanently shadowed polar lunar craters, where it would drill into regolith, quantify the volatiles that are present, and extract oxygen by hydrogen reduction of iron oxides. The RESOLVE chemical processing system was mounted within the CMU rover "Scarab" and successfully demonstrated on Hawaii's Mauna Kea volcano in November 2008. This technology could be used on Mars as well. As described at the 2008 Mars Society Convention, the Lunar Water Resource Demonstration (LWRD) supports the objectives of the RESOLVE project by capturing and quantifying water and hydrogen released by regolith upon heating. Field test results for the quantification of water using LWRD showed that the volcanic ash (tephra) samples contained 0.15-0.41% water, in agreement with GC water measurements. Reduction of the RH in the surge tank to near zero during recirculation show that the water is captured by the water beds as desired. The water can be recovered by heating the Water Beds to 230 C or higher. Test results for the capture and quantification of pure hydrogen have shown that over 90% of the hydrogen can be captured and 98% of the absorbed hydrogen can be recovered upon heating the hydride to 400 C and desorbing the hydrogen several times into the evacuated surge tank. Thus, the essential requirement of capturing hydrogen and recovering it has been demonstrated. ,

  1. Lunar Alignments - Identification and Analysis

    NASA Astrophysics Data System (ADS)

    Gonzlez-Garca, A. Csar

    Lunar alignments are difficult to establish given the apparent lack of written accounts clearly pointing toward lunar alignments for individual temples. While some individual cases are reviewed and highlighted, the weight of the proof must fall on statistical sampling. Some definitions for the lunar alignments are provided in order to clarify the targets, and thus, some new tools are provided to try to test the lunar hypothesis in several cases, especially in megalithic astronomy.

  2. Lunar Extravehicular Activity Program

    NASA Technical Reports Server (NTRS)

    Heartsill, Amy Ellison

    2006-01-01

    Extravehicular Activity (EVA) has proven an invaluable tool for space exploration since the inception of the space program. There are situations in which the best means to evaluate, observe, explore and potentially troubleshoot space systems are accomplished by direct human intervention. EVA provides this unique capability. There are many aspects of the technology required to enable a "miniature spaceship" to support individuals in a hostile environment in order to accomplish these tasks. This includes not only the space suit assembly itself, but the tools, design interfaces of equipment on which EVA must work and the specific vehicles required to support transfer of humans between habitation areas and the external world. This lunar mission program will require EVA support in three primary areas. The first of these areas include Orbital stage EVA or micro-gravity EVA which includes both Low Earth Orbit (LEO), transfer and Lunar Orbit EVA. The second area is Lunar Lander EVA capability, which is lunar surface EVA and carries slightly different requirements from micro-gravity EVA. The third and final area is Lunar Habitat based surface EVA, which is the final system supporting a long-term presence on the moon.

  3. Lunar preform manufacturing

    NASA Technical Reports Server (NTRS)

    Leong, Gregory N.; Nease, Sandra; Lager, Vicky; Yaghjian, Raffy; Waller, Chris; Dorrity, J. Lewis

    1992-01-01

    A design for a machine to produce hollow, continuous fiber reinforced composite rods of lunar glass and a liquid crystalline matrix using the pultrusion process is presented. The glass fiber will be produced from the lunar surface, with the machine and matrix being transported to the moon. The process is adaptable to the low gravity and near-vacuum environment of the moon through the use of a thermoplastic matrix in fiber form as it enters the pultrusion process. With a power consumption of 5k W, the proposed machine will run continuously, unmanned in fourteen day cycles, matching the length of moon days. A number of dies could be included that would allow the machine to produce rods of varying diameter, I-beams, angles, and other structural members. These members could then be used for construction on the lunar surface or transported for use in orbit. The benefits of this proposal are in the savings in weight of the cargo each lunar mission would carry. The supply of glass on the moon is effectively endless, so enough rods would have to be produced to justify its transportation, operation, and capital cost. This should not be difficult as weight on lunar mission is at a premium.

  4. A lunar transportation system

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Due to large amounts of oxygen required for space travel, a method of mining, transporting, and storing this oxygen in space would facilitate further space exploration. The following project deals specifically with the methods for transporting liquid oxygen from the lunar surface to the Lunar Orbit (LO) space station, and then to the Lower Earth Orbit (LEO) space station. Two vehicles were designed for operation between the LEO and LO space stations. The first of these vehicles is an aerobraked design vehicle. The Aerobrake Orbital Transfer Vehicle (OTV) is capable of transporting 5000 lbm of payload to LO while returning to LEO with 60,000 lbm of liquid oxygen, and thus meet mission requirements. The second vehicle can deliver 18,000 lbm of payload to LO and is capable of bringing 60,000 lbm of liquid oxygen back to LEO. A lunar landing vehicle was also designed for operation between LO and the established moon base. The use of an electromagnetic railgun as a method for launching the lunar lander was also investigated. The feasibility of the railgun is doubtful at this time. A system of spheres was also designed for proper storing and transporting of the liquid oxygen. The system assumes a safe means for transferring the liquid oxygen from tank to tank is operational. A sophisticated life support system was developed for both the OTV and the lunar lander. This system focuses on such factors as the vehicle environment, waste management, water requirements, food requirements, and oxygen requirements.

  5. Lunar preform manufacturing

    NASA Astrophysics Data System (ADS)

    Leong, Gregory N.; Nease, Sandra; Lager, Vicky; Yaghjian, Raffy; Waller, Chris; Dorrity, J. Lewis

    A design for a machine to produce hollow, continuous fiber reinforced composite rods of lunar glass and a liquid crystalline matrix using the pultrusion process is presented. The glass fiber will be produced from the lunar surface, with the machine and matrix being transported to the moon. The process is adaptable to the low gravity and near-vacuum environment of the moon through the use of a thermoplastic matrix in fiber form as it enters the pultrusion process. With a power consumption of 5k W, the proposed machine will run continuously, unmanned in fourteen day cycles, matching the length of moon days. A number of dies could be included that would allow the machine to produce rods of varying diameter, I-beams, angles, and other structural members. These members could then be used for construction on the lunar surface or transported for use in orbit. The benefits of this proposal are in the savings in weight of the cargo each lunar mission would carry. The supply of glass on the moon is effectively endless, so enough rods would have to be produced to justify its transportation, operation, and capital cost. This should not be difficult as weight on lunar mission is at a premium.

  6. Lunar Crustal Stratigraphy

    NASA Astrophysics Data System (ADS)

    McCallum, I. S.; O'Brien, H. E.

    1996-03-01

    Intense bombardment during the first 600 Ma of lunar history has rendered the task of reconstructing the stratigraphy of the lunar crust especially difficult. On a planetary scale, the distribution of lithologies around multi-ringed basins coupled with orbital geochemical data reveal that the lunar crust is heterogeneous both laterally and vertically. Ejecta from the large multi-ringed basins is exclusively of crustal origin since twenty five years of lunar sample study have failed to identify any unequivocal mantle samples. Given the most recent determination of crustal thickness, this implies an upper limit to the depth of excavation of around 60 km. In the younger multi-ringed basins (Orientale and Imbrium), the occurrence of anorthosites in inner rings is consistent with an anorthositic upper crust (Al2O3 = 26-28 wt.%). On the other hand, basin impact melts, most notably the low-K Fra Mauro (LKFM) composition associated with the Imbrium and Serenitatis basins, are distinctly more mafic with a composition corresponding to norite (Al2O3 ~ 20 wt.%). Cratering models suggest that such melts are generated at the lower to middle crustal depths (30 to 60 km). The paucity of unequivocal deep-seated crystalline plutonic rocks is also consistent with cratering models which suggest that unmelted rock fragments in ejecta blankets are most likely derived from the upper part of the crust. Consequently, the possibility exists that no crystalline lunar samples from deeper that ~30 km are present in the returned sample collection.

  7. Lunar Mapping and Modeling Project

    NASA Technical Reports Server (NTRS)

    Noble, Sarah K.; French, Raymond; Nall,Mark; Muery, Kimberly

    2009-01-01

    The Lunar Mapping and Modeling Project (LMMP) has been created to manage the development of a suite of lunar mapping and modeling products that support the Constellation Program (CxP) and other lunar exploration activities, including the planning, design, development, test and operations associated with lunar sortie missions, crewed and robotic operations on the surface, and the establishment of a lunar outpost. The project draws on expertise from several NASA and non-NASA organizations (MSFC, ARC, GSFC, JPL, CRREL and USGS). LMMP will utilize data predominately from the Lunar Reconnaissance Orbiter, but also historical and international lunar mission data (e.g. Apollo, Lunar Orbiter, Kaguya, Chandrayaan-1), as available and appropriate, to meet Constellation s data needs. LMMP will provide access to this data through a single, common, intuitive and easy to use NASA portal that transparently accesses appropriately sanctioned portions of the widely dispersed and distributed collections of lunar data, products and tools. LMMP will provide such products as DEMs, hazard assessment maps, lighting maps and models, gravity models, and resource maps. We are working closely with the LRO team to prevent duplication of efforts and ensure the highest quality data products. While Constellation is our primary customer, LMMP is striving to be as useful as possible to the lunar science community, the lunar education and public outreach (E/PO) community, and anyone else interested in accessing or utilizing lunar data.

  8. Lunar Simulation in the Lunar Dust Adhesion Bell Jar

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Sechkar, Edward A.

    2007-01-01

    The Lunar Dust Adhesion Bell Jar has been assembled at the NASA Glenn Research Center to provide a high fidelity lunar simulation facility to test the interactions of lunar dust and lunar dust simulant with candidate aerospace materials and coatings. It has a sophisticated design which enables it to treat dust in a way that will remove adsorbed gases and create a chemically reactive surface. It can simulate the vacuum, thermal, and radiation environments of the Moon, including proximate areas of illuminated heat and extremely cold shadow. It is expected to be a valuable tool in the development of dust repellant and cleaning technologies for lunar surface systems.

  9. The Lunar Thermal Ice Pump

    NASA Astrophysics Data System (ADS)

    Schorghofer, Norbert; Aharonson, Oded

    2014-06-01

    It has long been suggested that water ice can exist in extremely cold regions near the lunar poles, where sublimation loss is negligible. The geographic distribution of H-bearing regolith shows only a partial or ambiguous correlation with permanently shadowed areas, thus suggesting that another mechanism may contribute to locally enhancing water concentrations. We show that under suitable conditions, water molecules can be pumped down into the regolith by day-night temperature cycles, leading to an enrichment of H2O in excess of the surface concentration. Ideal conditions for pumping are estimated and found to occur where the mean surface temperature is below 105 K and the peak surface temperature is above 120 K. These conditions complement those of the classical cold traps that are roughly defined by peak temperatures lower than 120 K. On the present-day Moon, an estimated 0.8% of the global surface area experiences such temperature variations. Typically, pumping occurs on pole-facing slopes in small areas, but within a few degrees of each pole the equator-facing slopes are preferred. Although pumping of water molecules is expected over cumulatively large areas, the absolute yield of this pump is low; at best, a few percent of the H2O delivered to the surface could have accumulated in the near-surface layer in this way. The amount of ice increases with vapor diffusivity and is thus higher in the regolith with large pore spaces.

  10. The Lunar Thermal Ice Pump

    NASA Astrophysics Data System (ADS)

    Aharonson, O.; Schorghofer, N.

    2013-12-01

    Theoretical considerations and recent observations indicate the lunar polar regions harbor deposits of water ice in extremely cold regions. The geographic distribution of H-bearing regolith shows only a partial match to permanently shadowed areas, thus suggesting that ice is not simply trapped by low temperature but another mechanism plays a role in concentrating H2O. Under suitable conditions, water molecules can be pumped down into the regolith by day-night temperature cycles, leading to an enrichment of H2O in excess of the surface concentration. Ideal conditions for pumping are estimated to be mean surface temperatures below 105 K and peak surface temperatures higher than 130 K. These conditions complement those of the classical cold traps, roughly defined by peak temperatures <120 K. Temperatures were obtained by analyzing the LRO Diviner measurements and geographic regions of positive pumping differential are identified. These extend the ice distribution beyond traditional cold traps. At latitudes poleward of 85 degrees equator-facing slopes have a positive pumping differential because at this latitude their aspect allows larger temperature oscillations while remaining on average cold. At lower polar latitudes, down to about 70 degrees, pole-facing slopes have positive pumping differential, because here the slope aspect allows the surface to remain cooler than average.

  11. The lunar thermal ice pump

    SciTech Connect

    Schorghofer, Norbert; Aharonson, Oded

    2014-06-20

    It has long been suggested that water ice can exist in extremely cold regions near the lunar poles, where sublimation loss is negligible. The geographic distribution of H-bearing regolith shows only a partial or ambiguous correlation with permanently shadowed areas, thus suggesting that another mechanism may contribute to locally enhancing water concentrations. We show that under suitable conditions, water molecules can be pumped down into the regolith by day-night temperature cycles, leading to an enrichment of H{sub 2}O in excess of the surface concentration. Ideal conditions for pumping are estimated and found to occur where the mean surface temperature is below 105 K and the peak surface temperature is above 120 K. These conditions complement those of the classical cold traps that are roughly defined by peak temperatures lower than 120 K. On the present-day Moon, an estimated 0.8% of the global surface area experiences such temperature variations. Typically, pumping occurs on pole-facing slopes in small areas, but within a few degrees of each pole the equator-facing slopes are preferred. Although pumping of water molecules is expected over cumulatively large areas, the absolute yield of this pump is low; at best, a few percent of the H{sub 2}O delivered to the surface could have accumulated in the near-surface layer in this way. The amount of ice increases with vapor diffusivity and is thus higher in the regolith with large pore spaces.

  12. Feasibility and Definition of a Lunar Polar Volatiles Prospecting Mission

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer; Elphic, Richard; Colaprete, Anthony; Fong, Terry; Pedersen, Liam; Beyer, Ross; Cockrell, James

    2012-01-01

    The recent Lunar Crater Observing and Sensing Satellite (LCROSS) mission has provided evidence for significant amounts of cold trapped volatiles in Cabeus crater near the Moon's south pole. Moreover, LRO/Diviner measurements of extremely cold lunar polar surface temperatures imply that volatiles can be stable outside or areas of strict permanent shadows. These discoveries suggest that orbital neutron spectrometer data point to extensive deposits at both lunar poles. The physical state, composition and distribution of these volatiles are key scientific issues that relate to source and emplacement mechanisms. These issues are also important for enabling lunar in situ resource utilization (ISRU). An assessment of the feasibility of cold-trapped volatile ISRU requires a priori information regarding the location, form, quantity, and potential for extraction of available resources. A robotic mission to a mostly shadowed but briefly .unlit location with suitable environmental conditions (e.g. short periods of oblique sunlight and subsurface cryogenic temperatures which permit volatile trapping) can help answer these scientific and exploration questions. Key parameters must be defined in order to identify suitable landing sites, plan surface operations, and achieve mission success. To address this need, we have conducted an initial study for a lunar polar volatile prospecting mission, assuming the use of a solar-powered robotic lander and rover. Here we present the mission concept, goals and objectives, and landing site selection analysis for a short-duration, landed, solar-powered mission to a potential hydrogen volatile-rich site.

  13. Fast Ray Tracing of Lunar Digital Elevation Models

    NASA Technical Reports Server (NTRS)

    McClanahan, Timothy P.; Evans, L. G.; Starr, R. D.; Mitrofanov, I.

    2009-01-01

    Ray-tracing (RT) of Lunar Digital Elevation Models (DEM)'s is performed to virtually derive the degree of radiation incident to terrain as a function of time, orbital and ephemeris constraints [I- 4]. This process is an integral modeling process in lunar polar research and exploration due to the present paucity of terrain information at the poles and mission planning activities for the anticipated spring 2009 launch of the Lunar Reconnaissance Orbiter (LRO). As part of the Lunar Exploration Neutron Detector (LEND) and Lunar Crater Observation and Sensing Satellite (LCROSS) preparations RI methods are used to estimate the critical conditions presented by the combined effects of high latitude, terrain and the moons low obliquity [5-7]. These factors yield low incident solar illumination and subsequently extreme thermal, and radiation conditions. The presented research uses RT methods both for radiation transport modeling in space and regolith related research as well as to derive permanently shadowed regions (PSR)'s in high latitude topographic minima, e.g craters. These regions are of scientific and human exploration interest due to the near constant low temperatures in PSRs, inferred to be < 100 K. Hydrogen is thought to have accumulated in PSR's through the combined effects of periodic cometary bombardment and/or solar wind processes, and the extreme cold which minimizes hydrogen sublimation [8-9]. RT methods are also of use in surface position optimization for future illumination dependent on surface resources e.g. power and communications equipment.

  14. Lunar in situ resource utilization by activated thermites

    NASA Astrophysics Data System (ADS)

    Hobosyan, Mkhitar; Martirosyan, Karen

    2011-10-01

    NASA's anticipated returns to the Moon by 2020, subsequent establishment of lunar in situ resource utilization technologies are essential. The surface of Moon is covered with small eroded particles of regolith called lunar dust that adheres electro-statically to everything coming in contact with it, and is of much concern for future lunar base because of its continual mitigation. The next major concern is the protection of equipment and personnel in long term expeditions from harmful UV radiation, which can be made by constructing protective buildings. For construction of permanent structures it is highly desired to have regular shaped sintered regolith with utilization of local materials and with minimum energy consumption. In this study the concept of sintering of lunar regolith with activated thermite reactions is discussed. The thermodynamic calculations as well as the experimental procedure is provided to prove the effectiveness of activated thermites for regolith sintering using local lunar resources with a low (15 wt. %) concentration of aluminum or magnesium. The thermite method is much more energy efficient than the other sintering methods suggested in literature.

  15. Carbon Reduction of Lunar Regolith for Oxygen Production

    NASA Astrophysics Data System (ADS)

    Gustafson, Robert J.; Rice, Eric E.; White, Brant C.

    2005-02-01

    The utilization of extraterrestrial resources will become a key element in the exploration of the Moon and Mars. The ability to locally make propellants, life support consumables, and fuel cell reagents will significantly reduce mission cost by reducing launch mass, and reduce risk through reduced dependence on Earth-supplied materials. The presence of water/hydrogen on the Moon will significantly impact the design of space exploration hardware and systems, but the form and concentration of these resources are unknown. The goal of the first robotic lunar lander mission in 2009/2010 will likely be to determine what is in the permanently shadowed craters of the lunar poles. To meet this goal, the NASA/JSC-led RESOLVE project will develop and integrate an experiment package that can perform the following objectives: (1) obtain ``ground truth'' data for resources at lunar pole; (2) obtain bulk and fine-grained regolith characteristic and environment data; (3) extract and collect volatiles from regolith; (4) produce oxygen from regolith; and (5) perform a hydrogen/water resource processing demonstration after it has been evolved and collected. ORBITEC, an industry partner in the RESOLVE project, is developing a small chemical reactor that will produce oxygen from the lunar regolith using the carbothermal reduction process. The carbothermal reduction process uses a carbonaceous source (such as methane gas) at high temperatures (~1625 C) to reduce ilmenite and silicates present in the lunar regolith.

  16. Scenario of Growing Crops on Silicates in Lunar Gargens

    NASA Astrophysics Data System (ADS)

    Kozyrovska, N.; Kovalchuk, M.; Negutska, V.; Lar, O.; Korniichuk, O.; Alpatov, A.; Rogutskiy, I.; Kordyum, V.; Foing, B.

    Self-perpetuating gardens will be a practical necessity for humans, living in permanently manned lunar bases. A lunar garden has to supplement less appetizing packaged food brought from the Earth, and the ornamental plants have to serve as valuable means for emotional relaxation of crews in a hostile lunar environment. The plants are less prone to the inevitable pests and diseases when they are in optimum condition, however, in lunar greenhouses there is a threat for plants to be hosts for pests and predators. Although the lunar rocks are microorganism free, there will be a problem with the acquired infection (pathogens brought from the Earth) in the substrate used for the plant growing. On the Moon pests can be removed by total fumigation, including seed fumigation. However, such a treatment is not required when probiotics (biocontrol bacteria) for seed inoculation are used. A consortium of bacteria, controlling plant diseases, provides the production of an acceptable harvest under growth limiting factors and a threatening infection. To model lunar conditions we have used terrestrial alumino-silicate mineral anorthosite (Malyn, Ukraine) which served us as a lunar mineral analog for a substrate composition. With the idea to provide a plant with some essential growth elements siliceous bacterium Paenibacillus sp. has been isolated from alumino-silicate mineral, and a mineral leaching has been simulated in laboratory condition. The combination of mineral anorthosite and siliceous bacteria, on one hand, and a consortium of beneficial bacteria for biocontrol of plant diseases, on the other hand, are currently used in model experiments to examine the wheat and potato growth and production in cultivating chambers under controlled conditions.

  17. Concrete lunar base investigation

    NASA Technical Reports Server (NTRS)

    Lin, T. D.; Senseney, Jonathan A.; Arp, Larry Dean; Lindbergh, Charles

    1989-01-01

    This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar based subjected to one atmosphere internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design: (1) during construction; (2) under pressurization; and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the air-tightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the moon.

  18. Lunar sample analysis

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.

    1975-01-01

    Previous studies have shown that very small amounts of absorbed volatiles only removed by outgassing in high vacuum and elevated temperatures-drastically increase the internal friction in terrestrial analogs of lunar basalt. Recently room temperature Q values as high as 2000 were achieved by thorough outgassing procedures in 10 to the 8th power torr. Results are presented on Q measurements for lunar rock 70215.85, along with some data on the effect on Q of a variety of gases. Data show that substantially greater increases in Q are obtainable in a lunar rock sample than in the terrestrial analog samples studied, and that in addition to H2O other gases also can make non-negligible contributions to the internal friction.

  19. A lunar polar expedition

    NASA Technical Reports Server (NTRS)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-01-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  20. Lunar crane hook

    NASA Technical Reports Server (NTRS)

    Cash, John Wilson, III; Cone, Alan E.; Garolera, Frank J.; German, David; Lindabury, David Peter; Luckado, Marshall Cleveland; Murphey, Craig; Rowell, John Bryan; Wilkinson, Brad

    1988-01-01

    The base and ball hook system is an attachment that is designed to be used on the lunar surface as an improved alternative to the common crane hook and eye system. The design proposed uses an omni-directional ball hook and base to overcome the design problems associated with a conventional crane hook. The base and ball hook is not sensitive to cable twist which would render a robotic lunar crane useless since there is little atmospheric resistance to dampen the motion of an oscillating member. The symmetric characteristics of the ball hook and base eliminates manual placement of the ball hook into the base; commonly associated with the typical hook and eye stem. The major advantage of the base and ball hook system is it's ease of couple and uncouple modes that are advantages during unmanned robotic lunar missions.

  1. Lunar Sample Compendium

    NASA Technical Reports Server (NTRS)

    Meyer, C.

    2009-01-01

    The Lunar Sample Compendium is a succinct summary of what has been learned from the study of Apollo and Luna samples of the Moon. Basic information is compiled, sample-by-sample, in the form of an advanced catalog in order to provide a basic description of each sample. Information presented is carefully attributed to the original source publication, thus the Compendium also serves as a ready access to the now vast scientific literature pertaining to lunar smples. The Lunar Sample Compendium is a work in progress (and may always be). Future plans include: adding sections on additional samples, adding new thin section photomicrographs, replacing the faded photographs with newly digitized photos from the original negatives, attempting to correct the age data using modern decay constants, adding references to each section, and adding an internal search engine.

  2. The lunar apatite paradox.

    PubMed

    Boyce, J W; Tomlinson, S M; McCubbin, F M; Greenwood, J P; Treiman, A H

    2014-04-25

    Recent discoveries of water-rich lunar apatite are more consistent with the hydrous magmas of Earth than the otherwise volatile-depleted rocks of the Moon. Paradoxically, this requires H-rich minerals to form in rocks that are otherwise nearly anhydrous. We modeled existing data from the literature, finding that nominally anhydrous minerals do not sufficiently fractionate H from F and Cl to generate H-rich apatite. Hydrous apatites are explained as the products of apatite-induced low magmatic fluorine, which increases the H/F ratio in melt and apatite. Mare basalts may contain hydrogen-rich apatite, but lunar magmas were most likely poor in hydrogen, in agreement with the volatile depletion that is both observed in lunar rocks and required for canonical giant-impact models of the formation of the Moon. PMID:24652938

  3. The Lunar Dust Pendulum

    NASA Technical Reports Server (NTRS)

    Kuntz, Kip; Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.

    2011-01-01

    Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lnnar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however. the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.

  4. Concrete lunar base investigation

    NASA Technical Reports Server (NTRS)

    Lin, T. D.; Senseny, Jonathan A.; Arp, Larry D.; Lindbergh, Charles

    1992-01-01

    This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar base subjected to 1-atm internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design (1) during construction, (2) under pressurization, and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the airtightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the Moon.

  5. Lunar Regolith Excavation Competition

    NASA Technical Reports Server (NTRS)

    Liles, Cassandra

    2009-01-01

    The Lunar Regolith Excavation Competition is a new competition that needs graphics, logos, rules, as well as an arena. Although this is the first year of the competition, the competition is modeled after an existing competition, the Centennial Lunar Excavator Challenge. This competition however is aimed at college students. This makes the challenge identifying key aspects of the original competition and modeling them to fit into an easier task, and creating exciting advertisement that helps encourage participation. By using a youth focus group, young insight, as well as guiding advice from experts in the field, hopefully an arena can be designed and built, rules can be molded and created to fit, and alluring graphics can be printed to bring about a successful first year of the Lunar Regolith Excavation Competition.

  6. Lunar hydrogen extraction

    NASA Technical Reports Server (NTRS)

    Snaufer, M. J.; Alred, J. W.

    1991-01-01

    This paper examines the power and mass requirements of a lunar hydrogen extraction plant producing five metric tons of hydrogen per year. These power and mass requirements are based upon experimental work that determined gaseous hydrogen release rates from lunar samples at various heating rates and temperatures. An optimum heating temperature and rate can be selected to minimize the processing plant's power and mass requirements. The impact of thermal recovery on the power and mass requirements is studied, as is the use of nuclear waste heat for processing the regolith. In addition, the potential of using the extracted hydrogen in the form of methane as a propellant for a Lunar Excursion Vehicle is examined.

  7. Lunar lander conceptual design

    NASA Technical Reports Server (NTRS)

    Stecklein, J. M.; Petro, A. J.; Stump, W. R.; Adorjan, A. S.; Chambers, T. V.; Donofrio, M.; Hirasaki, J. K.; Morris, O. G.; Nudd, G.; Rawlings, R. P.

    1992-01-01

    This paper is a first look at the problems of building a lunar lander to support a small lunar surface base. A series of trade studies was performed to define the lander. The initial trades concerned choosing number of stages, payload mass, parking orbit altitude, and propellant type. Other important trades and issues included plane change capability, propellant loading and maintenance location, and reusability considerations. Given a rough baseline, the systems were then reviewed. A conceptual design was then produced. The process was carried through only one iteration. Many more iterations are needed. A transportation system using reusable, aerobraked orbital transfer vehicles (OTV's) is assumed. These OTV's are assumed to be based and maintained at a low Earth orbit (LEO) space station, optimized for transportation functions. Single- and two-stage OTV stacks are considered. The OTV's make the translunar injection (TLI), lunar orbit insertion (LOI), and trans-Earth injection (TEI) burns, as well as midcourse and perigee raise maneuvers.

  8. Estimation of municipal solid waste landfill settlement

    SciTech Connect

    Ling, H.I.; Leshchinsky, D.; Mohri, Yoshiyuki; Kawabata, Toshinori

    1998-01-01

    The municipal solid waste landfill suffers from large postclosure settlement that occurs over an extended period of time. A large differential settlement may impair foundations, utilities, and other associated facilities constructed on top of a landfill. It may also lead to breakage of the geomembrane and damage of the cover system in a modern municipal solid waste landfill. The waste material exhibits heterogeneous engineering properties that vary over locations and time within a landfill. These factors, combined with the fact that a landfill is not fully saturated, render a traditional soil mechanics approach less attractive for settlement prediction. An empirical approach of expressing settlement rate using logarithmic and power relationships is commonly used in conjunction with an observational procedure. In this paper, validity of these functions is reexamined based on published settlement results from three landfill sites. A hyperbolic function is proposed as an improved tool to simulate the settlement-time relationships, as well as to detect final settlement. The relationships between the parameters of these empirical functions and water content are examined.

  9. Simulation of lunar carbon chemistry. II - Lunar winds contribution

    NASA Technical Reports Server (NTRS)

    Bibring, J. P.; Langevin, Y.; Maurette, M.; Burlingame, A. L.; Wszolek, P. C.

    1974-01-01

    Simulation experiments, computations, and analysis of glassy agglutinates show that a directly condensed lunar wind vapor phase is strongly depleted in carbon and sulfur compounds and may recrystallize rapidly in the lunar thermal cycle and separate from host crystals. Factors preventing identification of low-energy species implanted from the lunar atmosphere are discussed. Computational results indicate that the implanted lunar winds carbon originates both from the vapor phases injected into the lunar atmosphere during thermal metamorphism of mature lunar soil grains and from direct volatization of impacting micrometeorites. It is suggested that microglass splashes and tiny crystalline grains possibly attached to the surface of coarser grains do not affect the characteristics of solar wind carbon chemistry in the lunar soil.

  10. The Lunar Polesitter

    NASA Technical Reports Server (NTRS)

    West, John L.

    2008-01-01

    Here-to-fore, sailcraft mission and system studies have focused on sailcraft applications in support of NASA's science missions and, in a few studies, on the needs of other federal agencies such as the National Oceanic and Atmospheric Administration (NOAA) and Department of Defense (DoD). These studies have identified numerous promising applications for solar sails, leading NASA to support proposal efforts for three NASA New Millennium Program (NMP) flight demonstration opportunities (the Space Technology-5, -7, and -9 opportunities) as well as an extensive three-year ground development program in FY 2003-2005 sponsored by the NASA In-Space Propulsion Technology (ISPT) Program. What has not been done to date, however, is to investigate how the technology might also benefit the nation's (and NASA's) emerging interest in the Human Exploration Initiative (HEI). This paper reports on the first effort to address this shortfall in mission applications studies in support of HEI: the use of solar-sail-propelled Lunar Polesitter spacecraft which make use of the natural properties of the Earth-Moon L2 point and solar sail propulsion to enable their positioning near the Lunar poles to serve as communications relay stations. Suitably positioned, such spacecraft enable continuous communications to and from the Earth from any point on the lunar far side. The paper shows that a viable sailcraft system design exists permitting station-keeping of a Lunar Polesitter relay station at 40 Lunar radii from the Moon in the anti-Earth direction, displaced 6-8 Lunar radii below the Earth- Moon plane.

  11. Lunar exploration project plan

    NASA Astrophysics Data System (ADS)

    Kohiishi, H.; Matsushima, K.; Nakajima, A.

    1982-09-01

    System study of lunar exploration by a polar orbiter mission using remote sensing technique is proposed. The objectives of this mission are to make a complete global survey of the moon's physical and chemical properties and also develop the technical side of deep space exploration in Japan. The study is mainly consisted of following two parts. (1) Orbit analysis of lunar Orbiter by computer simulation and setting up the mission profile that satisfies the above objectives. (2) Investigation of spacecraft (Orbiter) systems and remote sensors; Fluorescent X-ray spectrometer, Spectro stereo imager, Reflectance spectrometer, Gamma ray spectrometer, Magneto meter, and Radio altimeter.

  12. Lunar Hydrospheric Explorer (HYDROX)

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Paschalidis, N.; Sittler, E. C.; Jones, S. L.; Stubbs, T. J.; Sarantos, M.; Khurana, K. K.; Angelopoulos, V.; Jordan, A. P.; Schwadron, N. A.

    2015-10-01

    The Lunar Hydrospheric Explorer (HYDROX) is a 6U CubeSat designed to further confirm the existence of lunar exospheric water, and to determine source processes and surface sites, through ion mass spectrometer measurements of water group (O+, OH+, H2O+) and related ions at energy/charge up to 2 keV/e. and mass/charge 1 - 40 amu/e. HYDROX would follow up on the now-concluded exospheric compositional measurements by the Neutral Mass Spectrometer on the NASA LADEE mission and on other remote sensing surface and exospheric measurements (LADEE, LRO, etc.).

  13. Lunar Hydrospheric Explorer (HYDROX)

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Paschalidis, N.; Sittler, E. C., Jr.; Jones, S. L.; Stubbs, T. J.; Sarantos, M.; Khurana, K. K.; Angelopoulos, V.; Jordan, A. P.; Schwadron, N. A.

    2015-01-01

    The Lunar Hydrospheric Explorer (HYDROX) is a 6U CubeSat designed to further confirm the existence of lunar exospheric water, and to determine source processes and surface sites, through ion mass spectrometer measurements of water group (O+, OH+, H2O+) and related ions at energy charge up to 2 keV/e. and mass/charge 1-40amu/e. HYDROX would follow up on the now-concluded exospheric compositional measurements by the Neutral Mass Spectrometer on the NASA LADEE mission and on other remote sensing surface and exospheric measurements (LADEE,LRO, etc.).

  14. Lunar base siting.

    NASA Astrophysics Data System (ADS)

    Staehle, R. L.; Burke, J. D.; Snyder, G. C.; Dowling, R.; Spudis, P. D.

    There are widely dispersed lunar sites of interest for known and potential resources, selenology and observatories. Discriminating characteristics include certain geologic and topographic features, local mineralogy and petrology, solar illumination, view of Earth and the celestial sphere, and soil engineering properties. Space vehicle arrival and departure trajectories favor equatorial and polar sites. Over time, base sites will be developed serving different purposes. Information may be the initial lunar "resource", in the form of observational and in-situ research. A base in Mare Smythii with subsidiary outposts is favorable for a variety of purposes, and preserves broad resource flexibility.

  15. Next Generation Lunar Retroreflector

    NASA Astrophysics Data System (ADS)

    Currie, D.; Dell'Agnello, S.; Behr, B.

    2013-09-01

    Lunar Laser Ranging to the Moon to the Apollo Retroreflector arrays has produced detailed information concerning the crust and interior of the moon (e.g., the discovery of the liquid core). It has also produced some of the best tests of General Relativity (i.e., the Strong Equivalence Principal, the Inertial Properties of Gravitational Energy and the Constancy of the Gravitational Constant G) [1, 2]. However, the combination of the design of the Apollo arrays and the lunar librations are now the limit the accuracy of the range measurements. We will now address the objectives, design and status of the "next generation" retroreflector package being developed.

  16. Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; McKellip, Rodney; Brannon, David P.; Underwood, Lauren; Russell, Kristen J.

    2007-01-01

    In polar regions of the Moon, some areas within craters are permanently shadowed from solar illumination and can reach temperatures of 100 K or less. These regions could serve as cold traps, capturing ice and other volatile compounds. These potential ice stores have many applications for lunar exploration. Within double-shaded craters, even colder regions exist, with temperatures never exceeding 50 K in many cases. Observed temperatures suggest that these regions could enable equivalent liquid nitrogen cryogenic functions. These permanently shaded polar craters also offer unprecedented high-vacuum cryogenic environments, which in their current state could support cryogenic applications. Besides ice stores, the unique conditions at the lunar poles harbor an environment that provides an opportunity to reduce the power, weight, and total mass that needs to be carried from the Earth to the Moon for lunar exploration and research. Reducing the heat flux of geothermal, black body radiation can have significant impacts on the achievable temperature. With a few manmade augmentations, permanently shaded craters located near the lunar poles achieve temperatures even lower than those that naturally exist. Our analysis reveals that lightweight thermal shielding within shaded craters could create an environment several Kelvin above absolute zero. The temperature ranges of both naturally shaded and thermally augmented craters could enable the long-term storage of most gases, low-temperature superconductors for large magnetic fields, devices and advanced high-speed computing instruments. Augmenting thermal conditions in these craters could then be used as a basis for the development of an advanced thermal management architecture that would support a wide variety of cryogenically based applications. Lunar exploration and habitation capabilities would significantly benefit if permanently shaded craters, augmented with thermal shielding, were used to facilitate the operation of near absolute zero instruments, including a wide variety of cryogenically based propulsion, energy, communication, sensing, and computing devices. The required burden of carrying massive life-supporting components from the Earth to the Moon for lunar exploration and research potentially could be reduced.

  17. Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments

    NASA Astrophysics Data System (ADS)

    Ryan, R. E.; McKellip, R. C.; Brannon, D. P.; Underwood, L. W.; Russell, K. J.

    2007-12-01

    In polar regions of the Moon, there are areas within craters that are permanently shadowed from solar illumination, which can reach temperatures of 100K or less. These regions could serve as cold traps, capturing ice and other volatile compounds. These potential ice stores have many applications for lunar exploration. Within double-shaded craters, even colder regions exist, with temperatures never exceeding 50K in many cases. Temperatures observed in theses regions suggest that they could enable equivalent liquid nitrogen cryogenic functions. These permanently shaded polar craters also offer unprecedented high vacuum cryogenic environments, which in their current state could support cryogenic applications. The unique conditions at the lunar poles, besides ice stores, harbor an environment that provides an opportunity to reduce the power, weight and total mass that needs to be carried from the Earth to the moon for lunar exploration and research. Reducing the heat flux of geothermal, black body radiation can have significant impacts on the achievable temperature. With a few man-made augmentations, permanently shaded craters located near the lunar poles achieve temperatures even lower than those that naturally exist there. Our analysis reveals that lightweight thermal shielding, within shaded craters, could create an environment several Kelvin above absolute zero. The temperature ranges of naturally shaded craters and thermally augmented ones could enable the long-term storage of most gases, low temperature superconductors for large magnetic fields, devices and advanced high speed computing instruments. Augmenting thermal conditions in these craters could then be used as a basis for the development of an advanced thermal management architecture that would support a wide variety of cryogenically based applications. Lunar exploration and habitation capabilities would significantly benefit if permanently shaded craters, augmented with thermal shielding, were to be used to facilitate the operation of near absolute zero instruments, including wide variety of cryogenically based propulsion, energy, communication, sensing and computing devices. Potentially, the required burden of carrying massive life-supporting components from the Earth to the moon for lunar exploration and research could be reduced.

  18. Radiation Environments for Lunar Programs

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Altstatt, Richard L.; Blackwell, Willliam C.; Harine, Katherine J.

    2007-01-01

    Developing reliable space systems for lunar exploration and infrastructure for extended duration operations on the lunar surface requires analysis and mitigation of potential system vulnerabilities to radiation effects on materials and systems. This paper reviews the characteristics of space radiation environments relevant to lunar programs including the trans-Earth and trans-lunar injection trajectories through the Earth's radiation belts, solar wind surface dose environments, energetic solar particle events, and galactic cosmic rays and discusses the radiation design environments being developed for lunar program requirements to assure that systems operate successfully in the space environment.

  19. The Lunar Configurable Array Telescope (LCAT)

    NASA Astrophysics Data System (ADS)

    Meinel, Aden B.; Meinel, Marjorie P.

    1990-01-01

    The desire for a much larger space telescope than HST by astronomers is clearly demonstrated by the attendance at this Workshop. The reality is that a much larger space telescope than the HST collides with cost scaling reality. Coupled with this reality is the fact that any multi-billion dollar science project must have broad-based support from the science community and solid political support at both Presidential and Congressional levels. The HST successor is certainly in the same multi-billion dollar class as the Super Collider of the physics community, a project that has finally achieved the broad support base necessary for funding to follow. Advocacy of a bigger HST on the general grounds that 'bigger is better' will not be sufficient. A new concept needs to be developed that clearly diverges from scaling up of a traditional HST-type space telescope. With these realities in mind we have a few comments regarding the nature of a possible space telescope that may depart from what the organizers of this Workshop had in mind. The national goal declared by the President is Space Station, the Moon and Mars, in that order. Space Station is a potential location where a large system could be assembled prior to being sent into a high orbit. It is not a desirable environment for a large space telescope. Mars is not relevant as an observatory site. The Moon is very relevant for reasons we will address. Our comments are based on the premise of a permanent Lunar Outpost. One of the main arguments for a lunar telescope is a degree of permanency, that is, as long as a Lunar Outpost is maintained. In contrast, the relatively short lifetime of an orbiting telescope is a disadvantage, especially as a cost penalty. Access to a telescope in a 100,000 km orbit for refurbishment and resupply is a major problem with no solution in the present NASA planning. A telescope in conjunction with a Lunar Outpost means the possibility for continual upgrading or modifying the telescope to meet changing science objectives. The two main technical disadvantages of the Moon are: 1) its gravity field; and 2) direct Sun and Earth light. The gravity term is manageable. It also appears to be feasible to shield the telescope from direct sun and Earth light and from scattering from nearby lunar terrain. Thermal disturbances to the telescope also appear to be manageable by proper shielding, enabling the telescope to become as cold as if it were at a lunar pole crater. If these conditions are met, the telescope could be at a logistically convenient location near the Lunar Outpost. We want to address a concept that is significantly different from those presented in the preliminary communications from Garth Illingworth in order to help fill in the matrix of possibilities. This option, moreover, is of special interest to JPL and could be an area where JPL can contribute in future studies.

  20. Lunar electrostatic effects and protection

    NASA Astrophysics Data System (ADS)

    Sun, Yongwei; Yuan, Qingyun; Xiong, Jiuliang

    2013-03-01

    The space environment and features on the moon surface are factors in strong electrostatic electrification. Static electricity will be produced in upon friction between lunar soil and detectors or astronauts on the lunar surface. Lunar electrostatic environment effects from lunar exploration equipment are very harmful. Lunar dust with electrostatic charge may enter the equipment or even cover the instruments. It can affect the normal performance of moon detectors. Owing to the huge environmental differences between the moon and the earth, the electrostatic protection technology on the earth can not be applied. In this paper, we review the electrostatic characteristics of lunar dust, its effects on aerospace equipment and moon static elimination technologies. It was concluded that the effect of charged lunar dust on detectors and astronauts should be completely researched as soon as possible.

  1. Permanent versus disconnectable FPSOs

    NASA Astrophysics Data System (ADS)

    Luo, Yong; Wang, Hong-Wei

    2009-06-01

    Floating production storage and offloading (FPSO) vessels offer a cost-effective field development solution, especially in deepwater areas lacking an adequate pipeline network. Most FPSOs are permanently moored, i.e. the complete system is designed to withstand any kind of extreme environment at the field location. FPSOs that can be quickly disconnected from their moorings and risers have also been designed and deployed. The key feature of this type of disconnectable FPSO is that it can be disconnect and so avoid dangerous environmental conditions such as icebergs, hurricanes in the Gulf of Mexico and typhoons in the South China Sea. In this paper, the concept of disconnectable FPSOs for deepwater field development is presented. Key technologies and their engineering analyses are highlighted. The merits and demerits of disconnectable vs permanent FPSOs are then evaluated. The paper concludes that both permanent and disconnectable FPSOs are versatile floating systems and their selection depends on safety, technological, cost and operational considerations.

  2. 7 CFR 1956.109 - General requirements for debt settlement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true General requirements for debt settlement. 1956.109... OF AGRICULTURE (CONTINUED) PROGRAM REGULATIONS (CONTINUED) DEBT SETTLEMENT Debt Settlement-Community and Business Programs § 1956.109 General requirements for debt settlement. (a) Debt due and...

  3. 7 CFR 1956.112 - Debts ineligible for settlement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Debts ineligible for settlement. 1956.112 Section 1956... (CONTINUED) PROGRAM REGULATIONS (CONTINUED) DEBT SETTLEMENT Debt Settlement-Community and Business Programs § 1956.112 Debts ineligible for settlement. Debts will not be settled: (a) If referral to the Office...

  4. Estimating Lunar Pyroclastic Deposit Depth from Imaging Radar Data: Applications to Lunar Resource Assessment

    NASA Technical Reports Server (NTRS)

    Campbell, B. A.; Stacy, N. J.; Campbell, D. B.; Zisk, S. H.; Thompson, T. W.; Hawke, B. R.

    1992-01-01

    Lunar pyroclastic deposits represent one of the primary anticipated sources of raw materials for future human settlements. These deposits are fine-grained volcanic debris layers produced by explosive volcanism contemporaneous with the early stage of mare infilling. There are several large regional pyroclastic units on the Moon (for example, the Aristarchus Plateau, Rima Bode, and Sulpicius Gallus formations), and numerous localized examples, which often occur as dark-halo deposits around endogenic craters (such as in the floor of Alphonsus Crater). Several regional pyroclastic deposits were studied with spectral reflectance techniques: the Aristarchus Plateau materials were found to be a relatively homogeneous blanket of iron-rich glasses. One such deposit was sampled at the Apollo 17 landing site, and was found to have ferrous oxide and titanium dioxide contents of 12 percent and 5 percent, respectively. While the areal extent of these deposits is relatively well defined from orbital photographs, their depths have been constrained only by a few studies of partially filled impact craters and by imaging radar data. A model for radar backscatter from mantled units applicable to both 70-cm and 12.6-cm wavelength radar data is presented. Depth estimates from such radar observations may be useful in planning future utilization of lunar pyroclastic deposits.

  5. The Sooner Lunar Schooner: Lunar Engineering Education

    NASA Astrophysics Data System (ADS)

    Miller, D.; Hougen, D.; Shirley, D.

    The Sooner Lunar Schooner is a multi-disciplinary ongoing project at the University of Oklahoma to plan, design, prototype, cost and (when funds become available) build/contract and fly a robotic mission to the Moon. The goal of the flight will be to explore the Hadley Rille site; conduct a materials analysis of the materials left there by Apollo 15 thirty years earlier; and to perform a selenographic survey of the parts of the Rille that were considered too dangerous to be explored by the Apollo 15 crew. The goal of the Sooner Lunar Schooner Project is to improve the science and engineering educations of the hundreds of undergraduate and graduate students working on the project. The participants, while primarily from engineering and physics, will also include representatives from business, art, journalism, law and education. This project ties together numerous existing research programs at the University, and provides a framework for the creation of many new research proposals. When we asked what we could do to motivate students the way the authors were excited and motivated by the Apollo missions to the Moon, we realized that nothing is as exciting as going to the Moon, as is going to the Moo n. The students seem to agree.

  6. The Sooner Lunar Schooner: Lunar engineering education

    NASA Astrophysics Data System (ADS)

    Miller, D. P.; Hougen, D. F.; Shirley, D.

    2003-06-01

    The Sooner Lunar Schooner is a multi-disciplinary ongoing project at the University of Oklahoma to plan, design, prototype, cost and (when funds become available) build/contract and fly a robotic mission to the Moon. The goal of the flight will be to explore a small section of the Moon; conduct a materials analysis of the materials left there by an Apollo mission thirty years earlier; and to perform a selenographic survey of areas that were too distant or considered too dangerous to be done by the Apollo crew. The goal of the Sooner Lunar Schooner Project is to improve the science and engineering educations of the hundreds of undergraduate and graduate students working on the project. The participants, while primarily from engineering and physics, will also include representatives from business, art, journalism, law and education. This project ties together numerous existing research programs at the University, and provides a framework for the creation of many new research proposals. The authors were excited and motivated by the Apollo missions to the Moon. When we asked what we could do to similarly motivate students we realized that nothing is as exciting as going to the Moon. The students seem to agree.

  7. 24 CFR 7.43 - Settlement agreements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and/or their designees; and (4) Otherwise comply with 29 CFR part 1614. (b) Any settlement agreement... Regard to Race, Color Religion, Sex, National Origin, Age, Disability or Reprisal Remedies,...

  8. 24 CFR 7.43 - Settlement agreements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... and/or their designees; and (4) Otherwise comply with 29 CFR part 1614. (b) Any settlement agreement... Regard to Race, Color Religion, Sex, National Origin, Age, Disability or Reprisal Remedies,...

  9. 24 CFR 7.43 - Settlement agreements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and/or their designees; and (4) Otherwise comply with 29 CFR part 1614. (b) Any settlement agreement... Regard to Race, Color Religion, Sex, National Origin, Age, Disability or Reprisal Remedies,...

  10. 29 CFR 2200.120 - Settlement procedure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Equal Access to Justice Act and 29 CFR Part 2204. (ii) Upon motion of any party after the docketing of... orders embodying the terms of any partial settlement the parties have reached. (2) At the termination...

  11. 29 CFR 2200.120 - Settlement procedure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Equal Access to Justice Act and 29 CFR Part 2204. (ii) Upon motion of any party after the docketing of... orders embodying the terms of any partial settlement the parties have reached. (2) At the termination...

  12. 32 CFR 536.63 - Settlement agreements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGAINST THE UNITED STATES Investigation and Processing of Claims 536.63 Settlement agreements. (a) When... required. Court approval is required in a wrongful death claim, or where the claimant is a minor...

  13. 32 CFR 536.63 - Settlement agreements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGAINST THE UNITED STATES Investigation and Processing of Claims 536.63 Settlement agreements. (a) When... required. Court approval is required in a wrongful death claim, or where the claimant is a minor...

  14. 32 CFR 536.63 - Settlement agreements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGAINST THE UNITED STATES Investigation and Processing of Claims 536.63 Settlement agreements. (a) When... required. Court approval is required in a wrongful death claim, or where the claimant is a minor...

  15. 32 CFR 536.63 - Settlement agreements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGAINST THE UNITED STATES Investigation and Processing of Claims 536.63 Settlement agreements. (a) When... required. Court approval is required in a wrongful death claim, or where the claimant is a minor...

  16. 37 CFR 42.409 - Settlement agreements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OF COMMERCE TRIAL PRACTICE BEFORE THE PATENT TRIAL AND APPEAL BOARD Derivation After Institution of Derivation Proceeding § 42.409 Settlement agreements. An agreement or understanding under 35 U.S.C. 135(e)...

  17. 37 CFR 42.409 - Settlement agreements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OF COMMERCE TRIAL PRACTICE BEFORE THE PATENT TRIAL AND APPEAL BOARD Derivation After Institution of Derivation Proceeding 42.409 Settlement agreements. An agreement or understanding under 35 U.S.C. 135(e)...

  18. 77 FR 37397 - Proposed Settlement Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... Reciprocating Internal Combustion Engines (the RICE NESHAP). Under the terms of the proposed settlement... Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines (the RICE NESHAP), 75 FR 51570 (Aug. 20, 2010). Petitioners filed petitions for judicial review regarding...

  19. 24 CFR 7.43 - Settlement agreements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and/or their designees; and (4) Otherwise comply with 29 CFR part 1614. (b) Any settlement agreement... Regard to Race, Color Religion, Sex, National Origin, Age, Disability or Reprisal Remedies,...

  20. 33 CFR 20.502 - Settlements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... proposed settlement must be in the form of a proposed decision, accompanied by a motion for its entry. The... decision will have the same force and effect as would a decision made after a hearing; and (4) A...

  1. 33 CFR 20.502 - Settlements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... proposed settlement must be in the form of a proposed decision, accompanied by a motion for its entry. The... decision will have the same force and effect as would a decision made after a hearing; and (4) A...

  2. Lunar construction utility vehicle

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The lunar construction utility vehicle (LCUV) is an all-purpose construction vehicle which will aid in the robotic assembly of a lunar outpost. The LCUV will have the following capabilities: (1) must be self supporting including repairs; (2) must offload itself from a lunar lander; (3) must be telerobotic and semi-autonomous; (4) must be able to transport one space station common module; (5) must allow for man-rated operation; and (6) must be able to move lunar regolith for site preparation. This study recommends the use of an elastic tracked vehicle. Detailed material analyses of most of the LCUV components were accomplished. The body frame, made of pinned truss elements, was stress analyzed using NASTRAN. A track connection system was developed; however, kinematic and stress analyses are still required. This design recommends the use of hydrogen-oxygen fuel cells for power. Thermal control has proven to be a problem which may be the most challenging technically. A tentative solution has been proposed which utilizes an onboard and towable radiator. Detailed study of the heat dissipation requirements is needed to finalize radiator sizing. Preliminary work on a man-rated cabin has begun; however, this is not required during the first mission phase of the LCUV. Finally, still in the conceptual phases, are the communication, navigation and mechanical arm systems.

  3. Lunar surface gravimeter experiment

    NASA Technical Reports Server (NTRS)

    Giganti, J. J.; Larson, J. V.; Richard, J. P.; Tobias, R. L.; Weber, J.

    1977-01-01

    The lunar surface gravimeter used the moon as an instrumented antenna to search for gravitational waves predicted by Einstein's general theory of relativity. Tidal deformation of the moon was measured. Gravitational radiation is a channel that is capable of giving information about the structure and evolution of the universe.

  4. Lunar Phases Planisphere

    ERIC Educational Resources Information Center

    Shawl, Stephen J.

    2010-01-01

    This paper describes a lunar phases planisphere with which a user can answer questions about the rising and setting times of the Moon as well as questions about where the Moon will be at a given phase and time. The article contains figures that can be photocopied to make the planisphere. (Contains 2 figures.)

  5. A Lunar Chronology

    ERIC Educational Resources Information Center

    Schaeffer, Oliver A.

    1973-01-01

    Discusses methods used in determination of absolute isotopic ages for the returned lunar material, including the uranium-lead, rubidium-strontium, and argon 40-argon 39 ratio methods. Indicates that there would exist a basin-forming bombardment period for the Moon extending over at least 300 million years. (CC)

  6. Investigations of lunar materials

    NASA Technical Reports Server (NTRS)

    Fleischer, R. L.; Hart, H. R., Jr.

    1973-01-01

    In the particle track work, a series of dating techniques for learning about the surface history of soil and rock samples was developed. The surface behavior and history of diverse lunar rocks and soils, erosion rates, and deposition rates were studied, along with incident heavy cosmic ray spectrum.

  7. Lunar permafrost - Dielectric identification.

    NASA Technical Reports Server (NTRS)

    Alvarez, R.

    1973-01-01

    A simulator of lunar permafrost at 100 K exhibits a dielectric relaxation centered at approximately 300 hertz. If permafrost exists in the moon between 100 and 213 K, it should present a relaxation peak at approximately 300 hertz. For temperatures up to 263 K it may go up to 20 kilohertz.

  8. Apollo Lunar Landing

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Artist rendering of the Lunar Orbiter, the most successful of the pre-Apollo probes, which mapped the equatorial regions of the moon and gave NASA the data it needed to pinpoint ideal landing spots. Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 314.

  9. Lunar soil properties and soil mechanics

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Houston, W. N.; Hovland, H. J.

    1972-01-01

    The study to identify and define recognizable fabrics in lunar soil in order to determine the history of the lunar regolith in different locations is reported. The fabric of simulated lunar soil, and lunar soil samples are discussed along with the behavior of simulated lunar soil under dynamic and static loading. The planned research is also included.

  10. Counting Lunar Phase Cycles in Mesoamerica

    NASA Astrophysics Data System (ADS)

    Iwaniszewski, Stanisław

    Though ancient Mesoamericans did not develop formal lunar calendars, they nevertheless timed diverse agricultural activities with the lunar phases. Only the Classic Period Maya created a complex system of recording the lunar cycles, called the Lunar Series, attached to various mythological or historical narratives. It is probable that the structure of the Lunar Series was used to make eclipse predictions.

  11. Extended duration lunar lander

    NASA Astrophysics Data System (ADS)

    Babic, Nikola; Carter, Matt; Cosper, Donna; Garza, David; Gonzalez, Eloy; Goodine, David; Hirst, Edward; Li, Ray; Lindsey, Martin; Ng, Tony

    1993-05-01

    Selenium Technologies has been conducting preliminary design work on a manned lunar lander for use in NASA's First Lunar Outpost (FLO) program. The resulting lander is designed to carry a crew of four astronauts to a prepositioned habitat on the lunar surface, remain on the lunar surface for up to 45 days while the crew is living in the habitat, then return the crew to earth via direct reentry and land recovery. Should the need arise, the crew can manually guide the lander to a safe lunar landing site, and live in the lander for up to ten days on the surface. Also, an abort to earth is available during any segment of the mission. The main propulsion system consists of a cluster of four modified Pratt and Whitney RL10 rocket engines that use liquid methane (LCH4) and liquid oxygen (LOX). Four engines are used to provide redundancy and a satisfactory engine out capability. Differences between the new propulsion system and the original system include slightly smaller engine size and lower thrust per engine, although specific impulse remains the same despite the smaller size. Concerns over nozzle ground clearance and engine reliability, as well as more information from Pratt and Whitney, brought about this change. The power system consists of a combination of regenerative fuel cells and solar arrays. While the lander is in flight to or from the moon, or during the lunar night, fuel cells provide all electrical power. During the lunar day, solar arrays are deployed to provide electrical power for the lander as well as electrolyzers, which separate some water back into hydrogen and oxygen for later use by the fuel cells. Total storage requirements for oxygen, hydrogen, and water are 61 kg, 551 kg, and 360 kg, respectively. The lander is a stage-and-a-half design with descent propellant, cargo, and landing gear contained in the descent stage, and the main propulsion system, ascent propellant, and crew module contained in the ascent stage. The primary structure for both stages is a truss, to which all tanks and components are attached. The crew module is a conical shape similar to that of the Apollo Command Module, but significantly larger with a height and maximum diameter of six meters.

  12. Extended duration lunar lander

    NASA Technical Reports Server (NTRS)

    Babic, Nikola; Carter, Matt; Cosper, Donna; Garza, David; Gonzalez, Eloy; Goodine, David; Hirst, Edward; Li, Ray; Lindsey, Martin; Ng, Tony

    1993-01-01

    Selenium Technologies has been conducting preliminary design work on a manned lunar lander for use in NASA's First Lunar Outpost (FLO) program. The resulting lander is designed to carry a crew of four astronauts to a prepositioned habitat on the lunar surface, remain on the lunar surface for up to 45 days while the crew is living in the habitat, then return the crew to earth via direct reentry and land recovery. Should the need arise, the crew can manually guide the lander to a safe lunar landing site, and live in the lander for up to ten days on the surface. Also, an abort to earth is available during any segment of the mission. The main propulsion system consists of a cluster of four modified Pratt and Whitney RL10 rocket engines that use liquid methane (LCH4) and liquid oxygen (LOX). Four engines are used to provide redundancy and a satisfactory engine out capability. Differences between the new propulsion system and the original system include slightly smaller engine size and lower thrust per engine, although specific impulse remains the same despite the smaller size. Concerns over nozzle ground clearance and engine reliability, as well as more information from Pratt and Whitney, brought about this change. The power system consists of a combination of regenerative fuel cells and solar arrays. While the lander is in flight to or from the moon, or during the lunar night, fuel cells provide all electrical power. During the lunar day, solar arrays are deployed to provide electrical power for the lander as well as electrolyzers, which separate some water back into hydrogen and oxygen for later use by the fuel cells. Total storage requirements for oxygen, hydrogen, and water are 61 kg, 551 kg, and 360 kg, respectively. The lander is a stage-and-a-half design with descent propellant, cargo, and landing gear contained in the descent stage, and the main propulsion system, ascent propellant, and crew module contained in the ascent stage. The primary structure for both stages is a truss, to which all tanks and components are attached. The crew module is a conical shape similar to that of the Apollo Command Module, but significantly larger with a height and maximum diameter of six meters.

  13. Lunar Exploration Orbiter

    NASA Astrophysics Data System (ADS)

    Henselowsky, Carsten; Jaumann, Ralf; Kummer, Uwe; Claasen, Friedhelm

    Phase 0 investigations for the German Lunar Exploration Orbiter (LEO) mission were carried out during 2007 leading to a sophisticated mission concept currently in phase A to be further detailed. Following an announcement of opportunity, also in 2007, the German Space Agency (DLR) received several proposals for the instrumentation of the LEO mission from the national science community. A board of peers recommended 12 instruments for a further consideration in phase A. Overall premise for the accomplishment of LEO is that the mission will provide high quality scientific output in the fields of geology, geochemistry and geophysics and add value in the context of already operational and foreseeable upcoming lunar missions. Composed of three satellites, a main orbiter and a pair of sub-satellites, the Lunar Exploration Orbiter will investigate the moon in all its facets, including its interior constitution and development by gravity field analysis, its surface in a multifold of aspects, ranging from topography to mineralogy, as well as its direct surrounding in aspects as radiation and dust. To accomplish this challenging mission objective, with respect to the envisaged high spatial and spectral resolution of the global surface mapping and the accuracy of the determination of the gravity field, the mission concept stipulates a mean altitude of 50 km. Due to the request for global coverage, low altitude and the quantity of instruments LEO is designed for a nominal operational lifetime of four years. Necessary mission lifetime and altitude combined with the capricious lunar gravity field yields a less propellant demanding frozen orbit with an inclination of 85 which is envisaged for the first part of the operational period. The LEO main orbiter will change its inclination to polar orbit after three years of operation to complete global coverage during the last nominal year of operation. The two sub-satellites will remain in the stable, initial 50 km orbit. Remaining propellant will be used to deal with uncertainties according to the considered lunar frozen orbits or for an extension of the nominal lifetime and/or scenario. The LEO main orbiter will carry the mapping payloads that will provide global coverage of the moon surface and the environmental examination instruments: Three imaging spectrometers covering a wide spectral range from 200 nm up to 14 m, will provide data for geochemical investigations, a camera for highest resolution stereo imaging will establish a three-dimensional topographic map and a specialized camera for event detection will identify lunar transient events, a microwave and a radar instrument will investigate the lunar subsurface, environmental instruments shall measure the lunar radiation and particle (dust) environment. The two - almost identical - subsatellites together form an instrument to determine the lunar gravity field with unprecedented high accuracy, by conducting range and range-rate measurements. Moreover each sub-satellite is determined to carry also a magnetometer and a sensor measuring the pressure of radiation to assist gravity field measurements. As mentioned above, first and foremost LEO is a scientific driven mission. Over and above the scientific ambition LEO shall be Germany's contribution to future lunar exploration in an international context by providing a global scientific roadmap of the Moon with highest precision. LEO is planed to be launched in 2012 timeframe.

  14. Molecular Nanotechnology and Space Settlement

    NASA Technical Reports Server (NTRS)

    Globus, Al; Saini, Subhash (Technical Monitor)

    1998-01-01

    Atomically precise manipulation of matter is becoming increasingly common in laboratories around the world. As this control moves into aerospace systems, huge improvements in computers, high-strength materials, and other systems are expected. For example, studies suggest that it may be possible to build: 10(exp 18) MIPS computers, 10(exp 15) bytes/sq cm write once memory, $153-412/kg-of-cargo single- stage-to-orbit launch vehicles and active materials which sense their environment and react intelligently. All of NASA's enterprises should benefit significantly from molecular nanotechnology. Although the time may be measured in decades and the precise path to molecular nanotechnology is unclear, all paths (diamondoid, fullerene, self-assembly, biomolecular, etc.) will require very substantial computation. This talk will discuss fullerene nanotechnology and early work on hypothetical active materials consisting of large numbers of identical machines. The speaker will also discuss aerospace applications, particularly missions leading to widespread space settlement (e.g., small near-Earth - object retrieval). It is interesting to note that control of the tiny - individual atoms and molecules - may lead to colonization of the huge -first the solar system, then the galaxy.

  15. Alkaline "Permanent" Paper.

    ERIC Educational Resources Information Center

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and recyclability is…

  16. Alkaline "Permanent" Paper.

    ERIC Educational Resources Information Center

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and recyclability is

  17. Lunar Dust: Characterization and Mitigation

    NASA Technical Reports Server (NTRS)

    Hyatt. Mark J.; Feighery, John

    2007-01-01

    Lunar dust is a ubiquitous phenomenon which must be explicitly addressed during upcoming human lunar exploration missions. Near term plans to revisit the moon as a stepping stone for further exploration of Mars, and beyond, places a primary emphasis on characterization and mitigation of lunar dust. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it's potentially harmful effects on exploration systems. The same hold true for assessing the risk it may pose for toxicological health problems if inhaled. This paper presents the current perspective and implementation of dust knowledge management and integration, and mitigation technology development activities within NASA's Exploration Technology Development Program. This work is presented within the context of the Constellation Program's Integrated Lunar Dust Management Strategy. This work further outlines the scientific basis for lunar dust behavior, it's characteristics and potential effects, and surveys several potential strategies for its control and mitigation both for lunar surface operations and within the working volumes of a lunar outpost. The paper also presents a perspective on lessons learned from Apollo and forensics engineering studies of Apollo hardware.

  18. The International Lunar Decade Declaration

    NASA Astrophysics Data System (ADS)

    Beldavs, V.; Foing, B.; Bland, D.; Crisafulli, J.

    2015-10-01

    The International Lunar Decade Declaration was discussed at the conference held November 9-13, 2014 in Hawaii "The Next Giant Leap: Leveraging Lunar Assets for Sustainable Pathways to Space" - http://2014giantleap.aerospacehawaii.info/ and accepted by a core group that forms the International Lunar Decade Working Group (ILDWG) that is seeking to make the proposed global event and decade long process a reality. The Declaration will be updated from time to time by members of the ILDWreflecting new knowledge and fresh perspectives that bear on building a global consortium with a mission to progress from lunar exploration to the transformation of the Moon into a wealth gene rating platform for the expansion of humankind into the solar system. When key organizations have endorsed the idea and joined the effort the text of the Declaration will be considered final. An earlier International Lunar Decade proposal was issued at the 8th ICEUM Conference in 2006 in Beijing together with 13 specific initiatives for lunar exploration[1,2,3]. These initiatives have been largely implemented with coordination among the different space agencies involved provided by the International Lunar Exploration Working Group[2,3]. The Second International Lunar Decade from 2015 reflects current trends towards increasing involvement of commercial firms in space, particularly seeking opportunities beyond low Earth orbit. The central vision of the International Lunar Decade is to build the foundations for a sustainable space economy through international collaboration concurrently addressing Lunar exploration and building a shared knowledge base;Policy development that enables collabo rative research and development leading to lunar mining and industrial and commercial development;Infrastructure on the Moon and in cislunar space (communications, transport, energy systems, way-stations, other) that reduces costs, lowers risks and speeds up the time to profitable operations;Enabling technologies needed for lunar operations (robotic and human), lunar mining, materials processing, manufacturing, transportation, life support and other.

  19. Property Status of Lunar Material

    NASA Astrophysics Data System (ADS)

    Pop, V.

    Most of the lunar material in private hands is of meteoric origin, and its property sta- tus does not present many challenges. The intention of Applied Space Resources, Inc, to fly a commercial lunar sample return mission and to subsequently offer lunar ma- terial for sale, raises the issue of the legality of exploitation and private ownership of retrieved lunar material. Lunar samples have been returned in the past by means of the Apollo (US) and Luna (USSR) missions and, while most of the material re- mains government property and is used for scientific means, a small fraction has been transferred abroad and some has entered the private market. Apollo-collected moon- rocks have been offered, symbolically, to heads of States, and some foreign nations have subsequently transferred ownership to private individuals. The same, lunar ma- terial of Soviet provenience has entered the private market, this forming a valuable legal precedent for the lawfulness of sale of lunar material. Recently, plans were made public to award the Apollo astronauts with lunar rocks. While in the US there is a popular misconception that it is illegal to own lunar material, the truth lies elsewhere. As the Apollo samples are the property of the US government and a small fraction was stolen, lost, or misplaced, the US government intends to recover this material, unlawfully owned. In the same time, a significant number of individuals have been prosecuted for offering for sale fake lunar rocks. The present paper will analyse the different categories of lunar material according to its ownership status, and will as- sert that private property of lunar material is lawful, and lunar material that will be returned in the future will be able to enter the market without hindrances.

  20. Architecture for a Mobile Lunar Base Using Lunar Materials

    NASA Astrophysics Data System (ADS)

    Smitherman, David V.; Dayal, Vinay; Dunn, Daniel J.

    2006-01-01

    During the summers of 2004, and 2005, several studies were conducted in the Future Concepts Office at the NASA Marshall Space Flight Center (MSFC) with assistance from summer faculty and student program participants to develop concepts and architectures for mobile lunar habitats. This work included conceptual designs for a launch architecture derived from existing expendable launch systems; a lunar walker based on existing technology for the robotics; compatible hardware from the International Space Station (ISS) program for pressurized modules; and lunar resources utilization for environmental shielding. This paper provides a brief summary of some of the key findings from these studies, and identifies areas for future work that could lead to more robust lunar exploration architectures in the future. In conclusion, it is recommended that future exploration missions consider reusable depot / transfer vehicles, robotic walking technology for lunar exploration, and lunar resources utilization for environmental shielding of surface habitats.

  1. The Lunar Quest Program and the International Lunar Network (ILN)

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2009-01-01

    The Lunar and Planetary Science group at Marshall provides core capabilities to support the Agency's lunar exploration goals. ILN Anchor Nodes are currently in development by MSFC and APL under the Lunar Quest Program at MSFC. The Science objectives of the network are to understand the interior structure and composition of the moon. Pre-phase A engineering assessments are complete, showing a design that can achieve the science requirements, either on their own (if 4 launched) or in concert with international partners. Risk reduction activities are ongoing. The Lunar Quest Program is a Science-based program with the following goals: a) Fly small/medium science missions to accomplish key science goals; b) Build a strong lunar science community; c) Provide opportunities to demonstrate new technologies; and d) Where possible, help ESMD and SOMG goals and enhance presence of science in the implementation of the VSE. The Lunar Quest Program will be guided by recommendations from community reports.

  2. The Apollo 17 Lunar Sounder. [lunar orbit coherent radar experiment

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Brown, W. E., Jr.; Jordan, R.; Adams, G. F.; Jackson, P.; Peeples, W. J.; Porcello, L. J.; Ryu, J.; Eggleton, R. E.; Schaber, G.

    1973-01-01

    The Apollo Lunar Sounder Experiment, a coherent radar operated from lunar orbit during the Apollo 17 mission, has scientific objectives of mapping lunar subsurface structure, surface profiling, surface imaging, and galactic noise measurement. Representative results from each of the four disciplines are presented. Subsurface reflections have been interpreted in both optically and digitally processed data. Images and profiles yield detailed selenomorphological information. The preliminary galactic noise results are consistent with earlier measurements by other workers.

  3. What Lunar Meteorites Tell Us About the Lunar Highlands Crust

    NASA Technical Reports Server (NTRS)

    Korotev, R. L.; Jolliff, B. L.; Zeigler, R. A.

    2012-01-01

    The first meteorite to be found1 that was eventually (1984) recognized to have originated from the Moon is Yamato 791197. The find date, November 20, 1979, was four days after the end of the first Conference on the Lunar Highland Crust. Since then, >75 other lunar meteorites have been found, and these meteorites provide information about the lunar highlands that was not known from studies of the Apollo and Luna samples

  4. Understanding the Reactivity of Lunar Dust for Future Lunar Missions

    NASA Technical Reports Server (NTRS)

    Wallace, W. T.; Jeevarajan, A. S.; Taylor, L. A.

    2010-01-01

    Fluorescence and EPR can be used to measure the reactivity of lunar soil. Lunar soil is highly activated by grinding. Reactivity is dependent upon soil maturity and locale. Maturity is based on the amount of nanophase iron (np-Fe) in a soil relative to the total iron (FeO). Lunar soil activity ia a direct function of the amount of np-Fe present. Reactive soil can be "deactivated" by humid atmosphere.

  5. Lunar bases and space activities of the 21st century

    SciTech Connect

    Mendell, W.W.

    1985-01-01

    The present conference gives attention to such major aspects of lunar colonization as lunar base concepts, lunar transportation, lunar science research activities, moon-based astronomical researches, lunar architectural construction, lunar materials and processes, lunar oxygen production, life support and health maintenance in lunar bases, societal aspects of lunar colonization, and the prospects for Mars colonization. Specific discussions are presented concerning the role of nuclear energy in lunar development, achromatic trajectories and the industrial scale transport of lunar resources, advanced geologic exploration from a lunar base, geophysical investigations of the moon, moon-based astronomical interferometry, the irradiation of the moon by particles, cement-based composites for lunar base construction, electrostatic concentration of lunar soil minerals, microwave processing of lunar materials, a parametric analysis of lunar oxygen production, hydrogen from lunar regolith fines, metabolic support for a lunar base, past and future Soviet lunar exploration, and the use of the moons of Mars as sources of water for lunar bases.

  6. Lunar Global Topography by Laser Altimeter (LALT) on board SELENE

    NASA Astrophysics Data System (ADS)

    Araki, H.; Tazawa, S.; Sasaki, S.; Noda, H.; Tsubokawa, T.; Asari, K.; Kawano, N.

    Japanese lunar orbiting mission SELENE (Selenological and Engineering Explorer) incorporates three selenodetic experiments by RISE group (Researches In SElenodesy) in National Astronomical Observatory of Japan. The first is Laser Altimeter (LALT) which measures the distance between the main orbiter and the lunar surface for the lunar topography. Second is four-way range-rate measurement by using a sub-satellite (RSAT) and the last is differential VLBI measurement of the two sub-satellites which are equipped with radio sources of S and X bands (VRAD). SELENE is scheduled to be launched in summer 2007 and various tests has been carried out. LALT incorporates Q-switched Nd:YAG laser system which transmits laser pulses per 1 second with 1064nm in wavelength, 17nsec time width, and 100mJ energy. Q-switch consists of LiNbO3 Pockels cell. The output beam divergence is 0.4 mrad after passing through the 7.3cm Galileo refractor. Beam spot size on lunar surface is typically 40m when main orbiter altitude is 100km. Range accuracy between SELENE orbiter and the lunar surface is 5m. The range data are transformed to the topography of the moon with the aid of position and attitude data of the SELENE orbiter. The foot print spacing will be about 1.6 km in the equatorial region after 1 yr mission period. In the pole regions the distance of ranged position on the moon will be less than 300m and the mean distance will be 100m. Mission objectives of LALT are summarized as making a low degree model of lunar figure and construction of lunar global topographic map with the accuracy that has never been so far. New topography of the moon will contribute the following scientific topics: [1] determination of the lunar global figure, [2] internal structure and surface processes, and [3] exploration of the lunar pole regions especially for permanent shadow or illuminated zones. The manufacture of flight model of LALT (LALT-FM) was finished in March 2003. LALT-FM joined the SELENE system integration test by March 2004 for checking mechanical and electrical interfaces with SELENE main orbiter as well as functional performance of LALT itself. PFM (Proto-Flight Model) integration test (PFT 1st half) was carried out successfully from May 2005 to Oct. 2005. LALT shall be in the middle of the PFT 2nd half or final environmental integration test scheduled from July 2006 to January 2007.

  7. Next Generation Lunar and Planetary Laser Ranging

    NASA Astrophysics Data System (ADS)

    Merkowitz, S. M.; McGarry, J. F.; Preston, A. M.

    2012-10-01

    We report on current lunar and planetary laser ranging studies at NASA Goddard. These include the development of next generation lunar retroreflectors and active laser ranging systems that have applications for lunar as well as planetary ranging.

  8. Lunar Landing Research Vehicle - Duration: 49 seconds.

    NASA Video Gallery

    The lunar lander, called a Lunar Excursion Module, or Lunar Module (LM), was designed for vertical landing and takeoff, and was able to briefly hover and fly horizontally before landing. At first g...

  9. Lunar exploration and the advancement of biomedical research: a physiologist's view.

    PubMed

    Piantadosi, Claude A

    2006-10-01

    Over the next few years, it will become apparent just how important lunar exploration is to biomedical research and vice versa, and how critical both are to the future of human spaceflight. NASA's Project Constellation should put a new lunar-capable vehicle into service by 2014 that will rely on proven Space Shuttle components and allow four astronauts to spend 7 d on the lunar surface. A modern space transportation system opens up a unique opportunity in the space sciences--the establishment of a permanent lunar laboratory for the physical and life sciences. This commentary presents a rationale for focusing American efforts in space on such a Moon base in order to promote understanding of the long-term physiological effects of living on a planetary body outside the Van Allen belts. PMID:17042257

  10. The dust environment of the Moon as seen by the Lunar Dust Environment Eplorer (LDEX)

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly; Szalay, Jamey; Kempf, Sascha; Schmidt, Juergen; Gruen, Eberhard; Srama, Ralf; Sternovsky, Zoltan

    2015-04-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission (9/2013 - 4/2014) discovered a permanently present dust cloud engulfing the Moon. The cloud is non-spherical, showing higher densities in a direction canted towards the Sun from the lunar orbital motion. The size, velocity, and density distributions of the dust particles are consistent with ejecta clouds generated from the continual bombardment of the lunar surface by sporadic interplanetary dust particles. Intermittent density enhancements were observed during several of the annual meteoroid streams, especially during the Geminids. LDEX found no evidence of the expected density enhancements over the terminators where electrostatic processes were predicted to efficiently loft small grains

  11. Lunar crane system

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.

    1991-01-01

    In many lunar construction scenarios, mechanical cranes in some form will be indispensible in moving large masses around with various degrees of fine positioning. While thorough experience exists in the use of terrestrial cranes new thinking is required about the design of cranes to be used in extraterrestrial construction. The primary driving force for this new thinking is the need to automate the crane system so that space cranes can be operated as telerobotic machines with a large number of automatic capabilities. This is true because in extraterrestrial construction human resources will need to be critically rationed. The design problems of mechanisms and control systems for a lunar crane must deal with at least two areas of performance. First, the automated crane must be capable of maneuvering a large mass, so that when the mass arrives at the target position there are only small vibrations. Secondly, any residue vibrations must be automatically damped out and a fine positioning must be achieved. For extraterrestrial use there are additional challenges to a crane design - for example, to design a crane system so that it can be transformed for other construction uses. This initial project in crane design does not address such additional issues, although they may be the subject of future CSC research. To date the Center has designed and analyzed many mechanisms. The fundamental problem of trade-offs between passively stabilizing the load and actively controlling the load by actuators was extensively studied. The capability of 3D dynamics modeling now exists for such studies. A scaled model of a lunar crane was set up and it has been most fruitful in providing basic understanding of lunar cranes. Due to an interesting scaling match-up, this scaled model exhibits the load vibration frequencies one would expect in the real lunar case. Using the analytical results achieved to date, a laboratory crane system is now being developed as a test bed for verifying a wide variety of mechanisms and control designs. Future development will be aimed at making the crane system a telerobotic test bed into which external sensors such as computer vision systems, and other small robotic devices such as CSC lunar rovers, will be integrated.

  12. An update on the MoonLite Lunar mission

    NASA Astrophysics Data System (ADS)

    Gowen, R.

    2009-04-01

    In December 2008 the UK BNSC/STFC announced that it would undertake a phase-A study of the proposed 4 penetrator lunar mission, MoonLITE. A status report will be given which includes: a brief science overview; technological assessment (including some results of the first impact trials) and identification of critical areas; organisation and plans for the phase A; longer term plans given a successful phase A; and role of international collaborations. Background: The MoonLITE mission involves implanting 4 penetrators globally spaced at impact speeds of ~300m/s and is aimed for launch in 2014 and operate for 1 year. Each penetrator is designed to come to rest a few metres under the lunar surface to provide a solid emplacement for an effective seismic network and for geochemical and heat flow investigations. Polar emplacement will also allow an exciting ability to characterize the presence of water-ice currently indirectly inferred in the permanently shaded craters. They will also allow investigation of the presence of other volatiles, possibly including organics of astrobiologic interest. MoonLITE can also provide strong support for future human lunar missions including seismic detection of large quakes of surface regions which may dangerous to the construction of lunar habitation or observation facilities; and the possible presence and concentration of water which is important to support future human missions. Potential International Collaboration: The timing of this mission may allow arrangement of coincident impacts of other spacecraft which are at the end of their natural mission lifetime, to provide strong artificial seismic signals to allow probing the deep interior of the Moon. Perhaps no better way to end an otherwise very successful mission ? In addition, the presence of multiple Lunar orbiting spacecraft may allow the possibility of inter-communication between different missions to enhance telemetry rates from the lunar surface and provide mission fault tolerance.

  13. Adsorption of Water on JSC-1A Lunar Simulant Samples

    NASA Technical Reports Server (NTRS)

    Goering, John; Sah, Shweta; Burghaus, Uwe; Street, Kenneth W.

    2008-01-01

    Remote sensing probes sent to the moon in the 1990s indicated that water may exist in areas such as the bottoms of deep, permanently shadowed craters at the lunar poles, buried under regolith. Water is of paramount importance for any lunar exploration and colonization project which would require self-sustainable systems. Therefore, investigating the interaction of water with lunar regolith is pertinent to future exploration. The lunar environment can be approximated in ultra-high vacuum systems such as those used in thermal desorption spectroscopy (TDS). Questions about water dissociation, surface wetting, degree of crystallization, details of water-ice transitions, and cluster formation kinetics can be addressed by TDS. Lunar regolith specimens collected during the Apollo missions are still available though precious, so testing with simulant is required before applying to use lunar regolith samples. Hence, we used for these studies JSC-1a, mostly an aluminosilicate glass and basaltic material containing substantial amounts of plagioclase, some olivine and traces of other minerals. Objectives of this project include: 1) Manufacturing samples using as little raw material as possible, allowing the use of surface chemistry and kinetics tools to determine the feasibility of parallel studies on regolith, and 2) Characterizing the adsorption kinetics of water on the regolith simulant. This has implications for the probability of finding water on the moon and, if present, for recovery techniques. For condensed water films, complex TDS data were obtained containing multiple features, which are related to subtle rearrangements of the water adlayer. Results from JSC-1a TDS studies indicate: 1) Water dissociation on JSC-1a at low exposures, with features detected at temperatures as high as 450 K and 2) The formation of 3D water clusters and a rather porous condensed water film. It appears plausible that the sub- m sized particles act as nucleation centers.

  14. Lunar ash flows - Isothermal approximation.

    NASA Technical Reports Server (NTRS)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  15. Laser-powered lunar base

    NASA Technical Reports Server (NTRS)

    Costen, R.; Humes, Donald H.; Walker, G. H.; Williams, M. D.; Deyoung, Russell J.

    1989-01-01

    The objective was to compare a nuclear reactor-driven Sterling engine lunar base power source to a laser-to-electric converter with orbiting laser power station, each providing 1 MW of electricity to the lunar base. The comparison was made on the basis of total mass required in low-Earth-orbit for each system. This total mass includes transportation mass required to place systems in low-lunar orbit or on the lunar surface. The nuclear reactor with Sterling engines is considered the reference mission for lunar base power and is described first. The details of the laser-to-electric converter and mass are discussed. The next two solar-driven high-power laser concepts, the diode array laser or the iodine laser system, are discussed with associated masses in low-lunar-orbit. Finally, the payoff for laser-power beaming is summarized.

  16. Russia sets sights on lunar base

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-06-01

    Vladimir Popovkin, director of Roscomos, the Russian Federal Space Agency, said the agency is setting its sights on the Moon. “We strongly feel that it is time for us to start working toward being able to establish a permanent base on the Moon,” Popovkin said at a 22 May panel discussion and news briefing held in conjunction with the Global Space Exploration Conference in Washington, D. C. Establishing a goal of lunar exploration does not mean that Roscomos is giving up on other priorities such as exploration of Mars, asteroids, or the moons of Jupiter, Popovkin said. “We have much better chances to come up with very productive and tangible results while concentrating on Moon exploration,” he said, noting the findings of water in polar areas.

  17. Lunar Gene Bank For Endangered Species

    NASA Astrophysics Data System (ADS)

    Swain, R.; Behera, D.; Sahoo, P. K.; Swain, S. K.; Sasmal, A.

    2012-09-01

    Before the dawn of the 22nd century, we face the huge risk of losing our genetic heritage accumulated during aeons of evolution. The losses include hundreds of vertebrates, hundreds of thousands of plants and over a million insect species. The gene pools of many human ethnic groups are also threatened. As we have observed, adequate conservation of habitat is unfeasible and active breeding programs cover only a handful of the many thousand species threatened. Against such indispensable losses scientists are starting cryopreservation of germplasms by creation of gene banks. I propose to construct a cDNA library based gene bank for endangered species in the permanently shadowed polar lunar craters that would provide immunity from both natural disadvantages and humanitarian intrusions [4].

  18. Carbothermal Reduction of Lunar Materials for Oxygen Production on the Moon: Reduction of Lunar Simulants with Methane

    NASA Astrophysics Data System (ADS)

    Rosenberg, S. D.; Musbah, O.; Rice, E. E.

    1996-03-01

    The utilization of extraterrestrial resources will become a key element in space exploration and colonization of the Moon and Mars in the 21st century. Indeed, the development and operation of in-situ manufacturing plants are required to enable the establishment of permanent lunar and Martian bases. Oxygen manufacture for life support and propulsion will be the most important manufacturing process for the first of these plants. The Carbothermal Reduction Process for the manufacture of oxygen from lunar materials has three essential steps: the reduction of ferrous oxide and metallic silicates with methane to form carbon monoxide and hydrogen; the reduction of carbon monoxide with hydrogen to form methane and water; and the electrolysis of water to form oxygen and hydrogen. This closed cyclic process does not depend upon the presence of water or water precursors in the lunar materials. It produces oxygen from silicates regardless of their precise composition and fine structure. In accord with the Statement of Work of Contract NAS 9-19080, Carbothermal Reduction of Lunar Materials for Oxygen Production on the Moon, ORBITEC has placed emphasis on the following issues to gain a better understanding of the Carbothermal Reduction Reaction of lunar regolith and to develop a low-risk, light-weight design for a lunar lander experiment: (1) highly efficient, i.e., greater than 95%, reduction of the lunar simulants with methane; (2) determination of conditions, particularly temperatures, required for initial and complete reduction of the lunar simulants; (3) identification of the products formed, gases and solids; (4) determination of solid product properties; (5) determination of reaction rates and mechanisms; and (6) demonstration of container materials. The most important of these issues were: (1) efficient reduction of the lunar simulants, i.e., JSC-1 and MLS-1A, with methane; (2) identification of the products formed , i.e., carbon monoxide, metals, e.g., iron and silicon, and slags, e.g., complex silicates; and (3) delivery of methane to the surface of the molten simulants without premature pyrolysis of the methane. The results of this empirical research are reported in this paper.

  19. Carbothermal Reduction of Lunar Materials for Oxygen Production on the Moon: Reduction of Lunar Simulants with Carbon

    NASA Astrophysics Data System (ADS)

    Rosenberg, S. D.; Musbah, O.; Rice, E. E.

    1996-03-01

    The utilization of extraterrestrial resources will become a key element in space exploration and colonization of the Moon and Mars in the 21st century. Indeed, the development and operation of in-situ manufacturing plants are required to enable the establishment of permanent lunar and Martian bases. Oxygen manufacture for life support and propulsion will be the most important manufacturing process for the first of these plants. The Carbothermal Reduction Process for the manufacture of oxygen from lunar materials has three essential steps: the reduction of ferrous oxide and metallic silicates with methane to form carbon monoxide and hydrogen; the reduction of carbon monoxide with hydrogen to form methane and water; and the electrolysis of water to form oxygen and hydrogen. This closed cyclic process does not depend upon the presence of water or water precursors in the lunar materials. It produces oxygen from silicates regardless of their precise composition and fine structure. In accord with the Statement of Work of Contract NAS 9-19080, Carbothermal Reduction of Lunar Materials for Oxygen Production on the Moon, ORBITEC has placed emphasis on the following issues to gain a better understanding of the Carbothermal Reduction Reaction of lunar regolith and to develop a low-risk, light-weight design for a lunar lander experiment: (1) reduction of lunar simulants with carbon (or equivalent); (2) determination of conditions, particularly temperatures, required for initial and complete reduction of lunar simulants by the carbon-containing reducing agents; (3) identification of the products formed, gases and solids; (4) determination of solid product properties; (5) determination of reaction rates and mechanisms; (6) selection and demonstration of container materials; and (7) selection and demonstration of heating methods. The most important of these issues were: (1) reduction of lunar simulants, i.e., JSC-1, MLS-1A, Ilmenite, and Gruenerite, with carbon, i.e., graphite; (2) identification of the products formed , i.e., carbon monoxide, metals, e.g., iron and silicon, and slags, e.g., complex silicates; (3) selection and demonstration of container materials, e.g., stabilized zirconia and yttria; and (4) selection and demonstration of heating methods. The results of this empirical research are reported in this paper.

  20. Age of a lunar anorthosite.

    NASA Technical Reports Server (NTRS)

    Husain, L.; Schaeffer, O. A.; Sutter, J. F.

    1972-01-01

    The crystallization age of an Apollo 15 anorthosite rock, 15415,9, returned from the lunar highlands has been measured to be 4.09 (plus or minus 0.19) b.y. The primitive lunar crust must have been formed in the first 300 to 400 m.y. The results give some credence to the hypothesis that the primitive lunar surface was molten and large-scale fractional crystallization occurred in the early history of the moon.

  1. Age of a lunar anorthosite.

    PubMed

    Husain, L; Schaeffer, O A; Sutter, J F

    1972-01-28

    The crystallization age of an Apollo 15 anorthosite rock, 15415,9, returned from the lunar highlands has been measured to be (4.09 +/- 0.19) x 10(9) years. The primitive lunar crust must have been formed in the first 300 to 400 x 10(6) years. The results give some credence to the hypothesis that the primitive lunar surface was molten and large-scale fractional crystallization occurred in the early history of the moon. PMID:17731365

  2. Stabilization of lunar core samples

    NASA Technical Reports Server (NTRS)

    Nagle, J. S.; Duke, M. B.

    1974-01-01

    Processing of lunar cores includes: (1) careful dissection for study of loose fines, and (2) stabilization of the residue by peeling and impregnation. The newly developed technique for preparing thin peels of lunar cores requires application of the methacrylate adhesive to a backing strip, before taking the peel. To ensure complete impregnation of the very fine, dry lunar soil, the low-viscosity epoxy, Araldite 506, is gently flowed onto the core, under vacuum.

  3. Exobiology and SETI from the lunar farside

    NASA Technical Reports Server (NTRS)

    Tarter, Jill C.; Rummel, John

    1990-01-01

    Within the Life Sciences Division of NASA, the Exobiology Program seeks to understand the origin, evolution and distribution of life in the universe. There are two feasible methods of searching for life beyond the earth. The first is to return to Mars and systematically explore its surface and subsurface with instrumentation capable of identifying extinct as well as extant life. The second is to search for advanced forms of life in other planetary systems that have developed a technology capable of modifying their environment in ways that make it detectable across the vast interstellar distances. The Exobiology Program is currently pursuing both of these options. If NASA's SETI (search for extraterrestrial intelligence) Microwave Observing Project of the 1990s fails to detect evidence of radio signals generated by an extraterrestrial technology, what might be the next step? The establishment of a permanent lunar base early in the next century may enable the construction of large aperture radio telescopes that can extend both the sensitivity and the frequency range of SETI observations. A lunar base may also provide the opportunity for construction of optical and IR telescopes intended for the direct detection of extrasolar planetary systems.

  4. Lunar cold traps and their influence on argon-40

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1980-01-01

    In polar areas of the moon the maximum temperatures reached in some permanently shaded areas are well below the temperature required to retain water ice for billions of years, and cold enough to hold other volatiles for shorter periods. Aside from water, the most significant lunar volatiles are the radiogenic gases, of which argon-40 is the most easily detected, both in situ and as retrapped ions in rocks returned from the surface on the moon. Argon-40 escapes from the moon at a surprisingly high rate that is between 3% and 6% of its total production. Its brief lifetime in the lunar exosphere is marked by numerous adsorption/desorption events. Collisions with the lunar surface in cold, permanently shaded areas lead to long term storage, forming reservoirs of trapped gas that may be disturbed occasionally to produce sudden increases in atmospheric argon. It is postulated that this may explain at least part of the time variations in Apollo 17 mass spectrometer measurements of argon that were previously attributed to internal processes associated with the release of radiogenic gases from the moon.

  5. Variable Permanent Magnet Quadrupole

    SciTech Connect

    Mihara, T.; Iwashita, Y.; Kumada, M.; Spencer, C.M.; /SLAC

    2007-05-23

    A permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens in a linear collider. An over 120 T/m strong variable permanent magnet quadrupole is achieved by the introduction of saturated iron and a 'double ring structure'. A fabricated PMQ achieved 24 T integrated gradient with 20 mm bore diameter, 100 mm magnet diameter and 20 cm pole length. The strength of the PMQ is adjustable in 1.4 T steps, due to its 'double ring structure': the PMQ is split into two nested rings; the outer ring is sliced along the beam line into four parts and is rotated to change the strength. This paper describes the variable PMQ from fabrication to recent adjustments.

  6. Design and development of volatile analysis system for analog field test of lunar exploration mission

    NASA Astrophysics Data System (ADS)

    Captain, Janine E.; Weis, Kyle; Cryderman, Katherine; Coan, Mary; Lance, Lucas; Levine, Lanfang; Brooks Loftin, Kathleen; Santiago-Maldonado, Edgardo; Bauer, Brint; Quinn, Jaqueline

    2015-05-01

    The recent evidence of water in the lunar crater Cabeus from the LCROSS mission (Colaprete et al., 2010) provides confirmation of a valuable resource on the lunar surface. To understand this resource and the impact it can have on future exploration, further information is needed on the distribution and availability of the water ice. The Lunar Advanced Volatile Analysis (LAVA) subsystem is a part of the Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) payload, designed to provide ground truth to the volatile distribution near the permanently shadowed regions on the lunar surface. The payload is designed to drill and extract a regolith core sample, heat the regolith to drive off the volatiles, and identify and quantify the volatile resources. The LAVA subsystem is specifically responsible for processing and analyzing the volatile gas sample from the lunar regolith sample. The main objective of this paper is to provide insight into the operations and hardware for volatile analysis developed and deployed at the 2012 RESOLVE Field Test on the slopes of Mauna Kea. The vision of employing Commercial Off the Shelf (COTS) and modified COTS hardware to lower the cost for mission-enabling field tests will be highlighted. This paper will discuss how the LAVA subsystem hardware supported several high level RESOLVE mission objectives to demonstrate the challenging lunar mission concept proposed.

  7. Permanent magnet design methodology

    NASA Technical Reports Server (NTRS)

    Leupold, Herbert A.

    1991-01-01

    Design techniques developed for the exploitation of high energy magnetically rigid materials such as Sm-Co and Nd-Fe-B have resulted in a revolution in kind rather than in degree in the design of a variety of electron guidance structures for ballistic and aerospace applications. Salient examples are listed. Several prototype models were developed. These structures are discussed in some detail: permanent magnet solenoids, transverse field sources, periodic structures, and very high field structures.

  8. Postoperative permanent pressure alopecia.

    PubMed

    Chang, Zi Yun; Ngian, Jan; Chong, Claudia; Chong, Chin Ted; Liew, Qui Yin

    2016-04-01

    A 49-year-old Chinese female underwent elective laparoscopic assisted Whipple's surgery lasting 12 h. This was complicated by postoperative pressure alopecia at the occipital area of the scalp. Pressure-induced hair loss after general anaesthesia is uncommon and typically temporary, but may be disconcerting to the patient. We report this case of postoperative permanent pressure alopecia due to its rarity in the anaesthesia/local literature, and review the risk factors for its development. PMID:26611234

  9. Permanent Peripheral Neuropathy

    PubMed Central

    Higgins, Elizabeth

    2014-01-01

    The health risks and side effects of fluoroquinolone use include the risk of tendon rupture and myasthenia gravis exacerbation, and on August 15, 2013, the Food and Drug Administration updated its warning to include the risk of permanent peripheral neuropathy. We present a case of fluoroquinolone-induced peripheral neuropathy in a patient treated for clinically diagnosed urinary tract infection with ciprofloxacin antibiotic. PMID:26425618

  10. Lunar material transport vehicle

    NASA Astrophysics Data System (ADS)

    Fisher, Charles D.; Lyons, Douglas; Wilkins, W. Allen, Jr.; Whitehead, Harry C., Jr.

    1988-03-01

    The proposed vehicle, the Lunar Material Transport Vehicle (LMTV), has a mission objective of efficient lunar soil material transport. The LMTV was designed to meet a required set of performance specifications while operating under a given set of constraints. The LMTV is essentially an articulated steering, double-ended dump truck. The vehicle moves on four wheels and has two identical chassis halves. Each half consists of a chassis frame, a material bucket, two wheels with integral curvilinear synchronous motors, a fuel cell and battery arrangement, an electromechanically actuated dumping mechanism, and a powerful microprocessor. The vehicle, as designed, is capable of transporting up to 200 cu ft of material over a one mile round trip per hour. The LMTV is capable of being operated from a variety of sources. The vehicle has been designed as simply as possible with attention also given to secondary usage of components.

  11. Lunar regolith densification

    NASA Technical Reports Server (NTRS)

    Ko, Hon-Yim; Sture, Stein

    1991-01-01

    Core tube samples of the lunar regolith obtained during the Apollo missions showed a rapid increase in the density of the regolith with depth. Various hypotheses have been proposed for the possible cause of this phenomenon, including the densification of the loose regolith material by repeated shaking from the seismic tremors which have been found to occur at regular monthly intervals when the moon and earth are closest to one another. A test bed was designed to study regolith densification. This test bed uses Minnesota Lunar Simulant (MLS) to conduct shaking experiments in the geotechnical centrifuge with an inflight shake table system. By reproducing realistic in-situ regolith properties, the experiment also serves to test penetrator concepts. The shake table system was designed and used for simulation experiments to study effects of earthquakes on terrestrial soil structures. It is mounted on a 15 g-ton geotechnical centrifuge in which the self-weight induced stresses are replicated by testing an n-th scale model in a gravity field which is n times larger than Earth's gravity. A similar concept applies when dealing with lunar prototypes, where the gravity ratio required for proper simulation of lunar gravity effects is that between the centrifugal acceleration and the lunar gravity. Records of lunar seismic tremors, or moonquakes, were obtained. While these records are being prepared for use as the input data to drive the shake table system, records from the El Centro earthquake of 1940 are being used to perform preliminary tests, using a soil container which was previously used for earthquake studies. This container has a laminar construction, with the layers free to slide on each other, so that the soil motion during the simulated earthquake will not be constrained by the otherwise rigid boundaries. The soil model is prepared by pluviating the MLS from a hopper into the laminar container to a depth of 6 in. The container is mounted on the shake table and the centrifuge is operated to generate an acceleration of 10 times Earth's gravity or 60 times the lunar gravity, thus simulating a lunar regolith thickness of 30 ft. The shake table is then operated using the scaled 'moonquake' as the input motion. One or more model moonquakes are used in each experiment, after which the soil is analyzed for its density profile with depth. This is accomplished by removing from the soil bed a column of soil contained within a thin rubber sleeve which has been previously embedded vertically in the soil during pluviation. This column of soil is transferred to a gamma ray device, in which the gamma ray transmission transversely through the soil is measured and compared with standard calibration samples. In this manner, the density profile can be determined. Preliminary results to date are encouraging, and the Center plans to study the effects of duration of shaking, intensity of the shaking motion, and the frequency of the motion.

  12. Investigations of lunar materials

    NASA Technical Reports Server (NTRS)

    Comstock, G. M.; Fvwaraye, A. O.; Fleischer, R. L.; Hart, H. R., Jr.

    1972-01-01

    The investigations were directed at determining the radiation history and surface chronology of lunar materials using the etched particle track technique. The major lunar materials studied are the igneous rocks and double core from Apollo 12, the breccia and soil samples from Apollo 14, and the core samples from Luna 16. In the course of this work two new and potentially important observations were made: (1) Cosmic ray-induced spallation-recoil tracks were identified. The density of such tracks, when compared with the density of tracks induced by a known flux of accelerator protons, yields the time of exposure of a sample within the top meter or two of moon's surface. (2) Natural, fine scale plastic deformation was found to have fragmented pre-existing charged particle tracks, allowing the dating of the mechanical event causing the deformation.

  13. Lunar surface magnetometer experiment

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Sonett, C. P.

    1972-01-01

    The Apollo 15 lunar-surface magnetometer (LSM) is one of a network of magnetometers that have been deployed on the moon to study intrinsic remanent magnetic fields and global magnetic response of the moon to large-scale solar and terrestrial magnetic fields. From these field measurements, properties of the lunar interior such as magnetic permeability, electrical conductivity, and temperature can be calculated. In addition, correlation with solar-wind-spectrometer data allows study of the the solar-wind plasma interaction with the moon and, in turn, investigation of the resulting absorption of gases and accretion of an ionosphere. These physical parameters and processes determined from magnetometer measurements must be accounted for by comprehensive theories of origin and evolution of the moon and solar system.

  14. Lunar material transport vehicle

    NASA Technical Reports Server (NTRS)

    Fisher, Charles D.; Lyons, Douglas; Wilkins, W. Allen, Jr.; Whitehead, Harry C., Jr.

    1988-01-01

    The proposed vehicle, the Lunar Material Transport Vehicle (LMTV), has a mission objective of efficient lunar soil material transport. The LMTV was designed to meet a required set of performance specifications while operating under a given set of constraints. The LMTV is essentially an articulated steering, double-ended dump truck. The vehicle moves on four wheels and has two identical chassis halves. Each half consists of a chassis frame, a material bucket, two wheels with integral curvilinear synchronous motors, a fuel cell and battery arrangement, an electromechanically actuated dumping mechanism, and a powerful microprocessor. The vehicle, as designed, is capable of transporting up to 200 cu ft of material over a one mile round trip per hour. The LMTV is capable of being operated from a variety of sources. The vehicle has been designed as simply as possible with attention also given to secondary usage of components.

  15. The Lunar Sample Compendium

    NASA Technical Reports Server (NTRS)

    Meyer, Charles

    2009-01-01

    The Lunar Sample Compendium is a succinct summary of the data obtained from 40 years of study of Apollo and Luna samples of the Moon. Basic petrographic, chemical and age information is compiled, sample-by-sample, in the form of an advanced catalog in order to provide a basic description of each sample. The LSC can be found online using Google. The initial allocation of lunar samples was done sparingly, because it was realized that scientific techniques would improve over the years and new questions would be formulated. The LSC is important because it enables scientists to select samples within the context of the work that has already been done and facilitates better review of proposed allocations. It also provides back up material for public displays, captures information found only in abstracts, grey literature and curatorial databases and serves as a ready access to the now-vast scientific literature.

  16. Mobile continuous lunar excavation

    NASA Technical Reports Server (NTRS)

    Paterson, John L.

    1992-01-01

    A novel approach to the concept of lunar mining and the use of in situ oxygen, metallics, and ceramics is presented. The EVA time required to set up, relocate, and maintain equipment, as well as the cost per pound of shipping the mining and processing equipment to the moon are considered. The proposed soil fracturing/loading mechanisms are all based loosely on using the Apollo Lunar Roving Vehicle (LRV) Frame. All use motor driven tracks for mobility in the forward/reverse and left/right direction. All mechanisms employ the concept of rototillers which are attached to a gantry which, through the use of motor-driven lead screws, provide the rototillers with an up/down capability. A self-reactant excavator, a local mass enhanced excavator, and a soil reactant excavator are illustrated.

  17. Lunar hand tools

    NASA Technical Reports Server (NTRS)

    Bentz, Karl F.; Coleman, Robert D.; Dubnik, Kathy; Marshall, William S.; Mcentee, Amy; Na, Sae H.; Patton, Scott G.; West, Michael C.

    1987-01-01

    Tools useful for operations and maintenance tasks on the lunar surface were determined and designed. Primary constraints are the lunar environment, the astronaut's space suit and the strength limits of the astronaut on the moon. A multipurpose rotary motion tool and a collapsible tool carrier were designed. For the rotary tool, a brushless motor and controls were specified, a material for the housing was chosen, bearings and lubrication were recommended and a planetary reduction gear attachment was designed. The tool carrier was designed primarily for ease of access to the tools and fasteners. A material was selected and structural analysis was performed on the carrier. Recommendations were made about the limitations of human performance and about possible attachments to the torque driver.

  18. The Lunar Dust Pendulum

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Farrell, William M.; Stubbs, Timothy J.

    2012-01-01

    An analytic model for the motion of a positively charged lunar dust grain in the presence of a shadowed crater at a negative potential in vacuum is presented. It is shown that the dust grain executes oscillatory trajectories, and an expression is derived for the period of oscillation. Simulations used to verify the analytic expression also show that because the trajectories are unstable, dust grains are either ejected from the crater's vicinity or deposited into the crater forming "dust ponds." The model also applies to other airless bodies in the solar system, such as asteroids, and predicts that under certain conditions, particularly near lunar sunset, oscillating dust "canopies" or "swarms" will form over negatively charged craters. Published by Elsevier Ltd. on behalf of COSPAR.

  19. Adhesion of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.

    2007-01-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  20. Lunar Core and Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2004-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2,3,4] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening, which in the past has been marginal but improving [3,4,5], now seems significant. Direct detection of the core moment has not yet been achieved.